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Preface

Non-destructive testing (NDT) methods are a group of tests that allow the detection of external

(surface) as well as internal defects of the structure. They enable the determination of the state

of micro- and macro-structure without interfering with the structure of the tested object and they

provide information about the functional properties of the tested object. This basic feature and the

variety of non-destructive testing methods make them applicable in many industries. Despite the

numerous advantages, NDT methods also have limitations, one of which may be the economic factor

of the cost of purchasing testing equipment. NDT can be carried out at various stages of production,

operation, or repair. They are used to carry out quality control of products and to determine the

technical condition of an object.

Unlike the well-known destructive testing methods that have been in use for a long time, many

of the testing methods classified as nondestructive have been in use recently. At present, a wide

variety of nondestructive testing methods, operating on the basis of different phenomena, can be

specified. A detailed classification and description can be found in the EN-ISO/ISO standards, among

others. The most common group of nondestructive tests includes visual methods, penetrant methods,

magnetic-powder methods, methods using eddy currents, thermographic methods, vibration

methods, acoustic methods, ultrasonic methods, and radiographic methods. Visual, penetrant, and

electromagnetic methods, including eddy current, are ideal for detecting surface discontinuities. The

detection of subsurface defects is made possible by eddy current, magnetic particle thermographic

methods. Among the methods of non-destructive volumetric testing, acoustic, ultrasonic, and

radiographic methods should be listed first.

Grzegorz Peruń and Tangbin Xia

Topic Editors

xi
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Impedance Variation in a Coaxial Coil Encircling a Metal
Tube Adapter

Yao Luo 1,2,* and Xinyi Yang 1,2

1 State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and
Automation, Wuhan University, Wuhan 430072, China; yangxy@whu.edu.cn

2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
* Correspondence: luoyao@whu.edu.cn

Abstract: The impedance change in an induction coil surrounding a metal tube adapter is investigated
using the truncated region eigenfunction expansion (TREE) method. The conventional TREE method
is inapplicable to this problem as a consequence of the numerical overflow of the eigenfunctions of
the air–metal multi-subdomain regions. The difficulty is surmounted by a normalization procedure
for the numerical eigenfunctions obtained from the 1D finite element method (FEM). An efficient
algorithm is devised by the Clenshaw–Curtis quadrature rule for integrals involving the numerical
eigenfunctions. The numerical results of the TREE and FEM simulation coincide very well in all cases,
and the efficiency of the proposed method is also confirmed.

Keywords: tube adapter; eddy current; numerical eigenfunctions; Clenshaw–Curtis quadrature

1. Introduction

A tube adapter is a component connecting two tubes of different diameters. The
standard analytical method of Dodd and Deeds [1] is unable to investigate the interaction
of an induction coil with a metal tube adapter due to the end effects involved in this problem.
The truncated region eigenfunction expansion (TREE) method, pioneered by Hannakam
and Tepe [2], and developed by Theodoulidis, Kriezis, and Bowler [3–9] for the modeling of
the eddy current nondestructive testing (EC NDT), is capable of analyzing the end effects
and establishing analytical models. However, the successful implementation of TREE for
the model of end effects depends on the solution of relevant eigenvalue equations, which
are transcendental, and complex roots should be determined. Conventionally, the Newton–
Raphson algorithm [10–13] or contour integral based on the Cauchy’s theorem [14–17] are
applied to solve the eigenvalue equations. A novel method based on the Sturm–Liouville
theory and Galerkin approach has been proposed recently [18–20], which greatly simplifies
the process of locating the complex eigenvalues.

However, the TREE method has hitherto been available only for problem of the
air–metal region of two subdomains. For a problem involving the region of three air–metal
subdomains, the source should be decomposed into the odd and even parts, if possible,
to reduce the problem to the two subdomains [6,8,21–23]. No solutions for the problem
involving regions of more subdomains have yet been found in the literature. The difficulty
lies in the fact that the symbolic piecewise eigenfunctions for regions of three or more
subdomains will become extremely clumsy, and more seriously, they are very prone to
numerical overflow with the complex argument, especially when the argument has a
relatively large imaginary part. Nevertheless, the issue of numerical overflow should
not be superficially ascribed to the multi-subdomain regions but rather to the formally
constructed eigenfunctions. By a proper normalization of the eigenfunctions, the overflow
could be evaded, and the TREE method should become applicable to problems of multi-
subdomain regions. In this work, the normalization of complex eigenfunctions is achieved

Sensors 2023, 23, 8302. https://doi.org/10.3390/s23198302 https://www.mdpi.com/journal/sensors1
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based on the approach of [19], and a problem including regions of three subdomains (See
Figure 1) is solved with TREE.

Figure 1. Side view of a metal tube adapter encircled by a coaxial coil.

In Section 2, the TREE solution is given for a metal tube adapter surrounded by a
coaxial coil. The permeability of the metal is not restricted to μ0. In Section 3, a method
successful in dealing with the overflow issue is devised. The numerical eigenfunctions
are obtained by the 1D FEM solution of the Sturm–Liouville equations and normalized,
and the Clenshaw–Curtis quadrature is applied to the computation of the integrals in-
volving the numerical eigenfunctions. By this strategy, efficient computation of the matrix
elements can be contrived. In Section 4, the TREE results are compared with those from the
FEM simulation.

2. Formulation

A metal tube adapter of conductivity σ and permeability μ = μrμ0 (μr is supposed to
be constant) is encircled by a coaxial induction coil excited by a time harmonic current of
frequency ω and amplitude I (See Figure 2). The geometry of the coil and tube adapter is
shown in Figure 1. A perfect electric boundary is imposed at z = 0 and z = b to discretize
the eigenvalues of this boundary value problem (BVP).

Figure 2. A metal tube adapter encircled by a coaxial coil.

2
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The solution domain is divided into five regions along the r-axis (See Figure 1). The vector
potentials A1 to A5 satisfy the Laplace or Helmholtz equations in the corresponding regions:

∇2A1,5 = 0 (1)

∇2A2,3,4 = k2A2,3,4 (2)

where k =
√

iωσμ0μr is the wavenumber of the metal.
Only the ϕ-component of the vector potential exists due to the axisymmetry of the

BVP, i.e., A = Aeϕ, and the vector Laplacian of Equations (1) and (2) is reduced to

∇2
ϕ =

∂2

∂r2 +
1
r

∂

∂r
− 1

r2 +
∂2

∂z2 (3)

2.1. Vector Potential of the Source Coil

The formulation of the source vector potential can be obtained by the source expansion
of the Poisson equation [24,25]. The vector potential of the coil can be written in the form
outlined in Figure 3,

AI(r, z) = ST(z)I1(αr)C(e)
1 (4a)

AII(r, z) = ST(z)
[
I1(αr)C(e)

2 + K1(αr)D(e)
2 + V(r)

]
(4b)

AIII(r, z) = ST(z)K1(αr)D(e)
3 (4c)

Figure 3. Side view of an isolated coil with truncation boundary.

Where the source vector V(r) is

V(r) =

⎡⎢⎣v1(r)
v2(r)

...

⎤⎥⎦
with the elements

vi(r) = κiL1(αir) (5)

3
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where αi = iπ/b, and Ln(x) is the modified Struve function of order n, and

κi =
2μ0 J
iα2

i
sin

[αi
2
(z1 − z2)

]
sin

[αi
2
(z1 + z2)

]
(6)

Other matrices and vectors in (4a)–(4c) are

α =

⎡⎢⎣α1 0 · · ·
0 α2 · · ·
...

...
. . .

⎤⎥⎦, I1(αr) =

⎡⎢⎣I1(α1r) 0 · · ·
0 I1(α2r) · · ·
...

...
. . .

⎤⎥⎦, K1(αr) =

⎡⎢⎣K1(α1r) 0 · · ·
0 K1(α2r) · · ·
...

...
. . .

⎤⎥⎦, S(z) =

⎡⎢⎣sin(α1z)
sin(α2z)

...

⎤⎥⎦,

where In(x) and Kn(x) are the modified Bessel functions of the first and second kinds of
order n, respectively, and C

(e)
1 , C

(e)
2 , D

(e)
2 , D

(e)
3 are the coefficients to be determined. With

the interface conditions of Br and Hz at r = r1 and r = r2, the coefficients can be found:

C(e)
1,i = κi[χ(αir1)− χ(αir2)] (7a)

C(e)
2,i = −κiχ(αir2) (7b)

D(e)
2,i = κiη(αir1) (7c)

D(e)
3,i = κi[η(αir1)− η(αir2)] (7d)

where
χ(x) = x[K1(x)L0(x) + K0(x)L1(x)] (8a)

η(x) = x[I1(x)L0(x)− I0(x)L1(x)] (8b)

For the function χ(x) used for the subsequent analysis, it is advisable to adopt an
alternative form for the practical evaluations, namely

χ(x) =

⎧⎪⎪⎨⎪⎪⎩
x2

2

m0
∑

m=0

(x/2)2m

Γ(m+3/2)

[
K1(x)

Γ(m+3/2) +
xK0(x)

2Γ(m+5/2)

]
, x < 15

1 + x
π2

m1
∑

m=0

Γ2(m+1/2)
(x/2)2m

[
K0(x)

m−1/2 − K1(x)
x/2

]
, x ≥ 15

(9)

Expression (9) is obtained by the Maclaurin and asymptotic expansions of Ln(x) [26],
and high accuracy can be achieved by setting m0 = 23 and m1 = 10, respectively.

2.2. Impedance Change in the Coil Encircling the Metal Tube Adapter

The vector potentials in the five regions of Figure 2 are expansible by the separation
of variables

A1(r, z) = ST(z)I1(αr)C1 (10a)

A2(r, z) = FT(z)[I1(P1r)C2 + K1(P1r)D2] (10b)

A3(r, z) = GT(z)[I1(P2r)C3 + K1(P2r)D3] (10c)

A4(r, z) = HT(z)[I1(P3r)C4 + K1(P3r)D4] (10d)

A5(r, z) = ST(z)
[
I1(αr)C(e)

1 + K1(αr)D(s)
]

(10e)

4
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where P1, P2, and P3 are the eigenvalue matrices of regions 2, 3, and 4, respectively,

P1 =

⎡⎢⎣p1,1 0 · · ·
0 p1,2 · · ·
...

...
. . .

⎤⎥⎦, P2 =

⎡⎢⎣p2,1 0 · · ·
0 p2,2 · · ·
...

...
. . .

⎤⎥⎦, P3 =

⎡⎢⎣p3,1 0 · · ·
0 p3,2 · · ·
...

...
. . .

⎤⎥⎦,

and

F(z) =

⎡⎢⎣ f1(p1,1, z)
f2(p1,2, z)

...

⎤⎥⎦, G(z) =

⎡⎢⎣g1(p2,1, z)
g2(p2,2, z)

...

⎤⎥⎦, H(z) =

⎡⎢⎣h1(p3,1, z)
h2(p3,2, z)

...

⎤⎥⎦
are the axial eigenfunctions satisfying the relevant Sturm–Liouville equations:

d2 fi(z)
dz2 − k2

1(z) fi(z) = −p2
1,i fi(z), fi(0) = fi(b) = 0 (11a)

d2gi(z)
dz2 − k2

2(z)gi(z) = −p2
2,igi(z), gi(0) = gi(b) = 0 (11b)

and
d2hi(z)

dz2 − k2
3(z)hi(z) = −p2

3,ihi(z), hi(0) = hi(b) = 0 (11c)

with

k1(z) =
{

k, b1 ≤ z ≤ b3
0, others

(12a)

k2(z) =
{

k, b2 ≤ z ≤ b3
0, others

(12b)

and

k3(z) =
{

k, b2 ≤ z ≤ b4
0, others

(12c)

Taking account of the interface conditions of Br and Hz at r = a1, r = a2, r = a3, and
r = a4, the following equations for the coefficients C2, C3, C4, D1, D2, and D3 can be derived

b
2

I1(αa1)C1 = T1[I1(P1a1)C2 + K1(P1a1)D1] (13a)

TT
1αI0(αa1)C1 = P1[I0(P1a1)C2 − K0(P1a1)D2] (13b)

I1(P1a2)C2 + K1(P1a2)D2 = T2[I1(P2a2)C3 + K1(P2a2)D3] (13c)

TT
2 P1[I0(P1a2)C2 − K0(P1a2)D2] = P2[I0(P2a2)C3 − K0(P2a2)D3] (13d)

I1(P2a3)C3 + K1(P2a3)D3 = T3[I1(P3a3)C4 + K1(P3a3)D4] (13e)

TT
3 P2[I0(P2a3)C3 − K0(P2a3)D3] = P3[I0(P3a3)C4 − K0(P3a3)D4] (13f)

T4[I1(P3a4)C4 + K1(P3a4)D4] =
b
2

[
I1(αa4)C

(e)
1 + K1(αa4)D

(s)
]

(13g)

P3[I0(P3a4)C4 − K0(P3a4)D4] = TT
4α

[
I0(αa4)C

(e)
1 − K0(αa4)D

(s)
]

(13h)
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where

T1 =
∫ b

0
S(z)FT(z)dz (14)

T2 =
∫ b

0

1

μ
(1)
r (z)

F(z)GT(z)dz (15)

T3 =
∫ b

0

1

μ
(2)
r (z)

G(z)HT(z)dz (16)

T4 =
∫ b

0
S(z)HT(z)dz (17)

In (13a)–(13h), the orthogonalities of the eigenfunctions

∫ b

0
S(z)ST(z)dz =

b
2

I (18a)

∫ b

0

1

μ
(1)
r (z)

F(z)FT(z)dz = I (18b)

∫ b

0

1

μ
(2)
r (z)

G(z)GT(z)dz = I (18c)

∫ b

0

1

μ
(3)
r (z)

H(z)HT(z)dz = I (18d)

have been adopted, where I is the identity matrix, and

μ
(1)
r (z) =

{
μr, b1 ≤ z ≤ b3
1, others

(19a)

μ
(2)
r (z) =

{
μr, b2 ≤ z ≤ b3
1, others

(19b)

μ
(3)
r (z) =

{
μr, b2 ≤ z ≤ b4
1, others

(19c)

The orthonormalization relations of (18b)–(18d) will be expounded in Section 3.
The matrix algebra of (13a)–(13h) yields the equation system⎡⎢⎢⎣

A11 A12 0 0

A21 A22 A23 A42
A31 A32 A33 A34

0 0 A43 A44

⎤⎥⎥⎦
⎡⎢⎢⎣

C2
D2
C4
D4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

0

0

E

⎤⎥⎥⎦ (20)

where
A11 = U1I1(P1a1)− P1I0(P1a1) (21a)

A12 = U1K1(P1a1) + P1K0(P1a1) (21b)

A21 = I1(P2a3)M3 + K1(P2a3)M1 (21c)

A22 = I1(P2a3)M4 + K1(P2a3)M2 (21d)

A23 = −T3I1(P3a3) (21e)

A24 = −T3K1(P3a3) (21f)

A31 = TT
3 P2[I0(P2a3)M3 − K0(P2a3)M1] (21g)

A32 = TT
3 P2[I0(P2a3)M4 − K0(P2a3)M2] (21h)
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A33 = −P3I0(P3a3) (21i)

A34 = P3K0(P3a3) (21j)

A43 = U2I1(P3a4) + P3I0(P3a4) (21k)

A44 = U2K1(P3a4)− P3K0(P3a4) (21l)

E = TT
4α

[
I0(αa4) + K0(αa4)K

−1
1 (αa4)I1(αa4)

]
C
(e)
1 (21m)

with
U1 =

2
b

TT
1αI0(αa1)I

−1
1 (αa1)T1 (22a)

U2 =
2
b

TT
4αK0(αa4)K

−1
1 (αa4)T4 (22b)

M1 = a2[X1I1(P1a2)− X2I0(P1a2)] (22c)

M2 = a2[X1K1(P1a2) + X2K0(P1a2)] (22d)

M3 = a2[X3I1(P1a2) + X4I0(P1a2)] (22e)

M4 = a2[X3K1(P1a2)− X4K0(P1a2)] (22f)

X1 = P2I0(P2a2)T
−1
2 (22g)

X2 = I1(P2a2)T
T
2 P1 (22h)

X3 = P2K0(P2a2)T
−1
2 (22i)

X4 = K1(P2a2)T
T
2 P1 (22j)

Solving Equation (20) will give the coefficients C2, D2, C4, and D4, and other coeffi-
cients can be found by

C1 =
2
b

I−1
1 (αa1)T1[I1(P1a1)C2 + K1(P1a1)D2] (23)

C3 = M3C2 + M4D2 (24)

D3 = M1C2 + M2D2 (25)

The coefficient required for the calculation of ΔZ is

D(s) = K−1
1 (αa4)

{
−I1(αa4)C

(e)
1 +

2
b

T4[I1(P3a4)C4 + K1(P3a4)D4]

}
(26)

Accordingly, the coil impedance variation is given by

ΔZ = iω
I2

∫
V A(s) · JdV

= π2iωN2

(r2−r1)
2(z2−z1)

2

∞
∑

n=1

cos(αnz1)−cos(αnz2)

α3
n

[χ(αnr2)− χ(αnr1)]d
(s)
n

(27)

where the current density J has been omitted (letting J = 1) to simplify the expression.

3. Eigenfunctions and the Associated Integrals of the Multi-Subdomain Regions

In the conventional TREE models, symbolic piecewise eigenfunctions are used for the
air–metal multi-subdomain regions. With this approach, the TREE method is restricted to the
two-subdomain problems (apart from certain problems of three subdomains). For problems
involving air–metal regions of more subdomains, the overflow of the explicit eigenfunctions
is inevitable, which raises serious difficulties in the numerical evaluations. Therefore, the
eigenfunctions of (11a)–(11c) cannot be treated by the conventional TREE method.

7
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In [18–20], the eigenvalue problem of (11a)–(11c) is reformulated in terms of a Sturm–
Liouville problem. In accordance with [18–20], the eigenvalues of (11a) can be obtained by
the solution of a generalized eigenvalue equation

KUi = p2
1,iWUi (28)

where K is the stiffness matrix with the elements

Kmn =

b∫
0

1

μ
(1)
r (z)

[
dϕm(z)

dz
dϕn(z)

dz
+k2

1(z)ϕm(z)ϕn(z)
]
dz (29)

and W is the damping matrix of the elements

Wmn =

b∫
0

ϕm(z)ϕn(z)

μ
(1)
r (z)

dz (30)

where ϕm and ϕn are the FEM functions consisting of the Lagrange polynomials defined
on the reference interval −1 ≤ ξ ≤ 1 (the shape functions).

A sparse matrix K will be generated from the FEM basis. Hence, Equation (28) can be
solved by an efficient algorithm, such as Arnoldi iteration [27]. This solution provides both
the eigenvalues p1,i and the eigenvectors Ui, which are the discrete eigenfunctions fi(z).
Moreover, denoting

U = [U1, U2, . . .]T (31)

and by virtue of the vector normalization

U′ = U√
diag

(
UWUT) (32)

the eigenfunction normalization

b∫
0

1

μ
(1)
r

f 2
i (z)dz = 1 (33)

can be established automatically. Equations (32) and (33) can be validated by inspecting
the diagonal entries of UWUT and taking Equation (30) into account. Consequently, the
orthonormality of (18b)–(18d) can be established.

The requirement of the accurate and efficient algorithm leads to the choice of high order
Lagrange polynomials for the FEM basis. Here, we choose the cubic Lagrange polynomials⎧⎪⎪⎨⎪⎪⎩

N0(ξ) = − 1
16 (ξ − 1)(3ξ − 1)(3ξ + 1)

N1(ξ) =
9

16 (ξ − 1)(ξ + 1)(3ξ − 1)
N2(ξ) = − 9

16 (ξ − 1)(ξ + 1)(3ξ + 1)
N3(ξ) =

1
16 (ξ + 1)(3ξ − 1)(3ξ + 1)

(34)

The cubic interpolation of the eigenfunction is

fi(z) =
3

∑
e=0

u′
l+eNe(z) (35)

where u′
l+e is the successive four entries of U′

i , and Ne(z) is obtained by (34) with the change
in the variable

ξ =
2z − za − zb

zb − za
(36)

8
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where za and zb are the mesh nodes corresponding to the reference interval. The numerical
overflow of fi(z) is eliminated by this procedure. They are consequently well adapted
for the subsequent integral computation. Furthermore, it appears to be very effective to
evaluate directly the integrals (14)–(17) with the Clenshaw–Curtis quadrature, which is
quoted here for completeness [28–30]

∫ 1

−1
f (x)dx =

n

∑
k=0

wk f (xk) (37)

where the weights wk are given by

wk =
gk
n

(
1 −

�n/2�
∑
j=1

bj

4j2 − 1
cos(2jkπ/n)

)
(38)

and the quadrature nodes are

xk = cos
(

kπ

n

)
, k = 0, 1, . . . , n (39)

with

gk =

{
1 , k = 0, n
2 , otherwise

(40)

bj =

{
1 , j = 1

2 n
2 , otherwise

(41)

It follows from Equations (37)–(41) that the matrix elements of T1 can be computed by

T1,ij =
b∫

0
sin(αiz) f j(z)dz

= b
2

∫ 1
−1 sin

[
b
2 αi(1 + x)

]
f j

[
b
2 (1 + x)

]
dx

= b
2

n
∑

k=0
wk sin(αizk) f j(zk)

(42)

where
zk =

b
2
(1 + xk) (43)

The matrix elements of T2 are likewise given by

T2,ij =
b∫

0

1
μ
(1)
r

fi(z)gj(z)dz

=
b1∫
0

fi(z)gj(z)dz + 1
μr

b3∫
b1

fi(z)gj(z)dz +
b∫

b3

fi(z)gj(z)dz

= b1
2

n
∑

k=0
wk fi

(
z(1)k

)
gj

(
z(1)k

)
+ b3−b1

2

n
∑

k=0
wk fi

(
z(2)k

)
gj

(
z(2)k

)
+ b−b3

2

n
∑

k=0
wk fi

(
z(3)k

)
gj

(
z(3)k

) (44)

where

z(1)k =
b1

2
(1 + xk), z(2)k =

b3 + b1

2
+

b3 − b1

2
xk, z(3)k =

b + b3

2
+

b − b3

2
xk (45)

The same analysis is also applicable to the matrix elements of T3 and T4. A flowchart
is provided in Figure 4 to present the process of the novel approach.
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Figure 4. Flowchart of the TREE method enhanced by 1D FEM.

4. Numerical Validation

The proposed method will be verified with the parameters of the metal tube adapter
and the induction coil given in Tables 1–3. The nonmagnetic alloy UNS (Unified Num-
bering System) C96400 (70-30 Copper-Nickel) and the magnetic stainless steels S31600
(austenitic) and S32760 (super duplex) [31] are used for the numerical validation. The coil
impedance variations are calculated and plotted for these metal materials with different
coil positions. The TREE results are compared with those from the FEM simulation of
Comsol Multiphysics®(COMSOL Inc., Stockholm, Sweden), shown in Figure 5, where the
theoretical and FEM data are denoted by solid lines and circles, respectively. The reactance
of the isolated induction coil is X0 = ωL0, with L0 = 4.104132 mH, which can be found by
the method such as in [32].

Table 1. Metals used for the tube adapter.

Metal (UNS) Conductivity σ (MS/m) Relative Permeability μr

C96400 2.9 1
S31600 1.33 1.02
S32760 1.25 29

Table 2. Geometry of the metal tube adapter.

Parameter Parameter

a1 (mm) 5 b1 (mm) 40
a2 (mm) 8 b2 (mm) 48
a3 (mm) 11 b3 (mm) 51
a4 (mm) 14 b4 (mm) 59
b (mm) 100

10
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Table 3. Parameters of the induction coil.

Parameter

Inner radius r1 (mm) 15
Outer radius r2 (mm) 18

Axial length z2 − z1 (mm) 6
Number of turns 300

(a) (b)

Figure 5. Normalized impedance variations with the abscissa representing the parameter g. (a) The
resistance variation. (b) The reactance variation.

Further calculations are carried out for the coil impedance variation with respect to
the frequencies. For the alloys of lower μr (C96400 and S31600), the calculation frequency
ranges from 1 kHz to 100 kHz, for higher μr (S32760), the frequency interval [100 Hz,
10 kHz] is chosen. The results are shown in Figures 6 and 7, where the TREE data are
plotted by solid lines in connection with the circles representing the data of the FEM
simulation. Other parameters are referred to in Tables 2 and 3.

(a) (b)

Figure 6. Normalized impedance variations with the abscissa representing the frequency. The alloys
are C96400 and S31600. (a) The resistance variation. (b) The reactance variation.
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(a) (b)

Figure 7. Normalized impedance variations with the abscissa representing the frequency. The alloy
is S32760. (a) The resistance variation. (b) The reactance variation.

Very good agreement is obtained between the TREE and FEM results in the numerical
comparisons. The calculations were implemented on a personal computer of a 4.2 GHz
processor (Intel® Core i7-7700K) and 16 GB RAM. Additional algorithm details are shown
in Table 4, where the frequencies, summation terms (matrix size), mesh elements, and
quadrature nodes used in the computation are listed. The execution time of the eigenvalue
and eigenfunction computation and the total execution time of the TREE evaluation are
also provided. No more than 1.5 s (including the time consumed by the calculation
of eigenvalues and eigenfunctions) are needed for a TREE evaluation. The satisfactory
algorithm efficiency provides evidence for this.

Table 4. Computation configuration and execution time of TREE method.

Metal
(UNS)

Frequency Summation Terms Quadrature Nodes
Mesh

Elements

Execution Time of
Eigenvalue and

Eigenfunction Computation
Total Execution Time

S31600
10 kHz 30 80 510 0.19 s 0.55 s
100 kHz 40 80 510 0.26 s 0.73 s

S32760
1 kHz 55 80 510 0.36 s 1.00 s

10 kHz 70 90 510 0.54 s 1.30 s

C96400
10 kHz 30 80 510 0.19 s 0.56 s
100 kHz 50 80 510 0.34 s 0.90 s

5. Conclusions

The interaction of an eddy current coil with a metal tube adapter has been investigated
using the TREE method. The numerical overflow for symbolic eigenfunctions of air–metal
multi-subdomain regions has been removed via the normalization of the eigenvectors, and
a satisfactory computational speed was achieved using the Clenshaw–Curtis quadrature
rule applied to the integrals associated with the numerical eigenfunctions. The calculation
accuracy has been verified by the numerical comparisons, and the efficiency of our approach
has also been confirmed. Considerable potential has been shown for the development of
new analytical models with the aid of the proposed approach.
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Abstract: A through-transmission ultrasonic method is proposed to address limitations in conven-
tional ultrasonic reflection methods for non-destructive testing of ferrite tiles. The method utilizes a
dual-probe configuration on both sides of the test piece to measure ultrasonic transmission signals,
overcoming issues related to blind zones and orientation limitations in pulse-echo reflection methods.
This method demonstrates excellent capabilities for full inspection of internal and external defects in
ferrite tiles. Physical field finite element simulations were conducted to analyze detection capabilities
and a transmissive testing system is developed based on the simulation results. Experimental val-
idation was performed on artificially manufactured quantified defect samples in aluminum alloy,
and the same testing system was applied to evaluate ferrite tile samples. The results confirmed the
effectiveness of the system in distinguishing defective (NG) signals from normal defect-free (OK)
signals, with a recall rate of at least 95% on samples of various sizes up to 0.1 mm. This research
provides insights for quality control and defect detection technology in ferrite tiles.

Keywords: through-transmission; ultrasonic testing; defect detection; ferrite tile

1. Introduction

Ferrite tiles are critical components in permanent magnet motors [1–3]. However, due
to their high hardness and brittleness, they are prone to defects during the manufacturing
process, which can adversely affect the performance and lifespan of permanent magnet
motors. These defects include external flaws such as fractures and burrs, as well as internal
flaws like cracks and voids [4,5]. To reduce production costs and improve efficiency, non-
destructive testing of internal and external defects in ferrite tiles is required before they are
magnetized to become magnetic tile products. In recent years, acoustic vibration methods
have been proposed for detecting internal defects in ferrite tiles. For instance, Lu [3] applied
acoustic methods to detect internal defects in ferrite tiles by analyzing the sound signals
generated when the tiles were impacted by an iron block. Xie et al. [6] investigated the
effectiveness of the PCA-SVM (Principal Component Analysis-Support Vector Machines)
method based on acoustic resonance for detecting internal defects in ferrite tiles. On the
other hand, machine vision methods have been utilized to inspect external defects in ferrite
tiles. Xie et al. [1] introduced a feature fusion CNN (Convolutional Neural Networks) to
address continuous image defect recognition, while Hu et al. [7] proposed a two-stage
detection model called UPM-Dense Net (Upscaled PatchMatch Dense Network) to meet
the precision and speed requirements for detecting small defects. Compared to other non-
destructive testing methods, ultrasonic inspection offers a simple testing system and strong
robustness, making it applicable to a wide range of materials. Consequently, in industrial
applications, the ultrasonic test has found extensive use in areas such as detecting internal
defects, measuring material properties, and health monitoring [8–10]. M. Liu et al. [11]
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conducted time-domain analysis of the weld defect echo signal of stainless steel pipes
according to the weld defect echo signal of stainless steel pipes, compared and analyzed the
amplitude changes of different types of weld defect signals, and realized the detection of
weld defects. Typically, ultrasonic pulse-echo methods detect sample defects by analyzing
the time and frequency domain characteristics of echo signals. For defect detection in
ferrite tiles, Cheng et al. [12] developed a pulse-echo-based approach that improved the
B-scan (Brightness Scan) imaging and accurate localization of internal defects in the tiles.
However, when defects are located near or at the surface of the sample, the impedance
mismatch between the probe, sample, and coupling agent leads to strong surface echoes,
making defect detection challenging [13,14]. As a result, ultrasonic pulse-echo methods
have limitations in terms of detection accuracy and sample structures [15]. In the realm of
ultrasonic testing (UT), ultrasonic transmission emerges as a defect detection technique that
overcomes the limitations of traditional methods, allowing for the inspection of near-surface
and surface defects and the measurement of various material properties. Several studies
both domestically and internationally have utilized ultrasonic transmission methods for
defect detection and measurement [16–21]. For instance, Wang [22] employed ultrasonic
transmission for defect detection in complex curved resin-based composite materials,
demonstrating the capability of the ultrasonic transmission method to detect bending
composite parts with the aid of an automatic robot inspection system. These research
outcomes suggest that ultrasonic transmission method has the potential for comprehensive
defect inspection of both internal and external defects in ferrite tiles.

The ultrasonic echo test of ferrite tiles posed several challenges during the experiments.
These challenges included the high damping attenuation in ferrite tiles, leading to weak
echo signals and a low signal-to-noise ratio in the pulse-echo method. Moreover, the pulse-
echo method exhibited more pronounced blind zones in small-sized ferrite tile samples,
making defect detection difficult. Additionally, the detection of common longitudinal
cracks in ferrite tiles was hindered by the influence of defect orientation. To address these
difficulties, a water-immersion ultrasonic transmission method for ferrite tiles is proposed.
The effectiveness of this method is validated through finite element simulation, test system
design, and experimental verification. By utilizing the ultrasonic transmission method, the
paper overcomes the limitations of the conventional pulse-echo method and provides a
promising solution for comprehensive defect detection in both the internal and external
regions of ferrite tiles.

2. Principle of Defect Detection by Liquid-Immersed Ultrasonic Transmission Method

The ultrasonic transmission method is a detection method developed based on the
loss of ultrasonic waves in the medium, including the phenomena of absorption of sound
waves, dissipation, scattering at interfaces, and attenuation of the diffusion of the sound
beam. During the measurement, a pair of transmitting probes and receiving transducers
are placed on both sides of the sample to be measured. When a piezoelectric crystal inside
the transmitting probe is excited by a pulsed voltage, pulsed ultrasonic waves propagate
through the sample. A focusing transducer was employed in the transmitting probe for
the focus of the ultrasonic beam. This is achieved by applying an acoustic lens, which
increases the sound intensity inside the sample and therefore the signal-to-noise ratio.
When ultrasound is applied to the non-destructive testing of internal defects, the main
consideration is the scattering and attenuation of the defects encountered by the ultrasound
waves during propagation. As shown in Figure 1, ultrasonic waves are emitted from the
transmitting probe at an angle perpendicular to the sample surface and propagate into the
sample through the coupling agent water. When the ultrasonic wave encounters a defect
during the propagation of the sample under test, a portion of the ultrasonic wave will be
lost at the junction of the sample and the defect, i.e., between different media, and a certain
range of masking will be formed behind the defect. According to the loss of ultrasonic
energy, it is then possible to determine the presence and size of defects, including internal
and external defects.
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(a) (b) 

Figure 1. Focusing liquid immersion ultrasonic transmission detection method; (a) system diagram
(b) the basis for judging defects.

The ultrasonic signal propagated through the coupling agent can be distinguished
from the ultrasonic signal propagated through the solid sample. Because the speed of
sound in a solid, such as a ferrite tile, is about 6700 m/s at room temperature of 25 ◦C,
which is significantly higher than the speed of sound in a liquid, such as water, which
is about 1500 m/s, the time of flight (TOF) for propagating the same distance of sound
waves in a ferrite tile is only 1/4 of that in a water medium, resulting in the received signals
showing a significant difference in the time domain. Based on the cleaning requirements
after sample testing and the principle of acoustic impedance matching, the coupling agent
was selected as water.

Ultrasonic waves can be regarded as linear propagation in an isotropic ideal medium,
following the geometric acoustic law. Let the initial sound pressure p0, the received sound
pressure is Pi, the ultrasonic angular frequency is ω, the imaginary number unit is j and
the wave number be k = 2π/λ, respectively. The ultrasonic sound pressure p at the sound
range r is

pi(r, t) =
p0

r
ej(ωt−kr) (1)

The transmittance T of ultrasonic waves between a medium with acoustic impedances
z1 and z2 is

T =

(
4z1z2

z1 + z2

)2
(2)

The acoustic transmittance decreases with the increase of the acoustic impedance
difference between the two sides of the dielectric interface. To ensure the sufficient intensity
of acoustic transmission into the sample, it is necessary to match the acoustic impedance
of the medium on both sides of the interface, so it is necessary to insert the liquid coupler
with large acoustic impedance between the probe and the sample.

As the thickness of the thin-walled sample is less than the diameter of the probe, the
perforated circular hole defect is regarded as a rigid sphere with radius a. The direction of
the incident sound wave is the positive direction of θ. The wave equation of sound wave
propagation is ∇2 p + (ω

c )
2 p = 0, then the far-field scattered sound pressure at a distance

of r from the defect can be calculated by Equation (3) where j is the imaginary number unit,
and R(θ) is the directionality function of the scattered sound field [23,24]:

pi(r, θ, t) = −p0a
ej(ωt−kr)

r
R(θ) (3)

The size of the R(θ) function is determined by the defect size parameter ka, which
is a dimensionless parameter characterizing the defect size relative to the wavelength,
expressed as shown in Equation (4) where Pl(x) is the Legendre polynomial:

R(θ) =
1
ka

∞

∑
l=0

blej l+1
2 π Pl(cos θ) (4)
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bl = − Bl
p0

= (−j)l(2l + 1)
d[jl(ka)]

d(ka)

d
[

h(2)l (ka)
]

d(ka)

(5)

Therefore, in an ideal isotropic medium, the sound pressure ps received by the probe
is approximately:

ps(r, θ, t) ≈ π
(

R2
r − aR(θ)

) ej(ωt−kr)

r
(6)

From the formula: with the increase of the defect size, the scattered acoustic field
acoustic wave sound pressure increases. Therefore, defects can be identified from the signal
energy when the transmitted signal energy appears to be significantly weakened. The
signal energy is defined as:

E =
∫

P2
s dt = ∑ A2

i (7)

The signal energy is the integral of the square of the sound pressure received by
the probe, and the sampling in practice is the amplitude Ai of the sampling point of the
transmitted signal. When an ultrasonic wave encounters the interface between the medium
transition in defects and samples, interactions such as attenuation and diffraction occur,
which will further reduce the signal energy of the transmitted acoustic wave propagation.
Therefore, it can be concluded that when the cross-sectional area of the defect is larger, the
sound pressure of the ultrasonic transmitted signal is smaller. By comparing the energy of
the acoustic signal, the defects and their sizes in the sample can be detected.

Based on the above conclusions, a device for detecting internal and external defects
of magnetic tile samples by immersion focused transmission method is developed in this
paper. Its characteristics include: the ultrasonic transmission method using one end to
emit a specific frequency of ultrasonic waves, the other end to receive the corresponding
sound waves, according to the waveform diagram to judge the presence and size of defects;
the transmitting probe, the sample under test, and the receiving probe are immersed
in the coupler to reduce the loss of ultrasonic waves between the air and the interface
of the workpiece under test. This will be beneficial to the acquisition signal processing
of transmitted sound waves, including filtering of transmitted wave signals in the time-
frequency domain, peak extraction and so on.

3. Numerical Modeling

3.1. Establishment of Simulation Model

To assess the feasibility of ultrasonic detection for internal defects, this study em-
ployed COMSOL Multiphysics v.6 software for modeling the water-immersion ultrasonic
inspection method [25–29]. In the physical field modeling, the pressure acoustics time-
domain explicit physics interface was chosen for simulation modeling. The schematic
representation of the overall simulation model is shown in Figure 2. Due to the symmetry
of the entire model, the geometric model was set as an axisymmetric model to reduce
computational time and memory requirements. The model was divided into three parts,
namely, A, B, and C. Part A comprised the ultrasonic emission source and the coupling
water layer. Part B represented the 3033 aluminum alloy test material with internal defects,
with dimensions of 10 mm × 42 mm. Part C consisted of the coupling agent layer and
the ultrasonic wave receiving transducer. The coupling material was set as water, and the
thickness of the coupling layer was set at 3.5 mm. The outer side of the transmission model
is completely enclosed by the ideal absorbing layer to prevent the reflection phenomenon
in the boundary of the local model, and the simulated sample domain and the coupling
domain extend indefinitely in this direction.

18



Appl. Sci. 2023, 13, 11172

Figure 2. Internal defect detection model by liquid immersion ultrasonic transmission.

The excitation signal equation V0 was defined as follows:

V0 = e(
t−2t0
t0/2 )

2

sin(2π f0t) (8)

where t0 is the period of the ultrasonic wave, and f0 is the frequency of the ultrasonic wave.
The ultrasonic frequency was set at 10 MHz, and the defect diameter ranged from

0.1 mm to 1.2 mm. The simulation time step was set at 1/10 of the ultrasonic signal period,
i.e., 0.2 μs, to ensure sufficient sampling of the ultrasonic transmission signal.

3.2. Analysis of Simulation Results
3.2.1. Ultrasonic Wave Propagation in the Medium

Figure 3 shows the propagation of ultrasonic waves in different periods in the medium
when detecting a circular cavity. It can be seen from the figure that the longitudinal
wave and Rayleigh wave are generated and propagated together when ultrasonic wave
occurs, and the longitudinal wave propagates along the normal direction with the fastest
velocity. At the interface between water and the part to be tested, the ultrasonic wave is
partially reflected. Because the pressure acoustic physical field interface is used to deal
with the ultrasonic wave propagation in the solid, the shear wave generated by waveform
conversion cannot be seen. While the longitudinal wave continues to propagate forward,
the echo on the upper surface of the aluminum alloy block also oscillates back and forth in
the coupled water layer and partially enters the aluminum alloy block. These waveforms
will lead to the detection of different strong and weak waveforms at different times when
the transmitted wave is detected. The wavelength of ultrasonic waves in aluminum alloy
medium is 2.5 mm. Figure 3d shows that when it meets the circular hole defect with a
diameter of 0.8 mm during its propagation, part of the reflection occurs, which leads to the
reduction of the transmitted wave energy compared with that without the defect.

3.2.2. Detection Results of Different Defects at Different Locations

The simulation calculation was carried out by changing the defect diameter from
0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, 1.2 mm and the defect depth from 7 mm, 14 mm, 21 mm,
28 mm, and 35 mm. The simulation results are shown in Figure 4. The range of the first
signal peak of the transmitted energy is integrated by the square of the sound pressure. It
can be seen that when the defect position is unchanged, the transmission detection results
of each depth independently indicated that the larger the defect diameter, the smaller
the detected transmission amplitude and energy. There is a significant linear relationship
between the ultrasonic energy attenuation and the size of the defect, which is consistent
with the theoretical calculation results in Section 2. The principle of flooding ultrasonic
transmission method for defect detection is based on this law, and the size of the defect is
determined by the attenuation of energy.
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Figure 3. Sound pressure distribution of ultrasonic wave in the medium at different times: (a) 1.4 μs;
(b) 4 μs; (c) 6.4 μs; (d) 9.0 μs; (e) 11.8 μs. Rayleigh waves (R wave), longitudinal waves (L wave).

 
(a) (b) 

Figure 4. Ultrasonic transmission simulation results: (a) simulation signal in time domain (b) Energy
map of the simulation.
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4. Design and Experimentation of the Ultrasonic Transmission System

4.1. Design of Defect Detection System

The functional requirements of the detection system include aligning the probe to
the fixed sample position, transmitting and acquiring ultrasonic signals, and processing
the ultrasonic signals for defect assessment. As shown in Figure 5, to meet these system
functions, the ultrasonic transmission inspection system consists of three parts: an au-
tomated ultrasonic wave emission and reception system, a fixture assembly, and a data
post-processing system.

Figure 5. System composition.

The ultrasonic wave emission and reception system consist of a 100 MHz data acqui-
sition card, a DPR300 ultrasonic pulse generator and receiver, and two 10 MHz focused
probes. The two probes operate in a send-receive mode, where one probe is used to trans-
mit ultrasonic signals through the tested sample and the other to receive and convert the
transmitted ultrasonic signals into electrical signals. The ultrasonic receiver sends the data
to the acquisition card and converts it into digital signals. The probes and fixture assembly
are immersed in coupling agent to reduce the acoustic impedance between the probes and
the sample.

As shown in Figure 6, the fixture assembly includes three parts: the base, the probe
holder, and the sample holder. The base provides support and has two through-slides in
different directions, restricting the movement of the holders to specific directions. The
probe holder consists of rails of different heights and a probe fixture, which elevates the
probes to a certain height and aligns them with each other, with the ability to adjust the
distance between the probes. The sample holder also consists of rails of different heights
and a probe fixture, with the rails oriented perpendicular to those of the probe holder,
allowing the adjustment of the sample height to align the test area with the centerline
of the probes. Each fixture can slide horizontally to adjust the horizontal position of the
test sample.

The system achieves precise alignment of the transmitting probe, defect, and receiving
probe, as well as the ability to quickly adjust the scanning position in the ultrasonic
transmission defect detection system, by organically connecting the components of the
fixture system through the slides.

The data post-processing system consists of a personal computer that utilizes a dif-
ferential peak-seeking algorithm to determine the positions of the wave peaks, locate the
ultrasonic transmission signal peaks, and calculate the energy of the sample signals.

4.2. Experimental Operation and Data Processing

The experimental procedure is as follows: firstly, the sample is securely fixed with the
probe using a fixture, ensuring precise alignment between the probe and the sample. Next,
the PC data acquisition program and motion platform are activated to scan the sample
surface and collect data to obtain ultrasonic transmission signals. By analyzing the signals,
the sample intervals are determined, and their energy characteristics are computed.
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(c) (d) 

Figure 6. Fixture set assembly: (a) Assembly; (b) base; (c) probe clamp; (d) sample clamp.

As shown in Figure 7, the analysis of ultrasonic transmission signals reveals their
components and sources: part 1 corresponds to the emission signature generated by circuit
coupling, indicating the initiation of ultrasonic wave transmission. Part 2 represents
the sample transmission signal, which is the ultrasonic wave signal passing through the
sample and coupling agent via the shortest path during transmission. Its energy reflects
the presence of obstacles in the transmission path. Therefore, calculating the total energy
of the transmission signal provides the ultrasonic transmission energy of the sample. The
signals that appear between the second and the third part are generated by ultrasonic
waves repeatedly reflecting between the sidewall and surface of the measured sample,
forming a series of gradually decreasing signal peaks. This part of the signal is categorized
into delayed waves and triangular echoes based on their generation causes [30]. Due to the
prolonged transmission path, they appear later than the second part. Part 3 corresponds
to the water transmission signal. This signal is formed when ultrasonic waves only pass
through the coupling medium without entering the sample for propagation, as water has a
slower sound velocity compared to the solid sample, resulting in a delayed appearance.

The energy of the ultrasonic transmission signal from each emission is defined as
the square of the integral of the amplitude of the signal peak in the transmission signal.
Comparing the energy of the sample’s transmission signal peaks with that of intact samples
from the same batch can reveal the presence of defects. Since ultrasonic waves undergo
multiple reflections and superimpose at the probe-water interface and sample-water in-
terface, only the first received transmission signal peak in the time domain is considered
for energy calculation, as it is less affected by interference compared to other multiply-
reflected ultrasonic signals. This signal is generated by ultrasonic waves propagating along
the shortest path between the probes, experiencing less interference compared to other
multiply-reflected ultrasonic signals.

4.3. Experimental Results
4.3.1. Transmission Test of Aluminum Alloy Sample

The purpose of the ultrasonic transmissive experiments is to validate the detection
sensitivity and capability of the proposed ultrasonic transmissive method for external
defect detection. Precise cavities of varying sizes and depths were fabricated to simulate
internal defects, and the defect detection system’s ability to detect defects of different sizes
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was tested. The ferrite tiles have a sound impedance of 28.3. Among commonly used CNC
machining materials, as shown in Table 1, the aluminum alloy exhibits similar acoustic
properties, with sound impedance and velocity relatively close to those of ferrite tiles.
Therefore, the aluminum alloy was used to quantitatively validate the defect detection
pattern using the ultrasonic transmissive method.

Figure 7. Example of ultrasonic transmission signal.

Table 1. Acoustic indicators of common materials.

Material Acoustic Impedance gm/(cm2·s) Sound Velocity (25 ◦C) km/s

Ferrite 28.3 6.7

Aluminum 17.0 6.3

Copper 41.6 4.7

Steel and Stainless 45.4 5.8

Iron 45.4 5.9

Magnesium 10.1 5.77

The first set of experiments focused on artificially created aluminum alloy samples
with defects. Circular hole defects of different depths (7 mm, 14 mm, 21 mm, 28 mm, and
35 mm) were CNC-machined at five equidistant points along the depth. The distribution
of defects by depth and an example can be seen in Figure 8 below. The defect sizes were
0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, and 1.2 mm. Transmissive experiments were conducted
on aluminum alloy samples with different defect sizes at the same depth to test the de-
tection capability under various depth conditions and verify the simulation conclusions.
Additionally, based on the machining conditions, a set of extremely small defect sam-
ples with a minimum defect diameter of 0.1 mm was prepared. These samples contain
near-surface defects, with defect depths of 3 mm or shallower, resulting in the overlap of
ultrasonic pulse echo signals with surface echoes, creating a near-surface detection blind
zone. These samples were used to evaluate the ultrasonic transmissive method’s capability
to detect near-surface defects.

By performing ultrasonic A-scans (Amplitude Scan) on the defect-containing regions
of the samples, the transmission energy of ultrasonic waves was measured. Figure 9
shows the experimental results of signal energy variation with defect radius for each depth,
including near surface depth. As shown in the figure, the regularity is observed that as the
defect size increases, the transmission signal energy decreases at all depths. The correlation
coefficients between the defect diameter and transmission signal energy are both above 0.97,
indicating a significant correlation between the two parameters. The attenuation functions
of transmission signal energy at all depths have a correlation greater than 0.975 with the
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simulation results. The maximum residual difference between the measured normalized
transmission energy and the predicted value from the simulated fitted curve is 0.12, and
this maximum is from samples with a radius of 0.5 mm in the depth = 21 mm group.
This discrepancy might be attributed to the metal block’s rust formation due to prolonged
immersion in water and the potential errors in the CNC machining of the defects.

(a) (b) 

Figure 8. Examples of defects in aluminum alloys: (a) Aluminum alloy; (b) alloy immersed in coupler.

Figure 9. Transmission Experiments of Aluminum Alloys with Different Depth Defects.
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The experimental results demonstrate a significant difference in transmission signal
energy between defect-free and defective samples, allowing for defect detection and iden-
tification of defect sizes. Comparing the transmission signal energy of extremely small
defect samples with the simulation results, a strong linear relationship between the energy
and defect size is observed. The transmitted signal energy measured from the aluminum
alloy sample is linearly fitted, and the residual difference between the measured attenu-
ation slope and the simulated attenuation line is obtained by comparing the measured
and simulated fitting lines. The calculated results show that the experimental data align
well with the theoretical simulation model, with the maximum difference between the
measured attenuation slope and the residual of the simulated attenuation line being 0.05.
These findings validate the capability of ultrasonic transmissive method in detecting and
determining defect sizes within the blind zone of the reflection method.

4.3.2. Transmission Experiment of Ferrite Tiles

The second set of experiments involved testing ferrite tile samples provided by the
factory. Examples of ferrite tiles with internal defects and external defects are shown
in Figure 10a,b respectively. The test group comprised a batch of ferrite tiles with both
external and internal defects, alongside a batch of defect-free ferrite tiles. The defect types
observed in the ferrite tiles were external cracks, external fractures, and internal cracks.
Initially, transmission experiments were conducted on 54 defect-free ferrite tiles, and their
ultrasonic transmission signals were collected. The threshold for defect-free ferrite tiles was
calculated using the 3σ significance principle. The transmission energy of the tiles under
inspection was measured and compared to the transmission energy of the defect-free ferrite
tiles. Any ferrite tile with transmission energy below three times the standard deviation of
the defect-free tiles was classified as defective.

 
 

(a) (b) 

Figure 10. Ferrite tile defect example: (a) External crack; (b) Internal defects captured by X-ray
imaging.

The transmission energy of 54 defect-free ferrite tiles was measured for calibration.
During the experiment, the probe was aligned to the same position on the ferrite tiles to
measure the ultrasonic transmission energy. The mean transmission energy of the defect-
free ferrite tiles was determined as 148.7866, with a variance of 6.1653. Based on the 3σ
significance principle in mathematics, the lower limit of the 99.73% confidence interval for
the transmission energy of defect-free tiles was calculated as 130.2907. Any measurement
result below this threshold was considered significantly deviated from the batch of samples,
thus allowing for the calculation of whether the transmission energy of the tested samples
was significantly lower than that of the defect-free ferrite tiles. Samples with energy below
the threshold were classified as defective.

The inspection group measured the transmission energy of 92 internal defective
samples and 41 external defective samples using the ultrasonic transmission method. By
comparing these measurements with the threshold determined from OK ferrite tiles, as
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shown in Figure 11. The threshold values well separate the OK sample from the NG
sample. The detection rate for internal defects reached 96.74%, while for external defects, it
reached 95.12%.

Figure 11. Results of calibration and measurement.

Both experiments conducted on aluminum alloy and ferrite tiles verified the feasibility
of using ultrasonic transmission for full defect detection of both internal and external
defects. The method exhibited high sensitivity in detecting defects in artificially controlled
samples and showed good fitting with simulation results. Moreover, in real samples, it
achieved high recall rates for samples containing both internal and external defects.

5. Conclusions

A water-immersion through-transmission ultrasonic testing method is proposed for
the simultaneous detection of internal and external defects in metals and ferrite tiles. The
principle of ultrasonic wave transmission is analyzed, and numerical approximations are
used to calculate the energy variation of ultrasonic waves propagating through samples
containing internal defects, providing a theoretical basis for defect analysis and probe
positioning in subsequent simulations and analyses. The simulation results show that
the variation of transmitted wave sound pressure can be used to determine the presence
of defects and analyze their equivalent size. A measurement system is constructed, and
experiments are conducted to further validate the capability of the water-immersion focused
ultrasonic transmission method in detecting micro-cracks on ferrite tile surfaces and circular
hole defects in processed aluminum alloy samples. Compared with the commonly used
pulse-echo method, this approach exhibits a smaller blind zone and higher sensitivity,
enabling effective detection of surface and internal defects, and significant potential is
demonstrated for various applications.

However, this method also has some certain limitations, such as the inability to
measure the depth of the defect. Further improvement will be carried out as follows: a
combined ultrasonic transmission method and traditional pulse echo method to realize full
detection of internal and external defects as well as the depth of internal defects.
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Abstract: This paper presents the development of the lock-in thermography system with an additional
cooling system. System feasibility is tested by investigating a square-shaped glass fiber-reinforced
polymer (GFRP) with artificially made outer flaws. The influence of heating mode and sinusoidal
excitation period on the defect detectability is considered. Thus, the experiment is split into two
modes: the sample is solely heated in the first mode or simultaneously heated and cooled in the
second. In each mode, the temperature measurement is performed first with a shorter excitation
signal period and second with a longer one. The signal-to-noise ratio (SNR) is used to assess defect
detection quantitatively. The comparative analysis shows that employing a mixed heating–cooling
mode improves the SNR compared to the conventional heating mode. The further enhancement of
the SNR is obtained by extending the excitation period. The combination of simultaneous heating
and cooling with longer periods of the excitation signal allows for the best SNR values for the most
detected defects.

Keywords: nondestructive testing (NDT); nondestructive evaluation (NDE); lock-in thermography
(LIT); glass fiber-reinforced composites

1. Introduction

A composite is a hybrid material assembled from two or more materials with dif-
ferent physical and chemical properties. Composites are gaining prominence over other
traditional materials due to their excellent high strength-to-thickness ratio, cost-efficient
manufacturing, wear resistance, low thermal expansion, and ease of customization and
assembly [1,2]. However, composites exhibit high anisotropy and inhomogeneity. The
continuous improvement and development of composite manufacturing methods and
unique material properties has led to the widespread application of composites in modern
industry branches, such as the automotive (body material, bumpers, fuel tanks) [3–5],
marine (decks, hulls, propellers) [6–8], aviation (fuselages, stabilizers) [9–11], offshore
(pipelines, structure reinforcements) [12–14], power engineering (wind turbine poles and
blades) [15,16], and civil engineering (hydraulic structures, building claddings, mainte-
nance holes, reinforcements) industries [2,17]. Moreover, composites are successfully used
in biomedicine (dental and surgical implants, blood vessels, bone fillers) [17] and sports
(cycling and sailing equipment).

During their lifetime, composites are subject to various impacts that may compromise
their structural integrity [18]. Particularly hazardous are subsurface changes invisible
to the human eye [19]. Independent from the composite type, manufacturing-induced
inhomogeneities may occur between layers (delamination, un-infiltration), in the resin
matrix (resin-rich area, void, impurity, porosity), and the fiber reinforcement (fiber mis-
alignments such as waviness or wrinkling, breakage). Delamination is considered one of

Materials 2023, 16, 6924. https://doi.org/10.3390/ma16216924 https://www.mdpi.com/journal/materials29



Materials 2023, 16, 6924

the most dangerous composite defects because it develops without any externally visible
factor. Besides the improper conditions of curing during the manufacturing process of
the composite, pressure or stress load acting on the component during its service use
may also instigate delamination. Another type of defect is a void. This may appear due
to air intrusion during the molding process. The exact process may also contribute to
the formation of resin-rich zones, which result from poor fiber integration and act as the
residual stress source. Misalignment encapsulates defects such as waviness, wrinkling,
brokenness, undulation, and folding. Fiber misalignments appear as a result of vulnerable
impacts during various manufacturing processes. All these flaws threaten a composite’s
properties and performance [20–22].

Therefore, it is vital to examine the condition of composite materials by detecting
and identifying inhomogeneities at the earliest stages of their formation to minimize the
risk of component catastrophic failures, massive economic loss, and personnel injuries.
Nondestructive testing (NDT) methods respond to the demand for safety and quality
assurance and the long-term exploitation of composite structures. Several modalities are
successfully used to inspect composite materials, such as terahertz spectroscopy, ultrasonic
method, shearography, X-ray, and thermography, to name a few.

The terahertz method (THz) is suitable for localizing surface and internal inhomo-
geneities, such as intrusions, moisture, voids, or delamination. The inspection procedure
does not require a coupling medium and is safe for personnel because of nonionizing
radiation [23]. However, this method is restricted to nonconductive materials because of
high terahertz wave attenuation in conductors [24].

The ultrasonic method emits acoustic waves into the examined structure using a
transmitter. This technique detects delamination, matrix breakages, and wrinkles [25,26].
The traditional methodology presents issues, such as the need to apply a coupling agent [27].
For this reason, air-coupled and laser ultrasonic methods are under development. The
undeniable merits of these approaches include a noncontact procedure and no need to use
coupling [28].

Shearography is a digital optical interferometric method that detects abnormalities
like impact damage, fiber cracks, and delamination [29,30]. Shearography is profitable due
to the time-efficient, full-field, and noncontact procedure. One drawback is that the stress
level to be induced in the examined object has to be chosen accurately and carefully to
avoid structural damage [31].

In X-ray testing, ionizing radiation is used to transmit X-rays through the examined
structure. This technique allows the detection of abnormalities such as porosities, inclusions,
or voids. The advantages of X-rays comprise a noncontact measuring procedure, high
measurement resolution, and sensitivity. A significant disadvantage is the hazardous
ionizing radiation [32].

Active infrared thermography (IRT) is an advantageous and promising approach for
evaluating the condition of composite materials [33]. It offers a full-field, safe-to-perform,
reliable, noncontact, accurate, cost-effective, and portable inspection procedure [34,35].
During the inspection, an excitation source emits heat absorbed by the surface of the struc-
ture under inspection. Heat waves propagate inside the material, partially dissipate, and
reflect from encountered inhomogeneities. The resultant reflected waves interfere with the
waves originating from the excitation source [19,36]. Consequently, an infrared camera can
observe and register surface temperature variations correlating with internal abnormalities.
Various external excitation sources, such as light, mechanics, and microwaves, can be used
for heat induction in the tested material.

Optical thermography utilizes flash lamps or lasers as an external heat excitation
source. Regarding excitation mode, optical thermography is classified as lock-in (LIT)
and pulse (PT). In lock-in thermography, the heating signal emitted to the structure is
periodic and amplitude-modulated, usually a square or sine wave. It is advantageous
because the gradual heating process reduces the hazard of thermal-induced damage,
and the signal-to-noise ratio is relatively high [37]. One drawback is that the resultant
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thermograms are vulnerable to numerous distortions that must be diminished during signal
postprocessing [38]. On the contrary, pulse thermography employs a signal composed
of short rectangular pulses. This excitation mode excessively depends on non-uniform
heating and surface emissivity [39].

Vibrothermography (VT) uses ultrasonic waves to induce heating in the area of interest.
When an ultrasonic wave approaches an inhomogeneity, mechanical energy is transferred
into a heat wave, then captured by an infrared camera [40]. This technique has several
advantages, such as ease of measuring procedure or adaptability to various component
shapes [41].

Induction thermography (IT) can be applied to metallic materials and carbon fiber-
reinforced polymers. In this technique, an induction coil produces a magnetic field pene-
trating the examined structure and induces eddy currents. Abnormalities in the inspected
component disturb the eddy current paths. As a result, heat is generated and observed by
an infrared camera [42].

In microwave thermography, microwaves act as a heating excitation source. If a
structure to be tested is dielectric, the amount of dissipated heat depends on the permittivity
of the material, microwave frequency, and the electric field magnitude. This approach is
beneficial because the energy delivered to the examined component is of medium power
and thus does not cause sudden temperature rises, which are potentially harmful to the
structure [43].

After thermography inspection, it is imperative to handle image postprocessing to
reduce the impact of the background noise and infrared camera influence on the results and
thus improve the detectability of the material inhomogeneities and extract amplitude and
phase images [1,44]. To achieve this, numerous algorithms are employed. Conventionally,
noise reduction may be performed using spatial or frequency-domain filtering. Spatial
filtering involves, e.g., arithmetic mean or median filters [45]. Frequency-domain filtering
relies on applying low-pass, high-pass, or band-pass filters.

There has been intensive research in lock-in thermography for modern material evalu-
ation. Vesala et al. proposed a lock-in thermography system with a deep anomaly detection
model and successfully tested it on CFRP and GFRP structures with artificial defects. The
authors used a CFRP sample with 25 flat-bottom hole defects of different diameters, namely
16 mm, 14 mm, 10 mm, 8 mm, and 4 mm, and depths, namely 0.2 mm, 0.5 mm, 0.8 mm,
1.1 mm, and 1.5 mm. A 0.01 Hz–0.1 Hz frequency sweep modulated the heat excitation
flux [46]. Dong et al. performed a nondestructive inspection of samples made from CFRP,
steel, and aluminum alloy using a reflective lock-in thermography system. The training
sample contained 24 flat bottom hole defects with 2 mm, 5 mm, 10 mm, and 15 mm diame-
ters. The defect depths were 0.5 mm, 0.8 mm, 1 mm, 1.2 mm, and 1.5 mm. As an excitation
source, two 1000 W halogen lamps were utilized. The excitation flux was modulated with
the frequencies 0.025, 0.05, 0.075, and 0.1 Hz [44]. Sapieta et al. focused on detecting flat-
bottom holes in additive-manufactured samples made of PET-G. The defects’ depths were
0.5 mm and 1 mm. The circular defects had a diameter of 20 mm, while the square-shaped
had an edge length of 20 mm. The researchers used two types of excitation, flash lamps
and halogen lamps, with heat excitation periods of 60 s and 120 s, respectively [19]. Cheng
et al. developed a system for automatically detecting rectangular flat-bottom holes in CFRP.
They examined a sample with 16 defects of different depths, namely 1.6 mm, 1.9 mm,
2.3 mm, and 2.6 mm, and edge lengths, namely 7 mm, 10 mm, 13 mm, and 16 mm. The
authors employed a system composed of two 1000 W lamps with the excitation flux modu-
lated with a frequency of 0.05 Hz [1].

This study focuses on the influence of different heating/cooling modes and excitation
periods on the detectability of relatively small-diameter flat-bottom holes embedded in a
GFRP sample.
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2. Materials and Methods

Of the various techniques originating from thermography, lock-in thermography
(LIT) has garnered considerable attention because of the possibility of detecting structural
abnormalities quantitatively [47]. During the inspection, an external sinusoidally or square-
wave-modulated light source, such as halogen lamps, emits heat absorbed by the structure’s
surface under examination. Heat waves propagate inside the material, partially dissipate,
and reflect off encountered inhomogeneities. The resulting reflected waves interfere with
those originating from the excitation source [19,36]. Consequently, an infrared camera can
observe and register surface temperature variations. Several signal processing techniques
for extracting thermal wave parameters are suitable: the four-point correlation method
(FPCM), digital lock-in correlation method (DLCM), and fast Fourier transform (FFT).
In the FPCM, four data points of the surface temperature, with the same time intervals
between each other, have to be selected. The outcome comprises amplitude and phase
images. The DLCM employs the correlation between a measured sinusoidal thermal
wave and two reference sine/cosine functions to retrieve the amplitude and phase of the
measured signal [48]. Fast Fourier transform extracts signal parameters by discretizing a
thermogram, analyzing amplitude/phase in the frequency domain, and utilizing inverse
Fourier transform [49].

LIT requires considering several parameters to obtain an acceptable signal-to-noise
ratio value (SNR), such as excitation frequency; the number of heating periods; and the
distances between the camera, the heating source, and the object to be tested [50].

This study uses a square-shaped GFRP (glass fiber-reinforced plastic) sample
(150 mm × 150 mm × 4 mm) with flat-bottomed holes (Figure 1a). The flat-bottom holes
have 10, 8, 6, and 4 mm diameters and depths of 1, 1.5, 2, and 3 mm (Figure 1b).

  
(a) (b) 

Figure 1. A square-shaped GFRP sample with flat-bottomed holes: (a) photo of the sample;
(b) scheme of the sample.

This study employs a self-made reflective LIT system consisting of a computer, a
microcontroller (uC) Arduino Micro, a PWM unit, a cooling unit, two halogen lamps, an
infrared camera, and a photoresistor with an electronic circuit. The computer programs
the uC to drive the PWM unit. The PWM unit is supplied with two 300 W halogen lamps.
The lamps produce sinusoidally modulated thermal waves for the heat excitation of the
material to be tested. The TE-EQ1 uncooled infrared camera was placed in the front of the
sample and used to register a thermal response from the sample’s surface. The camera faces
the unflawed side of the samples so that the visible defects are hidden from the camera.
An infrared sensor composed of an IR photodiode BP104 and an operational amplifier
TDA2822M was used to establish an optimal heating source location. The irradiation from
two halogens measured in front of the sample was over 60 W/m2. A schematic view of the
measuring system is depicted in Figure 2, while the light (IR) sensor’s circuit is shown in
Figure 3. The camera parameters are presented in Table 1.
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Figure 2. A schematic view of the measuring system.

Figure 3. Circuit of the light (IR) sensor.

Table 1. Selected parameters of the infrared camera.

Parameter Value

Camera resolution 384 × 288

Frame rate 30 fps

Thermal sensitivity ≤50 mK at F/1

Spectral range 8–14 μm

Operating temperature −10 ◦C~+65 ◦C

Scene range temperature −10 ◦C~+150 ◦C

3. Measurement

The study used two modes: heating mode with halogen lamps and mixed mode:
parallel heating with halogens and chilling with a cooling unit. During the selected
experiments, the custom-made cooling unit was utilized to lower the temperature of the
sample by continuously blowing air cooled by four Peltier elements. The Peltier elements
are cooled by running water to enhance cooling efficiency. The average temperature
of the cooled air was around −1 ◦C. On the one side, the Peltier element has a lower
temperature than the environment; on the other, the heat is dissipated. The component
allows a reduction in temperature of about 20 ◦C, and regarding the temperature of the
water cooler, the reduction is about 15 ◦C. A photo of the measuring system is presented in
Figure 4. An example of a signal controlling the PWM circuit and a signal corresponding to
the radiation of thermal intensity measured by the photoresistor is depicted in Figure 5.

During the heating procedure, the average temperature increases on the entire surface.
Figure 6 presents two exemplary thermal response signals: one for the unflawed region of
the sample under test and one for the flawed. It can be concluded that the temperature rise
in the case of flaws is slower than for the healthy parts of the sample.
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Figure 4. A photo of the measuring system.

Figure 5. Normalized signals: controlling the PWM unit (orange curve) and measured using the
photoresistor (blue curve).

Figure 6. Exemplary normalized thermal response for the flawed (orange curve) and unflawed
(blue curve) region of the sample and a thermogram.

4. Results

The results of the measurements are presented as follows: Section 4.1 contains the
results obtained for an excitation period of T = 40 s, and Section 4.2 contains those for an
excitation period of T = 100 s. For each period, the two versions were presented: the left
column contains the results for the sample tested in the heating mode and the right column
contains the results for the sample tested using the parallel heating–cooling mode. For
both test modes, the following graphs are presented: heating curves of the damaged and
undamaged areas of the specimen, the real and imaginary parts of the thermal response,

34



Materials 2023, 16, 6924

the average amplitude and phase of the thermal response, and the peak-to-peak amplitude
of the sinusoidal waveforms acquired for each pixel.

4.1. Experiment with an Excitation Period of T = 40 s

The first experiment chose an excitation period of T = 40 s. Figure 6 depicts exemplary
thermal responses for the flawed and unflawed regions of the sample under testing con-
ditions. In the case of an uncooled sample, the average temperature rises very quickly in
both the damaged and undamaged parts (Figure 7a). In contrast, the temperature rise for
the simultaneously heated and cooled sample is slower, and the temperature values are
much smaller, which is particularly evident for the curve corresponding to the damaged
part of the sample (Figure 7b). Figure 8 contains graphs of the real part of the lock-in signal.
As shown in Figure 8a, only defects with the largest diameter are detectable. The simul-
taneous heating and cooling process improves the detectability, as evident in Figure 8b.
The following Figure 9 illustrates the imaginary part of the lock-in signal. The image for
the sample without cooling (Figure 9a) highlights only 9 of the total 16 flaws. Cooling im-
proves the defects’ detectability (Figure 9b); thirteen flaws are evident. Figure 9 comprises
the average amplitude of the lock-in signal. It does not show significant differences in
defect detection between the mode without cooling (Figure 10a) and the mode with cooling
(Figure 10b). Figure 11 includes the phase shift of the lock-in signal. The image for the
uncooled sample (Figure 11a) is partially indistinct and does not allow for the identification
of all defects. Applying the cooling enhances the comprehensibility of the phase image
(Figure 11b). Figure 12 illustrates the peak-to-peak amplitude. Improvements in defect
detection in cooling mode (Figure 12b) are also evident in this parameter, in contrast to the
mode without cooling (Figure 12a).

 
(a) (b) 

Figure 7. Thermal response for the flawed: (a) uncooled sample; (b) cooled sample. Excitation Period
of T = 40 s.

  
(a) (b) 

Figure 8. The real part of the signal: (a) uncooled sample; (b) cooled sample. Excitation Period of T = 40 s.
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(a) (b) 

Figure 9. The imaginary part of the signal: (a) uncooled sample; (b) cooled sample. Excitation Period
of T = 40 s.

 
(a) (b) 

Figure 10. The mean amplitude of the signal: (a) uncooled sample; (b) cooled sample. Excitation
Period of T = 40 s.

 
(a) (b) 

Figure 11. The mean phase of the signal: (a) uncooled sample; (b) cooled sample. Excitation Period
of T = 40 s.

  
(a) (b) 

Figure 12. The peak-to-peak amplitude: (a) uncooled sample; (b) cooled sample. Excitation Period of
T = 40 s. The colors correspond to the signal’s amplitude value.
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4.2. Experiment with an Excitation Period of T = 100 s

The second experiment used an excitation period of T = 100 s. Figure 13 illustrates
exemplary thermal responses for the flawed and unflawed areas of the examined sample.
Similarly to the first experiment with an excitation period of 40 s, the average temperatures
of the simultaneously heated and cooled sample (Figure 13b) increase at a slower rate than
those of the uncooled sample (Figure 13a). Figure 14 shows the real part of the lock-in
signal. As can be seen from the images, extending the period of the lock-in excitation
signal from 40 to 100 s improves the detection of defects in both uncooled (Figure 14a)
and parallel heating and cooling modes (Figure 14b). A similar conclusion can be drawn
from Figure 15a,b, which illustrate the imaginary part of the lock-in signal. Figure 16
comprises the amplitude of the lock-in signal. Compared to the images for a period
equal to 40 s, only a slight improvement in readability is apparent here. Analogously,
introducing cooling parallel to the heating process (Figure 16b) instead of solely heating
the sample (Figure 16a) allows for the better detectability of the flaws. Figure 17 shows
the phase changes for the sample in heating mode (Figure 17a) and in heating mode with
simultaneous cooling (Figure 17b). Compared with the results obtained for a period equal
to 40 s, the readability of the images via the simultaneous heating–cooling improved
significantly. However, the result for the heating mode remained partially blurry, so 4 of
the 16 flaws are still undetectable. Figure 18a,b illustrate the peak-to-peak amplitude for
both measuring modes. For this parameter, as the period of the excitation signal increased,
the detection of defects improved.

 
(a) (b) 

Figure 13. Thermal response for the flawed: (a) uncooled sample; (b) cooled sample. Excitation
Period of T = 100 s.

  
(a) (b) 

Figure 14. The real part of the signal: (a) uncooled sample; (b) cooled sample. Excitation Period
of T = 100 s.
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(a) (b) 

Figure 15. The imaginary part of the signal: (a) uncooled sample; (b) cooled sample. Excitation
Period of T = 100 s.

 
(a) (b) 

Figure 16. The mean amplitude of the signal: (a) uncooled sample; (b) cooled sample. Excitation
Period of T = 100 s.

  
(a) (b) 

Figure 17. The mean phase of the signal: (a) uncooled sample; (b) cooled sample. Excitation Period
of T = 100 s.

  
(a) (b) 

Figure 18. The peak-to-peak amplitude of the signal: (a) uncooled sample; (b) cooled sample.
Excitation Period of T = 100 s. The colors correspond to the signal’s amplitude value.
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5. Discussion

Quantitative Analysis of Heat Excitation Modes and Excitation Periods

This study used lock-in thermography to compare two different heat excitation modes
of composite materials: heating and heating with simultaneous cooling. The impact of
the heatwave’s excitation period on the flaw detectability was also examined. In order to
provide a quantitative comparison of excitation modes and periods, the signal-to-noise
ratios for the individual flaws of the sample were calculated using the Formula (1)

SNR =
|μS − μB|

σB
(1)

where μS is the average temperature value over the defect region; μB is the mean tempera-
ture value over the sound region; and σB is the standard deviation temperature value over
the defect region.

Figures 19–22 contain bar graphs of the SNR values for the heating and heating with
simultaneous cooling modes. Each figure for a defined defect depth consists of two bar
graphs, one for the heat excitation period of T = 40 s and one for T = 100 s.

 
(a) (b) 

Figure 19. SNR for the uncooled (orange bars) and cooled (blue bars) modes for the flaw depth
d = 1 mm and the excitation period: (a) T = 40 s; (b) T = 100 s.

 
(a) (b) 

Figure 20. SNR for the uncooled (orange bars) and cooled (blue bars) modes for the flaw depth
d = 1.5 mm and the excitation period: (a) T = 40 s; (b) T = 100 s.

Figure 19 illustrates the SNR for the defect depth d = 1 mm. For T = 40 s, the heating–
cooling mode caused a deterioration in SNR values (Figure 19a). Extending the excitation
period T to 100 s improved the SNR for the defect with Ø4 mm. In the heating–cooling
mode, for the defects Ø4 mm and Ø6 mm, the SNR dropped, but for Ø8 mm and Ø10 mm,
it improved significantly (Figure 19b). Figure 19 contains bar graphs of the SNR for the
defect depth d = 1,5. The comparison of SNR values for the heating and heating–cooling
modes for T = 40 s suggests that, apart from in the case of the defect Ø4, the signal over the
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defective area was enhanced markedly (Figure 20a). Further signal enhancement occurs
for all defect radii in the case of the heating–cooling mode for T = 100 s (Figure 20b). As
seen in Figure 21a,b, the SNR values in the case of the defect depth d = 2 mm can be
slightly increased by extending the excitation period to 100 s. However, a considerable
improvement in signal strength is obtained when applying the heating–cooling mode.
Similar conclusions can be formulated for d = 3 mm (Figure 22a,b).

 
(a) (b) 

Figure 21. SNR for the uncooled (orange bars) and cooled (blue bars) modes for the flaw depth
d = 2 mm and the excitation period: (a) T = 40 s; (b) T = 100 s.

 
(a) (b) 

Figure 22. SNR for the uncooled (orange bars) and cooled (blue bars) modes for the flaw depth
d = 3 mm and the excitation period: (a) T = 40 s; (b) T = 100 s.

6. Conclusions

Lock-in thermography is a widely utilized technique for the nondestructive testing of
composite structures. In the abovementioned studies, a system of lock-in thermography
was built, and two modes of sample inspection were considered: heating and simultaneous
heating–cooling. Particular attention was paid to studying the effect of the period of the
excitation signal on detecting defects. Based on the research performed, the following
conclusions can be made:

• The experimental results show that the combination of heating–cooling mode and
an extended excitation period improves the SNR for most defects. However, the
SNR drops for the deeper defects while introducing the heating–cooling mode. For
this reason, the parameters of the proposed lock-in thermography system must be
optimized to maintain high SNR for deeper defects.

• On the one hand, extending the excitation period increases the measurement time and
causes the sample’s average temperature to heat up more. On the other hand, the
SNR of minor defects is significantly enhanced. However, the risk of overheating the
sample can be overcome by attaching a cooling unit.
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• Simultaneous heating and cooling improve the detection of defects even if the excita-
tion period is small. The cooling process reduces the sample heating rate with a more
extended excitation period and makes a more significant number of defects detectable
and identifiable.

• The experiment was limited to examining hidden defects in the material. In future
research, it would be necessary to test the method on natural defects of shapes other
than circular. Different defects, such as delamination, porosity, or void, should also be
considered in future studies.

• The proposed measurement system yielded satisfactory results in diagnosing defects
in glass fiber-reinforced composites. In the future research, other composite materials,
such as carbon fiber-reinforced polymers, should be considered.
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Abstract: Surface electrical resistivity is a non-destructive technique that is sensitive to the microstruc-
ture of hydrated cement paste and the chemical composition of the pore solution in cement-based
materials. In this study, a Wenner array was used to measure changes in mortar resistivity due to
chloride ion diffusion as a function of electrode separation. Specimens were made from four mortar
mixtures: 100% Ordinary Portland cement and 60% cement + 40% fly ash at two water/binder ratios
of 0.55 and 0.40. The specimens were subjected to unidirectional chloride ion diffusion in a 2.8 M
NaCl solution for 175 days. To determine the chloride penetration depth, three methods were used:
silver nitrate spraying, chloride concentration profiles via potentiometric titration, and chloride
concentration profiles via inversion of the resistivity data using the RES1D software (version 1.00.09
Beta). The results showed a linear relationship between the chloride ion penetration depth obtained
via inversion of the surface electrical resistivity data versus the penetration depth from colorimetry
and from chloride concentration profiling (both with R2 = 0.8612). Chloride penetration changed
the conductivity of the pore solution; therefore, the resistivity decreased when increasing both the
chloride concentration and the penetration depth. Inversion of surface resistivity data obtained
with a Wenner array permitted non-destructive determination of chloride penetration. However,
these results were obtained under laboratory environmental conditions and other scenarios must be
addressed for wider applications.

Keywords: pozzolanic reaction; hydration; chloride diffusion; Friedel’s salt; pore solution

1. Introduction

The durability of concrete structures is affected by chloride ion ingress, which can
corrode the reinforcing steel bars. Chloride ions may enter cement-based materials through
mixing with water or by external sources from environmental exposure [1]. Chlorides
from external sources are mainly transported into the concrete through diffusion, which
is influenced by factors like porosity, pore size distribution, ion exchange, and the chemi-
cal/physical binding of chlorides into the C-S-H and AFm phases. The capacity of chloride
binding in hardened cement paste is affected by the C3A and C4AF content in cement,
pore solution composition, addition of supplementary cementitious materials (SCMs), and
leaching that alters the hydrate composition [2,3]. Chemical binding leads to the formation
of Friedel’s salt, which removes chlorides from the pore solution [4]. The mechanisms of
ingress and the binding of chlorides in cement systems are complex, as several processes
are acting simultaneously. Porosity in cement-based materials is directly related to their
mechanical properties and permeability. High porosity and a well-connected pore network
facilitate the ingress of harmful species that cause the deterioration of reinforced concrete
structures. Porosity and pore size distribution may be estimated using mercury intrusion
porosimetry [5] or nuclear magnetic resonance relaxometry [6].

There are different standard techniques used to determine the ability of concrete to
resist chloride ion ingress. One technique is the rapid chloride permeability test (RCPT) [7],
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which measures the amount of electrical charge passing through a saturated cylindrical
concrete sample (100 mm in diameter and 50 mm in thickness) when a potential difference
of 60 V of direct current is applied for six hours. This test has been subject to criticism,
although it has been adopted as a standard and is widely used. The main drawbacks are
that the current passed through the specimen is related to all ions in the pore solution; the
measurements are made before steady-state migration is achieved; and the high voltage
applied leads to an increase in temperature, which further increases the charge passed
through. Another similar test is the non-steady-state migration test NT BUILD 492 [8]. This
test applies an electrical potential to force chloride migration through the specimen, and
the penetration depth is measured by spraying a silver nitrate solution on the fractured
surface. A non-steady-state migration coefficient is then calculated. The AASHTO T
259 [9] is another type of test that measures the resistance of hardened concrete to chloride
penetration by ponding the surface of concrete slabs with a three percent NaCl solution
for 90 days. There is difficulty in interpreting the results because the specimens are subject
to diffusion and wicking effects. Two additional tests, NT BUILD 443 [10] and ASTM
C1556 [11], measure the accelerated penetration of chlorides in hardened concrete for the
determination of the apparent diffusion coefficient and surface concentration based on
chloride concentration profiles. These tests are expensive and time-consuming.

The techniques mentioned previously are destructive, which limits them to one mea-
surement per test, and their results may show high variability [12]. On the other hand,
there are non-destructive tests, such as ASTM C1876 [13] and AASHTO TP119 [14], that
determine the bulk electrical resistivity or bulk conductivity of concrete. While these tests
require molded specimens or specimens cored from actual structures, the surface electrical
resistivity test on saturated concrete samples can indirectly assess the permeability of the
material and provide an indication of its resistance to chloride ion penetration [15]. The
Wenner array method is one test used for concrete electrical resistivity measurements that
utilize four equally spaced surface electrodes. It is non-destructive [16], easy to use, rapid,
and can be conducted on the same sample without special preparation [17]. According
to Oleiwi et al. [18] and Cosoli et al. [16], the Wenner technique is one of the most widely
used techniques for in situ tests on the surface of concrete. However, currently, there
are still no widely accepted standards, other than AASHTO T358 [19], for measuring the
surface electrical resistivity using the Wenner four-electrode method. Factors affecting
resistivity measurements include porosity; pore size and connectivity; the tortuosity of the
pore network and the composition of the pore solution, which are determined by the type
of cementitious material; and the water/binder ratio (w/b). The curing method and sample
conditioning also affect resistivity because they influence the properties of the pore solution,
the degree of saturation, and temperature. Ambient temperature and relative humidity
can be the most difficult conditions to control in real-life applications [20]. The accuracy
of resistivity measurements is also dependent on the quality of the contact between the
electrodes and the concrete surface. To create an electrolytic contact between the electrodes
and the concrete surface, different solutions can be used. These include saturated sponges,
soaked wooden plugs, a conductive gel, or localized wetting. However, these methods do
not improve the contact between the electrodes and the concrete surface to a significant
extent [20]. Studies indicate that the best resistivity measurements are obtained using the
Wenner configuration with the largest electrode spacing [21]. An increase in separation
will result in a greater penetration of the current field, covering more volume that results in
lower relative values. In addition, resistivity measurements are substantially wrong if the
semi-infinite geometry assumption is not met in small concrete specimens.

Regarding concrete resistivity and chloride penetration, there is an inverse correlation
between resistivity and the chloride diffusion rate [22]. In addition, resistivity may be
used to classify the risk of corrosion of a specific concrete structure, with low resistivities
corresponding to a high risk of corrosion and vice versa. Qiao et al. [23] related the electrical
resistivity of air-entrained concrete to the formation factor of the material. They found that
increasing the air content decreased the formation factor of saturated concrete due to a
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higher volume of fluid-filled air voids. As w/c increased, the formation factor decreased
due to a higher porosity and connectivity. Other uses of resistivity include the estimation
of the chloride diffusion coefficient that may be required for the service life estimation
of reinforced concrete structures [24]. Higher resistivities correspond to lower chloride
diffusion coefficients. The only study identified in the literature related to the present
study was that of Fares et al. [25], who inverted electrical resistivity tomography (ERT)
data to obtain resistivity profiles as a function of depth. They used a Wenner configuration
with 14 electrodes, two concrete mixtures, and a mortar exposed to chloride diffusion.
The chloride profiles obtained via ERT were compared with those obtained using the
chloride content of powder samples. They observed a good agreement between ERT and
destructive testing.

The purpose of this study was to investigate the feasibility of determining the chloride
ion penetration depth in mortar specimens under laboratory conditions by inverting
surface resistivity data obtained with a commercial Wenner array instrument with variable
electrode spacing. The resistivity measurements were performed as a function of time. The
estimated chloride depth was compared with the penetration depth obtained from the
colorimetric test using a 0.1 N AgNO3 solution sprayed on a freshly broken surface, as well
as from chloride content profiles at a depth where the concentration was approximately
zero. The relationship between the depths obtained non-destructively and those obtained
using standard destructive tests will be explored.

2. Materials and Method

2.1. Materials

Ordinary Portland cement (OPC), class F fly ash (FA), and river sand were used. The
relative density of the sand was 2.66 g/cm3, with an absorption of 2.81% [26] and a fineness
modulus of 3.28. The chemical composition of the cementitious materials used is shown in
Table 1. The river sand grading is provided in Figure 1.

Table 1. Chemical composition (% by mass) of the cementitious materials used [27].

Main Oxides SiO2 Al2O3 Fe2O3 CaO TiO2 P2O5 MgO Na2O K2O SO3 LOI

OPC 21.07 3.69 4.50 61.93 0.97 0.10 1.83 0.09 0.30 2.54 4.38
FA 62.28 20.38 4.09 4.68 0.94 0.38 0.98 0.31 0.99 - 3.43

Figure 1. River sand grading used to prepare the mortar mixes.
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2.2. Method
2.2.1. Preparation and Conditioning of Mortar Specimens

Mortar mixes with water/binder (w/b) ratios of 0.55 and 0.40 and a sand/binder
(s/b) ratio of 2.75 were prepared according to the procedure described in the ASTM C192
standard [28]. Table 2 provides the mortar mixture proportions. The sand/binder ratio
(s/b) of 2.75 was used as proposed in ASTM C109 [29] for preparing the Portland cement
mortars. The w/b ratios were selected as 0.55 and 0.40 in order to produce relatively high
and low chloride ion diffusion coefficients and low and high electrical resistivities. Two
mortars used 100% OPC and the other two used 60% OPC + 40% FA, by mass, which were
labeled as OPC0.55, FA0.55, OPC0.40, and FA0.40, respectively. FA was included in the
mixes because it significantly reduces the porosity and pore size distribution in hardened
cement paste, which, in turn, reduces the electrical resistivity of concrete. In addition,
cement pastes containing FA chemically bind a higher amount of chlorides compared with
plain OPC cement pastes. A total of 18 mortar specimens were cast from each mortar mix.
Table 3 provides details on the shape and dimensions of the different specimens. As is
shown in Figure 2, the size of the prismatic mortar specimens was determined to minimize
edge effects and to consider the space as semi-infinite, taking the value of a as less than
1/3 of the thickness of the specimens (approximately a = h/3) [21,30,31]. Parameters α

and β are dependent on the electrode spacing. The former represents the distance from
the center of the electrode to the edge of the prism and it is perpendicular to the electrode
array; β is the distance from the external electrode to the edge of the prism and it is
parallel to the electrode array. Therefore, the dimensions were 25 cm in width, 40 cm
in length, and 15 cm in height. A geometric correction factor of approximately 1.0 was
obtained from the specimen size to minimize edge effects in the surface electrical resistivity
measurements [21,31].

Table 2. Mortar mixture proportions.

Material Mix

(kg) OPC0.55 FA0.55 OPC0.40 FA0.40

Cement 518 301 562 326
Fly ash - 200 - 217
Sand 1425 1381 1544 1493
Water 285 276 225 217

Table 3. Characteristics of mortar specimens prepared from each mix.

Test Type Dimensions Quantity
w

(cm)
l

(cm)
h

(cm)
Ø

(cm)

Surface electrical
resistivity

Control prisms 25 40 15 2
* Prisms 25 40 15 2
Control cylinders 20 10 4

Colorimetry/chloride
content profiles

Control cubes
* Cubes

15 15 15 2
15 15 15 8

* Specimens for measurements at 7, 28, 112, and 175 days of exposure to chloride ion diffusion.

The specimens were cured via immersion in a calcium-hydroxide-saturated solution
for 28 and 220 days. The longest curing time was chosen to reduce the effect of hydration
reactions on the resistivity measurements. Control specimens remained in the curing
conditions throughout the experiment. After the curing period, a marine epoxy coating
was applied to the surface of the prismatic and cubic specimens, leaving one face of the
prisms (25 cm × 40 cm) and one face of the cubes without any epoxy coating. By leaving the
epoxy-coating-free faces in a 2.8 M sodium chloride solution, according to the NT BUILD
443 standard [10], the specimens were exposed to unidirectional chloride ion diffusion for 7,
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28, 112, and 175 days before testing. The control specimens were kept in a saturated calcium
hydroxide solution. As an accelerated test, NT BUILD 443, requires a NaCl concentration
that is approximately 5 times the concentration found in seawater.

 
Figure 2. Criteria for estimating minimum specimen dimensions to minimize edge effects in surface
electrical resistivity (r) measurements (geometric correction factor of approximately 1, and a represents
the electrode spacing) [21,31].

2.2.2. Surface Electrical Resistivity Measurements

The surface electrical resistivity was measured using a Resipod resistivity meter
(Proceq, Schwerzenbach, Zurich, Switzerland) with a Wenner array and a geometric fixture
with variable electrode separation (Figure 3). There are four electrodes in the Wenner
array: two external and two internal. External electrodes (A and B) apply an alternating
current, while the internal electrodes (M and N) measure the potential difference. To avoid
edge effects and, consequently, an overestimation of the resistivity values, the prism size
was calculated according to the recommendations provided by Gowers and Millard [31]
and Chun-Tao Chen et al. [32]. The resistivity readings were taken at the center along the
longitudinal direction of the sample. Two axes perpendicular to each other, one longitudinal
and the other transverse, were sketched on the surface of the specimens (Figure 4). The
separations between the electrodes a were 3.8, 4.0, 4.2, 4.4, and 4.6 cm. The resistivity tests
were performed on the saturated, surface-dry specimens under laboratory conditions at
approximately 23 ± 1 ◦C. Four test groups were studied, two of which were prismatic
specimens with 28 and 220 days of curing and were exposed to different chloride diffusion
times. The third group had chloride-free prismatic and cylindrical specimens with 28 days
of curing and a = 38 mm. Finally, the fourth had prismatic and cylindrical specimens with
220 days of moist curing and were exposed to different chloride diffusion times and using
a value of a = 38 mm.

Figure 3. Illustration of the four-point Wenner array to measure surface electrical resistivity.
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Figure 4. Diagram of the location of the reference axes used in electrical resistivity measurements as
a function of electrode separation a. A, M, N, and B are the electrode positions in the specimen.

Three readings were taken for each electrode separation, and the mean and standard
deviation were obtained. The electrical resistivity was calculated according to Equation (1),
assuming a semi-infinite, homogeneous, and isotropic volume [13,14]:

ρ = 2πaR (1)

where R is the electrical resistance, ρ is the apparent electrical resistivity, and a is the
electrode separation of the Wenner array.

AASHTO T358 [19] requires correction of the resistance values based on curing in a
saturated calcium hydroxide solution, which was carried out using Equation (2):

ρcorrected = ρ kLW (2)

where ρ corrected is the true resistivity and kLW is a correction factor for curing the sample in
a saturated calcium hydroxide solution (kLW = 1.1).

2.2.3. Data Inversion Using the RES1D Free Software

Using the RES1D free software [33], the thickness of two layers with different electrical
properties (with and without chlorides) was determined. The program read a data file that
contained information such as the estimate of the thickness of the surface layer, at least
five data pairs of the electrode separation and their corresponding apparent resistivities
(a, ρ), the number of layers sought, their resistivity (ρ), and their thickness (z). To reduce
the difference between the observed and calculated values, the model and optimization
subroutine modified layer thickness and resistivity were compared. The result of the data
inversion represented the depth of the two layers described above.

The initial first layer thickness (penetration depth) values required for the inversion
process were estimated with the solution according to Fick’s second law of diffusion.
The penetration depths were calculated at approximately a 0.0% chloride concentration,
assuming a surface concentration of Cs = 1%. The diffusion coefficients were obtained
using Equations (3)–(6) [34–36] based on a reference diffusion coefficient that considers the
type of binder and w/b ratio:

D(t) = Dref (tref/t)m (3)

where D(t) is the diffusion coefficient (m2/s) at time t; Dref is the diffusion coefficient
(m2/s) at reference time tref; and m is a constant that depends on the type and amount of
binder [37].

D28 = 10(−12.06+2.4w/b) (4)

m = 2.5 (w/b)−0.6 (5)

m = 0.2 + 0.4 (% FA/50) (6)
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where D28 is the reference diffusion coefficient (m2/s); w/b is the water/binder ratio; and
% FA is the percentage substitution of Portland cement with fly ash in the mix [35,38].

According to Polder et al. [39] and Cosoli et al. [16], the thickness of the second layer
was z ≈ a because the resistivity measured with the Wenner configuration is considered
as the average of a hemisphere of radius equal to the electrode spacing a, as long as the
hypothesis that the medium is homogeneous and semi-infinite is valid.

2.2.4. Chloride Penetration Depth Using the Colorimetric Technique

The specimens were fractured along their longitudinal axis, which coincided with
the axis of the electrical resistivity measurements. To conduct the colorimetric test, a
freshly fractured sample was sprayed with a 0.1 N silver nitrate (AgNO3) solution [40].
Silver chloride precipitated, creating a whitish region due to the rapid chemical reaction
between the free chlorides and silver nitrate. This color change shows the depth of chloride
penetration. The color change prevailed with time, and it was observed that the depth
increased if it was measured several hours later. For this reason, measurements were taken
every 10 mm with a Vernier caliper, first after spraying AgNO3 and then 24 h later.

2.2.5. Chloride Content Profiles

Once the specimens used for the colorimetric tests were fractured at 7, 28, 112, and
175 days, a PF-1100 profile grinder (Germann Instruments, Evanston, IL, USA) was used to
extract powder samples in 2 mm thick layers (5–7 g per layer). Finally, the powder was
processed to determine the acid-soluble chloride ion content via potentiometric titration.

3. Results and Discussion

3.1. Electrical Resistivity Measurements

Figure 5 presents the electrical resistivity data versus electrode spacing in radar-type
graphs for specimens that underwent (a) 28 and (b) 220 days of moist curing. The graphs
show variations in the electrical resistivity of the specimens as Cl− diffused, which resulted
from the exposure time, electrode separation, w/b ratio, and the type of cementitious
materials. In all cases, the percentage variations in resistivity with respect to the zero day
of chloride exposure (considered as the control) were calculated.

Figure 5. Electrical resistivity in mortar specimens with (a) 28 and (b) 220 days of moist curing at
different Cl− exposure times as a function of electrode spacing: 38, 40, 42, 44, and 46 mm.

When the separation of electrodes was 38 mm, it was observed that the resistivity of
OPC0.55 at zero days was the lowest (3.1 kΩ·cm) compared with the other three mortars;
although, by test day 175, it increased by approximately 39% of its initial value. A different
behavior was exhibited by the OPC0.40, which showed the highest initial resistivity of
20.8 kΩ·cm and decreased by 35.4% at seven days. At 175 days, the resistivity decreased by
85.9%. For the FA0.55 mortar, the resistivity started at 8 kΩ·cm, increased by 73% at seven
days, and then gradually decreased until it reached 18% below its initial value at 175 days.
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A similar behavior was exhibited by the FA0.40, which started at 9.1 kΩ·cm and increased
by 91% at seven days, and then gradually decreased until it reached 72% below its initial
value. Increasing the electrode separation to 40 mm caused the resistivity to decrease by
approximately 5%.

A similar behavior between zero and seven days has been described by Wang et al. [41],
who observed that the resistivity does not decrease instantaneously with the ingress of
Cl− because there is no contribution to the electric current flow at the moment of chloride
ion binding to the hydration products. Similarly, Loche et al. [42] reported that Cl− ions
modified the electrical response of cement-based materials. As the Cl− ions penetrated,
the electrical resistance initially increased and then decreased, which is in agreement with
the behavior of specimens FA0.55 and FA0.40, which were moist-cured for 28 days. As
electrical resistivity depends on the chemical composition of the pore solution, the presence
of other ions, such as K+, Na+, OH−, and, to a lesser extent, Ca2+ and SO2−, could affect the
resistivity measurements [43]. On the other hand, Minagawa et al. [30] found that electric
current flow increases in the region of lower electrical resistivity, and Oleiwi et al. [18]
observed that as the Cl− content in the pore solution increases, the resistivity decreases.
The latter is in agreement with the findings of Polder et al. [22] and Cosoli et al. [16], who
consider the decrease in resistivity to be related to the presence of chloride ions.

Increased electrode spacing allowed deeper probing into the sample [21,31]; for ex-
ample, by changing a from 38 mm to 46 mm, the fraction of the analyzed volume that had
electrical properties of the “layer” containing chloride ions decreased and the measure-
ments better reflected the properties of the zone that was free from these ions. Using this
strategy, the current flow in the mortar is more homogeneous and the variability in the
measurements is lower [22]. The resistivity also decreased as the w/b ratio increased, as
expected, because of a larger porosity and connectivity.

In contrast to the mortar specimens that were moist-cured for 28 days, where the
benefits of using fly ash were marginal, the resistivity of mortars with long moist curing
showed a completely different behavior. Figure 5b shows that sample OPC0.55 had the
lowest resistivity, with similar values and behavior to the sample that was moist-cured
for 28 days. The resistivity started at 3.4 kΩ·cm and remained nearly constant during
the chloride exposure time (175 days). Sample OPC0.40 showed the effects of a lower
w/b ratio. Its resistivity started at 5.6 kΩ·cm and increased 2.16 times at seven days, then
gradually increased until reaching 2.64 times its initial value at 175 days. For sample FA0.55,
the initial resistivity value was much higher (33.8 kΩ·cm) than samples containing only
cement. Its resistivity decreased by 26% in seven days and continued decreasing by up to
44% of its initial value. A similar behavior was observed for sample FA0.40, which started
at a resistivity of 48.3 kΩ·cm and decreased by 53% at seven days; then, it increased at
112 days and decreased again at a resistivity value similar to the one measured at seven
days. Increasing the electrode separation (40–46 mm) caused a decrease in the resistivity
(by approximately 9%). There was also a decrease in resistivity as the w/b ratio increased,
as expected.

Specimens that were moist-cured for 28 days had a lower surface resistivity than those
cured for 220 days due to the significant cement hydration effects at the early stages, with
resistivities ranging from 3 to 20 kΩ·cm. In contrast, at the longest curing time, the resistivity
ranged from 3 to approximately 50 kΩ·cm (ρ OPC0.55 < ρ OPC0.40 < ρ FA0.55 < ρ FA0.40)
due to the denser microstructure and higher degree of hydration. Specimens with a higher
w/b ratio showed lower resistivity than those with a lower w/b ratio. Moreover, specimens
with FA had higher resistivity than those constructed only with OPC. This is because of
the pozzolanic reaction of FA that produced more C-S-H, thus decreasing the porosity and
refining the pore structure. The formation of solid phases such as Friedel’s salt may affect
the resistivity.
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3.1.1. Electrical Resistivity of Chloride-Free Specimens

Figure 6 shows the resistivity evolution as a function of age, w/b ratio, type of ce-
mentitious materials, and specimen geometry. Measurements were performed at 0, 28,
112, and 175 days. The age of the specimens was obtained from the sum of the 28 days
of moist curing plus the testing day. As expected, due to hydration reactions, resistivity
increased with age in most of the specimens, especially in those containing FA. According
to Grazia et al. [44], FA and other SCMs impact concrete’s microstructure and pore solution
chemistry (alkalinity reduction). They found that the resistivity may increase by up to
ten times when adding SCM due to the formation of additional C-S-H, which acts as an
electrical barrier. The pozzolanic reaction leads to the partial consumption of portlandite
from the system and a decrease in pH. According to Medeiros and Lima [45] and Kang
et al. [46], blended cements have higher resistivity than OPC. Although class F FA slows
down the C-S-H formation, in the present study, the resistivity was still improved compared
with OPC mortars. Reducing the w/b ratio from 0.55 to 0.40 also causes an increase in
resistivity due to a reduced porosity and connectivity of lower w/b ratio mortars. Hou [47]
observed that the microstructure of the C(A)SH gel conducts water molecules and ions less
easily due to the addition of Al3+.

Ω

 

Figure 6. Evolution of electrical resistivity (using a = 38 mm) in control prismatic and cylindrical
specimens after 28 days of moist curing. Error bars represent ± one standard deviation.

The shape and size of the specimens had a significant influence on the resistivity, and
in all cases, cylindrical specimens showed lower values than prismatic ones. The dispersion
of the measured resistivity, expressed by the standard deviation bars, was smaller for
cylinders than for prisms due to the propagation geometry of electric waves [48,49]. This is
in agreement with the investigations of Hornáková and Lehner [50], who determined that
the variance in measured resistivity values in concrete specimens, shown through standard
deviation, was two to three times lower for cylindrical geometry than for prismatic geometry.

3.1.2. Electrical Resistivity of Mortars without Hydration Effects Exposed to Chlorides

Figure 7 compares the resistivity of cylindrical and prismatic specimens after 220 days
of moist curing that were then subjected to chloride ion diffusion. The effect of hydration on
the resistivity of these specimens was expected to be negligible because of the long moist-
curing time. As chloride ions diffused into the samples, the resistivities exhibited a distinct
behavior depending on the mix composition (mortars containing FA or only OPC), type of
specimen, and w/b ratio. Mortars containing only OPC exhibited the lowest resistivities,
as mentioned in Section 3.1. The resistivity of the OPC0.55 specimens remained nearly
constant during the 175 days. Specimens of OPC0.40 mortar with prismatic geometry
demonstrated a twofold increase at seven days; then, the resistivities remained nearly
constant. Contrary to this behavior, the cylinders showed a constant resistivity up to
28 days, and then it slightly increased at 112 and 175 days.
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Ω

Figure 7. Electrical resistivity of cylindrical (C) and prismatic (P) specimens as a function of exposure
time to a 2.8 M NaCl solution, using a = 38 mm. The specimens were previously moist-cured in a
saturated calcium hydroxide solution for 220 days. Error bars represent ± one standard deviation.

Mortars containing FA exhibited a different behavior. After seven days, the resistivity
of the FA0.55 specimens decreased by around 50% and then continued to decrease gradually.
The resistivity of the FA0.40 specimens also significantly decreased at seven days (by
approximately 53%), but then it remained nearly constant or slightly increased at 112 and
175 days. As was shown in the previous section (Section 3.1.1), cylindrical specimens had a
lower resistivity than prismatic specimens.

3.2. Chloride Penetration Depth Using Three Different Techniques

Figure 8 illustrates the chloride penetration depth measured in the mortar specimens
immediately after spraying silver chloride on the fractured surface. As expected, the
penetration depth increased with chloride exposure time. At the end of the exposure
to chlorides (175 days), the highest penetration was observed for the OPC0.55 mortar,
followed by OPC0.40. The lowest penetration depth was seen for FA0.55, and FA0.40 had
the highest resistivity. The chloride concentration for color change depends on the amount
of OH− ions in the pore solution. This ranges from 0.28 to 1.69% by mass of cement
or between 0.072 and 0.714 mol/L for the AgNO3 technique [51]. In addition, there is
no consensus on the chloride concentration corresponding to the color change boundary.
The average level of soluble Cl− detected at the color change boundary was 0.9 wt.%
cementitious materials or 0.12 wt.% concrete, with high coefficients of variation of 33%
and 40%, respectively [40]. The amount of AgCl and Ag2O formed at the color change
boundary depends on the Cl−/OH− ratio in the pore solution and can be seen as an
estimation of the chloride ion penetration depth, rather than the actual boundary between
chloride-containing and chloride-free areas.

When performing the colorimetric test, the presence of a diffuse zone was detected
between the zone with and without chlorides, which was difficult to measure immediately
after spraying with AgNO3. Therefore, the decision was made to keep the samples under
the laboratory conditions, and a second measurement was performed 24 h later. The
second measurement showed a higher chloride penetration depth than that observed
immediately after spraying. Figure 9 shows photographs from two specimens at 0 and
24 h after spraying. The white region depth increased by an average of 27% at 24 h after
spraying the AgNO3 solution. To the best of our knowledge, this observation has not been
reported in the existing literature.
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Figure 8. Chloride penetration depth versus the exposure time from AgNO3 solution spraying.

 
Figure 9. Change in penetration depth with time in the colorimetric test: (a) OPC0.55 at 0 h,
(b) OPC0.55 at 24 h, (c) FA0.55 at 0 h, and (d) FA0.55 at 24 h after spraying the AgNO3 on the
broken surface. The bubble level was 40 mm in height.

SCMs change how the hydrated cement paste phases are formed, and thus, their Cl−
binding properties [52]. For example, FA is a material rich in reactive aluminates and
exhibits increased AFm formation and, therefore, increased Cl− binding in the C(A)SH. A
decrease in the amount of Ca2+ causes a decrease in the amount of Cl− bound to AFm and
an increase in the amount bound to C(A)SH since it is a portlandite-deficient system. The
ingress of Cl− reduces the adsorption of Al3+ from C(A)SH and increases the amount of
Al3+ available to form chloride-bound AFm.

In the present study, a 2.8 M NaCl concentration was used; therefore, the Cl− ions
entering the system must compete to displace the SO4

2−, OH−, and/or CO3
2− anions of

the different monosulfoaluminates and, finally, Friedel salt is formed [4]. According to
Balonis et al. [4], at high chloride concentrations the Kuzel salt or monocarboaluminate
phases are destabilized by increasing the chemically bound chloride so that a high chloride
concentration would make the formation of the AFm phases, such as the Kuzel salt,
impossible. When the systems destabilize, ions such as sulfate ions can be released, and
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they react with calcium and aluminum, forming ettringite and causing expansion due to
the increase in the molar volume of the solid and refining of the porosity [4].

Figure 10 shows the chloride content profiles for the mortar specimens obtained via
potentiometric titration, as well as the chloride penetration depth obtained by spraying the
AgNO3 solution. Figure 10a shows that OPC0.55 had the highest Cl− penetration, reaching
a depth of approximately 38 mm at 175 days of chloride diffusion, whereas for FA0.55,
the depth reached 22 mm (Figure 10b). The latter was expected because of the presence
of FA. In the same manner, OPC0.40 (Figure 10c) had a 26 mm penetration, and FA0.40
(Figure 10d) exhibited the lowest penetration (18 mm). The measurements were taken at
the color change boundary immediately after spraying the freshly fractured surfaces with
the AgNO3 solution. This test underestimates the chloride penetration depth.

Figure 10. Total chloride content profiles and chloride penetration depth determined using colorime-
try after spraying and at 7 (red), 28 (blue), 112 (green), and 175 (black) days of exposure to chlorides:
(a) OPC0.55, (b) FA0.55, (c) OPC0.40, and (d) FA0.40.

Table 4 presents the apparent diffusion coefficients calculated by fitting the data of
the chloride content profiles shown in Figure 10 to the solution of Fick’s second law of
diffusion [34]. The trends observed in the diffusion coefficient from 28 days up to 175 days
of exposure to chlorides show higher values for the high w/b ratios and lower values for
the low w/b ratios, as expected. Moreover, the mortars containing fly ash exhibited lower
diffusion coefficients than the mortars containing only OPC because of the pozzolanic
reaction that produces additional C-S-H and reduces porosity and permeability.

A linear relationship between the penetration depths from spraying the AgNO3 so-
lution and the concentration profiles is shown in Figure 11. There is a linear correlation
(R2 = 0.96) between them with a slope < 1, indicating an underestimation with the colori-
metric method.

55



Materials 2023, 16, 7123

Table 4. The apparent diffusion coefficient and surface chloride concentration of mortar specimens
moist-cured for 28 days determined by fitting chloride content profiles to the solution of Fick’s second
law of diffusion [34].

Exposure Time OPC0.55 FA0.55 OPC0.40 FA0.40

D Cs D Cs D Cs D Cs

(Days) (m2/s) (%) (m2/s) (%) (m2/s) (%) (m2/s) (%)

7 2.6 × 10−11 1.09 4.1 × 10−11 0.98 3.3 × 10−11 1.00 1.2 × 10−10 1.85
28 6.8 × 10−11 0.79 5.0 × 10−11 1.08 7.0 × 10−11 0.70 2.9 × 10−11 0.96

112 1.4 × 10−11 1.62 5.6 × 10−12 3.00 1.8 × 10−11 1.04 5.0 × 10−12 2.12
175 2.6 × 10−11 1.41 5.6 × 10−12 2.46 1.4 × 10−11 1.00 4.0 × 10−12 1.85

Figure 11. Relationship between the penetration depth of Cl− in mortar specimens at different days
of chloride exposure obtained using colorimetry after spraying a 0.1 N AgNO3 solution, and the
distance from concentration profiles. Error bars represent ± one standard deviation.

Another alternative way of obtaining the depth of chloride penetration proposed in
this study is by inverting the surface electrical resistivity data obtained at different exposure
times to 2.8 M NaCl. Figure 12 shows that, as expected, for mortars with high w/b ratios or
the case of fly-ash-free mixtures, the chloride penetration was higher.

Figure 12. Chloride penetration depth in mortar specimens OPC0.55, FA0.55, OPC0.40, and FA0.40
obtained via inversion of resistivity data at different exposure times to 2.8 M NaCl solution.

Figure 13 shows two linear correlations of the chloride penetration depth determined
through inversion of the resistivity data at different Cl− exposure times. The first of these is
R2 = 0.86, determined by comparing it with the depth of chloride ion penetration obtained
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via the colorimetric method, while the second is R2 = 0.86, determined by comparing it with
the depth of chloride ion penetration determined via the chloride content profiles. The first
correlation indicates that the resistivity measurements are underestimates and the second
one overestimates the chloride penetration. Fares et al. [25] obtained chloride profiles using
electrical resistivity tomography (ERT) and compared them with those obtained using the
chloride content of powder samples. They observed a good agreement between ERT and
the destructive test because they used a smaller electrode separation than in our study,
which was restricted to a minimum of 38 mm. In addition, their electrodes maintained a
fixed relative position to perform the measurement with all electrode separations, which
resulted in a lower variability of measurements.

 
Figure 13. Correlation between Cl− penetration depth obtained via resistivity data inversion and that
obtained using the colorimetric test and chloride content profiles on mortar specimens on different
days of chloride exposure. Error bars represent ± one standard deviation.

4. Conclusions

This study explored the use of a simple Wenner array to measure changes in the surface
electrical resistivity of mortars subject to chloride diffusion under laboratory conditions
as a function of electrode separation. The following conclusion is given: Diffusion of
chlorides in mortar specimens affects the resistivity measured with a simple Wenner array
with variable electrode separation after inversion with the RES1D software, which permits
indirect calculation of the chloride penetration depth. This was validated through a linear
correlation with AgNO3 spraying and chloride concentration profiling, both resulting in an
R2 of approximately 0.86.
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Featured Application: This paper proposes a novel method for transverse cracking detection

based on vehicle vibration response.

Abstract: Transverse cracking is thought of as the typical distress of asphalt pavements. A faster
detection technique can provide pavement performance information for maintenance administrations.
This paper proposes a novel vehicle-vibration-based method for transverse cracking detection.
A theoretical model of a vehicle-cracked pavement vibration system was constructed using the
d’Alembert principle. A testing system installed with a vibration sensor was put in and applied to a
testing road. Then, parameter optimization of the Short-time Fourier transform (STFT) was conducted.
Transverse cracking and normal sections were processed by the optimized STFT algorithm, generating
two ideal indicators. The maximum power spectral density and the relative power spectral density,
which were extracted from 3D time–frequency maps, performed well. It was found that the power
spectral density caused by transverse cracks was above 100 dB/Hz. The power spectral density at
normal sections was below 80 dB/Hz. The distribution of the power spectral density for the cracked
sections is more discrete than for normal sections. The classification model based on the above
two indicators had an accuracy, true positive rate, and false positive rate of 94.96%, 92.86%, and
4.80%, respectively. The proposed vehicle-vibration-based method is capable of accurately detecting
pavement transverse cracking.

Keywords: asphalt pavement; transverse cracking detection; vehicle vibration; STFT; PSD

1. Introduction

Pavement distress detection is significant for road maintenance [1]. Transverse crack-
ing is a typical form of distress that indicates asphalt pavement surface or base damage [2].
If transverse cracking cannot be repaired in time, it will deteriorate pavement strength,
stiffness, and durability [3]. Furthermore, the whole transportation system cannot operate
smoothly and safely. Therefore, it is vital for highway maintenance departments to detect
transverse cracking efficiently and effectively.

Traditional detection methods for pavement distress include manual-based and image-
based techniques. The manual-based method plays an important role in low-grade highway
distress detection. This method can detect all types of distress. At the same time, its
detection efficiency and accuracy remain low. However, data reprocessing of the manual-
based method is highly subjective, complex, and does not fit the needs of large-scale road
network detection [4]. Due to the above problems, automatic detection based on images
has been proposed and applied widely [5]. Compared with the manual-based method,
its detection efficiency is superior. However, its accuracy depends on features generated
through a manual process or machine learning algorithm [6]. The automatic method mainly
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refers to an image-based method, which needs to be trained using other methods, such as
deep learning, reinforcement learning, etc. [2,5,6]. In general, if maintenance departments
expect to obtain timely pavement distress information of a huge traffic network, an image-
based method cannot fulfil this expectation.

In recent years, indirect damage detection of traffic infrastructure using a moving
test vehicle has gradually risen [7]. Yang and co-workers first proposed extracting bridge
frequencies from a moving test vehicle’s dynamic response [8]. Compared with the direct
method for setting vibration sensors on the traffic infrastructure, the indirect approach is
generally less costly, less risky, and less laborious [9].

However, pavement distress detection based on a vehicle’s dynamic response is still
in developmental stages. Yu and co-workers proposed that the mechanical response of
automobile vibrations can be used to detect pavement distress. The vibration response’s
magnitude and frequency depend on the severity of the pavement distress, including cracks
and surface rutting [10]. The MIT Laboratory of Computing and Artificial Intelligence
proposed a P2 road monitoring architecture for pothole detection. During field testing,
over 90% of the identified potholes needed maintenance [11]. In addition, smartphone-
based vibration sensing has become a significant technique for detecting road surface
conditions [12]. Nericell is a system for the monitoring of road conditions through mobile
smartphones equipped with some sensors. These conditions include bumps, potholes,
braking, and honking [13]. Wolverine is another typical traffic and road condition es-
timation system using smartphone sensors that collects acceleration in three directions.
More importantly, the system adopts a machine learning method (SVM) to improve its
false negative rates [14]. However, the smartphone sensing method has lower accuracy,
especially in transverse cracking detection. Qun Yang and his co-workers focused on
identifying transverse cracking of asphalt pavement through professional vibration sensors.
Their study included the time, frequency, wavelet, and statistical analysis of the vehicle
vibration signal [15]. Six main features were extracted from different domains, which
generated eight classification models, and the feasibility of this method was investigated
using 2292 pavement sections [6]. Bruno S’s team focus on monitoring the road network
through a low-cost system based on vehicle vibration, which reached the ideal effects for
evaluating the pavement conditions [16–18]. Apart from that, some excellent dynamic
vehicle models have been established to illustrate the basic principle between the pavement
condition and the vehicle [19].

Most studies concentrate more on time or frequency domain analysis. The features
extracted from the time or frequency domain are better when passing by some obvious
distress, such as potholes and rutting. However, the features caused by transverse cracking
are limited in the time or frequency domain, making them hard to detect. Pavement
transverse cracking hardly affects the threshold of vehicle acceleration amplitude because
of its limited length along the driving direction. Similarly, the Fourier transform just reflects
the whole frequency distribution of the vehicle’s vibration signal. It is challenging to
express small signal mutations caused by transverse cracking, including its location. Apart
from that, vehicle parameters are also important. Different locations can generate different
dynamic responses. Different vehicle types, including fuel-driven and electric-driven, also
affect the response amplitude [20]. So, it is necessary to select the right car and the ideal
response location [21].

Consequently, the present work aims to accurately identify pavement transverse
cracking damage using a vehicle dynamic response. To that end, this paper formulates a
novel strategy to explore time–frequency features using a Short-time Fourier transform
(STFT) and better characterization indicators. More importantly, this novel method can
balance the key points, including detection accuracy, equipment cost, and efficiency. The
detection method based on a vehicle’s dynamics response solves the problems of low
detection frequency and the high cost of existing detection methods. Through the optimized
STFT algorithm, the method overcomes the lack of detection accuracy caused by traditional
time-domain analysis or frequency-domain analysis. This is because the optimized STFT
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algorithm focuses more on transverse cracking detection, which takes into account the
accuracies of both time- and frequency-domain information recognition.

2. Theoretical Modeling

Suppose the vertical displacement between the wheel and the body is Z1 and Z2,
respectively. The coordinate origin is the equilibrium position between the wheel and the
body, shown in Figure 1. m1 and m2 denote the quality of the wheel and body, respectively.
k1 and k2 denote the stiffness of the tire and spring, and c2 denotes the damping coefficient
of the shock absorber. In this study, we see the tire as an undamped linear spring system.

Figure 1. A quarter vehicle–pavement system.

For a quarter vehicle-normal pavement system, the equation of motion is constructed
based on the d’Alembert principle [22], which is shown in Equations (1) and (2):

m2
· ·
Z2 + c2 (

·
Z2 −

·
Z1) + k2 (Z2 − Z1) = 0 (1)

m1
· ·
Z1 − c2 (

·
Z2 −

·
Z1)− k2 (Z2 − Z1) + k1Z1 = k1q (2)

where the first-order derivation of the vertical displacement denotes the vertical speed and
the second-order derivation of the vertical displacement indicates the vertical acceleration.

The equation of motion for a quarter vehicle-cracked pavement system is constructed
following Equations (3) and (4).

m2
· ·
Z2 + c2 (

·
Z2 −

·
Z1) + k2 (Z2 − Z1) = 0 (3)

m1
· ·
Z1 − c2 (

·
Z2 −

·
Z1)− k2 (Z2 − Z1) + k1Z1 = k1q′ (4)

In Equations (2) and (4), the system’s input is expressed as q (normal pavement) and q’
(cracked pavement), which denotes the pavement’s surface profile. They can be represented
in the complex exponential form:

q = qiωt
0 (5)

q′ = qiωt
0 + δ(Δt) (6)

where ω denotes angular frequency, and q0 is the initial profile. δ denotes the transient
impulse caused by transverse cracking, which is affected by the crack’s cracking degree. Δt
is the response time that the wheel passes by the transverse crack.
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The tire-cracked pavement contact process is shown in Figure 2a. During actual
driving, the tire and the pavement are always in contact with a certain geometry, defined
as ground contact (GC). In addition, the contact shape between transverse cracking and the
tire is not a point but a certain geometric area, defined as the Areas of Crack Action (ACA).

(a) 

 
(b) 

Figure 2. The tire-cracked contact model. (a) Tire-cracked pavement contact process; (b) AACA and
its action length.

The cracks are located at the junction of the ground surface (GC1) and the action
surface when first touching the transverse cracked pavement (t = t1). The action area is
virtual, defined as the Potential Action of Crack Action (PACA), since the tire has not yet
begun to adequately feel the excitation of the transverse crack.

As the wheel rolls forward (t = t2), the transverse crack and the tire act continuously,
giving a sufficient transient shock. GC2 continues to iterate forward and overlaps each
other, which makes up the action areas. The action areas are defined as the Actual Action
of Crack Action (AACA).

By the end of the excitation of the crack (t = t3), the crack is at the AACA’s end and
the end of the next ground contact (GC3). It can be seen that the displacement between the
crack and the tire is the length of the AACA along the direction of the vehicle (L), which
is shown in Figure 2b. The geometric size of the GC is certain when the tire pressure and
spring load mass are certain. As a result, the grounding area remains unchanged. While
passing by different pavement conditions (transverse cracks, potholes, bumps), the AACA
differs due to the significant differences in interaction characteristics caused by the changed
space shape.

Therefore, the tire-cracked pavement action time can be calculated by the length (L)
and the speed (v) of the grounded rectangle, which is shown in Equation (7).

Δt =
L
v

(7)
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The wheel and body frequency expression are analyzed if q and q’ are substituted into
the motion equation.

For the vehicle-normal pavement model:

Z1(ω) =
k1(k2 + iωc2 − m2ω2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
·q0

iωt (8)

Z2(ω) =
k1(k2 + iωc2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
·q0

iωt (9)

For the vehicle-cracked pavement model:

Z1(ω) =
k1(k2 + iωc2 − m2ω2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
·(q0

iω(t+ L
v ) + δ(

L
v
)) (10)

Z2(ω) =
k1(k2 + iωc2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
·(q0

iω(t+ L
v ) + δ(

L
v
)) (11)

Since the vibration system’s frequency response function is independent of external
input, the frequency response function P(ω) of the above two systems is the same.

P(ω)x1−q =
k1(k2 + iωc2 − m2ω2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
(12)

P(ω)x2−q =
k1(k2 + iωc2)

(k1 + k2 + iωc2 − m1ω2)(k2 + iωc2 − m2ω2)− (k2 + iωc2)
(13)

The Fourier transform of the two system’s input T(ω) is:

T(ω) =
∫ ∞

−∞
qiωt

0 e−iωtdt (14)

T′(ω) =
∫ ∞

−∞

[
q0

iω(t+ L
v ) + δ(

L
v
)

]
e−iωtdt (15)

According to the Fourier transform, the time-domain expression for the response of
the body (x2) and wheel (x1) on normal pavement/transverse cracking is:

x1 =
1

2π

∫ ∞

−∞

T(ω)

T′(ω)
e−iωt|P(ω)|x1−q e−ϕ1idω (16)

x2 =
1

2π

∫ ∞

−∞

T(ω)

T′(ω)
e−iωt|P(ω)|x2−q e−ϕ2idω (17)

where ϕ indicates the amplitude angle.
As can be seen from the above equation, the vertical vibration response is affected

by the characteristics of the vehicle system (position, structure), driving speed, transverse
cracking degree, and the contact geometry.

3. Field Testing

3.1. Testing System

A testing vehicle, vibration sensor, action camera, location equipment, and vibration
data processing system constitute the testing system, which can be seen in Figure 3. The
test car was an eighth generation Honda Accord. The vehicle’s length and height are:
4945/1845/1480 mm, displacement is 2.03, and maximum power is 115 kw, with a top
speed of 197 km/h.
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Figure 3. Testing system.

The vibration acceleration sensor is mounted below the suspension. The goal is to
strengthen the stimulation caused by the transverse cracks without a shock absorber. The
vibration sensor is Piezoelectric, with physical and technical parameters listed in Table 1.
One host, two GNSS antennae and their cables, one 4G all-network antenna, and one power
supply data cable constitute the positioning equipment. The antenna is mounted outside
of the car to avoid a weak signal in a small area. When operating, the GNSS positioning
module collects the vehicle’s location in real-time and transmits it to the computer. The
action camera collects the pavement surface’s video to verify the identification accuracy.
The action camera is a Go-Pro, which allowed for the acquisition of a pavement surface
video with a high speeds. It has 12 million pixels and is secured to the front cover by a
magnetic suction bracket to capture surface conditions more clearly. The data processing
system showed the time-domain features of pavement conditions on a Lenovo computer
that was used in this study that had an available storage space of 480G-SSD.

Table 1. Vibration sensor physical and technical parameters.

Parameter Type

Technical principle Piezo
Size (cm) ϕ15 × 25

Weight (g) 42
Range (g) −10~10 g

Frequency range (Hz) 0.5–3000
Sensitivity 500 mv/g

Bandwidth resolution (mg) 0.1
Resonant frequency (kHz) 5

Overload impact (g) 100

3.2. Testing Plan

A typical asphalt pavement with a semi-rigid base was chosen in Shanghai. Its
service life was over ten years. The pavement structure is shown in Figure 4. The main
pavement distress was transverse cracking. The driving velocity was 40 km/h and the
sampling frequency was 1280 Hz. Selection of the sampling frequency requires balancing
identification requirements with data storage. When the sampling frequency is increased,
the mutation signal caused by the crack can be better recognized and presented, but the
excessive sampling frequency will also cause the data volume to be too large, resulting in
longer processing times. On the other hand, when the sampling frequency is decreased so
that the processing system can be read at high speeds, this may lead to a lower accuracy of
identification, resulting in increased leakage in the detection of cracks. Considering that the
parameters of the subsequent short-time Fourier transform algorithm vary in the 2 integer
times, the sampling frequency is set to the 2 integer times as much as possible. In general,
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road surface lateral cracking is not entirely perpendicular to the traffic direction but has a
certain width of expansion. To divide the road sections reasonably, this study investigated
the expansion width of many asphalt pavement transverse cracks with a maximum width
of less than 4 m. Therefore, 4.0 m is determined to be the length of divided sections (D),
which is also the window length for signal analysis (Figure 4).

(a)

(b)

Figure 4. Testing road. (a) Pavement structure; (b) divided sections.

4. Optimized Short-Time Fourier Transform (STFT) Algorithm

4.1. Basic Principle

Traditional Fourier transforms can only reveal a signal’s overall frequency component,
and cannot indicate the time of each component. Therefore, two signals with significant
temporal domain differences might have the same spectrum map. It is challenging to record
the Fourier transform for signals that change, such as vehicle vibration signal mutations
caused by minute transverse cracks. Such mutations are frequently crucial in highway
pavement damage investigation.

The short-time Fourier transform (STFT) is a joint time–frequency analysis technique
for time-varying and non-stationary signals. It intercepts the time domain signal using
a fixed-length window function. Then, the STFT uses the intercepted signal to conduct
a Fourier transform. This results in the local spectrum across a brief time window. The
final transformation generates a two-dimensional function about time and frequency
domains [23].

STFT(ω, t) =
∫ +∞

−∞
F(t) G(t − τ)e−iωtdt (18)
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As is shown in Equation (18), STFT is a Fourier transform made by multiplying the
signal F(t) by a τ-centered window function G(t − τ).

4.2. Parameter Optimization

The key parameters of the STFT include window type, window length, and overlap.
These affect the time–frequency features, including time resolution and frequency reso-
lution. The study takes a transverse sample and a normal pavement sample to analyze
their different features in the time–frequency domain. Window type is an important part of
spectrum analysis. The window function corrects the measurement inaccuracy due to the
aperiodic nature of the signal and reduces leakage in the spectrum. The added window
represents point multiplication in the time domain and convolution in the frequency do-
main. Therefore, the energy in the original signal at a certain frequency point is expressed
in conjunction with the properties of the window function, thereby reducing leakage.

4.2.1. Window Type

Five window types were adopted, which are shown in Table 2:

Table 2. Different window types.

No. Title 2

a Rectangle window
b Triangular window
c Hanning window
d Hamming window
e Blackman window

There is no obvious difference between the time resolution and frequency resolution
of the five window functions for normal pavement samples (Figure 5). The rectangular
window has insufficient detail in the frequency resolution for cracked pavement samples.
There is a large highlight entry in the map, which indicates a higher frequency intensity
caused by transverse cracks. The time–frequency features of the other four window
functions are similar. Therefore, it can be concluded that the triangular window, Hanning
window, Heming window, and Brackman window are not very different in their time–
frequency characteristics of a vibration signal for transverse cracking and normal pavement.
Since the Hamming window is more common, we adopt the Hamming window as the
standard window type.

4.2.2. Window Length (wl)

We select wl = 8, 16, 32, 64, and 128 for the analyzed values. Compared with normal
pavement, transverse cracks show a significant high-frequency intensity area at the central
position. The yellow part indicates the high-frequency intensity and the power spectral
density of signal frequency (Figure 6). Normal pavement is relatively uniform, and no
concentrated frequency intensity appears. STFT can overcome the problem that noise in
the time domain greatly affects the crack feature. By increasing the window movement, the
mutation of the signal at the crack can be reflected as the mutation of the intensity of each
frequency component in a very short time.
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Figure 5. Different features in the time–frequency domain based on five window types between a
transverse crack sample (left) and a normal section sample (right). (a) Rectangle window; (b) triangu-
lar window; (c) Hanning window; (d) Hamming window; (e) Blackman window.
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Figure 6. Time–frequency diagrams based on different wl between a transverse crack sample (left)
and a normal section sample (right). (a) wl = 128; (b) wl = 64; (c) wl = 32; (d) wl = 16; (e) wl = 8.
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Regarding spatial resolution, the window function length is equal to 128, which allows
for the maximum frequency resolution. The frequency intensity in the fracture area presents
a normal mountain distribution.

As the wl increases, the frequency resolution increases. The bar becomes column-like
when using the minimum window function length included in this study, 8. The difference
in frequency strength between cracks and the intact pavement is no longer obvious. But as
the window function length decreases, the time resolution of cracks gradually increases.

The perception of change on the time scale is more detailed. When wl is equal to 128,
the crack position is located at 0.2–0.3 s, which is quite different from the time domain.

When wl is equal to 64, it shows that the crack position is at 0.12–0.23 s, which is still
different from the time domain. When wl is equal to 32, 16, or 8, the crack position is at
0.12–0.18 s, which is the same as the time domain.

Therefore, we select 32 as the optimal window function length considering both the
frequency and time resolutions.

4.2.3. Overlap (op)

Overlap (op) indicates the size of the area where the window function overlaps the
position of the previous window during movement. When op is 0, the signal is spaced by
the window function without overlap, and each wl is performed. Corresponding to FFT,
the image appears as a significant stretch in the time domain, with op increasing. Every
interval length (wl-op) is updated once the frequency axis is updated. As op is close to
wl, the image appears to be more delicate (Figure 7). However, the resulting increase also
increases the number of calculations.

At op ≤ 8, the entire image is not apparent in the time resolution, and it is difficult to
reflect where the crack signal feature begins in the time domain.

At op = 16, three sets of signal power spectral density peaks begin to appear.
At op = 30, three more perfect bright columnar features reflect the crack’s feature.

(a) (b) 

(c) (d) 

Figure 7. Cont.
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Figure 7. Time–frequency diagrams based on different op of a transverse crack sample. (a) op = 0;
(b) op = 2; (c) op = 4; (d) op = 8; (e) op = 16; (f) op = 24; (g) op = 30.

But blindly increasing the op value is not economical for computing efficiency. Because
the vehicle vibration test is expected to be used in road network asphalt surface crack
detection, the greater the op value, the slower the timeliness of the vibration recognition for
a crack. Therefore, op = 16 is recommended as the optimal parameter for the op value.

4.3. Parameter Optimization Results

The optimized STFT parameters for transverse cracking damage detection includes
three key parameters: using a Hanning window type, with a window length of 32 and
overlap equal to 16.

5. Data Analysis and Discussion

Based on the optimized STFT algorithm, the study chooses 30 manually labeled
samples (transverse crack: 15, normal: 15) to explore their time–frequency features.

It was found that the power spectral density of the mutation feature caused by trans-
verse cracks was above 100 dB/Hz (yellow highlight entry). While the normal pavement
samples are below 80 dB/Hz (Figure 8). However, it was noted that the highlights of
the three crack samples are not obvious. This results in an unreliable judge when only a
feature has been mutated. The STFT algorithm demonstrates time-varying characteristics
of the frequency domain brought about by signal mutations. A mutation at the cracked
section causes a change in a certain frequency range. To verify this idea, we convert a two-
dimensional time–frequency picture (the x-axis is time, the y-axis is frequency, and color
depth denotes the power spectrum density) into a three-dimensional time–frequency map
(the x-axis is time, the y-axis is frequency, and the z-axis is the power spectrum density).
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(a) 

(b) 

Figure 8. The 2D STFT spectrogram at cracked section or normal section. (a) Transverse crack;
(b) normal pavement.

It was found that there are obvious differences between the cracked section and the
normal section in the three-dimensional time–frequency diagram (Figure 9). All of the
signals have a characteristic frequency range in the 0–50 Hz range. The PSD in the 0–0.1 s
range is less than 30 dB/Hz for a transverse crack sample. When a signal is mutated
(0.1–0.2 s), the power spectral density in the 0–50 Hz range increases rapidly, up to 102.2 Hz.
As the mutation disappears (0.2–0.36 s), the PSD returns below 30 dB/Hz. The maximum
power spectral density for the entire signal segment range (0–0.36 s) for the intact pavement
samples is 42.5 dB/Hz. The maximum power spectral density (PSDmax) of the STFT is
expected to be a good classification indicator.

To validate the above idea, the PSDmax of 15 transverse cracks and 15 normal pave-
ments were calculated as shown in Figure 10. As can be seen in Figure 10a, the transverse
crack’s PSDmax distribution range is from 100 dB/Hz to 340 dB/Hz, with a maximum
of 338.7 dB/Hz and a minimum of 102.2 dB/Hz. As shown in Figure 10b, the normal
pavement’s PSDmax distribution range is from 29 dB/Hz to 63 dB/Hz, with a maximum of
62.0 dB/Hz and a minimum of 29.8 dB/Hz. The mean, standard deviation, and variation
coefficients are shown in Table 3. Based on comparison of the standard deviation and
coefficient of variation, the transverse crack’s PSDmax distribution is more discrete than
the normal pavement.
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Figure 9. The 3D STFT spectrogram at the cracked section or normal section.

 
(a) (b) 

Figure 10. PSDmax at cracked sections and normal sections. (a) Transverse crack; (b) normal pavement.

Table 3. Statistical parameters of PSDmax.

Statistic Parameter Transverse Crack Normal

Maximum 338.7 62.0
Minimum 102.2 29.8

Mean 214.3 42.7
Standard deviation 79.3 9.4

Coefficient of variation 37.0% 22.0%

In addition, it can be seen that the minimum value of the transverse crack’s PSDmax
is greater than the maximum value of the intact pavement sample, PSDmax. So, it is
reasonable to select the PSDmax as a classification indicator.

It should be noted that the standard deviation of the crack’s PSDmax is much higher
than that of the normal pavement. This can be explained by the field measurement affecting
the crack’s vibration response more. This is due to the varying degrees of pavement
cracking (length, width, and depth), which leads to different transient shocks when the
vehicle passes. This also results in a different degree of signal mutation at the cracked
sections. This variability is strengthened by pavement roughness and the influence of
sand and gravel. A sample of normal pavement’s signal features is likely to be similar
to transverse cracks, especially in the time–frequency domain. A cracked section is more
easily mistaken for a normal section because it is difficult to cause a significant signal
mutation due to its poor level. This ignores the structural damage of the pavement at the
site and will make it difficult to carry out conservation activities in time.
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Considering the above variability, the PSDmax may have a poor classification effect
during field testing. The difference between a transverse crack and normal pavement
is very small. However, the vibration signal at the cracked sections has three phases:
stationary—non-stationary—stationary. In the time–frequency domain, these three stages
are reflected in the power spectral density of the characteristic band (0–50 Hz). Therefore,
the difference among the three PSD values (initial location t1, peak position tPSDmax, and
terminal position t2) can be considered as additional features, as defined below.

ΔPSD1 = PSDmax − PSD1 (19)

ΔPSD2 = PSDmax − PSD2 (20)

PSDmax is the peak of maximum power spectral density (Figure 11). PSD1 is the
initial PSD of the characteristic spectral band (0–50 Hz), where PSDmax is located. PSD2 is
the final PSD of the characteristic spectral band (0–50 Hz).

Figure 11. PSD at different time points.

Considering that PSDmax may occur at the initial or end position, we adopt the larger
one (ΔPSD) in this study, comparing ΔPSD1 and ΔPSD2 as an additional feature, defined
as the relative power spectral density. This is shown in Equation (21).

ΔPSD = max(ΔPSD1, ΔPSD2) (21)

The two key classification features generated, PSDmax and ΔPSD, are mathematically
linearly related. This is because the equation of the ΔPSD shows that the difference between
the two variables is a linear function. For the same highway, the frequency changes due
to the relative equilibrium of the roughness are small compared to cracks. Therefore, the
difference is relatively stable. This fitting process is shown in Figure 12. The stability of
features at normal sections is similarly verified in Figure 13. The ΔPSD at normal sections
presents an agglomeration phenomenon. The data mean of this group was defined as the
coordinate origin, and the radius was defined as the distance from the farthest point that
makes up the circle function. All samples are strictly confined within this circle function.

Figures 14 and 15 show the above two index’s classification effects. There is a divided
zone between cracks and normal pavements, which can provide a flexible
classification threshold.
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Figure 12. The fitting function between PSDmax and ΔPSD at cracked sections.
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Figure 13. The fitting function between PSDmax and ΔPSD at normal sections.

 
Figure 14. Classification effect of ΔPSD.

 
Figure 15. Classification effect of PSDmax.

76



Appl. Sci. 2023, 13, 12527

6. Application Effect

The classification thresholds were set for 100 dB/Hz (PSDmax) and 95 dB/Hz (ΔPSD).
If the PSDmax > 100 dB/Hz and ΔPSD > 95 dB/Hz, it is judged to be a transverse crack, and
otherwise is classed as normal pavement. We applied this criterion to a large verification
set of 139 sections (crack: normal = 14:125). The confusion matrix is shown in Figure 16.

Ac =
TP + TN

TP + FN + FP + TN
(22)

TPR =
TP

TP + FN
(23)

FPR =
FP

FP + TN
(24)

Figure 16. Confusion matrix.

This study adopts accuracy (Ac), TPR, and FPR as evaluation indicators (Table 4).
The overall accuracy is high, reaching 94.96%, which is satisfactory because there is no
machine learning training. It was also noted that the likelihood of detection in all crack
samples is 92.86% (TPR). The probability of being misjudged as transverse cracks in all
normal pavement samples is 4.80% (FPR). As most pavement sections are normal, a lower
FPR means that the classification model can help to reduce the maintenance personnel’s
on-site error correction workload. At the same time, transverse cracks require repair to be
effectively detected. Therefore, using the PSDmax and ΔPSD as classification indices is
reasonable.

Table 4. Comprehensive evaluation indices of the classification model (%).

Index Ac TPR FPR

value 94.62 92.86 4.80

7. Conclusions

In this paper, a vehicle-cracked pavement dynamic model illustrated the pavement
transverse cracking detection principle based on vehicle dynamic response. As the typical
features of pavement transverse cracking cannot be revealed better in the time or frequency
domain, the raw vibration signal was transformed into a time–frequency-PSD map using
optimized STFT. Two key classification indices distinguished transverse cracking sections
from normal sections. The detailed conclusions of this paper are as follows:

Based on the d’Alembert principle, a vehicle-cracked pavement dynamic model was
established. The model’s time domain solution indicates that the vertical vibration response
is affected by the characteristics of the vehicle system’s driving speed, transverse cracking
degree, and the vehicle–crack contact geometry feature.

The optimized STFT algorithm parameters for detecting transverse cracking were set
through a parameter optimization process. The window type was a Hanning window with
a length of 32, and an overlap of 16.
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It was found that the power spectral density (PSD) caused by transverse cracks was
above 100 dB/Hz. The PSD at normal sections was below 80 dB/Hz. The distribution of
the PSD at cracked sections is more discrete than at normal sections.

The classification model based on the maximum power spectral density (PSDmax)
and the relative power spectral density (ΔPSD) performed well. The accuracy reached
94.96%. TPR and FPR reached 92.86% and 4.80%, respectively.

In terms of recognition accuracy, this novel method is close to the current mainstream
methods based on deep learning. In addition, this method can overcome the disadvantages
of traditional signal time domain and frequency domain analysis’s low accuracy. Moreover,
this novel method could express small signal mutations caused by transverse cracking,
including its moment.

However, the training set used in this novel method was smaller, data processing was
faster, and real-time feedback was met. It was also verified that the novel model had a
better effect on pavement transverse cracking detection.
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Abstract: The productivity of plants is considerably affected by various environmental stresses.
Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from
plants subjected to stress can contribute to a better understanding of biophysical and biochemical
processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water
stress were conducted. Two maize lines were used: US corn-belt inbred line B37 and mutant inbred
XM 87-136, characterized by very high drought tolerance. After reaching the 4-leaf stage, 10 plants
from each line were subjected to water stress, and 10 plants were used as control, kept under a regular
water regime. The drought lasted until day 17 and then the plants were recovered by watering for
4 days. A MicroNIR OnSite-W Spectrometer (VIAVI Solutions Inc., Chandler, AZ, USA) was used
for in vivo measurement of each maize leaf spectra. PLS models for determining drought days were
created and aquagrams were calculated separately for the plants’ second, third, and fourth leaves.
Differences in absorption spectra were observed between control, stressed, and recovered maize
plants, as well as between different measurement days of stressed plants. Aquagrams were used to
visualize the water spectral pattern in maize leaves and how it changes along the drought process.

Keywords: maize plant; water stress; NIR spectra; aquagrams

1. Introduction

The influence of environmental stress factors on plant physiology has been the sub-
ject of rigorous research over the years and a significant number of studies have been
reported [1,2]. Some of the mechanisms used by plants to respond and try to adapt and
recover their homeostasis have also been described [3,4]. In general, plants have developed
smart and sophisticated mechanisms to overcome stress [5], although these properties are
more or less pronounced depending on the plant species [6]. Plants respond by changes in
metabolism, gene expression, and adjustment of developmental processes. The common
theme among different types of stress conditions is the generation of reactive oxygen
species in cells. These particles act as aggressive disruptors on the most important cellular
structures (e.g., membrane systems) and nucleic acids [7–10]. To alleviate the negative effect
of the radicals’ plants, they trigger enzymatic antioxidative systems (e.g., superoxide dismu-
tases, peroxidases, catalases, and phenol oxidase). Another route to withstand the severe
destructive influence of the generated radicals and alleviate the overall negative impact
is the involvement of compounds with strong reductive potential (phenols, polyamines,
flavonoids, glutathione, etc.).

Maize (Zea mays L.) is among the most exploited cereal crops with great importance
all around the world. Despite that, its production is limited by drought [11,12], which
can bring a decrease of 25–30% in yield in some arid zones [13]; it is widely cultivated for
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direct use as food and feed, as well as for processed production of industrial compounds.
When drought stress is in place, the maize yield losses vary from 30 to 90% depending on
(1) the stage of the plant as well as (2) the intensity and prolongation of the drought period.
As a result, the flowering and grain-filling stages are also severely affected [14]. Maize is
frequently cultivated without irrigation in dry areas, with 300–500 mm of annual rainfall
despite the fact that this level is below the critical limit necessary to reach a good crop
yield [14]. Maize plants are sensitive to drought stress during all developmental stages from
seed germination and seedling emergence through vegetative growth and reproductive
phases. Therefore, improvement in drought tolerance is a major focus of research for maize
breeding [15]. It was shown that applying a solution with 0.99 MPa of osmotic potential to
maize seeds significantly affects the progress of germination and post-germination phases
of the treated plants [16]. The most drought-sensitive period in maize development is
between emergence (VE) and the 5-leaf (V5) stage seedling [17]. Environmental stress
occurring during the seedling stage can result in crop failure [18,19]. Although significant
improvement of drought tolerance during the reproductive stage of maize plants was
achieved recently by application of various omics approaches [20], little attention is paid to
the improvement of drought tolerance at the seedling stage due to its very complex nature.
Therefore, a profound understanding of the physiological mechanisms behind vegetative
drought tolerance at the seedling stage will be of high value.

Plant stress detection is very important to increase crop yield. Some of the meth-
ods for quantitative estimation of stress effects, such as metabolomics methods, provide
very accurate data, but they are sampling destructive and very slow, which prevents
dynamical studies.

Near-infrared (NIR) spectroscopy is a non-destructive rapid method for qualitative and
quantitative analyses in different scientific fields—in the industry, medicine, agriculture,
etc. NIR spectroscopy is less expensive than conventional methods because it does not
use special consumables and chemicals after instrument calibration, requires little or no
sample preparation, and can be used for online measurements. Data on the concentration
of several components can be obtained with only one measurement. Another advantage of
the method is that the analyzed samples can contain high water contents, and therefore
this method has the possibility for in vivo application in living systems.

Recently, spectroscopy in the visible and near-infrared region was used to investigate
the effect of abiotic stress on the base of spectral reflectance [21–24]. One of the used
approaches is the development of vegetation indices, typically used in remote sensing.
Another approach is to use chemometric methods to extract information from the near-
infrared spectra of plants and food for the determination of quantitative parameters and
for classification [25–28].

Aquaphotomics is a novel scientific approach based on near-infrared spectra of water
in different kinds of materials, mainly biological samples with high water content, and
analysis of changes in water spectra caused by the influence of different factors [29–31].
Aquaphotomics analysis of water–light interactions is a new source of information for a
better understanding of the biological world. The combination of NIRS and aquaphotomics
has already been used for the non-destructive investigation of aqueous and biological
systems, for the evaluation of fresh and processed fruits and vegetables quality [32–38],
plant abiotic stress and diseases [39–42].

In this paper, we use a non-destructive, portable NIR spectrometer to analyze the
response to drought stress of two maize inbred lines—a US corn-belt B37 and a mutant XM
87-136 with very high drought tolerance by an aquaphotomics approach.

2. Materials and Methods

2.1. Plant Materials and Experimental Conditions

Two maize (Zea mays L.) inbred lines were included in the present study, the well-
known US corn-belt inbred line B37 and a mutant inbred, developed at Maize Research
Institute, Kneja, Bulgaria. We focused on inbred lines since they are genetically uniform and
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should give lower plant-to-plant variation in the experiments. The mutant line XM 87-136
was developed by chemical mutagen treatment of B37 dry seeds followed by recurrent
reciprocal mutation breeding to fix the desired mutant traits [43,44]. In addition to its high
yield and combining the ability to produce high-yielding hybrids, the mutant line XM
87-136 is characterized by very high drought tolerance. XM 87-136 is a parental line of
one of the most drought-tolerant maize hybrids bred in Bulgaria that has now been on the
market for more than 20 years. The inbred line B37Ht (Co-op ID: 3406-007) was obtained
from the Maize Genetics Cooperation Stock Center (http://maizecoop.cropsci.illinois.edu,
accessed on 20 October 2023). Both lines used in the present study were maintained in a
homozygous state by more than 10 generations of self-fertilization (selfing) at MRI-Kneja.

Seeds were surface sterilized with 5% commercial bleach (Domestos) for 10 min, washed
three times with distilled water, and placed on wet filter paper. After germination, seedlings
were transferred to a pot (d 10 cm) with soil. Plants were grown well watered at 28/25 ◦C
day/night temperature, 50 ± 5% relative air humidity, and at 150 μmol m−2 s−1—photon
flux density of light intensity for 16 h in a controlled growth chamber (MLR-351, SANYO,
Osaka, Japan).

Drought stress was induced on pot plants at the 4-leaf stage by withholding water for
17 days followed by rewatering for 4 days. Measurements were made on days 3, 7, 10, 12,
14, and 17 during drought stress and on days 3 and 4 after rewatering. Control plants were
well watered during the treatment. A total of 10 plants from each line were subjected to
water stress, and 10 plants were used as controls and kept under a regular water regime.

The scheme of the experimental design is presented in Figure 1.

Figure 1. Scheme of experimental design.

2.2. Relative Water Content (RWC)

RWC of the 4th leaf at various time points of stress and recovery was calculated using
the following formula [45]:

RWC% = [(FW − DW)/(FTW − DW)]× 100, (1)

where FW is the fresh weight of the leaf, FTW is the fresh turgor weight measured after
immersion of the leaf in distilled water for 24 h at room temperature and DW is the dry
weight measured gravimetrically after drying at 80 ◦C in an oven for 48 h. Data are shown
as the mean± standard deviation (SD) of four biological replicates.

2.3. Plant Height

The plant height (cm/plant) was measured as a distance from the soil surface to the
upper end of the longest leaf at every time point during drought stress and recovery. Data
are shown as the mean ± standard deviation (SD) of ten biological replicates.
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2.4. NIRS Measurements

A portable, handheld MicroNIR OnSite-W spectrometer (VIAVI Solutions Inc., Chan-
dler, AZ, USA) in the diffuse reflectance mode was used for spectral acquisition in the
908–1670 nm spectral range, with an approximately 7 nm resolution step. The second, third,
and fourth leaves from each plant were measured. Each leaf was measured at three different
positions. A dark 5 mm thick plate under the measuring maize leaves was used to ensure
uniform measurement conditions and to avoid external interference.

2.5. Aquaphotomics and Multivariate Data Analysis

Pirouette 4.5 software (Infometrix, Inc., Bothell, WA, USA) was used for spectral data
processing. Second derivative preprocessing of spectral data was applied, based on a
Savitzky–Golay polynomial filter. The equations for the determination of days of water
stress were created by partial least square (PLS) regression and the second derivative
transformation of spectral data. Cross-validation was used for the determination of an
optimum number of PLS factors in the models—the number of factors that corresponded
to the lowest standard error of cross-validation SECV. Three leave-out samples were used
in the cross-validation procedure because three replicates of the same leaf were measured.

Aquagram is a radar chart with coordinates, connected with specific water absorption
bands of free water, dimers, trimers, solvation shells, etc., named water matrix coordinates
(WAMACs) [29]. To calculate the aquagrams coefficients, first spectral data were trans-
formed by multiplicative scatter correction (MSC) to reduce scattering effects due to the
different thickness and surface properties of leaves. After that, normalized absorbance
values at several wavelengths, Aq were calculated using the equation:

Aqλ =
Aλ − μλ

σλ
(2)

where Aλ is the absorbance at wavelength λ, μλ is the mean value, and σλ is the standard
deviation of all spectra at wavelength λ, respectively.

Aquagrams were calculated using the new 19 WAMACs, proposed by Vitalis et al. [46].

2.6. Statistical Data Analysis

Statistical data analysis included multivariate ANOVA to calculate significant differ-
ences among aquagram values at various WAMACS. Significance was determined using
post hoc multiple comparisons with either Dunnett’s T3 or Tukey tests, depending on the
results of Levene’s test for equality of error variances, at p-values of ≤0.05, 0.01, and 0.001.
IBM SPSS Statistics 26.0 was used to process the data.

3. Results and Discussion

3.1. Physiological Changes during Drought

Two inbred maize lines—B37 (non-tolerant) and XM 87-136 (tolerant)—were subjected
to water stress. Control plants from both lines have approximately 92% relative water
content (RWC) (Figure 2a). When plants were exposed to drought, RWC for both lines
decreased after the 7th day and reached 16% on the 17th day (Figure 3) and the leaves were
not able to recover on the 4th day after rewatering. Slightly better was the recovery for the
line XM 87-136.

Maize growth during drought showed the same pattern for both analyzed genotypes—plants
stopped growing after the 7th day of stress treatment compared to controls (Figure 2b).
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(a) (b) 

Figure 2. Changes in leaf RWC (a) and plant growth (b) of inbred maize B37 and XM 87-136 during
drought stress and recovery. Data are presented as the mean values ± standard deviation. (a) Relative
water content (RWC) of tested maize lines; (b) plant growth of tested maize lines.

 
(a) (b) 

Figure 3. Phenotype response of inbred maize line B37 and XM 87-136 on the 17th day of drought
stress treatment. c—control plants; d—maize plants on the 17th day of drought stress. (a) B37—day
17; (b) XM 87-136—day 17.

3.2. NIR Spectra of Maize Leaves in the Process of Water Stress

Average second derivative of maize leaf spectra, measured from 3 to 17 days of
drought, are shown in Figure 4 for both investigated maize lines. Absorption patterns
of the two maize inbred lines were very similar. The spectra were dominated by the
absorption band of water in the first overtone region between 1400 and 1500 nm. The
biggest differences in the spectra for both tested maize lines could be observed at 1409 nm,
connected with the absorbance of free water molecules. The absorption decreases with
increasing the period of water stress. Absorption at approximately 1155 nm is connected
with water absorption—a combination of the first overtone of O-H stretching and O-H
bending vibration [37]. Absorption of maize leaves at 1087 nm also shows a dependence
on drought days.

El-Hendawy et al. [47] also found a high positive correlation in the region 1392–1550 nm
between the spectral reflectance of spring wheat, subjected to different irrigation rates and leaf
water potential, and a high negative correlation with relative water content, and equivalent
water thickness. In the experiment for non-destructive detection of water stress and estimation
of relative water content in maize [48], it was found that the coefficient of variation in the
reflectance spectra of water-stressed plants had a pronounced peak at approximately 1450
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nm. The reflectance of control plant leaves was virtually invariant. Das et al. [49], in an
experiment with 10 different rice genotypes, investigated water absorption bands, indices, and
multivariate models for the development of non-destructive water-deficit stress phenotyping
protocols using VNIR spectroscopy. Among the water absorption features at 970, 1200, 1400,
and 1900 nm, 1400 nm was found to be the best for the estimation of leaf water content.

  

(a) (b) 

Figure 4. Average second derivative spectra (2D) of leaves of B37 and XM 87-136 maize lines in
process of water stress. (a) B37; (b) XM 87-136.

The main visible difference between the two maize lines was the magnitude of absorp-
tion at 1409 nm. For all days, the absorbance values for the drought-tolerant mutant line
were higher than those for B37.

The differences between spectra of maize lines, measured at 3 days of water stress
and other days were calculated and presented in Figure 5. The stress responses of the
two investigated maize lines now varied. For the drought-tolerant line, there are almost
no differences in the spectrum until day 7 of drought. In the case of the B37, there are
differences between the 7th and the 3rd day of water stress, especially at 930 nm, and
the region 1350–1400 nm. The absorption at approximately 930 nm suggesting bond with
either the C-H or O-H group. According to Rajkumar et al. [50], absorption at 930–935 nm
is connected with O-H stretch (water solvation shell). The changes in the absorption in
the area 1350–1400 nm are connected with weakly hydrogen-bonded water and trapped
water or water vapor. This may indicate a loss of moisture through transpiration or
a different content of trapped water, which is more significant for B37 plants [38,46].
Therefore, B37 plants undergo some physiological changes at the beginning of water stress
that are different from those of XM 87–135 plants. These changes have not yet affected
the physiological data at day 7 of drought, but have altered the spectral characteristics
measured for B37 plants. Additionally, differences were observed in the area from 1062 to
1143 nm, mainly due to O-H and C-H vibrations [51]. This showed some differences in the
processes of water stress between the two maize inbreds.
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(a) (b) 

Figure 5. Differences between second derivative spectra of water-stressed leaves, measured at day 3,
and measured at 7, 10, 12, 14, and 17 days. (a) B37, 3rd leaf; (b) XM 87-136, 3rd leaf.

3.3. NIR Spectra of Control, Water-Stressed, and Recovery Maize Leaves

The second derivatives of average maize leaf spectra of control, water-stressed, and
recovery plants are presented in Figure 6. There were clear differences among spectra of
control, water-stressed, and recovered maize leaves for both investigated inbred lines.

The most intensive absorption was found in the first overtone region of water between
1400 and 1500 nm. Again, the absorbance intensity at 1409 nm and 1155 nm was greater in
the control plants from drought-tolerant inbred XM 87-136, compared to the B37 line. The
same finding was observed for the magnitude of absorption at 1409 nm of water-stressed
plants. The spectra of plants recovered by watering for 4 days are very similar to those of
water-stressed plants on the 17th day. This indicates that plants do not fully recover after
17 days of drought.

There were differences in the spectra of the second, third, and fourth leaves, mainly
related to the magnitude of absorption.

Early detection of water stress is essential for efficient crop management. The obtained
results confirm the possibility of using crop spectral reflectance in the visible and near-
infrared regions to assess water stress [52–55]. The results of the analysis of spectral
characteristics of control and water-stressed maize plants showed detectable differences
after 3 days of drought for conventional and 7 days for drought-tolerant lines. In addition
to monitoring, these results could also be used in breeding programs for fast and non-
destructive selection of drought-tolerant maize varieties.

3.4. Aquaphotomics Analysis

Aquagrams were calculated to further investigate the changes in maize leaves caused
by water stress. We used new 19 WAMACs, proposed by Vitalis et al. [44]. There is
consistency in the shape and features of the aquagrams for the two maize cultivars and
leaves studied. The comparison of water spectral patterns of control, water-stressed, and
recovery plants provided clear differences for both maize line leaves (Figure 7).

In all cases, the values for the control plants in the range 1360–1422 nm were greater
than those for the water-stressed plants. WAMACS in this range—1360 nm (C2), 1373 nm
(C3), and 1385 nm (C4), are related to proton hydration, ion hydration, and trapped water.
Absorption at 1409 nm is connected with free water. This indicated the loss of water in
water-stressed leaves. Between 1441 and 1533 nm, we observed an inverse relationship—the
values for the water-stressed plants are greater than those of the control plants. The water
absorbance in this region is indicative of strongly molecularly bound water (molecules
with two hydrogen bonds at 1466 nm, molecules with three hydrogen bonds at 1478 nm,
and molecules with four hydrogen bonds at 1490 nm). Other WAMACS in this region were
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connected with the interaction of protein and water at 1466 nm, and water and cellulose at
1503, 1521, and 1534 nm [46,56]. Aquagrams of recovery leaves were very different from
those of control or water-stressed plants and indicated the loss of liquid water and strongly
bound crystalline water at wavelengths above 1500 nm. The remaining water in these
leaves is bound mainly to the cellulose components in the leaves.

  
B37, second leaf XM 87-136, second leaf 

  
B37, third leaf XM 87-136, third leaf 

  
B37, fourth leaf XM 87-136, fourth leaf 

(a) (b) 

Figure 6. Average second derivative spectra of control, water-stressed, and recovery second, and
fourth leaves of B37 (a) and XM 87-136 (b) maize lines.
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Line B37, 2 leaf Line XM 87-136, 2 leaf 

  

Line B37, 3 leaf Line XM 87-136, 3 leaf 

Figure 7. Cont.
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Line B37, 4 leaf Line XM 87-136, 4 leaf 

Figure 7. Aquagrams of the different leaves of inbred maize lines—B37 and XM 87-136—during
water stress, recovery, and control conditions.

Significant differences among aquagram values at various WAMACs for the third
maize leaf in both cultivars can be observed in Table 1. Significant differences between
control and water-stressed plants of the line XM 87-136 with different statistical strengths
were found for most of the WAMACs except at 1416, 1422, and 1571 nm. Statistical
significance was at level p in the range 0.001 ÷ 0.01 at 1348, 1360, 1373, 1441, 1447, and
1443 nm, and for the rest of WAMACs at level p in the range 0.01 ÷ 0.05. Statistical
significant differences of greatest strength between control and recovery plants were found
for most of the WAMACs. Regarding the B37 line, significant differences between control
and water-stressed plants were obtained for all the WAMACs. The strongest statistical
significance for the WAMACs was in the range 1348–1410 nm and 1466–1534 nm. Significant
differences of greatest strength between control and recovery plants were found for all
wavelengths except 1571 nm, and between water-stressed and recovery plants except 1441,
1447, and 1571 nm. Similar results were obtained for the second and fourth leaves.

The results of the statistical significance analysis between the values of the aquagram
coefficients again confirm the existence of differences in the water stress processes between
the two studied maize inbred lines. The statistical significance between the coefficients of
the aquagrams for the drought-resistant line XM 87-136 is lower than that for the B37.

For further investigation of changes in leaves during water stress, aquagrams were
calculated for different drought days (Figure 8). There is a smooth decrease in the values
of the aquagram coefficients in the range of 1347–1442 nm for XM 87-136 water-stressed
plants. The values for days 3 and 7 are very close, as are those for days 10 and 12. The
values for days 3 to 10 in the 1440–1533 nm range are quite close. Very different from the
others is the aquagram obtained for the leaves of the plants on day 17 of the water stress.
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Table 1. Multivariate ANOVA results for aquagrams for the third leaf of the XM 87-136 and B37 lines.

XM 87-136 B37

Wavelength Control
Water
Stress

Recovery Wavelength Control
Water
Stress

Recovery

1347.899
a a

1347.899
a a

b b b b
c c c c

1360.288
a a

1360.288
a a

b b b b
c c c c

1372.677
a a

1372.677
a a

b b b b
c c c c

1385.065
a a

1385.065
a a

b b b b
c c c c

1391.26
a a

1391.26
a a

b b b b
c c c c

1409.843
a a

1409.843
a a

b b b b
c c c c

1416.037
ns ns

1416.037
a a

b b b b
c c c c

1422.231
ns ns

1422.231
a a

b b b b
c c c c

1440.814
a a

1440.814
a a

b b b b
ns ns ns ns

1447.009
a a

1447.009
a a

b b b b
c c ns ns

1453.203
a a

1453.203
a a

b b b b
c c c c

1465.592
a a

1465.592
a a

b b b b
c c c c

1471.786
a a

1471.786
a a

b b b b
c c c c

1490.369
a a

1490.369
a a

b b b b
c c c c

1502.758
a a

1502.758
a a

b b b b
c c c c

1515.147
a a

1515.147
a a

b b b b
c c c c

1521.341
a a

1521.341
a a

b b b b
c c c c
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Table 1. Cont.

XM 87-136 B37

Wavelength Control
Water
Stress

Recovery Wavelength Control
Water
Stress

Recovery

1533.73
a a

1533.73
a a

b b b b
c c c c

1570.896
ns ns

1570.896
a a

b b ns ns
c c ns ns

Same letters in the same row represent significant differences at p < 0.05; ns—insignificant differences. Different
colours represent the strength of significant differences as follows: <0.001 in green; 0.001 ÷ 0.01 in blue; 0.01 ÷ 0.05
in yellow; non-significant in grey.

  

(a) (b) 

Figure 8. Aquagrams for water-stressed inbred maize lines—B37 and XM 87-137—at different days
of water deprivation. (a) B37; (b) XM 87-136.

The character of the aquagrams for days 3 and 7 for B37 plants was different com-
pared to those for the line XM 87-136. This confirms the observed differences in early
drought processes between the two maize lines. They are especially significant in the
range 1409–1453 nm. The water absorption at 1441 and 1447 nm is important in desiccation
processes and abiotic stress [35,42].

3.5. PLS models for Determination of Days of Drought

The PLS models for the determination of days of drought were calculated separately for
the data acquired for lines B37 and XM 87-136, using spectral regions from 1300 to 1600 nm,
and their performances were presented in Table 2 and Figure 9. The predictions of the days of
drought were successful with slightly less accuracy for the B37 inbred—SECV = 1.77 compared
to SECV = 1.58 for the XM 87-136 line.

Table 2. Statistical parameters of PLS models for determination of days of drought.

Line PLS Factors SECV R2cv SEC R2cal

B37 2 1.77 0.922 1.74 0.923
XM 87-136 2 1.58 0.887 1.58 0.889
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Figure 9. PLSR model for determination of days of drought of XM 87-136 plants.

Regression vectors and correlation spectra from PLS procedures were investigated to find
important wavelengths for the determination of days of drought. A regression vector plot is
a line plot of coefficients in the model versus wavelengths. The correlation spectrum shows a
correlation between the determined parameter and spectral information. Both models for B37
and XM 87-136 provided similar regression vectors and correlation spectra (Figure 10). The
most influential variables were at 1342, 1379, 1409 and approximately 930 1459 nm, which are
close to WAMAC coordinates C1, C4, C5, and C9, respectively. In the area 1350–1500 nm, there
was only a difference in the magnitude of regression vector coefficients. They were bigger for
B37 compared to those for the XM 87-136 line. This is related to the difference in absorption
values for the two types of maize plants. Small differences existed at 1521, 1527, and 1546 nm.
The differences in correlation spectra were most significant in the region 1500–1600 nm, similar
to the result of regression vectors. They appear at 1503 and 1527 nm in the correlation spectra
of the model for the B37 line. Absorption at 1503 nm can be associated with strongly bound
water. In previous investigations absorption at 1527 nm is connected with structural–water and
water–cellulose interactions [57].

  
(a) Regression vector (b) Correlation spectra 

Figure 10. Regression vector (a) and correlation spectra (b) of PLS models for determination of days
of drought.
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The results of the analysis of the regression vectors and the correlation spectra confirm
the existence of differences in the spectral characteristics of the leaves of the two studied
maize inbred lines. The differences are related to changes in water content and water
structure during drying.

4. Conclusions

This study was conducted to investigate the changes during water stress of maize
plants using an aquaphotomic approach. Spectra of plants from two inbred lines, one of
them drought resistant, were analyzed.

Differences in absorption spectra in the first overtone water region from 1300 and
1600 nm were observed between control, water-stressed, and recovered maize plants, as
well as between different days of stressed plants. Aquagrams clearly visualize the spectral
difference. The spectral differences showed a loss of free and weakly bound water in the
process of water stress. The remaining water is in the bound state with a high number
of hydrogen bonds or bonded to the structural elements of plants. This statement is also
confirmed by the analysis of the results of the PLS models for determining the days of
drought. Aquagrams and spectra of two investigated maize lines also show the differences
between the two inbred lines connected with drought tolerance.

The results of this pilot study demonstrated the potential of the aquaphotomics
approach to better understand the process of water stress in plants. This can also be
used as an additional approach in breeding programs for the selection of drought-tolerant
maize varieties.
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Abstract: The ultimate analysis parameters, including carbon (C), hydrogen (H), nitrogen (N),
and oxygen (O) content in biomass, were rarely found to be predicted by non-destructive tests to
date. In this research, we developed partial least squares regression (PLSR) models to predict the
ultimate analysis parameters of chip biomass using near-infrared (NIR) raw spectra of non-wood
and wood samples from fast-growing tree and agricultural residue and nine different traditional
spectral preprocessing techniques. These techniques include first derivative (sd1), second derivative
(sd2), constant offset, standard normal variate (SNV), multiplicative scatter correction (MSC), vector
normalization, min-max normalization, mean centering, sd1 + vector normalization, and sd1 + MSC.
Additionally, we employed a genetic algorithm (GA), successive projection algorithm (SPA), multi-
preprocessing (MP) 5-range, and MP 3-range to develop a PLSR model for rapid prediction. A dataset
consisting of 120 chip biomass samples was utilized for model development in which the samples
were non-wood samples of 65–67% and wood samples of 33–35%, and the model performance was
evaluated and compared. The selection of the optimum performing model was mainly based on
criteria such as the coefficient of determination in the prediction set (R2

P), root mean square error
of the prediction set (RMSEP), and the ratio of prediction to deviation (RPD). The optimal model
for weight percentage (wt.%) of C was obtained using GA–PLSR, yielding R2

P, RMSEP, and RPD
values of 0.6954, 1.1252 wt.%, and 1.8, respectively. Similarly, for wt.% of O, the most effective model
was obtained using the multi-preprocessing PLSR–5 range method with R2

P of 0.7150, RMSEP of
1.3088 wt.%, and RPD of 1.9. For wt.% of N, the optimal model was obtained using the MP PLSR-3
range method, resulting in R2

P, RMSEP, and RPD values of 0.6073, 0.1008 wt.%, and 1.6, respectively.
However, wt.% of the H model provided R2

P, RMSEP, and RPD values of 0.5162, 0.2322 wt.%, and
1.5, respectively. Notably, the limit of quantification (LOQ) values for C, H, and O were lower
than the minimum reference values used during model development, indicating a high level of
sensitivity. However, the LOQ for N exceeded the minimum reference value, implying the samples to
be predicted by the model must be in the range of reference range in the calibration set. By scatter plot
analysis, the effect of combined non-wood and wood spectra of biomass chips on rapid prediction of
ultimate analysis parameters using NIR spectroscopy was investigated. To include different species
in a model, the species have to be not only in the different values of the constituents to make a
wider range for a robust model, but also must provide their trend line characteristics in the scatter
plot, i.e., correlation coefficient (R), slope, and intercept (same slope and slope approached to 1, and
intercept is same (no gap) and approached zero, high R approached to 1). The effect of the R, slope,
and intercept to obtain the better-optimized model was studied. The results show that the different
species affected the model performance of each parameter prediction in a different manner, and by
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scatter plot analysis, which of these species were affecting the model negatively and how the model
could be improved was indicated. This is the first time the effect has been studied by the principle of
a scatter plot.

Keywords: biomass; ultimate analysis; near-infrared spectroscopy; partial least squares regression

1. Introduction

The world is undergoing a significant transition away from fossil fuels, embracing
modern renewable energy technologies to meet its escalating energy needs and demands.
Bioenergy, derived from sources such as woody biomass, agricultural residues, and or-
ganic materials and waste, is pivotal in this paradigm shift, constituting the largest share
(two–thirds) of global renewable energy utilization [1]. It is anticipated that bioenergy
will continue to have a decisive share in future net zero emission scenarios and that its
contribution to energy supply will further increase. This transition underscores the growing
significance of biomass energy within the global energy landscape. However, it is worth
noting that billions of people still rely on the inefficient use of traditional biomass for cook-
ing and heating [1]. The combustion of biomass produces air pollutants similar to those
emitted by fossil fuels, with the exception of sulfur oxides [2]. Furthermore, research has
shown that the health impacts attributed to emissions from biomass and wood combustion
can be more harmful than those from fossil fuels [3]. These emissions primarily result from
incomplete biomass combustion and the release of solid particulate matter.

The adoption of woody biomass and non-wood biomass, such as agricultural residues,
coupled with efficient combustion energy technologies, holds the potential to substantially
reduce harmful emissions into the atmosphere while increasing its contribution to energy
supply, making it a viable alternative to fossil fuels. Due to efficiency increase as compared
to traditional biomass use, it is an important cornerstone of future scenarios. Despite
significant investments in the research and development of biomass energy technologies,
a knowledge gap persists, particularly concerning efficient, low-cost determination of
biomass properties, including its elemental compositions (carbon (C), hydrogen (H), nitro-
gen (N), oxygen (O), sulfur (S), and others). During inefficient and incomplete combustion,
harmful pollutants such as carbon monoxide, sulfur oxides (SOx), nitrogen oxides (NOx),
along with particulate matter (PM2.5 and PM10) are continuously released into the environ-
ment as smoke, posing significant health risks through indoor and outdoor exposure, with
women and children being the most vulnerable [4–6].

The elemental composition of biomass has a profound impact on combustion effi-
ciency and the emission levels released into the environment. These emissions, in turn,
carry significant consequences for both the energy industry and the natural surroundings.
Energy release during biomass combustion correlates positively with carbon and hydro-
gen contents, as they are the primary contributors to its energy value [7]. High carbon
content is desirable for energy production [8], and hydrogen’s high energy content makes
it valuable [9]. During combustion, oxygen reacts with carbon and hydrogen, reducing
the available energy in biomass. Elevated oxygen and nitrogen contents decrease the
calorific value, thereby reducing energy potential [10]. Nitrogen and sulfur are undesirable
elements in biomass due to their contribution to the formation of harmful NOx and sulfur
dioxide [11,12]. To minimize environmental impact and ensure sustainable operation and
maintenance of combustion systems, low sulfur content in biomass is preferred [12]. Hence,
it is crucial to rapidly, accurately, and non-invasively assess the elemental composition
of biomass, including C, N, O, H, and S. This assessment is essential for understanding
biomass elemental composition and the potential emissions risks during energy production.

In our previous research [13], an investigation was conducted into the application of
NIR spectroscopy (NIRS) for the comprehensive analysis of the ultimate analysis param-
eters of ground biomass intended for energy utilization. The study concludes that NIRS
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offers a reliable and non-destructive alternative method for rapidly assessing the elemental
composition of ground biomass for energy-related purposes. Despite the valuable findings
from previous research, these findings primarily served academic and research institutions.
However, biomass normally is made into pellet form for export and to increase energy
density where grinding is necessary before making pellets. Woodchips are especially useful,
as they are easy to use, and sometimes, ground wood is not suitable for power operations
due to the high cost and length of time necessary for sample preparation; therefore, it is a
popular source of energy for power plants because of low preparation costs. Meanwhile,
woodchip quality could be more effectively examined to achieve higher levels of plant
efficiency [14]. Hence, this study aims to improve the applicability of NIR spectroscopy
to assess the ultimate analysis parameters of chipped biomass, i.e., biomass with particle
sizes commonly found in industrial applications. In consequence, this research outcome
may directly benefit traders and energy companies, facilitating the utilization of research
outcomes without the need for extensive biomass preparation such as grinding.

The data structure of samples used for model development in this present work
was in two forms, i.e., non-wood and wood samples. As reported, the non-wood and
wood species were different in their lignocellulosic constituents. Non-wood material of
agricultural waste compost of lignin, holocellulose, α-cellulose, pentosan, and ash [15]. For
example, agricultural residues, such as hemp and sugarcane bagasse, contained higher
concentrations of cellulose and lower levels of recalcitrant lignin when compared to the
average woody biomass [16,17]. However, Hawanis et al. [18] reported that non-wood
contained lower cellulose and lignin while wood contained higher [19–21]. Therefore,
incorporating a wider range of ultimate analysis parameters (C, H, N, O, and S) as reference
values will enhance the model robustness for prediction. Previous studies have strongly
correlated ultimate analysis parameters to higher heating values in biomass [22]. Hence,
by predicting the ultimate analysis parameters and leveraging these correlations, the
fuel heating value can be characterized. This study specifically investigated the effect of
combined non-wood and wood spectra from biomass chips on rapidly predicting ultimate
analysis parameters using NIR spectroscopy (NIRS).

The volume of available published studies is limited in which wood and non-wood
biomasses are characterized concurrently. Generally, only one specific species of biomass
was used for prediction modeling, and the determination of ultimate analysis constituents
by NIRS was rarely reported. Only two reports were found, including Posom and Sirisom-
boon [23], who optimized the PLS models using NIR spectra of 80 bamboo chip samples for
evaluation of C, H, N, S, and O content. The models showed the coefficient of determination
of prediction set (R2

P) and the ratio of prediction to deviation (RPD) of 0.803 and 2.31 for
C; 0.856 and 2.65 for H; 0.973 and 6.6 for N; 0.785 and 2.19 for S; and 0.522 and 1.46 for O,
respectively. Similarly, the models developed by Zhang et al. [24] used 100 accessions of
sorghum biomass with R2

P of 0.96 for wt.% of C, 0.87 for wt.% of H, 0.86 for wt.% of N,
and 0.83 for wt.% of O.

There were two reports found in the available database that developed a model for
two similar species to evaluate ultimate analysis parameters, C, H, N, O, and S. A total of
222 rice straw and wheat straw, collected from 24 provinces of China, were used for NIRS
calibration and validation in this study where R2

P and standard error of predictions (SEP)
of independent validation were, respectively, 0.97 and 0.37% for C, 0.77 and 0.17% for H,
and 0.87 and 0.10% for N [25]. Saha et al. [26] developed models by using 276 wood chip
ground samples of pine trees of two species (Loblolly (Pinus taeda) and slash (Pinus elliottii)),
where the biomass spectra ranged from 400 to 2498 nm at 2 nm intervals. The samples were
a mix of bark, branch, needle, wood, or whole tree biomass. The prediction results show
for C (sample number (n) = 43; coefficient of R2

P = 0.90; RPD = 3.14; ratio of prediction to
interquartile (RPIQ) = 3.23); for N (n = 44; R2

P = 0.95; RPD = 4.33; RPIQ = 5.96); and for S
(n = 42; R2

P = 0.93; RPD = 3.67; RPIQ = 3.24).
There were two reports of our group contributed to the research results of NIR pre-

diction models for ultimate analysis parameters of the non-wood and wood samples,
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including Pitak et al. [27] who developed the PLS regression using the spectra obtained
by line-scan NIR hyperspectral imager in which the most effective model for the predic-
tion of C, H, and N content of 160 non-wood and wood biomass pellets including filter
cake (15 pellets), Leucaena leucocepphala (10 pellets), bamboo (15 pellets), cassava rhizome
(15 pellets), bagasse (15 pellets), sugarcane leaves (15 pellets), straw (15 pellets), rice husk
(15 pellets), eucalyptus bark (15 pellets), napier grass (15 pellets), and corn cob (15 pellets)
developed using iGA wavelength selection and standard normal variate (SNV) spectral
pretreatment and provided the highest accuracy with R2

Pp and SEP of 0.83 and 1.33% for
C; 0.84 and 0.17% for H and 0.90 and 0.098% for N; respectively. The second report was
contributed by Shrestha et al. [13], where the ground non-wood and wood samples spectra,
which were 110 samples of agricultural residues and 90 samples of fast-growing trees,
were used to develop the PLSR models combined with multi-preprocessing methods for
ultimate analysis showed R2

P and RPD for C of 0.7217 and 1.9, for N of 0.8410 and 2.7, for
H of 0.7678 and 2.1, and for O of 0.6289 and 1.7, respectively.

The main objectives of this research include:

(1) Develop PLSR models using NIR raw spectra, traditional preprocessing, MP 5-range,
MP 3-range, GA, and SPA for assessing chip biomass properties for energy usage by
employing NIRS while the spectra of the biomass were from non-wood (agricultural
residue and bamboo) and wood (fast growing trees) samples.

(2) Compare the performance of the PLSR models based on R2
C, RMSEP, R2

P, RMSEP,
RPD, and bias.

(3) Study the effect of combined non-wood and wood species in model development on
model performance by scatter plot analysis.

(4) Select the better performing PLSR-based model for each ultimate analysis parameter,
compared with the performance of the ground biomass for rapidly assessing biomass
properties for energy usage.

(5) Determine the limit of quantification (LOQ) value of the proposed model calibration
set for each ultimate analysis parameter in chip biomass.

2. Materials and Methods

Figure 1 shows the overall research methodology for rapid prediction of ultimate
analysis parameters of chip biomass by NIRS using PLSR.

2.1. Sample Preparation

A total of 120 samples were collected from ten different biomass varieties, which
included wood samples and non-wood samples from various geographical locations in
Nepal. Wood samples included four fast-growing species: (1) Alnus nepalensis, (2) Pinux
roxiburghii, (3) Bombax ceiba, and (4) Eucalyptus camaldulensis. Non-wood samples were
five agricultural residues: (1) Zea mays (cob), (2) Zea mays (shell), (3) Zea mays (stover),
(4) Oryza sativa, and (5) Saccharum officinarun, and one fast-growing tree (6) Bombusa vulagris.
The biomass samples, except oryza sativa, were manually chipped into smaller pieces,
approximately sized 30 mm × 15 mm, for NIR scanning and for the reference measurement
of ultimate analysis parameters [13].

2.2. Spectral Data Collection

All chip biomass samples were scanned using an FT-NIR spectrometer (MPA, Bruker,
Ettlingen, Germany) in diffuse reflectance with sphere macro sample rotating mode, cov-
ering the wavelength range from 3594.87 to 12,489.48 cm−1, with a resolution of 16 cm−1.
The scanning process consisted of 32 scans (on average) for both sample and background
scans to collect the raw spectra. These raw spectra were acquired in a controlled laboratory
environment with air conditioning maintaining a room temperature of 25 ± 2 ◦C.
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Figure 1. Flowchart of the overall research methodology for the rapid prediction of the ultimate
analysis parameters of chip biomass for energy usage by NIRS using PLSR.

To compensate for the ambient influence and instrument drift on the measurement
setup, background scanning was regularly performed on a gold plate as a reference for
every new sample. Each biomass sample was scanned twice without changing its position,
and the average of its absorbance values was calculated. All the spectra were logged
as log (1/R) versus wavenumber (cm−1), where R is the diffuse reflectance from the
biomass sample.

Each sample was then subjected to a reference measurement of C, H, N, and S by
a CHNS/O analyzer. This analyzer employs the flash dynamic combustion method,
inducing complete combustion of the biomass sample within a high-temperature reac-
tor (about 1800 ◦C), allowing for an accurate and precise determination of the ultimate
analysis parameters.
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2.3. Reference Analysis

The wt.% of C, H, N, and S on a dry basis in the chip biomass were determined at
the Scientific and Technological Research Equipment Center (STREC) at Chulalongkorn
University, Bangkok, Thailand, using CHNS/O analyzer (Thermo Scientific TM FLASH
2000, Waltham, MA, USA) [13]. The wt.% of O on a dry basis is calculated as:

wt.% O = 100 − wt.% C − wt.% H − wt.% N − wt.% S − wt.% ash (1)

Here, wt.% ash is determined using a thermogravimetric analyzer (TG 209 F3 Tarsus,
Netzsch, Bavaria, Germany) by combusting biomass within the temperature range between
35 to 700 ◦C.

2.4. Outlier and Standard Error of Laboratory

Outliers on the reference data were identified and removed using the following equation:(
Xi − X

)
SD

≥ |±3| (2)

where, Xi is the measured value of sample i, X is the average, and SD is the standard
deviation of the measured values of all samples [13,28].

2.5. Spectral Preprocessing and Model Development

As shown in Figure 1, this study incorporates nine different types of spectral prepro-
cessing applied to the raw spectra. These methods include constant offset, SNV, MSC, sd1,
sd2, vector normalization, mean centering, sd1 + vector normalization, and sd1 + MSC.

Five different types of PLSR-based regression models, namely Full-PLSR, MP PLSR–5
range, MP PLSR-3 range, GA–PLSR, and SPA–PLSR, were developed to compare and
select the best-performing model for each ultimate analysis parameter to establish a reli-
able and non-destructive alternative method for rapidly assessing biomass properties for
energy usage [13].

The primary objective of the MP method is to optimize model performance by ap-
plying various preprocessing techniques to different divided sections within the entire
wavenumber range. A built-in code in MATLAB R2020b was utilized to obtain a combi-
nation set of different preprocessing techniques based on the desired number of random
pairs. The optimal combination set for each selected number of random pairs is deter-
mined through a cross-validation procedure using PLSR on reference and spectroscopic
data. Using the selected combination set of preprocessing techniques, the PLSR model
was developed. Here, we generate a combination set of preprocessing techniques using
seven different options: 0 = empty (all absorbance values = 0), 1 = raw spectra, 2 = SNV,
3 = MSC, 4 = sd1, 5 = sd2, and 6 = constant offset. In the MP approach, two methods were
adopted: in the MP PLSR-5 range method, the spectral range is divided into five equal
sections, while in the MP PLSR-3 range method, it is divided into three sections. The best
MP combination set for model development is then determined [13].

Both GA and SPA were employed to select concise and influential wavenumbers,
aiming to prevent overfitting and result in an improved prediction model [27]. GA, inspired
by Charles Darwin’s theory of natural selection, utilizes an optimization technique that
generates a population of potential solutions and evolves them over multiple generations
through selection, crossover, and mutation. Starting with one wavenumber, each iteration
adds a new one to the selection, ultimately reducing redundant information in the chosen
wavenumbers [29]. Similarly, SPA is a forward feature selection method that begins with an
empty set and iteratively adds one wavelength at a time to the subset. In each iteration, the
wavelength contributing the most to the model, based on correlation, is selected and added
to the subset. This process effectively reduces dimensionality by eliminating multicollinear
and redundant variables using SPA [30–32].
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2.6. Limit of Quantification (LOQ)

Based on the SD of the response to slope method from the calibration model, LOQ,
which represents the lowest concentration of the analyte that can be detected and quantified
with an acceptable level of accuracy and precision [28,33], is calculated as follows:

LOQ = 10
σc

Sc
(3)

where, σC is the residual standard deviation, i.e., the precision obtained from measured
and predicted values of the calibration set, and SC is the slope of the model regression line.

3. Results and Discussion

Table 1 shows the number of non-wood samples and wood samples in the calibration
set and validation set. The wood sample number is about 33–35% of the total sample
number; hence, the non-wood sample number is 65–67%. Out of 120 samples, the number
of outlier samples can be evaluated by the data in Table 1.

Table 1. The number of non-wood samples and wood samples in calibration set and validation set.

Parameter Total Sample
Calibration Set Validation Set

Wood Non-Wood Total Wood Non-Wood Total

wt.% C 111 31 58 89 8 14 22
wt.% H 119 32 63 95 8 16 24
wt.% N 116 31 62 93 9 14 23
wt.% O 102 28 54 82 8 12 20

Table 2 presents statistical data for the ultimate analysis parameters of chip biomass
obtained using CHNS/O elemental analyzer (Thermo ScientificTM FLASH 2000). This data
was used in both the calibration and prediction sets for model development. S content in
the chip biomass was not detected, possibly due to its very low content falling below the
detection threshold. Therefore, a PLSR-based model for S content in the chip biomass was
not developed in this study. The wt.% of O is calculated using Equation (1).

Table 2. The statistical data of the ultimate analysis parameters of the chip biomass obtained using
CHNS/O elemental analyzer used in PLSR model development.

Parameter NT

Calibration Set Validation Set

NC Max Min Mean SD NP Max Min Mean SD

C (wt.%) 111 89 48.7500 38.9300 44.6330 2.1380 22 47.2800 49.7550 44.4439 2.0878
H (wt.%) 119 95 6.6200 4.9100 5.7620 0.3485 24 6.5700 4.9500 5.6490 0.3411
O (wt.%) 102 82 51.1200 37.3600 44.6322 2.8521 20 48.8000 38.8500 45.1159 2.5149
N (wt.%) 116 93 0.9100 0.0000 0.2987 0.2250 23 0.6200 0.0000 0.2714 0.1645

Table 3 shows the results of the PLSR-based model for ultimate analysis (wt.%) of chip
biomass, where the bolded model shows the best performance. However, it is essential to
consider the recommendation provided by Williams et al. [34], where with an R2

P value
between 0.66–0.81, the model can be used for rough screening and other suitable calibration
purposes. Therefore, C, O, and N models were. For the H model, according to Williams
guideline [34], a model with an R2

P value between 0.50–0.64 is only suitable for very rough
screening. Likewise, every model of biomass chips for ultimate analysis parameters was in
alignment with the recommendation from Zornoza et al. [35], in which any model with an
RPD value below 2 was deemed insufficient for any application.
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Table 3. Results of the PLSR-based model for ultimate analysis (wt.%) of chip biomass, bolded model
showing the best performance.

Parameter Algorithm Preprocessing LVs
Calibration Set Prediction Set

R2
C RMSEC R2

P RMSEP RPD Bias

wt.% C Full–PLSR sd2 (g = 5, s = 5) 10 0.8215 0.8982 0.6489 1.2081 1.7 0.0854
GA–PLSR sd2 (SW: 306) 9 0.8078 0.9320 0.6954 1.1252 1.8 0.0053
SPA–PLSR sd2 (SW: 634) 10 0.8030 0.9435 0.6520 1.2028 1.7 0.1036
MP–PLSR: 3 range Combination set: 4,2,4 9 0.7132 1.1386 0.5514 1.3655 1.5 −0.1433
MP–PLSR: 5 range Combination set: 4,1,4,3,1 13 0.8628 0.7875 0.5467 1.3727 1.5 −0.1226

wt.% H Full–PLSR sd1 (g = 5, s = 5) 6 0.5086 0.2429 0.4996 0.2361 1.5 −0.0660
GA–PLSR Vector normalization (SW: 67) 11 0.5456 0.2336 0.5162 0.2322 1.5 −0.0781
SPA–PLSR sd2 (SW: 22) 15 0.5172 0.2408 0.4478 0.2481 1.4 −0.0586
MP–PLSR: 3 range Combination set: 5,5,0 7 0.5179 0.2406 0.4711 0.2428 1.4 −0.0644
MP–PLSR: 5 range Combination set: 5,4,4,0,4 8 0.5964 0.2201 0.4877 0.2389 1.4 −0.0625

wt.% O Full–PLSR sd2 (g = 5, s = 5) 8 0.6243 1.7376 0.6362 1.4788 1.7 0.0814
GA–PLSR Mean Centering (SW: 1025) 11 0.6347 1.7134 0.6064 1.5381 1.6 0.2414

SPA–PLSR Min–max normalization
(SW:354) 11 0.5800 1.8370 0.5815 1.5860 1.6 0.3466

MP–PLSR: 3 range Combination set: 4,5,0 11 0.6572 1.6597 0.6153 1.5207 1.6 0.1064
MP–PLSR: 5 range Combination set: 2,5,2,1,5 15 0.8097 1.2366 0.7150 1.3088 1.9 0.0733

wt.% N Full–PLSR MSC 10 0.7232 0.1177 0.5865 0.1035 1.6 −0.0065
GA–PLSR SNV (SW: 39) 10 0.5916 0.1429 0.5625 0.1064 1.5 −0.0132

SPA–PLSR Min–max normalization
(SW:413) 7 0.6396 0.1343 0.5869 0.1034 1.6 −0.0190

MP–PLSR: 3 range Combination set: 4,0,0 15 0.8656 0.0820 0.6073 0.1008 1.6 0.0191
MP–PLSR: 5 range Combination set:1,4,4,1,0 7 0.6436 0.1335 0.5700 0.1055 1.5 0.0143

3.1. wt.% of C

Table 3 presents the results of the PLSR-based model within the full wavenumber
range of 3594.87–12,489.48 cm−1 for the wt.% C of chip biomass, with the best–performing
model highlighted in bold.

The model, developed using GA–PLSR with spectrum preprocessing involving the sd2,
a gap, and segments of five each, along with nine LVs, provided better results. It achieved
R2

C, RMSEC, R2
P, RMSEP, RPD, and bias values of 0.8078, 0.9320 wt.%, 0.6954, 1.1252 wt.%,

1.8, and 0.0053 wt.%, respectively. By determining RMSEP, these results represent a 6.8566%
improvement in the model performance compared to Full-PLSR. Utilizing Equation (3),
the LOQ value was calculated as 9.3724 wt.% for C. Notably, the LOQ value is lower than
the minimum wt.% C value used during model development, indicating that the model
exhibits high sensitivity and can quantify wt.% C starting from 9.3724 wt.%.

Figure 2a shows a scatter plot comparing the predicted and measured wt.% of C,
which was obtained using GA–PLSR. The trend line for the prediction set and calibration
set overlap, indicating the same slope. The slope shows the rate of change of Y (measured
value) as a function of the rate of change of X (predicted values) [34] or vice versa, hence
indicating that predicted values of both sets of data have changed with the same rate and
this characteristic is same for the models for O and N shown in Figure 2c,d.

Figure 3 displays the average sd2 absorbance values obtained after preprocessing,
highlighting 306 selected wavenumbers (marked in red) identified through GA. These
wavenumbers fall within the full spectral range of 3594.87–12,489.48 cm−1. Peaks were
observed at 3722, 4091, 5181, and 5285 cm−1, all of which might have the potential to en-
hance the model performance. The wavenumbers 3722 cm−1 and 4091 cm−1 are associated
with the C–H aromatic functional group, specifically the C–H aryl material type [36]. The
peak at 5181 cm−1 corresponds to a combination of O–H stretching and HOH bending,
indicative of polysaccharides [36]. Similarly, the peak at 5285 cm−1 is associated with the
functional group of O–H hydrogen bonding between water and exposed polyvinyl alcohol
OH groups [36].
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Figure 2. Measured versus predicted value in calibration and prediction sets for (a) wt.% of C,
(b) wt.% of H, (c) wt.% of O, and (d) wt.% of N.

Figure 3. The second derivative absorbance value of studied biomass obtained using the sd2
preprocessing with a selection of important wavenumber obtained from GA for prediction of wt.% of
C, within the full wavenumber range of 3594.87–12,489.48 cm−1.
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Previous studies by Zhang et al. [24] and Posom and Sirisomboon [23] have demon-
strated that vibrational bands related to C–H aromatic, C–H stretching, N–H stretching,
N–H deformation, O–H stretching, HOH bending, O–H hydrogen bonding, and similar
factors play a crucial role in predicting the wt.% of C in various biomass varieties. These
findings align with the vibration bands observed in our study, providing support for our
results and suggesting that these selected peaks likely have a significant influence on the
model performance.

3.2. wt.% of H

The model developed using GA–PLSR with vector normalization as preprocessing
showed the best performance with 11 LVs (Table 3). It selected 67 important wavenumbers
using GA. The model performance, in terms of R2

C, RMSEC, R2
P, RMSEP, RPD, and bias

values, was 0.5456, 0.02336 wt.%, 0.5162, 0.2322 wt.%, 1.5, and −0.0781 wt.%, respectively.
Compared with Full-PLSR, the GA improved the PLSR model accuracy by 1.6743%. The
LOQ value was calculated as 2.3484 wt.%, which is lower than the minimum reference
value used for the model development. This suggests that the selected model is sensitive
and can sensitively quantify H from 2.3484 wt.%.

Figure 2b displays a scatter plot comparing the predicted and measured wt.% of
H, which was obtained using GA–PLSR. It is clear that the trend line for the prediction
set exhibits an offset in relation to the trend line of the calibration set and the 45-degree
line. This offset raises concerns about the model constant bias along the range of the data,
indicating the overestimating model.

Figure 4 displays the average absorbance values within the range of 3594.87–12,489.48 cm−1.
These values were obtained after preprocessing using vector normalization and highlight
67 selected wavenumbers, marked in red, which were identified using GA. Significant
peaks were observed at the wavenumbers 4019, 4850, 5155, and 9852 cm−1, respectively,
and these may have an influence on the model performance. The peak at 4019 cm−1 is asso-
ciated with the spectra–structure combination of C–H stretching and C–C stretching, with
the material type being cellulose [36]. The peak at 4850 cm−1 corresponds to the functional
group of N–H combination bands found in secondary amides within proteins [36]. The
peak at 5155 cm−1 is related to the combination of O–H stretching and HOH bending, with
the material type being water [36]. Finally, the peak at 9852 cm−1 is associated with the
second overtone of the fundamental stretching band of N–H asymmetric stretching, and
the material type is aromatic amine [36].

Figure 4. The vector normalization absorbance value of studied biomass obtained using the vector
normalization preprocessing with a selection of important wavenumber obtained from GA for
prediction of wt.% of H, within the full wavenumber range of 3594.87–12,489.48 cm−1.
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In comparison to previous studies conducted by Shrestha et al. [13], Zhang et al. [24],
and Posom and Sirisomboon [23] that focused on measuring the wt.% of H in biomass
using NIRS, our study discovered similar peaks within the range of 4000–9900 cm−1

and vibration bands such as O–H stretching, HOH bending, C–H stretching, and C–C
stretching. Therefore, our study findings align with these earlier studies on this specific
aspect. However, when evaluating the overall performance of various PLSR-based models,
this study suggests that the wt.% of H was not sufficiently explained by the vibration of
those mentioned bonds.

3.3. wt.% of O

Assuming that the S content in chip biomass is negligible, as its wt.% is too low
to be detected by the instrument, we calculated the wt.% of O in the chip biomass for
120 samples using Equation (1). The wt.% of ash content for each biomass was determined
using a TGA. Table 3 presents the optimal results from five different types of PLSR-based
models. The most effective model was developed using the MP PLSR 5-range method,
incorporating a spectral preprocessing combination set of 2, 5, 2, 1, and 5, which corre-
sponded to the following ranges: 3625.72–5392.30 cm−1 with SNV, 5400.02–7166.59 cm−1

with the sd2, 7174.31–8940.89 cm−1 with SNV, 8948.60–10,715 cm−1 with raw spectra, and
10,722.9–12,489.48 cm−1 with the sd2. This model employed 15 LVs. Figure 2c illustrates
the scatter plot comparing measured versus predicted wt.% of O obtained from the MP
PLSR 5-range method. This method yielded R2

C of 0.8097, RMSEC of 1.2366 wt.%, R2
P

of 0.7150, RMSEP of 1.3088 wt.%, RPD of 1.9, and a bias of 0.0733 wt.%. Compared with
Full-PLSR method performance, the MP PLSR 5-range method significantly improved the
model accuracy by 11.4913%. The LOQ value for wt.% of O was calculated as 12.4424 wt.%,
which is lower than the minimum wt.% of O used during model development. This indi-
cates that the model is highly sensitive and can quantify O content in chip biomass from
12.4424 wt.%.

Figure 5 displays the regression coefficient plot for wt.% of O content in chip biomass
obtained from the MP PLSR 5-range method. Several notable peaks were observed at 3650,
4405, 8163, and 8621 cm−1, each potentially exerting a significant influence on the model
performance. Specifically, the peak at 3650 cm−1 corresponds to the O–H functional group
found in the primary alcohols, characterized by the fundamental stretching vibrational
absorption band of O–H [36]. The peak at 4405 cm−1 represents the combination of
O–H stretching and C–O stretching, with cellulose as the material type [36]. The peaks
at 8163 cm−1 and 8621 cm−1 are associated with the second overtone of the fundamental
stretching band of C–H and the fourth overtone of the fundamental stretching band of C=O,
respectively, which are typically found in hydrocarbons and aliphatic compounds [36].

Figure 5. The regression coefficient for the wt.% O of chip biomass using the MP PLSR
5-range method.
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When compared with previous studies on wt.% of O in biomass, such as those by
Shrestha et al. [13], Zhang et al. [24], and Posom and Sirisomboon [23], this study reveals
some contradictory peaks. However, the vibrational bands, such as O–H from primary
alcohol, C=O stretching, and C–H stretching, among others, were similar. These findings
supports the research result of this study, suggesting that the significant peaks observed
in this study have an impact on the development of the model for assessing wt.% of O in
chip biomass.

3.4. wt.% of N

The best model for rapid prediction of wt.% of N was obtained using the MP PLSR
3-range method with a spectral preprocessing combination set of 4, 0, and 0 (Table 3). This
set corresponds to the sd1 from 3594.87 to 5492.59 cm−1 and zero absorbance from 7498.314
to 12,489.48 cm−1. Figure 2d illustrates the scatter plot of measured versus predicted wt.%
of N content in the chip biomass, obtained from the MP PLSR 3-range method with 15 LVs.
The best–performing model achieved an R2

C of 0.8656, RMSEC of 0.0820 wt.%, R2
P of 0.6073,

RMSEP of 0.1008 wt.%, RPD of 1.6, and a bias of 0.0191 wt.%. These results indicate that
within the range 3594.87–5492.59 cm−1 (refer Figure 6), by effectively correcting baseline
shifts and assigning zero absorbance value within the remaining wavenumber range, the
model performance is enhanced. Compared with Full-PLSR using RMSEP value, the MP
PLSR 3-range method improved the model performance by 2.5473%. However, based on
R2

C and R2
P values, the selected model indicates overfitting. This suggests that our model

fits the training data too closely, and too much less accurate in prediction the validation
set. This was discussing in Section 5 Comparison of Model Performance between Using
Chipped and Ground Biomass Spectra by refer to Cawley and Talbot [37].

Figure 6. The regression coefficient for the wt.% N of chip biomass using the MP PLSR
3-range method.

Figure 6 illustrates the regression coefficient plot for the wt.% of N in chip biomass,
obtained using the multi-preprocessing PLSR 3-range method. Significant peaks that could
potentially influence the model performance were observed within the wavenumber range
of 3594.87–5492.59 cm−1 only. These significant peaks were noticed at wavenumbers 3693,
4019, 4365, 4505, 4701, and 5285 cm−1. Specifically, the peak at 3693 cm−1 is associated
with the function group of C–H aromatic C–H bands, characterized by the material type
C–H aryl. At 4019 cm−1, the peak represents functional groups with a combination of C–H
stretching and C–C stretching from cellulose [36]. The peak at 4365 cm−1 corresponds
to CONH2, specifically due to C=O bonded to the N–H of the peptide link termed the
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α–helix structure [36]. The peak at 4505 cm−1 is associated with the N–H combination
band [36]. Similarly, the peak at 4701 cm−1 corresponds to the function group of N–H/C=O
combination from polyamide II [36]. Lastly, the peaks at 5285 cm−1 are associated with O–H
hydrogen bonding between water and exposed polyvinyl alcohol OH [36]. These peaks
are crucial in understanding the composition of the chip biomass and are important for
model development and analysis. Furthermore, in the range of 7498.314–12,489.48 cm−1,
the regression coefficient value equals zero. This indicates an insufficient linear relationship
between the dependent (spectral information) and independent (reference value) variables
in this range, and it does not significantly contribute to the predictive model for the
prediction of wt.% of N.

The previous study conducted by Posom and Sirisomboon [23], which aimed to
evaluate the wt.% of N in bamboo, also revealed significant peaks within the range of
4424 to 6920 cm−1. Similarly, Shrestha et al. [13] conducted a study on wt.% of N in
ground biomass from the same source and exhibited important peaks within a similar
range, specifically within 4019 to 6711 cm−1. This finding aligns with the results of our
study, providing additional support for our research. It is noteworthy that in both studies,
common vibrational bands, such as N–H stretching, C=O stretching, C–H stretching, C–C
stretching, aromatic C–H, and O–H bonds between water and alcohol, among others, were
identified. This consistency in vibration bonds reinforces our study findings and suggests
that these specific peaks likely play a crucial role in influencing the model performance.

4. Effect of Non-Wood and Wood Samples on Model Performance

Table 4 shows the reference values of wt.% of C, H, N, and O of non-wood and wood
samples in calibration and validation sets. From Figure 2 and Table 4, it is obvious that the
range of every element content is wider after the two sets were combined for modeling.
Therefore, the models can now be regarded as more robust models than only one set was
used. From Figure 2a,c, the range of wt.% of C and O of wood samples was narrower than
those of the non-wood samples which were extended more to the lower wt%. Figure 2d
illustrates the opposite way, where the value range of N of wood samples was lower and
narrower than those of the non-wood samples. Therefore, models for wt% of C, O, and N
had better performance than that of the H model. The wood sample reference values of
H were grouped together and more or less had the same range as the range of non-wood
samples. (Figure 2b).

Table 4. The range of wt.% of C, H, N, and O of non-wood and wood samples in calibration and
validation sets.

Parameter
Calibration Set Validation Set

Wood Non-Wood Wood Non-Wood

wt.% C 47.77–42.33 48.75–39.93 47.28–41.02 47.24–39.76
wt.% H 6.36–4.91 6.62–4.97 6.57–4.95 5.87–5.36
wt.% N 0.60–0.00 0.91–0.00 0.40–0.00 0.62–0.12
wt.% O 47.40–41.68 51.12–37.36 47.43–45.14 48.80–38.85

The literature shows that the one species model of non-wood, which were bamboo
wood chips [23] and sorghum [24] for evaluation of ultimate analysis parameters, C, H, N,
O, and S had better performance than our combined non-wood and wood models as the
results described in the introduction of this manuscript. Similarly, the two similar species
of rice straw and wheat straw model [25] and the pine tree of two species (Loblolly (Pinus
taeda) and slash (Pinus elliottii)) model [26] indicated better prediction performance, though
they were homogeneous ground samples which might make their model performance
better than the chip ones due to less scattering problem. Shrestha et al. [13] worked with
ground samples of the same batch of non-wood and wood samples. Spectra from this
experiment showed better R2

P and RPD for C, N, H, and O, which is claimed to be due to
the same merit of homogeneous samples.

108



Energies 2024, 17, 439

Using larger biomass particle sizes, Pitak et al. [27] combined the non-wood and wood
biomass pellet NIR spectra obtained by averaging every pixel spectrum of the pellets from
a hyperspectral image (HSI). This approach provided better performance in predicting
elements from the ultimate analysis than our model, i.e., in-detail data collection by the
HSI leads to significant improvements.

Figure 7 shows the scatter plots of the highest performance models in this study in
predicting the C, H, O, and N content of the wood and non-wood samples, which is the
same as Figure 2, but the difference is Figure 7 shows the simple regression lines of each
group of non-wood and wood samples both for calibration set and prediction set. For better
vision, Table 5 shows the numeric data of R2, slope, and intercept calculated from the scatter
plots of wood and non-wood calibration and prediction sets. Williams et al. explained that
the slope of the trend line plotted between Y (measured value) and X (NIR predicted value)
indicated the rate of change of Y as a function of the rate of change of X [34]. The intercept
of different species illustrated the same trend as slope interpretation, especially when the
slope is more than 1, the intercept was with a minus sign, and if less than 1, the intercept
was with a plus sign. While the slope was 1, the intercept was low, close to zero, and when
the slope was more or less than 1, the intercept was high, far from zero.

Figure 7. The scatter plots of optimized model for wt.% of (a) C, (b) H, (c) O, and (d) N where the
simple regression lines of non-wood group and wood group illustrated both in calibration set and
validation set.
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Table 5. The trend line characteristics of the wood and non-wood species in scatter plots of the best
models for C, H, N, and O.

Element
Wood Non-Wood

R2
C R2

P SlopeC SlopeP InterceptC InterceptP R2
C R2

P SlopeC SlopeP InterceptC InterceptP

C 0.7243 0.6456 0.8353 1.0139 7.5532 −0.8994 0.7962 0.7681 1.0243 1.2109 −1.0960 −9.1465
H 0.2683 0.5028 0.7876 0.7066 1.2085 1.7444 0.6111 0.7185 1.0342 1.1318 −0.1925 −0.9224
N 0.8335 0.5486 0.8915 0.7670 0.0197 0.0502 0.8454 0.6289 1.0368 0.8541 −0.0139 0.0708
O 0.6187 0.0992 0.8272 0.1840 7.8316 37.2740 0.8311 0.8063 1.0209 0.9519 −0.9462 2.3866

R2
C: Coefficient of determination in the calibration set, R2

P: Coefficient of determination in the valida-
tion set, SlopeC: Slope of trendline in the calibration set, SlopeP: Slope of trendline in the validation set,
InterceptC: Intercept in the calibration set, InterceptP: Intercept in the validation set.

The perfect relationship between the reference values and the predicted values is when
the correlation coefficient (R) and slope are equal to 1 and the intercept is equal to zero [34].

From Table 5, for the C model, the non-wood samples contributed slightly more merit
on calibration model performance than wood samples for more R the slope was closer to 1,
and the intercept was closer to zero. But the prediction set of non-wood provided a steeper
slope and intercepted far more from zero.

By the same way of interpretation, the model for H obtained more merit from non-
wood samples, while for the wood samples, the R of the trend line was very low, the slope
was far from 1, and the intercept was slightly far from zero. The incongruous trend lines of
both sets makes the overall performance of the model worse as shown in Table 3.

For the N model, the wood and non-wood calibration set samples more or less had the
same trend line characteristics, which supplement the good calibration model performance,
though the prediction sample set of both biomass species trend line characteristics shows
less R and slope far from 1 led to overfit calibration models of both biomass groups (Table 5).

For the O model, the non-wood group had better trend line characteristics and con-
tributed good merit to the model, while the poorer trend line characteristics of the wood
group made the overall model inferior but by a small portion because the number of sam-
ples in the non-wood group was much more (Table 5). By the strong merit of the non-wood
group, the overall model performance for O prediction was fairly acceptable (Table 3).

Tables 6–9 show the trend line characteristics, including R2, slope, and intercept of
each specific plant of wood and non-wood samples used in the optimized models for
evaluation of C, N, H, and O, respectively. It was observed that most of the R2

P of every
plant was equaled to 1 for the samples of those plants in the optimized model, with
only two samples connected to a straight line. Therefore, we ignored interpreting of the
trend line characteristics of the prediction set, and only the R2

C, slope, and intercept of
the calibration set will be interpreted. As indicated by Williams et al. [34], when the R
approached 1 and the slope approached 1 and the intercept approached zero, the model
approached excellence. Therefore, to include different species in a model, the species have
to be not only in the different values of the constituents to make a wider range for a robust
model, but also they must provide the characteristic of the same rate of change of NIR
predicted values with the measured values (same slope and slope should approach 1, and
intercept is same (no gap) and approached zero). As expected, the trend of R2, slope, and
intercept of different species were not the same for their different characteristics. However,
in some species whose characteristics were similar, the trends were common supported the
each other but might positively or negatively to the prediction performace of the model.
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Table 6. The trend line characteristics of specific biomass species for Carbon evaluation
optimized model.

Carbon (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.6779 1.0000 0.9808 5.4617 0.8006 −202.6600
Pine 0.2502 1.0000 0.2264 1.0848 36.2520 −3.7219
Alnu 0.7491 1.0000 0.7254 −16.8990 12.7000 819.4200
Bombax 0.8110 1.0000 1.1270 0.9097 −5.3606 4.1430

Non-Wood

Zea mays-Cob 0.2480 0.9542 0.6228 1.8112 16.7390 −35.8510
Zea mays-Stover 0.6332 1.0000 1.7168 0.2151 −32.1370 33.6140
Zea mays-Shell 0.3300 0.4618 0.8945 0.2524 5.0232 34.2500
Ricehusk 0.3770 1.0000 0.9257 2.5087 2.9918 −62.7580
Bagass 1.0000 1.0000 2.6090 −0.1076 −70.2900 48.2050
Bamboo 0.9313 1.0000 1.3789 7.6002 −17.0530 −297.8600

Table 7. The trend line characteristics of specific biomass species for Nitrogen evaluation
optimized model.

Nitrogen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.5701 1.0000 0.7531 0.4663 0.0233 −0.0135
Pine 0.2317 1.0000 0.2828 0.8790 0.0283 0.0543
Alnu 0.5878 0.9633 0.5742 1.2687 0.1426 −0.1337
Bombax 0.9410 1.0000 1.1614 −2.0520 −0.0748 0.6245

Non-Wood

Zea mays-Cob 0.6807 0.5554 0.8615 1.1809 0.0443 −0.0372
Zea mays-Stover 0.6200 1.0000 0.9025 0.2654 0.0472 0.4721
Zea mays-Shell 0.8641 0.6536 1.1203 1.0135 −0.0629 0.0569
Ricehusk 0.8848 1.0000 1.1485 0.2615 −0.0518 0.2394
Bagass 0.4801 1.0000 0.2992 −1.7907 0.0333 0.5128
Bamboo 0.8200 1.0000 1.4186 1.6937 −0.1260 −0.0966

Table 8. The trend line characteristics of specific biomass species for Hydrogen evaluation
optimized model.

Hydrogen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.7289 1.0000 1.5193 0.8197 2.9877 0.9851
Pine 0.0462 N/A 0.4235 - 3.3450 5.7900
Alnu 0.0701 1.0000 −0.9476 −0.0456 11.1870 6.0566
Bombax 0.1629 1.0000 0.5887 0.2547 2.5182 4.4059

Non-Wood

Zea mays-Cob 0.2752 1.0000 1.4447 −0.7296 −2.6372 9.7617
Zea mays-Stover 0.1173 0.7335 1.2590 1.2413 −1.5538 −1.7143
Zea mays-Shell 0.0404 0.6033 0.3791 6.5956 3.8515 −34.5000
Ricehusk 0.7273 0.9896 1.5136 −1.5656 −2.7759 13.3580
Bagass 0.0067 1.0000 −0.1394 −4.9031 6.4990 34.7330
Bamboo 0.4456 0.7685 0.9438 1.0741 0.4841 −0.4794
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Table 9. The trend line characteristics of specific biomass species for Oxygen evaluation
optimized model.

Oxygen (wt.%)

Particular Biomass Species R2
C R2

P SlopeC SlopeP InterceptC InterceptP

Wood

Euca 0.3842 1.0000 0.5993 0.3416 18.5080 29.7010
Pine 0.2854 1.0000 0.3913 −0.0362 27.5290 47.1430
Alnu 0.4993 1.0000 0.5014 0.9362 23.0630 4.5052
Bombax 0.7459 1.0000 1.3490 −1.1972 −15.4990 100.4800

Non-Wood

Zea mays-Cob 0.6501 1.0000 1.3700 8.9169 −17.1250 −368.0300
Zea mays-Stover 0.8611 1.0000 1.5098 −0.3972 −22.8340 64.3960
Zea mays-Shell 0.3063 0.7989 0.8399 2.0886 6.9934 −48.2230
Ricehusk 0.9499 1.0000 1.0623 0.3529 −2.3570 25.9720
Bagass 1.0000 NA 0.0784 NA 42.8950 NA
Bamboo 0.9301 1.0000 1.1793 3.0761 −8.5173 −95.5720

From Tables 6–9, as expected, the intercept of different species illustrated the same
trend as slope interpretation, especially when, by the fact, the slope is more than 1 the
intercept was with minus sign, and if less than 1 the intercept was with plus sign. While
the slope was 1, the intercept was low, closer to zero, and when the slope was more or less
than 1, the intercept was high, far from zero.

Therefore, the following were the effects of specific species on the performance of the
optimized models interpreted by scatter plot analysis using the R2 and slope of the trend
line of the specific plant in the model developed.

For C (Table 6), by R2
C interpretation, most non-wood species (agricultural waste)

except bagasse and bamboo show unacceptable trend lines compared to wood species
samples except pines. Therefore, including the mentioned non-wood species caused a poor
effect on the C model. By interpretation of slope, there were three groups of slope (by
value round up), i.e., 1 including Eucalyptus, Alnus and Bombax in wood species and corn
cob, corn shell, rice husk, and bamboo in non-wood species, less than 1 including pine
in wood specie, and more than 1 including corn stover and bagasse indicating unequal
slope of different species in the same optimized model show the effect of specific species
on model performance. These can be summarized that for the model to be better, pine and
corn stover should not be included in modeling for C prediction.

By the same way of interpretation, from Table 7, the optimized model for N, pine, and
bagasse should not be included; from Table 8, for H, pine, Alnus, corn shell, and bagasse
should not be included; and from Table 9, for O, pine should not be included for better
performance of the models. These were due to the poor R and slope of the eliminated
species, which were not in accordance with the other species.

These results show that the different species affected the model performance of each
parameter prediction in a different manner, and by scatter plot analysis, which of these
species were affecting the model negatively and how to improve the model performance
were indicated.

5. Comparison of Model Performance between Using Chipped and Ground
Biomass Spectra

In this section, the model performance of chipped biomass for ultimate analysis
parameters to the model of ground biomass [13] derived from the same sample varieties is
compared. The comparison is based on the metrics R2

C, RMSEC, R2
P, RMSEP, and RPD.

The results demonstrate that chipped biomass generally performs less effectively in these
models compared to ground biomass, except for wt.% of O.

For wt.% of C and wt.% of H, both chipped and ground biomass models demonstrated
better performance when employing the GA–PLSR model. This outcome aligns with
expectations, as GA optimizes feature selection to maximize fitness, while PLSR maximizes
covariance between absorbance values and areas of interest.
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For wt.% of C, the GA–PLSR model applied to ground biomass yielded an R2
C of

0.7851, RMSEC of 0.9753 wt.%, R2
P of 0.7217, RMSEP of 0.9740 wt.%, and RPD of 1.93 [13].

In contrast, the model applied to chipped biomass performed less effectively (Table 2).
Therefore, it is recommended to adopt the GA–PLSR model with sd2 preprocessing on
ground biomass when evaluating wt.% of C.

Similarly, the GA–PLSR model applied to ground biomass outperforms that of chipped
biomass for wt.% of H. Ground biomass yielded an R2

C of 0.8814, RMSEC of 0.1041 wt.%,
R2

P of 0.7678, RMSEP of 0.1434 wt.%, and RPD of 2.14 [13], whereas chipped biomass lagged
behind (Table 2). Hence, for wt.% of H, the GA–PLSR model with spectral preprocessing
from SNV on ground biomass is recommended.

Regarding wt.% of N, the MP PLSR 5-range method exhibited superior model perfor-
mance on ground biomass, as evidenced by R2

C, RMSEC, R2
P, RMSEP, and RPD values

of 0.8682, 0.0675 wt.%, 0.8410, 0.0973 wt.%, and 2.65, respectively [13], when compared to
chipped biomass performance obtained from the MP PLSR 3-range method (Table 2). This
underscores the suitability of ground biomass for evaluating wt.% of N.

Surprisingly, in contrast, for wt.% of O, the model derived from chipped biomass ex-
celled, despite both models utilizing the MP PLSR 5-range method. In the ground biomass,
R2

C, RMSEC, R2
P, RMSEP, and RPD values were 0.6674, 1.4461wt.%, 0.6289, 1.5275 wt.%,

and 1.71, respectively [13], which fell short of chipped biomass results. Hence, it is recom-
mended to adopt the MP PLSR-5 range method with the preprocessing combination set of
2, 5, 2, 1, and 5 for assessing wt.% of O in chipped biomass. This could be due to ash de-
termination, where ash directly influences %O determination based on Equation (1). Also,
ash is typically accumulating in small particles, i.e., the time of grinding in conjunction
with subsampling can have an influence on ash determination.

All the above comparisons and findings underscore the importance of selecting the
appropriate PLSR-based model for precise analysis of ultimate analysis parameters, de-
pending on the specific parameter of interest. There could be several factors that contribute
to the lower performance of the chipped biomass model, which can be addressed to im-
prove the model performance. The key contributing factor to this performance difference
is obviously the particle size of the biomass samples. Chipped biomass typically con-
sists of larger and different sizes of particles, leading to increased scattering of NIR light
during sample scanning. Consequently, the spectra generated from chipped biomass can
be of lower quality, resulting in weaker correlations between spectral data and reference
data [38]. Additionally, ground biomass exhibits a more compact and uniform sample
structure, reducing the likelihood of NIR light leakage during scanning. Another significant
factor affecting the lower model performance is the moisture content in biomass samples.
Chipped biomass often contains higher moisture levels, and water has the property of
absorbing NIR light in the near-infrared region [39]. This NIR absorption interferes with
the measurements and can introduce inaccuracies, particularly for elements like C, H, O,
and N.

In the chipped biomass models, it is evident that the performance of the prediction
set consistently lags behind that of the calibration set. This suggests that the model closely
overfits the calibration data, capturing both valuable information and noise or random
variations [40]. In the machine learning context, Cawley and Talbot [37] emphasized that
overfitting in model selection is likely to be most severe when the sample size is small and
the number of hyperparameters to be tuned is relatively large [41]. In our case, the number
of latent variables of the best models was high.

Consequently, when new samples are introduced into the prediction set, the model
may struggle to generalize and provide accurate predictions. Furthermore, the presence
of outliers in the prediction set, which were not accounted for in the calibration set, can
further negatively impact the model performance [42].

The performance of ground biomass is better compared to chipped biomass due
to several factors. Ground biomass allows for better sample homogenization, ensuring
uniformity and consistent composition. Additionally, it offers more control over sample
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thickness, as chips may vary in thickness, affecting accuracy. Moreover, ground samples
reduce light-scattering effects and enable improved penetration of the NIRS signal, allowing
for precise and accurate logging of spectral information.

6. Conclusions

In this study, PLSR-based models were developed and compared using FT–NIRS to
analyze the ultimate analysis parameters of combined non-wood and wood chip biomass,
specifically focusing on wt.% of C, H, O, and N content. All chipped biomass samples
were scanned within 3594.87–12,489.48 cm−1 on the diffuse reflectance with sphere macro
sample rotating mode, with a particular emphasis on their suitability for energy application.
The model with the optimum performance was selected based on trade-off parameters of
R2

C, RMSEC, R2
P, RMSEP, RPD, and bias.

The optimum model performance analysis reveals that the model selected for predict-
ing the wt.% of C, H, N, and O in chipped biomass is suitable primarily for initial rough
screening. It is recommended to adopt the multi–preprocessing PLSR 5-range method
chipped biomass model for wt.% of O content analysis as an alternative method for rapid
assessment. However, for the evaluation of wt.% of C, H, and N content, the chipped
biomass model performance falls short of the model developed for ground biomass by
Shrestha et al. [13]. Thus, it is advisable to use the chipped biomass model solely for initial
screening before biomass trading. For a more comprehensive and accurate analysis, it is
recommended to grind the chip biomass samples within the range of 0.01 to 3080 μm and
employ the GA–PLSR model with sd1 for wt.% of C, GA–PLSR with SNV for wt.% of H,
and the MP PLSR 5-range method with combination set of 4, 4, 5, 3, and 4 for wt.% of N, as
developed by Shrestha et al. [13]. The LOQ values for C, H, and O were below the model
minimum reference value, demonstrating high model sensitivity. However, the LOQ value
for N exceeds the minimum reference value, indicating the model detection limit to the
minimum value in the calibration sample set range.

By analysis of scatter plots of measured constituent and NIR predicted constituent, the
effect of including different biomass species (non-wood and wood species) in the modeling
samples was studied. It was concluded that to include different species in a model, the
species had to be not only in the different values of the constituents to be predicted to make
a wider range for a robust model, but also the different sample species must provide the
same rate of change of NIR predicted values with the measured values in the scatter plot
(same slope and slope approached to 1, and intercept is same (no gap) and approached
zero) for the high-performance model if R is approached to one. The results show that the
different species affected the model performance of each parameter prediction in a different
manner, and by scatter plot analysis, which of the species affecting the model negatively
were identified and dictated how to improve the model performance.

To ensure the model robustness and reliability, it is crucial to expand it by incorporat-
ing a wider array of representative non-wood and wood species biomass samples, but the
different species must provide the same rate of change of NIR predicted values with the
measured values in the scatter plot. Validation and updation using additional unknown
samples of the same species are essential for the model effective applicability. Furthermore,
exploring alternative machine learning algorithms alongside the recommended model
could enhance its practicability. These steps will contribute to not just a more comprehen-
sive and versatile model but also increase its ability for real-world application and improve
its overall reliability.
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Abbreviations

% percentage R Correlation coefficient
C carbon R2 coefficient of determination

CHNS CHNS Elemental analyzer R2
C

coefficient of determination of
calibration set

GA genetic algorithm R2
P

coefficient of determination of
validation set

H hydrogen RMSEC
root mean square error of
calibration set

LVs latent variable number RMSEP
root mean square error of prediction
set

LOQ Limit of quantification RPD ratio of prediction to deviation
Max maximum S sulfur
Min minimum SD standard deviation
MP multi-preprocessing sd1 first derivative
MSC multiplicative scatter correction sd2 second derivative
N nitrogen SEC standard error of calibration set
NT total number of samples SEP standard error of validation set
Nc number of samples in calibration set SNV standard normal variate
NIRS near infrared spectroscopy SPA successive projection algorithm
Np number of samples in validation set SW selected wavenumber
O oxygen TGA thermogravimetric analysis
PLSR partial least squares regression wt.% weight percentage
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Abstract: The persistent challenge of adhesion in Fused Filament Fabrication (FFF) technology is
deeply rooted in the mechanical and chemical properties of utilized materials, necessitating the
exploration of potential resolutions. This involves adjustments targeting the interplay of printing
parameters, the mechanical fortification of print beds, and the integration of more adhesive materials,
resonating across user levels, from enthusiasts to complex industrial configurations. An in-depth
investigation is outlined in this paper, detailing the plan for a systematically designed device. En-
gineered for FFF device installation, the device facilitates the detachment of printed models, while
precisely recording the detachment process, capturing the maximum force, and its progression over
time. The primary objective is fabricating a comprehensive measurement apparatus, created for
adhesion assessment. The device is adaptable across diverse FFF machines and print bed typologies,
conforming to pre-defined conditions, with key features including compactness, facile manipulability,
and capacity for recurrent measurements. This pursuit involves evaluating adhesion levels in prints
made from diverse materials on varying print bed compositions, aiming to establish a comprehen-
sive database. This repository facilitates judicious material and bed type selection, emphasizing
maximal compatibility. Emphasis is placed on operating within a thermally stable context, a pivotal
prerequisite for consistent and reproducible results.

Keywords: print quality; device design; adhesion testing; 3D printing; FFF

1. Introduction

According to current statistics, FFF technology is continuously expanding. New de-
sign solutions for devices are emerging, making them faster, more precise, and capable of
producing models of various sizes. Considering all these innovations, there is an evident
demand for new, alternative, or composite types of materials for these devices. However,
there is a considerable research gap in this area. Several companies, or filament producers
for FFF devices, follow established procedures for filament creation but offer limited infor-
mation on its use in collaboration with FFF devices. Users often encounter basic information
regarding process parameters, filament diameter deviation, and type designation correlated
with the material predominantly represented in the filament. However, this information of-
ten proves insufficient for experienced users or industrial production. A relatively common
occurrence is model wrapping from print beds due to unsuitable materials or other types of
deformations. As an example, the currently known Polypropylene (PP)-based filament is
challenging to process using FFF technology in its pure form. Internal stress within layers
or susceptibility to deformation during uneven cooling complicates filament production.
The result is the utilization of additives to improve the filament extrusion process, which
naturally alters adhesive and mechanical properties and consequently affects the visual
appearance of the filament or the resulting model.
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The publication is thus focused precisely on addressing this shortfall and deals with
the design and gradual verification of a device intended for testing the adhesive properties
of materials to various types of print beds or their coating materials. Concerning this
design, several problematic areas can be identified, including:

• The necessity to create a universal device that is adaptable or usable across a wide
range of FFF device constructions. As depicted in Figure 1 [1], various FFF device
constructions, in this case, Cartesian types, exhibit diversity. Therefore, the device
should be usable across as many of these variations as possible.

• The design of the measurement apparatus must be small and compact, while also
being sufficiently robust to handle materials with superior adhesive properties [2].

• The execution of the adhesion test must be smooth and repeatable. Manual execution
of the measurement is not feasible in this case. Due to the test’s location and nature, it
requires Computer Numerical Control (CNC).

• The selection of suitable types of printing materials and print bed materials appropriate
for verifying the functionality of the device.

Figure 1. An illustration of existing Cartesian-type FFF device constructions.

Figure 1 informatively describes different types of Cartesian FFF devices, outlining
their fundamental differences, which include:

• Figure 1a shows an FFF device with the movement of the toolhead along the X and Y
axes and the print bed along the Z axis. The benefit of this design is the reduction of
the influence of acceleration forces on the printed model placed on the print bed.

• Figure 1b shows an FFF device with the movement of the toolhead along the X and Z
axes and the print bed along the Y axis. Due to its rigid and simple construction, it has
become widely used as one of the most common types of FFF printers at present.

• Figure 1c shows an FFF device with the movement of the toolhead along the X and Z
axes and the print bed along the Y axis. This construction requires rigid components,
whereby a weight is applied to the X axis mountings.

• Figure 1d,e shows an FFF device with the movement of the toolhead along with
movement of the toolhead along the X, Y, and Z axes. Within these devices, the
position of the print bed remains fixed throughout the printing process.
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• Figure 1f shows an FFF device with the movement of the toolhead along the X and Y
axes and the print bed along the Z axis. As opposed to the device shown in Figure 1a,
the printing bed is driven by two stepper motors which increase the stability of the
printing bed.

• Figure 1g shows an FFF device with the movement of the toolhead along the X axis
and the print bed along the Y and Z axis. These devices use a simple design resulting
in relatively lower production costs.

All these types of 3D printer solutions are the subject of extensive research conducted
by the authoring team, aiming to create a database known as Correlating Print Materials
and Print Bed Materials. Such a database, once established, would significantly streamline
the utilization of various material types, effectively reduce failure rates, and comprehen-
sively enhance FFF manufacturing as a whole. To this end, the publication presents a
methodical procedure for the design and subsequent implementation of a device intended
for measuring adhesion on various types of print beds [3]. The device’s design is planned
to be adaptable for use across a wide array of FFF constructions.

2. Literature Review

Given the topicality of the addressed issue, the following chapter describes ongoing
or already conducted research. This research delineates various approaches concerning the
adhesive properties of print beds and materials for FFF manufacturing. It is imperative to
highlight the relevance of the research topic in the introduction. Malengier et al. studied
the adhesion of the initial layers of printed models produced using FFF technology on
a textile substrate [4]. To assess this adhesion, they introduced three testing methods:
perpendicular tensile testing, shear testing, and peel testing, applied to six different textile
substrates. For printing, Polylactic Acid (PLA) filament was selected, and the objects were
fabricated on a textile base affixed to the printer bed. The study’s contribution lies in
identifying that the most suitable method for testing the adhesion of the initial model layer
is the perpendicular tensile test, presenting a lower risk of tearing the textile substrate.
Nazan et al. presented research on warping deformations of printed models using FFF
technology [5]. Laser scanning was utilized for deformation measurements and comparison
against the nominal model. Epoxy adhesive was applied to the print bed to enhance the
adhesion of the initial layer. It was observed that, when using PLA material, deformations
have a reduced impact on the manufactured model. They underscored the necessity of
using a heated bed, particularly when printing ABS material, emphasizing the importance
of proper printing conditions for the initial layer’s adhesion and its influence on overall
deformations and detachment of the resulting print. However, despite measuring model
deformations with a laser scanner, the study did not directly investigate the adhesion of
the initial layer.

Spoerk et al. focused on improving the adhesion of the initial layer in 3D-printed
models produced by FFF technology [6]. They investigated the influence of different print
bed temperatures when printing PLA and Acrylonitrile Butadiene Styrene (ABS) materials
using multiple print bed types. It was discovered that print bed temperature significantly
affects the initial layer’s adhesion, with higher temperatures enhancing adhesion. They
recommend utilizing a print bed heated slightly above the glass temperature of the filament.
Additionally, they proposed a custom-designed shear-off force testing device for assessing
the initial layer’s adhesion. This device tested the shear-off force acting on the printed
model in a parallel direction to the printed layers but did not study the adhesive properties
of the initial layer perpendicular to the print bed. Płaczek examined the adhesive properties
of 3D-printed models using FFF technology on a print bed with the application of tapes [7].
For measuring the adhesive forces of the initial layer on the bed, an experimental device was
proposed, focusing on force measurements perpendicular to the print bed. The contribution
of the study lies in the design proposal of an experimental testing device and the validation
of its functionality.
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Snapp et al. studied the adhesive forces of printed models and the influence of print
bed temperature with borosilicate glass and polyamide surface materials [8]. They designed
a testing device to measure these adhesive forces. Within this device, measurements were
conducted parallel to the printed layers, highlighting the potential use of applying and
measuring force magnitude on the manufactured part, unlike pulling the part from the
print bed. Brancewicz-Steinmetz et al. conducted research on the adhesive properties
during printing between PLA and Thermoplastic Polyurethane (TPU) materials [9]. The
focus of this research was on testing the influence of process parameters on the mutual
adhesion of these materials, utilizing shear tests for measuring these forces. It was found
that inadequately chosen process parameters affect layer adhesion, potentially causing
unsuccessful printing. Thumsorn et al. investigated the impact of process parameters
and additives when using composite materials on layer adhesion in FFF printed mod-
els [10]. They analyzed layer adhesion morphologically, thermal properties, and dynamic
mechanical properties. The research highlighted the possibility of reducing layer adhesion
due to larger void areas between raster and printed layers when utilizing composite PLA
compared to pure PLA material.

Laumann et al. examined the initial layer adhesion in Fused Filament Fabrication
(FFF) printed models and aimed to reduce warping effects due to thermal shrinkage [11].
They proposed an experimental testing device combining FFF technology and a tensile
testing machine, designed to test the adhesion of the initial print layer immediately after
completing printing. The device applied force perpendicular to the print bed for model
detachment. The contribution lies in the expanded documentation of the device’s design
and measurement method. However, while the device operates as an independent FFF
technology, offering advantages and disadvantages, it cannot be used for testing the
adhesion of the initial layer on existing FFF and FDM technologies. Kujawa studied
the adhesion of initial layer parts printed using FFF technology, highlighting insufficient
research in this domain, the absence of a standardized method for measuring part adhesion
to the print bed, and its crucial role in employing FFF technology [12]. For the device
design to measure adhesion forces, the existing RapCraft 1.4 FFF technology was utilized,
integrating the measuring device onto it. This approach combined a tensile testing machine
with FFF technology, enabling the measurement of adhesive forces upon detachment
under real conditions. However, proper installation of the tensile testing machine onto
FFF technology is necessary, and its use with other FFF, particularly FDM technologies,
depends on the design of these technologies, making its installation often challenging.

This overview of the current state of research in the field of adhesion of initial material
layers to print beds confirms the research gap in this area. The efforts of authorial collectives
to compensate for insufficient information in this domain underscores the timeliness of the
subject matter.

3. Materials and Methods

Considering the ongoing research and the requirements for the measuring device
outlined in the previous chapters, it becomes apparent that, in the case of the apparatus in-
tended for adhesion tests, a certain form of compatibility with FFF devices is necessary. The
materials used in the construction of the adhesion testing device and the specifications of
the model tested for adhesion are pivotal components in evaluating the adhesion properties
of 3D-printed objects on various substrate materials [13]. This section provides a detailed
description of the materials used in the construction of the testing device and emphasizes
the specifications of the polyethylene terephthalate glycol (PETG) material model used
for adhesion testing. It constitutes a relatively straightforward concept consisting of few
fundamental parts. The first part comprises a compact frame made of aluminum profiles of
20 × 20 and 20 × 40 mm dimensions. This frame serves as the supporting section of the
entire device, directly placed onto the print bed of the FFF device. The construction of this
frame includes:
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• Aluminum profiles of specific lengths, 20 × 20 and 20 × 40 mm: an aluminum
frame measuring 20 × 40 mm served as the foundational frame for the testing device,
ensuring structural stability.

• 3D printed parts: specially designed components essential for ensuring the functional-
ity and stability of the testing device, as well as the placement of other components,
were manufactured using ABS material in the 3D printing process.

• Fastening materials: a range of screws and nuts were employed for securely fastening
and assembling various parts of the testing device, ensuring strength and stability
during evaluation.

Given the compactness of the entire measuring system and the endeavor to position
it on the print beds of FFF devices, it is evident that there is no room in the design for
dimensionally large measuring devices. For this reason, the EMS20-5kN sensor (EMSYST
spol. s r.o., Trenčín, Slovak) was selected [14]. This sensor, in collaboration with the DAQ
device and EMS Center v1.0 software, enables the measurement, transformation, and
recording of the tensile force over time. The measurement section of the proposed device
thus consists of:

• Force sensor (Emsyst EMS20-5kN): the experiment utilized the Emsyst EMS20-
5kN force sensor, visible in Figure 2, along with its parameters, which were piv-
otal for quantifying adhesive forces between the 3D printed model and various
substrate materials.

• Data Acquisition System (DAQ) (Emsyst EMS650, EMSYST spol. s r.o., Trenčín,
Slovak): the data acquisition system, Emsyst EMS650 (Figure 2), was integrated with
the force sensor to ensure the collection and recording of adhesion-related data during
evaluation using the corresponding EMS Center v1.0 software.

 

Figure 2. The Emsyst EMS20-5KN sensor with the converter EMS650.

The Prusa Mk3s+ was selected as the testing FFF device, and four types of materials
were placed on its print beds. This device is equipped with a direct extrusion head,
enabling more precise material dosing, and features a wide range of 3D print beds with
recommended manufacturer settings. The only adjusted parameter was the temperature
of the printing bed. It had to be corrected for better adhesion of the model to its
surface. Models designed for the optimization of the printing process were not subjected
to measurements due to their frequent deformations. The result of the optimization
of the printing process for the chosen material-produced parameters is presented in
Table 1. Subsequently, these parameters were employed in the production of all samples
designated for testing purposes.

Among other components, such as threaded rods and guiding nuts, an indispensable
part of the device, or the diagnostic system, is the test model [15]. PETG was chosen as the
material for this model, which is one of the most commonly used materials in the realm of
FFF technology, whose adhesion to print beds has been a perennial subject of discussion.
The model utilized for adhesion testing was specifically designed to evaluate adhesive
properties across various substrate materials.

• Characteristics of the PETG model: the PETG model was designed with a specific geo-
metric form that allowed for easy fixation within the jaws of the measuring instrument.

122



Appl. Sci. 2024, 14, 945

Its form was selected to evaluate adhesion properties under controlled conditions,
ensuring consistent and replicable testing scenarios.

• Geometric design for adhesion testing: the PETG model’s design encompassed specific
features intended to evaluate adhesion properties under various conditions, enabling
controlled and systematic investigation of the bonding force between the model and
diverse print bed materials.

Table 1. Description of the chosen parameters for the production of samples.

Printing temperature 255 ◦C

Print bed temperature N/A

Printing material PETG; 1.75 mm

Nozzle diameter 0.40 mm

Layer cooling Off-for all layers

Print speed 50 mm/s

Number of outline perimeters 3

Number of top and bottom layers 2

Infill 100%

Infill pattern Grid

Layer height 0.23 mm

As depicted in Figure 3 [16], two materials were considered for the execution of
the test model, which could be deemed the most commonly used or widely recognized.
However, the material PLA was excluded from this process, characterized as the “most
straightforward” in terms of its utilization within FFF technology and the printing process
itself. As highlighted in Table 2, discrepancies in bed temperatures, melting temperatures,
and other properties essentially disqualified PLA from this process. PLA is a material
widely acknowledged for often not requiring the heating of the print bed in many instances.
With appropriate initialization layer settings, its adhesive properties are deemed sufficient
for nearly any commonly used uncontaminated surface.

Figure 3. Graphical representation of generally known properties of PLA and PETG materials.

Table 2. Comparison of properties between PLA and PETG materials from a user perspective.

PLA Characteristics PETG Characteristics

Extruder temperature: 190–220 ◦C Extruder temperature 230–250 ◦C
No particular resistance Water/fatigue/chemically resistant

Made from renewable resources Oil-based polymer
Bed temperature: 45–60 ◦C Bed temperature: 75–90 ◦C

Based on the preceding selection of materials and components for the measuring
apparatus, its utility, and integration within FFF setups allow for the following observations:
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• The device’s frame will be compact and adaptable to build plates of various types
of equipment.

• The construction of the frame must possess adequate stability and rigidity while
enabling the placement of all necessary components of the measuring system.

• The motion or detachment of the model from the print bed must be uniform and mon-
itored throughout the entire process. The apparatus must include a drive mechanism
and means for transforming its movement.

• The model for testing adhesive properties must be compatible with the designed
apparatus.

• The same sample and the same FFF equipment must be used for each experimental
measurement.

• The test model must be consistently positioned at the center of the print bed to ensure
the correct alignment of the measuring device and the model.

• Measurements are conducted by the same individual under stable laboratory conditions.
• Models used for optimizing the printing process for a new type of print bed are not

included in the measurements.

Several designs of the measuring device were created based on these requirements.
The following chapter introduces one of the suitable prototypes, thoroughly describing its
operational principles, and highlighting the obtained results and issues.

4. Results

As depicted in Figure 4, the prototype of the measuring apparatus appears relatively
straightforward in design. The basic dimensions of the proposed and testing device are
200 × 300 × 160 mm, with a maximum vertical (z-axis) travel of 50 mm. As previously
mentioned, it comprises a compact frame housing all requisite components [17]. The
device features a supporting section (1), wherein all the necessary measuring elements
are positioned. At its uppermost part resides the stepper motor, specifically a Nema 23
(2) delivering a torque of 1.23 Nm, as discernible from the illustration. The rotational
motion of the motor is transmitted via gears (3) onto trapezoidal threaded rods (4), whose
rotational movement induces the displacement of guide nuts and consequently propels the
EMS 20-5kN sensor (6) along the Z-axis. This motion facilitates the detachment of the test
model perpendicular to the pressure plate [18]. All specified components are situated on
the device frame of the apparatus (5).

 

Figure 4. The construction of the prototype designed for adhesive testing.

The entire process is methodically recorded in time and visualized through EMS
Center v1.0 software, which subsequently generates data from individual measurements
showcased in Tables 3 and 4.
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Table 3. Comparison of maximum shear forces between surfaces with PI and borosilicate coatings.

Max. Tear-Off Force from the Build Plate [N]

Tempered Glass with PI Layer Borosilicate Glass Plate

Trial No. 1 51.24 51.69

Trial No. 2 54.06 63.69

Trial No. 3 57.89 55.52

Trial No. 4 63.31 44.76

Trial No. 5 63.13 42.33

Trial No. 6 51.12 67.55

Trial No. 7 54.31 41.27

Trial No. 8 60.07 52.03

Trial No. 9 51.41 62.77

Trial No. 10 67.19 75.25

Trial No. 11 64.85 63.12

Trial No. 12 56.86 35.83

Mean deviation 57.95 54.65

Standard deviation 5.70 12.10

Table 4. Comparison of maximum shear forces between uncoated aluminum bed and bed with
PEI coating.

Max. Tear-Off Force from the Build Plate [N]

Pure Aluminium Sheet Spring Steel with PEI Coating

Trial No. 1 30.97 47.30

Trial No. 2 34.51 46.98

Trial No. 3 32.52 41.36

Trial No. 4 28.32 43.69

Trial No. 5 27.67 51.72

Trial No. 6 29.13 55.79

Trial No. 7 31.15 61.07

Trial No. 8 29.45 66.56

Trial No. 9 48.09 62.61

Trial No. 10 34.51 56.15

Trial No. 11 37.09 49.70

Trial No. 12 33.63 58.88

Mean deviation 33.09 53.48

Standard deviation 5.52 7.95

This section delves into the empirical outcomes derived from conducted adhesion
test measurements, encompassing an extensive array of tables and graphs. These analy-
ses are instrumental in elucidating the adhesion properties of 3D-printed objects on a
spectrum of materials, namely pure aluminum plate, spring steel coated with Polyether-
imide (PEI), a magnetic plate coated with Polyimide (PI), and borosilicate tempered glass.
Through systematic experimentation and data collection, this chapter offers profound
insights into the complex interplay between material composition, surface texture, and
3D printing adherence [19].
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To better interpret the results of measurements of the maximum force upon detachment
of the model from the print bed, the measured values were supplemented with the average
and standard deviation values in the measurement context.

x =
∑n

i−1 xi

n
(1)

where:

x—is the mean (average).
n—is the number of values in the dataset.
xi—represents each individual value in the dataset.

σ =

√
∑n

i−1(xi − x)2

n
(2)

where:

σ—is the standard deviation.
n—is the number of values in the dataset.
xi—represents each individual value in the dataset.
x—is the mean of the values.

As depicted in Table 3, the initial comparison involved tempered borosilicate glass and
tempered glass with a PI layer as the first set of print beds analyzed. Each measurement,
as evident, underwent twelve repetitions, focusing on determining the maximum force
required to detach the PETG model from the print bed. Notably, each print bed surface
required distinct print settings for the initial layer and subsequent layers. This process
presented challenges, particularly with certain materials, resulting in a considerable number
of defective models.

As evident from twelve separate measurements comparing the borosilicate layer
with the PI layer, their parameters exhibit a high degree of similarity. The measurements
show no significantly disparate values that would substantially distort the outcome. The
chart visible in Figure 5 highlights the similar adhesive properties of these two surfaces
concerning the PETG material.
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Figure 5. Comparison of maximum forces when detaching the bed with PI and borosilicate coatings.

The second series of measurements proceeded under the same conditions as in the
first instance. The sole alteration was, of course, the change in the used print beds, assum-
ing an alteration in adhesive properties. Given the highly similar results observed in the
initial case, an extreme change in one of the print beds was chosen for device function-
ality verification. As depicted in Table 4, the comparison involves an evaluation of the
adhesive properties between the currently most widely used print bed surface, PEI, and a
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substantially decreased aluminum plate. The latter was selected due to the anticipation of
a pronounced difference in the measured outcomes.

The significance of the monitored data is demonstrated through the outcomes visual-
ized in Figure 6. The primary objective was to showcase the applicability and effectiveness
of the device in evaluating a print bed characterized by notably adverse adhesive proper-
ties for the PETG material. This endeavor aimed to provide a clear depiction of how the
prototype device functioned when assessing challenging print surfaces.
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Figure 6. Comparison of maximum forces when detaching the bed with and without a PEI coating.

The chart in Figure 6 serves as a compelling visual representation, delineating a
tangible contrast between the adhesive behavior of the PEI surface and the clean aluminum
plate. This stark difference between these two distinct surfaces accentuates the device’s
capability to discern and measure the dissimilar adhesion attributes across varying print
bed materials.

By employing the prototype device for such evaluations, the outcomes unequivocally
delineate the divergence in adhesion performance between these surfaces. The evident
disparity validates the effectiveness of the measurements conducted using the prototype
device, underscoring its potential to discern minute differences in adhesive properties
even in situations where the print surface exhibits particularly challenging or adverse
adhesion characteristics for PETG material. This successful demonstration underscores
the pivotal role of the prototype device in comprehensively evaluating adhesion dynamics
across a spectrum of print bed materials, from which, in this case, the maximum force upon
detachment of the model from the print bed is depicted. This insight provides valuable
information for optimizing 3D printing processes and considering material compatibility.

It is important to emphasize that the measurements excluded what could be termed as
significant errors resulting from incorrect settings of the initial printing layer. If there were
visible signs of warping, insufficient adhesion to the print bed, or within the layers either
during or after printing the models, the measurement would have been deemed irrelevant.
The optimization process focused on determining the ideal extrusion temperature, printing
speed, and correlating the software-declared and actually extruded volume of material,
nearly eliminating these shortcomings.

These findings underscore the significance of these measurements in understanding
the dynamics of adhesion in 3D printing technology. The visual representations, compre-
hensive analyses, and systematic comparisons presented in this chapter shed light on the
intricate relationships between materials, surface textures, and printing adherence. As
can be seen in Figure 7, the expected correlation between PI and PEI coatings in adhesion
further confirms the accuracy of the measurements conducted by the prototype for ad-
hesion tests. These insights hold substantial promise for refining printing processes and
advancing material compatibility in the realm of 3D printing. It is imperative to emphasize
that the measurements excluded gross errors resulting from incorrect initial printing layer
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settings or visible signs of warping, insufficient adhesion, or defects within the printed
models. These exclusions ensure the reliability and relevance of the obtained data, offering
a foundational understanding of adhesion in this evolving technological landscape.
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Figure 7. Comparison of maximum forces when detaching the bed with PEI and PI coatings.

5. Discussion

Given that it is a prototype device for measuring adhesion to print beds and the values
of standard deviations of the measurements, it is evident that its operation is not flawless.
Therefore, the concluding discussion revolves around evaluating the prototype’s function-
ality, advantages, disadvantages, and potential enhancements aimed at improving the
efficiency, precision, and user-friendliness of the proposed device. Based on the presented
results, it is clear that the device performed adequately in all 48 measurements conducted.
The complete force-displacement curves were recorded, focusing on the maximum force
at detachment. In terms of the subjective opinion of the authoring team regarding the
prototype device’s use, several specific advantages can be highlighted:

• The requirements for compactness, i.e., the small dimensions of the measuring device,
were met. The prototype’s placement was tested on various types of FFF devices,
including Creality CR-max, Neo V2, Ender v1 and Pro, Prusa MK2S, and MK3S+,
among many others.

• The device’s positioning and the sensor’s location at the center of gravity ensure
detachment of the model perpendicular to the print bed, ensuring a relevant and re-
peatable result. The construction of the device is designed in a way that its attachment
to the model other than at its center of gravity is not possible.

• The frame of the device is stable and significantly overdesigned despite its dimensions.
This ensures its sufficient stability and prevents any negative influences from affecting
the test results.

• As previously mentioned, the device is designed to be as intuitive as possible in its
placement and utilization. Its design prohibits its use in any alternative manner.

This discussion serves as a critical evaluation of the prototype’s performance, high-
lighting its strengths and areas for potential improvement to further refine its functionality
and usability in adhesion testing to print beds.

During the prototype usage, several drawbacks related to its structural design emerged.
The measurement process used for verification proceeded smoothly. However, the only
observable drawback was the optimization of the printing process for PETG material
models. PETG models tended to detach relatively frequently from various types of print
beds, necessitating constant adjustments to the FFF device’s process parameters. An
illustrative example of a detached printed model can be seen in Figure 8. Among other
drawbacks of the prototype, the following can be highlighted:
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• Inadequate stepper motor performance or improper gearing under extreme surface
adhesion. When treating the print bed with adhesive agents like acetone and ABS
solutions or silicone-based preparations, which significantly enhance adhesive proper-
ties, instances occurred where the adhesion became so extreme that the stepper motor
lacked sufficient power to separate the model from the bed without damaging it.

• Substitution of materials in certain key components. As it is a prototype, some of
its components were manufactured using FFF technology with ABS material. Minor
flaws arising from the plastic construction can be rectified by replacing them with
metal alternatives.

• Modification of the device’s transformation mechanisms. Swapping the trapezoidal
lead screws and nuts for larger diameter alternatives would enhance the device’s oper-
ation, improving its stability and reducing the risk of slippage in cases of insufficient
stepper motor power.

 

Figure 8. Example of the most common deficiencies of the test model.

In conclusion, despite the functional operation of the prototype in conducting mea-
surements for verification purposes, several shortcomings related to its structural design
surfaced during its practical usage. The measurement procedures proceeded smoothly,
yet the challenges in optimizing the printing process for PETG material models remained
apparent due to frequent detachment issues. These challenges necessitated continual
adjustments to the FFF device’s process parameters to ensure consistent results.

Among the identified drawbacks of the prototype, issues such as insufficient stepper
motor performance under extreme adhesion, material substitutions in critical components,
and the need for modification in transformation mechanisms were observed. Addressing
these shortcomings through potential enhancements in motor power, material selection, and
mechanical modifications can significantly improve the device’s overall efficacy, stability,
and reliability.

The acknowledgment and rectification of these limitations stand as crucial steps
toward refining the prototype, ensuring its suitability for reliable and consistent adhesion
testing to diverse print bed substrates. These enhancements are pivotal for establishing a
more robust and efficient adhesion testing device, thereby contributing to the advancement
of research in material adherence in additive manufacturing technologies.

The suggested prototype device designed for assessing adhesion to print beds offers
potential advantages in the realm of FFF manufacturing. Its utility extends to establishing
a comprehensive database that could significantly streamline the deployment of diverse
material types, leading to a marked reduction in failure rates and an overarching en-
hancement of FFF manufacturing practices. The substantial reduction in failure rates not
only optimizes manufacturing time and material usage but also contributes to a more
environmentally sustainable FFF manufacturing process, particularly when employing
non-biodegradable materials subjected to intricate recycling procedures.

A notable attribute of this compact, portable, adaptable, and robust device lies in its
applicability across various FFF constructions and technologies. Despite the proposed
design’s relative cost-effectiveness, a substantial portion of the manufacturing cost pertains
to acquiring the force sensor and data acquisition system. However, the device’s flexibility
allows for the integration of equivalent force sensors and data acquisition systems, while
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preserving their requisite characteristics. The device facilitates comprehensive monitoring
throughout the adhesion measurement process. The obtained measurement results can be
instrumental in refining printing processes and advancing material compatibility, especially
given the extensive array of adjustable FFF production process parameters corresponding
to a specific filament material, printing material, and chosen FFF technology.

6. Conclusions

The exploration of adhesion properties in FFF technology remains an ongoing chal-
lenge that demands thorough scrutiny and continual investigation. This is driven by
the need for improved material compatibility, the reinforcement of print bed mechanics,
and the adoption of more cohesive materials. This article outlines a strategic approach
to address these complexities, catering to a broad spectrum of users from enthusiasts to
industrial stakeholders. The foundation of this research revolves around the design and
iterative validation of a sophisticated device crafted specifically for testing material adhe-
sion to various print bed types or their coating materials. This initiative is marked by the
identification of key problematic areas, necessitating the development of a versatile device
adaptable to diverse FFF device constructions. The compactness and robustness of the
measurement apparatus are crucial considerations, enabling its usability across materials
with superior adhesive properties.

Furthermore, attention to testing execution is emphasized, necessitating CNC control
due to the test’s location and inherent nature. The selection of suitable printing materials
and bed typologies for verifying device functionality remains a critical facet of this pursuit.
The comprehensively detailed materials and methods section elucidates the careful selection
of components and testing specifications integral to evaluating adhesion properties in 3D-
printed models across diverse substrate materials. Notably, the focus on PETG as the
testing material illuminates its significance and relevance within FFF technology, offering
insights into its adhesion behavior compared to other materials such as PLA.

The results section showcases extensive empirical data derived from adhesion tests
conducted on various surface coatings and materials. These analyses provide crucial
insights into the detachments’ force dynamics, shedding light on the interplay between
different coating materials and their adhesive behaviors. The presented tables and graphs
offer a comprehensive visual depiction of these relationships, laying the groundwork for
a nuanced understanding of adhesion between printed models and the print bed in 3D
printing technology. It is important to emphasize that these measurements were conducted
in a way that excluded significant errors stemming from incorrect initial layer settings or
visible signs of wrapping or inadequate adhesion to the print bed.

In summary, this exhaustive exploration underscores the criticality of addressing adhe-
sion challenges in FFF technology. The findings pave the way for a deeper comprehension
of material adhesion, offering significant implications for optimizing printing processes
and fostering material compatibility across diverse print bed typologies.
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Abstract: A series of advanced equipment exposed to sub-/supercritical water environments at high
temperatures, high pressures, and extreme water chemistry with high salt and dissolved oxygen con-
tent faces serious corrosion problems. Obtaining on-site corrosion data for typical materials in harsh
environments is crucial for operating and maintaining related equipment and optimizing various
corrosion prediction models. First, this article introduces the advantages and disadvantages, usage
scenarios, and future development potential of several in situ monitoring technologies, including
ultrasonic thickness measurement, the infrared thermography method, microwave imaging, eddy
current detection, and acoustic emission. Considering the importance of electrochemical corrosion
data in revealing microscale and nanoscale corrosion mechanisms, in situ testing techniques such as
electrical resistance probes, electrochemical corrosion potential, electrochemical impedance spectroscopy,
and electrochemical noise that can be applied to sub-/supercritical water systems were systematically
discussed. The testing platform and typical data obtained were discussed with thick and heavy colors to
establish a mechanical prediction model for corrosion behavior. It is of great significance to promote the
development of corrosion monitoring techniques, such as breaking through testing temperature limitations
and broadening the industrial application scenarios and maturity.

Keywords: corrosion; supercritical water; monitoring techniques; research platform

1. Introduction

Supercritical water (SCW) has both temperature and pressure above the critical point
of water (374.15 ◦C and 22.12 MPa) [1], while subcritical water refers to water that is heated
above the boiling point and below the critical point, and the system pressure is controlled
to keep the water in a liquid state [2]. Due to its unique physical and chemical properties,
subcritical or supercritical water has been widely used in energy and environmental
protection. In nuclear power generation, the current technologically mature pressurized
water reactor and boiling water reactor nuclear power plants have subcritical water as their
heat transfer medium (coolant) [3]. Although the Chernobyl and Fukushima nuclear power
plant accidents cast a shadow over the development of nuclear power plants, nuclear
power remains an efficient and pollution-free source of electricity. The fourth-generation
reactor is expected to be put into use after 2030. Promoting commercial small reactors
has brought new opportunities for developing nuclear energy [4]. The temperature of
the core of modern nuclear power reactors is usually between 260 ◦C and 320 ◦C. In this
high-temperature and strong irradiation environment, water is prone to ionizing strong
oxidants (such as O2 and H2O2). Most of these species are electroactive (i.e., they may
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participate in charge transfer reactions) [5]. In addition, metal pipelines are subjected
to long-term high pressure, and nuclear power plants have been threatened with severe
local corrosion damage, such as pitting corrosion and stress corrosion cracking, since their
inception [5]. Statistics show that the atomic power events that have occurred globally so
far are generally caused by localized corrosion. Additionally, ultra-supercritical plants have
gradually replaced low-parameter units and become the primary thermal power plants.
Due to the complexity of combustion conditions and gas-solid flow, high-temperature
corrosion of water-cooled wall pipes is caused and influenced by various factors [6]. With
the improvement of unit parameters and the modification of low NOx burners, the problem
of high-temperature corrosion of water-cooled wall pipes has become more serious, which
leads to a higher possibility of boiler pipe explosion [7].

On the other hand, corrosion is also a crucial factor affecting the safety of equipment
and facilities in the exploration, extraction, transportation, and refining processes of oil and
gas [8–11]. The environment of oil and gas fields is complex and harsh, often characterized
by high temperature, high pressure, high salinity, and high mineralization. In harsh subcrit-
ical water environments, oil pipes are prone to corrosion and even perforation, seriously
affecting oil and gas wells’ average production and operation. As an essential transporta-
tion system for underwater oil and gas development, the proportion of accidents caused by
corrosion can reach 37%. Once oil and gas field pipelines in long-term service rupture or
fail due to corrosion, it will cause substantial economic losses and safety hazards [12].

In addition to the energy field, supercritical water oxidation (SCWO) technology can
efficiently and thoroughly degrade various high-concentration organic wastes, such as
waste fluid, sludge, and hazardous solid waste, with broad application prospects. However,
in SCWO treatment systems, the preheating and reaction initiation stages of the initial
liquid or slurry materials and the cooling phase of the corresponding reaction products
inevitably undergo transcritical water environments due to the predominant electrochemi-
cal corrosion [1,13]. The actual operation of some SCWO demonstration/industrialization
plants indicates that the current equipment exposed to the transcritical water environment,
such as preheaters, reactor fronts, and coolers for reaction effluents, has the highest risk of
corrosion failure [13,14], which is a common bottleneck problem that restricts the industrial
promotion of various supercritical water treatment techniques, including supercritical
water gasification for hydrogen production from organics, supercritical hydrothermal com-
bustion, etc., as well as the SCWO [13,15–17]. The SCWO treatment units constructed by
HydroProcessing in Harlingen, TX, USA and Shinko Pante in Kobelco, Japan were forced to
shut down due to severe corrosion in the preheater and reactor front [16]. Pitting corrosion
is an essential cause of material failure in chlorine-containing subcritical/supercritical
water systems [18].

A summary of the above discussion can be obtained: Advanced nuclear water-cooled
reactors, (ultra) supercritical thermal power plants, as well as a series of supercritical
water treatment techniques all involve highly harsh sub-/supercritical aqueous systems,
which can lead to severe corrosion problems of materials [19,20]. In sub-/supercritical
water environments, changes in temperature and pressure can cause changes in water
density, dielectric constant, viscosity, and other characteristics. Taking water density as
an example, an increase in temperature leads to a continuous decrease in water density,
a reduction in charge transfer rate, and a shift in the corrosion process within the system
from electrochemical reaction influence to chemical reaction influence, and this has been
discussed in detail in other papers [1,13]. Materials used in sub-/supercritical water
environments mainly include stainless steel, nickel-based alloys, and ceramics. However,
nickel-based alloys with stronger corrosion resistance are the most commonly used for more
complex supercritical water environments containing salt and oxygen. At the same time,
ceramic materials have a risk of fragmentation and are, therefore, less commonly used [14].
Meanwhile, the application of some chromium-containing coatings, zirconia coatings, and
titanium oxide coatings in subcritical/supercritical water environments has also been
widely studied [21–23]. Studying and solving the corrosion problem of typical alloys in
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sub-/supercritical water environments is significant for promoting the development of
the techniques mentioned earlier. However, the current investigation on alloy corrosion
in sub-/supercritical water mainly focuses on the use of offline testing methods, which
often require cutting and sampling of equipment walls, pipelines, etc., causing irreversible
damage and the inability to obtain real-time corrosion data during long-term operation,
resulting in significant limitations [6,24–27]. On the other hand, there is an error between
the data measured under the laboratory simulation system and the actual corrosion data
during equipment operation [28], so the method of in situ online monitoring of corrosion
data is essential.

To date, various in situ online corrosion monitoring technologies have been devel-
oped to compensate for the shortcomings of offline characterization testing techniques.
Non-invasive testing techniques, such as ultrasonic monitoring, infrared thermography,
etc., do not directly contact the system, avoiding damage to monitoring equipment and
testing systems. However, considering that the corrosion of alloys is predominantly caused
by the electrochemical processes that occur in subcritical and high-density supercritical
water systems, several electrochemical in situ online monitoring technologies as invasive
methods are equally significant. Therefore, this article systematically summarizes and
compares the principles, advantages and disadvantages, applicable scenarios, and de-
velopment progress of representative monitoring technologies from the perspectives of
non-invasive and invasive methods. This work has essential academic and engineering
significance for deepening corrosion scientific research, promoting the development of
corrosion monitoring techniques, and ensuring the mature landing and safe operation
of a series of advanced sub- and supercritical water equipment in new energy, power
generation, and environmental protection.

2. Non-Invasive Monitoring Techniques

Non-intrusive monitoring techniques, which means that the monitoring device does
not have any contact with the tested system, mainly include (laser) ultrasonic monitor-
ing, optical fiber sensing, Eddy current monitoring, magnetic flux leakage monitoring,
microwave monitoring, terahertz (THz) monitoring, thermography method, radiograph
monitoring, acoustic emission, etc. Due to space limitations, this article will only focus
on the representative non-invasive monitoring technologies, of which the summaries are
given in Table 1. The detailed introduction is as follows.

Table 1. Summary of various non-invasive monitoring methods and their characteristics.

Monitoring
Techniques

Principle
Data

Presentation
Advantages Disadvantages Application

Error or
Accuracy

Ultrasonic
measurement

[29,30]

Highly
sensitive to
structural

damage; high
permeability to

materials

Depth of
corrosion pits

and thickness of
corrosion layer

Real-time,
suitable for

both internal
and external

corrosion

Not
appropriate for

small, thin
materials

Large-scale
testing of oil

pipelines and
other facilities

Error less than
15%

Infrared
thermography

[31,32]

Recording
electromagnetic
waves emitted
by objects and
establishing a

clear
relationship

between
temperature
and material

corrosion
defects

Defect size,
depth, and

thermal
characteristics

Reliable, fast,
direct, and

wide testing
range

Required
heating and

cooling
processes; not

suitable for
thick materials;

costly

Extreme
temperatures

and
environments

Affected by
changes in the

thermal
characteristics
of objects and
environmental

conditions
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Table 1. Cont.

Monitoring
Techniques

Principle
Data

Presentation
Advantages Disadvantages Application

Error or
Accuracy

Microwave
imaging [33,34]

Based on the
interaction

between
microwaves

and dielectric
materials

The dielectric
performance

changes caused
by defects or

structural
abnormalities
are converted
into readable

voltage values
and then

processed and
output as
images.

Easily
accessible to the

coated
materials.

Have
difficulties
penetrating
conductive

materials; it is
limited to

surface
corrosion
detection,

whereas the
deeper

corrosion is
undetectable.

Determine
concrete

properties, etc.

Accuracy better
than 1/100 of

the period
length

Eddy current
detection

[35,36]

Detect
discontinuities

such as
corrosion and

material loss by
monitoring

changes in coil
impedance or

measuring
induced

magnetic fields.

Depth of
corrosion layer,
corrosion rate,
conductivity

and
permeability,

etc.

It is fast and
most commonly

used in
conductive

materials; it is
portable and

cheap

It is sensitive to
skin effects and

is surface-
oriented.

Suitable for
materials of

various shapes

Error less than
5% for the

thickness of
various

corrosion [36]

Acoustic
emission [37,38]

Materials emit
transient sound
waves locally

due to the rapid
release of
energy.

Deposition of
corrosion

products, the
rupture of

passivation
films, and the
initiation and

propagation of
cracks

Passive,
non-intrusive,

low-cost
real-time and

remote
monitoring

Sensitive to
background

noise

wavelet
analysis,
modern
spectral

analysis, and
neural network

analysis

The accuracy of
signal

classification is
about 65%

Note: The above accuracy or error data are reference values, and actual monitoring errors are influenced by
various factors such as testing methods, properties of the tested item, and environmental factors.

2.1. Ultrasonic Thickness Measurement

The fundamental principle of the ultrasonic monitoring method is to generate mechan-
ical waves or vibrations in tested samples in experimental laboratories or actual environ-
ments [8,39], as shown in Figure 1a. Ultrasound is generated and received in different ways.
The most common method of generating and receiving ultrasonic waves is piezoelectric
transducers, which are transmitted to the tested material through an acoustic coupler, while
electromagnetic acoustic transducers generate waves directly in the tested material [29].
Ultrasound is highly sensitive to structural damage and has high permeability to materials.
The second harmonic provides valuable information about material damage conditions by
measuring the amplitude ratio of the fundamental and second harmonics [40,41]. In some
countries, ultrasonic monitoring has been used as a standardized evaluation method for
compressive strength and material crack depth [30]. When conducting large-scale corro-
sion monitoring on the high-temperature pipes of thermal power plants and oil pipelines,
ultrasonic monitoring can accurately and quickly determine where corrosion occurs. Using
guided ultrasound in these situations has the following advantages: fast response speed,
high sensitivity in detecting minor defects, and suitability for large-scale and long-distance
testing [30,42]. Meanwhile, ultrasonic monitoring can be directly performed outside the
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component without using probes in contact with the corrosive environment during the
testing process, so it is non-invasive to closed containers [43].

The commonly used monitoring methods based on ultrasonic testing techniques
include contact piezoelectric transducers [44], lasers [45], and capacitance techniques.
Contact piezoelectric transducers have low operating costs but higher requirements on
the polishing degree of the contact surface to ensure good contact between the detection
element (the transducer) and the sample surface. Unfortunately, this technique is unsuitable
for harsh environments with high temperatures, high pressure, and strong corrosivity.
Another method, the ultrasonic laser wave method, can somewhat compensate for these
shortcomings. The advantage of the ultrasonic laser is that it can measure without sample
contact and allows for point detection. It still has high-resolution scanning ability when
working under high temperatures and pressure [46,47]. However, this test requires a
sufficiently high surface finish of the sample [48]. Therefore, the signal-to-noise ratio is
high. The third ultrasonic method, the capacitive ultrasonic transducer, has high sensitivity
and can measure the absolute displacement of first and second harmonics. However,
sample preparation is cumbersome [30,49].

Liu et al. [50] introduced the use of the piezoelectric pulse-echo method in corrosion
monitoring. As shown in Figure 1a, the ultrasonic signal travels through the water medium,
is then reflected by the specimen, and is finally received by the transducer. The typical
time-domain signals from piezoelectric pulse-echo measurements of high-temperature nickel-
based alloys with different corrosion layer thicknesses are displayed in Figure 1b. The signal
is offset to compare the thickness of varying corrosion layers. The green line represents the
reflectivity of the pipe back, while the red line represents that of the internal interface.

Figure 1. Schematic diagram of the device and principle for ultrasonic measurement (a) and typical
results (b) Reprinted from Ref. [50]. 2018, Elsevier.

2.2. Infrared Thermography Method

Temperature is one of the most common indicators to measure the health status
of equipment and components [32,51,52], and based on this, the infrared thermal (IRT)
imaging technique has been developed. It provides a reliable, fast, direct evaluation method
with a broad response range. It uses infrared imaging systems (such as infrared cameras) to
record electromagnetic waves emitted by objects and establish a clear relationship between
temperature and material corrosion defects [53]. The advantages of IRT are as follows: as a
non-invasive technique, IRT does not affect the target [51,54] and can safely monitor very
high temperatures or dangerous objects [54]; IRT provides two-dimensional images for
comparison of different regions of the target [54]; IRT is an online (real-time) monitoring
technique that can achieve large-scale real-time monitoring (with the help of advanced
image processing techniques) [32,54,55].

Thermal imaging techniques can be divided into two categories: active and passive.
In active thermal imaging, in addition to a thermal imager, an external excitation source
is also needed to stimulate the thermal evolution inside the object during heating or
cooling. On the contrary, passive thermal imaging does not require an external stimulus
source because the object is at a temperature naturally different from the background
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(such as the human body). Passive thermal imaging is more commonly considered a
qualitative method for identifying abnormal temperature patterns. Worthy of special
description, it is the particular controlled requirements of the active thermal imaging
method, including the amount and form of stimulation, that enable it to allow for not
only the identification of defects but also quantitative analysis of anomalies, such as the
characterization of the physical and thermal characteristics of defects. The excitation
mechanisms in active imaging techniques mainly include optical thermography, laser
thermography [56], induction thermography [57], vibrothermography [58], and microwave
thermography [59,60].

Metal defect size, defect depth recovery/reconstruction, and defect thermal character-
istics, such as thermal diffusivity, are considered quantitative IRT methods for evaluating
corrosion and metal loss [32]. During the analysis and processing of corrosion data mea-
sured by IRT, thermal contrast calculation is the most commonly used method to improve
the visibility of subsurface defects. Among them, absolute temperature contrast is achieved
by assigning color or intensity to each infrared energy level corresponding to electromag-
netic flux or exact temperature (through radiometry), converting images obtained using
infrared cameras into visible images (heat maps) [54]. Absolute thermal comparison re-
quires consideration of two critical assumptions. Firstly, we need to understand the sound
field’s position within the field of view of an infrared camera; secondly, we need to consider
that thermal stimulation is uniform on the sample. To address the testing limitations
brought by these two hypotheses, Pilla et al. proposed a modified version of absolute ther-
mal contrast, named differential absolute contrast (DAC). In addition, the analysis methods
for IRT results also include temperature signal reconstruction (TSR) using temperature and
contrast derivatives, statistical techniques, matrix factorization, phase-sensitive techniques,
and artistic intelligence-based techniques. Please refer to [32] for detailed information.

As for the IRT mechanism exhibited in Figure 2, the total radiation received by the
camera comes from three typical sources: emission from the target object (Eobj), emission
and reflection from the surrounding environment (Erefl), and emission from the atmo-
sphere (Eatm). However, since not all received radiation comes from the target object, to
accurately measure temperature, it is necessary to compensate by removing radiation
from other sources (such as surrounding objects or the atmosphere) when converting to
temperature [54].

 

Figure 2. Radiation energy received by the infrared camera Adapted with permission from Ref. [54].
2014, MDPI.

IRT can also detect water inclusion defects in composite sandwich structures. Figure 3
shows the effective detection of water corresponding to colder surface areas in the actual
rudder of an aircraft by IRT. Thermal imaging can detect the phase change energy required
for melting and infiltrating water, as it generates temperature changes.
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Figure 3. Moisture detected under the upper hinge of the rudder test sample Reprint with permission
from Ref. [54]. 2014, MDPI.

2.3. Microwave Imaging

Microwave non-destructive testing is based on the interaction between microwaves
and dielectric materials. The frequency range of employed microwaves is generally 5–50
GHz. At this frequency range, defects or structural abnormalities in the material can cause
enough changes in dielectric property. With the help of corresponding analysis software,
this dielectric difference can be converted into readable voltage values, which can then
be restored to images of internal defects and structures through specific algorithms. The
schematic diagram of the microwave detection is shown in Figure 4a, taking one steel
plate covered by coating as an example. The near-field of an open waveguide illuminates
the incident signal. It is transmitted into layered media (the coatings and the steel plate
substrate) and reflected by conductive plates. The ratio of these two signals gives the
effective reflection coefficient of the tested sample [61].

The microwave transmitter inside the energy emission device emits the selected
microwave signal within a specific frequency range, ensuring the microwave propagates
in the tested dielectric material. Different dielectric characteristics will reflect changes in
the material structure or internal defects. These subtle differences can cause changes in
the amplitude and phase of the reflected microwaves. The receiving sensor within the
measurement unit can recognize and collect the performance parameters of the reflected
waves and perform real-time analysis and calculation, ultimately displaying real-time
images of the dielectric material’s internal structure and defect morphology, as given
in Figure 4b,c. Microwaves can effectively penetrate dielectric materials, and any small
discontinuity in the material can cause changes in its dielectric properties. Microwaves
are very sensitive to changes in dielectric properties, so they have a very high detection
sensitivity for any slight defects in dielectric materials [62].

Figure 4. Microwave reflection and transmission for coated metal (a) and the changes in amplitude
(b) and phase (c) microwave detection Reprinted from Ref. [61]. 2013, Elsevier.
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The microwave non-destructive monitoring supports remote detection, estimates de-
fects’ physical size and direction, and is easy to operate [63,64]. Microwave NDT techniques
may be the unique solution in some situations (such as high temperature applications) [61].
Near-field open waveguide non-destructive microwave imaging seems to be one of the
most promising techniques for detecting the presence of a particular layer or internal
defects in layered structures [61,65]. In recent years, microwave non-destructive testing
(MNDT) has significant potential in determining the properties of concrete, as it is highly
effective in detecting pores, cracks, unevenness, and defects [33].

The main application of microwave imaging techniques in metal corrosion monitor-
ing is as follows: a waveguide probe with primary mode excitation is used to irradiate
structures with electromagnetic waves in the proper frequency range. The amplitude and
phase difference between the reflection coefficients of non-coated and coated samples are
related to the tested layer thickness and dielectric constant. Generally, there is a significant
difference in attenuation and reflection signals between the defect and non-defect areas.
The differential characteristics recorded in the reflection signal are employed to detect and
determine the defect size of the tested sample. The calculation of reflection coefficients
for various media mainly includes deriving the forward and backward propagating elec-
tric and magnetic field components in each layer based on the known incident field and
applying appropriate boundary conditions at each interface. These complex reflection coef-
ficients refer to the complex number of spectral changes in their phase and amplitude. The
measurement data will provide information about the location and size of defects [66]. This
highly sensitive interaction is a function of defect size and position within the waveguide
aperture [61].

2.4. Eddy Current Detection

Eddy current testing (ECT) is based on the interaction between the main magnetic field
and the tested material to generate eddy currents within the specimen [67,68]. Discontinuity
features such as corrosion and material loss can be detected by monitoring changes in coil
impedance or measuring induced magnetic fields [36,67,69]. The significant advantage of
ECT is that it can detect defects under high-temperature conditions, and its probes can
be made into various shapes to adapt to different objects. However, the ECT detection of
deeper defects within the material substrate still faces issues of lower penetration depth and
skin effects of ferromagnetic materials [35]. Traditional ECT works at a single frequency,
where a sine wave drives the excitation coil, of which the application, in the case of non-
conductive composite materials, may be limited by penetration depth due to the impact
of delamination on the signal-to-noise ratio [70,71]. Typical eddy current probes include
impedance change probes and excitation detection probes. Several commercial probes, such
as absolute and differential tube probes, electric rotary probe coils, and array probes, have
been widely used for pipeline detection [72]. ECT has several advantages: (1) non-contact
detection can penetrate the coating layer without coupling medium; (2) defects can be
detected under the condition of high temperatures, and the probe of ECT can be made into
various shapes to adapt to different objects; (3) it has a higher sensitivity to near-surface
defects [35].

The general schematic of the pulse eddy current (PEC) system is depicted in Figure 5a,
by which Yunze He et al. [73] investigated the corrosion problem of soft steel (S275). The
PEC response caused by corrosion is a complex combination of many factors. The two time-
domain features extracted from the PEC response, representing the changes in conductivity
and permeability of the corrosion layer or actual corrosion area, are generally used to
characterize corrosion behavior. Additionally, the relationship between PEC characteristics
and exposure time, which can be used for measuring corrosion rate and early corrosion
assessment and prediction, has been derived. The experimentally obtained values and
fitting lines of PV (Bnorm) for uncoated and coated samples are shown in Figure 5b [73].
The measurements at different exposure times were performed under the same excitation,
taking the average measured results as the experimentally obtained values.
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Figure 5. A typical schematic of the PEC system (a), as well as the measured values and fitted lines of
PV(Bnorm) for uncoated and coated corrosion (b) Reprinted with permission from Ref. [35]. 2019,
Elsevier and from Ref. [73]. 2012, IEEE.

2.5. Acoustic Emission

Acoustic emission (AE) refers to the phenomenon where a material emits transient
sound waves locally due to the rapid release of energy. The deposition of corrosion
products, the rupture of passivation films, and the initiation and propagation of cracks all
generate AE signals with different characteristic parameters [38,74]. Therefore, based on
this information, the occurrence time, starting sites, and severity of corrosion damage can be
determined. The application of acoustic emission techniques in electrochemical corrosion
research has a history of more than 40 years, with existing research mainly focusing on
monitoring acoustic emission signals during the electrochemical corrosion processes to
determine the corrosion locations and degrees.

Actually, during the electrochemical corrosion process, the generation and movement
of hydrogen gas, stress changes of the metal surface, deposition of corrosion products,
rupture of passivation films or salt layers, and oxygen reduction may all be sources of
acoustic emission. Meanwhile, it is necessary to establish the relationship between acoustic
emission signals and electrochemical corrosion rate, corrosion potential, etc. Based on this,
it is possible to identify the characteristic acoustic emission signals in the electrochemical
corrosion process and clarify the corresponding physical correspondence [75]. The applica-
tion of AE in the on-site measurement of small-diameter drilling processing status is shown
in Figure 6.

Figure 6. Experimental setup and the AE measurement system mounted on a small automatic drilling
machine Reprint with permission from Ref. [76]. 2024, MDPI.

However, the difficulty in AE monitoring under normal and high-temperature condi-
tions is how to analyze the signal. The diversity of AE sources and the suddenness and
uncertainty of signals pose significant challenges to analyzing AE data and establishing
corresponding relationships between AE signals and corrosion behavior. In addition, atten-
uation of sound signals, reflection of sound waves, mode conversion, structural correlations
or discontinuities, and interference from background noise can all hinder the analysis of
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AE signals [77]. Currently, the commonly used AE analysis method is parameter analysis.
Various signal processing techniques, such as wavelet analysis, modern spectral analysis,
and neural network analysis, have been successfully applied. The development of modal
AE theory and related techniques has provided a new way to further explain AE signals’
physical meaning [75].

AE has been used to monitor the coupled environmental cracking process in high-
temperature and high-pressure water environments [78,79]. Yuyama et al. [80] believe
that compared to room temperature, the oxide film formed on the surface of materials in
high-temperature and high-pressure water environments is thicker and that the amplitude
of AE signals generated by crack initiation and propagation is relatively higher, making
it possible to monitor cracks. Alekseev et al. [81] investigated the sensitivity of various
materials to SCC in chloride-containing environments at 300–320 ◦C and 70–80 MPa via
AE. They indicate that the combination of the event count and amplitude of AE signals
can determine cracks’ initiation and instability. Cassagne et al. [82] conducted a similar
study on nickel-based alloy 600 in a simulated PWR environment (290–330 ◦C) but used
characteristic parameters such as the AE signal’s amplitude, energy, and rise time. Máthis
et al. [78] and Xu Jian et al. [79,83] studied the SCC process of solid solution and sensitized
304SS in high-temperature and high-pressure water. The AE signals generated during the
transgranular SCC process include sudden and continuous types, with corresponding AE
sources being crack propagation and plastic deformation [78,83]. However, only contin-
uous AE signals are generated during the intergranular SCC process, corresponding to
plastic deformation [79]. Although some studies suggest that AE is highly sensitive to the
very early stages of crack development in high-temperature water, there are few related
studies [84].

Various other non-invasive corrosion monitoring technologies are also widely used in
engineering practice. Multi-frequency electromagnetic sensors, consisting of a transmitter
and receiver coil, can be used for the corrosion and integrity detection of oil pipelines. Due
to the skin effect, low-frequency electromagnetic scanning can calculate the thickness of
pipeline metal, while high-frequency electromagnetic scanning can detect the characteristics
of the inner wall [44]. Optical fiber sensors (OFS) are also small, flexible, lightweight,
susceptible, and compatible with fiber optic data communication networks, which can
measure corrosion in several areas within a single optical channel. Passive radio-frequency
identification (RFID) sensors, especially chipless passive RFID sensors, are a comprehensive
wireless sensor family for pipeline corrosion, with low cost, compact size, lightweight, and
remote sensing [8]. These non-destructive monitoring techniques are primarily based on
physical methods, which monitor the contour, depth, and other characteristic information
of the corrosion layer online and, to some extent, provide information on alloy corrosion
behavior. They have broad application prospects in the corrosion monitoring of pipes and
equipment exposed to sub-/supercritical water systems. Please see the literature for more
detailed information on non-destructive monitoring techniques for alloy corrosion [8,85].

3. Invasive Corrosion Monitoring Techniques

The electrochemical online corrosion monitoring technique has the characteristics of
high sensitivity, fast response speed, stable long-term service, a simple process, and low
cost. It can accurately determine the corrosion rate and form of materials and achieve
automatic feedback control at industrial sites. More importantly, based on alloys’ electro-
chemical corrosion data, corrosion rate prediction, stress corrosion cracking evaluation,
and other related determinations can be carried out. Electrochemical corrosion monitoring
methods have broad application prospects in complex extreme sub-/supercritical water en-
vironments, such as higher temperatures, pressures, and high content of salts and dissolved
oxygen; occurrence in cooled-water nuclear power plants; and advanced supercritical
water treatment equipment.
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3.1. Electrical Resistance Probe

The electrical resistance probe technique obtains corrosion loss and corrosion rate data
by measuring the resistance change of metal specimens. The corrosion products of metals,
such as metal oxides, are mostly non-conductive. If current is applied to a metal sheet, as
corrosion progresses, the thickness of the metal sheet will decrease, increasing electrical
resistance. The corrosion rate can be obtained after extending the information on resistance
variation over time to the relationship between material thickness and corrosion time. This
type of resistance probe is also known as an electronic mount [86,87].

As shown in Figure 7, during the monitoring process, one side of the metal specimen
is exposed to the environment t, and a current goes through the metal specimen. The
electrical resistance of the metal specimen can be calculated as follows:

R = ρ
l
A

(1)

In the formula, ρ represents the conductivity of the metal test piece, A is the cross-
sectional area of the metal piece, and l stands for the length.

Figure 7. Schematics of the electrical resistance sensor for corrosion measurement: (a) the measure-
ment circuit and (b) a three-dimensional diagram of the sensitive and compensation elements Reprint
with permission from Ref. [88]. 2022, MDPI.

Liu et al. [88,89] used an electrical resistance probe to study the corrosion of pipeline
steels, as depicted in Figure 7. As corrosion progresses, by monitoring the change in
resistance value, the change in corrosion thickness can be derived based on Formula
(1), thereby obtaining information on corrosion loss and corrosion rate. The electrical
resistance probe technique is available for measurement in liquid solutions (electrolyte or
nonelectrolyte), gas environments, and other media. It has the characteristics of relatively
simple operation, easy maintenance, and easy data analysis. Moreover, it can achieve
real-time corrosion data collection and transportation. Compared with other monitoring
methods, it is highly reliable and has a better economy, making it widely used in industries
such as oil and gas production, pipelines, the chemical industry, cultural relic preservation,
and power generation.

3.2. Electrochemical Corrosion Potential

When electrochemical corrosion is carried out on an isolated metal material, the
cathodic and anodic reactions occur at the same potential, which is the mixed potential of
these two electrode reactions coupled with each other. In corrosion electrochemistry, it is
called the electrochemical corrosion potential (ECP) [90]. Since the corrosion of materials in
aqueous solutions is essentially controlled by electrochemical processes, there is a specific
correspondence between the ECP of materials and their corrosion behavior. Therefore,
measuring ECP can be used to determine the corresponding corrosion status of materials,
which can serve as a basis for adjusting environmental parameters and achieving the goal
of controlling corrosion behavior. The measurement of ECP has no interference with the
tested system and can perform in situ, non-destructive, long-term continuous measurement.
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Constructing an alarm system based on the changes in ECP signals is easy and suitable for
on-site corrosion monitoring.

The ECP test results for two nickel-based alloys are shown in Figure 8 [91]. In fact,
in most studies, the OCP test results are used to roughly represent the ECP values; the
ECP described in Figure 8 is the OCP test result. Figure 8a shows that the corrosion
potential of 690 and 800 alloys monotonically decreases with the increase in pressure at
25 ◦C. Figure 8b shows that at a constant pressure of 10.0 MPa, the self-correction potential
of 690 and 800 alloys varies with temperature at different temperatures, which can be roughly
divided into two temperature influence intervals. The first temperature influence interval is
from 25 ◦C to 250 ◦C, and with the increase in temperature, the self-corrosion potential of
690 alloy and 800 alloy decreases almost linearly, with the second temperature range being
250 ◦C to 300 ◦C. The average self-corrosion potential of 690 alloy and 800 alloy is very similar.

 

Figure 8. Typical dependence of ECP (OCP) on (a) pressure at 25 ◦C and (b) temperature at 10 MPa
for Alloy 690 and Alloy 800 Reprinted from Ref. [91]. 2013, Elsevier.

The acquisition of ECP data requires using a potential meter with a high internal
resistance (significantly greater than 106 Ω) to monitor the system composed of the working
material to be tested and the stable reference electrode. As for the ECP of materials, it is
usually necessary for guiding the polarization curve measurement, assisting the drawing
of potential–pH diagrams (E–pH), as well as determining the critical or sensitive potential
ranges for local corrosion behaviors, such as pitting corrosion, crevice corrosion, and stress
corrosion cracking (SCC). Based on the mutual verification relationship between these
electrical corrosion data, judging whether the material will undergo corrosion problems is
convenient.

ECP monitoring at nuclear power plants is the most representative application. So
far, ECP monitoring is the only method not requiring depressurization, current limiting,
or cooling sampling to obtain in situ electrochemical information on the water chemistry
and corrosion environment of advanced water-cooled nuclear reactors. Currently, ECP is
mainly used as a data reference for the hydrogenation water chemistry of BWRs and PWRs
and the oxygenation water chemistry of PWR secondary circuits in nuclear power corrosion
monitoring [92]. Corrosion prevention and control can be achieved by adjusting the ECP
below the SCC critical potential and to the stable range of the oxide film by combining the
E-pH diagram [93,94].

Due to each nuclear power plant’s different operating environmental parameters,
the consistency of ECP monitoring results is poor. Therefore, conducting online ECP
monitoring at each nuclear power plant is necessary. However, there are still the following
issues in the current ECP monitoring of nuclear power plants: (1) there is no mature high-
temperature reference electrode that fully meets the long-term monitoring requirements; (2)
due to the complex structure of nuclear power plants, the corrosion reactions occurring at
different structural sites are also complex. The cost is high once the online ECP monitoring
is performed on many sites.
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The theoretical calculation of ECP can somewhat solve the complex, costly online
monitoring problem. Christensen et al. [95], Dixon et al. [96], and Burn et al. [97] proposed
a water radiolysis model that can calculate the concentrations of oxidation–reduction sub-
stances at selected locations inside nuclear power plants. Kim et al. [98] and Macdonald
et al. [99,100] combined the water radiolysis model with the mixed potential model and
then proposed a semi-empirical formula based on laboratory test results to calculate the
ECP value of 304SS at a selected location inside the BWR reactor. Macdonald et al. [101]
also extended the ECP calculation to PWR. However, due to the lack of primary thermody-
namic data, there are currently no reports on ECP calculations for other materials, and the
reliability of the calculated ECP values also needs to be verified.

3.3. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a frequency-domain data analysis
that studies the variation of electrochemical impedance with frequency by applying a small-
amplitude sinusoidal AC excitation signal when the electrochemical system is under a stable
DC polarization condition. EIS measurement has a lower system disturbance and a wide
testing frequency range. It can obtain in situ dynamics data on electrochemical processes
and electrode interface structure information related to electrochemical corrosion without
damaging the system. It is suitable for online corrosion monitoring. On the other hand,
there is an approximate linear relationship between disturbance and the corresponding
system, which can simplify the mathematical processing of test results. As a branch of
the impedance spectroscopy technique, dynamic electrochemical impedance spectroscopy
can obtain richer electrochemical information and has been used in the study of material
passivation films [102].

Electrochemical impedance spectroscopy contains rich information on the microscopic
mechanisms and microscale process dynamics behind electrochemical corrosion behav-
ior [103,104]. However, most studies usually use the “direct equivalent circuit method”
to analyze electrochemical impedance spectroscopy data, which can only obtain macro-
scopic values of equivalent circuit components in the corrosion system, such as resistance,
capacitance, etc., and fail to provide microscale process information such as atomic-scale
dynamics of alloy corrosion. Establishing an impedance mathematical model of the alloy
matrix | passivation film system based on the corrosion microscale process is a crucial
foundation for obtaining information on the corrosion microscale process by analyzing
electrochemical impedance spectroscopy data. The Bode plots of several typical impedance
spectrum test results are shown in Figure 9.

 

Figure 9. Typical electrochemical impedance spectroscopy data for (a,b) alloy 690 at 200–300 ◦C
Reprinted from Ref. [105]. 2018, Elsevier and for (c,d) 316L stainless steel in subcritical and supercriti-
cal water Reprinted from Ref. [106]. 2019, Elsevier.
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Ai et al. [107] and the authors of this paper [108,109] have employed the point defect
models and the experimentally obtained EIS data to analyze the atomic scale corrosion
anodic processes of some metals and alloys, such as zirconium alloy, stainless steel 304,
and nickel-based alloy 600, under high-temperature conditions. For example, Ai et al. [107]
pointed out that the rate constant of “the transformation from zirconium atom to the lattice
zirconium within ZrO2” at the interface of the polycrystalline zirconium matrix/passivation
film at 250 ◦C is 2.42 × 10−15 mol·cm−2·s−1, with a charge transfer coefficient of approxi-
mately 0.27. The authors’ previous research found that the growth of the barrier layer of
the passivation film and the thickening of the film’s porous outer layer are determined by
two atomic-scale processes at the interface between the passivation film and the substrate
of stainless steel 304 in a PWR coolant simulation solution at 300 ◦C. They are, respectively,
the process of the chromium-predominant metal atoms converting into lattice cations
in chromium-rich oxides of the barrier layer and the transformation process of the iron-
dominated metal atoms, which release electrons and enter the passivation film in the form
of cation interstitials. The reaction rates are all approximately 10−11 mol·cm−2·s−1 and
are influenced by water chemistry parameters such as pH value and dissolved oxygen
content [109]. In the similar simulated solutions of the primary circuit coolant of PWRs,
the rate of metal atom conversion to cations at the interface between the alloy substrate
and the passivation oxide film for nickel-based alloy 600 is relatively lower, ranging from
1.5–4 × 10−12 mol·cm−2·s−1, than that of the stainless steel 304 [108]. The relevant content,
such as point defect theory and electrochemical impedance spectroscopy analysis, has been
detailed in our previous articles [1,110] and will not be further elaborated here.

3.4. Electrochemical Noise

Electrochemical noise (EN) refers to the random non-equilibrium fluctuation phe-
nomenon of electrochemical state parameters (such as electrode potential, external mea-
sured current density, etc.) during the evolution of electrochemical dynamic systems [111].
This fluctuation phenomenon provides rich evolutionary information for the system. The
electrochemical noise technique has been widely applied in industrial electrochemistry,
including metal corrosion and protection, chemical power supply, and metal electrodeposi-
tion [111,112]. As an in situ, online, and non-interference detection method, it can monitor
the uniform and local corrosion of materials online and the type and strength of corrosion
remotely [113].

When applying electrochemical noise techniques to monitor electrochemical corrosion
in high-temperature water, attention is usually paid to corrosion potential or current noise.
Monitoring the current noise usually involves connecting two working electrodes of the
same material through a zero-resistance meter to monitor the coupling current between
them. However, monitoring potential noise requires using reference or pseudo-reference
electrodes, which face the same hardware limitations as ECP testing. In addition, the
difficulty of applying EN in high-temperature water systems lies in how to reduce the
internal noise of equipment to improve the accuracy and precision of data [84]. The key
to successful monitoring is to use stable and reliable reference electrodes, ensure high
conductivity of the test solution [114], and reduce the distance between the test electrode
and the reference electrode to reduce background noise [115].

Figure 10 shows an example of EN monitoring results for Q235B steel exposed to the
atmosphere of Tianjin city for 20 days [86]. When the humidity is low, the electrochemical
current noise (ECN) and electrochemical potential noise (EPN) amplitudes are very small,
with only a few nanoamps and millivolts, indicating a significantly lower corrosion rate.
When the relative humidity increases to 65%, the fluctuation amplitude of ECN and EPN
substantially increases, and the corrosion rate of Q235B steel correspondingly increases. The
evolution of noise resistance (Rn) is closely related to humidity. As humidity rises, Rn values
decrease accordingly; Rn increases correspondingly with the decrease in moisture [116].
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Figure 10. EN monitoring results of Q235B steel exposed to Tianjin urban atmosphere over
20 days. (a) electrochemical potential noise; (b) electrochemical current noise; (c) relative humidity;
(d) temperature; (e) noise resistance; (f) ECN standard deviation; (g) EPN standard deviation
Reprinted from Ref. [116]. 2017, SAGE journals.

On this basis, analyzing EN data and extracting feature information containing elec-
trochemical processes is crucial. The analysis of EN data can usually be divided into two
types: time-domain and frequency-domain. Time domain analysis is a visual inspection,
image fitting process (transient analysis), or statistical analysis of the original EN data.
The temporary shape contains basic information about electrochemical processes. Some
characteristic parameters obtained from statistical analysis, such as standard deviation,
root mean square value, skewness, local index, etc., can be used for qualitative evaluation
of pitting, SCC, and crevice corrosion processes [117], and the obtained noise resistance can
quantitatively evaluate corrosion rate [118]. Some studies use the Fast Fourier Transform
(FFT) or Maximum Entropy method, converting the EN signal from a time domain to a
frequency domain and obtaining the Fourier spectrum or power spectral density [119].

In 1968, Iverson observed, for the first time, the random fluctuation of corrosion
electrode potential over time in a corrosion electrochemical system (i.e., electrochemical
noise) [120]. In the last decade, the application of electrochemical noise techniques in
corrosion science and related scientific fields has increasingly attracted widespread at-
tention. In the study of the local corrosion of metals, electrochemical noise can be used
to determine corrosion types and study pitting corrosion and stress corrosion cracking
characteristics. At the same time, the electrochemical noise technique can also be applied
to coating performance evaluation and corrosion inhibitor screening, providing a powerful
technique for studying material corrosion problems, protection, and surgical support.

Some scholars at home and abroad have adopted electrochemical noise techniques to
investigate corrosion issues in high-temperature and high-pressure water systems. Zhou
et al. [121] found a linear relationship between the weight loss rate of 304SS in high-
temperature water and the reciprocal of noise resistance, consistent with the research
results in room-temperature systems. Macák et al. studied the corrosion behavior of
304SS [122] and 08CH18N10T steel [123] in high-temperature water. They found that
during the initial soaking stage, the noise resistance increased first and finally became
stable. The average corrosion rate calculated using the experimentally obtained noise
resistance is consistent with the EIS results. Song Shizhe et al. [124] performed the EN
monitoring for stainless steel and carbon steel pipelines in the laboratory and industrial
sites. They found that as the temperature increased, the measured noise resistance showed
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a decreasing trend, and the value of the noise resistance corresponded to the rust on
the surface of the pipeline. Another critical piece of research in the exploratory stage
focuses on the online monitoring of EN signals for environmentally assisted cracking.
Preliminary research has indicated that electrochemical noise signals are more sensitive
to crack propagations, during which both the current signal’s increase and the voltage
signal’s decrease can be monitored simultaneously [125,126]. If the crack propagation is
discontinuous, a potential reduction with a long time interval will occur, accompanied
by a significant increase in current. Suppose the crack rapidly expands and the surface
oxide film does not have time to undergo re-passivation. In that case, it will decrease the
potential signal and cause a continuous increase in the current signal [126]. However, due
to the weak noise signals generated during the initiation and early propagation stages of
cracks and the high interference of background noise, it is challenging to study the initial
stage of environmentally assisted cracking using the EN technique.

3.5. Research Platform of In Situ Electrochemical Corrosion Testing

To investigate the electrochemical corrosion of alloys in high-temperature and high-
pressure water systems, it is necessary to establish a research platform for simulating
experimental environments. MacDonald and his group have extensively researched high-
temperature electrochemical corrosion [127–130]. They have designed the circulating flow
loop with a hydrodynamic autoclave vessel, as shown in Figure 11, which contains the stor-
age tank, a high-pressure positive displacement pump (2 L/h capacity pulsating diaphragm
pump), a hydraulic accumulator, a regenerative heat exchanger (cooled by freshwater),
and so on. The circulating flow loop with a hydrodynamic autoclave can continuously
update the solution in the reactor, keep the simulated solution in the testing area fresh, and
avoid the interference of impurities and salt deposition during long-term experimental
processes. Due to the existence of circulating loops, the reactor’s design requirements and
production costs are reduced. In addition, the circulating flow loop with a hydrodynamic
autoclave designed in the research platform is consistent with most engineering practical
application scenarios. The reference electrode is the core component of the electrochemical
research platform, which mainly includes various reference electrodes such as hydrogen
electrodes, YSZ electrodes, metal/metal oxide electrodes, external pressure balance refer-
ence electrodes, etc., especially the YSZ electrode, which has been successfully applied in
high-temperature conditions exceeding 500 ◦C [1,106]. These contents are extensive and
complex and will be further explored in another review article.

Figure 11. Once-through recirculating flow loop with hydrodynamic autoclave vessel Reprinted from
Ref. [129]. 2010, Elsevier.
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Based on the research platform established by Macdonald’s group, researchers from
the Institute of Metals (IMR) in the Chinese Academy of Sciences have developed a high-
temperature electrochemical research platform that can monitor and control water quality,
as shown in Figure 12. Two refreshed autoclaves were connected in series in the loop,
with autoclave 1 arranged in the upstream section. Both autoclaves are made of stainless
steel and have a 2 L volume. Autoclave 1 is lined with pure Ni, while autoclave 2 is not.
These two autoclaves could be used collectively or solely during the exposure experiments. The
inlet and outlet water chemistry parameters, namely dissolved oxygen concentration (DO) and
conductivity, were monitored with METTLER TOLEDO Thornton Model 3X7-210 (METTLER
TOLEDO, Zurich, Switzerland) dissolved oxygen sensors and Model 240-201 conductivity
sensors, respectively. A computer with Labview 8.5 software was used to control temperature
and DO. Temperature fluctuations in both autoclaves were controlled well within ±0.5 ◦C, and
DO fluctuation in inlet water was within ±10 ppb (by weight) [131–133].

Figure 12. Schematic diagram of the high-temperature and high-pressure water loop in IMR Reprinted
with permission from Ref. [131]. 2017, Elsevier.

Huang et al. investigated the corrosion electrochemical characteristics of nickel-
based alloy 690 using the research platform, as shown in Figure 13 [134]. Figure 13a
shows potentiodynamic polarization curves for Alloy 690 at 300 ◦C in 1500 ppm B and
different concentrations of Li solutions without Zn injection. As the pH value increases, the
electrochemical corrosion potential sharply decreases, and the passivation current density
slightly decreases. This indicates that the 690 alloy forms an oxide film in all pH solutions
studied and exhibits good corrosion resistance in alkaline solutions. Figure 13b shows the
polarization curves of 690 alloy in solutions with different zinc concentrations at 300 ◦C,
indicating an increase in zinc concentration enhances corrosion resistance. The passivation
current density is 10−4 A·cm−2.
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Figure 13. High-temperature potentiodynamic curves for Alloy 690 at 300 ◦C (a) in different pH
solutions without Zn, (b) in solutions with 1500 ppm B, 2.3 ppm Li, and several Zn concentrations
Reprinted with permission from Ref. [134]. 2011, Elsevier.

Li et al. from Xi’an Jiaotong University (XJTU) developed a new generation of multi-
functional electrochemical research platforms, as shown in Figure 14 [135]. It comprises
a high-pressure gas injection circuit, a low-pressure gas dissolution control circuit, a sub-
/supercritical hydrochemical research device, and a sub-/supercritical water primary cir-
cuit. By comparison, this system directly introduces the target gas into the reactor through
a liquid gas tank, which can effectively increase the upper limit of the dissolved gas concen-
tration in the solution and is suitable for studying the effect of high-concentration liquefied
gas on the electrochemical corrosion behavior of materials. Meanwhile, high concentra-
tions of dissolved gases are beneficial for electrochemical catalytic synthesis. On the other
hand, the combination of wire-through-type high-temperature sealing components, high-
temperature insulation sealing materials, threaded connections, and welding can achieve
sealing and insulation between the electrode and the reactor under high-temperature and
high-pressure conditions. The hanging connection method improves the flexibility of the
electrode and makes it less susceptible to mechanical impact damage.

 

Figure 14. Photo show of a multi-functional sub-/supercritical water electrochemical research
platform built in XJTU. (a) the main view of the research platform, (b) autoclave, (c) Reactor base and
electrode arrangement.
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Yang and Li et al. [136] obtained the electrochemical corrosion data of nickel-based alloy
690 samples in simulated primary coolants of PWRs at temperatures of 200–300 ◦C. The simu-
lated primary coolant is a lithium borate solution with a dissolved oxygen concentration
of 400 ppb, 2000 ppm B, and 2 ppm Li. As shown in Figure 15, as the experimental tem-
perature increases, the open circuit potentials of alloy 690 decrease from −0.553 VSHE to
−0.783 VSHE. On the other hand, the current density is independent of the formation
potential of the passivation film at the same temperature. In addition, the study also tested the
electrochemical impedance spectrum at open circuit potentials, and the results showed that the
absolute value of impedance decreased with increasing temperature, indicating a decrease in
overall corrosion resistance. This is consistent with the current behavior of passivation.

Figure 15. Change of open circuit potential with temperature (a), variation of the passive current
densities with typical anodic potentials and temperatures (b), and Bode diagrams (c) for alloy 690 in
lithium borate solutions Reprinted with permission from Ref. [136]. 2019, Elsevier.

In summary, the current research apparatus used for electrochemical testing in high-
temperature and high-pressure water systems are mainly the continuous flow platforms
established by scholars represented by McDonald. New platforms are upgraded and rebuilt
based on them. These continuous platforms solve the problems of solution contamination
and salt deposition in sequential batch platforms. They are often used to simulate the
corrosion problem of the primary circuit of PWRs. However, due to the issue of electrode
sealing insulation, it is challenging to apply it to tests above 300 ◦C. The newly established
platform developed by Li’s team at Xi’an Jiaotong University based on McDonald’s design
concept can meet the higher temperature requirements of 550 ◦C and achieve a wide
adjustable content range of interested dissolved gases in the system [137]. In addition,
the research platform based on tube furnaces designed by Sen Lin et al. introduces a
new electrode installation and sealing method, which can further increase the operating
temperature to 700 ◦C [138].

4. Conclusions

Subcritical/supercritical water is widely employed in energy and environmental fields.
The extremely high temperature and high-pressure hydrochemical conditions, coupled
with the possible existence of corrosive species such as dissolved oxygen and various
inorganic salts, pose significant challenges to developing, designing, and safely operating
various subcritical/supercritical water-related equipment due to corrosion. Studying and
controlling the corrosion behavior of typical materials in sub-/supercritical water systems
is the key to solving the corrosion problem, especially when performing in situ corrosion
monitoring. It helps capture real-time corrosion information and promptly adjust relevant
equipment parameters for corrosion control. It also provides accurate data references for
optimizing and improving various corrosion prediction models.

This paper first comprehensively introduces the fundamentals, advantages and disad-
vantages, and applications of several non-invasive in situ monitoring technologies, such as
ultrasonic measurement, infrared thermal imaging, microwave monitoring, eddy current
detection, and acoustic emission, which can be used in a wide temperature range and
can be employed as portable corrosion monitoring instruments in practical engineering
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applications. Additionally, considering the importance of electrochemical corrosion in the
study of corrosion mechanisms and prediction of corrosion behavior in sub-/supercritical
water systems, invasive in situ electrochemical testing methods, including electrochemical
corrosion potential, electrochemical impedance spectroscopy, and electrochemical noise, are
also discussed in detail. The typical existing electrochemical research platform for sub- and
supercritical aqueous systems can achieve in situ online water chemistry monitoring and
regulation. Some new electrode installation methods, such as using pyrophyllite for sealing
and the hanging connection, may elevate the operating temperature up to 700 ◦C, providing
fresh ideas for upgrading and renovating existing mainstream research platforms.
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Abstract: The correlation between magnetic Barkhausen noise (MBN) features and the surface hard-
ness of two types of die steels (Cr12MoV steel and S136 steel in Chinese standards) was investigated in
this study. Back-propagation neural network (BP-NN) models were established with MBN magnetic
features extracted by different methods as the input nodes to realize the quantitative prediction of
surface hardness. The accuracy of the BP-NN model largely depended on the quality of the input
features. In the extraction process of magnetic features, simplifying parameter settings and reducing
manual intervention could significantly improve the stability of magnetic features. In this study, we
proposed a method similar to the magnetic Barkhausen noise hysteresis loop (MBNHL) and extracted
features. Compared with traditional MBN feature extraction methods, this method simplifies the
steps of parameter setting in the feature extraction process and improves the stability of the features.
Finally, a BP-NN model of surface hardness was established and compared with the traditional
MBN feature extraction methods. The proposed MBNHL method achieved the advantages of simple
parameter setting, less manual intervention, and stability of the extracted parameters at the cost of
small accuracy reduction.

Keywords: magnetic Barkhausen noise; surface hardness; MBNHL; BP-NN

1. Introduction

A mold is a key processing tool for manufacturing parts in machinery manufacturing,
electrical machinery, electrical appliances, and other industrial fields. The quality of its
raw material, die steel, determines the service life of the mold. Surface hardness is an
important indicator of the resistance to external forces and can be used to evaluate the
quality of die steel. With the common indentation surface hardness test method, it is
difficult to measure the surface hardness of complex parts due to sampling problems
and destructive measurements. Fraunhofer IZFP in Germany [1–3] developed a 3MA-II
versatile micromagnetic testing instrument as an alternative tool to the indentation tester
to perform nondestructive evaluation of the surface hardness of ferromagnetic materials.

The microstructures (dislocations, grain boundaries, etc.) of ferromagnetic materials
have a pinning effect on the magnetization behavior of magnetic domains (walls) [4–6].
In addition, the macroscopic mechanical properties (surface hardness) of grains under
externally applied loads are controlled by microstructures and residual stresses [7,8]. In the
micromagnetic detection methods of surface hardness, based on the intrinsic correlation
between surface hardness, microstructure, and magnetic properties of a material [9,10], a
correlation model between magnetic parameters and surface hardness is established by
means of the calibration experimental method [11–13]. Before determining this correla-
tion, it is necessary to explore the extraction method of micromagnetic parameters and
correlation modeling method [14,15].
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The performance of the micromagnetic detection method in the nondestructive evalu-
ation of surface hardness has been verified. Nahak et al. [16] used MBN for nondestructive
characterization of the surface hardness of electro-discharged machined specimens and
found that the peak value and root-mean-square (RMS) value extracted from MBN had
a good inverse proportion with surface hardness. Franco et al. [17] reported the approxi-
mately linear dependence of magnetic parameters (peak position and derivative of peak
height) on the surface hardness of SAE 4140. Liu et al. [18] extracted a total of 11 magnetic
features from magnetic Barkhausen noise and tangential magnetic field signals, established
a multiple linear regression model and a BP neural network model, which realized the
average prediction errors of surface hardness for 12CrMoV (13.7% and 3.7%).

The measurement accuracy of surface hardness with micromagnetic methods depends
largely on the stability of magnetic feature signals and the correlation between magnetic
features and surface hardness [12,19]. Abundant magnetic features have been extracted
from MBN signals using various methods for the characterization of mechanical properties
such as surface hardness. In the commonly used MBN processing method, the MBN butter-
fly curve [20,21] is first plotted, and the peak value, peak position, and other characteristic
values are then extracted from the plotted curve to establish the correlation model for the
quantitative evaluation of surface hardness. VASHISTA et al. [22] introduced two eigenval-
ues of counts and events to describe MBN signals, but the features were greatly affected by
the artificial selection of the threshold and signal interception time. In addition, many schol-
ars also used the features of MBN signals, including root-mean-square, average amplitude,
Barkhausen noise energy, number of counts of the Barkhausen effect impulses [23], and
peak-to-width ratio [24] to evaluate the mechanical properties of materials. MBN signals
are random noise signals, so the signals collected at different times showed the differences
in the peak value and width. Conventional MBN feature extraction methods have some
problems, such as complex parameter settings and many manual interventions. Therefore,
it is urgent to develop a new feature parameter extraction method to improve the stability
of features.

In this study, based on the consideration of the complex parameter setting and frequent
manual intervention in the plotting process of MBN butterfly curves and the feature
extraction process, a hysteresis loop-shaped MBNHL method was introduced to extract
magnetic features. Then, the quantitative prediction of surface hardness of Cr12MoV steel
and S136 steel was carried out with self-developed dual-function micro magnetic detection
sensors and devices. The MBN butterfly curve and MBNHL curve were plotted with the
same set of collected data, and the repeatability of the two methods in extracting magnetic
features was evaluated with the coefficient of variation. The magnetic features extracted by
the MBNHL method had higher repeatability. Based on the comprehensive consideration
of the repeatability of two methods for extracting magnetic features and the performance
of magnetic features in surface hardness evaluation, a BP-NN characterization model for
surface hardness was established. Compared with the model established by the MBN
method, the proposed MBNH method realized the advantages of simple parameter setting,
less manual intervention, and stable parameter extraction at the small cost of a slight
reduction in prediction accuracy.

2. Experimental Device and Preparation of Samples

2.1. Experimental Device

In micromagnetic detection methods, multiple magnetic signals (magnetic Barkhausen
noise, tangential magnetic field (TMF), and magnetic incremental permeability (EIP)) are
combined together to characterize the mechanical properties of materials [20,25]. In this
paper, a sensor (Figure 1a) was developed to simultaneously detect two types of magnetic
signals (TMF and MBN). The sensor consisted of a yoke of Fe–Si, an excitation coil, and a
detection element (induction coil and Hall element). The low-frequency excitation field
was provided by a U-shaped yoke with an excitation coil (0.35 mm in diameter and
300 coil turns) wound at the top, which was made of ferrite with a cross-sectional area of
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10 mm × 10 mm. The Hall element (Honeywell SS39E, with a dynamic operating range of
±1000 Gs and a sensitivity of 1.4 mV/Gs) and the induction coil (800 turns in total) in the
sensor were used to detect the TMF signal and the MBN signal at the specimen surface,
respectively. A Zn–Mn ferrite core (height = 9 mm; diameter = 2 mm) was embedded inside
the induction coil to enhance the strength of detected signals.

(a)  (b)  

Figure 1. Schematic diagram of MBN detection device. (a) configuration of the sensor. (b) Picture of
the micro-magnetic testing system.

The experimental device used in this study consisted of a PXI chassis (including
a signal generation card and data acquisition card), a power amplifier BOP100-400L, a
bipolar power supply, a micromagnetic sensor, and a LABVIEW-based control and analysis
software (Figure 1b). The sinusoidal signal (frequency = 12 Hz, amplitude = 8 V) generated
by the signal excitation card was first amplified by the BOP power supply and then fed
into the excitation coil of the transducer to generate an alternating magnetic field for cyclic
magnetization of the specimens. During the cyclic magnetization of the material, the
induction coil received the MBN signal, and the Hall element was used to measure the
TMF strength change on the material surface. The sampling frequency and the number of
sampling points were kept as 1 MS/s and 1 M, respectively. MBN and TMF signals were
acquired by the NI PXIe multichannel acquisition card and processed with the LabVIEW
2015 software in the host computer.

2.2. Sample Preparation

In this study, two die steels (Cr12MoV steel and S136 steel in Chinese) were selected
to prepare the specimens to be tested. For each material, 60 specimens with the same size
(length × width × height = 200 mm × 60 mm × 3 mm) were cut from the steel plate in
the rolling direction. Both materials were subjected to the same quenching and tempering
processes, and the surface hardness of specimens was adjusted by changing the tempering
temperature. The main processes are introduced as follows: Firstly, in the quenching
process, all specimens were gradually heated to 1030 ◦C. Temperature and holding time
are shown in Figure 2a. Secondly, in the tempering process, the specimens of each material
were divided into 12 batches (5 specimens per batch), and the specimens of Cr12MoV
steel and S136 steel were tempered in batches for 210 min in the range of 180 to 720 ◦C
to obtain steel plate specimens with different hardness. The thermally treated specimens
were polished at the center (Figure 2b). The MBN and TMF signals of the two materials
(a total of 120 specimens) were first tested with a micromagnetic testing system, and then
the surface hardness of specimens was tested with a Vickers hardness tester (30 HV with a
30-kg load). The micromagnetic testing and Vickers hardness measurements were carried
out in the same magnetized area (Figure 2b).

159



Sensors 2024, 24, 2051

(a) (b) 

Figure 2. (a) Thermal treatment process and (b) dimensions of hardness specimens.

The entire specimen was placed in the furnace for heat treatment, so each specimen
was assumed to have a uniform hardness. After testing the magnetic signals of all samples,
a microhardness tester (HV30 with a load of 30 kg) is used to test the Vickers hardness value
of the specimen surface. It is worth noting that the microhardness test position should be
consistent with the magnetic signal test position. To ensure the accuracy and reliability
of the test results, three tests were conducted at close positions on the specimen, and the
average value was calculated. The average values of the three tests are shown in Figure 3.
The surface hardness of Cr12MoV and S136 steels fluctuated within the ranges of 350 HV
to 750 HV and 250 HV to 600 HV. The five specimens in the same batch had similar surface
hardness with slight differences.

(a) (b) 

Figure 3. Test results of tempering temperature and surface hardness of (a) Cr12MoV and (b) S136.

2.3. MBN Detection Experiments

To evaluate the repeatability of the MBN and TMF signals, 60 specimens of each
material were tested multiple times. For a single specimen, 15 sets of repeated tests with
MBN and TMF signals were performed at the same location. A demagnetization device
was used to demagnetize the specimens before each test, and a Gauss meter was used
to measure the residual magnetic strength to ensure that the initial magnetic state of the
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samples remained unchanged. Upon the completion of the tests, 15 × 60 = 900 sets of
magnetic signals were obtained for each material.

3. Processing Methods of MBN Signals

The stability of the magnetic features used as model inputs is significant in the con-
struction of an accurate surface hardness model. MBN signals are random, so stable MBN
features are conducive to constructing a high-precision model.

3.1. MBN Butterfly Curve

The MBN butterfly curve describes the variation of the magnetic Barkhausen noise
envelope with the tangential magnetic field strength waveform within one cycle. Plotting
the MBN butterfly curve is a common way to extract MBN features. The plotting process
of the MBN butterfly curve is shown in Figure 4 and includes signal filtering (filter type,
high/low cutoff frequency, order, etc.), signal interception, and curve plotting.

 
Figure 4. Flow chart of plotting the BN butterfly curve and BN loop curve.

In the first step, TMF signals were filtered. The raw signals measured by the Hall sensor
were superimposed with high-frequency interference noise, which should be removed with
a low-pass filter. A Butterworth low-pass filter (cutoff frequency of 200 Hz) was selected to
filter the signals. After the DC bias was removed, the TMF signal was obtained through the
calculation with Equation (1). Figure 5a and Figure 5b, respectively, show the TMF signals
measured in different hardness specimens of Cr12MoV and S136 steel. The TMF signals are
affected by the hysteresis characteristics in the tested specimens, and the TMF waveforms
of different specimens are different.

H =
V

k × μ0
, (1)

where V is the Hall voltage after subtracting the bias; k is the conversion coefficient of
the Hall sensor and equals 1.5 mV/G; and μ0 is the permeability of vacuum and equals
4 × π × 10−7.
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(a) Cr12MoV steel. (b) S136 steel. 

Figure 5. TMF signals for different surface hardness specimens.

In the second step, MBN signals were filtered. The MBN signal is a random electro-
magnetic noise signal. During signal reception, the detection coil outputs a wide-band
signal, so the filtering process of detection signals is required. The correct choice of fil-
tering frequency is crucial for post-processing the noise signal. In this study, a 4-th order
Butterworth band-pass filter (filter frequency band 30 kHz to 90 kHz) was used to filter
the signals detected with the receiver coil. Typical MBN signals measured in the different
surface hardness specimens of Cr12MoV steel and S136 steels are shown in Figure 6a,b.
Both the waveforms and peaks of MBN signals are affected by surface hardness, which
essentially suggests microstructural change.

(a) Cr12MoV steel. (b) S136 steel. 

Figure 6. MBN signals of different surface hardness specimens.

In order to extract the features of MBN, the filtered MBN signals were processed by
sliding average. The window size n was selected for the sliding average and the root-mean-
square (RMS) operation was performed with the data in the window. Starting from the first
data point, the operation then slid to the next data point in sequence. The smoothness of
the MBN envelope is determined by the value of n and should be determined according to
the actual situation. Based on prior experience, in this paper, an n = 400 was selected to
perform four repetitions of sliding RMS operation in order to obtain a smooth MBN signal
envelope.

In the third step, signals were intercepted. In the process of magnetic signal testing,
the initial magnetization and remnant magnetization state of the material interfered with
the obtained signals, and the whole cycle interception of the filtered TMF and MBN signals
could eliminate the interference. In this paper, the 4th maximum point of the TMF signal
was selected as the starting point, and eight cycles of the TMF signal and MBN signal were
intercepted and retained synchronously.
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In the fourth step, the MBN butterfly curve was plotted. The micromagnetic signals
are related to the magnetization process of magnetic domains, which is a random process.
The magnetic features measured in multiple magnetization cycles had random fluctuations.
The intercepted eight-cycle TMF and MBN signals are simultaneously processed with an
average envelope to obtain one-cycle TMF and MBN signals (Figure 7). The magnetic
Barkhausen noise butterfly curves were plotted with the signal envelopes (Figure 7a,b) as
horizontal and vertical coordinates, respectively.

(a) TMF signal. (b) MBN envelope. 

Figure 7. One cycle magnetic signal.

In the process of filtering and sliding the average of TMF and MBN signals, a phase
shift of the signals was inevitable. The magnitude of the phase shift directly affected the
shape of the plotted butterfly curve and magnetic features. Generally, MBN appeared
at the moment of TMF reversal. During signal processing, time-shift adjustment of TMF
signals was performed to improve the quality of the MBN butterfly curve. At present,
phase adjustment between TMF signals and MBN envelope is mainly performed based
on personal experiences and parameter adjustment is not introduced in related theories
or standards.

Figure 8 illustrates the butterfly curve obtained after different time-shift adjustments
from the same data set. In this paper, the time-shift adjustment was performed in such a
way that the peak of the MBN envelope was close to the over-zero position of TMF. Table 1
lists the magnetic features and coefficient of variation σ (σ = standard deviation/mean
value) extracted from the butterfly curves through different time-shift adjustments. A
small coefficient of variation indicated good repeatability and stability of the signals in
repeated experiments. A large coefficient of variation indicated that the system had poor
repeatability detection performance for magnetic covariates, which was not conducive
to the high-precision quantitative characterization of surface hardness. The coefficients
of variation of the magnetic parameters (Hcm, DH75M, and DH50M) extracted from the
butterfly curves respectively reached 38.8%, 23.1%, and 14.6% when the phase was not
adjusted (Table 1). When the time-shift adjustment was performed within about 1/80 cycle,
the coefficients of variation of the repeated detection data of the above magnetic parameters
reduced to 5%. For the actual detection signals in this paper, a time-shift adjustment of the
1/80 cycle was chosen.
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(a) (b) (c) 

Figure 8. Butterfly-like MBN curves of different time-shift adjustments: (a) 0 cycle; (b) 1/160 cycle;
and (c) 1/80 cycle.

Table 1. Coefficients of variation of conventional features extracted from the MBN profile.

Features MBN Signals 0 1/160 1/80 Cr12MoV S136

x1 Peak height of the MBN butterfly curve, Mmax 3.9% 3.9% 3.9% 3.1% 3.5%
x2 Peak position of the MBN butterfly curve, Hcm 38.8% 3.7% 1.5% 1.3% 2.1%
x3 Intercept of MBN envelope at the vertical axis, Mr 3.9% 3.9% 4.1% 3.9% 3.4%
x4 Mean value of MBN envelope, Mmean 3.9% 3.9% 3.8% 3.1% 2.9%

x5
Full width at 75% of maxima of MBN butterfly

curve, DH75M 23.1% 3.5% 1.9% 2.0% 2.4%

x6
Full width at 50% of maxima of MBN butterfly

curve, DH50M 14.6% 3.1% 1.5% 15.4% 9.1%

After the parameter setting was determined during signal processing, the magnetic
features obtained from the surface hardness tests of Cr12MoV steels and S136 steels
(60 specimens for each steel) were analyzed. The average values of the coefficients of
variation for the two materials are listed in Table 1. The DH50M coefficient of varia-
tion was greater than 5%, so it was not used in subsequent surface hardness modeling.
Figures 9 and 10 show the dependency of typical magnetic signatures on the surface hard-
ness of the specimens of Cr12MoV steel and S136 steel. The same magnetic features of
Cr12MoV and S136 steels showed a similar trend with surface hardness. Mmax shows
a decreasing trend with the increase in surface hardness, whereas Hcm values showed
the opposite trend. The difference might be interpreted as follows: The specimens with
high surface hardness had a high percentage of martensitic volume content, which had a
strong pinning effect on magnetic domains. Therefore, the flip of magnetic domains in the
specimen required more energy from the applied magnetic field.

(a)  (b)  

Figure 9. Dependency of the features on the surface hardness of Cr12MoV steel. (a) The relationship
between Mmax (Hcm) and hardness. (b) The relationship between Mr (Hcm) and hardness.
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(a)  (b)  

Figure 10. Dependency of the features on the surface hardness of S136 steel. (a) The relationship
between Mmax (Hcm) and hardness. (b) The relationship between Mr (DH75M) and hardness.

3.2. Calculation of MBN Hysteretic Curve

In the plotting process of MBN butterfly curves, artificial time-shift adjustment is
required and characterized by complicated parameter settings and many manual inter-
ventions. In this paper, we proposed a new processing method for MBN signals, in
which the envelope of MBN signals was integrated to obtain the hysteresis loop-shaped
MBNHL curve and then new features were extracted to determine their relationship with
surface hardness.

The plotting steps of the MBNHL curve are shown in Figure 4. After the MBN
signal processing steps of band-pass filtering, sliding average, and signal interception were
completed according to Step 1 to Step 3 in Section 3.1, the MBN envelope was integrated
and calculated. Firstly, the MBN envelope was averaged over eight magnetization cycles
to obtain the envelope curve for a single magnetization cycle (Figure 11a). Then, with the
first point of the single cycle as the starting point, the envelope of the first half cycle was
integrated, and the envelope of the second half cycle was integrated and flipped. Finally,
a closed curve was obtained through the envelope integration of the first half cycle and
the envelope integration and flipping of the second half cycle. The MBNHL curve was
obtained by integrating the MBN signal envelope so that the MBNHL feature corresponded
to the MBN feature. For example, the maximum slope of MBNHL was the peak value of
the MBN signal, Mmax, and the location where the maximum slope occurred was the peak
location, Hcm. In addition to the features mapped by the MBN envelope, new features
shown in Table 2 could be extracted based on the MBNHL curve.

(a) (b) 

Figure 11. (a) MBN envelope obtained after resampling and (b) MBNHL curve.
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Table 2. Features extracted from the MBNHL and coefficient of the variation.

Features MBNHL Curve Explanation
Coefficient of Variation (%)

Cr12MoV S136

x7 Maximum point on the integration curve, Ea 1.9 1.5

x8
Time difference between two points on the integration curve

corresponding to Ea/2, Wa 1.1 1.1

x9
Maximum time difference for the same integral value on the

integration curve, Wm 1.6 1.2

x10 Height difference between the two integration curve at Ts/4, Hda 3.5 3.5
x11 Maximum difference between two integration curves at the same time, Hdm 3.2 3.2
x12 The area of the closed curve, La 3.6 3.9

Typical MBNHL curves plotted for different surface hardness specimens of Cr12MoV
steel and S136 steel are shown in Figure 12a,b. The MBNHL curve could be used to
distinguish the hardness variation and was sensitive to surface hardness. The coefficients
of variation of the six features extracted from the MBNHL were less than 2% (Table 2),
indicating the highly stable magnetic features extracted by the MBNHL method.

(a) (b) 

Figure 12. MBNHL curves for different surface hardness specimens of (a) Cr12MoV steel and (b) S136
steel.

Figure 13 shows the correlation between MBNHL features and surface hardness.
The peak and area of MBNHL curves for both materials showed a decreasing trend
with the increase in surface hardness. It is worth noting that the changing trend of
one magnetic feature with surface hardness is the same for both materials and shows a
nonlinear correlation.

The key to the quantitative prediction of surface hardness with the micromagnetic
method is to provide stable and reliable input data. Compared with the traditional MBN
butterfly curve method, the waveform processing and features extraction method of the
MBNHL curve showed the advantages of simple parameter setting, less manual interven-
tion, and stable data.
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(a) (b) 

(c) (d) 

Figure 13. Dependency of the features of Ea, La, Hda, and Wa on the surface hardness of
(a,b) Cr12MoV steel and (c,d) S136 steel.

4. Results and Discussion

The mechanism of microstructure influence on magnetic domain motion has not been
well explained [26], so it is not possible to establish an accurate analytical model between
the microstructure of the material and the surface hardness [27]. Therefore, a new method
of micromagnetic nondestructive measurement of mechanical properties is developed to
obtain the macroscopic magnetic feature signals and mechanical properties of materials step
by step through calibration experiments and to establish quantitative prediction models
of mechanical properties using artificial intelligence algorithms. With the multifunctional
micromagnetic inspection instrument, abundant magnetic features that were sensitive
to surface hardness were obtained in Section 3. Considering the nonlinear relationship
between most of the magnetic features and surface hardness and the excellent performance
of neural networks in solving nonlinear problems, a neural network prediction model of
surface hardness was developed with several sensitive magnetic parameters as the input to
characterize surface hardness in the study.

The selection of input parameters directly affects the performance of a BP neural
network model. The mean influence value (MIV) method can be used to evaluate the
weight of the influence of each parameter of the input neural network on output variables.
A BP neural network with a three-layer structure (input, hidden, and output layers) was
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chosen to find the MIV value for each magnetic parameter of the input model, where the
number of neurons in the middle-hidden layer was fixed at 10. The absolute value of MIV
represented the degree of influence of each parameter in the model. Figure 14 shows the
MIV analysis results of both materials.

(a) (b) 

Figure 14. Analysis results of MIV weight coefficients with the data from (a) MBN and (b) MBNHL.

The features were input into the model in descending order of MIV weight coefficients,
and the number of input nodes for the BP model was determined with the training data for
internal validation and RMSE estimation of the BP model. Figure 15 shows the RMSE results
of the BP model with different input nodes. The six magnetic features calculated with the
MBN method were input into the model in descending order of weighting coefficients.
The RMSE decreased significantly when the number of input nodes was increased from
one to five in the models of Cr12MoV and S136 steels (Figure 15a). RMSE increased when
the number of input nodes increased to six (Figure 15a). Therefore, parameters x1, x2, x3,
x4, and x6 were selected and used in the final training phase of the BP model. The same
analysis was performed for the six magnetic features obtained with the MBNHL method
(Figure 15b). The RMSE of the model decreased with the increase in input features, and the
input nodes of the final prediction model for Cr12MoV and S136 steels were x7 to x12.

(a) (b) 

Figure 15. RSME values of the BP model with the input data from (a) MBN and (b) MBNHL.

A BP neural network was used to construct a quantitative prediction model of surface
hardness after the input parameters and nodes were identified. Both the training and
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validation sets were normalized before they were input into the BP neural network model.
The predicted values produced by the model were then subjected to reverse normalization.
Based on the neural network toolbox (nntool) in the Matlab 2020b software, the activation
functions of the hidden layer and output layer were, respectively, the “tansig” function
and the “purelin” function, and the “trainlm” training function. The chosen magnetic
parameters were selected as input nodes, and surface hardness was the output node.

In order to train the model, two-thirds of the magnetic parameters derived from MBN
for Cr12MoV steel and S136 steel were randomly chosen as the training set (600 sets of data),
and the remaining one-third of the data (300 sets of data) was utilized as the validation
set to assess the prediction accuracy of the model. Figure 16 displays the prediction errors
of surface hardness of Cr12MoV steel and S136 steel. For the two materials, the average
prediction errors of surface hardness were 1.4% and 3.25%, respectively. The largest errors
were, respectively, 8.0% and 12.5%. Among the 300 cases, only nine of the S136 data points
had a prediction error of more than 10%.

(a) (b) 

(c) (d) 

Figure 16. Prediction errors of the models based on the parameters obtained with the MBN method
for (a,b) Cr12MoV steel and (c,d) 3Cr13 steel.

When the network structure and model parameters of the BP model were fixed, 2/3
(600 sets of data) of the magnetic parameters generated by MBNHL were randomly chosen
as the training set, and the remaining 1/3 data set (300 sets of data) were used to assess
the prediction accuracy of the model. The average errors of surface hardness of Cr12MoV

169



Sensors 2024, 24, 2051

steel and S136 steel were, respectively, 2.5% and 3.8% (Figure 17). The maximum errors
of Cr12MoV steel and S136 steel were, respectively, 9.9% and 13.7%. In the 300 cases of
Cr12MoV steel and S136 steel, the prediction errors of 22 cases of S136 steel were larger
than 10%.

(a) (b) 

(c) (d) 

Figure 17. Prediction errors of the models based on parameters obtained with the MBNHL method
for (a,b) Cr12MoV steel and (c,d) 3Cr13 steel.

5. Conclusions

In this study, BP-NN and micro-magnetic testing were combined together to achieve
a quantitative prediction of the surface hardness of S136 and Cr12MoV steels. The phase
adjustment in the curve plotting process had a significant impact on the shape of the
plotted butterfly curve and the stability of feature extraction. The generally used MBN
butterfly curve plotting method is easily influenced by personnel experiences. A plotting
and parameter extraction of a hysteresis loop-shaped BN circular curve was proposed in
order to address the problems of complex parameter setting and excessive user intervention
in the plotting process of MBN butterfly curves. Surface hardness and the newly derived
features exhibited a strong association. Compared with traditional MBN feature extraction
methods, the new features exhibited high stability.

For the purpose of making a quantitative prediction of the surface hardness of
Cr12MoV steel and S136 steel, a BP-NN model with the same structural parameters was
established. For Cr12MoV steel and S136 steel, the average prediction errors of the fea-
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tures derived by MBN were about 1.4% and 3.25%, respectively. The average prediction
errors of the features extracted with the MBNHL method were 2.5% and 3.8%, respectively.
Compared to the MBN method, the proposed MBNHL method is characterized by simple
parameter configuration, reduced user intervention, simple parameter extraction, and
comparable prediction accuracy.
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Abstract: This study analyzes the pigments and binders used in the painted wooden structure of
DaZhong Gate in the Confucius Temple in Qufu, Shandong Province, China. Five samples were
collected from the building and analyzed using techniques such as polarized light microscopy
(PLM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy (m-RS), and Fourier-
transform infrared spectroscopy (FT-IR). The findings reveal that the red, yellow, green, and blue
pigments are identified as lead red, lead chromate yellow, emerald green, and ultramarine, respec-
tively. The white pigment is determined to be a combination of chalk and lead white or anglesite.
Considering the production period of the yellow and green pigments, it is inferred that architectural
paintings underwent restoration or repainting during the late Qing Dynasty. The analysis of the
binder in the pigment using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) reveals
that the binder employed is a protein-based glue. Additionally, the detected presence of Heat-bodied
tung oil suggests a potential connection to traditional Chinese painting techniques on wooden sur-
faces. This discovery not only contributes to the historical research of the Confucius Temple but
also provides crucial data for the conservation and restoration efforts of this culturally significant
heritage site.

Keywords: ancient wooden architecture; color painting; pigments; binders; technical analysis

1. Introduction

The Confucius Temple, situated in Qufu City, Shandong Province, China (Figure 1),
was originally erected in the year 479 BCE. This shrine venerates Confucius, the esteemed
ancient Chinese philosopher and educator. The temple’s design mirrors Confucius’s
dwelling and adheres to the architectural standards of an imperial palace. It stands as one of
the four major ancient architectural complexes in China, holding considerable significance
in world architectural history. The temple is of profound historical and cultural importance,
possessing artistic value as well. In 1191 CE, the Confucius Temple experienced substantial
expansion through the construction of additional structures, such as the DaZhong Gate.
In the second year of the Yongzheng reign of the Qing Dynasty (1724 AD), the Temple of
Confucius in Qufu was destroyed by lightning fire, and it took six years to rebuild it. In
1959, the partial restoration of the painted decorations on buildings such as the Shengshi
Gate, DaZhong Gate, and Shengji Hall of the Temple of Confucius in Qufu was carried
out. Over the centuries, the temple has undergone numerous expansions and renovations,
ensuring its preservation to the present day.
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Figure 1. (a) The location of the Confucius Temple in Qufu City, Shandong Province; (b) an aerial
view of the Confucius Temple (figure).

The DaZhong Gate, situated within the Confucius Temple’s ancient architectural
complex in Qufu, is adorned with a plethora of architectural paintings. Ancient Chinese
architectural paintings encompass the artistic practice of embellishing buildings with
colored paintings, reflecting a rich tradition with roots extending back to the Spring and
Autumn Period. Historical records from this era mention the application of red paint
to wooden structures. This artistic form evolved and matured across various dynasties,
including the Qin, Han, Wei, Jin, Southern and Northern dynasties, Sui, Tang, Song, Yuan,
and beyond [1]. The pinnacle of architectural paintings was reached during the Ming
and Qing dynasties [1]. Commonly adorning structures such as temples, palaces, and
government buildings, these paintings typically depict various themes like floral patterns,
dragons and phoenixes, figures, stories, landscapes, and more. Beyond their decorative
function, these artworks serve reflective purposes, offering glimpses into the cultural
characteristics of the society during the respective periods.

The ancient Chinese architectural paintings extensively utilized natural and probably
artificial mineral pigments [2,3]. For instance, the more widely used red pigments are
cinnabar (HgS) [4], hematite (α-Fe2O3), red lead (Pb3O4), and synthetic red lead; the yellow
pigments are orpiment (As2S3), realgar (As4S4) [1], and goethite (FeO·OH); the green colors
are malachite [CuCO3·Cu(OH)2] [5], emerald green [Cu(CH3COO)2·3Cu(AsO2)2], and ata-
camite [Cu2(OH)3Cl]; the blue pigments are lapis lazuli [(Na,Ca)8(AlSiO4)6(S,Cl)2], Chinese
blue (BaCuSi4O10), and azurite [2CuCO3·Cu(OH)2]; the white pigments are lead white
[2PbCO3·Pb(OH)2], synthetic lead white, chalk (CaCO3), and dolomite [CaMg(CO3)4]; and
the black pigments include carbon black (C) and magnetite (Fe3O4). In the Du Le Temple of
the Liao Dynasty (10th century AD), materials such as carbon black, cinnabar, lapis lazuli,
massicot (β-PbO), litharge (α-PbO), and atacamite were used [6]. In the Longju Temple of
the Ming Dynasty (15th century AD), materials like atacamite, azurite, carbon black, and
cinnabar were utilized [4]. In the Taiping Heavenly Kingdom Prince Dai’s Mansion during
the Qing Dynasty (19th century AD), materials such as cinnabar, ivory black (C), indigo
blue (C16H8N2Na2O8S2) and phthalocyanine green (CuC32N8Cl16) were employed [3]. To
express it clearly, some commonly used pigments are listed in Table 1. To ensure adherence
for an extended period on the plaster of wooden structures or silica-based walls, these
mineral pigments were mixed with binders. Binders typically consisted of natural organic
substances like animal skin glue, egg white, casein, peach gum, and linseed oil [7]. For
instance, the binder of the mineral pigments used in Qin Shihuang’s Terracotta Warriors
(3rd century BC) included animal glue and egg whites [8,9]. Animal glue was also found in
the marinade layer of the Western Han Dynasty (3rd century BC) painted pottery terracotta
warriors [10]. Plaster, a traditional Chinese civil engineering technique, was applied to the
surface of wooden structures to prevent decay and moisture while providing a substrate for
painting [11]. The plaster for painting ancient wooden buildings typically comprised tung
oil, flour, lime water, brick powder, and plant fiber. In Qing Dynasty’s Buddhist Temple in
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Beijing (17th century AD), the plaster layer incorporated brick powder and ramie fibers [12].
The Yi Ma Wu Hui layer of Putuo Zongcheng Temple (18th century AD) utilized tung oil,
gray brick powder, and ramie fiber [11].

Table 1. The examples of usage and the enumeration of common pigments mentioned in the
Introduction.

Color Pigment Name Chemical Formula Location of Use

Red
Cinnabar HgS Du Le Temple (10th century AD), etc.
Red lead Pb3O4 Royal Residence (19th century AD)
Litharge α-PbO Du Le Temple (10th century AD)

Yellow
Orpiment As2S3 Assembly Hall (19th century)
Realgar As4S4 Royal Taoist Temple (16th century)

Massicot β-PbO Du Le Temple (10th century AD)

green
Emerald Green Cu(CH3COO)2·3Cu(AsO2)2 Jiangxue Palace (15th century AD)

Atacamite Cu2(OH)3Cl Longju Temple (15th century AD), etc.
Phthalocyanine CuC32N8Cl16 Prince Dai’s Mansion (19th century AD)

Blue
Lapis lazuli (Na,Ca)8(AlSiO4)6(S,Cl)2 Du Le Temple (10th century AD)

Azurite 2CuCO3·Cu(OH)2 Longju Temple (15th century AD)
Indigo blue C16H8N2Na2O8S2 Prince Dai’s Mansion (19th century AD)

White Lead white 2PbCO3·Pb(OH)2 Puren Temple (18th century AD)

Black Carbon black C Longju Temple (15th century AD), etc.

The analysis of mineral pigments entails a thorough examination across three di-
mensions: morphology observation, elemental determination, and composition identifica-
tion [3]. The utilization of polarized light microscopy (PLM) [3,13] facilitates the observation
and assessment of morphological intricacies, optical properties, and crystalline features of
mineral pigments. Advanced techniques, including energy-dispersive X-ray spectroscopy
(EDX) [14], scanning electron microscopy with energy-dispersive spectroscopy (SEM-
EDS) [15], and energy-dispersive X-ray fluorescence (XRF) [16], are employed to determine
the elemental constitution of the pigments. Moreover, sophisticated methods like X-ray
diffraction (XRD) [17], Fourier-transform infrared spectroscopy (FT-IR) [6], and micro-
Raman spectroscopy (m-RS) [18] further delineate the compositional constituents of these
pigments. Throughout this investigation, we employed a combination of analytical tech-
niques for the identification of pigment components. PLM, EDX, m-RS, and FT-IR were
utilized to discern the constituents of the pigments. Simultaneously, pyrolysis–gas chro-
matography/mass spectrometry (Py-GC/MS) [19] was applied to ascertain the composition
of binders within the pigments. This comprehensive approach ensures a thorough under-
standing of both the physical and chemical characteristics of the mineral pigments and
their binder components.

In the current study, small samples of pigments were collected from the ancient
architectural color paintings of the DaZhong Gate in the Confucius Temple, Qufu. Our
investigation involved a thorough analysis of the components present in both the pigments
and binders used in these historical artworks.

2. Materials and Methods

2.1. Pigment Sample Information

On the inner side of the wooden main beam in the DaZhong Gate of the Confucius
Temple, as shown in Figure 2, we collected samples displaying five distinct colors: red,
yellow, green, blue, and white. There is a scale bar with a length of 5 mm in the figure, and
the area of the sample is approximately 1 cm2. All five samples had dirt that was difficult
to remove. To enhance the conservation of the color paintings, each sampled segment was
meticulously chosen from regions either already detached or showing signs of imminent
detachment.
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Figure 2. (a) The DaZhong Gate of the Confucius Temple; (b) marked positions of the sampling
points inside the building; photographs of the sampled pigments: (c) DZ-1 (red), (d) DZ-2 (yellow),
(e) DZ-3 (green), (f) DZ-4 (blue), and (g) DZ-5 (white). The length of the scale bar in the image is
5 mm.

2.2. Experimental Methods and Instrumentation
2.2.1. Polarized Light Microscopy (PLM)

The samples were initially subjected to pretreatment, where pigment particles were
delicately scraped from the specimen using a surgical blade. These particles were then
added to alcohol and dispersed for 30 min using an ultrasonic disperser. The dispersed
pigment suspension was dropped onto a glass slide, and after the alcohol evaporated, a
cover slip was placed over it. Subsequently, the entire slide was heated to 60–70 ◦C on a
temperature-controlled heater, allowing the resin (Meltmount, Cargille; Cedar Grove, NJ,
USA; refractive index of 1.662) to melt and permeate the entire cover slip. The cover slip
was then slid along one side to secure the pigment particles.

Observations were carried out employing a polarized light microscope (Olympus
BX53M, Shinjuku, Japan) with a magnification of 50 × 10.

2.2.2. Energy-Dispersive X-ray Spectroscopy (EDX)

The samples were directly placed on the sample stage for testing in ambient conditions,
with each sample requiring approximately 5 min for analysis. The corresponding results
are shown in Table 2.

Table 2. Overview of techniques used for pigment analysis and elemental composition obtained by
EDX analysis for respective pigment samples.

Sample Color Experimental Methods Elements (Wt %)

DZ-1 Red PLM, EDX, m-RS Pb (57.8), Ba (20.6), Ca (6.6), Si (6.0), Ce (3.7)

DZ-2 Yellow PLM, EDX, m-RS Ca (32.5), Ba (18.9), Zn (16.9), Pb (16.7), Si (7.2),
Cr (4.3)

DZ-3 Green PLM, EDX, m-RS As (35.9), Cu (33.1), Ca (11.5), Si (11.3), S (6.2)
DZ-4 Blue PLM, EDX, m-RS Ca (33.1), S (27.2), Si (25.2), Pb (7.6), K (3.0)

DZ-5 White PLM, EDX, m-RS, FT-IR Ca (33.4), S (22.1), Ba (19.9), Zn (8.5), Si (7.3),
Pb (3.3)

Energy-dispersive X-ray spectroscopy (EDX, EDX-7000, Shimadzu, Kyoto, Japan) was
employed for the elemental characterization of the pigments. The X-ray tube within the
EDX system comprised a rhodium target and a silicon drift detector, enabling the detection
of various elements spanning from sodium (Na) to uranium (U).
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2.2.3. Micro-Raman Spectroscopy (m-RS)

The samples were directly placed on glass slides and positioned on the sample stage.
Utilizing a microscope system, crystal particles within the samples were located, and
Raman spectra were acquired using the Renishaw Invia reflection system (Invia Reflex,
Renishaw, UK).

Micro-Raman spectroscopy was employed for the spectral analysis of pigment samples.
It utilized a grating with 400 lines/mm and a 2-micron spot size, covering a spectral range
from 100 cm−1 to 3500 cm−1. Excitation wavelengths of 532 nm and 785 nm were available.
The objective had a magnification of 50×, with an exposure time of 30 s, an accumulation
time of 1 s, and a laser power of 2 mW. The Renishaw Wire software version 4.3 (Wotton-
under-Edge, UK) was used for spectrum processing equipped with an argon ion laser, Leica
microscopes, and a charge-coupled detector (CCD).

2.2.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

Potassium bromide (KBr) was placed in a drying oven at 300 ◦C for 3 h. Pigment
particles were delicately scraped from the specimen using a surgical blade. Subsequently,
the scraped pigment particles weighing 2 mg in total were mixed and ground with 150 mg
of dried potassium bromide, and the resulting mixture was pressed into a thin plate using
a hydraulic press.

Fourier-transform infrared spectroscopy (FT-IR, Thermo Scientific Nicolet iS10, Waltham,
MA, USA) was employed to scan and detect the pretreated sample pellets in the wavelength
range of 500–4000 cm−1. The spectral resolution was set at 1 cm−1.

2.2.5. Pyrolysis–Gas Chromatography/Mass Spectrometry (Py-GC/MS)

An amount of 0.1 mg of the sample was taken, powdered, and placed into a thermally
cleaved sample cup. Then, 2 μL of a 25% mass fraction solution of tetramethylammonium
hydroxide (TMAH, Aladdin, Shanghai, China) was added and allowed to precipitate for
1 h. Subsequently, the mixture was placed under an infrared lamp and left to cleave after
water evaporation. During the analysis, the pyrolysis temperature was set at 600 ◦C, the
pyrolysis interface temperature was 300 ◦C, and the pyrolysis inlet temperature was 250 ◦C.
The 40 ◦C chromatographic column was ramped to 280 ◦C at a rate of 10 ◦C/min, and this
rate was maintained for 20 min. In the GC/MS procedure, a high-purity helium carrier gas
was used with an inlet pressure of 15.2 kPa and a split ratio of 1:100. A constant flow mode
was maintained in the electron pressure control system. The mass spectrometer was run
with electron ionization at an ionization energy of 70 eV. The scanning range was set from
50 to 750, with a cycle time of 0.5 s. Subsequently, we used NIST14 and the corresponding
mass spectrometer to identify the separated substances.

The pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) technique in-
volved the use of a pyrolysis unit (EGA/PY-3030D, Frontier Labs, Fukushima, Japan)
and a gas chromatography/mass spectrometry instrument (GC/MS-QP2010Ultra, Shi-
madzu, Japan). The chromatographic column utilized in this method was SLB-SMS (5%
diphenyl/95% dimethyl siloxane), which has a length of 30 m, an inner diameter of 0.25 mm,
and a film thickness of 0.23 mm.

3. Results and Discussion

3.1. Pigments
3.1.1. Red

The morphology of the DZ-1 sample particles was observed using PLM. As illustrated
in Figure 3a,b, under single polarized light (plane-polarized light), the pigment particles
exhibited an indistinct crystalline edge. Under orthogonally polarized light (cross-polarized
light), the pigment particles displayed strong extinction. Considering these characteristics,
we preliminarily deduce that its optical properties belong to either cinnabar or red lead
(Pb3O4) [20]. Further, EDX elemental analysis results (Table 2) revealed a significant amount
of lead in the DZ-1 sample, confirming its definite content of red lead. None of the other red
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pigments contain lead elements, and the sample lacks characteristic elements of cinnabar
as well. Analyzing the sample with m-RS, as shown in Figure 4a, peaks were observed in
the Raman spectrum at 120, 151, 222, 312, 388, 478, and 548 cm−1. Comparing these peaks
with standard Raman spectra of red pigments, we can see that they align precisely with
the Raman spectrum of red lead [21–25]. Notably, the peak at 548 cm−1 is attributed to the
Pb–O stretching vibration in red lead [26].

 

Figure 3. PLM images observed under single and orthogonally polarized light for (a,b) red,
(c,d) yellow, (e,f) green, (g,h) blue, and (i,j) white pigments. All samples were observed under
100 × 5 magnifications. The sampling positions are shown in Figure 2.
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Figure 4. (a) Raman spectrum for red pigment (DZ-1); (b) Raman spectrum for yellow pigment
(DZ-2); (c) Raman spectrum for green pigment (DZ-3); (d) Raman spectrum for blue pigment (DZ-4);
(e) Raman spectrum of white pigment (DZ-5); (f) FT-IR spectrum for white pigment (DZ-5).

Red lead, known as lead tetroxide or minium, is one of the most commonly used red
pigments in ancient China. The manufacturing process of red lead has been documented in
China since the 3rd century BCE, and records about red lead can also be found in Roman
literature from the 1st century AD. The DZ-1 sample exhibits localized darkening on its
surface under a macro lens, as shown in Figure 2c, a characteristic feature of red lead
distinct from other red pigments. Due to its lively chemical nature, ancient lead-containing
pigments, such as red lead, are prone to environmental erosion and can easily discolor
into plattnerite (PbO2) during prolonged preservation. Reports of red lead aging into
lead dioxide have been documented in the Dunhuang Mogao Caves in China [27] and
Panselinos’ Byzantine wall paintings in Greece [28]. Red lead may also contain other
substances similar to massicot. The ancient Chinese production of red lead involved
heating lead, and as the temperature increased, metallic lead would first react with oxygen
in the air to form massicot (β-PbO). When the temperature reached 450–470 ◦C, it would
further oxidize into the red pigment red lead [29,30]. Consequently, some red lead pigments
may contain a mixture of massicot.
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3.1.2. Yellow

The elements detected in the sample using EDX include Pb and Cr (Table 2), and
based on the elemental composition, it corresponds to the yellow pigment lead chromate
yellow [22]. However, the EDX analysis results show the presence of Ca, Ba, and Zn. Based
on their chemical formulas, they may correspond to barium chromate and zinc chromate.
Barium chromate typically exhibits strong peaks at 863 cm−1 and medium-intensity peaks
at 901 cm−1 in Raman spectra [22]. Zinc chromate usually shows a strong peak at 872 cm−1

and medium-intensity peaks at 343 cm−1 and 941 cm−1 in Raman spectra [22]. As shown in
Figure 4b, none of these peaks were observed in the Raman detection results of sample DZ-
2. Therefore, we speculate that the existence of these two pigments is unlikely. Additionally,
barium chromate and zinc chromate are not commonly found in the pigments used in
ancient Chinese architectural paintings. Moreover, there are some stains on the surface
of sample DZ-2 that are difficult to remove, so it is inferred that Ca, Ba, and Zn are
impurities in the sample. Figure 3c,d show particle photos of the DZ-2 sample under
single polarized light and orthogonally polarized light. As shown in Figure 4b, in the
m-RS analysis of DZ-2, peaks appear at 358, 372, 405, and 837 cm−1. Comparing with the
standard Raman spectroscopy database, these peaks correspond to chrome yellow deep
(PbCrO4·PbO) [1,22,24]. The strong peak at 970 cm−1 possibly corresponds to lead white
[2PbCO3·Pb(OH)2] or anglesite (PbSO4), and in the DZ-2 sample, it is located near the
junction of the yellow and white areas, suggesting a possible mixture of white pigment.
It is also possible that the yellow and white pigments were mixed to achieve the desired
color by the painter.

Chrome yellow deep is the aged form of lead chromate yellow, also known as chrome
yellow. Lead chromate yellow was first synthesized by the French chemist L.N. Vauquelin
in 1809, and its industrial production began in Germany in 1818. It has been discovered
in Ming Dynasty polychrome sculptures at the Chongyang Temple in Shanxi Province,
China [31]. As this pigment was discovered relatively late, the author suggests that the
painted decorations on the DaZhong Gate of the Confucius Temple might have undergone
restoration and repainting during the late Qing Dynasty.

3.1.3. Green

Using PLM to observe the DZ-3 sample, as shown in Figure 3e,f, it can be seen that
under single polarized light, it presents a fan-shaped or even circular-fan surface shape,
some even showing a rounded and angular shape. Under orthogonally polarized light, it
exhibits strong extinction. Its color is a vibrant blue-green. Through EDX testing (Table 2),
it is observed that the content of As and Cu elements is particularly high. Combined with
the characteristics observed under PLM and the results of EDX analysis, it is preliminar-
ily determined that DZ-3 contains emerald green [Cu(CH3COO)2·3Cu(AsO2)2] [13,20].
Analyzing DZ-3 with m-RS, the obtained spectrum in Figure 4c shows strong peaks at
152, 173, 217, and 242 cm−1, and relatively weaker peaks at 290, 328, 683, 830, 947, and
1442 cm−1. Compared with the standard Raman spectrum of emerald green, it is found
that these peaks correspond to the standard spectrum [22]. Therefore, we can confirm that
the green pigment in DZ-3 is emerald green. Emerald green exhibits numerous peaks in the
100–400 cm−1 wavelength range, originating from the vibrations of Cu–O and As–O [32].
The peaks at 947 and 1442 cm−1 correspond to the acetate groups C–C and –CO2 in emerald
green [33].

Emerald green is a synthetically produced pigment that is highly toxic, and it tends to
turn black upon exposure to hydrogen sulfide (HS). It was first synthesized in Germany in
1814 [34] and was introduced to China in the mid-19th century [35]. It was widely used in
the ancient architectural paintings of late Qing Dynasty China. Examples of its use can be
found in the Wuying Hall of the Imperial Palace in Beijing, China [35], and the Summer
Palace in Beijing [36], China. According to the appearance time of this green pigment,
the authors believe that the use of emerald green suggests that the architectural paintings
might have undergone restoration and repainting during the late Qing Dynasty.
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3.1.4. Blue

The polarization characteristics of DZ-4 were observed using PLM. As shown in
Figure 3g, under single polarized light, the pigment particles exhibited mineral angular
shapes and a vivid deep blue color. As shown in Figure 3h, under orthogonally polarized
light, there was a strong extinction effect, even complete extinction. Leveraging the charac-
teristic of full extinction under PLM, among common blue pigments, it can be tentatively
inferred that the pigment used is ultramarine [20]. Further analysis using EDX on sample
DZ-4 revealed a significant amount of Ca, S, and Si (Table 2). Comparing the chemical
formulas of blue pigments, only ultramarine and Egyptian blue (CaCuSi4O10) roughly
matched these elements; in fact, Egyptian blue was not found, since no copper was detected.
Performing m-RS analysis on the sample, the Raman spectrum in Figure 4d shows a strong
peak at 546 cm−1, with weaker peaks at 261 and 1095 cm−1. Compared with the standard
Raman spectrum, it is consistent with the characteristic peaks of ultramarine [22]. It is
worth noting that the sulfur-free radical, mainly S3−, as the chromophore in ultramarine
produces a strong Raman band at 544 cm−1 [35]. Combining PLM, EDX, and m-RS, it can
be confirmed that the blue pigment used in DZ-4 is ultramarine.

Ultramarine blue comprises both natural ultramarine (lapis lazuli) [(Na,Ca)8(AlSiO4)6(S,Cl)2]
and synthetic ultramarine (Na7Al6Si6O24S3), making them challenging to distinguish
through Raman spectroscopy [37]. The first synthetic ultramarine was produced in 1828.
Due to its complex chemical structure, a fully quantitative analysis method was not estab-
lished until the early 19th century to elucidate the chemical composition of ultramarine.
Ultramarine tends to fade and decompose under acidic or alkaline conditions, even at
low acid concentrations over an extended period. It has been extensively used in ancient
Chinese architectural color paintings, such as found in Tanxi Hall of the Forbidden City in
Beijing, China [38], and Tongcai paintings in Guangzhou, China [39].

3.1.5. White

EDX spectrum analysis was performed on the white sample DZ-5, revealing a signifi-
cant presence of Ca, S, and Ba elements (Table 2). Comparing the elemental composition of
white pigments, chalk (CaCO3) and gypsum (CaSO4) primarily contain Ca, while barite
(BaSO4) contains Ba. The sample may also contain white pigments with Zn and Pb. As
shown in Figure 3i,j, the PLM analysis of DZ-5 displays pronounced extinction under
orthogonally polarized light. The m-RS analysis of DZ-5 yielded a Raman spectrum, shown
in Figure 4e, featuring a super-strong peak at 1082 cm−1 and relatively weaker peaks at 132,
289, 712, and 977 cm−1. Compared with the standard Raman spectra of white pigments,
these peaks correspond to those of chalk [22]. Specifically, 1082 cm−1 corresponds to the
ν1 symmetric stretching vibration of CO3

2−; 289 cm−1 corresponds to the motion of Ca2+

relative to the CO3
2− group; and 712 cm−1 is attributed to the ν4 symmetric deformation

vibration of CO3
2− [40,41]. Peaks at 135 and 977 cm−1 correspond to the standard spectrum

of lead white [2PbCO3·Pb(OH)2] or anglesite (PbSO4) [22,42]. Additionally, as shown in
Figure 4b, the Raman spectrum of DZ-2 shows a peak at 970 cm−1, consistent with the peak
of lead white or anglesite [22]. Since the yellow and white regions in DZ-2 are adjacent and
considering the presence of Pb and S in the EDX analysis of the white sample, it is plausible
that the white sample contains lead white or anglesite. The FT-IR analysis of the white
sample DZ-5, as shown in Figure 4f, indicates the presence of OH−, CO3

2−, and SO4
2−

groups. Specifically, 1429 is attributed to the ν3 and anti-symmetric stretching vibrations of
carbonate ions [26,43,44]; 875 cm−1 corresponds to the out-of-plane deformation vibration
of CO3

2− [45]; 1118 cm−1 corresponds to the S–O anti-symmetric stretching vibration
in SO4

2− [46]; 606 cm−1 corresponds to the S–O anti-symmetric bending vibration [46];
3414 cm−1 corresponds to the OH stretching vibration [26]; and 1019 cm−1 corresponds to
the OH bending vibration [26]. Considering all these analyses, it can be inferred that the
white pigment in DZ-5 is predominantly chalk, with a small amount of lead white or angle-
site mixed pigment and possibly other SO4

2−-containing white pigments. Unfortunately,
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the complete Raman spectra of lead white or anglesite, as well as other SO4
2−-containing

white pigments, were not obtained during the white sample analysis.
Chalk and lead white were commonly used painting pigments in ancient China.

The combination of various pigments in ancient Chinese architectural paintings was also
common. Lead white is a lead-containing pigment that easily transforms into black lead
dioxide (PbO2) in the atmospheric environment, causing a darkening of color. The absence
of black color in DZ-5 suggests that the low content of lead white in the mixed pigments
may contribute to this phenomenon.

3.2. Binder

Using Py-GC/MS, an analysis was conducted on the yellow pigment sample DZ-2.
The total ion chromatogram (TIC) of the analysis results is depicted in Figure 5, with
representative and major peaks marked and listed in Table 3. The presence of amino
acids such as glycine (peak 3), alanine (peak 6), valine (peak 7), L-proline, 1-methyl-,
methyl ester (peak 8), hydroxyproline (peak 13), and some nitrogen-containing substances
like methylamine, N,N-dimethyl- (peak 1), 1H-pyrrole, 1-methyl- (peak 2), methyl 1-
methylpyrrole-2-carboxylate (peak 9), and benzene, isocyanato (peak 23) indicates the
presence of proteins in DZ-2 [19], suggesting the existence of protein-based binders. The
presence of naphthalene (peak 10) and 1H-indene, 1-methylene- (peak 11) also supports
the presence of proteins [26]. The detected hydroxyproline in the sample is a characteristic
amino acid of animal collagen [36]. Additionally, protein (peak 12) and protein blood and
glue (peak 18) were directly detected in the sample. Furthermore, as shown in Figure 4f,
in the infrared detection results of the white pigment sample, the absorption peak at
1621 cm−1 can be attributed to the amide I band, which is an important component of
amino acids in proteins. Considering all the analyses, the binder used in the pigments
primarily contains proteins. Due to prolonged exposure to outdoor conditions, the binder
has undergone significant aging, resulting in a decrease in protein content compared to a
fresh binder. The application of methylation technology is the reason why the test results
contain a large number of methyl ester compounds, such as octanedioic acid, dimethyl
ester (peak 15), nonanedioic acid, and dimethyl ester (peak 16). Since pigment binders on
the same artwork are generally consistent [3,47], we focused our analysis on the pigment
binder of the yellow sample in this study.

Figure 5. The total ion chromatogram (TIC) of the yellow pigment samples (DZ-2).

182



Materials 2024, 17, 2170

Table 3. Component compositions of the yellow pigment sample (DZ-2).

Peak Number
Retention Time

(min)
Area
(%)

Compound

1 1.6057 0.26 Methylamine, N,N-dimethyl-
2 3.381 0.27 1H-Pyrrole, 1-methyl-
3 5.2443 0.04 glycine
4 5.2507 0.02 TMAH reagent
5 5.9213 0.44 1,3,5-Triazine, hexahydro-1,3,5-trimethyl-
6 6.1153 0.08 Alanine
7 7.873 0.01 valine
8 8.9157 0.06 L-Proline, 1-methyl-, methyl ester
9 10.237 0.05 Methyl 1-methylpyrrole-2-carboxylate

10 11.2533 0.04 Naphthalene
11 11.2567 0.06 1H-Indene, 1-methylene-
12 11.7583 0.06 Protein
13 11.8607 0.03 hydroxyproline
14 13.4727 2.99 Heptanedioic acid, dimethyl ester
15 14.8307 8.81 Octanedioic acid, dimethyl ester
16 16.127 38.56 Nonanedioic acid, dimethyl ester
17 17.279 3.09 Decanedioic acid, dimethyl ester
18 17.992 0.11 Protein—blood and glue
19 18.6543 1.44 Drying oil
20 20.2363 10.70 Hexadecanoic acid, methyl ester
21 22.164 8.95 Octadecanoic acid, methyl ester
22 22.409 0.27 Heat bodied oil
23 22.844 0.01 Benzene, isocyanato
24 24.1617 3.62 Drying oil
25 24.6707 0.29 Drying oil

Simultaneously, Py-GC/MS was employed to detect the fatty acids in the DZ-2 sample,
and the results are presented in Figure 6. Both monobasic carboxylic fatty acids and dibasic
carboxylic fatty acids were identified in the sample. Additionally, substances classified as
alkylphenyl alkanoates (APAs) were detected, suggesting the presence of heat-bodied tung
oil [19,26,48]. The ratio of palmitic acid to stearic acid (P/S) is usually used to distinguish
various types of dry oil [49]. The P/S value detected in the sample was 1.19, further
validating the speculation. Heat-bodied tung oil was obtained by heating or refining tung
oil before use. Furthermore, the test results revealed a small amount of aged glue containing
proteins, confirming the presence of animal glue.

Figure 6. The relative concentrations of fatty acids for the yellow pigment sample (DZ-2) obtained
by Py-GC/MS; carboxylic acid is shown with carbon numbers of n. The very small amounts of
substances detected in the sample are not apparent in the figure.

4. Conclusions

This study involved a comprehensive analysis of five pigment samples collected from
the peeling areas of the DaZhong Gate in the Confucius Temple in Qufu. The techniques
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used included PLM, EDX, m-RS, and FT-IR. The results revealed that the red pigment
is lead red, the yellow pigment is lead chromate yellow, the green pigment is emerald
green, the blue pigment is ultramarine, and the white pigment is a mixture of chalk and
lead white or anglesite. Lead red, ultramarine, chalk, and lead white are commonly used
pigments in ancient Chinese architecture. It is noteworthy that lead chromate yellow and
emerald green, which appeared in 1809 and 1814, respectively, were extensively used in
architectural paintings during the late Qing Dynasty. Therefore, it is speculated that the
architectural paintings of DaZhong Gate underwent restoration or repainting during the
late Qing Dynasty.

The analysis of the Py-GC/MS detection results indicates that the binder used in
the pigments contains protein-based glue, and based on the characteristic amino acid
hydroxyproline, it is speculated that it may contain animal glue. The presence of fatty acids
in the detection results suggests the inclusion of heat-bodied tung oil in the pigments. The
occurrence of drying oil can be explained by the traditional Chinese painting technique
on wooden surfaces. Before applying the pigment layer, a layer of heat-bodied tung oil
was brushed on the plaster, and over time, it mixed with pigments and glue during the
painting process.

The study of the pigments and binders used in the architectural paintings of DaZhong
Gate in the Confucius Temple provides a universal method for the future identification of
components in ancient architectural paintings. This research contributes data and evidence
to support the conservation and better management of the architectural paintings in the
DaZhong Gate of the Confucius Temple. Additionally, more research on the preservation
status of other paintings is needed for more effective preventive and intervention-based
conservation efforts.
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Abstract: The continuous scanning laser Doppler vibrometry (CSLDV) technique is usually used to
evaluate the vibration operational deflection shapes (ODSs) of structures with continuous surfaces.
In this paper, an extended CSLDV is demonstrated to measure the non-continuous surface of the
bladed disk and to obtain the ODS efficiently. For a bladed disk, the blades are uniformly distributed
on a given disk. Although the ODS of each blade can be derived from its response data along
the scanning path with CSLDV, the relative vibration direction between different blades cannot be
determined from those data. Therefore, it is difficult to reconstruct the complete vibration mode of
the whole blade disk. In order to measure the complete ODS of the bladed disk, a method based on
ODS frequency response functions (ODS FRFs) has been proposed. While the ODS of each blade
is measured by designing the suitable scanning paths in CSLDV, an additional response signal is
obtained at a fixed point as the reference signal to identify the relative vibration phase between
the blade and the blade of the bladed disk. Finally, a measurement is performed with a simple
bladed disk and the results demonstrate the feasibility and effectiveness of the proposed extended
CSLDV method.

Keywords: bladed disk; laser Doppler vibrometry; ODS FRF; phase identification

1. Instruction

A bladed disk is one of the important components of rotating machinery such as
aeroengines, turbines and impellers, etc. High vibratory stresses of turbomachinery com-
ponents can be a major cause of vibration cracks and even breaking for blades [1–3], so the
dynamic behavior of bladed disks has always interested the engineering community over
the years. In recent decades, there have been several numerical methods used to predict
the dynamic characteristics of bladed disks via numerical modeling [3,4] and finite element
modeling (FEM) [5,6]. These studies indicate that the bladed disk is highly sensitive to
mistuning, such that even small deviations in the structural properties of individual sectors
of the bladed disks can result in the localization of vibration energy and a significant
increase in forced responses. There are many causes that can change the properties of the
nominal design. However, it is very difficult to take uncertain factors into account when
establishing finite element modeling.

To more precisely explore the dynamic features of the bladed disk structure, an experi-
mental study is indispensable. Zhao Z B et al. [7] took the bladed disk with 12 blades as an
example to conduct an experimental study on the natural characteristics of the tuned and
detuned bladed disks. Yao J et al. [8,9] studied the spatial distributions of the mistuned
mode shapes and the mode location of a simplified bladed disk, demonstrating the defor-
mation characteristics of all the modes within the experimental frequency band and the
deformation differences among the various modes through the test data of 120 measuring
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points. To experimentally acquire the modal shape of the bladed disk, a large amount of
measuring points need to be arranged on the surface of the bladed disk. However, this
greatly increases the time and cost of experimental testing and it is difficult to obtain accu-
rate vibration mode shapes. Therefore, the experimental measurement of the operational
deflection shapes of bladed disks is still a relatively demanding task.

In recent years, laser Doppler vibrometry (LDV), as a new non-contact measurement
method, has been widely used in aerospace [10], automobile [11] and other fields due
to its advantages of long-distance measurement, high measurement accuracy and no
installation. Heinemann [12] et al. measured the natural frequencies and the modal shapes
of a five-blade axial-flow fan with scanning laser Doppler vibrometry (SLDV). In fact,
the density of measurement points has been improved to some extent, but also greatly
increased the time-consuming nature and the storage requirements of test data. In order
to further improve the test efficiency and the density of test points, continuous scanning
laser Doppler vibrometry (CSLDV) is proposed based on SLDV, where the laser point,
instead of dwelling at a fixed location, is continuously moving across a measurement
surface along the designed path. The SLDV was used in vibrational measurements to
extract only a few dozen measured points across the grid. However, the CSLDV is able to
measure thousands of vibration points in a few seconds and reconstruct a more accurate
ODS through the demodulation method, arranging each single ODS according to the
position of scan paths on the measured structure. Therefore, this CSLDV is also called the
full-field measurement technique. Sriram P. et al. [13] first applied the CSLDV to measure
the vibration of a cantilever beam in the line scanning mode. With the application of
the CSLDV, Y Hu et al. performed an experiment on a free-hanging aluminum plate in a
thermal environment, and the findings revealed that the accuracy of the ODS was improved
by 20 times compared to a manual-moving LDV method [14]. Additionally, there are also
some studies reported on excitation methods for the CLSDV [15–18]. K Yuan et al. [19,20]
obtained the modal parameters of a model turbine blade with a curved surface excited
by white noise by the CSLDV, and the results demonstrated that the identified modal
parameters possess significantly higher accuracy and efficiency in comparison to those
from the SLDV.

Most of the studies reported on CSLDV techniques are mainly based on the simple
continuous surface of structures, such as beams, plates, disks or a single blade [21], and the
measurement can be completed at once along a continuous scanning path. However, there
is still a great challenge for the testing of discontinuous multi surfaces of structures such
as bladed disks. For the bladed disk, if the laser beam conducts a continuous scanning
test within a large area covering the bladed disk, laser leakage will occur in the area
without the bladed disk. And then in the output data of the LDV corresponding to the
scanning trajectory, there will be some small segments of invalid data. The invalid data
segments will reduce the accuracy of the reconstructed ODS. Therefore, it is best that the
scanning path precisely matches the bladed disk. The continuous scanning path of the laser
precisely switches from one blade to another to exactly cover the structure surface while
also ensuring that the scanning frequency does not change, which is rather complicated.
Because reconstruction of the ODS from the output data in CSLDV demanded that the
scanning frequencies of the laser beam in the x direction and the y direction should be
unchanged during the entire scanning process, this will pose great difficulties for the
CSLDV applied to the bladed disk.

To address these issues of the ODS testing of the bladed disk in CSLDV, this paper
has also conducted some studies. The aim of the present paper is to extend the CSLDV
techniques for bladed disk structures, in that a suitable continuous scanning path for a
multi-blade disk structure is designed and the ODSs of all the blades can be derived from
the sideband patterns of the CSLDV output spectrum. Then, a vibration phase identification
method of all blades is needed to reconstruct the ODS of the whole-bladed disk. As an
example, a 16-blade disk for vibration measurement is taken. A continuous scanning path
suitable for full field testing in CSLDV is designed and the ODS of the bladed disk is
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reconstructed by identifying the vibration phase between each blade. The results show
that the design of the continuous scanning path is feasible and the effectiveness of the
identification method of the vibration phase in serving CSLDV is evaluated.

The rest of this paper is organized as follows. Section 2 describes the theoretical basis of
ODS reconstruction in CSLDV. In Section 3, the design of the measurement campaigns on a
16-blade disk is discussed, including how to switch the laser beam to scan the next test blade.
The ODSs of all blades were reconstructed from the measured sideband spectrums. The
identification method of the vibration phase between each blade is described in Section 4.
The main purpose of this section is to obtain the relative vibration phase of all the blades
and to reconstruct the ODS of the whole-bladed disk.

2. Theoretical Basis of ODS Reconstruction in CSLDV

The small damping structure will resonate when the excited frequency is near the
natural frequency. The vibration response of the structure measured by the laser Doppler
vibrometers, which can be expressed as follows:

v(x, y, t) = d′(x, y, t) = VR(x, y) cos ωt + VI(x, y) sin ωt (1)

where v(x, y, t) is the vibrational velocity of point (x, y) at time t. VR(x, y) and VI(x, y) are
the real and imaginary components of the vibration, respectively. They can be fitted by the
polynomial series as follows:

VR(x, y) =
p,q
∑

m,n=0
VRm,nxmyn

VI(x, y) =
p,q
∑

m,n=0
VIm,nxmyn

(2)

where p and q are the polynomial order in the x and y direction, respectively. For a
rectangular plate, the scanning path of the area sine scan moved on the surface of the
structure can be expressed by two sinewaves equations when the scanning speed of the
laser spot has a sine variation.

x = cos(ωsxt)
y = cos(ωsyt)

(3)

where ωsx and ωsy are the scanning frequencies of the laser point along the X and Y
directions, respectively. The scanning paths covered on the rectangular plates can be
generated by dissimilar frequency sinusoids using sinusoidal trajectories, e.g., 2D Lissajou
trajectories, as shown in Figure 1.

Figure 1. Continuous surface scanning path diagram.
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Substituting Equations (2) and (3) into Equation (1), and expanding out trigonometri-
cally, the following form of the vibration signal is derived:

v(x, y, t) =
p,q

∑
m,n=0

ARm,n cos[(ω ± mωsx ± nωsy)t] +
p,q

∑
m,n=0

AIm,n sin[(ω ± mωsx ± nωsy)t] (4)

where ARm,n and AIm,n are the sideband spectrum amplitudes of real and imaginary
components at different frequencies, respectively. According to Equation (4), the sideband
spectrum of vibration velocity signal obtained by laser continuous surface scanning test
consists of all components when m and n are taken as different values. It can be deduced
that the transformation to recover the polynomial coefficients from the spectral amplitudes
of the LDV output is:

[AR]m×n = [T]m×m[VR]m×n[T]
T
n×n

[AI ]m×n = [T]m×m[VI ]m×n[T]
T
n×n

(5)

Each element of matrix T satisfies the following equation:

T(i, j) =

{
0 i + j is odd, i > j
Ci−j

i
2i i + j is even

, i and j are natural number (6)

By expanding the Fourier series of the vibration signal obtained from the output of
CSLDV, the amplitudes of the sideband spectrum ARm,n, AIm,n and the transformation
matrix T can be deduced. Therefore, the real and imaginary components of the operational
deflection shape can be obtained as follows:

[VR] = [T]−1[AR][T]
T

[VI ] = [T]−1[AI ][T]
T

(7)

3. ODS of Bladed Disc in CSLDV

3.1. Modal Characteristics of Bladed Disk

A bladed disk, as shown in Figure 2a, is a circularly symmetric structure whose modes
are described by the mode shapes of a single sector and numbers of nodal diameter. The
thickness of the structure is 2 mm, and the other dimensions are shown in Figure 2b. The
finite element model (FEM) of a single sector is built with hexahedral elements, as shown
in Figure 2c. Material properties are given as follows: the density and the Young’s modulus
are 7840 Kg/m3 and 206 GPa, respectively. Poisson’s ratio is 0.3.

  
(a) (b) (c) 

Figure 2. Bladed disk. (a) Bladed disk. (b) Model. (c) FEM of a single sector.
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The modal frequencies of the first 16 modes derived from the FEM as listed in Table 1.
The modal frequencies appear in pairs due to the characteristic of circularly symmetric
structure, except for the modes which Nd = 0 and Nd = 8 for the 16-blade disk. The
two modes of a modal pair have the same frequencies and orthogonal mode shapes, which
are demonstrated in Figure 3 (only one of the mode shapes is shown for modal pairs).
In the figure, the ‘*’ indicates the frequency values of different nodal diameters, and the
arrow points to is the modal vibration mode corresponding to this frequency.

Table 1. Frequencies of the 1st family of modes.

Order Frequency/Hz Nd Order Frequency/Hz Nd

1 26.74 1 9 38.40 4
2 26.74 1 10 41.16 5
3 27.10 0 11 41.16 5
4 28.51 2 12 42.76 6
5 28.51 2 13 42.76 6
6 33.89 3 14 43.61 7
7 33.89 3 15 43.61 7
8 38.40 4 16 43.87 8

 
Figure 3. Modal shapes of different nodal diameters.

3.2. Measurement in CSLDV
3.2.1. Design of the Continuous Scanning Path

The bladed disk shown in Figure 2a is employed to measure operational deflection
shapes in CSLDV. The fan-shaped blades cannot be completely covered by the continuous
scanning path of the laser spot described in Equation (3), so it is necessary to design a
suitable continuous scanning path for the specific surface.

The scan pattern of the fan-shaped blades is much more complicated than the rectan-
gular plate, as shown by the following:

x(t) =
[

Ro−Ri
2 cos(2πωsyt) + Ro+Ri

2

]
cos(φ(t) + τ)

y(t) =
[

Ro−Ri
2 cos(2πωsyt) + Ro+Ri

2

]
sin(φ(t) + τ)

(8)

where Ro and Ri are the initial radius and final radius of the scanning range in the radial di-
rection, respectively. τ is the initial phase angular position, while φ(t) is the circumferential
scanning control parameters which is described by the equation:

φ(t) = θ sin(2πωsxt) (9)

where θ is the edge amplitude of the blades.
Take the scanning frequency ωsy = 3 Hz, ωsx = 30 Hz as an example, the scanning

path of the laser spot on the blade surface is shown in Figure 4.
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Figure 4. Scanning path on blades.

For the different blades, the scanning pattern is the same except for the initial phase
angular position τ. The blades are evenly distributed on the circumference of the disk;
therefore, the initial phase angular position of each blade in Equation (8) is instead given
by τn, which can be expressed as:

τn =
π

2
+

n − 1
N

· 2π (10)

where n is the number of blades, N is the total number of blades of the bladed disk.
Therefore, the continuous scanning test of all blades could be carried out by changing
different blade numbers n ( n = 1, 2, 3, · · · , N).

3.2.2. Experimental Test

The scanning frequencies are set to ωsy = 1.1 Hz and ωsx = 10 Hz, respectively. The
sampling frequency Fs is 8192 Hz, which needs to satisfy Nyquist’s sampling theorem.
In this experiment, the design of CSLDV is used to measure the fan-shaped blade, the
vibration data is collected for 5 s, and then the next blade is switched for testing until
all the blades are traversed. The experimental four-nodal diameter bending mode of the
bladed disk measured by LDV is 36.88 Hz, and there is a deviation of 3.96% compared
with the 38.40 Hz derived from the FEM. Thus, a sinusoidal signal with a single frequency
ω = 36.88 Hz was supplied to the electromagnetic exciter to excite the bladed disk in the
test. It is known in advance that when the excitation frequency approaches or equals the
natural frequency, the mode corresponding to that natural frequency can be well excited.

The continuous scanning path of all blades (No. 1–16) is shown in Figure 5.

 
(a) (b) 

Figure 5. Continuous scanning path of all blades. (a) Scanning path. (b) Local zoom.
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The CSLDV measurements are carried out on all blades and the vibration signals in
the time domain are obtained from the output of a laser Doppler vibrometer. Taking the
first four blades as an example, the vibration signal and the sideband spectrums are shown
in Figure 6. It can be found that the vibration forms of the odd-numbered blades shown
in Figure 6a,c are consistent and their vibration amplitudes are relatively small, while the
vibration forms of even-numbered blades shown in Figure 6b,d have the same form and
larger amplitude. This phenomenon coincides with the four-nodal diameter mode of the
first family mode of the bladed disk. The values of m and n are determined by the sideband
spectrums. Specifically, according to the sideband spectrums shown in Figure 6, the values
of the sideband number m and n of the odd-numbered blades are both 0 and ±1, while the
values of the even blades are m = 0, n = 0, ±1, respectively.

(a) (b) 

(c) (d) 

Figure 6. Vibration signals and sideband spectrums of blades. (a) No. 1. (b) No. 2. (c) No. 3. (d) No. 4.

The operational deflection shapes of all the blades have been reconstructed from the
measured sideband spectrums, and are listed in Table 2. The results show that the vibration
amplitude of the even-numbered blades is much larger than that of the odd-numbered
blades. According to the number sequence and vibration amplitude of blades, it can be
concluded that all the odd blades in the operation condition are located in the four-nodal
diameter positions of the bladed disk.
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Table 2. ODSs of all blades.

No. ODS No. ODS

1 2

3 4

5 6

7 8

9 10
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Table 2. Cont.

No. ODS No. ODS

11 12

13 14

15 16

Although all ODSs of the blades are obtained by using the extended CSLDV, the
ODS of the whole-bladed disk cannot be directly reconstructed because of the unknown
vibration phase of different blades, which cannot be derived from the sideband spectra of
CSLDV. Therefore, it is necessary to identify the vibration phase between the blades for
reconstructing the ODS of the whole-bladed disk.

3.3. Identification of Vibration Phase and ODS Reconstruction of the Whole-Bladed Disk

For continuous scanning tests, the vibration phase of different blades cannot be directly
identified. However, that can be derived from the frequency response function of a series of
points on all blades. That is to say, to ensure the same installation and excitation conditions
as the above continuous scanning test, a series of points is selected at the same position
of each blade to obtain the frequency response functions (FRFs). The vibration phase
angle of all blades can be determined by the phase frequency curve of FRFs. But for the
conditions of unknown excitation, it is impossible to directly measure the FRF, so the
reference response is necessary to obtain the ODS FRF of the series of points. The ODS
FRFs of each measurement point are measured by calculating the response of the test
point with the response of a fixed reference point, from which the relative vibration phase
between different blades can be extracted. The selection of measuring points and the fixed
reference point used for blade identification of the vibration phase are shown in Figure 7a.
The measurement system employed in this experiment is composed of a Polytec-PSV-400
scanning laser vibrometer and a self-developed external scanning system, as presented
in Figure 7b. The self-developed external scanning system is used to obtain the response

195



Sensors 2024, 24, 3413

of the measuring points on each blade, while the Polytec-PSV-400 is used to measure the
response data of the fixed reference point simultaneously.

  
(a) (b) 

Figure 7. Testing scheme. (a) Location of measuring points. (b) Measurement system.

3.3.1. Identification of Vibration Phase Based on FRF

In the test of identification of the vibration phase, the electromagnet exciter is also
supplied to the sine signal with a frequency of 36.88 Hz, which is exactly the same as
the continuous scanning test. A total of 16 measuring points are selected from the same
position on each blade and the fixed reference point is located on the tip of the No. 1 blade.
The motion equation of the excited structure is given by:

M
..
x(t) + C

.
x + Kx(t) = F(t) (11)

where M, C and K are the Mass matrix, damping matrix and stiffness matrix, respectively.
F(t) is the vector of excitation force. The frequency response function can be directly
derived from the motion equation, and is expressed as:

H(ω) = (K − ωM + iωC)−1 =
{X}
{F} (12)

In this paper, the non-contact electromagnet exciter is used to excite the bladed disk
and the frequency response function is obtained by dividing the vibration response of the
input signal of the exciter [22]. Taking the frequency response function of the previous six
measuring points as an example, the frequency response functions of measuring points are
shown in Figure 8. It can be found that only one peak appears in the frequency amplitude
curve near the excitation frequency of 36.88 Hz.

The vibration phase angles corresponding to the peak frequency are extracted from the
phase frequency curve of the 16 measurement points, as shown in Table 3. It is obvious that
the difference in phase angle between adjacent the even-numbered blades is about 180◦.
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Blade 1 Blade 2 

 
Blade 3 Blade 4 

Blade 5 Blade 6 

Figure 8. Frequency response functions.

Table 3. Phase angles of all blades based on FRF.

No. Phase Angle/◦ No. Phase Angle/◦

1 113.63 2 −67.65
3 −56.86 4 112.8
5 149.26 6 −65.49
7 20.83 8 115.42
9 −4.97 10 −65.03
11 152.42 12 114.58
13 −4.96 14 −64.41
15 −85.40 16 114.76
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3.3.2. Identification of Vibration Phase Based on ODS FRF

When the excitation signal is unknown, the frequency response function of the mea-
surement point cannot be obtained directly. However, the transfer function between the
reference point and the measurement point can be obtained by taking the response of a
fixed point as a reference signal as follows:

Txy(ω) =
Xx(ω)

Xy(ω)
(13)

where Xx(ω), Xy(ω) are the frequency spectrums of the measuring points and the reference
points, respectively. In order to improve the signal-to-noise ratio in practical engineering
test, auto power spectrum and cross power spectrum are usually used to optimize the
transfer function as follows:

T̃xy(ω) =
Xx(ω) · X∗

y(ω)

Xy(ω) · X∗
y(ω)

=
Gxy(ω)

Gyy(ω)
(14)

The concept of ODS FRF on the basis of transfer function is first proposed by Richard-
son M H [23] in 1997. Similar to the transfer function, ODS FRFs are similarly calculated by
the auto spectrum and cross-spectrum between the response of fixed reference point and
the responses of the measuring points:

ODSFRF(ω) =
√

Gxx(ω) · Gxy(ω)∣∣Gxy(ω)
∣∣ = |Xx(ω)| · Gxy(ω)∣∣Gxy(ω)

∣∣ = Xx(ω) (15)

ODS FRF not only contains the correct amplitude of the response of each measuring
point but also the phase information relative to the reference point. Compared with the
transfer function, ODS FRF has a higher signal-to-noise ratio [24,25]. According to the ODS
FRF theory, the test for vibration phase identification is carried out and makes sure that it
is consistent with the condition and environment of the continuous scanning laser test. In
the phase identification experiment based on ODS FRF, two laser beams are necessary to
obtain the response of the measurement point and the fixed reference point simultaneously,
and the experiment flow is shown in Figure 9.

Figure 9. Experiment flow chart.
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First, a fixed reference response point needs to be selected on the blade disk (see
Figure 7). Then, two laser beams are used to simultaneously measure the response of the
fixed reference point and the response of each blade measurement point. Take the ODS
FRFs measured from blade 1 and blade 2 as an example, the frequency amplitude curves
and the phase frequency curves are shown in Figure 10. The phase angles can be easily
extracted from the phase frequency curves of ODS FRF. For the two blades, they are −0.6◦
and 179.3◦, respectively.

(a) (b) 

Figure 10. ODS FRF. (a) Blade 1. (b) Blade 2.

The phase angles of relative vibration between different blades are extracted from
ODS FRFs of measuring points, as shown in Table 4. The results show that the difference in
the vibration phase of two adjacent even-numbered blades is about 180◦, which signifies
that the vibration direction of two adjacent even-numbered blades is opposite. This is
consistent with the phase identification results derived from the method based on FRF.

Table 4. Vibration phase angles of all blades based on ODS FRF.

No. of Blade Phase Angle No. of Blade Phase Angle

1 −0.60 2 179.28
3 −171.02 4 −0.79
5 36.01 6 179.24
7 −93.00 8 −0.08
9 −123.11 10 179.5

11 35.16 12 −0.71
13 −123.26 14 179.41
15 156.99 16 −0.66

3.3.3. ODS Reconstruction of the Whole-Bladed Disk

Combined with the vibration phase angles of all blades identified by the above meth-
ods and the ODS of all blades tested in Section 3.2.2, the ODS of the whole-bladed disk
is reconstructed, as shown in Figure 11. To verify the accuracy of the measurement, a
comparison with the FEM (as presented in Section 3.1) is made. The modal assurance
criterion (MAC) value is typically to quantitatively describe the similarity between two
modes. The closer the MAC value approaches to 1, the higher the consistency between the
two modes. The results showed that the MAC value between the ODS of the bladed disk
obtained through testing and the ODS calculated by the finite element method is 0.91. The
errors are mainly caused by the fact that the boundary conditions in FEM are not exactly
the same as the actual situation, as well as experimental errors, etc.
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(a) (b) 

Figure 11. ODS of the whole-bladed disk. (a) Three-dimensional perspective. (b) Plane perspective.

To better investigate the validity and accuracy of the ODS reconstruction method
based on ODSFRF in CSLDV, the conventional SLDV method is also employed to conduct
experiments in the same installation conditions and experimental environment for com-
parison. Regarding the test, the fewer the measuring points are, the rougher the obtained
modal vibration mode will be. For the test, 5 × 9 measurement points were arranged on
each blade, and there are a total of 1440 measurement points on the entire bladed disk
as shown in Figure 12a. In order to reduce the random error in the testing process, each
measuring point is tested three times, and the single testing time is 4.096 s. The frequency
response function adopts the average of three times. It takes about 3 h to complete the
entire test. Finally, the four-nodal diameter bending mode of the bladed disk from the test
data in SLDV is shown in Figure 12b.

 
(a) (b) 

Figure 12. Measurement of ODS in SLDV. (a) Arrangement of measuring points. (b) The 4-nodal
diameter bending mode.

Compared to SLDV, the ODS reconstruction method based on CSLDV only takes a
few minutes in terms of time consumption. However, the MAC value between the ODS
obtained by the two is as high as 0.97. This demonstrates that the measurement method
proposed in this paper is feasible and accurate.

4. Conclusions

In this paper, a fast measurement method of operational deflection shapes of bladed
disks with CSLDV is presented, in which all blades are tested in the same condition by
switching the initial phase of the laser point and a phase identification method based
on ODSFRF is proposed to reconstruct the ODS of the whole-bladed disk. In order to
determine the relative vibration phase between each blade, two laser beams are needed
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to participate in the experiment. In this paper, the vibration phases of each blade of the
bladed disk are, respectively, identified through the utilization of FRFs and ODSFRFs,
and the two methods yield consistent results. However, the ODSFRF is applicable in the
situation of unknown excitation. Bladed disks typically rotate at high speeds, and the
excitation under operating conditions is rather difficult to measure. Hence, this ODSFRF
method is anticipated to be potentially applied in the ODS measurement of rotating bladed
disks. According to the ODSs and the relative vibration phase angles of all blades, the
ODS of the whole-bladed disk has been reconstructed. The effects of the extended CSLDV
measurement method and phase identification of the bladed disk have been investigated
experimentally. To validate the accuracy of the ODS reconstructed based on CSLDV and
ODSFRF, a discrete point testing experiment in SLDV was carried out supplementarily.
The results show that the CSLDV and phase identification method for the bladed disks are
feasible and they take less time to obtain the same high-precision ODS.
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Abstract: This study aimed to address the challenges encountered in traditional bulk wave delami-
nation detection methods characterized by low detection efficiency. Additionally, the limitations of
guided wave delamination detection methods were addressed, particularly those utilizing reflected
waves, which are susceptible to edge reflections, thus complicating effective defect extraction. Lever-
aging the full waveform inversion algorithm, an innovative approach was established for detecting
delamination defects in multi-layered structures using ultrasonic guided wave arrays. First, finite
element modeling was employed to simulate guided wave data acquisition by a circular array within
an aluminum–epoxy bilayer structure with embedded delamination defects. Subsequently, the full
waveform inversion algorithm was applied to reconstruct both regular and irregular delamination
defects. Analysis results indicated the efficacy of the proposed approach in accurately identifying
delamination defects of varying shapes. Furthermore, an experimental platform for guided wave
delamination defect detection was established, and experiments were conducted on a steel–cement
bilayer structure containing an irregular delamination defect. The experimental results validated
the exceptional imaging precision of our proposed technique for identifying delamination defects in
multi-layered boards. In summary, the proposed method can accurately determine both the posi-
tions and sizes of defects with higher detection efficiency than traditional pulse-echo delamination
detection methods.

Keywords: ultrasonic guided waves; plate structures; full waveform inversion; delamination defects

1. Introduction

Adhesive structures comprise assemblies formed by bonding metals to metals, metals
to non-metals, or non-metals to non-metals using adhesives. These structures are renowned
for their lightweight nature, cost-effectiveness, and ease of manufacture. Additionally,
owing to their exceptional fatigue resistance, high-temperature tolerance, corrosion re-
sistance, and uniform stress distribution, adhesive structures have garnered extensive
utilization across critical sectors such as aviation, aerospace, automotive, and artificial
satellite industries [1]. However, throughout their service life, adhesive structures are
susceptible to delamination at their bonding interfaces due to factors such as adhesive
processes, environmental conditions, and aging. Consequently, advancing and employ-
ing adhesive structures necessitates a dependable assessment of their integrity during
research, development, and operational phases, achievable through non-destructive testing
techniques [2].

Ultrasonic testing stands out as a significant non-destructive evaluation method, pro-
viding high-resolution detection of subsurface defects such as corrosion, delamination,
voids, and cracks in materials [3–5]. Conventional ultrasonic testing typically employs bulk
waves, characterized by high frequency and short wavelengths relative to the component
thickness. While this approach yields high detection accuracy, it exhibits lower efficiency
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when dealing with large-area components. By contrast, guided wave inspection employs
signals with wavelengths comparable to the thickness of the structural walls, enabling the
inspection of large-area components [6]. Guided wave non-destructive testing and struc-
tural health monitoring employ guided wave array imaging technology, which facilitates
rapid localization and identification of cracks, through-holes, and delamination damage in
plate-like structures [7].

Various guided wave array imaging techniques are employed for delamination detec-
tion, including reverse-time migration, spatial wavenumber filter, time-reversal imaging,
machine learning imaging, and tomography. Reverse-time migration and spatial wavenum-
ber filters primarily employ reflection wave imaging, which is notably influenced by edge
reflections of the specimen [8,9]. While time-reversal imaging techniques can achieve
sub-wavelength super-resolution imaging, they cannot precisely evaluate sub-wavelength
damage features such as location, size, and type, resulting in a lack of crucial information
for effective non-destructive testing [10,11]. Machine learning imaging methods offer high
accuracy; however, these methods lack interpretability of the underlying physical processes,
often necessitating large amounts of training data [12]. Guided wave tomography, on the
other hand, detects defects by harnessing the dispersion properties of guided waves. The
technique deploys transducer arrays around the region of interest, enabling the inversion
of collected ultrasonic guided wave signals and the reconstruction of areas of material
debonding [13]. Existing guided wave tomography algorithms primarily include travel-
time tomography [14,15], diffraction tomography [16], HARBUT tomography [17,18], and
full waveform inversion tomography [19].

Compared with alternative tomography methodologies, full waveform inversion (FWI)
stands out for its ability to achieve superior resolution through the comprehensive integra-
tion of waveform travel times, phases, and amplitudes, even under conditions of limited
data availability. This approach facilitates multi-parameter modeling, thereby encapsulat-
ing the intricate acoustic wave dynamics inherent in predictive data simulations [20,21].
Within the domain of industrial non-destructive testing, FWI has garnered considerable
attention for its efficacy in both bulk wave and guided wave detection. In the context of
bulk wave detection, Nguyen et al. applied the FWI algorithm to discern the stratification
within concrete bridge decks, yielding promising outcomes in both simulated and experi-
mental settings [22]. He et al. [23] extended the application of FWI to irregularly shaped
objects, showcasing its capacity to accurately reconstruct inclusions within gear assemblies
based on numerical simulations. Furthermore, Rao integrated FWI with the reverse time
migration (RTM) algorithm, achieving high-resolution reconstruction of void defects within
multi-layered materials [24]. In guided wave detection, pioneering work by Rao et al. [25]
employed FWI for the reconstruction of residual thickness in aluminum plates, leveraging
both numerical simulations and experimental A0 mode wave measurements to achieve
remarkable imaging resolution. The FWI method surpasses conventional tomographic
techniques in terms of imaging fidelity [26]. Additionally, the utilization of FWI enabled
researchers to conduct a comprehensive analysis of velocity and attenuation characteristics
associated with the S0 mode, facilitating high-resolution reconstruction of corrosion de-
fects in aluminum plates [27]. Ratassepp et al. [28] refined forward modeling techniques
to elucidate wave propagation behaviors within anisotropic plates, resulting in precise
reconstructions of delamination locations and extent within composite material plates.

Currently, FWI-based guided wave tomography (GWT) technology primarily targets
the detection of single-layer or anisotropic materials, with relatively less research focused on
detecting delamination defects in multi-layered materials. Therefore, this paper proposes a
novel methodology for detecting delamination defects in double-layered boards utilizing
FWI. Compared to traditional bulk wave detection methods, this significantly enhances
detection efficiency. Both simulation and experimental results underscore the method’s
efficacy in detecting delamination defects with high accuracy. The subsequent sections
of this paper are structured as follows: Section 2 provides a succinct overview of guided
wave detection principles based on FWI. Section 3 presents numerical studies validating

204



Sensors 2024, 24, 4017

the algorithm’s efficacy in detecting delamination defects of varying geometries within
aluminum–epoxy bilayer materials. Section 4 comprises experimental validation, wherein
the proposed method is applied to detect irregular delamination defects within steel–
cement bilayer boards. Finally, Section 5 offers concluding remarks.

2. Method

2.1. Full Waveform Inversion

The full waveform inversion method comprises two key components: (1) forward
simulation based on predefined model parameters and (2) calculation of the objective
function gradient and parameter updates using a suitable optimization algorithm. The
flow diagram of the FWI-GWT is illustrated in Figure 1.

Figure 1. Flow diagram of the GWT algorithm based on FWI.

2.1.1. Forward Simulation

In the gradient computation phase of FWI, two forward wavefield simulations are
necessary: (1) generating the incident wavefield based on the source and (2) computing the
residual at the receiver location and utilizing it as a source to compute the back-propagated
wavefield. Hence, the efficiency of gradient computation is directly linked to the efficiency
of forward simulation. In guided wave detection, the propagation of guided waves in thin
structures is commonly described using the constant-density acoustic wave equation. In
the frequency domain, this equation can be represented by the Helmholtz equation:(

∇2 +
ω

v2

2
)

p(r, ω) = −s(ω)δ(r − rs) (1)

where ∇2 = ∂
∂x2 + ∂

∂y2 = ∂2
x + ∂2

y represents the Laplace operator, ω = 2π f denotes the
angular frequency, and f denotes frequency; v denotes the speed of wave propagation;
r(x, y) denotes the position in two-dimensional space and p(r, ω) denotes the acoustic
pressure field; s(ω) represents the spectrum of the source signal; δ(r − rs) represents the
Dirac function; and rs denotes the position of the sound source in two-dimensional space.
In this study, we employed a nine-point differencing scheme to discretize Equation (1) [29].
To minimize interference from boundary reflections, perfectly matched layers were po-
sitioned around the computational domain to absorb the reflected acoustic wave energy.
Equation (1) can be represented using matrices through finite-difference discretization:

Ap = s (2)
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where A = ∇2 + ω2

v2 is a N × N complex impedance matrix associated with material
properties, frequency, boundary conditions, and discretization format; N represents the
total number of grid points in the two-dimensional grid, while p and s are N × 1 vec-
tors representing the acoustic pressure field and the source function, respectively. To
enhance computational efficiency, the LU decomposition [30] can be employed to solve the
wavefield p:

LU[p1, p1, . . . , pn] = [s1, s2, . . . , sn] (3)

where L and U represent the upper triangular matrix and lower triangular matrix of
the LU decomposition, respectively. This method employs the decomposed matrix A to
simultaneously solve the forward problems for multiple sources, notably accelerating the
computation speed.

In our inversion method, to enhance efficiency, the forward modeling process employs
the acoustic wave equation to simulate the propagation of guided waves, which differs
from actual guided wave propagation. Therefore, it is necessary to calibrate the measured
data to reduce the differences between these two models [25]. The method of calibrating
data involves calculating correction factors based on Equation (4) and multiplying the
measured data or finite element simulation data by these correction factors to reduce
discrepancies. The calibration factor Q can be represented as follows:

Q =
f f t(ψ0)

f f t(dobs,0)
(4)

where dobs,0 represents the time-domain signal unaffected by defect scattering obtained
from finite element simulations or experimental measurements, ψ0 represents the time-
domain signal in a homogeneous medium simulated using finite difference methods, and
f f t() denotes the fast Fourier transform.

2.1.2. Inversion Theory

For a specific single-frequency component, the frequency domain L2 objective function
can be expressed as follows:

E(v) =
1
2∑xs ∑xr

[
Rdsyn(ω, x, xs; v)− dobs(ω, xr, xs)

]2 (5)

where dsyn(ω, x, xs; v)denotes the synthetic data related to the model parameters v, dobs(ω, xr, xs)
are the observed data, and R denotes the operator associated with the receiver positions.

To circumvent the computation and storage challenges posed by the enormous Frechet
derivative matrix, this study employed the adjoint-state method [31] to calculate the
gradient of the objective function with respect to velocity. The expression for the gradient
is as follows:

g(v) =
δE(v)

δv
= −2ω2

v3 ∑xs
dsynB∗[R∗(Rdsyn − dobs)] (6)

where B denotes the forward operator and holds that B = A−1. Assuming u = B∗[R∗(Ru−
dobs)],

g(v) = −2ω2

v3 ∑xs
dp (7)

The gradient is computed based on the results derived from the incident wavefield d
and the back-propagated wavefield p.

Given the gradient expression, the process of updating the model parameters can be
formulated as follows:

v(k+1) = v(k) − αg(k) (8)

where α represents the optimization step length, g(k) denotes the gradient value at the k-th
iteration, and v(k) represents the model parameters at the k-th iteration.
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Considering only first-order derivatives, the corresponding technique is the steepest
descent method. However, this method exhibits slow convergence speed, thereby limiting
its applicability to large-scale problems. By contrast, the Newton algorithm possesses
second-order convergence properties and high solution accuracy. The iterative process for
updating the model parameters using the Newton algorithm can be expressed as follows:

v(k+1) = v(k) − αH−1(k)g(k) (9)

where H−1(k) represents the inverse of the Hessian matrix. Nevertheless, computing the
Hessian matrix imposes significant demands on the computational power and storage
space of computers. Therefore, the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method [32] is employed for updating the model. This method approximates the
Hessian matrix by disregarding complex terms, leading to faster convergence compared
to the first-order steepest descent method and a notably lighter computational burden
compared to the second-order Newton method.

2.2. Regularization Methods

In the iterative imaging process, Gaussian filtering is a widely utilized technique to
mitigate the effects of noise and artifacts, thereby enhancing imaging precision. For the
FWI algorithm based on the elastic model, the resolution typically ranges between 1.5 and
2λ. Based on empirical knowledge, in this study, the standard deviation of the Gaussian
filter is set to λ/2, where λ represents the wavelength.

In addition to the aforementioned methods, we also employ variable relaxation regu-
larization and threshold regularization methods [33]. Threshold regularization relies on the
actual phase velocity dispersion curve, where unreasonable reconstructed velocity values
are adjusted to match the background velocity. Conversely, variable relaxation regular-
ization is inspired by Tikhonov regularization. It regulates the amplification of spatial
fluctuations in each iteration, stemming from noise and sensor limitations, thereby facilitat-
ing the precise reconstruction of localized defects above the noise threshold. Denoted as vij
before regularization and v′ij after regularization, variable relaxation regularization can be
defined as follows:

v′ij =

⎧⎪⎨⎪⎩
ṽ +

vij−ṽ

(1+ 1
z2
ij
)

α
2

0<
∣∣vij − ṽ

∣∣<γβṽ

vij otherwise

zij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|vij−ṽ|

βd̃

∣∣vij − ṽ
∣∣ < βṽ

|vij−ṽ|
0.5β

[
1−cos(π

|vij−ṽ|−γβṽ

(1−γ)βṽ )

] βṽ ≤ ∣∣vij − ṽ
∣∣ < γβṽ

(10)

where ṽ represents the reference velocity for regularization, typically aligned with the veloc-
ity of the homogeneous model. β ∈ [0, 1] denotes a value contingent upon data noise, with
larger values resulting in diminished background noise post-regularization. γ ∈ [1,+∞)
stands for the relaxation constant, and the product of γ and β determines the extent of
regularization on velocity; a larger product yields a broader range of regularization. α ∈ R+

constitutes a constant that defines the strength of regularization; higher values translate to
fewer artifacts in the reconstructed velocity map, albeit with larger reconstruction errors.
This study set α = 2, β = 0.1, and γ = 3.
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2.3. Error Analysis

The root mean square error (RMSE) is used to assess the reconstruction accuracy. The
expression of the RMSE is as follows:

RMSE =

√
‖ṽ − v‖2

2
N

(11)

where ṽ is the true phase velocity, v is the velocity reconstructed by the FWI, and N is the
total number of pixels. A smaller RMSE corresponds to a more accurate reconstruction of
the defects.

3. Numerical Test

Figure 2 depicts the finite element simulation model of a double-layered bonded
structure comprising primarily aluminum and epoxy. To mitigate boundary-induced
reflection waves, a 30 mm absorbing boundary is extended outward from a 400 mm ×
400 mm research area. Transducers are evenly distributed along a 200 mm radius circle
centered at the geometric center of the bonded plate. The irregular gray area represents the
debonding defect.

 
 

(a) (b) 

Figure 2. Finite element simulation model for debonding detection of aluminum–epoxy layered
plates. (a) Geometrical schematic for marking the transducer position. (b) Aluminum–epoxy adhesive
bonding model.

Table 1 provides the material parameters of the aluminum–epoxy laminate. Based
on these parameters, we computed the dispersion curve. Given that the A0 mode is an
asymmetric mode and is more readily excited in practical inspection processes, we have
opted for the A0 mode for debonding defect detection in this study.

Table 1. Material parameters of aluminum–epoxy laminated plate [34].

Material ρ (kg/m3) cT (m/s) cs (m/s)

Aluminum 2700 6364 3170
Epoxy adhesive 1170 2610 1102

Assuming the total thickness of the aluminum–epoxy bilayered plates is 12 mm, the
solid lines of different colors in Figure 3 show the A0 mode phase velocity dispersion curves
of the aluminum–epoxy layer for different thickness ratios. In the theoretical simulation
part of this study, we represent the debonding of the aluminum–epoxy bilayered plates
by the complete disappearance of the epoxy layer. Therefore, we have also plotted the
dispersion curves of aluminum at the corresponding thickness, as shown by the dashed
lines of different colors in the figure. From these dispersion curves, it is evident that for
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frequencies greater than 70 kHz (black dashed line), complete debonding (disappearance
of epoxy) in aluminum–epoxy bilayered plates leads to an increase in the phase velocity of
the A0 mode within the debonding region. The full waveform inversion algorithm relies
on capturing these changes in phase velocity to detect the debonding region. Additionally,
at higher frequencies, the phase velocity differences induced by debonding become more
pronounced. However, simultaneously, more modes emerge, increasing the complexity of
the signal processing. Therefore, selecting appropriate frequencies is crucial in practical
inspection processes.

Figure 3. Dispersion curve of A0 mode phase velocity under different thickness ratios of aluminum–
epoxy adhesive laminates. The position of the black dashed line indicates a frequency of 70 kHz.

For the debonding detection issue in multi-layered plates, it is essential not only to
consider the impact of phase velocity changes induced by debonding on reconstruction
accuracy but also to account for the influence of transducer arrangement. Below, we will
separately verify the effects of these two factors.

3.1. The Effect of the Degree of Phase Velocity Variation on Detection Accuracy

Figure 4a presents a model diagram of a circular debonding defect located at the
center of an aluminum–epoxy adhesive bilayer structure. The blue-filled area in the figure
indicates the circular debonding region with a diameter of 50 mm, which is made of
aluminum. This area exhibits a faster phase velocity compared to the aluminum–epoxy
structure. According to Huthwaite [17], the maximum transducer spacing is recommended
to be less than half a wavelength. However, deploying an excessive number of transducers
in practical experiments is not feasible. Consequently, transducer spacing is usually set
within one wavelength [26]. Fifty transducers, centered at a frequency of 80 kHz, are evenly
distributed along the circumference of a circle with a radius of 200 mm on one side of
the aluminum plate. At this spacing, the distance between transducers is less than one
wavelength for the A0 mode. Using the phase velocity of the A0 mode under well-bonded
conditions (aluminum–epoxy) as the initial model, Figure 4b,c show the debonding defect
images reconstructed using the FWI algorithm for different thickness ratios of aluminum
and epoxy. In comparison, Figure 4c exhibits a higher degree of artifacts, primarily because
the phase velocity change between well-bonded and debonded conditions at this thickness
ratio is only 3 m/s. Table 2 presents the RMSE for the two thickness ratios, showing
that the reconstruction accuracy is higher when the thickness ratio is 5:1. Therefore, in
practical detection processes, more significant phase velocity changes are advantageous for
improving detection accuracy.
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(a) (b) 

 
(c) 

Figure 4. Reconstruction results of aluminum and epoxy adhesive at different thickness ratios.
(a) Original model; (b) 5:1; (c) 1:3.

Table 2. RMSE of reconstruction results for aluminum and epoxy adhesive at different thickness
ratios.

Thickness Ratio RMSE (m/s)

5:1 1.80
1:3 2.97

3.2. The Effect of Transducer Installation Position on Detection Accuracy

Considering that debonding defects in practical situations may have various irregular
shapes, an irregular debonding area was set up on the model of a bilayer plate with an
aluminum–epoxy thickness ratio of 5:1, as shown in Figure 5a. This irregular shape consists
of two circular regions with a radius of 25 mm each. Similar to Section 3.1, the blue-filled
area in the figure indicates the debonding region, which is made of aluminum. This
area exhibits a faster phase velocity compared to the aluminum–epoxy structure. Fifty
transducers, with a center frequency of 80 kHz, are evenly spaced along a circumference
with a radius of 200 mm. The acoustic source is loaded in the normal direction. The
reconstruction result from the transducer array placed on the aluminum plate surface is
shown in Figure 5b, and the reconstruction result from the transducer array placed on
the epoxy surface is shown in Figure 5c. Table 3 shows the RMSE of the reconstruction
results with transducers installed at different positions. The imaging results indicate that
the debonding defect location can be accurately reconstructed regardless of which side of
the plate the transducers are installed on. Additionally, applying the normal displacement
source on the aluminum plate surface achieves higher imaging resolution. To analyze the
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reason for this, we plotted the displacement wave structure characteristics of the A0 mode
at 80 kHz, as shown in Figure 6. The solid line represents in-plane displacement, while the
dashed line represents out-of-plane displacement. From the figure, it can be seen that on
the aluminum plate surface, the A0 mode primarily exhibits out-of-plane displacement
vibration. Therefore, installing the transducers on the aluminum plate surface is more
advantageous for exciting the A0 mode, thereby achieving higher detection accuracy.

 
(a) (b) 

 
(c) 

Figure 5. Reconstruction results of different transducer installation positions. (a) Original model.
(b) Transducer mounted on aluminum plate surface. (c) Transducer mounted on epoxy adhesive surface.

Table 3. RMSE of reconstruction results for different transducer installation positions.

Transducer Installation Positions RMSE (m/s)

Aluminum plate surface 1.92
Epoxy adhesive surface 2.21

Figure 6. Displacement wave structure of the A0 mode at 80 kHz in aluminum–epoxy adhesive laminate.
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4. Experimental Test

To further validate the feasibility of FWI-guided wave tomography in practical inspec-
tion processes, corresponding experiments on guided wave detection of the bilayer board
were conducted. As illustrated in Figure 7a, a PTFE film was affixed to the interface of the
steel–cement bilayer plate to simulate an area with poor adhesion. Subsequently, cement
was poured onto the steel plate’s surface and allowed to settle for 48 h, resulting in the
steel–cement bilayer structure depicted in Figure 7b. This structure comprises a 2 mm thick
cold-rolled steel plate and a 10 mm thick cement layer. The longitudinal and shear wave
velocities, as well as the densities of steel and cement, were measured and are shown in
Table 4.

  
(a) (b) 

Figure 7. Guided wave detection experiment photo of a steel–cement bilayer plate. (a) Irregularly
shaped PTFE film adhered to a 2 mm thick steel plate. (b) Twenty-four piezoelectric transducers
mounted on the steel–cement bilayer plate.

Table 4. Material parameters of the steel–cement laminated plate.

Material ρ (kg/m3) cT (m/s) cs (m/s)

Steel 7850 5890 3240
Cement 1865 2930 1741

4.1. Pulse-Echo Method

To assess the bonding quality, we initially employed the conventional pulse-echo
method for inspecting the bonding condition of the steel–cement bilayer plate. Figure 8
illustrates the experimental setup for pulse-echo debonding detection. The bilayer plate
in the lower left corner represents the test specimen, with “T” denoting the emitter and
“R” indicating the receiver. During measurements, the emitter transmits ultrasonic waves
vertically toward the plate. A mechanical positioning device is employed to comprehen-
sively inspect the specimen using the “S”-shaped water immersion scanning method. The
experiment utilized an 5072PR (Olympus, Tokyo, Japan) pulse signal generator as the
excitation device, which stimulated the emitter. Additionally, the emitter served as the
receiver to collect the signals. The collected signals passed through a preamplifier, were
displayed on an oscilloscope, and were stored in real time on a computer. Figure 9 shows
multiple echo measurement signals obtained at one of the positions on the plate [35]. The
first and largest peak represents the echo signal from the top surface of the plate and does
not contain any information about defects within the plate. The first and second echoes
indicated by arrows are the signals used to assess the bonding quality. To determine the
presence of debonded areas, one only needs to calculate the ratio of the maximum peak
of the first echo to the maximum peak of the second echo. Figure 10 displays the imaging
results obtained after multiple-wave amplitude processing of the collected array data. The
yellow area in the image indicated poor bonding quality, while the green area indicated
good bonding. The image clearly revealed an “8”-shaped debonding defect in the middle
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caused by the PTFE film, confirming the experiment’s feasibility. However, despite offering
high imaging accuracy, traditional ultrasonic scanning is relatively slow. Therefore, we
evaluated the bonding quality using the guided wave tomography technique based on full
waveform inversion.

Figure 8. Experimental equipment and measurement principles for pulse-echo debonding defect
detection.

Figure 9. Steel–cement multiple wave measurement signals.

Figure 10. Reconstruction results of the pulse-echo method.

4.2. FWI Method

Based on longitudinal and transverse wave velocities from Table 4, we plotted the
dispersion curves of the A0 mode wave in the bilayer board under various bonding
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qualities, as illustrated in Figure 11. Given the smoother surface of the steel plate, we
mounted the transducers on it. Analysis of the dispersion curves revealed that the phase
velocity difference between the steel and steel–cement bilayer plates initially increased
and then decreased with increasing frequency within the frequency-thickness product
range of 0-100 kHz×mm. Therefore, we selected a five-cycle Hanning window-modulated
cosine with a center frequency of 50 kHz as the excitation signal. Figure 12 displays the
displacement wave structure curve of the A0 mode wave in the steel–cement bilayer plate
at 50 kHz, demonstrating predominantly out-of-plane displacement on the steel plate
side. Therefore, we arranged 24 d31-mode piezoelectric transducers (Baoding Hongsheng
Ceramic Inc., Baoding, China) at the geometric center of the steel side of the steel–cement
bilayer plate, as illustrated in Figure 7b. These transducers were evenly spaced along a
circumference with a radius of 100 mm and were directly attached to the steel plate surface
using AB glue. Each d31 piezoelectric sensor had a diameter of 10 mm and a length of
26 mm. Figure 13 illustrates the experimental setup for array data acquisition, comprising
a computer, power amplifier, signal generator, oscilloscope, ultrasonic transducers, and
the stee–cement bilayer board. The experiment employed a power amplifier to amplify
the signal from the signal generator, serving as the input to the emitter. Subsequently, the
received signal on the receiver was observed on an oscilloscope, which was connected to a
computer for real-time storage of the acquired data.

(a) (b) 

Figure 11. Dispersion curve of A0 mode waves in steel–cement laminated plate. (a) Phase velocity.
(b) Group velocity.

Figure 12. Displacement wave structure of the A0 mode at 50 kHz in a steel–cement laminate.

During the signal acquisition process, noise often accompanies the data. Interference
signals can distort measurements and must be mitigated. To address this, a bandpass filter
tailored to the transducer’s bandwidth is applied. In practical settings, unlike simulated
scenarios, measurements are influenced by reflected waves from the plate’s edges. These
reflections, devoid of defect-related information, are filtered out. In this study, the method
outlined in [36] was employed to extract the A0 mode. The method involved applying
a Tukey window to the original signals based on the group velocity dispersion curve,
as shown in Figure 11b. Figure 14 displays the waveform captured by a single emitter–
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receiver pair. The black solid line represents the normalized original waveform, the red
solid line depicts the Tukey window function, and the blue solid line illustrates the extracted
A0 mode. After the Fourier transformation of the A0 mode data, the frequency-domain
FWI method was employed for defect imaging.

Figure 13. Experimental setup.

Figure 14. Waveform acquired from an emitter–receiver pair.

Figure 15 presents the reconstructed location of the delamination defect at the highest
frequency obtained via the FWI algorithm. The blue area delineates the reconstructed de-
lamination region, while the red area denotes the uniformly bonded region. The green dots
mark the transducers’ positions, and the green dashed lines indicate the original delamina-
tion region’s extent. Despite minor shape distortions and artifacts, likely due to uneven
cement thickness, the position of the delamination area is accurately reconstructed. These
results confirm the effectiveness of the proposed method in reconstructing the delamination
area’s shape and position. Compared with traditional pulse-echo delamination detection
methods, the FWI-based guided wave detection method offers expedited detection.

Figure 15. Reconstruction results of delamination defects in steel–cement laminated plate. Green
dots mark the positions of the sensors. The Green dashed line represents the contour of the actual
position of the PTFE film.
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5. Conclusions

This study established a method for detecting delamination defects in bilayer struc-
tures using ultrasonic guided wave arrays based on the FWI algorithm. Numerical investi-
gations demonstrated that FWI-based guided wave debonding defect detection effectively
captures changes in phase velocity caused by defects, enabling accurate defect identifica-
tion. Regardless of regular or irregular patterns in the delamination area, the proposed
method reliably reconstructs the approximate defect position. Delamination detection
in steel–cement bilayer plates revealed that the new detection approach, compared to
traditional pulse-echo methods, enhanced detection efficiency.

The research in this study focuses on the detection of delamination defects in multi-
layer plates. When the thickness of the pipe wall is much smaller than the pipe diameter,
and the guided wave wavelength is smaller than or comparable to the thickness of the pipe
wall, the propagation characteristics of the guided wave in the plate are similar to those
in the pipe wall [37]. Currently, there is relatively little research on delamination defect
detection in multi-layer pipes in aerospace, petrochemical, and other fields. Corresponding
work will be conducted in the future.
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Abstract: Background: the feasibility of the capacitance method for detecting the water content
in standing tree trunks was investigated using capacitance-based equipment that was designed
for measuring the water content of standing tree trunks. Methods: In laboratory experiments, the
best insertion depth of the probe for standing wood was determined by measurement experiments
conducted at various depths. The bark was to be peeled when specimens and standing wood were
being measured. The actual water content of the test object was obtained by specimens being weighed
and the standing wood being weighed after the wood core was extracted. Results: A forecast of
the moisture content of standing wood within a range of 0 to 180% was achieved by the measuring
instrument. The feasibility of the device for basswood and fir trees is preliminarily studied. When
compared to the drying method, the average error of the test results was found to be less than
8%, with basswood at 7.75%, and fir at 7.35%. Conclusions: It was concluded that the measuring
instrument has a wide measuring range and is suitable for measuring wood with low moisture
content, as well as standing timber with high moisture content. The measuring instrument, being
small in size, easy to carry, and capable of switching modes, is considered to have a good application
prospect in the field of forest precision monitoring and quality improvement.

Keywords: capacitance method; standing tree; moisture content; measuring instrument

1. Introduction

Measuring the dielectric constant of standing wood is very important for measuring
the water content of standing wood. At present, the dielectric constant is measured using
the reflection method or resonance method. These methods usually use time domain
reflectometry, network analysis, and other large measuring equipment; they usually use
220 V AC power supply, have poor portability, are expensive, and have a high retrofit
cost. It is more suitable for indoor analysis and research, and cannot adapt to the timely
measurement needs in the complex environment in the field. It is necessary to find a
physical parameter that can include the dielectric constant. Take parallel plate capacitors as
an example, as follows:

Assume that the upper and lower plates, as shown in Figure 1, carry a charge of +q
and −q, respectively; the charge is evenly distributed on the opposite side of the two plates,
the electric field between plates is uniform, and its electric field intensity is as follows:

E =
q

ε0 · εr · S
(1)
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Figure 1. Plane−parallel capacitor.

ε0 ≈ 8.85 × 10−12F/m, ε0 = 1/4πk (k = 8.9880 × 109, unit: Nm2/C2).
The plate length is L, the width is D, and the plate area is

S = D · L (2)

The potential difference between two plates is

U = Ed =
q · d

ε0 · εr · S
(3)

According to capacitance definition,

C =
q
U

(4)

The dual plate capacitance is

C =
ε0 · εr · S

d
(5)

The relative permittivity of air is 1, and water is 81. Bringing these two extreme values
into the equation gives a capacitance value between 0.07 and 5.67 pF, thus calculating the
capacitance of the probe and the live wood sapwood medium.

The capacitance method is one of the most typical test methods for the detection of
water content in standing trees, which works by detecting electrical parameters of the
standing tree. Numerous moisture content (MC) measuring instruments developed over
the years leverage the high correlation between the MC of the product and its electrical
conductivity or dielectric constant [1]. The capacitance method for measuring water content
is commonly used in other fields, such as measuring the water content of crops like wheat,
corn, rice, and peanuts, as well as crude oil [2,3], and soil [4]. The current capacitance-based
method of wood moisture content measurement is widely used in the wood industry. In
the field of low moisture content wood, Shaogang Liu [5–7] and Guocui [8] have explored a
capacitance sensor-based wood moisture content detection system, and the results showed
that the capacitance method has a good mathematical model relationship for wood moisture
content detection. Additionally, some scholars have ventured into predicting the water
content of live standing trees’ trunks using the capacitive method. For instance, Matheny [9]
used a capacitive probe calibration sensor combined with the frequency domain reflection
method to detect the water content of tree stems. The results show that the species-specific
calibration can convert the measured dielectric constant into the volume water content of
the species with different densities. The Japanese scholar Tham [10] and others combined
the two methods of wood capacitance measurement and near-infrared spectroscopy to
predict water content of trees, and to construct different mathematical models of capacitance
and spectra, which provide a basis for analytical methods to evaluate other properties of
wood and woody materials. All of these studies show that the capacitance method has
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a good application, not only in the field of low water content wood detection, but it also
has great potential in the detection of water content in the trunk of standing trees (high
water content).

Studies have shown that the change in the capacitance signal due to the change in
wood moisture content is particularly pronounced at low frequency excitation signals [11].
At present, wood moisture content testing equipment is mostly in the laboratory stage,
there is still a lack of moisture content measuring instruments applied in the field for
measuring live wood trunk moisture content, and it is difficult to measure live wood with
high moisture content. Moreover, traditional measuring instruments have limited range
and low accuracy. Therefore, it is necessary to study the capacitance-based field instrument
for measuring the water content of standing tree trunks. This study takes basswood and fir
as the primary research objects, and verifies their performance through laboratory and field
experiments, providing technical support for the accurate measurement of water content in
a standing tree, and the precise monitoring and quality improvement of forests.

2. Materials and Methods

2.1. Instrument Design

The equipment development mainly includes a detection probe, temperature acquisi-
tion circuit, live tree trunk moisture content signal detection circuit, keypad circuit, LCD
display circuit, power supply, voltage regulator circuit, microcontroller minimum system,
and software system; the system framework is shown in Figure 2.

Figure 2. Block diagram of the system of standing tree trunk moisture content measurement.

The two searching units of the detection probe are equated into a parallel pole plate
capacitor [12,13]. The parallel pole plate capacitor consists of a probe, a shell, and a fixed
block. The distance between the two probes is 10 mm. The probe is made of a purple
copper rod (Carnation Copper Industry Copper Material Manufacturers, Wenzhou, China)
with a diameter of 2 mm and a length of 40 mm. There are 10 mm left in the shell for fixing,
and the outer shell is made of an industrial high polymer heat shrink tube (Okes Wire and
Cable Company, Dongguan, China), which is fixed on the probe after hot processing. The
fixed block is machined from a mold and glued to the sensor using a hot melt adhesive.
Wood between the pole plates of the capacitor is used as the dielectric. Different dielectric
water rates lead to different dielectric constants, which in turn cause changes in capacitance
between the parallel pole plates of the capacitor. The capacitance is calculated as

C =
ε·S

4πkd
, (6)

where
C is capacitance,
ε is relative permittivity of the medium between the plates,
S is area of the parallel plates (unit: m2),
k is electrostatic constant (k = 8.9880 × 109, unit: Nm2/C2),
d is vertical distance between the two plates (unit: m).

220



Sensors 2024, 24, 4040

The detection probe constituting the capacitor serves as detection input Ci; the wa-
ter content signal detection circuit uses a 555 multi-harmonic oscillation circuit (Limao
Electronic Technology Company, Shenzhen, China), as shown in Figure 3. In the non-
stationary mode of operation, the 555 multi-harmonic oscillation circuit outputs a continu-
ous, frequency-specific electromagnetic wave [14]. The frequency of the output electromag-
netic wave is determined by R1, R2, and Ci. The formula for calculating electromagnetic
wave frequency is as follows:

T ≈ 0.7(R1 + 2R2) ∗ Ci, (7)

where
T is electromagnetic wave frequency (unit: Hz),
R1 and R2 are resistance of the circuit (unit: Ω),
Ci is changing capacitance between the parallel poles (unit: F). Duty cycle is deter-

mined by R1 and R2.

Figure 3. 555 multiple resonant swing circuit diagram.

In the testing process, direct measurement of capacitance values is more compli-
cated [15–17]. A frequency of the output electromagnetic wave is used to indirectly char-
acterize the change in capacitance due to the measurability of the electromagnetic wave
frequency of the 555 multi-harmonic oscillation circuit. To facilitate calculation, the in-
verse of electromagnetic wave frequency, i.e., the electromagnetic wave period, is used to
complete the entire test verification process. Changes in wood moisture content lead to vari-
ations in the dielectric constant and, consequently, alterations in the electromagnetic wave
of the multi-harmonic oscillation circuit. The moisture content signal from the measured
live wood trunk is collected by detection probe and converted into an electromagnetic
wave periodic analog signal through a moisture content signal detection circuit. The analog
signal is converted into a digital signal through the modular (A/D) converter of a minimum
system of a single chip microcomputer. The STM32F103VET6 (Xintai Electronics, Shenzhen,
China) is the microcomputer, and a series of functions, such as multi-resonant circuit output
signal measurement, temperature signal processing, key selection measurement mode,
calibration formula input and modification, zero calibration, and serial communication, are
realized in the burning program using the 12-bit AD converter of STM32. A digital signal is
put into the moisture content calculation formula to calculate real moisture content of the
live wood trunk, and the final result is displayed on a Liquid Crystal Display (LCD) screen.

The uneven surface of the bark and different sizes of tree diameters directly influence
the insertion process of two searching units’ detection probes. In order to ensure that the
probe can be easily inserted into the live standing wood, and to reduce the interference
of the magnetic field on the detection circuit, the material used for the detection probe
was selected with a certain toughness and stiffness of purple copper T2. To prevent short
circuiting during insertion, an insulation layer cover was used. The temperature detection
circuit sensor utilizes a DS18B20 chip, externally powered, with advantages including high
system accuracy, strong resolution, and good anti-interference performance [18]. The key
part uses three independent keys, RESET, Key0, and Key1, which occupy three IO ports,
WK UP, KEY0, and KEY1 of the microcomputer, respectively, whereas RESET (WK UP)
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controls the reset of the microcomputer, and the other two (KEY0, KEY1) are mode selection
keys, which can enter a selection state by long press. Figure 4 shows key schematics of
this design. For the modular design of the LCD display, a 2.4 inch TFT LCD display is
integrated into the dedicated interface of the microcontroller minimum system board, with
required registers configured and initialized.

Figure 4. Key schematic diagram.

Firstly, the main program design involves initializing internal resources, such as
an analog to digital converter (ADC) conversion module and clock configuration of the
microcontroller and peripheral modules, such as a keypad module and LCD display, and
the user selects the appropriate mode according to the detected tree species. Each tree
species corresponds to a specific fitting equation, and the fitting equation is written into
the subroutine corresponding to each keypad. In each processing cycle, the detected signal
is substituted into the fitting equation to derive the water content value, which is then
displayed on the LCD screen.

Next is the interrupt program design. The moisture content signal is collected by
detection probe and processed through detection circuit, resulting in a periodic electro-
magnetic wave signal. Secondly, frequency is determined by measuring the number of
falling edges of the electromagnetic wave within a unit time, followed by the calculation of
the electromagnetic wave period. When the falling edge of electromagnetic wave signal is
generated, the external interrupt service is triggered, leading to the entry into the external
interrupt program. Upon the occurrence of a falling edge in the electromagnetic wave, the
variable of “times” is incremented. When the time “t” reaches 1 s, the timer’s interrupt
service is triggered, initiating the entry into the timer interrupt program. The value of the
variable “times” is then assigned to the variable of ”last times”, the variable of “times” is
cleared to zero, and the total number of falling edges of the electromagnetic wave within
a 1 s interval is recorded. Exiting the interrupt program, the system re-enters the main
program to proceed with the next 1 s timer interrupt process. The value of “last times”
can be used to calculate the frequency of the electromagnetic wave, and then calculate the
period of the electromagnetic wave.

The experimental data obtained after A/D conversion will have certain errors, and
data collected by the microcontroller need to be optimized to reduce errors brought by
the experiment and outside world, and to improve detection accuracy. The data collected
within 1 s are arranged from smallest to largest by comparing them one by one, and are
stored in an array for easy recall, as follows:

a[0], a[1], a[2], a[3] . . .. . . a[n], (8)

remove the first four numbers and last four numbers of experimental data and rearrange
the entire array as follows:

a[0], a[1], a[2], a[3] . . .. . . a[n − 8], (9)
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The error caused by the experimental interference can be eliminated by removing
extreme values. In addition, noise inevitably interferes with the circuit during the testing
process. In order reduce this unavoidable global error, the method of averaging data is
used for filtering processing, and, finally, the data are stored in a defined variable.

2.2. Measuring Standing Tree Area

Sapwood and heartwood are two important zones in the wood. Sapwood has a higher
water content, and because sapwood is outside the tree, it usually has a higher water
content; this is because sapwood is the main channel for trees to transport water and
nutrients, so it contains a lot of water. Heartwood is located in the center of the tree, near
the inside of the tree. Heartwood usually contains less water than sapwood; this is because
heartwood does not contain living cells, and the water and nutrients have been removed or
converted into other substances. Due to the low moisture content in the heartwood and the
dense wood structure, the moisture content of the heartwood is relatively stable and not
susceptible to seasonal and climatic changes. Therefore, the sapwood of trees is chosen as
the research object.

2.3. Instrument Verification

To verify reliability of the measuring instrument, the instrument was first calibrated in
a laboratory, including using the distilled water medium test and the wood medium test,
and the experimentally fitted relationship equation of the electromagnetic wave period and
water content was imported into the microcontroller of a detector. Then the instrument
was field tested in an experimental forestry field in Liangshui, Yichun. The equipment
measurement procedure is as follows: 30 basswood trees and 15 fir trees were randomly
selected, and the bark was peeled at a height of 1 m from the ground. A small electric hand
drill is used to drill two parallel small holes with a diameter of 3 mm and a depth of 4 cm
in the vertical direction (1 cm apart). A small hole of the same size is drilled with a growth
cone next to the lower hole, and the sapwood sample (wood core) is taken out and weighed
with an electronic balance (to record the total weight of the wood core) and bagged for
use. The device is inserted into the tree, with a wait time of 30 s to 1 min, until the data no
longer fluctuate; reading and recording the input square wave period is obtained by the
water content detector.

Figure 5 shows the physical diagram of the standing tree moisture content meter,
which is divided into the following four parts: searching units, detection circuit, lithium
battery, and minimum system board. Figure 5a shows the front view of the instrument,
and Figure 5b displays the field measurement of the standing tree trunk moisture content
meter. The measuring instrument is located 1 m above the ground (the area selected by the
red line is the measuring instrument).

(a) (b) 

Figure 5. Standing tree trunk moisture meter. (a): front view of the instrument. (b) field measurement
of tree moisture content.
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According to the principle of the measuring instrument, the period of electromagnetic
wave output of the device is affected by moisture content of the wood; a distilled water
medium test can be used as a pretest to observe the sensitivity of the test device to water
and the degree of influence of the insertion depth change on the period signal, as a blank
control for subsequent tests. The distilled water experiment is shown in Figure 6, and test
results are shown in Figure 6b. Figure 6b shows that the electromagnetic wave period
becomes longer as insertion depth increases. Correlation coefficient R2 of the fitted curve
is as high as 0.99, indicating that the independent variable has a good linear relationship
with the dependent variable when testing distilled water media, and the meter has good
sensitivity to distilled water. The distilled water medium test can provide a good reference
basis for the detection of water content of live tree trunks in the field.

 
(a) (b) 

Figure 6. Relation diagram of insertion depth and electromagnetic wave period in water medium
test. (a) Distilled water medium test; (b) fitted curve of the average of six experiments.

2.4. Instrument Calibration

Laboratory wood media tests were conducted using water-soaked basswood and fir
disc specimens instead of live timber. First, two holes were drilled in each of the specimens,
which were then soaked in water for four weeks. Subsequently, the disc specimens were
removed once saturated, wiped dry, and left to stand for 1 h. The searching units of the
probe were then inserted into the drilled holes at depths of 30 mm and 40 mm, respectively,
to monitor and record the electromagnetic wave cycle in real time. Readings were recorded
every 30 s for a total of five times. After data recording, the specimens were placed into
an oven for drying at 105 ◦C, where they were dried for half an hour each time for high
moisture content (>30%), and for 1 to 3 h each time for low moisture content (≤30%) [19].
After each drying, the weight of the specimens was measured and left to dry for 1 h in
the room (room temperature of 15 to 20 ◦C), and weighed and recorded (accuracy 0.1 g).
According to the same test steps, the output electromagnetic wave period is detected, and
the test data are recorded. These steps were repeated until the specimen reached a constant
weight. The absolute dry mass was weighed, and the moisture content was calculated for
each test.

In the same experimental site in Liangshui [20], basswood and fir standing trees were
randomly selected; 30 basswood trees and 15 fir trees were sampled. Two holes were
drilled in each test tree, moisture content was checked with a measuring instrument, and
test data were recorded; at the same time, the wood core was removed with a growth cone,
oven-dried, and the moisture content of the trunk of standing trees was calculated and
compared to the data measured by the measuring instrument.
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3. Results

3.1. Wood Media Test

Figure 7 shows the fitted relationship between the moisture content and electromag-
netic wave period for basswood and fir, and fitted equations are shown in Table 1; R2 of the
fitted equation for the basswood disc at 40 mm insertion depth was as high as 0.99, and
the model fit was good and reliable (Figure 7a). The fitted curve of the fir disc specimen
showed obvious segmentation (Figure 7b), and the moisture content of the cut-off point
was around 30% (near the wood fiber saturation point). The fitted equations of fir disc
specimens were better fitted at an insertion depth of 30 mm, and R2 of both fitted curves
was greater than 0.95, while fir discs had low accuracy and larger errors at the insertion
depth of 40 mm. Therefore, fitted equations under 40 mm and 30 mm insertion depths
were selected for basswood and fir, respectively, and written into the microcontroller to
facilitate field tests for verification.

 

(a) (b) 

Figure 7. Fitting diagram of electromagnetic wave period and water content of basswood and fir.
(a) Basswood; (b) fir.

Table 1. Fitting relation between electromagnetic wave period and mass moisture content of basswood
and fir.

Tree Species Insert Depth Fitting Equation R2

Basswood
30 mm y = 6.75x − 95.10 0.98
40 mm y = 7.13x − 90.39 0.99

Fir
Moisture content is less than 30% Moisture content is more than 30% R1

2 R2
2

30 mm y = 1.10x − 15.85 y = 10.92x − 377.31 0.98 0.96
40 mm y = 1.33x − 18.87 y = 9.99x − 290.52 0.98 0.79

Note: R1
2 corresponds to the fitted curve with water content less than 30%, and R2

2 corresponds to the fitted
curve with water content less than 30%.

3.2. Field Test Validation

The actual water content of trees was compared to the results obtained by the mea-
suring instrument, and comparison results are shown in Figure 8. Due to the complex
measurement environment, measurement results of the meter were slightly lower than
indoor measurement results. The R2 values of fitted curves of basswood were all greater
than 0.8, and measurement results were more satisfactory (Figure 8a), while R2 of fitted
curves of fir were all greater than 0.95 (Figure 8b), and the fitting effect was better than that
of basswood, as shown in Table 2. The average error in water content measured by the
two methods was calculated and shown to be 7.75% for basswood and 7.35% for fir, and a
comparison of the data is shown in Figure 9. The fitted curves of the capacitance method
were better than the drying method for both tree species in Figure 9, indicating that the
fitted curves of the capacitance method had some credibility, produced less fluctuation
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in the measured data, and had higher accuracy of detection with less errors. Therefore,
the capacitance method holds practical value in predicting the moisture content of live
standing tree trunks.

 
(a) (b) 

Figure 8. Comparison diagram of water content fitting curve between capacitive method and drying
method of basswood and fir. (a) Basswood; (b) fir.

Table 2. Fitting relation between electromagnetic wave period and water content of basswood and fir
in different methods.

Tree
Species

Insert Depth
Processing
Method

Fitting Equation R2

Bass
wood 40 mm

Drying method y = 5.27x − 46.90 0.81

Capacitance
method y = 6.33x − 74.50 0.87

Moisture content is less than 30% Moisture content is more than 30% R1
2 R2

2

Fir 30 mm

Drying method y = 3.40x − 84.34 y = 9.03x − 250.87 0.98 0.96

Capacitance
method y = 2.00x − 39.29 y = 9.73x − 282.78 0.99 0.98

Note: R1
2 corresponds to the fitted curve with water content less than 30%, and R2

2 corresponds to fitted curve
with water content less than 30%.

(a) (b) 

Figure 9. Comparison of basswood and fir measurements with real data. (a) Basswood; (b) fir.

4. Discussion

In this study, the moisture content of two species was studied in the laboratory and
field, and the function equations of the electromagnetic wave period and moisture content
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were constructed for the two species of basswood and fir. This moisture content detector
is small in volume, and the measurement is accurate and can display the electromagnetic
wave reflection time and moisture content in real time. Compared to the relevant studies
of SK Korkua (2020) [21] and P Chetpattananondh (2017) [22], we can write calibration
equations of multiple tree species into the device in advance, so that different tree species
can be easily measured in actual measurements.

5. Conclusions

Based on the capacitance method, we designed a live tree trunk water content meter,
constructed an equation of the electromagnetic wave period as a function of water content
through indoor tests, and wrote it into a microcontroller, and then used it to measure water
content of live tree trunks in the field to verify the reliability of the meter. Conclusions
show the following:

1. The equipment is optimized from both hardware and software aspects. Due to the
good conductivity of purple copper, it is chosen as the probe material, which can
better retain the integrity of an electrical signal; the microcontroller judges pulse the
trailing edge to determine that the frequency is stable and reliable; and the 555 timing
circuit has high sensitivity to capacitance changes. The software structure is optimized
in terms of sampling, especially software filtering, which reduces the occurrence of
accidental errors and improves accuracy of data.

2. Pretests on distilled water prior to laboratory testing of moisture content of live tree
trunks showed that the electromagnetic wave period gradually increased with the
increase in insertion depth, i.e., the increase in moisture, and the goodness of fit was
0.99, indicating that the meter has excellent sensitivity to water.

3. The field and indoor tests showed that applicability of the moisture content meter for
standing tree trunks was verified by constructing mathematical models for different
tree species. The instrument is capable of measuring moisture content of basswood
and fir tree trunks in the range of 0 to 180%, with a wide range of measurements. The
average error of measurement was 7.75% for basswood and 7.35% for fir, both within
8%. Overall, the design and measurement results of the instrument were satisfactory.

The moisture content measurement instrument designed in this study can achieve
more accurate measurements of the moisture content of standing wood trunks with minimal
error, applicable to both low and high moisture content live standing wood trunks. An
accurate capacitance moisture content detector is designed, which is convenient to carry,
small in size, and can be viewed in real time; furthermore, the preset mode can be imported
into the device in advance, and different modes can be switched at any time.

We still need to conduct a lot of experiments to make the calibration equation more
accurate. In the future, different tree species will be calibrated and input into the device.
Secondly, we can also study the water content at different locations and heights of the
same tree, which helps us to make more accurate measurements. It is also necessary to add
storage capabilities to the device later on, so that the tree can be measured in the form of a
record for a long time.
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11. Lev, J.; Křepčík, V.; Šarauskis, E.; Kumhála, F. Electrical Capacitance Characteristics of Wood Chips at Low Frequency Ranges: A

Cheap Tool for Quality Assessment. Sensors 2021, 21, 3494. [CrossRef]
12. Oskouei, F.J.; Masoudi, A.A.; Khorrami, M. The static and dynamic behavior of a simple parallel-plate capacitor with Casimir

force. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenom. 2021, 150, 111199. [CrossRef]
13. Grove, T.T.; Masters, M.F.; Miers, R.E. Determining dielectric constants using a parallel plate capacitor. Am. J. Phys. 2005, 73,

52–56. [CrossRef]
14. AN170. NE555 and NE556 Applications; Integrated Circuits; Philips Semiconductors: Eindhoven, The Netherlands, 1988.
15. Drevinskas, T.; Kaljurand, M.; Maruška, A. Capacitance-to-digital: A single chip detector for capillary electrophoresis. Elec-

trophoresis 2014, 35, 2401–2407. [CrossRef] [PubMed]
16. Lee, K.; Shur, M.S.; Drummond, T.J.; Morkoc, H. Current—Voltage and capacitance—Voltage characteristics of modulation-doped

field-effect transistors. IEEE Trans. Electron. Devices 1983, 30, 207–212.
17. Chen, T.S. Determination of the capacitance, inductance, and characteristic impedance of rectangular lines. IRE Trans. Microw.

Theory Tech. 1960, 8, 510–519. [CrossRef]
18. Saha, R.; Biswas, S.; Sarmah, S.; Karmakar, S.; Das, P. A Working Prototype Using DS18B20 Temperature Sensor and Arduino for

Health Monitoring. SN Comput. Sci. 2021, 2, 33.
19. Xu, Q.; Xu, H.; Di, Y.; Li, Q. Effect of probe insertion depth on the accuracy of inversion of water content of birch trunks by

time-domain reflection method. J. For. Eng. 2019, 4, 120–126.
20. Wang, Y.; Xu, H.; Zhou, H.; Cao, Y.; Ji, L. Effect of ambient temperature on the change of internal moisture content of standing

trees. J. Nanjing For. Univ. Nat. Sci. Ed. 2017, 41, 107–113.
21. Korkua, S.K.; Sakphrom, S. Low-cost capacitive sensor for detecting palm-wood moisture content in real-time. Heliyon 2020, 6,

e04555. [CrossRef]
22. Chetpattananondh, P.; Thongpull, K.; Chetpattananondh, K. Interdigital capacitance sensing of moisture content in rubber wood.

Comput. Electron. Agric. 2017, 142, 545–551. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

228



sensors

Article

Localization for Dual Partial Discharge Sources in Transformer
Oil Using Pressure-Balanced Fiber-Optic Ultrasonic Sensor Array

Feng Liu *, Yansheng Shi, Shuainan Zhang and Wei Wang

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
* Correspondence: 1182101049@ncepu.edu.cn

Abstract: The power transformer is one of the most crucial pieces of high-voltage equipment in the
power system, and its stable operation is crucial to the reliability of power transmission. Partial
discharge (PD) is a key factor leading to the degradation and failure of the insulation performance of
power transformers. Therefore, online monitoring of partial discharge can not only obtain real-time
information on the operating status of the equipment but also effectively predict the remaining
service life of the transformer. Meanwhile, accurate localization of partial discharge sources can assist
maintenance personnel in developing more precise and efficient maintenance plans, ensuring the
stable operation of the power system. Dual partial discharge sources in transformer oil represent a
more complex fault type, and piezoelectric transducers installed outside the transformer oil tank often
fail to accurately capture such discharge waveforms. Additionally, the sensitivity of the built-in F-P
sensors can decrease when installed deep within the oil tank due to the influence of oil pressure on
its sensing diaphragm, resulting in an inability to accurately detect dual partial discharge sources in
transformer oil. To address the impact of oil pressure on sensor sensitivity and achieve the detection of
dual partial discharge sources under high-voltage conditions in transformers, this paper proposes an
optical fiber ultrasonic sensor with a pressure-balancing structure. This sensor can adapt to changes in
oil pressure environments inside transformers, has strong electromagnetic interference resistance, and
can be installed deep within the oil tank to detect dual partial discharge sources. In this study, a dual
PD detection system based on this sensor array is developed, employing a cross-positioning algorithm
to achieve detection and localization of dual partial discharge sources in transformer oil. When
applied to a 35 kV single-phase transformer for dual partial discharge source detection in different
regions, the sensor array exhibits good sensitivity under high oil pressure conditions, enabling the
detection and localization of dual partial discharge sources in oil and winding interturn without
obstruction. For fault regions with obstructions, such as within the oil channel of the transformer
winding, the sensor exhibits the capability to detect the discharge waveform stemming from dual
partial discharge sources. Overall, the sensor demonstrates good sensitivity and directional clarity,
providing effective detection of dual PD sources generated inside transformers.

Keywords: partial discharge; pressure-balanced fiber-optic ultrasonic sensor; fault localization; dual
partial discharge sources detection

1. Introduction

Transformers are common high-voltage power equipment, characterized by a large
installation base and high economic value. Their safe and stable operation directly affects
the reliability of the power grid. Among the various fault types, insulation failure in
transformers is one of the most common, making online monitoring and fault diagnosis of
transformer insulation status paramount [1]. Partial discharge (PD) occurs in the insulated
portions of electrical equipment under prolonged high-voltage conditions, manifesting
as localized discharges. These discharges often originate from various defects within the
insulation media, such as minute cracks, hidden bubbles, or accumulations of metallic
impurities. The discharge process not only generates gases and chemical substances but
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also significantly elevates local temperatures, leading to adverse effects like corrosion
on insulation materials. These consequences accelerate the degradation process at the
insulation defects, thereby shortening the service life of the equipment [2]. Therefore, the
monitoring and prevention of partial discharges are crucial steps in ensuring the safe and
stable operation of power equipment.

Partial discharge testing is an effective method to evaluate the PD level in transformers,
accurately reflecting the health status and insulation aging degree of high-voltage electrical
equipment [3]. In large transformers with high voltage ratings, due to their compact internal
structure, high and unevenly distributed electric field strengths, the discharge types are
more complex, often leading to simultaneous discharges from multiple PD sources [4].
These discharges, with their superimposed waveforms, become more intricate, making it
challenging for traditional external sensors to detect and distinguish such discharge types.
Even if the simultaneous discharge waveforms of multiple PD sources are captured, they are
difficult to differentiate from environmental interference waveforms. These issues increase
the difficulty for maintenance personnel, and missed detections or repairs can result in
poor maintenance outcomes for power equipment, while repeated maintenance inspections
further increase transformer maintenance costs. Overall, research on multi-point detection
and localization techniques for internal PD in transformers is crucial for enhancing the
accuracy and efficiency of fault detection and allowing maintenance personnel to optimize
maintenance plans [5]. Therefore, an in-depth study of the discharge characteristics of
dual PD sources under complex internal conditions in large transformers, the accurate
identification of discharge types, and the precise localization of PD areas are significant
for timely detecting potential faults, predicting the remaining life of equipment, and
developing maintenance plans [6]. This will contribute to ensuring the safe and stable
operation of power systems.

During the occurrence of partial discharge, it is often accompanied by phenomena such
as pulse current, radiation light, and sound. These characteristic signals contain information
about the energy intensity and positional direction of the PD sources [7]. Through digital
signal processing techniques and the application of corresponding algorithms, quantitative
analysis of PD phenomena can be achieved. This holds significant academic value and
practical implications for the in-depth study of PD mechanisms and the guidance of fault
inspection and repair work. Currently, there are two major categories of PD localization
techniques: electrical signal localization and acoustic signal localization. Depending on
the different characteristic quantities, they can be further divided into the pulse current
method, the ultra-high frequency method, and the ultrasonic localization method. As an
effective and accurate localization method, acoustic methods have been widely used in
the industry, and many scholars have conducted extensive research on this method. The
general acoustic localization method employs a piezoelectric transducer array placed on
the outer wall of the transformer oil tank. It utilizes the time difference of ultrasonic signals
reaching different sensors to solve equations and determine the location of the partial
discharge source. Depending on the adopted reference time scale, it can be further divided
into “acoustic-acoustic” and “electric-acoustic” methods [8,9]. This method is cost-effective
and relatively easy to install, but ultrasonic waves undergo attenuation and distortion after
reflection from the transformer oil tank. Additionally, the external environment of the oil
tank is prone to signal interference, resulting in a low signal-to-noise ratio [10]. Therefore,
the distributed installation of sensors is required to achieve high localization accuracy.
The received ultrasonic signals are scattered, and the signals received by different sensor
elements vary significantly, which can easily lead to the non-convergence of the algorithm’s
solution. In particular, for dual PD sources occurring inside the transformer, traditional
piezoelectric transducers cannot be expected to clearly distinguish and accurately locate
them. The Fabry–Perot (F-P) sensor utilizes the ultrasonic signals generated by PD to
deform the silica diaphragm located at the probe [11]. By analyzing the optical changes
within the F-P cavity, fault detection of PD can be achieved. This fiber-optic ultrasonic
sensor, with its optical signal as the signal transmission medium, boasts excellent insulation
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properties and can be built into the transformer’s interior [12,13]. Currently, most of
these built-in detection devices are installed at the oil change valve at the bottom of the
transformer oil tank. However, under the influence of oil pressure, the sensitivity of the
sensing diaphragm decreases, and the sensor cannot fully respond to dual PD signals. This
limits its detection range and fails to provide accurate partial discharge detection for the
transformer’s overall, especially the winding section located at the bottom.

To address the aforementioned issues, this paper presents a pressure-balanced op-
tical fiber ultrasonic sensor. By introducing perforation, transformer oil can enter the
F-P interference cavity, thus minimizing the impact of oil pressure on the diaphragm’s
sensitivity. However, the ingress of transformer oil can reduce the reflectivity of light. To
counter this, we have implemented an alternating coating of SiO2 and Ta2O5 on the silica
diaphragm and fiber end face, enhancing reflectivity and mitigating the interference caused
by transformer oil in the F-P interference cavity. Utilizing light as the signal transmission
medium, this sensor boasts a high insulation level, enabling the detection of dual PD
ultrasonic signals from the bottom of transformer oil tanks. The collected PD ultrasonic
signals from the sensor array are processed using a direction-finding cross-localization
algorithm, accurately identifying and precisely locating the dual PD sources within the
tank. Experimental evaluations conducted on a 35 kV single-phase transformer at various
locations have demonstrated the effectiveness and precision of this method in detecting
and locating dual PD sources in transformer winding interturn. However, for PD sources
within the oil channels, the method offers qualitative detection but fails to achieve precise
localization.

In order to detect the discharge fault of dual partial discharge sources in transformer oil,
this paper designs an optical fiber ultrasonic sensor with a pressure balance structure, which
allows transformer oil to enter the sensor cavity through drilling. In order to minimize
the influence of transformer oil on the sensitivity of the sensor, the reflectivity of the silica
diaphragm and the fiber end face is improved by coating. The well-fabricated sensors are
assembled into a sensor array, and the method of cross-direction measurement is used
to locate the fault position of the dual partial discharge sources and detect the discharge
phenomenon of dual partial discharge sources at different positions of the transformer.

In summary, the combination of the pressure-balanced ultrasonic sensor array and the
direction-finding cross-localization algorithm exhibits excellent performance in detecting
and locating dual PD sources in transformer oil tanks, particularly in scenarios without
obstacles. This approach provides a novel solution and research direction for localizing
complex PD faults in high-voltage power transformers. The organizational structure of this
writing is illustrated in Figure 1. The first-level purple area represents the overall purpose of
this paper, which is to detect and locate the discharge phenomena of dual partial discharge
sources in transformer oil. The second-level gray area covers the sensor fabrication section,
corresponding to Section 2 of the paper. In this section, we have developed sensors that can
adapt to the oil pressure of transformers. The improvements focus on two main points: the
first is drilling holes in the sensor cavity to allow transformer oil to enter, and the second
is coating the sensor to enhance its reflectivity. Finally, we conducted vertical sensitivity
tests using the fabricated sensors. The third-level blue section represents the localization
method, which corresponds to the content of Section 3 in the article. The first step is to
determine the direction of the partial discharge sources, and the second step is to use the
results of the directional measurements to perform cross-localization. The fourth-level
green area represents the experiments we conducted for detecting and localizing dual
partial discharge sources at different locations within the transformer, specifically in three
representative positions: inside the transformer oil, within the transformer oil channel,
and at the interturn of the transformer winding. These locations have varying degrees of
obstruction to the ultrasonic waves.
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Figure 1. Writing organization structure diagram.

2. Pressure-Balanced Fiber-Optic Ultrasonic Sensor and Dual PD Localization System

The structure of the pressure-balanced fiber-optic ultrasonic sensor is illustrated in
Figure 2. The dual PD source localization system comprises a sensor probe, laser source,
coupler, and photodetector, and they are interconnected via a single-mode fiber (SMF).
The sensor probe features a small hole at the F-P cavity, allowing transformer oil to enter
the cavity, thereby minimizing the hindrance of oil pressure on diaphragm vibrations.
However, the influx of transformer oil can impact the optical performance of the F-P cavity.
To address this, the inner surface of the silica diaphragm is coated with a total reflection
film, while the fiber end face is coated with an optical dielectric film composite of Ta2O5
and SiO2. Ta2O5 is an insulating material with stable molecular properties, exhibiting
exceptional thermal and chemical stability, high voltage resistance, a high refractive index,
and a high transmission coefficient. Ta2O5 coatings are commonly used for high-refractive-
index thin-film materials [14]. SiO2, another insulating material with a high refractive index,
boasts a melting point of up to 1723 ◦C, chemical inertness, and high voltage resistance [15].
By employing an alternating coating process with these two materials, the sensor achieves
both high reflectivity and excellent adhesion, leading to a long service life. In contrast to
the metal material coating solution, this sensor design does not create a floating potential,
ensuring no impact on the internal electric field distribution of the transformer.

Figure 2. Structure of the dual PD detection system.
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The laser source emits monochromatic light that propagates along SMF and enters
the F-P cavity. According to the Huygens–Fresnel principle, the reflectivity of the incident
light at the interface between the fiber end face and air is approximately 3.6%, while the
remaining 96.4% of the incident light passes through the interface and enters the F-P cavity,
striking the silica diaphragm. Most of this light transmits through the silica diaphragm, and
the remaining 3.3% reflects back into the fiber at the inner surface of the silica diaphragm.
The ultrasonic signal generated by partial discharge reaching the sensor diaphragm causes
vibrational deformation of the diaphragm, resulting in a slight change in the length of the
F-P cavity [16]. This change triggers an interference pattern between the two beams of light,
leading to a change in light intensity. By detecting this change in light intensity through the
circulator port and converting it into an electrical signal detectable by an oscilloscope using
a photodetector, the interference-modulated light intensity can be expressed as follows:

Ir(l) =
r1 + r2 − 2

√
r1r2 cos δ

1 + r1r2 − 2
√

r1r2 cos δ
I0(l) (1)

δ =
4πΔl

λ
(2)

In the expression, l represents the length from the fiber end face to the inner surface
of the silica diaphragm, which is also known as the length of the F-P cavity. I0(l) denotes
the incident light intensity (the unit is mW/m2), which remains constant when there is no
external signal, as the F-P cavity length remains unchanged. λ is the wavelength of the
laser light source (the unit is μm). r1 represents the reflectance at the fiber end interface,
while r2 represents the reflectance at the inner surface of the silica diaphragm. δ is the
phase difference between adjacent beams (the unit is rad); Δl is the optical path difference
between the two interfering light beams (the unit is μm). With fixed reflection coefficients
r1 and r2, the intensity of the interference light after the reflection of the two beams is solely
dependent on the F-P cavity length (l) of the sensor.

When external vibration signals act on the sensor, they cause the diaphragm to undergo
bending deformation, altering the cavity length of the sensor and subsequently changing
the intensity of the interference light between the two beams. By demodulating the received
optical intensity signal, the measurement of the partial discharge ultrasonic signal can be
achieved.

The cladding diameter of the single-mode fiber used in the pressure-balanced fiber-
optic ultrasonic sensor is 125 μm. The coating area must cover the entire region where the
incident light beam strikes the inner surface of the silica diaphragm. To minimize the impact
on the vibration of the silica diaphragm, the coating radius should be as small as possible,
while also considering potential deviations during the welding of the silica diaphragm and
the sensor cavity during the manufacturing process. Therefore, we deposited a circular film
with a diameter of 500 μm and a thickness of 260 nm at the center of the inner surface of the
silica diaphragm, which has a diameter of 3.5 mm and a thickness of 30 μm. Considering
economic costs, we did not opt for an expensive, fully reflective film. Instead, combining
engineering practicality, this article adopts a cost-effective coating with a relatively high
reflectance. After coating the inner surface of the silica diaphragm, we tested its refractive
index, and the results are shown in Figure 3. The laser source used in the partial discharge
detection system designed in this article has a center wavelength of approximately 1550 nm.
According to the reflectance curve, it can be seen that the reflectance of the inner surface of
the silica diaphragm after coating is approximately 99.7%.

Given the technical challenges of coating the fiber end face and the fact that the F-
P interference cavity relies on transmitted light, a comprehensive consideration of the
relationship between reflectance and transmittance is essential. In this paper, the reflectance
of the fiber end face after coating is set at 20%, with a transmittance of 80%. The processed
sensor was placed in transformer oil for 48 h to allow the oil to completely penetrate
into the F-P cavity. Utilizing the MS9740A spectrometer (The MS9740A spectrometer is
manufactured by Anritsu in Atsugi, Japan, and we purchased it from Shanghai, China), its
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optical power was measured at 534.6 μW, with a reflectance of 19.8%. Compared to the 3.6%
reflectance without coating, this method significantly enhances the overall performance of
the sensor after transformer oil enters the F-P interference cavity. Considering the practical
application of placing the sensor at different depths inside the transformer, this paper
designed an experiment to investigate the vertical sensitivity of the sensor in transformer
oil. The vertical sensitivity characteristic refers to the variation in the maximum voltage
amplitude of the sensor’s output waveform at different depths in the transformer oil.

Figure 3. Reflectivity curve of the inner surface of the quartz film after coating.

The sensor was fixed on an insulating wooden strip with a needle-plate electrode,
maintaining a spacing of 60 cm. The probe of the sensor was positioned directly facing the
needle-plate electrode. Both the sensor and the needle-plate electrode were submerged
into the transformer oil at depths ranging from 10 cm to 70 cm, as depicted in Figure 4.
During each experiment, the maximum value of the waveform voltage was selected, and
the experimental results are presented in Figure 5. It is worth noting that the sensors used
in this study were not precisely manufactured by a factory with uniform specifications.
Instead, after the components were processed, they were manually cut and welded in
our laboratory, resulting in significant variations in sensor sensitivity. Furthermore, con-
sidering the inherent randomness of simulating partial discharge in insulating oil, the
discharge magnitude was not a fixed value, leading to certain deviations in ultrasonic
energy. Therefore, Figure 5 can only qualitatively demonstrate the influence of oil pressure
on the sensitivity of a single sensor.

Figure 4. Layout diagram for vertical sensitivity test of sensor.

Figure 5. Vertical sensitivity decay curve of the sensor.
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Overall, as the depth increases and the oil pressure rises, the viscous coefficient
acting on the sensor diaphragm increases, subsequently elevating the vibrational resistance,
resulting in a decrease in sensor sensitivity. Based on this pressure-balanced structure
sensor, this study has further designed a sensor array for the localization of dual PD
sources. According to phased array theory, to mitigate the radiation energy occupied by
grating lobes and enhance the array antenna gain, the element spacing should be less than
or equal to half of the wavelength of the target being measured. Additionally, to guarantee
a sufficiently large effective area for signal reception and a high resolution, half of the
wavelength is chosen as the element spacing. In the experiments conducted in this paper,
the propagation velocity of ultrasonic waves in oil is 1420 m/s, with a central frequency
of 30 kHz, resulting in a wavelength of 47.33 mm. Moreover, to ensure a sufficiently
large receiving surface for the array and similar signal reception among elements, thereby
avoiding positioning errors caused by inconsistent element responses, the array layout was
optimized through multiple experiments. Ultimately, a regular tetrahedron structure with
an element spacing of 20 mm was adopted. Under these parameters, the pressure-balanced
fiber-optic ultrasonic sensor array exhibits excellent signal acquisition performance. The
spatial structure diagram of the array is presented in Figure 6, where θ and φ represent the
azimuth and elevation angles of the PD source, respectively. The method of establishing
the three-dimensional Cartesian coordinate system for the sensor array is also applicable to
subsequent discussions and calculations involving PD source direction measurements in
this paper. The technical changes of the sensors in this section are summarized in Table 1.

Figure 6. Spatial structure diagram of sensor array.

Table 1. The summary table of technical changes for this section.

Unresolved Issues Solution Significance

The transformer oil pressure impedes the
sensor diaphragm’s response, preventing
the detection of ultrasonic signals from

dual partial discharge sources.

Sensor chamber drilling Allowing transformer oil to enter and
achieve pressure balance

Silica diaphragm coating To improve the reflectivity of the
reflective end face and reduce the impact

of transformer oil entering.Fiber optic end face coating

3. Method for Locating Dual PD Sources

The Multiple Signal Classification (MUSIC) algorithm is a high-resolution spectral
estimation technique utilized in sensor array signal processing. It relies on the orthogonality
principle between signal subspaces and noise subspaces and determines the direction of
signals by searching for the peaks in the spatial spectrum [17]. As a result, MUSIC is a
direction-finding method that is based on the energy of sound sources.

3.1. The Principle of Direction-Finding with the MUSIC Algorithm

Based on the principle of spatial spectrum estimation, assuming X(t) represents the
received signal at the array, its covariance matrix is computed as follows:

235



Sensors 2024, 24, 4450

R = E
{

X(t)X(t)H
}
= A(ϕ, θ)RS AH(ϕ, θ) + RN (3)

In the expression, R represents the covariance matrix of the array signal, while A(ϕ, θ)
is the steering vector of the signal, encoding the direction of arrival (DOA) of the PD
source [18]. Specifically, θ denotes the azimuth angle, and ϕ represents the elevation angle
of the PD source, as illustrated in Figure 3. RS and RN are the signal covariance matrix and
noise covariance matrix, respectively. By performing an eigendecomposition on the array
signal covariance matrix R, a function involving the noise subspace UN can be obtained.
According to the properties of subspaces, the signal steering vector is orthogonal to the
noise subspace. However, in practical scenarios, noise is always present, and thus the
orthogonality is not perfect. The actual DOA estimation is achieved by evaluating all
possible DOA values and identifying the minimum value. This minimum-finding process
can be transformed into a maximum-seeking problem through a reciprocal relationship.

Pmusic =
1

AH(ϕ, θ)UNUH
N A(ϕ, θ)

(4)

Pmusic is a spatial spectrum function, serving as a calculation formula for energy. The
energy value of ultrasonic signals at the location of partial discharge is significantly higher
than that at non-partial discharge locations where only sound wave reflections are present.
For a single PD source, after searching through the entire spatial spectrum, the MUSIC
algorithm identifies the peak with the highest energy. The corresponding values of ϕ and θ
at this peak represent the directional information of the PD source. This is the foundation
of the MUSIC algorithm for DOA finding. Even in the case of continuous discharge
from a single point, the location of the energy extremum in the spatial spectrum remains
unchanged, with only one peak representing the direction of the partial discharge source.
Therefore, it can be distinguished from the case of simultaneous discharge from dual PD
sources. By constructing a spatial spectrum function, the MUSIC algorithm enables DOA
estimation of PD sources, offering better resolution compared to traditional beamforming
methods. This allows for direction finding of dual PD sources signals simultaneously.

3.2. Localization Algorithm

The fundamental principle of the direction-finding cross-localization algorithm relies
on two direction-finding stations, each comprising sensor arrays, to determine the DOA
of a common target. Subsequently, through spatial geometric calculations, the coordinate
position of the target is accurately determined, as depicted in Figure 7. This approach
enables precise localization based on the intersection of the DOA measurements from the
two stations.

Figure 7. Schematic diagram of cross location for dual PD sources direction finding.

As depicted in the localization schematic diagram in Figure 6, when the sensor arrays
and the partial discharge location are situated on the same horizontal plane, theoretically,
the localization method may encounter false positioning points. However, taking into
account the actual direction-finding errors, the occurrence of false positioning points is
rare. Furthermore, considering the redundancy inherent in equipment maintenance plans,
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maintenance personnel tend to prioritize avoiding missed fault detections during practical
inspections. Therefore, in the subsequent discussions of this paper, the scenario of false
positioning points will be disregarded.

4. Experimental Testing and Result Analysis

The dual PD sources localization testing platform for transformer oil comprises a
transformer oil tank, a sensor array, a high-voltage pulse generator, and two needle-plate
electrode discharge tubes simulating partial discharges. The transformer oil tank has
dimensions of 200 cm in length, 100 cm in width, and 150 cm in height. It is filled with 25#
high-voltage electrical insulation oil, and the outer shell of the tank is grounded. To simulate
the fault scenario of simultaneous discharges from dual PD sources, we connect the two
discharge tubes in series to the high-voltage pulse generator. By adjusting the spacing
between the two needle-plate electrodes and through multiple voltage pressurization
attempts, under the excitation of a 20 kV high-voltage pulse, the two series-connected
needle-plate electrodes can simultaneously undergo breakdown and discharge, and the
discharge waveform can be detected through an oscilloscope.

4.1. Detection Experiment of Dual PD Sources in Transformer Oil

As depicted in Figure 6, a spatial Cartesian coordinate system is established, connect-
ing the PD sources to the origin. Through spatial geometry knowledge, the DOA estimation
of the acoustic sources can be obtained, specifically the azimuth angle and the elevation
angle. Furthermore, to evaluate the performance of the dual PD sources localization system,
it is imperative to define the distance error between the actual PD source position and
the theoretically estimated position. Therefore, the spatial distance between the actual PD
source’s position and the estimated position is defined as the distance error. This definition
holds true for the subsequent error analysis presented in the following sections.

With the right bottom corner of the transformer oil tank serving as the origin, a
comprehensive spatial Cartesian coordinate system is established. Two sensor arrays are
deployed inside the tank at positions (45 cm, 10 cm, and 50 cm) and (55 cm, 10 cm, and
50 cm), respectively. To test the overall localization performance of the system for PD
sources at different locations, the oil tank is divided into three zones, and localization
experiments are conducted sequentially in each zone. Figure 8 provides a top-view of the
layout of the dual PD sources positions, while Figure 8 illustrates the experimental setup.

Figure 8. Layout diagram for the localization experiment of dual PD sources in transformer oil.

In the first experiment, two PD sources were placed at 47 cm, 48 cm, and 47 cm and
50 cm, 27 cm, and 53 cm, corresponding to the circular positions in Figure 9. Upon the
occurrence of partial discharges, the waveforms detected by the sensors are presented
in Figure 10. As observed from the waveform plots, the pressure-balanced fiber-optic
ultrasonic sensors were able to accurately detect the discharge waveforms from both
PD sources. Based on the signals detected by the sensor array and processed through a
direction-finding and cross-localization algorithm, the estimated positions were determined
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as 42.7 cm, 58.8 cm, and 41.2 cm and 48.2 cm, 21.1 cm, and 48.6 cm, with distance errors of
12.9 cm and 7.6 cm, respectively.

Figure 9. Aerial view of the layout of dual PD sources.

Figure 10. Ultrasonic waveform of dual PD sources in transformer oil detected by the sensor.

Subsequently, following the methodology of the first experiment, the dual PD sources
were placed at different locations. In the second experiment, the two PD sources were
located on the same side of the sensor array, corresponding to the triangular positions in
Figure 9; in the third experiment, the PD sources were positioned on opposite sides of the
two arrays, at the square positions in Figure 9; and in the fourth group of experiments,
the partial discharge source is located at the position of the star in Figure 9, respectively,
to verify the positioning accuracy when the deviation between the dual PD sources is
significant. The experimental results are presented in Table 2, which indicates that the
positioning accuracy of the sensor array with a pressure-balanced structure generally meets
engineering requirements, with the maximum distance errors being 17.7 cm and 13.1 cm in
the second experiment with the triangular layout. This is attributed to the fact that in this
region, there are more overlapping areas between the waveforms of the two PD sources,
resulting in less distinct peak amplitudes of the direct waves, thereby causing a larger error
in solving the energy extremum using the localization algorithm. In contrast, the circular
layout in the first experiment exhibited the smallest positioning error, with distance errors
of 12.9 cm and 7.6 cm. This is because in this region, the sensor array has the best directivity,
receiving signals with higher energy and better sensitivity. Considering that only four
sensors were used to form the array in this study, using a larger array with more sensors
to cover a broader reception area would result in the reception of richer partial discharge
signals, further enhancing the positioning accuracy for dual PD sources.
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Table 2. Results of localization for dual PD sources in transformer oil.

Number
PD Source

Coordinates/cm
Localization
Results/cm

Distance
Error/cm

1
(47, 48, 47) (42.7, 58.8, 41.2) 12.9
(50, 27, 53) (48.2, 21.1, 48.6) 7.6

2
(70, 40, 49) (85.1, 47.1, 55.1) 17.7
(50, 57, 53) (41.9, 66.2, 48.3) 13.1

3
(30, 41, 50) (27.3, 47.2, 45.1) 8.4
(75, 47, 56) (68.7, 56.3, 67.2) 15.9

4
(40, 26, 40) (37, 34, 52) 14.7
(44, 38, 51) (51, 45, 47) 10.7

In practical scenarios, if the dual PD sources are located inside the transformer winding
and the sensor array is arranged outside the windings within the oil tank, the ultrasonic
signals will encounter obstructions from the insulating pressboard. These adverse factors
can increase the difficulty of detecting partial discharge signals. To simulate this situation,
a 60 cm × 100 cm, 2 mm thick insulating pressboard was inserted between the sensor
array and the PD sources. To more realistically mimic the internal environment of a
transformer, the insulating pressboard was fully soaked with transformer oil beforehand.
Through repeated experiments, it was found that the sensors had difficulty responding in
the presence of such obstacles. In rare cases, partial discharge waveforms could be detected,
as shown in Figure 11, but the waveforms that penetrated the pressboard were mixed
with diffracted waves bypassing the insulating pressboard, resulting in very low voltage
amplitudes and making it impossible to distinguish between direct waves and diffracted
waves.

Figure 11. Ultrasonic waveform of dual PD sources after adding insulating pressboard.

Next, further experimental studies will be conducted to investigate the impact of
transformer winding on the detection of dual partial discharge sources.

4.2. Detection Experiment of Dual PD Sources in the Transformer Oil Channel

To verify the accuracy of the partial discharge localization system, we further con-
ducted experiments using a 35 kV single-phase transformer winding model. This model
consists of inner and outer windings with oil ducts in-between and 2 mm thick insulating
pressboards. Detailed parameters are presented in Table 3. A realistic image of the windings
is shown in Figure 12. The experimental setup for the localization of dual partial discharge
sources in the transformer oil channel is depicted in Figure 13.
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Table 3. 35 kV single-phase transformer winding model dimensions.

Terms Size (cm)

Outer diameter of the outer winding 50
Inner diameter of the outer winding 38
Outer diameter of the inner winding 26
Inner diameter of the inner winding 20

Winding height 60

 
Figure 12. Physical diagram of transformer winding model.

Figure 13. Layout diagram for the experiment of dual PD sources in transformer oil channel.

When dual partial discharge occurs in the transformer oil channel, the ultrasonic signal
needs to pass through the gap between the outer windings to reach the sensor array inside
the oil tank. The waveform of the dual partial discharge detected by the sensor is shown
in Figure 14. It can be seen that the ultrasonic wave can pass through the gap between
the winding to reach the sensor array, but the signal amplitude is attenuated, and due to
the blocking of the winding, the waveform is distorted and does not show the normal
oscillating attenuation trend. Such a waveform cannot be used for actual engineering
localization.
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Figure 14. Ultrasonic waveform of dual PD sources in transformer oil channel.

4.3. Detection Experiment for Dual PD Sources in Transformer Winding Interturn

The interturn of transformer windings refers to the uniform gap between stacked
winding cakes of different layers, which are separated by insulating paper and insulating
cardboard. Due to poor manufacturing processes and the introduction of impurities during
later operation of the transformer, it can lead to local electric field concentration, causing
partial discharge and resulting in interturn short-circuit of the winding coil [19]. This is a
common fault type in transformer windings. When a relatively minor interturn short-circuit
occurs in the winding, the transformer can still operate. However, if it continues to operate
with the fault for a long time, it may lead to more severe consequences or even damage
the transformer [20]. Multiple partial discharges can accelerate the speed of insulation
degradation and increase the risk of an interturn short circuit. The experimental layout
for testing the dual partial discharge sources in transformer winding interturn is shown in
Figure 15.

Figure 15. Experiment on locating dual PD in transformer winding interturn.

When dual partial discharge sources are arranged between the turns of the outer
winding, a partial discharge waveform is detected by the sensor, as shown in Figure 16,
and the localization results are presented in Table 4.
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Figure 16. Ultrasonic waveform of dual PD sources in transformer winding interturn.

Table 4. Results of localization for dual PD sources in transformer winding interturn.

Number
PD Source

Coordinates/cm
Localization
Results/cm

Distance
Error/cm

1
(43, 170, 25) (49.4, 185.6, 30.7) 17.8
(54, 168, 30) (60.7, 162.2, 38.1) 12.0

2
(52, 167, 45) (61.2, 171.3, 39.8) 11.4
(59, 174, 30) (65.2, 169.1, 48.1) 19.7

3
(39, 176, 25) (34.2, 170.3, 29.3) 9.4
(58, 172, 45) (62.3, 176.7, 40.3) 7.9

4
(42, 171, 35) (49.1, 164.4, 42.9) 12.5
(48, 166, 40) (41.6, 176.2, 31.4) 14.8

5
(52, 167, 25) (61.2, 175.2, 35.1) 15.9
(58, 172, 40) (51.2, 180.2, 31.9) 13.4

As seen from the signals received by the sensor in Figure 15, when the dual PD sources
are located in the winding interturn, the ultrasonic signals emitted by the PD sources are
not blocked by the windings. The first few cycles of the waveform can propagate through
the gaps of the winding to the sensor array without distortion. Due to the refraction and
reflection of the ultrasonic waves by the winding gaps, the latter half of the signal exhibits
more reverberations. The amplitudes of these interfering waveforms are significantly lower
than those of the direct wave signals. From an energy perspective, these interferences
may increase the number of energy peaks, but they do not affect the selection of the first
and second extreme values, which represent the positional information of the two sound
sources. Therefore, by arranging four sensor arrays on both sides, it is possible to achieve
the localization of dual partial discharge sources occurring in the interturn space and on
the surface of the transformer windings.

Our method for detecting dual partial discharge sources involves placing sensors
inside the transformer, which differs from the approach of installing sensors outside the
transformer’s metal tank. The latter method is unable to detect the simultaneous discharge
of dual partial discharge sources due to ultrasonic attenuation and interference from
external signals. The built-in detection method offers high accuracy but faces two major
challenges. The first is that the sensors need to overcome the decrease in sensitivity caused
by the pressure of the transformer’s insulating oil, which is an objective technical issue
that our improved sensors aim to address. The second challenge is a subjective concern
stemming from manufacturers and users’ worries about this invasive detection method.
The more sensors used, the greater their concern. Currently, there are few algorithms
suitable for simultaneous localization of dual sound sources. Currently, we can only use
a single sensor array for direction finding and cross-check the results from two arrays
to achieve localization, which is a cumbersome and complex method and a last resort as
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we have not found a better solution yet. A sensor array requires four sensors, and two
arrays would need eight sensors. To detect and locate partial discharges on both sides of
a single-phase winding, the number of sensors required could reach up to 16. Therefore,
the current localization method of the paper can only be implemented under laboratory
conditions, and it will be of engineering practicability only after reducing the number of
sensors used. Therefore, we did not conduct too much research on this localization method.
Our future research will focus on solving the problem of dual partial discharge sources
localization using a smaller number of sensors. We are currently exploring two technical
routes concurrently. One team is studying ways to reduce the number of array elements
in the sensor array, potentially sacrificing some precision to achieve a reduction in sensor
count. The other team is searching for novel localization methods. We look forward to
developing more practical and acceptable localization techniques that will be welcomed by
transformer manufacturers and users.

5. Conclusions

This paper proposes a novel method for detecting and localizing dual PD sources
inside transformers using a pressure-balanced fiber-optic ultrasonic sensor array with a
regular tetrahedron structure and a direction-finding cross-localization algorithm. The
sensor can be installed deep in the transformer oil, and its pressure-balanced structure
design can reduce the obstruction of oil pressure on the diaphragm vibration, enabling it
to capture the discharge signals from dual partial discharge sources. For scenarios where
there are no obstacles blocking the discharge of dual PD sources, this method can achieve
localization of dual PD sources inside transformer oil using only two sensor arrays.

When dual partial discharge sources occur in the oil channel of the winding, the
ultrasonic signals generated by PD will undergo attenuation and distortion. In such cases,
the detected waveforms can only be used for qualitative partial discharge detection and
cannot accurately locate the fault point. If the periodic amplitude of the direct wave
contained in the partial discharge ultrasonic signal is not attenuated, such as when it occurs
in the interturn of the transformer winding, then its waveform can be used for localization.
Otherwise, the position of the sensors needs to be adjusted to reduce the attenuation of the
direct wave period caused by obstacles.

This detection method has a high dependence on sensor sensitivity and the direct
wave of partial discharge. In the subsequent research work, different coating processes will
be tried to reduce the diaphragm thickness and improve the sensor sensitivity. In addition,
sensors will be installed at different positions of the transformer to allow the ultrasonic
signals of partial discharges from different fault areas to directly reach the sensor array,
avoiding obstruction. Furthermore, the localization method needs to be improved, using a
smaller number of sensors to achieve more precise localization.
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Abstract: Magnetic flux leakage (MFL) inspection employs leakage magnetic fields to effectively
detect and locate pipeline defects. The spacing between magnetic poles significantly affects the
leakage magnetic field strength. While most detectors typically opt for moderate pole spacing for
routine detection, this study investigates the propagation characteristics of MFL signals at small
pole spacings (under specimen oversaturated magnetization) and their impact on MFL detection.
Through finite element simulation and experiments, it reveals a new signal phenomenon in the radial
MFL signal By at small pole spacings, the double peak–valley (DPV) phenomenon, characterized by
outer and inner peaks and valleys. Theoretical analysis based on the simulation results elucidates
the mechanisms for this DPV phenomenon. Based on this, the impact of defect size, pipe wall
thickness, and magnetic pole and rigid brush height on MFL signals under small magnetic pole
spacings is examined. It is demonstrated that, under a smaller magnetic pole spacing, a potent
background magnetic field manifests in the air above the defect. This DPV phenomenon is generated
by the magnetic diffusion and compression interactions between the background and defect leakage
magnetic fields. Notably, the intensity of the background magnetic field can be mitigated by reducing
the height of the rigid brush. In contrast, the pipe wall thickness and magnetic pole height exhibit a
negligible influence on the DPV phenomenon. The emergence of the DPV precipitates a reduction
in the peak-to-valley difference within the MFL signal, constricting the depth range of detectable
defects. However, the presence of DPV increases the identification of defects with smaller opening
sizes. These findings reveal the characterization of the MFL signal under small pole spacing, offering
a preliminary study on identifying specific defects using unconventional signals. This study provides
valuable guidance for MFL detection.

Keywords: magnetic flux leakage (MFL); leakage magnetic field; double peak–valley (DPV)
phenomenon; magnetic pole spacing

1. Introduction

Pipelines play a key role in oil and gas transmission. Their safe operation is crucial
to energy support and economic development [1]. It is possible for these pipelines to
develop cracks, corrosion, deformation, and other defects in the long-term transportation
process, threatening the safety of production [2,3]. Therefore, it is necessary to test pipelines
regularly. Nondestructive testing (NDT) is a widely used method for inspecting pipelines
without causing damage to the tested material. The common NDT methods include
ultrasonic testing (UT), eddy current testing (ECT), and magnetic flux leakage (MFL)
testing [4]. Compared to other NDT methods, MFL detection technology has the advantages
of a strong anti-interference ability, a fast signal acquisition speed, and no need for coupling
agents; so, it has become the mainstream technology for pipeline detection worldwide [5,6].

Pipeline defects can be identified, located, and quantified by analyzing the MFL
signals [7]. Many scholars have found that MFL signals are influenced by many factors,
such as defect size, sensor detection angle and direction, temperature, stress, scanning

Sensors 2024, 24, 5195. https://doi.org/10.3390/s24165195 https://www.mdpi.com/journal/sensors245



Sensors 2024, 24, 5195

speed, lift-off value, pipe shielding effects, and specimen surface roughness. Kopp et al. [8]
employed a magnetic dipole model (MDM) to investigate how the defect size impacts
MFL signals, establishing a clear correlation between signal characteristics and defect
geometric parameters. Tri-axial signals were utilized to approximate defect opening sizes.
To address probe tilt due to detector vibration during detection, Long et al. [9] proposed
a dual-sensor probe to compensate for probe tilt. This approach effectively achieves the
compensation of the original MFL signal. The scanning direction of the sensor also affects
the MFL signal. Wu et al. [10] using the MDM revealed that the MFL signal is most effective
when the defect’s extension direction is perpendicular to the scanning direction of the
sensor. Wang et al. [11] developed a temperature-dependent MDM that considers the
combined effects of the temperature and thermal stress, noting a parabolic signal amplitude
variation within specific temperature ranges. Based on the J-A theory, Liu et al. [12]
investigated the relationship between stress and the saturation magnetization strength
of ferromagnets. They observed that, under high magnetic field stress, the saturation
magnetization strength of ferromagnets decreases exponentially with the increase in stress.
This reduction diminishes the amplitude of the MFL signal, potentially leading to an
underestimation of defect depth. Wu investigated the impact of uniform and non-uniform
stress on bi-axial MFL signals, observing changes in signal amplitude both perpendicular
and parallel to the stress direction. Furthermore, it was noted that these signals effectively
characterize the magnitude and distribution of stress inhomogeneity [13]. Eddy current
effects, resulting from the relative motion between magnetization devices and pipelines,
diminish MFL signal strength [14,15]. Pullen’s study revealed that increasing the detection
speed results in insufficient magnetization strength in the pipe wall. This causes the
MFL signal strength of outer wall defects to decrease, while that of inner wall defects
increases [16,17]. Usarek found that both the tangential and normal components of the
magnetic field increase linearly with speed. To compensate for this effect, an empirical
fitting equation was employed to adjust the MFL signal [18]. The lift-off value between the
sensor probe and the detection object increases the noise in the MFL signal. Peng et al. [19]
and Feng et al. [20] analyzed the influence of the lift-off value on the MFL signal based
on the MDM and finite element model (FEM). They proposed compensation methods for
the sensor lift-off effect on the MFL signal. Liu et al. [21] addressed pipe wall shielding
effects on MFL signal propagation, integrating a wall propagation compensation factor
into the MDM for accurate defect detection on outer pipe walls. Deng et al. [22] discussed
the effect of ferromagnetic specimen surface roughness on the MFL signals. It was found
that surface roughness generates excess MFL signals, which could obscure weaker signals
and increase the risk of missed defect detections. Additionally, Yousaf analyzed magnetic
pole spacing impacts on the MFL testing of steel bars, determining the optimal spacing
considering leakage magnetic field intensity and magnetic pole interaction effects [23].

In conclusion, while there have been many studies on the factors that affect MFL
signals, research on the impact of magnetic pole spacing is still relatively scarce. This is
because the majority of detectors have been designed with the pole spacing already set
according to the conventional detection scenario. Generally, reducing the magnetic pole
spacing can enhance the amplitude of the MFL signal. However, further reductions may
disturb it [24]. Studies on the amplitude and waveform characteristics of MFL signals with
small pole spacing are notably sparse, particularly when the pipe wall is oversaturated
with magnetization.

This paper thoroughly investigates the variation pattern of MFL signals under small
magnetic pole spacing through theoretical analysis and experimental research. Firstly,
the influence of magnetic pole spacing on the MFL signal is analyzed, and a new sig-
nal phenomenon is discovered. The cause of the phenomenon is also analyzed through
FEM simulations. Subsequently, we examine the effects of defect size, wall thickness,
magnetic pole, and rigid brush height on the MFL signal under wall saturation and
oversaturation conditions.

246



Sensors 2024, 24, 5195

2. Methods

2.1. The Model of MFL Detection

The internal detector for the pipe MFL comprises a battery section, a detection section,
a data recording section, and a mileage wheel, as illustrated in Figure 1a. Among these
components, the MFL detection section is responsible for magnetizing the pipe wall and
collecting the MFL signals using magnetic sensors. The collected signals are then filtered,
amplified, and stored in the recording section. The battery section provides power to
the detector and also drives the detector’s movement. The mileage wheel is capable of
recording the detection mileage and movement speed of the detector. The magnetic sensors
used to collect the MFL signals in the detection section are distributed as shown in Figure 1b.
The sensor capsules are uniformly distributed on the whole circumference, and 12 Hall
sensors are uniformly distributed in each sensor capsule.

Figure 1. The principle of the MFL detection: (a) schematic diagram of MFL inspection detector,
(b) cross-sectional illustration of MFL detection section, and (c) the principle of MFL signal collection.

Figure 1c illustrates the principle of MFL signal collection, which relies on the high
magnetic permeability of ferromagnetic materials. To achieve a saturated or near-saturated
state, a permanent magnet, a yoke iron, and a rigid brush are used to fully magnetize the
pipe wall. In the absence of defects, the magnetic force lines run parallel to the inside of the
pipe. However, if surface or near-surface defects, for example, are present, the magnetic
force lines become obstructed, causing some of them to leak out of the pipe surface. This
leakage magnetic field can be detected using a magnetic sensor, enabling the identification
and characterization of the defect.

The magnetic field is the physical variable in the MFL detection system. Therefore,
Maxwell equations are used to describe the leakage magnetic field. As this study does not
consider the velocity effect, a static magnetic field model is used to describe the leakage
magnetic field [25]. Thus, it can be described by

∇× H = J (1)

∇·B = 0 (2)

where ∇ is the Hami operator, H is the magnetic field strength, J is the equivalent current
density, and B is the magnetic flux density.

The relationship between the electromagnetic materials is described as

B = μ·H (3)

where μ is the medium’s permeability.
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Due to the source-free nature of magnetic fields, introducing the vector magnetic
potential A allows for the following:

∇× A = B (4)

From Equations (1)–(4) and the vector identity ∇ × (∇ × A) = ∇ (∇ A) − ∇2A, we
can derive

1
μ
∇2 × A = −J (5)

To solve Equation (5), the following boundary conditions are introduced:{
A = 0 At the boundary of the model
A1 = A2 At the junction of two mediums

(6)

By utilizing the boundary conditions to solve Equation (5), the axial and radial compo-
nents of the MFL signal can be calculated as follows:{

Bx = ∂A
∂y

By = − ∂A
∂x

(7)

where Bx and By represent the axial and radial components of the magnetic field, B, respectively.

2.2. Finite Element Model of MFL Detection

The FEM is a numerical analysis model based on Maxwell equations for solving
leakage magnetic fields and has found extensive application in the field of MFL inspection.
This study utilized ANSYS 2021 R2 software to construct a complete 3D MFL detection
FEM, as shown in Figure 2a. This consists of 18 magnetization device pieces, which are
arranged in a circle around the pipe wall. The magnetization device comprises a yoke
iron and two opposing permanent magnets. A layer of inflexible brushes is positioned
on the surface of the permanent magnets, which come into direct contact with the steel
pipe specimen. The inflexible brushes are magnetized to saturation by the permanent
magnets, and their magnetic permeability can be considered constant. Their purpose is to
prevent friction between the permanent magnets and the pipe wall during the detection
process. The steel pipes used in high- and medium-pressure gas pipelines in urban areas
have a diameter of 300 mm and a wall thickness T ranging from 6 mm to 10 mm. Figure 2b
provides a detailed description of the composition and dimensions of the magnetization
device, while Table 1 contains the material parameters. The pit-like defects on the inner
surface of the steel pipe specimen have dimensions of length L × width W × depth D and
are rectangular in shape. Figure 3 shows the nonlinear B-H curve of the steel pipe. The air
domain encloses the entire MFL detection device.

(a) (b) 

Figure 2. Three-dimensional defect leakage magnetic field FEM: (a) geometric model; (b) dimensions
of the magnetizing device (mm).
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Table 1. Material parameter settings.

Components Materials Permeability Remanent Magnetization (T)

Magnet Neodymium 1 1.3
Magnetizer Iron 5000 -

Brush Steel 1008 3000 -
Steel Pipe Steel B-H curve in Figure 3 -

Air Domain Air 1 -

Figure 3. Nonlinear BH characteristic curve of the steel pipe.

For the convenience of data extraction, the detection lines were arranged axially above
the defects, as indicated by the red line in Figure 2a. The lift-off value was set at 1 mm, and
the sampling interval was set to 0.001 mm.

Mesh independence validation: To account for the range of cases with larger specimen
volumes and small defect sizes, various grid sizes are utilized in different regions [26]. The
computational domain is partitioned into an unstructured mesh, with local refinement
applied to the air domain near the defect. As the mesh is progressively refined, the
computed results tend to become more stable. A mesh count of 123,000 was adopted in
this study as further increasing the number of meshes does not yield substantial changes in
the computed results.

2.3. Physical Experiments

The manual adjustment of the pole spacing is challenging due to the strong magnetic
suction in front of the magnetic poles and the yoke. Consequently, the research team devised
a special mechanical structure to design an MFL detection device that employs bolts to
facilitate the autonomous adjustment of the pole spacing X, as illustrated in Figure 4a. The
fixing nut is fixed on the magnetic poles, and by adjusting the bolt during the experiment,
the magnetic poles can be driven to move along the slide until the ideal pole spacing X
is reached. The magnetizing device of the MFL detection system comprises a yoke and
poles, which are connected to the rigid brushes that magnetize the tube wall. The magnetic
poles have a remanent magnetic strength of 1.3 T. The MFL detection probe comprises four
Hall sensors, with an axial sampling interval of 0.05 mm and a circumferential sampling
interval of 5 mm, as shown in Figure 4b. The scanning speed is 0.1 m/s, and the sensor
lift-off value is set to 2 mm. The flat-plate ferromagnetic specimen being tested has a wall
thickness of 6 mm. A rectangular metal defect with dimensions of L = 30 mm, W = 6 mm,
and D = 2.4 mm, along with a circular metal loss defect with dimensions of Ø = 5 mm
and D = 2.4 mm, were observed on the specimen, as shown in Figure 4c,d. The MFL
signals collected by the sensors are initially stored in the signal storage device of the testing
device. After detection, they are transmitted to the host computer for data processing and
analysis using the local area network (LAN) provided by the router. The detection principle,
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material properties, and probe performance of this experimental setup are identical to
those of a real pipe MFL internal detector. Consequently, this detector can be employed as
a highly accurate substitute in theoretical analyses of the impact of magnetic pole spacing
on the MFL signal.

    

(a) (b) (c) (d) 

Figure 4. The experimental setup: (a) MFL detection device and signal transmission processing
system, (b) schematic diagram of sensor probe, (c) rectangular metal loss defect, and (d) circular
metal loss defect.

3. Results of Simulation and Experiments

3.1. FEM Simulation
3.1.1. For Rectangular Defects

Rectangular defects are frequently studied in the context of MFL detection. When
analyzing the characteristics of these defects, they can generally be approximated as
rectangular by using three equivalent shape parameters: equivalent length, width, and
depth [27,28]. Figure 5 shows the variation in the MFL signal for a defect with dimensions
of L = 6 mm, W = 3 mm, and D = 5 mm at five different magnetic pole spacings X (20 mm,
40 mm, 60 mm, 80 mm, and 100 mm), with a wall thickness of T = 10 mm. The magnetic
field Bx is illustrated in Figure 5a. The graph shows that the magnetic field Bx is enhanced
as the magnetic pole spacing decreases. It is suggested that decreasing the magnetic pole
spacing improves the detection accuracy. Additionally, the amplitude of the magnetic field
Bx increases at a greater rate when the pole spacing is reduced from 100 mm to 40 mm.
The simulation results demonstrate that reducing the magnetic pole spacing increases
the amplitude of Bx while maintaining its waveform. Conversely, Figure 5b illustrates
significant alterations in both the waveform and amplitude of the magnetic field By. Hence,
due to spatial limitations, this paper mainly concentrated on analyzing the magnetic field
By rather than Bx.

When the pole spacing is 20 mm, By demonstrates a distinct double peak and valley
pattern. The outer peak and valley exhibit positive values followed by negative ones,
whereas the inner peak and valley demonstrate negative values followed by positive ones.
Additionally, the MFL signal curve at both ends of the scanning range displays a steep
slope, with the signal intensity rapidly increasing. This study refers to this phenomenon as
a double peak–valley (DPV). Even with a magnetic pole spacing of 30 mm, a slight DPV
phenomenon is observed in By. This phenomenon results in a decrease in the Bp-v (the
peak-to-valley value) of the By signal when the magnetic pole spacing is reduced from
40 mm to 20 mm. Figure 6 displays the histogram of the Bp-v of By. The figure shows
that the Bp-v of the MFL signal first increases and then decreases as the magnetic pole
spacing decreases. At a magnetic pole spacing of 40 mm, Bp-v reaches a maximum value of
621 Gs. However, at a magnetic pole spacing of 20 mm, the Bp-v of the MFL signal is only
370 Gs. At this time, the pipe wall is oversaturated with magnetization, which disrupts
the distribution of the magnetic field and hampers the detection of defects in the pipe.
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Therefore, this paper assumed that, in the FEM simulation, the pipe wall can be considered
as having oversaturated magnetization when the magnetic pole spacing is less than or
equal to 20 mm.

 
(a) 

 
(b) 

Figure 5. Propagation characteristics of the MFL signal with different magnetic pole spacings: (a) the
leakage magnetic field axial component Bx; (b) the leakage magnetic field radial component By.

 

Figure 6. Column chart of the Bp-v of the magnetic field By.
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To investigate the effect of smaller magnetic pole spacings on the MFL signals of
pipeline defects, this study conducted simulations and calculations for magnetic pole
spacings ranging from 15 mm to 20 mm. The magnetic field By is shown in Figure 7. With
the decrease in magnetic pole spacing, the DPV phenomenon becomes more pronounced.
Concurrently, the inner Bp-v steadily increases while the outer Bp-v decreases, and the rates
of their increase and decrease also accelerate progressively.

(a) (b) 

Figure 7. The MFL signals with different magnetic pole spacings: (a) the leakage magnetic field By;
(b) variation in Bp-v.

3.1.2. For Circular Defects

Given the varied contours of actual pipe defects, this paper also investigated circular
defects. The research team employed FEM to compute circular defects with an opening
radius of 3 mm and a depth of 5 mm across various pole spacings, with a wall thickness of
T = 10 mm. As depicted in Figure 8, the amplitude of the MFL signal reaches its maximum
at a pole spacing of 40 mm. When the magnetic pole spacing is less than 20 mm, the MFL
signals begin to exhibit DPV phenomena, with sharp increases in the signal amplitude at
both ends of the sweep range. As the magnetic pole spacing decreases, the DPV signature of
the signal becomes apparent. Compared to the rectangular defects illustrated in Figure 7a,
both demonstrate similar characteristic patterns of change.

 
Figure 8. The variation in the leakage magnetic field By of circular defect with different pole spacings.
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3.2. Physical Experiments

The research team conducted experiments to test the defect MFL signals at the mag-
netic pole spacings of 50 mm, 58 mm, and 110 mm using the experimental setup and
defect samples shown in Figure 4. The magnetic field By is presented in Figure 9. For both
rectangular and circular metal loss defects, at a pole spacing of 110 mm, a typical radial
MFL signal is observed, characterized by a pair of peaks and valleys corresponding to
the axial length of the defect. However, with a reduced magnetic pole spacing of 58 mm,
the magnetic field By begins to exhibit DPV phenomena. As the magnetic pole spacing
further decreases, the outer Bp-v decreases continuously while the inner Bp-v increases
steadily. Simultaneously, the amplitude of By also increases sharply on both sides of the
scanning range, consistent with the distribution characteristics of simulated signals in
Figures 7 and 8, and the variation in Bp-v with magnetic pole spacing. Moreover, the exper-
imental signal amplitudes remain within the same order of magnitude as the simulated
signals, further confirming the presence of DPV and the correctness of the FEM.

(a) (b) 

Figure 9. The leakage magnetic field By at the magnetic pole spacings of 50 mm, 58 mm, and 110 mm:
(a) rectangular metal loss defect; (b) circular metal loss defect.

Additionally, it is noteworthy that, under the same magnetic pole spacing, the DPV
phenomenon exhibited by the rectangular defect in Figure 9a is significantly more pro-
nounced than that of the circular defect in Figure 9b. This difference arises from the shorter
axial length of the circular defect compared to the rectangular one, resulting in a less
pronounced DPV in their radial MFL signals. The influence of defect size on the DPV
phenomenon will be further discussed in Section 4.

4. Discussion

This section compares and investigates the effects of defect size, pipe wall thickness,
magnetic pole, and rigid brush height on the MFL signal in the case of saturated and
oversaturated magnetization (selected pole spacings of 40 mm and 20 mm, respectively),
using a rectangular defect as an example. The mechanisms for the DPV phenomenon of
the MFL signal are also theoretically analyzed based on the FEM simulation results.

4.1. The Effect of Defect Depth on the Characteristics of MFL Signals

A pipe wall thickness of T = 10 mm and a defect length and width of L = 5 mm and
W = 3 mm, respectively, were used for the simulation calculations. The magnetic field By
was simulated for defect depths D = 1, 2, 3, 4, and 5 mm at magnetic pole spacings of 40 mm
and 20 mm, as shown in Figure 10a,b, respectively. Figure 10c shows the variation curve
of the Bp-v of the radial MFL signal By concerning the defect depth for different magnetic
pole spacings.
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(a) (b) 

 
(c) 

Figure 10. The leakage magnetic field By at different defect depths: magnetic pole spacings of
(a) 40 mm and (b) 20 mm; and (c) the variation in Bp-v.

From the figure, it can be seen that, for a magnetic pole spacing of 40 mm, the Bp-v
shows an increasing trend as the defect depth ranges from 1 mm to 5 mm. Specifically,
the Bp-v increases from 275 Gs to 627 Gs with a gradually decreasing growth rate. At a
magnetic pole spacing of 20 mm, as the defect depth increases from 1 mm to 5 mm, the
outer Bp-v gradually increases and reaches a value of 510 Gs. Conversely, the inner Bp-v
gradually decreases to a value of 136 Gs. When the defect depth is less than 4 mm, the
inner Bp-v is higher than that on the outer one. However, when the defect depth is between
4 and 5 mm, the outer Bp-v becomes higher than that of the inner one. Furthermore, at a
magnetic pole spacing of 20 mm, the MFL curve shows abrupt changes at both ends of
the scan. The baseline of the MFL signal changes from a horizontal to an inclined line, as
shown by the dashed line in the figure.

Comparing the MFL signals under two different magnetic pole spacings, it was
observed that, for defect depths ranging from 1 mm to 5 mm, the Bp-v under 40 mm
magnetic pole spacing showed an average increase of 380 Gs compared to that under
20 mm. This indicates that, as the distance decreases from 40 mm to 20 mm, the intensity
of the MFL signal decreases significantly. In addition, the outer Bp-v at the 20 mm pitch and
5 mm defect depth is very similar to the Bp-v at the 40 mm pitch and 1 mm defect depth.
The presence of DPV may result in an underestimation of defect depth and a narrower
range of detectable defect depths.
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4.2. The Effect of Defect Length on the Characteristics of MFL Signals

A pipe wall thickness of T = 10 mm and a defect depth and width of D = 5 mm and
W = 3 mm, respectively, were used for the simulation calculations. The magnetic field By
was simulated for defect lengths L = 1, 2, 3, 4, and 5 mm at the magnetic pole spacings of
40 mm and 20 mm, as shown in Figure 11a,b, respectively. Figure 11c shows the variation
in the Bp-v of the magnetic field By concerning the defect length for different magnetic
pole spacings.

  
(a) (b) 

(c) 

Figure 11. Leakage magnetic field By at different defect lengths: magnetic pole spacings of (a) 40 mm
and (b) 20 mm, and (c) the variation in Bp-v.

Figure 11 show that, at a magnetic pole spacing of 40 mm, increasing the defect length
from 1 mm to 5 mm results in an expansion of the horizontal distance between peaks
and valleys (corresponding to the defect length), while Bp-v remains relatively constant.
For a magnetic pole spacing of 20 mm, the outer Bp-v decreases by 553 Gs as the defect
length increases from 1 mm to 5 mm. The baseline of the MFL signal curve changes from
horizontal to inclined, as indicated by the dashed lines in the figure. It is evident that, for a
magnetic pole spacing of 40 mm, the defect length has a minimal effect on the intensity of
the magnetic field, By. However, when the magnetic pole spacing is reduced to 20 mm, the
intensity of the magnetic field, By, decreases rapidly as the defect length increases.

From Figure 11c, it can be seen that, in the range of defect lengths from 1 mm to
3 mm, the outer Bp-v for a magnetic pole spacing of 20 mm is greater than that for 40 mm.
However, as the defect length exceeds 3 mm, the Bp-v for a magnetic pole spacing of 40 mm
exceeds that for 20 mm. From this, it can be seen that the MFL signal is more stable at a
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spacing of 40 mm, allowing a wider range of defect lengths to be detected. Conversely, a
spacing of 20 mm is more suitable for detecting smaller defects. Therefore, the presence of
DPV facilitates the detection of defects with smaller opening dimensions.

Based on the above discussion, this study also discussed the detection range of small
defect sizes using DPV signals. Magnetic field By was simulated for defect lengths ranging
from 0.1 mm to 1 mm in steps of 0.1 mm, at magnetic pole spacings of 40 mm and 20 mm,
illustrated in Figure 12a,b, respectively. Figure 12c demonstrates the variation in Bp-v of
magnetic field By with respect to the defect length. The results indicate that, within the
range of defect lengths from 0.1 mm to 1 mm, the Bp-v of DPV signals at a 20 mm pole
spacing consistently exceeds that at a 40 mm pole spacing. Therefore, in conjunction with
the findings from Figure 11, this study suggests that DPV signals, compared to conventional
MFL signals, are more advantageous in identifying microdefects with lengths smaller than
3 mm. In the future, this specific signal may be utilized for detecting certain unique sizes.

  
(a) (b) 

(c) 

Figure 12. Leakage magnetic field By at smaller defect lengths: magnetic pole spacings of (a) 40 mm
and (b) 20 mm, and (c) the variation in Bp-v.

4.3. The Effect of Wall Thickness on the Characteristics of MFL Signals

For a pipe defect of length L = 5 mm, width W = 3 mm, and depth D = 5 mm, the
corresponding magnetic field By was simulated and calculated for wall thicknesses T = 6, 7,
8, 9, and 10 mm at magnetic pole spacings of 20 mm and 40 mm. The corresponding results
are shown in Figure 13a,b, respectively. In addition, Figure 13c shows the variation in the
Bp-v of the magnetic field By as a function of the pipe wall thickness for different magnetic
pole spacings.
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(a) (b) 

(c) 

Figure 13. The leakage magnetic field By at different wall thicknesses: magnetic pole spacing of
(a) 40 mm and (b) 20 mm, and (c) the variation in Bp-v.

As shown in Figure 13, when the pipe wall thickness increases from 6 mm to 10 mm,
the average Bp-v at a spacing of 40 mm is approximately 276 Gs higher than that at 20 mm.
Additionally, at 40 mm, Bp-v decreases by 734 Gs. At 20 mm, the outer Bp-v decreases
by 734 Gs. It is noteworthy that the reduction in signal intensity appears to be similar
regardless of the magnetic pole spacing used. In conclusion, increasing the wall thickness
has a negative effect on MFL detection and has a similar effect on the MFL signal at different
pole spacings.

4.4. The Effect of the Geometrical Height of the Magnetic Pole and Rigid Brush on the
Characteristics of MFL Signals

In this section, the effects of the height of the magnetic pole (5 mm, 10 mm, 15 mm,
20 mm, 25 mm, and 30 mm) and rigid brush (5 mm, 10 mm, 15 mm, 20 mm, 25 mm,
and 30 mm) on the MFL signals with different pole spacings are investigated using FEM
simulations. The results are shown in Figures 14 and 15, respectively.

As illustrated in Figure 14a,b, the amplitude of the MFL signal at the two pole spacings
appears to increase with the magnetic pole height. This is due to an increase in the size and
magnetizing ability of the magnet, which leads to an increase in the strength of the leakage
magnetic field. As indicated by the results for the pole spacing of 20 mm, the magnetic pole
height does not have a significant effect on the magnitude of the DPV signal.
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(a) (b) 

Figure 14. The leakage magnetic field By at different magnetic pole heights, with magnetic pole
spacings of (a) 40 mm and (b) 20 mm.

(a) (b) 

Figure 15. The leakage magnetic field By at different rigid brush heights, with magnetic pole spacings
of (a) 40 mm and (b) 20 mm.

Figure 15a,b illustrate that the MFL signal amplitude tends to increase at both pole
spacings as the rigid brush height decreases. This is due to the fact that a reduction in the
height of the rigid brushes results in a reduction in the magnetic flux required to magnetize
the rigid brushes, while simultaneously reducing the leakage flux of the rigid brushes in the
magnetic circuit. This, in turn, increases the magnetic flux in the wall of the ferromagnetic
tube and enhances the strength of the leakage magnetic field. At a pole spacing of 20 mm,
the reduction in the rigid brush height weakens the characteristics of the DPV signal. In
particular, when the rigid brush height is reduced to 5 mm, the DPV phenomenon almost
disappears, and the degree of sudden change in the signal amplitude at the two ends of
the sweep range is also reduced. This indicates that the height of the rigid brush can be
reduced to diminish the DPV of the MFL signal. The rationale behind this phenomenon
will be elucidated in greater detail in Section 4.5.

4.5. Theoretical Analysis of the Mechanisms of DPV Phenomena

It is worth noting that, in both the experiments and FEM simulations, the magnetic
field By curves at the ends of the scan range become even steeper as the magnetic pole
spacing decreases. In some cases, the difference in signal values between the two ends
exceeds the inner and outer Bp-v. This can cause the peak-to-valley difference in the MFL
signals of the pipe defects to be overshadowed by the MFL signal curves at the ends of the
scan range during actual inspection scenarios. As a result, it becomes difficult to distinguish
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the MFL signals associated with pipe defects. This scarcity is primarily attributed to the
presence of significant background magnetic fields. The interaction between the magnetic
poles generates a background magnetic field above the defect [29]. As the magnetic field
lines move away from the north pole, they exhibit closed-loop behavior and enter the
south pole, causing a change in direction as they leave and enter the poles. See Figure 16a
for a detailed illustration of this phenomenon. As the magnetic field lines approach the
magnetic pole, they tend to converge towards it, resulting in an increased density of field
lines. This ultimately results in a higher magnetic field intensity in the vicinity of the
magnetic pole. As shown in Figure 16b, the FEM simulation provides clear evidence of
the magnetic field distribution between the two magnetic poles and further confirms the
previous conclusions.

 
(a) 

 

(b) 

Figure 16. Schematic diagrams of the background magnetic field and defect leakage magnetic field:
(a) magnetic field line diagram; (b) magnetic field vector diagram.

In general, the scanning range selected by the sensor is much smaller than the distance
between the magnetic poles, which means that there is only a relatively stable background
magnetic field within the scanning range. However, if the distance between the magnetic
poles is too small, the detection area above the defect becomes very limited due to the
restricted space. As a result, the sensor may collect magnetic field signals from the vicinity
of the magnetic pole, where the direction and intensity of the magnetic field lines change
abruptly within the background magnetic field.

The DPV phenomenon in the magnetic field By is also attributed to the background
magnetic field. As the magnetic pole spacing decreases, a narrow detection region is formed
due to the presence of a strong background magnetic field. When the background magnetic
field is aligned parallel to the leakage magnetic field, their magnetic fields impede each
other’s diffusion, resulting in a magnetic compression effect [29]. As shown in Figure 17,
this effect compresses the leakage field in the air from distribution ‘a’ to ‘b’, resulting in
a decrease in the intensity of the leakage magnetic field. As the magnetic pole spacing
decreases, the detection area encounters an uneven distribution of MFL signals due to the
influence of the magnetic compression effect [24]. Consequently, multiple directional MFL
signals overlap, ultimately leading to the formation of DPV.
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Figure 17. Schematic diagram of the magnetic compression effect.

Based on the above findings, the presence of a background magnetic field significantly
influences the DPV phenomenon. Therefore, this paper further investigated the effects
of shielding the background magnetic field on this phenomenon. As documented in the
literature [30], when a ferromagnetic material is magnetized, a magnetic flux leaks from
the ferromagnetic material into the air, which is known as refractive flux. However, this
leakage can be mitigated by employing a closed magnetic circuit. The simulation results
depicted in Figure 16 illustrate that, within the MFL detection device, the background
magnetic field is mainly formed by the refraction of the leakage flux from the rigid brushes
on both sides to the air domain above the defect; that is, the magnetic circuit forms an open
circuit in the rigid brush part. Building upon this analysis, in this section, the height of the
rigid brushes is set to zero and the ferromagnetic pipe wall is magnetized directly using
the magnetizing device (yoke and poles) to establish a closed magnetic circuit, thereby
eliminating the background magnetic field. The subsequent verification utilizing FEM,
as shown in Figure 18a, demonstrates that, upon removing the background magnetic
field generated by the rigid brush, the MFL signal’s amplitude increases solely with the
reduction in magnetic pole spacing, and there is no DPV phenomenon or sharp increase in
the signal amplitude at either end of the sweep range. This suggests that the background
magnetic field is the direct cause of the DPV phenomenon observed in the MFL signal.

(a) (b) 

Figure 18. Leakage magnetic field variation at different pole spacings: (a) shielded background
magnetic field; (b) altered pole directions.

Additionally, this paper explores the influence of the direction of the background
magnetic field on the DPV phenomenon. We reversed the N and S pole directions of the
two magnetic poles in the FEM depicted in Figure 2a and simulated the MFL signals for
magnetic pole spacings of 20 mm, 40 mm, 60 mm, 80 mm, and 100 mm. The simulation
results are illustrated in Figure 18b. Even when the pole spacing is 20 mm, the MFL signal
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exhibits a clear DPV phenomenon. In comparison with Figure 5b, the amplitude of the
MFL signal remains largely unchanged; only the signal direction varies.

5. Conclusions

This study delves into the impact of smaller magnetic pole spacings on the propa-
gation characteristics of MFL signals using a leakage magnetic field FEM and a physical
experiment. Moreover, the effects of defect size, pipeline wall thickness, and magnetic
pole and rigid brush height on the MFL signals are also investigated under smaller pole
spacings. The following conclusions are drawn:

With the reduction in magnetic pole spacing, a novel signal phenomenon emerges
within the radial MFL signal. This phenomenon, termed the DPV, is distinguished by an
outer peak and valley enclosing an inner peak and valley. Moreover, the signal amplitude
at both ends of the sweep range also exhibits a sharp increase. The formation of this phe-
nomenon can be attributed to the magnetic diffusion and compression interactions between
the background magnetic field and the defect leakage magnetic field. The background
magnetic field is primarily generated by the leakage magnetic flux of the rigid brush. By
reducing the height of the rigid brush, the leakage magnetic flux from the rigid brushes
can be diminished, thereby reducing the intensity of the background magnetic field and
ultimately eliminating the DPV phenomenon. However, neither the pipe wall thickness
nor the magnetic pole height exhibits a significant influence on the DPV phenomenon
within the MFL signal. In comparison to the MFL signal under conventional magnetic pole
spacing, the DPV signal at small pole spacing diminishes the detectable depth range of
defects but enhances the identification rate of defects with small opening dimensions.
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Abstract: The purpose of the presented research was to determine the suitability of using ultrasonic
testing (UT) to inspect heterogeneous, from a material point of view, welded joints on the example of
the joints of a ferritic steel element with elements made of an austenitic steel. The echo technique with
transverse (SEK) and longitudinal wave heads (SEL) addressed this issue. Due to the widespread use
of 13CrMo4-5 and X2CrNiMo17-12-2 steel grades in the energy industry, they were selected as the
test materials for the study. The objects of the presented research were welded joint specimens with
thicknesses of 8, 12, and 16 mm and dimensions of 300 × 300 mm, made using the 135 metal active gas
(MAG) process with the use of the Lincoln 309LSi wire—a ferritic–austenitic filler material. The stages
of the research task were (1) making distance–amplitude curve (DAC) patterns from the test materials;
(2) preparation of specimens of welded joints with artificial discontinuities in the form of through-
holes; (3) performing UT tests on welded joints with artificial discontinuities using heads with 60°
and 70° angles for the transverse wave and angle heads for longitudinal waves with similar beam
insertion angles; (4) selection, by radiographic testing (RT), of welded joint specimens with natural
discontinuities in the form of a lack of sidewall fusion; (5) performing UT tests on welded joints
with natural discontinuities, using heads as welded joints with artificial discontinuities. It was found
that (1) the highest sensitivity of discontinuity detection was obtained by performing tests on the
ferritic steel side, which is due to the lower attenuation of the ultrasonic wave propagating in ferritic
steel compared to austenitic steel; (2) the best detection of discontinuities could be obtained using a
longitudinal ultrasonic wave; (3) there is a relationship between the thickness of the welded elements,
the angle of the ultrasonic beam introduction, and the effectiveness of discontinuity detection.

Keywords: ultrasonic inspection; austenitic steel; ferritic steel; DAC; 13CrMo4-5; X2CrNiMo17-12-2
(AISI 316L)

1. Introduction

Welding processes are classified as special processes, that is, processes whose results
cannot be predicted while they are in progress and potential imperfections may only
become apparent after completion. It is therefore crucial to test welded joints, with the rec-
ommended methods being volumetric non-destructive methods, which include ultrasonic
testing (UT). In the case of heterogeneous joints, the issue with carrying out ultrasonic
testing is the differing physical properties of the various zones of the welded joint, which
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are related to the conditions under which these tests are performed. For example, in
UT testing of austenitic steels, the problem is wave transformation, limited detection of
subsurface weld discontinuities, and abnormal coupling due to surface roughness. These
issues are discussed in more detail in [1,2]. The coarse-grained structure causes scattering
and attenuation of the wave and changes its direction. Attenuation affects the pressure
amplitude of the wave propagating through the material, which decreases with increasing
distance from the head [3]. In the case of heterogeneous joints, there are differences in the
measured amplitude values in different areas of the joint. The primary factors limiting the
detection of discontinuities are beam scattering and divergence, which are influenced by
the material’s structural properties. These phenomena are particularly pronounced in the
assessment of nonuniform welded joints [4].

The necessity to join materials with significantly disparate physical properties by
welding methods is a common occurrence in the field of mechanical engineering, including
in the construction of power equipment, reactors, and chemical installations. For instance,
in power boilers, heat exchanger tubes operating at exceedingly high temperatures are
manufactured from austenitic steels and joined with plant components fabricated from
ferritic steels. Austenitic–ferritic and duplex steels are employed in the fabrication of
chemical tankers. Furthermore, structural elements in joints with tank components made
of duplex steels are also examples of joints of heterogeneous materials, in this case usually
with high-strength carbon steel [5]. The popularity of these materials in the construction
of nuclear power plant installations around the world is due to their high durability and
corrosion resistance. In this case, safety considerations require the implementation of
tests to determine the correctness of the technical condition of the components, which are
carried out by non-destructive testing at specified intervals. One of the main methods of
implementing such tests, despite the difficulties outlined earlier, is the ultrasonic technique.

The fundamental principle of ultrasonic testing, assuming a known and constant
speed of sound, is to relate the time of the received echo to the location of the reflector.
However, in the case of austenitic welded joints, where the microstructure with large
oriented austenitic grains induces local velocity differences that deflect the ultrasonic
beam, this assumption is not valid [6]. Furthermore, the testing problem is complicated by
scattering at grain boundaries, causing structural noise and attenuation. For this reason, a
number of solutions have been proposed, including the embedding of material information
and the weld structure into imaging algorithms. This usually improves the quality of the
images and aids interpretation [7].

One of the research projects at UT that was engaged in the study of the nuclear industry
is [8]. The study examined the ultrasonic behavior of beams in relation to the orientation of
grains in the weld joint. The study employed both conventional ultrasonic transducers and
linear and matrix phase transducers to generate ultrasonic beams. To enhance the efficacy
of ultrasonic non-destructive testing within this industry, a methodology for modeling
ultrasonic inspection of such welds, which has been successfully applied to arc welding,
was presented in Ref. [9]. The paper also presented the results of laboratory tests on the
repair of a nickel-based alloy weld made using an automatic tungsten arc welding process,
with particular attention paid to ultrasonic propagation interferences, including anisotropic,
heterogeneous, and coarse-grained weld structures of austenitic stainless steel.

The primary factors contributing to the difficulty of inspecting austenitic steels and
joints of these steels with ferritic steels by degradation of image quality presented in
Ref. [10] are time errors, phase errors, and multipath propagation and scattering. They
were selected based on experimental studies conducted during the inspection of austenitic
welds with high inhomogeneity and anisotropy.

During ultrasonic testing of nonuniform welded joints, measurement parameters are
very often chosen experimentally. This is due to the fact that, at present, no standards and
regulations specify criteria for evaluating volumetric testing of such joints by ultrasonic
methods. This makes it necessary to determine test parameters that will provide the
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necessary conditions to detect discontinuities in the analyzed case of welded joints PN-EN
ISO 11666:2018-04 [11].

The purpose of this paper is to present the methodology and to learn the cognitive
qualities that are the starting point for the study of welded joints of miscellaneous materials.
Due to their peculiarities, joints of this type require a different approach to the study of
classical ferritic steels. The testing capabilities have been verified on reference specimens
made from the test materials. This type of joint is used in the energy, petrochemical, and
chemical industries. A heterogeneous welded joint is, among other things, a configuration
of two different base materials and the welding of base materials with an additional material
with different properties.

2. A Brief Overview of UT Research Directions in the Literature

The testing of ferritic steels with UT generally poses no difficulties. The most com-
mon technique for testing ferritic welds is the echo method, which utilizes vibration
frequencies of 2–5 MHz in materials with a fine-grained structure. However, the issue of
testing austenitic steels is a significant concern for many researchers, with several works,
including [12,13], providing detailed descriptions of the problem. The large grain size
and high ultrasonic attenuation are identified as the source of the problem. The authors
note the difficulty of penetrating deep into the material, since stainless steel is also an
anisotropic material, meaning that ultrasonic properties vary depending on the direction of
propagation. It has been demonstrated that conventional techniques have shown limited
success in inspecting welded joints and that the use of various phase matrix techniques
is recommended for the inspection of stainless steel components. Ref. [14] addresses the
subject of offline post-processing techniques using the full set of time-domain data from all
combinations of transmit and receive elements. The authors define the mathematical and
practical implementation of four post-processing algorithms for use with the full matrix
of array data: plane B-scan, focused B-scan, sector B-scan, and the total focusing method
(TFM). The main advantages of these approaches are increased sensitivity to small defects
and increased inspection coverage.

In Ref. [15], the application of mechanized ultrasonic inspection to the examination of
austenitic stainless steel test blocks with various types of defects, including intergranular
stress corrosion cracking, is described. The results demonstrated that cracks located in
the weld’s heat-affected zone are relatively easily detected due to the ability to perform
inspection from both sides of the weld. However, in the event of restricted accessibility,
when the inspection is conducted solely from one side of the weld, the differentiation of
signals emanating from the dissipation within the weld and those indicative of cracks
presents a significant challenge.

The influence of alloy composition and welding line energy of two Ni-Cr-Fe alloys on
the crystallographic structure and the characterization of the effect on ultrasonic propaga-
tion was investigated in Ref. [16]. Samples made entirely of weld metal were examined
using ultrasonic testing, and then, characterized using large-area backscattered electron
diffraction. The pseudo-single-crystal structure exhibited significant variations in the UT
scan outcomes when the ultrasonic beam angle was altered in relation to the texture di-
rection. However, the observed discrepancies in the UT scans with regard to the texture
direction were less pronounced, attributable to the fact that the fiber texture was predom-
inantly oriented along a single crystallographic axis and tended to be random in other
orientations.

Ref. [17] presents a novel phase-matching technique, designated as “reverse phase
matching”. The technique employs a ray-tracing algorithm to model the propagation of an
acoustic wave and calculate the sound propagation time, taking into account the anisotropy
and inhomogeneity of the weld structure. According to the researchers, this technique
can be used to reconstruct 2D and 3D images in real time. An iterative gradient constant
descent method (GECDM) algorithm was implemented, which is essential for studying
inhomogeneous anisotropic media with unknown properties.
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The difficulties and complications associated with the application of NDT techniques
to the peripheral welds of a urea reactor are examined in detail in [18]. The authors
conducted a comprehensive review of the theory and advanced aspects of UPA technology
and demonstrated that UPA is effective and efficient in solving the safety inspection of
circumferential welds. Subsequently, two related test blocks (RB-2/20 and an austenitic
stainless steel butt joint test block) with artificial defects were selected to simulate the outer
and inner layers.

Ref. [19] presents phased array ultrasonic testing (PAUT) of trimetallic welded joints
in a prototype fast breeder reactor (PFBR) using dual matrix array (DMA) probes. The
inspection of SS316LN–Alloy 800 welds is challenging due to the anisotropic and inhomo-
geneous properties of the weld pool, which leads to beam skewing and affects the detection,
location, and size of discontinuities. The PAUT test was conducted on an SS316LN to Alloy
800 welded joint section of trimetallic welded joints and verified by RT. A weld specimen
(24 mm thick) with an artificial defect such as lack of sidewall fusion (LOF) was produced
by metal arc welding and gas tungsten arc welding. The study demonstrated that the
DMA probe successfully detected LOF defects and improved the signal-to-noise ratio in
the inspection of trimetallic welded joints. This shows that the DMA probe is a promising
candidate for the inspection of coarse-grained, anisotropic, and heterogeneous materials.

A specific research objective is presented in Ref. [20]. The authors decided to utilize
the laser ultrasonic technique to identify grain size in interstitial steels (IFs). They assert
that the ultrasonic technique can be employed online for direct grain size measurements
during steel production. The absolute values of the average grain size were calculated
directly from the ultrasonic traces. In turn, in [21], UT tests were conducted in order to
determine the orientation of the grains in an anisotropic weld. The objective was to facilitate
future ultrasonic NDT simulations of these types of welds, with the aim of obtaining more
accurate results. A model was introduced, assuming the type of weld, the transmitter
model, the receiver model, and the type of two-dimensional ray tracing algorithm.

The coarse-grained, dendritic grain structure of the weld material and its anisotropy
are features detailed in numerous works on ultrasonic testing of austenitic welds [22,23].
The influence of these factors on ultrasonic wave propagation and their distortions has led
many researchers to conclude that the use of conventional ultrasonic research techniques
using constant beam angles is very limited and the use of phased array ultrasonic techniques
is desirable. The enhancement of ultrasonic signals for coarse-grained materials through
machine learning analysis is described in [24].

Ultrasonic array technology offers significant advantages over conventional ultrasonic
technology, mainly due to its ability to focus and direct the beam and its electronic scanning
capabilities [25]. Despite its advancement, ultrasound examination using this method still
provides results that are difficult to evaluate. In the case of cast stainless steels, UT does not
permit the achievement of sufficient measurement accuracy. In order to address this issue,
in [26] a comprehensively analyzable phased array ultrasonic testing system (PAUT) was
developed. The authors noted that the defect dependence of echo intensity differs from
granular noise when PAUT conditions, such as focusing depths and ultrasonic incidence
angles, are continuously changed.

3. Testing Techniques for Welded Joints

The efficacy of ultrasonic testing in detecting discontinuities is contingent upon a
number of variables, including the characteristics of the ultrasonic beam and the ability of
the discontinuities to reflect the wave. As previously demonstrated in [27], if the size of the
discontinuity is less than half the wavelength, it will be bypassed and the discontinuity
will not be detected, with the ultrasonic wave undergoing only slight scattering. This is
related to the roughness of the tested surface. High roughness, characterized by disconti-
nuities, causes strong scattering of the beam. However, it should be noted that part of the
ultrasonic beam may reach the head and be analyzed by the flaw detector system. Surfaces
characterized by low roughness will reflect the ultrasonic beam well. When performing
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ultrasonic tests, the angle at which the ultrasonic wave beam is introduced into the tested
material is also important. The largest echo can be obtained when the wave beam falls per-
pendicularly onto the surface of the discontinuity. This is in accordance with the findings
presented in [28]. The angle formed by the direction of the incident wave and the plane
of discontinuity is larger at higher frequencies than with head transducers using lower
frequencies. At lower frequencies, the beam is more divergent, and part of the reflected
wave more easily reaches the head at a specific location of discontinuities in the material.

The most frequently used technique for testing ferritic welds is the echo method. With
a fine-grained material structure, vibration frequencies of 2–5 MHz are utilized. In an
austenitic weld, a coarse-grained structure is formed as a result of the crystallization of the
basic and additional materials. Consequently, a weld pool will be formed whose crystallite
direction is parallel to the material thickness [29]. The side edges of the weld may be
characterized by the deflection of crystallites in a direction perpendicular to the direction
of the base material. In the case of austenitic welds, they are usually 10 mm long and
1 mm wide. The greater length may be the result of the greater thickness of the welding
beads. The size of the grains and their exact orientation may depend on the type of material
or technology used. The austenitic weld structure may exhibit features that impede the
use of volumetric testing methods, such as the ultrasonic method. These features include
the presence of elongated grain sizes, their orientation in the direction of thickness, or
deviations in the orientation of crystallites near the fusion line.

The ultrasonic testing of various joints between low- and high-alloy steels and nickel
alloys is typically more difficult than testing joints made of ferritic steels [30]. The issue
of testing various welded joints is considered in terms of the structure influencing the
propagation of the ultrasonic wave, the measurement technique, and the evaluation criteria.
The factors that play an important role are the test parameters such as the ultrasonic
wave used, the transmitting pulse, and the reduction in structural noise. The difficulties
associated with conducting ultrasonic tests in welds of various joints may be caused by
the coarse-grained or directionally oriented structure of the material, which can result
in significant differences in attenuation, reflection, and refraction of waves at the grain
boundaries. The lack of significant differences in the structure of the weld and the base
material does not alter the procedure under the test conditions. The structure of the native
material is usually fine-grained and does not pose any problems for the propagation of
the ultrasonic beam. In such a case, the test is carried out similarly to the testing of ferritic
steels. The structure of austenitic joints is most often heterogeneous and coarse-grained.
The grains are oriented in the direction of heat dissipation, and the sizes of columnar
crystallites often exceed several millimeters [31,32].

The structure of welds made of various materials gives rise to the occurrence of
apparent indications which should not be taken into account when performing the test.
In instances where indications are observed that do not originate from typical welding
discontinuities, it has been found that the propagation speeds of ultrasonic waves are
different. Furthermore, the acoustic wave resistances (impedance) are also different, and
these values are characteristic of the type of wave and medium. High-alloy steels with a
high chromium content, above 10%, may be prone to the segregation of components and
excessive grain growth. The transition zone is particularly vulnerable to this phenomenon.
Such phenomena may result in the appearance of false echoes that are difficult to interpret
when performing ultrasound examinations [33].

Appropriate testing methodologies, taking into account sufficient sensitivity, enable
the development of testing techniques for these welds. Oblique heads of transverse waves
enable the examination of welds up to 25 mm thick. When examining welds whose
thickness exceeds 25 mm, it is convenient to use oblique longitudinal wave heads. Testing
with transverse waves polarized parallel to the surface where the waves are introduced
also gives good results. The testing of welded joints of various materials should be based
on the test results of test joints made using the same technological parameters. In this
type of testing, an important issue is the possibility of access from both sides of the joint,
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knowledge of the grain orientation, and an appropriately processed face surface. In order to
test such joints, a detailed test procedure must be developed. This procedure should include
provisions related to testing standards and provide possible exceptions. The elimination
of difficulties encountered when testing materials with a strongly damping structure can
be carried out by using appropriate measurement parameters such as the selection of the
ultrasonic wave, frequency, and head angle [34].

The study of various connections, including low-alloy and austenitic steel, encounters
difficulties related to the coarse-grained structure. Another issue is anisotropy, which is
related to the direction-dependent wave propagation speed [35,36]. When testing diverse
joints, another problem is the transformation of the ultrasonic wave occurring at the fusion
line between the base material and the austenitic weld. The propagation of the ultrasonic
beam is not linear, rather it exhibits a bending behavior in the vicinity of fusion lines and
grain boundaries. This phenomenon results in beam splitting and the generation of virtual
echoes due to the geometry of the shape [37].

The structural construction of various welded joints differs. Given the absence of a
uniform welded joint comprising multiple sheets of steel, it is essential to select a testing
technique that considers the properties of the base material, weld material, thickness of
the tested element, welding method, and parameters, in accordance with the standards set
forth in PN-EN ISO 22825:2017-12 [38].

Heterogeneity and a coarse-grained anisotropic structure result in incorrect localiza-
tion of indications detected by ultrasound. The speed of wave propagation at various
junctions, in addition to beam deflection, is the main source of errors in the location of
discontinuities. In cases where ultrasonic testing does not detect unacceptable discontinu-
ities (no echoes are obtained), in terms of size and intensity, these discontinuities do not
exist in the welds. Nevertheless, in instances where echoes from discontinuities emerge in
ultrasonic tests, indicating an unsatisfactory level of joint quality, and the discontinuities
are located primarily in its transition zone, radiographic tests should be performed in
accordance with the requirements of PN-EN ISO 22825:2017-12.

4. Purpose of the Study and Research Methodology

The purpose of this study is to determine the applicability of UT testing to the in-
spection of welded joints of heterogeneous materials—austenitic materials with ferritic
materials. The echo technique and transverse and longitudinal wave heads have been used
for this purpose. The 13CrMo4-5 and X2CrNiMo17-12-2 (according to the international
designation AISI 316L) steels were selected as the test materials for the study due to their
properties and widespread use in the power industry. The scope of the work included
the testing of 8, 12, and 16 mm thick welded joints, 300 × 300 mm in size, produced by
the 135 (MAG) process using Lincoln 309LSi (Lincoln, Poland) filler material (a welded
joint between a ferritic steel component and an austenitic steel component using a ferritic–
austenitic filler). The shielding gas used was an M12 mixture containing 97.5% Ar and
2.5% CO2.

The various stages of the research task included:

• Making distance–amplitude curve (DAC) patterns from the test materials;
• Preparation of specimens of welded joints with artificial discontinuities in the form of

through-holes;
• Performing UT tests on welded joints with artificial discontinuities using heads with

60° and 70° angles for the transverse wave and angle heads for longitudinal waves
with similar beam insertion angles;

• Selection by radiographic testing (RT) of welded joint specimens with natural discon-
tinuities in the form of a lack of sidewall fusion;

• Performing UT tests on welded joints with natural discontinuities using heads for
welded joints with artificial discontinuities.

Low-alloy steel 13CrMo4-5 is a ferritic chromium–molybdenum steel with a relatively
low carbon content compared to other related grades used for high-temperature work. It is
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characterized by good cold and hot formability, very good machinability, and weldability
while maintaining high strength properties at both ambient and elevated temperatures.
This steel is used to produce parts of fittings for installations—heads, flanges, elbows,
tees, profiles, seamless tubes, bars, bushes, forgings, flat bars, and hot-rolled sheets in
various thicknesses and cross-sections. The above fittings are used for steam discharge
lines and pipelines, as well as for superheater tubes. 13CrMo4-5 steel is mainly supplied in
quenched and tempered, softening annealed, and normalized and tempered conditions.
The approximate chemical composition of the steel is given in Table 1.

Table 1. Indicative chemical composition of 13CrMo4-5 steel.

C, % Cr, % Ni, % Mn, % Mo, % Si, %

0.16 0.8 0.03 0.475 0.471 0.213

X2CrNiMo17-12-2 (316L) steel is an austenitic steel used for the manufacture of com-
ponents used in the chemical, paper, automotive, and food industries [39]. It is also used
for various types of filters and heat exchangers. It is resistant to intergranular corrosion
and acetic and sulfuric acid. It is characterized by high ductility and plasticity and does
not change its physical properties at elevated temperatures. The chemical composition of
the steel, together with heat treatment conditions and tensile strengths, is given in Table 2.

Table 2. Indicative chemical composition of X2CrNiMo17-12-2 (316L) steel.

C, % Cr, % Ni, % Mn, % Mo, % N, %

≤0.03 17.5 11.5 ≤2 2.3 ≤0.11

The most popular welding wire for joining austenitic and ferritic steels is LNM 309LSi,
a solid wire with an austenitic–ferritic structure for welding austenitic steels with low-alloy
steels. The high Si content improves the wettability. The chemical composition of the wire
is given in Table 3, and the mechanical properties are given in Table 4.

Table 3. Indicative chemical composition of LNM 309LSi wire.

C, % Cr, % Ni, % Mn, % Mo, % Si, %

0.02 23.3 13.8 1.8 0.14 0.8

Table 4. Selected physical properties of LNM 309LSi wire.

Parameter Unit Value

Average coefficient of thermal expansion at 20 ÷ 200 °C 1/K 16.5 × 10−6

Average coefficient of thermal expansion at 20 ÷ 400 °C 1/K 17.5 × 10−6

Thermal conductivity at 20 °C W/(m K) 15
Specific heat capacity at 20 °C J/(kg K) 500

Specific electrical resistance at 20 °C Ω mm2/m 0.75
Density at 20 °C kg/dm3 8.0

Modulus of elasticity at 20 °C MPa 200
www.lincolnelectric.com/en/Products/lincolner309si309lsi_gtaw (accessed on 28 June 2024)

The tests were carried out on prepared welds with artificial and natural discontinuities
of 8, 12, and 16 mm thickness. Figure 1 shows the elements of the weld groove and the
parameters used. The resulting butt joints used a V-type weld groove bevel, which is
the most common practice in industrial applications for the MAG welding method. The
bevel angle was 25°. The weld thicknesses used reflect those most commonly used for
industrial components.
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Figure 1. Welding groove components.

Figure 2 shows the patterns prepared for testing with through-holes drilled perpen-
dicular to the surface of the welded joints to provide a reference line on the screen of the
ultrasonic defectoscope. The set of standards used in the tests included welded plates and
discs made of the materials to be tested. These were required to set the velocity of the
transverse waves and the divergence of the longitudinal waves.

Figure 2. Patterns made from the materials under test.

Reference reflectors in accordance with EN ISO 17640 [40], in the form of through-holes
3 mm in diameter and 30 mm in length, drilled perpendicular to the surface of the specimen
at various locations on the welded joints were made on reference specimens of 8, 12, and
16 mm thickness. The reference reflectors were made in the weld axis (at the center of the
weld, at the top below the surface) in the fusion line and behind the fusion line on both the
13CrMo4-5 and 316L material sides. The performance of the artificial reference reflectors
in different zones of the welded joint was intended to verify the feasibility of ultrasonic
testing for the considered test areas.

Figures 3 and 4 show a diagram indicating the location of the artificial reference
reflectors and photographs of the reflectors, respectively. For measurement purposes, the
test plates located to the left and right sides of the welded joint are marked with the symbols
A and B.

Tests on the welded joints with artificial discontinuities were followed by tests on
welded joints with natural discontinuities. The tested plates with natural discontinuities
were characterized by a lack of a sidewall, which is characteristic of MAG-welded joints.
Their distribution is shown in Figure 5.
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Figure 3. Diagram of the arrangement of artificial gauge reflectors in the form of through-holes for
welded joints of dissimilar materials (side A—13CrMo4-5 steel, side B—316L steel); position points:
1—in the center of the weld, 2—on the fusion line on the side of the 13CrMo4-5 material, 3—on the
top of the weld under the face, 4—on the fusion line on the side of the 316L material, 5—behind
the fusion line on the side of the 13CrMo4-5 material, 6—behind the fusion line on the side of the
316L material.

Figure 4. View of the distributed artificial reference reflectors in different zones of the welded joint in
the example of a welded joint made of 16 mm thick dissimilar materials: (A) in the axis at the center
of the weld, (B) in the fusion line from the 316L material, (C) in the fusion line from the 13CrMo4-5
material, (D) in the weld axis at the top of the welded joint, (E) behind the fusion line from the
13CrMo4-5 material, (F) behind the fusion line from the 316L material.

Figure 5. Schematic distribution of discontinuities in fabricated welded joints.

In addition to ultrasonic testing, radiographic and metallographic tests were carried
out on weld specimens to confirm that they had been properly prepared. Macroscopic met-
allographic examinations were carried out to confirm the locations of natural discontinuities
detected by UT. The deposits were obtained by cutting the test plates in a vertical plane at
the location of the discontinuities using a Bomar saw, shown in Figure 6, at the point where
the maximum amplitude value originating from the discontinuity in question was recorded.
The surface condition of the metallographic scrap was corrected by milling and grinding.
The obtained specimens were then photographed on the bench using an Olympus SZX
10 stereoscopic microscope (Evident /former Olympus/, Tokyo, Japan) equipped with a
0.5 eyepiece and an EP50 camera. The obtained images were graphically processed using
the EPview program (Olympus Stream Desktop 2.4) used with the microscope.
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Figure 6. Instruments used to prepare samples and perform metallographic tests: (A) a Bomar saw
model transverse 610.440 DGH used to cut the plates and (B) a station for taking photographic images
of the scraps taken (Olympus SZX 10 stereoscopic microscope with EP50 camera).

As a result of the tests, the prepared macrographic sections showed natural discon-
tinuities in the form of the lack of a sidewall on the walls of the weld groove. Such
discontinuities are characteristic of the MAG method used to produce the specimens.
Figure 7 shows an example of images obtained on a deposit of a 316L steel welded joint.
The arrows indicate the location of the discontinuities. The figures show a cross-section
of the whole specimen with discontinuities and zoom in to show the discontinuities
more clearly.

Figure 7. Sample result of macroscopic metallographic examination—welded joint with natural
discontinuities; 316L steel with a thickness of 8 mm.

Ultrasonic testing was performed with an Olympus EPOCH 650 ultrasonic defecto-
scope (Olympus /now Evident/, Westborough, MA, USA) with Type A imaging, using
AM4R-8x 9-70-4 MHz, AM4R-8x9-60-4 MHz, 70-4 MHz VSY, and 60-4 MHz VSY ultrasonic
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heads. A mixture of FERDOM’s CH-1 inhibitor (an agent used to protect central heating
systems from deposits) and water in a 1:25 ratio was used as the coupling agent.

The choice of beam angle depends on the thickness of the weld to be inspected. For
thicknesses from 8 to 15 mm, the relevant standards (for example, EN ISO 17640:2018 [40])
recommend a basic angle of 70° and an additional angle of 60°, while for thicknesses above
15 mm, they recommend a basic angle of 60° and an additional angle of 70°.

5. Results of the Study

As a result of preliminary activities before the test, the defectoscope and heads were
checked according to PN-EN ISO 22232-3 [41], the speed of the wave in the material was
determined, the center of the ultrasonic head was measured, the angle of the introduction
of the ultrasonic wave beam into the tested material was determined, and the observation
range was selected. Transverse and longitudinal transducers with an angle of 70° were
used in the tests. For joints that were 16 mm thick, additional longitudinal and transverse
wave heads with an angle of 60° were used.

Holes and discontinuities were detected with a direct incident wave from the mid-
stroke when longitudinal waves were used. A summary of the results of the baseline and
applied reinforcement for 13CrMo4-5–316L steel using transverse ultrasound waves is
shown in Table 5.

Table 5. Summary of results of baseline and applied reinforcement for 13CrMo4-5–316L steel using
transverse ultrasound waves.

Material
Thickness

t, mm
Angle, °

Base Gain
Value, dB

Base Gain
Value, dB

Used Gain
Value, dB

Used Gain
Value, dB

13CrMo4-5 316L 13CrMo4-5 316L

8 70 47.1 44.1 52.0 51.0
12 70 47.1 44.1 52.7 50.8
16 70 47.1 44.1 54.5 51.1
16 60 39.7 40.5 49.2 51.5

The transverse wave inspection included the evaluation of discontinuities at the
location of the maximum amplitude of the ultrasonic wave. Firstly, the sensitivity of the
test was measured using a reference hole drilled in the weld to allow for attenuation in the
welded joint being tested. The baseline gain was then set so that the echo from a 3 mm
diameter hole made in the base material was at 0.8H of the screen height (SH). A summary
of the baseline and applied reinforcement results for 16 mm thick 13CrMo4-5–316L steel
using longitudinal ultrasonic waves is shown in Table 6.

Table 6. Summary of results of baseline and applied reinforcement for 16 mm thick 13CrMo4-5–316L
steel using longitudinal ultrasound waves.

Angle, °
Base Gain
Value, dB

Base Gain
Value, dB

Used Gain
Value, dB

Used Gain
Value, dB

13CrMo4-5 316L 13CrMo4-5 316L

70 69.1 65.6 70.5 67.6
60 67.0 61.6 68.5 63.5

Subsequently, the amplitudes of reflectors, in the form of cylindrical holes located in
different zones of the welded joint, were measured, and discontinuities were evaluated
using plotted comparison lines. The registration, acceptance, and evaluation levels were
determined and the test results were analyzed according to the adopted criteria. Accord-
ing to the accepted evaluation levels, length measurements were carried out for natural
discontinuities.
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The scanning range during the test was sufficient to cover 100% of the weld volume
and the heat-affected zone (HAZ), where a range of 10 mm on each side of the weld
is assumed to include this zone. Joints were tested using the same technique—within
1.25 full strokes of the ultrasonic beam for transverse wave heads and 0.5 stroke for
longitudinal PN-EN ISO 17640:2019-01 [42]. The tests were performed in accordance with
the recommendations of the standard, which required adequate access to both sides of the
joint.

The main results of the tests carried out are presented in the following subsections,
broken down by type—natural and artificial—and by the transverse and longitudinal test
heads used. The following subsections present the values of the changes in decibel gain
levels. The results presented were averaged. Each measurement for a given measurement
point was taken five times to minimize measurement error. In the case of ultrasonic testing
using the echo technique, the assumed accuracy of evaluation that can be assumed in the
study is 1 mm. Values in the order of tenths of a millimeter are not possible.

5.1. Artificial Discontinuities—Testing with a Transverse Wave Head

Figure 8 shows the results obtained when artificial discontinuities were tested in an
8 mm thick welded joint of dissimilar materials. For this type of joint, reference reflectors
were distributed at six test locations, which were measured from the rim and face area of
both the ferritic steel side (Figure 8A) and the austenitic steel side (Figure 8B). From the
data presented, it can be seen that in the case of ferritic steel, the value of the recorded
amplitude for the discontinuity localized at the measurement point of 3-weld root A did
not exceed 20% SH. For 316L steel, such a relationship was obtained for two positions:
3-weld root B and 5-weld face B. However, the highest amplitude values were obtained for
the 4-weld face B and 6-weld face B reflectors and amounted to 110% SH. For 13CrMo4-5
steel, the highest amplitude value was 101% and was recorded for reflector 5-weld face
A. The lowest values were obtained for positions 3-weld root A (15%) and 5-weld face B
(17%). In addition, it can be seen that the reference reflector number 3 is poorly detectable
for both the A and B sides of the investigation. In the case of the other discontinuities, a
certain correlation can be seen, namely, that the measuring points that are better recorded
for ferritic steel are less visible for austenitic steel and vice versa.

The amplitudes recorded for a welded joint of dissimilar materials with a thickness of
12 mm are shown in Figure 9 (A—ferritic steel, B—austenitic steel). For 13CrMo4-5 steel,
the amplitude did not exceed 20% SH for the discontinuity located at the 2-weld root A. For
316L steel, values below 20% SH were obtained for two positions: 2-weld root B and 4-weld
root B. The highest amplitudes were recorded for discontinuities located in the following
measurement areas: 4-gradient A (96% SH) and 1-gradient B (101% SH). On the other hand,
the lowest amplitude was obtained for reflector number 2, located in the ridge area, for
both ferritic (11%) and austenitic (7%) steels. For 13CrMo4-5 steel, reflector number 4 is
the best detectable, and number 2 is the weakest. For 316L steel, discontinuities number 3,
5, and 6 have good detectability, while discontinuities number 4 and 2 are slightly worse.
Reference reflector number 1 is well detectable from both sides tested.

Figure 8. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 8 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

274



Materials 2024, 17, 4216

Figure 9. The change in signal amplitude depends on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 12 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

The amplitudes recorded for a welded joint of dissimilar materials with a thickness of
16 mm are shown in Figure 10 (as before: A—ferritic steel, B—austenitic steel). For 13CrMo4-
5 steel, the amplitude value did not exceed 20% SH for the discontinuity located in 2-weld
root of A. For 316L steel, values below 20% SH were obtained for two positions: 2-weld
root B and 4-weld root B. The highest amplitudes were recorded for discontinuities located
in the following measurement areas: 4-gradient A (96% SH) and 1-gradient B (101% SH).
On the other hand, the lowest values for both ferritic (11% SH) and austenitic (7% SH)
steels were obtained for reflector number 2 located in the ridge region. For 13CrMo4-5
steels, reflector number 4 is the best detectable, while number 2 is the weakest. For 316L
steels, discontinuities number 3, 5, and 6 have good detectability, while discontinuities
number 4 and 2 are slightly worse. Reference reflector number 1 is well detectable from
both sides tested.

Figure 10. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 16 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

Figure 11 shows the values of amplitudes recorded during the test of a 16 mm welded
joint measured with a transverse wave head with a beam insertion angle of 60° (A—ferritic
steel, B—austenitic steel).

Figure 11. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 16 mm. The test was carried out with a 60°,
4 MHz transverse wave head.

For the two measuring points measured on the side of the 13CrMo4-5 steel, the
amplitude value did not exceed 20% SH: 4-weld root A and 6-weld face A. For the 316L
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steel, only one measuring point achieved a value below 20% SH —5-weld root B. The
highest amplitude values of 110% were recorded for discontinuities located at the following
measurement positions: 2-weld root A, 5-weld face A, 1-weld root B, 3-weld root B, and
4-weld root B. On the other hand, the lowest values of 14% were obtained for reflectors
located in areas 4-weld root A, 6-weld face A, and 5-weld root B. Artificial discontinuities
numbered 1, 3, 4, and 6 are better detectable on the austenitic steel side, while 1 and 5 are
better detectable on the ferritic steel side. The results are characterized by slightly lower
values of the recorded signals compared to those obtained with the 70° beam angle head.

5.2. Natural Discontinuities—Testing with a Transverse Wave Head

Figures 12–14 show the results obtained for welded joints with natural discontinuities
using a transverse wave head with a beam introduction angle of 70° (A—austenitic steel,
B—ferritic steel). Compared to the reference reflectors, the amplitudes recorded for natural
discontinuities located in welded joints with thicknesses of 8, 12, and 16 mm are lower.
From the data obtained for the 8 mm thick plate, it can be seen that in the case of testing
discontinuities on the austenitic steel side (Figure 12A), the value of the recorded signal
exceeds 20% SH in half of the results. The highest value was recorded for measurement
point 2-weld face A (52%), and the lowest for measurement point 3-weld face A (9%). In
the case of the tests carried out on the ferritic steel side, only one position recorded an
amplitude value above 20% SH (2-weld face B), and this is also the highest value obtained,
which is 31% (Figure 12B), while the lowest value was obtained for position 2-weld face
B—6%. In addition, no signal was detected for the 1-weld face B and 3-weld face B positions.

Figure 12. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 8 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

Comparing the results of the austenitic and ferritic side measurements, it can be seen
that the recorded signals from individual discontinuities are higher for the former. In
the case of testing a 12 mm thick plate, only three measurement points tested from the
316L steel side (Figure 13A) obtained an amplitude value above 20% SH (1-weld face A,
2-weld root A, and 3-weld face A). On the other hand, from the measurements made on the
13CrMo4-5 steel side (Figure 13B), it can be seen that the amplitude exceeded the value of
20% SH for only two points (2-weld face B and 3-weld face B). The highest amplitude values
were recorded for 2-weld face B, 47% SH, and for 1-weld face A and 2-weld face A the
values were 22% SH. On the other hand, the lowest signals were obtained for 2-weld face A
(13%) and 3-weld face A (13%) for 316L steel, and 4-weld face B (3%) for 13CrMo4-5 steel.
Again, better detectability, i.e., higher amplitudes, were obtained for the measurements
conducted on the austenitic steel side. The exceptions are the discontinuities measured in
the areas 2-weld face B and 3-weld face B, where higher readings were obtained from the
ferritic steel side.

The values of the recorded amplitudes for a 16 mm thick plate are shown in Figure 14.
For austenitic steel (Figure 14A), three measurement points were characterized by signal
values above 20% SH (1-weld face A, 1-weld root A, 3-weld face A). In the case of ferritic
steel, half of the recorded amplitudes exceeded 20% SH. The highest values were recorded
for 4-weld face B, 47% SH (13CrMo4-5), and 1-weld face A—26% SH (316L). The lowest
amplitudes, on the other hand, were obtained for 3-groove A (8%) and 2-groove B (5%).
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Natural discontinuities in the measurement areas of 1-weld face B and 3-weld face B were
not detected. In addition, as in the case of the study of 8 and 12 mm thick plates, in this
case, better detectability was also obtained for discontinuities measured on the austenitic
steel side.

Figure 13. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 12 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

Figure 14. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 16 mm. The test was carried out with a 70°,
4 MHz transverse wave head.

Figure 15 shows the results of a test carried out on a 16 mm thick welded joint using a
transverse wave head with a beam insertion angle of 60° into the material. From the data
presented, it can be seen that, as in previous measurements, the amplitudes of the recorded
signals are lower than those obtained for reference reflectors. On the other hand, comparing
the values with the data obtained when measuring the same plate, but using a 70°, 4 MHz
head, it can be observed that tests performed with a smaller angle of beam introduction
allow better detection of natural discontinuities. In the case of ferritic steel (Figure 15B),
all the values exceeded 20% SH, whereas in the case of austenitic steel (Figure 15A) such
a relationship was obtained for only half of the discontinuities. The highest amplitudes
were recorded for 4-weld face A (86%) and 3-weld face B (83%). In contrast, the lowest
amplitudes were obtained for discontinuities located in the survey areas 3-weld face A
(11%) and 2-weld face B (22%). Unlike previous studies, this time better detectability was
obtained for natural discontinuities measured from the ferritic steel side.

Figure 15. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 16 mm. The test was carried out with a 60°,
4 MHz transverse wave head.
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5.3. Artificial Discontinuities—Tests with a Longitudinal Wave Head

The recorded values of the amplitudes for artificial discontinuities obtained when
testing welded joints of various thicknesses of 8, 12, and 16 mm using a longitudinal wave
head with a beam introduction angle of 70° are shown in Figures 16–18 (A—ferritic steel,
B—austenitic steel).

In the case of an 8 mm thick welded joint and measurements carried out on the side
of 316L steel, it can be seen that all the values obtained exceeded 20% SH (Figure 16B),
whereas in the case of 13CrMo4-5 steel, the value of the amplitude for measurement point
6-weld root A did not exceed this (Figure 16A). The highest values were recorded for
the reflectors located at 2-weld face A (79%) and 6-weld face B (94%), and the lowest for
6-weld face A (13%) and 3-weld face B (23%). When comparing the individual values of
the amplitudes recorded for the reflectors during their examination on the ferritic and
austenitic steel sides, a slightly better detectability was observed on the 13CrMo4-5 steel
side.

From the data obtained for a 12 mm thick plate, it can be seen that the values of the
amplitudes obtained from the examination of the discontinuities on both sides of the joint
exceed 20% SH (Figure 17). For ferritic steel, the highest value was recorded for the reflector
in the point 5-weld face A area (76%), and the lowest value of 27% was obtained at two
measurement points: 3-weld face A and 6-weld face A. For austenitic steel, the highest
value was 82% (2-weld face B) and the lowest was 20% (3-weld face B). After comparing
the amplitudes recorded for individual reflectors on both sides of the joint, no significant
differences in their detectability were observed. All the amplitudes obtained during the
test of the 16 mm thick plate also exceeded 20% SH (Figure 18). The highest values of 73%
and 88% were recorded from the following tested areas 1-weld face A, 2-weld face A, and
4-weld face B. On the other hand, the lowest values were recorded from the points 4-weld
face A (20%) and 3-weld face B (40%). Reflector number three was not detected on either
side of the face. As in the case of the test of the 8 mm thick plate, there were no significant
differences when comparing the values of the amplitudes obtained from the measurements
on the ferritic and austenitic steel sides.

Figure 16. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 8 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.

Figure 17. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 12 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.
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Figure 18. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 16 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.

On the other hand, when comparing the data obtained from the transverse wave head
test with those obtained from the measurements made with the longitudinal wave head, no
clear differences could be observed in the amplitudes recorded for each reference reflector.
In the case of the 8 and 12 mm plates, a slightly better detection of discontinuities was
obtained when testing with the longitudinal wave head, while for the 16 mm plate, with
the transverse wave head.

The results recorded for a 16 mm plate with a 60° longitudinal wave head are shown in
Figure 19 (consistently: A—ferritic steel, B—austenitic steel). All the amplitudes recorded
on the austenitic steel side are above 20% SH, while for ferritic steel only one value is
below this level. The highest amplitude value of 110% SH was obtained for the following
measurement areas: 1-weld face A, 4-weld face A, 2-weld face B, 3-weld face B, and 3-
weld face B. In contrast, the lowest values were obtained for 6-weld face A (18%) and
5-weld face B (20%). Better detectability for most artificial discontinuities was recorded
for measurements on the austenitic steel side. However, if the results are compared with
those obtained using a 70° head, it is clear that the detection of discontinuities is better
at a smaller angle. Measurements made at the same angle but with a transverse wave
head gave higher values of recorded amplitude signals when tested with a longitudinal
wave head.

Figure 19. The change in signal amplitude depending on the position of the reference reflectors for
(A) 13CrMo4-5 and (B) 316L materials with a thickness of 16 mm. The test was carried out with a 60°,
4 MHz longitudinal wave head.

5.4. Natural Discontinuities—Tests with a Longitudinal Wave Head

The results obtained from measurements of welded joints containing various natural
discontinuities are shown in Figures 20–22 (A—austenitic steel, B—ferritic steel).

Based on the values obtained during the testing of an 8 mm thick welded joint
(Figure 20), it was observed that the amplitude values for the discontinuities of 1-weld root
A, 3-weld root A, and 4-weld root A tested on the 316L steel side did not exceed 20% SH.
However, the highest value was recorded for the position of 1-weld face A (69%), and the
lowest value of 16% was recorded for 1-weld root A and 3-weld root A. On the other hand,
for the ferritic steel, an amplitude value of less than 20% SH was obtained for 4-weld face
B, and this is also the measurement point with the lowest amplitude (18%). The highest
signal value of 40% was obtained for discontinuities number 3 and 4 measured from the
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ridge area. The detectability of individual discontinuities from both sides of the tested joint
was similar; there were no significant differences in the values of the recorded amplitudes.

Figure 20. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 8 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.

In the case of the data obtained from measurements on a 12 mm thick plate, it was
observed that only the signal amplitude of discontinuity number 4 measured from the rim
area did not exceed 20% SH from both the 316L and 13CrMo4-5 steel sides (Figure 21). For
measurements taken on the austenitic steel side, the highest amplitude value of 38% was
obtained for 1-weld face A and 2-weld face A, while on the ferritic steel side it was obtained
for 3-weld root B (64%). In contrast, the lowest values were recorded for discontinuities
number four from the ridge area, where they were 17% and 15% for 316L and 13CrMo4-5
steels, respectively. As with the 8 mm thick plate, there is no significant difference in the
detectability of individual discontinuities depending on the side of the test. The amplitude
values recorded during the measurement of a 16 mm thick welded joint are shown in
Figure 22.

Figure 21. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 12 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.

Figure 22. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 16 mm. The test was carried out with a 70°,
4 MHz longitudinal wave head.

All the amplitude values obtained during the measurement on the 316L steel side
were above 20% SH, whereas on the 13CrMo4-5 steel side, for the discontinuity located in
the 3-weld root B area, the value was below this at 13%. At the same time, this represents
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the least detectable discontinuity for measurements from this side of the joint. On the other
hand, for the tests carried out on the austenitic steel side, the lowest value was recorded
for 2-weld root A. The highest values were observed for 4-weld root A, 45% (316L), and
4-weld root B, 60% (13CrMo4-5). Comparing the recorded amplitudes obtained during
the longitudinal wave head test with those obtained during the transverse wave head
measurements, it was observed that in the case of the former, the detection of individual
natural discontinuities was better for all the welded joint thicknesses tested.

Figure 23 shows the results obtained when testing a 16 mm thick plate with a 60° beam
angle longitudinal wave head (A—austenitic steel, B—ferritic steel). Compared to the tests
carried out with the 70° head, a deterioration in the detection of individual discontinuities
can be seen, namely, for three of the tested areas on the 316L steel side and for half on the
13CrMo4-5 side, the value of the amplitudes did not exceed 20% SH. The highest signal
value of 104% was recorded for 1-weld root A and 4-weld root B, while the lowest values
were recorded for 4-weld root A (13%), 2-weld face B (16%), and 2-weld root B (16%). There
were no significant differences in the results obtained when testing at the same angle but
with a transverse wave head in the detection of individual natural discontinuities.

Figure 23. The change in signal amplitude depending on the position of the natural discontinuity for
(A) 316L and (B) 13CrMo4-5 materials with a thickness of 16 mm. The test was carried out with a 60°,
4 MHz longitudinal wave head.

5.5. Values of Changes in Decibel Gain Level—Transverse Wave Head

Tables 7 and 8 show the values of the change in decibel gain level obtained when
recording the signal from the discontinuity in relation to the DAC reference line. The results
obtained when testing the reference reflectors with the transverse wave head are shown in
Table 7. From these data, it can be seen that for the 8 mm thick test welded joint the change
in the decibel gain level ranges from −10.4 to 6 dB for ferritic steel, and from −6.4 to 4.5 dB
for austenitic steel. For a 12 mm thick plate, the ranges are −9.5 to 1.6 dB and −14.5 to
6.8 dB, respectively. The ranges of change in decibel gain levels obtained when testing a
16 mm thick welded joint are −0.6 to 4.3 dB (13CrMo4-5) and −9.4 to 7.6 dB (316L). For
the data obtained when testing a 16 mm plate but at a smaller beam angle, the ranges vary
from −15.3 to 6.2 dB and −5.7 to 9.3 dB, respectively.

Tests for artificial reference discontinuities distributed over different areas of the
welded joint were carried out on the face and rim sides using transverse wave heads, and
the measurement points were then classified according to the acceptance criteria adopted
(Table 7).

For the 8 mm thick joint, the results exceed the rating level of −14 dB, and allow
the evaluation of all recorded artificial discontinuities for both the 13CrMo4-5 and 316L
steel side tests. The lowest result was recorded for test point 4-weld root A (−10 dB).
However, this exceeded the registration level of −14 dB and was equal to the acceptance
level of −10 dB, so it was unacceptable, as were the other measurements made on the
measurement points as artificial reference reflectors. In each case, the −10 dB acceptance
level was exceeded.

For the 12 mm thick welded joint, a result below the evaluation level of −14 dB was
obtained for the reading from measurement point 4-weld root B (−14.5 dB). According to
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the specified criteria, this result from the 316L steel side should not be taken into account.
The remaining results were unacceptable and exceeded the acceptance level of −10 dB.

For the tests carried out on the welded joint with a thickness of 16 mm using 70°
and 60° beam introduction angles, all the indications from the reference discontinuities
exceeded the −14 dB evaluation level. They were simultaneously indications that exceeded
the level of registration and acceptance, and were therefore unacceptable in view of the
assumptions made.

Table 7. The change in the decibel gain level (ΔHu) with respect to the DAC comparison line for 316L
material considering the path of the ultrasonic wave(s) for artificial discontinuities. The tests were
carried out with a transverse ultrasound wave head.

Measu- 8 mm 8 mm 12 mm 12 mm 16 mm 16 mm 16 mm 16 mm
rement 70° 70° 70° 70° 70° 70° 60° 60°
Point * ΔHu s ΔHu s ΔHu s ΔHu s

dB mm dB mm dB mm dB mm

1-F-A 0.2 33.8 −1.8 22.2 1.4 24.6 6.2 45.9
1-F-B 3.4 30.2 3.1 44.4 1.0 24.3 7.8 42.0
1-R-A −6.0 14.9 0.0 18.6 2.2 25.4 −0.2 15.0
1-R-B −4.5 44.7 6.0 18.2 5.1 23.0 4.3 15.0
2-F-A −5.3 32.7 0.1 49.7 −0.6 23.8 −1.8 16.0
2-F-B −4.0 32.4 3.3 42.0 7.6 45.9 0.8 74.6
2-R-A 1.3 31.1 −9.5 54.8 1.6 24.4 4.3 14.8
2-R-B −2.7 49.3 2.7 40.6 1.2 23.8 4.0 44.0
3-F-A −5.8 38.8 −0.2 61.8 3.2 91.8 3.6 58.6
3-F-B −6.4 32.4 4.2 49.8 4.6 74.1 9.3 56.1
3-R-A −4.7 62.2 −0.9 28.9 1.8 43.0 −0.5 26.3
3-R-B −4.9 52.4 −1.2 24.0 1.6 39.8 6.9 26.5
4-F-A −7.5 36.2 −0.8 45.9 2.9 75.6 0.5 78.1
4-F-B 4.5 27.7 −9.1 43.8 3.6 23.0 −2.5 16.1
4-R-A −10.0 18.7 0.0 24.5 2.4 26.1 −15.3 14.3
4-R-B 3.2 27.8 −14.5 43.2 2.2 22.1 4.2 13.9
5-F-A 6.0 17.0 −4.5 24.1 −0.1 52.7 5.2 19.7
5-F-B −3.5 64.1 6.8 63.4 −9.4 31.9 −2.2 34.5
5-R-A 0.6 36.9 1.6 58.7 4.3 71.9 4.1 52.9
5-R-B −2.1 47.4 −4.9 58.7 2.3 66.0 −5.7 60.2
6-F-A −4.1 28.4 −6.4 29.8 0.3 32.7 −8.3 40.8
6-F-B 4.0 25.6 0.5 21.9 1.9 32.6 7.5 20.6
6-R-A −3.5 44.8 −1.0 65.4 1.7 81.8 0.5 55.1
6-R-B 1.6 29.6 5.4 48.1 2.0 65.8 9.3 62.8

* 1–6—locations of measurement points according to Figure 3; F/R—face/ridge of the weld; A/B—sides of the
welded joint according to Figure 3.

A similar analysis of the data was carried out for the decibel gain level values obtained
when natural discontinuities in welded joints were detected using a transverse wave head
(Table 8). In this case, the ranges of decibel level changes for ferritic steel were −15.4 to
0 dB for 8 mm, −20.6 to −12.9 dB for 12 mm, −24.8 to 6.8 dB for 16 mm, and −6.8 to
5.7 dB for 16 mm, at a 60° angle. For austenitic steel, the ranges were −14.8 to −1.8 dB,
−12 to −4.7 dB, −12.5 to −2.6 dB, and −11.7 to 2.1 dB, respectively. It should also be noted
that these values were negative for austenitic steel when tested with a head with a beam
introduction angle of 70°. For ferritic steel, such a relationship was only obtained when
testing a 12 mm thick joint.

The tests for natural discontinuities carried out with a transverse wave head with the
same reinforcement as for artificial reflectors gave the following results according to the
adopted evaluation criteria (Table 8).

For a thickness of 8 mm, the measurement points 1-weld root B (−15 dB), 2-weld root B
(−15.4 dB), and 3-weld root A (−14.8 dB) were below the −14 dB evaluation level and were
not considered. Indications from the measurement points 1-weld face A (−7.8 dB), 2-weld
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face A (−1.8 dB), 2-weld face A (−3 dB), and 3-weld face A (−4.3 dB) were unacceptable
indications, exceeding the −14 dB registration level and the −10 dB acceptance level.
Measurement points below the −14 dB registration level but above the −10 dB acceptance
level were recorded and were acceptable according to the imposed criteria.

Table 8. The change in the decibel gain level (ΔHu) with respect to the DAC comparison line for 316L
material considering the path for the ultrasonic wave(s) for natural discontinuities. The tests were
carried out with a transverse ultrasound wave head.

Measu- 8 mm 8 mm 12 mm 12 mm 16 mm 16 mm 16 mm 16 mm
rement 70° 70° 70° 70° 70° 70° 60° 60°
Point * ΔHu s ΔHu s ΔHu s ΔHu s

dB mm dB mm dB mm dB mm

1-F-A −7.8 40.2 −7.3 37.9 −2.6 59.0 −4.7 47.3
1-F-B 0.0 0.0 −18.1 25.5 0.0 0.0 2.8 55.5
1-R-A −13.5 30.8 −5.4 60.6 −9.4 24.3 −0.4 24.8
1-R-B −15 33.9 −20.0 22.2 −8.7 25.3 −3.3 26.1
2-F-A −1.8 30.3 −5.9 59.3 −10.2 48.0 −7.3 38.8
2-F-B −12.2 55.5 −18.9 19.7 −24.8 24.8 2.4 48.8
2-R-A −3.0 49.5 −8.6 31.6 −12 17.9 −11.7 49.6
2-R-B −15.4 57.7 −14.9 29.5 −12.2 24.2 −3.7 16.8
3-F-A −14.8 40.4 −6.1 45.7 −3.2 47.7 −11.2 37.6
3-F-B −11.5 54.1 −18.9 18.7 0.0 0.0 5.7 44.5
3-R-A −4.3 57.8 −12.0 34.4 −12.5 53.3 −0.1 20.9
3-R-B 0.0 0.0 −12.9 43.3 6.8 35.9 −6.8 23.2
4-F-A −11.8 41.6 −4.7 59.8 −5.3 54.3 2.1 39.8
4-F-B −12 30.1 −14.8 80.5 −4.4 71.7 −1.8 50.1
4-R-A −12 13.3 −7.0 56.7 −8.8 59.4 1.9 34.8
4-R-B −13 10.0 −20.6 44.0 −3.1 29.9 −5.8 18.7

* 1–4—location of measurement points according to Figure 3; F/R—face/ridge of the weld; A/B—sides of the
welded joint according to Figure 3.

For a welded joint with a thickness of 12 mm, eight measurement points were unclas-
sifiable, exceeding the −14 dB evaluation level. It is noteworthy that all of these locations
were on the test side of the 13CrMo4-5 material. The discontinuities detected on the
316L steel side, with the exception of the reading from measurement point 3-weld face A
(−12 dB), were unacceptable as they exceeded the −10 dB acceptance level.

Tests carried out on a 16 mm thick welded joint and using an angle of 70°, with the
exception of the indication of 2-weld face B (−24.8 dB), were indications considered for
evaluation and subject to registration. Indications exceeding the level of registration but
not exceeding the level of acceptance were recorded for measurement points 2-weld face A
(−10.2 dB), 2-weld root A (−12 dB), 2-weld root B (−12, 2dB), and 3-weld root A (−12.5 dB).
Other indications from discontinuities were unacceptable.

The use of a 60° angle resulted in indications exceeding the −14 dB evaluation level.
The indications subject to registration and unacceptable discontinuities were those from the
measurement points 2-weld root B (−11.7 dB) and 3-weld face B (−11.2 dB). The remaining
discontinuities were unacceptable according to the imposed criteria.

The range of the ultrasonic wave path obtained when measuring the 8 mm thick
welded joint with artificial reference reflectors using a transverse wave head with 70° beam
angle introduction and made of 13CrMo4-5–316L steel was from 14.9 to 62.2 mm for ferritic
steel, and from 25.6 to 64.1 mm for austenitic steel (Table 7). For the 12 mm thickness, the
range was from 18.6 to 65.4 mm and from 18.2 to 63.4 mm, respectively. For the 16 mm
thick welded joint tested with a 70° head, the path ranges were 23.8 to 91.8 mm and 22.1 to
74.1 mm, respectively, and for a 60° head, 14.3 to 78.1 mm and 13.9 to 74.6 mm, respectively.

The path ranges for welded joints with natural discontinuities, measured with the
transverse wave head, are shown in Table 8. For the 8 mm thick plate of 13CrMo4-5–316L
steel, they ranged from 10.0 to 57.7 mm for ferritic steel, and from 13.3 to 57.8 mm for
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austenitic steel; for the thickness of 12 mm, the ranges were from 18.7 to 80.5 mm and
from 31.6 to 60.6 mm, respectively. In the case of the 16 mm thick welded joint, tested
with a 70° head, the path ranges were from 24.2 to 71.7 mm, and from 22.1 to 74.1 mm,
respectively. For the 60° angle head, the values were from 16.8 to 55.5 mm and from 20.9 to
49.6 mm, respectively.

5.6. Values of Changes in Decibel Gain Level—Longitudinal Wave Head

The values of decibel gain level changes obtained by recording the amplitude signal
against the DAC curve using the longitudinal wave head are shown in Tables 9 (for artificial
discontinuities) and 10 (for natural discontinuities). From the data in Table 9, it can be seen
that when testing the 8 mm thick welded joint, the range of decibel gain varied from −15.3
to 0.4 dB for 13CrMo4-5 steel and from −9.2 to 2.5 dB for 316L steel. For the 12 mm joint,
the ranges were −8 to 2.2 dB and −8.8 to 2.1 dB, respectively, while for the 16 mm joint, the
ranges were −7.5 to 2.6 dB and −1.4 to 3.4 dB, respectively. When the 16 mm plate was
tested using a head with a smaller beam angle (60°), the ranges of changes in decibel gain
were −10.3 to 9.8 dB (ferritic steel) and −17.3 to 5.5 dB (austenitic steel).

The results obtained during the tests for welded joints with artificial discontinuities
with the longitudinal wave head were also verified according to the adopted evaluation
criteria (Table 9). For the thickness of 8 mm, the value of the decibel gain recorded for
measurement point 6-weld root A (−15.3 dB) was below the evaluation level of −14 dB.
The remaining values obtained for individual measurement points were evaluated, as was
the case for the 12 mm thick welded joint, where all values met the criteria. When the
results were considered in relation to the acceptance level of −10 dB, all indications were
unacceptable. For the joint with a thickness of 16 mm and an angle of 70°, all measurement
values exceeded the evaluation level of −14 dB while simultaneously exceeding the regis-
tration and acceptance levels, and were therefore unacceptable. On the other hand, in the
case of measurements carried out for an angle of 60°, measurement point 5-weld root B
(−17.3 dB) was not evaluable, and 6-weld root A (−10.3 dB) was a registrable indication
and met the acceptance level. The remaining artificial reference discontinuities did not
meet the acceptance levels.

For the natural discontinuity test (Table 10), the ranges of change in the decibel gain
level of the recorded signal relative to the reference line for ferritic steel were −12 to
−3.6 dB (8 mm), −11.5 to 0.9 dB (12 mm), −15.1 to 0.3 dB (16 mm), and −11.8 to 7.4 dB
(16 mm and 60° angle). For austenitic steel, the ranges were −11.8 to 7.4 dB, −9.5 to
−1.6 dB, −8.3 to −1.8 dB, and −15.7 to 5.5 dB, respectively. As with the study of natural
discontinuities using the transverse wave head, negative ranges were also obtained, but
only for the austenitic steel specimens with 12 and 16 mm thickness.

As for artificial discontinuities, tests for natural discontinuities were carried out on
the side of the 13CrMo4-5 and 316L materials, which were then verified according to the
adopted evaluation criteria (Table 10).

All indications of discontinuities for the 8 and 12 mm thicknesses of the heterogeneous
joints were subject to evaluation because they exceeded the evaluation level of −14 dB. Dis-
continuities subject to registration but not exceeding the acceptance level, were indications
from measurement points 1-weld face A (−11.8 dB), 4-weld face B (−12 dB), and 4-weld
face A (−10.7 dB) for the 8 mm thickness; and 4-weld face B (−11.5 dB) for the 12 mm
thickness. The remaining discontinuities did not meet the requirements for the imposed
acceptance levels. For tests performed on the 16 mm thick welded joint, only the indication
from the 3-weld root B measurement point (−15.1 dB) was below the evaluation level.
The remaining discontinuities exceeded the registration and acceptance levels and were
classified as unacceptable. For the tests performed on the 16 mm thick specimen using a
60° angle head, only the discontinuity at measurement point 4-weld root A (−15.7 dB) was
not evaluated. Measurement points 1-weld face A (−10.7 dB), 2-weld face B (−11.8 dB),
2-weld face A (−11.4 dB), 2-weld face B (−11.8 dB), and 3-weld face B (−10.9 dB) were
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above the registration level but below the acceptance level. The remaining discontinuities
were below the acceptance level.

Tables 9 and 10 summarize the ultrasonic wave path values obtained from the measure-
ments carried out with the longitudinal wave head on welded joints containing artificial
and natural discontinuities.

The path range for the 8 mm thick plate made of 13CrMo4-5–316L steel with reference
reflectors was from 19.6 to 29.8 mm for ferritic steel, and from 15.5 to 30.0 mm for austenitic
steel. For the 12 mm plate, the ranges were 16.3 to 33.4 mm and 16.7 to 33.8 mm, respectively.
For the 16 mm thick welded joint tested with a 70° head, the path ranges were 22.3 to
45.3 mm and 23.0 to 41.6 mm, and for a 60° head, 12.7 to 34.1 mm and 14.9 to 35.2 mm,
respectively.

The path range for measuring a welded joint with natural discontinuities using a 70°
longitudinal wave head and an 8 mm thickness was from 20.8 to 32.9 mm for ferritic steel,
and from 28.5 to 32.2 mm for austenitic steel. For the 12 mm thick plate, the ranges were
26.9 to 32.6 mm and 28.5 to 42.5 mm. For the 16 mm thick joint, the path range was from
23.3 to 40.1 mm and from 20.6 to 38.9 mm, respectively. The results of measuring the same
specimen but with a 60° head gave the ranges of 16.0 to 33.0 mm and from 17.0 to 33.8 mm.

Table 9. The change in the decibel gain level (ΔHu) with respect to the DAC comparison line for 316L
material considering the path for the ultrasonic wave(s) for artificial discontinuities. The tests were
carried out with a longitudinal ultrasound wave head.

Measu- 8 mm 8 mm 12 mm 12 mm 16 mm 16 mm 16 mm 16 mm
rement 70° 70° 70° 70° 70° 70° 60° 60°
Point * ΔHu s ΔHu s ΔHu s ΔHu s

dB mm dB mm dB mm dB mm

1-F-A 0.4 25.4 0.3 25.1 1.6 28.3 5.1 21.8
1-F-B 0.0 23.6 1.7 24.7 1.6 25.5 4.8 32.6
1-R-A −3.9 22.3 1.1 24.6 −0.2 30.3 8.4 21.4
1-R-B −3.9 19.6 −1.0 20.6 3.0 23.6 3.6 21.8
2-F-A −3.9 19.9 −2.3 30.4 0.5 22.3 2.9 26.0
2-F-B −3.5 30.0 1.6 20.1 −0.7 37.1 0.0 25.9
2-R-A −4.9 20.8 0.3 27.9 −1.4 28.7 4.2 25.9
2-R-B −5.1 20.9 −2.6 16.7 2.8 30.4 5.5 16.4
3-F-A −3.6 24.7 −8.0 24.2 0.0 0.0 −4.7 31.0
3-F-B −9.2 21.5 −8.8 27.3 0.0 0.0 4.3 19.7
3-R-A −1.1 24.3 −2.0 23.7 2.6 45.3 −3.3 24.3
3-R-B −3.1 24.5 −0.9 26.1 −1.4 43.4 5.3 15.3
4-F-A −1.8 22.9 −4.3 19.3 0.0 34.9 1.5 32.9
4-F-B 2.5 19.2 2.1 29.8 3.0 23.8 3.5 32.6
4-R-A −3.0 27.8 −2.2 17.6 −4.3 33.4 9.6 33.4
4-R-B −5.6 15.5 −4.6 22.9 1.7 25.5 −4.7 26.5
5-F-A −0.9 21.5 2.2 29.5 1.3 39.8 9.8 28.3
5-F-B −4.0 26.0 1.8 33.8 3.0 33.2 3.9 22.6
5-R-A −1.9 19.6 −0.4 16.3 0.0 23.6 0.3 12.7
5-R-B −7.1 23.6 −5.9 26.5 0.1 23.0 −17.3 14.9
6-F-A −2.3 29.8 0.7 33.4 0.0 35.8 4.6 34.1
6-F-B 2.4 17.7 0.6 24.7 3.4 41.6 2.0 35.2
6-R-A −15.3 21.9 −2.4 29.4 −7.5 23.5 −10.3 25.7
6-R-B −7.3 13.2 −3.2 13.1 −0.1 12.7 −4.3 11.6

* 1–6—location of measurement points according to Figure 3; F/R—face/ridge of the weld; A/B—sides of the
welded joint according to Figure 3.
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Table 10. The change in the decibel gain level (ΔHu) with respect to the DAC comparison line for
316L material considering the path for the ultrasonic wave(s) for natural discontinuities. The tests
were carried out with a longitudinal ultrasound wave head.

Measu- 8 mm 8 mm 12 mm 12 mm 16 mm 16 mm 16 mm 16 mm
rement 70° 70° 70° 70° 70° 70° 60° 60°
Point * ΔHu s ΔHu s ΔHu s ΔHu s

dB mm dB mm dB mm dB mm

1-F-A 1.6 26.8 −1.6 40.3 −4.3 38.9 −10.7 26.5
1-F-B −8.8 22.1 −4.4 32.1 −3.1 38.0 −8.9 18.7
1-R-A −11.8 23.2 −6.1 37.2 −1.8 25.6 5.5 32.9
1-R-B −6.0 30.3 −7.4 29.6 −6.5 36.3 0.4 21.6
2-F-A 0.2 30.1 −2.3 35.9 −5.2 37.7 0.3 33.5
2-F-B −5.7 24.9 −5.4 30.8 −5.3 40.1 −11.8 20.7
2-R-A −5.6 23.4 −5.2 38.7 −7.1 38.6 −11.4 17.0
2-R-B −5.2 26.7 −4.9 29.0 0.3 36.8 −11.8 16.0
3-F-A −7.1 28.0 −3.7 42.5 −5.5 38.0 0.6 33.8
3-F-B −7.3 32.9 −0.3 32.6 −3.8 38.6 −10.9 26.0
3-R-A 7.4 25.7 −9.0 28.5 −8.3 20.7 −8.9 28.2
3-R-B −3.6 28.4 0.9 30.4 −15.1 23.3 −0.9 27.9
4-F-A −1.5 32.2 −2.6 40.9 −4.8 37.7 −4.7 33.0
4-F-B −12.0 20.8 −5.0 30.4 −4.0 36.5 −9.5 28.1
4-R-A −10.7 27.3 −9.5 34.0 −3.3 20.6 −15.7 16.2
4-R-B −4.0 27.0 −11.5 26.9 −1.3 23.5 7.4 33.0

* 1–4—location of measurement points according to Figure 3; F/R—face/ridge of the weld; A/B—sides of the
welded joint according to Figure 3.

6. Evaluation of Ultrasonic Test Results for a Heterogeneous Joint in
13CrMo4-5–316L Steel

In order to determine how the angle of beam introduction into the material or the type
of wave used affects the results, a comparative analysis was carried out and the values
obtained are shown graphically in Figures 24–27. The data are presented for a variety of
joints to further analyze the differences in amplitude values recorded from the ferritic and
austenitic steel sides. All the amplitude values recorded from the reference holes were
divided into three groups, values less than 40% SH, values from 40 to 80% SH inclusive,
and values greater than 80% SH, and then, counted and related to their total number. In
addition, within each of these ranges it was analyzed how much data was recorded from
the face or root area and whether the test was performed from the A side (ferritic steel) or B
side (austenitic steel).

Figure 24 shows that the values of the amplitudes increase as the thickness of the
tested joint increases. For a joint thickness of 8 mm, the interval containing amplitudes
below 40 is more than 50% of all recorded indications, while for a connector thickness of
16 mm, it is only 25%. In the case of this joint, the use of a 60° angle head reduced the
number of recorded signals. On the other hand, the use of a longitudinal wave head for
testing significantly improved the quality of the signals obtained.

Figure 25 shows that the range of values below 40% SH has been significantly reduced
in favor of the range of values between 40 and 80% SH. However, the range of values above
80% SH does not exceed 10% in any of the joints tested. The use of a head with a beam angle
of 60° to measure the 16 mm thick specimen improved the quality of the recorded signals,
and for more than 50% SH of the amplitudes, the value exceeded 80% SH. From the data
presented in the text boxes in Figures 24 and 25, it can be seen that most of the indications
characterized by amplitude values above 80% SH were recorded from the face area. This
effect is most evident for the longitudinal wave when testing the joints of 8 and 12 mm
thickness. However, when analyzing the side from which the highest amplitude values
were recorded (Figures 26 and 27), it can be seen that it is the B side, i.e., the austenitic steel
side. Furthermore, in the case of the longitudinal wave, except for the beam angle of 60°,
all values above 80% SH were recorded from the B side.
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Table 11 shows the locations of the measurement points corresponding to different
locations of the reference reflectors placed in one of the zones of the welded joint. For each
point and all the thicknesses and angles tested, as well as the type of wave, the degree of
detection of the artificial discontinuity was determined graphically. On the basis of the
results obtained, some correlations were observed. In particular, for the reflector placed in
the center of the weld (no. 1), only in the case of the specimen of 8 mm thickness for side B
was the area was poorly detectable, and the amplitude was less than 40% SH.

Figure 24. Percentage summary of the results when dividing into three ranges the values of the
amplitudes obtained during the registration of the signal coming from the reference holes. Measure-
ment was performed using a transverse wave head. In each interval, the percentage of how many
indications were recorded from the boundary area and how many from the face was determined.

Figure 25. Percentage summary of the results for the diverse joints when divided into three ranges of
amplitude values obtained when recording the signal coming from the reference holes. Measurement
was performed with a longitudinal wave head. In each interval, the percentage of how many
indications were recorded from the boundary area and how many from the face was determined.

This point was best detected for thicker welded joints and measurements with a
longitudinal wave head and an angle of 60°. For the reflector located at the top of the weld
under the face (no. 3), a deterioration in detectability was observed. This is particularly
noticeable at a joint thickness of 8 mm and other joints when examined from the face area.
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The reflectors numbered 2 and 4 located on the fusion lines are best detected at a joint
thickness of 16 mm using a transverse wave head and an angle of 70° or a longitudinal
wave head but an angle of beam insertion into the material of 60°. For reflectors located
behind the fusion line on both sides of the tested joint (no. 5 on the ferritic steel side and
no. 6 on the austenitic steel side), no improvement in detectability was observed with
increasing plate thickness. However, the change in wave type affected the increase in
detectability of reflector no. 5, while reflector no. 6 was characterized by significantly
higher readings obtained during the test from the face area on the austenitic steel side.

Figure 26. Percentage summary of the results for the diverse joints when divided into three ranges
of amplitude values obtained during the recording of the signal coming from the reference holes.
Measurement was performed with a transverse wave head. In each interval, the percentage of how
many readings were recorded from side A (ferritic steel) and side B (austenitic steel) was determined.

Figure 27. Percentage summary of the results for diverse joints when divided into three ranges of
amplitude values obtained when recording the signal coming from the reference holes. Measurement
was performed using a longitudinal wave head. In each interval, the percentage of how many
readings were recorded from side A (ferritic steel) and side B (austenitic steel) was determined.
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Table 11. Summary of measurement points with consideration of their detectability (•—poorly
detectable, amplitude below 40% SH; ••—well detectable, amplitude between 40 and 80% SH; •••—
very well detectable, amplitude above 80% SH). Data are presented for all tested joint thicknesses
and both angles using ultrasonic transverse (T) and longitudinal (L) wave heads.

Measurement 8, mm 12, mm 16, mm 16, mm 8, mm 12, mm 16, mm 16, mm ∑ ∑ ∑
point 70°, T 70°, T 70°, T 60°, T 70°, L 70°, L 70°, L 60°, L • •• •••

1-weld face A •• •• ••• •• •• •• •• ••• 0 6 2
1-weld face B ••• •• ••• ••• •• •• •• ••• 0 4 4
1-weld root A •• •• ••• •• •• •• •• ••• 0 6 2
1-weld root B • ••• •• ••• •• •• ••• ••• 1 3 4

2-weld face A • • •• •• •• •• •• ••• 2 5 1
2-weld face B • • ••• • • •• •• •• 4 3 1
2-weld root A •• ••• ••• ••• • •• •• ••• 1 3 4
2-weld root B • • ••• •• • • •• ••• 4 2 2

3-weld face A • • • • •• • • • 7 1 0
3-weld face B • •• • ••• • • • ••• 5 1 2
3-weld root A • •• •• •• •• •• •• •• 1 7 0
3-weld root B • •• •• ••• •• •• •• ••• 1 5 2

4-weld face A • • • • •• •• • •• 5 3 0
4-weld face B ••• • ••• •• ••• ••• ••• •• 1 2 5
4-weld root A • • ••• • •• •• • ••• 4 2 2
4-weld root B ••• •• ••• ••• •• •• •• •• 0 5 3

5-weld face A ••• •• • ••• •• •• •• ••• 1 4 3
5-weld face B • •• • • • •• •• ••• 4 3 1
5-weld root A •• • • •• •• •• •• •• 2 6 0
5-weld root B • •• • • • • •• • 6 2 0

6-weld face A •• • •• • •• •• •• •• 2 6 0
6-weld face B ••• ••• •• •• ••• •• •• •• 0 5 3
6-weld root A • • • • • • • • 8 0 0
6-weld root B •• •• • •• • •• •• ••• 2 5 1

∑ • 13 10 9 8 8 5 5 3 - - -

∑ •• 6 11 6 9 14 18 17 8 - - -

∑ ••• 5 3 9 7 2 1 2 13 - - -

From the summary of the number of points in a given numerical range shown on
the right side of Table 11, the most and least detectable artificial discontinuities were
determined. Point 1 is characterized by the lowest number of indications of less than 40%
SH, with which it is best detected in all the joint thicknesses tested and at both heads and
angles (values are marked in green). On the other hand, discontinuities 3, 5, and 6 are
the least detectable, with the highest number of indications detected in the range below
40% SH (values marked in red). In addition, it can be seen that these points have the
fewest indications of more than 80% SH. A comparable summary has been made in the
bottom rows of Table 11, this time counting the points contained in each column. From
these data, it can be seen that the least detectable discontinuities are those located in the
8 mm thick joint when using the transverse wave head. On the other hand, when using the
longitudinal wave head, and analyzing the number of indications in each interval, very
good detection of discontinuities is observed in all the joint thicknesses tested.

7. Discussion

Tests conducted on artificial discontinuities in the thickness ranges of 8, 12, and 16 mm
using a 70° angle of the transverse wave were best detected at the 16 mm thickness both
measured from the austenitic and ferritic steel sides. Differences in the detectability of
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individual artificial discontinuities depending on the side tested were not as apparent as
for other thicknesses. The lowest readings were obtained at a thickness of 12 mm and
point 2 face B and 4 root B, where the values of readings did not exceed 10%. Hole 1 was
detectable at levels above 50% in all cases from both ferritic and austenitic steels. Hole 3
was the least detectable at the 8 mm thickness on both the ferritic and austenitic steel sides.

The results were similar for each of the materials tested. Reflector 6 face B for each
of the thicknesses considered in the 8–16 mm range had higher readings than 6 face A.
Reflector 5 face A showed a similar magnitude of recorded amplitude at thicknesses of
8 and 12 mm while for the 16 mm thickness the measured reading indicated a value of
110%. On the B side, the highest values on both the face and border sides were registered
at the 12 mm thickness and similar results were registered at the 8 and 16 mm thicknesses
and did not exceed the value of 35%.

The use of angle heads for transverse and longitudinal waves gave positive results
during the performed tests for artificial discontinuities. In the case of artificial disconti-
nuities, the highest amplitude values were recorded for the 16 mm thick heterogeneous
joint using a transverse wave head and an angle of 70° and 60°. For the tests performed
on the artificial discontinuities located in the 8 mm thick welded heterogeneous joint with
longitudinal waves, higher amplitude values were obtained on the 316L steel side than
for the discontinuities measured on the 13CrMo4-5 steel side. For the other thicknesses,
of 12 and 16 mm, amplitude values were observed from measurements on both sides of
the joint. The highest values of the recorded amplitude were obtained during the measure-
ment for the discontinuities of artificial longitudinal waves and welded joints of different
thicknesses of 16 mm and angle of 60°.

Angle heads for transverse waves gave lower amplitude ratios for natural discontinu-
ities than for artificial discontinuities. Not all measurement points could be located. This
was the case for point 1 face B with thicknesses of 8 and 16 mm, and 3 root B (thickness
8 mm) and 3 face B with a thickness of 16 mm. For the 16 mm thickness, the readings on
each side of the test gave results of more than 10%. No such relationship was observed
for the 8 and 12 mm thicknesses. The highest reading rates were obtained for the 16 mm
thickness and lower values were registered for the 8 and 12 mm thicknesses.

Tests carried out on representative welded joints in the 8–16 mm range for a longitudi-
nal wave and an angle of 70° with implemented natural discontinuities showed registered
amplitude magnitudes higher than for samples with artificial discontinuities. Discontinu-
ities at measurement points 1 face A and 8 mm thick, 3 root B and 12 mm thick, and 4 root
B for 16 mm thick gave results of 60% or higher. All other measurement points gave lower
results. In the considered thickness interval of 8–16 mm, all measurement points gave a
measurement result above 10%. The most similar distribution of amplitudes in the 20–40%
range was obtained for measurement points for thicknesses of 12 and 16 mm and tests from
test area A. Similar magnitudes were recorded here at a thickness of 8 mm, however, when
testing from area B of the welded joint. The use of a 60° angle and a longitudinal wave
head gave higher measurement readings for points 3 root B and 4 root B than the use of a
70° longitudinal wave head in this case. The use of the 60° head gave higher magnitudes
of measurement readings than the 70° head for points 1 root A and 1 root B, 2 face A, and
3 face A. Point 4 from the root A area gave a higher result for the 70° head than for the
60° angle.

Longitudinal waves propagate at a higher speed than transverse waves. They are less
sensitive to deflections at grain boundaries and to obtaining readings derived from apparent
occurring indications; i.e., indications that do not originate from natural discontinuities,
which are often the result of technological errors in the execution of welded structures.

Normal heads for longitudinal waves are insufficient for ultrasonic testing in heteroge-
neous joints, so it is necessary to use heads that introduce longitudinal waves at a specific
angle. When using dual heads for longitudinal waves, it is important to separate the trans-
mitting and receiving signal paths. This phenomenon does not occur when testing with
standard transverse wave heads. The most common use of dual heads is characterized by a
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better signal-to-noise ratio and a limited sensitivity zone. The narrowing of the sensitivity
zone is the result of a longer dead zone with single-angled longitudinal wave heads than
with the same transverse wave heads. This is also due to the higher structural noise when
testing welds made of dissimilar materials. Transverse waves propagate at a smaller angle
and at a slower speed than longitudinal waves. Echoes obtained from longitudinal waves
can be identified by their position in a suitably close range of the time base. Interpretation
of the indications is limited to half a pitch. In contrast, indications obtained from transverse
waves will always be characterized by longer delays. There is, however, a possibility here
to perform half-pitch and multiples of it, which gives the possibility of reading from further
ranges of the path of the transducer head.

8. Conclusions

The essence of the article is to determine the reliability of test results using technique
no. 1 according to DAC curves and to analyze the size of the error based on the evaluation
of the height of the echo amplitude. The tests carried out on heterogeneous welded
joints in this study were exploratory in nature. They have made it possible to formulate
conclusions that will inform further consideration of the use of ultrasonic testing to measure
heterogeneous joints. It is also a starting point for planning the next stages of testing on,
among other things, specimens in the form of plates with other combinations of base and
filler materials and the use of other welding processes that affect the change in the structure
of welded joints.

The following observations can be made from the results of the tests:

1. For artificial discontinuities, the highest amplitude values were recorded for a 16 mm
thick heterogeneous joint using a transverse wave head and angles of 70° and 60°
(Figures 8–11).

2. For tests performed on natural discontinuities in heterogeneous joints using transverse
waves, discontinuities on the side of 316L steel were detected more favorably. On the
ferritic 13CrMo4-5 steel side, not all discontinuities were detected (Figures 12 and 15).

3. Testing of a 16 mm thick natural joint using a transverse wave head with a beam
insertion angle of 60° had the most favorable detection of natural discontinuities
concerning the other measurements made for heterogeneous joints (Figures 12–15).

4. For the tests carried out on the artificial discontinuities located in the 8 mm thick
variegated welded joint with longitudinal waves, higher values of amplitudes were
obtained on the 316L steel side than for the discontinuities measured on the 13CrMo4-
5 steel side—Figure 16. For the other thicknesses of 12 and 16 mm, similar values of
amplitudes obtained from measurements on both sides of the joint were observed—
Figures 17 and 18.

5. The highest values of the recorded amplitude were obtained during the measurement
of artificial discontinuities using longitudinal waves and welded joints of various
thicknesses of 16 mm and an angle of 60°—Figure 19.

6. No significant differences were observed for tests conducted using the longitudinal
wave head on the ferritic and austenitic steel sides at natural discontinuities for both
the thickness and the side from which the test was conducted (Figures 20–23).

7. Similar ranges of decibel gain level change values to the comparison line carried
out on artificial discontinuities in heterogeneous joints using both transverse and
longitudinal waves were recorded (Tables 7 and 9).

8. Higher values of decibel gain level changes to the determined comparison lines were
observed when tested on natural discontinuities on the 13CrMo4-5 side of the material
at thicknesses of 8 and 12 mm than on the 316L side (Table 8), while smaller differences
were observed for tests conducted using longitudinal waves (Table 10).

Based on the study, it is concluded that, despite the difficulties, ultrasonic testing
allows volumetric inspection of welded joints of diverse materials of the type of ferritic
steel in the grade 13CrMo4-5 with austenitic steel 316L. In addition:
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1. The sensitivity of detection in the testing of heterogeneous joints depends on the
type of material and its phase structure, the ultrasonic wave used, and the angle of
beam introduction.

2. The highest detection sensitivity was obtained by conducting tests from the ferritic
steel side, which is due to the lower attenuation of the ultrasonic wave propagating in
ferritic steel compared to austenitic steel.

3. The most favorable conditions for detecting discontinuities were obtained when
testing using a longitudinal ultrasonic wave.

4. For testing materials up to 15 mm thick, more favorable detection results were ob-
tained with an ultrasonic beam insertion angle of 70° and above 15 mm with an
ultrasonic beam insertion angle of 60°.

5. The ultrasonically tested heterogeneous joints required more sweeps for maximum
detection of different areas.

Main test results, stated benefits, and limitations:

1. The DAC technique can be used to evaluate heterogeneous welded joints.
2. The value of the recorded amplitudes depends on the location of the reference reflectors.
3. From the conducted tests, the effect of the test side on the registration of the signal

from artificial and natural discontinuities was observed.
4. In ultrasonic testing of welded joints of austenitic steels, due to the structural changes

in the tested materials, tests should be carried out from each side.
5. When testing austenitic steel, it is recommended to use longitudinal wave heads.

They show lower values of the attenuation coefficient, and therefore, smaller correc-
tions to the amplification used when recording the signal from artificial and natural
discontinuities.

Directions for further research:

1. Application of phased array technique—this technique uses multi-transducer mosaic
heads for testing and uses a wide angular range of 40–70°. The dual matrix array with
transmit–receive longitudinal (DMA-TRL) head, which allows the introduction of
creeping L-wave, longitudinal L-wave, and the use of the tandem LLT technique, is
also becoming increasingly popular.

2. Testing of welded joints with larger thicknesses, in the range of 20–35 mm—these
tests use transverse and longitudinal wave heads with frequencies lower than those
used within the framework of this work and with other transducer sizes.

3. Testing of welded joints with thicknesses in the range of 3–8 mm—in the energy
industry, tests are also performed on joints with smaller thicknesses in the range of 3
to 8 mm using the Cobra technique. Power blocks on heat exchangers, among others,
also include connections in this range.

4. Testing of components with a different configuration—welded joints in different
combinations of base and filler materials. The use of other welding processes such as
TIG, covered electrode, or powder wire welding can also be considered.
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Abbreviations

The following abbreviations are used in this manuscript:

DAC Distance–amplitude curve
DMA Dual matrix array
DMA-TRL Dual matrix array with transmit–receive longitudinal
HAZ Heat-affected zone
L Longitudinal waves
LA Linear array
MAG Metal active gas
NDT Non-destructive testing
PA Phased array
PAUT Phased array ultrasonic testing
RT Radiographic testing
s Ultrasonic wave path
SH Screen height
SEK Transverse wave heads
SEL Longitudinal wave heads
t Material thickness
T Transverse waves
TFM Total focusing method
TH Horizontally polarized transverse waves
UT Ultrasonic testing
¼t Reference hole drilled to a depth of ¼ the thickness of the material
½t Reference hole drilled to a depth of ½ the thickness of the material
¾t Reference hole drilled to a depth of ¾ the thickness of the material
p Utrasonic head travel width
Δ Hu Change in decibel gain level
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Abstract: This study aims to develop a robust and efficient system to identify ties and ballasts in
motion using a variety of non-contact sensors mounted on a robotic rail cart. The sensors include
distance LiDAR sensors and inductive proximity sensors for ferrous materials to collect data while
traversing railroad tracks. Many existing tie/ballast health monitoring devices cannot be mounted on
Hyrail vehicles for in-motion inspection due to their inability to filter out unwanted targets (i.e., ties
or ballasts). The system studied here addresses that limitation by exploring several approaches based
on distance LiDAR sensors. The first approach is based on calculating the running standard deviation
of the measured distance from LiDAR sensors to tie or ballast surfaces. The second approach uses
machine learning (ML) methods that combine two primary algorithms (Logistic Regression and
Decision Tree) and three preprocessing methods (six models in total). The results indicate that the
optimal configuration for non-contact, in-motion differentiation of ties and ballasts is integrating
two distance LiDAR sensors with a Decision Tree model. This configuration provides rapid, accurate,
and robust tie/ballast differentiation. The study also facilitates further sensor and inspection research
and development in railroad track maintenance.

Keywords: automated railroad track inspection; non-contact; in motion; LiDAR; machine learning

1. Introduction

Various studies have aimed at identifying, detecting, and assessing the condition of
railroad ties and ballasts, mainly using vision systems or ground-penetrating radars [1–5].
The emphasis is often placed on how ballast and tie degradation may increase the likelihood
of a derailment [6–10]. Other studies have used alternative technologies for making such
assessments, such as the research by Zhao et al. that has developed and fabricated a
laser-speckle strain sensor to measure the transfer length of concrete ties [11].

The mentioned techniques are non-contact and have the potential to be mounted
onboard Hyrail vehicles or manned and unmanned track geometry cars for autonomous, in-
motion assessment of tracks. Their goal is to provide an early warning to track engineers for
intervention before any track fault progresses to costly maintenance issues. These studies
can be collectively classified as track health condition monitoring research. However, these
methods lack the ability to filter out unwanted targets—for example, tie inspection systems
often struggle to ignore ballasts, reducing their overall effectiveness.

The primary purpose of our study was to develop an automated method for differ-
entiating between ties and ballasts, allowing health monitoring systems to focus more
accurately on their respective targets during in-motion operations. This study was mainly
aimed at distinguishing between ties and ballasts as part of a more extensive study to
assess the early stages of track instability from tie vibrations. Obviously, to determine tie
vibrations, one needs first to differentiate them from ballasts; hence, this study serves as a
preliminary step in developing non-contact, in-motion devices for inspecting ties or even
ballasts. The purpose of this system is to serve as an auxiliary unit that enhances the per-
formance of other track stability inspection devices. By providing real-time, high-accuracy
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differentiation between ties and ballasts, this system helps to narrow the focus of other
inspection tools, enabling them to more effectively target specific track components.

The existing methods used to distinguish between ties and ballasts are mainly based
on ultrasonic or vision methods. For instance, Datta et al. [12] developed an in-motion
method for reconstructing the deflection profile of railroad ties by means of non-contact
ultrasonic testing. To demarcate the ties, they use a vision-based image classification
approach. Sabato and Niezrecki [13] also used Digital Image Correlation (DIC) for a similar
goal. Bojarczak et al. [5] developed an algorithm based on a deep neural network for
semantic segmentation of ties and ballasts and eventually detecting ballast unevenness.
Despite these methods’ effectiveness, a few issues exist, preventing them from being
installed on standard track geometry cars. First, their effectiveness for onboard applications
is limited because they are mainly intended for stationary or quasi-static implementation.
Second, they require significant post-processing, making them unsuitable for real-time or
near-real-time measurements.

To further advance tie and ballast detection methods, this study evaluated the ap-
plication of LiDAR-based methods that can be used at speeds suitable for Hyrail vehicle
implementation. The following sections will describe the system, its setup on a robotic
track cart for technological feasibility evaluation testing, the assessment of the test results
through developing new data analysis methods, and the application of the final system.

2. Setup

The experimental evaluation evaluated various methods and hardware implementa-
tions to achieve the study’s goal of differentiation between ties and ballasts in motion. A
remote-controlled track cart, shown in Figure 1, was constructed and used to house the re-
quired sensors and electronics [14]. A rail cart was selected due to its significant advantage
over other potential solutions, such as aerial vehicles and legged robots, because of their
poor performance in railroad environments and lack of ability to be tested over extensive
distances. This rail cart can successfully replicate Hyrail vehicles and track geometry cars
that are mainly used for track inspections. It is a stable platform that allows for continuous
monitoring of track conditions as the cart moves.

 
Figure 1. Railway Technologies Laboratory’s remotely controlled track cart used for in-motion
differentiation of ties and ballasts.

The cart is equipped with a traction-braking system and can run on various railroad
tracks. The cart’s frame is made of 80/20 extruded aluminum, offering flexibility in
mounting multiple sensors and data acquisition units. Its flexibility allows efficient testing
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across diverse railroad environments, including branch lines and mainlines. This flexibility
is crucial for the research objectives, as the cart can easily navigate various track conditions
while ensuring that sensors maintain a stable orientation towards their targets for accurate
data collection. Additionally, it features a “kill switch” to enable emergency braking if
needed. Its tapered and flanged wheels provide a stable run up to 10 mph (~16 km/h) in
both forward and reverse directions. Furthermore, the cart is designed to fit inside the bed
of a pickup truck, facilitating easy transportation to various track locations.

3. Methodology

Various sensors, configurations, and data analysis methods were developed and
explored to achieve optimal accuracy, efficiency, and robustness, ensuring that the system
complies with railroad standards. A set of sensors that exhibit promising potential for this
study will be discussed, followed by a series of tests for selecting the most suitable sensors
and the required data analysis for tie/ballast differentiation.

3.1. Sensors

The sensors selected for the study are shown in Figure 2. They include an inductive
proximity sensor for ferrous materials, distance LiDAR sensors, temperature and humidity
sensors, and accelerometers. The inductive proximity sensor is on the far-left side of the
cart, right on top of the tie plates. Two distance LiDAR sensors point downward on the right
and left sides of the cart. Humidity, temperature, and acceleration are ancillary sensors for
possible application of the track cart in other railroad-related system developments, such
as evaluating the migration of flange grease on rails and assessing track stability through
Doppler LiDAR sensors. Because these studies are outside this paper’s scope, these sensors
will not be discussed here.

 
Figure 2. Sensor installation onboard the track cart used for in-motion differentiation of ties
and ballasts.

The sensor selection was based on an early evaluation of various sensors, in which
some were rejected and others selected because of their promise of yielding satisfactory
results. The sensor selection was based on availability, cost-effectiveness, ease of integration,
and effectiveness in identifying ties or ballasts. The sensors that were not selected were
infrared temperature sensors (or cameras) and time-of-flight LiDAR sensors. They were
found to be too slow for in-motion measurements, even at low speeds. Others, such as time-
of-flight acoustic sensors, radars, and surface reflectivity/intensity sensors, were proven to
provide insufficient functional resolution to capture tie and ballast patterns definitively.

298



Appl. Sci. 2024, 14, 8804

The sensors selected for further integration into the system and track evaluation were
an inductive proximity sensor for ferrous materials and distance LiDAR sensors, as will be
discussed further next.

3.1.1. Inductive Proximity Sensor for Ferrous Materials

Ties are typically connected to rails with metal fasteners like spikes and tie plates. One
way to detect ties and identify their locations is to detect tie plates and possibly spikes
using inductive proximity sensors for ferrous materials. Typically, an “inductive proximity
sensor” is equipped with a Hall effect probe, which triggers a pulse when it detects a ferrous
object in its proximity (Hall effect sensors, named for the physicist Edwin Hall, incorporate
one or more Hall elements, generating a voltage proportional to an axial component in a
magnetic field. They are commonly used in proximity sensing, positioning, speed detection,
and current sensing applications in many industrial devices). For rail applications, the
sensor can be positioned above the tie plate and spikes, and the generated pulses can be
used to identify tie locations.

3.1.2. Distance LiDAR Sensors

LiDAR, Light Detection and Ranging [15], is a remote sensing method that uses a
pulsed laser which can be triangulated to measure the distance from the target point to the
lens itself [16]. Ties and ballasts have different surface characteristics to LiDAR, with ties
featuring a smoother and ballasts having a rougher pattern. This contrast can be detected
in motion using downward-facing vertical LiDAR sensors to identify alternating tie and
ballast sections.

Two Keyence IL-600 sensors from Keyence corporation of America (Itasca, IL, USA)
were adopted for this study due to their off-the-shelf availability and cost-effectiveness.
The Keyence IL-600 is a precise distance sensor with a nominal accuracy of 50 μm and a
response time of 0.33, 1.0, 2.0, or 5.0 ms. The fastest response time ensures enough spatial
resolution (up to 1.3 cm) for the sensor to record sufficient samples for each tie (about
16 samples) at speeds of up to 40 mph (~65 km/h). A higher number of samples per
tie is needed to raise the confidence in the measured data on each tie, with 3–4 samples
potentially being the minimum. The required 200–1000 mm installation range provides
sufficient standoff distance for most railroad applications.

As shown in Figure 3, two sensors, designated as “right” and “left” sensors, were
implemented in line with each other in the lateral direction to enable the collection of data
on two parts of the track. Using two sensors allows data to be gathered at two locations
on ties and ballasts, reducing the likelihood of false positives and negatives. In addition,
having two LiDAR sensors would enable us to develop more sophisticated data analysis
methods based on measurements from both sensors. This will be elaborated further in
the Analysis section. Although not part of the objectives of this study, the sensors could
possibly be used to detect track anomalies, such as sunk, tilted, or bowed ties, by comparing
their outputs with each other. For instance, a tilted or bowed tie can be identified from
the data by comparing the left and right sensor measurements. If they return different
values over a tie, this means that the tie is tilted. The same procedure can be followed for
different anomalies.
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Figure 3. Left and right LiDAR sensor installation for in-motion differentiation of ties and ballasts
and their potential application for detecting track anomalies, such as sunk, tilted, or bowed ties.

3.1.3. Tachometer

A tachometer is also employed to monitor the location and speed of the rail cart along
the track. This device facilitates the transformation from the time domain to the spatial
domain. The tachometer comprises an 18-tooth gear and a Hall effect probe. Along with
the cart’s wheel diameter of 7.5 inches, a linear resolution of 1.66 cm can be achieved, as
derived from Equation (1). The tachometer is attached to the front shaft of the cart, which
is a passive (idler) shaft. This configuration was chosen because the active (driver) shaft
is directly connected to the DC motor, causing it to experience slippage (rotation without
corresponding linear movement) more often, which could result in false information. Thus,
using the passive shaft minimizes the occurrence of erroneous readings.

Linear resolution =
1

number o f tooth
× π × wheel diameter

2
(1)

3.2. Data Acquisition Unit

A single data acquisition unit with 16 A/D channels was selected to record the
necessary data throughout track tests. The data were sampled at 1000 Hz. The 1000
Hz sampling frequency was selected based on conducting a series of tests in the early
stages of the study to assess the most beneficial sampling rate. The sampling frequency
provides approximately 11 samples per tie, assuming an 8-inch-wide tie (~20 cm) and a
forward speed of 40 mph (~65 km/h), representing the higher range of the intended speed
for measurements.

4. Experiments

Three groups of tests were conducted: in the laboratory, on a revenue-service track at
walking speeds, and in a simulated track environment at high speeds. These tests aimed
to thoroughly investigate the applicability and effectiveness of the proposed system. The
laboratory testing focused on evaluating the sensors’ ability to capture tie and ballast
surface figures in a controlled setting. The revenue-service track testing assessed the
system’s performance in an uncontrolled environment. Finally, high-speed testing on
the simulated track evaluated the system’s performance under high-speed conditions
resembling those of in-motion inspections. The data collected from these experiments were
used to develop robust data analysis methods for distinguishing ties and ballasts based on
sensor measurements.
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4.1. Laboratory Testing

The system was tested on a 40 ft track panel (~12 m) at the Railway Technologies
Laboratory (RTL). The robotic rail cart, equipped with all the mentioned sensors, ran over
a small section of the track with ties and ballasts to collect data. As shown in Figure 4, the
left distance LiDAR sensor was put on an unballasted section with only ties to establish
reference measurements for the ties. These measurements were used as the “ground truth”
for another sensor on the right with both ties and ballasts. In parallel with the LiDAR
sensors, an inductive proximity sensor was used to detect the ties. This sensor was used for
two purposes: first, to evaluate its applicability for differentiating between ties and ballasts;
second, to verify the accuracy of the LiDAR measurements in distinguishing between the
ties and ballasts.

 
Figure 4. Laboratory evaluation of LiDAR sensors on a 40 ft track panel for differentiating between
ties and ballasts.

The tests were intended to evaluate the system’s general capability and the applica-
bility of the sensors in tie/ballast detection at low speeds in a controlled environment.
Unless the LiDAR’s measurements are sufficiently consistent and repeatable, its success for
field measurements will be doubtful because of the uncontrolled environment common in
track measurements.

Figure 5a shows the measured distances from LiDAR sensors to their target surface
(tie, ballast, or ground) and an inductive proximity sensor. Note that the left distance
LiDAR measurement is used as the ground truth. The terms “activated” and “null” for
the inductive proximity sensor are used to indicate when the sensor is detecting a tie plate
(hence, a magnetic field is generated) and when no tie plate is detected and a magnetic
field is not generated. As shown in Figure 5a, the system accurately captured the surface
profile of the traversed track, down to its finest details. The recorded variations are highly
tangible and clear, allowing one to easily visualize the track layout. This level of precision
stands in contrast to other similar instruments mentioned before, which often suffer from
low resolution or slow sampling rates, whereas the LiDAR sensors used in this system
demonstrate superior accuracy and agility. The data in Figure 5a show irregular and
noisy measurements over ballast sections (unshaded areas) with more significant and
frequent variations. In contrast, the tie sections (orange-shaded areas) exhibit smoother
and relatively flat measurements compared to the ballast sections. The measurements
also show the surface height differences between ties and ballasts, which agree with a
visual inspection of the track. The variations observed in the inductive proximity sensor
measurements are attributed to the surface irregulates of the tie plates, as verified by
visual observations.
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(a) 

 
(b) 

Figure 5. Laboratory system evaluation: (a) comparison between LiDAR sensor and inductive
proximity sensor measurements. Orange-shaded areas correspond to ties and unshaded areas to
ballasts; (b) response of the inductive proximity sensor to a sample tie, where gray dots indicate the
“null” regions (no Hall effect measurement) or ballasts and orange dots show the “activated” regions
(Hall effect measurement) or ties.

Figure 5a shows that the inductive proximity sensor does not detect the first half
of the second tie. The reason for this is illustrated in Figure 5b, which shows that the
first half of the left tie plate is sunk into the tie, making it out of the inductive proximity
sensor’s range. In contrast, the right tie plate is not sunk and remains in the sensor’s
measurement range; therefore, it is detected. Inductive proximity sensors tend to have a
small working range that requires putting the sensor as close as possible to the tie plate
(maximum: 15 mm), increasing the likelihood of interference with objects that may be
present on a track. Although there are inductive proximity sensors with more extensive
working ranges, their magnetic fields could get diverted to the rail, significantly increasing
the rate of false positives. At the conclusion of the laboratory tests, we deemed the
inductive proximity sensors unsuitable for revenue-service testing despite their success in
the controlled laboratory tests.

4.2. Track Testing

The track tests were performed in two different settings. First, the rail cart ran and
collected data on a branch line with a 115RE rail that is used infrequently and has somewhat
degraded tie and ballast conditions. Second, it was set on a main line with a 136RE
rail with far better tie and ballast conditions. These tests were conducted to assess the
system’s performance in recording the necessary data at higher speeds, over more extensive
distances, and in more realistic environments, including challenging conditions, such as
those encountered on branch lines, which could represent worst-case scenarios.

Figure 6 shows a sample section of the track testing for each setting. The raised and
smooth surfaces represent the ties, while the lower and more irregular surfaces are the
ballast. The highlighted sections mark the locations of the ties. As the plots indicate, the
surface tracks are well-captured by the sensors. Note that the left and right measurements
are slightly shifted to enable easier differentiation between the two. Plotting them without
the shift would place them nearly on top of each other, making it more difficult to identify
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any differences. Additionally, some data drop-ins observed during branch-line track testing
(Figure 6a) were caused by sunlight interference with the lasers. This issue was addressed
in future tests by adding shade covers to block the sunlight. As shown in Figure 6b, there
were no drop-ins during the mainline testing because the covers were installed for this
test. Additionally, the mainline testing results in Figure 6b display smoother tie surfaces
compared to the branch-line testing. For example, some cracks are visible in Figure 6a but
not in Figure 6b.

(a) 

(b) 

Figure 6. A sample of track testing results performed on a branch track and a mainline: (a) measured
distances from LiDAR sensors to the tie/ballast surfaces on a branch track, with the left (green)
plot shifted for better visualization of the plots; (b) measured distances from LiDAR sensors to
the tie/ballast surfaces on a mainline, with the left (green) plot shifted. Like the previous plots,
orange-shaded areas are associated with the ties, and the unshaded regions are associated with
the ballasts.

It must be noted that the track tests in both settings were limited to walking speeds, in
the range of approximately 1.5 to 4.0 mph (2.4 to 6.4 km/h). The track cart was remotely
controlled by an operator who was following it. Although the cart can move at speeds of
up to 10 mph (16 km/h), the test speeds were limited to speeds the operator could walk
while safely negotiating the ties and ballasts.

4.3. High-Speed Testing

Although the earlier branch-line track testing indicates that the LiDAR system can
successfully differentiate between ties and ballasts, these runs were performed at low
speeds, usually less than 4 mph (6.4 km/h). The low speeds were due to the speed
limitation of the track cart used for the tests and the need for safe operation while following
the cart. Due to lack of access to track time and standard Hyrail vehicles, it was decided to
answer the question about how well the system can perform at higher speeds by conducting
a series of tests with a road vehicle over a simulated track consisting of alternating wood
planks and ballasts. The main concern was the adequacy of the selected sampling rate,
specifically, having sufficient data points on the surface of the ties and ballasts to adequately
identify them with low numbers of false positives and false negatives.

The simulated track on an asphalt surface outside the RTL facility and the system
installation on the rear of a Chevy Silverado pickup truck are shown in Figure 7. Fig-
ure 7a displays the simulated track that consisted of 13 planks with the same width as an
8-inch tie (~20 cm) and a length of 2 ft (~0.66 m). The planks were painted to resemble

303



Appl. Sci. 2024, 14, 8804

the tie surface color. The space between the planks was filled with ballast nearly 3 to
4 cm lower than the top surface of the planks to provide a clear distinction between ties
and ballasts in the data. Figure 7b shows the left and right LiDAR sensors mounted to
an aluminum structure attached to the hitch of a Chevy Silverado pickup truck. This
installation proved to be accessible and adequate for the intended tests. This setup was
chosen to ensure safe operation while closely replicating real-world conditions during
high-speed testing with Hyrail vehicles. A road vehicle, due to its nature, introduces more
stochastic vibrations compared to standard Hyrail vehicles, as they have a more flexible
suspension system [17,18], presenting a worst-case scenario. However, after initial testing,
it was determined that the system effectively mitigated the impact of these unwanted
vibrations, still capturing satisfactory data. As shown in Figure 8, despite the vehicle’s
vibrations, the sensors successfully recorded the surface figure of the simulated track.

  
(a) (b) 

Figure 7. High-speed test setup: (a) a simulated track set up on an asphalt surface with a tie and
ballast arrangement like a railroad track; (b) distance LiDAR sensor installation on the rear of a Chevy
Silverado for the simulated high-speed tests.

Figure 8 shows a segment of the measured distances from the LiDAR sensors to
the surface of the ties and ballasts at 19 and 37 mph (30 and 59 km/h). Comparing the
measurements with the track’s setup indicates that the sensors correctly identified the
width of the ties and the gaps between them, which were filled with ballast. Beyond the
sample measurements shown in Figure 8, we performed tests at speeds ranging from 4 to
37 mph (6.4 to 59 km/h), specifically at 19, 31, and 34 mph (30, 50, and 55 km/h). Although
not included here, for brevity, the results for other speeds are similar to those shown in
Figure 8, and they similarly indicate the success of the LiDAR system in sampling the ties
and ballast sections.

Interestingly, the results in Figure 8 and other measurements indicate that the LiDAR
sensors successfully capture irregularities associated with tie and ballast surfaces, with the
ballast exhibiting more significant surface variations than the ties, as expected. Comparing
Figure 8a,b shows a notable consistency in measurements. The tie surface features in
Figure 8b closely resemble those in Figure 8a, proving the system’s repeatability. For
example, the irregular surface of the first tie, caused by a piece of tarp on top of it, was
detected in both tests. It is worth mentioning that the ballast surface has many associated
uncertainties, so data from those sections were not expected to be repeatable. For safety
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reasons, shade covers were not used to block sunlight during this series of tests, resulting
in some data drop-ins observed during high-speed testing (Figure 8). However, these
drop-ins can be neglected, as they comprise less than 1 percent of the data.

 
(a) 

 
(b) 

Figure 8. High-speed testing of LiDAR system on a simulated railroad track: (a) 19 mph (30 km/h);
(b) 37 mph (59 km/h). The orange-shaded areas correspond to ties, while the unshaded areas
correspond to ballasts.

5. Analysis

Although the unprocessed (raw) LiDAR measurements are distinct enough to the
human eye for tie and ballast classification, an automatic differentiation method is needed
to process large datasets resulting from track measurements over extended distances. The
purpose of this section is to explore various data analytic methods that can process the
LiDAR sensor measurements, enabling accurate and efficient differentiation of ties from
ballasts in an automated manner.

First, a statistical data analysis method (i.e., moving standard deviation) is evaluated
because of its effectiveness in extracting surface variation characteristics. Next, two machine
learning (ML) methods, namely Decision Tree and Logistic Regression, are considered
to better deal with data uncertainty and ambiguity. Additionally, several preprocessing
techniques are investigated to transform the LiDAR measurements into more suitable
parameters for training the ML models. The downsides and upsides of each model are
elaborated, and the model shown finally to be the best in terms of accuracy and robustness
will be selected for analyzing the LiDAR data for tie and ballast differentiation.

5.1. Moving Standard Deviation

As noted earlier, based on visual observation of the track and the measurements,
tie surfaces are expected to have fewer variations than ballast surfaces because of their
different surface characteristics, irrespective of their height level. This approach uses
surface variance to distinguish between ties and ballasts. A moving window over discrete
data sections is used to calculate the standard deviation within each window, denoted as
“moving standard deviation” here. Equation (2) represents the standard deviation formula.
Figure 9 illustrates the process of moving standard deviation. The red bracket with the size
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of ws moves along the data and calculates the standard deviation of the data within the “i”
data points within the window (i.e., xi). x denotes the average of the data points, xi.

Standard deviation =

√
∑ws

i=1(xi − x)2

ws − 1
(2)

 
Figure 9. A graphical illustration of moving standard deviation for analyzing the LiDAR sensor
measurements used for tie and ballast differentiation.

It is expected that the resulting moving standard deviation would enforce the surface
characteristics in the ties and ballasts, leading to more confidence in differentiating between
them than would be possible from the individual data points, xi. The standard deviation
over the ties is expected to be lower than over the ballasts, enabling us to identify each.

Figure 10 shows a sample plot for the mainline track testing mentioned earlier. The
left axis shows the measured distance from the LiDAR sensor to the tie and ballast surfaces.
The right axis shows the moving standard deviation for a spatial window of 4 inches (~10
cm). A spatial window is used because the measurements are made at various speeds
that would yield differing numbers of samples on tie and ballast surfaces. Using a spatial
window, such as one over 4 inches, would enable a more direct comparison between
measurements at different speeds by relating them to a physical reference, such as one-half
of the nominal width of a tie. The moving standard deviation (the purple line) exhibits
an interesting pattern: it reaches a trough toward the center of the tie and a peak near the
boundary between the ties and ballasts. This is because the data near the center of the tie
are more consistent and have fewer variations, leading to lower standard deviations. In
contrast, the measurements at the interface between the ties and ballasts are highly varied,
leading to larger standard deviations.

Figure 10. LiDAR system measurements for branch-line track testing at 4 mph showing measured
distances from the LiDAR sensor to tie and ballast surfaces (gray line) and the moving standard
deviation of the distances for a 4-inch spatial window (purple line). Ties are marked with orange
shading, and unshaded areas represent ballasts.

306



Appl. Sci. 2024, 14, 8804

The newly introduced parameter, moving standard deviation, is more interpretable
for computers in distinguishing ties and ballasts compared to using measured distances.
This method captures surface variations more effectively and enforces new distinct pat-
terns associated with ties and ballasts (local minimums and maximums), enabling easier
differentiation between ties and ballasts than before.

Even though this method proved to be successful in differentiating between ties and
ballast on the mainline track, it may prove inadequate for branch lines where the variation
in data is larger than in the sample data used here. Specifically, large variations in tie
surfaces, such as cracks and cuts or displaced and titled ties, can adversely affect the
accuracy of the results. Additionally, the ambiguities in correctly identifying the troughs
and peaks could lead to errors in autonomously identifying ties and ballasts. A more
capable data analysis approach is desired to address these uncertainties.

5.2. Machine Learning Approaches

Another approach for detecting and learning data patterns and better differentiating
between ties and ballasts is machine learning (ML). ML models can generally handle highly
uncertain tasks, making them well-suited for this task. Due to the high capability of ML
models in handling large datasets and automating decision-making processes, the newly
developed models are expected to address the challenges previously associated with using
the moving standard deviation. With the extensive amount of data collected through our
experiments, these models can learn complex patterns and adapt to various conditions,
improving the accuracy and reliability of tie and ballast differentiation. The desired ML
model will receive the LiDAR data as input and return a classification of tie or ballast as
output (prediction).

Like the moving standard deviation method, a moving window is used to process
the data at each location. However, unlike the moving standard deviation, which uses a
spatial window, this method defines the window size based on the number of surrounding
data points required to classify an individual point as tie or ballast. The window size is
a tunable parameter that needs to be optimized to achieve the best results. To select the
required window size for our model, we evaluated the accuracy that can be achieved for
each method for various window sizes, ranging from small to large. This task considers
two standard classification “algorithms”: Logistic Regression and Decision Tree. Through a
series of initial tests, these two algorithms were selected from a larger pool of classification
algorithms, including Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), and
neural networks. Logistic Regression and Decision Tree were chosen because they belong
to two distinct families—linear and non-linear, respectively—and demonstrated higher
accuracy [19].

Logistic Regression uses a linear function to model the relationship between features
(i.e., inputs) and a binary outcome. It then applies a sigmoid function to convert this linear
output into a 0 or 1 probability, indicating the likelihood of belonging to a specific class [20].
A “0” probability suggests a high likelihood of ballast, and “1” indicates a tie. Equation (3)
shows the formula associated with Logistic Regression, where b0 + b1x is the linear function
for separating the classes (i.e., ties and ballasts). b0 and b1 are the parameters that will be
learned through the training process.

p =
1

1 + e−(b0+b1x)
(3)

In contrast, as Breiman et al. (1984) described, the Decision Tree creates a tree-like
structure, where each internal node splits the data based on a chosen feature value. This
process continues recursively until the data at each leaf node belong predominantly to a
single class [21].

These algorithms differ in their interpretability. Logistic Regression provides a single
equation representing the entire model, making it relatively straightforward to understand
the pattern of each input. On the other hand, a Decision Tree offers a series of branching
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rules that often provide a more intuitive understanding of how decisions are made, as the
tree visually represents the decision process.

Both Logistic Regression and Decision Tree are supervised learning algorithms, mean-
ing they require training with input data and their respective output labels. In other words,
the models need ground-truth labeled data to learn the patterns associated with each label
(tie or ballast) and effectively differentiate ties from ballasts. Once trained, these models
can predict future unseen data. A small portion of each dataset (approximately 20 percent)
is manually labeled as either tie or ballast (i.e., 1 or 0) to construct a ground-truth “labeled
dataset” to facilitate this. A portion of the labeled dataset (approximately 60 percent), called
here the “training dataset”, is used to train the models. The performance of these trained
models is then evaluated using the remaining 40 percent of the labeled dataset, referred to
as the “test dataset”. Various train–test splits, ranging from 50–50 to 90–10, were tested,
and the 60–40 split was found to maximize accuracy while minimizing overfitting. Finally,
the final trained model was applied to the unlabeled dataset to identify ties and ballasts.

Initially, the measured distances from one of the LiDAR sensors (e.g., the left sensor)
to tie or ballast surfaces were used as “input” to train the ML models using both Decision
Tree and Logistic Regression algorithms. The difference between the left and right LiDAR
sensor measurements was explored as an input for training the models. Finally, to improve
the models further, the standard deviation of the difference between the left and right
measurements was also evaluated to train the models.

In summary, the measured distance from the LiDAR sensors to the tie or ballast
surfaces was considered to be the “input” for training the ML model in the first place
and then gradually upgraded to the difference between the left and right LiDAR sensors’
measurements, and then the standard deviation of the difference between the left and right
measurements was used to achieve higher accuracy and robustness. In Section 5.3, the logic
behind these models will be described further, and the most efficient and robust model will
be identified. Figure 11 illustrates how six different models were developed based on three
different inputs (i.e., preprocessing methods) and two different algorithms.

 
Figure 11. A schematic of six distinct models, developed and investigated to determine the best
model for processing LiDAR data to differentiate between ties and ballasts.

5.3. Application of Machine Learning to LiDAR Data

The primary objective of this section is to explore various parameter configurations to
develop the most optimal and robust model for analyzing the LiDAR sensors’ measure-
ments for tie and ballast differentiation. Three essential parameters have been identified
that significantly impact the model’s performance: the algorithm, the input for training
the ML models, and the window size. As previously mentioned, the two algorithms under
consideration are Logistic Regression and Decision Tree, and the three inputs are illustrated
in Figure 11. These six models will be evaluated across different window sizes based on
their accuracy. Here, “accuracy” is assessed by Equation (4).
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Accuracy =
Number o f data points that are correctly classi f ied by the model

Number o f data points in the test data set
(4)

This section is divided into three subsections, each dedicated to analyzing one input.
For each input, both algorithms (Logistic Regression and Decision Tree) are considered
across a wide range of window sizes.

5.3.1. Measured Distance from LiDAR Sensors to Tie/Ballast Surfaces

First, for simplicity, we used the measured distances from LiDAR sensors to tie/ballast
surfaces for training the machine learning models for both Logistic Regression and Decision
Tree algorithms. Figure 12 shows a sample of distance LiDAR measurements from the
mainline track testing. Distinct patterns for ties (orange-shaded) and ballasts (unshaded)
are evident throughout the data, which were explored by the models.

Figure 12. A sample of measured distances from LiDAR sensors to tie/ballast surfaces used for
training the ML models for tie/ballast differentiation. Ties are marked with orange shading, and
unshaded areas represent ballasts. (Plots are shifted by 3 cm for clarity).

The models were assessed across various window sizes, ranging from 5 to 55 data
points. This range was determined to be sufficient after several trial-and-error iterations.
Larger window sizes would lead to higher accuracies but require more data points. There-
fore, selecting the smallest window size to achieve the necessary accuracy is advantageous.
Figure 13 shows the performance of ML models using Decision Tree/Logistic Regression
over different window sizes when trained on the measured distances from LiDAR sen-
sors to tie/ballast surfaces. As shown in Figure 13, the Decision Tree algorithm exhibits
higher accuracies than Logistic Regression. Additionally, the accuracy for both algorithms
increases with the increase in window size. Both algorithms, however, reach a plateau at
higher window sizes.

Figure 13. Accuracy of models from Logistic Regression and Decision Tree algorithms for various
window sizes trained on the left LiDAR’s distance measurements (distance from LiDAR sensor to
tie/ballast surfaces).

The analysis shows that the tie/ballast differentiation achieved by both algorithms
can be negatively influenced by the condition of ties (e.g., elevated, sunk, tilted, or cracked)
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or factors such as their position, elevation, and alignment. To remedy this issue, we
evaluated other approaches, such as using the difference between the left and right LiDAR
measurements to gauge the two measurements against each other and possibly make the
ML models less sensitive to tie conditions.

A model using the Decision Tree algorithm, trained on the measured distances from
the LiDAR sensors to tie/ballast surfaces with a window size of 40, was applied to an
unseen (unlabeled) section of the data. In Figure 14, the blue line represents the model’s
predictions, with 1 indicating a tie and 0 indicating ballast. At a specific location in this
dataset, two ties with cracks are present, as shown in Figure 14. The model struggles to
distinguish between ties and ballasts in these cracked sections.

Figure 14. A sample section illustrating the model’s performance in differentiating ties and ballasts.
The blue line represents the model’s predictions, where 1 indicates a tie and 0 indicates ballast. The
model is trained on the left LiDAR’s distance measurements (distance from the LiDAR sensor to the
tie/ballast surface) using the Decision Tree algorithm with a window size of 40. Both ties (highlighted
in orange) are cracked.

5.3.2. The Difference between Left and Right LiDAR Sensor Measurements

The difference between the left and right LiDAR sensor measurements could be used
as input to train the model. This approach is expected to enhance the signal-to-noise ratio,
as ballasts typically exhibit more significant surface irregularities in lateral, longitudinal,
and vertical directions. While significant differences in surface figures between a tie’s left
and right sides (i.e., where the sensors are pointed) are not expected, the ballast sections’
left and right sides can vary considerably. Hence, by comparing—or differencing—the left
and right LiDAR measurements, more regularities in the tie sections and irregularities in
ballast sections can be enforced in the data, facilitating a more accurate distinction between
the two.

Figure 15 shows a sample section of the difference between the left and right LiDAR
sensor measurements. Comparing Figure 15 with Figure 12, it is evident that the surface
figure variation between ties (orange-shaded) and ballasts (unshaded) is now much more
pronounced here.

Figure 16 shows the performance of ML models using Decision Tree/Logistic Re-
gression over different window sizes when trained on the difference between the left and
right LiDAR sensor measurements. Figure 16 proves that ML models perform better when
trained on the difference between the left and right LiDAR sensor measurements than
before by showing a slight increase in accuracy based on the Decision Tree algorithm across
all window sizes. The improvement is attributed to the improved classification of abnormal
ties as ties. However, Logistic Regression could not learn the pattern from these data, since
it employs a simple linear classifier; hence, its results are not shown. As expected, using
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the difference between the left and right measurements as input to the models could result
in a more accurate and reliable model. A similar trend to that observed in Figure 13 can be
seen in Figure 16, where accuracy increases with larger window sizes and reaches a plateau
at higher values.

Figure 15. An example of the difference between the left and right LiDAR sensor measurements used
for training the ML models for tie/ballast differentiation.

Figure 16. Accuracy of models from the Decision Tree algorithm for various window sizes trained on
the differences between the left and right LiDAR sensors’ measurements.

5.3.3. Machine Learning on the Standard Deviation of the Difference between the Left and
Right Sensor Measurements

Although the previous method demonstrated good performance, there is potential to
achieve even higher accuracy. Another approach could be combining standard deviation
with machine learning to combine the strengths of both methods. Machine learning
excels in classification tasks by learning patterns from different classes to distinguish
them. Meanwhile, the standard deviation method reveals more precise and more distinct
patterns in a dataset. Integrating these two approaches may achieve better classification
performance. The idea is to apply the “moving standard deviation” mentioned earlier to
the difference between the left and right sensor measurements.

Figure 17 shows the standard deviation of the difference between the left and right
sensor measurements from the previous subsection. The data have clear and distinct
patterns over ties (orange-shaded) and ballasts (unshaded).

Figure 18 shows the performance of ML models using Decision Tree/Logistic Regres-
sion over different window sizes when trained on the standard deviation of the difference
between the left and right sensor measurements. Figure 18 reveals that the Decision Tree
algorithm achieves accuracies comparable to those obtained using the difference between
the left and right sensors. Additionally, it performs more consistently across various win-
dow sizes, demonstrating robust performance at different speeds. This is because the
Decision Tree algorithm does not rely on the number of data points, which can vary at
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higher speeds due to a constant data acquisition rate, resulting in fewer recorded data
points. Logistic Regression, which previously performed poorly, now exhibits behavior
similar to the Decision Tree algorithm, demonstrating improved and consistent accuracy
across different window sizes.

Figure 17. A sample standard deviation of left and right difference LiDAR measurements used in
training the ML models for tie/ballast differentiation.

Figure 18. Accuracy of models from Decision Tree and Logistic Regression algorithms for various
window sizes trained on the standard deviation of the differences between the left and right LiDAR
sensors’ measurements.

Training the machine learning model using the Decision Tree algorithm on the standard
deviation of the difference between the left and right LiDAR sensor measurements yields
the highest possible accuracy, regardless of the window size. The final model, identified as
Model 6 in Figure 11, with a window size of 35, was selected for its excellent performance in
tie/ballast differentiation compared to the others. Figure 19a shows the model’s predictions
over an unseen section of the data in a blue line, with 1 indicating a tie and 0 indicating
ballast. The high accuracy and precision of the model in distinguishing ties and ballasts are
visually evident in this figure. In the entire sampled section, all the ties and ballasts are
successfully identified, and the boundaries of each are marked with high precision. The
two ties marked with black stars are the same ties shown in Figure 14. The model now
performs significantly better than the previous version.

Figure 19b presents the confusion matrix for the model, where 95.2% of the ballast
data points are classified as ballast, and 92.4% of the ties are classified as ties. The high and
closely matched percentages demonstrate the model’s effectiveness in accurately classifying
both ties and ballasts. The total accuracy of this model is approximately 93.8%. Note that
all the accuracies and percentages are calculated for the test dataset.
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(a) 

 
(b) 

Figure 19. The final model’s performance: (a) The left and right LiDAR sensor measurements, along
with the model’s output, in distinguishing between the ties and ballasts over a segment of unseen
(i.e., unlabeled) data. The blue line indicates ties (marked as 1) and ballasts (marked as 0). The two
ties marked with stars are the same ties shown in Figure 14. (b) The confusion matrix shows the
percentage of ties and ballasts correctly predicted by the model.

6. Application

The final developed system is capable of accurately distinguishing ties and ballasts in
real time while mounted on moving platforms such as Hyrail vehicles and track geometry
cars. It operates at speeds of up to 40 mph (65 km/h), which aligns with the operating
speed of Class I railroads and performs successfully across various track conditions. This
system can be integrated with other track inspection technologies, including ground-
penetrating radar, infrared sensors, ultrasonic sensors, and Doppler LiDARs, to focus
on their respective targets more effectively. Many of these devices, currently limited to
stationary or quasi-stationary applications due to their inability to differentiate between
targets, can now perform in-motion analysis over extended distances with the help of this
system, facilitating railroad maintenance, reducing costs, and enhancing safety.

7. Conclusions

The goal of this research was to develop a robust, accurate, and effective method for
identifying ties and ballasts—a crucial step before implementing inspection approaches
that rely on differentiating between ties and ballasts in motion. The system studied here
uses two downward-facing distance LiDAR sensors on a moving rail cart. The LiDAR
sensors measure the differing Doppler effects caused by ties and ballasts.

Seven techniques were proposed to process the distance of the LiDAR sensors’ mea-
surements, starting with the moving standard deviation method aimed at extracting surface
figure variations of the track. Despite its simplicity, this method proved unreliable and
unsuitable for automated detection. Subsequently, two machine learning algorithms—
Logistic Regression and Decision Tree—and three preprocessing methods (inputs) were
explored to automatically differentiate between ties and ballasts. Among these six ML mod-
els, the one with the Decision Tree algorithm exhibited exceptional accuracy, robustness,
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and efficiency, even at high speeds, mainly when applied to the standard deviation of the
difference between the left and right LiDAR sensors’ measurements; furthermore, unlike
computer vision systems designed for similar purposes, this system requires significantly
fewer computational resources, making it more feasible for real-time implementation.

In conclusion, the developed system integrates two distance LiDAR sensors (left and
right) with Decision Tree algorithms applied to the standard deviation of the difference
between the sensors’ measurements, providing an effective and practical solution for non-
contact, in-motion differentiation of ties and ballasts. This system holds the potential to
be used onboard Hyrail vehicles, offering a valuable tool for differentiating between ties
and ballasts during track inspection or health monitoring, facilitating more targeted and
efficient maintenance interventions.
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Abstract: This paper presents aspects related to the indirect thermographic measurement of a
C2M0280120D transistor in pulse mode. The tested transistor was made on the basis of silicon
carbide and is commonly used in many applications. During the research, the pulse frequency
was varied from 1 kHz to 800 kHz. The transistor case temperature was measured using a Flir E50
thermographic camera and a Pt1000 sensor. The transistor die temperature was determined based
on the voltage drop on the body diode and the known characteristics between the voltage drop
on the diode and the temperature of the die. The research was carried out in accordance with the
presented measuring standards and maintaining the described conditions. The differences between
the transistor case temperature and the transistor die temperature were also determined based on
simulation work performed in Solidworks 2020 SP05. For this purpose, a three-dimensional model
of the C2M0280120D transistor was created and the materials used in this model were selected;
the methodology for selecting the model parameters is discussed. The largest recorded difference
between the case temperature and the junction temperature was 27.3 ◦C. The use of a thermographic
camera allows the transistor’s temperature to be determined without the risk of electric shock. As a
result, it will be possible to control the C2M0280120D transistor in such a way so as not to damage it
and to optimally select its operating point.

Keywords: thermography; C2M0280120D; transistor; switching; thermal modelling; solidworks

1. Introduction

Transistors are among the electronic components from which electronic devices are
built [1]. They consist of a die placed on a base plate made of a well-conducting metal,
which, in many cases, is copper. The die is encapsulated inside epoxy resin, and connections
to die are possible using leads, commonly called “legs”, which are often made of the same
material as the base plate. Only one of the leads is directly attached to the base plate. The
remaining two leads are placed in the epoxy resin and connected to the die using thin bond
wires. The parts of the base plate and leads that are not placed under the epoxy resin layer
are covered with a thin layer of tin [2,3]. The dimensions of the base plate, leads, and the
epoxy resin layer depend on the type of case used; the most commonly used cases are
TO 220 and TO 247. The dimensions of the electronic cases are standardized [4]. In the
remainder of this article, the term “transistor” should be understood together with the case
in which it is placed.

The most popular materials from which transistor dies are made include silicon (Si),
silicon carbide (SiC), and gallium nitride (GaN). Transistors made of these materials differ
in their properties [5]. Electronic components made on the basis of silicon reach the limit
operating parameters resulting from the theoretical limitations of the material used. For
this reason, electronic components based on SiC and GaN materials, called wide band gap
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(WBG) semiconductors, are becoming more and more popular. They feature better electrical,
mechanical, and thermal properties than the electronic components made on the basis of
Si. Replacing Si with WBG semiconductors increases the breakdown voltages, operating
temperatures, and switching frequency and reduces switching losses [6]. Elements made
on the basis of SiC deserve special attention. Compared to Si elements, those made on the
basis of SiC have higher breakdown voltage values and higher thermal conductivity [7].
Another feature of this type of semiconductor is low ON-resistance [8].

Metal oxide semiconductor field effect transistors (MOSFETs) made on the basis of
SiC are used in the construction of high conversion ratio converters (HCRCs) [9], traction
converters [10], wind turbine converters [11], motor drives for electric vehicles [12], and
DC–DC step-up converters [13]. The operational reliability of these devices is related to the
operational reliability of the SiC MOSFETs placed inside them [14]. Due to the construction
of the die area and the width of the gate oxide, they are susceptible to transient-overloading
or short-circuit events [15]. Other examples of SiC MOSFET damage are related to long-
term exposure to high temperature, which can cause interlayer dielectric erosion, electrode
delamination, gate-oxide breakdown [16], and bond-wire lift-off and solder cracks [17,18].

The temperature value of SiC MOSFETs depends, among other things, on their switch-
ing frequency [19]. In turn, the switching frequency depends on the operating character-
istics of the device in which the transistor is placed and on its energy efficiency [20]. A
good example is the converter. In high-power converters, lower switching frequencies are
often used to minimize switching losses and increase energy efficiency [21]. In turn, in
low-power converters, higher switching frequencies are usually used, which may lead to
smaller converter sizes and better regulation [22]. The higher the switching frequency is,
the shorter is the switching time of SiC-based MOSFETs. During switching, rapid changes
in voltage and current occur, which leads to power losses and heat generation. Therefore,
the switching frequency has a direct impact on heat generation in the transistor [23].

The switching frequency of a SiC MOSFET affects the temperature of its die. In turn,
the operation of the die at excessively high temperature may damage the transistor. For this
reason, it is necessary to monitor the die temperature of the transistor, Tj. In the literature,
is possible to find three groups of methods that make this possible: electrical, contact, and
non-contact methods [24].

Electrical methods use a selected parameter whose value depends on Tj. This parame-
ter is called the temperature-sensitive parameter (TSP) [25]. An example of a TSP that is
used to determine the die temperature of a transistor is the drop voltage across the body
diode. Knowing the relationship between TSP and Tj, it is possible to determine the Tj
value based on the measured TSP value. The relationship between TSP and Tj is individual
for each transistor. Additionally, its determination requires removing the transistor from
the device in which it was installed and placing it in the measurement system. For this
reason, this method is not suitable for real-time monitoring of Tj values [26].

Contact methods involve applying a temperature sensor to the transistor package (also
called a ‘case’ in the literature) or directly to the die transistor. There is thermal resistance
of an unknown value between the temperature sensor case and the transistor case (or die).
Additionally, touching the transistor (or die) case with the temperature sensor causes a
local disturbance of the temperature distribution. Part of the transistor case is made of
metal; therefore, incorrect application of the temperature sensor (especially when placed in
a metal case) may cause electric shock [27].

Non-contact methods are based on the absorption of infrared radiation emitted from
the surface of the transistor case (indirect non-contact method) or through the transistor
die (direct non-contact method). One of these methods is infrared thermography, which is
considered safe, as it poses no risk of electric shock (e.g., as a result of touching a metal
temperature sensor based on a plate or a radiator to which a transistor is attached). The
direct method requires opening the transistor case. It is difficult to close the opened case.
For this reason, it is not suitable for real-time application. The use of the indirect non-contact
method consists of two steps: measuring the temperature of the transistor case (Tc) and
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determining the difference between Tc and Tj. Tc can be measured using a pyrometer and a
thermographic camera. The use of a thermographic camera makes it possible to determine
the temperature distribution on the surface of the transistor case. The differences between
Tc and Tj can be determined using the finite element method. Knowing the value of the
thermographic measurement of the temperature of the transistor case and the relationship
between Tc and Tj, it is possible to determine the value of Tj in real time [28,29].

After analyzing the available sources, no studies were found on the indirect thermo-
graphic temperature measurement of a SiC MOSFET, the temperature of which increases
due to the increase in the switching frequency. For this reason, it was decided to under-
take research that would result in the development of a method enabling the indirect
thermographic measurement of the SiC MOSFET die temperature and monitoring that
temperature at variable switching frequencies.

Section 2 describes the tested SiC MOSFET, the methodology, and the measurement
system; Section 3 describes the obtained results of the work; Section 4 contains a discussion;
and Section 5 presents conclusions.

2. Tested Transistor, Methodology, and Measurement System

The indirect thermographic measurement of the transistor temperature die consists
of two parts. The first part consists of performing a thermographic measurement of the
transistor case temperature, Tc. The second part consists of determining the transistor die
value Tj using simulation work. The method of performing a thermographic measurement
of Tc is described in Section 2.1. The value of TPt1000, which is used to verify the Tc value, is
also determined and described in Section 2.1. The method used to determine the Tj value
based on simulation work is described in Section 2.2. The method for determining the Tjd
value, which is used to verify the Tj value (determined based on simulation work), is also
described in Section 2.2. The algorithm for the procedure is presented in Figure 1.

Figure 1. Algorithm for performing indirect thermographic temperature measurements of a transistor.

2.1. Tested Transistor and Measurement System

The model C2M0280120D (Cree Inc., Durham, NC, USA) transistor was selected for
testing. This transistor is described by the following parameters: VDSmax = 1200 V (for
VGS = 0 V, ID = 100 μA), VGSmax = −10/+25 V, ID = 10 A (for VGS = 20 V, Tc = 25 ◦C), ID = 6 A
(for VGS = 20 V, Tc = 100 ◦C), and IDpulse = 20A. The external dimensions of the transistor
and schematics are shown in Figure 2. Three randomly selected C2M0280120D transistors
from the same series were selected to carry out the work.
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(a) (b) 

Figure 2. (a) External dimensions of transistor model C2M0280120D in a TO 247 case. (b) Schematic
of C2M0280120D in a TO 247 case. A marker was painted on the case using Velvet Coating 811-21
paint (1) and a Pt1000 sensor was glued onto the case (2).

Pt1000 sensors in an SMD 6203 case (Reichelt electronics GmbH & Co. KG, Sande,
Germany) were glued to the case of each transistor [30]. For this purpose, WLK 5 glue
with a known thermal conductivity value of k = 0.836 W/mK (Fischer Elektronik GmbH &
Co. KG, Lüdenscheid, Germany) was used [31]. Additionally, next to the Pt1000 sensor, a
measurement marker was painted on the transistor case. Velvet Coating 811-21 (Nextel,
Hamburg, Germany) paint was used for this purpose with a known emissivity coefficient
value ε ranging from 0.970 to 0.975 for temperatures within the range from –36 ◦C to 82 ◦C.
The uncertainty with which the emissivity coefficient value was determined was 0.004 [32].

The transistor prepared in this way was placed in a station where the measuring
device was a Flir E50 Thermographic Camera (Flir, Wilsonville, OR, USA) [33]. The selected
Flir E50 thermographic camera was equipped with a matrix from an uncooled IR detector
(7.5–13 μm) with a resolution of 240 × 180 pixels and an instantaneous field of view (IFOV)
value of 1.82 mrad. The noise equivalent differential temperature (NEDT) value of this
camera was 50 mK. An additional Close-up 2× lens (T197214, Flir, Wilsonville, OR, USA)
was attached to the camera lens [34]. As a consequence, it was possible to obtain an IFOV
value of 67 μm for the above-mentioned detector array (240 × 180 pixels) (thermographic
camera with the additional lens). Before starting the work, the correctness of the indications
of the camera used was verified using the IRS Calilux thermographic camera calibration
standard (AT—Automation Technology GmbH, Bad Oldesloe, Germany) [35].

The thermographic camera prepared in this way was placed together with the tested
C2M0280120D transistor in a chamber made of plexiglass. The external dimensions of
the chamber were 45 cm × 35 cm × 35 cm. The internal dimensions of the chamber were
40 cm × 30 cm × 30 cm. The difference resulted from two reasons: the thickness of the
plexiglass used (3 mm) and the thickness of the material (black foam made of polyurethane)
lining the internal walls of the chamber. The foam used is characterized by porous structure,
and every single pore of the foam resembles the black body cavity model. As a consequence,
the material used was characterized by having a high emissivity factor ε = 0.95 [36].
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The distance d between the tested transistor and the additional lens was adjusted
using a stepper motor. In turn, the stepper motor was controlled using a Siemens S7-1200
PLC controller (Siemens AG, Munich, Germany) [37]. A block diagram of the constructed
stand is shown in Figure 3.

Figure 3. Thermographic camera and observed transistor placed in the prepared chamber. A—
stand, B—stepper motor, C—screw, D—thermographic camera, E—thermographic camera lens,
F—additional thermographic camera lens, G—polyurethane foam, d—distance between the tested
transistor and the additional lens.

The observed transistor was connected to a circuit that allowed its switching frequency
to be changed. The circuit diagram is shown in Figure 4. In this circuit, the transistor T1
was turned on by the generator G1 for 20 s. As a result, the load current IDS flowed through
the tested transistor. During this time, the voltage drop between the drain and the source
VDS was measured using an Agilent 34401A voltmeter. In the next step, the same generator
G1 turned on transistor T2, allowing the flow of the measuring current Idi for 200 ms. This
operation allowed estimating the die temperature based on the automatic measurement of
the drop voltage Vfd on the diode and the known characteristic between the drop voltage
value and the die temperature. During the entire testing process, the tested transistor (DUT)
was pulse-controlled using the G2 generator with a PWM waveform with a duty cycle of
50% and a frequency in the range from 1 kHz to 50 kHz.

The case of the tested transistor, in which the switching frequency was changed, was
observed using a thermographic camera. During the tests, first, for a given value of the
current IDS flowing through the die and a given switching frequency fT, the temperature
of the case (Tc) was measured using a thermographic camera. We then waited until its
value increased and stabilized at a specified level. When it was found that the Tc value
had stabilized, its thermographic measurement was performed. At the same time, Tc was
measured using a Pt1000 sensor, which was glued to the case near the thermographic
measurement point (Figure 2). After the measurement was performed, the switching
frequency fT of the transistor was changed for the same ID current value. The fT setting was
changed for selected values, ranging from 1 kHz to 800 kHz.

2.2. Finite Element Analysis and Measurement of Die Temperature

The relationship between Tc and Tj was determined using finite element analysis (FEA),
which is a numerical method used to solve problems in engineering and mathematical
physics [38]. The software applied in the work performed was Solidworks 2020 SP05
(Dassault Systèmes, Vélizy-Villacoublay, France), which uses FEA, and the simulation was
completed with the use of this software.
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Figure 4. Diagram of the circuit enabling the evaluation of the influence of the switching frequency
changes of the transistor on the temperature of its die. DUT—device under test, i.e., the tested transistor.

The simulation could be carried out after the transistor model had been constructed.
Making the model required knowledge of its structure and internal dimensions. In order to
determine these, the case of the tested transistor was opened and its interior was measured.
For this purpose, a microscope equipped with a Cam 3.3 MP camera (Motic, Xiamen, China)
was used. The microscope with the camera was calibrated using a special calibration glass.
Based on the measurements taken, a three-dimensional model of the tested transistor was
created. The model was created in Solidworks 2020 SP05 software. The created model and
internal dimensions of the tested transistor C2M0280120D are shown in Figure 5.

 

 
(a) (b) 

Figure 5. (a) Internal dimensions (see Figure 2 for details) and (b) three-dimensional model of the
C2M0280120D transistor.
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After creating the model, all of its elements were assigned the material from which it
was made, along with the thermal conductivity values k. Next, the simulation was started
in the Solidworks 2020 SP05 environment. In the initial stage, we checked whether the
temperature distribution (measured at the surface) changes after removing individual parts
of the model (e.g., leads). The temperature distribution was also checked, depending on the
given mesh size. After simplifying the model and selecting the mesh size, it was possible
to determine the Tj value based on the simulation work.

The die temperature (Tj) of the tested transistors obtained as a result of simulation
work was verified for the same conditions using the electrical method. In order to perform
a reliable temperature measurement of the die using the electrical method, it was necessary
to select the appropriate temperature-sensitive parameter (TSP). The voltage drop Vfd
across the body diode was chosen as the TSP. In order to use the TSP to determine the
Tj value, the relationship Tj = f (Vfd) had to be determined. For this reason, a measuring
system was designed, the main element of which was a climatic chamber. The chamber
used allowed for changing the temperature Ta inside it. The Ta value was changed in the
range from 20 ◦C to 180 ◦C. Additionally, a Pt1000 sensor was placed inside the chamber,
which was used to measure the temperature there. The sensor was connected in a four-wire
circuit for measuring resistance using the technical method. A current of 100 μA flowed
through the sensor.

In order to determine the relationship Tj = f (Vfd), three tested transistors were placed
inside the described chamber. They were connected in such a way that the current
Idi (Idi = 100 mA) forcing the voltage drop Vfd on the body diode flowed through all diodes
of the tested transistors (the body diodes of the three transistors were connected in series).
The measurement setup is shown in Figure 6. The Vfd values of all tested transistors were
measured using an Agilent 34401A multimeter (Agilent, Santa Clara, CA, USA) [39]. The
measurement was performed for a given temperature Ta at the moment when the Vfd
voltage value stabilized. The constant values of the Vfd voltage in time indicated that the
temperature Ta set in the chamber was equal to the die temperature Tj of the transistors lo-
cated in this chamber. In turn, the voltage drop VPt1000 on the Pt1000 sensor was measured
using a UT51 multimeter (UNI-T, Dongguan City, China) [40].

Figure 6. Measurement system enabling determination of the relationship Tj = f (Vfd).
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2.3. Power Dissipated in Die and Ambient Conditions

The correct simulation work using Solidworks 2020 SP05 requires determining the
power P that has been released in the die and defining the boundary condition. The power
released in the die can be determined using Equation (1):

P = VDS·IDS (1)

where: P—power (in W) dissipated in the die, VDS—drop voltage (in V) between drain and
source, IDS—current (in A) flowing between drain and source.

The VDS and IDS values were measured with measurement errors, which can be
determined using the UT51 multimeter documentation (UNI-T, Dongguan City, China).
Therefore, the p value will also be within the range defined by the measurement error limit
ΔP, which can be determined from Equation (2):

ΔP = VDS·ΔIDS + IDS·ΔVDS (2)

where: ΔVDS—limiting error of the VDS value (in V), ΔIDS—limiting error of the IDS value
(in A). The ΔIDS and ΔVDS values can be determined using the formulas in the UT51 user
manual [40].

The increase in die temperature is related to the distribution of effective power, PRMS,
in the die. For this reason, the Equation (3) should be used:

PRMS =

√
1
Tk

∫ t0+Tk

t0

P2(t)dt (3)

where: t0—beginning of the period, Tk—duration of the period.
The PRMS value is also within the range that is determined by the limiting error ΔPRMS.

The limits of the range determined by ΔPRMS can be determined using Equation (2).
The temperature gradient in the radiative heat flux path between the transistor’s die

and the transistor’s case can be determined using Equation (4):

J = −k·∇·T (4)

where: J—radiative heat flux (W·m−2), ∇—Nabla operator.
Equation (4) can be written as Equation (5):

J = −k·dT
dx

(5)

where: x—distance between the points where the temperature values of the die and diode
case were measured (m), J—radiative heat flux (W·m−2).

In order to solve Equation (5), we need to separate the differentials that are on the
right-hand side of the equation. Consequently, it is possible to integrate the equation on
both sides. The constant of integration can be found using Equation (6):

for x = 0 → T = T1
for x = xk → T = T2

(6)

where: xk—end point of the analyzed heat flow path (m), T1—temperature at the starting
point of the analyzed heat flow path (K), T2—temperature at the end point of the analyzed
heat flow path (K).

Consequently, it is possible to determine Equation (7):

T1 − T2 = − PC
S·k ·xk (7)
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where: Pc—total power (in W) applied to the wall, S—area (m2) of the wall penetrated by
J (W·m−2).

Determining the correct temperature distribution in the transistor’s case (using Solid-
works 2020 SP05 Software) requires determining the radiation coefficient hr. The hr coeffi-
cient defines the amount of thermal energy transferred to the environment by radiation per
unit time, per unit area, and per unit temperature difference between the body radiating
energy and the environment. The value of hr can be determined using Equation (8):

hr = ε·σ·(TS·Ta)·
(

T2
S ·T2

a

)
(8)

where: σ—Stefan–Boltzmann constant equal to 5.67 × 10−8 (W·m−2·K−4), TS—surface
temperature (K), Ta—air temperature (K).

It is also necessary to determine the value of the convection coefficient hcf, which
defines the amount of thermal energy transferred to the environment by convection per
unit time, per unit area, and per unit temperature difference between the body emitting the
energy and the environment. To determine the hcf value for a flat surface, Equation (9) can
be used:

hc f =
Nu·k

L
(9)

where: hcf—convection coefficient of flat surfaces, Nu—Nusselt number (-), L—characteristic
length in meters (for a vertical wall, this value represents height).

The Nusselt number can be determined using Equation (10).

Nu = a·(Pr·Gr)b (10)

where: Gr—Grashof number (-), Pr—Prandtl number (-), a and b—dimensionless coeffi-
cients. The values of coefficients a and b are provided in Table 1.

Table 1. Values of coefficients a and b in Equation (10). lam—value for laminar flow, turb—value for
turbulent flow.

Shape Gr·Pr alam blam aturb bturb

Vertical flat wall 109 0.59 0.25 0.129 0.33
Upper flat wall 108 0.54 0.25 0.14 0.33
Lower flat wall 105 0.25 0.25 NA NA

The Grashof number can be obtained from Equation (11):

Gr =
α·g·(Ts − Ta)·ρ2·L3

η2 (11)

where: g—gravitational acceleration (9.8 m·s−2), α—coefficient of expansion (0.0034 K−1),
ρ—air density (1.21 kg·m−3) at 273.15 K, η—dynamic air viscosity (1.75 × 10−5 kg·m−1·s−1)
at 273.15 K.

Prandtl’s number is determined from Equation (12):

Pr =
c·η
k

(12)

where: Pr—Prandtl’s number, c—specific heat of air (1005 J·kg−1·K−1) at 293.15 K.
When the value of the average linear velocity of the fluid flow is greater than 0 m/s,

the Reynolds number must also be taken into account, which can be obtained using
Equation (13):

Re =
V·ρ·L

η
(13)
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where: V—average linear velocity of the fluid flow (m/s).
In order to enable a better understanding of the boundary condition, the analyzed

heat flow path and its emission by the observed surface (by convection hcf and radiation hr)
are shown in Figure 7.

Figure 7. Analyzed heat flow path and its emission from the observed surface (by convection hcf and
radiation hr). Thermal conductivity is designated as k.

2.4. Uncertainties

The method by which the uncertainty of the thermographic temperature measurement
Tc can be determined is described in the document Evaluation of the Uncertainty of Measure-
ment in calibration (EA-4/02 M: 2022) [41]. This is a method for determining the uncertainty
of type B. In order to use this method, all input quantities Xi that affect the result of the
Tc measurement and the range of their variability must be determined. This can be done
based on experience and the literature. In this work, the thermographic camera processing
equation from publication [42] was used (Equation (14)):

Tc =
4

√
T4

cam·ε·σ − (1 − ε)·τa·σ·T4
re f l ·τl − (1 − τa)·σc·T4

a ·τl − (1 − τl)·σc·T4
l

ε·τa·σc·τl
(14)

where: Tcam—temperature indicated by the thermographic camera without taking into
account the influence of other factors, σc—Stefan-Boltzmann constant equal to 5.67 × 10−8

(W·m−2·K−4), τa—atmosphere transmittance coefficient, τ1—transmittance of the thermo-
graphic camera lens, Ta—air temperature, Tre f l—reflected temperature, Tl—thermographic
camera lens temperature.

The next step is to determine the sensitivity coefficient cs for all input quantities from
Equation (14). This is a derivative described in Equation (15):

cs(y) =
∂ f
∂Xi

(15)

where: fi—all input quantities from Equation (14).
In order to determine the uncertainty of the Tc value, estimates of xi of the input

quantities Xi (for all above input quantities) must be determined. This is possible using
Equation (16) (rectangular probability distribution):

xi =
1
2
(a+ + a−) (16)

where: a+—upper limit of the input quantity range, a−—lower limit of the input quan-
tity range.
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Then, for each Xi, the uncertainty standard u(xi) should be determined as per
Equation (17):

u2(xi) =
1

12
(a+ − a−)2 (17)

By multiplying the values of u(xi) and cs, we can obtain the uncertainty contribution
u(y). The standard uncertainty u(Tc) of the Tc value can be obtained as the square root of
the sum of squares of the values of u(y) as per Equation (18):

u2(Tc) =
N

∑
i=1

u(y) (18)

In order to determine the expanded uncertainty U(Tc), the value of u(Tc) should be
multiplied by the coverage factor k.

To determine ΔTPt1000, Equations (19)–(23) can be used:

δVPt1000 =
ΔVPt1000

VPt1000
·100 (19)

δIPt1000 =
ΔIPt1000

IPt1000
·100 (20)

δRPt1000 = δVPt1000 + δIPt1000 (21)

ΔRPt1000 =
RPt1000·δRPt1000

100
(22)

where: ΔVPt1000—limit error of VPt1000, δVPt1000—relative error of VPt1000, ΔIPt1000—limit er-
ror of IPt1000, δIPt1000—relative error of IPt1000, δRPt1000—relative error of RPt1000,
ΔRPt1000—limit error of RPt1000, RPt1000—resistance of Pt1000 [42].

Then, by inserting the upper and lower range of ΔRPt1000 into Equation (23), it is
possible to obtain the upper and lower range of ΔTPt1000 values:

TPt1000 = 10−5·R2
Pt1000+0.235·RPt1000−245.35 + R2

Pt1000·4·10−7 −RPt1000·2·10−5 + 0.0011 (23)

To determine the ΔVPt1000 and ΔIPt1000 values, the documentation of the multimeter
describe in reference [40] can be used.

3. Results

Using the measurement system shown in Figure 6, the relationship Tjd = f (Vfd) was
determined. This relationship was approximated by the linear equation y = e·x + f. As a
result, the individual equations Tjd = TC + e·Vfd + f were obtained for each transistor. The
values of the coefficients for each transistor are given in Table 2.

Table 2. Values of the coefficients e and f of the curves Tjd = TC + e·Vfd + f of the tested transistors.

No Transistor e f

1 C2M0280120D 8.9582 1.6507
2 C2M0280120D 8.9684 1.6012
3 C2M0280120D 8.9549 1.6577

Then, each of the tested transistors was connected according to the diagram shown in
Figure 4. The black part of the transistor case was observed with a thermographic camera.
In order to minimize the factors disturbing the thermographic measurements, the observed
transistors and the thermographic camera were placed in a chamber whose connection
layout is shown in Figure 3. Additionally, Vfd values were measured using a voltmeter.
Using these values, the junction temperature Tjd values were determined based on the
previously determined relationship Tjd = f (Vfd) (Table 2). The Tjd values determined in this
way are given in Table 2, and sample recorded thermograms are shown in Figure 8.
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(a) (b) 

Figure 8. Examples of recorded thermograms: (a) IDS = 1 A; fT = 1 kHz, (b) IDS = 1 A; fT = 10 kHz.
The thermograms were taken before gluing the Pt1000.

In the next stage of the research, simulations were carried out using the FEM method.
In the first step, a model of the tested transistor was designed. Materials and thermal
conductivity values k are given in Table 3.

Table 3. Materials specified in the 3D model and their thermal conductivity values k.

Internal Structure Component Material
k

[W/m·K]

Black part of the case EME 590 0.25
Back part of the case Copper 400

Semiconductor element Silicon carbide 150
Left lead Copper 400

Internal lead Copper 400
Right lead Copper 400

Internal connections Copper 400
Grease Melamine resin 0.20

The selected values of the convection coefficients hcf of the observed surface (black
part of the case) were in the range of 15.3 W/m2 K to 24.8 W/m2 K for the tested tempera-
ture ranges.

Additionally, the relationship between the mesh size l specified in the simulation
parameters, the duration of a single simulation ts, and the accuracy of the determined
temperature values DTS was checked. The obtained results are presented in Table 4.

Table 4. Mesh size l, simulation duration ts, and temperature values TS obtained during FEM
simulation defined in the simulation parameters.

No.
ts
[s]

l
[mm]

ΔTS
[◦C]

1 3 4.0 1.9
2 5 3.0 1.4
3 8 2.0 0.6
4 15 1.5 0.4
5 41 1.0 0.1
6 499 0.5 0.1

Based on the data presented in Table 4, a mesh size was selected at which the sim-
ulation duration was sufficiently short and the accuracy of the ΔTS temperature value
obtained as a result of the simulation work was 0.1 ◦C (Table 4, No. 5). As a result, the
TS temperature values obtained from the simulation work were close to the temperature
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Tc recorded in the thermographic measurement for a given value of the power dissipated
in the PRMS transistor. The selected mesh size was l = 1.0 mm. The example temperature
distributions obtained from the simulation are shown in Figure 9.

Tables 5–8 present the values of Tc and Tj recorded during measurements and the
values of TS (transistor case) obtained as a result of simulation work, depending on the set
value of the switching frequency fT of the transistor. The measurements were carried out
for four current values.

In order to determine the uncertainty of the Tc value, the range of all variables was
determined from Equation (14). The adopted ranges of values and the determined xi are
given in Table 9.

(a) (b) 

 
 

 
(c) (d) 

 
 

 

Figure 9. Cont.
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(e) (f) 

  
(g) (h) 

  

Figure 9. Examples of temperature distributions obtained from FEM simulations. (a) IDS = 0.25 A,
fT = 1 kHz, (b) IDS = 0.25 A, fT = 500 kHz, (c) IDS = 0.5 A, fT = 1 kHz, (d) IDS = 0.5 A, fT = 500 kHz,
(e) IDS = 1 A, fT = 1 kHz, (f) IDS = 1 A, fT = 500 kHz, (g) IDS = 1.5A, fT = 1 kHz, (h) IDS = 1.5A, fT = 500 kHz.

Table 5. Transistor case temperature Tc determined from thermographic measurements, junction
temperature Tjd determined from the relationship Tjd = f (Vfd), and transistor case temperature TS

and junction temperature Tj determined from simulations, depending on the set switching frequency
fT. The results were obtained for the current IDSmax = 0.25 A. Tc1 is the Tc value measured for the first
transistor, Tc2 is the Tc value measured for the second transistor, and Tc3 is the Tc value measured for
the third transistor.

No.
fT IDS P Tc1 Tc2 Tc3 Tjd TS Tj TPt1000

[kHz] [A] [W] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C]

1 1 0.25 0.52 33.1 33.3 32.6 53.4 33.0 49.4 31.1
2 5 0.25 0.52 33.4 33.6 32.9 53.7 33.3 49.8 31.4
3 10 0.25 0.52 33.6 33.8 33.1 53.9 33.5 50.1 31.6
4 50 0.25 0.52 33.9 34.2 33.3 54.2 33.8 50.5 31.9
5 100 0.25 0.52 34.3 34.6 33.7 54.6 34.2 51.1 32.3
6 150 0.25 0.52 35.0 35.3 34.4 55.3 34.9 52.1 32.9
7 200 0.25 0.52 35.6 35.9 35.0 55.9 35.5 53.1 33.6
8 300 0.25 0.52 36.6 36.9 36.0 56.9 36.5 54.2 34.6
9 400 0.25 0.52 36.9 37.2 36.3 57.2 36.8 54.9 34.9
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Table 5. Cont.

No.
fT IDS P Tc1 Tc2 Tc3 Tjd TS Tj TPt1000

[kHz] [A] [W] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C]

10 500 0.25 0.52 37.3 37.6 36.7 57.5 37.2 55.5 35.3
11 600 0.25 0.52 37.1 37.4 36.5 57.3 37.0 55.1 35.1
12 700 0.25 0.52 37.3 37.6 36.7 57.5 37.2 55.3 35.3
13 800 0.25 0.52 37.6 37.9 37.0 57.8 37.5 55.7 35.6

Table 6. Transistor case temperature Tc determined from the thermographic measurements, junction
temperature Tjd determined from the relationship Tjd = f (Vfd), and the transistor case temperature TS

and junction temperature Tj determined from simulations, depending on the set switching frequency
fT. The results were obtained for the current IDSmax = 0.5 A. Tc1 is the Tc value measured for the first
transistor, Tc2 is the Tc value measured for the second transistor, Tc3 is the Tc value measured for the
third transistor.

No.
fT IDS P Tc1 Tc2 Tc3 Tjd TS Tj TPt1000

[kHz] [A] [W] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C]

1 1 0.5 1.20 45.7 46.1 45.3 68.8 45.7 66.3 43.7
2 5 0.5 1.19 45.7 46.1 45.3 68.7 45.7 66.3 43.7
3 10 0.5 1.19 46.0 46.4 45.6 69.0 46.0 66.7 44.0
4 50 0.5 1.18 47.0 47.4 46.6 69.8 47.0 67.2 45.0
5 100 0.5 1.18 48.1 48.5 47.7 70.8 48.1 68.7 46.1
6 150 0.5 1.17 49.2 49.6 48.8 71.8 49.2 69.3 47.2
7 200 0.5 1.17 50.1 50.5 49.7 72.7 50.1 70.7 48.0
8 300 0.5 1.17 50.9 51.3 50.5 73.5 50.9 71.9 48.8
9 400 0.5 1.17 50.7 51.1 50.3 73.3 50.7 71.6 48.6

10 500 0.5 1.17 51.0 51.4 50.6 73.5 51.0 71.1 48.9
11 600 0.5 1.17 51.6 52.0 51.2 74.1 51.6 72.0 49.5
12 700 0.5 1.17 51.5 51.9 51.1 74.0 51.5 71.8 49.4
13 800 0.5 1.16 51.3 51.7 50.9 73.8 51.3 71.5 49.2

Table 7. Transistor case temperature Tc determined from thermographic measurements, junction
temperature Tjd determined from the relationship Tjd = f (Vfd), and transistor case temperature TS

and junction temperature Tj determined from simulations, depending on the set switching frequency
fT. The results were obtained for the current IDSmax = 1 A. Tc1 is the Tc value measured for the first
transistor, Tc2 is the Tc value measured for the second transistor, Tc3 is the Tc value measured for the
third transistor.

No.
fT IDS P Tc1 Tc2 Tc3 Tjd TS Tj TPt1000

[kHz] [A] [W] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C]

1 1 1 2.90 80.0 80.6 79.7 107.7 80.1 106.1 77.8
2 5 1 2.90 80.4 81.0 80.1 108.1 80.5 106.3 78.2
3 10 1 2.89 79.9 80.5 79.6 107.6 80.0 106.1 77.7
4 50 1 2.88 81.6 82.2 81.3 109.1 81.7 106.6 79.4
5 100 1 2.87 81.9 82.5 81.6 109.4 82.0 106.8 79.7
6 150 1 2.86 81.7 82.3 81.4 109.1 81.8 106.5 79.5
7 200 1 2.86 82.4 83.0 82.1 109.8 82.5 106.8 80.1
8 300 1 2.85 83.0 83.6 82.7 110.3 83.1 106.8 80.7
9 400 1 2.85 83.1 83.7 82.8 110.4 83.2 106.9 80.8

10 500 1 2.85 83.1 83.7 82.8 110.4 83.2 106.9 80.8
11 600 1 2.85 82.9 83.5 82.6 110.1 83.0 106.7 80.6
12 700 1 2.85 83.1 83.7 82.8 110.3 83.2 106.7 80.8
13 800 1 2.85 83.0 83.6 82.7 110.2 83.1 106.6 80.7
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Table 8. Transistor case temperature Tc determined from thermographic measurements, junction
temperature Tjd determined from the relationship Tjd = f (Vfd), and transistor case temperature TS

and junction temperature Tj determined from simulations, depending on the set switching frequency
fT. The results were obtained for the current IDSmax = 1.5 A. Tc1 is the Tc value measured for the first
transistor, Tc2 is the Tc value measured for the second transistor, Tc3 is the Tc value measured for the
third transistor.

No.
fT IDS P Tc1 Tc2 Tc3 Tjd TS Tj TPt1000

[kHz] [A] [W] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C]

1 1 1.5 3.30 111.9 112.6 111.8 141.9 112.1 140.0 109.5
2 5 1.5 3.29 113.3 114.0 113.2 143.2 113.5 140.7 110.8
3 10 1.5 3.28 113.4 114.1 113.3 143.2 113.6 140.9 110.9
4 50 1.5 3.27 113.2 113.9 113.1 142.9 113.4 140.5 110.7
5 100 1.5 3.26 113.3 114.0 113.2 142.9 113.5 140.7 110.8
6 150 1.5 3.25 113.4 114.1 113.3 143.0 113.6 140.9 110.9
7 200 1.5 3.24 113.3 114.0 113.2 142.8 113.5 140.7 110.8
8 300 1.5 3.22 113.4 114.1 113.3 142.7 113.6 140.9 110.9
9 400 1.5 3.22 113.4 114.1 113.3 142.7 113.6 140.9 110.9

10 500 1.5 3.22 113.4 114.1 113.3 142.7 113.6 140.9 110.9
11 600 1.5 3.22 113.3 114.0 113.2 142.6 113.5 140.7 110.8
12 700 1.5 3.22 113.4 114.1 113.3 142.7 113.6 140.9 110.9
13 800 1.5 3.22 113.4 114.1 113.3 142.7 113.6 140.9 110.9

Table 9. Values of the variables from Equation (14) and the determined xi.

No Value Unit a+ a− xi

1 ε - 0.98 0.96 0.97
2 τa - 1.00 0.98 0.99
3 Trefl

◦C 5.00 0.00 2.50
4 τl - 1.00 0.98 0.99
5 Ta

◦C 30.00 16.00 22.5
6 Tl

◦C 30.00 16.00 22.5

The Tcam value was also taken into account. The Tcam value limits were selected
individually for each case (Tcam ± 2 ◦C).

Then, using equations from Section 2.4, the standard uncertainty u(xi) and sensitivity
coefficient cs (for all input quantities from Equation (14)) were determined. For each Xi, the
uncertainty contribution u(y) was determined. The Tcam value was added to the budget
with cs equal to 1. After constructing the uncertainty budget, the standard uncertainty
u(Tc) was determined. An example uncertainty budget for ft = 1 kHz and IDS = 0.25 A.
Tcc = 304.3 ◦C is shown in Table 10.

The value of U(Tc) = 2.36 ◦C was obtained by multiplying the value of 1.18 by k = 2.
Using the formulas presented in Section 2.4, the maximum value of ΔTPt1000 of 1.73 ◦C was
also determined.

Table 10. Example uncertainty budget for ft = 1 kHz and IDS = 1.5 A Tc1 = 112.1 ◦C.

Symbol Unit xi u(xi)
Probability

Distribution
cs ui(y)

τa - 0.99 0.01 normal 0.45 0.01
ε - 0.95 0.03 rectangular −7.65 −0.22

Trefl
◦C 20.85 1.44 rectangular 0.01 0.02

τl - 0.99 0.01 rectangular −10.32 −0.06
Ta

◦C 20.85 4.04 rectangular −0.02 −0.06
Tl

◦C 20.85 4.04 rectangular −0.02 −0.06
Tcam

◦C 20.85 1.15 rectangular 1.00 1.15
Tc

◦C 112.1 1.18
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4. Discussion

During the experimental work, an additional lens (Close-up 2×) was used with
the thermographic camera. This enabled the thermographic camera used during the
measurements (equipped with a 240 × 180 pixels detector matrix) to obtain such spatial
resolution for which the edge of the field of view of a single detector was 67 μm. This
value, taking into account the dimensions of the transistor shown in Figure 2, guaranteed
that 25 fields of the view of a single detector of the thermographic camera (fields of the
view placed in a rectangle of 5 × 5 pixels) were placed on the transistor case during the
measurement. For this reason, the result of the thermographic temperature measurement
can be considered reliable.

Before starting the measurements, the performance of the thermographic camera
was compared with to the IRS Calilux radiation standard (Automation Technology, Bad
Oldesloe, Germany). The results were compared in the range of 30–90 ◦C with a step
of 5 ◦C. The largest difference between the standard and the camera was 0.72 ◦C (the
camera error was ±2 ◦C or ±2%, whichever is greater). For this reason, the output from
the thermographic camera can be considered reliable.

The results of the thermographic temperature measurements were comparable to
those obtained using the Pt1000 sensor and to the results obtained during simulation work
using the FEM method. During the work carried out, three transistor specimens were
tested. Similar measurement results were obtained for each. Brand new Pt1000 sensors
were used.

Analyzing the data from Tables 5–8 (and especially comparing the die temperature
(Tj) determined based on the simulation and the voltage drop Tjd) it can be seen that the
largest difference was 4 ◦C. The conducted studies prove that the use of the transistor body
diode during measurements allows for obtaining reliable results. They also prove that
the results obtained by simulation work are confirmed in real conditions. Comparing the
case temperature determined by simulation work (TS) with the temperature measured by
means of a thermographic camera (Tc), it can be seen that these values are the same. This
proves that the model created is reliable.

Analyzing the data from Tables 5–8, it can be seen that the difference between all
results for Tc1–Tc3 are within the limit defined by the uncertainty U(Tc). It can also be seen
that the values of Tc1–Tc3 and TS and TPt1000 are within the range defined by ΔTPt1000 and
U(Tc). For this reason, it can be assumed that the thermographic temperature measurement
is reliable.

5. Conclusions

The aim of this research was to develop a method for performing indirect thermo-
graphic measurement of a SiC MOSFET and monitoring the SiC MOSFET temperature at
variable switching frequencies.

Analyzing the transistor case temperatures measured with a thermographic camera
(Tc) at a frequency ft, it can be seen that despite the constant value of the IDS current, the Tc
value increases. The increase in the Tc value depends on the IDS value. For the value of
IDS = 0.25 A and ft in the range of 1 kHz–800 kHz, the Tc value increased by 4.5 ◦C. For the
value of IDS = 0.5 A and ft in the range of 1 kHz–800 kHz, the Tc value increased by 5.6 ◦C.
For the value of IDS = 1 A and ft in the range of 1 kHz–800 kHz, the Tc value increased
by 3 ◦C. For the value of IDS = 1.5 A and ft in the range of 1 kHz–800 kHz, the Tc value
increased by 1.5 ◦C. The Tc value depends on the value of IDS and ft. With the increase in
IDS, the Tc value is set at increasingly lower values of fT.

The largest recorded difference between the case temperature and the die temperature
was 27.3 ◦C. The use of a thermographic camera allows determining the temperature of the
transistor die, which allows selecting the optimal control of the C2M0280120D transistor.

Due to the use of thermographic, there is no risk of electric shock as a result of touching
the base plate or radiator, and the measurement result is obtained immediately. Based on
a properly performed thermographic measurement of the temperature of the black part
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of the case (made of epoxy mold compound), it is possible to determine the temperature
of the transistor die. As a result, its optimal operating point can be selected even more
precisely. It is also possible to capture the operating point at which the transistor begins to
operate incorrectly. This will prevent damage and save funds that would have to be spent
in the event of a failure.
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Nomenclature

a and b dimensionless coefficients
a+ upper limit of the input quantity range
a− lower limit of the input quantity range
alam value of coefficient a for laminar flow
blam value of coefficient b for laminar flow
aturb value of coefficient a for turbulent flow
bturb value of coefficient b for turbulent flow
c specific heat of air equal to 1005 J·kg−1·K−1 at 293.15 K
cs sensitivity coefficient
d distance between the tested transistor and the additional lens
DUT device under test
e slope of the equation Tjd = f(Vfd) of the transistor
f free term of the equation Tjd = f(Vfd) of the transistor
FEM finite element method
fi all input quantities from Equation (14)
fT switching frequency
g gravitational acceleration (9.8 m·s−2)
Gr Grashof number
hcf convection coefficient of flat surfaces
hr radiation coefficient
ID drain current
IDS drain—source current (in A)
IDpulse pulse current
IPt1000 current flowing through Pt1000
IFOV instantaneous field of view
IR infrared radiation
J radiative heat flux
K thermal conductivity
k coverage factor
L characteristic length in meters (for a vertical wall, this value represents height)
Nu Nusselt number
PRMS power supplied to the transistor
P power dissipated in the die (in W)
Pc total power applied to the wall
Pr Prandtl number
Re Reynolds number
RPt1000 resistance of Pt1000
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S area of the wall penetrated by J
Ta ambient temperature
Tc case temperature
Tc1 Tc value measured for the first transistor
Tc2 Tc value measured for the second transistor
Tc3 Tc value measured for the third transistor
Tcam temperature indicated by the thermographic camera
Tk duration of the period
Tj junction temperature
Td junction temperature determined electrically
Tl thermographic camera lens temperature
TPt1000 temperature value measured with Pt1000
Tre f l reflected temperature
T1 temperature at the starting point of the analyzed heat flow path (K)
T2 temperature at the end point of the analyzed heat flow path (K)
t0 beginning of the period
u(xi) standard uncertainty of each Xi,
u(y) uncertainty contribution
u(Tc) standard uncertainty of Tc values
U(Tc) expanded uncertainty of Tc values
V average linear velocity of the fluid flow
VDS drop voltage between drain and source (in V)
VDsmax maximum drain—source voltage
Vfd diode forward voltage
VGS gate—source voltage
VGSmax maximum gate—source voltage
VPt1000 voltage drop on Pt1000

x
distance between the points where the temperature values of the die and diode case were
measured, and J is the radiative heat flux

xk end point of the analyzed heat flow path
Xi input quantities
xi estimates of the input quantities Xi
∇ Nabla operator
α coefficient of expansion equal to 0.0034 K−1

ε emissivity factor
ΔIDS limiting error of the IDS value (in A)
ΔVDS limiting error of the VDS value (in V)
ΔIPt1000 limit error of IPt1000
δIPt1000 relative error of IPt1000
ΔP limiting error of the P value in W
δRPt1000 relative error of RPt1000
ΔRPt1000 limit error of RPt1000
ΔTPt1000 limit error of ΔTPt1000 of measurement TPt1000
ΔVPt1000 limit error of VPt1000
δVPt1000 relative error of VPt1000
η dynamic air viscosity equal to 1.75 × 10−5 kg·m−1·s−1 at 273.15 K
ρ density equal to 1.21 (kg·m−3) in 273.15 (K)
σc Stefan–Boltzmann constant
τa atmosphere transmittance coefficient
τl transmittance of the thermographic camera lens
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3. Dziarski, K.; Hulewicz, A.; Kuwałek, P.; Wiczyński, G. Methods of Measurement of Die Temperature of Semiconductor Elements:
A Review. Energies 2023, 16, 2559. [CrossRef]

334



Sensors 2024, 24, 6452

4. Ulrich, R.K.; Brown, W.D. Advanced Electronic Packaging; Wiley-IEEE Press: Hoboken, NJ, USA, 2006.
5. Wang, Y.; Ding, Y.; Yin, Y. Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review. Energies 2022,

15, 6670. [CrossRef]
6. Millan, J. Wide band-gap power semiconductor devices. IET Circuits Devices Syst. 2007, 1, 372–379. [CrossRef]
7. Roussel, P. SiC Market and Industry Update. In Proceedings of the International SiC Power Electronics Application Workshop,

Birmingham, UK, 1–2 September 2011; pp. 3–4.
8. Yang, X.; Xu, M.; Li, Q.; Wang, Z.; He, M. Analytical method for RC snubber optimization design to eliminate switching

oscillations of SiC MOSFET. IEEE Trans. Power Electron. 2022, 37, 4672–4684. [CrossRef]
9. Gupta, A.; Ayyanar, R.; Chakraborty, S. Novel electric vehicle traction architecture with 48 V Battery and multi-input, high

conversion ratio converter for high and variable DC-link voltage. IEEE Open J. Veh. Technol. 2021, 2, 448–470. [CrossRef]
10. Fabre, J.; Ladoux, P. Parallel connection of SiC MOSFET modules for future use in traction converters. In Proceedings of the

2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen,
Germany, 3–5 March 2015; pp. 1–6. [CrossRef]

11. Lagier, T.; Ladoux, P.; Dworakowski, P. Potential of silicon carbide MOSFETs in the DC/DC converters for future HVDC offshore
wind farms. High Volt. 2017, 2, 233–243. [CrossRef]

12. Ding, X.; Lu, P.; Shan, Z. A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles. Appl.
Energy 2021, 291, 116827. [CrossRef]

13. Scognamillo, C.; Catalano, A.P.; Riccio, M.; d’Alessandro, V.; Codecasa, L.; Borghese, A.; Tripathi, R.N.; Castellazzi, A.; Breglio,
G.; Irace, A. Compact Modeling of a 3.3 kV SiC MOSFET Power Module for Detailed Circuit-Level Electrothermal Simulations
Including Parasitics. Energies 2021, 14, 4683. [CrossRef]

14. Chen, M.; Wang, H.; Pan, D.; Wang, X.; Blaabjerg, F. Thermal characterization of silicon carbide MOSFET module suitable for
high-temperature computationally efficient thermal-profile prediction. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 3947–3958.
[CrossRef]

15. Du, H.; Reigosa, P.; Ceccarelli, L.; Iannuzzo, F. Impact of repetitive short-circuit tests on the normal operation of SiC MOSFETs
considering case temperature influence. IEEE J. Emerg. Sel. Topics Power Electron. 2020, 8, 195–205. [CrossRef]

16. Tanimoto, S.; Ohashi, H. Reliability issues of SiC power MOSFETs toward high junction temperature operation. Phys. Status Solidi
A 2019, 206, 2417–2430. [CrossRef]

17. Wang, H. Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron.
2014, 2, 97–114. [CrossRef]

18. Wang, H.; Liserre, M.; Blaabjerg, F. Toward reliable power electronics: Challenges design tools and opportunities. IEEE Ind.
Electron. Mag. 2013, 7, 17–26. [CrossRef]

19. Li, H.; Liao, X.; Hu, Y.; Zeng, Z.; Song, E.; Xiao, H. Analysis of SiC MOSFET dI/dt and its temperature dependence. IET Power
Electron. 2017, 11, 491–500. [CrossRef]

20. Yodwong, B.; Guilbert, D.; Kaewmanee, W.; Phattanasak, M. Energy Efficiency Based Control Strategy of a Three-Level Interleaved
DC-DC Buck Converter Supplying a Proton Exchange Membrane Electrolyzer. Electronics 2019, 8, 933. [CrossRef]

21. Faizan, M.; Wang, X.; Yousaf, M.Z. Design and Comparative Analysis of an Ultra-Highly Efficient, Compact Half-Bridge LLC
Resonant GaN Converter for Low-Power Applications. Electronics 2023, 12, 2850. [CrossRef]

22. Urkin, T.; Peretz, M.M. Asymmetrically Driven HB-LLC Resonant Converter Integrated in Low-Power IoT Devices. In Proceed-
ings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023;
pp. 2105–2110. [CrossRef]

23. Li, X.; Zhang, L.; Guo, S.; Lei, Y.; Huang, A.; Zhang, B. Understanding switching losses in SiC MOSFET: Toward lossless switching.
In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA,
USA, 2–4 November 2015; pp. 257–262. [CrossRef]
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Abstract: In the assessment of pipeline integrity using magnetic flux leakage (MFL) detection, it
is crucial to quantify defects accurately and efficiently using MFL signals. However, in complex
detection environments, traditional defect inversion methods exhibit low quantification accuracy
and efficiency due to the complexity of their algorithms or excessive reliance on a priori knowledge
and expert experience. To address these issues, this study presents a novel defect quantification
method based on multi-sensor signal fusion (MSSF). The method employs a multi-sensor probe to
fuse the MFL signals under multiple lift-off values, enhancing the diversity of defect information.
This enables defect-opening profile recognition using the characteristic approximation approach
(CAA). Subsequently, the MSSF method is based on a 3D magnetic dipole model and integrates
the structural features of multi-sensor probes to develop an algorithm. This algorithm iteratively
determines the defect depth at multiple data acquisition points within the defect region to obtain the
maximum defect depth. The feasibility of the MSSF quantification method is validated through finite
element simulation and physical experiments. The results demonstrate that the proposed method
achieves accurate defect quantification while enhancing efficiency, with the number of iterations for
each defect depth calculation point consistently requiring fewer than 15 iterations. For rectangular
metal loss, perforation, and conical defects, quantification errors are less than 10%, meeting practical
inspection requirements.

Keywords: magnetic flux leakage (MFL); multi-sensor signal fusion (MSSF); characteristic approximation
approach (CAA); defect depth calculation point

1. Introduction

As vital national strategic energy sources, oil and natural gas play a significant role
in the national economy. Pipeline transportation serves as their primary mode of trans-
portation. Currently, the combined length of oil and gas pipelines in different countries or
regions has surpassed 2 million kilometers [1,2]. Due to the aging of pipelines and the harsh
operating conditions they face, they are highly susceptible to various types of damage
defects, such as metal loss, local pitting, cracks, dents, and corrosion, which increases the
risk of oil and gas leakage [3]. Consequently, the integrity evaluation of pipeline structure
is crucial for safe production and economic development [4–6]. As one of the most popular
non-destructive testing technologies, magnetic flux leakage (MFL) detection technology is
widely used in the detection of ferromagnetic materials like oil and gas pipelines [7,8], steel
rails [9], steel wire ropes [10,11], steel belts [12], and other materials for automatic detection
and evaluation.

Defect quantification is an essential part of pipeline MFL detection, with the most
prevalent approach involving the construction of a robust model for determining defect
size [13]. The key challenge lies in accurately and efficiently utilizing MFL signals to
determine defect sizes, making it the focal point and primary difficulty in the defect
quantification process [14]. In general, there are two main technical routes: (1) data-driven
method and (2) model-driven method.
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The data-driven method based on intelligent algorithms is constructed to describe the
relationship between the signal and defect size. The majority of the method is based on
machine-learning models. Initially, researchers could only quantify defects using shallow-
learning methods due to limitations in computing capability. K. Hwang et al. [15] used a
wavelet basis function (WBF) neural network to transform the MFL signal into a 3D defect
profile, and the WBF approximated the defect profile by adjusting the resolution of the
network. K.MR et al. [16] employed a neural network to extract the contour features of the
MFL signal to identify the length and width dimensions of the defect and to estimate the
depth of the defect using the peaks of the signal. B. Liu et al. [17] proposed a method for
the reconstruction of 2D profiles based on a kernelized extreme learning machine (ELM)
and used a quantum genetic algorithm (QGA) to optimize the parameters. However,
shallow-learning methods can usually only obtain limited defect information due to the
weak feature extraction capability [16]. In recent years, with the development of computer
technology, deep learning methods have been widely applied to defect quantification. S.Lu
et al. [18] proposed a new visual transform convolutional neural network (VT-CNN) for
defect quantification, which uses a visual transform layer to transform the original MFL
signal into a 3D image, improving quantification accuracy. Y.Ren et al. [19] designed a
task-based bias DA network (TBDA-net) based on an adaptive dimension alignment subnet
and task-based distribution-matching subnet to realize the quantification of defect size
in small samples. M. Zhang et al. [20] proposed a visual deep transfer learning neural
network to convert 1D MFL signals into 2D images, extending defect information and
improving quantification accuracy. The above methods have made significant advances
in defect quantification, but there are still some limiting factors: 1. Deep-learning models
require a large number of labeled data for training, while in real industrial production, the
limited availability of labeled samples and high production costs limit the performance of
the models. 2. Deep-learning models are difficult to integrate with the underlying MFL
theory, resulting in unclear physical meaning of the models.

The model-driven method leverages the uniqueness of the forward model, mapping
defect size to defect MFL signals, to estimate defect size through iterative optimization of
model parameters [21]. J. Feng et al. [22] considered the impact of detector vibration on the
MFL detection in pipelines, and proposed a sensor lift-off modification method to correct
the original MFL signal for accurate fault quantification. However, this correction process
is time-consuming. G.Yu et al. [23] proposed a pipeline defect inversion method based on
Stacking Learning, which enhances the generalization ability for different sample sets of
defect inversion issues. Nevertheless, the quantification process requires the intervention
of expert experience in the field of leakage detection, which reduces the quantification
efficiency. R.Priewald et al. [24] used Gauss-Newton optimization to reconstruct the defect
profile based on a nonlinear orthogonal model, but it is difficult to quantify the actual
defects. Z. Wu et al. [25] proposed an algorithm based on an actor-critic structure for sizing
defect profiles, aiming to mitigate the impact of signal noise on quantification and improve
robustness. F.Li et al. [26] introduced a rapid approach to reconstruct defect profiles
from MFL signals employing a modified harmony search (MHS) algorithm. Despite the
increased computational speed, the quantification accuracy is compromised. D Zhang
et al. [27] proposed a defect profile reconstruction method based on modified cuckoo
search (MCS), employing a FEM as a forward model. The method successfully reconstructs
2D defect contours while enhancing computational speed by filtering and updating the
primary error information between the predicted and reference signals, thereby minimizing
interference from cluttered data in other dimensions. K.C. Hari et al. [28] proposed a novel
scheme for the rapid forward simulation of MFL signals through a reduced nonlinear
FEM method. This model facilitates the reconstruction of internal surface defect shapes
using genetic algorithms (GAs), thereby improving the speed of defect quantification by
decreasing the computational volume associated with FEM. S Zhang et al. [29] utilized
an improved discrete magnetic dipole model (DMDM) as a forward model to estimate
the depth of complex defects. Notably, the MFL signals obtained through the DMDM
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method exhibited minimal differences when compared with those derived from FEM and
experimental results. Moreover, the computational efficiency of the DMDM approach was
significantly greater than that of traditional FEM simulations. These methods provide
theoretical support for defect quantification. Nevertheless, the complexity of the iterative
inversion model results in low quantification efficiency, making their practical application
in inspections challenging.

In addition to the two mainstream quantification methods, the data-driven method and
model-driven method, recent research has explored the use of multiple sensor probes rather
than the traditional single sensor. Scholars have investigated the use of specialized multi-
sensor probe structures to develop defect size estimation equations. P.Shi et al. [30] analyzed
the quantification errors associated with traditional single-sensor systems, particularly
those arising from the lift-off effect and proposed a dual-sensor strategy that incorporates
an uncertain lift-off value to enhance depth quantification accuracy. However, this method
has not yet been validated through physical experiments. Y.Long et al. [31] introduced
a detection topology for crack defects and, based on this, developed an MFL probe with
double lift-off magnetic field sensors in the radial direction. This approach enhanced the
quantification of crack defect depth and partially overcame the limitations of conventional
magnetic flux leakage (MFL) detection methods in identifying and quantifying crack defects.
Additionally, Y.Long et al. [32] proposed a new type of probe with dual diagonal distributed
magnetic sensors. This design aims to compensate for probe attitude shifts caused by
mechanical vibrations when the detector moves in the pipeline, thereby improving the
signal-to-noise ratio and quantification accuracy. In conclusion, the use of multiple sensor
probes enables the acquisition of MFL signals at varying lift-off values, facilitating lift-off
compensation and enhancing defect quantification accuracy.

Based on the aforementioned analysis, this study proposes a novel defect quantifica-
tion method based on multi-sensor signal fusion (MSSF), utilizing a configuration of four
alternately staggered sensors. The multi-sensor probes enhance defect information diversity
by integrating MFL signals from multiple lift-off values, significantly reducing the tedious
iterative quantification process. This advancement markedly improves efficiency. Building
on the fused signals, the MSSF method establishes a computational model for iteratively
estimating defect depth, combining a three-dimensional magnetic dipole model (MDM)
with the structural characteristics of the multi-sensor probe. Furthermore, this method
identifies defect-opening profiles employing the characteristic approximation approach
(CAA), leveraging MFL signals acquired by multi-sensor probes across various lift-off
values. The proposed method represents a significant improvement in defect quantification
efficiency and also improves the accuracy of MFL detection.

This paper is organized as follows: Section 2 elaborates on the defect quantification
method based on the multi-sensor probe. Section 3 describes the finite element model (FEM)
and physical experiments used to obtain the MFL signal of defects. Section 4 discusses
and verifies the feasibility and robustness of the proposed method under simulation and
experimental conditions. Finally, Section 5 presents the conclusions of this paper.

2. Methods

2.1. The Principle of the MFL Detection

Figure 1 illustrates the principle of internally detecting pipeline leakage magnetic field.
The MFL detection model consists mainly of permanent magnets, magnetic sensors, and
yoke irons. The principle is based on the high magnetic permeability characteristics of
ferromagnetic materials. The pipe wall is fully magnetized using a permanent magnet
and a rigid brush, achieving a saturated or near-saturated state. In the absence of any
defects, the magnetic field lines run parallel to the inner surface of the pipe. However, the
presence of defects, such as surface or near-surface imperfections, disrupts the magnetic
field lines, leading to leakage from the pipe surface [33]. The characteristics of the leakage
magnetic field distribution are closely correlated with the size of the defect. Detection and
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characterization of defects can be accomplished through the use of a magnetic sensor to
detect the MFL signal.

Figure 1. Principle of the MFL inspection.

2.2. The MSSF Method for Defect-Opening Profile Identification

Defect-opening profile identification is the initial step in defect quantification. This step
significantly influences the accuracy of the quantification process. This section discusses
the characteristic approximation approach (CAA) proposed by Yue Long for achieving
accurate recognition of defect-opening profiles [34]. The CAA is based on the characteristic
that the extreme value of the MFL signal approaches the edge of the defect as the lift-off
value decreases. It calculates the signal pole value at the time when the lift-off value is 0
by numerically fitting the relationship between the pole value and lift-off value. Figure 2
shows that the extreme value point coordinates move closer to the defect edge (green
dotted line) as Bx and By decrease with the lift-off value. Therefore, the CAA method is
advantageous in identifying the defect profile compared to assuming that the peak width
of the MFL signal is equal to the width of the defect. The CAA method determines the
axial length of the defect using Bx, By, and Bz in the axial detection direction. It identifies
the circumferential length of the defect using By and Bz in the circumferential detection
direction.

 
(a) (b) 

Figure 2. Defect-opening profile recognition: (a) Bx in the x-detection, (b) By in the x-detection.

2.3. The MSSF Method for Defect Depth Quantification

In this section, the MSSF quantification method is accomplished by deriving a 3D
MDM and utilizing a multi-sensor probe.

Three-dimensional MDM: It is assumed that the two surfaces of a rectangular defect
perpendicular to the applied magnetic field are uniformly distributed with magnetically
opposite surface charges whose density is ±σs. The interaction between the two produces a
leakage magnetic field [35], as shown in Figure 3. A coordinate system with right angles is
established on the inner surface of the pipe. The x-axis is defined as the axial direction of the
pipe, the y-axis as the radial direction, and the z-axis as the circumferential direction. The
dimensions of the defect are 2l for length, 2w for width, and h for depth. Equations (1)–(3)
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can be used to solve for the axial component Hx, radial component Hy, and circumferential
component Hz at the field point P(x, y, z) according to the Biot–Savart law [36,37].

Hx(x, y, z) = σs
4π × {arctan

[
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Figure 3. Three-dimensional MDM of the MFL detection.

Figure 4 shows the structure of the multi-sensor probe, which consists of four Hall
sensors arranged in staggered rows above and below. The lift-off values are denoted as
r1, r2, r3, and r4, respectively, where r2 − r1 = d and r4 − r3 = d. The CAA method can fit
the MFL signals at a lift-off value of 0 from the MFL signals under the four different lift-off
values. This enables the quantification of the defect length 2l and the defect width 2w.
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(a) (b) 

Figure 4. Multi−sensor probe detection system: (a) schematic of the spatial layout, (b) 2D dimensional
display, blue squares represent sensors; 1, 2, 3, 4 represent sensor numbers.

When analyzing the MFL signals, particular attention should be paid to the signals
in the vicinity of defects, as the magnetic field in regions far from the defect is very
weak and exhibits negligible differences [29]. In this study, a square signal area with a
side length of 20 mm is chosen as an example, with its center coinciding with the defect
center. This area adequately covers the leakage magnetic field generated by the defect.
As shown in Figure 5a, the Region of Interest (ROI) is delineated by blue dashed lines,
representing detection channels along the x and z directions, spaced 1 mm apart. The defect-
opening profile identified by CAA is depicted by the red box in Figure 5b, encompassing
2m + 1 channels in the x direction and 2n + 1 channels in the z direction. There are
c = (2m + 1) × (2n + 1) data acquisition points, P−n, −m, P−n, m, Pn, [−m, Pn, m, · · · · · ·Pi,j,

i∈[−n, n], j∈[−m, m]. The magnetic field at point Pi,j ( i
n l, y, j
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where y represents the lift-off value of data acquisition points, y > 0. By calculating the
defect depth at each data acquisition point, the maximum defect depth can be determined
using Equation (5), providing insights into the extent of pipeline damage.

hmax = max
{

h1,1, h1,2 · · · · · · hi,j
}
−n<i<n, −m<j<m (5)

Taking point Pn,0 (l,y,0) at the center of the defect edge in Figure 5b as an example, we
derive the algorithm for solving defect depth using the MSSF based on the 3D MDM. By
substituting point Pn,0 (l,y,0) into Equations (1)–(3), expressions for Hx, Hy, and Hz at this
point are obtained as (6)–(8).
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342



Sensors 2024, 24, 6623

 
(a) (b) 

Figure 5. Detection region of the multi-sensor probe: (a) Region of interest (ROI) selected, (b) Defect-
opening profile area.

During the derivation of the formula, it was found that the signal value of the circum-
ferential signal Hz at the point Pn,0 (l, y, 0) is zero. This is because the circumferential signal
is insensitive to defect edges perpendicular to the direction of magnetization. However, it
is more sensitive to defect edges parallel to the direction of magnetization and to defect
right-angled features [38]. Thus, the significance of the circumferential signal Hz at this
point is not relevant. Therefore, subsequent calculations mainly utilize the axial signal Hx
and radial signal Hy. The intermediate variables Px(y), My(y), and NZ(y) are defined as
follows:

Px(y) = tan
(

Hx × 4π

σs

)
(9)

My(y) = eHy× 4π
σs (10)

Nz(y) = eHz× 4π
σs = 1 (11)

In Equations (9) and (10), we observe that the numerator and denominator of Px(y) and
My(y) are of the same order. Inspired by [32], we divide the numerator and denominator
of Px(y) by y2 and the numerator and denominator of My(y) by y4. Additionally, we define
the intermediate variables u(y), v(y), and η(y).

u(y) = l/y (12)

v(y) = w/y (13)

η(y) = h/y (14)

Therefore, Equations (9) and (10) can be expressed as (15) and (16), respectively.
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The Equations (15) and (16) can be solved iteratively to determine the value of η(y). For
sensors 1, 2, 3, and 4, the relation r2 = r1 + d and r4 = r3 + d holds. Therefore, h can be

343



Sensors 2024, 24, 6623

denoted by η(r1), η(r2), η(r3), η(r4), and d, thereby enabling multi-sensor signal fusion to
quantify the defects. Please refer to Equations (17) and (18) for further details:⎧⎨⎩h1 = η(r1)η(r2)d

η(r1)−η(r2)

h2 = η(r3)η(r4)d
η(r3)−η(r4)

(17)

h = αh1 + βh2 (18)

where α and β are the weighting coefficients for h1 and h2, weighted average solution h.
The solution map and block diagram of the MSSF quantification are shown in Figure 6a,b

respectively. In the solution map, for sensor 1 with a lift-off value of r1, the obtained
values of Hx (r1), Hy (r1), Hz (r1) and the dimensions of the defect length 2l and width
2w are substituted into Equations (9), (10), and (11) to solve for Px(y), My(y), and NZ(y).
Subsequently, iterative computation of Equations (15) and (16) are used to obtain η(r1).
Similarly, η(r2), η(r3), and η(r4) are obtained for sensors 2, 3, and 4. Finally, Equations (17)
and (18) are used to estimate the defect depth h.

 

 
(a) (b) 

Figure 6. The MSSF quantification algorithm: (a) the solution map, (b) the block diagram.

The block diagram illustrates the complete procedure for defect quantification, as
follows:

Step 1: Conduct an MFL detection on the component to detect the presence of defects.
If a defect is identified, the region surrounding the defect is designated as the ROI, and
Step 2 is initiated. If no defects are found, the process is completed.

Step 2: Use multi-sensor probes to extract MFL signals at various lift-off values.
Apply CAA to identify defect-opening profiles. These profiles are then substituted into
Equations (15)–(18) to iteratively determine the depth of each point Pi,j within the compu-
tational domain.

Step 3: After computing the depth h at all calculation points within the domain, where
c = (2m+1) × (2n+1), output the maximum depth hmax from all calculated values. If the
depth calculations for all points are not yet completed, proceed to compute the depth for
the next point.

Step 4: Check for additional defects. If no further defects are detected, conclude the
quantification process. If other defects are present, continue with the quantification process
for the next defect.

For defect depths at other data acquisition points, the derivation process is identical
to the above, allowing computation of defect depths at all sampling points within the
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defect-opening region to ultimately obtain the maximum depth hmax. Similarly, for cylin-
drical [35] and conical [39] defects, the MSSF quantification method can be utilized for
depth calculation. The derivation process parallels that of rectangular defects, with the
defect-opening dimensions 2l and 2w replaced by the radius R. The specific transformations
are as follows:

Defect-opening dimensions: length 2l, width 2w → radius R

Data sampling points : Pi,j

(
i
n

l, y,
j

m
w ) → Pi,j

(
i
n

R, y,
j

m
R
)

Intermediate variables :

⎧⎨⎩
u(y) = l/y
v(y) = w/y
η(y) = h/y

→
{

u(y) = R/y
η(y) = h/y

3. Simulation and Experiment

3.1. Design of the Finite Element Model

FEM is based on Maxwell equations when solving MFL fields. MFL problems can be
effectively treated as magnetostatic problems using a scalar magnetic potential method.
These magnetostatic problems can be expressed by the following equation [40]:

∇× 1
μ
∇× A = J (19)

where ∇ is the Hami operator, A is the magnetic vector potential, J is the current density,
and μ is a function of the magnetic flux density B, given by μ = μ(B), which exhibits
nonlinearity as depicted in Figure 7, corresponding to the material’s B-H curve.

 

Figure 7. Magnetostatic characteristics of nonlinear B-H curves.

The integration by parts in (19) gives the following [41]:

� 1
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∂W
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× ∂A
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+
∂W
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× ∂A
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)
da −

�
w × J da = 0 (20)

where w and a denote the weight function and volume of the space, respectively. As
the shape functions are equal to the weighting functions [42], Equation (20) could be
represented in a matrix from Equation (21):

∑
e
[
1
μ
[S]e Ae − [Q]e J] = [0] (21)
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Qe,ij =
�

Nida (23)
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where e represents that the matrices pertain to a specific element, and Se,ij, and Qe,ij are
the typical entries in these matrices in (21). After calculating the magnetic vector potential
Ae at each vertex of the element in the magnetic field from (21), then the magnetic field
strength B can be calculated from B = ∇ × A.

To accurately obtain the distribution characteristics of the leakage magnetic field of
defects and verify the feasibility of the MSSF quantification method, the research team
established a 3D FEM using a ANSYS 2021 software, as shown in Figure 8a. To reduce
computational complexity, only 1/18th of the entire circumference is selected for the
simulation study, due to the cylindrical symmetry of both the leakage detector and the
inspected pipeline. The ferromagnetic specimen in the model is made of Q235 steel. Its
magnetic permeability adheres to the B-H curve illustrated in Figure 6. The magnetization
device comprises a yoke and two permanent magnets made of neodymium with a remanent
magnetic strength of 1.3 T. A layer of rigid brushes is placed on the surface of the permanent
magnets, which are in direct contact with the ferromagnetic specimen. The entire MFL
detection device is enclosed by the air domain, where the relative magnetic permeability is
set to 1. The detailed structural and material parameters of the detector are illustrated in
Figure 8b and Table 1, respectively.

 

(a) 

 

(b) 

   
(c) (d) (e)  

Figure 8. The FEM of MFL detection: (a) MFL detection system, (b) structural dimensions of the MFL
detection system, (c) rectangular metal loss defect, (d) square perforation defect, (e) conical defect.

Table 1. Material parameters for each component.

Part Relative Magnetic Permeability Remanent Magnetization

Magnet 1 1.3 T
Air 1 -

Brush 3000 -
Yoke iron 5000 -
Steel pipe shown in the B-H curve -

Given the variability in actual pipe defect profiles, this section analyzes the MFL
signals of rectangular defect, square perforation defect, and conical defect using FEM, as
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illustrated in Figure 8c–e. The model does not account for velocity effects, so the leakage
magnetic field can be treated as static. Therefore, the 3D static magnetic field solver is
used. To resolve the contradiction between the large specimen volume and the same defect
volume, we implemented varying grid sizes in different regions [43]. The computational
domain was divided into unstructured grids, and the air domain over the defects was
locally encrypted.

3.2. Results of the FEM Simulation

The rectangular metal loss defect dimensions chosen for this study are length
2l = 4 mm, width 2w = 10 mm, depth h = 3 mm, and wall thickness t = 10 mm. MFL
signals were simulated across lift-off values ranging from 0.1 mm to 5 mm, incremented
by 0.1 mm. Figure 9 shows the relationship between the leakage magnetic field and the
lift-off value in the x and z detection directions, as simulated by the FEM. It is evident that
as the lift-off value increases, the amplitude of each signal component decreases sharply,
causing the characteristic information, such as extreme and inflection points, to become
gradually submerged, and the signal-to-noise ratio (SNR) to decrease. Bx in the x-detection
direction and By in the z-detection direction show axisymmetric single-peak features, while
By in the x-detection direction and Bz in the z-detection direction show centrosymmetric
double-peak features. The signal components in the x-detection direction have a peak
spacing that corresponds to the length of the defect 2l. Similarly, the signal components in
the z-detection direction have a peak spacing that corresponds to the width of the defect
2w. This is a prerequisite for implementing the CAA method.

 
(a) (b) 

 
(c) (d) 

Figure 9. The correlation between rectangular metal loss defect leakage magnetic field and the
lift-off value: (a) Bx in the x-detection, (b) By in the x-detection, (c) By in the z-detection, (d) Bz in the
z-detection.

Similarly, the square perforation defect measures 2l = 6 mm and 2w = 6 mm, with a
defect depth h = wall thickness t = 3 mm. The conical defect has dimensions R = 3 mm,
h = 3 mm, β = 45◦, and wall thickness t = 10 mm. MFL signals are simulated across a range
of lift-off values from 0.1 mm to 5 mm. Figure 10 illustrates the axial signal Bx and radial
signal By in the x-detection direction for both of these defects.
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(a) (b) 

 
(c) (d) 

Figure 10. The correlation between the leakage magnetic field in the x-detection and the lift-off value:
(a) Bx for square perforation defect, (b) By for square perforation defect, (c) Bx for conical defect,
(d) By for conical defect.

3.3. Design of the Physical Experiments

To evaluate the practicality of the MSSF quantification method in practical inspection,
the research team developed an MFL detection device and a ferromagnetic specimen with
surface defects, as shown in Figure 11. The steel plate specimen measures 440 mm in length
and has a wall thickness t of 6.00 mm. It contains a circumferential rectangular groove
defect with an axial length 2l of 6.00 mm, a circumferential width 2w of 30.00 mm, and a
depth h of 2.40 mm, an axial rectangular groove defect with an axial length 2l of 30.00 mm,
a circumferential width 2w of 6.00 mm, and a depth h of 2.40 mm, as well as a circular
perforation defect with a radius R of 2.50 mm and a depth h of 6.00mm. The specimen was
magnetized by a permanent magnet with a remanent magnetic strength of 1.3 T.

The MFL signal collection probe consists of four Hall sensors. These sensors maintain
an axial sampling interval of 0.05 mm, while the detection device moves at a speed of
0.1 m/s along the slide guide. The sensor lift-off value is adjusted using a fixing bolt.
Upon completion of detection, the collected MFL signal is stored in the storage unit and
subsequently transmitted to the data analysis and processing system.

  
(a) (b) (c) (d) 

Figure 11. Experiment site: (a) MFL detection system, (b) circumferential rectangular groove defect,
(c) axial rectangular groove defect, (d) circular perforation defect.
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3.4. Results of the Physical Experiments

During the experiment, the adjusting bolts were used to set four different lift-off values:
r1 = 1.5 mm, r2 = 2.5 mm, r3 = 2.0 mm, and r4 = 3.0 mm, with a sensor spacing d of 1 mm.
Several experiments were conducted, and the results are presented in Figure 12, illustrating
the measured MFL signals of rectangular grooves and perforation defects in the x-direction
detection. It becomes evident that as the lift-off value increases, the MFL signal exhibits a
consistent trend with the FEM results, demonstrating a decrease in signal amplitude and
SNR. It is noteworthy that the amplitude of the MFL signal obtained experimentally may
not match exactly with that obtained by the FEM due to differences in material properties
and dimensional setup parameters. However, the signals’ characteristics and distribution
trends exhibit a high degree of consistency.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. The MFL signals obtained from the experiments: (a) Bx of the circumferential rectangular
groove defect, (b) By of the circumferential rectangular groove defect, (c) Bx of the axial rectangular
groove defect, (d) By of the axial rectangular groove defect, (e) Bx of the circular perforation defect,
(f) By of the circular perforation defect.
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4. Results and Discussion

In this section, the functions and robustness of the MSSF quantification method will
be discussed based on the simulation data obtained from the FEM and the experimental
data collected from the MFL detection experiment.

4.1. The Solution of the Size of Rectangular Defect

Based on the rectangular metal loss defect MFL signals presented in Figure 9, the
lift-off values for the multi-sensor probe are selected as follows: r1 = 1 mm, r2 = 2 mm,
r3 = 1.5 mm, r4 = 2.5 mm, with a sensor spacing d of 1 mm. The CAA method was used
to estimate the length and width dimensions of defects based on the MFL signals under
the different lift-off values. Within the defect-opening region, there are 11 channels in the
x-detection direction and 5 channels in the y-detection direction, and the total number
of data acquisition points c is 55. The defect depth h at each data acquisition point was
estimated using Hx(r), Hy(r), Hz(r), and d, following the algorithm outlined in Figure 6. The
specific calculation results are shown in Table 2.

Table 2. Quantification results and relative errors for the rectangular metal loss defect using simula-
tion data.

Defect Dimension (mm) Computing
Time (s)l w hmax

True values 2.00 5.00 3.00
4.12Calculated values 2.08 5.06 2.88

Relative error 4.00% 1.20% 3.83%

Similarly, the dimensions of the circumferential and axial rectangular groove defects
were estimated using the MSSF quantification method, based on the experimental data
shown in Figure 12a–d. The specific calculation results are shown in Tables 3 and 4.

Table 3. Quantification results and relative errors for the circumferential rectangular groove defect
using experimental data.

Defect Dimension (mm) Computing
Time (s)l w hmax

True values 3.00 15.00 2.40
16.10Calculated values 3.26 16.10 2.22

Relative error 8.67% 7.33% 7.58%

Table 4. Quantification results and relative errors for the axial rectangular groove defect using
experimental data.

Defect Dimension (mm) Computing
Time (s)l w hmax

True values 15.00 3.00 2.40
14.31Calculated values 15.30 3.22 2.30

Relative error 2.00% 7.33% 4.17%

Tables 2–4 demonstrate that the error between the estimated and actual defect size
derived from the MSSF quantification method is below 10% for both simulated and experi-
mental cases. Notably, the axial and circumferential sampling intervals of the sensors were
notably larger in the physical experiments compared to the FEM simulation. Consequently,
this reduces the accuracy of defect-opening profile recognition by CAA, which in turn
increases the depth quantification error. However, the error remains within acceptable
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thresholds. Regarding computation time, due to larger defect sizes observed in experiments
compared to simulations, there is an increase in data acquisition points, resulting in longer
computing times for quantifying experimental defects.

4.2. The Solution of the Size of Perforation Defect

To investigate the proposed method’s versatility in dealing with various types of
defects, this study also examined perforation defects through quantitative analysis. The
axial signal Bx and radial signal By in the x-detection direction are illustrated in Figure 10a,b,
respectively, for the simulated signals of the square perforation defect. The lift-off values
for the multi-sensor probe were selected as follows: r1 = 1 mm, r2 = 2 mm, r3 = 1.5 mm, and
r4 = 2.5 mm. The specific calculation results are shown in Table 5. Table 5 quantification
results and relative errors for the square perforation defect using simulation data

Table 5. Quantification results and relative errors for the square perforation defect using simulation
data.

Defect Dimension (mm) Computing
Time (s)l w hmax

True values 3.00 3.00 3.00
3.76Calculated values 3.12 3.07 2.89

Relative error 4.00% 2.33% 3.78%

The experiment estimated the defect size utilizing the MSSF quantification method
that relied on the MFL signals of the circular perforation defect shown in Figure 12e,f. The
calculation results are presented in Table 6.

Table 6. Quantification results and relative errors for the circular perforation defect using experimen-
tal data.

Defect Dimension (mm)
Computing Time (s)

R hmax

True values 2.50 6.00
1.04Calculated values 2.27 5.72

Relative Error 8.80% 4.63%

Tables 5 and 6 demonstrate the high accuracy and efficiency of the MSSF quantification
method in handling various shapes of perforation defects. The size quantification errors
for the square perforation defect in the FEM simulation are below 5%. In the physical
experiment, the size quantification errors for the circular perforation defect are below 10%,
and the calculation time of both is less than 5 s.

4.3. The Solution of the Size of Conical Defect

For the conical defect, the axial signal Bx and radial signal By in the x-detection
direction are illustrated in Figure 10c,d, respectively. The lift-off values for the multi-sensor
probe were selected as follows: r1 = 1 mm, r2 = 2 mm, r3 = 1.5 mm, and r4 = 2.5 mm. In the
defect region depicted in Figure 13, the red line is the profile of the defect opening. there are
7 channels in the x-detection direction and 7 channels in the y-detection direction, and the
total number of data acquisition points c is 29. Calculate the defect depth at each acquisition
point, identifying the maximum defect depth hmax at point h0,0 (the vertex position of the
cone). The calculation results are presented in Table 7.
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Figure 13. Layout of data acquisition points in the conical defect-opening region.

Table 7. Quantification results and relative errors for the conical defect using simulation data.

Defect Dimension (mm)
Computing Time (s)

R hmax

True values 3.00 3.00
2.01Calculated values 2.96 2.81

Relative Error 1.33% 6.33%

According to the calculation results in Table 7, under simulated conditions, the MSSF
quantification model maintains a fast computation speed, requiring only 2.01 s even when
the base of the conical defect is uneven. Furthermore, it exhibits a quantification error of
only 6.33% for the maximum defect depth, which meets the requirements for ultra-high-
definition MFL detection. This demonstrates that the MSSF quantification model excels in
both computation speed and quantification accuracy.

4.4. Comparison of the Quantification Accuracy and Efficiency

To compare the performance of the MSSF quantification method with other quantifica-
tion methods, additional comparative experiments are conducted. This study selects the
test defect depicted in Figure 14, representing a rectangular defect with dimensions of 2l =
21.20 mm, 2w = 20.60 mm, and h = 3.00 mm. The MFL signals of the test defect are acquired
using the MFL detection setup depicted in Figure 11a. Subsequently, the quantification
accuracy and iteration speed of the MSSF method were compared with those of the single
sensor quantification method, the genetic algorithm (GA) [28], the particle swarm opti-
mization (PSO) [44], and the radial basis function neural network (RBFNN)-based error
adjustment (EA) methodology [45]. The specific calculation results are presented in Table 8.

 
Figure 14. Example of the test defect.
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Table 8. Comparative analysis of the results of different quantification methods.

Quantification
Method

Estimated Dimension (mm) Computing
Time (s)l Error w Error h Error

True values 10.60 - 10.30 - 3.00 - -

Single-sensor 8.93 15.75% 8.67 15.83% 2.44 18.67% 84
GA 11.32 6.79% 10.50 1.94% 3.30 10.00% 186
PSO 11.50 8.49% 10.00 2.91% 3.20 6.67% 164

RBFNN-EA 9.87 6.89% 10.00 2.91% 3.20 6.67% 97
MSSF 10.00 5.66% 9.85 4.37% 2.91 3.00% 32

Computer hardware configurations are as follows: CPU-Inter Core i7-12700K CPU @
3.60 GHz, Memory-32 GB, GPU-NVIDIA GeForce RTX 3060, and hard disk-1 TB. All the
computations are implemented in MATLAB R2021(b).

The computational results demonstrate that the quantification accuracies of most
methods are satisfactory, except those using single-sensor probes, which exhibit relatively
higher quantification errors. Moreover, the computation time of the MSSF method is
notably shorter than that of other models. This is attributed to the fact that the MSSF
quantification method does not necessitate the iterative optimization of the forward model
parameters in the traditional defect inversion method. Instead, it directly incorporates
defect information obtained from multi-sensor probes into the derived forward model
(MDM), allowing for direct iterative determination of defect size. Furthermore, the solution
equation for the MSSF method is simplified, requiring only a single equation to be solved
for each element. In a series of experiments, the MSSF quantification method typically
required fewer than 15 iterations to calculate the defect depth at each acquisition point.
This notably reduces computational complexity, highlighting that the method substantially
improves efficiency without compromising accuracy.

4.5. Robustness of MSSF Quantification Method

This section examines the robustness of the MSSF quantification method in various
application scenarios. These scenarios include rectangular defects with varying extension
directions: axial defect (2l = 10 mm, 2w = 4 mm) and circumferential rectangular defect
(2l = 4 mm, 2w = 10 mm), anomalous lift-off values including ultra-high lift-off values
of r1 = 3 mm, r2 = 4 mm, r3 = 3.5 mm, r4 = 4.5 mm, and MFL signals with 5% and 10%
noise levels. The relative error of the proposed method for defect depth quantification
in the above cases was analyzed and calculated. The specimen thickness t is 10 mm, and
the defect depth ranges from 10%t to 70%t in steps of 10%t. The results are presented in
Figure 15.

 

Figure 15. Quantification error of MSSF method for different defect depths.
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As illustrated in Figure 15, there is a negative correlation between the relative error
and the overall defect depth. For defects with a depth of less than 20%t, the amplitude and
SNR of the MFL signal are low, resulting in a substantial relative error in quantification.
Nevertheless, the quantification error of the defects under different extension directions
consistently remains below 15%. When the defect depth exceeds 20%t, the quantification
error remains within 10%. Regarding conditions involving noise and anomalous lift-off
values, the reduction in SNR results in diminished characteristic information such as
extreme and inflection points. Consequently, this adversely affects the quantification
accuracy. However, when the defect depth is increased to 40%t, the relative error of the
depth quantification for both 5% and 10% noise remains below 10%. Even under conditions
of abnormal lift-off values, the relative error remains below 15%.

Furthermore, the figure illustrates that anomalous lift-off values have the most sig-
nificant impact on the quantification accuracy. Specifically, when the defect depth is only
10%t, the relative error in depth quantification is 33.4%, with an absolute error of 3.3%t.
Conversely, when the defect depth reaches 70%t, the relative error decreases to 6.3%, and
the absolute error is 4.4%t. These results are within the acceptable range for ultra-high-
definition MFL detection. Additionally, the MSSF quantization method demonstrates
notable robustness even under complex detection conditions.

5. Conclusions

In this article, an MSSF quantification method is proposed to achieve a fast estimation
of defect size in MFL detection. The method constructs a multi-sensor probe system that
can acquire a variety of lift-off value MFL signals, which increases the diversity of defect
information and thus reduces the complex iterative process. Subsequently, a method for
iteratively solving the defect dimensions is derived based on a 3D MDM combined with
the structural characteristics of the multi-sensor probe. The proposed method is validated
by FEM simulations and physical experiments. The results demonstrate that the method
accurately and efficiently estimates defect sizes, typically requiring fewer than 15 iterations
per depth calculation point within the defective region. Rectangular metal loss, circular
perforation, square perforation, and conical metal loss defects are quantified with an error
rate of less than 10%. In comparison to other prevalent quantification methodologies, this
approach not only guarantees accuracy but also enhances efficiency.
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Abstract: Nuclear magnetic resonance relaxation of the proton spins of liquid molecules and their
evolution during processes such as drying, fluid flow, and phase change of a sample can be monitored
in a nondestructive way. A unilateral 1H NMR sensor made with a permanent magnet array, inspired
by the NMR MOUSE, with an RF coil tuned to 11.71 MHz was developed. This creates a sensitive
homogeneous measuring volume parallel to the sensor surface and located 14 mm from its surface,
allowing contactless measurements from the sample’s interior. As this sensitive volume is moved
across the sample using a semi-automatic linear displacement mechanism with millimetric precision,
spatial T2 lifetime and signal intensity 1D profiles can be obtained. To characterize the sensor’s
sensitive volume, eraser samples were used. To evaluate the sensor’s ability to characterize different
materials, cement paste samples containing ordinary and white Portland cement were prepared and
measured at seven days of age. In addition, measurements were made on organic samples such as
a Hass avocado and beef steak. Based on the results, a 1 mm spatial resolution of the sensor was
achieved. The sensor was able to detect differences in T2 lifetimes in eraser specimens composed
of layers of three different erasers. Also, a clear difference in T2 lifetimes and signal intensities was
observed in cement pastes composed of white and ordinary Portland cement. On the other hand, it
was possible to obtain signals from the peel and pulp of the avocado fruit, as well as from the fat and
meat in a beef steak in a nondestructive way. The T2 lifetimes of the different materials agreed with
those obtained using a commercial NMR spectrometer.

Keywords: relaxometry; nondestructive testing; profile

1. Introduction

Nuclear magnetic resonance (NMR) is a nondestructive and non-invasive technique
that enables the observation of changes in the microstructure of materials without the
need for sample extraction or causing damage to the object of study. This technique is
based on the absorption and emission of electromagnetic radiation by the nuclei of specific
atoms subjected to a strong magnetic field and excited by radiofrequency pulses [1–3]. By
measuring the NMR signal, information about the structure and composition of the sample
is obtained.

In the context of cement-based materials, NMR has been used to study hydration [4],
moisture content, pore refinement, compressive strength [5], carbonation depth [6], and
moisture content profiles during capillary water absorption [7]. In the agri-food industry,
NMR has also proven to be a valuable tool. For example, NMR spectroscopy has been
used to detect adulterations in vegetable oils, determine the composition of fatty acids, the
presence of trans fats, and other parameters important for quality and health [8], as well as
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in the identification of contaminants, pesticide residues, additives, and other unwanted
compounds in food [9].

Relaxometry, another NMR tool, allows the study of food components through relax-
ation times and signal intensity [10]. In this context, unilateral NMR emerges as a promising
technique derived from traditional NMR, allowing the application of these relaxometry
principles to study a specific region of the sample without the need to place the entire object
within a homogeneous magnetic field. This technique benefits from low-field unilateral
sensors, which are mainly classified into two types: those that generate a gradient B0
magnetic field and those that create a B0 magnetic field sweet spot [11].

Sensors that generate a gradient B0 magnetic field are used to obtain spatial infor-
mation about the interior of the sample, which allows the creation of depth profiles of
the studied material. The simplest design of this type is the single bar magnet, which
produces a B0 field perpendicular to its surface [12]. For its operation, a coil is required that
generates a transverse B1 field, for which a “figure 8” coil is generally used. However, the
low homogeneity of this coil limits the penetration of the field into the sample [11], which
presents difficulties in applications that demand exploring deeper volumes or require a
more uniform excitation. One of the most used geometries is the “U” shaped magnet, which
generates a B0 field parallel to the surface. The first version of the NMR MOUSE [13] was
developed with this geometry, consisting of two semicylindrical shape magnets separated
by a gap on an iron plate. This sensor allowed profiles to be obtained by varying the
frequency according to the desired depth. Subsequently, improvements were introduced
to the design, which mainly consisted of dividing the U-shaped magnet into two parts,
introducing a small additional gap between these divisions to adjust the uniformity of the
magnetic field laterally [14,15]. These improvements made the NMR MOUSE evolve into
an advanced sensor capable of making profiles with microscopic resolution.

On the other hand, sensors that generate an optimal magnetic field point B0 are used
to maximize the size of the sensitive volume and obtain homogeneous measurements
without considering spatial information. Such sensors have proven helpful in agri-food
and industrial applications, such as assessing intramuscular fat content in live cattle [16],
quantifying fat and water in fresh tuna meat [17,18], and measuring moisture in low-grade
pulverized coal [19]. Among the most representative examples of this category are the
barrel magnet [20], the NMR MOLE [21], and the three-magnet array [22,23].

The aim of the present work was to develop a unilateral NMR sensor, based on the
NMR MOUSE [14], that allows measurements from the surface to the interior of the sample
with a millimetric resolution. This allows a significant cost reduction when measuring
samples that do not require microscopic resolution like the NMR MOUSE. A design based
on an optimal point would not be suitable since it generates a sensitive volume that
is too large, which would reduce the resolution and make it difficult to obtain profiles.
Therefore, the design will be based on a modified U-shaped geometry, which will allow
adequate control of the magnetic field, ensuring that the sensitive area is far from the
surface, allowing the use of more efficient antennas such as the surface spiral type and the
possibility of obtaining profiles with sufficient resolution without compromising cost. In
addition, semi-automation of measurements is incorporated, which will allow the sensor
to make horizontal and vertical millimetric movements.

2. Materials and Methods

2.1. Sensor Design and Construction

The unilateral NMR sensor mainly consists of an array of NdFeB permanent magnets
and a radiofrequency antenna. Four N35 grade NdFeB rectangular magnets (Magnetika
Saiffe, Guadalajara, Mexico) measuring 50 mm × 50 mm × 25 mm were used. The magnetic
field strengths on their surfaces were 368 mT, 377 mT, 370 mT, and 377 mT for magnets
1, 2, 3, and 4, respectively, which were measured using a gaussmeter HT-20 (Hangzhou
Best Magnet Co. Ltd., Hangzhou, China). The COMSOL Multiphysics® version 3.4 finite
element software (COMSOL, Burlington, MA, USA) was used to perform static magnetic
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field simulations of the magnet array based on a modified U-shaped geometry by varying
the separation distance d and t between the magnets (Figure 1a). To achieve the best
configuration that permitted reaching a homogeneous volume of the magnetic field away
from the surface, like the NMR MOUSE magnet array [14,15,24]. Based on the simulation
results, the array was constructed by placing the magnets on a mild steel plate measuring
105 mm × 130 mm × 15 mm, arranged as shown in Figure 1a. A 3D-printed case was
used to hold the magnets in place (Figure 1b). Because the four magnets were not perfectly
matched in the magnetic field strength across their surface, it was demonstrated both in
simulation and construction to place the magnets in the order shown in Figure 1b.

(a) (b)

Figure 1. (a) Configuration of the magnet array optimized by simulation, where the distances d and t
were 28 mm and 3 mm respectively, (b) Constructed magnet array, the magnets were placed inside a
3D-printed case to keep them in place according to the simulation. The numbers in red refer to each
specific magnet whose magnetic field was measured.

Subsequently, a surface RF antenna was designed, constructed, and tuned to a fre-
quency of 11.71 MHz for 1H resonance frequency, according to the Larmor Equation (1),
using fixed and variable non-magnetic capacitors. A rectangular spiral antenna measuring
20 mm × 30 mm (Figure 2a), was constructed with 21 AWG copper wire and coated with
epoxy resin. It comprises ten turns, with a bandwidth Δf = 100.5 kHz and a quality factor
Q = 116. The S11 parameter (scattering parameter) was evaluated to ensure proper antenna
matching to the system and minimize reflected power. This parameter measures the level
of reflected energy at the antenna input port; a low S11 indicates that the antenna is well-
matched to the system, allowing most of the power to be transferred without significant
losses. In the case of the built antenna, the minimum of S11 occurs at the frequency of
11.71 MHz (Figure 2b), confirming proper matching for signal transmission at this frequency.
The antenna was installed on a 1.5 mm-thick printed circuit board, covering the magnet
array’s surface to minimize the effects of eddy currents. When combined, the antenna and
the board have a total thickness of 2.9 mm, reducing the available measurement distance to
11.1 mm. This distance represents the space between the antenna surface and the magnetic
field’s homogeneous zone.

ω = γ ∗ B0 (1)

where ω is the Larmor frequency in MHz, γ is the gyromagnetic ratio in MHz/T, and B0 is
the strength of the static magnetic field in T.
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Figure 2. (a) A photograph of the constructed RF antenna and (b) Reflected signal from the transmitter
as a function of frequency, where the minimum value indicates the optimal tuning corresponding to
11.71 MHz.

2.2. Linear Movement Mechanism for Sensor Displacement

A semi-automatic CNC displacement mechanism was designed and built to carry out
NMR measurements at precise sample positions. The mechanism is 110 cm tall and has a
base measuring 53 cm × 35 cm (Figure 3). It utilizes structural aluminum profiles of various
cross-sectional dimensions (40 mm × 40 mm, 40 mm × 20 mm, and 20 mm × 20 mm)
to ensure strength and rigidity. Additionally, it incorporates smooth 12-mm diameter
stainless steel rods, a 16-mm diameter spindle with corresponding nuts, and various parts
manufactured via 3D printing.

Figure 3. Photograph of automatic mechanism for displacement of the unilateral NMR sensor.

The mechanism comprises two primary axes: the longitudinal X-axis and the vertical
Y-axis. The X-axis controls longitudinal movement, allowing the sensor to approach or
retract from the sample’s surface within a maximum displacement of 10 cm. The Y-axis
permits the vertical movement of the sensor, with a maximum displacement of 75 cm.
These displacements are driven by NEMA 23 OK57H18112A 4.2A 3 Nm (Oukeda Electric
Appliance Co., Ltd., Changzhou, China) stepper motors and drivers DM556 (Leadshine
Technology Co., Ltd., Shenzhen, China), which offer precise and reliable positioning control.
The movement instructions are transmitted to the motors from an ESP32-WROOM-32U
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(Espressif Systems, Shanghai, China) development board, which manages and coordinates
axis movements along with controlling other system functions.

2.3. NMR Measurements

To characterize the sensor, we used different types of erasers for the NMR measure-
ments (Figure 4a). These materials were used to conduct tests to determine parameters for
the CPMG technique, such as the amplitude and the 90◦ and 180◦ pulse widths.

(a) (b)

Figure 4. Materials used in sensor characterization. (a) Samples of three types of erasers. (b) The
2 mm thick eraser slice was moved to different positions within the homogeneous magnetic field
zone B0 along the Y-axis.

We measured the thickness of the region excited by the RF antenna using a 2-mm-thick
slice of an eraser. The eraser was displaced in 0.2 mm increments upward and downward
along the vertical axis of the homogeneous zone of the magnetic field generated by the
magnet array (Figure 4b). An NMR signal was acquired at each position using the CPMG
technique [25]. Based on the signal intensity, two profiles were obtained to determine the
thickness of the region that can be excited by the sensor antenna. To establish the sensor’s
upper and lower sensitive limits, we identified the position where the signal intensity
became relatively constant in the downward profile, aligning with the last position where
the signal intensity was still zero in the upward profile. The upper limit was determined
by finding the position where the signal intensity became relatively constant in the upward
profile and coincided with the last position where the signal intensity was still zero in the
downward profile.

Subsequently, an eraser sample composed of the three layers of each type of eraser
was made. Each eraser layer measured 2 mm × 23.6 mm × 19.6 mm, resulting in a total
thickness of 6 mm (Figure 5). The specimen was then measured in 10 vertical positions by
moving the sensor, which consequently moved the sensitive volume from top to bottom in
1 mm steps. At each position, a CPMG NMR signal acquisition was performed.

Figure 5. On the left, a representation of the specimen made with layers of three different types of
erasers is shown. The dashed red lines indicate the positions where signal measurements were taken,
with the sensor moved in 1 mm steps from top to bottom, as indicated by the blue arrow.
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2.4. Testing the Applicability of the Sensor

Two cylindrical (∅ = 4 cm and h = 4 cm) specimens of white Portland cement (WPC)
and ordinary Portland cement (OPC) at a water-to-cement ratio (w/c) of 0.60 were prepared.
Also, one additional WPC sample was prepared with a w/c ratio of 0.70. These were
measured with the CPMG technique at the age of 14 days.

For organic material, measurements were performed on Hass avocado samples at
their final ripening stage and on beef steak, as shown in Figure 6. NMR measurements
using the unilateral sensor were performed on the avocado’s pulp and skin without cutting.
Then the pulp and skin were extracted and measured separately using a Maran DRX HF
12/50 system (Oxford Instruments Ltd., Abingdon, Oxford, UK) operating at 12.9 MHz.
These last measurements were used to compare with those obtained using the sensor.

(a) (b)

Figure 6. Organic material for the NMR measurements with the sensor (a) Hass avocado samples
and (b) Beef steak.

For the beef steak, measurements with the unilateral sensor were performed separately
on the part containing only fat and on the part containing only meat.

All NMR experiments with the sensor were performed using a Kea2 spectrometer
(Magritek Limited, Wellington, New Zealand). Table 1 provides the parameters for the
CPMG NMR measurements using the unilateral sensor and the Maran DRX HF 12/50
instrument for the different materials.

Table 1. Parameters of the CPMG sequence used in the measurements with the unilateral sensor and
the Maran DRX HF 12/50 instrument.

Sensor Maran DRX

Parameters Eraser Cement Paste Avocado Meat Fat Eraser Avocado

90◦ pulse width (μs) 21 21 21 21 21 15.45 15.45
Number of echoes 512 32 512 512 512 512 512

Echo time (μs) 150 105 300 300 300 150 300
Number of scans 16,384 16,384 2048 2048 2048 1024 256

Acquisition time (min) 48 110 56 56 56 4.8 5.2

For each material analyzed, the T2 values and the amplitude associated with each
component were determined by fitting the CPMG echo train to the exponential decay
model described by Equation (2).

S(t) = ∑n
i=1 Aie−t/T2,i (2)
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where S(t) is the NMR signal measured as a function of time t, Ai is the amplitude asso-
ciated with component i. This term reflects the relative contribution of that component
to the total signal and is related to the number of protons in that population. e−t/T2,1

is the exponential term describing the signal decay associated with component i. T2,i is
the transverse relaxation time for component i. This parameter indicates how quickly
magnetization is lost due to interactions between protons and their environment. n is the
number of components detected in the signal decay.

3. Results and Discussion

In Figure 7, the measured magnetic field generated by the unilateral magnet array
is compared with the simulated field. A good agreement of the magnetic field was ob-
tained through simulation compared to the measurement of the built sensor. Notably, a
relatively uniform zone of the magnetic field B0, with an intensity of 274 mT at a height
of 14 mm above the magnet surface, is present. This is significant because it ensures the
homogeneous zone is inside the samples, allowing for NMR measurements at different
depths. Furthermore, this homogeneous zone extends over a rectangular area measuring
approximately 14 mm × 30 mm.

Figure 7. 2D plots of the magnetic field generated by the magnet array: (a) YX plane, (b) ZX plane,
and (c) ZY plane at a height of 14 mm above the surface of the array.
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Figure 8 displays the signal intensity of an eraser sample 2 mm thick. It was moved
parallel to the vertical axis, up and down between the uniform field zone (B0). Based on
the downward profile (circles and red lines), signal intensity equals zero for the first two
measurements because the sample is outside the sensitive zone. However, at 11.7 mm,
the NMR signal becomes detectable, and its intensity increases as the sample is moved
downward, indicating that most of the sample is entering the sensor’s sensitive zone. The
upward profile (circles and blue lines) shows the same trend. The sensitive zone of the
sensor spans from 11.1 mm to 12.1 mm, demonstrating that the RF antenna can excite a
slice of approximately 1.0 mm thick, which is considered the maximum sensor resolution.
To profile different depths in a sample, the sensor must be moved in steps of 1.0 mm.
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Figure 8. Profiles of signal intensity were obtained, with vertical indicating the thickness of the sensi-
tive zone, approximately 1 mm: upward measurements (UM) and Downward measurements (DM).

Figure 9a shows the CPMG signals obtained from measurements of three different
types of erasers. Despite the low signal-to-noise ratio (SNR) of 7, 19, and 22 for E1, E2, and
E3, respectively, each material’s signal lifetimes can be observed. This is further supported
by measurements taken with the Maran DRX system, as shown in Figure 9b.
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Figure 9. Transverse magnetization decay signals measured in each type of eraser: (a) with the
constructed unilateral NMR sensor and (b) with the Maran DRX system.

Figure 10 compares the T2 (Figure 10a) and amplitude values (Figure 10b) obtained by
fitting the data from Figure 9 to exponential decay functions with two and three components.
For all erasers, the short (2–10 ms) and long (27–40 ms) T2 lifetime components obtained
with the sensor were like those obtained with the Maran DRX named medium and long T2
components. Intensity and T2 time obtained with the sensor showed similar behavior to
those obtained with the Maran DRX. However, the shortest component (T2 < 1 ms) was
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undetectable for the sensor because the signal-to-noise ratio of the signals is low compared
to the SNR of the signals obtained with the Maran DRX system. A higher quality of the
CPMG decays acquired with the Maran system (SNR of 237, 301, and 219 for E1, E2, and E3,
respectively) allowed the fitting of signal with a higher number of components, compared
to the SNR of the CPMG decays obtained with the sensor (SNR of 7, 19, and 22 for E1,
E2, and E3, respectively). This is because, being a unilateral sensor, several factors affect
the signal quality; for example, lower B0 homogeneity, B1 homogeneity, and intensity are
dramatically reduced with distance and smaller volume of the excited sample.
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Figure 10. (a) T2 and (b) amplitude values obtained for each eraser. The abbreviations correspond to:
Sensor short component (SSC), Sensor long component (SLC), Maran DRX short component (MSC),
Maran DRX medium component (MMC), and Maran DRX long component (MLC). The error bars
represent ± one standard deviation.

The signals obtained from different positions of the layered specimen, using slices of
three types of erasers, exhibited biexponential decay behavior. The T2 lifetime components
and their corresponding signal intensities were determined and labeled as short and long
T2 components and are presented in Figure 11. Differences in T2 lifetimes and intensity
can be noted between the material type at the position corresponding to the material
localization. Notice that the T2 lifetime values agree with those measured in each eraser
sample individually (horizontal lines in Figure 11a). This demonstrates the ability of the
sensor to detect changes due to sample heterogeneity.
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Figure 11. Profiles obtained from specimen measurements composed of slices of three types of erasers:
(a) T2 lifetime and (b) signal intensity. The solid horizontal lines represent the measured T2 lifetime
value for each type of eraser individually.

Figure 12a presents the CPMG decays in WPC and OPC paste specimens, resulting in
an SNR of ≈30 for both signals. These signals were analyzed using a biexponential decay
function, which resulted in a short T2 lifetime of 0.07 ms (I = 0.073 A.U.) and a long T2
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lifetime of 1.53 ms (I = 0.0014 A.U.) for WPC paste and 0.11 ms (I = 0.0023 A.U.) and 1.11 ms
(I = 0.0009 A.U.) for the OPC paste. The shorter T2 values are for water in gel pores, and
the longer T2 are for water in capillary pores, both present in the hydrated cement paste.
The reduction in the long T2 lifetime component in the OPC paste compared with WPC, is
caused by the iron present in the OPC that enhances the T2 relaxation. On the other hand,
if the two w/c ratios of OPC pastes are compared (Figure 12b), there is a higher intensity in
the 0.70 w/c ratio paste, as expected. The SNR ratios were 26 and 28 for 0.60 and 0.70 w/c
pastes, respectively. For the 0.70 w/c ratio, the T2 lifetimes were 0.12 ms (I = 0.0026 A.U.)
and 1.64 ms (I = 0.0014 A.U.), whereas for the 0.60 w/c ratio, the T2 lifetimes were 0.107 ms
(I = 0.0037 A.U.) and 1.67 ms (I = 0.0008 A.U.).
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Figure 12. CPMG decays are measured in (a) specimens of WPC and OPC pastes with a w/c ratio of
0.60 and (b) OPC paste with 0.60 and 0.70 w/c ratios.

Figure 13 presents the CPMG signal decays measured in the Hass avocado samples.
It shows significant differences between the signals obtained for the peel, seed, and pulp,
both with the unilateral sensor and with the Maran DRX system.
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Figure 13. Transverse magnetization decay signals measured from Hass avocado: (a) with the built
unilateral NMR sensor and (b) with the Maran DRX system.

When analyzing the T2 values of the signals (Figure 14), three components were
determined with the Maran DRX system, which was expected given that the SNR values
obtained were higher than 100 (137 for the seed, 104 for the peel, and 104 for the pulp).
This allowed for a better determination of the T2 relaxation times. In contrast, with the
unilateral sensor, the presence of a B0 field gradient across the sensitive zone accelerates
the CPMG signal decays. This effect causes a low SNR in the signal (15 for the seed, 25 for
the peel, and 27 for the pulp), making resolving three components difficult compared with
the Maran DRX system. In this case, only one component was obtained for the seed and
peel, while two components were determined for the pulp.
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Figure 14. (a) T2 and (b) amplitude values obtained from measurements conducted on a Hass
avocado sample.

While the Maran DRX system offers a superior quality of the signals, it is limited
by sample size and lack of portability. Because of its size, the need to cut the avocado to
perform measurements is an explicit limitation, which puts the unilateral sensor at a clear
advantage in applications requiring portability and in situ measurements of large samples.

Figure 15 presents the echo train decay measured in a beef steak’s meat (red) and fat
(blue) regions using the unilateral sensor. It is evident that the signal corresponding to the
meat decays significantly faster compared to the fat, which is reflected in the relaxation
times T2 and the associated amplitudes. The values obtained for the meat were component
1 (T2 = 8.46 ms, 89% of the total amplitude) and component 2 (T2 = 59.17 ms, 11% of the
total amplitude). For the fat, the results were component 1 (T2 = 18.72 ms, 48% of the total
amplitude) and component 2 (T2 = 90.09 ms, 52% of the total amplitude). In this case, the
unilateral sensor demonstrates its ability to distinguish between fat and meat, opening up
opportunities for its use in industrial applications, such as food quality control.
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Figure 15. Normalized amplitude decay curves obtained by CPMG measurements on a beef steak
performed with the unilateral sensor. The signal corresponding to meat (red) exhibits a faster decay
than fat (blue), reflecting each component’s molecular dynamics properties. T2 values and associated
amplitudes for the fitted components are detailed in the text.

4. Conclusions

A unilateral 1H NMR sensor mounted on a millimetric precision semi-automatic
linear displacement mechanism was developed, permitting the measurement of CPMG
decay signals in a sensitive volume parallel to the sensor surface. The sensor was used to
characterize both organic and inorganic materials. The following conclusions were drawn:

• Simulations of magnetic fields performed using the COMSOL Multiphysics® version
3.4 software resulted yielded similar results to experimentally measured fields. The
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software facilitated the determination of magnet spacing to generate a relatively
homogeneous magnetic field zone. The resulting array yielded a 274 mT zone in a
rectangular area measuring approximately 14 mm × 30 mm at 14 mm away from the
surface of the magnets.

• Operating at a frequency of 11.71 MHz for 1H with a spatial resolution of 1 mm, the
sensor was successfully used to acquire NMR signals at different internal depths in
both organic and inorganic materials that exhibited relatively short- and long-lived
signals. T2 lifetime and signal intensity profiles were obtained that showed differences
in three types of erasers, as well as differences in signals from white and ordinary
Portland cement pastes, in the peel and pulp of Hass avocado samples, and in the fat
and meat of a beef steak.
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Abstract: Multi-layer conductive structures, especially those with features like bolt holes, are vulner-
able to hidden corrosion and cracking, posing a serious threat to equipment integrity. Early defect
detection is vital for implementing effective maintenance strategies. However, the subtle signals
produced by these defects necessitate highly sensitive non-destructive testing (NDT) techniques.
Analytical modeling plays a critical role in both enhancing defect-detection capabilities and guiding
the design of highly sensitive sensors for these complex structures. Compared to the finite element
method (FEM), analytical approaches offer advantages, such as faster computation and high accuracy,
enabling a comprehensive analysis of how sensor and material parameters influence defect detection
outcomes. This paper introduces a novel T-core eddy current sensor featuring a central air gap. Uti-
lizing the vector magnetic potential method and a truncated region eigenfunction expansion (TREE)
method, an analytical model was developed to investigate the sensor’s interaction with multi-layer
conductive materials containing a hidden hole. The model yielded closed-form expressions for the
induced eddy current density and coil impedance. A comparative study, implemented in Matlab,
analyzed the eddy current distribution generated by T-core, E-core, I-core, and air core sensors under
identical conditions. Furthermore, the study examined how the impedance of the T-core sensor
changed at different excitation frequencies between 100 Hz and 10 kHz when positioned over a
multi-layer conductor with a hidden air hole. These findings were then compared to those obtained
from E-core, I-core, and air-core sensors. The analytical results were validated through finite element
simulations and experimental measurements, exhibiting excellent agreement. The study further
explored the influence of T-core design parameters, including the air gap radius, dome radius, core
column height, and relative permeability of the T-core material, on the inspection sensitivity. Finally,
the proposed T-core sensor was used to evaluate crack and hole defects in conductors, demonstrating
its superior sensitivity compared to I-core and air core sensors. Although slightly less sensitive than
the E-core sensor, the T-core sensor offers advantages, including a more compact design and reduced
material requirements, making it well-suited for inspecting intricate and confined surfaces of the
target object. This analytical model provides a valuable tool for designing advanced eddy current
sensors, particularly for applications like detecting bolt hole defects or measuring the thickness of
non-conductive coatings in multi-layer conductor structures.

Keywords: eddy current testing; ferrite-core coil; T-core coil sensor; analytical model; truncated
region eigenfunction expansion method

1. Introduction

Multi-layer metal structures, crucial for equipment like aircraft skins, oil pipelines,
and nuclear power plant heat exchangers, are susceptible to safety hazards posed by cracks,
corrosion, and other hidden defects [1]. Over time, these structures inevitably develop
corrosion and fatigue cracks, leading to thinning and compromised structural integrity [2,3].
These defects can negatively impact equipment performance and safety, highlighting the
need for early detection to prevent catastrophic consequences.
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To ensure safety, crucial equipment components are regularly inspected using NDT
methods. Common NDT methods include liquid penetrant testing, magnetic particle
testing, ultrasonic inspection, eddy current testing (ECT), radiography, and infrared ther-
mography [4,5]. While liquid penetrant testing is fast and easy, it only detects surface
defects and requires extensive surface cleaning. Magnetic particle testing is limited to
ferromagnetic materials and necessitates demagnetization. Ultrasonic flaw detection is
effective for identifying deep defects in thick conductors and can also reveal internal flaws
in multi-layer conductor configurations [6,7]. However, it typically requires a uniform and
well-filled adhesive or sealant layer between these multi-layer conductors. Traditional ultra-
sonic testing methods struggle when it comes to detecting multi-layer structures that have
air gaps between the conductor layers [8–10]. Infrared thermography, while useful, relies on
complex equipment and trained operators. ECT, a widely used and effective technique, is
particularly well-suited for detecting defects in multi-layer conductive structures, especially
surface and subsurface micro-cracks and corrosion [11]. This non-contact method offers
high sensitivity due to its ability to detect changes in eddy currents induced within the
conductor by an alternating current excitation. These eddy currents generate a secondary
magnetic field, which is influenced by factors like the sensor–conductor distance, material
properties, and the presence of defects. Any change in the magnetic field, resulting from
defect-induced variations in the eddy currents, alters the impedance of the excitation coil
or the induced voltage in a receiving coil. This sensitivity makes ECT applicable to a wide
range of applications, including distance measurements, material property assessments,
and coating thickness determinations.

While effective, traditional ECT suffers from limitations, such as the shallow penetra-
tion depth of high-frequency eddy currents. While lower frequencies improve penetration,
they compromise sensitivity. To address this, emerging magnetic sensing technologies,
including Hall sensors, Giant Magnetoresistive (GMR) sensors, and Tunnel Magnetore-
sistive (TMR) sensors [12–14], are increasingly integrated with traditional ECT excitation
coils. These advanced sensors greatly enhance ECT’s sensitivity and accuracy. GMR sen-
sors leverage the giant magnetoresistance effect to detect minute variations in magnetic
fields [15,16], providing high sensitivity and resolution. For example, Joseph utilized a
high-current, low-frequency excitation coil and a GMR sensor array to quantify corrosion
defects in a pipe without removing the insulation [17]. TMR sensors, employing quantum
tunneling phenomena, demonstrate even greater sensitivity than GMR, making them ideal
for high-performance applications. Betta developed a novel ECT probe with a double coil
excitation and a triaxial TMR sensor array, achieving high signal-to-noise ratios for thin
defect detection [18]. Fei Yang et al. designed a flexible eddy current TMR (FEC-TMR)
sensor and successfully detected internal cracks in metal joints [19].

Dodd and Deeds pioneered the use of Bessel functions to model electromagnetic fields
generated by coils interacting with conductive materials [20]. This approach, employ-
ing Bessel function series, enabled the analysis of various coil geometries and material
configurations, such as coil–plane, coil–tube, and coil–rod systems. It allowed for the
accurate prediction of ECT signals by expressing electromagnetic fields and impedance
changes as Bessel function series, ultimately resulting in an integral solution. Subsequently,
Theodoulidis developed the TREE method [21]. This technique employs domain truncation,
eigenfunction expansion, and the matching of boundary and surface conditions, providing
a flexible and efficient solution for problems involving intricate geometries and boundary
conditions [22]. In contrast to conventional ECT methods, the TREE method yields a series
solution, resulting in faster computation and the ability to control accuracy by adjusting
the number of series terms included.

Improving defect detection sensitivity in multi-layer conductors involves directing
the excitation sensor’s magnetic flux along low-resistance paths [5,23,24]. This increases
magnetic flux penetration into the conductor, enabling deeper eddy current penetration
and the enhanced detection of deeper defects. Ferrite cores, composed of iron oxide and
metallic additives, exhibit tunable magnetic properties [25,26]. Their high permeability
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and low loss at high frequencies make them ideal for coil sensors that operate through
electromagnetic induction. The TREE method [27,28], initially applied to model simple
sensor–conductor interactions in ferrite core ECT sensors, has evolved to address more
complex scenarios. This includes analyzing eddy current problems involving intricate
conductor defect geometries and various core configurations, such as the E-core, C-core,
I-core, and T-core [22,29]. Extensive research has focused on E-core and I-core sensors with
air gaps [30,31], as well as T-core sensors without air gaps [32]. Ferrite cores, owing to their
flux concentration and shielding properties, enhance the flux density and sensor sensitivity
compared to the air-core. The sensitivity of an ECT sensor varies depending on the
specific ferrite core configuration and size, highlighting the importance of considering both
sensitivity and core characteristics during sensor selection. Despite these advancements,
accurately locating hidden defects within multilayer structures using ECT sensors remains
a significant challenge.

This paper presents the first application of the TREE method to analyze a novel T-core
ECT sensor. The sensor features a circular air gap positioned above a conductive layer
containing a hidden hole. A homogeneous Dirichlet boundary condition is applied to the
truncated surface, with the azimuthal component of the magnetic vector potential (Aϕ)
expressed as a series of orthogonal eigenfunctions. By carefully selecting eigenfunctions
and applying field continuity conditions at boundaries and interfaces, the series coefficients
and eigenvalues are determined. Truncating the infinite solution domain to a finite space
allows for a series solution instead of an integral, resulting in a faster numerical calculation
and easier error control. The analysis begins with a filamentary coil encircling the T-
core column, deriving expressions for the magnetic vector potential. This analysis is
then extended to coils with rectangular cross-sections using the superposition method
to obtain the magnetic vector potential in each region. Finally, closed-form expressions
for the induced eddy current density and coil impedance of the T-core ECT sensor are
derived. The analytical model provides a valuable tool for evaluating the ECT sensor,
allowing for the analysis of individual parameters. The T-core sensor’s coil impedance
variation is calculated for frequencies ranging from 100 Hz to 10 kHz. These results
are compared with those from E-core, I-core, and air-core sensors. Further validation is
achieved through a comparison with FEM simulations and experimental results, showing
good agreement. The results highlight the significantly higher sensitivity of the T-core
ECT sensor compared to I-core and air-core sensors when detecting hidden defects in a
multi-layer conductor. Analytical and simulation methods are used to analyze the eddy
current distribution produced by different core sensors (E, T, I, and air) under identical
excitation conditions, providing insights into the T-core’s superior sensitivity. The influence
of key T-core parameters on sensor sensitivity is also assessed, leading to the determination
of optimal sensor dimensions.

2. Analysis

Figure 1 illustrates three ferrite core ECT sensor types: I-core, T-core, and E-core.
These sensors share a common structural feature, a circular air gap within the core column,
and display structural similarities. Notably, the E-core can be derived from the T-core
by adding a cylindrical shield, while the I-core results from removing the T-core’s upper
ring plane [33].

However, the T-core sensor with its air gap (Figure 1b) has not yet been subjected
to theoretical or experimental analysis. Consequently, its sensitivity and other perfor-
mance characteristics require investigation and a comparison with the E-core and I-core
ECT sensors [34].
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(a) (b) (c) 

Figure 1. Cross-sectional illustrations of (a) an I-core, (b) a T-core, and (c) an E-core ECT sensors, each
featuring an air gap within the ferrite core.

Figure 2a illustrates the initial configuration for analysis, featuring a filamentary coil
driven by a harmonic current, Iejωt. This configuration involves a sensor positioned above
a non-magnetic, conducting half-space comprised of three layers with conductivities σ6, σ7,
and σ8. The second layer contains an air hole. The z = 0 plane corresponds to the upper
surface of this multi-layered conductor, resulting in a problem domain with eight distinct
regions. The method of variable separation is employed, and the resulting expressions for
each region depicted in Figure 2a are presented in matrix form below.

A1(r, z) = J1(q
Tr)q−1e−qzC1 (1)

A2(r, z) =

⎧⎨⎩
J1(m

Tr)
R1(m

Tr)
R′

1(m
Tr)

m−1(e−mzC2 − emzB2)
0 ≤ r ≤ a0
a0 ≤ r ≤ a3
a3 ≤ r ≤ b

(2)

A3(r, z) =

⎧⎨⎩
J1(p

Tr)
L1(p

Tr)
L′

1(p
Tr)

p−1(e−pzC3 − epzB3)
0 ≤ r ≤ a0
a0 ≤ r ≤ a1
a1 ≤ r ≤ b

(3)

A4(r, z) =

⎧⎨⎩
J1(p

Tr)
L1(p

Tr)
L′

1(p
Tr)

p−1(e−pzC4 − epzB4)
0 ≤ r ≤ a0
a0 ≤ r ≤ a1
a1 ≤ r ≤ b

(4)

A5(r, z) = J1(q
Tr)q−1(e−qzC5 − eqzB5) (5)

A6(r, z) = J1(q
Tr)s−1

6 (e−s6zC6 − es6zB6) (6)

A7 =
F1(vc)J1(u

Tr)
F1(v

Tr)J1(uc)
u−1(e−uzC7 − euzB7)

0 ≤ r ≤ c
c ≤ r ≤ b

(7)

A8(r, z) = −J1(q
Tr)s−1

8 es8zB8 (8)

where s6 =
√

q2 + jωμ0μr6σ6, s8 =
√

q2 + jωμ0μr8σ8.
The analytical solution is derived using Bessel functions of the first and second kind,

denoted by Jn and Yn, respectively, where n represents the order of the function. The param-
eters J1(q

Tr), J1(m
Tr), R1(m

Tr), R′
1(m

Tr), J1(p
Tr), L1(p

Tr), L′
1(p

Tr), J1(u
Tr), and F1(v

Tr)
are represented by row vectors. Additionally, q−1, m−1, p−1, u−1, v−1, s−1

6 , s−1
8 , and the ex-

ponential functions are expressed as diagonal matrices. Finally, Ck and Bk (where k ranges
from 1 to 8, representing different regions) are column vectors of unknown coefficients.
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Figure 2. T-core ECT sensors consisting of (a) a filamentary coil and (b) a multi-turn coil positioned
above a layered conductor with a hole in its second layer. Numbers 1–8 represent different regions.

Figure 2’s regions 1, 5, 6, and 8 have eigenvalues (qi) that are the positive real roots of
Equation (9), where i represents the root number.

J1(qib) = 0 (9)

Region 2 is further divided into three subregions. Subregions I (0 ≤ r ≤ a0) and III
(a3 ≤ r ≤ b) are filled with air, while subregion II (a0 ≤ r ≤ a3) contains a ferrite core. The
positive real roots of Equation (10) yield the discrete eigenvalues (mi).

R′
1(mib) = 0 (10)

where
R′

n(mir) = B3F Jn(mir) + C3FYn(mir) (11)

C3F =
πmia3

2
[
J1(mia3)R0(mia3)

μ f
− J0(mia3)R1(mia3)] (12)

B3F =
πmia3

2
[Y0(mia3)R1(mia3)− Y1(mia3)R0(mia3)

μ f
] (13)

Rn(mir) = B2F Jn(mir) + C2FYn(mir) (14)

C2F =
πmia0

2
J0(mia0)J1(mia0)(μ f − 1) (15)

B2F =
πmia0

2
[J1(mia0)Y0(mia0)− J0(mia0)Y1(mia0)μ f ] (16)

Regions 3 and 4 are subdivided into three subregions: Subregion I (0 ≤ r ≤ a0),
Subregion II (a0 ≤ r ≤ a1), and Subregion III (a1 ≤ r ≤ b). Subregions I and III represent air,
while Subregion II encompasses the ferrite core. The discrete eigenvalues, denoted by pi,
are positive real roots of Equation (17):

L′
1(pib) = 0 (17)

where
L′

n(pir) = B′
3F Jn(pir) + C′

3FYn(pir) (18)

C′
3F =

πpia1

2
[
J1(pia1)L0(pia1)

μ f
− J0(pia1)L1(pia1)] (19)

B′
3F =

πpia1

2
[Y0(pia1)L1(pia1)− Y1(pia1)L0(pia1)

μ f
] (20)

Ln(pir) = B′
2F Jn(pir) + C′

2FYn(pir) (21)

C′
2F =

πpia0

2
J0(pia0)J1(pia0)(μ f − 1) (22)
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B′
2F =

πpia0

2
[J1(pia0)Y0(pia0)− J0(pia0)Y1(pia0)μ f ] (23)

Region 7 comprises two subregions: an air space (0 ≤ r ≤ c) and a conductive material
(c ≤ r ≤ b). Applying the interface condition in the radial direction at r = c yields the
following equation. The eigenvalues, ui, are then determined as the positive real roots of
Equation (24):

uiF1(vic)J0(uic) = μ−1
r7 viF0(vic)J1(uic) (24)

where
Fn(vir) = Jn(vir)Y1(vib)− J1(vib)Yn(vir) (25)

The relationship between eigenvalues (ui) and their corresponding eigenvectors (vi) is
as follows:

ui =
√

v2
i + jωσ7μ0μr7 (26)

The eigenvalues (ui), which are the complex roots of Equation (24), can be deter-
mined using the Newton–Raphson method [35–37]. While this method is effective, more
efficient algorithms have been developed in recent years to ensure the identification of
all roots [38,39].

To solve the problem, the interface conditions between the eight regions must be satis-
fied, specifically the continuity of Bz and Hr. Determining the magnetic vector potential
A(k) f ilamentary(r, z) in each region, excited by the T-core filamentary coil (Figure 2a), requires
solving for the discrete eigenvalues and unknown coefficients through these continuity
conditions at various boundaries and interfaces. Subsequently, the magnetic vector poten-
tial of each region excited by a coil with a rectangular cross-section can be derived using
the superposition method.

Acoil
k (r, z) =

r2∫
r1

z2∫
z1

A(k) f ilamentary(r, z, r0, z0)dr0dz0, k = 1, 2, . . . , 8 (27)

The eddy current density within the layered conductive material can be determined
using the method outlined in [21].

Jeddy
L (r, z) = −jωσL Acoil

L (r, z); L = 6, 7, 8 (28)

The final expression for the eddy current density within the first-layer conductor
(region 6) can be derived as follows.

Jeddy
6 (r, z) = −jωσ6 Acoil

6 (r, z)
= −jωσ6μNI

2(r2−r1)(z2−z1)
J1(qr)s−1

6 W4W−1
2 W3p−3D−1χ(pr1, pr2)

(29)

Following the derivation of magnetic vector potentials Acoil
3 and Acoil

4 for regions 3
and 4 in Figure 2b, the potential Acoil

3−4 within the region between these two regions can be
determined by substituting z for z2 in Acoil

3 and z for z1 in Acoil
4 and summing the results.

The final impedance expressions for the T-core coil sensor are then derived as follows:

Z =
jω2πN

I(z2 − z1)(r2 − r1)

r2∫
r1

z2∫
z1

rAcoil
3−4(r, z)drdz

=
jωμπN2

(r2 − r1)
2(z2 − z1)

2 χ(pr1, pr2)p
−4

·[2(z2 − z1)p + ep(z1−z2) − ep(z2−z1) + W1W−1
2 W3]p

−3D−1χ(pr1, pr2)

(30)

where
χ(pr1, pr2) =

∫ pr2

pr1

(pr)L′
1(pr)d(pr)] (31)
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W1 = (e−pz1 − e−pz2)C48 − (epz2 − epz1)B48 (32)

W2 = (λ1F−1G + λ2F−1H)e−ph1C48 − (λ1F−1G − λ2F−1H)eph1B48 (33)

W3 = (λ1F−1G − λ2F−1H)(ep(h1−z1) − ep(h1−z2))− (λ1F−1G + λ2F−1H)(ep(z2−h1) − ep(z1−h1)
)

(34)

W4 = e−s6zC68 − es6zB68 (35)

λ1 = (T − U)em(h1−h2) + (T + U)em(h2−h1) (36)

λ2 = (T − U)em(h1−h2) − (T + U)em(h2−h1) (37)

C48 =
1
2

eph0 D−1[(H∗ + G∗)e−qh0 C58 + (H∗ − G∗)eqh0B58] (38)

B48 =
1
2

e−ph0 D−1[(H∗ − G∗)e−qh0 C58 + (H∗ + G∗)eqh0B58] (39)

C58 =
1
2
[(μ−1

6 + qs−1
6 )C68 + (μ−1

6 − qs−1
6 )B68] (40)

B58 =
1
2
[(μ−1

6 − qs−1
6 )C68 + (μ−1

6 + qs−1
6 )B68] (41)

C68 =
1
2

e−s6d1 [(E−1N + s6q−1E−1V)eud1C78 + (E−1N − s6q−1E−1V)e−ud1 B78] (42)

B68 =
1
2

es6d1 [(E−1N − s6q−1E−1V)eud1 C78 + (E−1N + s6q−1E−1V)e−ud1 B78] (43)

C78 =
1
2

e−ud2(N−1E − V−1Eqs−1
8 )e−s8d2 (44)

B78 =
1
2

eud2(N−1E + V−1Eqs−1
8 )e−s8d2 (45)

where
Cn7 =

Cn

B7
(46)

Bn7 =
Bn

B7
(47)

The matrices T, U, F, G, G*, H, H*, N, V, D, and E are detailed in Appendix A.

3. Numerical Implementation

The eddy current density in the first layer conductor and the impedance of the
T-core coil were calculated using the Matlab software package version 7.0, based on
Equations (29) and (30). The main steps of the numerical calculation procedure are shown
in Figure 3. Employing the same derivation method used for the T-core sensor, expressions
for the coil impedance of E-core and I-core sensors, along with the eddy current density in
the conductor (as depicted in Figure 4), were derived. Subsequently, the coil impedances of
the E-core, I-core (with relative permeability μr = 2500), and air-core (μr = 1) sensors and
the corresponding eddy current densities at the same conductor depth were determined
using analytical methods.

 

Figure 3. Numerical calculation scheme of the analytical model.
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Figure 4. Axially symmetric (a) E-core and (b) I-core ECT sensors positioned above a layered
conductor with a hidden hole in the second layer. Numbers 1–8 represent different regions.

The analytical calculations utilize parameters derived from measurements of the
cored sensors and conductors employed in the experiments, as detailed in Table 1. For
all analytical calculations, the solution domain was truncated at b = 90 mm (nine times
the coil’s outer radius, r2), and the number of summation terms was set to Ns = 60. A
comparative analysis was then conducted, comparing the analytical results with those
obtained from finite element analysis and experimental measurements.

Table 1. The parameters of the coil, T-core, E-core, I-core, and conductor used in experiments,
analytical calculation, and FEM.

Core

Air gap radius of core a0 2.7 mm
Inner core radius a1 5.7 mm

Parameter a2 10.85 mm
Outer core radius a3 12.85 mm

Offset h0 0.1 mm
Inner core height h1 5.8 mm
Outer core height h2 8.2 mm

Core relative permeability μf 2500

Coil

Inner coil radius r1 6.4 mm
Outer coil radius r2 9.8 mm

Parameter z1 0.7 mm
Parameter z2 4.8 mm

Number of turns N 400

Conductor

Liftoff d1 0.5 mm
Parameter d2 4.5 mm

Relative permeability μ6, μ7, μ8 1
Conductivity σ6, σ7, σ8 36 MS/m
Hole radius c 4 mm

Radius of the domain b 90 mm

4. Experimental Confirmation

The proposed analytical model was validated through experimental verification. The
experimental setup, shown in Figure 5, comprised a T-core sensor, a layered conductor, and
a Gwinstek LCR meter. Figure 6 displays the E-core, T-core, I-core, and air coil used in the
experiments. The parameters detailed in Table 1 also served as inputs for these experimental
investigations, which involved measuring impedance changes across a frequency range of
100 Hz to 10 kHz. These impedance changes were observed in each core sensor due to the
presence of a layered conductor containing a hidden hole.
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Figure 5. Configuration for the experiment.

 

Figure 6. E-core, T-core, I-core, and coil used in the experiments.

5. Comparison with FEM

To validate the proposed analytical model, Ansoft Maxwell software version 5.0 is
employed for finite element analysis and verification. Experimental measurements are
restricted by available equipment and materials. For instance, the type and precision of
measurement apparatuses, the type and dimensions of sensors, and the type and size
of multilayer conductor materials all govern the experimental type and measurement
accuracy. In contrast, finite element simulation offers the advantage of freely adjusting the
sensor size and the thickness and material parameters of multilayer conductors.

Initially, to confirm the efficacy of the proposed analytical model for multilayer conduc-
tors composed of diverse materials, the conductivities of the first- and third-layer conduc-
tors in the experimental parameters (as shown in Table 1) were modified to σ6 = 15 MS/m
and σ8 = 5 MS/m respectively, while the other parameters remained unaltered. The coil
impedance of the T-core coil sensor positioned above three distinct layers of conductors
with a hidden hole in the second layer, calculated using Equation (30), is presented in
Table 2. Here, the values in the corresponding columns of εR and εX represent the relative
errors between the analytical calculation outcomes and the finite element simulation results,
with the relative errors defined by Equations (48) and (49).

εR =

∣∣∣∣∣Ranalytical − RFEM

RFEM

∣∣∣∣∣× 100% (48)

εX =

∣∣∣∣∣Xanalytical − XFEM

XFEM

∣∣∣∣∣× 100% (49)
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Table 2. Analytical results of the resistance and reactance of the T-core coil sensor and the relative
error with the FEM ones.

f [kHz] R [Ω] εR X [Ω] εX

0.2 1.57413 0.64% 8.08502 0.024%
1 6.29085 0.94% 31.2587 0.028%
5 19.48457 0.84% 131.7659 −0.12%
10 31.33254 0.82% 249.4438 −0.17%

Furthermore, the analytical calculation and finite element analysis of the eddy current
density of the conductor were carried out according to the experimental parameters shown
in Table 1.

Figure 7 illustrates the real component of eddy current densities at varying distances
from the coil’s central axis. These results were taken at a depth of 0.2 mm below the
surface of the layered conductor and are shown for different types of ferrite core sensors.
Specifically, the eddy current produced by a T-core sensor within the conductor can be
calculated using Equation (29). These computational results demonstrate good agreement
with the finite element analysis results.

Figure 7. Real component of the eddy current density at a depth of 0.2 mm beneath the surface of the
layered conductor, across varying distances from the coil’s central axis.

An analysis of Figure 7 reveals that all core sensor configurations produce the highest
eddy current density in the conductor beneath the coil’s inner radius. Furthermore, under
identical excitation conditions, the E-core sensor generates the strongest eddy current
density within the conductor. The T-core sensor induces a smaller, yet still significant,
eddy current density compared to the E-core sensor, but larger than that produced by the
I-core sensor. The air-core sensor generates the weakest eddy current density among all
sensor configurations.

The magnetic flux distribution generated by each coil type was simulated using Ansoft
software version 5.0. Figure 8 depicts the magnetic flux density distributions for the E-core,
T-core, I-core, and air-core sensors within the ferrite core, coil, and layered conductor with
the embedded hole. The figure highlights a higher concentration of magnetic flux lines
within the ferrite core, facilitating the propagation of magnetic flux into the conductor. The
E-core configuration exhibits the most efficient magnetic flux transfer path, followed by the
T-core and then the I-core. The simulated eddy current density results are consistent with
the analytical calculations, providing a rationale for the varying eddy current densities
observed in Figure 7 across the different core sensor types.
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Figure 8. Magnetic flux density distributions generated by sensors of four different core types:
(a) E-core, (b) T-core, (c) I-core, and (d) air-core. All sensors were positioned above the same layered
conductor and subjected to the same excitation.

6. Results

Initially, the multilayer conductor’s conductivities were set to σ6 = σ7 = σ8 = 36 MS/m,
and coil impedances (Z = R + jX) were calculated using derived analytical formulas.
Subsequently, coil impedances (Z0 = R0 + jX0) were calculated in the absence of conductive
material (σ6 = σ7 = σ8 = 0), along with the coil inductance (L0) of air-core (2.75 mH), I-core
(4.93 mH), T-core (7.633 mH), and E-core (10.02 mH) sensors. The changes in coil resistance
(ΔR = R − R0) and reactance (ΔX = X − X0) due to the multilayer conductor were then
determined. Figure 9a,b illustrate the normalized changes in coil resistance and reactance,
respectively, for different core sensors caused by the layered conductor. Notably, the relative
difference between the TREE method and the finite element method remained below 1% in
all cases.

 

(a) (b) 

Figure 9. Normalized changes in (a) resistance and (b) reactance caused by the layered conductor of
E-core, T-core, I-core (with a relative permeability of 2500), and air-core (with a relative permeability
of 1) sensors, as a function of frequency.
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Following the calculation of eigenvalues for mi, pi, ui, etc., the impedance of a T-core
coil above a multilayer conductor with a hidden defect was determined using a Matlab
program based on Equation (30). This computation, performed on a desktop computer
(AMD Ryzen 5 5600 G 3.9 GHz CPU (Santa Clara, CA, USA), 24 GB RAM, Windows 10), re-
quired approximately 3.869 s under single-frequency excitation. Calculating the impedance
for a defect-free multilayer conductor under the same conditions took about 2.535 s. The
numerical results achieved a precision of 15 decimal places.

As a verification method, this problem can also be solved using Ansys Ansoft 2D finite
element software version 5.0. This involves modeling the multilayer conductor with the
defect and the T-core coil sensor, defining excitation and material parameters, and meshing
the solution area with 41,714 triangles. The impedance calculation using this method took
approximately 15 s. Simulating the defect-free scenario with the finite element method
under the same conditions required about 10 s. However, increasing the mesh density or
employing a 3D solver would significantly increase the computation time.

When a large number of frequency points need to be calculated, the analytical model of-
fers a substantial advantage over the FEM in terms of computational efficiency. This advan-
tage hinges on the prior calculation of the eigenvalues required for the analytical solution.

Figure 9 reveals that the normalized changes in coil impedance due to the layered
conductor vary significantly across different core sensors. This variation primarily depends
on the presence and shape of the core. Under identical coil and excitation conditions, the
E-core sensor exhibited the highest sensitivity, followed by the T-core sensor, and then the
I-core sensor. The air-core sensor demonstrated the lowest sensitivity.

The impact of an air hole in the second layer conductor on the normalized change in
coil impedance was further investigated across varying excitation frequencies, with the
results presented in Figure 10.

   
(a) (b) 

Frequency [kHz]

E-core sensor

T-core sensor

I-core sensor

Air-core sensor

FEM
TREE

Figure 10. Normalized changes in (a) resistance and (b) reactance caused by an air hole in the
second-layer conductor of E-core, T-core, I-core (with a relative permeability of 2500), and air-core
(with a relative permeability of 1) sensors, as a function of frequency.

Figure 10 shows that, due to the small size and location of the air hole within the
second conductor layer, the normalized impedance changes for coils with different cores
were relatively small and exhibited minimal differences. However, within the excitation fre-
quency range below 1 kHz, the normalized impedance changes decreased in the following
order: E-core sensor, T-core sensor, I-core sensor, and air-core sensor.
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7. The Influence of T-Core Parameters on Coil Impedance Changes

To optimize the design of the T-core sensor for detecting hidden defects in a multi-
layer conductor, it is crucial to understand how key T-core parameters, including the air
gap radius, upper circular plate radius, column height, and core permeability affect coil
impedance. This study employed both an analytical model and finite element simulation to
investigate the impact of these parameters on coil impedance. The analysis yielded optimal
values for the key T-core parameters, paving the way for the design of a highly sensitive
T-core sensor.

7.1. Air Gap Radius of T-Core

A T-core sensor with excitation frequencies of 0.6 kHz, 1 kHz, and 5 kHz and an
outer column radius (a1) of 5.7 mm was investigated. The study focused on the impact of
varying the T-core’s air gap radius (a0) from 0.1 mm to 5 mm on coil impedance, specifically
considering the presence of a second-layer conductor hole. Results indicate that while the
air gap radius minimally affects coil reactance, it significantly influences the coil resistance.
Figure 11 illustrates this relationship, showcasing the change in coil resistance due to the
second-layer conductor hole as a function of the T-core’s air gap radius. Figure 11 reveals
that, with a constant outer column radius (a1), a smaller air gap radius leads to a greater
absolute value of the change in coil resistance caused by the presence of the hole in the
second-layer conductor. Within a constant air gap, the variation in coil resistance attributed
to the concealed air hole exhibits a dependence on the excitation frequency. The resistance
change is most pronounced at 1 kHz, followed by 0.6 kHz, while the least change occurs
at 5 kHz.

Figure 11. Investigating the correlation between variations in T-core coil resistance caused by a hole
in the second-layer conductor and the radius of the T-core air gap.

7.2. The Radius of Upper Circular Plate of T-Core

A T-core sensor, operating at excitation frequencies of 0.6 kHz, 1 kHz, and 5 kHz, was
analyzed using the derived analytical model. The radius of the upper circular plate (a3)
was incrementally increased from 6 mm to 17 mm, while other T-core sensor parameters
remained constant (as detailed in Table 1). The study focused on determining the impact
of this radius variation on the coil impedance, specifically in the presence of a hole in the
second-layer conductor. Calculations revealed that the coil reactance remained relatively
unaffected by changes in the upper circular plate radius. Conversely, coil resistance
exhibited a more pronounced response, as depicted in Figure 12. This figure shows that the
absolute value of the change in coil resistance due to the hole gradually increases with the
radius until it reaches 14 mm, after which it stabilizes.
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Figure 12. Investigation of the correlation between the variation in resistance of the T-core coil,
caused by the presence of a hole in the second-layer conductor, and the radius of the T-core’s upper
circular plate.

For a constant upper circular plate radius, the variation in coil resistance induced
by the hidden hole exhibits a dependence on the excitation frequency. As illustrated in
Figure 12, the absolute value of the coil resistance change, caused by the three frequencies,
decreases in the order of 1 kHz, 0.6 kHz, and 5 kHz.

7.3. Height of T-Core Column

A T-core sensor was excited at frequencies of 0.6 kHz, 1 kHz, and 5 kHz. The T-core’s
parameters remained consistent with Table 1, with the exception of the column height
(h1, as depicted in Figure 2), which was incrementally increased from 5.8 mm to 15.8 mm.
Figure 13 illustrates the correlation between the T-core coil’s resistance change and the
column height, specifically resulting from a hole in the second-layer conductor. This figure
reveals that an increase in the T-core column height leads to a decrease in the absolute
value of the coil’s resistance change attributed to the presence of this hole.

Figure 13. Investigating the correlation between variation in T-core coil resistance caused by a hole in
the second-layer conductor and the T-core’s column height.

While maintaining a constant T-core column height, the variation in coil resistance
induced by the hidden hole also exhibits a dependence on the excitation frequency. Notably,
the maximum absolute change in coil resistance remains at 1 kHz.
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7.4. Permeability of T-Core

Additionally, the research assessed the effect of the T-core’s relative permeability on
the sensor’s sensitivity. The T-core coil sensor was driven by 0.6 kHz, 1 kHz, and 5 kHz
sinusoidal currents, respectively. Varying the T-core’s relative permeability from 1 to 2500,
the analytical formula (30) was utilized to predict changes in coil resistance and reactance
resulting from an air hole in the second-layer conductor. These analytical results were
then validated against simulation data obtained using Ansoft Maxwell software, with the
findings presented in Figure 14.

(a) (b) 

Figure 14. Investigating the correlation between variations in coil (a) resistance and (b) reactance
caused by a hole in the second-layer conductor and the T-core’s relative permeability.

Figure 14a demonstrates that as the T-core’s relative permeability increases from 10,
the resulting change in the absolute value of coil resistance due to the hole gradually
rises, reaching a maximum at a permeability of 500. Further increases in permeability
did not lead to a corresponding increase in resistance change. Figure 14b illustrates that
increasing the magnetic permeability of the T-core from 10 initially leads to a fluctuating
effect on the absolute change in coil reactance due to the hidden hole across various
excitation frequencies. Specifically, the absolute change in coil reactance at 0.6 kHz and
5 kHz increases, while it decreases at 1 kHz. Nevertheless, as the permeability rises to 500,
these changes in reactance stabilize.

The above study investigated the impact of a hidden hole within a multilayer conduc-
tor on coil impedance across three excitation frequencies (0.6 kHz, 1 kHz, and 5 kHz). The
analysis explored how variations in key T-core parameters, including the air gap radius,
upper plate radius, column height, and relative permeability, influence these impedance
changes. Results indicate that, under consistent conditions, the coil resistance change is
most pronounced at 1 kHz. Regarding the T-core air gap, minimizing or eliminating the
air gap radius is optimal. For the upper circular plate, a radius of 14 mm maximizes the
coil impedance change. Regarding the T-core column height, shorter heights are preferable
within the constraints of accommodating the coil and ensuring proper contact with the
measured conductor, with 5.8 mm identified as optimal in this study. Finally, concerning
the T-core material’s relative permeability, a value around 500 was found to be sufficient
for achieving the maximum coil impedance change, suggesting that higher permeability
does not necessarily translate to better performance.
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8. T-Core Sensor for Conductor Defect Detection

8.1. Crack Detection

An aluminum plate (30 mm thick) was machined with a 2 mm wide and 10 mm deep
rectangular groove to simulate a crack. This simulated crack was then investigated using
finite element simulations employing four different ECT core sensors: E-core, T-core, I-core,
and air-core. The characteristics of each sensor are detailed in Table 1. The study focused
on the changes in coil impedance as the sensors scanned across the crack perpendicular
to its direction. Figure 15a,b illustrate the variations in the real (resistance) and imaginary
(reactance) components of coil impedance, respectively.

(a) (b) 

Figure 15. The correlation between variations in coil (a) resistance and (b) reactance and the distance
from the crack’s center line during scanning with various core sensors.

An analysis of the coil resistance changes (Figure 15a) reveals a gradual increase from
zero as the sensors approach the crack from 20 mm away from its center line. This increase
culminates in peak values at ±10 mm, ±5 mm, and directly above the crack’s center. The
resistance changes exhibit symmetry, with values mirroring those observed during the
approach when the sensors are moved further away from the crack. Notably, at two of
these peak positions (±10 mm), the T-core sensor demonstrated larger resistance changes
compared to the E-core, I-core, and air-core coils.

An examination of the coil reactance changes (Figure 15b) shows a minimal initial
change as the sensors approach the crack from ±20 mm away from its center line. A
significant increase in reactance begins at ±10 mm from the center line, reaching maximum
values directly above the crack’s center. Similar to the resistance changes, the reactance
variations exhibit symmetry when the sensors are moved away from the crack. While the
T-core coil’s reactance changes were smaller than those of the E-core coil, they were larger
than those observed for the I-core and air-core coils.

8.2. Hole Defect Detection

An ECT method, simulated using the FEM, was employed to evaluate a hole with
a 10 mm depth and 4 mm radius in a 30 mm thick aluminum plate. The simulation
investigated the impact of scanning various core sensors (E-core, T-core, I-core, and air-
core) through the hole on coil impedance. The core sensor parameters are detailed in
Table 1. Figure 16a,b illustrate the changes in coil resistance and reactance, respectively, as
the sensors are scanned across different positions relative to the hole center.
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(a) (b) 

Figure 16. The correlation between variations in coil (a) resistance and (b) reactance and the distance
from the hole’s center during the scanning process of various core sensors through the hole.

An analysis of the coil resistance changes (Figure 16a) reveals that as sensors approach
the hole from a distance of ±20 mm, resistance gradually increases from zero, reaching peak
values at ±13 mm, ±8 mm, and ±3 mm from the hole center. The resistance changes exhibit
symmetry when the sensors move away from the hole. While the T-core coil experiences
smaller resistance changes compared to the E-core coil at these peak positions, they are
larger than those observed for the I-core and air-core coils.

Figure 16b depicts the changes in coil reactance. As sensors approach the hole from
±20 mm, reactance increases until reaching a maximum at ±7 mm from the hole center,
after which it decreases. Directly above the hole, the reactance change is zero. Similar to
the resistance changes, reactance changes are symmetrical when the sensors move away
from the hole. Though the T-core coil exhibits smaller reactance changes compared to the
E-core coil, they remain larger than those of the I-core and air-core coils.

8.3. Relationship Between Defect Depth and Frequency Selection

To effectively detect conductor flaws, it is essential to take into account the impact
of skin depth on the detection of defects at various depths under different excitation
frequencies. A T-core coil sensor was used at various excitation frequencies to examine
surface and subsurface cracks (1 mm, 2 mm, 3 mm, and 4 mm below the surface) in a
conductor, with the coil axis situated 10 mm away from the crack’s centerline. The finite
element method was used to study the changes in resistance and reactance of the T-core
coil caused by the cracks at different excitation frequencies.

Figure 17 displays the results of this study. To better visualize the low-frequency band
changes in coil impedance, Figure 18 show a detailed view of the changes in coil resistance
and reactance at excitation frequencies below 1.6 kHz.

According to Figure 17, for a surface crack, the changes in coil resistance and reactance
increase as the frequency rises. However, for subsurface cracks, the change in coil resistance
decreases as the excitation frequency rises. Although the change in coil reactance increases
with frequency, there is little difference between cracks of different depths. As illustrated in
Figure 18, in the low-frequency excitation range below 1.6 kHz, the coil impedance change
decreases as the depth of subsurface cracks rises. However, the distinction between defects
of different depths is clearer. Therefore, when detecting subsurface defects, low-frequency
excitation should be used to achieve a larger skin depth.
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(a) (b) 

Figure 17. The relationship between the change in (a) resistance and (b) reactance of the T-core coil
and the excitation frequency; the distance between the coil axis and the crack centerline is 10 mm.

(a) (b) 

Figure 18. Refinement of the low-frequency area of Figure 17: (a) resistance and (b) reactance.

It is worth noting that, as shown in Figure 18, the changes in coil resistance and
reactance are more sensitive to deep subsurface cracks at lower excitation frequencies. This
suggests that low-frequency excitation is more effective at detecting deep subsurface cracks
using the T-core coil sensor.

9. Conclusions

This paper presents an analytical model for a novel T-core sensor featuring an air gap
positioned above a layered, conductive half-space containing a concealed defect. The TREE
method is employed to derive analytical expressions for the eddy current density within the
multilayered conductor and the impedance of the T-core coil. These expressions are readily
implementable in mathematical software, like Mathematica or Matlab. Validation of the
analytical model is achieved through a comparison with FEM simulations and experimental
results, demonstrating strong agreement. A comparative analysis reveals that the proposed
T-core sensor exhibits a superior flux concentration and shielding compared to an I-core
and an air-core sensor, while maintaining a smaller size than an E-core sensor.
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The study further explores the relationships between various T-core parameters and
the alterations in coil impedance caused by a hidden defect, leading to the identification of
optimal values for the primary parameters of the T-core. The advantages of the T-core coil
sensor in detecting crack and air hole defects are assessed against other magnetic core and
air-core sensors. Additionally, the principles governing frequency selection in the T-core
coil sensor and their capability of detecting defects at different depths are discussed.

This analytical model facilitates computer simulations, enables optimized eddy current
sensor design, and provides a direct application for conductor defect detection. Future
work could extend this solution to analyze more complex conductor geometries and
defect shapes.
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Appendix A

The matrices T, U, F, G, H, D, G*, H*, V, N, and E were defined in the following form:

T = [tij] =
∫ a0

0 rJ0(qr)J0(m
Tr)dr +

∫ a3
a0

rJ0(qr)R0(m
Tr)dr

+
∫ b

a3
rJ0(qr)R′

0(m
Tr)dr

(A1)

U = [uij] =
∫ a0

0 rJ1(qr)J1(m
Tr)dr +

1
μ f

∫ a3
a0

rJ1(qr)R1(m
Tr)dr

+
∫ b

a3
rJ1(qr)R1(m

Tr)dr
(A2)

F = [ fij] =
∫ a0

0 rJ0(mr)J0(m
Tr) +

1
μ f

∫ a3
a0

rR0(mr)R0(m
Tr)dr)

+
∫ b

a3
rR′

0(mr)R′
0(m

Tr)dr
(A3)

G = [gij] =
∫ a0

0 rJ0(mr)J0(p
Tr)dr +

1
μ f

∫ a1
a0

rR0(mr)L0(p
Tr)dr

+
1

μ f

∫ a3
a1

rR0(mr)L′
0(p

Tr)dr +
∫ b

a3
rR′

0(mr)L′
0(p

Tr)dr
(A4)

H = [hij] =
∫ a0

0 rJ1(mr)J1(p
Tr)dr +

1
μ f

∫ a1
a0

rR1(mr)L1(p
Tr)dr

+
∫ a3

a1
rR1(mr)L′

1(p
Tr)dr +

∫ b
a3

rR′
1(mr)L′

1(p
Tr)dr

(A5)

D = [dij] =
∫ a0

0 rJ1(pr)J1(p
Tr)dr+

1
μ f

∫ a1
a0

rL1(pr)L1(p
Tr)

+
∫ b

a1
rL′

1(pr)L′
1(p

Tr)dr
(A6)

G∗ = [g∗ij] =
∫ a0

0 rJ0(pr)J0(q
Tr)dr +

∫ a1
a0

rL0(pr)J0(q
Tr)dr

+
∫ b

a1
rL′

0(pr)J0(q
Tr)dr

(A7)

H∗ = [h∗ij] =
∫ a0

0 rJ1(pr)J1(q
Tr)dr +

∫ a1
a0

rL1(pr)J1(q
Tr)dr

+
∫ b

a1
rL′

1(pr)J1(q
Tr)dr

(A8)

V = [vij] = F1(vc)
∫ c

0 J0(ur)J0(q
Tr)dr

+J1(uc)vu−1
∫ b

c rF0(vr)J0(q
Tr)dr

(A9)
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N = [nij] = F1(vc)
∫ c

0 rJ1(ur)J1(q
Tr)dr

+μ−1
7 J1(uc)

∫ b
c rF1(vr)J1(q

Tr)dr
(A10)

E = [eij] =
∫ b

0
rJ0(qr)J0(q

Tr)dr =
∫ b

0
rJ1(qr)J1(q

Tr)dr (A11)
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Abstract: Corrosion defects will increase the risk of power equipment failure, which will directly
affect the stable operation of power systems. Although existing methods can detect the corrosion
of equipment, these methods are often poor in real-time. This study presents a two-stage detection
approach that combines YOLOv8 and DDRNet to achieve real-time and precise corrosion area local-
ization. In the first stage, the YOLOv8 network is used to identify and locate substation equipment,
and the detected ROI areas are passed to the DDRNet network in the second stage for semantic
segmentation. To enhance the performance of both YOLOv8 and DDRNet, a multi-head attention
block is integrated into their algorithms. Additionally, to address the challenge posed by the scarcity
of corrosion defect samples, this study augmented the dataset using the cut-copy-paste method.
Experimental results indicate that the improved YOLOv8 and DDRNet, incorporating the multi-head
attention block, boost the mAP and mIoU by 5.8 and 9.7, respectively, when compared to the original
method on our self-built dataset. These findings also validate the effectiveness of our data augmen-
tation technique in enhancing the model’s detection accuracy for corrosion categories. Ultimately,
the effectiveness of the proposed two-stage detection method in the real-time detection of substation
equipment corrosion defects is verified, and it is 48.7% faster than the one-stage method.

Keywords: substation equipment; corrosion defect detection; object detection; semantic segmentation

1. Introduction

With the increasing number of substations, ensuring the continuous and stable op-
eration of substation equipment has become the key to maintaining the stability of the
power system. These devices are exposed to the changing climate and environment for a
long time, and they are affected by humidity, temperature changes, rainfall, and pollutants,
which will gradually corrode, thereby reducing the performance and reliability of the
equipment. Currently, the supervision and maintenance of substations mainly rely on
manual inspection, although this process has been relatively perfect, but there are still
problems of low efficiency and high cost. Therefore, there is an urgent need to develop an
intelligent, automated corrosion area detection technology to improve inspection efficiency
and quality, as well as ensure the smooth operation of the power system.

Currently, research on the corrosion detection of substation equipment mainly focuses
on the corrosion detection of grounding networks [1–3]. Common methods include the
ultrasonic method [4], electromagnetic method [5], and electrochemical method [6]. How-
ever, there are fewer studies on the corrosion detection of other equipment in substations
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(e.g., transformers, capacitors, mutual inductors, disconnect switches and circuit breakers).
Therefore, this paper aims to explore a corrosion detection algorithm with wider applicabil-
ity. In recent years, machine vision inspection algorithms have made significant progress in
the field of surface defect detection [7–12] and have received widespread attention due to
their non-contact detection means and low cost. Therefore, this paper attempts to solve
the problem of detecting corroded areas in substations using vision sensor-based artificial
intelligence algorithms. Object detection [7,13] and semantic segmentation [14,15] are the
two most common types of algorithms in the field of machine vision.

Object detection algorithms are now widely used in industrial production, which
can be divided into two categories: one-stage networks and two-stage networks. The
representative networks of two-stage networks are the RCNN series [16,17]. The task of two-
stage networks is usually divided into two steps: first using the region proposal algorithm
to generate candidate regions that may contain objects and then carrying out accurate
coordinate regression and classification of these candidate regions. In contrast, one-stage
object detection networks directly perform dense prediction of the entire image without an
intermediate step of generating candidate regions, thus allowing direct determination of
the location, size, and class of the detected target. Representative models of such networks
are the YOLO series [18–20] and the SSD series [21], among others. Since one-stage object
detection networks do not need to generate candidate regions, detection time is saved. This
method can achieve real-time detection while ensuring detection accuracy, thus becoming
an important research direction for the current defect detection of substation equipment. In
this paper, the latest YOLOv8 network is selected as the object detection network.

Semantic segmentation is able to classify each pixel in an image and therefore accu-
rately identify the boundaries and shape of corroded areas. This is important for determin-
ing the extent and location of corrosion on metal surfaces. The current mainstream semantic
segmentation algorithms can be categorized as encoder–decoder structure, image pyramid
structure, and two-branch structure. The encoder–decoder structure is represented by
U-Net [22], which tends to be symmetric, connects the encoder and decoder parts through
jump connections to improve the ability to capture details, and is widely used in medical
image segmentation. The image-pyramid-based structure is represented by the DeepLab
family [23,24], which uses dilated convolution and null-space pyramid pooling to capture
contextual information at multiple scales, thus improving the accuracy of segmentation. Se-
mantic segmentation algorithms with a two-branch structure, represented by DDRNet [25],
usually include a main branch for extracting high-level semantic information, which fo-
cuses on global contextual information. And a secondary branch for extracting detailed
features is used to ensure that the detailed parts of the segmentation results are accurately
processed. The two-branch design allows the network to balance segmentation accuracy
and real-time performance, which is suitable for scenarios that require fast processing. The
timely detection and treatment of corrosion problems can avoid further deterioration of the
corrosion problem, thus reducing the cost of large-scale repair or replacement.

Although the two-branch semantic segmentation network already has good real-
time performance, the substation monitoring image contains a lot of noise information
other than the equipment to be detected, such as the sky, the road, some equipment
that does not corrode, etc. In order to solve the problem, this paper tries to use a two-
stage detection method. Detecting these regions will consume a certain amount of time,
which affects the real-time performance of the detection system. In order to solve this
problem, this paper tries to adopt a two-stage detection method, i.e., firstly, we use the
target detection algorithm to find out the region of interest (ROI) in the monitoring image
and the pixel regions of the equipment to be detected, and then we feed the ROI into the
semantic segmentation network for local detection. Since the computational complexity
of the object detection algorithm is much lower than that of the semantic segmentation
algorithm, the two-stage detection method will save a lot of time compared to the pixel-by-
pixel detection of the whole image using only the semantic segmentation algorithm. The
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object detection and semantic segmentation networks used in this paper are YOLOv8 and
DDRNet [25], respectively.

In substation environments, the background is complex and diverse, and a variety
of disturbing factors may be present. Meanwhile, corrosion defects may have different
scales and shapes. In order to improve the performance of the algorithm in this situation,
this paper introduces multi-head attention block in YOLOv8 and DDRNet, which helps
the models to distinguish between corrosion defects and background noise and improves
the performance of the detection system in complex environments. Adaptively handling
features of different scales makes the model performance more robust and stable when
facing different types of defects. In addition, in order to solve the difficult problem of
collecting samples of corrosion defects, we intercepted the corroded areas from devices
with corrosion and pasted them on uncorroded devices, thus expanding the samples of
corrosion defects. Through experimental validation on the self-constructed dataset, the
proposed two-stage detection method yielded better real-time performance and higher
accuracy than the semantic segmentation algorithm alone in locating the corroded areas
in substations. Meanwhile, the improved versions of YOLOv8 and DDRNet were found
to be more suitable for substation scenarios compared to the original networks. Finally,
we determined that the designed data enhancement method can effectively improve the
accuracy of the model for corrosion detection.

The main contributions of this paper can be summarized in the following three points:

1. A two-stage detection method that fuses target detection and semantic segmentation
is proposed to measure real-time substation corrosion regions.

2. A multi-head attention block is used to optimize the original YOLOv8 and DDRNet
networks to make them more suitable for substation scenarios.

3. A cut-copy-paste data enhancement method is designed to expand the samples of
corrosion defects.

2. Related Work

In recent years, the You Only Look Once (YOLO) family and two-branch semantic
segmentation network have been widely used in many fields. This section will review the
representative achievements.

2.1. You Only Look Once

The YOLO model has high detection speed and can detect objects in real-time video
streams. This is because unlike traditional object detection methods such as the R-CNN fam-
ily, YOLO uses an end-to-end training approach that treats object detection as a regression
problem, mapping directly from image pixels to bounding boxes and class probabilities,
thus simplifying the training and reasoning process. This makes YOLO particularly suit-
able for application scenarios that require fast response. In addition, compared to some
other advanced target detection methods, YOLO’s models are typically smaller and can
be more easily deployed on resource-constrained devices, such as mobile devices and
embedded systems.

Due to the powerful performance of YOLO, it is used in many fields. The work in [26]
presented an improved YOLOv4-Tiny algorithm for surface crack detection. The work
in [27] integrated YOLOv5 into inflated 3D models that can be used for human activity
recognition. In [26], a lightweight infrared object detection model G-YOLO-based on UAV
was proposed. YOLO has also emerged in power inspection work, such as transmission line
corridor external damage risk detection [28], insulator defect detection [29–31], and wind
turbine blade damage detection [32]. In particular, YOLOv8, as a relatively new framework
of the YOLO series, is relatively more efficient in terms of computing resources and memory
consumption, so a large number of studies have begun to try to apply it to real-world
scenarios. The work in [33] utilized the improved YOLOv8 algorithm in conjunction with an
infrared image slicing-assisted hyper-inference technique to automatically detect Inter-Turn
Short Circuit fault traces in dry-type transformers. The work in [34] presented an improved
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YOLOv8-based object detection algorithm for infrared images of substation equipment.
The work in [35] introduced a road indicator detection model using the advanced features
of YOLOv8. The work in [36] proposed an efficient small-target YOLO detection model
based on YOLOv8 for Unmanned Aerial Vehicle object detection.

2.2. Two-Branch Semantic Segmentation Network

The two-branch semantic segmentation network is a deep learning model architecture
that shows significant advantages in semantic segmentation tasks. A two-branch network
usually contains a low-level feature branch and a high-level feature branch, where the
high-level feature branch usually contains rich contextual information, while the low-level
feature branch contains more detailed local information. The model uses a two-branch
structure, which is able to find a balance between details and global context. Moreover, the
design can effectively integrate multi-scale features so as to improve the recognition ability
of the model to different scale targets.

Because of its good real-time performance, the two-branch network has been applied
in the fields of automatic driving [37,38], remote sensing image analysis [39,40], and
medical impact analysis [41,42]. Specifically, in autonomous vehicles, the two-branch
network is used to identify roads, pedestrians, vehicles, traffic signs, etc., to help the
vehicle understand the surrounding environment and make safe driving decisions. The
application of two-branch semantic segmentation network in remote sensing image analysis
can significantly improve the semantic segmentation accuracy of high-resolution images.
Through the fusion of multi-scale features, the network can better cope with complex
scenes and diversified task requirements. In the medical field, the two-branch network
is used to analyze images to help doctors quickly and accurately identify and segment
lesions, organs, etc., to assist diagnosis and treatment. DDRNet is a relatively new two-
branch semantic segmentation network, which has been adapted by many researchers to
better suit their specific tasks. In [43] DDRNet was used for real-time segmentation in
unstructured environments to enable autonomous navigation for off-road robots. The use
of DDRNet in [44] was used for automated driving assistance to cope with the complexity
of road scenarios and the real-time requirements of segmentation algorithms in application
scenarios. The work of [45,46] used DDRNet to sense the environment for the automatic
unloading of outdoor forklifts.

Through a review of the above work, we can see that YOLOv8 and DDRNet stand
out in many fields with their high-precision computation, compact network model, and
excellent high-resolution image processing capabilities. In the particular scenario of substa-
tion inspection, in addition to high precision, the real-time performance of the algorithm
is also very high. At the same time, in order to ensure refined inspection, an on-board
camera and monitoring probe equipped with the substation inspection robot offer relatively
high resolution.

Because YOLOv8 and DDRNet can effectively address these challenges, we chose
them as the benchmark models for this work.

3. Materials and Methods

In this section, we first describe the dataset in the experiment and the corresponding
data enhancement method. Then, the proposed two-stage substation corrosion defect
detection method is presented, where each stage is described in a subsection. Finally,
the multi-head attention mechanism block used to improve the semantic segmentation
algorithm is presented.

3.1. Dataset and Data Enhancement Strategies

The image dataset used in this paper is composed of 7215 corrosion images taken
by substation staff, intelligent inspection robots, and light-load head. The maximum
resolution of the image is 4032 × 3024, the minimum is 2048 × 1024, and the image data
were divided into a training set (5050 images), a verification set (722 images), and a test set
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(1443 images) in a ratio of 7:1:2. Labelme was used to mark the equipment to be tested in
each picture in the form of a rectangle. In this work, there were five types of equipment
that we tested, namely, cooling fin (CF), oil storage tank (OST), disconnecting switch (ds),
circuit breaker (CB), and flange. Then, based on the boundary box of each marked object in
the annotation file, it was cut out from the picture, and then labelme was used to carry out
pixel-level boundary annotation. The semantic segmentation employed one more category,
i.e., corrosion and then object detection.

We counted the number of instances of each type of marked object and the proportion
of pixels occupied by each type of object. The statistical results are shown in Figure 1.
As can be seen from Figure 1b, the corrosion area accounts for 0.9% of the whole dataset,
accounting for the smallest proportion and 29.9% lower than the OST, having the highest
proportion. Serious data imbalance will inevitably bring difficulty to the training of the
model. To solve this problem, we proposed to use the cut-copy-paste method to expand
the corroded sample. That is, a corrosion area is cut from the corroded equipment and then
pasted onto the non-corroded equipment. In the process of capturing, the input original
image and the corresponding label are captured at the same time, which can save the time
of relabeling. It should be noted that only similar devices can cut and paste each other,
which is done to maintain the fidelity of the corroded area. The sample augmented by this
method is shown in Figure 2.

(a) (b)

Figure 1. Dataset statistics for each category. (a) Number of instances per category. (b) The proportion
of pixels occupied by each category.

Figure 2. Diagram of corrosion sample enhancement. (c) is from the fusion of (a,b).
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3.2. YOLOv8 Model Structure

In the first stage, we adopted the object detection algorithm YOLOv8. As the latest one-
stage object detection algorithm, YOLOv8 has the advantages of high real-time performance,
multi-scale detection, and global context information utilization, which is suitable for
substation equipment corrosion defect detection task. YOLOv8 uses a lightweight backbone
network and a series of optimization strategies to achieve fast and accurate target detection.
The architecture of YOLOv8 can be divided into three key components: backbone, neck, and
head, as shown in Figure 3. In the backbone stage, YOLOv8 integrates depthwise separable
convolutions to improve computational efficiency and feature extraction capabilities. In
the neck part, path aggregation network structure is used to improve feature fusion and
capture spatial context information, which help the model better detect targets at different
scales. In terms of the head, the anchor-free method is introduced to directly predict the
bounding box of the target without relying on a predefined anchor, and the decoupling
head structure is adopted so that the classification task and the regression task can be
processed independently. The network structure of YOLOv8 is shown in Figure 3.

In this paper, in order to further improve the detection performance of YOLOv8 in the
substation environment, we added a multi-head attention block (MHAB) in front of the
YOLOv8 decoupling head. This improvement aims to provide a finer focus on different
features, allowing the model to better capture complex features and details in the substation
environment. This mechanism helps to enhance the adaptability of the model in the face of
multiple substation equipment and their different states, and it ultimately improves the
accuracy and robustness of the detection. The addition of MHAB to YOLOv8 is shown
in Figure 3.

Figure 3. The improved YOLOv8 network structure, in which the gray part is the original YOLOv8,
and the module filled in blue is the newly added multi-head attention block (MHAB).

3.3. DDRNet Model Structure

The semantic segmentation network used in this work is DDRNet, which is com-
posed of one high-resolution branch and one low-resolution branch, and it aims to extract
high-resolution global feature information and high-level semantic details simultaneously.
Suppose the output feature graph of a high-resolution branch is Fp, which can be ex-
pressed as

Fp = fp(I; θp), (1)
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where fp is the network function of the main branch, θp is the parameter of the high-
resolution branch, I ∈ R

H×W×C is the input image, H is the image height, W is the image
width, and C is the number of channels of the image. Suppose that the output feature chart
of a low-resolution branch is Fa, which can be expressed as

Fa = fa(I; θa), (2)

where fa is the network function of the main branch, and θa is the parameter of the high-
resolution branch. The feature graph of the two branches is fused directly using addition.
The fused feature graph Ff can be expressed as

Ff = Add(Fp, Fa) (3)

Finally, the fused feature map is mapped to the category label of each pixel through
a segmentation head. Assuming that the output segmentation result is S, it can be ex-
pressed as

S = h(Ff ; θs) (4)

where h is a function of segmentation head, and θs is parameter of segmentation head.
The design of two-branch semantic segmentation network makes it have both strong

performance and excellent real-time performance. Therefore, this work used DDRNet as
the benchmark network. However, the surveillance video and image of substation contain
a lot of information, involving equipment, environment, personnel, and other aspects, so
background noise and interference may affect the detection effect. To solve this problem,
we added a multi-head attention block (MHAB) to DDRNet to form our improved version
of DDRNet. An overview of the improved DDRNet and its parameter details are shown in
Figure 4 and Table 1.

The original DDRNet is mainly composed of resdidual blocks and resdidual bottleneck
blocks. We only inserted the MHAB in the high-resolution branch, because the feature
map in the high-resolution branch contains more information and is more conducive to
extracting the contour information of the target. The precise location of the MHAB in the
improved version of DDRNet is shown in Figure 4. In addition, the space pyramid pool
(SPP) uses DDRNet’s original deep aggregation pyramid pool module.

Figure 4. An overview of the proposed improved version of DDRNet. These different shaped markers
are used to represent individual modules, where the blue filled module is the newly added attention
mechanism module. Explanations of these shapes are found in the dashed box below this figure.
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Table 1. Details the architecture of the improved DDRNet. The improved version of DDRNet in this
table assumes an image size of 896 × 896 × 3 as input. N in the table indicates the number of types
of objects to be detected.

Stage Output DDRNet

1

448 × 448 3 × 3, 32, stride 2

224 × 224 3 × 3, 32, stride 2

224 × 224
[

3 × 3, 32
1 × 1, 32

]
× 2

112 × 112
[

3 × 3, 64
1 × 1, 64

]
× 2

2 112 × 112, 56 × 56

[
3 × 3, 64
1 × 1, 64

]
× 2

[
3 × 3, 128
1 × 1, 128

]
× 2

MHAB –

3 112 × 112, 28 × 28

[
3 × 3, 64
1 × 1, 64

]
× 2

[
3 × 3, 256
1 × 1, 256

]
× 2

MHAB –

4 112 × 112, 14 × 14

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 128

⎤⎦× 2

⎡⎣ 1 × 1, 256
3 × 3, 256
1 × 1, 512

⎤⎦× 2

MHAB SPP

5

112 × 112 Addition

112 × 112
[

3 × 3, 64
1 × 1, N

]
896 × 896 Bilinear Upsampling

3.4. Multi-Head Attention Block

The structure of the Muti-Head Attention Block is shown in Figure 5. The central
idea of the multi-head attention mechanism is that multiple “attention heads” process
different parts of information in parallel to capture different features and relationships.
Each “head” can be thought of as an independent attention mechanism that learns and
focuses on different aspects of the input data in different subspaces. First, for the input, we
map it to different Query, Key, and Value vectors through linear transformations. For the
ith attention head, we have the query vector Qi = XWQ

i , the key vector Ki = XWK
i , and the

value vector Vi = XWV
i , where WQ

i , WK
i , and WV

i define the weight matrix corresponding
to each attention head. For each attention head i, we calculate the attention weight. The
dot product of the query vector and the key vector are first calculated; they are then scaled
and converted to a probability distribution by the softmax function. The formula is

Attention_Scoresi =
QiKT

i√
dk

, (5)

where dk is the dimension of the key vector (usually dk = d mod el/h, where h is the number
of attention heads). Then, we apply the softmax function:

Attention_Weightsi = so f t max(Attention_Scoresi) (6)

Next, we use the calculated attention weight to weight the value vector:

Outputi = Attention_WeightsiVi (7)
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Figure 5. Schematic diagram of the multi-head attention mechanism.

4. Experiments and Analyses

4.1. Implementation Details

The operating system used for the experiments was Windows 10, and Pytorch 2.1 and
GPU acceleration were used for training and testing. The GPU model was NVIDIA GeForce
RTX 4060 (8 G); the software environments were Anaconda3, Cuda12.2, and Python 3.9;
and the development tool was PyCharm Community Edition 2022.2.2.

In the proposed method, the training processes of the target detection and semantic
segmentation were independent of each other, and the loss functions involved in the
training process of both are described below. In the training process of target detection,
the loss function was divided into two types: a classification loss function and a bounding
box loss function. In YOLOv8, the classification loss function uses the cross-entropy loss.
The bounding box loss function uses a combination of a Distribution Focal Loss (DFL) loss
function and a CIOU loss function, where the DFL calculates the offsets from the center
of the anchor point to the upper-left and lower-right corners, and the CIOU calculates the
localization loss of the positive samples only.

To ensure that the training can be carried out smoothly, the initial learning rate for
substation equipment type identification using the YOLOv8 network in the first stage
was set to 0.005, while in the second stage, the initial learning rate for equipment and
corrosion defect segmentation using the DDRNet network was set to 0.0005. In both stages,
the number of epochs was set to 500. The Adam function was used as the optimization
function in both stages. The image size for training and testing was uniformly reduced to
1500 × 1500.

4.2. Evaluation Indicators

This section introduces the evaluation indicators used in the experiment, which are
defined as follows:

Mean Average Precision (mAP) is a common evaluation index used in object detection
tasks to measure the performance of a model in detecting different types of objects. For
each category of targets, we first need to calculate the Precision and Recall of that category.
The accuracy rate represents the proportion of correctly predicted positive samples to all
predicted positive samples, and the recall rate is the proportion of correctly predicted
positive samples to all true positive samples. By changing the confidence threshold of
the detection model, different Precision rates and Recall rates can be obtained to form a
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precision–recall (PR) Curve. AP is the area under the entire PR curve, and the PR curve is
generally integrated to calculate the area. After calculating the AP in all categories, the AP
of all categories is averaged to obtain mAP. The formula is

mAP =
1
N

N

∑
i=1

APi (8)

where N is the total number of categories, and APi is the AP value of the i-th category.
Mean pixel accuracy (mAcc) is the ratio between the number of pixels correctly classi-

fied by the model and the total number of pixels, which is defined as follows:

Acc =
Tp + Tn

Tp + Tn + Fp + Fn
(9)

mAcc = ∑ Acc/N (10)

In this equation, N represents the number of categories in the semantic segmentation
task, Tp means true positive, Tn means true negative, Fp means false positive, and Fn means
false negative.

Mean Intersection over Union (mIoU) measures the degree of overlap between the
predicted and true regions, while (mIoU) is the average of all categories of (IoU). For each
category, the (IoU) is calculated as follows:

IoU =
Tp

Tp + Fp + Fn
(11)

where the meanings of Tp, Fp, and Fn are the same as above. After calculating the (IoU) for
each category, we take the average of these IoU values to obtain the (mIoU):

mIoU = ∑ IoU/N (12)

4.3. Comparison with Existing Methods

In order to verify the effectiveness and advantages of the proposed method, we
compared it with existing target detection and semantic segmentation algorithms. The
mainstream object detection algorithms Sparse R-CNN [47], Faster RCNN, and YOLOX [18],
as well as the semantic segmentation algorithms DeepLabV3 [48], Mask2Former [49],
UNet [22], and DDRNet, were selected for comparison. All algorithms were fully trained
on self-built datasets. Due to space constraints, only the variation in the loss function
of our methods (i.e., YOLOv8 and DDRNet with MHAB inserted) during the training
process is shown here, as shown in Figure 6. The final experimental results are shown in
Tables 2 and 3. The results show that the performance of YOLOv8 and DDRNet improved
by MHAB was the best. Specifically, YOLOv8 with MHAB improvement performed 4.6%
better on the mAP than the YOLOv8 without improvement, as shown in Table 2; DDRNet
with MHAB improvements performed 4.3% better on mIoU and 6.3% better on mACC
than DDRNet without improvements, as shown in Table 3.

Table 2. Comparative experiments with existing object detection algorithms.

Method mAP

Sparse R-CNN 53.46
YOLOX 48.97

Faster R-CNN 37.25
YOLOv8 56.53

YOLOv8 & MHAB 59.18
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Table 3. Comparative experiments with existing semantic segmentation algorithms.

Method mIoU mACC

DeepLabV3 70.83 75.76
UNet 65.48 67.62

Mask2Former 73.94 74.28
DDRNet 72.24 73.95

DDRNet & MHAB 75.36 78.64

(a) (b)

(c) (d)

Figure 6. Variation trend of the loss function involved in the experiment. (a) Loss of object detection
classification. (b) Loss of object detection CIOU. (c) Object detection DFL loss function. (d) Semantic
segmentation cross entropy loss function.

4.4. Ablation Experiment

The purpose of this part was to verify the validity of the proposed data enhancement
method. We first trained with the unenhanced dataset and then retrained the model with
the enhanced dataset. The algorithm used was DDRNet modified by MHAB. The results
of the two training sessions are shown in Table 4. It can be seen that although the algo-
rithm improvement after data enhancement training was not obvious in the non-corrosive
category of IoU (CF, OST, DS, CB, and flange), the performance of the network after data
enhancement training was 23.37% and 24.24% higher than that of the network without
data enhancement training in the Corrosion category of IoU and ACC, respectively. There-
fore, the experiment shows that the cut-copy-paste enhancement strategy can significantly
improve the model accuracy under unbalanced sample conditions.

Table 4. Experimental results of DDRNet modified by MHAB under data enhancement and without
data enhancement.

Enhancement
Corrosion CF OST DS CB Flange

IoU ACC IoU ACC IoU ACC IoU ACC IoU ACC IoU ACC

� 45.65 46.37 86.29 87.16 79.85 81.67 72.45 76.32 63.63 66.58 60.24 61.29
� 56.32 57.61 85.97 86.19 80.62 82.49 75.89 77.93 65.98 67.46 61.65 65.81

4.5. Real-Time Comparison of Algorithms

The purpose of the proposed two-stage method was to reduce the time consumed
by the model during inference. Therefore, this part of the experiment proved the real-
time performance of this method. The final experimental results are shown in Table 5. It
can be seen that although DDRNet had a faster inference speed, it was still not as good
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as the well-designed two-stage detection method, because DDRNet performs pixel-level
calculation on the whole image, while the two-stage method uses a YOLOv8 to filter part
of the background first.

Table 5. Comparison of calculation time of different methods.

Method Algorithm Time (ms)

One stage DDRNet 11.28

Two stage

YOLOv8 1.35
Postprocessing 0.86
DDRNet 3.58

4.6. Visual Result Discussion

In order to verify the accuracy of the experimental results more intuitively, we carried
out a visual display of the experimental results. Meanwhile, in order to comprehensively
compare the performance of different methods, we have presented the results of all existing
methods involved in the experiment, including Sparse R-CNN, Faster R-CNN, YOLOX,
YOLOv8, DeepLabV3, Mask2Former, UNet, and DDRNet. The results also include our
improved YOLOv8 and DDRNet with MHAB.

The results of various object detection methods in stage 1 are shown in Figure 7. It can
be seen that although the bounding boxes predicted by these methods were relatively close
to the labels, our proposed YOLOv8 and MHAB had the highest confidence. In the semantic
segmentation results of stage 2 (as shown in Figure 8), although the methods performed
similarly in the overall segmentation of the device, DDRNet and MHAB performed better
in the segmentation of finer corrosion areas. This is because the attention mechanism it
introduces allows the algorithm to focus on the target area more efficiently. Through visu-
alization comparison of the methods involved in the experiment, not only the effectiveness
of the proposed method is verified, but also its superiority is further highlighted.

Figure 7. Object detection results in stage 1, where (a–i) belong to the same image and (j–l) belong to
the same image.
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Figure 8. Semantic segmentation results in stage 2, where (a–i) belong to the same image,
and (j–l) belong to the same image.

4.7. Failure Case Discussion

Although our method has been effective to a certain extent, it still has some shortcom-
ings. Especially in the case of semantic segmentation in backlight, the shadow region may
be misjudged as a corrosive region (as shown in Figure 9), which is undoubtedly a key
point that needs to be improved. To effectively address this issue, we plan to first collect
a large amount of data under various lighting conditions (especially in backlit scenes) to
ensure that the model is exposed to a sufficient number of backlit and shadowed samples
during training. Subsequently, we will annotate the shadows and eroded regions more
finely, so as to ensure that the model can accurately distinguish the difference between the
two during training.
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Figure 9. Demonstration of failure cases of the proposed method. The white dashed box shows the
area of the failure case.

5. Conclusions

This work has proposed a two-stage method based on YOLOv8 and DDRNet to detect
the corrosion defects of substation equipment. In the first stage, the improved target
detection network YOLOv8 was used to conduct object detection on the equipment in the
substation. In the second stage, a DDRNet semantic segmentation network was used to
accurately segment substation equipment and its corrosion defects. In addition, multi-head
attention block (MHAB) was used in YOLOv8 and DDRNet, effectively improving the
detection capabilities of both in substation environments. Finally, a clip-copy-paste method
was used to expand the corrosion sample. Experimental results show that the proposed
two-stage substation corrosion location method can meet good real-time performance,
and the effectiveness of MHAB and data enhancement was also verified. However, the
proposed method is prone to misidentify the shaded area as a corroded area under backlight
conditions. Therefore, it is planned that the shadows and erosion areas will be labeled in
future work to ensure that the model can accurately distinguish the difference between the
two when trained.
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Abstract: This paper is focused on understanding how a wave was transmitted along
arrays joined with rivets. The arrays were made of steel plates, and each section was joined
to the other with five rivets. A total of three arrays were studied, which were compounded
by one, two and three steel plates. To determine the wave transmission, a laser, a lens and
a camera were set up in the experiment to calculate the in-plane motion both while the
structure was still and during the indirect collisions. Results were studied by means of the
general theory of elasticity coupled with spectral analysis from a general mathematical
model; the latter fitted all the responses with a mean of 98% accuracy.

Keywords: wave propagation; amplitude; velocity; oscillation; steel array; impact; analytical
response; modeling response

1. Introduction

This section is divided into five parts, starting with non-destructive testings (NDTs),
as our research deals with a different type of NDT; followed by interferometry, which
is the most used optical system for measurements; the recent developments of digital
image correlation, which is the technique used in this research; some reports on wave
transmission; and finally, recent developments on rivets.

1.1. Applications of Non-Destructive Testings (NDTs) Among Industries

Non-destructive testings (NDTs) are widely used in different industries, such as
the implementation of the double pass retroreflection for corrosion detection in aircraft
structures. One group of researchers developed their tests by using a scanning system and
a spatial resolution for images of 640 × 480 pixels; after adding a solvent to the specimens,
gray-scale images were acquired. To achieve their results, the authors assumed a degree
of corrosion on the surface establishing a percentage of the thickness of the sheet, which
demonstrates that this technique is cable of detecting hidden corrosion [1].

NDTs have been also tested to evaluate the integrity of critical aerospace composites.
Tests such as ultrasound, acoustic emission, eddy currents, infrared thermography, laser
shearography, and X-ray radiography were compared between them. The comparison
revealed that ultrasound is an effective tool for detecting porosity, acoustic is a superior
technique for finding cracks in the matrix, eddy currents are most often used to identify
impact damage, infrared is effective for observing microcracks in the matrix, shearography
is most effective when used for imaging disbonds, and X-ray can be combined with
computerized thermography and laminography [2].

Designs 2025, 9, 8 https://doi.org/10.3390/designs9010008
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In addition, NDTs were used to test aerospace composites; in this research, the authors
declared a sum of tests for each procedure time during the fabrication of face sheet consoli-
dation, the bonds and the core inclusions; the composites should be inspected with visual,
tap, ultrasound, X-ray, thermography and shearography tests [3].

Following aerospace application, NDTs were used to determine the behavior of car-
bon fiber composites; some of the tests were ultrasound, thermography, vibration and
shearography. Ultrasound and radiography were found to be the most successful methods
for the evaluation of composite materials; additionally hologropahy is a non-conventional
inspection method that demonstrated great potential in revealing delaminations in com-
posites [4].

NDTs were applied for the inspection of aircraft; in this article, the authors stated that
signal processing for determining phase characteristics in the time domain was developed
to obtain information parameters and signal characteristics for the industry. To achieve this,
the research focused on the application of signal processing to eddy currents and ultrasonic
testing for thickness measurement and pulse acoustic inspection [5].

A review about NDTs discussed different methodologies, such as visual, magnetic
particles, dye penetration, ultrasonic, radiographic, acoustic and Eddy current testing.
Here, the authors outline the limitations and capabilities as well as a description of each
test. Furthermore, they present some of the applications and challenges, concluding that
the tests are simple, but a single technique is not enough for total satisfaction. However,
coupling two or more ensures the effectiveness of the measurement [6].

NDTs are also present in the automotive industry for oil sump inspection: in particular,
visual, dye penetration, ultrasound and X-ray tests were used. The discrepancies in the oil
sump detected by these tests were 7.9%, 1.9%, 21.9% and 45.1%, respectively. The results
revealed that visual inspection was the technique that contributed the most to the detection
of nonconformities, while X-ray was the best technique to observe them [7].

Finally, an unusual technique was established: the use of high-frequency (Terahertz)
as a measurement system for different applications such as the detection of weapons,
substances, and explosives for thickness and current measurements. Terahertz technology
proved to be useful for measuring thickness in aeronautical and automotive industries [8].

1.2. Interferometry as a Non-Destructive Testing Technique

Optical techniques are also applied as non-destructive methods; this group of re-
searchers used the sampling Moiré method to measure deformation, particularly to monitor
structural health and elucidate material damage mechanisms. They focused on two of
the application examples: the measurement of dynamic deflection for large-scale concrete
bridges and the measurement of residual thermal strain for small-scale flip packages [9].

An experimental set-up was reported that determined displacements through in-
terferometry, in which a reference signal was obtained by fixing the still position, and
Fourier transform and its inverse were performed. These allowed the system to recover the
time-varying offset in each modulation period [10].

The ultrasonic technique was used along with optical interferometry to determine
diameter and depth measurements. The experiment verified the measurements obtained
by ultrasonic methods; measurements were performed ten times with each technique to
quantify the error. These techniques ensured the use of materials in a variety of applica-
tions [11].

Interferometry has also been used to analyze and identify structural health in build-
ings, demonstrating that it can monitor systems for environmental effects on the spatial
distribution of wave velocities using operational modal analysis and ambient noise decon-
volution interferometry [12].
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Interferometry has also been applied for 3D modeling by scanning 2D surfaces, it was
assessed with rigorous simulation, and the results were compared between experimental
and simulation, reproducing the image formation [13].

Following the application of interferometry, an experimental set-up of self-mixing was
created; here, authors declared the use of a convolutional neural network to reconstruct the
displacement of a target by training it with periodic displacements [14].

In addition, an interferometry function was established using the multiple aperture
technique, based on the spectral diversity method, which consists of splitting the azy-
muth synthetic aperture signal spectrum into separate subbands to estimate the surface
displacement [15].

Finally, structural health was also assessed using differential synthetic aperture radar
interferometry. This technique allowed the authors to identify possible critical situations
for buildings; also, the active deformation process and related damages were studied [16].

1.3. Digital Image Correlation in Different Applications

Digital image correlation (DIC) is considered an optical technique, as it is based
on comparing images acquired with a digital camera. One of their approaches was to
characterize a fracture process in which wood composites were subjected to loading,
and the results showed that experimental displacement measurements from DIC were as
accurate as the numerical simulation [17]. A typical application of DIC is displacement
measurement; the authors declared the acquisition of full-field time history of vibrating
components [18].

The authors developed an accurate methodology to measure external systems in
structural parts of aircraft: the experimental set-up obtained satellite information in real
time, and in addition, a camera acquired it and displayed it as an image. They stated that
the accuracy of the system has a relative error of less than 1% [19]. DIC has also been
used to measure complex deformations in aircraft; the methodology is based on detecting
movement, vibration, warping and the distortion of aircraft wheels [20].

Following aircraft application, the authors developed DIC measurements for the
deformation of rotor blades under load and their vibration due to aeroelastic phenomena.
By setting up a high-speed camera, the authors were able to measure frequency vibrations
up to 1 kHz with an exposure time below 210 ns [21].

Another study using DIC in the structural field attempted to measure the mechanical
properties of concrete; this was accomplished by coupling fiber optical strain on bars
plus DIC measurements on concrete surfaces. After testing the concrete samples, the
optical fibers demonstrated that the polyimide-coated one adequately captured high strain
gradients; furthermore, the authors presented a procedure to quantify DIC uncertainty in
large-scale structural tests [22].

Finally, a review was presented talking about the importance of DIC in large-scale tests;
the authors’ objective was to study the recent advances of the technique and its application
to composite structures. One of the most used is in the wind energy and aerospace sector,
measuring strains under static loading and modal analysis during dynamic structural
tests [23].

1.4. Wave Propagation

On the other hand, there are studies focused on understanding the propagation of
waves. An example is the development of neural networks based on physics: this method-
ology has been applied to solve direct and inverse problems in science and engineering [24].

Research was developed on the importance of studying the propagation of waves
in porous media, since it is the main cause of the anelasticity of waves. To solve this,
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the authors worked on a theory for saturated fluids containing inclusions at multiple
scales [25].

Another application was presented by coupling experimental and modeling ap-
proaches to monitor the structural health using guided wave propagation; the result of this
methodology was the understanding of the structural integrity of primary and secondary
structures as well as the detection of damage and alterations due to environmental and
operational conditions [26].

In addition, the analysis of wave propagation in composites was developed; the
authors studied the size-dependent behavior of a spinning composite reinforced with
graphene nanoplatelets in which the small-scale effect was analyzed using strain gradient
theory. One of the results was established by increasing the radius; the phase velocity
values were presented at the lowest values of the wave number [27].

Following with wave propagation in composites, the authors stated the use of a size-
dependent laminated composite nanostructure together with a piezoelectric actuator to
understand the importance of the angle ply on phase velocity changes in the composite
when increasing the wave number [28].

1.5. The Use of Riveting Joints

Rivets are very important as structural joints; for the inspection of riveted joints, a non-
destructive test was used, in which damage around the surface, subsurface and corrosion
were simulated with eddy current excitation [29].

Another study presented the effects of the riveting process on the residual and clamp-
ing stress, in which variables such as riveting force, sheet thickness, sheet and rivet material,
rivet hole and diameter tolerances were taken into account. The authors evidenced that the
crack initiation depends on the residual hoop compression stress zone [30].

An investigation was carried out on the influences of cutting positions on the measure-
ment accuracy of riveted joints, in which the authors developed evaluation and correction
methods to estimate and compare the interlocking error caused by these cuts [31].

Additionally, the authors explored the advantages and disadvantages of riveting,
comparing procedural quality measures such as the failure mode, joint strength, fatigue
lifetime, corrosion strength, and vibration, among others. During this comparison, they
demonstrated that numerical equation models focus on the interactions at the rivet–material
level and can more quickly build a prediction model [32].

A study was carried out on the fatigue behavior of rivets, in which the authors
evidenced that the stress concentration in riveted lap joints of various diameter and rivet
pitches was optimized; this was evaluated by adjusting the rivets to the stress distribution
analysis under tensile loads and modeling a theoretical model with finite element [33].

Another study presented the effects of ultrasonic vibration on the riveting process, in
which the authors declared that this experimental technique can reduce the forming force,
decrease the friction in the metal-forming process, and serve to improve the quality of the
workpiece surface. Thus, application to the riveting process showed that the technique
reduced the riveting force and decreased friction; as a consequence, the flow of the rivet
material improved [34].

An optical technique was used for the inspection of rivets: the experimental technique,
multi-intensity high dynamic range fringe projection profilometry, was evaluated for 2D
and 3D data acquisition, in which it was demonstrated that a riveted metal workpiece was
detected with high precision [35].

Finally, the aim of the present article is to characterize the impact reaction on metallic
sheets joined by rivets in three different configurations and to understand how the wave
travels along them by means of digital image correlation. The experimental results were
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evaluated analytically and following a numerical procedure, in which it was demonstrated
that both curves achieved more than 95% and in some results, and the approach reached
99% of accuracy according to the registered movement.

2. Materials and Methods

The experimental set-up was built combining a sum of three elements: beginning with
a metallic box (B), with dimensions of 40 × 40 × 40 cm, it was made with galvanized steel
sheet caliber 12 (3.4 mm thickness) [36,37]. This box was filled with G 0/3 sand, with a
density between 1.5 and 1.55 kg/m3 [36,37], approximately at 90% of its capacity. Finally,
the steel arrays were joined with rivets. Each section was assembled with five rivets using
the following equation:

NR =
51.71 ∗ LT

S
(1)

where 51.71 is a tensile resistance constant (in daN/mm2), and L, T and S are the sheet
metal length, the plate thickness (both in millimeters), and the flattening resistance (in daN),
respectively [38]. Setting the parameters on the equation, a value of 5.73 was obtained as
the number of rivets (NR); however, it was important to take into account two mechanical
design parameters: there must be a space of 2.5 times the diameter between the borders
of the sheet and the distance between each rivet taken from its center must be 2.65 times
the diameter as a minimum. The rivets used had 3.175 mm of diameter; as a consecuence,
five rivets were joining each sheet, as shown in Figure 1.

Figure 1. Mechanical design of riveting the sheet metal.

Figure 2 depicts the experimental way in which the correlation technique was per-
formed: a laser (L), a lens (l) and a camera (C) were used: the laser was a diode-pumped
solid state with 220 mW power [39], a converging lens with f = 7 cm and the camera
sensor of the iPhone 13 pro [40] were set to capture the specular reflection of the laser on a
screen (S).

The experimental methodology consisted of giving soft impacts assessed with a
hammer with 0.575 kg of mass; each hit was exactly at the midpoint of the transversal face
of the box, and all impacts were carried out in the longitudinal direction with an initial
angle of 30° according to the transversal face plane [36,37]. The impacts were propagated
along the box (Figure 3A), sand and the sets of steel sheets arrays, following the next order:
a set of three impacts were measured after the rivets and another set of three collisions
before them (Figure 3B). This procedure was repeated for two and three splices joined
by rivets.

411



Designs 2025, 9, 8

(a) (b)

Figure 2. Experimental set-up (a); laser and lens (b).

(A) (B)

Figure 3. Impact action (A) and optical measurement (B): before (a) and after (b) the rivets.

2.1. Wave Propagation Modeling

The theoretical modeling of the wave propagation part of the equation of motion is
shown below [41]:

∂F
∂x

= ρA
∂2u
∂t2 + ηA

∂u
∂t

− q (2)

where Aρ is the mass density per unit length, η is the damping per unit volume, and q
is the externally applied axial force per unit length. But in the particular case of uniform
properties and no damping, all dependent variables have an equation of the following form:

C0
2 ∂2u

∂x2 − ∂2u
∂t2 = 0 (3)

In this case, the waves are governed by the simple wave equation, and the D’Alembert
is the general solution. However, it is needed to study its spectral representation, making
the assumption that modulus and area will not vary; hence, the Fourier coefficients can be
obtained from the following:

EA
d2û
dx2 + (ω2ρA − iωηA)û = 0 (4)

in which its general solution can be in the form of

û(x) = Âe−ik1x + B̂e+ik1x (5)

with k1 as
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k1 =

√
ω2ρA − iωηA

EA
(6)

This solution can be used for the statement of a bar subjected to a force P [41]

EA
dûn

dx
= −P̂n (7)

Thus, it is possible to establish the transfer function Gv(x, ω) for the velocity as

Ĝv(x, ω) =
ω√

(ω2ρA − iωηA)EA
e−ik1x (8)

2.2. Laser Metrology and Image Processing

A solid-state laser as a source to measure was used. The laser properties that serve to
fulfill the measurements are the Gaussian distribution and that it is monochromatic; when
such a source of light is reflected form a rough surface, the optical wave resulting at any
moderate distance consists of many coherent components [42]. These physical phenomena
can be studied through the probability density function of intensity P(I):

P(I) =
1

4πσ2 exp
( −I

2σ2

)
(9)

where σ is the average intensity I of the speckles in the field. The speckles have a very
large number of random variables; thus, the central limit theorem is followed, as real and
imaginary parts of the field are asymptotically Gaussian [42].

The image-processing procedure consists of recording the specklegram in slow motion
(240 fps) by means of the sensor incorporated to (C), which is followed by obtaining each
frame helped by a free software: free video-to-jpg converter (version 5.2.3.112). Then, a code
was written in Octave� v. 9.3; it loads each image and correlates them in the Fourier domain
iteratively [36,37]. Finally, the displacement field is calculated using the following equation:

Df =
Re(Cc)

(s1 ∗ s2)2M
(10)

where Cc is the mathematical correlation and the denominator, formed by the standards
deviation and the image size, s and M respectively, which helped to normalize the re-
sult. To obtain the displacement field, an iteration by code was completed, in which the
distance between each peak amplitude intensity was plotted as a scalar value measured
in millimeters according to [36,37]. Once this result was obtained, a low-pass filter was
performed to observe the main impact and to delete the high frequencies [43]; the impact
was approached by means of damped and harmonic oscillations as well as a numerical
solution taken from rod propagation theory. It obtained more than 95% accuracy with
the analytical fitting model, and in some cases, using the rod theory, it reached more than
99% accuracy.

3. Results

This category is subdivided into three items: first, the analysis of a single lamina
coupled with rivets, measuring before and after the structural joints, which was followed
by two and three laminae, respectively. In each experimental set-up, results were obtained
evaluating the in-plane displacement between joints.

3.1. One Sheet Analysis: Before and After the Riveted Section

Figure 4 showed the behavior of six impacts; each graph plots the experimental
displacement obtained by digital image correlation (black), the analytical approximation
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(red) following [43] and the rod theory model (blue) by solving Equation (8). In Table 1, the
damped waveform of the analytical and modeled results measured before the structural
joints is displayed.

(a) (b) (c)

(d) (e) (f)

Figure 4. One sheet array graphs: (a–c) analysis before the rivets; (d–f) solution after the rivets.

In Table 1, it can be seen that the analytical and modeled solutions are similar. Both
have a damped behaviour, and it is evident that the frequencies have higher values in the
modeled solution. This suggests that the collision came with an amount of energy which
was dissipated by the box and sand; then, when propagated to the lamina, a reduction
was sensed in each case. The mean accuracy for the analytical approximation was 96.3%;
however, modeling followed by the rod propagation theory gave 98.1%.

Table 1. Analytical and modeling solutions for one steel sheet; measurement before the rivets.

Figure Function Type Accuracy

ar Analytical f(x) = 0.4 ∗ sin(7.5x + 1.49) ∗ exp(−0.09x) + 0.018 96.2%
ab Modeled f(x) = 0.49 ∗ sin(28x − 3.45) ∗ exp(−0.235x) − 0.0206 98.6%

br Analytical f(x) = 0.395 ∗ sin(7.9x − 3.6) ∗ exp(−0.087x) + 0.05 95.9%
bb Modeled f(x) = 0.49 ∗ sin(28x − 1.9) ∗ exp(−0.19x) − 0.04 97.1%

cr Analytical f(x) = −0.42 ∗ sin(7.4x − 3.2) ∗ exp(−0.1) + 0.084 96.8%
cb Modeled f(x) = 0.5 ∗ sin(27.8x − 1) ∗ exp(−0.269x) − 0.0801 98.8%

Table 2 expresses the solutions for the measurements taken after the joints. These are
congruent with Table 1, as the modeled response had higher values of frequency again.
However, in this case, the rod propagation theory reached 99.9% accuracy; it is appreciated
that its amplitude has a lower value than the analytical solution.
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Table 2. Analytical and modeling solutions for one steel sheet; measurement after the rivets.

Figure Function Type Accuracy

dr Analytical f(x) = 8.8 ∗ sin(7.3 ∗ x − 0.4) ∗ exp(−0.8 ∗ x) − 0.086 95.2%
db Modeled f(x) = 3.8 ∗ sin(28 ∗ x + 1.87) ∗ exp(−1.4 ∗ x) − 0.214 99.6%

er Analytical f(x) = 8.8 ∗ sin(7.3 ∗ x − 0.3) ∗ exp(−0.8 ∗ x) − 0.273 96.8%
eb Modeled f(x) = 4.08 ∗ sin(28 ∗ x + 2.32) ∗ exp(−0.2 ∗ x) − 0.2554 99.4%

fr Analytical f(x) = 9 ∗ sin(7.3 ∗ x − 1.04) ∗ exp(−0.84 ∗ x) − 0.3 96.7%
fb Modeled f(x) = 4.1 ∗ sin(29.12 ∗ x − 2.51) ∗ exp(−0.6 ∗ x) − 0.3 99.9%

3.2. Two Riveted Sections Analysis

A total of six graphs are depicted in Figure 5. The first three correspond to the
measurements after a set of five rivets, and the other three were obtained next to the second
set of joints. The analytical and modeled solutions are shown in Table 3.

(a) (b) (c)

(d) (e) (f)

Figure 5. Two sheets array graphs: (a–c) analysis after the first section of four rivets; (d–f) solution
after the second section.

Table 3. Analytical and modeling solutions measured after the first section of five rivets.

Figure Function Type Accuracy

ar Analytical f(x) = 0.5 ∗ sin(7 ∗ x − 0.85) ∗ exp(−0.17 ∗ x) + 0.21 98.5%
ab Modeled f(x) = 0.5 ∗ sin(28 ∗ x + 0.3) ∗ exp(−0.2 ∗ x) − 0.25 99.1%

br Analytical f(x) = 0.51 ∗ sin(7.4 ∗ x + 1.205) ∗ exp(−0.17 ∗ x) + 0.167 96.4%
bb Modeled f(x) = 0.49 ∗ sin(29.5 ∗ x + 4) ∗ exp(−0.5 ∗ x) − 0.14 99.2%

cr Analytical f(x) = −0.53 ∗ sin(7.6 ∗ x + 1.75) ∗ exp(−0.17 ∗ x) + 0.2 96.4%
cb Modeled f(x) = 0.51 ∗ sin(29.5 ∗ x − 1.3) ∗ exp(−0.4 ∗ x) − 0.2325 98.9%

Table 3 exposed again a damped oscillation; in this set, the analytical approximation
reached a maximum of 98.5%, but rod theory obtained a greater accuracy again of more
than 99%. It can be observed that the behavior is congruent with Tables 1 and 2, and the
frequency is greater, demonstrating that the physical phenomena was reproduced for a
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set of two laminae. Additionally, Table 4 shows the results for the measurements after the
second set of rivets; in this case, the analytical approximation has a mean accuracy of 96.7%
and rod theory reached 99.8%. It is important to declare that the oscillatory movement was
reproduced again and the amplitude increased in the modeled section.

Table 4. Analytical and modeling solutions measured after the second section of rivets.

Figure Function Type Accuracy

dr Analytical f(x) = 2.8 ∗ sin(7.2 ∗ x − 0.33) ∗ exp(−0.8 ∗ x) − 0.053 97.2%
db Modeled f(x) = 18.5 ∗ sin(27.3 ∗ x − 2.75) ∗ exp(−1.5 ∗ x) + 0.024 99.6%

er Analytical f(x) = 3.27 ∗ sin(7.4 ∗ x − 0.7) ∗ exp(−0.8 ∗ x) + 0.044 96.7%
eb Modeled f(x) = 18.4 ∗ sin(28.3 ∗ x − 3.85) ∗ exp(−1.4 ∗ x) − 0.0901 98.9%

fr Analytical f(x) = 3 ∗ sin(7.4 ∗ x − 1.2) ∗ exp(−0.8 ∗ x) − 0.028 96.3%
fb Modeled f(x) = 18.3 ∗ sin(28 ∗ x − 6.32) ∗ exp(−1.4 ∗ x) − 0.0591 99.8%

3.3. Three Riveted Sections Analysis

Finally, nine plots are shown in Figure 6. They are collocated in the following order:
after the first set of five rivets; next to the other set and at the end of the lamina. The
modeling and analytical solutions are presented in Table 5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Three sheets array graphs: (a–c) analysis after the first section of four rivets; (d–f) solution
after the second section; (g–i) solution of the third one.
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Table 5. Analytical and modeling solutions for three sheets; measurement after the first section of
five rivets.

Figure Function Type Accuracy

ar Analytical f(x) = 7.2 ∗ sin(7.3 ∗ x−0.3) ∗ exp(−0.8 ∗ x) − 0.1 95.6%
ab Modeled f(x) = 36 ∗ sin(26.26 ∗ x) ∗ exp(−1.4 ∗ x) + 0.005 98.6%

br Analytical f(x) = 7.1 ∗ sin(7.5 ∗ x−3.3) ∗ exp(−0.8 ∗ x) − 0.11 95%
bb Modeled f(x) = 36.5 ∗ sin(26.2 ∗ x−5.61) ∗ exp(−1.42 ∗ x) + 0.01 99%

cr Analytical f(x) = 7.2 ∗ sin(7 ∗ x + 0.35) ∗ exp(−0.8 ∗ x) − 0.1 96.3%
cb Modeled f(x) = 37.2 ∗ sin(26 ∗ x + 0.6) ∗ exp(−1.4 ∗ x) − 0.016 98.5%

It can be appreciated that Table 5 shows similar results to Table 4. In this set, the
analytical approximation decreased to 95% compared with results obtained with one and
two riveted sections; however, the accuracy obtained using the rod theory remained greater
than 98%. The damped oscillation is consistent, while the amplitude and frequency are
greater in the modeled equation, evidencing the repetition of the phenomena in a set
of three laminae. Table 6 shows the numerical results for the measurements obtained
after the second section of rivets; again the oscillation is congruent with the other results,
analytical approximation reached a maximum accuracy of 97%, and the rod theory obtained
a maximum of 98.4%.

Table 6. Analytical and modeling solutions for three sheets; measurement after the second section
of rivets.

Figure Function Type Accuracy

dr Analytical f(x) = 8.6 ∗ sin(7.3 ∗ x + 1.53) ∗ exp(−0.9 ∗ x) − 0.104 95.9%
db Modeled f(x) = 26.5 ∗ sin(26 ∗ x + 3.38) ∗ exp(−1.6 ∗ x) + 0.005 98.4%

er Analytical f(x) = 8.5 ∗ sin(7.3 ∗ x + 0.7) ∗ exp(−0.8 ∗ x) − 0.066 97.1%
eb Modeled f(x) = 27.6 ∗ sin(28 ∗ x − 4.89) ∗ exp(−1.4 ∗ x) − 0.071 98.2%

fr Analytical f(x) = 8 ∗ sin(7.5 ∗ x + 1.8) ∗ exp(−0.83 ∗ x) − 0.0533 96.4%
fb Modeled f(x) = 27 ∗ sin(27.5 ∗ x + 1.04) ∗ exp(−2.4 ∗ x) + 0.0321 97.3%

Finally, Table 7 shows how the wave behaved in the third lamina; it is seen that the
oscillation behavior continued, for the last case, the analytical approximation reached a
mean accuracy of 96% while the rod theory 98.5%. It can be appreciated that the amplitude
decreased from Tables 5–7. It seems that part of the wave was stopped by the structural
joints; however, the waveform remained.

Table 7. Analytical and modeling solutions while studying the impact transmission after the third one.

Figure Function Type Accuracy

gr Analytical f(x) = 4.5 ∗ sin(7.65 ∗ x − 2.02) ∗ exp(−0.9 ∗ x) − 0.062 96.3%
gb Modeled f(x) = 9.6 ∗ sin(28.5 ∗ x + 1.16) ∗ exp(−1.43 ∗ x) − 0.024 98.9%

hr Analytical f(x) = 4.3 ∗ sin(7.62 ∗ x + 1.23) ∗ exp(−1 ∗ x) − 0.0745 96%
hb Modeled f(x) = 10.2 ∗ sin(28.5 ∗ x − 0.8) ∗ exp(−1.4 ∗ x) − 0.062 98.1%

ir Analytical f(x) = 4.77 ∗ sin(7.62 ∗ x + 2.33) ∗ exp(−1 ∗ x) − 0.05 96.2%
ib Modeled f(x) = 10 ∗ sin(29.7 ∗ x − 3.53) ∗ exp(−1.35 ∗ x) − 0.052 98.5%

4. Discussion

The authors declared in [43] that the pendular motion generated sometimes a har-
monic reaction, and some others generated a damped reaction. The structural rigidity

417



Designs 2025, 9, 8

given by the screws may provoke those changes, making the incoming wave travel in a
different waveform.

In this article, the results evidenced that a physical phenomena was reproduced; all the
solutions were damped, and the incoming wave (modeled) had greater values of frequency
compared with the analytical ones. Along the three sets of sheets joined with rivets, the
rod theory demonstrated a better approximation, reaching a maximum of 99.9% accuracy.
Consequently, the results evidenced that the methodology shown in [43] agreed with the
approximation obtained using the rod theory.

5. Conclusions

This article demonstrated that the laser system methodology can sense the behavior
of an indirect impact with a maximum accuracy of 99.9%; this result was reached by means
of the rod propagation theory.

Also, the results evidenced that a physical phenomena was reproduced; the wave
motion always was damped, and the frequency values were greater in the modeled solution
compared with the analytical ones. It is assumed that this behavior could be attributed to
an energy absorption due to the sand; however, the waveform remains.

Wave transmission sensing might be used in seismic, civil, mechanic and aeronautic
engineering, to mention some of the options. Also, the present system is a cheap solution,
as it only requires a laser source and a camera.
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