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Agricultural Drought Model Based on Machine Learning Cubist
Algorithm and Its Evaluation

Sha Sha, Lijuan Wang *, Die Hu, Yulong Ren, Xiaoping Wang and Liang Zhang
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zhangl@iamcma.cn (L.Z.)
* Correspondence: wanglj@iamcma.cn

Abstract: Soil moisture is the most direct evaluation index for agricultural drought. It is not only
directly affected by meteorological conditions such as precipitation and temperature but is also
indirectly influenced by environmental factors such as climate zone, surface vegetation type, soil type,
elevation, and irrigation conditions. These influencing factors have a complex, nonlinear relationship
with soil moisture. It is difficult to accurately describe this non-linear relationship using a single
indicator constructed from meteorological data, remote sensing data, and other data. It is also difficult
to fully consider environmental factors using a single drought index on a large scale. Machine learning
(ML) models provide new technology for nonlinear problems such as soil moisture retrieval. Based on
the multi-source drought indexes calculated by meteorological, remote sensing, and land surface model
data, and environmental factors, and using the Cubist algorithm based on a classification decision tree
(CART), a comprehensive agricultural drought monitoring model at 10 cm, 20 cm, and 50 cm depth
in Gansu Province is established. The influence of environmental factors and meteorological factors
on the accuracy of the comprehensive model is discussed, and the accuracy of the comprehensive
model is evaluated. The results show that the comprehensive model has a significant improvement
in accuracy compared to the single variable model, which is a decrease of about 26% and 28% in
RMSE and MAPE, respectively, compared to the best MCI model. Environmental factors such as
season, DEM, and climate zone, especially the DEM, play a crucial role in improving the accuracy of
the integrated model. These three environmental factors can comprehensively reduce the average
RMSE of the comprehensive model by about 25%. Compared to environmental factors, meteorological
factors have a slightly weaker effect on improving the accuracy of comprehensive models, which is
a decrease of about 6.5% in RMSE. The fitting accuracy of the comprehensive model in humid and
semi-humid areas, as well as semi-arid and semi-humid areas, is significantly higher than that in arid
and semi-arid areas. These research results have important guiding significance for improving the
accuracy of agricultural drought monitoring in Gansu Province.

Keywords: comprehensive agricultural drought index (CADI); CART; relative soil moisture; DEM;
climate zone

1. Introduction

Soil moisture is an important indicator for monitoring agricultural drought, and meth-
ods for obtaining soil moisture include soil drilling, remote sensing inversion, numerical
model simulation, and data assimilation. The most accurate method for obtaining soil
moisture is the soil drilling and weighing method, but this method is based on single-point
observation, with limited spatial representativeness and very low efficiency in obtaining
data. With the development of remote sensing science and technology, remote sensing
technology is widely used for soil moisture surface layer monitoring due to its wide spatial
coverage and high spatial resolution [1]. It overcomes the shortcomings of site observation.
Land surface models or assimilation systems can also obtain continuous soil moisture

Hydrology 2024, 11, 100. https://doi.org/10.3390/hydrology11070100 https://www.mdpi.com/journal/hydrology1
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from surface layer to root zone layer based on numerical simulation or data assimilation
techniques [2,3]. However, the spatial resolution of soil moisture simulated by this method
is low, and it is difficult to verify due to large spatial scale differences; furthermore, it is also
difficult to meet the spatial resolution requirements of provincial-level agricultural drought
monitoring. Gansu Province is located in the inland region of China, and has a severe water
scarcity [4]. Most of the area is located in the climate transition zone of China [5], and it is
also a sensitive area for global climate change [6]. The east–west elevation drop of Gansu
Province is nearly 5 km, and the geographical environment is very complex, which poses
great difficulties for soil moisture estimation based on remote sensing and land surface
models or data assimilation technology, making the accuracy of soil moisture estimation in
Gansu Province not ideal. Further improving the accuracy of soil moisture estimation has
extremely important guiding significance for agricultural production in Gansu Province.

Soil moisture is an important factor in the water cycle mechanism [7], which is in-
fluenced by the atmospheric system, but it also affects the atmospheric system through
feed-back from vegetation, soil, and other factors [8]. The physical mechanisms that affect
soil moisture are very complex. The amount of precipitation and the temperature directly
affect the soil moisture, and it is also indirectly affected by environmental factors, such as
climate zone, surface vegetation type, soil type, altitude, irrigation conditions, etc. [9]. It
is often difficult to describe soil moisture comprehensively and accurately with a single
index. The application of multi-source data has been a research hotspot in recent years for
agricultural drought monitoring based on soil moisture. Multivariate statistical modeling is
an important method for establishing a comprehensive drought monitoring model [10–16].
However, these methods often insufficiently consider environmental factors, and the deter-
mination of weight coefficients is somewhat artificial, resulting in limited spatiotemporal
applicability of this method. In recent years, the rapidly developing machine learning (ML)
methods [17] have had strong nonlinear mapping capabilities, providing new methods for
solving nonlinear problems such as soil moisture. They are currently the main method
for drought monitoring based on multi-source data. Because they have fewer parameters,
faster modeling speed, and higher accuracy, ML algorithms based on decision tree (DT)
classification are most widely used to estimate soil moisture [18–23]. Previous studies have
focused more on using ML algorithms to estimate soil moisture, and no matter which
drought index is considered, environmental factors such as digital elevation models (DEMs),
climate zone, land cover types, irrigation, etc. are important factors that DT models have
considered. However, there have been few reports on the evaluation of environmental fac-
tors of ML algorithms in previous studies. In this paper, based on multi-source data, such as
meteorological data, remote sensing data, numerical model data, and environmental factors,
an appropriate number of indexes are selected according to the results of cross-verification,
and a comprehensive agricultural drought monitoring model is established by using the
Cubist algorithm based on classification and regression trees (CARTs). On the basis of
evaluating the influence of environmental and meteorological factors on the accuracy of the
comprehensive model, the accuracy of the comprehensive model is evaluated. The results
aim to provide a new technology for agricultural drought monitoring in Gansu Province, so
as to improve the accuracy of agricultural drought monitoring.

2. Materials and Methods

2.1. Study Area

The natural environment in Gansu Province is very complex. Gansu Province is
located on the Loess Plateau in western China, in the upper reaches of the Yellow River.
It is the intersection of the Loess Plateau, Qinghai Tibet Plateau, and Mongolian Plateau,
with a sloping terrain from southwest to northeast and a narrow terrain from east to west
(as shown in Figure 1a). However, due to the proximity of Gansu Province to the Qinghai
Tibet Plateau to the west, the elevation drops from Gannan, in the west, to Pingliang and
Qingyang, in the east, is nearly 5 km, which leads to a significant difference in temperature,
precipitation, climate types, and vegetation types between the west and east. Gansu
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Province has a rich variety of vegetation types, including cultivated vegetation, forest land,
grassland, desert, and a total of 12 vegetation types (as shown in Figure 1b). The climate of
Gansu Province is complex, mainly including arid, semi-arid, semi-arid and humid, humid,
and semi-humid regions (as shown in Figure 1c) [24]. Gansu Province is dry, with little
rainfall and high evapotranspiration, resulting in significant spatiotemporal differences in
precipitation [25]. In terms of agricultural cultivation, the east area of the Yellow River in
Gansu Province belongs to a rain-fed agricultural area called Hedong area, and crop growth
relies entirely on natural precipitation. The western area of the Yellow River, which is called
the Hexi area, is an irrigated agricultural area due to very little natural precipitation, and
crop growth mainly relies on irrigation.

Figure 1. Geographical location (a), vegetation type (b), and climate zone diagram of Gansu Province (c).

2.2. Dataset Descriptions
2.2.1. Relative Soil Moisture

This study uses relative soil moisture (RSM) as a monitoring indicator for agricultural
drought and as the dependent variable of the comprehensive agricultural drought monitoring
model based on the Cubist algorithm. The RSM data used is the ten-day soil relative humidity
data of 44 stations in Gansu Province from February 2003 to November 2016, with a depth
of 10, 20, and 50 cm. The majority of the station data is up to 2012, and the average value
is calculated from the three values to the monthly RSM data. The monthly soil relative
humidity datasets at depths of 10, 20, and 50 cm are respectively referred to as RSM_10,
RSM_20, and RSM_50. Drought classification based on RSM is shown in Table 1 [26].

3
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Table 1. Drought classification based on RSM.

Agricultural Drought Grade Classification

None drought D1 60% < RSM
Light drought D2 50% < RSM ≤ 60%

Moderate drought D3 40% < RSM ≤ 50%
Severe drought D4 30% < RSM ≤ 40%

Extreme drought D5 RSM ≤ 30%

2.2.2. Meteorological Data

From a physical mechanism perspective, precipitation and temperature are the most
important factors affecting soil moisture, while radiation, wind speed, etc. are also non-
ignorable factors affecting soil moisture. Sunlight hours are the main factor in calculating
radiation, so the meteorological data used in this article include the multiple time scales
Standard Precipitation Index (SPI_1, SPI_3, SPI_6, SPI_9), meteorological drought com-
posite index (MCI) [25], days of no rain, max days of no rain (DNR_max), temperature
anomaly (TA), wind speed anomaly (WSA), relative humidity anomaly (RHA), sun hour
anomaly (SHA), etc., with a time range of 2000 to 2018.

2.2.3. Remote Sensing Data

The remote sensing drought index used in the study includes two types: optical and mi-
crowave, with a time range of 2000–2018.The vegetation condition index (VCI) [27], tempera-
ture condition index (TCI) [28], and temperature vegetation drought index (TVDI) [29] were
calculated using MODIS data (MOD09A1 and MO-D11A2) (https://search.earthdata.nasa.
gov/search/granules?p=C2343111356-LPCLOUD&pg[0][v]=f&pg[0][gsk]=-start_date&q=M
OD09A1&tl=1523328714!4!!, https://search.earthdata.nasa.gov/search/granules?p=C22690
56084-LPCLOUD&pg[0][v]=f&pg[0][gsk]=-start_date&q=MOD11A2&tl=1523328714!4!!, (ac-
cessed on 11 May 2024)) as optical remote sensing soil moisture indicators, with a spatial res-
olution of 500 m and 1 km. Using the active–passive microwave fusion soil moisture dataset
of version 04.5 from the Climate Change Initiative (CCI) project of the European space agency
(ESA) [30,31] (https://catalogue.ceda.ac.uk/uuid/38b8e5e524e1449ab4b4994970752644 (ac-
cessed on 11 May 2024)), extract its volumetric moisture content (v%) and calculate its
percentile [32] based on historical data, as the soil moisture index based on microwave
remote sensing, which is denoted as SM_CCI, with a spatial resolution of 25 km.

2.2.4. Land Surface Model Data

This article uses soil moisture products of several land surface modes, including com-
munity atmosphere biosphere land exchange (CABLE) and Noah and variable infiltration
capacity (VIC) of the global land data association system (GLDAS) over the period of
2000–2018. The CABLE model is a land surface model developed by the commonwealth
scientific and industrial research organization (CSIRO) in Australia, which has been well
applied to drought monitoring in China [33,34]. The percentile of soil moisture in the
model was used as a soil moisture indicator based on the land surface model, denoted as
SM_ CABLE. The GLDAS is a joint project between the National Aeronautics and Space
Administration (NASA), the National Centers for Environmental Prediction (NCEP), and
the National Oceanic and Atmospheric Administration (NOAA) of America [35,36]. GLDAS
adopts advanced data assimilation technology to integrate satellite observation data and
ground-based observant ion data into a unified model. Currently, GLDAS includes four land
surface models, including Noah, Mosaic, community land model (CLM), and VIC land sur-
face models. This study uses the latest version 2.1 of the Noah model soil moisture (in kg/m2)
at depths of 0–10, 10–40, and 40–100 cm (https://disc.gsfc.nasa.gov/datasets/GLDAS_NO
AH025_M_2.1/summary?keywords=GLDAS, (accessed on 11 May 2024)) and VIC model
soil moisture (in kg/m2), at depths of 0–30 cm, 18–27 cm, 50–400 cm, and root zone (https:
//disc.gsfc.nasa.gov/datasets/GLDAS_VIC10_M_2.1/summary?keywords=GLDAS, (ac-
cess on 11 May 2024)), with a monthly time scale from 2000 to 2018. The spatial resolutions
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of Noah and VIC models are 0.25◦ and 1◦, respectively. After extracting the data, calculate
the percentage of anomaly (PA) separately. The PA of soil moisture at depths of 0–10, 10–40,
and 40–100 cm in Noah mode is denoted as NOAH_PA_10, NOAH_PA_40, NOAH_PA_100,
respectively. The PA at depths of 0–30 cm, 18–27 cm, 50–400 cm, and root zone in the VIC
mode are recorded as VIC_PA_30, VIC_PA_d3, VIC_PA_d2, and VIC_PA_root, respectively.

2.2.5. Environmental Data

In such a complex environment as Gansu Province, the spatiotemporal applicability
of various drought monitoring indexes is very different. Therefore, when establishing
a comprehensive agricultural drought monitoring model, this article mainly considers
environmental factors such as season, DEM, climate zone, vegetation type, and the presence
or absence of irrigation. They are denoted as Season, Envi_DEM, Envi_ClimateZone,
Envi_VegeType, and Envi_Irrigation, respectively.

2.3. Method
2.3.1. CART Algorithm

The CART algorithm [21] is based on the “recursive binary segmentation” method,
which constructs a decision tree by gradually decomposing the dataset into two subsets.
For the regression problem, the algorithm uses the criterion of minimizing the square
difference to find a boundary point in dataset D, which is used to divide D into two parts:
D1 and D2, and to minimize the square difference of each part in datasets D1 and D2.
Then, find similar boundary points in D1 and D2, respectively, and continue cycling until
the termination condition is met. To prevent overfitting, it is also necessary to prune the
generated tree model to obtain the optimal decision tree. The leaf nodes of the decision tree
correspond to a predicted value.

2.3.2. Random Forest Algorithm

In order to address the issue of overfitting in CARTs, Breiman [37] proposed random
forest (RF) in 2001, which is an ensemble learning method for CARTs. RF conducts n
random samplings with replacement of the dataset, and each sampling establishes a CART.
RF establishes n CARTs, and finally uses the average of n CARTs prediction results as the
final prediction result of RF. Therefore, like the CART algorithm, each leaf node in the RF
tree corresponds to a predicted value.

2.3.3. Cubist Algorithm

Cubist is also a CART-based algorithm [38,39]. Unlike CART and RF, the leaf nodes
of Cubist are not predicted values, but rather a regression equation. Cubist generates a
series of rules at leaf nodes of trees for each rule, such as “if condition x is met, then use the
associated regression model”, for example:

Rule 1:
If
Season in {Winter, Spring}
Envi_DEM <= 1382
Envi_ClimateZone in {semi-arid zone, humid zone, semi humid zone}
MCI <= −0.049
Then
Output = −66.5 + 0.0788 × Envi_DEM + 10.7 × MCI + 7.8 × SPI1 + 10.6 × SPI9 + 53 × TVDI

2.3.4. Evaluation Method

All of the analysis of the algorithm in this article was completed in the Python envi-
ronment. There are many indexes to be considered in the comprehensive model, but not all
indexes may improve the accuracy of the comprehensive model. In order to find the optimal
combination, this study uses the 5-fold cross-test method to evaluate various combinations and

5



Hydrology 2024, 11, 100

parameter settings before establishing the comprehensive model. Based on the results of cross
validation, the indexes and parameter settings of the comprehensive model were determined.

This article evaluates the accuracy of the constructed comprehensive model using
indicators such as correlation coefficient R, determination coefficient R2, root mean square
error (RMSE), and mean absolute percentage error (MAPE).

3. Results

3.1. Construction of Comprehensive Model
3.1.1. Correlation between Multi-Source Drought Indexes

Figure 2 shows a heat map of the correlation coefficients between various drought
indexes and RSM at a depth of 10 cm. It shows that there is strong collinearity between
MCI, SPI3, and SPI6, and there is also strong collinearity between soil moisture anomalies
at different depths in the GLDAS NOAH and VIC modes. Indexes, except for WSA and
VIC_PA_30, are significantly correlated with RSM. The meteorological index, especially
the MCI index, has a better correlation with RSM, but its correlation coefficient R is 0.45,
and the determination coefficient R2 is about 0.2. In the meteorological index, RHA and
SHA also show significant positive and negative correlation with RSM, followed by the
correlation between optical remote sensing indexes and RSM. The correlation between the
land surface model drought index and RSM is relatively the worst. It is obvious that it
is difficult for a single index to accurately describe the temporal and spatial distribution
characteristics of RSM. To simplify the model, collinear variables with poor correlation
with RSM at different depths were removed.

Figure 2. Heat map of the correlation between drought indexes and RSM at a depth of 10 cm. In the
figure, * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.
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3.1.2. Selection of Algorithm

In the study, CART, Cubist and random forest (RF) algorithms, which were based
on CARTs, were compared by using different numbers of input variables. R2 of these
three algorithms on the training and test datasets is shown in Figure 3. It shows that
although the R2 of the CART model in the training set is close to 1, the R2 on the test set
is negative, indicating that the CART model performs very poorly on the test set and is
severely overfitting. Although RF has significantly improved on the test set compared to
CARTs, but RF is also significantly overfitting. Whereas the Cubist algorithm has similar
R2 on the training and testing sets, it still performs well on the testing set and is better than
RF. Therefore, the Cubist algorithm was chosen for estimating the soil moisture.

Figure 3. The box diagram of R2 of CART, Cubist, and RF in training and test data sets by using
different numbers of input variables.

3.1.3. Selection of Environmental Factors

In the study, environmental factors such as season, DEM, climate zone, and irrigation
type were considered. Taking a depth of 10 cm as an example, Figure 4 shows the R2 for
cross validation of models considering different environmental factors. It shows that without
considering any environmental factors, the R2 of the model on the test set increased with the
number of variables, but the highest did not exceed 0.3, and the model performance was low.
After adding season factors, the model performance was improved, but the improvement was
not significant. After adding the DEM factor to the model, the performance of the model was
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significantly improved, and the impact of the number of variables on the model performance
decreased. After adding the climate zoning factor to the model, the performance slightly
improved. After adding the irrigation zoning factor, the model performance no longer
increased. In addition, the accuracy of the comprehensive model increased slowly with an
increase in the number of variables. After the number of variables exceeded 6, the accuracy
of the model no longer increased. Overall, season, DEM, and climate zone environmental
factors can improve model performance, especially the DEM factor. The results for depths
of 20 cm and 50 cm are similar. Therefore, when constructing a comprehensive model,
environmental factors such as season, DEM, and climate zone will be considered.

Figure 4. Cross-validation results of model accuracy under different environmental factors at a
depth of 10 cm (In the figure, “NoEnvi” represents no environmental factors, while “S”, “D”, “C”, “I”
represent season, DEM, climate zone, and irrigation, respectively).

3.1.4. Selection of Variables

After adding variables one by one from the set of variables that removed collinear
variables, a 5-fold cross validation was performed. The results are shown in Figure 5. It
shows that TVDI and MCI can significantly improve the accuracy of the comprehensive
model. SM_CABLE, SPI1, SPI9, WSA, and SHA can also improve the accuracy of the
comprehensive model to a certain extent, so variables that are conducive to improving
the accuracy of the model are selected to construct a comprehensive drought monitoring
model (shown in Table 2).

 

 

Figure 5. Cross-validation results after adding different variables to the variable sets at 10 cm depth
(a), 20 cm depth (b), and 50 cm depth (c).
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Table 2. Variables used to build the comprehensive drought monitoring model.

Depth Variables

10 cm MCI, TVDI, SPI1, SPI9, SM_CABLE, WSA
20 cm NOAH_10_40 cm_PA, TVDI, SPI9, WSA, SHA, MCI
50 cm NOAH_40_100 cm_PA, VIC_PA_30, MCI

3.2. Evaluation of the Comprehensive Model
3.2.1. Comprehensive Evaluation

Based on the previous analysis, considering three environmental factors: season, DEM,
and climate zone, a comprehensive agricultural drought monitoring model (hereinafter
referred to as the comprehensive model) based on the Cubist algorithm was constructed
using the variables shown in Table 1. Eighty percent of the data was used for modeling,
20% for validation and evaluation, and a single-variable model was also constructed. The
modeling and validation accuracy of comprehensive models at different depths are shown
in Table 3. Figure 6 shows the scatter plots of observed and fitted values of the validation
data for comprehensive models and the MCI model with the best correlation at the 10 cm,
20 cm, and 50 cm depths. It shows that the three comprehensive models all have a certain
degree of overfitting. There is a phenomenon that high values are underestimated and
low values are overestimated. The accuracy of the comprehensive models is significantly
improved compared with the single MCI model. RMSE and MAPE of the 10 cm, 20 cm,
and 50 cm depth comprehensive models have an average decrease of about 26% and 28%,
respectively, compared with the MCI model. Comparing the R2, RMSE, and MAPE of
comprehensive models in different climate zones, it was found that the fitting results
were significantly better in semi-humid areas, humid areas, and semi-arid areas. The
shallow comprehensive model at a depth of 20 cm has the best fitting results in different
climate zones, with a MAPE of about 11%~25% for each climate zone, followed by the
comprehensive model at a depth of 10 cm, whose MAPE of each climate zone is about
12%~38%, and the comprehensive model at a depth of 50 cm, whose MAPE of each climate
zone is about 13%~32%. At the same time, it is noted that the RSM in arid areas is mostly
above 60%. Due to the low natural precipitation in arid areas, agricultural production uses
irrigation, and the fitting of MCI models in arid areas is also poor. Irrigation may be an
important reason for the relatively poor fitting of the comprehensive model and MCI model
in this area.

Figure 7 shows the time series diagrams of actual and fitted values for several typical
stations in different climate zones at a depth of 10 cm. It shows that the comprehensive
model can simulate the variation characteristics of typical stations over time. The MAEP of
actual and fitted values for stations in Gaotai, Minle, Yuzhong, Lintao, and Lixian are 10.8%,
8.8%, 19.4, 15.8%, and 12.6%, respectively. The actual RSM of Lixian, Lintao, and Yuzhong,
located in humid, semi-humid, and semi-arid areas, fluctuates around 60%. Among them,
Lixian and Lintao have more accurate simulations of high values, while Yuzhong has
a lower simulation of high values and a heavier simulation of drought conditions. For
example, after 2010, the actual RSM of Yuzhong was mostly above 60%, while the simulated
RSM was lower than the actual one, reaching the level of light drought. The three stations
have higher simulations of low values and a lighter simulation of drought conditions,
such as in Lintao from 2009 to 2012, where the actual RSM was mostly below 60%; even
below 40%, it reached the level of severe drought, while the simulated RSM was relatively
high, only reaching the level of light to moderate drought. The actual RSM of Minle,
located in semi-arid and semi-humid areas, and the Gaotai, located in arid areas, fluctuates
around 80%, and the actual RSM also fluctuates around 80%, which is consistent with the
actual situation without drought. The actual RSM of Minle has shown a downward trend
since 2011, and the comprehensive model has simulated this change feature. The Gaotai
fluctuates significantly around 80%, while the fluctuation simulated by the comprehensive
model is slightly smaller.
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(a) 

(b) 

(c) 

Figure 6. Scatter plots of observation and fitting values for the comprehensive model and MCI model
at depths of 10 cm (a), 20 cm (b), and 50 cm (c) on the test dataset (In the figure, (a)~(e) represent
humid areas, semi-humid areas, semi-arid areas, semi-arid and semi-humid areas, and arid areas,
respectively; 1 and 2 represent the comprehensive model and MCI model, respectively).
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Table 3. Comprehensive model accuracy evaluation.

Depth
Training Data Set Test Data Set

Sample Size R2 p-Value RMSE MAPE Sample Size R2 p-Value RMSE MAPE

10 cm 2636 0.71 0 10.19 15.24 659 0.56 2.19 × 10−118 13.10 20.33
20 cm 2621 0.75 0 9.44 12.72 656 0.57 1.88 × 10−124 12.77 18.57
50 cm 2687 0.67 0 11.31 15.81 672 0.54 1.07 × 10−116 13.23 18.62

Figure 7. Time series diagrams of the true and predicted RSM at a depth of 10 cm depth at Gaotai
(a), Minle (b), Yuzhong (c), Lintao (d), and Lixian (e) in different climate zones (Gaotai, Minle,
Yuzhong, Lintao, and Lixian are located in arid areas, semi-arid and semi-humid areas, semi-arid
areas, semi-humid areas, and humid areas, respectively).

3.2.2. Evaluation of the Impact of Environmental Factors on the Model

The RSME difference between the model without considering environmental factors
and the model considering environmental factors for each station at 10 cm depth was
calculated, and the spatial distribution is shown in Figure 8. After considering season,
DEM, and climate zone, the errors of most stations decreased, and the model accuracy
was greatly improved. Among them, the model’s accuracy was significantly improved
after considering DEM factors. The station-averaged error difference at three depths is
shown in Table 4. It shows that DEM, climate zone, and season factor alone can averagely
reduce the error of the comprehensive model at three depths by about 20%, 7.5%, and
2.5%, respectively, and all three factors can averagely reduce the error by about 25%.
This indicates that environmental factors, especially the DEM factor, are very crucial for
establishing a comprehensive model based on the Cubist algorithm, even much more than
increasing the number of input variables.
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Figure 8. Spatial distribution diagram of the RSME difference between the model without considering
environmental factors and the model considering environmental factors ((a) is only considering
season factors, (b) is only considering DEM factors, (c) is only considering climate zone factors, and
(d) is considering all three factors simultaneously).

Table 4. Statistical table for the station-averaged RMSE difference, considering different environmen-
tal factors.

Depth

Error Variation
of Season

Error Variation
of DEM

Error Variation
of Climate Zone

Error Variation
of Three Factors

Absolute
Value

Relative
Value

Absolute
Value

Relative
Value

Absolute
Value

Relative
Value

Absolute
Value

Relative
Value

10 cm −0.4 −3% −2.4 −14.3 −1 −5.7% −3.2 −22%
20 cm −0.4 −3% −2.8 −18% −1.2 −7.6% −3.7 −26%
50 cm −0.2 −1.3% −3.2 −20% −1.5 9% −4.2 −26%

In order to understand the reasons why DEM can drastically improve accuracy in
the comprehensive model, the following experiments were conducted. Using DEM and
the variables in Table 2, the comprehensive model was constructed using the multiple
regression algorithm and Cubist algorithm, respectively. The results of the training and
testing sets are shown in Table 5. It shows that the fitting result of the multiple regression
algorithm is significantly inferior to that of the Cubist algorithm. The core idea of the Cubist
algorithm is to generate several multiple regression equations under the classification
of rules. The multiple regression algorithm uses a single multiple regression equation
throughout the entire research area. From the fitting results of both, the generation of rules
in the Cubist algorithm is an important reason for the improvement of the comprehensive
model accuracy of the Cubist algorithm. Table 6 shows the importance of each variable in
the Cubist algorithm-based comprehensive model at 10 cm depth in both rules and models.
It shows that DEM ranks first in terms of importance in rules, indicating that DEM is a
very important classification indicator. It is the impact of DEM on rule generation that
significantly improves the accuracy of the comprehensive model.
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Table 5. The fitting results of multiple regression algorithm and Cubist algorithm.

Algorithm Depth
Training Data Set Test Data Set

R2 RMSE MAPE R2 RMSE MAPE

multiple
regression

10 cm 0.27 16.24 25.73 0.28 16.74 27.64
20 cm 0.26 16.15 23.04 0.25 16.93 26.16
50 cm 0.17 17.86 27.22 0.15 18.06 26.89

Cubist
10 cm 0.65 11.28 17.24 0.47 14.29 22.94
20 cm 0.68 10.61 14.25 0.50 13.85 20.15
50 cm 0.57 12.79 18.18 0.45 14.55 21

Table 6. The importance of various variables in the 10 cm Cubist algorithm integrated model in rules
and models.

Variables Rules Models

DEM 86 87
MCI 41 93
TVDI 12 82
SPI1 6 68
SPI9 4 59

SM_CABLE 2 45
WSA 1 29

3.2.3. Evaluation of the Impact of Meteorological Factors on Comprehensive Models

The RSME difference between the model without considering the meteorological
factors and the model considering the meteorological factors for each station was also
calculated, and spatial distribution at 10 cm depth is shown in Figure 9. It shows that
after considering MCI, SPI1, SPI9, and WSA, the error of most stations had decreased,
while the error of some stations had increased. The stations with increased error are
mostly distributed in the Hexi area, which is an arid area. Comparing Figure 8a–c, it
is found that after considering SPI1, the errors of almost all stations had decreased to
varying degrees, indicating that the precipitation in the past month was more conducive to
reducing the error of the comprehensive model. The station-averaged error difference at
three depths is shown in Table 7. Meteorological factors mainly reduce the error of shallow,
comprehensive models. MCI, SPI1, SPI9, WSA, and SHA alone can averagely reduce the
error of the comprehensive model at three depths by about 6.4%, 5.6%, 3.5%, 0.9%, and
1%, respectively. The comprehensive consideration of all five meteorological indexes can
reduce the error at three depths by about 10.6%, 2.9%, and 5.9%, respectively. Overall,
precipitation is still the most important meteorological factor affecting the accuracy of
the comprehensive models, and WSA and SHA can slightly improve the accuracy of the
comprehensive models at 10 cm and 20 cm.

Table 7. Statistics of mean station error for models considering different meteorological factors.

Depth
MCI SPI1 SPI9 WS SH Considering All

a r (%) a r(%) a r (%) a r (%) a r(%) a r (%)

10 cm −0.8 −6.7 −0.7 −5.6 −0.5 −4.1 −0.2 −1.48 - - −1.27 −10.6
20 cm −0.7 −6.5 - - −0.3 −2.8 −0.01 −0.25 −0.13 −1 −0.51 −2.9
50 cm −0.7 −5.9 - - - - - - - - −0.7 −5.9

Note: In the table, a and r represent absolute and relative values, respectively, and “-” indicates that this factor has
not been considered.
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Figure 9. Spatial distribution diagram of the RSME difference between the model without considering
meteorological factors and the model considering meteorological factors at 10 cm depth ((a) is only
considering MCI, (b) is only considering SPI1, (c) is only considering SPI9, (d) is only considering
WSA, (e) is considering MCI, SPI1, SPI9, and WSA simultaneously).

3.3. Application of the Comprehensive Model

Since late July 2016, the average temperature in the central and eastern parts of Gansu
Province has been around 2 ◦C higher, with the highest average temperature in nearly
56 years and the lowest precipitation in nearly 44 years. The high temperature and lack of
precipitation have led to drought in the central and eastern parts of Gansu, with most of
Dingxi city and the northwest of Tianshui city experiencing severe drought. Due to the lack
of effective precipitation during the critical period of crops, local crops have suffered serious
disasters, and potatoes and corn even have experienced widespread yield reductions or
crop failures. Figure 10 shows the spatial distribution of the comprehensive drought index
at 10 cm depth, percentage of precipitation anomaly, and actual RSM from June to August
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of 2016. It shows that after effective precipitation appeared in Lanzhou, Baiyin, northern
Dingxi, and northern Qingyang in July, the drought situation in these areas was somewhat
alleviated. However, by August, with the decrease in precipitation, the drought situation in
these areas further intensified. Although the time scales, depths, and thresholds for drought
classification are different, there is a certain degree of spatial consistency between drought
classification classified by the comprehensive model and site RSM, which can indicate the
spatial–temporal variation characteristics of this drought event in central Gansu province.
Among them, CADI accurately reflects drought in northern Dingxi, Qingyang, Tianshui,
and Longnan. However, CADI has a weak indication of drought in central Dingxi. There
is a clear boundary phenomenon between semi-arid and semi-humid areas. The analysis
for Figure 6 shows that the lower-fitting RSM of the typical semi-arid station and the
higher-fitting RSM of the typical semi-humid station, especially the higher fitting in the
semi-humid areas, are the reasons for the “boundary phenomenon” in this case.

Figure 10. The drought classification map of the comprehensive agricultural drought index at 10 cm
depth in June (a1), July (a2), and August (a3) of 2016, and the percentage of precipitation anomalies
in June (b1), July (b2), and August (b3), as well as the actual RSM at 0–30 cm depth on June 16 (c1),
July 16 (c2), and August 16 (c3).

4. Discussion

In the early study of soil moisture estimation models based on tree models, envi-
ronmental factors were considered important factors regardless of the drought indexes
considered. However, the importance of environmental factors in machine learning models
was rarely discussed in previous research. This article attempts to reveal the importance of
environmental factors in improving the accuracy of the Cubist algorithm, which provides a
reference for a better understanding of the Cubist algorithm.

The core idea of the Cubist algorithm is to generate a series of rule-based regres-
sion equations, and environmental factors are important references for establishing rules.
Establishing rules is actually an automatic division of regions in space, thereby achiev-
ing the automatic selection of indexes in regression equations. The large east–west span,
large DEM span, and complex terrain in Gansu Province are important reasons for the
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underlying surface and complex climate. DEM is also the most important environmental
factor affecting the accuracy of the comprehensive model. This indicates that selecting
appropriate environmental factors for the study area using the Cubist algorithm is crucial
for improving the model’s fitting ability.

However, the fitting accuracy of the integrated model is poor in the arid areas of
Hexi and the semi-arid areas in the central region. On the one hand, although the average
annual precipitation in the Hexi region is relatively low, the water resources provided
by the Qilian Mountains can meet the irrigation needs of agriculture in the Hexi region.
The lack of irrigation data may be an important reason for the low fitting accuracy of the
comprehensive model of the Hexi arid area. In addition, SPI1 is the only meteorological
factor that can improve the accuracy of the model in the Hexi region (Figure 9b), indicating
that short-term precipitation has a more important impact on SM in the region. SPI1,
which represents short-term precipitation, and MCI and SPI9, which represent long-term
precipitation, have a positive effect on improving model accuracy in the Hedong region.
Due to its arid climate characteristics, the soil sand content in the Hexi arid region is
relatively high, while the soil clay content in humid and semi-humid areas is relatively
high. The difference in soil properties may be an important factor in the different patterns
of precipitation’s impact on SM in different regions. However, due to the high sand content,
large rock and soil voids, and high groundwater level in the Hexi region, the ET0 (1049.3–
1269.9 mm) is much higher than the precipitation (42–200 mm) [40]. Moreover, Zhang
et al.’s [41] research shows that there is a strongly coupled nonlinear relationship between
typical stations’ SM and evapotranspiration (EF) located in semi-arid areas. It can be seen
that soil properties and evaporation are important factors affecting water cycling. The lack
of soil properties and evaporation data may be another important reason for the low fitting
accuracy in these regions.

At the same time, it is noted that the comprehensive model based on the Cubist
algorithm exhibits obvious “boundary phenomena” in different climate zones, especially in
semi-arid and semi-humid areas (Figure 10). The study uses the Cubist algorithm to achieve
regression estimation of continuous soil moisture values, and divides soil moisture into
drought levels with intervals of 10. Therefore, small errors may cause differences in drought
levels. Low fitting accuracy in semi-arid areas is the important reason for the “boundary
phenomena”. Apparently, the “boundary” is consistent with the climate zone. Although
the consideration of climate zones can help improve the accuracy of comprehensive models,
“boundary phenomena” also exist due to climate zones.

5. Conclusions

(1) Among the comprehensive models constructed by the Cubist algorithm, the model
at 20 cm depth has the highest accuracy, followed by the models at 10 cm and 50 cm
depths. The validation R2 of the comprehensive model at 10 cm, 20 cm, and 50 cm
depth is 0.56, 0.57, and 0.54, and the RMSE is 13.1, 12.8, and 13.2, respectively. The
MAPEs are about 20.3%, 18.6%, and 18.6%, respectively. The accuracy of the com-
prehensive model has been significantly improved compared to the single-variable
model. The RMSE and MAPE of the comprehensive model has decreased by about
26% and 28% compared to the best MCI model, on average, at the 10 cm, 20 cm, and
50 cm depths.

(2) The fitting accuracy of the comprehensive model in humid areas and semi-humid ar-
eas, as well as semi-arid and semi-humid areas, is significantly higher than that in arid
and semi-arid areas. In humid areas, semi-humid areas, semi-arid and semi-humid
areas, semi-arid areas, and arid areas, the average validation R2 of the comprehensive
model at 10 cm, 20 cm, and 50 cm depth is 0.48, 0.66, 0.31, 0.33, and 0.16, respectively.
The average RMSE is 10.5, 11.7, 16, 11.3, and 13.2, and MAPEs are about 11.6%, 16.1%,
31.5%, 12.9%, and 16.5%, respectively.

(3) Environmental factors play a crucial role in improving the accuracy of comprehensive
models, with a greater impact than increasing the number of drought indicators.
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Considering that the DEM, climate zone, season alone can averagely reduce the error
by about 20%, 7.5%, and 2.5%, respectively, and considering that all three factors
can averagely reduce the error by about 25%. Compared to environmental factors,
meteorological factors have a slightly weaker effect on improving the accuracy of com-
prehensive models. The consideration of meteorological factors, such as precipitation,
WS, and SH, averagely reduce the error by about 6.5%.

(4) The lack of irrigation, soil property, and evapotranspiration data, especially the lack
of evapotranspiration data, may be an important reason for the low fitting accuracy
of the comprehensive model in the arid and semi-arid areas of Hexi. In the future,
efforts will be made to introduce water content information, such as irrigation, soil
properties, and evapotranspiration data, into the comprehensive model, in order to
improve the soil moisture-monitoring ability in the Hexi region.

(5) Classification is another major task of machine learning algorithms, which can directly
obtain drought levels and may improve the accuracy of drought levels. In the future,
it will be necessary to compare the results of machine learning regression algorithms
and classification algorithms to improve the accuracy of drought levels, especially in
the division of drought levels in semi-arid and arid areas. In addition, the “boundary
phenomenon” exists due to climate zone, and climate zone is based on multiple indi-
cators, such as precipitation, dryness, temperature, and accumulated temperature [24].
Therefore, in addition to improving the fitting accuracy of regression models or the
accuracy of classification models, using zoning indicators instead of climate zone may
improve this situation. However, further research is needed to discover the impact of
these factors on the comprehensive model.
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Abstract: This study aims to model the uncertainty and reliability quantification of estimating the
planning irrigation water demands in the multi-canal irrigation zone, named the RA_IWD_Canal
model. The proposed RA_IWD_Canal could estimate the zone-based and branch-based water
demands and quantify their uncertainties and reliabilities via the weighted frequency quantile curves.
The historical planning irrigation water demands and measured surface runoff from 2019 to 2024
in the Zhudong irrigation zone are utilized in the model development and application. Using the
proposed RA_IWD_Canal model, the estimated branch-based irrigation water demands exhibit
a significant variation (on average, from 0.02 m3/s to 1.7 m3/s) in time and space attributed to
uncertainties in the historical gauged surface runoff. Also, the Zhudong Canal zone is demonstrated
to be sufficiently supplied irrigation water subject to existing introduced water demands with a high
reliability of 0.85; instead, the associated branches have considerable difficulty achieving the expected
irrigation efficiency based on the desired water requirements with low reliability (nearly 0.25). To
keep all branches in the irrigation zone consistent in irrigation efficiency, the probabilistic-based water
demands could be introduced via the proposed RA_IWD_Canal model with the desired reliability.

Keywords: irrigation water demands; optimal water allocation; L-moment; reliability quantification

1. Introduction

Recently, irrigation water allocation systems could be grouped into schedule-based
and object-based water supply [1]. According to the locations of the irrigation branches,
the allocated irrigation water could be achieved from upstream to downstream in schedule-
based systems [1,2]; on the contrary, within object-based systems, the irrigation water
should be optimally allocated subject to the priorities given in advance [1]. The minimum
water requirements are commonly given in the growing seasons to achieve the expected
crop production among the above irrigation systems with various water allocation strate-
gies [2–4]. Also, irrigation water demands frequently vary with the crop types [5]. However,
if the upstream inflow is less than the desired irrigation water demands, the shortage risk
of irrigation water might be induced. On the contrary, sufficient irrigation water over water
demands could be supplied with high reliability. Therefore, introducing available water
demands and requirements is vital for modern irrigation systems.

However, climate change significantly triggers the water-related shortage risk [6–10];
additionally, increasing industrial and domestic water frequently raises the complexity of
irrigation water use due to the irrigation zone utilization [1,3]; it is more likely to lead to
shortage risk to the irrigation regions lacking sufficient water supply subject to the existing
water demands for the crop growing. To facilitate irrigating efficiency, the reliability of
existing irrigation water demands should be necessarily quantified and evaluated to intro-
duce reasonable ones, considering the effect of uncertainties in climatic and hydrological
features and land use. In general, the irrigation water demands in the irrigation zones could
be introduced by the deterministic models (e.g., CROPWAT model, Penman–Monteith
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method, SWAT model, and WBM model) subject to the crop types and climatic as well as
the hydrological features in the irrigation zones [1,11–17]. For instance, Hussain et al. [16]
employed an experiment to estimate the water requirement for crops during the growth
seasons based on the difference in the water depths calculated via the deterministic equa-
tions with the change in evapotranspiration and soil moisture. Dang et al. [17] estimated
the water requirements based on the difference in the historical surface runoff and evapo-
transpiration during crop growth. In addition, the irrigation water demands could be set
based on the sources of the surface runoff and cultivation extents [2,18–20]. For example,
Zhang et al. [9] simulated the surface runoff via the hydrological model with the observed
hydrological data, such as rainfall, evapotranspiration, and soil moisture, as the boundary
condition of the crop growth model to estimate the water demands. In addition to the crop
type, hydrological data, and cultivated area, irrigation water demands could be introduced
subject to the crop economic values [21,22].

Overall, as mentioned above, irrigation water demands were mainly introduced via
the hydrological models with the crop-related factors (crop type and price as well as the
cultivation area) and hydrological data (rainfall, evapotranspiration, and soil moisture).
However, the resulting irrigation water demands were estimated without considering the
temporal and space changes and induced uncertainties in the measurements of irrigation-
related surface runoff. Also, in contrast with the zone-based irrigation water demands
comprehensively provided, the branch-based ones within multi-canal irrigation zones are
rarely introduced, so as to be approximated based on the corresponding cultivation extents
to the branches [1,6]; namely, the irrigation water demands probably have uncertainty in
space. Accordingly, the above uncertainties are highly likely to impact the availability of
irrigation water demand, further reducing irrigation reliability. Nevertheless, a number of
investigations have assessed irrigation reliability [13,14]; they mainly focused on evaluating
the effect of rainfall variation on irrigation efficiency and reliability. Therefore, this study
aims to develop an optimization and uncertainty analysis-derived model for estimating
branch-based irrigation water demands and quantifying their quantiles with gauged his-
torical surface runoffs within multi-canal irrigation zones, named the RA_IWD_Canal
model; it is expected that the resulting water demand quantiles could not only describe the
uncertainties in the estimated branch-based irrigation water demands due to surface-runoff
variation but also apply to the reliability quantification of the zone-based and branch-based
irrigation water demands of interest.

2. Methodology

The proposed RA_IWD_Canal model is mainly developed to estimate branch-based
irrigation water demands, quantify uncertainties, and induce reliability in the multi-branch
irrigation zone. Thus, within the proposed RA_IWD_Canal model, the optimization and
uncertainty analysis should be configured with the observed surface runoff at the discharge
gauges within the study area. Accordingly, the detailed model concepts and methods
regarding the optimization and uncertainty analysis for the irrigation water could be
addressed below.

2.1. Model Concept

The proposed RA_IWD_canal model could consist of three components: data collec-
tion, estimation of branch-based irrigation water demands, and uncertainty and reliability
quantification of irrigation water demands. At the data collection step, in addition to
the measured surface runoff at all discharge gauges and upstream inflow, the historical
irrigation water demands introduced should be required in the model development and
validation. After that, to estimate the branch-based water demands in the multi-canal
irrigation zone via the proposed RA_IWD_Canal model, an optimization-based model
for allocating the branch-based irrigation water supplies (OPA_IWS_Canal) [2] is adopted
under consideration of the historical runoff data recorded at the discharge gauges. In
detail, if the discharge gauge is installed at the branch, the corresponding measured surface
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runoff could be regarded as the branch-based irrigation water demand; alternatively, at
the branch in the middle of two discharge gauges, its irrigation water demands could be
estimated with the difference of surface runoff at two discharge gauges. In the case of
several branches in the middle of two discharge gauges, their irrigation water demands
could be achieved via the OPA_IWS_Canal model with the difference of gauged surface
runoff.

Eventually, to quantify and assess the reliabilities of the specific irrigation water
demands, the proposed RA_IWD_Canal model proceeds with the uncertainty analysis via
weighted frequency curves [23], consisting of quantiles under the desired probabilities,
established using the L-Moment approach, estimated via the L-Moment method; thus, the
dispersion of estimated branch-based water demands could be quantified in terms of the
L-mean and L-CV; accordingly, the exceedance probability of the specific water demands
(e.g., introduced planning magnitudes) could be extrapolated from the resulting quantile
curves, called overestimated risk as a reference to the reliability.

2.2. Optimization Estimation of Irrigation Water Demands

Within the optimization water allocation model (OPA_IWA_Canal model) proposed
by Wu et al. [1], schedule-based water allocation is adopted to distribute the upstream
inflow in the main canal to the target branches located from upstream to downstream; thus,
the irrigation water supplied at the target branch (named the branch-based irrigation water
supply) could be estimated by comparing the remaining canal-based water supply with
the corresponding maximum delivered water volume:

QS,IBL = min
{

QS,Canal , QMDF,IBL
}

(1)

where QS,IBL denotes the irrigation water supply obtained at the ith branch (called branch
IBL); QS,IBL canal stands for the water supply that could be provided from the main canal
for the branch IBL; and QMDF,IBL serves as the maximum delivered water supply at the
target branch IBL. The above water supply provided from the main canal to the branch
IBL Qs,IBL,canal could be calculated by the following equation under consideration of the
water supplies received by the branches and water-intake hydraulic structures located both
upstream of the canal-based irrigation zone:

QS,IBL,canal = QIN,Canal−∑IBL
I=1=1 QS,IBL,canal−QS,HYST

(2)

in which QIN,Canal stands for the resulting upstream inflow from the upstream boundary
in the canal; Qs,IBL,canal serves as the branch-based irrigation water supply obtained at the
upstream IBL branch; and QS,HYST is the total water intake of the hydraulic structures
upstream calculated using the following equation:

QS,HYST = QD,HYST × βIRR,HYST (3)

where QD,HYST is the expected water demands of the hydraulic structures and β IRR,HYST
stands for the corresponding water-intake reduction ratios of the hydraulic structures.
Also, the maximum derived water volume at the target IBL branch (QMDF,IBL) could be
computed as [20]

QMDF,IBL = QD,IBL × αSR,IBL (4)

where QD,IBL and αMDR,IBL denote the corresponding irrigation water demand at the
branch IBL (named the branch-based irrigation water demand) and the maximum derived
supply to the target branch (IBL), respectively. In reference to the branch-based irrigation
water demand, it is more likely to be determined based on the type of the crop and expected
cultivation extent; it is commonly introduced for all of the canal-based irrigation zones,
comprising a group of trenches [20]. Accordingly, in this study, the branch-based irrigation
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water demand (QD,IBL) could be approximated subject to the canal-based irrigation water
demand and the cultivation area of the branches as

QD,IBL = QD,Canal × CAIBL
CACanal

(5)

where QD,Canal is the planning irrigation water demand for the canal-based zone; and
CAIBL and CACanal account for the cultivation extents of the target ith branch (IBL) and
canal-based zone, respectively.

Within the OPA_IWD_Canal model, achieving the optimal branch-based irrigation
water supply (QS,IBL) and demand (QD,IBL), the branch-based supplying satisfaction index
(SIIBL) is required to evaluate the irrigation efficiency at the branch IBL as [2,20,24]

SIIBL=
QS,IBL

QD,IBL
(6)

in which QS,IBL and QD,IBL account for the branch-based irrigation water supply and
demand, respectively; in the case of SIIBL approaching the expected value (e.g., 1.0), the
optimal water supply at the target branch is achieved with an acceptable satisfaction index
SIIBL given a desired water demand. The detailed concepts of the OPA_IWS_Canal model
can be referred to Wu’s investigation [2].

2.3. Uncertainty and Reliability Quantification of Estimated Irrigation Water Demands

Uncertainties in the hydrological data and relevant deterministic models are frequently
caused by a lack of information on hydrologic-related phenomena, which might induce
the failure risk of the expected performance regarding the hydraulic structures. In general,
the uncertainties could be described in terms of the statistical moments of various orders,
including the mean, variance, and coefficients of skewness as well as kurtosis; also, the
detailed information on the data and model inputs as well as the outputs could refer to
the quantiles under consideration of the various occurrence probabilities. However, the
resulting quantiles should be calculated via the identified best-of-fit probability density
functions (PDF), which significantly change with the goodness-of-fit criteria adopted [17].
To reduce the uncertainties attributed to the selection of the goodness-of-fit criteria, Wu
et al. [23] presented a weighted frequency curve method to produce quantities of the
desired occurrence probabilities.

Apart from the uncertainty due to PDF selection, the PDF parameters are commonly
calibrated by the conventional produce-moment approach; however, the worse bias of the
resulting statistical properties and quantiles might be induced with the moment orders;
thus, Hosking [25] proposed the L-moments to significantly reduce the above bias attributed
to the orders of statistical moments as to provide more accurate quantiles. Therefore, within
the proposed RA_IWD_Canal model, the weighted frequency curve approach with the L-
moment could be employed in the uncertainty and reliability quantification of the estimated
branch-based irrigation water demands. Thus, within the proposed RA_IWD_Canal model,
the reliability of the estimated irrigation water demand could be represented in terms of the
exceedance probability concerning the specific demand, which could be defined as [2,14]

Reliability = Pr(WD ≥ wd) (7)

where WD accounts for the quantiles in the weighted frequency curve; and wd serves as
the specific demand, such as the estimated branch-based irrigation water demands or
the introduced planning irrigation water demand. The concept regarding the weighted
frequency curves is briefly introduced as follows.
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To reduce uncertainty in the quantiles attributed to the inappropriate probability
distributions selected, Tung [26] proposed a weighted frequency curve (WFC) method
by collaborating the multiple probability distributions; when deriving the WFC model,
the commonly used probability distributions are considered, including the normal and
log-normal distributions, Pearson and log-Pearson distributions, Gamma distribution,
generalized extreme value distribution, generalized Pareto distribution, and generalized
logistic distribution. In detail, the above-considered probability distributions are assumed
to be suitable for estimating the quantiles of given probabilities, which are calculated via
the plotting position formula. After that, the weighted quantiles can be obtained by the
following equation:

Xp,w =
M

∑
i=1

(
wi × Xp,i

)
(8)

where Xp,w accounts for the weighted quantiles of a given probability (p); Xp,i and wi stand
for the quantiles of a given probability (p) and the corresponding weighted factors under
the ith probability distribution concerned, respectively. Note that the weighted factors of
the candidate probability distributions are calculated based on their fitness performance in
terms of the mean square error (MSEi) as

MSEi =
1
n∑n

j=1

(
X(j) − Y(i,j))

2 (9)

in which n denotes as the sample size; X(j) and Y(i,j) and serve as the ascending sample
data and corresponding quantile coming from the ith candidate probability distribution.
Eventually, the resulting weighted factors of the candidate probability distributions are
computed via the following equation:

wi =

1/MSEi

∑n
i=1(1/MSEi)

(10)

where wi is treated as the weighted factor of the ith candidate probability distirouion.
In total, the quantile curves of the estimated branch-based irrigation water demands

via the OPA_IWD_Canal model can be established through the weighted frequency curve
methods to proceed with the reliability quantification of the specific irrigation water de-
mands within the proposed RA_IWD_Canal model. In particular, the parameter calibration
of the candidate probability distributions should be carried out via the L-moment method
with a group of estimated branch-based irrigation water demands. Also, the uncertain-
ties of the estimated branch-based irrigation water demands could be quantified using
L-moment ratios of the first four orders as

L-CV : τ2 =
λ2

λ1
(11)

L-Skewness : τ2 =
λ3

λ2
(12)

L-Kurtosis : τ2 =
λ4

λ2
(13)

where λi stands for the ith order L-moment, which could be obtained via the following
equation proposed by Hosking [18]:
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λr =
1
r ∑r−1

k=1

[
(−1)

(
r − 1

k

)
E(Xr−k:r)

]
, r = 1, 2, . . . (14)

where E(Xr−k:r) denotes the expected value of the kth ascending sample datum among the
r sample data extracted from the population.

2.4. Model Framework

To summarize the relevant concepts, the proposed RA_IWD_Canal model can be con-
figured using optimal irrigation water allocation and uncertainty quantification methods.
Therefore, developing the proposed RA_IWD_Canal model could refer to the
following steps:

Step [1] Collecting information on the irrigation system, including the system structure,
cultivation extents, and the number and location of the irrigation branches, discharge
gauges, and water-intake hydraulic structures; geometric and hydrologic data are
also necessary to apply to model development, upstream inflow, gauged surface
runoff, and irrigation water demand planning.

Step [2] Carrying out the uncertainty analysis to quantify the stochastic properties of the
gauged surface runoff and planning irrigation water demands.

Step [3] Calculating the differences in the measured surface runoffs among the discharge
gauges.

Step [4] Grouping the irrigation branches into various clusters based on their locations
compared with the spots of the discharge gauges.

Step [5] The observed surface runoff is treated as the estimated water demand at the branch
with the single discharge gauge.

Step [6] The difference in the gauged surface runoffs is the estimated water demands in the
cluster with a single irrigation branch.

Step [7] Estimating the optimal water supplies based on the water demand at more than
one irrigation branch within the cluster via the OPA_IWS model with the difference
in the corresponding gauged surface runoffs.

Step [8] Quantifying the uncertainties in the estimations of the branch-based water demands
to calculate their corresponding quantiles under the desired probabilities.

Step [9] Quantifying the corresponding reliabilities to the existing water zone-based and
branch-based water demands and serve the probabilistic-based water demand esti-
mates under a desired reliability as the introduced ones. The above model develop-
ment framework could refer to Figure 1.
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Figure 1. The schematic framework of estimating branch-based irrigation water demands and
quantifying the corresponding uncertainties and reliabilities via the proposed RA_IWD_Canal model.

3. Study Area and Data

To express the development and application of the proposed RA_IWD_Canal model
for estimating branch-based irrigation water demands, a multi-branch irrigation zone,
Zhudong Canal irrigation zone, is selected in this study. The Zhudong Canal irrigation
zone, whose cultivation extent is nearly 800 ha, is located in Northern Taiwan (see Figure 2).
The main crop is rice, which grows from the middle of February to the end of November.
Within the study area, 15 branches (BL1-BL14 and Bazhuang branch), whose irrigation
extents vary from 10 ha to 50 ha (see Figure 3), as well as the two water intake structures,
including Baoshan Reservoir located between the 7th seventh and 8th eighth (i.e., BL7
and BL8) branches and the Yuandon treatment plant situated between the 2nd nd and 3rd

branches.; their detailed physical characteristics and operational rules could be referred to
in Wu’s investigation [2]. Also, to effectively capture the spatial and temporal changes in
the irrigation water in the Zhudong Canal zone, 15 discharge gauges (G1–G15) were set up.
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Figure 2. Location of the study area Zhudong Canal zone with 15 irrigation channel-based branches
and 15 discharge gauges [2,20].
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Figure 3. Cultivation extents at the fifteen channel-based branches within the Zhudong Canal
irrigation zone [2,20].

The Zhudong canal zone supplied the irrigation water converted from upstream inflow
at the Shanping Weir. Namely, the upstream inflow mainly comes from the Shanping River,
whose historical 10-day surface runoff at the Shaning water-level gauge in 1959–2022
changes from 1 m3/s to 400 m3/s (see Figure 4). In addition, to effectively measure the
spatial change of the surface runoff in the Zhudong Canal zone, 15 discharge gauges were
installed from upstream to downstream in the Zhudong Canal zone to measure the surface
runoff, as shown in Figure 2. Among 15 discharge gauges, the gauges G2, G3, G6, G8,
G10, and G11 are located in the main channel, and the remaining gauges are set up in
the branches, which could directly measure water intake to the branches. Thus, given
Figure 5, the 10-day surface runoffs at 15 discharge gauges were measured from 2019
to 2022, indicating that the observed surface runoff at the 4th to 33rd 10-day period (on
average 0.5 m3/s) markedly exceeds the observations at the remaining 10-day periods
(nearly 0.14 m3/s); in particular, at the 3rd, 5th, 7th and 9th discharge gauges, their observed
surface runoffs are considerably over observations at the remaining gauges by 63%; this
indicates that the observations of surface runoff within the study area (Zhudong Canal
zone) are associated with a significant variation in time and space. Moreover, the 4th to
33rd 10-day periods could be regarded as the rainy seasons, with the remaining 10-day
period being treated as the drought season. Therefore, this study focuses on the uncertainty
quantification and reliability assessment of the irrigation water demands in the rainy season
(i.e., 4th–33rd 10-day period).

In general, ahead of supplying irrigation water, the planning irrigation water demands
should be given as the criterion for evaluating the irrigation performance [1,15]. Subse-
quently, the irrigation water supplies and requirements are represented in 10-day periods
(Wu et al., 2023). Therefore, the planning irrigation water demands at various 10-day peri-
ods in the Zhudong Canal zone from 2015 to 2024 were introduced for evaluating irrigation
performance as shown in Figure 6 (roughly from 0.85 to 1.5 m3/s); this unveils the intro
irrigation water demands in the Zhudong Canal zone reach the maximum (approximately
1.8 m3/s) at the 23rd 10-day periods. Note that within the Zhudong Canal zone, the third
branch (Su-Qi-Lin) was also given the planning irrigation water demand as shown in
Figure 6b with the significantly less introduced ones (about 0.11 m3/s).
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Figure 4. Historical 10-day surface runoff at Shanging water-level gauge Weir from 1959–2022.

(a) 2020 (b) 2021

(c) 2022 (d) 2023

Figure 5. Historical surface runoff at 15 discharge gauges within the Zhudong Canal zone.
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(a) Zhudong Canal zone

(b) The 3rd branch (Su-Qi-Lin branch)

Figure 6. Historical 10-day planning irrigation water demands within the study area.

4. Results and Discussion

Regarding the development framework of the RA_IWD_Canal model (see Figure 1),
the irrigation-related data in the study area (Zhudong Canal zone) should be collected in
advance. Then, the proposed RA_IWD_Canal model could estimate the branch-based irri-
gation water demands, quantify their uncertainties, and include reliabilities. The detailed
model development and evaluation of application results can be found below.

4.1. Establishment of the Relationship between the Branch-Based Water Demand and
Gauged Runoff

Relying on Figure 1, before developing the proposed RA_IWD_Canal model, the
irrigation branches should be grouped into the desired cluster based on the locations of
the irrigation branches and discharge gauges. As shown in Figure 2, a group of discharge
gauges are installed at the 1st, 6th, and 8th branches and from the 11th to 14th branches; their
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irrigation water demands could be given the measurements of gauged surface runoff. In
addition, the irrigation water demands at the 9th and 10th branches could be achieved by
calculating the difference in the observed surface runoffs at the two discharge gauges as

QD,9th = QG,8th − QD,8th (15)

QD,10th = QG,10th − QG,11th (16)

where QD,9th and QD,10th account for the estimated irrigation water demands at the 9th
and 10th branches, respectively; and QG,8th, QG,10th and QG,11th serve as the observed
surface runoffs at the 8th, 10th, and 11th water-level gauges. Thus, estimating the irrigation
water demands directly with the measurements of gauged surface runoff is called a data-
derived approach. Regarding the remaining branches (i.e., the 4th branch, fifth branch,
and the Ba-Zhuang branches), their irrigation water demands should be obtained via the
OPA_IWS_Canal model with the difference in the gauged surface runoffs at the 4th and 5th

discharge gauges (i.e., QG,4th and QG,5th), named the model-derived approach. In summary,
Table 1 lists the formulas to estimate the irrigation water demands at all branches in the
study area. Flowing the estimations of the branch-based irrigation water demands, the
zone-based water demand (QD,zone) could be estimated with the water demands at all
branches, excluding the 3rd branch (i.e., Su-Qi-Lin), which is given separately, as

QD,zone = ∑14
i=1,i �=3 QD,i (17)

Table 1. Formulae for estimating the branch-based irrigation water demands via the proposed
RA_IWD_Canal model.

No of Branch Gauged Surface Runoff Is Used Formula

The 1st branch QD,1st Gauged discharge QG,1st QD,1st = QG,1st

The 3rd branch (Shu-Qi-Lin) QD,3rd Gauged discharge QG,3rd QD,3rd = QG,3rd

The 4th branch QD,4th
Difference in gauged discharges QG,4th

and QG,5th
OPA_IWS_Canal modelThe 5th branch QD,5th

The branch Ba-Zhuang QD,BZ

The 6th branch QD,6th Gauged discharge QG,3rd QD,3rd = QG,3rd

The 7th branch QD,7th Gauged discharge QG,7th QD,7th = QG,7th

The 8th branch QD,8th Gauged discharge QG,9th QD,8th = QG,9th

The 9th branch QD,9th
Difference in gauged discharges QG,8th

and QG,9th
QD,7th = QG,8th − QG,9th

The 10th branch QD,10th
Difference in gauged discharges QG,10th

and QG,11th
QD,10th = QG,10th − QG,11h

The 11th branch QD,11th Gauged discharge QG,12th QD,11th = QG,12th

The 12th branch QD,12th Gauged discharge QG,13th QD,12th = QG,13th

The 13th branch QD,13th Gauged discharge QG,14th QD,13th = QG,14th

The 14th branch QD,14th Gauged discharge QG,15th QD,14th = QG,7th

4.2. Uncertainty Quantification End Assessment of Introduced Planning Irrigation
Water Demands

Before carrying out the reliability analysis for the branch-based irrigation water de-
mands in the study area, the uncertainties in the officially-introduced water demands for
the study area (Zhudong irrigation zone) and the 3rd branch (Su-Qi-Lin) (see Figure 5)
should be quantified; Figure 7 shows that their L-moment ratios at 30 10-day periods
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are calculated via the proposed RA_IWD_Canal model, as shown in Figures 7 and 8, in
which the corresponding 95% confidence intervals could also be found. Observed from
Figure 7, the mean values of introduced planning irrigation water demands for the Zhuang
Canal zone vary from 0.02 m3/s to 1.7 m3/s, with a noticeable L-CV value (on average,
0.13) and a large confidence interval of around 0.8 m3/s; in detail, the 7th–33rd 10-day
periods were given high irrigation water demands, on average from 0.8 m3/s to 1.5 m3/s.
In summary, the introduced planning irrigation water demands are more likely to have
temporal variations in the various 10-day periods; this indicates that the current planning
water demands possibly hardly reflect the variations attributed to climate change and
extreme events. A similar varying trend could be referred to in Figure 8, showing that the
planning water demands at the 3rd branch (Su-Qi-Lin) have a low average of 1.2 m3/s with
a considerable L-CV of around 0.1 m3/s.

Figure 7. Uncertainties of introduced planning irrigation water demands for the Zhudong
Canal zone.

Figure 8. Uncertainties of introduced planning irrigation water demands for the 3rd branch
(Su-Qi-Lin branch).
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Therefore, by proceeding with the proposed RA_IWD_Canal model, it could be known
that finalizing the irrigation water demands associated with the desired uncertainties is
necessary in response to the variations due to the temporal and spatial change in hydrolog-
ical features. Accordingly, the proposed RA_IWD_Canal model is supposed to proceed
with quantifying the reliabilities of introduced irrigation water demands subject to the
uncertainties in the surface runoff-related irrigation water supplies.

4.3. Uncertainty Quantification and Assessment of Branch-Based Irrigation Water Demands

Concerning Table 1, for a group of the branches in the study area, their corresponding
irrigation water demands could be obtained via the data-derived approach with the gauged
surface runoffs as shown in Figure 9; alternatively, the branch-based irrigation water de-
mands (i.e., the four and fifth as well as the Ba-Zhang branches) are estimated using the
OPA_IWS_Canal model, with a given supplying satisfaction index (see Equation (6)) (i.e.,
SIIBL = 1.0) set up in the proposed RA_IWD_Canal model (see Figure 10). Comparing
the results from Figures 9 and 10, the data-derived branch-based water demands exhibit
a considerable change in time; for example, concerning the 3rd branch (i.e., Su-Qi-Lin),
the resulting irrigation water demands have a significant change, roughly from 0.4 m3/s
to 0.8 m3/s in 2020–2023. Nevertheless, the above branches are nearly consistent with
the spatial distributions of the data-derived irrigation water demands markedly; for in-
stance, in 2023, the more significant estimated water demands (around from 0.03 m3/s
to 0.3 m3/s) could be found at the 18th–30th 10-day periods. Instead, the 4th, 5th, and Ba-
Zhuang branches include a similar spatial and temporal varying trend in the model-derived
irrigation water demands; for example, in 2000, their estimated irrigation water demands
significantly increase from 0.4 to 0.7, which reach the maximum at the 14th–17th 10-day
periods and then gradually decline to 0.03 at the 30th–33rd 10-day periods; as comparable
to Figure 5, the above varying trend in time resembles the change in the difference in the
gauged discharges at the 4th and 5th discharge gauges.

Using the proposed RA_IWD_Canal model, the uncertainties of estimated branch-
based irrigation water demands could be represented in terms of the L-moment ratio
calculated, as shown in Figure 11. It can be seen that the estimated branch-based irrigation
water demands during the rainy seasons (4th–33rd 10-day periods) display a considerable
variation in space due to a large L-CV (on average, from 0.2 to 0.8). It concludes that
branch-based irrigation water demands noticeably rely on the measurements of the gauged
surface runoff. By doing so, the variations in the observed surface runoff significantly lead
to uncertainties in the estimations of the branch-based branches.

Altogether, the regulation of the branch-based irrigation water demands should be
considered based not only on irrigation features (e.g., cultivation extents and crop types),
but also on the change of measured surface runoff supplied in time and space. That is
to say, the discharge gauges comprehensively installed within the irrigation zones play a
vital role in accurately and reliably estimating the irrigation water requirements with high
spatial resolution.

33



Agriculture 2024, 14, 1107

(a) The 1st branch (b) The 3rd branch (Su-Qi-Lin)

(c) The 6th branch (d) The 7th branch

Figure 9. Cont.
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(e) The 8th branch (f) The 9th branch

(g) The 10th branch (h) The 11th branch

(i) The 12th branch (j) The 13th branch

(k) The 14th branch

Figure 9. Data-derived irrigation water demands at the branches.
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(a) The 4th branch

(b) Ba-Zhuang branch

(c) The 5th branch

Figure 10. Model-derived irrigation water demands at the specific branches.

36



Agriculture 2024, 14, 1107

(a) The 1st branch (b) The 3rd branch (Su-Qi-Lin)

(c) The 4th branch (d) Ba-Zhuang branch

(e) The 5th branch (f) The 6th branch

Figure 11. Cont.
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(g) The 7th branch (h) The 8th branch

(i) The 9th branch (j) The 10th branch

(k) The 11th branch (l) The 12th branch

(m) The 13th branch (n) The 14th branch

Figure 11. Uncertainties in the estimated branch-based irrigation water demands.
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4.4. Reliability Quantification of Irrigation Water Demands

As well as estimating the branch-based irrigation water demands, the proposed
RA_IWD_Canal model could be applied in the reliability analysis for the introduced
planning irrigation water demand by establishing the weighted quantile curves, consisting
of the quantiles under the desired probability. Since the two planning irrigation water
demands were issued for the study area, including the Zhudong Canal zone and the 3rd

branch (Su-Qi-Lin), the irrigation water demands for the Zhudong Canal zone should be
achieved by summing up all the resulting branch-based ones via Equation (17). Figure 12
shows the estimated irrigation water demands for the Zhudong Canal zone at the 30 10-day
periods in 2020–2024, indicating that the spatial varying trend of the one-based irrigation
water demands significantly change with time (year); in detail, the more significant water
demands (about from 2 m3/s to 4 m3/s) could be observed at the 4th–20th 10-day period in
2020 in contrast with results at the 20th and 30th periods, varying from 1.8 m3/s to 2 m3/s.
This unveils that considerable spatial and temporal variation exists in the zone-based
irrigation water demands, indicating that the reliabilities are supposed to be quantified to
evaluate their irrigation efficiency. Alternatively, the estimated irrigation water demands at
the Su-Qi-Lin branch could be referred to in Figure 11b.

Figure 12. Estimations of the irrigation water demands for the Zhudong Canal zone.

Accordingly, to proceed with the reliability assessment of the desired irrigation water
demands, the corresponding quantile curves should be established via the weighted fre-
quency curve methods within the proposed RA_IWD_Canal model, as shown in Figure 13.
Given Figure 13, the resulting quantiles from the estimated water demands for the Zhudong
Canal zone commonly exceed those at the 3rd branch, especially for the lower cumulative
probabilities of less than 0.1. By doing so, the corresponding exceedance probabilities to
the introduced irrigation water demands in 2019–2024 (i.e., reliability) could be calculated
with the above-resulting quantile curves as shown in Figures 14 and 15; it can be seen that
the exceedance probabilities of the introduced water demands for the Zhudong irrigation
zone (see Figure 14), on average, approximate 0.85; specifically, in the 16th–28th 10-day
periods, the corresponding reliability (exceedance probability) reaches 0.97. Moreover,
in the 7th–10th 10-day periods, the corresponding introduced water demands could be
given with an exceedance probability (i.e., reliability) of less than 0.7. It concludes that the
study area (Zhudong Canal zone) could be sufficiently supplied irrigation water higher
than the introduced ones in 2019–2024 with a high likelihood. In contrast, the Zhudong
Canal zone, the exceedance probabilities of the introduced irrigation water demands at the
Su-Qi-Lin (the 3rd branch) (see Figure 15), on average, are noticeably less than 0.25 with a
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minimum approaching 0.00001 one at the 14th 10-day period, namely treated as the fallow
period; this is because surface runoff has been probably converted to the upstream 1st

branch to hardly supply the expected water amount to the 3rd branch (Su-Qi-Lin). Namely,
the current introduced irrigation water demands at the Su-Qi-Lin branch are markedly
overestimated, making it difficult to achieve the desired irrigation requirements. That is to
say, the introduced water demands for the Su-Qi-Lin branch should be necessarily declined
to boost the irrigation efficiency.

(a) Zhudong Canal zone

(b) Su-Qi-Lin branch

Figure 13. Quantiles of estimated irrigation water demands for the Zhudong Canal zone and the 3rd

branch (Su-Qi-Lin) at 30 10-day periods.
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(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 14. Exceedance probabilities of introduced irrigation water demands for the Zhudong
Canal zone.
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(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 15. Exceedance probabilities of introduced irrigation water demands for the 3rd
branch (Su-Qi-Lin).
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Altogether, despite the recently introduced irrigation water demands for the Zhudong
Canal zone with an average reliability of higher than 0.9, the irrigation water is hardly
supplied subject to the introduced water demands at the specific 10-day periods (7th–
10th periods) merely with a reliability of nearly 0.7. In addition, the introduced ones
for the Su-Qi-Lin branch exhibit a low irrigation efficiency with a reliability of less than
0.3, indicating that the introduced water demands at the Su-Qi-Line branch area are
considerably overestimated to lead to a shortage risk. To enhance the reliability of the
introduced irrigation water demands for the entire branches within the study area, the
probabilistic-based irrigation water could be provided by calculating the quantiles of
the irrigation water demands under a desired exceedance probability (i.e., reliability) as
the introduced magnitudes. Figure 16 illustrates the probabilistic-based irrigation water
demands at 30 10-day periods for the Zhudong Canal zone as well as the third branch
under a desired reliability of 0.8; also, it could be seen that the above probabilistic-based
irrigation water demands are mutually correlated in time with a high correlation coefficient
of roughly 0.8, indicating that it is necessary to take the spatiotemporal correlation of
irrigation water as setting the introduced water demands into account. As well as the
zone-based irrigation water demands, the proposed RA_IWD_Canal could provide the
probabilistic-based irrigation water demands with high spatial resolution, revealing that the
irrigation water demands at all branches could be quantified under an accepted reliability
of 0.8 as shown in Figure 17. According to Figure 17, the 6th and 11th branches are associated
with significantly low probabilistic-based water demands (approximately 0.000001 m3/s),
revealing that they could be treated as non-irrigation branches in case of insufficient
irrigation water supplies.

Figure 16. Probabilistic-based irrigation water demands introduced at the Zhudong Canal zone and
Su-Qi-Lin branch, with a reliability of 0.8.
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Figure 17. Probabilistic-based irrigation water demands at all branches, with a reliability of 0.8.

5. Conclusions

This study aims to model reliability analysis for estimating the branch-based irrigation
water demands in a multi-canal irrigation zone subject to the uncertainties in the observa-
tions of gauged surface runoff, named the RA_IWD_Canal model. Within the proposed
RA_IWD_Canal model, the corresponding uncertainties to the estimated irrigation wa-
ter demands are quantified in terms of L-moment ratios, and induced reliabilities of the
introduced irrigation water demands could be achieved by calculating the exceedance
probabilities via the weighted quantile-curve method. Additionally, the probabilistic-based
branch-based irrigation water demands could be accordingly provided with the desired
reliability to boost irrigation performance.

The Zhudong Canal irrigation zone located in Northern Taiwan, with fifteen branches,
is selected as the study area, and the associated observed surface runoff at the fifteen
discharge gauges from 2019 to 2023 is adopted in the model development and application.
As well as the historical gauged surface runoffs, the introduced 10-day irrigation water
demands set for the Zhudong irrigation zone and the 3rd branch (Su-Qi-Lin) set from 2019
to 2024 are utilized in the reliability quantification. The application results indicate that the
introduced irrigation water demands at the 30 10-day periods exhibit significant variation
(on average, from 0.02 m3/s to 1.7 m3/s) with a noticeable 95% confidence interval of
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nearly 0.8 m3/s. Also, the average of their corresponding reliabilities approaches 0.85 but
with a significant change in time (from 0.63 m3/s to 0.999 md/s). In contrast with the
Zhudong Canal zone, the introduced irrigation water demands at the Su-Qi-Lin branch, on
average, are approximately less than 0.12 m3/s with a significantly low reliability (around
0.25). This implies that the introduced irrigation water demands within the study area
were set without considering the variations of the climatic and hydrological features that
impact irrigation reliability and efficiency. Subsequently, quantified via the proposed
RA_IWD_Canal model with a desired and acceptable reliability, the resulting probabilism-
based irrigation water demand could be treated as the introduced water demands to enable
all branches in the study area to achieve high irrigation efficiency consistently.

Although the proposed RA_IWD_Canal model could effectively be applied in esti-
mating the branch-based irrigation water demands, the measured surface runoffs for the
four years are adopted in the model development and application. Hence, to reduce the
effect of the record length of gauge surface off on the model applicability, more observations
of the gauged runoff data are desirably required. In addition, the estimation of the branch-
based irrigation water demands is demonstrated via the proposed RA_IWD_Canal model
only with the surface runoff observations to have a significant correlation in time. How-
ever, the other hydrological features (e.g., rainfall, evapotranspiration, and soil moisture)
should impact the irrigation water supplies and requirements [6,10,27,28]. Also, AI-created
models have recently been comprehensively applied in irrigation water allocation and man-
agement [29,30]. Thus, using the resulting probabilistic-based irrigation water demands
under different conditions of gauged surface runoffs, future work could be performed by
training AI-derived models to estimate probabilistic-based irrigation water demands with
the surface runoff and hydroclimatic features of interest given.
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Abstract: Bangong Lake is a narrow and long lake in the arid region of the plateau in northern Tibet.
The salinity of the east of the lake is different from that the west, resulting in differences in the natural
environment and human living conditions on each side. Watershed hydrochemical analysis and
spatial statistical analysis can help to understand regional hydrochemical evolution and water quality
evaluation. In this study, the hydrochemical characteristics of surface water (glacier, river, and lake)
and groundwater in the Bangong Co Lake Watershed were investigated to reveal the relationships
between various water bodies. The drinking water quality index (DWQI) and USSL classification
were applied to assess groundwater quality suitability for agricultural and drinking purposes. The
hydrochemical characteristics show the differences among water bodies and their spatial distribution.
The analyzed groundwater and surface water samples, such as river water and glaciers, were mainly
Ca-HCO3-type and the lake water was mainly categorized as Na-Cl-type with some Na-HCO3-Cl
type. The lake water’s chemical components are mainly affected by evaporative karst decomposition.
The main mineralization process of groundwater and river water was related to the dissolution of
reservoir minerals, such as dolomite and calcite, as well as halite. The drinking water quality index
(DWQI) indicates that 79% of the groundwater samples in the study area were of good enough quality
for drinking. In terms of irrigation water quality, the electrical conductivity (EC), calculated sodium
adsorption ratio (SAR), and magnesium hazardous ratio (MHR) showed that more than 13% of the
total samples were not suitable for irrigation. However, the USSL classification indicated that glacier
and river water are relatively suitable for irrigation. Additionally, some groundwater and lake water
has very high alkalinity or salinity, which is alarming when considering them for irrigation.

Keywords: Bangong Co Lake Watershed; hydrochemical characteristics; water quality; surface
water; groundwater

1. Introduction

The Tibetan Plateau, known as the roof of the world and the water tower of Asia,
is the birthplace of the Yellow River, the Yangtze River, the Ganges River, the Mekong
River, the Indus River, and other rivers, and has the largest, highest, and most densely
distributed alpine lake cluster in the world [1,2]. In the Tibetan Plateau, lakes play an
important role in regulating the ecosystem and hydrochemistry and are a vital indicator
of water–rock interaction and environmental change in the basins [3,4]. In the last few
years, many academics have conducted investigations on lakes in the Tibetan Plateau,
which mainly focused on hydrochemical characteristics and its spatial distribution [5,6],
typical water pollutants [7], water quality assessment [8,9], and hydrochemistry evolution
and sources [10,11]. Due to the vulnerability of the water environment to climate change
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and the scarcity of water resources in the alpine desert, water quality assessment and
hydrochemical evolution in these areas have attracted increasing attention [12,13].

Natural factors, such as the geological structure, hydrogeological conditions, vegeta-
tion, climate, rock weathering, terrain, and human activities, greatly impact the chemical
composition of water [14]. Sun and Jin pointed out the differences in chemical characteris-
tics and evolution between tectonic and glacial lakes on the plateau based on the analysis
of physicochemical parameters and ion concentrations of lakes in the Tibetan Plateau [6].
Li et al. discussed the relationship between lake change and climate in recent decades
and clarified that lakes are important supporters of the water cycle and environmental
change [15]. Based on spatial analysis of the heavy metal contents in ores, air pollutants,
and lake water samples, Bazova and Moiseenko discussed the sources of heavy metals
in lakes in northwestern Russia, and the results showed that the concentration of Cu, Ni,
Mn, Zn, Pb, and As in lake water was caused by anthropogenic pollution, such as flue
gas emissions of metallurgical enterprises [16]. Baranov et al. studied the chemical com-
position, natural geochemistry, and human factors of dissolved effluents in the northern
Valdai Mountains using statistical methods [17]. The results showed that the soil mineral
composition, rainfall intensity, and biogeochemical processes had a great influence on
the chemical composition of water bodies in the aeration zone. Moreover, many scholars
have gained a significant understanding of regional soil salinization, regional geological
background, element migration and enrichment law, petrophysical weathering process,
and other aspects by studying ion characteristics of watershed water bodies [18]. It can be
seen that the hydrochemical characteristics of natural water bodies are one of the important
indicators when studying regional water cycles and evolution.

The reserves and quality of water resources are important for the stable and sustainable
development of human society and natural ecology. Good water quality is especially
valuable in water shortage areas. High evaporation and low rainfall lead to salinization
or heavy metal pollution in shallow groundwater or surface water in lake basins in the
arid region of the plateau [19]. Previously, water quality assessments were carried out
on many lake basins in the Tibetan Plateau, such as Qinghai Lake [20], the Ebinur Lake
Watershed [21], Dal Lake in Kashmir Valley [22], Mapam Yumco [23], and Nam Co [24]. The
results showed that the water quality of most lakes was relatively uniform and fluctuated
in a small range. The results also indicated that lake water with high salinity had a great
influence on the shallow surface water of the lake shore, and the salinity of groundwater
had a great influence on plant growth, human life, animal husbandry development, and
industrial activities in the region.

Bangong Co Lake is a long and narrow tectonic lake with a nearly east–west distribu-
tion. The western part of the Tibetan Plateau is characterized by a dry and cold climate
with strong evaporation [25]. As the main source of replenishment for the Lake Bangong
Co Watershed, glacial meltwater is insufficient to balance evaporation in the area. Likewise,
affected by evaporation across the whole watershed and river water supply in the east of
Bangong Co Lake, the salinity of the lake gradually increases from east to west [26]. The
water circulation system of the plateau arid watershed is very fragile and sensitive, which
makes the water resources in the study area vulnerable to the impacts of human activities,
animal husbandry activities, and climate change.

Some scholars investigating lake groups on the Tibetan Plateau have pointed out that
the lake water type on the east side of Bangong Co Lake is Cl-Na or HCO3·Cl-Mg·Na [27,28].
Lin et al. researched information on toxic organic pollutants and metals of Bangong Co
Lake, and their results indicate that polycyclic aromatic hydrocarbons (ΣPAH) and phthalic
acid esters (ΣPAE) concentrations in lake water have no relationship with hydrochemical
parameters, and organic pollutants have been the main source of domestic waste related to
increasing regional human activities in recent years [29]. The domestic water and irrigation
water in the study area are mainly shallow aquifers in the lakeshore zone and river valley or
supplemented by snowmelt water and river water. However, there are few relevant studies
on the various water bodies of Bangong Co Lake Watershed. Therefore, the hydrochemical
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characteristics and controlling factors of the river water, lake water, groundwater, and other
water bodies in the watershed of Bangong Co Lake are still unknown. Additionally, there
is no available information on water quality assessment in this region.

The present investigation was performed to explore the glaciers, rivers, lakes, and
groundwater along the lakeshore in the Bangong Co Lake Watershed. Statistical analysis,
a Gibbs diagram, a Piper diagram, and an ion ratio analysis were used to analyze the
hydrochemical characteristics and formation mechanisms of different water bodies. The
drinking water quality index (DWQI) and irrigation water quality parameters were used
to assess the water quality and its suitability in the study area. The specific objectives of
this work are as follows: (i) To explain the hydrochemistry and evolution of different water
bodies in Bangong Lake Basin, (ii) to identify the various factors controlling the water
chemistry in this area, and (iii) to assess the suitability of the water quality for drinking
and irrigation.

2. Materials and Methods

2.1. Study Area

Bangong Co Lake Watershed is located in the northwest of Tibet, China. Based on
ArcGIS hydrological analysis module and DEM data, the watershed area of Bangong Co
Lake is about 33,000 km2, with the location between 32◦40′–34◦30′ N and 78◦10′–81◦15′ E,
with an elevation range of 3736–6771 m. The watershed reaches the Kanakoram Mountains
in the north and the Gangdises Mountains in the south. The highest point is located in
the eastern mountains of Zecuo Lake, and the lowest is located in Bangong Co Lake, in
the middle of the area (Figures 1 and 2). The geomorphology of the watershed is that of
plateau lake basin geomorphic type, which has been fully eroded by snow and water for a
long time. The watershed covers the Bangong Lake replenishment river basin and several
small intermountain lake basins, such as Spangour Co, Zecuo, Rebangcuo, Aiyongcuo, and
Sharda Co [30]. This region has a cold and dry climate, with an average annual temperature
of 0.1–2 ◦C. The annual rainfall is about 70–80 mm, with high variability, and is mostly
concentrated in July or August [31]. The main source of water in the study area is glacial
meltwater. Due to gravity, the water mainly flows along the slope or gully to feed rivers or
veins of rock and eventually drains into the lake. Because the sediments in river valleys in
the middle or lower reaches and the sediments in lake shores are thick and loose, the river
water is likely to penetrate, forming relatively stable shallow groundwater in the alluvial
fan or valley area.

Geologically, the study area is located in the nearly east–west Bangong Co-Nujiang su-
ture zone, with Qiangtang block to the north and Lhasa block to the south (Figure 1) [32,33].
Qiangtang block in the region is mainly composed of carbonate rocks, sandstone, and
slate rocks from Yanshiping formation, Tunlonggongba formation, and Nuoco formation,
and Lhasa Terrane in the study area is mainly composed of ophiolite mélange, Cretaceous
gabbros and granites, and sandwiched limestone and flysch sediments from Mugagan-
gri Group and Langshan formation (Figure 1) [31,34]. Quaternary sediments are mainly
distributed on the sides of lake and river valleys. NWW-trending and NE-trending faults
are mainly developed in the Bangong Co Lake area. Most faults align with the boundary
of the lake basin in geomorphology, and the fault surface is shovel-type dip into the lake.
Meanwhile, the NWW-trending faults are the leading faults in the region, belonging to the
Bangong Co-Nujiang suture system, which has undergone multiple periods of subduction,
collision, and other tectonic processes, and are nearly consistent with the overall tectonic
line and the ophiolitic hybrid zone. The NE-trending faults are mostly developed in some
north–south gullies and valleys and have the characteristics of water conduction after
differentiation and denudation [35].
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Figure 1. 1: Quaternary. 2: Sandstone and conglomerate of Cantuo Fm. 3: Mudstone and conglomer-
ate of Niubao Fm. 4: Limestone of Langshan Fm. 5: Limestone and sandstone of Tielongtan Gr. 6:
Argillaceous slate and metamorphic sandstone of Mugagangri Gr. 7: Limestone and clastic rocks of
Yanshiping Gr. 8: Sand shale and limestone of Tunlonggongba Fm. 9: Silty slate of Nuoco Fm. 10:
Cretaceous gabbro. 11: Cretaceous granite. 12: Ophiolite. 13: Faults. 14: Salt lake (salt mine) and
lake. 15: Perennial river. 16: Seasonal river. (this figure is modified from the regional geological map
released by the GeoCloud Platform of the China Geological Survey).

There are many aquatic plants and fishes in Bangong Co Lake. Fishes mainly include
Schizothoracinae and Triplophysa stenura, and the aquatic plants encompass Pyrrophyta,
Bacillariophyta, and Chlorophyta [28]. Moreover, a small field of wetlands lies east and
southeast of the lake, mainly growing plateau meadows and reeds. Plateau desert meadow
is the main vegetation type in the Bangong Co Lake catchment area. The dry period is a
maximum of nine months in this area, so the grass yield of the regional meadow is relatively
low [36]. Animal husbandry activities are mainly concentrated in the rainy season, and
animal husbandry activities are basically practiced in areas with abundant groundwater,
such as alluvial fan front, lakeshore, and valley land.
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Figure 2. (a) The location of the Tibet Autonomous Region in China; (b) a map of the study area;
(c,d) geomorphology of sampling sites and study areas.

2.2. Sampling and Measurement

In early June 2022, field investigation was carried out in Bangong Lake Basin, and a
total of 60 water samples were collected, including 14 lake water samples, 19 groundwater
samples, 24 river water samples, and 3 glacier water samples (Figure 2). Among them,
river samples were mainly distributed in Makazangbu and Doma Rivers, and groundwater
samples were mainly collected from wells on alluvial fan bodies in lakeshore zone. The
water depth of the collected wells was less than 15 m, and most of the glacier samples were
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new snow samples. Water samples were mostly collected at a depth of 0.1–0.5 m, filtered
through 0.45 μm cellulose acetate membrane, and stored in 1500 mL cleaned polyethylene
bottles. Before collection, the collection containers were rinsed with sampling water 2 to
3 times. The lake water samples were taken from a location about 1–2 m away from the
lake. In addition, water electrical conductivity (EC) and pH were measured in the field
using a multi-parameter portable water analyzer (Manta, Eureka Inc., Austin, TX, USA),
with a pH accuracy of ±0.1 pH and conductivity accuracy of ±1 μS/cm.

All collected samples were stored in 0–4 ◦C incubators until they were analyzed
in the laboratory. Parallel samples were used to control the test’s accuracy during the
experiment. For any water sample, a part of it was acidified with 1:1 nitric acid and
stored in a plastic bottle for cation analysis. The remaining part was placed in glass bottles
and sealed with parafilm sealing film to analyze anions such as SO4

2− and Cl−. The
content of HCO3

− was measured by acid–base titration, with an accuracy of ±0.05%. Water
salinity (TDS) was determined using the dry weight method at 105 ◦C, with an accuracy
of ±0.2%. Total hardness (TH) was determined using the EDTA method with an accuracy
of ±0.05%. The main cation (Na+, K+, Ca2+, and Mg2+) concentrations and trace heavy
metal (Fe, Mn, Zn, Cu, and Cr) levels were determined using inductively coupled plasma
emission spectrometer (Agilent5110, Agilent Technologies Inc., Santa Clara, CA, USA), and
the testing error was less than 2%. The total As content was detected via atomic fluorescence
(AFS-933, Beijing Jitian Instrument Co., LTD, Beijing, China) with an accuracy of ±0.5%.
Anion concentration (SO4

2−, Cl−, F−, and NO3
−) was determined via chromatography

(ECO IC, Vantone China Co., LTD, Beijing, China), and the testing error was less than 0.5%.
The ion balance of the major soluble cationic equivalent (TZ+ = Na+ + K+ + 2Ca2+ + 2Mg2+)
and soluble anionic equivalent (TZ− = Cl− + NO3

− + HCO3
− + F− + 2SO4

2−) of all samples
was compared for ion balance test, and it was within ±5%. All water samples were finished
by Xizang Shengyuan Environmental Engineering Co., LTD, Tibet, China.

2.3. Data Processing

SPSS v22.0 (SPSS Inc., Chicago, IL, USA) was used to determine the average (Mean),
maximum (Max), minimum (Min), and coefficient of variation (CV). The Piper diagrams [37],
principal component analysis, Gibbs diagrams [38], and ion ratio analysis [39] were imple-
mented in Origin v2021 (OriginLab, Northampton, MA, USA). and Microsoft Excel v2013
(Microsoft Corp., Redmond, WA, USA) to explore the classification and main controlling
factors of the nature water in Lake Bangong Co Watershed. International standards [40],
drinking water quality index [41,42], USSL classification [43], and other irrigation water in-
dicators were used to evaluate groundwater suitability for drinking and irrigation. ArcGIS
v10.4 (Esri Inc., Redlands, CA, USA) and CorelDRAW Graphics Suite v18 (Corel Corp.,
Ottawa, ON, Canada) were used for mapping and modification.

3. Results and Discussion

3.1. Chemical Composition of Different Water Bodies in Bangong Lake Basin
3.1.1. Statistical Characteristics of Parameters

The parameters of each water body in Bangong Co Watershed are shown in Table 1.
The pH of glaciers, lake water, river water, and shallow groundwater along the lakeshore in
the study area ranged from 6.6 to 8.5. The pH of glaciers was relatively low (pH = 6.6~7.6),
with an average value of 7.2, which is neutral. Other water bodies were weakly alkaline as a
whole, among which the pH of Bangong Co Lake water was relatively high (pH = 8.1~8.5),
with an average value of 8.4. The coefficient of variation (CV) for the water pH of each
water body was <10%, which showed weak variability. Salinity (TDS) and electrical
conductivity (EC) are parameters that can be used to determine the salinity of water [44].
The salinity (TDS) of glaciers, river water, groundwater, and lake samples ranged from
13 to 25, 81 to 438, 124 to 972, and 206 to 4091 mg/L, respectively. The salinity (TDS)
values of 10 lake samples, mainly distributed in the western or middle part of the lake,
exceeded the WHO’s standard limit (1 g/L) [40]. The average salinity (TDS) of river
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water was 282 mg/L, which was also higher than the global average and values for other
large rivers in China [45]. Similarly, the electrical conductivity (EC) of glacier water, river
water, groundwater, and lake samples ranged from 23 to 43, 145 to 779, 220 to 1706, and
385 to 7861 μS/cm, respectively. Water hardness is a very important parameter in the
growth and reproduction of aquatic organisms [46]. The total hardness (TH) of the glaciers,
groundwater, river, and lake were in the range of 23–43 mg/L, 27–750 mg/L, 58–467 mg/L,
and 258–2854 mg/L, respectively. With the decrease in altitude, the values regarding the
total hardness (TH), electrical conductivity (EC), and salinity (TDS) increased gradually,
which were the highest around Bangong Co Lake. The coefficient of variation (CV%)
for total hardness (TH), electrical conductivity (EC), and salinity (TDS) of different water
bodies were between 10% and 66%, which demonstrates medium variability. Based on the
total hardness (TH) and salinity (TDS) [47], lake water is hard-brackish water, glacier water
is soft-fresh water, and river water changes from soft-fresh water to hard-fresh water along
the stream (Figure 3).

 

Figure 3. Classification of water in Bangong Co Lake Watershed based on total hardness (TH) and
salinity (TDS).

3.1.2. Ion Spatial Distribution

The ion diagrams (Figure 4) depict the milligram equivalent and spatial variation in
anions and cations in the different water bodies across the basin. In the water samples
of groundwater, river water, and glaciers, the cations were dominated by Ca2+, and the
order of abundance was Ca2+ > Na+ > K+ > Mg2+. However, Na+ was the main cation
of lake water, and the cation content followed the order Na+ > Mg2+ > K+ > Ca2+. The
major anion in groundwater, river water, and glacier samples was HCO3

−, and the order
of the abundance in these samples was HCO3

− > SO4
2− > Cl− > NO3

−, whereas the
primary anion in lake samples was Cl−, and the anion content followed the order Cl− >
HCO3

− > SO4
2− > NO3

−. A strong coefficient of variation was found in Na+, Cl−, and
SO4

2− of groundwater, and NO3
− of river and lake water, which was between 1.15 and

2.85, indicating that the spatial distribution of these ionic components was unstable. The
coefficient of variation of most chemical parameters of different water bodies in the area
was less than 1 (Table 1), which is a weak or medium variation. Spatially, the Doma River
and Maka Zangbo River showed a gradually increasing trend of ions from upstream to
downstream. The main ions concentration in the lake increased gradually from east to
west (Figure 4c). However, for lake samples L7 to L5 (Figures 2 and 4c), the ions and
salinity (TDS) increased slowly compared to the other sections, which may be due to a
water exchange barrier caused by the narrow body of the lake [50]. According to Figure 4d,
there is no obvious spatial rule of groundwater in the lakeshore zone.
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Figure 4. The spatial distribution of anions and cations in different water samples.

Al, Cr, Pb, Cd, Hg, Cu, and Ni were below the limit of quantification. Moreover,
Fe, Mn, As, and F− were found at very insignificant concentrations. Table 1 shows the
summary of the datasets of trace metals. Concentrations of Fe in various water bodies
varied from ND to 0.224 mg/L, which was within the WHO’s tolerable limit (0.3 mg/L).
Meanwhile, concentrations of As in lake samples varied from 0.002 to 0.035 mg/L, with a
mean concentration of 0.021 ± 0.012 mg/L, most of which exceeded the WHO’s tolerable
limits (0.01 mg/L). The results were similar to those of previous studies, which suggested
that the As in Bangong Co Lake was mainly derived from natural sources such as rock
weathering [29]. Mn concentrations in the river and groundwater ranged from ND to
0.398 mg/L and ND to 0.441 mg/L. 4.2% (n = 1) in river water samples and 15.8% (n = 3) in
shallow groundwater, exceeding the WHO’s limit for Mn content (0.1 mg/L). However, few
lake water samples had Mn content exceeding the WHO’s standard. The Mn exceedance
points of groundwater are located near the shoreline of the lake, with the pH ranging from
6.83 to 7.72. The river water exceedance point is located at a spring recharge in the lower
Doma River, and the pH is 7.19. Low water pH provides favorable conditions for Mn
enrichment in groundwater. On the contrary, Mn and Fe ions easily form hydroxide precipi-
tation in lake water with relatively high pH (8.06–8.52). The flu-lacustrine purplish neogene
conglomerates, rich in Fe, Mn, and other elements, are scattered in some river valleys in
the study area, which may provide Mn sources for moderate and acidic groundwater. F−
concentrations of various water bodies were all below the acceptable limit according to
WHO standards.

3.1.3. Piper Diagram and Hydrochemical Classification

Water hydrochemical characteristics can be classified using the Piper diagram, which
shows scatter plots of cations (Na+, K+, Ca2+, and Mg2+) and anions (HCO3

−, Cl−, and
SO4

2−) [37,42]. According to Figure 5, water samples in the Bangong Co Lake Watershed
were classified into three water types. River samples, glaciers, and most of the groundwater
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corresponded to zone 2 of the Piper diagram, characterized as Ca-HCO3-type samples. The
lake samples were distributed in zone 5, classified as saline water with high Cl− or SO4

2−
and Na+. Due to Cl− being the main cation of lake samples, lake water was classified as a
Na-Cl-type sample. Only a few groundwater samples corresponded to zone 3, representing
contaminated water with high Cl− and Ca2+ concentrations. Eastern water samples were
in the transition between the river point and the lake point, indicating that these water
samples exhibit ion exchange and simple dissolution or mixing.

 

Figure 5. Piper plot of water samples in the study area.

3.2. Cause Analysis of Hydrochemical Characteristics
3.2.1. Gibbs Diagrams

Based on an analysis of many global hydrochemical compositions of surface waters,
such as large lakes, rivers, and precipitation water samples, diagrams were proposed
by Gibbs to determine the features of ionic distribution in different natural water bod-
ies [38]. Rock weathering, atmospheric precipitation, and evaporation–crystallization
process were identified as three major factors controlling the surface water chemistry in
Gibbs plots [11,51]. In this paper, a TDS-Na+/(Na+ + Ca2+) diagram and TDS-Cl−/(Cl− +
HCO3

−) diagram were used to distinguish the ionic characteristics of water bodies in the
Bangong Co Lake Watershed (Figure 6).

With regard to the river and groundwater samples, the cation ratios Na+/(Na+ + Ca2+)
varied from 0.07 to 0.66, and the anion ratios Cl−/(Cl− + HCO3

−) ranged from 0.02 to 0.43.
Additionally, all the samples for both diagrams fell in the rock weathering domain. For the
lake water samples, the ranges of the cation ratios Na+/(Na+ + Ca2+) and the anion ratios
Cl−/(Cl− + HCO3

−) were 0.66–0.99 and 0.02–0.52, respectively. The western lake samples
mainly fell into the evaporation domain (Figure 6c) or near the evaporation dominance zone
(Figure 6b), and the eastern lake samples fell in the transition zone between evaporation
and rock weathering (Figure 6b,c). This indicates that the dominant ions of various water
bodies were significantly affected by rock weathering and evaporation–crystallization may
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affect the western lake water and some groundwater. Duoma and Makazangbu rivers
which were the main sources of replenishment, joined Bangong Co Lake on the east side,
resulting in a characteristic transition between evaporation and rock weathering in the
eastern lake. Glacier water is considered to be a precipitation sample in the Bangong Co
Lake area. The glacier water samples are part of the end element of rock weathering and
are slightly closer to the rain zone in Gibbs diagrams. Therefore, the dissolved ions in the
rainwater of the Bangong Co Lake Watershed are slightly affected by ocean evaporation
and are mainly controlled by the dissolution of atmospheric CaCO3 particles.

 

Figure 6. Gibbs plot: (a) Comparison of natural processes that define the water chemistry of water on
the Gibbs (1970) diagram; (b) TDS versus Na+/(Na+ + Ca2+); (c) TDS versus Cl−/(Cl− + HCO3

−).

3.2.2. Ion Ratio Analysis

The cations and anions dissolved by the chemical weathering of different rocks con-
tribute to the combination of water in nature [52]. Therefore, the ion ratio characteristics
can reflect the water–rock reaction and evolution process between natural water and rock
strata [39]. As can be seen in the regional geological map (Figure 1), the main runoff areas
of rivers are mainly developed strata, such as the Mugagangri Group, Langshan formation,
Yanshiping formation, and Nuoco formation. The lithology of these strata is principally
carbonate rock, sandstone, and conglomerate.

Na+ and K+ are mainly derived from evaporite or silicate, and Ca2+ and Mg2+ are
mainly derived from carbonate and silicate weathering and evaporative dissolution [53].
Thus, when the ratio of γ(Na+ + K+) and γ(Cl−) is close to or above the 1:1 line, dissolution
of evaporate is the leading role for Na+ and K+ in water chemical evolution. Figure 7a
shows that the sample points of γ(Na+ + K+) and γ(Cl−) are distributed around a straight
line, with a slope of 1.63 and R2 of 0.99. Most of the water bodies (except glaciers) are
almost on the upper side of the 1:1 line, indicating that halite (NaCl) and potassium salt
(KCl) are the main sources of Na+, K+, and Cl−, and the Cl− content is not enough to
balance the content of Na+ and K+ in water. The excess Na+ and K+ may be derived from
the weathering and dissolution of silicate rock.
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Figure 7. Distributions of ionic ratios in water samples: (a) γ(Na+ + K+) versus γ(Cl−); (b) γ(Ca2+ +
Mg2+) versus γ(HCO3

− + SO4
2−); (c) γ(Ca2+ + Mg2+) versus γ(HCO3

−); (d) γ(Ca2+ + Mg2+) versus
γ(Na+ + K).

Carbonates, evaporates, or silicates containing calcium and magnesium are the main
sources of Ca2+ and Mg2+ ions in natural water [24]. Figure 7b shows the ratio of (Ca2+ + Mg2+)
to (HCO3

− + SO4
2−) in the water sample. The slope of the scattered fitting line of the

water samples is 0.43, and the R2 is 0.85, indicating that many sample points are below
the 1:1 line, especially the lake points. In these water bodies, Ca2+ and Mg2+ contents
are not high enough to reach equilibrium with HCO3

− and SO4
2−, and it is generally

believed that the dissolution of evaporites that contain mirabilite (NaSO4), polyhalite
(K2Ca2Mg[SO4]4·2H2O), etc., may provide abundant SO4

2− or HCO3
− for the water bodies.

The ratio of γ(Ca2+ + Mg2+) and γ(HCO3
−) can further be used to investigate the

source of Ca2+ and Mg2+ [6]. As can be seen in Figure 7c, these sample points fit a line
with a slope of 1.01, and the R2 is 0.85, which is close to 1:1 line. This indicates that
Ca2+, Mg2+, and HCO3

− in river water, groundwater, and other water bodies are mainly
derived from the dissolution of dolomite (CaMg(CO3)2) and calcite (CaCO3) rather than
gypsum (CaSO4).

Generally, silicates are more difficult to weather than carbonates. Thus, the ratio of
(Ca2+ + Mg2+)/(Na+ + K+) or γ(HCO3

−)/γ(Na+ + K+) in the water can be used as a symbol
for judging the main types of weathered rocks in natural water [24]. As shown in Figure 7d,
there are obvious differences between lake water and other water points. The high ratios of
γ(Ca2+ + Mg2+)/γ(Na+ + K+) in the river water and groundwater indicate flow through
the carbonate weathering regions (Figure 7d). Additionally, the lake samples were located
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on the lower side of the 1:1 line, which confirmed that silicate dissolution or evaporate
dissolution contributes to the main ion characteristics (Figure 7d).

3.2.3. Hydrochemical Modeling of Mineral Saturation Index (SI)

The saturation index (SI) of the main minerals in natural water indicates the equilib-
rium state between minerals and water and distinguishes the dissolution and precipitation
reaction of minerals to simulate the trend of water chemistry in the environment. Phreeqc
software is a hydrochemical simulation software developed by the United States District
Survey, which can calculate the saturation index of minerals in groundwater. The saturation
index (SI) is calculated as

SI = lg
IAP

K
where IAP is the ionic activity product, and K is the equilibrium constant. SI > 0 indicates
that the mineral is saturated, and precipitate occurs. SI = 0 indicates that the mineral
reached the equilibrium state, relatively stable. SI < 0 indicates that the mineral is not
saturated, and a dissolution reaction occurs [51].

The ion ratio analysis of water in the study area showed that halite and carbonate
minerals were the main minerals of the water–rock reaction. The solubility relationship
between dolomite, calcite, and halite is shown in Figure 8. There are some differences in the
saturation index (SI) of minerals in various water bodies. The salt mines have the largest
halite SI, varying from −3.96 to 0.27. The ranges of halite SI in the lake, groundwater,
river water, and glaciers are −8.36–−4.59, −9.48–−5.96, −10.13–−7.06, and −11.07–−10.65,
respectively. The saturation index (SI) of calcite and dolomite in the river and groundwater
samples has a smaller variation and is generally within ±1 or ±2, indicating that these
minerals tend to be saturated continuously during the hydrochemical evolution. The
ranges of calcite and dolomite SI in lake water are 0.29–0.87 and 0.71–3.17, respectively. On
the contrary, the calcite and dolomite SI values in glaciers are less than 0 and have a range
of −3.3–−2.18 and −7.41–−4.82, respectively.

 

Figure 8. SI relationship between halite/dolomite (a) and halite/calcite (b) (the salt lake samples are
data collected from the literature, as shown in Table 1).

The results showed that the saturation state of calcite, dolomite, and halite was not
reached in glacier meltwater and upstream river water bodies. With the contact between
the river and the carbonate rock strata in the flowing area, calcite and dolomite in the river
bodies in the middle and lower and Bangong Co Lake water reached saturation. Overall,
the halite saturation index of Bangong Co Lake showed an increasing trend from east to
west, but it did not reach the saturation state like the river water. This indicates that the
calcite and dolomite gradually become saturated from unsaturated to saturated, while
halite dissolves during water flow from upstream to downstream and into the lake. The
data collected from the salt lakes in this area show that the saturation index of calcite,
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dolomite, and halite in some salt lakes is greater than 0, indicating the precipitation of
calcite, dolomite, and halite.

Previous studies [35,48] pointed out that the Bangong Co Lake basin experienced a
period of basin shrinkage during the plateau’s uplift. During this time, some independent
intermountain lakes entered the evaporite-deposition period due to abrupt regional drought
climate, forming the characteristics of dispersed salt lake salt mines in the area, such as
the Jieze salt mine [48] and the Taicuo salt mine [49] (Figure 1). Through the collection of
chemical composition data on the salt lake water body and salt mine soil layer (Table 1),
it can be seen that there are rich minerals such as halite (NaCl), dolomite (CaMg(CO3)2),
calcite (CaCO3), and mirabilite (NaSO4) in these lacustrine chemical sedimentary profiles.
Under rain erosion or lateral river water intrusion, the interlacustrine group continuously
replenishes rivers and lakes, providing abundant Na+, K+, Cl−, and SO4

2− ions. Therefore,
the rich carbonate strata, the rock salt minerals produced in the historical environment,
and the arid climate environment in the study area lead to the diverse hydrochemical
characteristics in the basin.

3.2.4. Principal Component Analysis (PCA)

Principal component analysis (PCA) can reduce the dimension of the data set by
converting the original variables into new and uncorrelated variables generated by retaining
original information [54]. Many studies have used the principal component analysis
(PCA) technique to identify important water quality parameters [55,56]. Before component
analysis, all data passed the Kaiser–Meyer–Olkin (KMO) value (0.704) and Bartlett’s test of
sphericity statistics (p < 0.05) by using Origin2022 to evaluate the feasibility of principal
component analysis (PCA) for source apportionment [57].

By filtering principal components (PCs) with an eigenvalue greater than 1 [29], only
two PCs were extracted from the scree plot and explained 89.0% of the total variance
(Table 2 and Figure 9). K+, Na+, Mg2+, HCO3

−, Cl−, SO4
2−, TDS, As, and EC have a

relatively high loading on the principal component PC1, accounting for 75.4% of the total
variance. PC2 explained 13.6% of the total variance and has a strong positive loading
for Ca2+ and NO3

− and weak negative loading for pH. Given the water sample loading
distribution (Figure 9a), the loading of lake water points in PC1 is higher than that of
other water bodies. The high salinity (TDS) and other ions in lake water are mainly caused
by the dry environment and the lithology of the regional strata. Therefore, PC1 mainly
indicates the characteristics of natural sources. Lin, Dong, and Wang pointed out that the
concentration of heavy metals, such as As, Mn, and Ni, in the water body of Bangong Co
Lake was lower than the background value of the water body in Tibetan areas, indicating
that those heavy metals in the water were mainly derived from natural rock weathering [29].
This also verified that PC1 containing high loadings of As and TDS in this study mainly
represented natural sources. PC2 comprised Ca2+, NO3

−, and pH. According to the loading
distribution of the sample points (Figure 9a), the points with high PC2 loadings are mainly
groundwater and a few river water points, which are mainly located in the human living,
farming area, and the valley area where the meadow grows in the alluvial fan of the Doma
River. This indicates that PC2 mainly illustrates animal husbandry activities and human
activities. The middle and lower reaches of the Doma River and Makazangbu River are
important animal husbandry areas, agricultural irrigation areas, and human living areas,
indicating that agricultural fertilization and human activities have a certain impact on the
water environment.
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Table 2. Loadings of each variable on principal component (PC) comparison of Bangong Co
Lake Watershed.

Elements
Component

PC1 PC2

K+ 0.305 0.041
Na+ 0.317 0.012
Ca2+ −0.081 0.676
Mg2+ 0.312 0.115
Cl− 0.317 0.034

SO4
2− 0.311 0.102

HCO3
− 0.300 0.172

NO3
− −0.079 0.636

TDS 0.317 0.041
EC 0.318 0.041
TH 0.302 0.047
pH 0.182 −0.248
As 0.289 −0.126

Eigenvalue 9.801 1.767
Variance (%) 75.393 13.593

 

Figure 9. (a) Score plot of principal component analysis of major ions in water samples from the
study area; (b) loading plot of principal component analysis of major ions in water samples from the
study area.

3.3. Water Quality Evaluation
3.3.1. Assessment of Groundwater Suitability for Drinking Purposes

A drinking water quality index (DWQI) method was used to assess the suitability of
groundwater for drinking [41,42]. The drinking water quality index (DWQI) is a water
quality assessment method proposed by Horton RK and widely used [58]. This technique
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used the weighted index method to change many water quality parameters into a single
index that can be compared, effectively providing a comprehensive groundwater quality
evaluation model [59]. The calculation of the drinking water quality index (DWQI) can
be divided into several steps: (a) Assignment of each parameter’s weight according to
its relative importance (values from 2 to 5), (b) calculation of the relative weight for
each index (Wi), (c) the rate calculation of the quality parameter (Qi), and (d) the water
quality index computation of each sample. These data formulas are calculated via the
following equations:

Wi = wi/∑n
i=1 wi

Qi =
(
Ci − Cip

)
/
(
Si − Cip

)× 100

DWQI = ∑(Qi × Wi)

where Wi is the relative weight, wi is the weight of each parameter, n is the total number of
parameters considered for the drinking water quality index (DWQI) calculation, and Ci is
the concentration of each parameter (mg/L). Cip is the ideal value of the parameter in pure
water, and Si is the standard value of each parameter.

In this study, an analysis of eleven water quality parameters, namely, pH, TH, TDS,
Cl−, SO4

2−, NO3
−, F−, Na+, As, and Mn, was used to evaluate the suitability of ground-

water for drinking. The relative weight of each parameter and its weight used in these
calculations are presented in Table 3. Based on drinking water quality index (DWQI) val-
ues [41,51,60], the groundwater quality status can be categorized into five types: Excellent
water (<20), good water (≥20 and <40), poor water (≥40 and <80), very poor water (≥80
and <120) and water unsuitable for drinking (≥120). In the Bangong Co Lake Watershed,
the computed DWQI values vary from 12 to 86, with an average value of 32 ± 20. Accord-
ing to the DWQI classification, 26% (n = 5) of the total groundwater samples fall under
the excellent category, and 53% (n = 10) are classified as good water, respectively. About
21% (n = 4) of groundwater samples fell under moderate water quality (poor and very
poor), and no sample was labeled as unsuitable for drinking (Figure 10). Figure 10 shows
the spatial distribution of the drinking water quality index (DWQI), which illustrates that
the chemical characteristics of groundwater in the lakeshore zone do not have a regular
distribution in the east–west direction. Meanwhile, wells located near the lakeshore have
higher drinking water quality index (DWQI) values than those away from the lakeshore,
indicating that groundwater near the lakeshore may be affected by lake water (Figure 10).

Table 3. The relative weight for each index and weight assigned for drinking water quality
index (DWQI).

Parameters Weight Relative Weight

Na+ 2 0.047
Cl− 4 0.093

SO4
2− 3 0.070

NO3
− 5 0.116

TDS 5 0.116
pH 3 0.070
As 5 0.116
TH 3 0.070
Fe 4 0.093
Mn 4 0.093
F− 5 0.116
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Figure 10. Assessment map of groundwater suitability in Bangong Lake Watershed.

3.3.2. Water Evaluation for Irrigation

In the plateau and semi-arid region of Bangong Co Lake Watershed, agriculture and
livestock husbandry are the main occupations, and the main crops in the region are barley,
rape, wheat, and peas [61,62]. Agriculture is the basic department of regional economic
and social development. In addition, afforestation is an initiative advocated by the local
government to improve the ecological environment [61]. Due to the fact that water quality
plays an important role in crops, the survival of tree planting, and soil characteristics in the
study area, groundwater irrigation suitability evaluation is necessary. To better evaluate
the suitability of regional surface water and groundwater, this study uses the USSL classifi-
cation proposed by Richards [43] and several other methods, such as electrical conductivity
(EC), adsorption ratio (SAR), permeability index (PI), and magnesium hazardous ratio
(MHR) [43,63,64]. Table 4 shows the calculation methods and sources of these parameters.

Table 4. Equations used for irrigation and irrigation water quality assessment.

IWQ Parameters
and Equations

Irrigation
Problem

Degree of Restriction on Use Number of Samples (%)

Reference
None

Slight to
Moderate

Severe None
Slight to
Moderate

Severe

EC (μS/cm) Salinty <700 700~3000 >3000 35 (58%) 17 (28%) 8 (13%) [43]

SAR = Na+√
0.5×(Ca2++Mg2+)

Permeability

>700 700~200 <200 51 (85%) 1 (2%) 8 (13%)
[65]
[43]

PI =

(
Na++

√
HCO−

3

Ca2++Mg2++Na+

)
× 100 <25 25~75 >75 19 (32%) 41 (68%) 0 [63]

MHR =
(

Mg2+

Ca2++Mg2+

)
× 100 <50 >50 33 (55%) - 27 (45%) [64]

High salinity and high sodium concentration in irrigation water are the main causes of
soil salinization, which affects the growth of plants and crops [66]. The sodium adsorption
ratio (SAR), recommended by Richards [43], is one of the important indices used to calculate
the harm of sodium in irrigation water. In the Bangong Co Lake Watershed, the sodium
adsorption ratio (SAR) value ranged from 0.03 to 16.72, with a mean value of 3.05 ± 4.92.
Based on the classification of sodium adsorption ratio (SAR) values [43,67], water samples
in the Bangong Co Lake Watershed are classified into good (n = 51, 85%), poor (n = 1, 2%),
and unsuitable (n = 8, 13%). The water points with sodium adsorption ratio (SAR) values
exceeding the limits are located in the west and middle parts of Bangong Co Lake. Electrical
conductivity (EC), the salinity parameter of irrigation water, ranges from 23 to 7861 μS/cm
with an average value of 1493 ± 2179 μS/cm. According to electrical conductivity (EC)
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value classification, water samples in the Bangong Co Lake Watershed can be classified as
good (n = 35, 58%), poor (n = 17, 28%), and unsuitable (n = 8, 13%). Similarly, the water
points with severe EC values are located in the west and middle parts of Bangong Co Lake,
and points with poor electrical conductivity (EC) values are mainly located in the eastern
part of Bangong Co Lake and groundwater near the lake’s shoreline and lower sections
of streams.

Doneen pointed out that poor soil permeability is usually caused by irrigation water
with high Na+ and HCO3

− concentrations [63]. Thus, the permeability index (PI) is often
used to evaluate the harm of a high Na ion concentration in soil in irrigation water. In this
study, the permeability index (PI) ranged from 36 to 181, averaging 71 ± 26. According to
Wilcox’s classification, watershed water samples were classified as good (n = 49, 32%) or
suitable (n = 41, 68%) [67,68].

Ayers and Westcot noticed that irrigation water with high Mg2+ could lead to soil Ca2+

deficiency and crop yield reduction [64]. In this study, the magnesium hazardous ratio
(MHR) ranged from 10 to 98, with a mean of 54 ± 23. The results show that 55% of water
samples are suitable for irrigation (MHR < 50), and the rest of the water samples (n = 27,
45%) are unsuitable (MHR ≥ 50). The unsuitable points for irrigation of MHR are mainly
the lake’s water points, some river water samples, and some groundwater samples.

The USSL classification suggested by US Salinity Laboratory Staff (1954) is a practical
way to assess the suitability of irrigation water [43]. The USSL diagram best explains the
combined effect of the salinity hazard and sodium hazard. In this paper, the USSL diagram
(Figure 11) shows that 13% of the total samples are in the C1-S1 field, including three
glacier samples, two groundwater samples, and three river samples (distributed upstream)
which indicates relatively low alkalinity and salinity hazards. In the C2-S1 field, there are
10 groundwater samples, 19 river samples, and 1 lake sample with a medium of alkalinity
hazard and low salinity. A total of seven groundwater samples and four lake samples
(mainly in the eastern lake) are classified as part of the C3-S1 region. These samples with
low sodium (S1) and low, medium, or high alkalinity (C1, C2, C3) apply to all soil types
of irrigation. Only one lake sample was plotted on the C4-S2 region, and western lake
samples were almost all plotted on the C5-S4 region, which is unsuitable for crops and soil
irrigation. In conclusion, glacial meltwater and river water are more suitable for irrigation
than lake water and some groundwater.

 

Figure 11. USSL diagram showing the suitability of groundwater for irrigation purposes.
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4. Conclusions

The hydrochemical characteristics of surface water and lakeshore groundwater in
Bangong Lake Watershed, Northwest Tibet, China, were analyzed using a multivariate
statistical method, Piper diagrams, Gibbs diagrams, the ion ratio method, and principal
component analysis (PCA). At the same time, the drinking water quality index (DWQI),
irrigation water indexes, and spatial analysis were used to evaluate the quality of irrigation
water and drinking water. The main conclusions are summarized below.

Most of the water samples, such as lake and river samples in the study area, were
found to be slightly alkaline. Glacier water was categorized as soft-fresh, and lake wa-
ter was classified as hard-brackish. Groundwater and river water were categorized as
soft-fresh and hard-fresh. Na-Cl was the primary water type for lake water, while glacier,
river, and groundwater were dominated by the Ca-HCO3 type. Only 78% of groundwater
samples were Ca-Cl types. The ionic concentrations of river waters showed an increased
trend from upstream to downstream in terms of their spatial distribution, and high concen-
trations were found in the lake’s coastal region. Regarding the spatial patterns of water
in the Bangong Co Lake, ionic concentrations increased from east to west. There was no
obvious spatial distribution of groundwater ion concentrations in the lakeshore zone in the
east–west direction.

Precipitation dominance was observed in rivers and groundwater, and evaporation
and crystallization dominance was observed in lakes, according to the Gibbs diagram.
The ion ratio showed that the dissolution of carbonates and evaporites plays a leading
role in the regional hydrochemical characteristics, corresponding to the limestone and
dolomite formations widely exposed in the region. The calculation of the saturation index
showed that calcite and dolomite were supersaturated in the water body of the basin,
except for glaciers and some upstream rivers. Although all the lake samples from the study
area were undersaturated regarding halite, their saturation index showed an increasing
trend from east to west, indicating strong evaporation and continuous halite concentration
characteristics. The collected data revealed salt lakes supersaturated with halite in this area.
Thus, the main mineralization is related to the dissolution of calcite, dolomite, and halite in
the strata. PCA showed that the regional hydrochemistry was mainly affected by natural
factors, and only a few river sections and groundwater points had an anthropogenic input
of NO3

− and Ca2+ plasma, which may be related to animal husbandry activities in the
valley and human activities in the river sector.

Regarding drinking water quality, the drinking water quality index (DWQI) value
classified the groundwater as excellent (67%), good (5%), and poor (19%). The map of
the suitability assessment for drinking water demonstrated that the closer the shallow
groundwater was to the lake shore, the worse the water quality. With regard to the irrigation
water quality, the irrigation water indexes indicated that glaciers, rivers, most groundwater,
and a small part of the east lake are suitable for irrigation, while these indicators also
indicated that the west and middle lake (n = 8, 13%) are not suitable for irrigation. The
permeability index (PI), electrical conductivity (EC), and USSL classification showed that
some shallow groundwater near the lake shoreline and the lake water on the east side have
moderate hazards in terms of salinity and permeability, and it is necessary to consider
rational use for different types of land irrigation. Overall, the primary contribution of this
research will help the Bangong Co Lake area sustainably utilize water resources.
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Abstract: Water yield and purification are important aspects of water ecosystem services, and achiev-
ing a balanced development of the two is necessary for the development of aquatic ecosystems. Using
the InVEST model, the spatiotemporal variations of regional water yield and purification services in
Shanxi, China, from 2000 to 2020 were analyzed. Three future scenarios (natural development, urban
development, and ecological protection) were assessed for 2030 using the PLUS model. The results
showed that in 2000–2020, the water yield of Shanxi Province in terms of space was generally low
in the middle and northwest and high in the southeast, and it was affected by land-use change and
climatic change. From 2000 to 2020, the water yield of Shanxi Province changed by 78.8 mm. In 2030,
water yield will be highest under the urban development scenario (380.53 mm) and lowest in the eco-
logical protection scenario (368.22 mm). Moreover, the water quality purification capacity improved,
with nitrogen loading high in the center and low in the east and west. Due to the implementation
of environmental protection policies and the improvement of the technical level, the nitrogen load
was the highest in 2000 (0.97 kg/hm2) and lowest in 2015 (0.94 kg/hm2). By 2030, because of the
high nitrogen loadings of cultivation and construction land and low nitrogen loadings of forests and
grasslands, the nitrogen load was lowest under the scenario of urban development (0.94 kg/hm2)
and highest under ecological protection (0.85 kg/hm2).

Keywords: water yield; water purification services; InVEST model; PLUS model; Shanxi Province

1. Introduction

Water ecosystem services reflect the ability of ecosystems to process and regulate water
and can provide guarantees for water resources and environmental security for human
society [1]. With the increase in socioeconomic development, human demand for water
resources has become increasingly intense, leading to frequent water shortages, water
pollution, and severe impacts on the sustainable development of the region [2–4]. Since
the 18th National Congress of the Communist Party of China (CPC), as the construction
of ecological civilization has been integrated into social and economic construction, the
evaluation of ecosystem service capacity has become increasingly important [5]. The
balanced development between water yield and purification is of great significance for
maintaining the stability, biodiversity, sustainable use, and healthy development of human
society [6–8].

With the development of Geographic Information Systems and remote sensing tech-
nologies in ecology and hydrology, many models and methods can be used to simulate
regional water yield and purification services [9–11]. For example, models such as the DHI
MIKE, Topography-based Hydrological Model, Soil and Water Assessment Tool (SWAT),
Terrain Lab, and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) have
been used to simulate and analyze water yield services in different watersheds; models
or methods such as the single-factor method, Nemero index method, grey evaluation
method, SWAT, DO concentrations, the support vector regression (SVR) model, and In-
VEST have been used to evaluate water quality conditions in different regions [12,13].
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The InVEST model is an open-source ecosystem service function assessment model based
on the ecological production process, assessment, and trade-off of ecosystem services. It
calculates the physical and value quantities of ecosystem services, incorporates socioeco-
nomic factors into ecosystem conservation decisions, and enables the spatial presentation
of ecosystem services.

Owing to fewer parameter requirements [14–16], flexible parameter adjustments, a
wide range of applications [17], and other advantages, the InVEST model is widely used
by scholars and has achieved good results. However, the model has limitations, such as
high data dependence, parameterization and calibration challenges, and the complexity of
economic valuation. Internationally, Redhead et al. [18], Daneshi et al. [19], and Bejagam
et al. [20], respectively, used the InVEST model to simulate the water yield of the British
rivers, the basin flowing into the Caspian Sea in northern Iran, and the Tungabhadra
basin in the Indian peninsula. In China, Li et al. [21], Chen et al. [22], and Li et al. [23],
respectively, used the InVEST model to analyze the spatial and temporal changes in water
resources and water ecosystem services in Shaanxi Province, Hanjiang City, and Taihu Lake
Basin. In Shanxi, Pan et al. [24], Wang et al. [25], and Yang et al. [26] used the InVEST model
to analyze the spatiotemporal evolution of coalfield ecosystem services in Shanxi Province,
the pattern of multiple ecosystem services and ecological security in Shanxi Province, and
the coupling and coordination of the sustainable development of the ecosystem in Shanxi
Province. However, there are fewer assessments of water ecosystem services in Shanxi
Province. The geographical location and ecological environment of Shanxi Province are
extremely important. Therefore, it is very important to supplement the research on the
water ecological environment in Shanxi Province.

To more accurately predict future changes in water ecosystem services, scholars have
performed a large number of studies on the possibility of future land-use change [27,28],
among which the Patch-generating land-use simulation (PLUS) model is widely used
because of its high simulation accuracy, fast data processing, and effective simulation of
complex land-use evolution. The PLUS model has been used to predict the land-use and
ecosystem services of water ecosystems. Currently, combining the prediction of multi-
scenario land-use and ecosystem services has become a popular topic in research. Ferreira
et al. [29] provided suggestions for future ecological restoration in the southwestern region
of Portugal by predicting the land-use status of the region. Gao et al. [30] analyzed the
future ecological risk status of the local ecosystems by predicting the land-use types of
Nanjing for 2025 under multiple future scenarios. Li et al. [31] predicted the land-use types
and assessed the carbon stock in Kunming City based on the PLUS and InVEST models to
provide a reference for mitigating regional carbon loss.

Located in the eastern part of the Loess Plateau and the middle reaches of the Yellow
River, Shanxi Province is an important economic and ecological region in China and a
vital part of the Yellow River Basin [32]. It is situated at the northern boundary of the
East Asian summer wind system. This geographic location exposes the province to the
dynamic interplay of mid-latitude westerly winds and Asian monsoon winds [33]. The
territory is crisscrossed by mountains and has a complex topography; its unique geographic
location and elevation make it a sensitive area to climate change [34]. In Shanxi Province,
an important energy and chemical base in China, industrial water consumption is high
and causes serious water pollution. The degradation of aquatic ecosystem services has
long been a prominent concern [35]. The quality of the water ecological environment in
Shanxi Province can directly affect the fragile ecological environment and country of Shanxi
Province in terms of the development of the people’s economy. As an important water
yield area in the Yellow River Basin, it will also be related to the water resources situation
of the entire Yellow River Basin.

Quantitative research on water yield and purification in Shanxi Province is essential
for government departments to understand the production, distribution, and utilization
of water resources, which is conducive to the rational planning for the allocation and
utilization of such resources. Such research can help better understand the health status of
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water ecosystems in Shanxi Province and provide a scientific basis for ecological protection
and restoration, thereby contributing to improving the quality of water bodies and reducing
the impact of water pollution on ecology and human health, helping the government
formulate reasonable development strategies, balancing the relationship between economic
growth and environmental protection, and achieving sustainable social, economic, and
environmental development [36].

In this study, we conducted a quantitative assessment using the InVEST model to
analyze the spatiotemporal variations in water yield and purification services from 2000
to 2020. Additionally, three future development scenarios (natural development, urban
development, and ecological protection) were established to estimate the potential water
yield and purification services in 2030. This research seeks to provide scientific support for
the sustainable development of regional aquatic ecosystems, with a particular emphasis on
the importance of maintaining the co-development between water quantity and quality to
ensure ecological preservation.

2. Methodology

2.1. Study Area

Shanxi Province (34◦34′–40◦44′ N, 110◦14′–114◦33′ E) in North China has a total area
of 15.67 × 104 km2 (Figure 1). This area comprises various landforms, such as mountains,
hills, plateaus, and basins. Mountains and hills account for 80% of the total area of the
province; the terrain is high in the northeast and low in the southwest. It has a temperate
continental monsoon climate and an uneven seasonal distribution of precipitation, with
more precipitation in summer and fall and less precipitation in winter and spring. Shanxi
Province spans two major water systems, the Yellow and Hai Rivers, with a total annual
average water resource of 180.59 × 108 m3, of which the Yellow River Basin includes
the basins of the Fen, Yellow Tributary, Sushui, and Qin Rivers; and the Hai River Basin
includes the basins of the Yongding, Hutuo, Zhangwei, and Daqing Rivers.

2.2. Data Sources

This study mainly utilized spatial data, including meteorological, natural environment,
soil, socioeconomic, land-use, and road information data (Table 1). Owing to the different
resolutions of these data sources, the necessary data were resampled and projected by raster
processing. The spatial resolution of all data was standardized to 30 m by ArcMap10.7, and
the coordinate system used was Krasovsky_1940_Albers.

Table 1. Data sources and descriptions.

Categorization Data Type Data Sources and Processing

Meteorological elements

Measured quantity of rain Data Center for Resource and Environmental Sciences, Chinese
Academy of Sciences

(http://www.resdc.cn)Temperatures

Potential evapotranspiration National Meteorological Information Center-China
Meteorological Data Network (http://www.cma.cn)

Natural environment
DEM Geospatial Data Cloud (http://www.gscloud.cn)

Slope Calculated from DEM data in ArcGIS to get

Soil features Soil data Chinese soil information in the World Soil Database (HWSD)

Socioeconomic
GDP Data Center for Resource and Environmental Sciences, Chinese

Academy of Sciences
(http://www.resdc.cn)

Demographic

Land use Land-use type
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Table 1. Cont.

Categorization Data Type Data Sources and Processing

Road information

Distance to the first level of road

National Geographic Information Resources Catalog Service
System

(http://www.servicetianditu.gov.cn)

Distance to secondary roads

Distance to tertiary roads

Distance to highway

Distance to railroad

Distance to Government

 

Figure 1. Overview of the geographic location of Shanxi Province.
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2.3. Research Methodology
2.3.1. InVEST Model

The InVEST model is an ecosystem assessment model based on different surface land
covers that can be used to simulate the material quality and quantity of ecosystem services
and spatialize ecosystem services to improve natural resource management. The model
includes multiple submodules, such as water yield, water purification, soil conservation,
and habitat quality. For the evaluation of aquatic ecosystem services in Shanxi Province
in this study, water yield and purification modules were mainly utilized to calculate the
amount of water yield and nitrogen loading. The details of the modules used are as follows:

(1) Water yield module

The water yield module (water yield) is an estimation method based on the water
balance method and Budyko’s water–heat balance assumption [37], which combines me-
teorological, topographic, vegetation, soil, and other data, using the difference between
precipitation and evapotranspiration to obtain the water yield. The greater the water yield,
the greater the water supply. This study compared the impact of land-use changes on water
yield under different scenarios for 2020 and 2030, where the water yield in 2030 was based
on precipitation in 2020. The calculation formula is as follows:

Y(x) =
(

1 − AET(x)
p(x)

)
· p(x) (1)

AET(x)
p(x)

=
1 + w(x) + R(x)

1 + w(x) · R(x) + 1/R(x)
(2)

w(x) = Z · PAWC(x)
p(x)

(3)

R(x) =
k(x) · ET0

P(x)
(4)

where Y(x) is the average annual water yield (mm), AET(x) is the average annual actual
evapotranspiration (mm), P(x) is the average annual precipitation (mm), R(x) is the Budyko
drying coefficient, and PAWC(x) is the available water content of vegetation (mm), which
is the coefficient of evapotranspiration of vegetation and the average annual reference
evapotranspiration (mm). Z denotes the Zhang coefficient [38], which was obtained by
improving the calculations based on the Budyko curve. Through continuous simulation
improvement, when Z was 4.03, the difference between the simulated average annual water
yield and actual natural runoff in Shanxi Province was the smallest, and the simulation
results were the best.

(2) Water purification module

The nutrient retention module estimates the effect of vegetation and soil on water
purification based on the ability of nitrogen nutrients in runoff to remove pollutants
and determines the capacity of water purification. The higher the total nitrogen content,
the more severe the pollution level of the watershed and the weaker the water quality
purification capacity. The calculation formula is as follows:

ALVx = HSSx ∗ polx (5)

HSSx =
λx

λw
(6)

λx = log(ΣuYu) (7)

where ALVx is the adjusted load value, polx is the output coefficient, HSSx is the hydrologi-
cal sensitivity score, λx is the runoff index, λw is the average runoff index in the watershed,
and ΣuYu is the total water yield (mm) within the runoff path.
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As different land-use types exhibit different water purification capacities, their bio-
physical coefficients are different. This study combined the results of relevant existing
research to determine the local biophysical coefficients (Table 2) [39], which can be used
to reflect the attributes of the soil cover and land-use types. This specifically includes the
actual evapotranspiration assignment, root depth, plant evapotranspiration coefficients,
nitrogen loading coefficients, nitrogen sequestration efficiency, and other relevant parame-
ters. The actual evapotranspiration assignment was assigned as 1 and 0 based on whether
there was vegetation cover or not, respectively.

Table 2. Details of biophysical coefficients.

Land-Use Type
Actual

Evapotranspiration
Assignment

Depth of Root
System (mm)

Plant Evapotranspiration
Coefficient

Nitrogen Load
Factor

Nitrogen
Interception

Efficiency

Arable land 1 350 0.75 18.23 0.4
Woodland 1 2500 0.93 3.45 0.75
Grassland 1 750 0.63 8.02 0.5

Waters 0 1 1 0.01 0.05
Construction land 0 1 0.25 11.03 0.05

Unused land 1 20 0.4 9.83 0.05

2.3.2. Bivariate Spatial Correlation Model

Global spatial autocorrelation can describe the overall distribution of a phenomenon
and determine whether the phenomenon has agglomeration characteristics in space; how-
ever, it cannot precisely identify the areas in which local spatial autocorrelation can project
the scope of the agglomeration [40]. Among these, the Geoda tool can analyze raster spatial
data, which can effectively reveal the correlation between different elements of spatial units,
and the calculation formulas are as follows:

Moran′s I =

N
N
∑
i

N
∑

j �=1
Wijza

i zb
j

(N − 1)
N
∑
i

N
∑

j �=1
Wij

(8)

LISAi =
1
N

(xi − x)

∑
i
(xi − x)2 ∑

j
Wij(xi − x) (9)

where Moran’s I denotes the bivariate global Moran’s index, za
i is the deviation of the

attribute of the ith cell from the mean, Wij is the spatial weight matrix, and N is the number
of units in the study area. The value of Moran’s I is in the range of −1 to 1; Moran’s
I > 0, < 0, and = 0 indicate positive, negative, and no correlations, respectively. Local
indicators of spatial association (LISA) is the bivariate local autocorrelation index, where
xi is the attribute value of unit i and represents the average of all attribute values. When
LISA > 0, the spatial cell is a high-high- or low-low-value spatial agglomeration, and when
LISA < 0, the spatial cell is a high-low- or low-high-value spatial agglomeration.

2.3.3. PLUS Model

The PLUS model is a recently developed model that is based on traditional land-use
simulation and random forest models such as system dynamics [41], Future Land-Use
Simulation [42], CLUE-Scanner [43], and Spatial-temporal Markov chain [44] models. It
integrates a Create-a-Research-Space model of a multi-type random seed mechanism that
can be used to analyze the drivers of land expansion and predict the evolution of land-
use patches.

To evaluate the simulation accuracy, the simulated land-use types in 2020 were com-
pared with real land-use data in 2020. The Kappa coefficient was found to be 0.84, which
was greater than 0.7, indicating its high simulation accuracy. Therefore, it can be used to
predict the land-use types in Shanxi Province by 2030.
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Land use is affected by policies, economic development, natural environment, and
other aspects. Due to the uncertainty of future development, it is based on the land use
changes in Shanxi Province from 2000 to 2020 and the possibility of future development
under three future development scenarios (i.e., natural development, urban development,
and ecological protection). Simulations and projections of changes in land use in Shanxi
Province by 2030 were then developed. These three development scenarios are designed
to explore more comprehensively the impacts of land use on ecosystems. These different
scenarios are set up for several reasons: the natural development scenario takes into
account natural evolution and natural processes and helps to understand the impact of
land use on aquatic ecosystems in the absence of human policy interventions; the urban
development scenario takes into account that Shanxi Province is in the rising stage of
economic transformation, and urban expansion may still exist in the future; the ecological
protection scenario takes into account that the environmental awareness of the government
and the public is gradually rising, and in order to achieve the sustainable and high-quality
development of Shanxi Province, ecological protection measures may be strengthened in
the future. Under the natural development scenario, the change in each land-use type
continues the current development trend; under the urban development scenario, the
transfer of construction land to other land-use types is restricted, but other land can be
transferred to construction land; and under the ecological protection scenario, the transfer
of ecological land, such as woodland, grassland, and water, to other land is restricted,
but other land can be transferred to ecological land types (Table 3; where “+” indicates
transferable and “−” indicates non-transferable land).

Table 3. Multi-scenario land-use transfer matrix.

Scenario Setting Land-Use Type
Arable
Land

Woodland Grassland Waters
Construction

Land
Unused Land

Natural
Development

cenario

Arable land + − + + − +
Woodland − + + − − +
Grassland + + + + − +

Waters − − + + − +
Construction Land + − + − + +

Unused land + + + + − +

Urban Development
Scenario

Arable land + + + − − +
Woodland − + − + + +
Grassland − − + + + +

Waters − − − + − +
Construction Land + + + + + +

Unused land + + − − − +

Ecological Protection
Scenario

Arable land + − − − − +
Woodland + + + − − +
Grassland + − + − − +

Waters + − + + − +
Construction Land + − − − + +

Unused land + − − − − +

3. Results and Discussion

3.1. Changes in Water Yield in Shanxi Province from 2000 to 2020
3.1.1. Temporal Variations

Generally, water yield is mainly affected by rainfall and actual evapotranspiration,
whereas the main factors affecting actual evapotranspiration include air temperature and
land use [45]. In Shanxi Province, the differences in the average water yield of different
land-use types were as follows: unutilized land > constructed land > grassland > cultivated
land > woodland > waters. Because most unutilized land is not shaded by vegetation
or artificial structures, this allows precipitation to directly reach the surface, whereas the
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hardened surface of the constructed land makes it difficult for precipitation to infiltrate.
The average multi-year water yield of unutilized and constructed land reached 295.44 and
234.29 mm, respectively.

Grassland, arable land, and woodland exhibited medium water yield capacities. Al-
though grassland was vegetated, water evaporation was relatively low, and the root system
was shallow, with an average water yield of 214 mm. Arable land was usually artificially
managed and improved, and the root systems of crops were more developed; therefore, it
absorbed and utilized the water in the soil more efficiently, with an average water yield of
217.69 mm. Because woodland had exuberant branches and leaves with high evapotran-
spiration, the formation of a layer of withered material and humus on the surface played
a positive role in water conservation, with an average water yield of 220.25 mm. Waters,
despite being a storage space for water, were unable to absorb and utilize water, and the
average water yield was 151.40 mm.

The water yield in Shanxi Province from 2000 to 2020 showed an N-shaped change,
characterized by a small increase, then a decline and a subsequent increase (Figure 2).
The average water yield in Shanxi Province in 2000 was 297.01 mm, and the high-value
areas of water yield were mainly located in the Qin, Zhangwei, and Hutuo River Basins
in the eastern part of Shanxi, owing to their abundant precipitation. However, 2015 was
a very strong El Niño year; the province’s precipitation was only 480.60 mm, the average
temperature was 1 ◦C higher than normal, and, therefore, the water yield was low at only
265.27 mm. In contrast, 2020 was the subsequent year of El Niño, when the rainfall reached
877.2 × 108 m3, with an average rain depth of 561.3 mm; thus, the year had a biased
abundance of water [46]. Meanwhile, with the rapid development of the local society and
economy and the popularization and implementation of the policy of “returning farmland
to forests,” the expansion of construction land has occupied a large amount of arable land
and grassland. Furthermore, the increase in construction land from 2000 to 2020 was
106.22%, which has greatly increased the area of impermeable layers. Consequently, the
average water yield of the province in 2020 reached 375.80 mm, which was higher than
that of 2000 and 78.79 mm higher than the average water yield in 2000.

 

Figure 2. Water yield in Shanxi Province from 2000 to 2020.

3.1.2. Spatial Variations

Water yield is greatly influenced by climate and human activities. Affected by this,
it shows the spatial differentiation characteristics are generally low in the middle and
northwest and high in the southeast in terms of space (Table 4). The water yield in the
central basin area is low, the topography of the basin is usually surrounded by surrounding
mountains or mountains, and water replenishment is limited. Moreover, the basin’s
topography has a high rate of evaporation and transpiration because the surrounding
mountains block the wind, making it possible for the humidity to increase, resulting in
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more evaporation and transpiration of water. In the northern region, Datong and Xinzhou
had mines, and to ensure the dryness of the mines and associated workspaces, a large
amount of groundwater was extracted, which led to the destruction of underground
aquifers, a continuous decrease in water yield, and, thereby, a negative impact on the local
water ecosystem. This encouraged the local area to actively promote the mine’s ecological
restoration and, thereby, the benign development of the regional ecology. The water yield in
the western part of Shanxi Province is low, mainly because most of the area belongs to the
arid climate zone, with a dry climate and lack of sufficient precipitation. The western region
has high and complex terrain, more mountainous areas, and poor water storage conditions.
The ecological environment in the western region is poor, and problems such as soil erosion
are serious, affecting the maintenance and supply of water resources. In recent years, the
Lvliang Mountain area has experienced abundant precipitation and vigorous vegetation
growth. With the popularization of soil and water conservation projects, water-saving
technology, and other measures, the high water yield area has shifted from the southeastern
part of the Haihe River Basin to the Lvliang Mountain area in the Yellow River Basin.

Table 4. Water yield in different watersheds in Shanxi Province (all units in mm).

Watershed Year 2000 2005 2010 2015 2020

Yellow River Basin

Fen River Basin 278.9 291.27 268.68 245.49 385.57
Yellow Tributary Basin 281.75 300.44 315.34 298.05 362.45

Sushui River Basin 281.44 319.17 321.27 327.17 335.06
Qin River Basin 370.53 406.94 304.93 289.52 403.08

Sea River Basin

Yongding River Basin 213 233.73 283.2 250.43 267.09
Hutuo River Basin 333.32 287.5 310.45 284.99 427.41

Zhangwei River Basin 441.03 404 314.29 276.73 435.6
Daqing River Basin 300.44 326.42 341.76 320.76 401.76

Located in the eastern part of Shanxi Province, the Haihe River Basin generally has
a high level of urbanization, and land use is dominated by construction and industrial
land, with an average annual water yield of 322.70 mm. The Zhangwei, Hutuo, and
Daqing River Basins are situated on the windward slopes of the Taihang Mountain System,
with high precipitation and low evaporation, with an average annual water yield of
328.73–374.33 mm.

The Yellow River Basin in the central and western parts of Shanxi Province is a semi-
arid region, with land-use types dominated by cropland and grassland and an average
water yield of only 319.35 mm. The Fen and Sushui River Basins are located on the leeward
slopes of the Taihang and Taiyue Mountains, with topography dominated by basins, high
temperatures, and strong evapotranspiration; their average water yields are 293.98 and
316.82 mm, respectively.

3.2. Spatiotemporal Variation in Water Purification Services in Shanxi Province from 2000 to 2020

The ability to remove nitrogen can be used to reflect the ability to purify water, and
different land types have different abilities to absorb and remove nitrogen. Studies have
shown that the annual average nitrogen loads of various land-use types are in the following
order: cropland > construction land > unutilized land > grassland > woodland > waters.
In agricultural activities, some pesticides and fertilizers are not absorbed by crops, which
accumulate nitrogen on the surface, leading to a nitrogen load in the croplands of Shanxi
Province of 1.64 kg/hm2. During the urbanization process, a large amount of nitrogen
oxides is generated from energy consumption, industrial production, and transportation,
which is deposited into water bodies in the form of acid rain, and some enterprises directly
discharge nitrogen-containing wastewater into the water bodies; this increased the nitrogen
loading of construction land in Shanxi Province to 0.99 kg/hm2. Because forests and
grasslands have strong nitrogen-fixing capacities, their nitrogen loads were lower. In water,
aquatic plants and plankton can absorb and utilize nitrogen in the water, whereas the water
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body can dilute the nitrogen via water flow and circulation. Consequently, the nitrogen
load in the water bodies of Shanxi Province was only 0.01 kg/hm2.

The nitrogen load in Shanxi Province is affected by a variety of factors, including
agriculture, industry, urbanization, and the natural environment. Therefore, spatially, the
nitrogen loading in Shanxi Province was high in the central part and low in the eastern
and western parts (Figure 3). Areas with low water purification capacities were mainly
distributed in the south-central part of the Yellow River Basin, the northern part of the
Haihe River Basin, and the southeastern part of Shanxi Province. A large amount of
discharged urban and industrial sewage and applied chemical fertilizers increased the
nitrogen load and lowered the water purification capacity in the province. Areas with
higher water purification capacities were mainly distributed in the southeastern part of the
Yellow River Basin and the Lvliang Mountain area, which are mountainous and hilly, with
large forest and grassland distributions.

 

Figure 3. Nitrogen output load from 2000 to 2020.

During 2000–2020, the water purification capacity of the Haihe and Yellow River Basins
increased overall. Among them, with the implementation of environmental protection and
“returning farmland to forest” policies, the area with higher water purification capacity
expanded significantly in the Lvliang Mountain area of the Yellow River Basin; however, in
the central area of the Fen River Basin, owing to the increasing level of urbanization and
subsequent increase in regional nitrogen loading, the areas with low water purification
capacity are expanding into the north-central part of the Fenhe River Basin.

3.3. Spatial Matching Analysis of Water Yield and Purification Services

Based on the Geoda spatial analysis tool, a spatial weight matrix was established, and
the bivariate global Moran’s I index for water yield and purification services in Shanxi
Province was calculated (Table 5). The results show that a significant and expanding
trade-off occurred between water yield and water purification services during 2000–2020.

Table 5. The global Moran’s I index for water yield and water purification services.

Norm 2000 2005 2010 2015 2020

Moran’s I −0.201 −0.204 −0.273 −0.216 −0.335
p-value 0.002 0.003 0.005 0.004 0.003

Analyzing the local spatial heterogeneity between water yield and purification ser-
vices in Shanxi Province (Figure 4) revealed that the Hutuo River Basin, Zhangwei River
Basin, southern part of the Yellow Tributary, and Fen River Basin were mainly “high-low”
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agglomeration areas. This region had abundant precipitation that was distributed across
forested grasslands, and it currently represents the optimal area for water ecology in
Shanxi Province.

 

Figure 4. Bivariate local indicators of spatial association clustering of water yield and purification
services in Shanxi Province.

The “low-high” agglomeration areas were mainly found to be distributed in the south-
central part of the Yellow River Basin and the northern part of the Haihe River Basin, with
high temperatures, high evaporation rates, and an abundance of arable land; this area is
currently a low-value area for the quality of the water ecosystem in Shanxi Province. Under
the influence of the increasing trend of local warming and drying, the significant increase
in fertilizer application, and the uncontrolled discharge of nitrogen-containing wastewater,
the “low-high” agglomeration area has a clear tendency to expand to the western part of
the Zhangwei River Basin; therefore, special attention should be paid to the protection of
the aquatic ecology in this area.

The “high-high” agglomeration areas were mainly distributed in the southern part
of the Yellow River Basin and the southwestern part of the Haihe River Basin in Shanxi
Province, where the arable land is widely spread and has rich precipitation, exhibiting high
water yield and weak water purification capacity. However, over the past 20 years, with
the promotion of the policy of returning farmland to forests, the local water purification
capacity has been significantly improved, and “high-high” agglomeration areas have
been decreasing.

The “low-low” agglomeration areas were mainly distributed in the eastern part of the
basin of the tributaries of the Yellow River and the western part of the Qin River Basin,
which are relatively small in area but have large forest and grassland distributions, and
the vegetation has a strong ability to intercept precipitation. Notably, with the increase in
precipitation in the Lvliang Mountain area, the local area showed a tendency to shift from
the “low-low” catchment area to the “high-low” agglomeration area.

3.4. Characterization of Water Yield and Purification Services under Different Scenarios for 2030

By predicting the changes in water yield and nitrogen loading under the three scenarios
(i.e., natural development, urban development, and ecological protection) for 2030, the
following findings were obtained (Table 6).

Table 6. Average annual water yield and nitrogen loading in Shanxi Province from 2000 to 2020, and
projections for 2030 under different scenarios.

Ecosystems/Year 2000 2005 2010 2015 2020 Natural Development Urban Development Ecological Protection

Water yield (mm) 297.01 299.39 294.06 265.27 375.81 372.19 380.53 368.22
Nitrogen loading

(kg/hm2)
0.97 0.96 0.95 0.94 0.95 0.91 0.94 0.85
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Under the natural development scenario, Shanxi Province will continue with the
development trend of the current land-use type. By 2030, the water yield capacity will
change minimally, only 372.19 mm, which is slightly lower than that in 2020. Under the
urban development scenario, construction land will be restricted from shifting to other land-
use types but other land-use types can be transformed into construction land; therefore, by
2030, the area of construction land will have significantly increased compared with that of
the other scenarios, whereas ecological land areas will decrease significantly, resulting in
a water yield of 380.53 mm, a 1.3% increase compared with that in the year 2020. Under
the ecological protection scenario, ecological environmental protection will be particularly
emphasized by the government, which will lead to a significant increase in the area of
ecological forests and grasslands, thereby increasing the intercepting capacity of vegetation
for precipitation and increasing pollutants. The amount of water produced by 2030 is
projected to decrease by 7.59 mm compared with that recorded in 2020.

With urban socioeconomic development and the improvement of wastewater treat-
ment levels, the water purification capacity of Shanxi Province under the three scenarios
will be higher in 2030 than it was in 2020, but the water purification capacities will be dif-
ferent under the different scenarios. The nitrogen loading under the natural development
scenario will be 0.91 kg/hm2, a decrease of 4.21% compared with that recorded in 2020.
Under the urban development scenario, the nitrogen loading will be evidently higher than
those in the other scenarios because of the significant increase in the area of construction
land and the significant decrease in the areas of forest and grassland, which have strong
absorption and removal capacities for nitrogen. Under the ecological protection scenario,
the area of ecological forest and grassland will increase, and the ecological forest meadow
will have an increased capacity to intercept pollutants and reach the water body. The
capacity of the pollutants will be enhanced, and the nitrogen load reaching the water body
is anticipated to decrease by 10.52%, or 0.85 kg/hm2, compared with that recorded in 2020.

4. Conclusions and Discussion

4.1. Conclusions

Based on the InVEST model water yield and water purification module, the spatiotem-
poral changes in water yield and water purification in Shanxi Province from 2000 to 2020
and the correlation between the two were analyzed. Water yield and nitrogen loading
under the three scenarios of natural development, urban development, and ecological
protection by 2030 were predicted using the PLUS model. The results of this article are
as follows:

1. The differences in the average water yield of the different land-use types in Shanxi
Province were as follows: unutilized land > constructed land > grassland > cultivated
land > woodland > waters. Temporally, the water yield of Shanxi Province from
2000 to 2020 can be characterized by an N shape. Affected by land-use change and
climatic change, the lowest water yield (265.27 mm) occurred in 2015, and the highest
(375.80 mm) was in 2020, showing a change of 110.53 mm; from 2000 to 2020, the
water yield of Shanxi Province changed by 78.8 mm. Spatially, the water yield mainly
exhibited characteristics of low spatial differentiation in the middle and northwest
and high spatial differentiation in the southeast.

2. The water purification capacities of different land-use types were as follows: arable
land > construction land > unutilized land > grassland > woodland > waters. Spatially,
the areas with lower water purification capacities were mainly distributed in the south-
central part of the Yellow River Basin and the northern and southeastern parts of
the Haihe River Basin, whereas those with higher water purification capacities were
mainly distributed in the southeastern part of the Yellow River Basin as well as
in the Lvliangshan Mountain area. Due to the implementation of environmental
protection policies and the improvement of the technical level, the nitrogen load was
the highest (0.97 kg/hm2) in 2000 because of its large arable land area and high usage
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rate of pesticide fertilizers. In contrast, the nitrogen load was the lowest in 2015
(0.94 kg/hm2).

3. From 2000 to 2020, a significant and expanding trade-off occurred between the water
yield and water purification services in Shanxi Province. The Hutuo River Basin,
Zhangwei River Basin, southern part of the Yellow Tributary Basin, and Fenhe River
Basin were primarily “high-low” agglomeration areas. The “low-high” agglomeration
areas were mainly distributed in the south-central part of the Yellow River Basin and
the northern part of the Haihe River Basin.

4. By 2030, the urban development scenario yielded the most water (380.53 mm), whereas
the ecological protection scenario yielded the least (368.22 mm). With urban socioeco-
nomic development and sewage treatment level improvement, the water purification
capacity of Shanxi Province in 2030 is expected to be higher than that in 2020 under
all three scenarios; however, the ecological protection scenario had the strongest
purification capacity, with a nitrogen load of only 0.85 kg/hm2. In contrast, the
urban development scenario had the weakest purification capacity (nitrogen load:
0.94 kg/hm2).

4.2. Discussion

The results show that the land-use type in the study area under the natural develop-
ment scenario develops along the historical benchmark, reflecting the changes in the water
ecological environment under current conditions, thereby having a minimal impact on the
water ecological environment. Under the urban development scenario, the research area
focuses on economic development and urban construction. The water yield and nitrogen
load change the most; hence, urban expansion should be reasonably controlled, and ecolog-
ical land should be protected [47,48]. The water ecological environment of Shanxi Province
is ideal under the ecological protection scenario, but economic growth becomes relatively
slow. Therefore, optimizing land use, increasing investment in sewage treatment science
and technology, using pesticides and fertilizers rationally, and implementing river basin
zoning are necessary for economic development. Science and technology must be used to
promote the construction of ecological civilization, ensure the safety of the water ecological
environment in the river basin, and improve the water ecological environment.

In this study, the spatiotemporal changes and correlation between water yield and
purification services in Shanxi Province from 2000 to 2020 were investigated. We chose
5 years as a time node; although this reflects the changes in regional water ecology in time
and space, this may cause some spatiotemporal information on water yield and water
purification to be omitted. Moreover, both precipitation and land-use changes can affect the
water yield capacity of a region. As this study focused on analyzing the impact of land-use
change on water yield capacity, future precipitation was assumed to remain unchanged.
The three development scenarios were simulated to provide a certain reference for the
rational adjustment of the land-use types and protection. In future studies, the dual impacts
of precipitation and land use can be considered and combined with the representative
concentration pathway and shared socioeconomic pathway scenarios proposed in CMIP6
to comprehensively predict changes in water yield and purification capacity in Shanxi and
other similar critical regions.

Relevant studies have shown that warming and drying trends in the climate in Shanxi
Province will become increasingly prominent in the future [49,50]. Shanxi Province should
consider ecological, social, and economic factors when formulating relevant policies and
action plans and seek the best balance to achieve comprehensive sustainability:

1. In the context of agricultural production, areas with low water yield in Shanxi
Province, such as the Fenhe River Basin and the Sushui River Basin, should pro-
mote the popularization of water-saving technologies such as sprinkler and drip
irrigation, improve the efficiency of water resource utilization, and optimize water
resource management systems. Areas with wide agricultural distribution and low
water purification capacity, such as the central and southern regions of the Yellow
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River Basin, should also reduce the use of synthetic pesticides and chemical fertilizers
and support organic agriculture.

2. In the context of ecosystem protection, areas with poor soil and water conservation,
such as the cities of Jinzhong, Lvliang, and Yuncheng, should protect ecological forest
belts (soil and water conservation forests), strengthen wind and sand control forests
to reduce soil erosion and maintain soil moisture and nutrients, and protect water
sources (wetlands, lakes, and rivers).

3. In the context of urban development, areas with a high level of urbanization, such
as the cities of Taiyuan, Datong, and Changzhi, should rationally control the scale of
urban construction to reduce the discharge of nitrogenous sewage. Sewage treatments
should be strengthened, and the scale of use of reclaimed water should be expanded.

Author Contributions: Conceptualization, M.L. and S.L.; data curation, S.L.; formal analysis, S.L.;
funding acquisition, M.L. and H.L.; project administration, M.L. and H.L.; resources, S.L.; software,
S.L.; investigation, S.L.; visualization, J.Z.; writing—original draft, S.L.; writing—review and editing,
M.L. and H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Research Project of Shanxi Province
(202103021224258), and the Key subject of Shanxi Federation of Social Sciences (SSKLZDKT2023036).

Data Availability Statement: Not applicable.

Acknowledgments: We thank the editors and reviewers for reviewing this article and look forward
to your valuable comments on this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Liu, J.; Li, J.; Qin, K. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Total Environ. 2017,
586, 522–526. [CrossRef]

2. Deng, X.; Zhao, C. Identification of Water Scarcity and Providing Solutions for Adapting to Climate Changes in the Heihe River
Basin of China. Adv. Meteorol. 2014, 2014, 279173. [CrossRef]

3. Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality
of river water quality. Sci. Total Environ. 2023, 878, 162559. [CrossRef] [PubMed]

4. Ban, Y.; Liu, X.; Yin, Z.; Li, X.; Yin, L.; Zheng, W. Effect of urbanization on aerosol optical depth over Beijing: Land use and surface
temperature analysis. Urban Clim. 2023, 51, 101655. [CrossRef]

5. Chen, J.C.; Zhao, Z.; Wang, J.Y. Research on the essence and practical significance of the “Two Mountains Theory”. For. Econ.
2020, 42, 3–13. [CrossRef]

6. Bojie, F.; Guoyi, Z.; Yongfei, B.; Changchun, S.; Jiyuan, L.; Huiyuan, Z.; Yihe, L.; Hua, Z.; Gaodi, X. Functions and ecological
security of major terrestrial ecosystems in China. Prog. Earth Sci. 2009, 24, 571–576.

7. Dai, E.; Wang, X.; Zhu, J. Progress and trend prospect of ecosystem service trade-off/synergy research. Adv. Earth Sci. 2015,
30, 1250–1259.

8. Costanza, R.; Darge, R.; Groot, R. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260.
[CrossRef]

9. Zhang, B.; Li, W.H.; Xie, G.D.; Xiao, Y. Water conservation function and measurement method of forest ecosystem. J. Ecol. 2009,
28, 6.

10. Cheng, X.; Chen, L.; Sun, R. An improved export coefficient model to estimate non-point source phosphorus pollution risks
under complex precipitation and terrain conditions. Environ. Sci. Pollut. Res. 2018, 25, 20946–20955. [CrossRef]

11. Xie, Y.C.; Gong, J.; Qi, S.S. Spatial-temporal differentiation of water supply services in Bailongjiang River Basin based on InVEST
model. J. Nat. Resour. 2017, 32, 1337–1347. [CrossRef]

12. Aryal, S.K.; Ashbolt, S.; Mcintosh, B.S. Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban
Catchments Using the Storm Water Management Model. Water Resour. Manag. 2016, 30, 5437–5454. [CrossRef]

13. Nong, X.; Lai, X.; Chen, L.; Shao, D.; Zhang, C.; Liang, J. Prediction modelling framework comparative analysis of dissolved
oxygen concentration variations using support vector regression coupled with multiple feature engineering and optimization
methods: A case study in China. Ecol. Indic. 2023, 146, 109845. [CrossRef]

14. Wang, W.; Chen, L.; Shen, Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point
source pollution-Science Direct. Sci. Total Environ. 2020, 747, 141164. [CrossRef]

82



Water 2023, 15, 3261

15. Zhang, F.P.; Li, X.J.; Feng, Q. Water conservation in the upper reaches of Heihe River Basin based on InVEST model. Chin. Desert
2018, 38, 9.

16. Ran, C.; Wang, S.; Bai, X. Trade-Offs and Synergies of Ecosystem Services in Southwestern China. J. Environ. Eng. Sci. 2020,
37, 669–678. [CrossRef]

17. Gao, J.; Li, F.; Gao, H. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin,
Beijing, China. J. Clean. Prod. 2015, 163, S148–S155. [CrossRef]

18. Redhead, J.W.; Stratford, C.; Sharps, K. Empirical validation of the InVEST water yield ecosystem service model at a national
scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [CrossRef] [PubMed]

19. Daneshi, A.; Brouwer, R.; Najafinejad, A. Modelling the impacts of climate and land use change on water security in a semi-arid
forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [CrossRef]

20. Bejagam, V.; Keesara, V.R.; Sridhar, V. Impacts of climate change on water provisional services in Tungabhadra basin using
InVEST Model. River Res. Appl. 2021, 38, 106–194. [CrossRef]

21. Li, Y.L.; He, Y.; Liu, W.Q.; Jia, L.P.; Zhang, Y.R. Evaluation and Prediction of Water Yield Services in Shaanxi Province, China.
Forests 2023, 14, 229. [CrossRef]

22. Chen, Z.Y.; Yu, P.H.; Chen, Y.Y. Spatial-temporal evolution of water production and water purification services in the Han River
Basin under shared socio-economic pathway. Chin. J. Eco-Agric. 2021, 29, 1800–1814. [CrossRef]

23. Li, Z.B.; Tao, Y.; Ou, W.X. Research on the relationship between supply and demand of aquatic ecological services in Taihu Lake
Basin and multi-scenario assessment based on water quantity and water quality. Acta Ecol. Sin. 2023, 5, 2088–2100. [CrossRef]

24. Pan, H.H.; Wang, J.Q.; Du, Z.Q.; Wu, Z.T.; Zhang, H.; Ma, K.M. Spatiotemporal evolution of ecosystem services and its potential
drivers in coalfields of Shanxi Province, China. Ecol. Indic. 2023, 148, 110109. [CrossRef]

25. Wang, J.; Li, Y.; Wang, S.; Li, Q.; Li, L.; Liu, X. Assessment of Multiple Ecosystem Services and Ecological Security Pattern in
Shanxi Province, China. Int. J. Environ. Res. Public Health 2023, 20, 4819. [CrossRef] [PubMed]

26. Yang, Z.; Zhan, J.; Wang, C. Coupling coordination analysis and spatiotemporal heterogeneity between sustainable development
and ecosystem services in Shanxi Province, China. Sci. Total Environ. 2022, 836, 155625. [CrossRef]

27. Liang, X.; Guan, Q.; Clarke, K.C. Understanding the drivers of sustainable land expansion using a patch-generating land use
simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban. Syst. 2021, 85, 101569. [CrossRef]

28. Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Zheng, W. U-Net-STN: A Novel End-to-End Lake Boundary Prediction Model.
Land 2023, 12, 1602. [CrossRef]

29. Ferreira, M.R.; Almeida, A.M.; Quintela-Sabarís, C.; Roque, N.; Fernandez, P.; Ribeiro, M.M. The role of littoral cliffs in the niche
delimitation on a microendemic plant facing climate change. PLoS ONE 2021, 16, e0258976. [CrossRef] [PubMed]

30. Gao, L.N.; Tao, F.; Liu, R.R. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case
study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [CrossRef]

31. Li, J.; Yang, D.H.; Wu, F.Z. Dynamic simulation of land use change and carbon storage assessment in Kunming City based on
PLUS and InVEST models. Bull. Soil. Water Conserv. 2023, 43, 378–387. [CrossRef]

32. Yang, Y.; Liu, L.; Zhang, P.; Wu, F.; Wang, Y.; Xu, C.; Kuzyakov, Y. Large-scale ecosystem carbon stocks and their driving factors
across Loess Plateau. Carbon Neutrality 2023, 2, 5. [CrossRef]

33. Zhu, G.; Liu, Y.; Shi, P.; Jia, W.; Zhou, J.; Liu, Y.; Zhao, K. Stable water isotope monitoring network of different water bodies in
Shiyang River basin, a typical arid river in China. Earth Syst. Sci. Data 2023, 14, 3773–3789. [CrossRef]

34. Wang, X.Z.; Wu, J.Z.; Wu, P.X. Spatial-temporal distribution and trade-off/synergy of water conservation, soil conservation and
NPP services in Loess Plateau ecosystems, 2000–2015. J. Soil Water Conserv. 2021, 35, 114–121,+128. [CrossRef]

35. Su, C.H.; Wang, Y.L. Changes and driving factors of ecosystem services in the upper reaches of the Fenhe River Basin. Acta Ecol.
Sin. 2018, 38, 7886–7898.

36. Wu, B.; Quan, Q.; Yang, S.; Dong, Y. A social-ecological coupling model for evaluating the human-water relationship in basins
within the Budyko framework. J. Hydrol. 2023, 619, 129361. [CrossRef]

37. Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [CrossRef]
38. Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale.

Water Resour. Res. 2001, 37, 701–708. [CrossRef]
39. Li, W.; Zhao, Z.L.; Lv, S.S. Spatial and temporal differentiation of water purification function based on InVEST model. J. Irrig.

Drain. 2022, 41, 105–113. [CrossRef]
40. Ou, Y.X.; Zhu, X.; He, Q.Y. Spatial interaction between urbanization and ecosystem services: A case study of Changzhutan urban

agglomeration. Acta Ecol. Sin. 2019, 39, 12. [CrossRef]
41. Ren, Z.Z.; Chen, W.J.; Kang, H.T.; Li, X.; Zhang, X.; Wang, K. Research on threshold measurement method of influencing factors

of safety vulnerability in traffic-intensive waters based on SD model. Saf. Environ. Eng. 2023, 30, 9–17. [CrossRef]
42. Zhang, F.; Zhan, J.; Zhang, Q. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Phys. Chem. Earth Parts

A/B/C 2017, 101, 195–203. [CrossRef]
43. Zhang, M.F.; Liu, W.X.; Wang, J.N. Scenario simulation of ecosystem service value change in Dongguan section of Shima River

Basin based on Clue-S model. Bull. Soil. Water Conserv. 2021, 41, 152–160. [CrossRef]
44. Yang, J.; Xie, B.P.; Zhang, D.G. Spatial-temporal variation of carbon storage in the Yellow River Basin based on InVEST and

CA-Markov models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [CrossRef]

83



Water 2023, 15, 3261

45. Ji, Q.Q.; Pan, Q.Q.; Wu, S.R. The spatial reconstruction of “three lives” and the impact of precipitation changes on water
production services in the Yellow River Basin of Shanxi Province. Arid. Zone Res. 2023, 40, 132–142. [CrossRef]

46. Peng, Y.Y.; Liu, Y.; Gao, Q.Q. Change characteristics of clouds in China in the summer of El Niño and their relationship with
precipitation. Acta Meteorol. Sin. 2022, 80, 701–720. [CrossRef]

47. Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban heat islands and their effects on thermal comfort in the US: New York and New
Jersey. Ecol. Indic. 2023, 154, 110765. [CrossRef]

48. Shang, M.; Luo, J. The Tapio Decoupling Principle and Key Strategies for Changing Factors of Chinese Urban Carbon Footprint
Based on Cloud Computing. Int. J. Environ. Res. Public. Health 2021, 18, 2101. [CrossRef]

49. Zhang, C.L.; Zhao, J.B.; Niu, J.J. Study on Warming and Drying Climate of Shanxi Loess Plateau in Recent 50 Years. J. Arid. Land.
Resour. Environ. 2008, 22, 70–74. [CrossRef]

50. Yao, Y.B.; Wang, Y.R.; Li, Y.H. Climate warming and drying of the Loess Plateau in China and its impact on the ecological
environment. Resour. Sci. 2005, 27, 146–152. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

84



water

Article

Arid AREAS Water-Piled Photovoltaic Prevents Evaporation
Effects Research

Jiamin Huang 1, Kebin Shi 1,*, Xingpeng Shi 2, Guocheng Hao 1 and Yimin Yang 1

1 College of Hydraulic and Civil Engineering Xinjiang, Xinjiang Agricultural University, 311 Nongda East
Road, Urumqi 830052, China; H2842928692@outlook.com (J.H.)

2 Xinjiang Water Conservancy and Hydropower Survey and Design Institute Co., Urumqi 830099, China;
13361649376@sina.cn

* Correspondence: xndsg@sina.com

Abstract: (1) Background: In arid and semi-arid reservoirs, water surface evaporation is the main
method of water dissipation in order to inhibit the evaporation of water and enhance economic
efficiency. The evaporation inhibition rate of water-piled PV at different times of the year is derived
from the anti-evaporation test of water-piled PV, and a new idea is proposed for water conservation
in plains reservoirs in arid areas. (2) Methods: The test was conducted by dividing the area into
groups A and B, with and without PV panel shading. In situ observation and numerical calculation
were used to measure the atmosphere’s temperatures, test group, and PV module. The saturated
water vapor pressure difference was then calculated according to Dalton’s principle to analyze the
economic benefits of water saving. (3) Results: Based on the test results, it was found that the shading
of PV panels had a cooling effect on the water body, the PV module, and the atmosphere. Group A
showed a 44.2% decrease in the saturation water vapor pressure difference compared to Group B.
The maximum evaporation suppression rate of 40.2% was observed in July, while the minimum rate
of 12.2% was observed in January. The average evaporation suppression rate for the entire year was
29.2%. By utilizing the annual water savings for agricultural irrigation, it is possible to cover 38 hm2

of land and generate a revenue of 39,000 CNY. (4) Conclusions: The photovoltaic water cover can
effectively reduce water evaporation and generate economic benefits.

Keywords: arid areas; evaporation; photovoltaic; water conservation

1. Introduction

Climate change is a pressing issue that affects all of humanity. The greenhouse effect,
caused by harmful emissions, has far-reaching consequences [1,2]. However, reducing
these emissions is a crucial step in mitigating the effects of climate change. In 2015,
192 countries came together in France to sign the Paris Agreement, which aimed to address
the issue of carbon emissions [3]. One promising solution is the development of alternative
energy sources like wind, solar, and geothermal, which can help to reduce carbon dioxide
emissions significantly. Solar photovoltaic power generation is an up-and-coming energy
source that is strongly supported by many countries worldwide. By installing photovoltaic,
corresponding policy subsidies are given, and the cost of building photovoltaic power
plants has been reduced by 85% compared to 2010. In 2020, new solar photovoltaic power
generation accounted for over 50% of annual new energy generation, making it the primary
contributor to new energy generation [4]. Although land PV covers a vast area, cleaning
it is not easy, and wind and sand reduce power generation. Conversely, waterborne
photovoltaics can be an excellent solution to this problem, providing the advantages of
saving land area, improving power generation, reducing water evaporation, and the ability
to combine it with hydroelectric power generation to improve economic efficiency [5,6].
Waterborne photovoltaics (WPV) are divided into floating photovoltaic (FPV) and pile-
based photovoltaic (PPV), and water-based pile-based PV is mainly applied in areas where
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the water depth does not exceed 3 m. Prefabricated pipe pile-type concrete is used as the
pile foundation, which is suitable for small lakes, rivers, reservoirs, artificial fishponds, and
other environments.

Research on water resource utilization in arid and semi-arid areas has been a topic of
great interest. The connection between human activity and the natural watershed in these
areas is crucial. The socio-ecological coupling system of human–water relations can be
described by using nD [7]. Some scholars have investigated the allocation of water resources
and ecological water supply [8]. Their findings suggest that vegetation in the terminal lake
area depends heavily on ecological water use [9]. Additionally, the benefits of using an arid
area’s ecology, landscape, and water resources can be evaluated and traded off. Predicting
the evolution of lake boundaries can aid in protecting the arid area lake ecosystems [10].
Various methods have been proposed to address this concern, including utilizing palm
fronds to cover the water surface. Full coverage of the water surface can reduce evaporation
by up to 55%, while semi-coverage can decrease it by 26% [11]. Benzene sheets and other
physical materials have also been tested for their efficacy in reducing evaporation rates.
Results have shown that the more extensive the coverage, the more significant the reduction
in evaporation [12]. Furthermore, studies have been conducted to examine the impact
of land photovoltaic installation on evaporation. It has been observed that concentrated
lighting reduces evaporation by 21%, while uniform lighting results in a 14% reduction. In
contrast, no coverage leads to a 19% reduction in evaporation [13]. Currently, only a limited
number of scholars have delved into the effects of FPV. Certain researchers have examined
its influence on watersheds and formulated a mathematical model. Their findings indicate
that as the coverage of FPV expands, so does the effectiveness of water conservation [14].
The installation of FPV in arid region reservoirs can increase power generation capacity
by 58%, synergizing hydroelectric and photovoltaic power generation [15,16]. However,
the studies mentioned above are solely based on theoretical models and have not been
tested in the field. This raises concerns about the validity of the model as the installation
environment and orientation of the reservoir can vary in different regions. Therefore, it
is necessary to conduct field tests to verify the effectiveness of the model in real-world
scenarios.

Floating photovoltaic (FPV) has been found to be an effective solution for reducing
evaporation from water bodies. The rate of evaporation is influenced by temperature
and inversely proportional to humidity levels, and through the adjustment of the angle
of the photovoltaic (PV) tilt, it has been observed that a significant reduction in evapora-
tion can be achieved. The implementation of single-axis tracking mechanisms or novel
photosensitizers has the potential to induce varied levels of energy generation over the
course of a year [17–19]. Despite the effectiveness of FPV, no relevant experiments have
been conducted for waterborne photovoltaic (WPV), which holds practical and economic
value in fishery–photovoltaic complementary fish ponds. In this study, we have analyzed
and organized the results of experiments conducted on WPV. However, the mechanism of
evaporation inhibition at different times has not been elaborated upon. This paper focuses
on several research topics. Firstly, it aims to create a prototype observation model test.
Then, it examines the primary factors that affect the temperature of water bodies due to
PV panels, including the formation of saturated water vapor pressure difference and the
day-to-day change process. Additionally, it briefly analyzes the evaporation inhibition rate
of WPV on water bodies. Lastly, the paper explores the economic benefits of water saving
with WPV technology.

2. Materials and Methods

2.1. Analysis of Solar Energy Resources at the Test Site

This testing site is located within the Tulufan Shengjintai Reservoir, situated in Xinjiang,
China, at coordinates 42.50′36′′ N for latitude and 89.15′50′′ E for longitude. Meteonorm
is a tool that provides information on rainfall, solar radiation, and more for a specific
area. This region is representative of an arid area with a temperate continental climate
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characterized by an average annual precipitation of 150 mm. However, it receives an
annual sunshine time of up to 3500 h, which is 1.25 times higher than that of Beijing at
the same latitude. In Xinjiang, the total annual average solar radiation is 5800 MJ/m2,
which is ranked second in the country after Tibet and is 10–15% higher than in similar
areas [20]. Comparing the total annual average horizontal solar radiation between the
Turpan and Beijing regions, it is evident from Figure 1 that the former receives a significantly
higher amount of solar radiation. Specifically, Turpan receives an annual solar radiation
of 6061.8 kWh/m2, while Beijing receives 5778.1 kWh/m2, both at the same latitude. This
discrepancy is particularly noticeable during July, the summer month when Turpan receives
a maximum of 804.6 kWh/m2 compared to Beijing’s 542.5 kWh/m2. During the winter
season, the solar radiation levels in both regions are comparable. As Figure 2 exhibits, it
is noteworthy that Turpan’s highest single-day radiation is 30.73 kWh/m2, compared to
Beijing’s 28 kWh/m2. Consequently, the development of centralized PV and distributed
PV in Turpan may prove beneficial [21].

 

Figure 1. Comparison of the total annual average horizontal solar radiation between Turpan and
Beijing.
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Figure 2. Daily variation curves of solar radiation in Turpan and Beijing.

2.2. PV Array Inclination and Azimuth

PV arrays require specific angles of azimuth and inclination to maximize solar radia-
tion and power generation [22]. Solar PV arrays require a specific group spacing to prevent
mutual shading, as shown in Figure 3. The time zone where the test site is located is East 8,
and the shadows were modeled by Sketchup software, which allows for a group spacing of
2 m.

 

Figure 3. Pile photovoltaics on the water under the sun.
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The test site is located in the northern hemisphere, and in order to maximize solar
radiation, the PV array is fixed to face south. According to the photovoltaic system design
aid software PVsyst, the optimal tilt angle for installing a photovoltaic system in this area
is 36◦, based on the principle of obtaining the minimum loss of solar radiation.

There are two main methods for calculating water surface evaporation from water
bodies: the model calculation method and the in situ measurement method [23]. The
current methods for calculating models include the Dalton model, Bowen ratio–energy
balance method, Penman equation, water budget method, energy balance method, and
Priestley–Taylor model. Measuring evapotranspiration in lakes and reservoirs is crucial
for managing water balance in arid and semi-arid regions. The Dalton model, which is
used to estimate evapotranspiration in open spaces, has a smaller error rate according to
studies [24–26]; the calculation for this model is as follows:

E = f (u)·(es − ea) (1)

where: E is the water surface evaporation; f (u) is the wind speed function; es − ea is the
saturation water vapor pressure difference (VPD); es is the water surface temperature
corresponding to the saturation water vapor pressure; and ea is the saturation water vapor
pressure in the air.

es(Ta) = 0.611· exp(
17.27Ta

Ta + 237.3
) (2)

where: Ta is the temperature of the air, es is the water surface temperature corresponding
to the saturation water vapor pressure, kPa, and Ta is the temperature in the air.

ea =
RH
100

es(Ta) (3)

where: ea is the saturated water vapor pressure in the air, kPa and RH is the relative
humidity.

Therefore, we can obtain the following equation:

VPD = es(Ta)(1 − RH
100

) = 0.611 × exp(
17.27Ta

Ta + 237.3
)× (1 − RH

100
) (4)

This paper quantifies the anti-evaporation effect of PPV on water using scale tests and
actual measurement data, utilizing an in situ measurement method. The in situ measure-
ment method was carried out using the E601 evaporator and was modified according to the
test area [27–29]. The most commonly used method in China for measuring water surface
evaporation is the evaporator pan, which is both economical and practical [27–30]. It is a
cylindrical evaporator with a diameter of 20 cm and a height of 10 cm [31]. In this paper,
the in situ measurement approach was employed to quantify the level of water evapora-
tion from the designated site. The evaporation rate was monitored over the non-freezing
period of one year in its natural state. As illustrated in Figure 4, the test configuration is
showcased.
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Figure 4. Water-based piled PV test diagram.

In accordance with the “Surface Water Resources Investigation and Statistical Analysis
Technical Rules” test specification, the ideal method to measure water surface evaporation
is by employing the E601 evaporator. Subsequently, the test data acquired from this
measurement must be translated into the evaporation of the E601 evaporator. It is worth
noting that the conversion coefficient may differ depending on the region. For this specific
test area, the conversion coefficient utilized is 0.62 [32], and the calculation formula is as
follows:

E601 = kE20 (5)

where k is the conversion factor; E601 is the evaporation of large water bodies; and E20 is
the evaporation of evaporation pan evaporation.

For our research project, we meticulously selected two evaporator models that had
measurements of 1.0 × 1.0 × 0.25 m. We designated these models as A and B, respectively.
In order to obtain precise and reliable results, we allocated Group A as the test group,
while Group B served as the control group. We ensured that there was no possibility of
leakage by lining both evaporators with polypropylene tarpaulin. In addition, we covered
the exterior of each evaporator with a heat-resistant blanket to safeguard against solar
radiation. For Group A, we strategically positioned solar photovoltaic panels that measured
1.04 × 0.76 m above the evaporator. These panels were tilted at a 36◦ angle and oriented
southward to optimize their exposure to sunlight. Conversely, Group B did not have any
form of shading.

In order to determine fluctuations in water levels on a daily basis, the water level stylus
method is employed, which boasts a precision of ±0.01 mm. The handheld weather station
is utilized to document changes in atmospheric temperature, wind speed, and humidity.
The probe of the environmental monitoring system is utilized to oversee fluctuations
in water temperature within both evaporators A and B. Furthermore, the CENTER-309
thermometer is employed to gauge temperature changes on the surface of the PV panel,
which is installed above both evaporators. The same temperature and humidity recorder is
situated above both evaporators at a height of 5 cm.
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3. Results

3.1. Temperature Variation

Throughout the course of our experiment, we conducted a thorough analysis of at-
mospheric temperature for a full day. Our investigative approach incorporated detailed
observations of the temperature fluctuations exhibited by both evaporators A and B. Addi-
tionally, we carefully monitored the temperature changes that occurred in the water body
and PV module of evaporator A, as demonstrated by Figures 5 and 6. These findings have
provided us with a comprehensive understanding of the various factors that contribute to
atmospheric temperature and have allowed us to draw meaningful conclusions about the
nature of these phenomena.

Figure 5. Daily variation of evaporators A, B, and atmospheric temperature.

 
Figure 6. Schematic diagram of temperature change of each component.
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Based on the information presented in Figure 5, it can be inferred that evaporator A
has a more concentrated water temperature than evaporator B, and there is a significant
temperature difference between the morning and evening atmospheric temperatures. The
temperature in the atmosphere increases slowly after 8:00 a.m. The temperature of both
evaporators is lower than that of the atmosphere, with Evaporator A exhibiting the lowest
water temperature due to the shading provided by photovoltaic panels. This shading
reduces the effect of solar radiation on the water surface temperature, thereby slowing the
rate of water temperature increase and ultimately minimizing water evaporation. At 18:00,
the temperature difference between the two evaporators peaked at 5.3 ◦C. From 18:00 to
8:00 the following day, the atmospheric temperature remained lower than the temperature
of the evaporator due to the hindrance provided by the evaporator and photovoltaic panels
to heat dissipation, leading to a slower rate of water temperature reduction. The testing
site, situated in a desert area with mostly gravel, experiences rapid heating during the
day and cooling at night, resulting in a significant temperature disparity between day and
night. Consequently, the atmospheric temperature at night is lower than the temperature
of the two evaporators. In comparison to Evaporator B, Evaporator A exhibits an average
temperature that is 2.5 ◦C lower. Figure 6 portrays the temperature variation of the surface
of the PV module, revealing that the solar panel’s surface temperature is considerably
higher than the water surface temperature inside Evaporator A. The temperature difference
averages 6.1 ◦C, and the temperature difference can reach up to 29.3 ◦C at 14:00. The average
surface temperature of the solar panel is 4.2 ◦C higher than the atmospheric temperature,
with a maximum temperature difference of 16.2 ◦C. From 20:00 of the succeeding day
to 8:00 of the following day, the surface temperature of the PV panel does not show a
notable disparity from the atmospheric temperature. This is attributed to the primary
components of PV panels, which are metal frames and monocrystalline silicon, resulting in
a considerable temperature difference between the surface of the module during day and
night due to quick rises and falls. Despite the high surface temperature of the PV panel,
the water temperature inside the evaporator is not high. This is due to the absence of direct
contact between the PV panel and the water surface. The heat mainly relies on air as a
medium of transmission, and the heat transferred to the water surface only accounts for a
part of this. The remaining heat is primarily dissipated into the atmosphere.

As previously explained, evaporation is influenced by various factors, with wind
speed and saturated water vapor pressure difference being the primary ones. To determine
the saturated water vapor pressure difference between the shaded conditions of test Group
A’s evaporator and the unshaded conditions of blank control Group B’s evaporator, one
can employ Equation (4). The calculation results are shown in Figure 7.

From 6:00 to 8:00, the saturated water vapor pressure difference between the shaded
and unshaded groups was relatively similar. However, as the temperature rose between
8:00 and 18:00, the difference gradually increased due to greater evaporation from the
water body. Furthermore, the presence of solar panels in the shaded group resulted in
water vapor condensation between the photovoltaic panels and the water surface, further
reducing the saturated water vapor pressure difference.

Between 18:00 and the following day at 6:00, the temperature decreased, and air
humidity increased, leading to a gradual increase in the saturated water vapor pressure
difference. By 18:00, the difference in saturated water vapor pressure between the sheltered
and unsheltered groups had peaked, with the unsheltered group exhibiting a saturated
water vapor pressure 1.12 kPa higher than that of the sheltered group. The daily averages
of the saturated water vapor pressure difference between the evaporator in the sheltered
Group A and the evaporator in the unsheltered Group B were 0.68 kPa and 1.22 kPa,
respectively, and the saturated water vapor pressure difference in the sheltered group was
reduced by 44.2% in comparison with that in the unsheltered group.
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Figure 7. A, B evaporator daily saturation water vapor pressure difference.

3.2. Calculation of Evaporation Volume

The tested test data are shown in Figure 8 below:

 

Figure 8. Schematic diagram of evaporation and average annual solar radiation in evaporation panes.
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The evaporation suppression rate under solar PV panel shading is calculated as
follows:

k =
EB − EA

EB
× 100% (6)

where k is the evaporation inhibition rate, %; EB is the evaporation volume of evaporator B,
mm; and EA is the evaporation volume of evaporator A, mm.

Figure 9 presents a detailed depiction of the evaporation process for evaporators A
and B. The diagram showcases the monthly evaporation rates for both evaporators in
the upper section. It highlights the difference between the monthly evaporation and the
evaporation inhibition rates of A and B in the lower section.

 

Figure 9. Evaporation and evaporation suppression rate under PV panel shading.

The diagram shows that evaporator A has a more concentrated and consistent monthly
evaporation rate than evaporator B, which is more prone to fluctuations caused by air
temperature and wind speed. During the winter season, both evaporators A and B have
similar evaporation rates due to the water surface freezing, and the photovoltaic panels
have minimal impact on the evaporation process. The chart indicates that both evaporators
A and B experience an increasing trend in evaporation volume, followed by a decreasing
trend, with the maximum volume reached in July. Evaporator A has a total evaporation
volume of 221 mm, while evaporator B has an evaporation volume of 370 mm. The
evaporation inhibition rate varies in different periods. In July and January, the evaporation
inhibition rate can reach a maximum of 40.2% and a minimum of 12.2%, respectively. The
average evaporation inhibition rate for the entire year is 29.2%. The shading of photovoltaic
panels in summer reduces the temperature of the water surface, which decreases the water
vapor pressure difference. As a result, moist air is not replaced by dry air between the
water surface and the atmosphere, inhibiting the evaporation of water bodies.

3.3. Economic Benefit Analysis

Based on the information provided about the project area, the reservoir has a total area
of 31.6 hectares, making it a small irrigation-type reservoir. If the reservoir were completely
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covered with photovoltaic panels, it would be possible to calculate the economic benefits
of water savings due to PV power generation and panel covering. Figure 10 shows a PPV
system based on a reservoir. The specific parameters are shown in Table 1:

Figure 10. System Diagram for PPV.

Table 1. Reservoir parameters and installation PV parameters.

Total Storage
Volume

Total
Reservoir Area

Photovoltaic
Coverage Area

Photovoltaic
Uncovered Areas

Average Annual
Evaporation

Suppression Rate

Evaporation Pan
Conversion Factor

1186.6 million m3 31.6 hm2 27.18 hm2 4.46 hm2 29% 0.62

Based on the figure provided, the PV system produces DC power that can be utilized
by DC loads, stored in batteries, or converted to AC power through an inverter for use by
AC loads or a gas turbine. The PV panels used in the test have a power output of 160 w.
With the coverage area shown in Table 1, a total of 388,285 PV panels can be installed. The
photovoltaic panel used in the test was manufactured by model GHGN-150WDJBZ; each
PV panel can generate 0.6 kWh of power per day (without considering losses from the
inverter and other factors). This results in a daily power generation of 232,971 kWh, which
translates to a revenue of 144,442 CNY per day.

According to the parameters shown in the table above, the evaporation volume of the
evaporation pan can be converted into the evaporation volume of the standard evaporator,
as shown in Figure 11.

Figure 11. Water savings per square meter for large water bodies.

Based on the information provided above, the amount of evaporation varies for each
month of the year due to the combined impact of wind speed, temperature, and relative
humidity. This also affects the corresponding evaporation inhibition rate. By calculating
the evaporation inhibition rate of evaporation panes for each month and converting it to
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the rate for large water bodies, we can determine the monthly evaporation amount for
large water bodies. Please refer to Figure 12 for more details.

 
Figure 12. Schematic diagram of monthly evaporation from large water bodies.

Referring to Figure 12, the implementation of a photovoltaic water structure in a
vast water body can preserve up to 610.81 mm of water per square meter every year. By
utilizing the PV coverage area outlined in Table 1, the corresponding installation area can
conserve 166,018 cubic meters of water annually. This amount is equivalent to 14% of the
entire capacity of the reservoir. In the surrounding area, the primary crop is grapes, the
reservoir water should be utilized primarily for irrigation purposes, the reservoir governs
an impressive 267 hectares of irrigation land, and the water saved can be directed toward
agricultural purposes, effectively serving an area of 38 hectares and bolstering economic
gains. The reservoir sources its water from groundwater, boasting excellent quality with
a soluble solids content (TDS) of 519 mg/L. If utilized for drinking water, the tap water
in the region is priced at 0.23 CNY/m3, providing an opportunity for revenue generation
totaling 39,000 CNY.

4. Discussion

Land-based photovoltaics face the problems of extensive land area, wind and sand,
and difficulty in cleaning [33,34], and the development of waterborne photovoltaics can
effectively alleviate the increasingly tight land resources.

It has been found that using waterborne photovoltaic systems can effectively decrease
water evaporation while increasing power generation capacity [15,35]. The principle of
reducing water evaporation lies in the fact that PV panels block direct solar radiation and
thus reduce the water surface temperature, which has been verified by different experi-
mental and theoretical approaches [30,36]. However, the research approaches mentioned
above did not systematically analyze the temperature of different layers of the water body,
and future research directions could be aimed toward the continuous effect of water photo-
voltaic systems on the stratification effect of water temperature in large water bodies in
different seasons. The above studies are based on floating photovoltaic systems but not on
pile-based photovoltaic systems. Water-piled photovoltaic has a better spatial effect; the
upper layer can implement photovoltaic power generation project, and the water surface
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can be combined with an anti-evaporation floating ball [37], which can achieve a better
effect of preventing the evaporation of the water body, which has essential research value
for arid areas.

In rural areas, an emerging trend is the combination of fishery and photovoltaic sys-
tems to generate additional income. By leveraging fish’s distinct habits and ability to adjust
to water temperatures, a layered aquaculture approach can be achieved in water bodies.
Studies have shown that installing aquatic photovoltaic systems on fish ponds can bring sig-
nificant economic gains [38,39], particularly in implementing this technology within desert
regions; it has proven to be effective in addressing concerns surrounding aquaculture in
arid areas, mitigating water body evaporation, and providing supplementary benefits [40],
but insufficient research exists regarding the integration of waterborne photovoltaics and
aquaculture. Further exploration is necessary to establish effective farming techniques
and management practices incorporating waterborne photovoltaics. This is attributed
to the impact that waterborne photovoltaics may have on water temperature, which can
adversely influence the ability of diverse fish species to flourish in the water column. To
ensure the durability of photovoltaic panels, the outer layer is sealed with toughened glass.
To prevent moisture from seeping in, it is important to properly treat the location of the
junction box and wiring. With proper treatment, the panels can be directly cleaned with
water, making it easier and more cost-effective to maintain them. In the future, there will
be research carried out on self-cleaning photovoltaic systems.

Research has indicated that the implementation of aquatic photovoltaic systems yields
a substantial carbon reduction effect, resulting in the reduction of emissions by an impres-
sive 3.3 million tons annually [18]. It can reduce the eutrophication of water bodies and
reduce the concentration of chlorophyll and nitrate in water bodies [17,40]. However, the
method mentioned above does not entirely cover vast water surfaces, and some research
is relatively uniform with a limited observation duration. As the deployment of solar
photovoltaic panels is regional and spatial, diverse areas may have varying inclinations and
outcomes based on different arrangements and densities, which have not been adequately
explored. To investigate the influence of water-based photovoltaic installations on water
quality under distinct conditions, further research can examine the placement and spacing
of photovoltaic arrays in sizeable water bodies.

This study examines the anti-evaporation effect of PPV. The findings indicate that
these devices can effectively lower water temperature and reduce evaporation. However,
the study only used model tests, and further research is needed to test the impact of pile
photovoltaics installed at different heights and changes in water quality. Future research
can explore these areas to broaden our understanding of this technology.

5. Conclusions

This paper focuses on investigating the anti-evaporation effect of PPV on the water
body. Specifically, the study analyzes the impact on the water temperature and PV module
temperature. The Dalton model is used to calculate the saturation water vapor pressure
difference of the water body. Finally, the research derives the evaporation inhibition rate of
the water body by waterborne photovoltaics. The test results are presented below:

Based on the test conducted, it was observed that the water temperature in evaporator
A was significantly lower than that of evaporator B and the atmospheric temperature.
During summer, the maximum evaporation inhibition rate reached 40.16%, while the
lowest rate was 12.14% during winter. On average, the evaporation inhibition rate for the
entire year was 29.3%. Furthermore, the economic benefits of preventing water evaporation
using water pile-based PV were analyzed. If the water body’s evaporation is used for
agricultural irrigation, it can cover an area of 38 hm2. On the other hand, if it is used for
drinking water, it can generate a revenue of 30,000 CNY.

These test results indicate that the PV module blocks most of the solar radiation and
that water pile-based PV can effectively reduce the water body’s temperature, ultimately
reducing the rate of evaporation. During summer, PPV had the highest evaporation
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inhibition rate, which was slightly lower during winter. Overall, the use of PPV in arid and
semi-arid areas can help conserve water and produce good economic benefits.
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Abstract: Groundwater resource management requires understanding the groundwater basin’s
hydrogeology and would be improved with the development of a three-dimensional hydrogeologic
framework model (HFM). A wide range of methods and software exist to quantify the extent,
structure, and properties of geologic systems. However, most geologic software is proprietary and
cost-prohibitive for use in developing countries. GemPy is a Python-based, open-source (no-cost)
tool for generating three-dimensional geological models. This study uses available data and GemPy
to develop the Kobo Valley Hydrogeologic Framework Model (KV-HFM), a three-dimensional HFM
for Kobo Valley in northern Ethiopia, which is part of the East African Rift System. The KV-HFM
is a conceptual model that comprises the hydrostratigraphy, structural features, and hydraulic
properties of the Kobo Valley groundwater system. The limited data described the extent and altitude
of the hydrostratigraphic units using the GemPy implicit potential–field interpolation. The KV-
HFM showed the existence of an east-to-west, structural-based groundwater divide composed of
volcanic rock and clay. This divide splits the catchment into two groundwater systems with limited
interconnected flow. This study illustrates the use of open-source software for developing an HFM
using sparse, existing geologic data.

Keywords: East Africa; Rift Valley; hydrogeologic framework; GemPy; groundwater management

1. Introduction

Groundwater is a crucial resource for urban and domestic water supply, irrigated
agriculture, industry, and ecosystems. With the growing scarcity of surface water sources,
developing nations are currently relying more on groundwater resources, particularly in
rural parts of Africa. This paradigm shift results from groundwater becoming a strategic
resource for economic growth, food security, poverty reduction, and groundwater suit-
ability to adapt to climate change impacts on urban and rural livelihoods [1–3]. However,
properly using and managing groundwater is difficult because of a lack of experience and
knowledge [1,2]. Unlike surface water, groundwater systems are challenging to describe
without a hydrogeologic framework model (HFM). HFM is essentially a conceptual model
that helps develop a simplified path and framework for a numerical geologic model that
embodies the concepts in a numerical representation of the geologic features and honors
the geologic history of the region. The HFM helps groundwater resource management
by describing the thickness and area extent of the aquifers, aquitards, and bedrock and
embodies a 3D numerical regional estimation of the geologic framework. It also delineates
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faults, sedimentary facies, and related estimates of aquifer properties that result from
different provenances.

The development of an HFM has evolved over time. Prior to the 1970s, the devel-
opment of an HFM to represent the groundwater flow systems was accomplished using
pencil and paper [4,5]. However, the approach did not fully represent complex terrains
structurally or topographically. Detailed representations demanded maps that show details
of lateral lithological contrasts for 3D modeling [6]. In order to close this gap, efforts were
made to provide 3D information. For example, in the late 1970s, the Illinois State Geological
Survey (ISGS) produced black-and-white maps and subsequently updated maps with color
and patterns [7,8]. Yet even these maps did not sufficiently help users readily grasp the
regional geologic features. As a result, efforts were again made to use the geographic
information systems (GIS) approach to help speed up the production of colored maps to
create cross-sections and line-and-dot patterns [9].

With the advance of computer technology, the development of HFM transitioned
towards using advanced numerical-computer algorithms to create 3D geologic models
that represent the subsurface structure and stratigraphy [4,10,11]. The layers that typically
represent formations in the geologic model are delineated and estimated within the HFM
(typically, formations above what is considered “bedrock”) that provide an estimate of
water-bearing layers that can be developed for groundwater supply. The availability of
computer resources and 3D geological software has led to developing an HFM as an
important step in developing and managing groundwater systems [10,12].

The recent development of HFMs started in the petroleum industry and included
“sequence stratigraphy” to replicate the geologic history of a region and related layering,
faults, folds, and associated properties. Most of the development of petroleum framework
models occurred in offshore regions. The first onshore HFMs were sequence stratigraphic
HFMs of terrestrial regions developed by the U.S. Geological Survey (USGS) for the Santa
Clara Valley along with the Hydrostatrigraphic framework model of the Central Valley [13],
which is a hybrid approach to the sequence approach. There are three types of HFMs:
Sequence Stratigraphic Models (Example, Earthvision, etc.), Hydrostratigraphic Models
(Example, Rockware, Surfer, LeapFrog, etc.), and Hybrid Elevation Layer Models (Example,
ISATIS, FREEWARE, TPROGS, Arc-geostatistical analyst, etc.).

Modern studies have developed HFMs with computer and software resources. For
example, the Pajaro Valley groundwater basin hydrogeologic framework was developed
by combining a driller’s log synthesis [14], where e-logs were used with resistance limits to
delineate fractions of coarse and fine-grained material with hydrostratigraphic units [15].
A more recent use of driller’s logs was combined with an access database script to delin-
eate coarse-grained and fine-grained thicknesses to be kriged within hydrostratigraphic
units [13,16]. Then, many studies emerged employing ground-based and aerial Tran-
sient Electromagnetic (EM). However, they use proprietary software and are not linked to
lithology databases or well-based transient EM logs (dual induction logs) [17].

Three-dimensional geological models can play a vital role in understanding the strati-
graphic framework of aquifer systems and are used to create hydrogeologic representations
of a groundwater flow system [18,19]. Three-dimensional geological models can also help
estimate the geometry and related volumes of stratigraphic units or subregions delineated
as aquifers or aquitards [20–26]. For example, digital 3D HFMs were constructed for many
parts of California [13,24,25,27–29]. These 3D HFMs defined the aquifer system geometry
and subsurface lithologic characteristics for the subsurface hydrogeologic conceptualization
of the aquifer system to be used in regional hydrologic and hydrogeologic modeling. With
the increased computing power and advanced 3D numerical models, datasets such as drill
logs and geo-electrical resistivity data are used as input to construct detailed 3D geological
models of groundwater flow systems [20,23]. For example, drill log and vertical electrical
sounding (VES) data were combined to construct 3D geological models of a groundwater
basin and it was reported that the combined method improved the representation of the
groundwater flow system and reduced model uncertainties [21,30–33].
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There are various options for using software for building a geologic model. Typically,
the choice for software is either to use open-source GIS software or commercial geological
modeling software. Open-source GIS options such as QGIS and gdal [34], are examples of
open-source GIS software that provide access to process earth observation raster and vector
data for visualization but are 2D maps, complicating efforts to visualize fault networks,
complex structures, or stratigraphic sequences. Examples of commercial software that
are closed-source include EarthVision [35], Leapfrog [36], GOCAD [37], Petra [38], Rock-
ware [39], and Hydro GeoAnalyst [40], provide advanced visualization and algorithms for
developing geological models [41] but do not provide access to the source code implemen-
tation. Because commercial software is closed source, the implementation of the methods
is unknown, other than from the provided documentation, and cannot be modified. This
limits the utility to only what is provided by the software and prevents connecting to
open-source libraries for machine learning and computational inference. As a result, the
integration into other computational frameworks is limited. Often, commercial software is
used to enhance groundwater management. However, the cost of such software is usually
prohibitive for most areas in the world. This has led to the development of open-source
and free software that constitutes a cornerstone for enhancing groundwater development
and management [42,43].

To fill this gap, efforts have been made to develop a fully open-source software appli-
cation to create complete 3D HFMs that are comparable to implementations in commercial
packages. In this regard, the popularity of using open-source programming languages such
as Python is emerging and playing a crucial role in facilitating scientific programming and
script-based science. GemPy, for example, is a fully open-source and easy-to-use software
presented recently to create 3D visualization of geological models [4,44]. To construct
3D geological models, GemPy relies on Python and is based on an explicit and implicit
potential-field interpolation approach. This interpolation approach consists of fast and
automated surface formation supported with manual framing and interpolating of a scalar
function based on the cokriging of point data and structural orientations. However, there
are also other common approaches to developing HFMs, such as the use of spline interpola-
tors to estimate the geologic top and bottom layer surfaces [45] and the use of 2D ordinary
kriging or cokriging to spatially estimate the vertically averaged properties [46].

Groundwater is a primary source of water for irrigation and domestic water supply
in rural arid and semi-arid regions in sub-Saharan Africa. However, this resource is little
studied and poorly understood, partly because of the scarcity of existing hydrogeological
information in many regions of sub-Saharan Africa. As a result, existing studies on assess-
ments of groundwater resources relied on remotely sensed data combined with modeling
and missed detailed information at the catchment scale [47,48]. In this study, we developed
a 3D HFM considering Kobo Valley in Northern Ethiopia as a case study to understand the
groundwater basin’s hydrogeology of the area, which is basic for sustainable groundwater
resource evaluation and management based on field investigations and synthesizing Verti-
cal Electrical Sounding (VES) measurements, driller’s logs, pumping tests, groundwater
levels, and land surface elevation data. This study aims to fill the existing gap of implicit
modeling in an open-source tool to develop 3D HFM in geosciences for a region that has
a shortage of surface water and utilizes the groundwater for similar developments. The
groundwater resources have not been previously studied in this way and are potentially
vulnerable to considerable future overdevelopment. Hence, the methodology developed
can be used for similar purposes, contributing to sustainable groundwater development
and management.

2. Materials and Methods

2.1. Description of Study Area

Kobo Valley is located in the Afar Depression, the western margin of the Main
Ethiopian Rift, East African Rift. Geographically, the study area is located at 11◦54′ to
12◦24′ N and 39◦20′ to 39◦48′ E, with a total area of approximately 1544.24 km2. The
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elevation ranges between 3975 m above sea level in the mountains and 1018 m above sea
level in the Kobo Valley plain area (Figure 1) with reference to UTM zone 37N (WGS 84).
The valley is bounded in the west by mountains of the western plateau and in the east by a
chain of mountain terrain, the rift escarpment. The western catchment is mountainous that
is covered by and composed of volcanic rocks and has about 1045 km2 (68%), while the
valley plain is about 499 km2 (32%).

Figure 1. (a) East African Rift bordering the Red Sea and the Gulf of Aden. (b) Afar Depression
location in the Main Ethiopian Rift, East Africa. (c) Kobo Valley catchment in the Afar Depression.

The Kobo Valley is a semi-arid catchment and has limited surface water resources [49].
The use of groundwater is expanding to meet the growing demand for irrigation [50].
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The Kobo Grana Valley Irrigation (KGVI) project serves an area of 3100 hectares and was
developed to support the local community as they strive to maintain food security [51].
Over the past two decades, KGVI has developed more than 100 public boreholes to provide
water for irrigation and domestic water supply. A series of groundwater simulation models
have been developed to understand the Kobo Valley water resources and plan for future
development [52,53]. However, the lack of a detailed geologic layer formation led the
studies to the assumption of homogeneous aquifer properties.

2.2. Geology of the Kobo Valley

The study area is found in the Western Margin of the Afar Depression, the region in
East Africa that represents a key location for studying continental breakup [54–56]. Zwaan
and Corti Zwaan, Corti [54] revealed that the south–south striking Afar Depression is
still actively deforming and is characterized by NNW–SSE normal faulting and a series
of marginal grabens (Figure 2). The Afar Depression forms a triangular depression near
and partially below sea level between the Ethiopian and Somalian plateaus to the west and
south and the Danakil and Ashia Blocks to the northeast and east (Figure 2).

 

Figure 2. Longitudinal cross-section along Afar Depression (Section AA’ in Figure 1b), asl represents
above sea level. It illustrates the structural style in the Western Afar Margin and is dominated
by antithetic faulting (towards the Ethiopian Plateau) and associated marginal grabens. Image
after [56,57]. The inset blue box—section BB shows the groundwater basin area (Section BB’ in
Figure 1b).

The lithology of the Western Margin of the Afar Depression consists of Miocene
sedimentary and volcanic infill (the Pliocene–Quaternary Stratoid units) [58]. This forms
the most recent unit and covers the Afar Depression floor but has also accumulated in
depressions along the Western Afar Margin and on the Ethiopian Plateau. Faulting along
the margin is generally considered dominantly antithetic (i.e., dipping away from the
Afar rift basin, e.g., [59], Figure 2). Furthermore, a series of faulted basins referred to as
“marginal grabens” [54,60] align along the Western Afar Margin.

The formation of the geological structure is controlled by tectonic events that led to the
development of the Ethiopian Rift System on the western side of the Afar Margin. Its origin
is considered to be local tectonic development forming an intermountain trough. These
events are characterized by tensional movements, which gave rise to fissural volcanism
followed by block-faulting and tilting to form the escarpment zone, including marginal
grabens. These marginal grabens are narrow, elongated depressions bounded on both
sides by normal faults facing each other. The main axis of the trough runs in a north–south
direction. The trough is formed in the west by the rift escarpment and east by the horst
of the mountain ridge (Figure 1c). The frame is mainly composed of Tertiary volcanic
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rocks (Figure 3). The eastern and western ridges bounding the plain area are character-
ized by opposite dipping faults parallel to the plateau escarpments. The intermountain
trough (Kobo Valley) is dominantly composed of poorly compacted sedimentary basin-fill
deposits [57,61].

Figure 3. Geological map of Kobo Valley catchment [62] (Ethiopian Geological Study, 2012).

2.3. Data Collection and Processing

Hydraulic parameter data of aquifers in the Kobo Valley well field from 63 boreholes
and driller’s logs from 45 wells were collected from the office of Ethiopian Construction
Design and Supervision Works Corporation [63] as well as 37-point VES data from the
Ministry of Water, Irrigation and Energy (MWIE) office. The VES field data were collected
by Metaferia Consulting Engineers [64]. The positions of the data points are validated
using QGIS mapping and field visits made from January–February 2021. The data are also
carefully checked for consistency in geological interpretation for each driller’s log and the
descriptions of the geology of the area from different published reports.

Geological data of the area were collected from the Ethiopian Geological Study [62]
and the Ethiopian Construction Design & Supervision Works Corporation Office [63].
Earthquake data collected from the USGS Earthquake catalog (accessed on 9 August
2021; https://earthquake.usgs.gov/earthquakes/search/) also helped us visualize the
ongoing tectonic activity in the area. Study area location preparation and mapping of the
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structures within the study area were carried out through analysis in QGIS 3.2 (Accessed
on 27 January 2020; www.qgis.org), programming language Python, and IPI2win software
also used for terrain and VES data analysis. Detailed (30 m resolution) Shuttle Radar
Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) digital topography data from NASA and METI (Accessed on 10 July
2020; https://earthexplorer.usgs.gov) provided an excellent basis for our mapping and
processing using QGIS.

The final aim was to develop a three-dimensional hydrogeologic framework model
(HFM), a conceptual model that comprised the hydrostratigraphy, structural features, and
hydraulic properties that helped to understand the groundwater basin’s hydrogeology
for groundwater resource management in the area. We used the limited existing data
in the study area to achieve these results and followed several steps. Figure 4 presents
our conceptual workflow. The input data were VES measurements, driller’s lithologic
logs, pump tests, and land-surface altitude data. First, the input data were processed
to extract the surface contact points, orientation measurements, and defined topological
relationships (stratigraphic sequences and fault networks) and synthesized to create input
data for the GemPy model. Then, the following three steps summarize the whole simulation
hierarchically:

1. Create a digitized geospatial database from the input data that contains all the raw
data, topological relationships, standardized projection, and spatial extent;

2. Define the spatial distribution of geological structures and discretize the 3D space
regular grid geometry based on a potential-field interpolation method to define the
spatial distribution of geological structures, such as layers, interfaces, and faults
(computations of lithologic stratigraphic unit (LSU));

3. Discretize and visualize an interactive 3D geological model using Python fundamental
plotting library;

4. Then, pre-process and analyze the driller’s log data to check whether they are consis-
tent with the defined geometry and to identify the information that the contacts bring
about the possible positions of the surface deviations.

The GemPy-derived 3D HFM model performance was evaluated using the built-in
functionality to compute forward gravity conserving the package’s automatic differentia-
tion and the concept of topology, a useful tool to describe adjacency relations in geological
models, such as stratigraphic contacts or across-fault connectivity. As a final check, the
generated aquifer profiles were mapped and evaluated with the drillhole profile data.
Goodness of fit was qualitatively assessed by visual inspection and quantitatively as-
sessed by statistical analysis of residuals (differences between the measured and calculated
elevations).

2.4. VES Data

The VES point data were profiled into six lines from west to east (Figure 5). The raw
data were collected using Terameter SAS 4000, which is the product of the ABEM Company
according to Schlumberger electrode configuration. For each VES measurement point, the
spreading was performed in the north–south direction in a way that the potential electrodes
remained fixed for the defined current electrode, separating while the current electrodes
were spread apart for each measurement. This arrangement is known as a Schlumberger
Array. Thus, the VES points in each profile line were distanced at 1 km intervals in the
west–east direction (Figure 5). The resistivity data were converted to a one-dimensional
(1D) resistivity earth structure using IPI2win 3.1 software [65]. Then, using the IPI2win
software, the apparent resistivity for each VES was plotted against half-electrode separation
on double logarithmic paper [66,67]. The geophysical data were analyzed and interpreted
for each VES point measurement. The specific resistivity values and the corresponding
layers noted in each VES point were correlated along the west–east profile lines. A set
of geoelectric sections was produced using the interpreted results of each VES point and
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correlating the values along the profile line. The inverted resistivity values were interpreted
using the adopted resistivity values for earth materials [68–70].

Figure 4. Conceptual workflow of the study.

2.5. GemPy Modeling Approach

GemPy is an open-source Python library for generating full 3D structural geological
models based on an implicit potential-field interpolation approach [11,71]. The interpola-
tion algorithm constructs 3D geological models, including fault networks, fault–surface
interactions, and unconformities. This algorithm is applied in Python’s programming
language, using a Theano library for efficient code generation that directly executes on
graphical processing units (GPUs).

The method was first introduced by [71] and is grounded on the mathematical princi-
ples of universal cokriging. Later, the method was updated by integrating it into Bayesian
inference frameworks and advanced machine-learning [72] for stochastic geomodelling
and Bayesian inversion, making efficient implementations of automatic differentiation in
novel machine-learning frameworks [4]. To efficiently compute gradients and provide
optimized compiled code, GemPy 1.0 was built on top of Theano libraries [73]. In addition,
Pandas for data storage and manipulation [74], Visualization Toolkit (vtk) for interactive
3D visualization [75], Matplotlib [76], and NumPy for efficient numerical computations [77]
were used.
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Figure 5. VES measurement data profiles arrangement from west to east at 1 km intervals. Topography
is derived from ASTER data (30 m resolution).

In GemPy, the main method to generate the 3D geological models is the potential-
field method developed by [71], which has been successfully deployed in the modeling
software GeoModeller 3D [11]. The basic idea is to construct an interpolation function Z(xo)
where x is any point in the continuous 3D space (x, y, z) ∈ R3 that describes the domain
D as a scalar field. The gradient will follow the planar orientation of the stratigraphic
structure throughout the volume. It means that every possible isosurface of the scalar
field will represent every synchronal deposition of the layer (Figure 6). After creating the
stratigraphic layers, the fault series is considered as layer formations with a “Fault_Series”
representation as the key entry in the GemPy set_series dictionary.

In the final interpolation function Z(xo), xo refers to the estimated quantity for some
integrable measure po. To characterize the scalar field interpolation, two types of parameters
were used: (i) layer interface points xα for the respective isosurfaces of interest; and (ii)
the gradients of the scalar field, xβ, which are poles of the layer or normal vectors to the
dip plane in geological terms. Accordingly, gradients are oriented perpendicular to the
isosurfaces and located anywhere in space. The gradient of the scalar field is referred to
as ∂Z/∂u with u defined as any unit vector and its samples as xβ. A complete description
of the core functionality of the GemPy model can be found in Varga and Schaaf Varga,
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Schaaf [4] and additional references (See [71]). Appendix A contains the Python code that
sets up the GemPy model presented in this paper, which utilizes the Kobo Valley datasets
to generate a 3D visualization of the unknown hydrogeologic framework.

Figure 6. Scalar field for Kobo Valley. The input data are formed by the number of point data
distributed in four layers (x1

αi, x2
αi, x3

αi and x4
αi) and four arrows indicate the orientations of the layers

(xβj). An isosurface connects the interface points, and the scalar field is perpendicular to the gradient.
Z is an elevation in the y-axis, and x is the longitudinal cross-section in the x-axis multiplied by 10.

2.6. Model Performance Evaluation

Obtaining field geological measurements is expensive and often cost-prohibitive
for developing nations. Consequently, most field measurements are sparse in time and
space. Geological models must address the uncertainty that results from sparse data to
reach a reasonable level of confidence in the model [4,78,79]. The advantage of GemPy
is that the software model is fully designed to be coupled with probabilistic frameworks.
GemPy supports stochastic geological modeling for uncertainty analysis (e.g., Monte
Carlo simulations, Bayesian inference), which helps consider uncertainties in the model
input data and use additional secondary information in a Bayesian inference framework.
For example, GemPy can be coupled with pymc3 [72] to build probabilistic graphical
models [4,80]. GemPy uses the latest developments in uncertainty visualization for 3D
structural geological modeling and geological inversion [81,82].

GemPy includes a built-in functionality to compute forward gravity conserving the
package’s automatic differentiation (AD). Topology helps to describe adjacency relations in
geomodels, such as stratigraphic contacts or across-fault connectivity. GemPy can analyze
the adjacency topology of its generated models using the topology compute method (See
Appendix A (Figure A2)).

The generation of the stratigraphic geological layers using GemPy is formed by the
number of points distributed in layers and orientations. The stratigraphic profiles were
evaluated for goodness of fit using two approaches: visual inspection and statistical
analysis of residuals. Visual inspection is a method of visually examining the map to
see if the generated grid points with the model are a good representation of the original
data. Residuals (difference between the measured value and an interpolated value) play
an important role in interpolation characteristics; analysis is complete with a thorough
examination of residuals [83]. Quantitative measures that can be used as goodness-of-fit
statistics are performed, and a residual map is prepared to illustrate where the generated
surface points are nearer or further away from the actual data of stratigraphic boundary
elevations from drill logs. The mean absolute deviation and the standard deviation of the
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cross-validation residuals and the rank correlation between the measurements and the
estimates are calculated for analysis. The coefficient of determination, R2, is calculated by

R2 = 1 − (SSres/SStot) (1)

where SSres = sum of the squares of the residuals, SStot = sum of squares of the differences
from the mean, Sum(Eli − Elmean)

2, and El = the original elevation point data.
In addition to the built-in functionalities to the GemPy model, the model is checked

by overlapping the generated 3D layer profiles with the well logger’s data to check the
discrepancy of the layer marked in the well logs with the model.

3. Results and Discussion

3.1. Driller’s Log Lithology and VES Analysis

The geophysical data were interpreted for each VES measurement point. The specific
resistivity values and the corresponding layers noted in each point were correlated with
the west–east profile lines. The resistivity-survey data analysis showed that high resistivity
values indicated greater sand and gravel content, whereas low resistivity values represented
greater clay and silt content in the valley’s deposits, which were crosschecked with the
drillers’ logs to confirm that low resistivity can also be caused by saline waters or poor
water quality for coarse-grained layers. Six geoelectrical sections were produced, and four
main layers were recognized along with the selected profiles (Figure 7) characterized as
topsoil, clay and silty sand, sand and/or gravel, and weathered volcanic rock layers.

Profile lines with low resistivity segments due to clay deposition or salty water in-
terpretation are compared to drillers’ log data to dismiss any effects from saline waters
that would give a false signal that could be identified as clay deposition towards the east.
Generally, the geoelectric correlation sections showed vertical and lateral variations in the
profile layers and thickness because of Kobo Valley’s geomorphology.

The produced longitudinal sections (Figure 7) were constructed using the data col-
lected at 1 km intervals. The created profile layers are not smooth because the layers were
drawn by only connecting the points with a straight line. In transferring the raw data
points to the GemPy model, this rough sketch was adjusted and smoothed with each layer
orientation (xβj) because an isosurface of the points connected the interface points and the
scalar field perpendicular to the gradient. As explained in Section 2.2, the formation of the
geological structure in the study area was controlled by tectonic events that affected the
geophysical features of the valley plain and led to the development of uplands/remanent
hills in the middle of Kobo Valley, which influenced the identified aquifer layer thickness
to vary, as can be observed in Figure 7. For example, profile 3 of the generated geoelectric
section showed that the layers are different in profiles and thickness to the west and east
sides of the center, where the geomorphology shows upland areas/hills. This upland area
is also coincident with faults, micro-seismic events, and a possible transform fault that
separates the basin into two sub-basins.

To the east side of this section, either a layer of gravel is absent (profiles 2, 3, and 4 in
Figure 7) or a thin layer of gravel is present (profiles 1, 5, and 6 in Figure 7). In the model,
this thin layer is characterized as mainly clay. As a result, this area has a relatively thin
layer of aquifer thickness. Generally, the produced longitudinal geoelectric sections show a
clay layer beneath the thin topsoil layer. This clay layer has varying thicknesses throughout
the whole valley. Furthermore, the sand and/or gravel and weathered volcanic-rock units
follow from top to bottom as a third and fourth layer with varying thickness. Finally, the
lowest layer below the weathered zone is the bedrock. The interpretation of each profile is
given in Table A1 in Appendix B.
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Figure 7. Produced longitudinal sections for the six profiles from west to east. x-axis represents
longitudinal cross section from west to east in km and y-axis represents altitude of hydrogeologic
units in m above sea level with reference to UTM zone 37N (WGS 84).

This study showed that the central part of the valley is thicker in sediment deposits
and fine-grained material. At the same time, the sediment thickness around the eastern
side from the center of the valley is mainly clay. The profile data are digitized to obtain
the x, y, and z surface contact input data for the GemPy model and defined topological
relationships (stratigraphic sequences and fault networks).
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3.2. Three-Dimensional Hydrogeological Framework

The KV-HFM was developed by constructing a GemPy model using a GemPy python
model object (object here is in reference to object-oriented programming). The model
object uses a regular grid to interpolate the 3D geological model at any point in a 3D space.
GemPy relies on Theano library for efficiency [73]. Theano_optimizer is used with the fast
compile option before computing the model to generate Figure 8 (which uses PyVista, a 3D
visualization library and mesh analysis in Python for 3D visualization).

 
Figure 8. Three-dimensional visualization of Kobo Valley using GemPy geological model. x-axis
has a scale of 1:10 and a vertical exaggeration of 10. Numbers 1 up to 4 represent the top surfaces of
1 = ground surface, 2 = clay silt and silty sand, 3 = fine sand, coarse sand, and gravel, 4 = weathered
volcanic rocks (basalts), and 5 = hard rock.

The generated 3D GemPy model significantly enhances the visual interpretation and
understanding of the valley’s complex subsurface formations and geological profiles. This
type of representation also helps non-professionals understand the subsurface profiles and
complexity. The model enables each layer to be visualized individually using its spatial
properties. Using this feature, the volume of each aquifer layer is calculated to estimate
the water availability in each layer. This can be used to help quantify the groundwater
resources in the region. Previous studies in Kobo Valley have been conducted with many
generalized assumptions considering the homogenous thickness and the same structural
settings throughout the catchment [50,53]. However, a GemPy model fills this knowledge
gap by providing (1) the layer volume for the given geological settings; (2) visualization
of the formation thickness distribution of each unit; and (3) the relations among the units
(Figure 8, Figure 9, and Figure 10, respectively).
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Figure 9. Three-dimensional geological map showing stratigraphic profiles of Kobo Valley. The
vertical cross-section is exaggerated by a factor of 10.

Figure 10. Hydrogeological longitudinal cross-section profile of Kobo Valley. (a) Cross-section A–A’
(northern part of Kobo Valley). (b) Cross-section B–B’ (southern part of Kobo Valley) from west to
east. (c) Cross-section C–C’ from north to south.
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The 3D model shows that the graben is bounded on both sides, from West and East
normal faults facing each other. This fault bounding is also observable from topographical
maps. A cross-sectional view of the model (see Figure 10a–c) for the profiles indicated in
Figure 9 shows that the West and East frames are mountain ridges bounding the plain area
(marginal grabens) that are mainly composed of volcanic rocks. The valley plain forms the
main aquifer system.

The 3D HFM also provides a map of the distribution and thickness of the layers in
the main aquifer system. The spatial distribution of the thickness of a layer determines its
volume. Hence the model facilitates the estimation of the volume of a layer by considering
the spatial distribution of its thickness (Table 1). This is the volume of the layers in the
hydrogeologic stratigraphic unit (HSU), not the volume of water or the water that could be
extracted from the HSU. The aquifer volume is estimated using the valley plain area of the
main aquifer (alluvial part) of the valley using the difference between the isopach of the
potentiometric surface and the top of the aquifer.

Table 1. Calculated volume of each individual layer of the study area.

Hydrogeologic Stratigraphic Unit (HSU) HSU Order Volume of Unit in m3

Clay, silt, and silty sand First (top) layer 38.21 × 109

Fine sand, coarse sand, and gravel Second layer 26.79 × 109

Weathered volcanic rock (basalts) Third layer 1 17.22 × 109

1 The layer below the third is hard rock.

3.3. Uncertainty in the GemPy Model

The first evaluation made was a visual examination. The map was visually examined
to see if the generated grid points with the GemPy model closely represented the original
data. Next, the top surface of the 3D structural geological map generated using GemPy
was compared with the digital elevation map (DEM) of the study area. Then, the minimum,
maximum, mean, standard error, standard, and coefficient of determination (R2) were
calculated for the residuals from the differences between the known values of VES and the
driller’s logs with the estimates (Table 2).

Table 2. Summary of residual statistics.

Minimum
(m)

Maximum
(m)

Mean
(m)

SE (m) SD (m) R2 HSU Description

−5.68 7.71 0.01 0.08 0.91 0.93 HSU_1 top of clay, silt, and silty sand layer

−7.52 7.84 −0.58 0.60 6.76 0.95 HSU_2
bottom of clay, silt, and silty sand
layer, and top of fine sand, coarse

sand, and gravel layer

−9.68 7.71 0.01 0.10 1.01 0.90 HSU_3 bottom of fine sand, coarse sand, and
gravel layer and top of basalts layer

−6.14 8.32 0.04 0.10 1.12 0.91 Base top of hard rock

HSU = Hydrogeologic Stratigraphic Unit, SD = Standard Deviation, SE = Standard Error.

The residual’s minimum and maximum values indicate the magnitudes of differences
between the generated grid values from GemPy and the actual measured data points. For
example, the absolute maximum value is 9.68 m for HSU_3, where the elevation of the
HSU varies from 1094 m to 2621 m elevation above sea level with reference to UTM zone
37N (WGS 84). Hence, 9.68 m is less than a 1% variation. The mean differences between
GemPy model-generated grid point elevation values and measured elevation values were
less than 1% for all HSUs, demonstrating that the gridded values were reasonably close to
the original data values for most of the grid. The standard deviation was 6.76 m. These
residual values reflect the accuracy of the original data points compared to the gridded
values. The large values of the coefficient of correlation (R2 > 0.90) for all HSUs indicate
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that the model explains most of the variation observed in measured data points, but some
patterns were detected in the residuals (Figure 11). Figure 11 demonstrates that the model
closely matches the original data points except along the main axis of the trough frame, the
rift escarpment, and the horst of the mountain ridges, where measured data were scarce.
Overall, we concluded that the model performed well with the available data.

Figure 11. The residual map showing the difference between the original layer elevation value and
the interpolated value for HSU_1, HSU_2, HSU_3, and Base.

To visualize the subsurface geologic unit extents and fault locations, fractures, and
aquifer formations in GemPy, stratigraphic and unconformity connections were computed
for each point in the grid (Figure 12a) to interpret the sparse field measurements. In
the validation of the interpolation, it is assumed that the intrinsic error is zero and the
validation is only for the error of the interpolation estimator. Well log data were used to
evaluate the overlap variation with the layers generated by the GemPy model to minimize
uncertainty in the input parameters and therefore in the model outcomes (Figure 12b).

3.4. Kobo Valley Aquifer and Sediment Layer Visualization

An aquifer is a saturated permeable geologic unit that can contain and transmit
considerable quantities of water to wells and springs [84,85]. The thickness of Kobo Valley
aquifer was determined from VES and drilling data. For this GemPy model, the Kobo Valley
aquifer is assumed to be composed of sand, gravel, pebbles, and fractured volcanic rocks
to obtain the spatial distribution of the aquifer thickness map. In addition, the driller’s
log and the geophysical survey data of the sub-surface material below the water table in
the catchment were analyzed to assess the thickness of the aquifer. Generally, the aquifer
thickness varied throughout Kobo Valley and increased from the center to the north and
south (Figure 13a). The average aquifer thickness of the study area was 104 m. All layers
were considered as penetrated by boreholes, including volcanic rocks, for the sediment
thickness spatial distribution (Figure 13b). The sediment thickness to the eastern side of
the center of Kobo Valley is mainly clay, and as a result, the aquifer is relatively thin in this
area. The sediment thickness varied from a minimum of 120 m in the eastern central part
to a maximum of 220 m in the western part, with an average sediment thickness of 150 m
for the entire study area.
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Figure 12. (a) Computed stratigraphic and unconformity connections at the western side of the
valley at the fault section and models of special correlation. Z is an elevation in the y-axis, and x is
the longitudinal cross-section in the x-axis multiplied by 10. (b) Driller’s log lithology overlapped
with interpolated aquifer profiles generated with GemPy. The X-axis, Y-axis, and Z-axis represent
longitude, latitude, and elevation, respectively.
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Figure 13. (a) Aquifer thickness and (b) sediment thickness distribution in Kobo Valley plain.

3.5. Hydraulic Properties of the Valley

The pertinent hydraulic properties of the aquifer were hydraulic conductivity, trans-
missivity, and specific yield. Hydraulic conductivity is the capacity of an aquifer to transmit
water and is expressed as the volume of groundwater at the existing kinematic viscosity
that will move in unit time under a unit hydraulic gradient through a unit area at a right
angle to the direction of flow. Transmissivity is defined as the rate at which water of
prevailing kinematic viscosity is transmitted through unit width of the aquifer under a unit
hydraulic gradient and can be calculated by multiplying the hydraulic conductivity by the
saturated thickness of the aquifer. Specific yield is defined as the ratio of the volume of
water that drains because of gravity to the total volume of saturated aquifer [85–87].

Hydraulic conductivity, transmissivity, and specific yield are required inputs for most
numerical groundwater simulation models and proper management of groundwater re-
sources. A pumping test is the most common technique for estimating these parameter
values. For this study, pumping test data from irrigation and water-supply wells were
obtained from the MWIE office and were analyzed. The first hydraulic parameter ana-
lyzed was transmissivity as a product of hydraulic conductivity and saturated thickness.
Irrigation and water-supply wells were used to determine the transmissivity distribution
of the alluvial aquifer. Transmissivity data were determined from performed constant
pumping tests, which were carried out uninterrupted for 3 days. The spatial distribution
of the transmissivity of the Kobo Valley was plotted using QGIS and varied from 7.9
m2/day to 2500 m2/day with an average value of 467 m2/day (Figure 14b). The hydraulic
conductivity of the Kobo Valley was also mapped, and values ranged from 0.1 m/day to
35 m/day (Figure 14a). Generally, as noted in Figure 14a, the western side of the central
part of Kobo Valley has a low hydraulic conductivity zone, which indicates a fine deposit,
and the western part of the alluvial aquifer is a high hydraulic conductivity zone ranging
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from 7.1 m/day to 33 m/day. The third parameter is specific yield, a material boundary that
represents the effective (drainable) porosity of the unconfined sediments and the specific
retention of the volumetric fraction of water that remains during a unit decline in the water
table [88]. Specific yields obtained from the 63 wells were mapped, and observed values
ranged from 0.06 to 0.3 with an average value of 0.22 (Figure 14c). As can be seen from the
figure, the specific yield decreased from west to eastward. The minimum specific yield was
observed on the eastern side of the central and northern part of Kobo Valley and was likely
due to thick silt and clay aquifer materials. In contrast, the high specific yields observed
at the western margin of the study area were likely due to the coarse aquifer material, as
observed in Figure 14c.

 

Figure 14. Spatial distribution of hydraulic parameters in Kobo Valley plain. (a) Hydraulic conduc-
tivity. (b) Transmissivity. (c) Specific yield.

3.6. Groundwater Flow System

The groundwater-level contour map of Kobo Valley was generated from the GemPy
model as shown in Figure 15a. Overlaying the groundwater-level contour map with the
geomorphology of Kobo Valley (Figure 15b) and the hydrogeological longitudinal cross-
section (Figure 10c), the data indicate a structural-based groundwater divide that divides
the catchment into northern and southern groundwater systems that are prominently
shown in the 3D HFM. The northern groundwater (north of the groundwater divide) flows
in the northeast direction to the Selen Wuha outlet, whereas the southern groundwater
(south of the groundwater divide) flows in the southeast direction to the Golina outlet
(Figure 15b). Furthermore, the groundwater contour and the stream flow direction indicate
that the groundwater systems have a hydraulic connection with the streams and rivers in
Kobo Valley, and the flow direction is also influenced by the geomorphology and surface
drainage of the area.
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Figure 15. (a) Kobo Valley groundwater-level contour and groundwater flow system. (b) Kobo Valley
shows the river flow outlet and remnant hills in the valley. Topography is derived from ASTER data
(30 m resolution, accessed on 10 July 2020; https://earthexplorer.usgs.gov).

3.7. Groundwater Storage in the Valley

The developed 3D HFM and hydrogeological cross-section using GemPy (Figures 9 and 10)
were analyzed and Kobo Valley’s alluvial aquifer was identified as an unconfined aquifer
with an impermeable hard rock as a base layer. Groundwater storage (GWS) is the ground-
water in the pores of the alluvial aquifer and can be computed from the saturated aquifer
thickness and specific yield of the aquifer [88–92].

GWS = (A ∗ H)Sy (2)

where A is the total area of the aquifer in meter square (m2), H is saturated aquifer thickness
(m), and Sy is a specific yield of the aquifer. The aquifer thickness varies throughout Kobo
Valley (detail shown in Section 3.2). Using the saturated aquifer thicknesses and the average
specific yield of 0.22, groundwater storage in Kobo Valley was estimated to be 4132 MCM.
This estimate is higher than the groundwater storage estimates of 3081 MCM reported
by [93] and 2548 MCM reported by [94]. We believe that our estimation is more accurate
because unlike the previous studies, we developed a three-dimensional hydrogeologic
framework model (HFM) that accurately defined the hydrostratigraphy, structural features,
and hydraulic properties of the Kobo Valley groundwater basin hydrogeology.

4. Conclusions

In this study, the GemPy model, a Python-based open-source tool, was used to develop
a 3D HFM for Kobo Valley, part of the East African Rift System in northern Ethiopia. This
work developed a simplified representation of a groundwater system to better understand
the basin’s groundwater hydrogeology and provide a tool that can be used for sustainable
management of the groundwater system in the catchment. The developed model could
help optimize the management of stratigraphic information; 3D visualization speeds up
the process of stratigraphic setting evaluation, allowing for the identification of the existing
geological aquifer layers in vertical and horizontal sections. The developed 3D HFM can
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help detect geological contacts, assess volumes and thicknesses, and evaluate geometric
relationships between hydrostratigraphic units and their effects on the groundwater flow
system of the basin. The 3D HFM, together with the geophysical and driller’s lithologic
logs and literature review, facilitated the development of a conceptual model describing
the dynamics of the groundwater flow system in Kobo Valley.

For Kobo Valley, GemPy provided a new perspective for understanding the groundwa-
ter basin’s hydrogeology and the development of a 3D HFM that could benefit sustainable
groundwater management. Kobo Valley is an important source of fresh groundwater and
has complex geological and structural settings. Estimation of the groundwater resource
and modeling based on the generalized aquifer geometry may mislead the sustainable
development of this aquifer. However, GemPy provides an easy, flexible, and interactive
platform for incorporating the natural settings and complexity of the aquifer for the de-
velopment and visualization of the 3D HFM of Kobo Valley. The groundwater storage in
Kobo Valley was estimated as 4132 MCM; more accurate estimates can be used to improve
groundwater resource management in Kobo Valley. The developed 3D HFM of Kobo
Valley provides information to complement the development and management policy for
sustainable groundwater extraction from Kobo Valley’s alluvial aquifer.

The GemPy model also demonstrated the existence of remnant volcanic hills in the
middle of Kobo Valley that act as a structural-based groundwater divide that splits the
catchment into northern and southern groundwater systems. The acquired visualization
and understanding of the subsurface structure were essential for the quantitative modeling
of groundwater flow, and we recommend modeling and evaluating the two groundwater
systems as two separate sub-basins.

We believe that GemPy fills the existing gap of implicit modeling in the open-source
ecosystem in geosciences and offers a reliable and easy-to-use technology to generate
complex models with only a few lines of code. The advancements described in this study
maximize the computational capacity of present computing systems and have the potential
to help improve groundwater management in Kobo Valley.
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Appendix A. GemPy Codes

 

Figure A1. Python code to initiate GemPy model, import data, generate a single scalar field and
plotting a section of regular grid and extracting surface points at the interfaces (Figure 6).
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Figure A2. Unconformity connection analysis of a GemPy model (Figure 12a).

Appendix B. Summary of VES Measurement Survey Interpretation

Table A1. Calculated volume of each individual layer of the study area.

Profile VES ID Profile Layers and Lithology Identified

Profile1 VESW1 to VESW8 Top soil (1 to 33 m), clay layer 112 m at VESW1 to 210 m thick at VESW5, sandy/gravel layer (5 m at
VESW5 to 59 m thick at VESW8), weathered volcanic 50 m at VESW1 and 48 m at VESW5, bed rock

Profile2 VESW9 to VESW11 Top soil (1 to 8 m), clayey layer (174 m at VESW9 and 140 at VESW11), thin sand/gravel layer,
weathered volcanic 24 m at VESW10 and 68 m thick at VESW11, bed rock

Profile3 VESW12 to VESW16 Very thin top soil, clay layer ranges from 76 m at VESW16 to 176 m at VESW12, gravel layer of 13 m
at VESW13 to 19 m at VESW14, weathered rock of 19 m at VESW15 and 56 m at VESW14, bed rock

Profile4 VESK1 to VESK7

Top soil (2 to 6 m), sand/gravel layer at the western half at VESK 2 and 3 thickness of 59 m and
20.9 and clay at the eastern half and weathered volcanic at the center. Clay layer on western half

has thickness of 33.5 m at VESK2 and
104 m at VESK3. The eastern clay layer is 160 m at VESK6 and 183 m at VESK7, weathered zone

24 m at VESK2 and 88.8 m at VESk7, bed rock

Profile5 VESK8 to VESK12
The sandy/gravel layer thickness varies from 105 m at VESK8 to 45 m at VESK12, the clay layer

filling the central and eastern part of the profile is 105 m to 149 m at VESK12, weathered zone has
thickness of 20 to 30 m, bed rock

Profile6 VESHG1 to VESHG9
Thick clay layer of max 150 m at VESHG7 and 114 m at VESHG4, sand/gravel layer with

maximum thickness of 195 m at VESHG2 and minimum thickness at VESHG4 (10 m), third layer
above the fresh bed rock is the weathered zone of 30 to 40 m.
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Abstract: The energy inside the Earth can not only be released outward through earthquakes and
volcanoes but also can be used by humans in the form of geothermal energy. Is there a correlation
between different forms of energy release? In this contribution, we perform detailed seismic and
geothermal research in the Beijing area. The results show that the geothermal resources in Beijing
belong to typical medium-low temperature geothermal resources of the sedimentary basin, and some
areas are controlled by deep fault activities (e.g., Xiji geothermal well (No. 17)). The heat sources
are upper mantle heat, radioactive heat in granite, and residual heat from magma cooling. The
high overlap of earthquakes and geothermal field locations and the positive correlation between the
injection water and earthquakes indicate that the exploitation and injection water will promote the
release of the earth’s energy. The energy releases are partitioned into multiple microearthquakes,
avoiding damaging earthquakes (ML ≥ 5) due to excessive energy accumulation. Therefore, the
exploitation of geothermal resources may be one way to reduce destructive earthquakes. Furthermore,
the use of geothermal resources can also reduce the burning of fossil energy, which is of great
significance in dealing with global warming.

Keywords: geothermal; earthquake forecasting; global warming; hot spring; Beijing; Zhangjiakou-
Bohai fault

1. Introduction

The interior of the earth is filled with energy, which originates from the magma and
the decay of radioactive materials. The energy can be released into the shallow surface
or atmosphere in various ways. They can be fierce and destructive, like earthquakes and
volcanoes, or relatively gentle, like hot springs. The difference is that earthquakes and
volcanoes represent disasters, while hot springs are clean energy that can be used by
humans. It is worth noting that they all originate from the release of energy inside the
Earth. Is there a correlation between the different forms of energy release?

Unlike earthquakes and volcanoes, geothermal resources can be used by humans in a
gentle way. Geothermal resources are considered one of the ways to combat global warm-
ing. The exploitation of geothermal resources has always been the focus of attention [1–11].
According to statistics, the geothermal energy reserves in the upper crust (3–10 km) are
1.3 × 1027 J. In the World Energy Association’s “Energy and Sustainability Challenges”
report published in 2000, geothermal energy ranked first among all renewable energy
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sources [12]. However, induced earthquakes have been observed at various production
stages of geothermal energy extraction, including initial injection of geothermal working
fluid during stimulation, withdrawal of working fluid from geothermal reservoirs, rein-
jection of working fluid after heat extraction, and post-well closure [13]. Along with the
disturbance of the crustal stress state, some exploitation projects have induced sizable
earthquakes, even causing significant disasters and social problems [14–19]. For example,
Soultz-Sous-Forêts in France [20], Basel in Switzerland [21], and Pohang in South Korea [22].
Therefore, exploring the mechanism of earthquakes induced by geothermal energy mining
has been a hot topic in the world.

Efforts have long been made to mitigate or even eliminate induced earthquakes,
whether from geothermal or oil and gas extraction. Induced seismicity is often perceived
as an unsolicited and uncontrollable side effect of geothermal development [16,23–31]. But
in fact, in most cases of induced seismicity, many events usually have magnitudes smaller
than ML = 3 and hence without economic consequences [15,32]. Seismicity triggered by
fluid injection-induced earthquakes are still natural earthquakes, and their energy still
comes from the Earth itself. Therefore, we put forward a conjecture: the total amount
of Earth’s energy is fixed, and earthquakes and geothermal are different forms of energy
release. Is it possible to reduce the energy released by earthquakes by increasing the energy
released by geothermal development?

To test the assumption, we choose the Beijing area for seismic and geothermal research.
There are abundant geothermal resources in the Beijing area. Statistically, from 1971 to 2013,
the total amount of geothermal resources exploitation quantity in Beijing is 2.87 × 108 m3,
and the injection water is 3.02 × 107 m3 (Data from Beijing Geological Archive). In addition,
there is a complete seismic network in the Beijing area, with detailed records of earthquakes
(ML ≥ 1) since 1970. Therefore, Beijing is a natural laboratory for studying the relationship
between seismic activity and geothermal energy.

2. The Study Area

The North China Craton (NCC) is one of the ancient cratons in the world [33]. It is
bounded by the Central Asian orogenic belt in the north and the Qinling—Dabbe orogenic
belt in the south. The basement rocks of the NCC consist of biotite-hornblende gneisses
and Trondhjemite, Tonalite, Granodiorite (TTG) [34]. Overlying sedimentary layers with a
thickness of several thousand meters, mainly carbonate rocks and clastic rocks. During the
Yanshan tectonic period, the NCC experienced destruction and thinning, accompanied by
a series of volcanic tectonic processes [35–39].

Beijing is located in the northern margin of NCC, high in the northwest and low in
the southeast. Tectonic movement is active in the area [40]. The main faults include the
Yanqing Fault, Dahuicang Fault, Liangxiang Fault, and Zhangjiakou-Bohai Fault (Figure 1).
It is a seismic activity zone in eastern China. In history, there has been the ML7.8 Tangshan
earthquake (28 July 1978), the ML7.4 Bohai earthquake (18 July 1969), and the ML8.0
Shanhe-Pinggu earthquake (2 September 1679) [41].

Beijing area is enriched in geothermal resources [42]. At present, there are 10 geother-
mal fields: (1) Yanqing, (2) Xiaotangshan, (3) Houshayu, (4) Northwest district, (5) Tianzhu,
(6) Lisui, (7) Southeast district, (8) Shuangqiao, (9) Liangxiang and (10) Fengheying geother-
mal field (Figure 1) [43]. The total geothermal resources are about 9.94 × 1016 KJ, equivalent
to 3.39 × 109 t of standard coal (Data from Beijing Geological Archive).

The terrestrial heat flow in Beijing ranges from 16.45 to 383.97 mW/m2, with an average
value of 65.95 mW/m2. The geothermal gradient in the central area of the geothermal field is
more than 3.0 ◦C/100 m. In some areas (Figure 1b, 5: Tianzhu and 6: Lishui), the geothermal
gradient is more than 5 ◦C/100 m. The geothermal resources in Beijing belong to the medium
and low-temperature hot water, and the temperature range is 25.0–118.5 ◦C. The geothermal
water is Na-HCO3·SO4 type water with a salinity between 500 and 700 mg/L, with a high
content of F and SiO2, containing a small amount of trace elements, which is used for medical
treatment and health care.
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Figure 1. (a) A simple map of China. (b) Schematic map showing the distribution of geothermal
fields and location of sampling points in the Beijing area, modified after Liu et al. [43]. 1: Yanqing,
2: Xiaotangshan, 3: Houshayu, 4: Northwest district, 5: Tianzhu, 6: Lishui, 7: Southeast district,
8: Shuangqiao, 9: Liangxiang and 10: Fengheying geothermal field. The size of the symbol of the
earthquake label indicates the magnitude of the earthquake.

Beijing’s climate is a warm, temperate, semi-humid, semi-arid monsoon climate, with
an average annual temperature of 9 to 19 ◦C and annual precipitation of 600 mm. The
seasonal distribution of precipitation is very uneven, with 80% of the annual precipitation
concentrated in summer. The natural rivers of Beijing run through five major river systems
from west to east: the Juma River, the Yongding River, the Beiyun River, the Chaobai River,
and the Jiyun River. Most of them originated from the northwest mountain, meandered
through the plain to the southeast, and finally merged into the Bohai Sea at the Haihe River.

3. Sampling and Analytical Methods

3.1. Geothermal Water Samples Collection and Analysis

Twenty-six samples of water were collected in Beijing, including hot springs and
geothermal wells. All samples were analyzed for anions, cations, trace elements, hydrogen,
and oxygen isotopes at the Beijing Institute of Geology of the Nuclear Industry. Detailed
sample collection and testing methods can be found at Luo et al. [44]. In short, the waters
were collected in a 50 mL clear polyethylene bottle, and the pH and temperature were
recorded. Two water samples need to be collected at each geothermal water sampling site,
one with ultrapure Nitric acid for cation analysis and the other for hydrogen and oxygen
isotopes and anion analysis. Each sample is filtered with a 0.45 μm filter membrane before
being tested. The cation and anion were analyzed by Dionex ICS-900 ion chromatograph
(Thermo Fisher Scientific Inc., Bremen, Germany), and SiO2 was analyzed by inductively
coupled plasma emission spectrometer Optima-5300 DV (PerkinElmer Inc., Waltham,
MA, USA). HCO3

− and CO3
2− was determined by acid-base titration with a ZDJ-100

potentiometric titrator. Trace elements were analyzed by Element XR ICP-MS. Multielement
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standard solutions (IV-ICPMS 71A, IV-ICP-MS 71B and IV-ICP-MS 71D, iNORGANIC
VENTURES) were used for quality control (the analytical error margin of major cations
and trace elements were less than 10%). MAT 253 was used to analyze hydrogen and
oxygen isotopes (reported as δD and δ18O relative to Vienna Standard Mean Ocean Water
(V-SMOW)).

3.2. Geothermal Gas Samples Collection and Analysis

Between April 2022 and April 2023, we collected geothermal gas samples five times at
the No. 17 geothermal well. 500 mL glass bottles were used to collect gas by drainage gas
collection method [44]. During transportation and storage, glass bottles are kept sealed to
prevent contamination by air. The chemical composition of geothermal gas samples was
measured using the Agilent Macro 490 portable gas chromatograph with a measurement
accuracy of better than 5%. He concentration in hot spring gas samples was analyzed
using the Noblesse noble gas isotope mass spectrometer by the Northwest Institute of
Eco-Environmental Resources, Chinese Academy of Sciences.

4. Results and Discussion

4.1. Hydrochemistry of Geothermal Waters

The physical properties and chemical and isotopic compositions of geothermal waters
are shown in Table S1. The temperature of water varies from 13 to 92 ◦C. In this study,
we divided the samples into three groups according to the sampling sites (Figure 2). The
first group of geothermal waters was distributed in the Beijing urban area, and the second
group of geothermal waters was collected in the Yanqing basin. In particular, we also
classified the geothermal water in group 3, which is similar to that in group 1 in terms of
collection location but obviously different from that in group 1 in terms of hydrochemical
characteristics. This will be discussed in detail below.

Figure 2. Piper diagram of geothermal waters in Beijing. These waters are Na·Ca·Mg-HCO3, Na-SO4,

and Na-Cl types.

The δ18O and δD of waters of Beijing are −16.2‰ to −9.6‰ and −92.4‰ to −69.2‰ re-
spectively, which is close to the local meteoric water line (LMWL) of the Beijing δD = 7.0181
δ18O + 3.5231 (R2 = 0.86, n = 36) (Figure 3) [45], suggesting they originated in meteoric.
Group 2 is more enriched in light isotope composition than groups 1 and 3. The δ18O value
of a few waters went off the LMWL, indicating that the isotopic exchange of 18O occurs
during the water-rock reaction.
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From Figure 2 and Table S1, the geothermal waters are Na·Ca·Mg-HCO3 (group 1),
Na-SO4·HCO3 (groups 2) and Na-Cl·HCO3 (groups 3) types. Groups 2 have significantly
higher concentrations of Na+ (84.50–151 mg/L) but lower Ca2+ (3.16–46.90 mg/L) and Mg2+

(0.04–14.8 mg/L) than group 1(Na+ (5.41–135 mg/L), Ca2+ (19.20–57.50 mg/L) and Mg2+

(2.30–37.10 mg/L)), which may reflect the reaction between groundwater and silicate rocks
(Figure 4). It is consistent with the fact that group 2 waters are located in the granite thermal
reservoir of the Yanqing basin. Analogously, there were also differences between group 2 and
group 3. The anions of group 2 are HCO3

− (17.70–303 mg/L) and SO4
2− (29.70–177 mg/L),

while Group 3 contains more Cl− (225–325 mg/L) and HCO3
− (648–1022 mg/L). In the

Paleogene period, the gypsum salt layer was widely distributed in the North China Plain [46].
The elevated concentration of SO4

2− could be caused by the dissolution of sulfate minerals,
such as anhydrite (CaSO4) and mirabilite (Na2SO4). In addition, the high concentrations of Cl−
in geothermal water probably originated from brine or the mixing with a deep fluid [44,47,48].
However, in the Beijing area, the brine has almost no effect on Cl−. Because group 3 is well
water located near the fault zone. The depth of 3588 m has exceeded the thickness of the
sedimentary and reached the top of the magmatic batholith. Moreover, the Cl− versus Na+

also indicates that the fluid is non-brined (Figure 5). Therefore, deep Cl−-rich magmatic fluids
rise along faults and then mix with groundwater to form group 3 of geothermal waters with
high Cl− concentration.

 

Figure 3. δD and δ18O (relative to V-SMOW) values for waters collected from the Beijing area. The
GMWL is a global meteoric water line [49]. The LMWL is a local meteoric water line [45]. Arrows
indicate enhanced water-rock reactions.

 

Figure 4. (Na+ + K+)/(HCO3
− + SO4

2−)meq/L versus (Ca2+ + Mg2+)/(HCO3
− + SO4

2−) meq/L
(a) and Rb/Ni ppm versus Sr/Ni ppm (b) for geothermal waters of Beijing area. Group 1 is charac-
terized by the reaction of carbonate rock with water, while groups 2 and 3 are characterized by the
reaction of silicate rock with water.
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Figure 5. Na+ versus Cl− for Beijing area geothermal waters.

The sedimentary layer in the North China Plain is several thousand meters high,
including carbonate and clastic rocks, which well explains the high Ca2+ and Mg2+ con-
centrations in group 1 (Table S1) [42,43,46]. Relatively, the sedimentary layer in the granite
thermal reservoir of the Yanqing basin is thinner, and the Ca2+ and Mg2+ concentrations in
group 2 are lower. It can be seen from Figure 4 that the weathering characteristics of the
silicate rocks of group 2 geothermal waters are significantly greater than those of group 1.
Rubidium (Rb) occurs preferentially in K-containing minerals, while Strontium (Sr) occurs
preferentially in Ca-containing minerals, and Nickel (Ni) is an extremely compatible ele-
ment. Using Ni as the regional background value to normalize Rb and Sr, the source of ions
in geothermal water can be distinguished. As can be seen from Figure 4, groups 2 and 3 are
characterized by the reaction of silicate rocks with water, while group 1 is characterized by
the reaction of carbonate rocks with water.

Carbonate rocks, including limestone and dolomite, can be further distinguished by
the variation of Ca2+ and Mg2+ content. The Mg2+/Ca2+ molar ratio of the geothermal water
in the dolomite area is near one, while it is much lower than one in the limestone area [50].
Meanwhile, the Na+/Ca2+ molar ratio can distinguish the carbonate rock and silicate rock
area. As shown in Figure 6, the geothermal water in Beijing mainly comes from dolomite
and silicate rock, or a mixture of them, with almost no contribution from limestone.

 

Figure 6. Mg2+/Ca2+ versus Na+/Ca2+ for geothermal waters of the Beijing area. The Dolomite,
silicate, and limestone areas are from [50].
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4.2. Characteristics of Heat Reservoir

The geothermal resources in Beijing belong to typical medium-low temperature
geothermal resources of the sedimentary basin. The temperature varied from 25.0 to
118.5 ◦C, and the heat reservoirs are carbonate rocks [42]. The good thermal conductivity
of carbonate rock results in a geothermal gradient in the study area (3–3.5 ◦C/100 m). All
geothermal waters are plotted in the immature water field or partially equilibrated or mixed
water (Figure S1). Therefore, pay attention to the applicability of the geothermometer when
selecting the temperature scale. Previous studies have shown that the accuracy of the
Na-Li geothermometer is higher than that of other thermometers in the carbonate rock
region [44,51]. Therefore, the heat storage temperature of geothermal water in the study
area was estimated by Na-Li geothermometer, and the results are shown in Table S2. Fur-
thermore, quartz thermometers are also used as a reference [52]. The reservoir temperature
and circulation depths of geothermal waters in the Beijing area calculated based on Na-Li
and SiO2 geothermometers are 65–240 ◦C and 1592–6597 m, respectively [44].

4.3. Origin of High He, H2, and CH4 Concentrations in Geothermal Gases

Yang et al. [40] observed that the No. 17 geothermal well has high concentrations of
H2 (330 ppm), He (5993 ppm), and CH4 (volume ratio = 27.6%), and indicated that it may
contain important information. Therefore, we have made a more in-depth study of No. 17
geothermal wells. Five samples were collected from the No. 17 geothermal well from April
2022 to April 2023. The chemical compositions of the geothermal gas samples are shown in
Table S3 and Figure 7. N2 and CH4 account for more than 93% of No. 17 geothermal wells.
He concentration (4243–6049 ppm) is significantly higher than other geothermal gases in
the Beijing area (150–1851 ppm). What is the genesis of these high abnormal concentrations
of these gas components? We will discuss this in detail below.

Figure 7. Characteristics of gas composition with time in Xiji (No. 17) geothermal well. Data of
19 January 2022 from Yang et al. [40].

4.3.1. He

As discussed earlier, the No. 17 geothermal water belongs to Group 3 and has a high
Cl− concentration, which probably reflects the intensity of deep fluid activity. Helium is
also a geochemical indicator of tectonic activity and earthquakes. Both tectonic activity and
earthquakes release large amounts of He [44,53]. However, He suddenly descends into No.
17 geothermal water in response to a significant earthquake, which is different from the
traditional understanding [54]. In fact, even if the He concentration was reduced from 6049
ppm to 4243 ppm, the He concentration at the No. 17 geothermal water was still much
higher than that of other geothermal water in the Beijing area. The reason for the decrease
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in He concentration before the earthquake may be that the faulting activity leads to the
mixing of more air, diluting He in the geothermal gas. Therefore, the high He concentration
of No. 17 geothermal gas should originate from deep fluid activity.

4.3.2. CH4

Most of the world’s methane is biotic CH4, which is produced either by microbial
processes or by thermogenic degradation of organic matter in sedimentary rocks [55,56].
However, there is another origin of CH4, called abiotic CH4. It can formed by chemical
reactions that do not directly include organic matter [57–64]. Abiotic CH4 is extremely
important in a wide range of scientific fields, including the origin of life, hydrocarbon
synthesis, astrobiology, and planetary exploration [56].

During the Paleogene, oil shales were widely distributed in the Beijing area [46]. Does
the high concentration of CH4 in No. 17 geothermal gas originate from the thermogenic
degradation of oil shales? Yes, but not entirely! Because well No. 17 had already cut through
the sediment (3588 m, Table S1), and both Cl− and He indicate that No. 17 geothermal
is polluted by deep fluid. In addition, deep tectono-magmatic activity, magma cooling,
and gas-water-rock reactions can produce abiotic CH4 [56]. Hence, the gas of the No. 17
geothermal well should be coming from deeper and contain abiotic CH4. Although the
δ13CH4 of No. 17 is −36.4 [40], which shows the characteristics of biotic CH4 [56], it may
be a mixed value. The mixture of abiotic CH4 from deep and biotic CH4 released by
thermogenic degradation of oil shales formed geothermal gas No. 17.

What is the genesis of abiotic CH4 in geothermal gas No. 17? We propose that there
are three ways:

(1) Carbonate reacts with water in the presence of Fe (500–1500 ◦C) [56]:

8FeO + CaCO3 + 2H2O = 4Fe2O3 + CH4 + CaO (1)

(2) CO2 evolution to CH4 during magma cooling (<500 ◦C) [56]:

CO2 + 2H2O = CH4 + O2 (2)

(3) The Sabatier reaction (25–500 ◦C) [56]:

CO2 + 4H2 = CH4 + 2H2O (3)

The sedimentary layer in the NCC is several thousand meters high, including carbon-
ate and clastic rocks, which can provide sufficient CaCO3 for (1). The (2) benefits from
magmatic rocks produced by extensive Yanshanian magmatic activity [35,36,39]. The high
concentration of H2 and CO2 in the geothermal gas of No. 17 provided the conditions
for (3).

4.3.3. H2

A large number of experiments and natural observations have shown that hydrogen
can be produced by faulting movements [54,65–69]. The origin of H2 is usually attributed
to a chemical reaction between crushed silicate minerals and water (e.g., serpentinization
produces molecular hydrogen (4)) [67,70], which enables H2 to reflect the activity of the
fault to a certain extent [40,54,71].

(Mg, Fe)2SiO2 + H2O → Mg2Si2O5(OH)4 + Fe3O4 + H2 (4)

Olivine + fluid→serpentine + magnetite + hydrogen

Hydrogen content varies greatly in No. 17 geothermal gas. In particular, in the 3
February 2023 sample, a concentration of 17,426 ppm of H2 was recorded, which probably
reflects a precursory pulse of seismic activity (Figure 7). Sure enough, on 12 February 2023,
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the ninth day after the signal was detected, 11 earthquakes were detected in the same place;
the maximum magnitude was ML3.4, at a maximum depth of 14 km (Table S4).

Beijing area is located on the northern margin of NCC. During the Yanshan tectonic
period, the NCC experienced destruction and thinning under the influence of Pacific
subduction [33,35,36,39]. The resulting magmatic rocks and fault zones provide the material
sources and ascending channels for hydrogen generation. The hydrogen production is
controlled by the activity of the fault zone. Therefore, the H2 concentration in No. 17
geothermal gas can be used for monitoring fault activity and earthquake warnings.

4.4. Geothermal Water Cycle Model and Genesis of Geothermal Field

As discussed above, the geothermal water in the Beijing area can be divided into three
groups. Group 1 is located in the sedimentary area, dominated by Na·Ca·Mg-HCO3, and
group 2 is located in the silicate rock area, dominated by Na-SO4·HCO3. In particular,
although group 3 is located in the sedimentary area, the depth of 3588 m has exceeded the
thickness of the sedimentary and reached the top of the magmatic rock batholith, so that
group 3 has the characteristics of deep fluid with high Cl−, He, H2 and CH4. Combined
with geochemical and isotopic composition, we propose that the geothermal water in the
Beijing area originated from atmospheric precipitation. The precipitation flows into the
ground along the fault and reacts with the surrounding rock while being heated. Eventually,
they go up well along the fault to form hot springs (Figure 8). The geothermal resources in
Beijing belong to typical medium-low temperature geothermal resources of the sedimentary
basin, and some areas are controlled by deep fault activity (e.g., Xiji geothermal well (No.
17)). The heat sources are upper mantle heat, radioactive heat in granite and magmatic
cooling residual heat. The heat reservoir is carbonate rock.

 

Figure 8. The water cycle model of the geothermal waters and gases in the Beijing area. The
geothermal water in the Beijing area originated from atmospheric precipitation. The precipitation
flows into the ground along the fault and reacts with the surrounding rock while being heated.
Eventually, upwell along the fault to form hot springs.

4.5. The Promotion of Geothermal Resources to Promote the Earth’s Energy Release

The way the earth releases energy can be geothermal energy or earthquakes. A
large number of studies on oil and gas extraction, wastewater treatment, and geothermal
exploitation have shown that fluids can promote seismic activity [14,15,17,23–32]. The
geothermal development in the Beijing area includes the extraction and injection of water.
So, what is the relationship between geothermal fluid activity and earthquakes?
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We have been collecting earthquake records in the Beijing area since 1970. Considering
that earthquakes with smaller magnitudes may not have been recorded due to insufficient
coverage area of the seismic network in the early stage, we only conducted statistics on
earthquakes with magnitudes above ML 2, and the results are shown in Figure 9. The
earthquakes are distributed near the Zhangjiakou-Bohai fault zone, which is similar to
the geothermal field (Figure 1). The magnitude is mainly 2–4, while earthquakes above
4 are rare (Figure 9). Since 1970, the number of earthquakes in Beijing has shown a slow
upward tendency, but the total amount of energy released by earthquakes has not in-
creased significantly (Figure 10). This reflects the fact that in the absence of a significant
change in fault activity, the rise in the number of earthquakes results in less energy be-
ing released each time, i.e., a smaller magnitude. In fact, since 2013, the fault activity
in the Beijing area has been weakening [41]. Exploitation of geothermal resources, on
the other hand, has steadily increased. Statistically, from 1971 to 2013, the total amount
of geothermal resources developed in Beijing was 2.87 × 108 m3, and the injection wa-
ter was 3.02 × 107 m3. Subsequently, the annual production has been maintained at
600–800 × 104 m3/y (Figure 10).

 
Figure 9. Earthquake records from 1970 in the Beijing area. The triangle shows the distribution of
seismic stations, and their locations are from the China Earthquake Administration.

Significantly, the high overlap of the earthquake and geothermal field location and
the positive correlation between injection water and earthquakes indicates that geothermal
resource development will promote the occurrence of earthquakes (Figures 9, 10 and S2).
The extraction and injection of water change the fluid pressure of the geothermal water,
which leads to a change in rock stress, releasing its elastic potential energy and triggering
earthquakes [24,26]. Due to the continuous exploitation of geothermal water, the elastic
potential energy of the rock cannot be accumulated excessively, which effectively reduces
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the occurrence of destructive earthquakes. Therefore, we can reduce the occurrence of
destructive earthquakes by rational use of geothermal resources.

 
Figure 10. Temporal variations of earthquake frequency (time) (a), energy release (J) (b), and geother-
mal production (104 m3) (c). The conversion formula of magnitude and energy: lgE = 4.8 + 1.5 M,
E is energy (J). M is magnitude (ML > 2), earthquake data from the China Earthquake Administra-
tion. Geothermal production data from the Beijing Hydrogeological Engineering Team (2014–2019
are estimates).

5. Conclusions and Outlook

In this contribution, we perform a detailed elemental and isotopic analysis of geother-
mal waters and gases collected from the Beijing area. By integrating geochemical results of
geothermal waters and gases, we propose that the geothermal resources in Beijing belong
to typical medium-low temperature geothermal resources of the sedimentary basin, and
some areas are controlled by deep fault activity (e.g., Xiji geothermal well (No. 17)).

The H2 and CH4 in the geothermal water/gas of the No. 17 geothermal well are sensi-
tive to deep structural activities. By monitoring the elements and isotopes of geothermal
well No. 17, the deep fluid activities can be reflected and thus forewarn earthquakes.

The extraction and injection of water will promote the release of Earth’s energy. The
energy is differentiated into multiple releases and avoids the excess accumulation of one-
time energy, resulting in damaging earthquakes (ML ≥ 5). On the one hand, the exploitation
of geothermal resources may be one way to reduce destructive earthquakes; on the other
hand, the utilization of geothermal resources can reduce the consumption of fossil energy,
which is of great significance for tackling global warming.

We propose that the exploitation of geothermal resources may be one of the means
to reduce destructive earthquakes. However, given the complex thermal structure of the
Earth’s crust, the conversion mechanism between geothermal and seismic energy release is
not known. Geothermal water links to earthquakes and to earthquake stress release are not
established (no physical robust, statistical, or quantitative analyses). In addition, the study
area is limited. Therefore, the contribution of this paper is that we provide a new research
idea for earthquake and geothermal research, and more in-depth and systematic research
is needed in the future.
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Abstract: The Source Region of the Yellow River (SRYR), renowned as the “Water Tower of the
Yellow River”, serves as an important water conservation domain in the upper reaches of the Yellow
River, significantly influencing water resources within the basin. Based on the Weather Research
and Forecasting (WRF) Model Hydrological modeling system (WRF-Hydro), the key variables of
the atmosphere–land–hydrology coupling processes over the SRYR during the 2013 rainy season
are analyzed. The investigation involves a comparative analysis between the coupled WRF-Hydro
and the standalone WRF simulations, focusing on the hydrological response to the atmosphere.
The results reveal the WRF-Hydro model’s proficiency in depicting streamflow variations over the
SRYR, yielding Nash Efficiency Coefficient (NSE) values of 0.44 and 0.61 during the calibration and
validation periods, respectively. Compared to the standalone WRF simulations, the coupled WRF-
Hydro model demonstrates enhanced performance in soil heat flux simulations, reducing the Root
Mean Square Error (RMSE) of surface soil temperature by 0.96 K and of soil moisture by 0.01 m3/m3.
Furthermore, the coupled model adeptly captures the streamflow variation characteristics with
an NSE of 0.33. This underscores the significant potential of the coupled WRF-Hydro model for
describing atmosphere–land–hydrology coupling processes in regions characterized by cold climates
and intricate topography.

Keywords: the Source Region of the Yellow River; WRF-Hydro; the atmosphere–land–hydrology
coupling processes; streamflow

1. Introduction

Water, energy, and heat fluxes, along with the interactions between the atmosphere,
land surface, and hydrology, constitute a complex nexus [1,2]. Within the water cycle of
the whole Earth Climate System, the land surface hydrological processes serve as a crucial
link, connecting atmospheric water components (e.g., precipitation, evapotranspiration,
water vapor transport), terrestrial surface water (e.g., rivers, lakes, glacial meltwater, snow
meltwater, surface runoff), groundwater (e.g., baseflow, subsurface runoff, soil water),
and ecological water (vegetation water). This interconnected system provides feedback
to weather and climate by regulating land–atmosphere energy and water cycle processes.
Therefore, a nuanced comprehension of hydrological cycle processes at the interface of
the atmosphere and the land surface in mesoscale river basins holds vital importance for
ecological preservation and the overarching regulation of water resources [3].

The Source Region of the Yellow River (SRYR), located in the Tibetan Plateau (TP)
hinterland, falls within the continental semi-arid climate zone with complex climatic
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conditions exhibiting a temperature rise rate of 0.48 ◦C/(10a)−1 and precipitation increase
of 7.6 mm/(10a)−1 [4]. This region is highly susceptible to climate change and ecological
shifts, characterized by numerous alpine lakes and wetlands, regarding it as a vital area
for East Asia and global climate change [5]. Known as the “Yellow River Water Tower”, it
encompasses approximately 16.2% of the Yellow River Basin’s total area. The streamflow,
dominated by precipitation and evaporation, plays a crucial role as the primary flow-
producing area and water conservation area for the middle and upper reaches of the
Yellow River [6]. The historical continuity of the Yellow River civilization can be attributed,
in part, to the SRYR’s stable ecological environment and water supply [7]. However,
contemporary challenges emerge due to global climate change, human activities, and the
uneven distribution of regional water resources, leading to transformative shifts in water
conservation elements such as glaciers, permafrost, and grasslands. This has resulted
in a heightened frequency of extreme meteorological and hydrological events, including
rainstorms, blizzards, droughts, and floods escalating the spatiotemporal distribution
uncertainties of precipitation and hydrology in watersheds. Consequently, the sustainable
development of the ecological environment and social economy over the SRYR encounters
formidable challenges [8,9].

With the rapid development of high-resolution Earth System Models, the significance
of land surface variability in simulations garners increasing attention [10,11]. Currently,
studies on the coupled atmosphere–hydrology processes predominantly use regional cli-
mate models (RCMs) or combine land surface models (LSMs) with hydrological models
to investigate the intricate interaction between climate change and hydrological cycle
processes [12]. Key methodological tools encompass satellite remote sensing, data assimila-
tion, error correction, and various downscaling approaches (statistical downscaling and
dynamic downscaling). Prominent models such as the Weather Research and Forecasting
model (WRF), Community Land Model (CLM), Community Noah Land Surface Model
with Multi-Parameterization Options (Noah-MP), and Soil and Water Assessment Tool
(SWAT) are deployed, emphasizing the impact of climate change and human activities
on hydrological cycle processes [13,14]. Nevertheless, there are still large uncertainties
regarding the RCMs in climate change simulations and projections, especially for pre-
cipitation simulations in regions characterized by complex terrain. It is found that these
uncertainties are mainly associated with the physical parameterization schemes and the
lateral forcing of the RCMs [15,16]. In addition, previous studies concentrate on the influ-
ence of climate change on the hydrological process, adopting a single-directional linkage of
“atmospheric circulation change–regional precipitation change–land hydrological change”.
This approach falls short in accurately depicting the feedback between land surface and
hydrological processes on regional climate, thereby affecting the simulation accuracy of
hydrological processes in watersheds [17].

The Weather Research and Forecasting Model Hydrological modeling system (WRF-
Hydro) stands as a high-resolution distributed land–atmosphere coupled model, developed
by the National Center for Atmospheric Research (NCAR), with the primary aim of im-
proving surface, subsurface, and river water redistribution and facilitating the coupling of
atmospheric and hydrological models [18]. This model can operate as a standalone land
surface hydrological model or can be coupled with an atmospheric model (such as WRF) to
achieve a two-way feedback process between the atmosphere and land surface. Distinguish-
ing from traditional land surface hydrological models, the WRF-Hydro model is explicitly
designed to provide continuous spatially gridded information on soil temperature and mois-
ture, evapotranspiration, water and heat exchange fluxes, and runoff [19,20]. Notably, the
WRF-Hydro model has demonstrated success in numerous coupled atmosphere–hydrology
studies [2,21]. Senatore et al. [22] found superior simulation performances for precipitation,
surface runoff, and surface fluxes with the coupled WRF-Hydro model compared to the
WRF model in the Crati River Basin. Gu et al. [20] thought that radar data assimilation
can effectively improve flood simulations at small- and medium-sized basins based on the
coupled WRF-Hydro model. Li et al. [23] concluded that the coupled WRF-Hydro model
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improved soil moisture and precipitation simulations and has potential in simulating and
projecting streamflow over the Source Region of the Three Rivers. However, the great
overestimation of precipitation by the coupled model leads to the fact that reproducing
daily streamflow with the coupled model remains a challenge in complex terrain areas.

The main aim of this study is to investigate the feedback of land surface hydrological
processes on precipitation in a large-sized basin with complex subsurface and climatic con-
ditions based on a high-resolution coupling model. Meanwhile, based on the experimental
data from Ngoring Lake and Maqu stations, the surface and hydrological parameters
and parameterization schemes were modified. The scientific question addressed in this
study is whether the atmosphere–land–hydrology coupling simulation after optimizing
the parameterization schemes can effectively characterize the land–atmosphere interaction
processes over the SRYR. To address this question, this research is structured as follows. The
study area and data are arranged in Section 2. Section 3 introduces the methodology and
experimental designs. A comparison between the standalone WRF and the coupled WRF-
Hydro simulations follows. And then, the characteristics of coupled simulated streamflow
are analyzed. Finally, the Discussion and Conclusion are presented to provide a summary
and perspective of this study in Section 5 and Section 6, respectively.

2. Study Area and Data

2.1. Study Area

The SRYR, situated between 32.12◦ and 35.48◦ N and 95.50◦ and 103.28◦ E, lies
in the northeastern part of the TP. The region encompasses a total catchment area of
1.22 × 105 km2 and boasts a mean elevation of 4000.0 m, as displayed in Figure 1, which
also serves as the configuration for the nested domains in the WRF and coupled WRF-
Hydro. Positioned in the periphery influenced by the East Asian monsoon, the SRYR falls
within the plateau cold climate zone, characterized by an annual mean temperature ap-
proaching 0.0 ◦C and annual mean precipitation ranging between 300.0 and 500.0 mm [24].
Recognized as the primary flow-producing area and water-conserving area in the middle
and upper reaches of the Yellow River, the SRYR is referred to as the “Yellow River Water
Tower”, taking the Tangnaihai hydrological site as the basin outlet [25]. The region pre-
dominantly comprises high mountains, plains, and hills, featuring expansive lakes, notably
the largest plateau freshwater lakes in China, Zhaling Lake and Ngoring Lake [17]. The
terrain is undulating, characterized by alpine meadow grassland and alpine wetland as
the primary land use types. The hydrological environment influences soil composition,
primarily loam and sandy loam with a coarse texture, and a widespread distribution of
seasonal frozen soil.

Figure 1. The geographic location of the Source Region of the Yellow River (a) and the distribution of
the hydrological site (b).
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2.2. Data

This study utilizes the daily streamflow data from the Tangnaihai hydrological site,
generously provided by the Yellow River Water Conservancy Bureau, spanning the period
of 2012–2013. Additionally, turbulent heat fluxes, top-layer soil temperature, and soil
moisture data sourced from the Ngoring Lake site [26,27] and Maqu site [28,29] from the
National Cryosphere Desert Data Center are incorporated. Quality inspection is carried
out for the observational data, and the data with obvious errors are processed to ensure
that there are not significantly incorrect data in the deployed data.

The WRF-Hydro model necessitates a substantial volume of input data, including
meteorological driving data, underlying surface data, and river network data. The me-
teorological driving data are mainly composed of seven variables: downward longwave
and shortwave radiation, surface pressure, specific humidity, air temperature, near-surface
wind speed, and precipitation rate. Given the scarcity and non-uniform distribution of me-
teorological observation sites over the SRYR, significant challenges arise in model driving.
To address this, the Global Land Data Assimilation System (GLDAS) data, jointly developed
by the National Aeronautics and Space Administration (NASA) and the National Center of
Environmental Prediction (NCEP), prove invaluable. With a temporal resolution of three
hours and a spatial resolution of 0.25◦ × 0.25◦, GLDAS integrates the ground and satellite
observation data, demonstrating great applicability over the SRYR [30].

In addition, the quality of precipitation data is critical to streamflow simulation,
emerging as the most sensitive factor affecting streamflow variations. Therefore, a high-
quality precipitation product is of considerable significance to serve as the forcing data
for the WRF-Hydro model. The China Meteorological Forcing Dataset (CMFD) is a high-
spatial-temporal-resolution (0.10◦ × 0.10◦) gridded meteorological driving dataset which
was developed for studying land surface processes in China [31]. The dataset integrates a
variety of reanalysis, satellite remote sensing, and site observation data and is widely used
in climate change and numerical simulations. The CMFD precipitation data and GLDAS
non-precipitation data form the ultimate driving dataset for the model through the bilinear
interpolation method [32].

The initial and boundary conditions for the WRF and coupled WRF-Hydro models are
from the Final Operational Global Analysis (FNL), whose spatial and temporal resolutions
are 6 h and 1.00◦ × 1.00◦, respectively (https://doi.org/10.5065/D6M043C6, accessed on
23 November 2022). The model requisites, such as vegetation type, land use type, soil
type, and other land surface information are sourced from the WRF Pre-processing System
(WPS). The default soil type is substituted with the soil type dataset from Beijing Normal
University (BNU), renowned for its heightened accuracy within China [33]. High-resolution
river network data are from the United States Geological Survey (USGS) Hydrological data
and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS), with
a resolution of 90.0 m chosen to extract accurate river network information. The details of
the aforementioned data are shown in Table 1.

Table 1. An overview of the research data.

Category Data Type Temporal and Spatial Resolutions Variables

Climate

CMFD 3 h; 0.10◦ × 0.10◦ Precipitation

GLDAS 3 h; 0.25◦ × 0.25◦ Temperature, wind speed, solar radiation, downward
longwave radiation, pressure, specific humidity

FNL 6 h; 1.00◦ × 1.00◦ Initial and boundary conditions

Hydrology Site 1 d Streamflow

Eddy covariance Site 30 min Water/heat flux, soil temperature and moisture

Topography HydroSHEDS 90.0 m × 90.0 m Digital Elevation Model
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3. Methodology

3.1. The Numerical Model
3.1.1. WRF Model

The WRF is a sophisticated non-hydrostatic mesoscale numerical weather prediction
model, renowned for its capability to accommodate various mesoscale and small-scale
atmospheric and hydrological processes in numerical simulation research [34]. There are
numerous physical parameterization schemes for the WRF model, and the applicability of
schemes is different due to the variations in the weather, climate, and underlying surface
conditions. The microphysical process scheme and cumulus scheme have a particularly
significant impact on precipitation simulations. In addition, the quality of different re-
analysis data also directly affects the effectiveness of precipitation simulation [21,22]. By
testing different microphysical process and cumulus parameterization schemes using four
different types of reanalysis data, it was found that the FNL data and the Thompson
and Grell–Devenyi (G-D) schemes have the best applicability over the Source Region of
the Yellow River (not shown in the manuscript). The Advanced Research WRF (ARW)
model (version 4.1.2) for both the standalone WRF and the coupled WRF-Hydro model
was employed in this research.

3.1.2. Noah-MP Model

The Noah-MP model, derived from the Noah Land Surface Model (LSM) with substan-
tial enhancements, is a notable advancement [35,36]. It provides multiple parameterization
options for the key biogeophysical processes, featuring a distinct vegetation canopy, a
two-stream radiation transfer approach, and a short-term dynamic vegetation scheme. Ad-
ditionally, updates to the frozen soil scheme within the groundwater model and the snow
model significantly influence streamflow simulation [37]. In this study, the Noah-MP model
was selected as the land surface process module of the WRF and the WRF-Hydro model.

3.1.3. WRF-Hydro Model

The WRF-Hydro model, developed as a hydrological extension package for WRF, is a
new generation of a distributed hydrometeorological forecasting system with a physical
basis and multi-scale and multi-parameter schemes. Serving as a linkage between the
large-scale regional climate model and the refined hydrological model, it employs the LSM
(Noah/Noah-MP) as a bridge. The model enhances the land surface hydrological process,
focusing on the spatial redistribution of land surface water, groundwater, and river water.
It demonstrates proficiency in quantitatively studying the water–heat exchange process
between the atmosphere and land surface [18]. Comprising five modules, namely, surface
overland flow, saturated subsurface flow, channel, reservoir routing, and the conceptual
baseflow module, the WRF-Hydro model computes quasi-3D subsurface flow, accounting
for both vertical and horizontal water exchange. This research utilized WRF-Hydro system
version 5.1.1, and a comprehensive model description is available in [18].

3.2. Experimental Designs
3.2.1. The Parameterization Schemes in the WRF and Coupled WRF-Hydro Model

The Lambert Projection, featuring a central longitude and latitude of 99.50◦ E and
33.75◦ N, is applied in the model, incorporating two-way nested domains with horizontal
resolutions of 25 km and 5 km, respectively. The vertical structure encompasses 40 levels,
reaching a 50 hPa pressure top, utilizing a time step of 100 s in the outer domain. Contin-
uous runs are initialized with lateral atmospheric boundary conditions provided by the
Final Operational Global Analysis (FNL) data from the National Centers for Environmental
Prediction (NCEP), as outlined in Table 1. The physics parameterization schemes for the
selected WRF domains are listed in Table 2, with the cumulus parameterization exclusively
employed in the outer domain [22]. Notably, routing processes at a resolution of 500.0 m
are executed solely on the innermost domain within the coupled WRF-Hydro model. The
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simulation spans from 1 March 2013 to 1 September 2013 UTC, with the initial two months
allocated as spin-up time and the remainder for analysis.

Table 2. Physical options of WRF and coupled WRF-Hydro model.

Physics Process Parameterization Reference

Microphysics Thompson [38]

Cumulus parameterization G-D [39]

Planetary boundary layer MYNN2 [40]

Land surface Noah-MP [34]

Longwave radiation RRTMG [41]

Shortwave radiation RRTMG [41]

3.2.2. The Calibration of Sensitivity Parameters in the Offline WRF-Hydro Model

Before analyzing the effects of the land–hydrological processes on the atmosphere
simulation, the WRF-Hydro model is run in an offline/uncoupled way to calibrate relevant
sensitivity parameters and evaluate its efficacy in simulating streamflow. Hydrological
model parameters serve as the reflections of the underlying surface characteristics, and
variations in default parameters’ applicability across different basins are noteworthy. In
terms of the WRF-Hydro model, prior studies have categorized the sensitivity parame-
ters governing streamflow processes into those controlling streamflow distribution and
water volume and those regulating flood peaks and flood hydrographs [20]. A stepwise
manual approach is adopted in calibrating the sensitivity parameters, following previous
WRF-Hydro studies [42]. Given the steep slope of the SRYR, distinct from that of the
Daihe River Basin, the surface retention depth (RETDEPRTFAC) is set as 0.0, and only four
parameters, including the saturated soil moisture (SMCMAX), runoff infiltration parameter
(REFKDT), channel Manning roughness (MannN), and overland flow roughness parame-
ter (OVROUGHRTFAC), were calibrated within reasonable ranges to select the optimal
parameter value. The calibration process considered the daily streamflow variations at the
Tangnaihai hydrological station during the rainy season from 1 June to 30 September in
2012 [43].

Additionally, the water–heat exchange process is of vital importance to the understand-
ing of the atmosphere–land–hydrology interaction process, influencing the land–surface
water cycle process by modulating the evapotranspiration process. Relevant studies in-
dicate that the default parameterization schemes of the Noah-MP model exhibit an un-
derestimation of latent heat (LE) and an overestimation of sensible heat (H) in the alpine
grassland area [44]. To rectify the issue of H overestimation, the Chen97 scheme for a
sensible heat transfer coefficient is employed, while the Jarvis canopy stomatal resistance
scheme enhances vegetation transpiration, improving simulated LE and achieving a more
balanced distribution of heat flux between LE and H. Other parameterization scheme
options applied in this study remain consistent with the default settings in the uncoupled
WRF-Hydro model.

3.2.3. The Interpolation Method

In this study, a bilinear interpolation method was used to harmonize the data resolution
to 0.1◦ × 0.1◦ to analyze the model’s performances for depicting the distributions of the
meteorological and hydrological elements over the Source Region of the Yellow River. The
bilinear interpolation is a method used to estimate the value of a function at a point, given its
values at the surrounding points. The detailed calculation formula can be found in [33].

3.2.4. Evaluation Index

To evaluate the model’s simulation performance, various metrics including the Nash
Efficiency Coefficient (NSE), Root Mean Square Error (RMSE), Correlation Coefficient
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(R), and Relative Deviation (BIAS) are employed in this research. The NSE is used to
evaluate the performance of streamflow, which can penalize large errors in the simulations
and give a better measure of how well the model simulations match the observational data.
The NSE ranges from −1 to 1, where a value close to 1 indicates that the experiment has a
better performance. The RMSE is a commonly used metric to evaluate the accuracy of the
model by quantifying the differences between the observed and simulated values. A lower
RMSE indicates a better performance, and it is a widely accepted metric for regression
calculation. As for R, it is a measure of the linear correlation between two data sets. It
ranges from −1 to 1, where 1 indicates a perfect positive linear relationship, −1 indicates
a perfect negative linear relationship, and 0 indicates no linear relationship. The BIAS
can be useful for understanding the relative performance of different experiments, where
the magnitude of the simulation errors can vary greatly depending on the scale of the
observational data. The calculation formula and optimal value of each evaluation index are
shown in our previous study [45].

3.2.5. The Applicability of the WRF-Hydro Model

After a 2-month spin-up period, the uncoupled WRF-Hydro was calibrated from
1 June to 30 September in 2012, based on daily streamflow from the Tangnaihai hydrological
site. As depicted in Figure 2, the simulated streamflow closely aligns with the observation,
exhibiting consistency between flood and precipitation hydrographs. During the calibration
period, the simulated and measured streamflow achieves an R of 0.84, NSE of 0.44, RMSE
of 465.61 m3·s−1, and BIAS of −11.44%. In the validation period, R is 0.81, the NSE
is 0.61, RMSE is 351.36 m3·s−1, and BIAS is −10.21%. However, the model tends to
underestimate peak flows during flood season and presents some unrealistic peak flows,
indicating potential issues with the base flow model and precipitation [22]. Nevertheless,
the WRF-Hydro model demonstrates the ability to produce a relatively realistic hydrological
regime over the SRYR; hence, the calibrated parameters are used for comparing WRF and
coupled WRF-Hydro simulations.

Figure 2. The variation in simulated and observed daily streamflow (units: m3·s−1) over the Source
Region of the Yellow River during the calibration and validation periods. The black dotted line in
correspondence with 30 September 2012 splits the calibration and validation periods.
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4. Results

The land surface hydrological cycle constitutes a crucial Earth System process. Cli-
mate change exerts influence on the global water cycle, eliciting diverse responses at the
regional scale. Simultaneously, variations in the land surface process contribute to the
regional and catchment-scale modification of water resource distribution and runoff [4].
Based on the coupled WRF-Hydro model, the impact of climate change on land surface
hydrological processes and the feedback of the surface water cycle to precipitation are
comprehensively considered, and the characteristics of the coupled atmosphere–land–
hydrology process and streamflow variations over the SRYR during the rainy season of
2013 are also explored.

4.1. The Temporal Variation in Hydrometeorological Elements

Given the sparse and uneven distribution of monitoring sites over the SRYR, reanalysis
products are employed in this study to examine the variation in the hydrometeorological
elements. Previous studies [44,45] have demonstrated the suitability of CMFD precipita-
tion data over the SRYR, while GLDAS data, encompassing temperature and runoff, are
recognized for effectively characterizing climate change and water cycle processes over
the SRYR. Therefore, CMFD and GLDAS are utilized as reference datasets (denoted as
Reference) for analyzing the regional mean simulation results in the following study.

Figure 3 shows the time series of regional mean meteorological and hydrological
elements. It exhibits that both the WRF and coupled WRF-Hydro models can effectively
capture the evolution characteristics of these elements over the SRYR. Compared with the
standalone WRF model, the coupling process results in a slight increase in the wet deviation
of precipitation, with an average RMSE of 2.51 mm. However, it enhances the simulation
of temperature and downward longwave and shortwave radiation to a certain extent. The
simulations of surface pressure, specific humidity of 2 m, and wind speed near the ground
exhibit minimal differences between the two experiments. Notably, the coupling process
elevates soil moisture levels by accounting for the terrestrial vertical and lateral flow of
soil water in three-dimensional space, consequently leading to larger simulated values
for evapotranspiration and precipitation. Table 3 depicts the evaluation indices of diverse
meteorological and hydrological variables simulated by WRF and WRF-Hydro models over
the SRYR. Both models, especially WRF-Hydro, demonstrate good overall performance in
simulating various hydrometeorological elements, with high correlation coefficients and
generally low RMSE values.

Table 3. The evaluation indices for hydrometeorological elements’ simulations.

Variables Model R RMSE

Precipitation WRF 0.80 2.50
WRF-Hydro 0.81 2.51

Temperature WRF 0.96 1.45
WRF-Hydro 0.96 1.2

Downward longwave radiation WRF 0.90 20.43
WRF-Hydro 0.90 20.01

Downward shortwave radiation WRF 0.76 63.14
WRF-Hydro 0.77 61.27

Surface pressure WRF 0.98 1.04
WRF-Hydro 0.98 1.08

Specific humidity WRF 0.93 0.002
WRF-Hydro 0.91 0.002

Wind speed WRF 0.72 0.01
WRF-Hydro 0.75 0.03

148



Atmosphere 2024, 15, 468

Figure 3. The time series of the mean meteorological and hydrological elements simulated by the
WRF and coupled WRF-Hydro models from 1 May 2013 to 31 August 2013.

The land–atmosphere water and heat exchange processes exert influence on surface
soil moisture through alterations in evapotranspiration, consequently impacting the surface
energy and hydrological cycle [46]. To ensure data comparability, the typical sunny/cloudy
days at Ngoring Lake (lakeside underlying surface) and Maqu (grass underlying surface)
sites are selected based on characteristic downward total radiation patterns throughout the
entire simulation period. The screening methods for typical sunny/cloudy days are consis-
tent with the work of Zhang et al. [47].

Figure 4 illustrates the diurnal variation characteristics of the LE and H simulated
by both the WRF and coupled WRF-Hydro models on typical sunny days, where the
land–atmosphere water and heat exchange processes are notably active. The results at the
Ngoring Lake site show that the coupled WRF-Hydro model produces LE and H values
more consistent with measurements, resulting in reduced RMSE values of 29.91 W·m−2 and
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31.06 W·m−2 compared to WRF simulations. Conversely, at the Maqu site, the coupled
process amplifies the deviation in LE simulations, attributed to the overestimation of
evapotranspiration, while effectively mitigating the issue of overestimated H.

Figure 4. Comparison of turbulent fluxes (units: W·m−2) between WRF-Hydro/WRF and observa-
tions on typical sunny days at Ngoring Lake (a,b) and Maqu (c,d) sites.

Figure 5 demonstrates the diurnal variation characteristics of the LE and H on typical
cloudy days, characterized by more complicated weather conditions and physics pro-
cesses. During these days, the agreement between turbulent flux simulation results and
observations is less favorable compared to typical sunny days. The simulations at both
sites indicate that the coupled process can reduce the RMSE in LE and H, with a mean
RMSE of 29.48 W·m−2 and 26.55 W·m−2, respectively. Overall, the coupled WRF-Hydro
simulations exhibit enhancements in simulating surface heat flux variables, attributed to
the incorporation of lateral terrestrial water flow in the hydrological process.

Furthermore, soil temperature and moisture play an important role in influencing
land surface evaporation and groundwater processes, directly or indirectly affecting the
land–hydrology process. The Taylor diagram [48] provides a visual assessment of model
performance by comparing the bias and correlation of model simulations to observations.
It highlights which models perform well in simulating the climate variable and which ones
may require improvement or further calibration. Therefore, the analysis of top-layer soil
temperature and moisture at the Maqu site is conducted by Taylor diagrams in Figure 6,
leveraging available observed data. The results display a commendable agreement between
the simulated and observed soil temperature, albeit with a notable discrepancy in August,
attributed to deviations in downward shortwave radiation and temperature. The coupling
process reduces the RMSE of soil temperature simulation (from 5.18 to 4.22 K), indicating
improved accuracy through the comprehensive consideration of soil water content variation.
In addition, the WRF-Hydro model exhibits a prolonged soil moisture memory compared
to standalone WRF, resulting in significantly higher simulated soil moisture values in WRF-
Hydro, attributable to the inclusion of subsurface lateral flow in the WRF-Hydro model.
Nevertheless, the simulated top-layer soil moisture in both experiments does not align
with observations and struggles to capture the response of soil moisture to precipitation.
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Furthermore, the uncertainty introduced by the site-specific results necessitates verification
through spatial distribution analysis.

Figure 5. As in Figure 4, but for the typical cloudy days.

Figure 6. Taylor diagrams of correlation coefficients and standard deviations for daily soil tem-
perature and soil moisture at Maqu site among simulations with observations from 1 May 2013 to
1 September 2013.
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4.2. The Spatial Distribution of Hydrometeorological Elements

Moreover, the spatial distribution of the accumulated precipitation for the CMFD
reference data (denoted as Reference), WRF, and coupled WRF-Hydro, along with their
discrepancies, is displayed in Figure 7. The precipitation patterns underscore a pronounced
reliance on topography, showing a decreasing trend from southeast to northwest over the
SRYR. Both WRF and coupled WRF-Hydro demonstrate enhanced capabilities in capturing
precipitation distribution characteristics. However, both simulations exhibit a considerable
wet bias, particularly in the Jiuzhi and Maqu areas, coupled with a dry bias in the south-
eastern SRYR. The coupled WRF-Hydro, in contrast to the standalone WRF, incorporates
subsurface lateral flow considerations, resulting in increased soil moisture and a more
rational spatial distribution of soil water. This, in turn, engenders a feedback effect on
precipitation, contributing to a mean wet bias of 16.63 mm compared to WRF simulations.

Figure 7. The spatial distribution of the accumulated precipitation (units: mm) in the time interval
1 May 2013 to 31 August 2013 with (a) observation, (b) the standalone WRF simulation, (c) the coupled
WRF-Hydro simulation, and difference maps for (d) WRF minus observation, (e) WRF-Hydro minus
observation, and (f) WRF-Hydro minus WRF.

Concerning temperature, the spatial patterns of the mean 2 m air temperature during
the simulated period are shown in Figure 8. The temperature spatial distribution presents
gradient characteristics, with elevated temperatures observed in flat regions and lower
temperatures in alpine areas. Both experiments adeptly capture the temperature distribu-
tion characteristics. On the whole, the simulated temperature tends to be relatively higher,
particularly in the northeast area of the SRYR. The regional mean bias is 0.44 K for the
standalone WRF and 0.15 K for the coupled WRF-Hydro, indicating a slight reduction
in the mean temperature deviation in the coupled simulation.
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Figure 8. As in Figure 7, but for the mean temperature (units: K).

Soil temperature serves as an important parameter in the land surface process, provid-
ing a direct reflection of the thermal state of the land. The fluctuations in soil temperature
have a consequential impact on the movement and phase transitions of surface soil water,
consequently influencing the surface hydrological cycle [49]. Simultaneously, soil moisture
plays a vital role in land–atmosphere interactions. Functioning as a reservoir for heat and
moisture, soil moisture exhibits remarkable memory, retaining information from weeks to
months, and subsequently influencing atmospheric conditions through the remembrance
of preceding atmospheric perturbations.

The spatial distribution characteristics of top-layer soil temperature (Figure 9a–c)
and moisture (Figure 9d–f) during the 2013 rainy season over the SRYR are analyzed in
Figure 9. Given the high altitude and substantial diurnal temperature fluctuations over the
TP, the mean temperature is lower than that of the inland areas, with lower soil tempera-
ture closer to the plateau’s interior. Both simulations adeptly illustrate the characteristic of
lower temperatures in the lake area compared to the surroundings. The coupled WRF-
Hydro reduces the simulated surface soil temperature, exhibiting a cold deviation of 1.07 K,
with potential implications for atmospheric water vapor convergence via land–atmosphere
interactions. Regarding soil moisture, both experiments show wet centers in the Zhaling
Lake and Ngoring Lake areas. The coupled WRF-Hydro model, influenced by terrestrial
lateral water and soil moisture redistribution processes, demonstrated a more reasonable
spatial distribution of soil water content over the study region. The simulations of soil
moisture from WRF-Hydro significantly exceed those of WRF, presenting a wet deviation
of 0.02 m3/m3. On the whole, the areas surrounding the two lakes in the SRYR function
as cold and wet centers during the simulation period, and the coupled simulations aptly
capture the variation characteristics of soil temperature and moisture.
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Figure 9. The spatial distribution of the mean top-layer (0–10 cm) soil temperature (units: K) in the
time interval 1 May 2013 to 31 August 2013 with (a) the standalone WRF simulation, (b) the coupled
WRF-Hydro simulation, and the difference map for (c) WRF-Hydro minus WRF; (d–f) are the same
as (a–c), but for top-layer soil moisture (units: m3/m3).

4.3. The Time Series of the Streamflow Simulated by the Coupled Model

The time series depicting the coupled simulated streamflow for the 2013 rainy season,
where direct meteorological site observations are not required, is presented in Figure 10.
The coupled model adeptly captures the temporal variation in observed hydrographs,
exhibiting an R of 0.77. However, reproducing daily streamflow with the coupled model
poses a challenge, yielding an NES of 0.33 and RMSE of 458.85 m3·s−1. The substantial
overestimation of coupled simulated streamflow, particularly in peak flow reproduction, is
a notable limitation. This performance degradation primarily stems from the WRF-Hydro
model’s extreme sensitivity to precipitation data quality, where the RMSE of precipitation
is merely 2.51 mm, contrasting with the considerably higher RMSE of streamflow. Fur-
thermore, this discrepancy may arise from distinct frequencies of Noah-MP invocation in
uncoupled calibration and coupled runs. In uncoupled simulations, Noah-MP is typically
invoked at the physical time step of the hydrological model, while in coupled simulations,
it is invoked at the physical time step of the WRF model. This leads to more water travers-
ing down-slope or entering the channel before infiltration occurs again, contributing to
elevated streamflow [22].
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Figure 10. The observed and coupled WRF-Hydro simulated streamflow (units: m3·s−1) for the
period 1 May 2013 to 31 August 2013.

5. Discussion

Based on the standalone WRF and coupled WRF-Hydro models, a high-resolution
atmosphere–land–hydrology coupling model was constructed with various data over
the SRYR. In this study, the key variables associated with atmosphere–land–hydrology
coupling processes were compared and analyzed to evaluate the streamflow simulation
capability of the coupled model. The results reveal that the WRF-Hydro model success-
fully reproduces the daily streamflow, yet refinement is warranted for a more nuanced
depiction of the hydrograph, particularly regarding underestimation and steep changes
during flood peaks. This limitation underscores the need for an in-depth exploration of
groundwater and soil water content dynamics to explain their influences on streamflow.
Future research endeavors should encompass a comprehensive analysis of land surface
water cycle processes to enhance our understanding.

In addition, a significant overestimation of streamflow is observed in the coupled
model. To explore the factors influencing this performance degradation, a sensitivity anal-
ysis is conducted by using different combinations of atmospheric forcing data and the
uncoupled WRF-Hydro model (not shown in the manuscript). The results show that
the coupled simulated precipitation data introduces slight deviations cumulatively lead-
ing to a substantial error in streamflow simulation (RMSE of 2.51 mm for precipitation
and 458.85 m3·s−1 for streamflow). While using the coupled simulated non-precipitation
data and CMFD precipitation, the simulated streamflow is close to the observations, which
suggests that accurate precipitation is recommended as the forcing data for streamflow sim-
ulations over the SRYR. Presently, reproducing daily streamflow over the Tibetan Plateau
with the coupled model remains a challenge [25,50]. Studies have indicated that advanced
data assimilation methods have the potential to enhance precipitation forecasting accuracy,
thus fostering advancements in atmosphere–land–hydrology simulations [20]. Incorporat-
ing satellite and radar data into the WRF model in future studies offers a potential avenue
for improving precipitation and streamflow simulation and projection.

The inaccurate estimation of initial soil moisture is also a limitation for streamflow
simulation. Studies found that streamflow is sensitive to early rainfall, which may influence
the reconstruction of later flood peaks [20]. The observational sites over the SRYR were
usually established on flat terrain with moist soils and rivers passing through, where the
lateral flow of soil water flows in, not out. As a result, improvements in initial soil water
content accuracy help capture streamflow over this region.
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In future studies, the consideration of improving the accuracy of initial soil moisture
and precipitation data will not only help the WRF-Hydro coupled model to simulate
streamflow but also serve as an effective tool in interdisciplinary flood simulation studies.

6. Conclusions

This study conducts a comparative analysis of key variables associated with the
coupled atmosphere–land–hydrology processes over the SRYR during the 2013 rainy
season. The primary focus is on investigating the impacts of climate change on land surface
and water cycle processes, as well as the feedback of the land surface hydrological cycle to
precipitation. The following main conclusions have been drawn:

(1) The uncoupled WRF-Hydro model effectively characterizes the variability of stream-
flow over the SRYR basin, demonstrating an R of 0.84 and an NSE of 0.44 during the
calibration period and an R of 0.81 and an NSE of 0.61 during the validation period.

(2) Both the standalone WRF and coupled WRF-Hydro models indicate reasonable per-
formance in reproducing variables associated with atmosphere–land–hydrology pro-
cesses over the SRYR. The consideration of soil water lateral flow in the coupling
process significantly reduces biases in water–heat exchange fluxes, soil temperature,
and soil moisture simulations, with mean RMSE values of 32.27 W·m−2, 24.91 W·m−2,
4.22 K, and 0.06 m3/m3, respectively.

(3) The coupled model success captures the streamflow variation. Nevertheless, repro-
ducing daily streamflow with the coupled model remains a challenge, yielding an
NSE of 0.33 and an RMSE of 458.85 m3·s−1.

The main findings in this work indicate that the WRF-Hydro model has the potential
to reproduce the interaction processes between the land surface and atmosphere in the
complex terrain areas. For a future perspective, accurate initial soil moisture and precip-
itation estimation by incorporating advanced data assimilation methods is supposed to
improve streamflow simulations and interdisciplinary flood simulation studies.
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Abstract: This study aimed to examine the spatio-temporal variations in the atmospheric boundary
layer height (ABLH) over the Tarim Basin (TB). Monthly ABLH data from the ERA-Interim dataset
from January 1979 to December 2018 were used. Periodicity analysis and the Mann–Kendall Abrupt
Changes test were employed to identify the change cycle and abrupt change year of the boundary
layer height. The Empirical Orthogonal Function (EOF) method was utilized to determine the spatial
distribution of the boundary layer height, and the RF method was used to establish the relationship
between the ABLH and influencing factors. The results demonstrated that the highest values of
ABLH (over 1900 m) were observed in the middle parts of the study area in June, and the ABLH
exhibited a significant increase over the TB throughout the study period. Abrupt changes in the
ABLH were also identified in 2004, as well as in 2-, 5-, 9-, and 15-year changing cycles. The first EOF
ABLH mode indicated that the middle and northeast regions are relatively high ABLH areas within
the study area. Additionally, the monthly variations in ABLH show a moderately positive correlation
with air temperature, while exhibiting a negative correlation with air pressure and relative humidity.

Keywords: atmospheric boundary layer height; surface air temperature; Taklamakan Desert; abrupt
change

1. Introduction

Solar radiation and its daily fluctuations play a crucial role in the exchange of heat
fluxes between the Earth’s surface and the atmosphere. However, these heat fluxes are
primarily limited to a shallow layer near the land surface known as the atmospheric
boundary layer (ABL) [1]. The ABL directly influences various factors such as water vapor,
heat, and pollutants between the land surface and the free atmosphere [2–6], thereby
impacting atmospheric and weather-scale adjustments [7,8]. Additionally, the ABL also
plays a significant role in extreme climate events [9]. As the lowest part of the atmosphere,
the ABL is greatly influenced by the characteristics of the land surface [10].

The thickness of the ABL, referred to as the ABLH, varies from a few meters to several
kilometers [11]. It depends on factors such as atmospheric system types, surface fluxes,
and land cover [12,13]. The ABLH has significant implications for air quality, as well as
for various environmental issues such as heat transmission, land surface modeling, air
pollution, and drought [2–4,9,14–23].

Previous research on ABLH has predominantly focused on calculation methods [2,4,11,
24,25], influencing factors [13], and changing characteristics [26,27]. However, most studies
have been limited to specific stations or short time scales. With regard to global warming,
the tropopause height has shown an upward trend [28]. Therefore, it is worth investigating
whether the ABLH exhibits a similar trend. In 2013, Zhang et al. [29] evaluated ABLH trends
in Europe and found that daytime boundary layer heights at most stations significantly
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increased during all four seasons. Similarly, Zhang et al. [23] reported a significant upward
trend in the average ABLH in the arid and semi-arid regions of East Asia from 1900 to 2015.
Additionally, Darand et al. [30] indicated an upward trend in the ABLH over Iran.

Arid and semi-arid areas cover approximately 30% of the Earth’s surface and are
highly vulnerable to the impacts of climate change. However, there is a lack of studies
on the ABLH in these regions due to insufficient observational data and meteorological
measurements. Therefore, the main objective of this study is to investigate the temporal
and spatial variations in ABLH over the Tarim Basin, which will serve as a foundation for
future studies on the impact of the ABL on climate.

2. Data

Situated in the southern region of Xinjiang in northwestern China, the Taklamakan
Desert (TB) covers an area of 53 × 104 km2 [31]. As the second largest shifting desert glob-
ally, the Taklamakan Desert experiences minimal precipitation and high evapotranspiration
rates. This region falls under a continental arid climate and serves as a significant source of
sand–dust storms in China (Figure 1).

Figure 1. The territory of the study area. Located in northwestern China, lies between Tianshan
Mountain, Kunlun, and Altun Mountain. The black, green, and red circles represent stations in oases,
desert, and mountainous terrain, respectively.

For this study, we utilized the ERA Interim ABLH dataset, which offers a spatial reso-
lution of 0.125◦ spanning from January 1979 to December 2018. The satellite data (GLAS
boundary layer height) are typically 200–400 m higher than the ERA interim over oceans,
but smaller-scale and global patterns of ABL height exhibit similar characteristics [32,33].
Additionally, the ERA Interim dataset has been validated worldwide [9] when compared
to observational radiosoundes. ERA Interim data have been widely applied in many
academic studies and have become some of the most important data in the field of at-
mospheric science in the past few years. The research and validation of these data have
been widely recognized, and their accuracy and reliability have been confirmed in many
studies. Moreover, these data have identified that the deviation between the boundary layer
height reanalysis data (ERA-interim) and the measured data is relatively small [34–36]. The
dataset is freely available online https://www.ecmwf.int/en/forecasts/datasets/archive-
datasets/reanalysis-datasets/era-interim (accessed on 5 April 2020).

To supplement our analysis, we incorporated data from 39 weather stations during
the period of 1979–2018. Specifically, we utilized ground-based monthly mean air tem-
perature (1.5 m) (Mean air TEM), maximum air temperature (Max air TEM), minimum
air temperature (1.5 m ± 5 cm) (Min air EM), air pressure (1.2 m), and relative humidity
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(1.5 m). Figure 1 displays the locations of these weather stations. It is important to note
that the meteorological data are part of the synoptic observation program and consist of
two series: 8892 data points in the result part, and 59 data points in the study area part.
Xinjiang Meteorological Administration provided the data, which underwent stringent
quality control procedures before release.

3. Methodology

To uncover the evolutionary characteristics and influential factors of ABLH in the
Tarim Basin, this study employs a range of methodologies including trend analysis, abrupt
change analysis, wavelet analysis, Emperial Orthogonal Function (EOF) analysis, random
forest model, and other techniques (Table 1).

Table 1. The main research methods used in this paper.

Methods Characteristics Purposes

Linear regression method Identifies the continuity of long-term trends Revealing the changing trend characteristics
of continuous meteorological data

Morlet wavelet analysis Simultaneously analyzes time and frequency
characteristics Determine the period of data change

Abrupt changes test Abnormal recognition ability Monitoring in abrupt change point of
detection data

EOF method Decomposes spatial and temporal principal
components of data,

Determine the main characteristics of
data distribution

Random forest model Based on Decision Tree Ensemble Model Feature
Importance, Prediction Accuracy Prediction Analysis

Determine the importance of meteorological
factors on the height of the boundary layer

3.1. The Linear Regression Method

Linear regression is one of the main methods used to test the changing trend and can
express the changing trend of variables in a time series. The equation is as follows:

Y = a0 + a1t (1)

where Y is the precipitation; t is the time; a0 is the regression constant; a1 is the regression
coefficient; and a1 × 10 is the changing trend rate of per decade.

3.2. Morlet Wavelet Analysis

In this study, Morlet wavelet analysis is applied to display the periodic change of
ABLH; it results in a number of wavelet coefficients. The corresponding wavelet family
involves sub-wavelets that are generated from the basic wavelet function ψ(t) shown as
follows [37]:

ψa,b(t) = |a|− 1
2 ψ

(
t − b

a

)
a, b ∈ R, a �= 0 (2)

where ψa,b (t) is the sub-wavelet, and parameters a and b denote the scale factor and the
horizontal shift, respectively.

For any function f (t) ∈ L2 (R), its WT is expressed as:

Wf (a, b) = |a|− 1
2

∫ +∞

−∞
f (t)Ψ∗( t − b

a
)dt (3)

where Wf (a,b) is wavelet coefficient. According to the wavelet coefficient, the wavelet
variance is computed according to the following Equation (4).

Var(a) =
∫ +∞

−∞

∣∣∣Wf (a, b)
∣∣∣2db (4)
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Wavelet analysis decomposed the signal series on a time scale, and the time–frequency
field change can be clearly observed and distinguished.

3.3. Mann–Kendall Test of Abrupt Changes

In this study, the time series data were assumed to be steady and independent. Vari-
ables (i.e., X = {x1, x2, . . ., xn}) shows no change because of the null hypothesis predicting
no trends in the data. For data point xi, ni is calculated by the number of data points that
exceed xi. The Mann–Kendall statistic ni is calculated as [38]:

E(dk) =
k(k − 1)

4
, 2 ≤ k ≤ n (5)

Var(dk) =
k(k − 1)(2k + 5)

72
, 2 ≤ k ≤ n (6)

The standard value of dk is computed by:

u(dk) =
dk − E(dk)√

Var(dk)
, 2 ≤ k ≤ n (7)

Given that u(d1) = 0, all u(dk) will result in a curve, UF. A retrograde u(dk) is expressed
in Equation (8).

u′(dk) = −u(dk′) k′ = n + 1 − k, 2 ≤ k ≤ n (8)

Given that u(d1) = 0, all u(dk) will establish a curve, UB. The intersection points of UF
and UB are located between the confidence lines when abrupt climate change occurs.

3.4. EOF Method

The EOF method is used to calculate orthogonal functions, representing spatio-temporal
components. Each component may represent a changing characteristic of the variable [39]. The
EOF method provides the spatio-temporal change patterns of the variable [40].

3.5. Random Forest Model

The random forest (RF) model is capable of processing diverse data and can be
effectively applied in data collection. RF selection can be utilized to identify the most
significant variables for regression by selecting a reduced set of partition variables, and its
output represents the average value derived from all decision-making trees. The RF model
employs multivariate sorting to determine the variables and provide insights into their
relative importance [41]. In this study, ABLH served as the dependent variable.

4. Results

4.1. Long-Term Mean of ABLH

In winter, the lowest ABLH was observed in January and December with a value of
100 m in the southwestern mountain area of the TB. In February, with the increase in air
temperature, the ABLH increased by 200 m in comparison to January. In March, an ABLH
of 1800 m was observed in the southeast and central area due to high levels of air dryness.
As the air temperature gradually rose in spring, the ABLH increased, with the lowest value
(400 m) observed in the north, northwest, and west part of the TB, mainly in mountain
areas, indicating a major role of high latitude. The spatial distribution of ABLH in May
is similar to that in April, but the value has increased. The highest value (1700 m) was
observed in May in the central part of the basin, which is mainly influenced by low altitude,
desert climates, low moisture, and high air temperature.

In June, the ABLH reached over 1900 m due to changes in air temperature, but
it significantly decreased in September. In October, the ABLH was above 1000 m. The
ABLH in the center of the desert decreased by 1400 m in comparison to its peak height of
1900 m, resulting in a decline of 500 m. This downward trend continued in November and
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December. In November, the decrease in ABLH was particularly rapid, with ABLH values
less than 200 m in most regions except for a small area. The lowest ABLH was observed in
December over the entire area, with a value of less than 100 m.

The minimum ABLH (600 m) is observed in the southwest and northwestern parts
of the TB, which were influenced by high latitude and high humidity. Meanwhile, the
highest ABLH value (1000 m) was observed in the center of the desert, attributed to high air
temperature and the absence of vegetation. The ABLH gradually decreased from the center
to the surrounding areas of the basin, influenced by terrain and temperature (Figure 2).

Figure 2. The long-term annual mean of ABLH for (a) January, (b) February, (c) March, (d) April,
(e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, (l) December, and
(m) annually.

4.2. Trends in ABLH

The trend analysis of the Atmospheric Boundary Layer Height (ABLH) data from
ECMWF for the period 1979–2018 revealed both upward and downward trends, repre-
sented by the colors red, yellow, and green. Figure 3 illustrates the monthly trends of ABLH
in the Tarim Basin. In January, the annual ABLH tendency rate ranged from −30 to 60
m/10 a. The lowest value of −30 m/10 a was observed in the eastern and southeastern
parts of the basin, while the highest value of 60 m/10 a was observed in the eastern and
southwestern parts. Most areas in the basin showed an upward trend, with a tendency
rate of approximately 10 m/10 a. In February, the annual ABLH tendency rate ranged
from −50 to 50 m/10 a. The lowest value of −50 m/10 a was observed in the southern
part of the basin, while the highest value of 50 m/10 a was observed in the southwestern
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part. Similar to January, most areas showed an upward trend. In March, the annual ABLH
tendency rate ranged from −110 to 70 m/10 a. The lowest value of −110 m/10 a was
observed in the southern part, mainly in mountainous areas, while the highest value of
70 m/10 a was observed in the western part. Significant high-value centers were found in
the south, southwest, and west, indicating an upward trend in most areas. For April, the
ABLH tendency rate ranged from −10 to 130 m/10 a. The lowest value of −10 m/10 a was
observed in the northern and northeastern parts of the basin, while the highest value of
130 m/10 a was observed in the southern part. Significant high-value centers were present
in the west, with a low-value center in the east of the desert. Most parts of the study area
showed an upward trend in ABLH. In May, the ABLH tendency rate ranged from −30
to 70 m/10 a. The lowest value of −30 m/10 a was observed in the northern, eastern,
and western parts of the basin, while the highest value of 70 m/10 a was observed in the
southern part. Significant low-value centers were found in the east, west, and north, with a
high-value center in the south of the desert. The height of the boundary layer showed an
increasing trend in most parts of the study area. In June, the ABLH tendency rate ranged
from −30 to 60 m/10 a. The lowest value of −30 m/10 a was observed in the eastern and
southwestern parts of the basin, while the highest value of 60 m/10 a was observed in the
northeastern and southeastern parts. There was a dominant upward trend in the height
of the boundary layer, while the surrounding mountains showed a downward trend. In
July, the ABLH tendency rate ranged from −30 to 100 m/10 a. The lowest value of −30
m/10 a was observed in the surrounding mountains of the basin, while the highest value
of 100 m/10 a was observed in the northeastern and central parts of the desert. There is an
evident zonal distribution from the center of the desert to the surrounding regions.

The plain areas were dominated by an upward trend in ABLH, whereas the surround-
ing mountains showed a downward trend. In August, the ABLH tendency rate ranged
from −60 to 110 m/10 a; the lowest value of −60 m/10 a was observed in the eastern
part of the basin, while the highest value of 110 m/10 a was observed in the western
part. There is an obvious zonal distribution from the low and high-value centers to the
surrounding regions. The eastern and southeastern parts of the basin demonstrated a
significant downward trend, while the western and southwestern parts showed a notice-
able upward trend. The zonal distribution of either an upward or downward trend is
highly pronounced. In September, the ABLH tendency rate ranged from −70 to 50 m/10 a.
The lowest value of −50 m/10 a was observed in the eastern part of the basin, while the
highest value of 50 m/10 a was observed in the northern and western parts. There is an
evident zonal distribution and two high-value centers. The north and northwest parts
of the basin exhibited a significant upward trend, while the east and southeast showed a
distinct downward trend. The zonal distribution of either an increasing or decreasing trend
is highly apparent. In October, the ABLH tendency rate ranged from −30 to 70 m/10 a. The
lowest value of −30 m/10 a was observed in the eastern, southeastern, and southern parts
of the basin, while the highest value of 70 m/10 a was observed in the southwestern part.
The zonal distribution is not very pronounced. Most regions in the basin were dominated
by ABLH tendency rates of 10 m/10 a and 20 m/10 a, with no clear zonal distribution.
In November, the ABLH tendency rate ranged from −40 to 80 m/10 a. The lowest value
of −40 m/10 a was observed in the eastern part of the basin, while the highest value of
80 m/10 a was observed in the southwestern part. There was a zonal distribution, but it
is not very evident. Most regions in the basin were dominated by ABLH tendency rates
of 10 m/10 a and 20 m/10 a. In December, the ABLH tendency rate ranged from −20 to
70 m/10 a. The lowest value of −20 m/10 a was observed in the southern part of the basin,
while the highest value of 70 m/10 a was observed in the southwestern part. Most regions
in the basin were dominated by an ABLH tendency rate of 20 m/10 a.

The ABLH tendency rate (Figure 3m) ranges from −20 to 40 m/10 a. The lowest value
of −20 m/10 a was observed in the eastern part of the basin, while the highest value of
40 m/10 a was observed in the western part. Most regions of the basin were dominated by
ABLH tendency rates of 10 m/10 a and 20 m /10 a. The increasing trend was dominant in
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most regions, displaying evident zonal distribution. Figure 4 depicts the annual average
time series of ABLH during the period of 1979–2018, showing an upward trend with an
increase of approximately 30 m per decade.

Figure 3. The trends of ABLH for (a) January, (b) February, (c) March, (d) April, (e) May, (f) Jun,
(g) July, (h) August, (i) September, (j) October, (k) November, (l) December, and (m) annually.

Figure 4. Annual area-averaged time series of ABLH.

4.3. Periodicity Analysis and the Mann–Kendall Abrupt Changes Test

Wavelet analysis was employed to detect periodic changes in ABLH. Figure 5 illus-
trates the wavelet variances of ABLH from 1979 to 2018. In this plot, a positive real part
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corresponds to the annual average ABLH during a high (increasing) period, while a nega-
tive real part indicates that the annual average ABLH belongs to a low (decreasing) period.
Figure 5 shows a real-line contour plot of the Morlet wavelet coefficient of the annual
average ABLH in the Tarim basin. It reveals four main cycles of ABLH: 2-, 5-, 9-, and
15-year cycles. Among these cycles, the time scale of approximately 15 years corresponds
to the most significant variance-extreme value, followed by 9 and 5 years. The annual
changes of about 2 years are too rapid and relatively insignificant.

Figure 5. Distribution of wavelet frequency and wavelet variance of ABLH.

The periodic oscillations with a characteristic time scale of 2 years have undergone
alternating changes over 13 periods. These oscillations were weak during 1979–1990 and
2004–2008, while they were more pronounced from 1991 to 2003 and from 2009 to 2016.
They consist of seven periods with a negative real part center (decreasing) and 6 periods
with a positive real part center (increasing). On the other hand, the periodic oscillations with
a characteristic time scale of 5 years have undergone alternating changes over 21 periods.
These oscillations were weak during 1979–1990, but became more evident from 1990 to
2018. The study reveals the presence of 11 consecutive periods characterized by negative
real part center (decreasing) and 11 consecutive periods with positive real part center
(increasing). The periods showing a decreasing trend are 1981–1982, 1984–1985, 1988–1990,
1992 −1993, 2002–2003, 2006–2008, 2010–2011, and 2014–2015. Conversely, the periods
exhibiting an increasing trend are 1982–1983, 1986–1987, 1990–1991, 1994–1995, 1997–1998,
2000–2001, 2004–2005, and 2012–2013. The presence of any clear cycles in the remaining
periods is not apparent. The periodic oscillations, with a characteristic time scale of 9
years, have experienced alternating changes over 14 periods. The periodic oscillation was
weak during 1979–1989 and it was more obvious from 1989 to 2018. The oscillation pattern
observed in this study exhibits a characteristic time scale of 15 years, with alternating
changes occurring over nine periods. Among these cycles, the periodic oscillation is most
prominent and displays a relatively stable and intense pattern. Specifically, there are
seven periods characterized by a negative real part center (decreasing), and seven periods
characterized by a positive real part center (increasing). The decreasing periods span from
1979 to 1981, 1987 to 1991, 2001 to 2007, and 2011 to 2016. On the other hand, the increasing
periods occur from 1981 to 1983, 1987 to 1990, 1997 to 2001, 2007 to 2011, and 2017 to 2018.

The M-K abrupt change method was utilized to demonstrate the abrupt change year
in ABLH within the study area. Figure 6 illustrates the year of abrupt change as tested
by the M-K method. The findings indicate that an abrupt change was observed in 2004.
The factors contributing to the abrupt changes in ABLH in this specific study area remain
unknown, necessitating further investigations into the interplay between land use and the
spatial distribution of air temperature in order to address this unresolved issue.
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Figure 6. Annual average BLH Mann–Kendall abrupt change test from 1979 to 2018.

4.4. EOF Analysis of ABLH

The analysis of Empirical Orthogonal Function (EOF) modes revealed that the first
four modes accounted for 42.3%, 15.6%, 10.9%, and 5.7% of the total variation in the
ABLH data, respectively, explaining a combined variability of 74.5% (Figure 7). The spatial
pattern of the first EOF mode of ABLH was primarily observed in the northeast part of the
region, indicating similar changes in the southwest and northeast areas of the basin. This
distribution suggests that the ABLH is relatively low in the southwest and relatively high
in the northeast, which may be influenced by air temperature and terrain.

 

 

 

Figure 7. Cont.
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Figure 7. Spatial patterns and temporal amplitudes of EOF modes for air temperature time series (◦C).

Furthermore, the time series analysis revealed an upward trend since 2003, with
intermittent positive amplitudes in several years. The most significant changes occurred
during the period 1995–2000, while the weakest changes were observed in 1992. This
indicates a rapid downward trend in ABLH from 2002 to 2009, with the minimum ABLH
recorded in 1992.

The second EOF mode explains 15.6% of the total variance, representing another
important spatial distribution of boundary layer changes. Positive loadings were primarily
observed in the eastern portion of the study area, while the weakest loadings were found
in the northeast and west. Prior to 2000, the loadings were mostly positive, but turned
negative after 2000. Notably, the highest value was observed in 1984, whereas the lowest
value was recorded in 2006.

The third mode accounted for 10.9% of the total change, with the strongest positive
loadings observed in the center of the desert and negative loadings in the surrounding
regions of the Taklamakan Desert. The strongest negative value was recorded in 1984,
while the strongest positive value was observed in 2012.

Similarly, the fourth mode explained 5.77% of the total change, with positive loadings
in the southwest and negative loadings in the northeast. The strongest negative value was
seen in 1992, while the most positive value was recorded in 2002.

In summary, the modal distribution of ABLH values indicates higher values in the
northeast and lower values in the southwest, with high-value centers primarily situated in
the northeast of the basin and the middle of the desert. This spatial pattern corresponds
to the distribution of air temperature and land surface temperature, with the northeast
regions of the basin characterized by lower average air temperatures and corresponding
lower boundary layer heights in mountainous areas [42].

4.5. Relation between ABLH and Meteorological Factors

The movement of air within the atmospheric boundary layer (ABL) is heavily influ-
enced by ground friction and primarily depends on the thermal and dynamic effects of
the ground surface. The variation in thickness of this layer is related to the speed of the
outer airflow, its own meteorological conditions, and underlying surface conditions such
as terrain, topography, buildings, and vegetation. Changes in land–atmosphere conditions
can lead to changes in the ABL height (ABLH), with higher air temperatures resulting in a
higher ABLH [30]. Latitude, solar radiation, topography, and underlying surface type are
the major factors affecting the ABLH. We applied five indicators (i.e., mean air temperature,
maximum air temperature, minimum air temperature, air pressure, relative humidity) to
study the principal factors influencing changes in ABLH. The RF model was employed to
quantitatively analyze the selected indicators, and the results are shown in Figure 8a.

Air temperature is the most fundamental and direct factor in meteorological conditions
that affect the ABLH. High air temperatures increase the heat capacity of the atmosphere,
leading to an increase in the ABL and subsequently increasing the ABLH. During the day,
the ground is heated by solar radiation, causing an increase in ground temperature. This
results in hot air rising and a strong convective motion. In this case, the boundary layer
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often exhibits characteristics such as decreasing temperature, increasing wind speed, and
decreasing humidity. Conversely, at night, the ground releases heat, causing the tempera-
ture to gradually decrease, and the air no longer produces convective motion. As a result,
the boundary layer begins to stabilize, exhibiting characteristics such as increasing temper-
ature, decreasing wind speed, and increasing humidity. This phenomenon is commonly
known as the nighttime stable layer. The correlation coefficients of mean, maximum, and
minimum air temperatures were high, at 0.95, 0.94, and 0.95, respectively, with significant
positive correlations.

Figure 8. (a) Random forest (RF) model simulation of ABLH and (b) correlation between FD and
influencing factors in the Northern Xinjiang (NX).

The air pressure and atmospheric composition also have a certain impact on the
structure of the boundary layer. Changes in air pressure affect the pressure gradient
force, gravity, and inertia force of the air, thereby altering the flow field and temperature
field. Humidity is another important factor affecting the structure of the boundary layer.
Changes in humidity can affect its stability, as well as heat and water vapor exchange
within the boundary layer, and chemical reaction processes in the atmosphere. Under
humid conditions, water vapor enhances the condensation and precipitation processes
in the atmosphere, thus affecting the vertical distribution and dynamic characteristics of
the boundary layer. The correlation coefficients of air pressure and relative humidity with
ABLH were 0.91 and 0.67, respectively, exhibiting a noticeable negative correlation.

Furthermore, wind speed, precipitation, and altitude also greatly affect the evolution
of ABLH. Due to ground friction, wind speed near the surface gradually decreases, forming
a wind speed gradient layer. This phenomenon is often observed as varied wind speeds
at different heights, such as kites experiencing stronger wind speeds at higher altitudes.
Within the boundary layer, the vertical gradient of wind speed is also important, with
the magnitude of this gradient determining the dynamic characteristics and degree of
mixing. Precipitation significantly impacts the height of the boundary layer, with increased
rainfall intensity causing a decrease in boundary layer height. The development history
and height of the stable boundary layer are also related to altitude. In high-altitude areas,
the stable boundary layer has a longer development history and higher height compared
to low-altitude areas.

There is a certain correlation between the ABLH and atmospheric pollution. Local
accumulation of atmospheric pollutants under conditions of weak wind speed, low bound-
ary layer height, and low ventilation can easily cause moderate to severe pollution. Air
pollution usually has a reducing effect on the height of the boundary layer. Continuous
pollution emissions can lead to an increase in the concentration of pollutants in the atmo-
sphere, causing a decrease in the heat and water vapor released within the boundary layer,
thereby making the boundary layer more stable and reducing its height. In addition, certain
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pollutants may affect the thermal characteristics and radiation balance of the atmosphere,
leading to changes in the temperature distribution and height of the boundary layer, which
usually results in a decrease in the height of the boundary layer. Therefore, atmospheric
pollution usually reduces the height of the boundary layer [43].

5. Conclusions and Discussion

This study examined the spatio-temporal distribution and influencing factors of the
atmospheric boundary layer height (ABLH) in the Tarim Basin from January 1979 to Decem-
ber 2018. The results showed that the ABLH was higher (over 1900 m) in the middle parts
of the study area in June, which was associated with higher air temperatures. The ABLH
demonstrated a significant increasing trend across different seasons, which was consistent
with the findings of Zhang et al. [18] in Europe and those of Mohammad et al. [30] in Iran.

The analysis also revealed that the highest upward trend rates of ABLH (120–130 m/decade)
occurred in August over the western part of the basin, while the surrounding mountain
regions experienced a downward trend. Overall, the annual ABLH exhibited a downward
trend in most parts of the region, with the highest upward trend rate being approximately
30–40 m per decade.

Furthermore, the Morlet wavelet analysis identified four main cycles of the annual
ABLH: 2, 5, 9, and 15 years. Among these cycles, the time scale of approximately 15 years
corresponded to the most significant variance extreme value, followed by 9 and 5 years.
The annual changes of about 2 years were comparatively fast and relatively insignificant.
The M-K method also detected an abrupt change in the ABLH in 2004.

The first four Empirical Orthogonal Function (EOF) modes of ABLH explained ap-
proximately 74.5% of the total variance. Specifically, the first EOF mode indicated that
the middle and northeast regions of the study area were characterized by a relatively
high ABLH.

This correlation analysis showed that between the ABLH and mean, maximum, and
minimum air temperature in the Tarim Basin demonstrated positive correlations, with
correlation coefficients of 0.95, 0.94, and 0.95, respectively. Conversely, air pressure and rel-
ative humidity exhibited negative correlations, with correlation coefficients of 0.91 and 0.67,
respectively. These findings are consistent with previous studies conducted in Europe [19],
China [21,24], East Asia, and North Africa, which reported the sensitivity of ABLH to air
temperature [23].
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Abstract: Landscape has significant effects on hydrological processes in a watershed. In the Sudano-
Sahelian area, watersheds are subjected to a quick change in landscape patterns due to the human
footprint, and the exact role of the actual landscape features in the modification of the hydrological
process remains elusive. This study tends to assess the effects of landscape on the genesis of the
runoff in the Mayo Mizao watershed. To achieve this goal, 62 infiltration tests were performed at
different points and depths (5 cm and 20 cm) using the double-ring method and the Porchet method.
The results show that the combination of many factors (soil type, land use, and farming practices) can
guide the hydraulic conductivity behavior of soils. For example, at 5 cm depths, clayey-evolved soils,
such as vertisols and halomorphic soils, inhibit infiltration, as opposed to non-evolved mineral soils,
such as lithosols and clayey-sandy soils. However, at 20 cm depths, gray soils with halomorphic
tendencies followed by vertisols have a low sensitivity to infiltration, as opposed to soils derived
from loose materials and halomorphic soils. For a given soil type, rainfed crops are the primary
land use that runs against infiltration. However, the effect of tillage varies according to the soil type.
Finally, given the extent of vertisols and halomorphic soils in the Far North region of Cameroon in
general, and in the Mayo Mizao watershed in particular, and regarding the increase in cultivated
areas, a probable reduction in the infiltration capacity of soils in this region is to be expected in the
medium term. The results of this study can be used as a basis for land-use planning and sustainable
watershed management in semi-arid tropical zones.

Keywords: saturated hydraulic conductivity; infiltration tests; landscape feature; runoff; flood hazard

1. Introduction

The temporal evolution of the number of floods that occurred between 1900 and
2023 reveals an upward trend, marked by a resurgence in the 1950s [1]. The increase in
the number of flood occurrences could be associated with the various changes to which
hydrological catchments have always been subject. Watersheds exhibit great variability in
landscape structure (topography, geology, soils, occupation, and land management). This
variability, in turn, controls the distribution of precipitation into different components: soil
moisture, runoff, evapotranspiration, infiltration, and groundwater flow [2]. Runoff and
floods occur when one or a combination of the above factors runs against infiltration [3].
Given the ecological changes affecting our environment, a close relationship has been
established between landscape structure and flooding [4]. In the Sahelian area, major
environmental changes that have occurred in recent decades [5] are likely to have led to
profound changes in the landscape, raising the risk of flood disasters. Indeed, the Sahelian
population, whose way of life has long remained most dependent on natural resources, has
led to a high ecological footprint on the environment [6], with a significant change in the
landscape features. This phenomenon seems to be the cause of the decrease in the soil’s
infiltration capacity [7–10]. Sahelian population growth has been accompanied by urban
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sprawl [11] and a high demand for livelihoods [12,13]. Thus, with the aim of attempting
to satisfy the needs of the population, the cropland’s size and urban area increased while
new farming practices were developed [14]. The combination of many factors will then
have an impact on hydrosystem functioning, increasing runoff and river flows [15]. People
will then have to face more environmental hazards. In Far North Cameroon, several
disastrous flooding events have been recorded [16]. The geohistorical analysis performed by
Bouba et al. [17] enabled the identification of approximately 21 large-scale flood disasters
between 1977 and 2011. The Maroua urban area (the greatest city in Far North Cameroon)
appeared to be the most affected by the flood disaster. Therefore, with the aim of improving
the resilience of populations, it is crucial to facilitate the comprehension of the origin of this
hazard. On the one hand, the results obtained by Bouba et al. [17] highlighted that, despite
the increase in rainfall since 1990, the occurrence of flood hazards in Far North Cameroon
is far from being a direct consequence of the rainfall pattern. On the other hand, some
studies have linked the vegetation cover evolution with human activities [18–22]. Their
results showed a loss of vegetation cover and a development of cropland. However, change
in landscape and landform is a rapid phenomenon, while accommodation as a response
to the hydro-environmental consequences of these changes is slow or non-existent. Thus,
identifying the implications of landscape on hydro-environmental processes in a watershed
is a key that can help predict the watershed’s hydrological response and anticipate runoff
and flash flood hazards. What incidence has the actual landscape on the saturated hydraulic
conductivity of soils in the Mayo Mizao catchment? How sensitive is the Mayo Mizao
watershed to runoff and flooding under different landscape conditions? The aim of this
study was to assess the impacts of soil type, land use, and farming practices on the field-
saturated hydraulic conductivity of soils in the Mayo Mizao watershed. To achieve this
goal, a field experiment based on the determination of soil permeability was carried out.

2. Materials and Methods

Two main components of the methodology are presented: the field campaign method
and the data analyzing processing methods.

2.1. Presentation of the Mayo Mizao Watershed

The Mayo Mizao watershed is located at 10.58◦ N; 14.20◦ E (Figure 1). It is actually a
sub-basin of the Mayo Kaliao River, the main tributary of the Mayo Tsanaga River, which is
also a tributary of the Logone River. The Logone River is a tributary of the Chari, which is
the main source for providing water to Lake Chad [23].

Figure 1. Location of the Mayo Mizao watershed.
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The Mayo Mizao watershed size is 100 km2. It is surrounded to the west by granitic
mountains that form the Precambrian basement [24]. These mountains have altitudes
ranging from 520 m (Mt Kaliao) to 640 m (Mt Djebbé) (Figure 1). Toward the east side,
there is Mt Bouloré (700 m) and Mt Mogazang (700 m), made of volcanic and volcano-
sedimentary rocks. The hypsometric characteristics of the watershed show, from upstream
to downstream, three land surfaces: a surface of altitude greater than 440 m, a surface of
altitude between 440 m and 420 m, and a surface of altitude less than 420 m. The slope
varies in the same direction, from 3‰ to 16‰. The Gravelus compactness index (Kc = 1.21)
is close to 1, giving the watershed a high compactness. The surface area is essentially
covered by vertisols and gray soils with a halomorphic tendency. Vegetation that is mostly
made of shrubs and grasses is characterized by a strong ecological footprint [20]. In terms
of rainfall, the Mayo Mizao watershed area receives an annual rainfall of 800 mm. Between
2015 and 2019, daily rainfall varied from 1 mm to 170 mm, often generating severe flooding
due to runoff. This was the case on 23 June 2018, when rainfall of 104 mm gave rise to
significant floods observed in various localities of the watershed area.

2.2. Field Data Collection Process

Infiltration is the process of water entry into the soil. The saturated hydraulic con-
ductivity Ks is an essential parameter for infiltration because if the soil is saturated and
homogeneous, it represents the limit value for the infiltration rate. Hydraulic conductivity
can be determined in the field or in the laboratory. In this study, the determination of Ks
was performed on the field by applying two methods: the double-opened ring method
used at a very shallow depth (5 cm) and the Porchet method (PM) at a depth of 20 cm.
Both of these methods have a transient regime. They were requested because of their
simplicity, accuracy, complementarity, and low implementation costs [25]. For each given
test point, a double-ring method and a Porchet method were assigned. The 20 cm depth
was chosen because it is considered to be a zone that is influenced by farming practices
(plowing). According to Collinet and Lafforge [26], there is no clear relationship between
soil infiltration capacity and the organization of their internal structures.

2.2.1. Double-Opened Ring Method: Device and Operation

In order to overcome equipment shortages and achieve our goal in this study, the
double-ring infiltrometer device was designed with care using rigid steel. It was modeled
with two rings of 22 cm in diameter for the inner ring and 38 cm in diameter for the outer
ring. The equipment was set up in the field by sinking the double ring 5 cm deep into the
ground to prevent lateral water flow during the experiment. At the same time, the device
was fitted with a levelogger for the automatic measurement of water level into the inner
ring and two Frequency Domain Reflectrometry (FDR) probes that controlled variation in
soil water content during the experiment. The two sensors were calibrated on the basis
of measurements taken at a time resolution of 5 min. Once the device was installed, the
levelogger and the FDR probes were switched on. The experiment was carried out by
uniformly spreading around 400 mL of water inside the double ring every 30 s for 15 min
to achieve a complete saturation of the ground. Depending on the soil conditions, the
duration of any trial could take from 1 to 4 h.

2.2.2. Porchet Method

The Porchet method was chosen because of its advantage in measuring permeability
in multilayer soils [26]. The principle of the method consists of digging a hole, filling it with
water, and measuring the temporal variation in water level. In this study, the hole was 20 cm
deep and 10 cm in diameter. The use of pvc (PolyVinyl Chloride) pipe prevented the risk of
the hole wall collapsing, which could distort the results of the experiment. Monitoring the
decrease in the water level contained in the hole made it possible to calculate the hydraulic
conductivity value by using empirical formulas.
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2.2.3. Field Trial Deployment Method

Two main factors directed the deployment of the test points across the watershed area:

- The combination of soil type, land use, and farming practices;
- The steeper slope line of the watershed, which takes into account the different hy-

drogeomorphological aspects associated with the structural organization of the long
profile shaped by erosion and alluvial deposits.

Indeed, in the first case, it is important to note that all soil types do not have the same
occupation, and all cultivated plots do not have the same agricultural techniques. The
location of any test point will, therefore, depend on all these factors. In the second case,
the topography, which is defined by the longitudinal profile of the Mayo Mizao watershed,
reflects a precise pedological organization shaped by water erosion (on upstream slopes)
and sedimentation (downstream). The material removed from the slopes was deposited
progressively, according to size. In this case, it may be noted that in the upstream of the
watershed, soils are not very evolved and consist of coarse materials (products of physical
alteration, nodules) that have been more or less reconstituted. In the middle stream, soils
are clayey and well-reconstituted (evolved soils). In the downstream, there are colluvial
deposits made up of fine, more or less powdery materials (silty-clay texture). Therefore, it
seems worthwhile to take into account this structural organization of the landscape in the
strategy aimed at defining the location of a field test point.

The number of test points was theoretically planned at first. Thus, for each land use
class affected by any soil type, we assigned a test point (A in Table 1), and a total of 31 test
points were required for each method. However, farming practices that are dependent on
the will of the farmers can change on the same plot during the same rainy season. During
the period of our field campaign, five farming practices were identified: rainfed crops
plowed up with a machine; rainfed crops plowed up with a hoe; slash-and-burn crops;
irrigated crops that are practiced in wetlands; fallowing (Figure 2). By taking into account
this component of landscape (except irrigated land and fallowing), some of the soil types
received more test points than others (B in Table 1) because of the difference observed in
their agricultural development. The above criteria have resulted in a spatial distribution of
test points in the field, as defined in Figure 3.

Table 1. Distribution of the number of test points performed in the Mayo Mizao watershed area.

N◦ Soils Types
Number of Test Points

Identity of Test Points
A B

0 Bare rock (Granite) 0 0 Untested materials

I Lithosols on andesite (sandy-clay texture) 4 3 P24; P25; P27

II Stony soils derived from loose materials (Mokoya series) 3 4 P13; P14; P15; P22

III Soils derived from loose materials with a sandy-clay texture
(Doyang series) 2 2 P20; P23

IV Gravelly soils derived from sandy materials 4 Untested materials

V Soils derived from loose material made of gray sand
(Kodeck series) 3 2 P21; P31

VI Sandy-clay soils on the pediment, tending toward dark soils 4 2 P26; P28.

VII Gray soils with halomorphic tendencies 4 3 P19; P29; P30.

VIII Vertisols («Hardé») 4 6 P1; P10; P11; P16;P17; P18

IX Undifferentiated halomorphic soils 4 9 P2; P3; P4; P5; P6; P7; P8;
P9; P12

Total 31 31 31

Note: (A = theoretical planning; B = actual planning).
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Figure 2. Main farming practices identified in the Mayo Mizao watershed.

 
Figure 3. Number and spatial distribution of the test points through the watershed surface area.

2.3. Data Processing and Analysis

The data processing methods included two essential steps, namely the calculation of
hydraulic conductivity values based on empirical formulas and analysis of these.

2.3.1. The Calculation of the Saturated Hydraulic Conductivity Values

The saturated hydraulic conductivity values (Ks) are obtained by applying the empiri-
cal formulas to the raw data collected in the field when the vertical flow of water becomes
constant, and the soil has reached its saturation state [25].

In the case of the double-ring test, we know that the flow inside the inner ring is
considered to be constant. The quantity of infiltrated water is given by the equation below:

Q = V/t = (A1·Δh)/t (1)

In Equation (1), Δh/t is the expression of the speed of infiltration. Therefore, Darcy’s
law can be applied to the vertical flow descending inside the inner ring, considering that at
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the depth Zw, the hydraulic load is null due to the influence of atmospheric pressure. In
this case, the hydraulic gradient is given as follows:

i = (h” ∗ “ + Zw)/Zw = 1 + h ∗ /Zw, (2)

where h∗ is the hydraulic load applied inside the inner ring. The relationship of Darcy can
be written as follows:

v = ki (3)

Equating the two equations of the flow inside the inner ring leads to obtaining the
formula of hydraulic conductivity, also called the permeability coefficient:

Ks = Δh/it = ΔhZw/(t(h ∗+Zw)) (4)

Considering Equation (4) above, we can note the following:
Zw (cm) = the depth at which the double ring was sunk into the ground;
H (cm) = hydraulic load;
A (cm2) = the surface of the inner ring;
Δh (cm) = the variation of water level during the time “t” taken by the experiment;
V (cm3) = A1·Δh = the volume of the infiltrated water.
In the case of the Porchet test, we can note that at the initial time t1 (s), the water level

in the hole is h1 (cm). Then, at the final time, t2 (s), the water level in the hole becomes
h2 (cm). The flow rate of water into the soil is given as follows:

Q = KsSI, (5)

with
Q (cm3/s) = flow rate of water flow into the soil;
Ks (cm/s) = saturated hydraulic conductivity;
I = driving slope;
S (cm2) = wet section (bottom surface of the hole + side surface).
According to the Darcy theory,

I = h/l, (6)

where l (cm) is the wet length. In this experiment, the driving slope I was not known, and
we considered that I = 1, which is close to reality because it increases when the preliminary
humectation is long [25].

In this case, Formula (5) becomes the following:

Q = Ks·S (7)

S, which represents the wet area of the hole, is expressed as follows:

S = πR2 + 2πRh, (8)

where S (cm2) = moistened surface of the hole, R (cm) = the section of the hole, h (cm) =
wet height, and π = 3.14.

By integrating Equation (8) with Equation (7), we obtained the following:

Q = 2πKsR (h + R/2) (9)

On the other hand, the expression of the flow rate of water through the ground is
the following:

Q = −πR2dh/dt (10)

By equaling Equations (9) and (10), we obtained Equation (11) as follows:

−πR2dh/dt = 2πKsR (h + R/2) (11)
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By transforming Equation (11), we obtained the Equation (12) as follows:

−R/Ks ((dh/R)/2 + h) = dt (12)

By integrating (12), this became the following:

−R/2Ks
∫ h2

h1

dh
R
2

+ R =
∫ t2

t1
dt (13)

Equation (12) can also be explained as follows:

−R/2Ks
∣∣∣∣ln (

R
2
+ h)

∣∣∣∣h2
h1

= t2 − t1 (14)

Finally, Equation (15) represents the expression of the saturated hydraulic conductivity
that governs the Porchet method:

Ks = R/2(t2 − t1)ln (h1 + R/2)/(h2 + R/2) (15)

For both the double-ring and Porchet methods, the Ks values were corrected for tem-
perature since the tests were performed in a warm environment where the temperature
conditions were different from the reference temperature. For the Sudano-Sahelian envi-
ronment, we considered that the reference temperature for this study was 20 ◦C, which
corresponds to a dynamic water viscosity of 1 Centipoise and a correction factor of 0.66
(Table 2). The temperature correction is given by Equation (16):

KsTref=KT=nT/nTref
(16)

with
nT/nTref : temperature correction factor that has no unit;
KsT(cm/s): saturated hydraulic conductivity measured at the field conditions;
KsTref:(cm/s): saturated hydraulic conductivity corresponding to the corrected

temperature.

Table 2. Variation in field temperature correction factors according to reference temperature.

Tref (◦C) 2 4 5 6 8 10 12 14 16 18 20

Dynamic water viscosity
(Centipoise) 1.67 1.57 1.52 1.47 1.39 1.33 1.24 1.2 1.11 1.06 1

nT
nTref

1.1 1.03 1 0.97 0.91 0.86 0.81 0.8 0.73 0.7 0.66

2.3.2. Data Analysis

The data analysis was based on graphical methods of data representation and then
on statistical methods of data description, visualization, and comparison. Graphical data
comparison methods allowed us to identify landscape conditions that were favorable or
not favorable to infiltration. In addition, the use of descriptive statistics allowed us to
characterize the distribution of saturated hydraulic conductivity values (Ksd and Ksp).
Thus, parameters such as mean, standard deviation, and extreme values were performed.
Following this, the application of the Boxplot method made it possible to assess the dis-
persion of Ksd and Ksp values around their means and to then visualize more easily the
so-called ‘extreme values’, which are more likely to be outliers. In addition, the normality
of the distributions of Ks values was verified by applying the Shapiro–Wilk test to the data
series, and the Wilcoxon test was used to compare the two matched samples of field data
(Ksd and Ksp).
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3. Results

3.1. Lithology, Land Use Type, and Hydraulic Conductivity (Ks) of Soils in the Mayo
Mizao Watershed

The Mayo Mizao watershed contains nine classes of soil (Figure 4). Among them,
vertisols and gray soils with a halomorphic tendency occupy nearly 70% of the watershed
surface area. The eastern and western borders of the watershed are bordered by outcrops
of crystalline rocks. To the east, there are volcanic formations, mainly olivine basalt and
dolerite. To the west, we find plutonic formations consisting mainly of anatexis granite,
syntectonic granite, or migmatite [24].

The land use features are given from the African land cover database in 2015. Four main
land use classes can be, therefore, identified: rainfed crops, mixed crops/vegetation, mixed
vegetation/crops and closed to open landscape (Figure 5).

With regard to soil hydraulic conductivity values, the table below (Table 3) presents
the statistical distribution of ks (Ksd, Ksd). At a depth of 5 cm, Ksd varies from 4 mm/h to
150 mm/h, with a mean of 36 mm/h and a standard deviation of 34 mm/h. However, at a
depth of 20 cm, Ksp data range from 0.05 mm/h to 416 mm/h, with a mean of 38 mm/h
and a standard deviation of 92 mm/h. Thus, we can see that there is a strong dispersion
of Ks values around the means, especially with regard to data from the Porchet method
(Ksd). Between the surface (5 cm) and the depth (20 cm), there is heterogeneity in hydraulic
conductivity data, suggesting more extreme values of Ksp.

Table 3. Statistical distribution of hydraulic conductivity values for the Mayo Mizao watershed.

Ground
Depth

Variable
Number of
Test Points

Range Minimum Maximum. Mean
Std.

Deviation

5 cm Ksd (mm/h) 31 146 4 150 36 34

20 cm Ksp (mm/h) 31 416 0 416 38 92

3.2. Impact of Soil Type on the Variability of Ks in the Mayo Mizao Watershed

The balance between infiltration and runoff depends on the soil type due to its struc-
ture [27] and its surface conditions [28–30]. In the Mayo Mizao watershed, the results of
this study show that regardless of the measurement technique, vertisols are the lithological
formation that has the highest resistance to infiltration. Resistance to infiltration is also
remarkably observed in soils derived from loose materials with a sandy-clay texture, in gray
soils with a halomorphic tendency, and in undifferentiated halomorphic soils (Figure 6).
The impermeability of the soils mentioned above could be justified firstly by their low
organic matter content and secondly by their grain size, most of which is dominated by
fine materials, sometimes adding a high proportion of sandy materials [28,31]. It should
be noted that the structural stability of soil depends on its intrinsic characteristics, which
could make it more vulnerable to rainfall aggressiveness and, hence, to crusting. Therefore,
since these soil types cover more than 75% of the Mayo Mizao watershed surface area, their
implication in the genesis of runoff and flooding should rightly be considered in this study.

In addition, we were given the opportunity to compare the degree of permeability ob-
served between the surface (5 cm) and depth (20 cm) using the Wilcoxon test. Before doing
so, it is important to check the normality of the distribution of Ks values by applying the
Shapiro–Wilk test. Thus, to the null hypothesis H0 (samples follow a normal distribution),
we opposed the alternative hypothesis Ha (samples do not follow a normal distribution).
Regarding the results in (Table 4), we accept that the alternative hypothesis was retained
for each of the two samples, as the calculated p-value (0.0001) was below the significance
threshold α = 0.05. This means that the distributions of the two samples (Ksd and Ksp)
did not follow a normal distribution and that the risk λ of rejecting the null hypothesis H0
when it is true was less than 1%.
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Figure 4. Soil class distribution in the Mayo Mizao watershed [31].

 

Figure 5. Distribution of the main land use classes in the Mayo Mizao watershed (http://2016
africalandcover20m.esrin.esa.int/ accessed on 11 August 2016).

Figure 6. Variability of KS values according to the soil type in the Mayo Mizao watershed.
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Table 4. Results of the Shapiro–Wilk test.

Statistic Parameters Ksd (mm/h) Ksp (mm/h)

W 0.780 0.432

p-value <0.0001 <0.0001

Significant level (α) 0.05 0.05

Risk of rejecting the true hypothesis (λ) 0.01% 0.01%

According to the Wilcoxon test itself, the principle consists of testing the null hypoth-
esis H0 (the distribution of the two samples is not significantly different) against the Ha
hypothesis (the distribution of the two samples is significantly different). The results show
that the alternative hypothesis Ha (the two distributions are significantly different) was
supported, and the risk λ of these results being considered true when they are false was
less than 1.07% for the first sample (Ksd) and less than 4.89% for the second sample (Ksp).
The results of this test (Table 5) mean that for the same type of soil, hydraulic conductivity
values at the topsoil are different, with some obtained at depth. The variability of perme-
ability at the soil surface area and depth is then under the control of different factors. It
may be considered that the difference in the hydrodynamic behavior of soils is due to the
organization and the structure of the soil layers, generally shaped by the nature of the soil,
the land use type, and the cultivation practices.

Table 5. Results of the Wilcoxon test applied to Ksd and Ksp values.

Statistic Parameters Ksd (mm/h) Ksp (mm/h)

V 23 349

Expectation 15,500 248

Variation (V) 7750 2,603,875

p-value 0.011 0.049

Significant level (α) 0.05 0.05

Risk of rejecting the true hypothesis (λ) 1.07% 4.89%

Analysis of the results in (Figure 7) shows that, for the majority of individual test
points, the soils have high surface permeability and low depth permeability (Ksd > Ksp),
with the exception of the following test points: 150813P4, 150901P7, 150901P8, 160309P13,
160317P17, 160930P20, 161001021, and 170320P31, where Ksd < Ksp. This result may not
always be true when considering the weighted average of Ks values obtained from test
points carried out on the same soil type (Figure 6). The exceptions mentioned above are
linked, on the one hand, to an abundance of granular material on the surface and, on
the other hand, to the modification of the surface condition due to encrusting. To better
understand this, we need to look at material texture. Indeed, it should be noted that
the silty-sandy texture, sandy texture, or sandy-clay texture of soil is a factor that is at
the origin of soil crusting. Clearly, a crusted surface will inhibit infiltration [29,32]. The
inverse gradient of permeability can be considered the result of an accumulation of alluvia
upstream or the consequence of colluvial deposits left by flood damping in major beds.
Similarly, the difference in soil permeability between the surface and the lower depth could
also be explained by the differences in the layers’ structural homogeneity or in the operation
between the two infiltration measurement methods. In fact, during the double-ring test,
the lateral flow of water is prohibited by the outer ring; this makes the vertical flow more
predominant, and the test should not concern many layers. In the case of the Porchet test,
the flows are carried out in the vertical and lateral directions, and many layers may be
affected by the test. In addition, we can see that the Porchet test provided very spread-out
hydraulic conductivity values (upwards) with so many extreme values (332 mm/h and
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415 mm/h) (Figure 8). The dispersion of the Ksp values could express the effect of the
lateral flow during the Porchet experiment.

 

Figure 7. Comparison of hydraulic conductivity values between the surface (5 cm) and the soil depth
(20 cm).

Figure 8. Distribution of hydraulic conductivity values obtained using the double-ring test and the
Porchet test.

3.3. Influence of Land Use Type on the Variability of Ks in the Mayo Mizao Watershed

According to Shukla [33] and Di et al. [34], land use has direct or indirect effects
on infiltration capacity. In the case of the Mayo Mizao watershed, four main land use
classes were identified and tested: rainfed crops; mixed crops (rainfed crops, off-season
crops, irrigated crops)/vegetation (pasture, shrub, forest); mixed vegetation (pasture, shrub,
forest)/crops (rainfed crops, off-season crops, market gardening), and finally, the closed to
opened landscape (hardwood or softwood; evergreen or deciduous; shrubs). The results of
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the field experiments show that the cropland landscape is more favorable to infiltration
than the covered land (closed to opened landscape, mixt vegetation/crops) (Figure 9).

Figure 9. Variability in saturated hydraulic conductivity related to land use type in the Mayo
Mizao catchment.

The results above could be explained by the fact that tillage, which leads to the creation
of clods, aggregates, and pore networks, makes the soil structure looser, less compact, and
more permeable to water flow [28–30,35]. The high hydraulic conductivity values of the
croplands and plowed lands have also been observed in other West African catchment
areas, particularly in the Tougou catchment in northern Burkina Faso [36]. However, it is
prudent to express reservations about the involvement of tillage in increasing soil hydraulic
conductivity values. According to previous studies that have been carried out in both
the Sahelian area [29,30,37,38] and in other bioclimatic environments, in particular in the
Mediterranean area [35,39,40], the increase in soil infiltration capacity following plowing
constitutes a dynamic state during that growing season. Thus, under the influence of the
intensity and cumulative rainfall, the conditions of cropland surface are enhanced over
time toward an unfavorable state for infiltration, as under the impact of the energy of
successive raindrops, the aggregates and porosity initially generated by tillage fade after a
certain time. From then on, encrusting is reconstituted at the surface, and subsequent rains,
even of low intensity, will be sufficient to generate runoff. According to Andrieux [35],
cumulation and rainfall intensities are not the only factors responsible for the decrease
in infiltration capacity in the croplands. In fact, soils with high clay content in the first
10 cm of depth are also responsible for the decrease in soil infiltration capacity. When
comparing the values of Ksd and Ksp obtained in the same given land use class, we can see
that Ksd > Ksp, except in the case of plots occupied by rainfed crops, where Ksd < Ksp. This
could once again reflect the short-term consequences of tillage activity in association with
rainfall intensity and accumulation. However, it seems that the combination of the effects
resulting from soil type and land use type could influence hydraulic conductivity in one
direction or in the other, depending on the case.

3.4. Combined Effects of Soil Type and Land Use Type on the Variability of Ks

By taking into account the combined effects of soil type and land use type (Figure 10),
we realized that for the same soil type, Ks vary according to the land use type. For example,
in the case of vertisols, Ks is found to be higher on mixed vegetation/crop plots than
on rainfed plots. Similarly, it can be seen that for the same land use type, Ks varies
according to the soil type. For example, it can be noted that for a plot occupied by mixed
vegetation/crops, Ks is higher in gray soils with a halomorphic tendency (at the surface)
than in vertisols. Such observations, therefore, allow us to confirm that the preponderance
of each soil type over the variability of Ks depends on the land use type, and the opposite is
also true. However, the part of the influence of each landscape feature was not determined.
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Figure 10. Combined effects of soil type—land use type on the variability of the saturated hydraulic
conductivity in the Mayo Mizao watershed.

3.5. Impact of the Cultivation Practices on the Variability of Ks in the Mayo Mizao Catchment

The influence of farming practices was tested on two of the most cultivated soil types
in the Mayo Mizao catchment. These are vertisols and undifferentiated halomorphic soils.
These two soil classes cover nearly half of the surface area of this catchment.

3.5.1. Farming Practices Conducted on the Vertisols

The spatial variability of saturated hydraulic conductivity as a function of farming
practices on vertisols shows that plowed plots have the lowest Ks values (A in Figure 11).
Therefore, we can consider that the practice of plowing on vertisols leads to a decrease
in infiltration and an increase in runoff. This result is in line with those obtained by
Seyni-Boukar [37] and Peugeot [29]. Thus, after studying the influence of tillage on the
infiltration capacity of Sahelian soils, the above authors came to the conclusion that tillage is
responsible for increasing runoff by reducing the infiltration capacity in vertisols. According
to them, plowing helps to bring back to the surface the elementary particles buried in the
soil. From then on, and under the effect of the kinetic energy of the raindrops, these
elementary particles will cause the intergranular pores to clog. The result is the formation
of an impermeable shell that prevents water infiltration. Similarly, Fiès and Castelao-
Guegunde [39] also experimented with the effect of tillage on runoff. Thus, by applying
kinetic energy rains ranging from 70 to 340 J·m−2 to a plowed silty-clayey soil, they noticed
that the volume of structural pores decreases by 60% when the kinetic energy of the rain
increases. They then estimated a reduction in soil infiltrability by a factor of 10. Such a
mechanism of structural soil reorganization induced by tillage is particularly characteristic
of vertisols due to their high fine content [37].

Contrary to the effect of plowing on the hydraulic conductivity of vertisols, the
results show that slash-and-burn farming and fallowing seem to increase infiltration rather
than runoff. This result is supported by [41]. Indeed, slash-and-burn farming has a
reducing effect on the infiltration capacity of soils because of its structural modification.
The magnitude of the effects of slash-and-burn farming on the hydraulic conductivity of
soils would be dependent on the intensity of the calcination or the length of time between
the pre-burnt and post-burnt periods. However, due to the high spatial and temporal
variability of rainfall, there are many studies conducted under natural rainfall (rather than
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simulated rainfall) that have shown a more stimulating role for bushfire on soil infiltration
capacity. Thus, to talk about the Mayo Mizao watershed, where this study was carried
out under simulated rain, one would rather have expected a reducing effect from the
practice of slash-and-burn farming on the infiltration capacity of the soil, which is quite
the opposite. As such, one could attribute this difference in the hydrodynamic behaviors
of burned land to the nature of the soil rather than to an agricultural practice itself. It
would, therefore, be interesting to note that in vertisols, there are networks of shrinkage
slits that constitute a significant source of permeability and whose densification could
come from the desiccation process generated by the practice of burning [28]. In the case of
fallowing, it should be noted that the increase in infiltration observed in this study could
be explained by the influence of vegetation cover in the infiltration–runoff relationship.
Vegetation cover is involved at several levels in the fight against runoff [42]. Thus, thanks
to the interception of raindrops by the aerial parts of the plant (leaves, branches, and trunk),
vegetation cover contributes to reducing the erosive energy of rainfall by preventing the
splash effect. Thanks to the litter and bushes, the vegetation cover also acts directly on
runoff by acting as an obstacle to the water flow. In addition, thanks to the root system,
the plant cover ensures that the soil’s structural cohesion is maintained. Similarly, the
development of organic matter from plant residues improves soil porosity and, therefore,
promotes infiltration. To summarize, the action of vegetation in increasing infiltration takes
place directly and indirectly. In terms of the vertical variability of hydraulic conductivity,
it can be seen that whatever the farming practice, the Ks values are higher on the surface
than at depth.

 

Figure 11. Variability of hydraulic conductivity according to the farming practices made on the
vertisols and on the halomorphic soils.

3.5.2. Farming Practices Conducted on the Halomorphic Soils

The hydraulic conductivity (Ks) on halomorphic soils is higher in plowed plots than
in fallowed plots (B in Figure 11). This situation is quite the opposite of that observed
in vertisols. We can see that the influence of soil type on hydraulic conductivity inhibits
farming practices. In fact, halomorphic soils are indurated soils with low organic matter
content and a high content of sandy or gravelly materials. Plowing breaks down the
compactness of the land, making it looser and more permeable to water. This phenomenon
has also been observed by Segalen [31], Casenave and Valentin [28], and Peugeot [29]
in the same Sahelian environment. However, the practice of fallowing on halomorphic
soils leads to reduced infiltration. Moreover, Fournier et al. [43], who studied the role of
fallowing land on runoff and soil erosion in the locality of Bondukury in Burkina Faso,
found the opposite results. The results of their study conducted on sandy soils with a
low slope (5%) showed that the fallowed plots had the lowest annual runoff coefficients,
i.e., 13% compared with 20% for cultivated plots and 50% for bare soil. However, the
comparison between the results of the various studies should take into account the stage of
evolution of the fallowed land itself [43]. It should, therefore, be noted that the capacity
of fallowing to promote infiltration depends on the presence and extent of bedding or the
density of the plant cover. In Far North Cameroon and specifically in the Mayo Mizao
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catchment, vegetation is almost entirely grassy, while the time allocated to fallowing is
relatively short. Consequently, the mineral soils of this region are poorly covered with
litter [28]. In addition, it should be noted that halomorphic soils in Far North Cameroon
have mechanical properties that are not consistent with infiltration in the first 10 cm of
depth due to their prismatic and compact structure [31]. During fallowing, the degree of
the compactness of this soil should increase, and so runoff should increase as well [30].

To summarize the above paragraphs, we can note that the variability in hydraulic
conductivity under different farming practices in the Mayo Mizao watershed suggests two
contradictory situations depending on the nature of the soil where the tests were performed.
In the case where cultivation practices are carried out on vertisols, plowing seems to be
responsible for the decrease in infiltration. The practice of slash-and-burn farming and then
fallowing, on the other hand, has less significant impacts, as it is inhibited by the natural
properties of the vertisols. In the case of halomorphic soils, plowing seems to increase
infiltration. This hydrodynamic behavior of plowed halomorphic soils is linked to their
high sand content and to the dismantling of the surface level area, which gives this soil
a looser and more permeable structure. On the other hand, halomorphic soils on which
fallowing is practiced are against infiltration due to the encrusting that develops at the
surface layers.

4. Discussion

Many researchers from all over the world have reported that different types of soil
and land use have different abilities in passing water into the ground. Bare soil tends
to be prone to erosion, reducing the soil’s infiltration capacity and increasing surface
runoff. Increasing the runoff coefficient will increase the peak discharge in a watershed.
The decrease in the river capacity due to sediment can cause a river flood. According to
Basga et al. [44], flooded vertisols from northern Cameroon have a high content of clay that
displays dispersion and flocculation under rainfall and then inhibits vertical infiltration.
Shabtai et al. [45] studied the effects of soil and land use change on the structure and
hydraulic conductivity (Ks) of vertisols in northern Ethiopia. Their results are similar to
ours. Indeed, they observed a difference in saturated hydraulic conductivity between the
surface of vertisols and depth. According to them, the low saturated hydraulic conductivity
values observed at the surface are associated with the phenomenon of swelling of vertisols
in contact with rainwater. These swellings are, therefore, higher at the surface than at depth
and in cultivated soils than in savannah and forest soils. They, therefore, concluded that
the conversion of natural savannah vegetation to crops and tillage operations must have
destabilized the initial soil structure in cultivated plots, which in turn reduced the ability
of the soil to infiltrate. Several other studies carried out in the Sahelian zone [37,46–49]
have also confirmed the results of this study by concluding that the internal (clay and
sandy-clay textures) and external soil factors, such as farming practices (plowing and slash-
and-burn farming), lead to the crusting and then to the reduction in soil infiltration capacity.
Similarly, numerous studies carried out in other semi-arid regions have produced the same
conclusion. It is the case of Chartier et al. [50] in Patagonia (Argentina), Anderson [51] in
the lower Mississippi River Valley, and Liu et al. [52] in Shandong (China). To conclude
this paragraph, we can say that the involvement of vertisols and halomorphic soils on the
one hand and cultivated land and plowing practices on the other hand in the genesis of
floods is all the more significant given their considerable extent in the Far North region
of Cameroon.

Overall, it should be noted that poor water transfer within the surface formations of a
watershed is the cause of runoff and flooding. In the case of the Mayo Mizao watershed,
soil types marked by grain seize and its external structural organization have an influence
on infiltration and, therefore, on runoff and flooding. In addition, it should be noted
that the evolution of landscapes, associated with changes in land use and land cover,
and then certain farming techniques, are factors responsible for the genesis of runoff and
flooding. Prior identification of the landscape factors behind flooding can help people
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improve flood hazard management and mitigation strategies. Thus, a number of land
management actions can be applied to improve the infiltration capacity of soils across the
catchment studied or across a similar environment. Strategies can be agronomic, hydraulic,
or ecosystem-based. On the agronomic level, local farmers should limit machine plowing
practices or, on the contrary, practice mulching in order to limit the impact of raindrops
on soil erosion and crusting [53]. Similarly, practices such as crop rotation, fallowing,
humification of cultivated plots [54], and subsoiling should be encouraged to ensure
increased soil infiltration capacity. Ecologically, deforestation control and reforestation
policies for denuded watersheds should be implemented to limit runoff and soil erosion [55].
Similarly, farmers should practice terrace cropping in steeply sloping areas (hillsides) to
minimize runoff and soil water erosion [56]. According to hydraulic measures, farmers
should ensure sediment trapping or set up temporary rainwater retention structures (folds,
dikes, benches, ponds, hillside reservoirs, embankments, hedges, vegetated cordons) to
slow runoff across the watershed [52,57].

To conclude this section, we can say that the involvement of vertisols and halomorphic
soils on the one hand and cultivated land and plowing practices on the other in the
genesis of floods is all the more significant given their considerable extent in the Far North
region of Cameroon. Thus, through watershed redevelopment policies and the practice of
agricultural techniques appropriate to each soil type, we could achieve sustainable flood
management in the area concerned.

5. Conclusions

In a nutshell, this study shows that the genesis of runoff in the Mayo Mizao watershed
is dependent on soil type, land use, and farming practices. The influences of these factors
are simultaneous. However, with regard to soil type, it should be noted that vertisols,
halomorphic soils, and gray soils with a halomorphic tendency are the three main soil
types that offer considerable resistance to water infiltration. This is probably due to the
high content of fine materials, the compactness that varies, and the advance or earlier stage
of pedogenesis. As far as the influence of land use in infiltration, it should be noted that
the role of croplands is relevant. With regard to the role of farming practices, it should
be noted that, apart from plowing, which favors infiltration during the early stages of the
rainy season (but is unfavorable in the advanced stage of the rainy season), the impacts of
most agricultural practices on infiltration are strongly inhibited by the soil type.

This study is a contribution to a better understanding of the socio-ecological and
hydrological functioning of the Sahelian watersheds, which have recently been dominated
by many extreme hydrological events.
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Abstract: The Arabian Desert is characterised by very low rainfall and high evaporation, yet over
210 springs are on its northeastern edge in central Iraq along the Abu Jir lineament, which represents
the western depositional margin of a foreland basin infilled by the floodplain sediments of the
Tigris and Euphrates Rivers; there is little evidence of faulting. The springs discharge from gently
east-dipping Paleocene–Eocene limestones, either where groundwater flowpaths intersect the ground
surface or where groundwater flow is forced to the surface by confining aquitards. Calculated annual
recharge to the aquifer system across the Arabian Desert plateau (130–500 million m3) is significant,
largely due to rapid infiltration through karst dolines, such that karst porosity is the primary enabler
of groundwater recharge. The recharge is enough to maintain flow at the Abu Jir springs, but active
management of groundwater extraction for agriculture is required for their long-term sustainability.
The hydrochemistry of the springs is determined by evaporation, rainfall composition (high SO4

concentrations are due to the dissolution of wind-blown gypsum in rainfall), and plant uptake of Ca
and K (despite the sparse vegetation). Limestone dissolution has relatively little impact; many of
the springs are undersaturated with respect to calcite and lack tufa/travertine deposits. The springs
at Hit-Kubaysa contain tar and high levels of H2S that probably seeped upwards along subvertical
faults from underlying oil reservoirs; this is the only location along the Abu Jir lineament where
deep-seated faults penetrate to the surface. The presence of hydrocarbons reduces the Hit-Kubaysa
spring water and converts the dissolved SO4 to H2S.

Keywords: Iraq; springs; hydrochemistry; hydrogeology; recharge

1. Introduction

The Arabian Desert extends across much of Saudi Arabia and Iraq and is characterised
by very low rainfall, high evaporation, and sparse vegetation. Nevertheless, along its
northeastern edge in central Iraq, there is an extensive line of over 210 springs along the
northwest–southeast geographical divide between the desert and the fertile Mesopotamia
plains of the Euphrates and Tigris Rivers (Figure 1). These springs also lie along a cultural
divide between the desert, the realm of nomadic people, and the floodplain, where a
reliable supply of water has allowed for the development of the flourishing permanent
human settlements [1].

For this study, we carried out the first comprehensive mapping of the Abu-Jir Springs
and integrated this with a reassessment of the significant amount of available data on the
springs in order to determine the reasons for their existence in such an arid region.

The linear feature associated with the springs is generally identified as a major fault
(the Abu Jir Fault) [2]. However, geological mapping has failed to identify a near-surface
rupture that coincides with the springs, e.g., [3], so the interpretation of this fault seems
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to be largely conjectural. To understand the nature of the geomorphological/geological
structure associated with the springs, we reassessed the regional geological mapping and
seismic data for the area.

The springs are supplied by groundwater from the Umm er Radhuma-Dammam
aquifer underlying the Arabian Desert to their west [4]. This aquifer has been exploited
by recent extraction for irrigated agriculture in some areas [5,6], although much of the
groundwater from the aquifer is saline [7]. The exploitation has impacted many of the
springs and has been regarded as unsustainable. However, the potential recharge area of
the aquifer feeding the springs is enormous, even though it coincides with a landscape of
very low rainfall. Here, we assess the sustainability of the springs under current rainfall
using two different methods to calculate the recharge potential.

The chemical composition of the springs is characterised by high levels of SO4 and
often high salinity; the Hit-Kubaysa springs also contain tar and H2S. The interpretation of
these characteristics has invoked many different processes: evaporation [7,8],the dissolution
of gypsum [7,9], evaporites [7], and carbonates [5,7,8], the input of connate sea water [10,11],
and, for the Hit-Kubaysa springs, the input of petroleum and brines from reservoirs deep
beneath the springs [12]. Here, we reassess the hydrochemical evidence using new methods
of interpretation, including a comparison with rainfall composition, as this is essential
for determining which species in solution were derived from rainfall and which from
rock–water interactions in the aquifers.

2. Materials and Methods

For the mapping of the springs, we used the CORONA satellite photography de-
rived from the United States intelligence program of satellite reconnaissance from 1959
to 1972 [13,14], which was verified by fieldwork for many springs during this study. The
CORONA images dating from August 1968 are essential for locating the springs on the
Abu Jir lineament because they predate the groundwater extraction for agricultural de-
velopment that has deactivated many springs. The mapping was also informed by the
detailed map and journal compiled by Alois Musil, a Czech theologian and explorer who
made multiple journeys through the Middle East. He travelled southeast along the Abu Jir
lineament in 1912, providing locations and names for the springs [15].

Data on the hydrogeology of the region and the spring hydrochemistry were obtained
from existing published sources and then integrated and reassessed. For the hydrochemical
study, the spring compositions were plotted on a Piper plot. In addition, the median
composition of spring water from four different sets of springs along the Abu Jir lineament
(Hit-Kubaysa, Haqlaniyah, Shinafiyah, and Najaf) was compared with rainfall (obtained at
Riyadh) using a standardised Schoeller plot. A Schoeller plot is a semi-logarithmic diagram
of species concentrations from multiple samples, with the advantage that, unlike trilinear
plots, the actual concentrations are displayed [16]. The data in the present study were
standardised to the Cl− value of rainfall. This removes any influence of evaporation [17],
i.e., if the spring waters represented just evaporated rainwater, with no other influence on
their chemistry, all lines on the Schoeller plot for spring water would plot over the top of
the rainfall line. This procedure assumes that all Cl− arrives in rainfall and that processes
in the soil or aquifer (apart from evapotranspiration) do not affect the Cl− concentration.

The saturation indices (SIs) with respect to calcite were calculated for the spring water
compositions [18]:

SIcalcite =
Activity Product

Kcalcite
(1)

where
Activity Product = aCa2+ . aCO3

2− (2)

The recharge for the springs was calculated using two methods. The first, the chloride
(Cl−) mass balance (CMB) method [19,20], is based on the relationship between Cl− concen-
trations in groundwater and in precipitation (rainfall) (Equation (3)). As for the Schoeller
plot, this calculation assumes that all Cl− in the groundwater is derived from rainfall and
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remains in solution within the groundwater system and that there is no significant loss of
chloride in runoff:

recharge (mm) = rain f all (mm) · rain f all Cl
(mg

L
)

groundwater Cl
(mg

L
) (3)

The second method for calculating recharge used the empirical relationship between
rainfall and recharge from MacDonald et al. [21]:

ln recharge (mm) = −5 + 1.388 ·ln rain f all (mm) (4)

3. Abu Jir Springs

The Abu Jir springs total 214 in number and lie along the Abu Jir lineament, which
extends in a slightly arced line for ~520 km (Figure 1). The maximum distance between the
springs along the lineament is 42 km northwest of Razazza Lake, and the maximum width
across the complex of springs is 26 km in the Hit-Kubaysa area. The springs are closely
aligned along the western edge of the Mesopotamian floodplain (Figure 2), which is here
called the Abu Jir lineament (discussed further below).

In general, the springs have low flows, with an average discharge of <1 L/s, and
provide little inflow to the Euphrates River, which is mostly located to the east of the spring
line (Figure 1). At Haqlaniyah and Hit, the springs provide a minor inflow to the main
channel of the river, and to the northwest of Qaryat al Gharab (Figure 1), the springs occur
on either side of the Al-Atshan River, a channel of the main Euphrates stream crossing
an area of marshland. The springs do not discharge into most of the large ephemeral salt
lakes to the east of the lineament, although a spring that provides a groundwater source for
Sawa Lake (Figure 1) is occasionally exposed when the lake levels recede (Figure 3). Some
springs have associated travertine deposits, especially near Hit and Abu Jir (Figure 1).

3.1. Geological and Geomorphological Setting

The geology and geomorphology of Iraq are the result of its tectonic history, in par-
ticular, the collision between the Arabian and Eurasian plates during the Alpine Orogeny,
which began in the Early Paleogene, with a significant phase in the Pliocene–Early Pleis-
tocene [22,23]. Tectonism continues today; the Arabian Plate is still moving northeastwards
at ~1.5 cm/year. The thrusting of the Eurasian Plate over the Arabian Plate formed, in
increasing distance from the collision zone (i.e., northeast to southwest), the Zagros fold and
thrust belt, the Mesopotamian foredeep, and the inner Arabian platform [23,24] (Figure 4).
These three tectonic units correspond to the three major geomorphic subdivisions of Iraq
(Figure 2). In the northeast are the rugged peaks and linear ridges of the Zagros Moun-
tains, uplifted by the collision and rising to over 3000 m. To the southwest is the flat
Mesopotamian Plain, almost entirely < 100 m in elevation, which slopes very gently to-
wards the Persian Gulf; it is crossed by the Tigris and Euphrates Rivers [22]. Beneath
the plain are gently folded Cretaceous limestones and sandstones, which are important
oil reservoirs in central and southern Iraq [25]. The Mesopotamian Plain represents a
foreland basin that subsided in front of the rising Zagros Mountains and was infilled by the
floodplain sediments of the rivers. To the southwest is the Arabian desert plateau, rising
slowly westwards to over 800 m at the border with Saudi Arabia, and composed largely of
Paleogene and Neogene carbonate sediments that dip very gently eastwards.
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Figure 1. Location of springs (blue dots) along the Abu Jir lineament, and modern cities (squares).
For location, see Figure 4.
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Figure 2. Topography of central Iraq showing the three major geomorphic sub-divisions, springs
(white dots) located along the Abu Jir lineament, and the locations of the cross-sections in Figure 5.
For location, see Figure 4.

 

Figure 3. Spring exposed in the bed of Sawa Lake when the lake receded (see Figure 1 for location).
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Figure 4. Geology of the desert plateau west of Abu Jir lineament, after refs. [23,26,27], showing
location of Figures 1 and 2 (box on main figure) and the stratigraphic profiles in Figure 5.

The well-defined topographic boundary between the Mesopotamian Plain and the
desert plateau, which trends northwest–southeast for ~520 km (Figure 2), is referred to
here as the Abu Jir lineament, because it is a well-marked linear feature. It has also been
called the Abu Jir Fault, e.g., [24], but there is little evidence of surface displacement along
most of the lineament [28], and cross-sections on the 1:250,000 geological maps covering
the lineament show uninterrupted east-dipping strata, e.g., [3]. Even in the Hit-Kubaysa
area, where there is evidence of hydrocarbon leakage up steeply dipping faults along or
close to the lineament, no displacement has been documented at the surface [8,29]. Seismic
sections show that right-lateral strike-slip faults (flower structures) exist at depths beneath
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the Abu Jir lineament [28], but these have minimal vertical displacement and also occur
beneath the Mesopotamian Plain [30].

To confirm this interpretation, new cross-sections were constructed along the lineament
using all available geological and geomorphological information (Figure 5); these show
clearly that the Abu Jir lineament does not coincide with a fault. It is instead a topographic
feature that forms the western edge of the floodplains of the Tigris and Euphrates Rivers. It,
therefore, represents the western depositional margin of the foreland basin (Mesopotamian
Plain) that subsided in front of the rising Zagros Mountains as the Eurasian Plate was
thrust over the Arabian Plate and was infilled by the floodplain sediments of the rivers.

To the west of the Abu Jir lineament is the Arabian Desert plateau (Figure 2). This has
very low relief, increasing gradually westwards in elevation from ~100 m at the lineament
to over 800 m at the border with Saudi Arabia. The exposed strata in the eastern part of
the plateau are predominantly carbonates of Paleocene to Miocene age (Figure 4); older
sediments of Permian to Cretaceous age (mostly carbonates) outcrop to the west. The
northeastern part of the plateau is dissected by shallow valleys running northeastwards;
elsewhere it is characterised by a rocky surface with numerous solution features, such as
karst depressions (dolines) (Figure 2), some of which lead to caves. On the desert plateau in
eastern Saudi Arabia, horizontally developed shallow caves and vertical shafts have been
reported; these are believed to have formed predominantly during wetter climate phases
in the Pleistocene [31,32].

3.2. Hydrogeological Setting

The hydrogeology of the springs along the Abu Jir lineament is determined by the
geology of the Arabian Desert plateau, which represents the recharge area for the springs.
Carbonate aquifers of Cretaceous–Miocene age are exposed across most of the plateau
(Figure 4) and extend continuously eastwards beneath the clay-rich aquitard of the Quater-
nary sediments of the Mesopotamian Plain (Figure 5). Miocene–Pliocene aquitards overlie
the carbonate aquifers in places along the easternmost margin of the desert plateau, close
to the Abu Jir lineament (Figure 5) [4].

The oldest carbonate units that form significant aquifers are Cretaceous in age; these
outcrop in the central and western parts of the desert plateau. In stratigraphic order, these
are the Mauddud Formation (horizons up to 50 m thick of limestone and marl), the Rutbah
Formation (sandstone and some limestone, 20–30 m thick), and the Ms’ad Formation
(about 65 m of limestone with thin sandstone tongues) [2]. These are overlain by the Late
Cretaceous Hartha, Tayarat, and Digma Formations, with a total thickness of >100 m; all of
these latter units contain marl horizons, particularly the Digma Formation, which may act
as aquicludes separating the Cretaceous aquifers from younger Paleogene aquifers.

The two main aquifers of the desert plateau are the Paleocene Umm Er Radhuma
Formation and the Eocene Dammam Formation [4] (Figures 4 and 5). Over most of the
plateau, the Dammam Formation directly overlies the Umm Er Radhuma Formation [2],
and the two form a single unconfined aquifer system. The Umm Er Radhuma Formation
consists of microcrystalline, porous, anhydritic, and dolomitic limestones, mostly dull
white or buff, with a thickness of 120–180 m. The Dammam Formation comprises whitish
grey, porous, dolomitised limestone, sometimes chalky, and is up to 225 m thick. Two
members of the Dammam Formation are exposed in the eastern and southern parts of the
desert plateau, a Lower Member of whitish grey fossiliferous (nummulites) limestone, and
a Middle Member of white, massive shelly limestone; shells are mainly oysters with few
small nummulites [2].

Overlying the Dammam Formation is the Early Miocene Euphrates Formation, which
consists of white and grey fossiliferous limestone and dolomite. Although it can be over
100 m thick, it is generally much thinner. This formation is also an aquifer, so it rep-
resents an additional part of the Umm Er Radhuma Formation/Dammam Formation
aquifer system.
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Figure 5. Geological cross-sections along the Abu Jir lineament (for locations, see Figures 2 and 4),
showing the hydrogeology of the springs. Note the vertical exaggeration (x82); the actual westwards
dip of the strata is <1◦. Stratigraphy derived from the outcrop distribution and bore logs on the
following 1:250,000 geological maps: Karbala [33]; Al Najaf [34]; Baghdad [35]; Al Birreet [36]; Al
Ramadi [37]; Shithatha [38].
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The porosity and permeability of the carbonate aquifers are due to both dissolution
cavities and tectonic fractures [39]; as a result, the hydraulic conductivity of the Umm Er
Radhuma and Dammam Formations can reach 20 and 100 m/day, respectively [4]. The
Middle Member of the Dammam Formation in the vicinity of the Abu Jir lineament has an
average porosity of 22% and hydraulic conductivity of 6 m/day [3]; to the south, in Kuwait,
the porosity and permeability of the Dammam Formation can be as much as 53% and
5 m/day, respectively [40].

Groundwater flow within the carbonate aquifers beneath the desert plateau follows
the topographic gradient, flowing from southwest to northeast in the northern part of the
plateau and west to east in the south [4]. The watertable within the unconfined carbonate
aquifers lies up to 300 m below the ground surface along the Saudi Arabian border, and
approaches the surface towards the east, as it slopes gently towards the Abu Jir lineament
(Figure 5); the slope of the watertable is gentler than that of the topography. East of the
lineament, the Umm Er Radhuma and the Dammam Formations extend continuously
beneath the sediments of the Mesopotamian Plain as a confined aquifer [4] (Figure 5), and
bores within these units close to the lineament are often artesian [3,41].

Along the eastern edge of the desert plateau, the Umm Er Radhuma/Dammam/
Euphrates Formation aquifer system is overlain by several thin, Middle and Late Miocene
clay-rich units that, together, form an aquitard (Figure 5): the Nfayil Formation (green marl,
grey limestone, and red-brown mudstone), the Fat’ha Formation (green marl and bedded
limestone), and the Injana Formation (red brown mudstone and sandstone). Each of these
units is typically only a few meters thick.

East of the Abu Jir lineament, beneath the Mesopotamian Plain, the Paleogene–
Neogene carbonate aquifers are unconformably overlain by Quaternary floodplain muds
and sands (Figure 5), up to 100 m thick, forming an extensive aquitard.

3.3. Hydrogeology of Abu Jir Springs

Along the southern part of the Abu Jir lineament, the springs are mostly sited at the
break in slope between the desert plateau and the Mesopotamian Plain. Here, the carbonate
aquifers outcrop right up to the lineament (Figure 5), so the boundary between the aquifers
and the aquitard of the flood plain sediments lies directly along the lineament. The effect of
the clay-rich aquitard sediments of the floodplain is to impede the eastward groundwater
flow and force the groundwater to the surface as springs, which are, therefore, located
where the watertable intersects the ground surface (Figure 5). Many of the springs are
probably fed by conduits dissolved in the limestone, accounting for their occurrence as
discrete vents rather than strike-parallel linear seeps.

In contrast, further north along the Abu Jir lineament, the springs are located both at
the break in slope and 10 km or more to the west (upslope) due to a different geological
setting. In the north, the carbonate aquifers are overlain by Miocene aquitards along the
base of the slope immediately west of the Abu Jir lineament (Figure 5); these aquitard
outcrops raise the watertable and force the springs higher up the slope. As a result, the
springs occur at the upslope extent of the aquitard outcrops but also lower down the slope,
where they have broken through the thin aquitard beds. As in the southern area, the springs
are most likely conduit-fed.

Among the northern springs are the Hit-Kubaysa springs, which are notable for their
tar and H2S content [12]. These springs may lie along faults that allow for an upwards leak-
age of hydrocarbons from reservoirs beneath (Figure 5) (discussed further below). However,
there is no evident surface displacement of the carbonate aquifers in this area [8,29], so the
role of the faults in determining the spring locations is uncertain.

3.4. Recharge to the Abu Jir Springs

Although the Umm er Radhuma-Dammam aquifer system has recently been cate-
gorised as non-renewable [42], recharge is demonstrably occurring at present, as shown by
the presence of measurable tritium in the groundwater, indicating recharge in the last
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50 years [43,44]. To estimate this recharge, the chloride (Cl−) mass balance method
(Equation (3)) was applied, using the precipitation-weighted mean Cl concentration of
rainfall in Iraq and Saudi Arabia, (10–20 mg/L) [45–47], the average chloride concentration
of the springs at Najaf (Table 1) and the groundwater in the Dammam Formation, (588 and
980 mg/L, respectively) [10], and the average annual rainfall of the desert plateau (100 mm;
ranging from 64 mm at Ar’ar in Saudi Arabia to 142 mm on the eastern edge of the desert;
much of the rain falls during erratic events of >50 mm). This gave an annual recharge of
1–3.4 mm.

Employing the MacDonald et al. [21] empirical relationship between rainfall and
recharge (Equation (4)) using the average annual rainfall of the desert plateau gave an
annual recharge of 4 mm. The results of both calculations are close to the measured average
recharge of 2.2 mm/yr on the Arabian Peninsula to the southeast [44].

The overall annual recharge to the Neogene carbonate aquifer can be calculated
from these recharge estimates and the catchment (outcrop) area in Iraq and immediately
across the border to the southwest in Saudi Arabia, which is ~123,000 km2, giving an
overall annual recharge of 126–420 million m3 (344–1150 ML/day). If the outcrop of the
Cretaceous carbonates to the west in Saudi Arabia is included, the catchment area increases
to 208,000 km2, and the annual recharge rises to 210–700 million m3 (580–1900 ML/day).

Recharge over the desert plateau occurs despite the low rainfall (50–150 mm) and
the very high evaporation (>2000 mm). This is probably because much infiltration occurs
rapidly through the outcrop, assisted by the numerous karst dolines scattered over the
plateau, which funnel rainfall underground, so that the amount of recharge after rainfall
events can be substantial [43]. Some of these dolines are large enough to be visible on the
low-resolution DEM of the region (south-central part of Figure 2). Thus, the karst porosity
is the primary enabler of groundwater recharge due to its recognisable effect on the nature
of runoff dynamics. In the southwestern part of the plateau, within Saudi Arabia, recharge
also occurs directly through overlying sand dunes [43].

If all the recharge to the Neogene carbonates discharged at the 214 springs along the
Abu Jir lineament, it would give an average spring flow of 20–60 L/sec (1.6–5.5 ML/day).
This is much greater than the average spring discharge of <1 L/sec (0.04–20 ML/day, aver-
age < 0.1 ML/day) [12,48,49]. The total volume of discharge through the springs has been
estimated as only 137 ML/day [42]. Spring discharge may have been substantially greater
prior to extraction for agriculture in some areas, but the excess of recharge over spring
discharge indicates that the bulk of groundwater flow through the Umm er Radhuma-
Dammam aquifer system bypasses the springs and probably flows through the carbonates
beneath them (Figure 5).

The aquifer system is exploited for irrigated agriculture in some areas, and this
has been regarded as unsustainable, but the calculated annual recharge for the Neogene
carbonates (>344 ML/day) should be sufficient to maintain spring flow along the Abu Jir
lineament (~137 ML/day). However, excessive extraction in localised areas will cause the
watertable to fall, and many of the springs have already been impacted. Therefore, the
long-term sustainability of the springs relies on the active management of groundwater
extraction rates.

On the Arabian Peninsula, the groundwater residence times within the Umm er
Radhuma and Dammam aquifers are up to 20,000–30,000 years, indicating that recharge
may have been greater in the past, such as during the relatively wet ‘Pluvial Period’ from
9500 to 5000 years ago [44,50].

3.5. Hydrochemistry of the Abu Jir Springs

There is high variability in the salinity of the springs along the Abu Jir lineament and
even between nearby locations, e.g., Hit-Kubaysa (Table 1), from high (>10,000 μS/cm
at Hit), unsuitable for both drinking and irrigation, to moderate (>1800 μS/cm at Najaf).
Even the latter levels are marginal for sustained irrigated agriculture, exceeding the recom-
mended levels for drinking water in Europe and noticeably mineralised for unaccustomed
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users. The levels of fluoride and arsenic are low and safe for human consumption [8,29]. As
would be expected, the springs’ salinity reflects that of the groundwater in the carbonate
aquifers, which increases progressively from, on average, ~1000 mg/L in the west to over
5000 mg/L in the east towards the Euphrates River [4,43].

The spring water composition is variable (Figure 6, Table 1). Anions are dominated
by high levels of either Cl or SO4, with much lower amounts of HCO3; for the cations,
there are significant concentrations of Ca, Na, and Mg, and relatively minor K. The aver-
age composition of the springs broadly reflects that of the average Damman Formation
groundwater (Figure 6), as might be expected. However, the Hit-Kubaysa springs show a
separate linear trend of increasing Na and Cl; this probably reflects increasing contributions
of deep-seated oilfield brine (discussed further below).

Table 1. Water chemistry data for the Abu Jir springs (medians: bold, ranges; number of samples:
italics) and rainfall at Riyadh (precipitation-weighted mean). All values are mg/L unless indicated
otherwise. See Figure 1 for spring locations. The saturation indices with respect to calcite were
calculated using Equations (1) and (2).

Location T◦C pH EC μS/cm Ca Mg Na K Cl SO4 HCO3 NO3 SIcalcite

Haqlaniyah
[8,49]

29
29–29

3

7.2
7.1–7.3

3

5068
5038–5523

3

312
288–320

3

144
134–146

3

251
230–709

7

22
21–94

3

1620
643–1925

7

674
403–1260

7

265
223–270

3

3
2–3

3

0.46
0.29–0.5

3

Hit-Kubaysa
[8,10,12,29,49]

27
16–34

49

7.2
6.0–7.8

48

7100
1800–35418

23

400
225–1783

21

210
94–607

21

619
200–6876

27

85
5–540

21

1488
320–16100

45

480
91–3120

45

197
85–1380

21

7
2–10

8

0.31
−1.54–2.1

21

Najaf
[9,11,49]

25
23–27

20

7.2
6.9–7.8

20

2360
1820–3200

20

188
112–326

10

185
46–342

10

271
203–457

13

54
41–74

9

588
350–2591

13

785
538–1765

13

116
45–140

9

−0.19
−1.11–0.69

9

Shinafiyah
[51]

7.7
7.0–8.0

12

4815
4010–6080

12

391
346–496

12

242
160–294

12

817
690–1094

12

2610
1330–2861

12

178
121–211

12

0.77
−0.18–1.15

12

Riyadh
rainfall

[47]
32 2 6 2 10 17

Figure 6. Piper plot of compositions of Abu Jir springs (data from) [8,10,11]; note that many available
spring compositions, including the Shinafiyah springs, were incomplete as published and could not
be plotted.
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To better understand the factors responsible for the chemical composition of the spring
water, a standardised Schoeller plot was constructed (Figure 7), comparing the median
major ion chemistry of the springs with that of the nearest available rainfall data on the
desert plateau at Riyadh [34] (Table 1); all data were standardised to the Cl− value of the
rainfall to remove any influence of evaporation. Using median compositions illustrates
overall trends, on which processes specific to particular spring groups are superimposed,
causing the variability in the composition evident for the Hit-Kubaysa and Najaf springs
(Figure 6), as discussed further below.

 

Figure 7. Schoeller plot (standardised to Cl) comparing the median compositions of Abu Jir springs
with desert plateau rainfall (see Table 1 for data).

The SO4 and Cl contents of the rainfall over the desert plateau (20–50 mg/L and
10–20 mg/L, respectively) reflect the dissolution of wind-blown gypsum and salt (halite),
respectively, deflated from the extensive sabhkas in the region [47]. This contrasts with the
typical rainfall compositions around the world, which are dominated by Na and Cl among
the major ions in places where rainfall derives much of its dissolved content from seaspray,
particularly along the coast, e.g., [52], but also inland, often called cyclic salt, e.g., [53].
The higher Ca and SO4 levels in the rainfall relative to Na and Cl (Figure 7) indicate that
gypsum dissolution exceeds that of halite.

The standardised Schoeller plot (Figure 7) shows that, apart from Ca and, for the
Hit-Kubaysa springs, SO4, the composition of the spring water broadly matches that of the
rainfall, so the major source of dissolved Ca, SO4, Na, and Cl in the groundwater within
the carbonate aquifers (and therefore, the springs issuing from these aquifers) is likely to
be the dissolution of wind-blown evaporites in the rainfall. Therefore, it is not necessary to
invoke congruent dissolution of gypsum along the groundwater flow path [7,9] to explain
the high SO4 content of the springs. Incongruent dissolution of gypsum is also unlikely; in
this process, gypsum dissolves, releasing calcium and sulphate, and some of the calcium
precipitates as calcite, resulting in water compositions with relatively lower calcium than
sulphate concentrations. Although the spring compositions have, on average, lower Ca
than SO4 (Figure 7), many are undersaturated with respect to calcite (negative calcite
saturation indices; Table 1) and so cannot precipitate calcite, and the depletion in Ca is
more likely due to plant uptake (discussed below). In any case, the carbonate aquifers do
not contain gypsum [2,4].

The species concentrations in the springs and groundwater are much greater than those
in the rainfall (Table 1), because they were increased by evaporation during recharge [7,8].
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The progressive increase in groundwater salinity from west to east within the carbon-
ate aquifers is probably due to the progressive downflow addition of saline soil–water
(concentration by evaporation during slow infiltration) to fresher groundwaters that were
recharged rapidly through karst dolines; similar increases in salinity down-gradient have
been documented elsewhere [52]. Additional evaporation during discharge may have
further raised the salinity of the springs.

Interestingly, the standardised Schoeller plot (Figure 7) shows that the spring waters
are depleted in Ca compared to the rainfall (but have approximately the same Mg con-
tent). There is, therefore, relatively little input to the groundwater of Ca and Mg due to
limestone/dolomite dissolution within the carbonate aquifers, contrary to the hypotheses
of previous studies [5,7,8]. The relative lack of carbonate dissolution is also evident by
the fact that many springs, particularly those at Najaf, are undersaturated with respect
to calcite (negative calcite saturation indices) (Table 1). If extensive carbonate dissolution
had occurred along the groundwater flow paths, the spring waters would be saturated.
In addition, the springs have relatively low HCO3 concentrations (Figure 6) and lack
tufa/travertine precipitation around the spring vents. Furthermore, the morphology of
limestone caves on the Arabian Peninsula, which formed during wetter climates in the
Pleistocene, has been modified only slightly by dissolution under the present-day arid
climate [54].

Nevertheless, some carbonate dissolution has contributed to the spring water compo-
sition; the variability in the relative Ca and Mg contents of the Najaf springs (Figure 6) is
probably due to differences in the amount of limestone and dolomite dissolution along the
flow path.

The spring waters show a notable depletion in K as well as Ca compared to rainfall
(Figure 7). This is most likely due to the preferential uptake of Ca and K by plants as
rainfall infiltrates through the soil. These ions are plant macronutrients; plants take up
relatively large quantities of these species directly from the soil solution and/or from the
cation exchange sites of clay minerals [55,56]. In contrast, plant uptake of Na and Mg is
much lower, so the spring waters are not significantly depleted in these species relative to
the rainfall (Figure 7). The mechanism of plant uptake has been identified as significant in
determining groundwater composition elsewhere in the world, e.g., [17,57–59]. In Saudi
Arabia and Iraq, the depletion in Ca and K due to plant uptake is surprising given the very
arid climate and sparse vegetation cover.

There is no evidence that the depletion in Ca and K relative to rainfall is due to cation
exchange because this would cause the spring waters to be enriched in Na and/or Mg,
and this is not the case (Figure 7). Furthermore, the carbonate aquifers have a low clay
content [2,4].

The springs in the Hit-Kubaysa area (Figure 1) are the best studied springs along the
Abu Jir lineament because they are characterised by high H2S contents (up to 305 ppm) [24]
and floating spongy tar (Figure 9), as well as elevated nitrate concentrations [8,29]. The
hydrocarbon content of the springs makes the waters reducing, and as a result, the dis-
solved sulphate within the spring water is reduced to H2S. The removal of SO4 from
solution means that the Hit-Kubaysa springs are depleted in this species compared to the
other Abu Jir springs (Figure 7), also shown by the much higher Cl/SO4 weight ratio of
the Hit-Kubaysa springs (2–10) [8,10,49] compared to the regional rainfall, the ground-
water within the carbonate aquifers, and the spring water unaffected by SO4 reduction
(0.4–0.5) [9–11,45–47,49]. The high nitrate levels in the springs were most likely released by
degradation of the organic matter, as crude oils generally contain up to 1 weight % N in
compounds, such as pyridines and amines [60], and elevated nitrate levels are typical of oil
field brines [29]. The hydrocarbons within the Hit-Kubaysa springs have probably seeped
upwards from underlying Jurassic–Cretaceous or Oligocene oil and gas reservoirs [61],
driven by the lower density of the oil than the surrounding groundwater (0.85–0.95 g/cc
compared to 1 g/cc for pure water). The oil in the springs is the same type as that from
the East Baghdad field [49]. The seepage at Hit-Kubaysa is presumably occurring beneath
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the Abu Jir lineament along subvertical faults (Figure 5), which may be flower structures
that have reached the surface [28]; this is the only location along the Abu Jir lineament
where deep-seated faults penetrate to the surface. Hussien and Gharbie [12] proposed
that deep groundwater (oilfield brine) is seeping upwards along with hydrocarbons at
the Hit-Kubaysa springs, and there is good evidence for this. The salinity of the spring
water increases to the east towards the Abu Jir lineament [12,29], resulting in a linear trend
on the Piper plot (Figure 6), and probably reflecting an increasing contribution of oilfield
brine. The maximum temperature of the springs around Hit (34 ◦C; Table 1), is ~10 ◦C
warmer than the average air temperatures (21–24 ◦C), so this suggests that the springs are
rising from at least 500 m depth; the geothermal gradient in the area is ~20◦C/km [62].
The underlying oil reservoirs are at much greater depths [11], indicating that the brines
are rising sufficiently slowly that their temperature has partially equilibrated with the
aquifer temperature at shallower depths. The hydrocarbons and sulphurous content of the
Hit-Kubaysa springs (Figure 5) are considered useful for bathing therapy for the treatment
of inflammatory joint disease and psoriatic disease [29].

The above discussion shows that the species in the spring waters were derived either
from rainfall, rock–water interaction within the aquifers, or, in the case of some Hit-Kubaysa
springs, oilfield brines. Al Dahaan [10] and al Dahan et al. [11] hypothesised that there was
also a contribution of connate seawater originally deposited with the marine carbonates
of the aquifers. However, the aquifer carbonates are strongly cemented and lack any
significant original granular porosity where the connate groundwater could have been
stored. In any case, the maximum groundwater ages on the Arabian Peninsula are only
20,000–30,000 years [44,50], indicating that any connate seawater was flushed from the
aquifers long ago. Furthermore, the stable isotope composition of the springs (Figure 8) is
consistent with an origin entirely from rainfall. The stable isotope composition of seawater
is around 0 for both δ18O and δ2H, and although there is one spring sample with stable
isotope values close to this, it has undergone considerable evaporation [7]. The spring
samples plot on the evaporation trends (Figure 8), because the spring flow rates are mostly
slow enough to allow for significant evaporation soon after the spring water has reached the
surface. Groundwater stable isotope data from nearby wells within the carbonate aquifers
are mostly located to the right of the Local Meteoric Water Line (LMWL), indicating some
evaporation during recharge. A few data lie to the left of the LMWL; this groundwater
could have been recharged under a previous wetter climate, e.g., the relatively wet ‘Pluvial
Period’ from 9500 to 5000 years ago [44,50].
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Figure 8. Stable isotope data for some Abu Jir springs; groundwater data from nearby wells shown
for comparison; data from refs. [7,48].

 

Figure 9. Groundwater spring at Hit showing floating spongy bitumen (see Figure 1 for location).

4. Conclusions

A detailed study of the Abu Jir springs, using existing data and satellite mapping,
has allowed for a reassessment of the hydrogeology and hydrochemistry of these springs,
including the reasons for their existence in such an arid area. They lie along the 520 km-long
NW-SE Abu Jir lineament that coincides with the boundary between the Mesopotamian
Plain and the Arabian Desert plateau. This lineament is not a fault but the western depo-
sitional margin of a foreland basin infilled by the floodplain sediments of the Tigris and
Euphrates Rivers. The springs discharge from the gently east-dipping Neogene Umm
er Radhuma-Dammam aquifer system, which is composed of carbonates and has karstic
permeability. Spring locations along the Abu Jir lineament occur where conduit flow
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in the carbonate aquifer intersects the ground surface at the break in slope between the
Mesopotamian Plain and Desert plateau, or where it is forced to the surface by overly-
ing aquitards, either Neogene marls or Quaternary floodplain sediments. Recharge to
the aquifer system occurs across the Arabian Desert plateau and is facilitated by rapid
infiltration through karst depressions, such that karst porosity is the primary enabler of
groundwater recharge. Annual recharge for the Neogene carbonates is significant (es-
timated 130–500 million m3), despite the very low rainfall and high evaporation, and
is sufficient to maintain spring flow along the Abu Jir lineament. However, excessive
extraction for agriculture will negatively impact spring flow, and active management of
groundwater extraction rates is needed for the long-term sustainability of the springs.
The hydrochemistry of the springs shows high SO4 concentrations (originating from the
dissolution of wind-blown gypsum in the rainfall) and depletion in Ca and K relative to
the rainfall, probably due to plant uptake as the rainfall infiltrates through the soils, despite
the sparse vegetation on the desert plateau. There is little evidence of limestone dissolution
in the spring chemistry, even though the groundwater feeding the springs travels through
a carbonate aquifer. The springs at Hit-Kubaysa contain tar, high levels of H2S, and a
component of oilfield brine; the presence of hydrocarbons makesthe water reducingand
converts the dissolved SO4 to H2S. The tar and brine have seeped upwards along faults
from underlying oil and gas reservoirs; this is the only location along the Abu Jir lineament
where deep-seated faults penetrate to the surface.
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Abstract: This study aimed to evaluate the ecohydrological regime and ecological water demand
of the Huangshui River Basin under changing environmental conditions, seeking to safeguard its
ecosystem. Based on monthly data spanning from 1956 to 2016, the ecohydrological regimes of the
Huangshui River and the Datong River were evaluated using methods such as the Pettitt mutation
test, the Tennant method, and ecological deficit and surplus analyses. The data were mainly obtained
from Xiangtang Station of the Datong River and Minhe Station of the Huangshui River. The results
showed the following. (1) The most abrupt increase in measured runoff at Xiangtang Station occurred
in 1993, while the point of abrupt change in measured runoff at Minhe Station occurred in 1990.
(2) Following an increase in human activities, changes in the ecological surplus at Xiangtang Station
were negative in January, April to May, July, and from September to November, while the changes in
the ecological deficit were positive from January to April, July to August, and October to December.
Changes in the ecological surplus at Minhe Station were negative from March to July and from
September to December, while changes in the ecological deficit were positive from January to April
and from July to December. (3) The annual average ecological flow of the Datong River, Xiangtang
section, was 28.42 m3/s, and the annual average ecological water demand was 896 million m3.
The annual average ecological flow of the Minhe section was 19.98 m3/s, and the annual average
ecological water demand was 631 million m3. According to a calculation of the degree of ecological
water demand and ecological flow satisfaction, prior to the implementation of the Water Diversion
Project from the Datong River to Huangshui River, the water volumes in both rivers were generally
sufficient to meet the ecological water demand. However, high water consumption during the
irrigation period led to an ecological deficit. To address these issues, it is crucial to evaluate the
potential impacts of human activities, such as water diversion projects, on river ecological flow.
Recommendations include expediting the Water Diversion Project from the Yellow River to Xining
to secure sufficient water flow in the Huangshui River and enhancing water conservation efforts in
agricultural irrigation.

Keywords: ecohydrological regime; ecological surplus; ecological deficit; ecological water demand;
Huangshui River Basin

1. Introduction

Climate change and increased human activities have led to a decline in river runoff
worldwide, posing significant challenges for water resource management and ecological
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development [1]. Activities such as agricultural irrigation, the construction of water conser-
vancy projects, and changes in land use can cause considerable hydrological variations [2,3].

Human activities significantly impact rivers, leading to considerable changes in hy-
drological conditions. Traditional methods for evaluating hydrologic alteration, such as
the indicators of hydrologic alteration (IHA) and range of variability approach (RVA),
mainly rely on the number of IHA index values within a target range obtained before
interference [4]. Vogel et al. [5,6] introduced a dimensionally normalized ecological runoff
index based on the flow–duration curve (FDC) using two dimensionless indicators: ecolog-
ical surplus (ES) and ecological deficit (ED). These indicators assess hydrological regime
changes in river ecosystems by representing the excess or deficiency in river runoff relative
to the protected area. Gao et al. [7] further refined this method by defining the ecological
surplus and deficit thresholds using the 75th and 25th percentile FDCs, respectively, rather
than relying on the median FDC before mutation. This approach offers a clear conceptual
framework and requires fewer indicators. It can be applied at various time scales (monthly,
quarterly, or annually) and effectively reflects the overall impact of flow regulation during
the specified period. This method provides a better description of changes in hydrological
conditions and has been widely adopted by researchers [8–12].

Ensuring ecological flow is crucial for maintaining a healthy aquatic ecosystem amidst
changes in river hydrological conditions. Often, the actual runoff of rivers falls short
of meeting theoretical ecological water demands. To determine the degree to which the
ecological water demand is met, it is essential to analyze the ecological water demand
guarantee rate [13] and explore the trends and causes of river hydrological changes [8].
Ecological water demand is influenced by the natural attributes of the ecosystem, including
its internal structure, external environment, and resource conditions. This demand exhibits
characteristics such as dynamic orientation, target orientation, threshold orientation, and
spatiotemporal variability. The numerical value of ecological water demand fluctuates
within a specific threshold range. If the flow rate remains within this threshold, the
ecosystem can sustain its health. However, if it falls outside this range, ecosystem health
may be compromised [14–16]. The ecological water demand of rivers can be assessed
based on factors such as river ecosystem characteristics, protected species, and natural
hydrological conditions [17]. Common methods for determining ecological water demand
include habitat simulation techniques such as the instant flow incremental methodology
(IFIM) [18], hydraulic methods such as the wet perimeter method [19], and hydrological
methods such as the Tennant method [20], the 7Q10 method [21], and the holistic approach
framework [22]. Among these, hydrological methods are particularly favored by water
resource management departments due to their efficiency in terms of time, labor, and cost.
Consequently, they are the most widely used for assessing ecological water demand [17].

Fish habitats rely on continuous changes in water flow over many years, and fish
encounter corresponding habitat conditions while adapting to the natural fluctuations in
water flow in their habitats [23]. Triplophysa siluroides, Gymnodiptychus pachycheilus, Gymno-
cypris eckloni, and Schizopygopsis pylzovi are key protected species in the Huangshui River
and are listed on the Red List of Chinese Species. As a semiarid area, ensuring the ecological
water demand is met for key species in the Huangshui River is crucial. Due to high popu-
lation density and industrial development in the Huangshui River Basin, previous water
resource allocations have often failed to fully meet ecological water needs. This has led
to the encroachment of ecological water into some rivers and issues of ecological water
shortage. Currently, the main agricultural areas in certain tributaries of the Huangshui
River Basin require substantial amounts of water for irrigation from April to June, but
the inflow is insufficient to meet this demand. This has resulted in a significant mismatch
between water supply and demand, with agricultural water use and other factors further
reducing the river’s ecological water availability. The Water Diversion Project from the
Datong River to the Huangshui River undertook a successful trial operation of the main
canal at the end of 2015. By September 2023, the main canal projects in northwestern China
had also been successfully inaugurated. In recent years, there has been a gradual increase
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in water diversion projects, such as the planned construction of the Water Diversion Project
from the Yellow River to Xining in the Huangshui River Basin. To ensure the stability of
river ecosystems, it is essential to closely monitor the hydrological changes and ecological
flow of the Datong and Huangshui rivers under the influence of these engineering projects.
Several scholars have investigated the ecological water demand of the Huangshui River.
Zhang et al. [24] analyzed current runoff, cross sections, and pollution sources employing
three methods: the average value of the driest month at different frequencies, an improved
same frequency distribution method within the year, and the ecological hydraulic radius
method, used to calculate ecological flow in the Xining section of the Huangshui River.
Liu et al. [25] examined the ecological water demand of 20 tributaries of the Huangshui
River and proposed a method for calculating ecological water demand in river channels.
Sha et al. [26] used the GAMS system to allocate and optimize water resources in the
area receiving water from the Diversion Project, considering both supply–demand balance
and ecological water needs. While these studies provide valuable insights, they tend to
approach the issue from a single perspective. This study integrates analyses of hydrological
changes, ecological surplus/deficit, and ecological water demand, which is mainly based
on the analysis of measured runoff and natural runoff data sequences. Measured runoff
refers to the amount of water that passes through a certain cross section of a river during a
certain period of time. Natural runoff refers to the amount of water that has been reverted
from the measured river runoff, which generally refers to the measured runoff plus the
utilization of water above the measured cross section. By comparing and analyzing the
measured runoff and natural runoff, we can provide a comprehensive evaluation of the
impacts of human activities and climate change on ecological flow. This approach aims to
offer scientific support for watershed ecological protection in northwest China.

Therefore, this study aimed to analyze both natural and measured hydrological data
for the Datong and Huangshui rivers from 1956 to 2016 and to evaluate the ecohydro-
logical regime using two methods: the Tennant method and the ecological surplus and
deficit method. The specific objectives were as follows: (1) examine the characteristics of
runoff changes at major stations along the Huangshui River; (2) calculate the ecological
surplus/deficit, ecological water demand, and ecological flow guarantee rate; and (3)
propose appropriate measures for ensuring ecological flow to provide a theoretical basis
for the ecological protection of the Huangshui River. Additionally, recommendations are
provided to support decision-makers in basin ecological protection efforts.

2. Study Area

The main tributary of the upper stream of the Yellow River is the Huangshui River,
while the largest tributary of the Huangshui River is the Datong River. It has gradually
shifted from the west to the east, exiting Qinghai Province and entering Gansu Province
at Minhe station. The watershed area under the jurisdiction of the Minhe Hydrological
Control Station is 15,342 km2. The Datong River empties into the Huangshui River. The
watershed area under the jurisdiction of the Xiangtang Hydrological Control Station is
15,126 km2. The Huangshui River Basin is the main agricultural area in the northeast
of Qinghai Province, consisting of the Huangshui’s main stream area and the Datong
River Basin. The Huangshui Valley in the central and southeastern parts of the basin has
relatively high temperatures, low-lying terrain, and fertile land, which make it suitable
for the development of agriculture and animal husbandry. The Huangshui River Basin
features a semiarid plateau continental climate. This place experiences low temperatures
and little rainfall throughout the year, with strong solar radiation. This study mainly
focused on Minhe Station on the Huangshui River and Xiangtang Station on the Datong
River (Figure 1). Minhe Station is located at 102◦48′ E longitude and 36◦20′ N latitude. It is
the main control station for the Huangshui River. Xiangtang Station is located at 102◦50′ E
longitude and 36◦21′ N latitude. It is the main control station for the Datong River. They
are both national principal hydrometric stations that measure and report hydrological
data such as runoff and sediment, as well as meteorological data such as rainfall and
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temperature according to national standard methods. This study mainly analyzed runoff
and rainfall data measured by the two hydrological stations from 1956 to 2016.

Figure 1. Site of the Huangshui River Basin. Note: A. Water Diversion Project from the Datong River
to the Huangshui River; B. Water Diversion Project from the Yellow River to Xining City.

According to the Qinghai Province Planning Report on Water Diversion Project from
Datong River to Huangshui River, the project is expected to divert 750 million m3 of water
overall by 2030. The Water Resources Planning Institute has evaluated and approved the
Comprehensive Plan for the Huangshui River Basin (General Water Regulations [2014]
no. 1182), which states that the Water Diversion Project from the Datong River to the
Huangshui River will transfer 600 million m3 of water by 2030. The diversion of water
from the Datong River affects the ecological water requirements of both the Datong and
Huangshui rivers’ main streams. The Water Diversion Project from the Yellow River to
Xining diverts water from the main stream of the Yellow River to the Xining and Haidong
areas of the Huangshui River Basin. The preliminary determination of the project is that
the water intake will be about 560 million m3 in 2030 and about 960 million m3 in 2040.
The implementation of this project will greatly improve the water shortage problem in the
Huangshui River Basin.

3. Methods

In this research, we analyzed the characteristics of runoff changes at major stations along
the Huangshui River using data from 1956 to 2016. The Pettitt test was employed to detect
abrupt changes in runoff. Subsequently, we evaluated the ecohydrological regime utilizing two
approaches: calculating the ecohydrological condition through the ecological surplus/deficit
method and assessing the ecological water demand and ecological flow guarantee rate via
the Tennant method. Finally, we propose appropriate measures to ensure ecological flow,
providing a theoretical basis for the ecological protection of the Huangshui River.

The analytical framework for this study is shown in Figure 2.
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Figure 2. The analytical framework. Note: Dm
ES is the degree of variation in the ES in month m. Dm

ED is
the degree of variation in the ED in month m.

3.1. Pettitt Abrupt Test Method

The trend of and abrupt changes in runoff in the Huangshui River were identified
using the Pettitt abrupt test. The Pettitt test is a commonly used non-parametric method
for detecting abrupt changes in time series data that is particularly useful when the data
distribution is unknown.

To identify abrupt points in long-term time series data, researchers frequently employ
the Pettitt method, a reliable and effective non-parametric testing technique [27]. Because it
does not rely on presumptions regarding data distribution, including variance stability or a
normal distribution, it is very flexible when handling different types of time series data.
It is popular because it can efficiently identify abrupt spots and is not dependent on the
duration of the time series [28,29].

The null hypothesis H0 is that there is no abrupt at t in the long-term sequence. The
alternative hypothesis H1 is that there is an abrupt change at t in the long-term sequence.
Assuming that the initial time series featured an abrupt point xt, the time series X = (x1, . . ., xn)
with n samples is split into two parts: x1, x2, . . ., xt and xt+1, xt+2, . . ., xn. We determine its Ut,n
statistic via the following:
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Ut,n = Ut−1,n + ∑n
j=1

sgn
(
xt − xj

)
, t ∈ [2, n] (1)

where sgn(·) is a sign function, specifically defined as follows:

sgn(xj − xk) =

⎛
⎝ 1

(
xj − xk

)
> 0

0
(
xj − xk

)
= 0

−1 (xj − xk) < 0

⎞
⎠ (2)

We define the statistic Kt for the time t, at which the abrupt point is most likely to occur:

Kt = max|Ut,n| 1 ≤ t ≤ n (3)

We then calculate its significance level Pt:

Pt = 2 ∗ exp
[− 6 ∗ K2

t /
(
n3 + n2

)]
(4)

For a given confidence level α (α = 0.05), if Pt > α, we accept the null hypothesis and
assume that there is no significant abrupt change at time t. If Pt < α, we reject the null
hypothesis and assume that there is a significant abrupt change at time t.

3.2. Ecological Hydrological Regime: Ecological Flow Surplus and Deficit Method

Monthly time scales were used to calculate the ecological flow surplus and deficit. We
calculated the flow values of the 75% and 25% quantiles of approximate natural state peri-
ods based on the division of the period of intensified human activity and the approximate
natural state period. The range between the two flow values is here used to represent the
changes in ecosystem adaptation. Ecological surplus (ES) is the proportion over the 75%
percentile, and ecological deficit (ED) is the proportion below the 25% percentile [30]. The
formula is as follows:

ESm =

(
Qi − Qi,75%

)
Qi,75%

Qi > Qi,75% (5)

EDm =

(
Qi − Qi,25%

)
Qi,25%

Qi < Qi,25% (6)

where m is the month, m = 1,2,. . .,12; Qi is the average flow rate of month i in a certain
year (m3/s); Qi,75% is the 75th percentile flow rate for the month (m3/s); and Qi,25% is
the 25th percentile flow rate for the month (m3/s). The ecological surplus for month m is
non-negative, and the ecological deficit for month m is non-positive.

Based on the above indicator system, the degree of variation in runoff was quantita-
tively analyzed, and the specific calculation formula is as follows:

TESm
exp =

Npost

Npre
∑Npre

i=1
ESm

obs,pre,i (7)

Dm
ES =

∑
Npost

i=1 ESm
obs,post,i − TESm

exp

TESm
exp

(8)

TEDm
exp =

Npost

Npre
∑Npre

i=1
EDm

obs,pre,i (9)

Dm
ED =

∑
Npost

i=1 EDm
obs,post,i − TEDm

exp

TEDm
exp

(10)

where TESm
exp is the sum of the expected monthly ES values for all years in the approximate

natural state period based on the average ES value of month m in the approximate natural
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state period; Npost is the total number of years during which human activity intensified;
Npre is the total number of years in the approximate natural state time period; ESm

obs,pre,i and
ESm

obs,post,i, respectively, represent the ES value of month m in the i year calculated according
to Equation (5) in the approximate natural state period and intensified human activity
period; ∑

Npre
i=1 ESm

obs,pre,i is the sum of the m-month’s ES of all years in the approximate

natural state period; ∑
Npost
i=1 ESm

obs,post,i is the sum of the m-month’s ES of all years during
the period of intensified human activity; and Dm

ES is the degree of variation in the ES in
month m. The indicators related to ecological deficit (ED) are similar to the aforementioned.

If the degree of variation in the ecological surplus is greater than 0, it indicates that the
mean value of the ecological surplus at various time scales is greater than the approximate
natural state period during the period of intensified human activity. The larger the degree
of change, the longer the approximate natural state period. If the degree of variation in
the ecological surplus is lower than 0, it indicates that the mean value of the ecological
surplus at various time scales is lower than the approximate natural state period during
the period of intensified human activity. The smaller the degree of change, the smaller the
approximate natural state period.

3.3. River Ecological Water Demand: Tennant Method

The recommended levels of water demand to maintain the ecological environment in
the river are split into two categories: a general water use period that spans from October
to March of the following year, and a fish-spawning and juvenile period from April to
September. The Tennant approach comprises eight levels, and the recommended value is
based on the percentage of runoff.

The recommended ecological flows using the Tennant method are listed in Table 1.

Table 1. The ecological flow recommended by the Tennant method.

Qualitative Description of Habitats

Recommended Base Flow Standard (Percentage of Annual Average Flow)

General Water Use Period (from October
to March of the Following Year)

Fish Spawning and Juvenile Period
(from April to September)

Maximum 200 200
Optimum flow 60~100 60~100

Excellent 40 60
Very good 30 50

Good 20 40
Becomes vestigial 10 30
Poor or minimum 10 10

Extremely poor <10 <10

This method considers 10%, 30%, and 60% to 100% of the annual average flow as the
minimum ecological water demand in the river, the optimal flow required to ensure the
survival of aquatic organisms, and ecological flow required to maintain the original natural
river ecosystem, respectively. The formula is:

QT = ∑12

i Qi × Zi (11)

where QT is the ecological water demand of the river channel (m3); Qi is the average annual
flow rate in i month of a given year (m3); and the recommended runoff percentage for the
i month corresponds to Zi (%).

3.4. Ecological Flow Guarantee Rate and Evaluation Standard

In this study, we evaluated the ecological flow guarantee status of rivers based on the
monthly average flow guarantee degree. The degree of ecological flow guarantee is here
defined as the ratio of the number of months in which the monthly flow value was greater
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than the monthly ecological flow value to the total number of months corresponding to the
long-term runoff year. The formula is:

Di = (Tbi/Ti)× 100%, 1 ≤ i ≤ 12 (12)

where Di is the ecological flow guarantee rate for the i month; Tbi is the number of months
in the i month of the calculation year that meet the ecological flow for that month; and Ti is
the total number of months in the i month of the calculation year.

The evaluation criteria for the ecological flow guarantee rate are listed in Table 2.

Table 2. Evaluation criteria for ecological flow guarantee rate.

Index
Evaluation Criterion/%

Excellent Good Medium Poor Inferior

Ecological flow guarantee rate 100 95~100 90~95 80~90 <80

4. Results

4.1. Analysis of Runoff Trend in Huangshui River
4.1.1. Runoff Change Trends

According to the analysis of hydrological and meteorological data from 1956 to 2015
for the Huangshui River Basin, it can be seen that the annual precipitation and runoff
generally show a decreasing trend. The decrease in runoff was 10 million m3/10a, and
the precipitation fluctuated at a rate of −2.0 mm/10a (Figure 3). The annual runoff went
through a stage of increase before 1989 and a stage of decrease after 1989. In the increasing
stage, the years of high flow and low flow were basically the same, that is, 11a and 13a,
respectively. In the decreasing stage, the years of high flow and low flow were 15a and
6a, respectively. This indicates that the degree of runoff reduction was severe and that the
sensitivity of runoff to precipitation changes was strong. The decreasing trend in annual
runoff showed quasi-periodic changes in 4a, 9a, and 20a.

Figure 3. The annual rainfall and measured annual runoff characteristics observed at Minhe Station
on the Huangshui River from 1956 to 2015.

4.1.2. Analysis of Abrupt Changes of Runoff

The processes of variation in natural runoff and measured runoff at Minhe Station and
Xiangtang Station are shown in Figure 4. It is believed that the difference between natural
and measured runoff is due to the combined effects of human activities and climate change,
such as agricultural irrigation and reservoir regulation, which can affect river flow. The Pettitt
abrupt test was performed using the long-term runoff data from the Xiangtang and Minhe
stations from 1956 to 2016, and the results are shown in Figure 5. From the position of the
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red dashed line in the figure, it can be seen that the point of abrupt change in the measured
runoff at Xiangtang Station occurred in 1993 and the abrupt change in the measured runoff
at Minhe Station occurred in 1990. For Xiangtang Station, the measured runoff showed
an increasing trend before 1993 and a decreasing trend after 1993. For Minhe Station, the
measured runoff increased first and then gradually stabilized before 1970. From 1970 to 1980,
it showed a fluctuating decrease, and then gradually increased from 1980 to 1990. Since 1990,
the measured runoff at Minhe Station has sharply decreased, indicating that human activities
began to intensify at this time. It was not until 2004 that the measured runoff began to slowly
increase again. Similar results were obtained using the M-K test method.

(a) (b) 

Figure 4. Changes in natural and measured runoff at Xiangtang (a) and Minhe (b) stations from 1956
to 2016.

(a) (b) 

Figure 5. Pettitt abrupt test for annual measured runoff observed by Xiangtang (a) and Minhe (b)
stations from 1956 to 2016.

Therefore, the period of research performed at the two stations can be divided into
two sections. For Xiangtang Station, 1956–1993 represents an approximate period with the
natural state, and 1994–2016 represents a period of intensified human activity. For Minhe
Station, 1956–1990 represents an approximate period with the natural state, and 1991–2016
is a period of intensified human activity.

4.2. Analysis of Ecological Flow Surplus and Deficit Results

The results obtained from the ecological flow surplus and ecological flow deficit
methods are listed in Tables 3 and 4, respectively. The ecological surplus changes during
the period of intensified human activity at the Xiangtang Hydrological Station (1994–2016)
were negative in January, April to May, July, and September to November compared to the
natural state period (1956–1993), while the ecological deficit changes were positive from
January to April, July to August, and October to December. The ecological and hydrological
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conditions of the rivers deteriorated during these months. The ecological surplus decreased
the most in September, reaching −71.4%, and in February, it increased the most, reaching
475%. The ecological deficit increased the most in April, reaching 285%, and the most
significant decrease was in June, reaching −9.5%. The degree of change in the ecological
deficit exceeded 100%, most notably from March to April and November to December.
Ecological runoff has adverse effects on river ecosystems.

Table 3. Ecological surplus and deficit results of Xiangtang Station.

Month
Ecological Surplus

Dm
ES/%

Ecological Deficit
Dm

ED/%
1956–1993 1994–2016 1956–1993 1994–2016

January 0.026 0.022 −15.4 −0.025 −0.039 56.0
February 0.012 0.069 475.0 −0.027 −0.034 25.9

March 0.034 0.042 23.5 −0.013 −0.032 146.1
April 0.034 0.020 −41.2 −0.020 −0.077 285.0
May 0.058 0.030 −48.3 −0.042 −0.042 0
June 0.048 0.052 8.3 −0.041 −0.037 −9.5
July 0.071 0.035 −50.7 −0.056 −0.061 8.9

August 0.047 0.054 14.9 −0.049 −0.053 8.2
September 0.084 0.024 −71.4 −0.036 −0.035 −2.8

October 0.056 0.034 −39.3 −0.033 −0.051 54.5
November 0.035 0.031 −11.4 −0.014 −0.036 157.1
December 0.032 0.051 59.4 −0.012 −0.035 191.7

Table 4. Ecological surplus and deficit results of Minhe Station.

Month
Ecological Surplus

Dm
ES/%

Ecological Deficit
Dm

ED/%
1956–1990 1991–2016 1956–1990 1991–2016

January 0.038 0.047 23.7 −0.022 −0.031 40.9
February 0.024 0.044 83.3 −0.021 −0.026 23.8

March 0.064 0.029 −54.7 −0.035 −0.038 8.6
April 0.081 0.047 −42.0 −0.049 −0.055 12.2
May 0.197 0.042 −78.7 −0.117 −0.114 −2.6
June 0.090 0.065 −27.8 −0.110 −0.077 −30.0
July 0.065 0.043 −33.8 −0.050 −0.071 42.0

August 0.054 0.055 1.9 −0.037 −0.057 54.1
September 0.092 0.060 −34.8 −0.024 −0.060 150.0

October 0.075 0.040 −46.7 −0.029 −0.056 93.1
November 0.093 0.039 −58.0 −0.028 −0.040 42.9
December 0.065 0.018 −72.3 −0.023 −0.029 26.1

The ecological surplus changes during the period of intensified human activity at the
Minhe Hydrological Station (1991–2016) were negative from March to July and September
to December compared to the natural state period (1956–1990), while the ecological deficit
changes were positive from January to April and July to December. The ecological and
hydrological conditions of rivers deteriorated in these months. The ecological surplus
decreased the most in May, reaching −78.7%, and in February, it increased the most,
reaching 83.3%. The ecological deficit increased the most in September, reaching 150%, and
the most significant decrease was in June, reaching −30%.

Overall, the months when the ecological flow surplus increased were mainly concen-
trated in the dry seasons for the rivers, which were primarily the discharge period of the
reservoirs and not the agricultural irrigation period. These changes in human activity led to
an increase in river flow. The ecological flow deficit in most months increased significantly
after human activity intensified, with a slight decrease from May to June.

Figure 6 shows the monthly ecological surplus and deficit levels at Xiangtang and
Minhe stations from 1956 to 2016. From the chart, it can be seen that the distribution
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of ecological surplus and deficit at Xiangtang Station over the past 61 years is relatively
uniform. Before 1980, the ecological deficit during the rainy season was severe. From
1980 to 2005, there was a significant increase in the ecological surplus, but after 2014,
the ecological deficit worsened. For Minhe Station, the degree of ecological surplus was
relatively light, while there were two periods with obvious ecological deficits: from April
to July around 1969–1982 and from 1991 to 2004. Both the Datong and Huangshui rivers
showed significant ecological deficits before 1980, which may have been due to the impact
of climate conditions at that time. After 1990, due to human activities such as water
diversion, the ecological deficit of the Huangshui River improved, while the reduction in
water volume in the Datong River exacerbated the ecological deficit of the Datong River.

(a) 

(b) 

Figure 6. Monthly flow surplus and deficit chart of Xiangtang (a) and Minhe (b).

4.3. Ecological Flow Guarantee Rate of Huangshui River and Datong River

Given the paramount ecological significance of the Huangshui River, in this study, we
employed the Tennant method and designated 30% of the natural average flow spanning
1956 to 2016 as the ecological flow benchmark for this stretch. Adhering to the Imple-
mentation Rules of the Yellow River Water Regulation, the minimum flow required for
a 95% guarantee rate at the Datong River Xiangtang Station is here set at 10 m3/s, while
the warning flow level at Minhe Station stands at 8 m3/s. Integrating these criteria, we
determine the monthly ecological flow thresholds for the Minhe and Xiangtang sections.
The results are shown in Table 5.
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Table 5. Ecological flow (unit: m3/s).

Month

Section
Xiangtang Minhe

January 10 8.32
February 10 8.65

March 10 10.13
April 17.8 22.16
May 28.87 18.57
June 37.80 20.72
July 60.87 28.43

August 58.54 31.28
September 52.19 31.14

October 29.95 31.13
November 15 18.43
December 10 10.21

The annual average ecological flow for the Xiangtang section of the Datong River was
calculated as 28.42 m3/s, translating to an annual ecological water demand of 896 million m3.
Similarly, the Minhe section’s annual average ecological flow was 19.98 m3/s, equating to an
annual ecological water demand of 631 million m3.

After comparing and analyzing the monthly measured runoff and ecological flow data
from Minhe Station and Xiangtang Station, we derived monthly ecological flow guarantee
rates spanning from 1956 to 2016 (Table 6). Our calculations indicate that the ecological flow
guarantee rate for the Xiangtang section of the Datong River in January stands at 98%, whereas
the guarantee rates for the remaining months are set consistently at 100%. Notably, in March,
August, and September, the guarantee rates for the same section also dipped to 98%, yet they
remained at 100% for all other months. This fluctuation is primarily attributed to the influence
of irrigation water on the guarantee rate of ecological water demand.

Table 6. Evaluation of ecological flow guarantee rate.

Month
Ecological Flow Guarantee Rate/% Ecological Flow Guarantee

Datong River Huangshui River Datong River Huangshui River

January 98 100 Good Excellent
February 100 100 Excellent Excellent

March 100 98 Excellent Good
April 100 100 Excellent Excellent
May 100 100 Excellent Excellent
June 100 100 Excellent Excellent
July 100 100 Excellent Excellent

August 100 98 Excellent Good
September 100 98 Excellent Good

October 100 100 Excellent Excellent
November 100 100 Excellent Excellent
December 100 100 Excellent Excellent

From these results, it is evident that the ecological flow guarantee of the Datong
River in January can be categorized as “good”, whereas for the remaining months, it can
be deemed “excellent”. Similarly, the ecological flow guarantee of the Huangshui River
in March, August, and September can also be labeled “good”, with the other months
achieving “excellent” status. This signifies that the water volumes of both the Datong River
and Huangshui River adequately fulfill the requirements for ecological water demand.
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5. Discussion

5.1. Impact of Climate Change and Human Activities on Hydrological Regime

Hydrological changes in the Huangshui River Basin are influenced by both climate
change and human activities. Studies reveal that climate change causes 35.46% of the reduc-
tion in runoff within the basin [31]. Temperature plays a pivotal role, as it directly affects
evaporation, a critical factor in determining runoff. The interplay between temperature and
precipitation can either exacerbate or mitigate changes in runoff. For instance, combinations
such as “rising temperature + decreasing precipitation” and “decreasing temperature +
increasing precipitation” tend to worsen runoff changes, whereas “increasing temperature
+ increasing precipitation” and “decreasing temperature + decreasing precipitation” tend
to lessen these changes [32]. Increased runoff due to climate change would raise the river’s
ecological base flow and enhance the ecological flow guarantee rate. Conversely, decreased
runoff would lower both the ecological base flow and the guarantee rate. With the projected
increase in precipitation and decrease in runoff under climate change, it is crucial to manage
water resources effectively in order to sustain the ecological flow.

The analysis also highlights that intensified human activities have led to abrupt
changes in river flow, significantly affecting ecological surplus and deficit. For example,
in 1994, following the completion of the main canal under the Water Diversion Project
from the Datong River to Qinwangchuan, there was a marked change in the flow rate
of the Datong River. During the construction of the Datong River to Huangshui River
Water Diversion Project [33] from 1996 to 2018, both the ecological surplus and deficit of
the Datong and Huangshui rivers underwent significant changes, showing a deteriorating
trend. Although the water volumes of these rivers during the study period generally met
the ecological water demands, their future trends need continuous monitoring due to their
sensitivity to human activities.

5.2. Different Ecological Water Demand Accounting Methods

The ecological water demand in this study was primarily estimated using the Tennant
method. Various techniques can be employed to estimate the ecological water demand
of rivers, including hydrological, hydraulic, habitat, and holistic analysis methods [34].
Among these, hydrological methods are widely used due to their ability to quickly provide
results based on recorded hydrological data. In contrast, the other three methods are more
computationally complex and require additional data, such as hydraulic parameters and
fish data. The Tennant method, along with the historical flow curve method, forms the
basis of the historical flow approach, a research-oriented hydrological technique. The
Tennant approach is known for its simplicity and user-friendliness, making it a relatively
quick and straightforward method. Hydrological technology or monitoring stations can
directly supply the necessary data for this method [35]. However, this method also has
its limitations. For example, the reliance on simple flow percentage calculations may
not capture the true needs of complex ecosystems. Additionally, the method primarily
considers flow, overlooking the impact of other environmental factors such as temperature
and seasonal variations. Zhang et al. [24] used three methods to calculate the ecological
water demand of the Xining section of the Huangshui River and compared the results with
the Tennant method for rationality. The result was that the ecological flow from April to
June was 9.3 m3/s, from July to October, it was 12.2 m3/s, and from November to March of
the following year, it was 5.6 m3/s. This result is comparatively smaller than those obtained
in this study, as the Xining section is located upstream of the investigated river segment,
resulting in a correspondingly lower flow rate. According to the Comprehensive Plan
for the Huangshui River Basin (2019), the ecological water demand for the Minhe section
varied, ranging from 28.3 m3/s from April to June to 41.7 m3/s from July to October and
then decreasing to 8.6 m3/s for November to March of the following year. For the Xiangtang
section, the minimum ecological flow ranged from 14.8 m3/s to 24.1 m3/s for April to June
and remained stable at 24.1 m3/s from July to October. The findings of this study closely
align with the projections set out in the Huangshui River Basin Comprehensive Plan.
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In this study, due to the lack of specific water requirements for aquatic organisms in the
region, only the overall runoff of the river could be used to roughly calculate the ecological
water demand. This may affect the accuracy of the calculation results. Therefore, it is
recommended to conduct a more comprehensive analysis of the ecological water demand
of rivers after obtaining more sufficient water demand data for aquatic organisms in the
future. It is also advisable to further explore the potential impacts of climate change and
water transfer projects on the ecological water demand guarantee of the Huangshui River
and its tributaries. This exploration should utilize daily flow data and detailed engineering
water transfer scheduling plans to ensure more accurate assessments.

6. Conclusions and Suggestions

Based on the comprehensive analysis of hydrological data from 1956 to 2016, this study
evaluated the ecohydrological regimes and ecological water demands of the Huangshui
River Basin, focusing on the Minhe and Xiangtang stations. The key findings reveal the sig-
nificant influence of human activities and climate change on river runoff, ecological surplus,
and deficit patterns. These findings emphasize the need for targeted water management
strategies. Below are the main conclusions and actionable suggestions.

6.1. Conclusions

(1) Abrupt changes in measured runoff were observed at Xiangtang Station in 1993 and
Minhe Station in 1990, primarily due to increased human activities such as agricultural
irrigation and water diversion projects.

(2) Human activities, particularly during the irrigation season, have exacerbated the
ecological deficits at both stations. The most significant ecological deficits were
observed in critical months, including April and September, where the flow rates
were insufficient to meet the ecological water demands.

(3) The implementation of the Water Diversion Project from the Datong River to the
Huangshui River improved water availability. However, high water consumption for
irrigation has resulted in ecological deficits during key periods, stressing the need for
further intervention to balance water usage.

Our results show that the ecological deficit in most months has increased, indicating that
intensified human activities have had a significant negative impact on river ecosystems. This
study provides critical scientific support for watershed ecological protection in northwest
China, particularly in the context of climate change and increased human activities.

6.2. Suggestions

This analysis of the Huangshui River’s ecological water demand guarantee rate and
deficit indicates that high water consumption for agricultural irrigation adversely affects
runoff and the ecological water demand guarantee rate. The impact of water diversion
projects on river runoff is also significant. Therefore, the suggestions are as follows.

(1) Optimizing Agricultural Water Use: The significant ecological deficits during the irriga-
tion season suggest a need for enhanced water-saving agricultural practices. Farmers
should adopt advanced irrigation technologies such as drip irrigation and soil moisture
monitoring systems to reduce water wastage. Incentives for adopting water-efficient
crops that require less water should be provided, particularly in arid zones.
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(2) Prioritizing Ecological Flow Maintenance in Future Water Diversion Projects: While
water diversion projects, like the Yellow River to Xining initiative, are essential for sus-
taining agricultural and urban needs, ecological flow preservation must be integrated
into project planning. A dynamic water allocation model should be implemented,
ensuring that minimum ecological flows are maintained year-round, especially during
dry months. Monitoring stations along the rivers should be enhanced to track the
impacts of these projects on ecological water demands.

(3) Strengthening the Management of Water Resource Allocation: A basin-wide integrated
water resource management system should be established to balance the competing
demands for agricultural, industrial, and ecological water. This includes the develop-
ment of a centralized management system that coordinates the operation of reservoirs
and water diversion projects, ensuring ecological water demands are consistently met.
Public awareness campaigns should be initiated to promote water conservation among
all stakeholders, particularly in the agriculture and industrial sectors.

(4) Climate Change Adaptation Strategies: As climate change is expected to further
alter precipitation patterns, a long-term water resource planning framework should
be developed. This should include adaptive measures to cope with the increased
variability in runoff, ensuring that the ecological integrity of the rivers is preserved
under future climate scenarios. The framework should incorporate predictive models
to simulate potential future scenarios, facilitating proactive decision-making.

(5) Enhancing Scientific Research and Data Collection: Future research should focus
on collecting more granular data on aquatic ecosystems to refine the estimation of
ecological water demand. This includes detailed studies on the water needs of key
protected species and their habitats. Additionally, daily flow data should be collected
to improve the accuracy of ecohydrological assessments, allowing for more precise
ecological flow management.

By implementing these strategies, the Huangshui River Basin can move towards sus-
tainable water management, ensuring both human and ecological needs are met. Long-term
monitoring and adaptive management will be crucial to safeguarding the river ecosystem
in the face of increasing anthropogenic pressures and climate change.
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Abstract: The Red Sea region is considered one of the regions that suffer most from water scarcity
among the Egyptian areas. This situation reinforces the importance of maximizing the utilization
of available water sources. Rainwater and flood harvesting may form a good water source if good
harvesting practices are applied. Natural pastures, Bedouin communities, and wild plants may
be affected by severe droughts expected due to climate change. Additional water resources are
very important to enhance the resilience of the Bedouin communities to probable droughts. Five
main hydrographic basins are issued from Gebel El Sibai (+1435 m), including Wadi Esel, Wadi
Sharm El Bahari, Wadi Sharm El Qibli, Wadi Wizr, and Wadi Umm Gheig. Detailed investigation of
morphometric parameters, runoff/rainfall relationship, and flood volume using GIS and HEC-HMS
model of each basin were estimated as well as natural vegetation. This study reveals that rainfall
ranges from 84 mm to 0 mm, and a storm of 84 mm (highest event) is expected to occur every
42 years with a probability of 2.4%. Quantitative morphometric analysis implies that the area has
good potential for flooding, especially Wadi Sharm El Qibli and Wadi Umm Gheig, where Wadi
Sharm El Bahri represents the lowest priority for flooding. The flood volume of Umm Gheig basin is
the greatest: 12 million m3 at the basin outlet with a rainfall event of 15 mm. Wadi Esel is expected to
collect 8.7 million m3 due to the ratio of the impervious soil and rainfall quantity, Wadi Sharm El
Bahari 2.1 million m3, Wadi Sharm El Qibli 1.6 million m3, and Wadi Wizer 1.04 million m3. Seven
storage dams (SD1-SD7) were proposed to enhance the utilization of the surface water potentialities
of this study area.

Keywords: morphometric parameters; flood risk analysis; wild plants; HEC-HMS software

1. Introduction

Egypt is indeed facing a significant challenge with water scarcity, with an annual water
deficit of approximately seven billion cubic meters. A major challenge in managing the
country’s water resources is the imbalance between the growing demand for water and the
limited available supply, especially in the Red Sea Coast region, where limited surface and
groundwater are present. These issues are exacerbated by climate change, overpopulation,
and environmental degradation. It is a complex issue that requires careful management
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and sustainable practices. The surface water resources in Egypt primarily include the Nile
River. The Nile River originates outside the country and is Egypt’s lifeblood, contributing
about 97% of the renewable water resources, restricted to the Nile Valley and Delta [1,2].
Egypt is almost without rain, except on the north coast, where rain falls at an average
yearly rate of 50–250 mm. The Egyptian Red Sea coast is periodically exposed to flash
floods that cause severe human and economic losses [3]. Flash floods occur occasionally
and are destructive, especially in the Red Sea and South Sinia mountainous areas. The
occasional rain can be harvested and stored using runoff control systems such as dykes
and dams [4]. Unfortunately, these resources vary because of climatic changes and other
factors that negatively affect natural vegetation. Significant efforts are directed to utilize
these water resources and avoid risks. Flash floods are indeed a significant risk in the
Red Sea Mountains, Quseir, and Gebel El Sibai areas. High flood frequencies (F) and
densities (D), which are attributable to the existence of impervious rocks of rough, steep
surface and low permeable subsoil material, consequently limit infiltration of rainfall to
the groundwater [5]. These regions are particularly susceptible to flash floods because
of various contributing factors, such as topography, geomorphology, drainage patterns,
rainfall intensity and duration, evaporation and infiltration rates, and both environmental
and human activities. Most of the previous literature addresses the flood risk assessment
due to its geomorphological basis, and less attention is paid to quantifying the flood volume.
In addition, the relationship between the availability of water resources and the keeping of
natural vegetation is important for Bedouin communities. Effective management of these
risks is crucial to reducing the potential impact on human lives and infrastructure [6]. A
previous study [6] estimated the rainfall-runoff relationship and hydrographic parameters
necessary for managing seasonal floods in certain hydrographic basins south of El Quseir
City, employing morphometric parameters and the SCS-CN method, which is widely used
to estimate surface runoff volume for specific rainfall events [7]. El Alfy [8] integrates
geographic information systems (GIS), remote sensing, and rainfall-runoff modeling to
evaluate the effects of urbanization on flash floods in arid regions. In areas lacking hydro-
meteorological data, runoff modeling can be a valuable approach to improve the livability
of such regions [9]. HEC-HMS, a hydrologic modeling software developed by the US
Army Corps of Engineers-Hydrologic Engineering Centre (HEC), is frequently used to
estimate a basin’s hydrological response to precipitation [10]. Gebel El Sibai is a significant
landform in the area south of El Quseir city of +1435 m height, forming an outstanding
and distinctive watershed. This situation gives the chance to form important deep, steep
slopes and high-density drainage basins. Five basins are encountered from north to south:
Wadi Esel, Wadi Sharm El Bahari, Wadi Sharm El Qibli, Wadi Wizer, and Wadi Umm Gheig.
Drought is a natural hazard that arises from various parameters, such as a reduction in
rainfall amount, high evapotranspiration, and overexploitation of water resources, or a
combination of all the above, which results in serious impacts on social, economic, and
environmental levels, as well as vegetation [11], which provides human being and other
species with food, shelter, medicine and everything else [12]. Drought is also associated
with high temperatures, winds, and low relative humidity; its severity is based on the
demands that human activities and vegetation impose on the water supply in a given
area [13]. Climate change and human-modified landscapes have increased the risk of floods
and droughts globally, while biodiversity has declined [14]. These processes will further
increase in the future [15]. This paper aims to evaluate the surface water resources of these
ungagged basins through detailed estimation of morphometric parameters, runoff/rainfall
relationship, hydrograph generation of each basin using GIS and HEC-HMS model, and
explore wild plant species of this study area. The results will recommend adopting a robust
water management policy in this area. In addition, it aims to search for new water sources
to support the Bedouin communities that live in these areas and suffer from water scarcity.
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2. Study Area

This study area is in the Red Sea area, nearly in the middle part of the Eastern Desert
between latitudes 25◦20′ and 25◦55′ N and longitudes 34◦0′ and 34◦35′ E (Figure 1). The
area is located south of El Quseir city by about 20 km with a total area of about 2000 km2.

Figure 1. Location map of this study area.

The area has a cost front of about 30 km, extending from the outlet of Wadi Esel in the
north to Marsa Umm Gheig in the south. The area is bounded by the water divide of Wadi
Esel and Wadi El Ambagi to the North and the southern water divide of Wadi Umm Gheig
to the south, with an average width of 40 km and average length of 55 km. The Eastern
Desert is located in the extremely arid provinces of Egypt. This arid climate influences not
only the hydrological properties of the drainage basins in the area but also the forms of
developmental opportunities. The maximum and minimum recorded temperatures in the
area are 41 ◦C and 21 ◦C, respectively, and increase from north to south, while the relative
humidity (RH) ranges between 56% and 30%, averaging about 43% in summer and 48% in
winter. The area is characterized by a large number of mountainous crests that belong to
the basement Red Sea complex, of whom are Gebel El Sibai (+1435), Gebel Abu El Tiyur
(+1100 m), Gebel Umm Lasifa (+1165), Gebel Umm Naqqat (+1280), and finally Gebel Umm
Lasfa (+570). This study area also includes five main drainage patterns, named from north
to south as Wadi Esel, Wadi Sharm El Bahari, Wadi Sharm El Qibli, Wadi Wizer, and Wadi
Umm Gheig.

The topographic and geologic maps indicate a complex physiographic setting of this
study area where the ground surface suffers from many undulations with various rock
types (Figure 2). Geologically, the Eastern Desert is composed of both sedimentary and
crystalline rocks. The oldest exposed crystalline rocks belong to the pre-Cambrian age and
are overlain by the Nubian sequence and post-Nubian deposits. The crystalline rocks of
the pre-Cambrian basement complex form massive formations extending parallel to the
Red Sea graben and consisting mainly of metamorphic rocks, as well as acidic and basic
igneous rocks [16–18]. The area is geologically complicated where the western parts are
characterized by metamorphic and igneous rocks, and the eastern area is characterized by
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sedimentary rocks of quaternary and tertiary age. The area is also affected by the tectonic
movements that occurred in the Eastern Desert, coinciding with the formation of the Red
Sea Canyon and the subsequent violent tectonic movements, whose impact was reflected in
the density of faults and the shape of water drainage basins in the region. Topographically,
the area is characterized by a wavy surface. The ground elevation increases from east to
west. Elevations range from zero level at the Red Sea coast at the extreme east to about
+1435 m at G. El Sibai (Figure 3).

Figure 2. Geomorphologic units (A) and Geologic units (B) prevail over this study area [19].

 

Figure 3. Digital Elevation Model (DEM) of this study area (left), mountainous area (right).

Two profiles were constructed, one from east to west and the other crossing the area
from north to south. Profile A-A′, crosses the area from east to west through G. El Tiyur
and G. El Sibai area with 40 km. The ground surface gradually increases westward. The
surface gradient is estimated at 13 m/km. Two mountain crests are present, separated by a
wide depression of 7 km. These mountains, G. El Tiyur and G. El Sibai, are characterized by
steep slopes. Profile B-B′ crosses the area from north to west through the mountains G. El
Sibai, G. Umm Lasifa, and G. Umm Naqqat with a 55 km length. The area in this direction
suffers from high undulations. G. El Sibai has a longitudinal crest of 7 km wide, whereas G.
Umm Lasifa and G. Umm Naqqat have point tops (Figure 4).
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Figure 4. Terrain variations of this study area.

Geomorphologically, four geomorphological units characterize the area. 1. Coastal

Plain extends parallel to the Red Sea coast between Contour lines (0–100 m), where the
width of this plain is about 7 km, the breadth of this plain increases from one region to
another. It reaches its maximum width at the main basin’s outlets, i.e., Wadi Esel, Wadi
Umm Gheig, Wadi Sharm El Bahari, and Wadi Sharm El Qibli. The widening of the
coastal plain area at the valley’s deltas may be due to the large water discharge resulting
from tolerance of surface runoff and the large number of sediments associated with the
addition to the receding of the rift edge due to the water erosion activity prevailing in
the area because of the thunderstorms that occur from time to time. 2. Pediment Plain is
represented by the sedimentary zone, which is characterized by steep slopes. This plain
extends between the contour line 100 m and 200 m with a breadth of about 5 km. This
zone is characterized by steep slopes, irregular shapes, and flood fans. This plain reaches
its maximum width at Wadi Esel and Wadi Umm Gheig, where the contour line 200 m
retreated to the west. This plain is characterized by straightforwardness because of long
SE-NW faults parallel to the great Red Sea canyon. 3. Mountainous Plain covers about
75% of this study area and borders by the 200 m contour line from the east. This zone
is highly terrain plain. Many tributaries cross this plain, forming the water collectors of
the main wadis. It is composed mainly of fractured Igneous and metamorphic rocks with
little sedimentary rocks in the main valley courses. The highest mountains represented by
G. El Sibai (+1435), G. Abu El Tiyur (+1100 m), G. Umm Lasifa (+1165 m), and G. Umm
Naqqat (+1280 m) are present in this plain. The mountain masses are characterized by their
cliff edges and pointed peaks because of the hardness of their rocks and their resistance to
erosion factors. 4. Hydrographic Basins represent five main hydrographic basins. They
include Wadi Esel, Wadi Sharm El Bahari, Wadi Sharm El Qibli, Wadi Wizr, and Wadi Umm
Gheig (Figure 5). These wadis collect rainwater and sediments from the mountainous area
in the west to the outlets at the Red Sea Coast. The main morphometric parameters vary
from one basin to another. Wadi Umm Gheig is the largest area and longest perimeter
among the Wadis, where Wadi Esel represents the tallest main course. On the other hand,
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Wadi Sharm El Bahari represents the steep slope among the whole wadis. These Wadis
play an important role in erosion and plant cover in the area under concern.

Figure 5. Drainage basins of this study area.

Geologically, the Central Eastern Desert of Egypt is primarily composed of a complex
mix of tectonically assembled ophiolitic mélange and interoceanic arcs. Over time, these
formations were overlain by molasse-type sediments and continental volcanic deposits and
further shaped by the intrusion of granitoid suites and dyke swarms [18,20–22]. The area
under concern is geologically complicated; it consists of basement rocks and sedimentary
rocks that are affected by many folding and faulting structures [19]. The geologic units of the
area are subdivided into two main divisions. The first one represents the Precambrian rocks,
which form the main erosion unit, and the second one is the sedimentary rocks, which form
the main depositional unit [23]. Basement complex: These rocks constitute the oldest rocks
outcropping in the area. It includes igneous and metamorphic rocks. These rocks form
the base where the recent sedimentary rocks were deposited. It includes Metagabbro and
Metadiorite, metavolcanics, Hammamat Classics, Old Granite, and Younger Granite Rocks.
Sedimentary Rocks: These rocks are formed from many formations, ranging in age from
Cretaceous to Holocene periods. Dawi Formation is composed of three phosphate zones,
separated by clay and limestone layers rich in marine fossils. It has limited distribution
in this study area except in the area extended from Wadi Sharm El Bahari and Wadi Esel.
Dakhla Formation belongs to the Pliocene period. It is formed from dark, grey, shallow
marine marl and clay with limestone intercalations. It is an outcropping in the middle parts
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of Wadi Sharm El Qibli and lower parts of Wadi Esel. Mahara Formation represents the
Middle Miocene rocks unconformably with older rocks. It comprises sandy limestone in
the lower and gypsiferous limestone in the upper part. It appears in many parts of the
coastal plain in Wadi Umm Gheig and Wadi Esel. Umm Gheig Formation is composed of
limestone rich in algal remains, organic debris, and fossils of plecepods and gastropods.
Its thickness ranges from 8–10 m. It belongs to the Upper Miocene period. It appears in
the lower parts of Wadi Umm Gheig and Wadi Esel. Shagara Formation belongs to the
Pliocene period. It is composed of sandstone and marl rich in fossils of 22 m thickness.
This formation is well distributed in the coastal plain area at the outlets of Wadi Esel,
Wadi Sharm El Bahari, Wadi Sharm El Qibli, and Wadi Wizr. Quaternary Deposits are
widespread all over this study area, i.e., fluvial deposits, sabkhas, shore dunes, and marine
terraces. Wadi deposits are restricted to the water collectors of the drainage basins and are
mainly formed of conglomerates and sand deposits resulting from erosion by water during
intensive flash floods.

These geological formations and topographic features played the greatest role in
forming the valleys and will have the greatest impact on the amount of water produced
from these valleys in the event of heavy rainfall, as igneous rocks act as a positive factor in
collecting rainwater and the possibility of harvesting, while sedimentary rocks are useful
in feeding groundwater reservoirs.

3. Materials and Methods

Archival data, such as long-term rainfall records required for estimating the probability
of exceedance G(x) and the return period T, were collected from the Desert Research Center
(DRC) database, Egypt, in addition to recent rainfall records from the World Wide Web
through the NASA website (Table 1). The POWER Data Access Viewer (DAV) is a web-
based application developed by the NASA Prediction of Worldwide Energy Resources
(POWER) project. It provides access to community-based analysis-ready meteorology
and solar-related parameters. These parameters are specifically formulated for assessing
and designing renewable energy systems. The relationship between the probability of
exceedance G(x) and the return period T is given by the following formula [24].

G(x) =
1
T

(1)

Table 1. Rainfall data of the El Sibai watershed area in the period (1981–2021).POWER|Data Access
Viewer (nasa.gov).

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

1981 0 0 0 0 0 0 0 0 0 0 0 0 0

1982 0 0 0 0 0 0 0 0 0 0 0 0 0

1983 0 0 0 0 0 0 0 0 0 0 0 0 0

1984 0 0 0 0 0 0 0 0 0 0 0 0 0

1985 0 0 5.27 0 0 0 0 0 0 0 0 0 5.27

1986 0 0 0 0 0 0 0 0 0 52.73 21.09 10.55 84.38

1987 0 0 0 0 0 0 0 0 0 0 0 0 0

1988 0 0 0 0 0 0 0 0 0 0 0 0 0

1989 0 0 0 0 0 0 0 0 0 0 0 0 0

1990 0 0 0 0 0 0 0 0 0 0 0 0 0

1991 5.27 0 0 0 0 0 0 0 0 0 0 0 5.27

1992 0 0 0 0 0 0 0 0 0 0 0 0 0

1993 0 0 0 0 0 0 0 0 0 26.37 0 0 26.37
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Table 1. Cont.

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

1994 0 0 0 0 0 0 0 0 0 0 10.55 0 10.55

1995 0 0 0 0 0 0 0 0 0 0 0 0 0

1996 0 0 0 0 0 0 0 0 0 0 5.27 0 5.27

1997 15.82 0 0 0 5.27 0 0 0 0 0 0 0 21.09

1998 0 0 0 0 0 0 0 0 0 0 0 0 0

1999 0 0 0 0 0 0 0 0 0 0 0 0 0

2000 0 0 0 0 0 0 0 0 0 0 0 0 0

2001 0 0 0 0 0 0 0 0 0 0 0 0 0

2002 0 0 0 0 0 0 0 0 0 0 0 0 0

2003 0 0 0 0 0 0 0 0 0 0 0 0 0

2004 0 0 0 0 0 0 0 0 0 0 0 0 0

2005 0 0 0 0 0 0 0 0 0 0 0 0 0

2006 0 0 5.27 0 0 0 0 0 0 0 0 0 5.27

2007 0 0 0 0 0 0 0 0 0 0 0 0 0

2008 0 0 0 0 0 0 0 0 0 0 0 0 0

2009 0 0 0 0 0 0 0 0 0 0 0 0 0

2010 5.27 0 0 0 0 0 0 0 0 0 0 0 5.27

2011 0 0 0 0 0 0 0 0 0 0 0 0 0

2012 0 0 0 0 0 0 0 0 0 0 0 0 0

2013 10.55 0 0 0 0 0 0 0 0 0 0 0 10.55

2014 0 0 0 0 0 0 0 0 0 0 0 0 0

2015 0 0 0 0 0 0 0 0 0 0 0 0 0

2016 0 0 0 0 0 0 0 0 0 15.97 0 0 15.97

2017 0 0 0 0 0 0 0 0 0 0 0 0 0

2018 0 0 0 0 0 0 0 0 0 0 0 0 0

2019 0 0 0 0 0 0 0 0 0 0 0 0 0

2020 0 0 0 0 5.27 0 0 0 0 0 0 0 5.27

2021 0 0 0 0.09 0 0 0 0 0 0 0.04 0 0.14

The most universally used formula for calculating the return period (T) for a particular
flood peak is that of Weibull [25,26].

T =
(N + 1)

m
(2)

where N is the number of events in the series (dimensionless), and m is the rank (from
largest to smallest) of each event in the series (dimensionless).

The hazard degree approach is applied to estimate the basin’s hazard degree, which
is dependent on the values of the affected estimated morphometric parameters. Using
the maximum and minimum values of the morphometric parameter, [27] proposed the
following two equations to calculate the hazard degree of each parameter.

Hazard degree = (4(X − Xmin)/(Xmax − Xmin)) + 1 (3)

for direct proportion parameters
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Hazard degree = (4(X − Xmax)/(Xmin − Xmax)) + 1 (4)

for inverse proportion parameters
where X is the value of the assessed morphometric parameter. X max is the maximum
value of the assessed morphometric parameter of all studied basins. X min is the minimum
value of the assessed morphometric parameter of all studied basins. The hazard value of
each basin is the sum of the hazard degree of its affected morphometric parameters. A
hazard scale starting with 1 (lowest) to 5 (highest) has been assigned, i.e., the higher the
value, the greater the hazard.

Additionally, one of the most widely used methods for estimating surface runoff
volume from a specific rainfall event is the SCS-CN method, originally developed by the
Soil Conservation Service (SCS) in 1956 and now referred to as the NRCS-CN method. This
method relies on the principles of water balance and is founded on two key hypotheses.
The first hypothesis posits that the ratio of direct runoff to the potential maximum runoff
is equivalent to the ratio of infiltration to the possible maximum retention. The second
hypothesis suggests that the initial abstraction is directly proportional to the potential
maximum retention. The water balance equation and the two hypotheses are expressed
mathematically, respectively, as:

P = Iα + F+Q (5)

Q
P − Iα

=
F
S

(6)

Iα = λS (7)

The variables are defined as follows: P represents the total precipitation (in millime-
ters), Iα is the initial abstraction before runoff (in millimeters), F stands for the cumulative
infiltration after runoff begins (in millimeters), Q indicates direct runoff (in millimeters),
S denotes the potential maximum retention (in millimeters), and λ is the coefficient for the
initial abstraction ratio. Storm events with P ≥ 5 mm were used to determine Curve Num-
ber (CN) values during the calibration period [28]. The original SCS-CN model assumes
λ = 0.2.

The general runoff equation combination of Equations (6) and (7) is shown in Equation (8):

Q =
(P − Iα)

2

P − Iα + S for P > Iα

= 0 otherwise
(8)

The potential maximum retention S (mm) can vary in the range of 0 ≤ S ≤ ∞, and it is
directly linked to CN. Parameter S is mapped to the CN using Equation (9) as follows:

S =
25, 400

CN
− 254 (9)

The (CN) is influenced by factors such as land use, hydrologic soil group, hydrologic
condition, and antecedent moisture condition (AMC), and its value can range from 0 to 100.
Three AMCs are defined as follows: dry (representing the lower moisture limit or upper
limit of S), moderate (normal soil moisture condition), and wet (representing the upper
moisture limit or lower limit of S), labeled as AMC I, AMC II, and AMC III, respectively.
A higher antecedent moisture level and CN value suggest increased runoff, while lower
levels indicate less runoff. Consequently, the median CN, calculated from a range of CN
values, is often used for a catchment area [29]. The weighted CN for areas with mixed land
use can be calculated using the following equation:

CN = ∑Ai CNi/∑Ai (10)

where CNi is the CN for a part of the watershed of an area Ai.
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The HEC-HMS model is used to estimate the volume runoff of the studied basins. It is
a software designed to simulate the complete hydrologic processes of watershed systems.
The software features a range of traditional hydrologic analysis techniques, including
event infiltration, unit hydrographs, and hydrologic routing. Additionally, HEC-HMS
is equipped with tools essential for continuous simulation, such as evapotranspiration,
snowmelt, and soil moisture accounting [30]. The time of concentration (Tc) refers to the
duration, in minutes, it takes for a drop of water to travel from the most hydraulically
distant point in a watershed to a downstream gauging point [31]. Kirpich [32] formula
was applied to estimate the time of concentration for each sub-basin. This formula is a
popularly used formula relating the time of concentration of the length of travel and slope
of the catchment as follows:

Tc = 0.0078 [L0.77 S-0.385] (11)

Time of concentration (Tc) is measured in minutes and represents the time it takes for
water to travel from the most distant point in the catchment to the outlet. It is influenced by
the maximum length of travel (L, in kilometers) and the slope of the catchment (S, in meters
per meter). The lag time (TL), which is the interval between the centroid of the net rainfall
and the centroid of the runoff, is typically around 60% of Tc as per the SCS method. The final
step in generating the basin hydrograph is routing the watershed. Routing involves the
movement of runoff through the various watershed outlets, along streams, and ultimately
to the watershed’s outlet or sink [31].

The Hydrologic Modeling System (HEC-HMS) is designed to simulate the precipitation-
runoff processes of drainage basins. HEC-HMS rainfall-runoff model has many flood
modeling and water resource planning and management applications. In most studies,
HEC-HMS rainfall-runoff modeling was efficient and dependable in predicting runoff
accuracy in various watersheds. As a result, the model can simulate runoff in an ungauged
basin for water resource planning, development, management, and decision-making. These
needed data include watershed parameters, i.e., CN, area drainage density . . . etc., storm
parameters, i.e., duration and intensity, and routing parameters, i.e., time of concentration
and time lag. The HEC-HMS model provides several routing options, including the Musk-
ingum, Modified Puls, Kinematic Wave, and Muskingum–Cunge methods. The runoff
coefficient quantifies the relationship between the depth of runoff and rainfall, indicating
the proportion of rainfall that contributes to runoff. The runoff depth and runoff coefficient
are calculated using the following equations [33]:

Runoff depth (mm) = Runoff volume/Drainage area

Runoff coefficient (%) = Runoff depth/Rainfall depth

4. Results and Discussion

4.1. Rainfall Analysis

As Quseir meteorological station is located so far from this study area, about 44 km
long, NASA archival data were used to download rainfall data of the Gebel El Sibai
watershed area at latitude 25.7257 and longitude 34.2038 (Table 1). These data imply that
rainfall is generally scarce. January rainfall data records from 1981 to 2021 indicate that
October, November, and December are the rainy months. Rainfall ranges from 84 mm to
zero. These conditions reflect the aridity of the area, and the flash rainfalls that occur from
time to time should be utilized. Bennet et al. [26] were used to calculate the recurrence
of events (T) from the downloaded series of observations (Table 2 and Figure 6). So, the
recurrence of any event of flash flooding can be predicted. As the annual rainfall increases,
the recurrence period becomes longer, and vice versa, i.e., a storm of 84 mm is expected
to occur every 42 years with a probability of 2.4%, while 21 mm is of rainfall expected to
occur every 14 years with a probability of 7.1% . . . etc. The event of 5.27 mm is expected to
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repeat many times every 6 years. The relation between the annual rainfall and recurrence
period is given by the best-fit relation: P = 1.9314 log T—3.66191.

Table 2. Rainfall recurrence period in the Gebel El Sibai watershed area during the period 1981
to 2021.

Year
Annual

pp (mm)
Ranked PP

(mm)
Rank

Return
Period (Year)

Probability
%

1981 0 84.38 1 42.0 2.4

1982 0 26.37 2 21.0 4.8

1983 0 21.09 3 14.0 7.1

1984 0 15.97 4 10.5 9.5

1985 5.27 10.55 5 8.4 11.9

1986 84.38 10.55 6 7.0 14.3

1987 0 5.27 7 6.0 16.7

1988 0 5.27 8 5.3 19.0

1989 0 5.27 9 4.7 21.4

1990 0 5.27 10 4.2 23.8

1991 5.27 5.27 11 3.8 26.2

1992 0 5.27 12 3.5 28.6

1993 26.37 0.14 13 3.2 31.0

1994 10.55 0 14 3.0 33.3

1995 0 0 15 2.8 35.7

1996 5.27 0 16 2.6 38.1

1997 21.09 0 17 2.5 40.5

1998 0 0 18 2.3 42.9

1999 0 0 19 2.2 45.2

2000 0 0 20 2.1 47.6

2001 0 0 21 2.0 50.0

2002 0 0 22 1.9 52.4

2003 0 0 23 1.8 54.8

2004 0 0 24 1.8 57.1

2005 0 0 25 1.7 59.5

2006 5.27 0 26 1.6 61.9

2007 0 0 27 1.6 64.3

2008 0 0 28 1.5 66.7

2009 0 0 29 1.4 69.0

2010 5.27 0 30 1.4 71.4

2011 0 0 31 1.4 73.8

2012 0 0 32 1.3 76.2

2013 10.55 0 33 1.3 78.6

2014 0 0 34 1.2 81.0

2015 0 0 35 1.2 83.3

2016 15.97 0 36 1.2 85.7

2017 0 0 37 1.1 88.1
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Table 2. Cont.

Year
Annual

pp (mm)
Ranked PP

(mm)
Rank

Return
Period (Year)

Probability
%

2018 0 0 38 1.1 90.5

2019 0 0 39 1.1 92.9

2020 5.27 0 40 1.1 95.2

2021 0.14 0 41 1.0 97.6

 
Figure 6. The relation between the annual precipitation (mm) and the recurrence period (year) of the
Gebel El Sibai watershed area.

4.2. Quantitative Morphometric Analysis

Five drainage basins of five and six ordered basins are issued from the Gebel El Sibai
watershed: Esel, Sharm El Bahari, Sharm El Qibli, Wizer, and Umm Gheig, of a total area
equal to 1954 km2 (Figure 7). These wadis are variable morphometric parameters controlled
by structural elements, rock types, and erosion factors. Detailed quantitative morphometric
analysis was estimated using topographic maps of scale 1:50,000, DEM, and GIS techniques
(Table 3). The basic morphometric parameters can be summarized as follows:

Table 3. Morphometric parameters of the studied basins.

Parameter Wadi Esel
Wadi Sharm El

Bahari
Wadi Sharm El

Qibli
Wadi Wizer

Wadi Umm
Gheig

Stream Order (u) 6.00 5.00 5.00 5.00 6.00

Total Stream Numbers (Nu) 1229.00 322.00 246.00 172.00 1435.00

Total Stream length (Lu) (km) 1149.61 354.37 281.26 175.91 1470.68

Mean bifurcation ratio (Rbm) 4.44 4.08 3.89 3.64 4.12

Weighted Mean bifurcation ratio WMRb 3.79 4.18 4.24 4.96 4.8

Basin perimeter(km) (P) 170.52 95.47 62.08 48.8 191.81

Steam length (Ls)(Km) 30.93 36.86 8.72 8.31 41.96

Basin Length (Lb) (km) 68.95 43.05 25.4 20.25 60.66

sinuosity ratio (Si) 0.45 0.86 0.34 0.41 0.69

Basin Area (km2) (A) 658.85 187.92 147.83 95.47 863.66

Form factor Ratio (Rf) 0.14 0.1 0.23 0.23 0.23

Elongation Ratio (Re) 0.42 0.36 0.54 0.54 0.55

Texture Ratio (T) 5.11 2.56 3 2.79 5.91
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Table 3. Cont.

Parameter Wadi Esel
Wadi Sharm El

Bahari
Wadi Sharm El

Qibli
Wadi Wizer

Wadi Umm
Gheig

Circulatory Ratio (Rc) 0.28 0.26 0.48 0.5 0.29

Drainage density (Dd) 1.74 1.89 1.9 1.84 1.7

Fitness Ratio (Fr) 0.4 0.45 0.41 0.41 0.32

Constant of channel maintenance (CCM) (km) 0.57 0.53 0.53 0.54 0.59

Stream Frequency (Fs) 1.87 1.71 1.66 1.8 1.66

Infiltration Number (FN 3.25 3.23 3.17 3.32 2.83

Form Factor (Rf) 0.14 0.1 0.23 0.23 0.23

Basin shape 7.22 9.86 4.36 4.3 4.26

Basin shape Index (Ish) 0.18 0.13 0.29 0.3 0.3

Length of overland flow (Lo) 0.33 0.28 0.28 0.29 0.34

Compactness Constant (Cc) 1.87 1.96 1.44 1.41 1.84

max elevation (R) 1099.00 1477.00 1477.00 438.00 1264.00

min. elevation (r) 0.00 0.00 0.00 0.00 0.00

relative relief (Rr) 1099.00 1477.00 1477.00 438.00 1264.00

Relief ratio (Rr) 0.02 0.03 0.06 0.02 0.02

Dissection index (Di) 1.00 1.00 1.00 1.00 1.00

Ruggedness index (Rn) 1.92 2.79 2.81 0.81 2.15

Melton Ruggedness number (MRn) 0.04 0.11 0.12 0.04 0.04

Lb (m) 68,953.00 43,050.00 25,397.00 20,250.00 60,660.00

H (m) 1099.00 1477.00 1477.00 438.00 1264.00

slope (s) 0.02 0.03 0.06 0.02 0.02

Figure 7. Streams distribution of the drainage basins in the Gebel El Sibai watershed area.
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4.3. Linear Characteristics

Streams numbers and lengths: The streams collect rainfall to the wadi outlet. The
greater the number and longer the length of the streams, the higher the potential of
the wadis to drain water. Wadi Umm Gheig is the greatest and longest stream’s basin,
1435/1470 km, whereas Wadi Wizer is the smallest and shortest at 172/175 km.

The bifurcation ratio (Rb) is the ratio between the number of stream segments of
a given order and the number of segments in the next higher order [34]. Horton [35]
regarded the bifurcation ratio as an important index for assessing relief and dissection.
This dimensionless value represents the relationship between the number of streams in
one order and those in the subsequent higher order within a drainage network. A higher
bifurcation ratio indicates a greater likelihood of flooding, making it a valuable tool for
flood risk assessment. The higher the bifurcation ratio, the greater the probability of
flooding. It normally lies in the range of 2–5 [35,36]. In Wadi El Sibai watershed studied
basins it ranges between 3.64 and 4.44 with an average of 4.03. On the other hand, the
weighted mean bifurcation Ratio (WMRb) ranges between 3.97 and 4.96. The high Rb
values of the area reflect the essential effects of the tectonic and erosion elements in forming
and deepening the streams and the high potential for flooding.

The Stream length (Ls) refers to the length of the drainage basin. The stream length of
the studied basins ranges from 8.31 to 41.96 km (Wadi Wazar and Umm Gheig, respectively),
with an average of 25.4 km. On the other hand, the basin length ranges from 20.25 to
68.95 km in Wadi Wizer and Wadi Esel, respectively.

The sinuosity ratio (Si) is the ratio between the stream length and the basin length.
This ratio quantifies how much a stream deviates from a straight path. A higher sinuosity
ratio indicates a more meandering stream. The sinuosity ratio is a measure to quantify the
degree to which stream meanders (i.e., bends and turns). The sinuosity ratio ranges between
0.34 for Wadi Sharm El Qibli and 0.86 for Wadi Sharm El Bahari, reflecting lithological and
structural control.

The length of overland flow (Lo) is a key parameter in hydrological modeling. It
represents the maximum length of surface flow or runoff. Horton [35] recommended using
one-half the reciprocal of the drainage density. It is a measure of credibility, which can be
described as the length of the flow of water over the surface before it becomes concentrated
in definite stream channels [37]. The shorter the Lo value, the quicker the surface runoff
will enter the stream. The values of the overland flow range between 0.28 for Wadi Sharm
El Qibli and 0. 34 km for Wadi Umm Gheig.

Stream frequency (F) is defined as the ratio of the total number of stream segments
across all orders within a watershed to the area of the basin or watershed [35]. This metric
represents the number of streams per unit area. It varies between 1.66 m−2 (Wadi Sharm El
Qibli) to 1.87 m−2 (Wadi Esel), with an average value of 1.74 km−2. The stream frequency
values indicate that Wadi Esel and Wadi Wizer have high flooding potential.

5. Areal Characteristics

Drainage area (A) is an area of land where all flowing surface water converges to a
single point, such as a lake or sea. The drainage area is measured in a horizontal plane
enclosed by the drainage divide, outlining the basin using the GIS tool. The drainage area
of Gebel El Sibai watershed basins ranges from 95.47 km2 (Wadi Wizer) to 863.66 km2 (Wadi
umm Gheig), with an average value of 390.75 km2. These values reflect the good rainwater
harvesting potential of the area under concern.

Perimeter (P) refers to the length of the line enclosing the catchment area of a drainage
basin. The basin perimeter was calculated using GIS analysis. The basin’s perimeters range
from 48.80 km (Wadi Wizer) to 191.81 km (Wadi Umm Gheig).

Drainage density (D) refers to the total length of stream channels within a drainage
basin per unit area. It is determined by dividing the combined length of all streams by the
basin’s total area. It indicates how well stream channels, measured in km/km2, drain a
watershed. High drainage densities indicate a high bifurcation ratio and may approximate
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the average length of overland flow. It ranges between 1.7 km−1 (Wadi Esel) and 1.9 km−1

(Wadi Sharm El Qibli), with an average value of 1.8 km−1. The estimated drainage density
values indicate high flood potentiality.

The constant of channel maintenance (Rm) is defined as the inverse of the drainage
density. Schumm [34] introduced it as the ratio between the area of a drainage basin and the
total length of all the channels. The value of the constant of channel maintenance increases
with the size of the watershed, and it gives an idea of how much area (in m2) is needed to
sustain one meter of a stream channel. The Rm values range from 0.53 km to 0.59 km (Wadi
Sharm El Qibli and Wadi Umm Gheig, respectively) with an average value of 0.114 km.
The Rm values indicate the risk of flooding and soil erosion in a watershed [38]. A lower
Rm value (and hence higher drainage density) indicates a well-dissected watershed with
less risk of flooding and soil erosion and vice versa.

6. Shape Characteristics

The elongation ratio (Re) measures the shape of a watershed. The elongation ratio
varies between 0.36 (Wadi Sharm El Bahari) to 0.55 (Wadi Umm Gheig). According to the
elongation ratio values, Wadi umm Gheig, Wadi Sharm El Qibli, and Wadi Wizer are more
hazardous than Wadi Esel and Wadi Sharm El Bahari.

The circularity ratio (Rc) is a measure of the shape of a watershed. It is defined as the
ratio between the areas of a watershed to the area of a circle having the same circumference
as the perimeter of the watershed. It is a significant ratio that indicates the dendritic stage
of a watershed. The estimated values of the circulation ratio indicate that Wadi Wizer is the
most circular basin.

The form factor ratio (F)
It is a dimensionless shape factor that is an indicator of the shape of the river basin. It

is calculated as the ratio of the area of the basin (A) to the square of the basin length (L2). It
ranges between 0.1 (Wadi Sharm El Bahari) to 0.23 (Wadi Umm Gheig).

7. Relief Characteristics

Relative Relief (H) refers to the maximum altitudinal difference in a basin. It is the
difference between the highest and lowest points in a particular basin. This measure
can provide insights into the overall variation in the basin’s elevation, geomorphology
variations, basin potential erosion, and hydrological behavior. The relative relief ranges
from 1477 m (Wadi Sharm El Bahari) and 438 m (Wadi Wizer). These values reflect high
potential erosion and floods in Wadis Sharm El Bahari, Sharm El Qibli, Umm Gheig,
and Esel.

The relief Ratio (Rr) is a measure used to quantify the overall steepness of a basin
surface. It is calculated by dividing the total relief by the length of the main channel. A high
Relief Ratio suggests a young, steep river, while a low Relief Ratio indicates a more mature,
less steep basin [39]. It ranges between 0.02 (Wadi Esel, Umm Gheig) and 0.06 (Wadi Sharm
El Qibli) with an average value of 0.004.

The ruggedness number (Rn) is used to represent the actual conditions of sub-basin
watersheds. It is calculated as the product of the maximum basin relief and drainage density.
Since Rn depends on both slope and drainage density, a lower value suggests slower stream
flow velocity, indicating a lower susceptibility to soil erosion. This parameter provides a
straightforward and efficient tool for precise planning and more equitable economic use
of land based on its suitability. The ruggedness number in the studied area ranges from
0.81 (Wadi Wizer) to 2.79 (Wadi Sharm El Bahari), with an average of 2.096, indicating a
high potential for erosion in the Gebel El Sibai watershed basins.

The basin relief (R) is a geomorphological parameter that represents the elevation
difference between the highest point on the drainage divide and the outlet point of the
subbasin. This parameter is significant as it provides insights into the overall topography
and slope of the watershed, which can influence factors such as water flow velocity and
potential for soil erosion.
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8. Hazard Degree Model

The degree of hazard of drainage basins is a measure of the potential risk they pose,
particularly in terms of flooding. This is an indicator of the behavior of direct surface
runoff. The hazard degree of a drainage basin can be assessed using various parameters
that contribute to the behavior of direct surface runoff and alter the risk of direct surface
runoff [40]. Nine parameters are used to estimate the hazard degree of the studied basins
(Table 4). These parameters are directly proportional to the basin’s hazard except the
weighted mean bifurcation ratio. Equations (3) and (4) were used to calculate the hazard
degree of the different basins. Accordingly, Wadi Sharm El Qibli is the highest hazard
degree, and Wadi Sharm El Bahari is the lowest.

Table 4. The estimated hazard degree values of different values.

Effective Parameter Wadi Esel
Wadi Sharm

El Bahari
Wadi Sharm

El Qibli
Wadi Wizer

Wadi Umm
Gheig

Basin Area (km2) (A) 3.934 1.481 1.273 1.000 5.000

Drainage density (Dd) 1.800 4.800 5.000 3.800 1.000

Stream Frequency (Fs) 5.000 1.952 1.000 3.667 1.000

Circulatory Ratio (Rc) 1.333 1.000 4.667 5.000 1.500

Length of overland flow (Lo) 4.333 1.000 1.000 1.667 5.000

Basin shape Index (Ish) 2.176 1.000 4.765 5.000 5.000

Ruggedness index (Rn) 3.220 4.960 5.000 1.000 3.680

Relief ratio (Rr) 1.000 2.000 5.000 1.000 1.000

Weighted Mean bifurcation ratio (WMRb) 1.000 2.333 2.538 5.000 4.453

Total Hazard Degree 23.797 20.527 30.242 27.133 27.633

Hazard Degree Low V. low V.high high high

9. Rainfall/Runoff Relationship

The relationship between rainfall and runoff is a key element in hydrology, influenced
by the dynamic interplay of rainfall intensity, soil infiltration, and surface storage. This
relationship is vital for effective catchment management, including sustainable water
resource development and flood hazard mitigation [41]. The curve number (CN) value, as
identified by Ponce and Hawkins [33], is a primary source of uncertainty impacting the
outcomes of this process. The (CN) is estimated for each basin depending on the land use
type, hydrologic soil group, hydrologic condition, and the antecedent moisture condition
(AMC) (Table 5). Due to the scarce rainfall, the area is almost dry and poor with vegetation.
The affected character of the CN value is the soil type group. Four main soil types are well
recognized: Wadi fill deposits, quaternary deep sand soil, limestone rocks, and fractured
basement. The value of the CN and the area of each soil type are estimated for each basin.
The weighted CN attends 89.34 (Wadi Esel), 89.44 (Wadi Sharm El Bahari), 83.60 (Wadi
Sharm El Qibli), 76.81 (Wadi Wizer) and 91.39 (Wadi Umm Gheig). Wadi Umm Gheig has
the highest priority to flood, where initial abstraction (Ia) is 4.79 mm. This may be due
to the prevalence of the basement rock surface of the basin (83.99%). On the other hand,
Wadi Sharm El Bahri represents the lowest priority for flooding, where Ia attains 15.34 mm.
These conditions reflect the prevalence of the quaternary sand deposits of high infiltration
rate of the basin. The Ia value records 9.97 mm in (Wadi Sharm El Qibli, 6 mm in (Wadi
Wizer, and 6.06 mm in Wadi Umm Gheig (Figure 8).
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Table 5. Run-off equation of Gebel El Sibai watershed basins using the SCS_CN method (SCS, 1972).

Basin
Name

Area
km2 AMC

Land
Use

Soil Type
Area
km2

Soil
Area

%
CN

Weighted
CN

S
mm

Ia
mm

Basin Equation
Q (mm)

Esel 658.85 dry poor

Wadi fill deposits 58.804 8.93 63

89.34 30.32 6.06
(P − 6.06)2/
(p + 24.26)

Sand deposits 73.357 11.13 71

Limestone rocks 12.808 1.94 88

Basement rocks 513.881 78.00 95

Sharm
El

Bahari
187.92 dry poor

Wadi fill deposits 4.984 2.65 63

89.44 30.00 6.00
(P − 6.0)2/
(p + 24.0)

Sand deposits 27.599 14.69 71

Limestone rocks 31.912 16.98 88

Basement rocks 123.425 65.68 95

Sharm
El Qibli 147.83 dry poor

Wadi fill deposits 8.381 5.67 63

83.60 49.83 9.97
(P − 9.97)2/
(p + 39.87)

Sand deposits 51.033 34.52 71

Limestone rocks 27.509 18.61 88

Basement rocks 60.907 41.20 95

Wizer 95.47 dry poor

Wadi fill deposits 17.5 18.33 63

76.81 76.70 15.34
(P − 15.34)2/

(p + 61.36)

Sand deposits 41.029 42.98 71

Limestone rocks 27.451 28.75 88

Basement rocks 9.49 9.94 95

Umm
Gheig 863.66 dry poor

Wadi fill deposits 34.194 3.96 63

91.39 23.94 4.79
(P − 4.79)2/
(p + 19.15)

Sand deposits 76.348 8.84 71

Limestone rocks 27.701 3.21 88

Basement rocks 725.417 83.99 95

Figure 8. Map showing kinds of soil covering this study area.
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10. Run-Off Volume

The runoff volume of the un-gauged basins of the Gebel El Sibai watershed was esti-
mated through the hydrograph generation using the HEC-HMS modeling software (V. 3.5),
which was designed to simulate the hydrologic response of the watersheds. The HEC-HMS
was used to estimate the flood volume in many areas all over the world. Hessein et al. [42]
investigated recharge mechanisms in structurally controlled terrain under arid environ-
ments using HEC-HMS in Wadi Morra, Sinai, Egypt. A total flood volume was estimated
as 29.47 × 106 m3. Goodarzi et al. [43]) evaluate food forecasting using the weather re-
search and forecasting (WRF) model and the Hydrologic Engineering Center-Hydrologic
Modeling System (HEC-HMS) model in the Talesh catchment. The model was calibrated
and validated using previous runoff events and by comparing observed and simulated
streak flow and peak discharge against those reported in previous studies. It was found
that the model is efficient and can be used in similar regions. Khan et al. [44] stated that
the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model was
fed with information about precipitation, slope, soil type, as well as land use and land
cover. An event that occurred in October 2016 was used to examine the response of the
studied basins to this event. It has a 22 h duration and a total rainfall quantity of 15.98 mm
(Figure 9). The hydrologic elements of every basin were represented, i.e., the Esel basin has
four sub-basins. Run-off sub-basins 1 and 2 are collected at Junction 1. Floodwater routines
to Junction 2 (outlet point) through reach 1. The input parameters of The HEC-HMS model
include the CN of each subbasin, the potential maximum retention (s), the initial abstraction
(Ia), the ratio of the impervious soil, time of concentration (Tc), and lag time (Lg) (Table 6).
The time of concentration of the different subbasins is calculated using the Kirpich formula.
The values range from 64.2 min (sub-basin 2, Wadi Sharn El Qibli) to 123.3 min (sub-basin 1,
Wadi Umm Gheig) with an average value of 85.2 min (Table 6). On the other hand, the
lag time values range from 38.5 to 74 min, with an average value of 51.1 min. The results
indicated that the different wadis received about 26.421 million m3 of rainwater due to that
event, where subbasin-1 of Wadi Umm Gheig represents the largest one collecting rainwa-
ter (6.281 million m3) and subbasin-2 of Wadi Sharm El Qibli is the smallest (742,900 m3)
(Table 7). The subbasin’s total losses range from 1.04 million m3 (Subbasin-4, Wadi Esel),
where basement, impervious rocks prevail, to about 20,900 m3 (Subbasin-2, Wadi Esel),
where quaternary and wadi deposits prevail. The discharge volume of the studied basins at
outlets varies from 8.718 million m3 at Wadi Esel, 2.099 million m3 at Wadi Sharm El Bahari,
1.595 million m3 at the outlet of Wadi Sharm El Qibli, 1.072 million m3 at Wadi Wizer and
12.024 million m3 at the outlet of Wadi Umm Gheig (Figures 10 and 11) (Table 7). Sensitivity
and uncertainty analysis was addressed here by carefully using rainfall data and relying
on rainfall values from influential points in the valleys, as there are no rainfall stations in
this study area. Rain data values were used for a period of 41 years, from 1981 to 2001.
Comparing the results with previous studies, it was found that there is a slight difference in
the degrees of risk, which is mostly due to the applied method, i.e., Gad et al. [6] showed
that the Essel, Sharm El-Bahri, and El-Qebly basins are the riskiest. To determine the flood
volume, the HEC-HMS model was used, which is a widely used and reliable method,
as the inputs were calculated using GIS techniques, and the mathematical equations of
Kirpich [32] formula were applied. It is worth mentioning that the drainage basins lack the
presence of a weir in the outlet areas to calibrate the results of the mathematical model.
This point will be recommended.

Table 6. Time of concentration (Tc) and Lag time (Lg) calculations of the studied sub-basins.

Main Wadis Sub-Basins
Area
km2

Pervious
%

Impervious
%

CN
S

(mm)
Ia

(mm)
Longest

Stream (m)
Slope
m/m

Tc
Min.

Lg
Min.

Esel

Sub1 253.0 6.7 93.3 93 19.1 3.8 41,032 0.029 108.0 64.8

Sub2 158.4 2.0 98.0 97 7.9 1.6 24,213 0.026 75.8 45.5

Sub3 77.3 44.2 55.8 78 71.6 14.3 19,886 0.012 87.0 52.2

244



Water 2024, 16, 3111

Table 6. Cont.

Main Wadis Sub-Basins
Area
km2

Pervious
%

Impervious
%

CN
S

(mm)
Ia

(mm)
Longest

Stream (m)
Slope
m/m

Tc
Min.

Lg
Min.

Esel Sub4 168.5 39.9 60.1 83 52.0 10.4 29,188 0.016 106.3 63.8

Sharm
El Bahari

Sub1 110.7 25.0 75.0 84 48.4 9.7 25,790 0.047 63.1 37.9

Sub2 78.5 40.9 59.1 82 55.8 11.2 19,873 0.019 72.5 43.5

Sharm
El Qibli

Sub1 100.5 23.8 76.2 90 28.2 5.6 26,884 0.038 71.0 42.6

Sub2 46.5 59.2 40.8 71 103.7 20.7 17,708 0.021 64.2 38.5

Wizer 96.0 32.6 67.4 76 80.2 16.0 22,977 0.013 95.4 57.2

Umm Gheig

Sub1 392.8 8.2 91.8 92 22.1 4.4 43,868 0.024 123.3 74.0

Sub2 170.1 5.3 94.7 93 19.1 3.8 29,008 0.032 80.2 48.1

Sub3 140.1 26.3 73.7 83 52.0 10.4 32,052 0.035 83.6 50.2

Sub4 157.7 27.6 72.4 82 55.8 11.2 22,268 0.021 76.6 45.9

 

Figure 9. A rainfall event occurred in the Gebel El Sibai watershed area (October 2016).

 
Figure 10. The hydrological model parameters of the Gebel El Sibai Watershed sub-basins.
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Table 7. Flood volume of the studied sub-basins using HEC-HMS program software.

Basins
Hydrologic

Element
Basin Area

(km2)

Total
Precipitation

(1000 m3)

Total
Loss

(1000 m3)

Peak
Discharge

(m3/s)
Time of Peak

Volume
(1000 m3)

Esel

Subbasin-1 253.01 4045.6 190.6 436 26 Oct. 2016, 18:30 3855

Subbasin-2 158.429 2533.3 20.9 344.5 26 Oct. 2016, 18:15 2512.4

Junction-1 - - - 762.8 26 Oct. 2016, 18:30 6367.4

Subbasin-4 168.541 2695.0 1039.9 187.1 26 Oct. 2016, 18:30 1655.1

Subbasin-3 77.328 1236.5 546.4 87.9 26 Oct. 2016, 18:30 690.1

Reach-1 - - - - 26 Oct. 2016, 16:00 -

Junction-2 657.308 - - 1037.7 26 Oct. 2016, 18:30 8712.6

Sharm El Bahari

Subbasin-1 110.627 1768.9 422.6 196.8 26 Oct. 2016, 18:15 1346.4

Reach-1 - - - 194.5 26 Oct. 2016, 18:30 1346.4

Subbasin-2 78.425 1254.0 501.0 104.2 26 Oct. 2016, 18:15 753

Junction-1 - - - 293.9 26 Oct. 2016, 18:15 2099.4

Sharm El Qibli

Subbasin-1 100.542 1607.7 315.7 181.1 26 Oct. 2016, 18:15 1291.9

Subbasin-2 46.462 742.9 439.8 44.5 26 Oct. 2016, 18:15 303.1

Junction-1 - - - 225.5 26 Oct. 2016, 18:15 1595.1

Wizer
Subbasin-1 95.997 1535.0 499.8 127.4 26 Oct. 2016, 18:30 1035.2

Junction-1 - - - 127.4 26 Oct. 2016, 18:30 1035.2

Umm Gheig

Subbasin-1 392.804 6280.9 388.0 621.3 26 Oct. 2016, 18:45 5892.9

Subbasin-2 170.184 2721.2 101.9 345.9 26 Oct. 2016, 18:15 2619.3

Junction-1 - - - 931.1 26 Oct. 2016, 18:30 8512.2

Subbasin-4 157.652 2520.9 679.7 249.3 26 Oct. 2016, 18:15 1841.1

Subbasin-3 140.137 2240.8 570.0 213.5 26 Oct. 2016, 18:30 1670.8

Reach-1 - - - - 26 Oct. 2016, 16:00 -

Junction-2 - - 1382.3 26 Oct. 2016, 18:30 12,024.2

 

Figure 11. Run-off hydrograph of Gebel El Sibai Watershed basins applying HEC-HMS hydrological
model.
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11. Ecological Studies

Based on ecological studies published in previous research in various places in this
study area, including (Gebel Abu El Tiyur, Wadi Umm Gheig, Wadi Sharm El Bahri, Wadi
Esel, and Wadi Sharm El Qibli), as sites representative of the vegetation. The results showed
that it is among the important recorded plant taxa were Tamarix nilotica, Juncus rigidus, Aerva
javanica, Leptadenia pyrotechnica, Zygophyllum album, Moringa peregrina, Solenostemma arghel,
Taverniera aegyptiaca, Nitraria retusa, Cleome droserifolia, Acacia species, Panicum turgidum,
Achillea fragrantissima, and Zilla spinosa are being important for the environment, and local
communities because of their ecological (e.g., prevents soil erosion and serves as a habitat
for wildlife), economical (fuelwood, construction, fiber producing, animal fodder, food,
and edible fruits), and medicinal benefits. Biodiversity is threatened by intensified human
pressures that lead to habitat degradation, the removal of vegetation from large areas (over-
collection of medicinal plants), in particular those with low abundance such as Solenostemma
arghel (needs high priority for conservation), also Nitraria retusa, Moringa peregrina, and
Tamarix nilotica (providing shade, support large number of insects, birds and fruit-eating
mammals, firewood, soil stabilization, etc.) the conservation of these plant species will
protect those animals, and reduce land degradation [45]. Moringa peregrina has become one
of the most endangered trees due to overgrazing and excessive collection, which has led to
a sharp decline in its population size and numbers [46], resulting in the loss of an essential
natural resource for local Bedouin communities and their domestic animals [47]. Vegetation
cover is also vulnerable to catastrophic drought phenomena, which can significantly affect
its density in any region, especially arid and semi-arid regions [48–50]. If plant species pop-
ulations are destroyed by drought or other unforeseen events, recolonization should occur
more quickly than the remaining populations of species in surrounding habitats and sites,
as well as the cultivation of economically important plants and other medicinal species
in ecologically suitable environments, with large water resources [47,50]. So, providing
a permanent source of water for plant species will contribute to overcoming the effects
of climate change (especially lack of rain) that negatively affect the vegetation cover as
well as the environmental balance and to ensure their sustainability and protect them from
extinction. On the other hand, the Bedouin communities will be encouraged to adapt to
the harsh nomadic life and continue animal husbandry to ensure food security, improving
Bedouin livelihoods through the cultivation of medicinal plants, rehabilitation and restora-
tion programs to conserve vegetation and increase population size, and rehabilitation of
rain-fed pastures and some rain-fed cultivation of cereal crops. This can only be achieved
by maximizing the use of water sources in the region. Harvesting rainwater and floods is
the priority in this context.

12. Conclusions and Recommendations

A storm of 84 mm is expected to occur every 42 years with a probability of 2.38%. The
basins have a total area of about 1953.93 km2, whereas Wadi Um Gheig is the largest at
863.66 km2. The basin has five to six stream orders, reflecting the high stream density and
high effect of the structure and erosional elements. The morphometric parameters reflect
the essential effects of the tectonic and erosion elements in creating and excavating the
streams and the high potential for flooding. Although Wadi Esel and Wadi umm Gheig are
the largest, regarding the area, Wadi SharmEl Qibli is the highest-risk basin among wadis.
This may be attributable to the steep slope, high circularity ratio, and Ruggedness index.
On the other hand, the basin rainfall/runoff relationship reflects the dynamic interaction
between rainfall intensity, soil infiltration, and surface storage. The calculations of the CN
reflect the impervious soil ratio that may prevail over the wadi surface. Wadi Umm Gheig
has the highest priority for flooding, where it attends the highest CN value (91.39) and
lowest initial abstraction (Ia) 4.79 mm. This may be due to the prevalence of the basement
rock of the basin surface (83.99%). The flood volume calculated by applying the HEC-HMS
model reveals that Umm Gheig basin has the greatest ability to collect water with a flood
volume of about 12 million m3 at the basin outlet of rainfall event of 15 mm. Wadi Esel
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is expected to collect 8.7 million m3 depending on the ratio of the impervious soil and
rainfall quantity.

According to the results of estimating the runoff volume of each sub-basin, seven stor-
age dams (SD1 to SD7) are proposed to enhance the utilization of the surface potentialities
of this study area (Figure 12). SD1 is imposed to collect the runoff water of Sub-basin 1
and 2 of Wadi Esel with an expected water volume of 6.367 million m3, whereas SD2 is
imposed at the outlet of sub-basin 3 with a storage capacity of 0.69 million m3. SD3, SD4,
and SD5 are suggested at the outlets of Wadi Sharm El Bahari, Sharm El Qibli, and Wizer.
SD6 is suggested at the location of Junction 1 and SD7 at the outlet of sub-basin 3 of the
Umm Gheig basin. A quantity of water is 10.182 million m3 is expected to be harvested
using these storage dams at Wadi Umm Gheig. Current threats and the prevailing harsh
habitat conditions are among the most important reasons that emphasize the need to search
for additional water sources to preserve and resettle these species. Floodwater harvesting
is the most important policy used in arid regions worldwide. In addition, implement-
ing of controlled structure is very important for good surface water management of the
studied basins.

 
Figure 12. Recommended storage dam locations of the Gebel El Sibai watershed area.
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Abstract: This study develops a two-dimensional (z-x direction) atmospheric dynamics
model based on a set of simplified atmospheric motion equations, designed for rapid
simulation of atmospheric flow characteristics over complex terrains. The model effectively
captures the influence of topography on the atmospheric flow field, offering a new research
tool for the in-depth investigation of atmospheric dynamic phenomena under complex
terrain conditions. Furthermore, the model takes into account water vapor transport and
condensation processes, and employs a simplified algorithm for the conversion of cloud
droplets to raindrops to estimate the intensity and spatial distribution of precipitation.
The innovative use of the z-coordinate system allows for a focused simulation of dynamic
processes in complex terrains, capable of real-time computation of the temporal variations
in precipitation processes. The model exhibits high simulation precision and has a wide
range of potential practical applications.

Keywords: complex terrains; vapor transport and condensation processes; precipitation

1. Introduction

In recent years, significant attention has been devoted to the study of convective pre-
cipitation phenomena in complex terrain regions. Particularly in mountainous and valley
areas, the distinctive topographical features readily trigger extreme weather events such as
thunderstorms and short-duration heavy rainfall [1]. These weather phenomena often lead
to geological disasters such as flash floods and debris flows [2]. The underlying cause is
the substantial impact of complex terrain on wind flow patterns in these regions [3]. When
moisture-laden warm and moist air encounters topographical barriers, it is forced to ascend
due to the pushing of air behind and the blocking by the mountainous terrain ahead [4,5].
This ascent results in intense updrafts [6]. Such updrafts facilitate the condensation of
water vapor into clouds [7], thereby significantly increasing the probability and intensity of
precipitation events [8,9].

Studying weather processes under complex terrain conditions presents significant
challenges from model development to validation [10], which are primarily encapsulated
in four key aspects. Firstly, the complexity of model mechanisms, which involves the
intricate interplay of multiple physical processes [11]. Secondly, the scarcity of empirical
data [12], as precipitation events in complex terrains tend to be abrupt and localized [13],
making the collection of high-quality empirical data exceptionally difficult [14]. Thirdly, in
mountainous and valley regions, small-scale precipitation events occur with high frequency;
thus, research often concentrates on these microscale phenomena [15]. Lastly, the triggering
and formation mechanisms of precipitation are not yet fully elucidated [16,17], lacking
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sufficient experimental research and data support [18,19], which poses a considerable
challenge in the current research endeavors [20].

Built upon atmospheric dynamics models and incorporating algorithms for water
vapor phase transitions and condensation [21,22], a precipitation diagnostic model is
constructed. The model takes into account phenomena such as the horizontal movement
of air masses, vertical ascent, and convergence of air flows. In terms of the precipitation
mechanism, the model comprehensively considers processes including the transport of
water vapor, condensation of water vapor, formation of water droplets, and the descent of
precipitation particles, aiming to accurately diagnose the precipitation process [23].

Simulating the precipitation process involves modeling the relevant physical processes
and effectively integrating these models [24]. This necessitates the development of precise
algorithmic models to comprehensively simulate these complex physical processes as fully
as possible.

To diagnose precipitation over complex terrain areas, it is necessary to establish a
small-scale complex terrain precipitation diagnostic model based on the characteristics of
the terrain flow field. The model employs a z-coordinate system in the vertical direction
and establishes an Eulerian grid system, where information such as water vapor and liquid
water in the air is stored within the grid cells and undergoes material exchange between
grid points through fluid transport mechanisms.

Although real atmospheric motion is a three-dimensional process, the substantial
workload associated with constructing a three-dimensional model led to the selection of a
two-dimensional structure in the experimental design, considering the vertical (z-direction)
and horizontal (x-direction) dimensions. Within this framework, a precipitation diagnostic
model is introduced to conduct the calculation and analysis of precipitation.

2. Data Description

ERA5 is the fifth-generation global atmospheric reanalysis dataset released by the
European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 provides hourly
estimates of a wide range of atmospheric, terrestrial, and oceanic climate variables, with
a maximum resolution of 0.25◦ × 0.25◦. The data cover the Earth’s surface on a 30 km
grid and utilize 137 vertical levels, ranging from the surface to 80 km, to represent the
atmosphere, including uncertainty information for all variables when spatial and temporal
resolutions are reduced. ERA5 integrates model data with observational data from across
the globe to form a comprehensive and consistent global dataset. The dataset incorporates
various sources of observational data, including remote sensing data, ground station
measurements, and other data sources. This data assimilation approach enables ERA5
to provide more comprehensive and accurate meteorological information, earning it the
designation of ‘reanalysis’ data. The ERA5 dataset includes variables such as temperature,
pressure, wind, water vapor content, humidity, and precipitation. ERA5 data accurately
reflect the spatiotemporal distribution patterns of local meteorological variables, and its
accessibility and global applicability make it widely used in various fields.

3. Dynamic Process Framework

This diagnostic model is built with a fundamental structure and an integrated precipi-
tation diagnostic unit. The fundamental structure performs calculations for atmospheric
dynamics, pressure, temperature, and water vapor flux. The precipitation diagnostic unit
specifically deals with the calculations of water vapor condensation, the formation of
raindrops, and their falling from the clouds.
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3.1. Fundamental Formulas

Considering the model’s focus on atmospheric motion over small-scale complex ter-
rain, it is necessary to simplify the equations of motion as much as possible. In this scenario,
the effect of the Coriolis force can be disregarded, as it generally becomes significant only
over ranges exceeding hundreds of kilometers. In conventional meteorological models,
pressure is divided into two components: base pressure and perturbation pressure. The
base pressure is used to calculate the mesoscale pressure gradient force, which represents a
weak interacting force, while the perturbation pressure is used to simulate the intercom-
pression processes between air masses. In the two-dimensional (z-x) simulation framework,
the calculation of the pressure gradient force only needs to consider the variations in
perturbation pressure.

Atmospheric Motion: Within the scope of small-scale meteorological models, the
movement of air masses is primarily influenced by perturbation pressure. In the vertical
direction, the atmosphere maintains a state of hydrostatic equilibrium, where gravity and
the pressure gradient force are in balance. Consequently, perturbation pressure becomes
the decisive factor affecting vertical motion [25,26].

du
dt

= −λ·1
ρ
·∂δp

∂x
+ Fx (1)

dw
dt

= −λ·1
ρ
·∂δp

∂z
+ g·

(
θ’
θ
+ 0.61·δqv − δqc − δqr

)
+ Fz (2)

In this context, λ represents the adaptive coefficient of the grid (in practical calculations,
a parameter is required to adjust the proportional relationship between the perturbation
pressure δp and the grid spacing), Fx and Fz quantify the frictional forces on air masses in
the horizontal and vertical directions, respectively, ρ denotes the density of air mass, g is the
acceleration due to gravity, θ is the potential temperature, and θ’ refers to the perturbation
potential temperature. (u, w) is the wind speed vector, δp is the perturbation pressure,
which is involved in calculating the expansion and compression effects between air masses.
qv denotes the water vapor mixing ratio (units: kg/kg), and its variation δqv reflects the
increase or decrease in water vapor content; an increase in water vapor leads to a decrease
in air density, thereby triggering upward air currents. qc is the cloud droplet mixing ratio,
with a positive δqc indicating the condensation of water vapor into cloud droplets; qr

represents the raindrop mixing ratio, and a positive δqr indicates the transformation of
water vapor and cloud droplets into raindrops. These physical phenomena all influence
the vertical velocity of the air.

Perturbation Pressure (δp): Minor fluctuations in atmospheric pressure caused by the
movement of air masses, which typically reflect the interactions and dynamic motion states
between air masses. The perturbation pressure can also be approximated as follows [27]:

δp = −γ·p·
(

∂u
∂x

+
∂w
∂z

)
·δt (3)

In the above equation, γ denotes the grid adaptive coefficient (in practical calculations,
a parameter is required to adjust the proportional relationship between the pressure p and
the grid spacing, so that δp can be adapted to the current grid), and δt represents the time
step. The equation estimates the degree of compression or expansion experienced by the
air mass by analyzing the velocity changes at the grid points surrounding the air mass.
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Potential temperature (θ): The temperature reached by an air mass when it rises or
descends vertically along its dry adiabatic process [28,29] (i.e., without exchanging heat
with the surroundings) to a standard pressure level (usually p0 = 1000 hPa).

θ = T·
(

p0

p

) R
Cp

(4)

where cp represents the specific heat capacity of air, with a value of cp = 1005 J/(kg·K), and
R typically denotes the gas constant, which for dry air is 287.15 J/(kg·K).

The form of the perturbation potential temperature variation over time is expressed as
follows [30]:

dθ’
dt

= −ρ·w·∂θ’
∂z

+ κ·∇2θ’ (5)

where ρ denotes air density, and κ represents the turbulent diffusion coefficient.
Pressure Equation: This represents the time-dependent changes in pressure across the

background grid. The formula for its computation is presented below [31,32]:

dp
dt

= − p
RT

·
(

g +
dw
dt

)
·w (6)

In this context, g denotes gravitational acceleration. This formula is applicable for cal-
culating the pressure changes experienced by an air mass during its displacement process.

Utilizing the aforementioned equations, an atmospheric dynamics model was con-
structed, with its dynamic framework based on the computational strategy outlined in
“Applicability Study of Euler–Lagrange Integration Scheme in Constructing Small-Scale Atmo-
spheric Dynamics Models” [33]. The transport processes of water vapor and liquid water
were calculated using the semi-Lagrange method.

3.2. Time Step Constraints

To ensure numerical stability, the time step must adhere to the Courant–Friedrichs–
Lewy (CFL) condition [34], which states that the product of the time step (δt) and the
characteristic velocity should not exceed the spatial step (δx). Therefore, the maximum
permissible time step can be expressed as follows:

Δtmax =
lmin

vmax
(7)

Herein, lmin represents the minimum value of the grid points, and vmax denotes the
maximum speed.

Usually, the grid spacing in atmospheric models is not less than 400 m. In this experi-
ment, the maximum value of the wind vector is restricted to within 10 m/s. Accordingly,
the maximum allowable time step can be set to 40 s.

4. The Fundamental Framework of the Precipitation Process

(I) Scheme for Detecting Water Vapor Condensation

Generally, when the water vapor content in the air reaches the saturation vapor pres-
sure, the excess water vapor condenses onto aerosol particles to form minute droplets. The
saturation vapor pressure in the air is commonly calculated using the Clausius–Clapeyron
equation. The following is an initial description of the computational process [35,36]:

es = 611.2·e 17.67·Tc
Tc+243.5 (8)
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Herein, es represents the saturation vapor pressure of water vapor in the air, with units
of pascals (Pa), and Tc denotes the air temperature in degrees Celsius.

Consequently, the saturation specific humidity corresponding to the temperature Tc is
given as follows [37]:

qsat = 0.622· es
p − es

(9)

Here, qsat denotes the threshold of gaseous water that 1 kg of air can hold, with units
of kg/kg. When the water vapor content in the air exceeds the threshold qsat, the excess
water vapor will condense into liquid water. In the actual modeling process, the relative
humidity threshold is set to RH = 1.05 (this value is chosen as 1.05 instead of 1 to allow
for some numerical perturbations during the simulation, providing a certain degree of
tolerance in the model). It is assumed that when the water vapor content exceeds 1.05·qsat,
the program considers the excess water vapor to condense into liquid water.

Liquid water droplets in the air are categorically divided into two primary types based
on their size: cloud droplets and raindrops. Generally, cloud droplets span a diameter
range from a few nanometers to about 0.25 mm, while raindrops are defined as having a
diameter greater than 0.25 millimeters [38]. Assuming that the condensation of water vapor
results in cloud droplets, in the model design, cloud droplets are converted into raindrops
according to a certain conversion rate [39].

(II) Conversion of cloud droplets into raindrops

The conversion rate is calculated using a simplified formula [40]:

τ =
qc

qc + qr
(10)

In the equation, qc and qr represent the water content of cloud droplets and raindrops,
respectively, with units in kg/kg.

Pau =

{
0, qv ≤ qsat

k·τ·(qc − qc0), qv > qsat
(11)

In the equation, k represents the conversion coefficient, and qc0 = 10−3 g/kg denotes
a constant.

The raindrop increment Δqr is calculated based on the conversion rate, expressed as
follows [41]:

Δqr = qc·Pau (12)

qr_new = qr + Δqr (13)

qc_new = qc − Δqr (14)

It is assumed that precipitation is triggered when the raindrop content qr in a grid
point reaches a certain threshold.

(III) Precipitation determination process

In the model, the gaseous and liquid water content in each grid point is calculated at
each time step.

As illustrated in Figure 1, the iterative process for precipitation diagnosis is as follows.
Initially, at time step tn−1, water vapor and liquid water (inclusive of cloud droplets and
raindrops) are transported within the grid cells along the wind direction. The saturation
ratio at each grid point is calculated, and based on this ratio, the contents of water vapor and
liquid water within the grid are updated, marking this intermediate time as tn

’ (indicating
the time between tn−1 and tn). Subsequently, the liquid water content in the grid at tn

’ is
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partitioned into cloud droplets and raindrops based on the ratio of cloud droplet (small
water droplets) to raindrop content at tn−1. The contents of cloud droplets and raindrops
are then updated according to the conversion rate formula for the aggregation of cloud
droplets into raindrops. When the mass of larger raindrops exceeds a certain threshold, it is
deemed as precipitation. After accounting for the raindrops that have fallen, the remaining
raindrop content at time step tn is obtained.

 

Figure 1. Iterative computation of the contents of water vapor, liquid water, cloud droplets, and
raindrops. Here, tn denotes the time at the nth time step, while tn

’ represents the time between tn-1

and tn.

5. Result

5.1. Topographic Wind Field

The case study is situated in the Enshi area of Hubei Province, China, with the
precipitation event on 25 September 2018 selected as the research case for analysis.

As shown in Figure 2, Figure 2a illustrates the wind field characteristics at 06:00 on
25 September. Influenced by an outer typhoon, the atmospheric flow field at 850 hPa
undergoes dramatic changes, with the region exhibiting an easterly wind pattern. Due
to the model’s 2D framework, as depicted in Figure 2b, a z-directional cross-section is
selected as the research target within this region. The cross-section corresponds to the
red dashed line in Figure 2b. As shown in the figure, the cross-section is aligned parallel
to the prevailing wind direction, minimizing disruption from winds perpendicular to
the cross-section. Figure 2c illustrates the relative humidity at the 850 hPa height level,
revealing that the relative humidity near the target region approaches 100%. Figure 2d
displays the water vapor content at the 850 hPa height level (unit: g/kg), indicating that
the water vapor content around the target region fluctuates around 10 g/kg.

A 2D atmospheric flow field terrain model was established based on the cross-section
corresponding to the red dashed line in Figure 2b. In terms of grid setup, the horizontal
grid spacing is 500 m (dx = 500 m), the vertical grid spacing is 100 m (dz = 100 m), and the
time integration step is 30 s (dt = 30 s). To observe the model’s sensitivity to actual terrain,
a virtual wind field was imported prior to introducing the ERA wind field data.
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(a) (b) 

  

(c) (d) 

Figure 2. Weather characteristics of the study area (the red box indicates the study area, and the red
curve denotes the selected simulation cross-section). (a) Atmospheric circulation characteristics at 850
hPa; (b) topographical features of the study area; (c) relative humidity of the atmosphere at 850 hPa;
(d) moisture content of the atmosphere at 850 hPa.

As shown in Figure 3, the model incorporates real terrain and a simulated wind field,
with the simulated wind field set to a horizontal wind speed of −3 m/s. Figure 3a depicts
the wind field at the initial moment, while Figure 3b shows the wind field after 10 min
of simulation. The filled contour plot represents the horizontal wind speed. Wind vector
arrows are displayed at intervals of eight data points along the horizontal direction. As
indicated in Figure 3b, the absolute value of the wind speed is greater than 3 m/s over the
mountain ridge, whereas in the valley area, the wind speed is significantly reduced. This
simulation result aligns with actual observations.

  

(a) (b) 

Figure 3. Simulated terrain and wind field, with filled contours representing the initial horizontal
wind speed values. (a) Initial virtual wind field; (b) wind field simulated by the model after 10 min.
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As shown in Figure 4, it can be observed from Figure 4a,b that the model exhibits
good stability over time. Furthermore, the figures illustrate that on the windward slope, the
airflow ascends along the slope, while on the leeward slope, the airflow descends. These
results indicate that the wind field simulated by the model conforms to the laws of real
atmospheric motion.

  

(a) (b) 

Figure 4. Simulated topographic wind field by the model based on the virtual wind field, with filled
contours representing vertical wind speed values. (a) Wind field simulated by the model after 10 min;
(b) wind field simulated by the model after 20 min.

Key meteorological data such as wind vectors, air temperature, pressure, and humidity
were extracted from the ERA (European Centre for Medium-Range Weather Forecasts
reanalysis data). After undergoing filtering processes, these data were used to establish
corresponding weight relationships and were interpolated onto the grid system of the
diagnostic model.

Simulate the changes in weather conditions from 0 to 59 min. Initially, we will analyze
and present the wind field characteristics under the influence of terrain.

As depicted in Figure 5, the filled contour plots in Figure 5a represent the magnitude
of the horizontal wind speed, while those in Figure 5b represent the magnitude of vertical
wind speed. It can be observed from the figures that the background wind field is quite
strong, with significant wind speeds. The background data obtained through interpolation
from ERA data take into account the influence of terrain to some extent; however, due
to the spatial resolution limitations of the ERA data itself, the estimation of the terrain is
relatively coarse.

  

(a) (b) 

Figure 5. Wind field imported from ERA data. (a) Initial wind vectors and horizontal wind speed
(shaded contour plot); (b) initial wind vectors and vertical wind speed (shaded contour plot).

Figure 6 illustrates the temporal evolution of the wind field after the initial background
wind field has been processed through the diagnostic model. As seen in Figure 6a, there is
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no significant change in the horizontal wind speed after the model’s correction. Figure 6b
reveals that, influenced by the strong winds at high altitudes, a distinct terrain-induced
updraft occurs near the windward slopes. This phenomenon is attributable to a continu-
ous inflow of air from the horizontal direction, which, upon encountering topographical
obstacles, is forced to ascend, thereby initiating vertical movement in the air current.

  

(a) (b) 

Figure 6. Wind field after model correction. (a) Wind vectors and horizontal wind speed at the 10 min
mark (contour plot); (b) wind vectors and vertical wind speed at the 10 min mark (contour plot).

5.2. Precipitation Process

The transport of water vapor in the atmosphere is influenced by variations in wind
speed and direction. Its migration process is a result of the combined effects of the atmo-
spheric flow field, terrain characteristics, and various meteorological factors.

As depicted in Figure 7, water vapor in the air is subject to the driving force of the
wind field, which continuously supplies external input. On the other hand, it is impeded
by terrain features. The transport of water vapor is restricted by high mountains, forcing it
to ascend along the mountain slopes.

  
(a) (b) 

  
(c) (d) 

Figure 7. Temporal variation in the wind field and specific humidity qv (water vapor mixing ratio,
unit: g/kg). (a) State at time 0; (b) state at 10 min; (c) state at 20 min; (d) state at 30 min.
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Following the attainment of saturation, water vapor condenses into small raindrops.
Figure 8 illustrates the variation in cloud water mixing ratio (qc, where qc denotes

the mass of cloud droplets per unit mass of air, unit: g/kg) over time. Panel (a) shows
that at 15 min, a cloud mass forms over the mountain, which then rapidly intensifies
with time; panel (b) reveals that by 20 min, the water content within the cloud mass has
significantly increased; panel (c) indicates that as the transport of water vapor continues, a
cloud mass forms over a canyon near 111◦ longitude at 30 min; and panel (d) demonstrates
that at 50 min, the water content of the cloud mass over the canyon near 111◦ longitude
has increased substantially.

  

(a) (b) 

  

(c) (d) 

Figure 8. Temporal variation in cloud droplet water content qc (cloud water mixing ratio, unit: g/kg).
(a) State at 15 min; (b) state at 20 min; (c) state at 30 min; (d) state at 50 min.

Figure 9 depicts the temporal evolution of the rainwater mixing ratio (qr, unit: g/kg)
within a rain cloud cluster. Figure 9a indicates that at the 20 min time point, the rain
cloud cluster emerges above the mountain, after which the mass of raindrops increases
progressively and rapidly over time. Figure 9b shows an increase in raindrop mass at the
20 min mark. Figure 9c,d demonstrate that the mass of raindrops reaches a stable condition.

In the precipitation cloud cluster, raindrops fall to the ground and produce rainfall
once they reach a certain mass. The experiment involves measuring the mass of the falling
raindrops and converting this measurement into the equivalent precipitation depth upon
impact, expressed in millimeters (mm).

Figure 10 illustrates raindrops falling from high altitudes, which contribute to sur-
face precipitation. Figure 10a shows that sporadic precipitation occurs at high altitudes.
Figure 10b indicates an increase in the intensity and extent of the precipitation. Figure 10c
reveals that the precipitation extends to the vicinity of the canyon above longitude 111◦.
Figure 10d demonstrates that the intensity of the precipitation remains constant.
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(a) (b) 

  

(c) (d) 

Figure 9. Variation in rainwater content (rainwater mixing ratio, unit: g/kg) in the rain cloud cluster
with time. Panel (a) Status at 20 min; panel (b) status at 30 min; panel (c) status at 40 min; panel (d)
status at 50 min.

  

(a) (b) 

  

(c) (d) 

Figure 10. Precipitation amounts triggered by the model. Panel (a) status at 20 min; panel (b) status
at 30 min; panel (c) status at 40 min; panel (d) status at 50 min.

Figure 11 presents the spatial total precipitation amount triggered within one hour,
as shown in Figure 11a. Figure 11b displays the cumulative precipitation curve (model
result) as output by the model. Due to the high volatility of the curve, a smoothing process
is applied to obtain the smoothed precipitation curve (model smooth). Figure 11c employs
the results from the smoothed precipitation curve (model smooth) and compares them
with ERA precipitation data. It can be observed from the figure that both datasets exhibit a
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similar trend in precipitation, although there are some discrepancies in the details of the
rainfall events.

 
(a) (b) 

 
(c) 

Figure 11. Panel (a) spatial distribution of the total precipitation triggered by the model over a 1 h
period; panel (b) accumulated precipitation over 1 h from the model (model result) and the smoothed
model output (model smooth); panel (c) smoothed curve of the 1 h accumulated precipitation from
the model (model smooth) compared to the ERA precipitation results.

6. Discussion

The existing meteorological models are generally adequate for routine weather fore-
casting tasks but have limitations when applied to specific scenarios, such as river basin
flood forecasting and short-term predictions in complex terrain regions. Typically, main-
stream mesoscale meteorological models (e.g., WRF) require a certain “spin-up time” before
they can provide reliable forecast results. This time is usually at least 3 to 6 h, which restricts
the real-time forecasting capability of these models in the event of sudden meteorological
phenomena. Moreover, river basin flood forecasting heavily relies on high-resolution pre-
cipitation predictions. However, due to architectural constraints, current mesoscale models
show diminishing improvements when increasing grid resolution below 3 km. Specifically,
in the case of the WRF model, terrain data at mesoscale resolution are typically interpolated
onto the model grid for simulations and forecasts, rather than using high-resolution terrain
data directly. When WRF directly incorporates high-resolution terrain data (e.g., grid sizes
below 3 km), it may result in numerical instability, leading to potential model interruptions
during operation.

Radar extrapolation models offer unique advantages in short-term forecasting, par-
ticularly in flat areas. However, their effectiveness significantly diminishes in complex
terrain regions, such as mountains and canyons. Therefore, it is essential to develop rapid
precipitation forecasting models tailored to complex terrain to supplement radar-based
predictions. Additionally, the development of small-scale meteorological models that are
both high-resolution and capable of rapid response is crucial to enhancing short-term
forecasting accuracy.
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The precipitation diagnostic model used in the experiment calculates a precipitation
amount that is generally in agreement with the ERA precipitation trends, albeit with
some deviation. The discrepancies between the two are attributed to several factors. On
one hand, there is a significant difference in spatial resolution between the two, with the
model having a resolution of 500 m grid spacing, whereas the ERA resolution is 0.25◦

(approximately 30 km). On the other hand, the model is a 2D cross-sectional model,
whereas weather processes are three-dimensional, leading to inadequate consideration of
certain precipitation factors in the model.

The experimental results presented above suggest that the modeling approach pro-
posed in this paper for complex terrain conditions is feasible. Subsequent efforts should
focus on developing the model into a 3D version based on the existing theoretical frame-
work, to be used for precipitation diagnostics in complex terrain settings.

In the context of application, subsequent research should integrate established cloud
microphysics schemes into the model. These schemes are models based on physical
processes that can accurately depict the formation, growth, coalescence, and dissipation of
microphysical particles such as cloud droplets and ice crystals. The incorporation of these
mature schemes will offer a more precise foundation for precipitation forecasting.

Additionally, integrating radar data for precipitation diagnosis is an indispensable
component in subsequent research. Radar data are characterized by their high spatiotem-
poral resolution, enabling real-time monitoring of the dynamic changes in precipitation
systems. By assimilating radar data into the model and conducting comparative analysis
of the simulation results, we can effectively diagnose the strengths and weaknesses of the
model, thereby facilitating optimization and refinement of the model.

7. Conclusions

This study integrates fundamental atmospheric principles within an atmospheric dy-
namics model framework to develop a water vapor transport and condensation model. It
simulates the physical processes of water vapor transport and condensation in complex ter-
rains. Furthermore, it introduces a simplified model for cloud droplet to raindrop conversion.
By categorizing liquid water in the atmosphere into cloud droplets and raindrops, the model
framework efficiently estimates their distribution and enables rapid computation of surface
precipitation amounts. The following conclusions were drawn from the study:

(1) The z-coordinate-based motion model possesses unique advantages in simulating
atmospheric motion over complex terrain, effectively capturing the movement charac-
teristics that align with real atmospheric conditions.

(2) In this study, a two-dimensional structural design was adopted for the model, with the
objective of assessing the applicability of this technology in the construction of weather
system models. To improve the model’s ability to simulate complex atmospheric flow
fields, future efforts will concentrate on developing a three-dimensional dynamic
framework. In addressing small-scale weather processes, the model involved a
suitable simplification of the dynamic equations. In subsequent research, the model
will incorporate key factors such as pressure gradient force and Coriolis force to more
effectively simulate and interpret complex weather phenomena.

(3) The atmospheric model based on the z-coordinate system offers distinct advantages
in precipitation simulation for specific application scenarios, particularly in the lower
atmosphere. It is especially effective in addressing challenges posed by complex
terrain and urban topographic conditions in meteorological simulations.
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Abstract: Soil moisture simulations in semi-arid inland river basins remain highly uncertain
due to complex land–atmosphere interactions and multiple parameterization schemes in
land surface models. This study evaluated the ability of the Noah-Multiparameterization
Land Surface Model (Noah-MP) to simulate soil moisture at meteorological sites represent-
ing the upstream, midstream and downstream regions of a semi-arid inland river basin
with contrasting climates. A large physics-ensemble experiment (17,280 simulations per
site) combining different parameterization schemes for 10 main physical processes was
conducted. Natural selection, Tukey’s test and uncertainty contribution analysis were
applied to identify sensitive processes and quantify their contributions to simulation uncer-
tainty. Results indicate that Noah-MP captures soil moisture variability across the basin
but with notable biases. Three physical processes—frozen soil permeability, supercooled
liquid water in frozen soil and ground resistance to sublimation—were sensitive at all
sites, whereas radiation transfer and surface albedo were consistently insensitive. At
the upstream and midstream sites, supercooled liquid water contributed about half of
the ensemble uncertainty, and at the downstream site ground resistance to sublimation
contributed roughly 51%. These findings reveal which physical processes most strongly
affect Noah-MP soil moisture simulations in semi-arid basins and provide guidance for
improving parameterization schemes to reduce uncertainty.

Keywords: multi-parameterization scheme ensemble simulation; sensitivity analysis;
uncertainty contribution rate; soil moisture

1. Introduction

Soil moisture is a crucial component of the terrestrial water cycle and a significant
influencing factor in the distribution of surface radiation [1]. Accurately estimating soil
moisture is of paramount importance for understanding surface conditions, studying
land-atmosphere interactions, and managing agricultural production [2–4]. It serves as a
key variable in studies related to land-atmosphere interactions and hydrological cycles,
exerting important impacts on surface energy fluxes, runoff, radiation balance, and material
transport [5,6]. As a critical parameter in land surface processes, soil moisture plays a vital
role in climate and regional environmental changes. It affects these changes by altering
surface reflectance, soil heat capacity, surface evaporation, transpiration, and vegetation
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growth conditions, leading to the redistribution of surface energy and moisture. This, in
turn, modifies the sensible, latent, and longwave radiation fluxes from the surface to the
atmosphere. Furthermore, the thermal properties and water transport processes within
the soil were influenced by the changes in soil moisture, causing variations in various
surface parameters and subsequently impacting climate [7]. Against the backdrop of
ongoing global warming, accurately simulating soil moisture and understanding its spatial-
temporal distribution characteristics and intrinsic properties are critical for comprehending
the Earth’s surface response to climate change. This knowledge holds significant scientific
importance for sustainable water resource utilization, regional climate change predictions,
runoff estimation, and agricultural production irrigation.

Numerical simulation is a crucial approach for studying the spatiotemporal distri-
bution characteristics of soil moisture. Internationally, numerous land surface models
focusing on various surface elements have emerged, and those that incorporate multiple
parameterization schemes for diverse surface physical processes can accurately simulate
soil moisture. The Noah-MP model represents a new generation of land surface models de-
veloped based on the Noah model framework [8,9], incorporating various parameterization
schemes for different physical processes and plays a reliable candidate for simulating soil
moisture [10,11]. In recent years, researchers have extensively evaluated the model at both
single-point and regional scales [11–13]. For instance, the runoff simulation performance of
the Noah-MP model was assessed in the Mississippi River Basin, revealing its high sensitiv-
ity to surface dryness coefficients, hydraulic conductivity, and saturated soil moisture [14].
To further clarify the simulation performance of the Noah-MP model, a study evaluated
its ability to simulate water and energy fluxes in the continental United States and results
demonstrated that the Noah-MP model effectively captures the spatiotemporal distribution
characteristics of net radiation, snow cover area, and runoff [15]. Compared with the
original Noah model, significant improvements were found in simulating surface fluxes,
dry season surface temperature, snow water equivalent, snow depth, and runoff [10,16,17].
Due to the high applicability and excellent land surface process modeling performance of
the Noah-MP model, it has gradually become a strong candidate for soil moisture simula-
tion. The water budget components including soil moisture simulated by Noah-MP model
were evaluated in main river basin, China and the results showed that the simulations
effectively reproduce the observed spatial pattern of soil moisture during the warm seasons
across most regions, however, the results also demonstrated that there is significant room
for improvement in the model’s simulation performance [18]. In response to the issue of
Noah-MP does not consider surface water ponding and overland flow, lateral terrestrial
water flow schemes have been developed for Noah-MP to improve the simulation of soil
moisture [19]. The bias of the Noah-MP model in simulating soil water-heat transport in
freeze-thaw process were investigated and results exhibited that the biases in simulating
soil moisture in freeze-thaw process are difficult to be eliminated [20]. Indeed, assimilating
satellite observation data, like leaf area index and SMAP soil retrievals [21–23], Sentinel-1
backscatter observations [24], remotely sensed MODIS evapotranspiration [25], vegetation
optical depth retrievals [26], etc. into the Noah-MP model can effectively improve soil
moisture simulation results. However, the soil moisture data assimilation technique aims
to obtain the optimal posterior estimation of the model state by fully considering model
errors and observation errors, in order to improve the accuracy of soil moisture simulations,
without adjusting the model’s physical parameterization schemes. Efforts are still needed
to reduce errors caused by model structural uncertainties by enhancing the model’s ability
to describe actual physical processes. The most distinctive feature of the Noah-MP model is
its integration of multiple parameterization schemes for the same physical process, greatly
enhancing its applicability [11,27]. However, this also makes it difficult to determine which
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combination of schemes results in the least structural uncertainty and simulation error. To
address this issue, the sensitivity of sensible and latent heat simulations to parameterization
schemes was analyzed by conducting a total number of 4608 Noah-MP physics-ensemble
simulations [13]. Similar studies have been conducted to explore the sensitivity of snow
simulation results to parameterization schemes and the uncertainties in the results under
different snow climate conditions worldwide through ensemble simulations with multiple
parameterization schemes [28]. Additionally, the sensitivity of surface heat flux to parame-
terization schemes has been investigated [29]. The sensitivities of the simulated runoff to
parameterizations were quantified by varying the optional parameterization schemes of
six land surface processes [30].

Although researchers have explored the sensitivity of simulation results to parameter-
ization schemes for various surface elements, there are currently few studies investigating
the sensitivity of soil moisture simulation results to the Noah-MP model parameterization
schemes under different surface types and climate conditions. Considering this, based on
previous research efforts, this study selects the Heihe River Basin (HRB) in China, which
encompasses various underlying surfaces and climate types, as the study area. Soil mois-
ture simulation experiments are conducted in the upper, middle, and lower reaches of the
Heihe River to evaluate the soil moisture simulation performance of the Noah-MP model.
Building upon this, given that the Noah-MP model incorporates multiple parameterization
schemes for its key physical processes, resulting in a diverse set of parameterization scheme
combinations, the study designs experiments using multiple parameterization schemes
to explore the sensitivity of soil moisture simulation results to different parameterization
schemes under various underlying surface conditions. This study is an attempt to provide
a scientific basis for improving the soil moisture simulation performance of the Noah-MP
model. All simulations in this study were based on meteorological and soil moisture
observations from sites in the upper, middle, and lower reaches of the HRB. The main
goal of this research is to address the following issues: (1) How does the Noah-MP model
perform in simulating soil moisture in the HRB? (2) What is the sensitivity of soil moisture
simulations to parameterization schemes?

Section 2 contains the study sites, input meteorological dataset, the Noah-MP model
and the sensitivity analysis methods. Section 3 provides the results and discussions of the
experiment. Section 4 summarizes the findings and presents main conclusion of this study.

2. Data and Methods

2.1. Study Sites and Data

The Heihe river is the second-largest inland river in China, located in the Qilian
Mountains and the middle section of the Hexi Corridor. It spans approximately 819 KM,
with coordinates ranging from 97◦24′ to 102◦10′ E longitude and 37◦41′ to 42◦42′ N latitude.
As shown in Figure 1, the southern part of HRB is the Qilian Mountain area, has an average
elevation of over 3600 m and is the source of the Heihe river’s main stream. The central
part is characterized by a corridor plain with fault basins, at an elevation of around 1200 m.
The northwest part of HRB consists of mid-low mountains, with elevations ranging from
1400 to 2800 m, and the whole basin covers a total area of over 1300 square kilometers [31].
The upper mountainous region serves as the runoff-producing area of the Heihe river, with
an average annual precipitation of 330 mm, good vegetation, and a humid, cold climate.
The middle reaches rely on the Heihe river for water supply and have developed into
an artificial oasis, making this area has abundant light and heat resources. The lower
reaches are typical arid regions characterized by dry climate, sparse vegetation, and low
annual precipitation. The complex surface features of the HRB provide favorable conditions
for studying land surface processes. Li et al. (2009) [32] conducted the Heihe River Basin
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Upper Reaches Cold Region Hydrological Remote Sensing and Ground Synchronous
Observation Experiment, establishing a series of hydrological and ecological observation
stations and collecting a substantial amount of observational data, laying a foundation for
further in-depth research on land surface processes in the HRB.

Figure 1. Terrain height of the HRB and the location of experiment sites.

Considering the high spatial heterogeneity of land cover types in the HRB and the
significant differences in climate types across different sections of the basin, this study
selected a typical meteorological station in the upper, middle, and lower reaches of the HRB
to conduct soil moisture simulation experiment, respectively. This was done to compare
the performance of the Noah-MP model in simulating soil moisture under different climate
and land cover conditions. The three selected sites are the Arou, Heihe, and Sidaoqiao site.
Arou site is located in the upper reaches of the HRB, with coordinates 100.46◦ E, 38.03◦ N,
and an elevation of 3032.8 m. The underlying surface type at Arou site is subalpine
mountain meadow. According to soil texture information for the HRB provided by the
National Cryosphere Desert Data Center, the soil type at this site is dark cold calcareous
soil. The Heihe site is located in the middle reaches of the HRB, with coordinates 100.48◦ E,
38.83◦ N, and an elevation of 1560 m. The underlying surface at Heihe site is crop land, and
the soil type is sandy loam. The surrounding area is mainly farmland planted with corn.
In addition to observing conventional meteorological elements, this site also monitored
soil moisture at different depths. Sidaoqiao site is located in the lower reaches of the HRB,
with coordinates 101.14◦ E, 42.00◦ N, and an elevation of 873 m. The underlying surface
is dominated by sparse vegetation, and the soil type is saline-alkali soil. This area has
a typical extremely arid continental climate characterized by dryness, low rainfall, high
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evaporation, and significant diurnal temperature variation. Unlike the upper and middle
reaches, the lower reaches have sparse vegetation and suffer from serious desertification
and salinization due to wind erosion. The locations of the three sites are signed in Figure 1,
and the detail information of the three sites are listed in Table 1.

Table 1. Geographic features of the three sites in HRB.

Site Name Arou Heihe Sidaoqiao

Latitude (N) 38.03 38.83 42.00
Longitude (E) 100.46 100.48 101.14
Elevation (m) 3032.8 1560 873
Study Period 2016 2017 2016
Climate Type Highland Continental Climate Temperate Continental Arid Climate Temperate Monsoon Climate

Vegetation Type Grassland Crop Desert
Soil Type Dark Cold Calcareous Soil Coral Sandy Soil Mountain Shrub Meadow Soil

Evaluation Data Soil Moisture Soil Moisture Soil Moisture

2.2. Noah-MP Default Parameterization and Physics Ensemble Numerical Experiment

The Noah-MP model has undergone significant improvements based on the original
Noah model framework. Compared to the original Noah model, Noah-MP has redesigned
the internal structure of the model. The most notable improvement is the design of
an independent vegetation canopy to separately calculate canopy temperature and surface
temperature, and to separate the vegetation canopy energy balance from the surface energy
balance, making the calculation of canopy temperature more reasonable [10,11]. The
improvements to the Noah-MP model on the basis of the Noah model mainly include
a 2-m-deep soil column, a snowpack stratified according to snow depth, and an unconfined
aquifer. The model divides the soil column into four layers, with soil thicknesses of
0.1 m, 0.3 m, 0.6 m, and 1.0 m respectively [11]. Additionally, the Noah-MP model has
incorporated several new physical processes into the original Noah model framework,
such as dynamic water table [10,33], interactive vegetation canopy [34], and an unconfined
aquifer for groundwater storage [11].The most notable feature of the Noah-MP model is
that it provides 2–4 different parameterization schemes for the major physical processes
in the model, greatly enhancing the applicability of the Noah-MP model under different
environmental conditions. The newest version of the Noah-MP 5.0 includes multiple
parameterization schemes for physic options, The main physic options which may affect
the soil moisture simulations are shown in Table 2. Considering that the Noah-MP model
is currently the most widely used in different land surface simulation experiment, this
study examines the performance of the Noah-MP model in simulating soil moisture at the
selected sites.

The meteorological driving elements required by the Noah-MP model include near-
surface air temperature, air pressure, relative humidity, precipitation, downward longwave
and shortwave radiation, as well as near-surface wind speed and wind direction. Model
initialization requires surface datasets such as soil type, land cover type, and elevation.
All three sites selected in this study have high-precision meteorological and soil moisture
observation data. The time scale of the meteorological observation data used as model
driving data is 1 h, meeting the model’s requirements for driving data in the experiment.
A spin-up simulation was performed with meteorological forcing data from the year prior
to the study period to attain soil-state equilibrium. The equilibrium criterion followed
Gao et al. (2015) [12] and Cai et al. (2014) [14], requiring that the difference between
consecutive annual mean values from two one-year simulations be less than 0.1% of
the mean. The selected time period data in the study have all undergone quality control,

270



Agriculture 2025, 15, 2286

ensuring data quality. All the site data can be downloaded from the National Tibetan
Plateau Data Center (https://data.tpdc.ac.cn).

Table 2. The physical process options employed for ensemble simulation in Noah-MP model.

Physical Process Parameterization Schemes

Soil moisture factor controlling stomatal resistance (BTR) * 1. Noah 2. CLM 3. SSiB
Surface layer drag or exchange coefficient (SFC) * 1. M-O 2. Original Noah (Chen97)

Frozen soil permeability (INF) * 1. Linear effects, more permeable 2. Nonlinear effects,
less permeable

Soil supercooled liquid water (FRZ) * 1. No iteration 2. Koren’s iteration

Canopy radiation transfer (RAD) 1. Modified two-stream 2. Two-stream applied to grid-cell (gap = 0)
* 3. Two-stream applied to vegetated fraction (gap = 1-VegFrac)

Snow surface albedo (ALB) * 1. BATS snow albedo 2. CLASS snow albedo

Partitioning precipitation into rainfall and snowfall (PCP) * 1. Jordan (1991) 2. BATS 3. Noah 4. Use WRF microphysics output
5. Wet-bulb temperature-based

Lower boundary condition of soil temperature (TBOT) 1. Zero-flux scheme * 2. Noah scheme

Snow or soil temperature time scheme (only layer 1) (TEMP)
* 1. Semi-implicit; flux top boundary condition 2. Full-implicit

(original Noah); temperature top boundary condition 3. Same as 1,
but snow cover for skin temperature calculation

Ground resistant to evaporation or sublimation (SRE)
* 1. Sakaguchi and Zeng, 2009 2. Sellers (1992) 3. Adjusted Sellers to

decrease RSURF for wet soil 4. Option 1 for non-snow;
rsurf = rsurf_snow for snow

* Represents the default parameterization scheme.

2.3. Analysis and Evaluation Methods

Soil moisture was recorded as a simulation variable, and the simulation performance
of Noah-MP model was evaluated by comparing the soil moisture simulation results
with the observed soil moisture data. The Root Mean Square Error (RMSE) between the
simulations and observations is used as the evaluation metric for simulation accuracy,

RMSE =

√
1
N

n

∑
i=1

[sim(i)− obs(i)]2 (1)

where N is the number of samples, sim is the simulated value, and obs is the observed
value. The smaller the RMSE value, the closer the simulated value is to the observed
value, indicating higher simulation accuracy. In the ensemble simulation experiment,
two sensitivity analysis methods, Natural Selection and Tukey’s Test, were used to analyze
the sensitivity of the parameterization schemes based on the simulation results. Both
methods evaluate the model’s simulation performance by calculating the RMSE between
the simulated and observed values. They analyze different physical processes one by one
to identify the soil moisture simulations sensitive to parameterization schemes. The two
sensitivity analysis methods are introduced as follows.

Natural Selection: First, the RMSE of simulated soil moisture for each combination
scheme was calculated based on the observed values, and all the RMSE values was sorted
in ascending order. The top 5% (about 864 ensemble members) and the bottom 5% (about
864 ensemble members) were extracted from the ensemble. Obviously, the combination
schemes with RMSE values in the top 5% perform better than those in the bottom 5%.
Therefore, the set of all RMSE values in the top 5% was labeled as “Best members”, and
the set of all RMSE values in the bottom 5% was labeled as “worst members”. Based
on the newly formed sets, the frequency of a given scheme for each physical process
occurring in the “best members” and “worst members” sets were counted. Obviously,
the higher the frequency of a given scheme in the “best members”, the greater its con-
tribution to improving simulation accuracy. Conversely, the higher the frequency of a
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given scheme in the “worst members”, the greater its contribution to reducing simulation
accuracy. This method allows for a preliminary macro-level assessment of the relative
merits of different parameterization schemes within the same physical process and helps
determine the sensitivity of the simulated soil moisture to the parameterizations based on
frequency differences.

Tukey’s Test: as a method of hypothesis testing, is used to examine the sensitivity of
simulated soil moisture to parameterizations. The concept of this method is to use hypoth-
esis testing to compare whether there are significant differences between parameterizations
within a given physical process. If significant differences exist, the simulated soil moisture
is sensitive to the given parameterization scheme. First, the mean RMSE values for each
parameterization scheme was calculated, Y1, Y2, · · · , Ya. Then, the method of hypothe-
sis testing was used to compare whether the differences between each pair of means, ui

and uj(i �= j), are significant. The null hypothesis and alternative hypothesis are shown
in Equation (2).

H0 : ui = uj

H1 : ui �= uj
(2)

The indicator of significant differences between parameterizations is

q =
Ymax − Ymin√
MSE

2

(
1
ni
+ 1

ni

) =
Ymax − Ymin√

SSE
2(N−a)

(
1
ni
+ 1

ni

) (3)

where Ymax represents the larger mean RMSE value of the two parameterization schemes
being compared, and Ymin is the smaller one. ni and nj are the sample sizes of the i − th and
j − th parameterizations, respectively. MSE represents the mean square error, calculated
using Equation (4).

MSE =
1

N − a

a

∑
k=1

nk

∑
l=1

(
Ykl − Yk

)2 (4)

SSE is the sum of squares, which can be calculated using Equation (5),

SSE =
a

∑
k=1

nk

∑
l=1

(
Ykl − Yk

)2 (5)

where N is the total sample size including all schemes, and N − a is the degrees of freedom.
If the mean RMSE values of the two parameterization schemes satisfy Equation (6), then
the difference between them is deemed statistically significant.

∣∣Yi − Yj
∣∣/

√
MSE

2

(
1
ni

+
1
ni

)
> qα(a, N − a) (6)

where α is the significance level of the hypothesis test, set to 0.01 in this study. The
value of qα(a, N − a) can be obtained by looking up the hypothesis test distribution ta-
ble. For example, the physical process of radiation transfer has three parameterizations
(i.e., a = 3), the hypothesis test method is used to examine whether there is a significant
difference between the first and second parameterization scheme. The null hypothesis
and alternative hypothesis are set as H0 : u2 = u3 and H1 : u2 �= u3, respectively. The
total sample size N is 17,280, and the sample size for each parameterization scheme is
5760 (i.e., n1 = n2 = n3 = 5760). The degrees of freedom N − a is 17,277, and the mean

square error is MSE =
3
∑

k=1

nk
∑

l=1

(
Ykl − Yk

)2
/

17277 . The significance level is α = 0.01. The

value of q0.01(3, 17277) can be obtained by looking up the hypothesis test distribution
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table. If the values of Yi and Yj satisfy Equation (6), the null hypothesis will be rejected
at the significance level of 0.01. Conversely, the null hypothesis will be accepted at this
significance level.

Natural Selection and Tukey’s Test are two sensitivity analysis methods that determine
the sensitivity of parameterization schemes from a macro and micro perspective, respec-
tively. In this study, if either method identifies sensitivity in a parameterization scheme,
the simulated soil moisture is considered sensitive to that scheme.

Uncertainty Contribution Analysis: To elucidate the impact of sensitive physical
processes to the uncertainty in ensemble simulation results, this study employed a compre-
hensive approach to quantify the contribution of individual physical processes to the overall
uncertainty in soil moisture simulations. Ten main physical processes within Noah-MP
model were selected to configure the multi-parameterization scheme ensemble simulation
experiment, with each process represented by multiple parameterization schemes, result-
ing in a total of 17,280 soil moisture simulations. For instance, the BTR physical process
has three different parameterization schemes. To quantify BTR’s contribution to overall
uncertainty, a conditional uncertainty analysis was performed. The simulation outputs
were grouped according to the BTR parameterization scheme used: BTR1, BTR2, and BTR3.
For each group, the mean simulation result was computed,

Rk =
1
nk

nk

∑
i=1

Rk
i (7)

where Rk represents the mean of the simulation results for the kth BTR scheme, nk is the
number of simulations using the kth BTR scheme, and Rk

i is the individual simulation result
for the ith simulation under the kth BTR scheme. The between-group variance, representing
the variability in simulation results due to differences in the BTR schemes, was calculated as,

BV =
1
K

K

∑
k=1

(
Rk − R

)2 (8)

where K is the total number of BTR schemes, and R is the overall mean of all simulation
results across all BTR schemes,

R =
1
N

N

∑
i=1

Ri (9)

with N being the total number of simulations. The total variance, representing the overall
model uncertainty, was calculated as,

TV =
1
N

N

∑
i=1

(
Ri − R

)2 (10)

Finally, the contribution of the BTR process to the total model uncertainty was quanti-
fied as the ratio of the between-group variance to the total variance,

Con = BV/TV (11)

This ratio reflects the proportion of total variability in soil moisture simulations
attributable to differences in the BTR parameterization schemes. By applying this method-
ology, the contribution of sensitive processes to the uncertainty of ensemble simulations
can be quantified, offering valuable insights into their role in driving model uncertainty.

273



Agriculture 2025, 15, 2286

3. Results

3.1. Soil Moisture Simulated by Default Parameterization Combination

This section evaluates the performance of the Noah-MP model in simulating soil
moisture across different layers at three sites-Arou, Heihe, and Sidaoqiao, which come
from the upper, middle and lower reaches of the HRB. The comparison between simulated
and observed soil moisture data covers the period from January to December 2016 in Arou
and Sidaoqiao site, with an extension into 2017 in Heihe site. The analysis is performed
across four distinct soil layers, ranging from the surface layer (0–10 cm) to deeper layers,
progressively down to the fourth layer. Figure 2 shows the comparison of soil moisture at
the three sites simulated by Def with the corresponding observations.

Figure 2. Variation of soil moisture across three sites in the HRB, observed and simulated, by default
parameterization combination, from top to bottom are the first to fourth soil layer, respectively.

At the Arou site, the simulation of soil moisture exhibits varying degrees of accuracy across
the different layers. The first layer, representing the surface soil moisture, shows significant
variability throughout the year, particularly during the growing season (May to September).
While the model captures the overall trend, there are substantial deviations between the
simulated and observed values, especially during the wetter months (July and August).
The model tends to underestimate soil moisture during these periods, as indicated by the
consistently higher simulated values compared to the observations. Moving to the second
layer, the model’s performance slightly improves, though discrepancies remain evident.
The underestimation trend persists, particularly during the peak moisture periods. The
third layer shows a similar pattern, with the simulation capturing the seasonal fluctuations
but demonstrating an overestimation tendency, particularly during the latter half of the year.
The fourth layer presents the most significant challenge for the model. Here, the simulation
not only overestimates soil moisture but also fails to capture the observed drying trends
seen in the latter part of the year. Since the Arou site is located in the cold mountainous
region of the upper reaches of the HRB, the freeze-thaw process of the soil is very intense,
and the liquid water content in the soil rapidly increases when the temperature rises. The
soil moisture simulation results for the first and second layers at the Arou site indicate that
the Noah-MP model can adequately simulate the soil freeze-thaw process. However, it
should be noted that the soil moisture during this process is consistently underestimated.
Furthermore, the model’s inability to accurately simulate the deeper soil moisture dynamics
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suggests potential issues in the parameterization of subsurface processes within the Noah-MP
model, at least this is the case in the cold mountainous region.

The Heihe site, located in the midstream oasis of HRB, presents a more complex
scenario. Since this area is a desert oasis, the soil moisture content is relatively low and
is greatly influenced by precipitation. Unlike the Arou site, the Noah-MP model tends to
overestimate soil moisture at the Heihe site. As shown in the Figure 2, in the first layer, the
model exhibits a mixed performance. While it captures the seasonal variation, including
the sharp increase in soil moisture during the monsoon season (July and August), it again
tends to overestimate the moisture content during the peak season. For the second layer,
the model shows a decline in performance. The simulated soil moisture during the wet
season is notably higher than the observed values, with a noticeable lag in capturing the
drying trend post-monsoon. Soil moisture in the third and fourth layers at the Heihe site is
very low, with deep soil moisture showing almost no variation throughout the year and
no occurrence of freeze-thaw processes. As shown in Figure 2, the overestimation in the
third and fourth layers are significant and the simulated values remain high throughout the
latter part of the year, contrary to the observed data. Moreover, the fourth layer exhibits the
most considerable deviation from the observations. The model not only overestimates soil
moisture but also shows a delayed response to the drying trends observed from September
onwards. This suggests that the default parameterization scheme combination of Noah-MP
model for deeper soil layers may not be adequately capturing the subsurface hydrological
processes at Heihe site.

At the Sidaoqiao site, located in the downstream desert area, the model’s performance
is somewhat consistent with the patterns observed at the other two sites. The model is
able to accurately simulate the trend of the first layer of soil moisture, but the simulation
results show a significant underestimation. This underestimation continues into the post-
monsoon period, although the trend matches the observed data more closely than at the
other two sites. In the second layer, the model begins to deviate more noticeably from the
observations, and the model fails to capture the rapid decrease in soil moisture observed
towards the end of the year. Compared to the other two sites, soil moisture in the third
and fourth layers at the Sidaoqiao site is noticeably higher and more stable. The third
layer follows a similar trend, the underestimation here is substantial, and the model does
not adequately reflect the observed soil moisture dynamics. The fourth layer presents
the most significant challenge, similar to the Arou and Heihe sites. The model almost
underestimates soil moisture throughout the year, and the drying trend observed in the
data is almost entirely absent from the simulation. Previous studies have shown that the
annual mean soil moisture (SM) in the driest and wettest regions was underestimated,
while SM was generally overestimated in other regions [30]. Here, we found that the soil
moisture simulations at the Arou and Sidaoqiao stations were underestimated, whereas at
the Heihe station the soil moisture simulation was overestimated, even though the HRB is
located in an arid and semi-arid region.

3.2. Sensitivities of Physical Parameterization Schemes

The simulation results of the default parameterization scheme combination at different
sites indicate that the accuracy of soil moisture simulations is relatively low across all sites,
whether upstream, midstream, or downstream. This is especially true for the third and
fourth soil layers, where the model almost fails to accurately capture the soil moisture
trends. There are many methods to improve the accuracy of soil moisture simulations, such
as optimizing model parameters, adjusting the model structure, or using data assimilation
techniques to obtain the optimal posterior estimates of soil moisture. However, the goal of
this study is not to improve the accuracy of the Noah-MP model’s soil moisture simulations
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in the HRB. Instead, we are more interested in the sensitivity of soil moisture simulation
results to the parameterization schemes. Given the lower accuracy of the Noah-MP model
in simulating soil moisture in the third and fourth layers, this study focuses only on the
sensitivity of shallow soil moisture (first layer) simulation results to parameterization
schemes and compares the sensitivity under different climate types in the HRB. To this end,
two classic sensitivity analysis methods were employed to analysis the sensitivity of soil
moisture simulations to parameterization schemes at different sites.

3.2.1. Natural Selection Results

First, the shallow soil moisture observation data from three sites were used to calculate
the RMSE values of soil moisture simulations for all parameterization scheme combinations.
Then, all the RMSE values were sorted in ascending order, the members concentrated below
the fifth percentile of RMSE for soil moisture were considered as “best members”, and
the “worst members” contains the members which are those above the 95th percentile.
Subsequently, the frequency of different parameterization schemes being selected were de-
termined for the two groups. The selected frequency of different parameterization schemes
for soil moisture was shown in Figure 3, and above the horizontal axis in the subfigure
is the frequency of each parameterization scheme for the best members, and below is the
frequency of the worst members. The frequency with which different parameterization
schemes within the same physical process are selected in the ensemble simulation results
at the same site varies significantly, as seen in Figure 3. For example, at the Arou site,
the selection frequency of parameterization schemes for the INF, FRZ, PCP, and TEMP
physical processes shows considerable differences. Conversely, some physical processes
exhibit minimal differences in the selection frequency of their parameterization schemes.
For instance, the two parameterization schemes of the ALB physical process show almost
no difference in their selection frequency at the Heihe and Sidaoqiao sites; the frequency
with which these two schemes are selected in the “best members” and “worst members” is
nearly identical. Additionally, it can be observed that the selection frequency of parame-
terization schemes for partial physical processes shows little difference at some sites but
significant differences at others, like the parameterization schemes for the PCP physical
process display large differences in selection frequency at the Arou site, but not at the
Heihe and Sidaoqiao sites. Clearly, the significant differences in the selection frequencies of
parameterization schemes within the same physical process between the “best members”
and “worst members” indicate that altering the parameterization scheme for this process
can lead to substantial variations in soil moisture simulation results. And this suggests a
high sensitivity of soil moisture simulations to the choice of parameterization schemes for
this physical process.

There are three parameterization schemes in the BTR physical process, the default
is the Noah type scheme which uses soil moisture, the second is CLM type which uses
matric potential and the third is the SSIB type which also uses matric potential. The three
schemes result in significant differences in the calculation of the soil moisture control-
ling stomatal resistance, β factor [11]. At the Arou site, the selection frequencies of the
three parameterization schemes for the BTR physical process in the “best members” and
“worst members” groups are nearly identical. Changing the parameterization scheme for
this process does not affect the accuracy of soil moisture simulations, indicating that soil
moisture simulation results at the Arou site are not sensitive to the BTR physical process.
However, at the Heihe site, we found that the selection frequencies of schemes two and
three for the BTR process in the “best members” group are identical and higher than that of
scheme one. In the corresponding “worst members” group, the selection frequencies of
schemes two and three are zero, while that of scheme one is 1.0. This suggests that at the
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Heihe site, changing the parameterization scheme for the BTR process leads to significant
differences in soil moisture simulation results, with scheme one degrading the accuracy,
indicating sensitivity to the parameterization scheme at this site. Although scheme one
is not favored at the Heihe site, Figure 3 shows that in the “worst members” group at the
Sidaoqiao site, the selection frequencies of the three schemes are nearly identical. However,
in the “best members” group, the selection frequency of scheme three is zero, scheme one
is selected with a frequency of 0.9, and scheme two with a frequency of 0.1, indicating that
scheme one enhances the accuracy of soil moisture simulations at this site.

 

Figure 3. The selected frequency of different parameterization schemes for soil moisture of the three sites,
by best members (0–1) or worst members (−1–0), in ensemble experiments.
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Physical process INF is the frozen soil permeability and two schemes were integrated,
the first scheme considers that a model grid cell includes both permeable and impermeable
regions, thereby calculating the soil’s hydraulic properties based on the total soil moisture
content. In contrast, the second option determines hydraulic properties using only the
volume of liquid water. The difference between the two approaches results in more
permeable permafrost being generated by the first scheme compared to the second. It can
be observed that the two parameterization schemes of the INF physical process showed
significant differences in selection frequency across all three sites. At the Arou site, in the
“best members” group, scheme INF(1) was selected with a frequency of 0.08, while INF(2)
was selected with a frequency of 0.92. However, in the “worst members” group, INF(1)
was selected 91% of the time, and INF(2) only 9% of the time. This indicates that at the
Arou site, scheme INF(2) outperforms INF(1), yielding soil moisture simulation results
with smaller errors. A similar pattern was observed at the Heihe site, where INF(2) was
chosen 100% of the time in the “best members” group and 0% in the “worst members”
group. Conversely, INF(1) was never selected in the “best members” ensemble but was
selected 100% of the time in the “worst members” group. Clearly, soil moisture simulation
results at both the Arou and Heihe sites are highly sensitive to the INF physical process.
For the Sidaoqiao site, although it is evident from Figure 3 that soil moisture simulation
results are also highly sensitive to the INF process, the key difference from the previous two
sites is that scheme INF(1) was chosen with a frequency of 1.0 in the “best members” group
and 0 in the “worst members” group. In contrast, INF(2) was selected with a frequency
of 0 in the “best members” group and 1.0 in the “worst members” group. Clearly, for the
desert region where the Sidaoqiao site is located, scheme INF(1) is more suitable. However,
for the Arou site in the alpine region and the Heihe site in the artificial oasis area, INF(2)
is better suited for simulating soil moisture. To be honest, there could be many reasons
for this phenomenon, such as differences in climate type, vegetation type, and soil type,
etc. However, it is undeniable that in the upper and middle reaches of the HRB, water
permeability in permafrost is significantly lower than in the lower reaches area where the
Sidaoqiao site is located.

Based on the results presented in Figure 3, it is evident that the soil moisture simu-
lation outcomes at all three sites are highly sensitive to the parameterization schemes of
the FRZ physical process. At the Arou site, scheme FRZ(1) was selected with a frequency
of 0 in the “best members” group, but with a frequency of 1.0 in the “worst members”
group. Conversely, scheme FRZ(2) was chosen with a frequency of 1.0 in the “best mem-
bers” group and 0 in the “worst members” group. This suggests that at Arou, FRZ(2)
outperforms FRZ(1), resulting in more accurate soil moisture simulations. A similar pattern
was observed at the Sidaoqiao site, where FRZ(2) was selected with a frequency of 0.96
in the “best members” group, while FRZ(1) was selected with a frequency of 0.79 in the
“worst members” group, indicating that FRZ(2) is also more favorable at Sidaoqiao. At
the Heihe site, although soil moisture simulations are highly sensitive to the FRZ process,
Figure 3 shows that FRZ(1) was selected with a frequency of 1.0 in the “best members”
group, whereas FRZ(2) was selected with a frequency of 1.0 in the “worst members” group.
This indicates that FRZ(1) is the more suitable option at this site, producing more accurate
soil moisture simulation results compared to FRZ(2). Why is there a difference in sensitivity
when all three sites are located in the HRB? Further analysis reveals that scheme FRZ(1)
uses the more general form of the freezing-point depression equation, while scheme FRZ(2)
employs a variant of this equation with an added extra term. This modification in FRZ(2)
results in the generation of more liquid water compared to FRZ(1). Arou and Sidaoqiao are
both located in field environments, while the Heihe site is situated in farmland within a
midstream artificial oasis. During winter, when the soil freezes, the land remains fallow
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due to low temperatures and the inability to cultivate. Additionally, limited precipitation
and the absence of artificial irrigation lead to low liquid water content within the frozen
soil. As a result, FRZ(1) is more suitable for simulating soil moisture in this region.

Precipitation is the primary source of soil moisture, as illustrated in Figure 3, the
rain-snow partitioning process (PCP) may not have a direct impact on the accuracy of
soil moisture simulations, at least at the Heihe and Sidaoqiao sites. This is evidenced by
the fact that the five parameterization schemes for the PCP process were selected with
similar frequencies in both the “best members” and “worst members” groups at these
sites, indicating that variations in the PCP parameterization schemes do not affect the soil
moisture simulation accuracy at these locations. In contrast, at the Arou site, scheme PCP(4)
was chosen with a frequency of 0.8 in the “best members” group, which is significantly
higher than the other four schemes, while PCP(4) was not selected in the “worst members”
group. This demonstrates that, at the Arou site, PCP(4) exhibits a clear advantage over the
other parameterization schemes. A similar pattern is observed with the physical process
TEMP across the three sites. At both Heihe and Sidaoqiao sites, the frequencies of selecting
the three TEMP parameterization schemes are similar in both the “best members” and
“worst members” groups. This suggests that changing the parameterization schemes for
this physical process does not affect the accuracy of soil moisture simulations at these sites.
However, at the Arou site, TEMP(2) was selected with a frequency of 1.0 in the “worst
members” group, indicating that TEMP(2) tends to produce poorer soil moisture simulation
results at this site. The sensitivity testing results of the physical process of surface resistance
to ground evaporation/sublimation (SRE) vary significantly across the three sites. At the
Arou site, the frequencies of the four different SRE schemes being chosen are quite similar,
and SRE(3) was not selected in the “best members” group, making it difficult to determine
the sensitivity of soil moisture simulation results to the parameterization scheme of this
physical process. At the Heihe site, SRE(3) was selected with a frequency of 1.0 in the “best
members” group and 0 in the “worst members” group. At the Sidaoqiao site, SRE(3) was
selected with a frequency of 1.0 in the “worst members” group but was not chosen in the
“best members” group. The frequency statistics of SRE(3) at these two sites indicate that
soil moisture simulation results at these sites are sensitive to the parameterization scheme
of this physical process, with SRE(3) improving the simulation accuracy of soil moisture
at the Heihe site, whereas at the Sidaoqiao site, SRE(3) decreases the accuracy of soil
moisture simulation.

Some physical processes, such as RAD, ALB, and TBOT, show similar frequencies for
parameterization schemes in both the “best members” and “worst members” groups. This
suggests that soil moisture simulations are not particularly sensitive to the parameterization
schemes for these processes. However, discrepancies in frequency statistics are observed
for other processes, such as the two parameterization schemes for the SFC process across
the three sites. In such cases, it remains uncertain whether the soil moisture simulation
results are sensitive to the parameterization schemes for these processes.

3.2.2. Tukey Test Results

In this section, the Tukey’s test was employed to examine the difference of parame-
terization schemes for a certain physical process. First, a total number of 17,280 RMSEs
of all scheme combinations for soil moisture were calculated, and all of the RMSE values
are independent of each other. Moreover, before applying Tukey’s test, the assumptions
of normality and equality of variances were examined. Taking the physical process SFC
as an example, SFC has two parameterization schemes. For each scheme, 8640 out of
17,280 combination schemes selected the corresponding parameterization, resulting in
8640 RMSE values for each scheme. Figure 4 shows the kernel density distribution of the
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RMSE samples for each parameterization scheme across the ten physical processes, along
with the results of Tukey’s test.

Figure 4. Tukey’s test for RMSE. For each subfigure, letters A and B represent the categories of
corresponding schemes, and schemes of the same physical process that do not share a letter are
significantly different; the black line indicates the mean, and the red line indicates the median; the
kernel bandwidth was 0.01.

As shown in Figure 4, if different parameterization schemes for the same physical pro-
cess are marked with the same letter, such as “A”, it indicates that Tukey’s test results show
no significant difference between these schemes. Conversely, if parameterization schemes
for the same physical process are marked with different letters, such as “A” and “B”,
it signifies a significant difference between the schemes, with the scheme marked “B”
being slightly better due to its lower corresponding RMSE values. Clearly, if there is a
significant difference between parameterization schemes for the same physical process, it
indicates that soil moisture simulation results are sensitive to the parameterization scheme
of that physical process. If all parameterization schemes for a specific physical process
in the figure are marked with the same letter, such as “A”, it implies that soil moisture
simulation results are not sensitive to the parameterization scheme of that physical process.
For example, for the SFC physical process at the Arou site, there is no significant difference
between SFC(1) and SFC(2). Meanwhile, we noticed that at the Heihe and Sidaoqiao sites,
the two parameterization schemes for SFC were marked with different letters, with the
SFC(2) scheme marked with the letter “B”. This indicates that the soil moisture simulation
results at these two stations are sensitive to the parameterization scheme of this physical
process, and the performance of the SFC(2) scheme is slightly better. Further analysis
and comparison reveal that at the Arou site, there is no significant difference between
the parameterization schemes of the BTR and SFC physical processes, indicating that the
soil moisture simulation results at this station are not sensitive to the parameterization
schemes of these two physical processes. At the Heihe site, the parameterization schemes
for the RAD, ALB, and PCP physical processes do not show significant differences, meaning
that changing the parameterization schemes for these three physical processes does not
result in substantial changes in the soil moisture simulation results at this station. At the
Sidaoqiao site, the parameterization schemes for the physical processes FRZ, RAD, ALB,
PCP, TBOT, and TEMP do not show significant differences, indicating that the soil moisture
simulation results at this site are not sensitive to the parameterization schemes of these
physical processes.

Figure 4 shows that the sensitivity detection results from Tukey’s test are largely
consistent with those from the Natural Selection method. However, there are differences
in the sensitivity of some physical process parameterization schemes. For example, it is
difficult to determine the sensitivity of the SFC physical process parameterization scheme
using the Natural Selection method, but Tukey’s test results indicate that the SFC process is
sensitive at both the Heihe and Sidaoqiao sites. There is no contradiction between the results

280



Agriculture 2025, 15, 2286

of the two sensitivity analysis methods. The Natural Selection method identifies sensitivity
from a macro statistical perspective, based on the differences in the frequency with which
different parameterization schemes are selected in the best and worst members groups.
Tukey’s test, on the other hand, takes a more micro-level approach, using hypothesis testing
to detect subtle differences between different parameterization schemes within the same
physical process, thereby determining sensitivity. Therefore, in this study, if either method
detects sensitivity in a physical process, it is concluded that soil moisture simulation results
are sensitive to that parameterization scheme of that physical process. We integrated the
results of the two sensitivity analysis methods, and Figure 5 illustrates the sensitivity of
major physical processes to soil moisture.

Figure 5. Sensitivity diagram of soil moisture. Light color indicates that soil moisture is insensitive to
the physical process; dark color indicates that soil moisture is sensitive to the physical process.

3.3. Uncertainty Contribution Analysis of Physical Options

Our previous research results indicated that the uncertainty in ensemble simulation
results with multiple parameterization schemes primarily stems from sensitive physical
processes, and the greater the sensitivity of the simulation results to a specific physical
process, the higher the uncertainty in the ensemble simulation results [28,35]. Although
this conclusion was derived from snow depth simulation results, it is evidently applicable
to soil moisture simulations as well. In this study, we use ‘Uncertainty Contribution
Analysis’ to assess the contribution of each physical process to the uncertainty in soil
moisture ensemble simulation results, as shown in Figure 6. Clearly, the greater a physical
process’s contribution to the uncertainty in ensemble simulation results, the more varied
its parameterization scheme will be, leading to significant differences in simulated soil
moisture, thereby generating greater uncertainty. As shown in Figure 6, at the Arou site,
most physical processes contribute less than 1% to the overall uncertainty. However,
certain processes contribute more significantly, such as INF (14.03%), FRZ (48.70%), PCP
(6.31%), and TEMP (17.86%). At the Heihe site, INF contributes 30.86%, FRZ contributes
52.96%, TEMP contributes 4.56%, and SRE contributes 6.05%. At the Sidaoqiao site, SFC
contributes 4.46%, INF contributes 31.07%, FRZ contributes 4.80%, and SRE contributes
50.92%. Contributions from other physical processes at these sites are all below 1%.

281



Agriculture 2025, 15, 2286

Figure 6. Uncertainty contribution diagram of physical options at three sites, the results are all
expressed in percentage format.

4. Discussion

Across all three sites, the Noah-MP model, with its default parameterization, con-
sistently overestimates soil moisture at Heihe site which is located in an oasis region,
particularly during the wet season. However, the soil moisture simulations show sig-
nificant underestimation at Arou and Sidaoqiao site. Among the three sites, the default
parameterization scheme combination of the Noah-MP model is generally able to accurately
simulate the soil moisture trends in the first and second layers, although overestimation or
underestimation occurs to varying degrees at each site. However, for the third and fourth
layers, the Noah-MP model is generally unable to simulate the trends in soil moisture. The
overestimation of soil moisture by the Noah-MP model may be attributed to several factors.
One potential reason is the model’s representation of soil hydraulic properties, which may
not be adequately parameterized for the specific conditions in the HRB. The model’s default
parameterization scheme combination may not account for the unique soil texture and
structure of the region, leading to an overestimation of water retention capacity, especially
in the deeper layers. Additionally, the model’s inability to capture the drying trends in the
deeper layers suggests that the subsurface drainage processes might be inadequately repre-
sented, possibly due to oversimplified assumptions in the soil moisture parameterization
schemes. The variations in model performance across the different sites and layers also
highlight the spatial heterogeneity of the HRB. The differences in soil texture, vegetation
cover, and topography between the sites likely contribute to the varying levels of model
accuracy. The Arou site, for example, with its more complex terrain and vegetation, poses a
greater challenge for the model, especially the freeze-thaw process of the soil, resulting in
larger discrepancies. In contrast, the Heihe site, with its more uniform conditions, shows
somewhat better model performance, although significant issues remain. In conclusion,
while the Noah-MP model, with its default parameterization, can capture the general
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seasonal trends of soil moisture across the HRB, significant biases and inaccuracies remain,
particularly in the deeper soil layers. The consistent underestimation and overestimation
of soil moisture suggest that the default parameterization scheme combination may not
be adequately capturing the subsurface hydrological processes in the region. Future work
should focus on optimizing the model’s parameterization for the specific conditions of
the HRB, potentially through site-specific calibration or the integration of more detailed
soil and vegetation data. Additionally, the implementation of advanced data assimilation
techniques could help reduce the model’s biases and improve the accuracy of soil moisture
simulations, particularly in the deeper layers.

From the Figure 5, it can be observed that the INF, FRZ, and SRE processes exhibit
sensitivity at all three sites, with the parameterization schemes for INF and FRZ being
particularly sensitive. The parameterization schemes for the BTR, SFC, TBOT, and TEMP
processes show sensitivity at two of the sites, while the PCP process exhibits sensitivity
only at the Arou site. Furthermore, the parameterization schemes for the RAD and ALB
processes did not exhibit sensitivity at any of the three sites. The RAD process is primarily
designed for areas with tall shrub vegetation, but the land surface types at the three
sites in this study are grassland, crop, and desert, respectively. Therefore, altering the
parameterization scheme for RAD does not lead to changes in the simulation results. The
parameterization scheme for the ALB process is mainly used to calculate the albedo of
the snow surface and significantly impacts snow depth simulations [28]; however, in this
study, it clearly did not affect the soil moisture simulation results. For the PCP process,
the parameterization scheme PCP(4) calculates the proportion of solid precipitation using
the total amount of snow, graupel, and hail from the forcing data. The Arou site is located
in the upstream alpine region, where the average temperature is lower, and the average
precipitation is higher compared to the midstream and downstream sites. This gives the
PCP(4) scheme a distinct advantage at the Arou site. Our findings regarding differences
in Noah-MP parameterization sensitivity align with earlier work in similar contexts. For
example, Hu et al. (2023) [36] demonstrated spatial and seasonal variations of sensitivity
across the Tibetan Plateau, notably in parameterizations such as SFC and ALB.

An analysis combining Figures 5 and 6 shows that the contributions of sensitive
physical processes to the uncertainty in ensemble simulation results at all three sites are
non-negligible, indicating that these processes are primarily responsible for the overall
uncertainty. However, does this mean that all sensitive physical processes contribute
significantly to the uncertainty in the simulation results? The answer is no. For example, at
the Arou site, although TBOT and SRE both exhibit sensitivity, their contributions to the
uncertainty are below 1%. Similarly, at the Heihe site, the BTR, SFC, and TBOT processes,
as well as the BTR process at the Sidaoqiao site, show sensitivity but contribute less than
1% to the overall uncertainty. The results demonstrate that the contributions of the RAD
and ALB physical processes to the uncertainty in ensemble simulation results are minimal
at all three stations. In particular, the ALB physical process contributes virtually nothing to
the uncertainty at any of the stations. Although the FRZ physical process shows significant
sensitivity across all three stations, its contribution to the uncertainty in ensemble soil
moisture simulation results varies considerably. It is relatively high at the upstream Arou
site and the midstream Heihe site, but lower at the downstream Sidaoqiao site. At Sidaoqiao,
the SRE physical process contributes 50.92% to the uncertainty in ensemble soil moisture
simulation results, accounting for half of the total uncertainty.

5. Conclusions

In this study, a representative research site from the upstream, midstream, and down-
stream regions of the HRB were chosen to evaluate the performance of the Noah-MP model
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in simulating soil moisture, respectively. For the first soil layer, we conducted ensem-
ble simulations using multiple parameterization schemes and employed two sensitivity
analysis methods to examine the sensitivity of soil moisture to parameterization schemes
from both macro and micro perspectives. Building on this, the contribution of specific
physical processes to the uncertainty in ensemble soil moisture simulation results was
further quantified and the impact of sensitive physical processes on this uncertainty was
assessed. The main findings are as follows:

The Noah-MP model is capable of simulating soil moisture variations in the first
and second layers at the three sites located in the upstream, midstream, and downstream
areas of the HRB. However, the simulations exhibit varying degrees of overestimation and
underestimation, indicating that there is room for improvement in the model’s accuracy. In
contrast, the model fails to capture the variations in soil moisture in the third and fourth
layers at these sites, with significant discrepancies compared to the observed data.

Sensitivity analysis reveals that the physical processes of infiltration (INF), freeze-
thaw cycles (FRZ), and surface resistance to evaporation (SRE) demonstrate sensitivity
across all three sites. However, processes such as bare soil evaporation (BTR) and surface
exchange coefficients (SFC) show sensitivity only at the midstream and downstream sites.
The bottom temperature (TBOT) and canopy air temperature (TEMP) processes do not
exhibit sensitivity at the downstream site. Precipitation (PCP) sensitivity is observed only
in the upstream alpine region, while radiation (RAD) and albedo (ALB) processes do not
show sensitivity in this study’s soil moisture simulation experiments.

The contribution of specific physical processes to the uncertainty in ensemble simula-
tion results for soil moisture highlights that this uncertainty mainly stems from the sensitive
processes. Variations in parameterization schemes within these sensitive processes are the
primary drivers of uncertainty in the ensemble simulations. The FRZ process, for instance,
accounts for nearly 50% of the uncertainty in soil moisture simulations at both the upstream
Arou site and the midstream Heihe site, making it the dominant factor for uncertainty at
these locations. At the downstream Sidaoqiao site, the SRE process contributes 50.92% of
the uncertainty, making it the primary source of uncertainty in soil moisture simulations at
that site.

In this study, we only considered grassland, farmland, and desert, and did not include
shrub vegetation. This may limit the representativeness of our soil moisture simulations.
Future work should consider more land cover types to better capture soil moisture vari-
ability. In forthcoming research, we plan to incorporate data assimilation techniques to
integrate high-precision soil moisture observations within the model framework, aiming to
further enhance the accuracy of soil moisture simulations. We hope that the findings of
this study can serve as a reference for selecting parameterization schemes for soil moisture
simulation, provide insights into the applicability of parameterization schemes in specific
regions, and offer a scientific basis for developing more accurate land surface process
parameterization schemes.
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