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Preface to ”Climate Change and Environmental

Sustainability-Volume 3”

The Earth’s climate is changing; the global average temperature is estimated to already be about

1.1 °C above pre-industrial levels. Indeed, we are now living in conditions of a climate emergency.

Climate change leads to many adverse events, such as extreme heat, flooding, bushfire, drought, and

many other associated economic and social consequences. Further warming is projected to occur in

the coming decades, and climate-induced impacts may exceed the capacity of society to cope and

adaptive in a 1.5 °C or 2 °C world. Therefore, urgent actions should be taken to address climate

change and avoid irreversible environmental damages.

Climate change is interrelated with many other challenges such as urbanisation, population

increase and economic growth. For instance, cities are now the main settlements of human being

and are major sources of greenhouse gas emissions that are key contributors to climate change.

Moreover, rapid and unregulated urbanisation in some contexts further causes urban problems such

as environmental pollution, traffic congestion, urban flooding and heat island intensification. In the

absence of well-designed measures, increasing urbanisation trends in the next two–three decades are

likely to further aggravate such problems. Overall, climate change and many other challenges have

deteriorated the sustainable development of the world.

The United Nations proposed the Sustainable Development Goals in 2015. Goal 13, Climate

Action, emphasises the need for urgent action to combat climate change and its impacts in order to

enhance sustainability. To achieve this, there is a need to develop a holistic framework that considers

mitigation—the decarbonisation of society—to address the challenge of climate change from the

root, and adaptation—an immediate action—to increase the resilience of and protect society from

climate-induced hazards. The framework prioritises the transformation of the traditional methods of

environmental modifications in various fields, including transportation, industry, building, energy

generation, agriculture, land use and forestry, towards sustainable ones to limit greenhouse gas

emissions. The framework also highlights the significance of sustainable environmental planning and

design for adaptation in order to reduce climate-induced threats and risks. Moreover, it encourages

the involvement and participation of all stakeholders to accelerate climate change mitigation and

adaptation progress by developing sound climate-related governance systems.

The framework also calls for the support and engagement of all societal stakeholders. To

support the achievement and implementation of the framework, this book focuses on climate

change and environmental sustainability by covering four key aspects, including climate change

mitigation and adaptation, sustainable urban–rural planning and design, decarbonisation of the built

environment in addition to climate-related governance and challenges. Climate change mitigation

and adaptation covers topics of greenhouse gas emissions and measurement, climate-related disasters

and reduction, risk and vulnerability assessment and visualisation, impacts of climate change

on health and well-being, ecosystem services and carbon sequestration, sustainable transport

and climate change mitigation and adaptation, sustainable building and construction, industry

decarbonisation and economic growth, renewable and clean energy potential and implementation

in addition to environmental, economic and social benefits of climate change mitigation.

Sustainable urban–rural planning and design deals with questions of climate change and

regional economic development, territorial spatial planning and carbon neutrality, urban overheating

mitigation and adaptation, water-sensitive urban design, smart development for urban habitats,
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sustainable land use and planning, low-carbon cities and communities, wind-sensitive urban

planning and design, nature-based solutions, urban morphology and environmental performance in

addition to innovative technologies, models, methods and tools for spatial planning. Decarbonisation

of the built environment addresses issues of climate-related impacts on the built environment,

the health and well-being of occupants, demands on energy, materials and water, assessment

methods, systems and tools, sustainable energy, materials and water systems, energy-efficient design

technologies and appliances, smart technology and sustainable operation, the uptake and integration

of clean energy, innovative materials for carbon reduction and environmental regulation, building

demolition and material recycling and reusing in addition to sustainable building retrofitting and

assessment. Climate-related governance and challenges concerns problems of targets, pathways

and roadmaps towards carbon neutrality, pathways for climate resilience and future sustainability,

challenges, opportunities and solutions for climate resilience, the development and challenges

climate change governance coalitions (networks), co-benefits and synergies between adaptation and

mitigation measures, conflicts and trade-offs between adaptation and mitigation measures, mapping,

accounting and trading carbon emissions, governance models, policies, regulations and programs,

financing urban climate change mitigation, education, policy and advocacy of climate change

mitigation and adaptation in addition to the impacts and lessons of COVID-19 and similar crises.

Overall, this book aims to introduce innovative systems, ideas, pathways, solutions, strategies,

technologies, pilot cases and exemplars that are relevant to measuring and assessing the impact

of climate change, mitigation and adaptation strategies and techniques in addition to public

participation and governance. The outcomes of this book are expected to support decision makers

and stakeholders to address climate change and promote environmental sustainability. Lastly,

this book aims to provide support for the implementation of the United Nations Sustainable

Development Goals and carbon neutrality in efforts aimed at achieving a more resilient, liveable and

sustainable future.

To cope with the challenges of climate change, it is essential to assess climate-induced

impacts and explore possible solutions. Remote sensing techniques are capable of monitoring,

collecting, interpreting, and mapping the physical characteristics of Earth’s surface and its associated

spatiotemporal variations. These techniques outperform many data acquisition techniques in

overcoming spatial and geographic constraints. The adoption of remote sensing techniques

strengthens the capacity for climate change mitigation and adaptation and facilitates evidence-based

climate governance. This book presents the use of different kinds of remote sensing techniques

to obtain original data across global, regional, city, or local scales for exploring climate-related

issues such as sea level variation, sea ice dynamics, drought, extreme heat and precipitation,

ecosystem services and carbon sequestration, forest and vegetation cover, coastal subsidence,

atmospheric carbon monoxide, soil erosion and runoff, and urban heat islands. This book is

important to demonstrate the use of remote sensing techniques for revealing climate-related risks

and vulnerabilities. Meanwhile, results reported in this book provide a good understanding

of the climate emergency situations, drivers, and solutions. We expect the book to benefit

decision makers, practitioners, and researchers in different fields such as climate modeling and

prediction, forest ecosystem, land management, urban planning and design, urban governance, and

institutional operations.
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Abstract: Studying land use change and its associated climate effects is important to understand
the role of human activities in the regulation of climate systems. By coupling remote sensing
measurements with a high-resolution regional climate model, this study evaluated the land surface
changes and corresponding climate impact caused by planting rice on saline-alkali land in western
Jilin (China). Our results showed that paddy field expansion became the dominant land use change in
western Jilin from 2015 to 2019, 25% of which was converted from saline-alkali land; this percentage
is expected to increase in the near future. We found that saline-alkali land reclamation to paddy fields
significantly increased the leaf area index (LAI), particularly in July and August, whereas it decreased
albedo, mainly in May and June. Our simulation results showed that planting rice on saline-alkali
land can help decrease the air temperature and increase the relative humidity. The temperature and
humidity effects showed different magnitudes during the growing season and were most significant
in July and August, followed by September and June. The nonradiative process, rather than the
radiative process, played a dominant role in regulating the regional climate in this case, and the
biophysical competition between evapotranspiration (ET) and albedo determined the temperature
and relative humidity response differences during the growing season.

Keywords: land use and land cover changes; regional climate; regional climate model; remote sensing

1. Introduction

Both land use changes and CO2 emissions have been documented as dominant driving
factors influencing the climate system at different scales from global to regional [1–5].
However, at the regional scale, some studies emphasize that climate change induced by
land use change is even greater than climate change induced by greenhouse gases [6–8].
Understanding the predominant regional land use change as well as the mechanisms by
which it affects climate through altering energy, momentum, and water exchange processes
is crucial to fully clarify how humans modify and regulate climate [9–11]. In addition,
studying land use changes and estimating their climate impact is also a major requirement
for the sustainable development of agriculture [12–15].

Global land use trajectories show the transition from pre-settlement natural ecosys-
tems to intensive complex composite ecosystems, in which urbanization and intensive
agriculture plays an increasingly important role in supporting the unprecedented popula-
tion and its associated crop requirements [16–19]. Based on satellite big data, Kuang et al.

Remote Sens. 2021, 13, 3407. https://doi.org/10.3390/rs13173407 https://www.mdpi.com/journal/remotesensing
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detected significant global urbanization since the beginning of the 21st century [19]. The
human-induced cropland expansion has been examined as the major driver for a series of
land-use changes, including deforestation, grassland, and wetland reclamation across both
tropical and temperature regions [18,20,21]. Through using land-use management, China
and India lead in the global widespread greening since 2000, among which, fertilization use
and irrigation drive the greening and food production increase in croplands [22]. Although
some studies have investigated the regional climate impacts caused by urban expansion
and agricultural intensification, mainly the land use conversion from forest, grassland, and
wetland to farmland, agricultural practice, and agricultural irrigation [1,7,23–30], attention
has rarely been given to exploring the connection between the vegetation restoration caused
by saline-alkali land improvement and regional climate responses and the role in seasonal
transitions in temperature and energy balance.

As a widely distributed area of the black soil region, the Northeast China has expe-
rienced unprecedented agricultural intensification since the 1950s and has become the
major grain-producing area in China [31–33]. However, the ecological environment has
become increasingly vulnerable across the transitional climate and ecological zone of north-
ern China due to high-intensity land development [34]. As a result, some grassland or
farmland in subarid, ecologically fragile areas such as western Jilin has degraded into
saline-alkali land and resulted in severe environmental and ecological problems [35]. Re-
cently, the development of saline-alkali soil improvement technology has made planting
rice in saline-alkali land possible, and this will become the dominant land use in the near
future with sufficient policy support [36]. Saline-alkali land improvement substantially
changes the surface biophysical and biochemical properties and influences the interactions
between the land surface and atmosphere [37]. However, comprehensive evaluations of
how saline-alkali land improvements influence surface plant physiological and optical
parameters and further affect the local climate are still lacking.

Satellite observations provide detailed Earth surface information and have become the
most commonly used approach to study environmental change [38–40]. Some studies have
used remote sensing measurements to investigate the response of surface temperature to
land use changes such as afforestation and urbanization [41,42]. However, it is difficult
to identify the mechanisms corresponding to climate impact. High-resolution regional
climate modelling involving a land surface model can accurately represent the energy and
moisture exchanges at the surface/atmosphere interface and has become an efficient way
to simulate climate effects based on historic and future land use changes [43–48]. Precise
land surface properties are essential in simulating the interactions between the surface and
the atmosphere and have been widely documented [49,50]. Coupling spatially continuous
satellite observations with regional climate models has become the state-of-the-art approach
to study climate impacts due to land surface changes [51].

Therefore, in this study, we quantify the air temperature and relative humidity impacts
related to changes from regional typical and novel land use changes—from saline-alkali
land to paddy fields. First, the historic and future projected land use changes in western
Jilin were analysed. We then evaluated the influence of saline-alkali land improvement
on two crucial surface parameters, including albedo and leaf area index (LAI). Finally,
the climate responses, mechanisms and implications for saline-alkali land improvement
were simulated and further analysed by coupling the land surface model into the regional
climate model. Through this study, our results can provide suggestions for regional
agricultural development.

2. Materials and Methods

2.1. Study Area

Western Jilin is located in the western part of Jilin Province in Northeast China, ex-
tending from 43◦59′27′′N to 46◦18′′5′′N latitude and 121◦37′31′′E to 126◦10′43′′E longitude
(Figure 1). With a total area of 46,900 km2, western Jilin contains ten county-level cities, in-
cluding Zhenlai, Taobei, Taonan, Tongyu, Da’an, Qian’an, Changling, Qianguo, Ningjiang
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and Fuyu. The landform of western Jilin is an alluvial and proluvial plain with an average
altitude of 160 m. The climate is dominated by a temperate continental climate with distinct
seasonal variation. The average annual temperature is 4–5 ◦C, and the annual precipitation
is 350–500 mm. The water resources are rich, the main rivers of which are the Taoer River,
Nenjiang River and Songhua River. Affected by landform and climate, the soil is mainly
light chernozem and meadow soil. From the perspective of ecological zoning, western Jilin
is located in the ecotone between agriculture and animal husbandry.

Figure 1. Geographic location of west Jilin.

The long-term agricultural intensification that began in the 1950s contributed to severe
land degradation; as a result, increasing amounts of land were converted to saline-alkali
land, and the ecological environment has became increasingly vulnerable. Since the 2010s,
saline-alkali soil improvement technology has been promoted to cultivate rice on unused
saline-alkali land and has become a new regional land use change characteristic. As a
result, western Jilin has become the ideal area to fully understand how human activities
regulate or modify climate at the regional scale.

2.2. Data Processing
2.2.1. Land Use and Land Cover (LULC) Data

In this study, we used time series land use datasets produced by the Chinese Academy
of Sciences (CAS) (downloaded from http://www.resdc.cn/ (accessed on 25 June 2021)) to
describe the land use pattern in western Jilin. Two periods, 1975 to 2015 and 2015 to 2019,
were used to analyse land use change over the past 45 years. Based on the land use maps
from 2015 and 2019, we extracted the unchanged pure grids (where the dominant type is
the only land use type in that grid) at a 1 km × 1 km spatial resolution for paddy fields and
saline-alkali land. There were 1621 and 1478 pure grids for saline-alkali land and paddy
fields in our study area, respectively (Figure S1). These pure pixels were used to extract the
interannual cycle of surface properties, including LAI and albedo.

In this study, we used the CAS LULC data from 2015 to represent the land use pattern
in China. The European Space Agency (ESA) Climate Change Initiate (CCI) land use and
land cover dataset from 2015 was used to fill in the land use data outside Northeast China.
Both the CAS and CCI LULC data were converted to USGS 24-category land use categories
at a resolution of 1 km. The fraction of each LULC type, the dominant LULC type and the
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land mask layer at each grid were then obtained through spatial statistical analysis using
ArcGIS and Python processing.

2.2.2. Land Surface Parameters Datasets

LAI and albedo are two dominant surface biogeophysical parameters influencing
the energy budget and water cycling. The LAI determines the vegetation transpiration
and CO2 exchange of the vegetation canopy, whereas the surface albedo can affect the
shortwave radiation absorbed by the surface. Temporally and spatially continuous LAI and
albedo data can help represent the interactions between the land surface and atmosphere
more accurately. In this study, we used MODIS products, including the MOD15A2 8-day
composite LAI dataset and the MCD43B3 daily albedo dataset, to represent the spatial
heterogeneity of LAI and albedo. To match the temporal resolution and projection of
Weather Research and Forecasting (WRF) preprocessing, the 8-day composite or daily
datasets were first aggregated monthly, and the projection was transformed into a Lambert
equal area projection. To avoid the influence of climate variation, we used the 2015–2019
five-year average monthly LAI and albedo to update the original corresponding dataset in
the WRF preprocessing.

2.2.3. Climate Forcing Dataset

ERA5 reanalysis datasets were used to force the WRF model at both the surface and
pressure levels. ERA5 is the fifth generation of ECMWF atmospheric reanalysis of the
global climate, which began with the FGGE reanalysis produced in the 1980s, followed
by ERA-15, ERA-40 and most recently ERA-Interim. These data have a high spatial
resolution of 0.25 × 0.25 degrees and a high temporal resolution, which can reach three
hours. The long-term (1950 to the most current) ERA5 datasets have been widely applied
to historic and future climate change research. At the surface level, 19 surface variables
including the 10 m u component of wind, 10 m v component of wind, 2 m dewpoint
temperature, 2 m temperature, land sea mask, mean sea level pressure, sea ice cover,
sea surface temperature, skin temperature, snow depth, soil temperature at four soil
layers, surface pressure, volumetric soil water at four soil layers were used, and at the
pressure level, six variables including geopotential, relative humidity, specific humidity,
temperature, u component of wind, and v component of wind at 37 vertical levels were
used for the meteorological forcing.

2.2.4. Meteorological Observation Dataset

The monthly dataset of surface climate data in China from the China Meteorological
Data Service Center (CMDSC) (http://cdc.cma.gov.cn/ (accessed on 25 June 2021)) was
used to validate the efficiency of our simulation. This monthly dataset spans a period from
1951 to the present and includes 23 meteorological variables. Two climate variables, includ-
ing air temperature (at 2 m) and relative humidity (at 2 m) at six meteorological stations
covering western Jilin were selected to compare the observed results with the model-
simulated results. The six meteorological stations included Baicheng, Fuyu, Qianguo,
Tongyu, Qian’an and Changling.

2.3. Regional Climate Sumulation

The Weather Research and Forecasting (WRF) model has been used in a broad range
of applications, including regional climate research and forecast research across scales
ranging from metres to thousands of kilometres [52]. Based on different dynamic solvers,
the WRF system contains an advanced research WRF (ARW) core and a nonhydrostatic
mesoscale model (NMM) core. In this study, we used the flexible, efficient and state-of-the-
art atmospheric ARW simulation system version 3.6 to perform the numerical simulation.

We designed two domains in our experiments (Figure 2), which had horizontal resolu-
tions of 30 km and 10 km, respectively. The first domain included all of Northeast China,
whereas the second domain included our study area: western Jilin and its surrounding
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areas. The two scenarios were designed to simulate the impact of saline-alkali land im-
provements on the regional climate. In the control scenario, the land use and land cover
(LULC) data from 2015 were used to calculate the LULC-related land surface variables,
including the dominant LULC type, the fraction of each LULC type, and the land mask
at each domain resolution. The 2015–2019 5-year average monthly LAI and albedo were
used to replace the corresponding initial model geostatistical datasets. In the sensitivity
experiments, all the saline-alkali land in 2015 was converted to paddy fields, referring
to herbaceous wetlands from the 24-category USGS land use categories. The seasonally
varied LAI and albedo on the converted saline-alkali land were updated based on the
statistical characteristics of pure paddy fields (Table 1). The initial boundary conditions
and the physical parameterization schemes were held constant in both the control and
sensitivity experiments. Therefore, the regional climate impacts due to saline-alkali land
improvement can be identified.

Figure 2. The land cover pattern for domain 1 (D01) and domain 2 (D02) in our experiments.

Table 1. The regional monthly mean albedo and LAI for paddy fields. (When the saline-alkali land
was converted to the paddy field, the albedo and LAI of the saline-alkali land were replaced by the
corresponding values shown in this table).

Paddy Field May June July August September October

Albedo 0.08 0.09 0.18 0.19 0.20 0.21
LAI 0.17 1.23 4.20 3.20 1.15 0.29

The main schemes used in the simulation were as follows: the microphysics was a
WRF Single-Moment 3-class scheme, both the longwave radiation and shortwave radiation
were CAM schemes, the surface layer was an MM5 similarity scheme, the land surface was
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represented by the Noah Land Surface Model, the planetary boundary layer was a Yonsei
University scheme, and the cumulus parameterization was a Kain-Fritsch scheme. Given
that the growing season in western Jilin extends from late May to late September, the two
experiments were initialized on 1 May to 1 October of each year from 2015 to 2019. The
results from the first month were used to spin up the model, and the results from following
months (June, July, August and September) were used for analysis in this paper.

3. Results

3.1. Land Use Changes in Western Jilin: Historic, Current and Future

Dry farmland, grassland and saline-alkali land are three dominant land use types in
western Jilin, accounting for approximately 75~78% of the total area. Remarkable land
use conversions were identified from 1975 to 2015 in western Jilin due to both human
activities and natural environmental changes (Figure 3). Extensive grassland degradation
to saline-alkali land was observed mainly in Da’an, Tongyu, Changling and Zhenlai. In
Qian’an and Qianguo, a large number of grasslands have been reclaimed to dry farmland.
Notable paddy field expansion from dry farmland or wetland was observed in the main
rice planting areas such as Zhenlai, Taobei and Qianguo. In addition, notable built-up land
expansion was also detected from 1975 to 2015.

Figure 3. Land use maps of west Jilin from 1975 (a) and 2015 (b).

A land use transition matrix was created to determine the specific land use conversions
in western Jilin (Table 2). From 1975 to 2015, grassland decreased by 3228 km2, 43.9% of
which was reclaimed to dry farmland, and 39.4% of which degraded to saline-alkali land.
Paddy fields and dry farmland increased by 1738 and 620 km2, respectively, indicating
that agricultural development was the dominant driving factor of the land use changes in
western Jilin during our study period. Expanded paddy fields were primarily converted
from dry farmland (52.8%) and wetlands (33%). It should be noted that approximately 6%
of the paddy field expansion was converted from saline-alkali land due to novel techniques
of planting rice on saline-alkali land. As a result, degraded saline-alkali land has become
an important reserved cultivated land resource in these regions. In addition, wetland and
water decreased by 636 and 200 km2, respectively, whereas built-up land, woodland and
barren land increased by 437, 317 and 32 km2, respectively.
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Recent remote sensing measurement records from 2015 to 2019 showed that paddy
field expansion continued at an increasing rate. In those four years, paddy fields increased
by 2031 km2, compared with 1738 km2 in the past 40 years from 1975 to 2015 (Figure 4).

A total of 37.1% of the increase in paddy fields was converted from dry farmland,
most of which were located in areas adjacent to already existing paddy fields. Saline-
alkali land reclamation has become the second most important approach to paddy field
expansion, with a 520.9 km2 increase in western Jilin. An increased plant area is a direct
way to guarantee or increase food production and is beneficial due to the low land cost
of saline-alkali land and provincial government support. Paddy field development on
saline-alkali land in western Jilin has become and will continue to be the main trend in
future land use management.

Table 2. Transition matrix of land use categories from 1975 to 2015 in western Jilin (km2).

2015

1975 Woodland Grassland Water
Built-up

Land
Barren
Land

Saline-
Alkali
Land

Wetland
Paddy
Field

Dry
Farmland

Total

Woodland 1309.8 256.5 0.5 8.3 6.1 39.1 15.2 6.9 819.0 2461.3
Grassland 892.6 3801.1 31.6 32.3 56.2 1273.5 152.8 174.1 1415.7 7830.1

Water 1.4 29.1 1801.2 13.1 1.2 89.9 176.2 15.4 51.0 2178.4
Built-up

land 1.7 1.1 0.3 1316.4 0.2 1.7 0.3 4.0 65.2 1390.8

Barren land 4.8 7.8 0.1 0.3 181.7 0.3 11.5 0.0 9.7 216.2
Saline-alkali

land 3.8 240.3 95.5 55.3 1.2 5798.5 117.3 102.5 91.1 6505.5

Wetland 12.7 155.7 31.7 8.6 0.3 150.0 1982.2 573.6 198.0 3112.6
Paddy field 0.2 1.4 5.3 13.5 0.0 0.1 0.0 763.7 36.3 820.3

Dry
farmland 551.0 109.6 12.6 379.6 0.8 73.8 20.7 917.8 20,316.5 22,382.3

Total 2777.9 4602.4 1978.6 1827.3 247.7 7426.8 2476.2 2557.9 23,002.5 46,897.3

 

Figure 4. The paddy fields increase in western Jilin from 2015 to 2019.
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3.2. Impact of Saline-Alkali Land Development to Paddy Fields on Land Surface
Geophysical Parameters

The distribution of both albedo and LAI showed notable spatial heterogeneity across
western Jilin (Figure 5). Previous studies have suggested that the land use distribution,
vegetation coverage and background geophysical conditions may explain why this region
shows this spatial variation. By comparing the land use pattern and the LAI/albedo
pattern, we found that the saline-alkali land-dominated regions such as Da’an, Qian’an
and Tongyu showed higher albedo and lower LAI than those of other regions. For the
main region of paddy fields such as the northern part of Qianguo, Taobei and the eastern
part of Zhenlai, the albedo was lower and the LAI was higher. As our study focused on the
climate impact due to the conversion from saline-alkali land to paddy fields, the albedo
and LAI for the pure saline-alkali land and paddy fields were separated. The albedo for the
saline-alkali land during the growing season was 0.21 ± 0.02, whereas it was 0.15 ± 0.007
for the paddy field. The LAI for the saline-alkali land during the growing season was
0.57 ± 0.19, whereas it was 1.99 ± 0.24 for the paddy field.

Figure 5. Spatial distribution of albedo (a) and LAI (b) for the growing season (June to September) across western Jilin.

 
Figure 6. The seasonal variations in albedo (a) and LAI (b) for paddy fields and saline-alkali land in western Jilin.

The monthly mean albedo and LAI based on zonal statistics (Figure 6a,b) indicated
that the seasonal variation in albedo/LAI for the paddy field was much greater than that
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for the saline-alkali land. At the beginning of the growing season, including May and June,
the albedo in the paddy field was less than 0.10; however, it was greater than 0.2 for the
saline-alkali land. With the tillering, heading and fruiting of rice and vegetation growth in
saline-alkali land, the albedo differences from July to October decreased. The LAI variations
paralleled the air temperature changes, which increased from May on and reached their
peak value in July and then decreased gradually to October. However, the differences in
LAI between the paddy fields and saline-alkali land were not synchronized with albedo.
Instead of occurring in May and June, the distinct differences in LAI mainly occurred in July
and August (3.35 m2/m2 and 2.37 m2/m2, respectively). These asynchronous differences in
surface parameters between paddy fields and saline-alkali land are likely to bring distinct
seasonal climate responses to saline-alkali land improvements.

3.3. Impact of Saline-Alkali Land Development to Paddy Fields on Air Temperature and Relative Humidity

Prior to the analysis of climate impacts caused by land use changes, the model-
simulated results were first validated by the observed air temperature (T-2 m) and relative
humidity (Rh-2 m). Our results showed a cooling bias of 0.21 ◦C for T-2 m and a drying
bias of 2.02% for Rh-2 m in western Jilin, indicating that our model captured the patterns
of T-2 m and Rh-2 m well in our experiments.

The differences in T2-m and Rh-2 m between the control and sensitivity experiments
showed that local T-2 m and Rh-2 m responded to saline-alkali land improvement, i.e.,
T-2 m and Rh-2 m mainly changed where saline-alkali land development occurred. At the
pixel scale, the relationship between the improved saline-alkali land fraction and changes
in T-2 m and Rh-2 m showed a nonlinear relationship (Figure 7a,b).

Figure 7. Scatter plots of cell-based changes (SEN minus CTL) in the improved saline-alkali land fraction and changes in
simulated (a) surface air temperature (T-2 m) and (b) relative humidity (Rh-2 m) for JJAS (June-July August-September)
over western Jilin.

When the improved saline-alkali land fraction was less than 10%, the changes in T-2 m
and Rh-2 m were relatively small. With the increase in the improved saline-alkali land
fraction, the temperature-humidity effect became increasingly significant. As the improved
saline-alkali land fraction increased by 50%, the T-2 m decreased by 0.65 ◦C during the
growing season. In contrast to T-2 m, a 50% increase in improved saline-alkali land could
lead to a 2.16% increase in Rh-2 m.

The land use change from saline-alkali land to paddy fields contributed to varied land
surface changes among different months during the growing season, which was shown
in Section 3.2. We used the pixels with the dominant type converted from saline-alkali
land to paddy fields in our experiments to further investigate the seasonal variations in
temperature responses and their biogeophysical mechanisms. Our results showed that
the saline-alkali land improvements brought consistent temperature cooling and relative
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humidity increases during the growing season from June to September (Figure 8). The
most significant cooling was observed in July and August with the T-2 m decreasing by
0.66 ◦C (mean value) and 0.67 ◦C (mean value), respectively. The temperature cooling effect
was also detected in September and June and declined by 0.47 ◦C and 0.27 ◦C, respectively.
The Rh-2 m increased by 2.35% and 2.11% in July and August, respectively, whereas it
increased by 0.94% and 0.93% in June and September, respectively.

Figure 8. Differences (SEN-CTL) in simulated regional mean air temperature and relative humidity
for the grids with dominant land use types converted from saline-alkali land to wetland for June,
July, August, and September in western Jilin.

Figure 9. Differences (SEN-CTL) in simulated regional means of (a) incoming shortwave radiation (SWDOWN), outcoming
shortwave radiation (SWUP), incoming longwave radiation (LWDOWN), outcoming longwave radiation (LWUP), (b) net
radiation (NetR), latent heat flux (LH), sensible heat flux (SH), and ground heat flux (GRDFLX) for the grids with dominant
land use type converted from saline-alkali land to wetland for June, July, August, September of western Jilin. The error bar
is the standard deviation of changes in each variable.

From an energy balance perspective (Figure 9), the saline-alkali land improvement
decreased the reflected solar radiation by decreasing the albedo, particularly in June
and July. The upward shortwave radiation decreased by −13.56 ± 5.18 W/m2 and
−4.03 ± 2.72 W/m2 in June and July, respectively, indicating warming effects through
the absorption more solar radiation. From an energy redistribution perspective, the in-
crease in LAI enhanced vegetation transpiration, resulting in the latent heat flux increasing
by 15.17 ± 5.05 W/m2, 22.82 ± 7.55 W/m2, 17.41 ± 6.35 W/m2, and 6.11 ± 2.84 W/m2
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from June to September, which contributed to the cooling effect. The interaction between
these two processes explained the variations in the T-2 m and Rh-2 m changes. In June,
a large part of the cooling effect caused by evapotranspiration enhancement was coun-
teracted by the warming effect caused by the significant decline in albedo, resulting in
a lower magnitude change in T-2 m relative to that in other months. Because both the
evapotranspiration (ET) increases and solar radiation increases were larger in July than in
August, the offset between the two processes led to similar T-2 m changes. However, with
the relatively small decrease in LH in September, the decline in the magnitude of T-2 m is
even larger than that in June, which can be attributed to the similar albedo (Figure 6).

4. Discussion

4.1. Saline-Alkali Land Development and Its Impact on Surface Parameters

By using a time series of land use datasets and a spatial overlay analysis, our study
evaluated the land use changes from 1975 to 2015 and 2015 to 2019. The results showed that
cropland expansion was the dominant land use change in western Jilin from 1975 to 2015,
which is consistent with previous studies [18,35,53]. The application of the Three North
Shelterbelt Project and Natural Forest Protection Project explained the woodland increase
in western Jilin [54]. High-intensity agricultural development also brought increases in
grassland degradation, wetland loss and unused saline-alkali land. Driven by economic
interest and combined with better irrigation conditions, part of the rain-fed farmland has
turned into paddy fields, and this is characteristic not only for western Jilin but also for all
of Northeast China [55–58]. It should be noted that the total increase in paddy field area
from 2015 to 2019 was even larger than that from 1975 to 2015, 25% of which was converted
from saline-alkali land. As an important reserved cultivated land, unused saline-alkali
land has more potential for development in the future. Previous studies have shown that
saline-alkali paddy fields produce 1500 kg rice in the first reclamation year and could reach
8000 kg/ha after 5 years [59], implying that the rice yield could increase from 11,140 t to
59,414 t when the saline-alkali land in western Jilin is completely improved to paddy fields
after 5 years.

In addition, we found seasonal LAI and albedo variation for both paddy fields and
saline-alkali land, which is consistent with previous studies [23,60]. We also detected
variable albedo decreases from May to September when saline-alkali land was converted
into paddy fields; the largest decrease occurred in May and June. In comparison with
albedo, the LAI increase was mainly concentrated in July and August. A lower albedo helps
the surface absorb more solar radiation and has a warming effect, whereas a higher LAI
enhances evapotranspiration and tends to cool the surface [3,41,61–64]. The offset between
the albedo warming effect and the ET cooling effect determines the final temperature
impact due to saline-alkali land improvements, indicating that the albedo and ET changes
caused by the conversion from saline-alkali land to paddy fields were similar to those of
afforestation [65–67].

4.2. Impact of Saline-Alkali Land Development on Regional Climate and Corresponding
Mechanisms

Recent studies have reported that vegetation greening or vegetation growth brings
significant surface cooling in China [41,48,60,67–69]. Cao et al. found that forest restoration
attributed to the Grain to Green (GTG) programme lowered the 2-m air temperature of the
Loess Plateau in summer [69]. Zhang et al. found that the cropland greenness increases
in spring contributed to cooling and wetting effects, whereas the crop greenness decline
in summer led to warming and drying effects on the North China Plain [48]. However,
Yu et al. found that crop greening in the Northeast China Plain in the first two decades of
the 21st century cooled the surface temperature in summer [68]. Our results showed that
saline-alkali land improvement could accelerate surface greening and help decrease the air
temperature and increase the relative humidity, which is consistent with previous studies.
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In ecologically vulnerable regions, numerous studies have focused on land degrada-
tion as well as its climate implications [34,70]. They have revealed that land degradation or
desertification led to notable warming over northern China. As the opposite trend to land
degradation, saline-alkali land improvement brought significant cooling, which can help
slow climate warming in this area. This result suggests that the energy redistribution to
latent heat and sensible heat dominated the temperature impacts. In addition, our results
also found that the cooling effects varied among months during the growing season. Air
temperature cooling was most obvious in July and August, followed by September and
June, implying that interactions between energy balance and energy partitioning vary
during the growing season. Liu et al. found similar surface temperature differences be-
tween saline-alkali land and paddy fields using remote sensing observations [37]. It should
be noted that their change in magnitude of the surface temperature is greater than our
results, which can be explained by the following two observations. One is that the surface
temperature response to land use change is usually more sensitive than the air temperature
response [68]. The other is that Liu et al. [37] used pure pixels at 1 km to calculate the
surface temperature differences between saline-alkali land and paddy fields, whereas our
model simulations using a 10 km horizontal resolution involved mixed pixels. For this
reason, we used the regression model to reconstruct the relationship between the change
in T-2 m/Rh-2 m and the saline-alkali land improvement fraction (Figure 7). Zhang et al.
found that the change in T2 was directly correlated with the change in green vegetation
fraction (GVF) in cropland [48]. However, our results cannot be fitted by a linear equation.
With the increase in the saline-alkali land fraction, T-2 m decreased at an increasing rate,
particularly for pixels with a saline-alkali land improvement fraction (SALIF) greater than
10%. When the SALIF reached a threshold, the SALIF changed the dominant land use type
to paddy fields and influenced all the surface parameters, including LAI and albedo.

4.3. Uncertainties and Future Works

There are a few points that should be addressed in the future. First, this study
used the 24 USGS land use and land cover categories to represent the land use pattern.
The saline-alkali land and paddy fields were not included in the list of the 24 types and
were characterized by the surface parameters of bare/sparse vegetation and herbaceous
wetlands, respectively. Although saline-alkali land is a type of bare/sparse vegetation and
paddy fields are a type of herbaceous wetland, some specific properties, including albedo,
LAI, soil moisture, etc. for saline-alkali land and paddy fields cannot be fully expressed
by this categorization. For this reason, we used the remote sensing observed albedo and
LAI to update the original values. Second, in addition to LAI and albedo, the surface
parameters, including surface roughness, root depth, green vegetation fraction etc., can
influence land/atmosphere interactions [48,71], which should be localized in future studies
to help decrease the model uncertainties. Thus, in future works, the land use and land
cover categories should be expanded in the land surface model to better represent the land
surface processes and their climate effects.

Finally, our work evaluated the climate impact due to saline-alkali land improvement
to paddy fields, which helped to slow climate warming and increase the relative humidity.
Note that in addition to regulating climate, saline-alkali land improvement can also bring
other environmental or ecological benefits by producing more rice, regulating hydrology,
improving soil, increasing aesthetics and promoting tourism, all of which should be
comprehensively evaluated in our next works.

5. Conclusions

Using satellite-based land use maps for 1975, 2015 and 2019, this study analysed the
spatial-temporal changes in land use in western Jilin. From 1975 to 2015, grass degradation
(3228 km2) and paddy field expansion (1738 km2) dominated the land use changes, whereas
from 2015 to 2019, paddy fields increased by 2031 km2 and became the main land use
change characteristic in this region. Interestingly, our results showed that 25% of the
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paddy field increase in the latter period was reclaimed from saline-alkali land, and that
percentage is expected to increase in the future. The saline-alkali land and paddy fields
have distinct differences in regard to LAI and albedo during the growing season. We found
that saline-alkali land reclamation to paddy fields significantly increased LAI, particularly
in July and August, whereas it decreased albedo, mainly in May and June.

By coupling remote sensing measurements and regional climate simulations, we also
evaluated the climate impact caused by the potential saline-alkali land improvement in
western Jilin. We found that saline-alkali land improvement to paddy fields can help
decrease the air temperature and increase the relative humidity. The temperature and
humidity effects showed different magnitudes during the growing season, which were the
most significant in July and August, followed by September and June. Evapotranspiration
(ET), rather than albedo, played a dominant role in regulating the regional climate, and
the interaction between ET and albedo determined the temperature and relative humidity
response variations during the growing season.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173407/s1, Figure S1: Pure pixels for saline-alkali land (a) and paddy field (b) at a
1 km × 1 km spatial resolution.
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Abstract: Global greening over the past 30 years since 1980s has been confirmed by numerous
studies. However, a single-dimensional indicator and non-spatial modelling approaches might
exacerbate uncertainties in our understanding of global change. Thus, comprehensive monitoring for
vegetation’s various properties and spatially explicit models are required. In this study, we used the
newest enhanced vegetation index (EVI) products of Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 to detect the inconsistency trend of annual peak and average global vegetation
growth using the Mann–Kendall test method. We explored the climatic factors that affect vegetation
growth change from 2001 to 2018 using the spatial lag model (SLM), spatial error model (SEM) and
geographically weighted regression model (GWR). The results showed that EVImax and EVImean

in global vegetated areas consistently showed linear increasing trends during 2001–2018, with the
global averaged trend of 0.0022 yr−1 (p < 0.05) and 0.0030 yr−1 (p < 0.05). Greening mainly occurred
in the croplands and forests of China, India, North America and Europe, while browning was
almost in the grasslands of Brazil and Africa (18.16% vs. 3.08% and 40.73% vs. 2.45%). In addition,
32.47% of the global vegetated area experienced inconsistent trends in EVImax and EVImean. Overall,
precipitation and mean temperature had positive impacts on vegetation variation, while potential
evapotranspiration and vapour pressure had negative impacts. The GWR revealed that the responses
of EVI to climate change were inconsistent in an arid or humid area, in cropland or grassland. Climate
change could affect vegetation characteristics by changing plant phenology, consequently rendering
the inconsistency between peak and mean greening. In addition, anthropogenic activities, including
land cover change and land use management, also could lead to the differences between annual peak
and mean vegetation variations.

Keywords: global vegetation growth; climate change; inconsistent greening trend; spatial autocorre-
lation and heterogeneity; spatial regression models

1. Introduction

Terrestrial vegetation controls the cycle of carbon, water and energy between land
soil and atmosphere through biochemical processes such as photosynthesis and evapo-
transpiration and is strongly influenced by hydrothermal conditions and climate change
and can affect the climate system in return [1–3]. In addition to directly providing ecosys-
tem services such as food, raw materials, and landscape aesthetics, vegetation also has
the potential of climate regulation, carbon sequestration and air purification, which are
of great importance to maintaining the stability of a terrestrial ecosystem under global
change [4,5]. Thus, systematic monitoring, detecting and quantifying vegetation dynamics
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and their response and feedback to global change have elicited a wide range of attention in
multiple subjects.

It is currently unlikely to obtain vegetation properties and variations at the global scale
using ground-based observations [5]. Vegetation indices (VIs) products, such as normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) derived from
satellite observations, provide a possibility for long-term vegetation monitoring on a large
scale [6,7]. VIs products from the Advanced Very-High-Resolution Radiometer (AVHRR)
sensor, Système Pour l’Observation de la Terre VEGETATION (SPOT-VGT) and Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors on board different satellites have
been widely used in vegetation growth monitoring and crop mapping [8–10]. Although
providing the longest record of NDVI data (1981–present), AVHRR has the problems of
orbit drifts and data inconsistency between various sensors. SPOT-VGT data discontinuity
was also found in some areas due to sensor differences in spectral response functions [11].
MODIS data is considered to have a higher temporal consistency than AVHRR and SPOT-
VGT data due to no orbit drift and sensor shifts problems and are usually used as reference
data [12–14]. However, the negative influences of sensor degradation have been captured
in MODIS-Terra Collection 5 VIs products [15]. Consequently, MODIS Collection 6 VIs
products with the improved algorithm were released to address the sensor degradation
problem, and the effects have been supported by some studies [16,17]. Compared to NDVI,
EVI minimizes canopy-soil and atmospheric influences and improves sensitivity over
dense vegetation conditions, and its reliability has been recognized by comparison analysis
of multiple VIs products [10].

The overall greening trend of global vegetation has been widely reported and dis-
cussed since the early 1980s, supported by comparisons of multiple satellite observa-
tions [18], forest inventories [19] and process-based model simulations [20,21]. Pan
et al. [22] explored the increasing global browning trend hidden in overall greening during
1982–2013 by using the ensemble empirical mode decomposition method and piecewise
linear regression models; Gao et al. [23] verified the significant trend of global cultivated
land greening during 1982–2015 by using two long-term satellite LAI datasets; Zhang
et al. [24] found that the previous browning trend monitored by MODIS Terra-C5 needed to
be reconsidered due to sensor degradation, while the trend from MODIS Terra-C6 was con-
firmed by AVHRR and enhanced land carbon sink data [25]. Although a lot of studies have
re-examined global greening trend, whether there is a consistent trend between annual
peak and average growth of vegetation remains unknown. The annual peak vegetation
growth closely related to environmental change is critical in characterizing the capacity of
terrestrial ecosystem productivity [20]. Vegetation growth is an ever-changing dynamic
process. The annual average vegetation growth, which was selected in the most previous
studies, can only reflect the overall state of a certain year but obscure details of vegetation
growth. To comprehensively understand the changing ecosystems, it is necessary to track
vegetation growth change from multi-dimensions.

Climate change characterized by global warming has been a dominant driver of green-
ing over 28% of the global vegetation regions [21]. However, the global vegetation–climate
relationship is complex and has firm spatial heterogeneity [26]. Warming has noticeable
positive effects on vegetation growth in the temperate and arctic regions [27], while rising
temperatures could limit vegetation growth in tropical regions [28] where the ambient
temperature is the proximity of the physiological optimum [29]. In arid and semi-arid
regions, vegetation is more sensitive to precipitation change than temperature due to
water limitation. In contrast, in humid regions, the impacts of precipitation on vegetation
variation are weaker than temperature [30]. In sum, the climate–vegetation relationship ge-
ographically varies with the climatic environment [5,23]. In addition, although temperature
and precipitation have been the hot spots for a long time, the impacts of climate change on
vegetation are more complex than that. For example, the impact of other climatic factors,
such as vapour pressure deficit on vegetation growth, have been highlighted, which could
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offset the effect of rising CO2 concentration, suggested to be considered in evaluating
vegetation responses to climate change [31].

At present, most studies used the non-spatial regression methods to depict the re-
lationship between vegetation variation and climate change, such as multiple linear re-
gression [32] and partial correlation analysis [33]. However, the theoretical assumption
of these methods is that the spatial data is statistically independent and uniformly dis-
tributed [34,35], which ignores influences of spatial autocorrelation. According to the first
law of geography, spatial autocorrelation is ubiquitous, and the correlation between adja-
cent locations is usually stronger than that between distant locations [36,37]. Influenced by
the spatial interaction and spatial diffusion of endogenous or exogenous factors, geographic
data may no longer be independent of each other, but related to each other [38]. For exam-
ple, the flow characteristics of the atmosphere and water supporting vegetation growth
can suggest that vegetation growth are absolutely not spatially independent [37,39,40].
Previous empirical research within ecology have revealed that regression coefficients
may radically shift between non-spatial and spatial (taking autocorrelation into account)
regression modelling, resulting in erroneous conclusions [39,41–44]. Given that spatial
autocorrelation exists extensively in spatial data, it is important to use spatially explicit
models to explore the climate-driving mechanism of vegetation growth. Therefore, the
aims of this study are: (1) to examine inconsistency trends of global vegetation in peak and
average growth during 2001–2018; (2) to reveal the overall relationship between climate
change and vegetation growth using spatial regression models (at the global level); (3) to
find out the spatial heterogeneity characteristic of climate driving using the geographically
weighted regression model (at the local level).

2. Materials and Methods

2.1. Global Datasets and Pre-Processing

EVI, land cover and climatic datasets used in this study are displayed in Table 1. The
raw MODIS data were mosaicked, re-projected and converted to Geo TIFF from HDF
format using the MODIS Reprojection Tool. We averaged monthly EVI as the annual
EVImean and extracted the maximum monthly EVI as the annual EVImax. In the spatial
regression analysis, we resampled EVI data into 0.5◦ × 0.5◦ spatial resolution by using
the bilinear algorithm to match the climatic gridded data as well as the basic analytical
unit. Global terrestrial land cover data are from the International Geosphere-Biosphere
Programme (IGBP) classification layer of MCD12Q1 (Figure 1). To eliminate the direct
effects of transformation between vegetated and non-vegetated land during 2001–2018, we
masked out non-vegetated areas including permanent wetlands, urban and built-up lands,
permanent snow and ice, barren and water bodies by overlaying the IGBP land cover data
during the period of 2001–2018. Global annual climatic gridded data were generated by
extracting the maximum, minimum, mean or sum value from the monthly climatic gridded
data. For example, annual precipitation data were generated by summating monthly
precipitation, while annual maximum temperature data were obtained by calculating the
maximum value of the monthly maximum temperature. All data pre-processing was
accomplished in R x64 4.0.2 and RStudio (http://www.r-project.org/, accessed on 18
September 2020).
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Table 1. Global datasets and sources.

Dataset
Spatial

Resolution
Temporal

Resolution
Time Span Source

MODIS-Terra
Collection 6 EVI

(MOD13A3)
1 km Monthly 2001–2018

The Level-1 and Atmosphere Archive and Distribution
System Distributed Active Archive

Center (LAADS DAAC)
(https://ladsweb.modaps.eosdis.nasa.gov/search,

accessed on 6 August 2020).
Land Cover
(MCD12Q1) 500 m Yearly 2001–2018

Precipitation 0.5◦ Monthly 2001–2018

The Climatic Research Unit Time-Series version 4.03
(CRU TS4.03) datasets

(https://data.ceda.ac.uk/badc/cru/data/cru_ts,
accessed on 11 February 2021)

Maximum temperature 0.5◦ Monthly 2001–2018

Mean temperature 0.5◦ Monthly 2001–2018

Minimum temperature 0.5◦ Monthly 2001–2018

Potential
evapotranspiration 0.5◦ Monthly 2001–2018

Vapour pressure 0.5◦ Monthly 2001–2018

Wet day frequency 0.5◦ Monthly 2001–2018

Diurnal temperature
range 0.5◦ Monthly 2001–2018

Frost day frequency 0.5◦ Monthly 2001–2018

Figure 1. Global land cover of IGBP for 2018.

2.2. Methods

A methodological flowchart of this study is shown in Figure 2. Firstly, to find out
the greening and browning areas and the area with inconsistent changes, we detected
the trend of global vegetation growth variation during 2001–2018 from two dimensions
of annual peak and mean using the Mann–Kendall test method recommended by the
World Meteorological Organization in Section 2.2.1. Secondly, to prove our theoretical
hypothesis that spatial autocorrelation exists in vegetation growth change, the global
univariate Moran’s I was first used to diagnose the spatial autocorrelation in the response
variable in Section 2.2.2. The response variables were the changes of EVImax and EVImean
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from 2001 to 2018, and the explanatory variables are the changes of climatic variables from
2001 to 2018.

Figure 2. A methodological flowchart of this research.

Thirdly, to incorporate spatial autocorrelation in the response of vegetation growth
to climate change, we used multiple spatial regression models to analyse the spatial
relationship between climate change and vegetation variation at the global level. The first
step is to perform the ordinary least squares (OLS) model, which is under the assumption
that there is no autocorrelation [45] because the spatial lag model (SLM) and the spatial
error model (SEM) are developed from the OLS by incorporating spatial autocorrelation
into the regression by means of a spatial weight matrix [34]. SLM was used when spatial
autocorrelation exists in dependent variables. SEM was used when spatial autocorrelation
exists in the residual. The second step is to select SLM or SEM based on the statistical
significance of the Lagrange multiplier (LM)-lag and LM-error, or robust LM-lag and
robust LM-error. The third step is to determine the better performance model, with a larger
maximum likelihood logarithm (LIK) and a smaller Akaike information criterion (AIC)
and Schwarz criterion (SC).

Finally, the relationship between variables varies with the change of geographical
location due to the differences in the natural environment and human disturbance in
different regions. This changing relationship also needs to be considered in the spa-
tial analysis [46]. To reveal the differentiated local characteristics hidden in the over-
all correlation, we used the geographically weighted regression (GWR) model to mea-
sure the spatial heterogeneity of the relationship between vegetation growth and climate
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change by obtaining local regression results at each spatial unit in Section 2.2.4. The
spatial autocorrelation analysis and the OLS, SLM and SEM were conducted in GeoDa
software (http://geodacenter.github.io/, accessed on 8 February 2021). The GWR model
was conducted in GWR4 software (https://gwr4.software.informer.com/, accessed on 11
March 2021).

2.2.1. Trend Detection of Vegetation Growth

The linear trend of global vegetation growth during 2001–2018 at each grid cell were
estimated using Sen’s slope method, also known as the Theil–Sen median method [47].
The method is a robust non-parametric statistical trend calculation method that has high
computational efficiency and is insensitive to measurement error and outlier data [48]. Sen’
slope was calculated by Equation (1):

Slope = Median
( xj − xi

j − i

)
, ∀j > i (1)

where the median refers to the mean value of all the slopes, and xi and xj represent the EVI
values of years i and j.

Then the Mann–Kendall test method was used to test the significance of the Sen’
slope [49,50]. The significant confidence level with p < 0.05 corresponds to the absolute
value of the Z statistic >1.96. The Sen’ slope and Mann–Kendall test for EVI data at each
grid cell were accomplished in R x64 4.0.2.

2.2.2. Spatial Autocorrelation Analysis

Moran’s I statistic is arguably the most commonly used indicator of global spatial
autocorrelation. It was initially suggested by Moran [51], and popularized through the
classic work on spatial autocorrelation by Cliff and Ord [35]. For an observation at location
i, this is expressed as zi = xi − x, where x is the mean of variable x. Moran’s I statistic
is then:

I =
∑i ∑j wijzizj/ ∑i ∑j wij

∑i z2
i /n

(2)

where n is the number of observations, wij is the elements of the spatial weights matrix, xi
and xj are the observed value of the location i and its surrounding location j, x is the mean
of variable x.

At a given significance level, when Moran’s I > 0, it indicates a positive correlation
between the observed values, and similar attributes cluster together. That is, the high value
is adjacent to the high value, and the low value is adjacent to the low value; when I < 0,
it indicates a negative correlation between the observed values, and the observations are
dispersed; when I = 0, the observed value is randomly distributed.

2.2.3. Spatial Regression at the Global Level

Anselin [34] put forward the general form of spatial regression. When ρ = 0, β �= 0, α = 0,
the model is the ordinary least squares (OLS) model; When ρ �= 0, β �= 0, α = 0, the model
is a spatial lag model (SLM), that is, the dependent variable of a location is not only related
to the independent variable of the location, but also related to the dependent variable of the
neighbourhood. When ρ = 0, β �= 0, α �= 0, the model is a spatial error model (SEM), that is,
the dependent variable of a location is not only related to the independent variable of the
location, but also related to other variables not considered at adjacent regions.

y = ρW1y + βx + εε = αW2ε + μ μ ∼ N
(

0, σ2 In

)
(3)

where y is the dependent variable, x is the independent variable, W1 is the spatial weight
matrix of the dependent variable, ρ is the coefficient of the spatial lag variable W1y, β is the
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coefficient of x, ε is the residual, W2 is the spatial weight matrix of ε, α is the coefficient of ε,
μ is the random error of normal distribution, σ is the variance of μ.

2.2.4. Spatial Regression at the Local Level

The GWR model is essentially the locally weighted least squares regression model,
which is an extension of the OLS model [52]. In GWR, the weight of the observations is no
longer constant during the regression process but is weighted by the degree of adjacency
to location i [53]. The model structure is as follows:

yi = β0(μi, vi) +
k

∑
j=1

β j(μi, vi)xij + εi (4)

where, (μi, vi) is the co-ordinate of i, β j(μi, vi) is the jth regression parameter of i.

3. Results

3.1. Temporal Trend of Global Vegetation Growth

EVImax can reflect the potential productivity of terrestrial vegetation, and EVImean
represents the average vegetation growth state in a year, which depicts two aspects of veg-
etation change. Globally, peak (EVImax) and average (EVImean) growth in global vegetation
consistently showed linear increasing trends during 2001–2018, with the global averaged
trend of 0.0030 yr−1 (p < 0.05) and 0.0022 yr−1 (p < 0.05). In terms of EVImax, 18.16% of
the global vegetated areas showed a statistically significant (Mann–Kendall test, p < 0.05)
greening during 2001–2018, and 3.08% of the global vegetated areas showed a statistically
significant (Mann–Kendall test, p < 0.05) browning during 2001–2018 (Figure 3a). By over-
laying land cover, we found that the most dramatic greening occurred mainly in those
areas with cropland agricultural activities, such as Northern China, India, Central-North
America and Southeast Europe. The fastest degradation areas were mainly the grassland
of Africa and South America, such as Tanzania, Nigeria and Brazil.

In terms of the EVImean, 40.73% of the global vegetated areas showed a statistically
significant (Mann–Kendall test, p < 0.05) greening during 2001–2018, and 2.45% of the
global vegetated areas showed a statistically significant (Mann–Kendall test, p < 0.05)
degradation trend (Figure 3b). The most obvious greening areas mainly occurred in China,
India, Canada and Europe, covering a variety of land types including cropland, shrubland,
forests and savannas. Vegetation degradation areas were mainly grassland and savannas
in areas of South America and southern Africa.

3.2. Inconsistent Global Vegetation Growth in Terms of EVImax and EVImean

It is worth noting that EVImax and EVImean experienced consistent changes in 15.97%
of the global vegetated areas (14.99% for greening and 0.98% for browning) (Figure 4).
However, 32.47% of the global vegetated areas experienced inconsistent changes for EVImax
and EVImean. Specifically, 25.74% of the global vegetated areas that experienced significant
greening in EVImean, with no increase in EVImax simultaneously, occurred mainly in of
Europe, Russia, Central Africa, North America and China. On the contrary, 3.17% of the
global vegetated areas that experienced significant browning in EVImax, with no increase
in EVImean simultaneously, were mainly distributed in Northern Canada, Eastern Russia,
Southern Australia, and were scattered in South America and Africa. There was also 2.10%
of the global vegetated area showing a significant browning in EVImax, with no decrease
in EVImean simultaneously, scattered in Africa, South America and Canada, especially in
Argentina and Madagascar. While 1.46% of the global vegetated area showed a decreased
trend for EVImean, with no decrease in EVImax simultaneously, such as Central Africa,
Central Russia, Eastern Canada and Eastern Brazil. In addition, we found that EVImax
and EVImean had opposite trends in some areas; however, these areas together accounted
for only 0.56% of the inconsistent area. EVImean increased but EVImax decreased in 0.52%
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of the inconsistent area, while EVImax increased but EVImean decreased in 0.04% of the
inconsistent area.

Figure 3. Trends of global vegetation growth during 2001–2018. (a) Trend in EVImax at each grid. (b) Trend in EVImean at
each grid. White indicates non-vegetated areas including barren, permanent snow and ice, permanent wetlands, and urban
and built-up lands. Vegetated areas with statistically insignificant (Mann-Kendall test, p < 0.05) are colored grey.

3.3. Relationship between Climate Change and Vegetation Growth

In this study, the Moran’s I values for the EVImax and EVImean changes during
2001–2018 were 0.273 and 0.549 (p < 0.05), showing that a significant positive spatial
autocorrelation existed in EVI changes in the past 18 years. The multicollinearity condition
number was 4.74 (<30) from the OLS model estimation results, indicating no multicollinear-
ity problems in the explanatory variables. The test statistics of LM-lag, LM-error, robust
LM-lag and robust LM-error that form the OLS model were all significant (p < 0.0001); thus,
SLM and SEM were both built to analyse spatial global correlation between vegetation and
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climate factors. By comparing the index of LIK, AIC and SC, SLM has the largest LIK value
and the smallest AIC and SC value, showing that SLM is superior to SEM and OLS in this
study (Table 2). R-squared represents the degree to which nine climatic factors explained
the global vegetation change in the past 18 years. R2 in SLM were 0.5370 and 0.2499 for
EVImean and EVImax, respectively, indicating climatic drivers and the spatial lags of EVI
could explain more than half and the 24.99% changes of EVImean and EVImax, respectively.

Figure 4. Inconsistency between EVImax and EVImean variations during 2001–2018.

Table 2. Comparison of spatial regression models.

Dependent Variables Model R2 LIK AIC SC

EVImax

OLS 0.0229 96,424.5 −192,829 −192,739
SLM 0.2499 103,235.0 −206,448 −206,349
SEM 0.2498 103,225.8 −206,432 −206,342

EVImean

OLS 0.0817 84,046.7 −168,073 −167,983
SLM 0.5370 102,864.0 −205,706 −205,606
SEM 0.5372 102,851.1 −205,682 −205,592

Notes: R-squared (R2), maximum likelihood logarithm (LIK), Akaike information criterion (AIC), Schwarz
criterion (SC), Ordinary least square (OLS), Spatial lag model (SLM), Spatial error model (SEM).

The regression results of the best fit model (SLM) in this study for EVImax and EVImean
were shown in Table 3. The spatial lag of EVImax in SLM passed the statistical significance
test (p < 0.05) during 2001–2018, proving that changes in EVI were correlated not only
to these climatic factors but also to EVI variation in its adjacent areas. The coefficient
indicates that the vegetation in a certain location might change by 0.7472 units for every
1-unit change of vegetation in its adjacent areas. Precipitation and mean temperature
had a statistically significant (p < 0.05) positive correlation with EVImax during 2001–2018,
while potential evapotranspiration and vapour pressure had a statistically significant
negative correlation with EVImax. Compared to EVImax, EVImean had a higher R-squared
than EVImax, 0.5370 vs 0.2499 (Table 2), indicating a higher climatic driving explanation of
EVImean. Except for precipitation and mean temperature, minimum temperature also had
a statistically significant (p < 0.05) positive correlation with EVImean change. The coefficient
of spatial lag for EVImean was 0.8721, suggesting EVImean had a higher correlation with its
adjacent EVImean and, therefore, a stronger spatial dependence than EVImax.
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Table 3. Regression results of spatial lag model (SLM).

Dependent
Variables

Independent
Variables

Coefficient Standard Error Z Statistic Probability

EVImax

Lag term 0.7472 0.0059 126.9690 0.00000
Constant - - - >0.05

PRE 0.0105 0.0038 2.7355 0.00623
TMX - - - >0.05
TMP 0.0060 0.0029 2.0398 0.04137
TMN - - - >0.05
PET −0.0142 0.0027 −5.2688 0.00000
WET - - - >0.05
VAP −0.0110 0.0027 −4.1029 0.00004
FRS - - - >0.05
DTR - - - >0.05

EVImax = 0.0105PRE + 0.0060TMP − 0.0142PET − 0.0110VAP + 0.7472Lag term + ε

EVImean

Lag term 0.8721 0.0038 227.8330 0.00000
Constant - - - >0.05

PRE 0.0165 0.0038 4.3219 0.00002
TMX - - - >0.05
TMP 0.0111 0.0029 3.7669 0.00017
TMN 0.0079 0.0015 5.0860 0.00000
PET −0.0137 0.0027 −5.0794 0.00000
WET - - - >0.05
VAP −0.0138 0.0027 −5.1319 0.00000
FRS - - - >0.05
DTR - - - >0.05

EVImean = 0.0165 PRE + 0.0111TMP + 0.0079TMN − 0.0137PET − 0.0138VAP + 0.8721Lag term + ε

Notes: Lag term here is the spatial lag variable of the dependent variable obtained by the spatial weight matrix in 2.2.3; PRE = precipitation,
TMX = maximum temperature, TMP = mean temperature, TMN = minimum temperature, PET = potential evapotranspiration, WET = wet
day frequency, VAP = vapour pressure, FRS = frost day frequency, DTR = diurnal temperature range.

3.4. Spatial Heterogeneity of the Climatic Driving

After examining the relationship at the global level by SLM, we then focused on the
representative areas with significant greening or browning identified in the previous trend
analysis. We further explored how climate change affects vegetation in these areas with the
GWR model results. Five highly representative regions were selected for further analysis,
located in China, India, North America, Brazil and Africa. The areas in China, India and
North America were characterized by vegetation greening, while the areas in Africa and
Brazil were characterized by vegetation browning. Local coefficients of climatic drivers for
EVImax and EVImean were mapped in Figures 5 and 6, respectively.

As shown in Figure 5, in Northern China, EVImax was positively affected by precip-
itation, potential evapotranspiration, minimum temperature and humid days, and was
limited by maximum temperature and vapour pressure. However, in Southern China,
maximum temperature and vapour pressure had positive effects, as well as potential evap-
otranspiration and humid days. The reason was that there are semi-arid areas in the north
where precipitation is low and potential evapotranspiration is far greater than precipitation
and the high temperature would lead to insufficient rainwater irrigation for crops and
grass. It indicated that, due to the difference in climatic conditions (an arid or humid area)
and vegetation types (cropland or grassland), the responses of EVImax to climate change
in South and North China are inconsistent. In India, except minimum temperature, all
other factors had positive impacts on the EVImax. In North America, EVImax was positively
influenced by potential evapotranspiration and humid day but negative by precipitation
and vapour pressure. In Brazil, the degradation of the EVImax might be due to the de-
crease in maximum temperature, potential evapotranspiration and humid days and the
increase in mean temperature and diurnal temperature range. In Africa, the degradation of
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EVImax might be due to the joint decrease in mean temperature, humid days and diurnal
temperature range and the increase in evapotranspiration and maximum temperature.

Figure 5. Local coefficients of climatic factors influencing EVImax from the GWR model. Five highly representative areas of
the EVImax trend were given in the figure.

As shown in Figure 6, we found that maximum temperature, minimum temperature
and humid days also had opposite effects on EVImean in Northern and Southern China. In
addition, precipitation and vapour pressure had consistently positive effects on both the
south and north. In India, potential evapotranspiration, maximum temperature and humid
days had positive effects on EVImean. In North America, temperature mainly had a positive
effect in these greening areas, but potential evapotranspiration and diurnal temperature
range had negative effects. However, precipitation and vapour pressure had opposite
impacts on Canada and the United States, with negative and positive, respectively. In
Brazil, all browning areas of EVImean occurred in grassland, which might be affected by the
decrease in precipitation, mean temperature, potential evapotranspiration and wet days.
In Africa, degradation of vegetation also occurred in grassland and was caused by the
decrease in precipitation, mean temperature, vapour pressure and wet days.

We defined the climate factor having the largest absolute value of the local coefficient
with a statistical significance (p < 0.05) as the dominant climatic factor influencing vegeta-
tion change (Figure 7a,b). In the meantime, the local coefficients of the dominant climatic
factors of EVImax and EVImean were mapped in Figure 7c,d. We found that the EVImax
change was strongly influenced by precipitation in 14.02% of the global vegetated areas
during 2001–2018, followed by vapour pressure (12.56%), minimum temperature (9.87%),
mean temperature (9.10%) and potential evapotranspiration (6.96%) (Figure 7a). 21.06% of
the global vegetated areas where peak vegetation growth had no significant correlation
(p > 0.05) with any climatic factor. In terms of the EVImean, the global vegetated areas were

27



Remote Sens. 2021, 13, 3442

strongly affected by mean temperature (17.36%) and precipitation (16.97%) (Figure 7b).
There were 11.86% of the global vegetated areas where EVImean change had no significant
correlation (p > 0.05) with any climatic factor.

Figure 6. Local coefficients of all climatic factors influencing EVImean from the GWR model. Five highly representative
areas of the EVImean trend were given in the figure.

Figure 7. Dominant climatic drivers influencing (a) EVImax and (b) EVImean; local coefficients of the dominant climatic
factors for (c) EVImax and (d) EVImean at each grid.
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4. Discussion

4.1. Comparison of Global Vegetation Trend Results and Uncertainties

The trends of EVImean and EVImax during 2001–2018 were detected in this study and were
compared with previous studies (Table 4). Zhang et al. [24] found that the global vegetation has
an increasing trend of 0.0028 yr−1 and 0.0023 yr−1 at a significant level (p < 0.0001) in EVImean
and EVImax during 2001–2015, respectively. The results were consistent with our results of
0.0022 yr−1 and 0.0030 yr−1 in EVImean and EVImax, respectively. Moreover, the results from
NDVI also showed the greening trend, with 0.0022 yr−1 and 0.0015 yr−1 in NDVImean and
NDVImax during 2001–2015, respectively [24], 0.0013 yr−1 in NDVImax during 1982–2011 [20],
and 0.0012 yr−1 in the growing season NDVI during 1982–2013 [54]. Overall, the global greening
trends were found in both our and previous studies.

However, there were some differences in global vegetation greening or browning
areas due to different satellite products, vegetation greenness indicators and time range.
For example, Ding [57] found that 18.9% of the global vegetated area had a greening trend
for EVImean during 2000–2015, while ~3% of browning (vs. 40.73% and 2.45% in this study);
Chen [56] found that 34.1% of the global vegetated area showed a greening and 4.85% of
browning for LAI from MODIS during 2000–2017, while 22.42% of greening and 13.54%
of browning for LAI from AVHRR during 2000–2016. Furthermore, although the same
satellite-derived data (MODIS Terra-C6 EVI) were used, there were still differences in area
ratios of greening and browning between our study and the relevant studies, which might
be due to the following reasons: (1) different vegetation monitoring time range; (2) different
spatial resolution of EVI data; (3) different land cover data and starting reference year;
(4) different trend analysis methods.

Table 4. Comparison of global vegetation change trend results.

Time Range Index Datasets
Spatial

Resolution
Averaged Trend

Greening
Area Ratio

Browning
Area Ratio

References

1982–2011 NDVImax GIMMS3g 1/12◦ 0.0013 yr−1 ** - - [20]
1982–2013 NDVIgs GIMMS3g 1/12◦ 0.0012 yr−1 *** 48% * 8% * [54]

1982–2014 LAIgs GIMMS3g 1/12◦ 0.032 m2m−2yr−1

**
35% ** 4% ** [21]

1982–2015 NDVI GIMMS3g 1/12◦ - 50% ** 8% ** [55]LAI GIMMS3g 1/12◦ - 23% ** 15% **
1982–2016 LAI AVHRR 1/12◦ - 40.91% * 10.59% *

[56]2000–2017 LAI MODIS C6 500 m - 34.1% * 4.85% *
2000–2016 LAI AVHRR 1/12◦ - 22.42% * 13.54% *

2001–2015

NDVI MODIS
Terra-C6 0.05◦ 0.0022 yr−1 **** 23.1% ** 10.5% **

[24]
NDVImax

MODIS
Terra-C6 0.05◦ 0.0015 yr−1 **** - -

EVI MODIS
Terra-C6 0.05◦ 0.0028 yr−1 **** 22.8% ** 3.3% **

EVImax
MODIS
Terra-C6 0.05◦ 0.0023 yr−1 **** - -

2001–2013
NDVI MODIS

Aqua-C6 0.05◦ - 12.1% ** -

EVI MODIS
Aqua-C6 0.05◦ - 14.3% ** -

NDVI GIMMS3g 1/12◦ - 13.8% ** -

2000–2015
NDVI MODIS

Terra-C6 0.05◦ - ~16% ** ~5% **
[57]

EVI MODIS
Terra-C6 0.05◦ - 18.9% ** ~3% **

LAI MODIS
Terra-C6 0.05◦ - ~17% ** ~3% **

2000–2015 NDVI MODIS
Terra-C6 0.05◦ 0.0023 yr−1 **** 28.6% ** 5.4% ** [58]

2001–2018 EVI MODIS
Terra-C6 1 km 0.0022 yr−1 ** 40.73% ** 2.45% ** This study

EVImax
MODIS
Terra-C6 1 km 0.0030 yr−1 ** 18.16% ** 3.08% **

Notes: NDVImax and EVImax refer to the annual maximum NDVI and EVI, respectively, and unsubscripted ones represent the annual mean
values; NDVIgs and LAIgs refer to NDVI and LAI for growing season, respectively; **** p < 0.0001, *** p < 0.01, ** p < 0.05, * p < 0.1.
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4.2. Potential Causes Inducing Inconsistencies in Vegetation Change

Our study found that only 15.97% of the global vegetated area experienced a con-
sistent change (enhancement or degradation) in peak and mean growth of vegetation,
and 32.47% of the global vegetated area experienced inconsistent changes in peak and
mean vegetation growth. The first potential cause could be changes in plant phenology
or growing season induced by climate change in these areas. In some areas, the annual
EVImean showed an increasing trend while the annual EVImax remained unchanged and
even decreased, indicating that with time going on, the monthly EVI, which are larger
than the original annual EVImean, increased during 2001–2018, and in this case the growth
circle of vegetation might be prolonged. In contrast, for the areas with increased EVImax
but no significant change or decrease in EVImean, the growth circle of vegetation might
be shortened. This speculation can be supported by the consistent evidence for plant
phenological changes from in situ and satellite observations [59]. The earlier beginning of
the growing season and autumn postponement has been widely reported in Europe, North
America and China since the 1980s [60–63]. Moreover, with the stagnation of warming,
spring green-up advancement’s trend might have slowed down or even reversed since
the 2000s [64,65]. However, this speculation still is of great uncertainty due to the unclear
vegetation phenological information and its variations in recent 20 years, which needs to
be investigated in detail in further studies.

Plant phenology changes are determined by various biological and environmental
factors such as nutrient and water availability, temperature and photoperiod. Temperature
is generally regarded as one of the most critical controls of plant phenology through
multiple processes, such as inducing the plant endodormancy by cold temperature [66] and
breaking the ecodormancy by the accumulated warming [59]. For vegetation in pasture
regions, precipitation variation had a significant limiting effect on its productivity [67];
this might result in the inconsistency of peak and mean greenness due to variations of
annual maximum and minimum rainfall. What is more, the impact of climatic conditions
on vegetation growth is more complex due to the interactions with other environmental
and climatic factors [68].

In addition, anthropogenic activities, including land cover change and land use man-
agement, also could lead to the differences between annual peak and mean vegetation
variations. On the one hand, the conversion between different vegetation types might
directly result in the observed inconsistency between the peak and mean greenness, due
to the different responses to environmental changes determined by different vegetation
properties, such as thermal adaptability and photosynthetic efficiency [69]. For example,
crops have higher photosynthetic efficiency than other non-crops [20]. On the other hand,
land-use intensity and management could also explain the inconsistency largely. For
example, anthropic seasonal irrigation and fertilization could improve the peak green-
ness and productivity of croplands [20,56,70], but the annual mean greenness might not
enhance simultaneously.

4.3. Spatial Heterogeneity of Vegetation Growth Driven by Climate Change

Consistent with previous findings, we found that rainfall and temperature significantly
impact vegetation both in peak and mean growth [20,21]. However, except for precipitation
and temperature, vegetation growth was also found to be significantly correlated with
other climatic factors such as potential evapotranspiration and vapour pressure in our
study (Table 2). Furthermore, previous studies had neglected the spatial heterogeneity of
this response. Using the GWR model, we revealed the spatial pattern of each climatic factor
influencing vegetation variation. We found that not all regions had the strongest correla-
tion between vegetation change and precipitation and temperature, which were generally
considered to be the main climatic factors. For example, potential evapotranspiration con-
tributed dominantly to the trend of EVImax and EVImean over 6.96% and 7.54% of the global
vegetated area, respectively. Significant positive effects of potential evapotranspiration
occurred mainly in Brazil, Northern Europe and Northeast China, while adverse effects
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were mainly found in Africa (Figure 7). Vapour pressure had dominant contribution to the
trend of EVImax and EVImean in 12.56% and 8.95% of the global vegetation. The greening
induced by climate change in the Tibetan Plateau was mainly attributed to increasing
vapour pressure and temperature in this study (Figure 7), whereas that was rising in a
previous study [21].

4.4. Limitations and Further Directions

Data continuity and accuracy of the VIs products are critical to accurately detect subtle
changes in vegetation, which is important to the assessment of vegetation dynamics [12].
VIs are a kind of spectral vegetation index derived from satellite remote sensing, which
is calculated by spectral band reflectance [14]. Thus, unlike LAI, VIs cannot be directly
validated and calibrated continuously in time series by in situ measurements. A number of
comparisons have been made between different satellite-based VIs datasets [12,14,16,71,72]
and MODIS VIs data with improved technology, and no shifts of sensor is considered to
be superior to other products in terms of data temporal consistency and has been widely
used for reference data [10]. The latest MODIS Collection 6 (C6) VIs data providing several
algorithmic improvements and calibration adjustments were released for correcting the
negative influence of sensor degradation found in MODIS Collection 5 (C5) VIs data [17].
After release of MODIS C6 products, some studies began to evaluate differences between
C5 and C6 VIs both on a local and global scale to verify that C6 products had eliminated
effects of sensor degradation, and highlighted the need of re-analysing some previous
results based on MODIS C5 VIs products [17,24,73]. Therefore, we selected MODIS C6
data to examine global vegetation growth trend in this study. However, the differences
between MODIS EVI and NDVI were not sufficiently considered to reduce the uncertainty
in detecting trend analysis in this study. Although EVI can improve reflectance sensitivity
in dense vegetation areas, NDVI and EVI are generally regarded as two complementary
datasets for providing more effective assessment of global vegetation dynamics [24]. Thus,
it is necessary to evaluate the differences between the two datasets for monitoring vege-
tation dynamics using both EVI and NDVI data in the future. Moreover, research on the
climatic driving mechanism of vegetation dynamic should be combined with VIs and other
vegetation indicators, such as LAI and net primary productivity, which can be simulated in
the process-based models, because either non-spatial or spatial regression analysis cannot
explain the climate-driving mechanism from the ecological processes of vegetation growth
but can only provide a hint of correlation.

5. Conclusions

This study detected the trend of global peak and average vegetation growth during
2001–2018 and mapped the inconsistency in vegetation growth, and the climatic factors that
affected the inconsistency of vegetation growth were explored. The results showed that in
terms of EVImax, 18.16% of the global vegetated areas are greening and 3.08% are browning,
and in terms of EVImean, there are 40.73% and 2.45%, respectively. The most dramatic
greening of EVImax occurred mainly in those areas with cropland agricultural activities,
and the fastest degradation areas of EVImax were mainly grassland and savannas of Africa
and South America. Through mapping the consistency of global vegetation growth, it was
found that from 2001 to 2018, 32.47% of the global vegetated area experienced inconsistent
trends in EVImax and EVImean.

The SLM was proved to be more suitable than SEM and OLS in this study for spatial
regression at the global level. We found that precipitation and mean temperature had
a statistically significant (p < 0.05) positive correlation with EVImax and EVImean during
2001–2018, while potential evapotranspiration and vapour pressure had a statistically
significant negative correlation. The results of SLM indicated that there was spatial au-
tocorrelation in both EVImax and EVImean change, which means the changes in EVI were
correlated not only to these climatic factors but also to EVI variation in its adjacent areas.
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The SLM results only indicated a correlation between EVI changes and climatic drivers on
the whole but failed to reveal the spatial heterogeneity of climatic drivers.

The GWR model was used to explore the spatial heterogeneity of climatic drivers
influencing vegetation change by obtaining regression results for each spatial unit. The
results showed that the EVImax change was strongly influenced by precipitation in 14.02%
of the global vegetated areas during 2001–2018, followed by vapour pressure (12.56%),
minimum temperature (9.87%), mean temperature (9.10%) and potential evapotranspira-
tion (6.96%). In terms of the EVImean, the global vegetated areas were strongly affected by
mean temperature (17.36%) and precipitation (16.97%). In China, maximum temperature
and vapour pressure had opposite effects on EVImax in the north and south, and maximum
temperature and humid days also had opposite effects on EVImean.Due to the difference in
climatic conditions (arid or humid area) and vegetation types (cropland or grassland), the
responses of EVI to climate change were inconsistent. Climate change could affect vegeta-
tion characteristics by changing plant phenology, consequently rendering the inconsistency
between peak and mean greening. In addition, anthropogenic activities, including land
cover change and land use management, also could lead to the differences between annual
peak and mean vegetation variations.
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Abstract: The satellite altimeter data, temperature and salinity data, and 1.5-layer reduced gravity
model are used to quantitatively evaluate the contributions of the steric effect and the dynamic process
to sea level variations in the Tropical Pacific Ocean (TPO) on different time scales. Concurrently, it
also analyses the influence of wind forcing over the different regions of the Pacific Ocean on the
sea level variations in the TPO. Seasonal sea level variations in the TPO were the most important
in the middle and eastern regions of the 5◦–15◦N latitude zone, explaining 40–60% of the monthly
mean sea level variations. Both the steric effect and dynamic process jointly affected the seasonal sea
level variations. Among them, the steric effect was dominant, contributing over 70% in most regions
of the TPO, while the dynamic process primarily acted near the equator and southwest regions,
contributing approximately 55–85%. At the same time, the seasonal dynamic sea level variations were
caused by the combined actions of primarily local wind forcing, alongside subtropical north Pacific
wind forcing. On the interannual to decadal time scale, the sea level interannual variations were
significant in the northwestern, southwestern, and middle eastern regions of the TPO and explained
45–60% of the monthly mean sea level variations. The decadal sea level variations were the most
intense in the eastern Philippine Sea, contributing 25–45% to the monthly mean sea level variations.
The steric effect and the dynamic process can explain 100% of the interannual to decadal sea level
variations. The contribution of the steric effect was generally high, accounting for more than 85%
in the regions near the equator. The impact of the dynamic process was mainly concentrated in the
northwest, northeast, and southern regions of the TPO, contributing approximately 55–80%. Local
wind forcing is the leading role of interannual to decadal sea level variations. The combined actions
of El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) can explain 90%
of the interannual to decadal sea level variations in the northwestern and eastern of the TPO.

Keywords: tropical pacific ocean; sea level variations; steric effect; dynamic process

1. Introduction

In the 21st century, due to rising sea levels and frequent extreme sea-level events,
the storm surges, coastal erosion, flood risks, and economic losses faced by coastal cities
worldwide will continue to increase in frequency and severity [1,2]. During 1993–2009, the
global mean sea level rise rate was 3.2 ± 0.4 mm/yr, mainly caused by thermal expansion
and variation in the quality of seawater transported from the land to the ocean [3]. However,
regional sea level variations are primarily related to large-scale climate variations on
the monthly decadal time scales. For example, the sea level anomalies in the Tropical
Pacific Ocean (TPO) exceed 30 cm due to the interannual variations of El Niño–Southern
Oscillation (ENSO) [4], and its anomalies exceed the 21 cm rising in global mean sea level
during 1880–2009 [3]. Due to the impact of climate variations, there are significant regional
differences in the rate of sea level rise on decadal time scales [5]. For example, in the
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past few decades, the western TPO has had the highest rate of sea level rise in the world,
while the eastern TPO is the region with the fastest rate of sea level decline [3,6]. During
1993–2009, the rate of sea level rise in the western TPO was three times the global mean sea
level rise rate [7–9]. Many studies have shown that in the Pacific Ocean, the steric effect
has a greater contribution to the sea level variations [10–12]. However, the contribution of
the dynamic process to the sea level variations should not be ignored [13].

Sea level variations reveal significant multi-time-scale variations in the TPO [14–19].
On seasonal time scales, the sea level variations in the northeastern TPO are the most
dramatic, and its seasonal signals account for more than 60% of the total sea level variation
signals [20]. Among them, the seasonal variation amplitude of the steric sea level and the
total sea level is relatively consistent, indicating that the steric effect has a greater influence
on the seasonal sea level variations in this area [21,22]. Secondly, the dynamic process is
mainly driven by buoyancy flux and local wind stress, influencing the seasonal sea level
variations in the TPO [23,24]. In addition, the sea surface wind stress is the driving force for
the seasonal and interannual sea level variations in the TPO [25,26]. In some low-latitude
regions of the Pacific Ocean (such as the western TPO), the seasonal-interannual sea level
variations are mainly caused by the steric effect created by the baroclinic Rossby waves
driven by wind stress. These wind-driven baroclinic Rossby waves are closely related to
the tropical Pacific Ocean’s climate mode (PDO/IPO) [27]. The sea level anomaly signals
propagate westward in the form of baroclinic Rossby waves during the season in the
northern regions of the TPO. After arriving in the Philippines, they are transformed into
coastal waves (CTWs, Kelvin waves) and then enter the eastern regions of the South China
Sea along with the Philippine Islands [28].

On the interannual time scale, variations in the sea level are most significant for
the core region of the western Pacific Warm Pool, the central and eastern Pacific Ocean,
and especially in the eastern regions of the Philippines and New Guinea. The significant
periods of the sea-level low-frequency sequences are concentrated in 30 months and 52
months [29,30]. The sea level interannual variations are mainly affected by ENSO in the
TPO [31–36]. At the same time, the wind field, the heat flux at the air-sea interface, the
vertical ocean thermal structure, and the circulation variations all influence the interannual
sea level variations in the TPO [29]. During El Niño events, the mass redistributed by the
relaxed trade winds over the TPO eventually results in a significant decline in sea levels
across the western TPO and a considerable rise in the eastern TPO [5,37,38]. Convergence
and divergence anomalies of the wind field can explain the interannual sea level variations
in the TPO during different types of El Niño. The continuous rise of sea levels is caused by
the constant weakening of the divergent wind field in the eastern TPO, while anomalous
westerly winds in the western Pacific Ocean cause sea levels to rise in the center of the
eastern TPO [30]. In addition, the effect of heat flux on the interannual sea level variations
cannot be ignored in the eastern TPO. The north–south movement of the bifurcation of the
north Equatorial Current and variations in the intensity of the equatorial current system
will also induce interannual sea level variations in the TPO. Among them, the heat flux
primarily contributes to the northeastern and western regions of the TPO, reaching up to
60% and 50%, respectively [20].

The dominant factors influencing the interannual sea level variations are regionally
distinct in the TPO. In the northern TPO, namely the regions around the Hawaiian Islands,
Rossby waves propagating westward and the abnormal cooling of surface seawater caused
by trade wind anomalies can pass through the density of the mixed layer to affect the
interannual sea level variations [39]. The local response of surface heating and the eastern
boundary forcing is significant in explaining the interannual sea level variations in the
northeastern TPO. In the southeastern TPO, eastern boundary forcing primarily contributes
to the interannual sea level variations [40]. Ocean dynamic buoyancy-driven processes
play a vital role in the interannual sea level variations [41]. The contribution of local Ekman
pumping to the interannual sea level variations in the southeastern TPO is relatively small,
while the contribution to the southwest regions of the sea cannot be ignored [21]. The first

38



Remote Sens. 2021, 13, 3809

baroclinic Rossby waves, caused by wind stress, significantly impact the interannual sea
level variations in the western Pacific Ocean [42]. In addition, the long-distance adjustment
to wind stress forcing of the oceans strongly influences interannual sea level variations in
the western TPO. Therefore, the contribution of local responses to ocean surface warming
and wind forcing cannot be ignored [21].

The impact of ENSO on the climate of the northwest Pacific Ocean is not static, but is
modulated by decadal processes [43–46]. During the warm phase of the Pacific Decadal
Oscillation (PDO), the relationship between ENSO and the East Asian winter monsoon
is weak. In contrast, during the cold phase of PDO, ENSO strongly influences the East
Asian winter monsoon [47]. In addition, PDO and north Pacific Circulation Oscillation
(NPGO) can also affect the interannual sea level variations by modulating subsurface sea
temperatures and salinity in the TPO [46–49].

The interannual climate system variations, the atmosphere–ocean coupling, and the
ENSO phenomenon are the most significant in the TPO; it is also the region with the most
dramatic decadal and long-term sea level variations. Since the early 1990s, the decadal sea
level variations in the northwestern TPO have increased significantly. From 1991 to 2005,
the standard deviation of sea level variations was 2.84 cm, decreasing to 1.12 cm between
1963 and 1976 and increasing to 1.31 cm between 1977 and 1990 [8,50]. During the El Niño
period, the sea level in the eastern TPO is abnormally high (tens of centimeters), while the
sea level in the western TPO is unusually low. More than 50% of the abnormal variations
are explained by the decadal modulation of ENSO [51,52]. In the western TPO, the decadal
sea level variations are greatly affected by PDO [5,9,16], contributing 53% to the first mode
of decadal sea level variations in the TPO. The correlation coefficient between the time
series of the first mode and the PDO index reaches 0.59 [19].

The decadal signals are mainly driven by the wind stress curl of the TPO. Concurrently,
the atmospheric circulation related to the variations of the ENSO-PDO phase relationship
also enhances the decadal oscillation of sea level [32,53,54]. According to the fifth phase
of the Coupled Model Intercomparison Project (CMIP5), abnormal wind stress and wind
stress curl are the leading causes of interannual and decadal sea level variations in the
TPO. Although remote forcing may also induce abnormal sea level variations [55]. In
addition, the significant decadal sea level variations in the TPO during 1993–2015 were
mainly related to variations in the heat content of the upper ocean [56]. In the western
TPO, the intensified decadal sea level variations result from the “out-of-phase” relationship
between the Indian Ocean and the central and eastern Tropical Pacific since 1985, which
has an “in-phase” effect on sea level variations in the western TPO [57]. Secondly, the
Interdecadal Pacific Oscillation (IPO) also contributes to the decadal sea level variations in
the western TPO [50]. The region with the most extensive decadal sea level variations in
the eastern TPO does not coincide with the region with drastic interannual variations. The
eastern TPO has the largest interannual sea level variations, but the decadal variations are
minimal, mainly due to the ENSO.

The steric effect significantly contributes to sea level variations in the TPO [10–12]. At
the same time, the contribution of the dynamic process to sea level variations is also impor-
tant [13]. However, recent studies have not comprehensively investigated the geographic
and temporal role of the steric effect and the dynamic process in influencing sea level
variations in the TPO. This paper analyzes the contribution and influence mechanisms of
the steric effect and the dynamic process to the seasonal, interannual, and decadal sea level
variations across the Tropical Pacific.

2. Data and Methods

2.1. Datasets

The monthly sea level anomaly (SLA) is obtained from the merged (TOPEX, Jason-
1/2, ERS-1/2, Envisat, GFO and CryoSat-2) Ssalto/Duacs altimeter products, which are
remapped and distributed by the Archiving, Validation and Interpretation of Satellite
Oceanographic (https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-
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products/global.html, accessed on 22 September 2021). This dataset has a 0.25◦ × 0.25◦
horizontal resolution, and is available since 1993. The monthly subsurface temperature
and salinity from the EN4.2.1 are used to calculate the steric sea level (SSL). EN4.2.1 is
released by the UK Met Office Hadley Centre (https://www.metoffice.gov.uk/hadobs/
en4/download-en4-2-1.html, accessed on 22 September 2021) with 1.0◦ × 1.0◦ horizontal
resolution and 42 levels in vertical.

To clarify the role of ENSO-related and PDO-related processes in the sea-level varia-
tions, the Multivariate ENSO Index (MEI, https://psl.noaa.gov/enso/mei/, accessed on
22 September 2021) and PDO index (http://ds.data.jma.go.jp/tcc/tcc/products/elnino/
decadal/pdo.html, accessed on 22 September 2021) are used. The MEI is a relatively
complicated ENSO index. It is defined as the leading principle component of combined
EOF based on five different variables (sea level pressure, sea surface temperature, zonal
and meridional surface wind, and outgoing longwave radiation) over the tropical Pacific
(30◦S–30◦N and 100◦E–70◦W). In comparison with some single-variable indices, such as
Nino3.4 index, Southern Oscillation Index (SOI), etc., the MEI can portray a more realistic
coupled ocean–atmosphere processes. The PDO index also depends on the EOF analysis,
which is defined as the leading principal component of sea surface temperature in the
north Pacific (north of 20◦N). For the overlapping period, all the aforementioned data are
adopted from 1993 to 2019 in this paper. Before analysis, the linear trend is removed for all
the variables.

In addition, the monthly surface wind stress from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis V5 (ERA-5) (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5, accessed on 22 September 2021) to drive the
1.5 layer nonlinear reduced-gravity model. ERA-5 is available from 1979 to present, and
has several sets of horizontal resolution. To match the model resolution, 0.25◦ × 0.25◦ is
selected in this paper.

2.2. Methods
2.2.1. Calculation of Explained Variances Percentage

To quantify the contribution of one variable (hx) to another variable (hy), the explained
variances percentage (skill) is defined as:

S =

⎛
⎝1 −

〈(
hy − hx

)〉2〈
h2

y

〉
⎞
⎠× 100% (1)

where S is the skill, hx is the independent variable, hy is the dependent variable, and
〈· · · 〉 represents the average over time. A large (small) skill suggests a significant (poor)
contribution of hx to hy.

2.2.2. Multiple Variable Linear Regression Method

To isolate the contribution of interannual and decadal processes to the SCS sea-level
change, a multiple variable linear regression method is performed in this study, and
expressed as [5]:

h = a0 + a1 ICI + a2DCI + noises (2)

where h is the SLA considered as a dependent variable, ICI (interannual climate index)
and DCI (decadal climate index) are two independent variables, a1 and a2 are regression
coefficients, noises is the error. The DCI indicates a low-pass filtered PDO index, which has
experienced two consecutive (25- and 37-month) running averages. The ICI is a high-pass
filtered MEI, which is calculated as the difference between the original MEI and low-pass
filtered MEI [5].
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2.2.3. Steric Sea Level

The SSL (ηs) includes thermosteric (ηt) and halosteric height (ηh), which are calculated
as [58]:

ηt =
∫ 0

−H
−1

ρ

∂ρ

∂T
· ΔTdz (3)

ηh =
∫ 0

−H
−1

ρ

∂ρ

∂S
· ΔSdz (4)

ηs = ηt + ηh (5)

in which T is the temperature, S is the salinity, H = 800 m is the lower limit of the vertical
integration, dz is the thickness of each layer, ΔT and ΔS are the temperature and salinity
anomaly relative to the mean values from 1993 to 2019.

2.2.4. 1.5-Layer Reduced-Gravity Model

The 1.5-layer nonlinear reduced-gravity model is performed in this paper to investi-
gate the role of the dynamic processes [41]. The momentum and continuity equations are
described as [41]:

∂u
∂t

+ ζk × u = −∇E + Ah∇2u +
τ

ρ0h
+

ε

H
u (6)

∂h
∂t

+∇·(hu) = 0 (7)

in which g′ = gΔρ/ρ is the reduced gravity acceleration, h is the time-varying upper layer
thickness. The detailed interpretation of the other variables and model configuration can
be found in Li et al. (2020). Derived from the 1.5-layer reduced-gravity model, the dynamic
sea level (DSL) is defined as DSL = g′h/g. Four experiments are conducted in this paper,
including one control experiment and three sensitivity experiments (Table 1). In the control
experiment, the whole model domain (40◦S–65◦N, 100◦E–70◦W) is driven by the real wind
stress from ERA-Interim, which is referred to as Exp 0. Meanwhile, in the two sensitivity
experiments, the real wind stress only covers the tropical Pacific Ocean (Exp 1: 20◦S–20◦N,
100◦E–70◦W) and north Pacific (Exp 2: 20◦N–65◦N, 100◦E–70◦W), and the other areas
are forced by monthly climatological wind stress which is calculated from 1981 to 2010.
All the four experiments are integrated from 1979 to 2019, but only the outputs during
1993–2019. Table 1 presents the numerical experiments of the 1.5-layer reduced gravity
model, analyzed in accordance with the observed data as described in Section 2.1.

Table 1. Numerical experiments of the 1.5-layer reduced gravity model.

Model Experiments Descriptions

Exp 0
Control experiment, model domain (30◦S–65◦N, 100◦E–70◦W,
NPO) closed lateral boundaries, originally forced by monthly

ERA-5 wind stress.

Exp 1
The model domain as Exp 0. Originally forced by monthly wind

stress over the north Pacific (north of 20◦N, NNP); monthly
climatological wind over other regions

Exp 2
The model domain as Exp 0. Originally forced by monthly wind
stress over the tropical Pacific Ocean (20◦S–20◦N, 100◦E–70◦W,

TPO); monthly climatological wind over other regions

3. Seasonal Sea Level Variations in the TPO

To extract the seasonal variation, a 6–18-month band-pass filter is performed in this
section. The sea level variations exhibit significant spatial differences in the TPO (Figure 1a).
The region with the most dramatic seasonal sea level variations is located near Clipperton
Island (10.33◦N, 109.22◦W) in the northeastern TPO, with variances up to 50 cm2. There is
also a narrow and long eastward latitude zone from 170◦W between 5◦ and 15◦N, with
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variances of 30–45 cm2. Additionally, seasonal sea level variations in the East Philippines
(5◦–15◦N, 120◦–128◦E) and the Coral Sea (18◦–13◦S, 145◦–165◦E) are significant, with
variances greater than 20 cm2. Overall, the seasonal variation amplitude of other regions
of the Tropical Pacific is small, with variances of less than 10 cm2. Using Equation (1), we
quantitatively evaluate the contributions of the seasonal sea level variations to the monthly
mean sea level variations (Figure 1). Seasonal sea level variations across the long and
narrow latitude zone between 5◦ and 15◦N in the northern TPO explains 40–60% of the
monthly mean sea level variations (Figure 1b). In most northwest and southwestern TPO
regions, seasonal signals contribute 35% to 50% of the monthly mean sea level. While in
the southeastern TPO, the proportion of seasonal sea level variations is relatively smaller
(<15%).

Figure 1. (a) The seasonal sea level variances and (b) explained variances in the TPO.

To explore the contribution of the steric effect and the dynamic process to the seasonal
sea level variations in the TPO (Figure 2), we use Equation (1) to calculate the influence of
the steric effect and the dynamic process on sea level variations (Figure 2). The steric sea
level is calculated using Equation (5), and the dynamic sea level is simulated by a 1.5-layer
reduced gravity model.

Seasonal sea level variations in the TPO mainly result from the steric effect [21],
especially in the central and eastern TPO, where the steric effect contributes to more than
90% of the seasonal sea level variations (Figure 2a). For the northernmost and southeastern
Tropical Pacific, the contribution of the steric effect is small, even indicating a negative
contribution. The dynamic process mainly acts on two long and narrow latitude zones in
the northernmost central Tropical Pacific, contributing 55–85% (Figure 2b). While in most
other regions of the TPO, the contribution of the dynamic process is less than 50%, and in
some regions even revealing a significant negative contribution. Compared with the steric
effect, the contribution of the dynamic process in the TPO is significantly weaker; therefore,
the steric effect is the dominant process influencing seasonal sea level variations in the
TPO. This is consistent with the previous conclusion that the steric effect plays a leading
role [25].
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Figure 2. The seasonal sea level explained variances of (a) the steric effect and (b) the dynamic
process.

Figure 3a reveals the time–longitude features of seasonal sea level anomalies averaged
from 20◦S–20◦N in the TPO. Positive sea level anomalies generally appear from June to
December, spanning the entire TPO in the meridian direction. In the western TPO, the sea
level anomalies start to appear in May, with the maximum positive sea level anomalies
(>3 cm) appearing in the eastern Philippines 130◦–135◦E. This is distinct to the eastern
TPO, where the sea level anomalies are relatively small (<1.5 cm). In other regions of
TPO, especially in the west, the sea level reveals negative anomalies, with the greatest
occurring from January to March, even exceeding −3 cm. The TPO is bounded by June,
with negative sea level anomalies occurring before June and positive sea level anomalies
after. Seasonal sea level variations propagate from west to east in the central and eastern
TPO (Figure 3a), mainly caused by the steric effect, which is induced by the baroclinic
Rossby waves, which in turn are driven by wind stress (Figure 3b). It is worth noting
that in the meridional direction of 135◦–140◦E, the sea level variations are abnormal,
likely resulting from variances of seasonal variations between Australia and New Guinea
reaching more than 50 cm2. As this geographical location is closed, sea level variations
are mainly affected by tropical cyclones, and the occurrence of tropical cyclones is closely
related to the monsoon [59,60].

To explore the influence of the steric effect and the dynamic process on seasonal
sea level variations in the TPO and their temporal and spatial variations, we calculated
the steric sea level anomalies based on Equation (5) (Figure 3b) and the dynamic sea
level anomalies simulated by a 1.5-layer reduced gravity model (Figure 3c). The spatial
distribution of the steric sea level variations presents a structure similar to the altimeter
sea level variations, indicating that the steric variations suitably capture the characteristics
of the altimeter variations. The sea level anomalies are only minor in the middle east of
the TPO (<2 cm). However, the steric sea level variations between 135◦E and 140◦E are
completely different from the altimeter variations, confirming that the sea level anomalies
in this area are indeed not caused by the steric effect but tropical cyclones. Secondly, the
spatial distribution of the dynamic sea level variations is quite different from the structure
of altimeter sea level variations. Dynamic sea level anomaly signals propagate westward
in the form of baroclinic Rossby waves on the scale of seasonal variations. Concurrently,
in the meridional direction of 120◦E–135◦W, the positive and negative sea level anomaly
signals anomaly signals displayed an obvious arc-shaped trend. From west to east along
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the TPO, negative sea level anomalies occur earlier in the year (from September to January).
Moreover, the seasonal sea level variations are dominated by the steric effect in most
regions.

Figure 3. Time–longitude plot of the seasonal sea level anomalies (cm) averaged along the 20◦S–20◦N
latitudinal band from (a) altimetric observations, (b) the steric effect, and (c) the 1.5-layer model.

Conducting sensitivity experiments in specific regions is an important method for
exploring the mechanisms of sea level variations. Experiments isolating only various wind
fields and ignoring other factors can highlight the role of dynamic processes in sea level
variations [59]. The seasonal sea level variations in the TPO are closely related to the wind
forcing in the Pacific. Therefore, it is necessary to explore the relative effects on seasonal sea
level variations in the TPO between the wind forcing in the TPO and other regions. Based
on the above questions, we designed three sensitivity experiments (Table 1) to evaluate the
relative effects of wind forcing on the seasonal sea level variations in different regions of
the TPO.

On the basis of the comparison of the simulated results (Figure 4), the dynamic sea
level derived from the control experiment (Exp 0) contributes the most to the seasonal
sea level variations in the central northern Tropical Pacific (Figure 4). A long and narrow
belt across the meridian explains more than 80% of the variance, while a second narrow
belt is formed in eastern New Guinea (explaining 55–75%). Additionally, wind forcing
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significantly contributes to the variance (65–75%) in the Coral Sea (18◦–13◦S, 145◦–165◦E)
and around Clipperton Island (10.33◦N, 109.22◦W). Nevertheless, the real monthly wind
forcing explains approximately 25% of the variances in other regions and even reaches
negative contributions in the north and southeast (Figure 4a). The local wind forcing in
the TPO plays a leading role in seasonal sea level variations, through the comparison
the simulated results of EXP 0 and EXP 1 (Figure 4a,b). If the subtropical north Pacific
models the real monthly wind field, and TPO is the climatic wind field (Figure 4c), the
contribution of the subtropical north Pacific wind field to seasonal sea level variations
is generally consistent with the NPO wind field. Still, the variances are generally minor,
with a maximum of only 75%, forming a long and narrow belt. The variances of the coral
region are less than 55%, and the area of the negative contribution region in the north
and southeast region expanded. This indicates that compared with the contribution of
TPO wind forcing to seasonal sea level variations, the contribution of subtropical north
Pacific Ocean wind forcing is relatively small. Overall, on seasonal time scales, the dynamic
sea level variations in the TPO are caused by the combined effects of local wind forcing
and subtropical north Pacific Ocean wind forcing, of which local wind forcing plays a
leading role.

Figure 4. Contributions of different wind forcing to seasonal sea level variations: (a) the real monthly
wind field; (b) the real wind field in the TPO and the climatic wind field in other regions; (c) the real
wind field in other regions and the climatic wind field in the TPO.

4. Interannual to Decadal Sea Level Variations in the TPO

4.1. Interannual Sea Level Variations in the TPO

There are significant spatial differences in the interannual sea level variations in
the TPO (Figure 5a). Significant interannual variations are presented in the northwest,
southwest, and east-central parts of the TPO. These variances exceed 40 cm2, with the
maximum value in the northwest and southwest regions surpassing 45 cm2 (Figure 5a).
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In these regions with high sea level interannual variation variances, the contribution
of the interannual sea level signals to the monthly mean variations is as high as 45–60%
(Figure 5b), and their spatial patterns are consistent with the interannual sea level variations.
However, it is worth noting that the significant interannual sea level variations in the
equatorial eastern Pacific can be explained by the interannual response of Kelvin waves
caused by wind anomalies (Figure 5a). Variances of the interannual sea level variations are
lower in other regions, less than 20 cm2 (Figure 5a). Except for the northeastern TPO, the
contribution of the interannual signals to the monthly mean variations remains relatively
minor (below 45%) (Figure 5b). In the northeastern TPO, while the interannual sea level
variations are not large (Figure 5a), their contribution to monthly mean variations explains
up to 60% (Figure 5b), further indicating that the sea level variations in this region are not
significant.

 
Figure 5. (a) The interannual sea level variances and (b) explained variances in the TPO.

From the perspective of atmospheric forcing, variations in the wind field and heat flux
caused variations in ocean density field and circulation. These can induce variations in heat
content and other factors, in turn causing sea level variations. Therefore, the root causes of
the interannual variations are the variations of the wind field and heat flux [12,29]. The
contribution of the steric effect to the interannual sea level variations in the TPO is generally
significant (Figure 6), as high as 95% in the central TPO. However, there is a small area
of less than 15% and even a negative contribution in the northernmost and southeastern
regions. The dynamic process contributes significantly (55–80%) to the interannual sea level
variations in the TPO, mainly influencing the northwest, northeast, and southern regions,
and contributed less (<45%) in other regions. This is consistent with the results of previous
studies [12,20,41]. The contributions of the steric effect and the dynamic process to the
interannual sea level variations vary. For instance, while the contribution of the dynamic
process is unevenly distributed spatially, its effect in most regions exceeds 85%. Therefore,
in most regions of TPO, the steric effect and the dynamic process explains the interannual
sea level variations. Similar conclusions have been reflected in previous studies [19,40,54].
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Figure 6. The interannual sea level explained variances of (a) the steric effects and (b) the dynamic
process.

The interannual sea level fluctuation signals of TPO are affected by the sea surface
wind forcing. The dominant contribution to interannual sea level variations in western
TPO is the wind-induced first baroclinic Rossby waves [7,24,32,36]. Therefore, exploring
the relative effects of wind forcing in the TPO and the wind forcing in other regions on
the interannual sea level variations is necessary. The variances explained by the wind
forcing in different regions from the sensitivity control experiments (Figure 7) reveal that
the real monthly wind forcing contributed to the interannual sea level variations. These are
larger in the northwest, south, and southwest (>65%), only reaching 65% in the northeast.
However, its contribution is minor and even negative in other regions. When the TPO is
modeled with the real monthly wind field, and other regions are the climatic wind fields
(Figure 7b), the contribution of local wind forcing to the interannual sea level variations
in the TPO is almost the same as the real wind forcing. The variances are also the same,
indicating that the local wind field in the TPO plays a leading role in influencing the
interannual sea level variations. However, when the subtropical north Pacific Ocean is
modeled with the real monthly wind field and TPO is the climatic wind field (Figure 7c),
the subtropical north Pacific Ocean wind field explains less than 15% of the variances of
the interannual sea level variations. This indicates that the subtropical north Pacific wind
forcing barely contributes to this region. Therefore, the local wind forcing in the TPO is the
leading role of the interannual sea level variations.
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Figure 7. Contributions of different wind forcing to interannual sea level variations: (a) the real
monthly wind field; (b) the real wind field in the TPO and the climatic wind field in other regions;
(c) the real wind field in other regions and the climatic wind field in the TPO.

4.2. Decadal Sea Level Variations in the TPO

There are significant spatial differences in decadal sea level variations in the TPO. They
are most dramatic in the eastern Philippines of the northwestern TPO, with a maximum
variance of more than 40 cm2. In the southwest, central, eastern, and northeastern regions,
these variances range from 10 cm2 to 20 cm2, and are generally lower in other regions
(<10 cm2) (Figure 8a). The contribution of decadal signals to monthly mean sea level
variations in the northeastern and southeastern TPO is as high as 50–70%, with some
regions exceeding 70% (Figure 8b). Decadal contributions are the smallest in the north-
central and southwestern regions, as low as 25% (Figure 8b). The spatial characteristics of
the contribution of decadal signals to monthly mean sea level variations are quite different
from those of decadal sea level variations.
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Figure 8. (a) The decadal sea level variances and (b) explained variances in the TPO.

The decadal sea level variations in the TPO are mainly controlled by large-scale ocean–
atmosphere processes such as PDO and the decadal variations of ENSO [53,61]. ENSO
and PDO primarily affect sea level variations through variations in trade winds in the
Pacific Ocean, alongside numerous other factors, such as the effect of heat flux and so
on [29]. Similar to the interannual time scales, on decadal time scales, the contribution of
the hematocrit effect to the sea level variations in the TPO is dominant, and the maximum
contribution exceeds 95% (Figure 9). At the same time, the dynamic process mainly acts
on the northwestern and southwestern of the TPO, which is consistent with previous
studies [62], with contributions of approximately 55–70%. While the contribution of the
dynamic process is generally lower in the eastern TPO, it is mainly dominated by the
steric effect (Figure 9). There are considerable differences between the steric effect and the
intensity of the dynamic process, i.e., the dynamic process only contributed more than the
steric in the central and western areas, and its greatest contribution is no more than 65%. In
the central and western regions of TPO, the combined effect of the hematocrit effect (major
contributor) and dynamic process explains 100% of the decadal sea level variations.

 
Figure 9. The decadal sea level explained variances of (a) the steric effect and (b) the dynamic process.
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The decadal signals are mainly driven by wind stress in the TPO. Abnormal wind
stress and wind stress curl are considered to be the leading causes of sea level variations
in the TPO on interannual and decadal scales [32,53–55]. Therefore, it is necessary to
explore the relative effect of wind forcing in different regions of the Pacific Ocean on the sea
level variations in the TPO. The contribution of real monthly wind forcing to the decadal
sea level variations in the TPO is greater in the northwest and southwest regions (>65%)
(Figure 10). The contribution in other regions is minor and in some regions it is even
negative. If TPO models the real monthly wind field and other regions include the climatic
wind fields (Figure 10b), the contribution of local wind forcing in the TPO to the decadal
sea level variations is almost the same as the real wind forcing. Furthermore, the variances
of the variations were almost the same, revealing that the local wind forcing in the TPO
plays a significant role in the decadal sea level variations. If the subtropical north Pacific
Ocean includes the real monthly wind field and TPO is the climatic wind field (Figure 10c),
then the wind field of subtropical north Pacific contributes little or even negatively to the
decadal sea level variations in most regions of the TPO. Therefore, local wind forcing in
the TPO is likely the leading role of the decadal sea level variations.

Figure 10. Contributions of different wind forcing to decadal sea level variations: (a) the real monthly
wind field; (b) the real wind field in the TPO and the climatic wind field in other regions; (c) the real
wind field in other regions and the climatic wind field in the TPO.

4.3. Interannual to Decadal Sea Level Variations in the TPO

The eastern and western TPO has recently exhibited a seesaw spatial pattern of
annual mean sea level anomalies (Figure 11a). Sea level anomalies and negative sea
level anomalies alternately appeared during 1993–1995, especially when ENSO occurred.
Negative anomalies (blue) occurred during El Niño: 1997, 1997, 2002–2005, 2007, 2014–2016,
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and 2018–2019. On the contrary, positive anomalies (red) occurred during La Niña: 1996,
1998–2001, 2008–2013, and 2017 (Figure 11a). The meridional mean sea level anomalies in
the TPO are significant (>3 cm or <−3 cm), and mainly concentrates in a small latitude
zone, roughly between 120◦E–140◦E in the eastern Philippines (5◦–15◦N, 120◦–128◦E)
and western New Guinea (10◦S–0◦, 135◦–150◦E). The eastward signals gradually weaken,
while the negative sea level anomalies form in a long and narrow belt along the zonal
direction. This phenomenon also confirms that the interannual sea level variations in the
TPO and its low-frequency modulation are driven by ENSO [32,33,36,61]. It is worth noting
that from the entire time–longitude diagram, the sea level anomalies in the TPO have
the characteristics of an east–west reverse-phase variation in the zonal direction of west
longitude 170◦W. In contrast to this region, this phenomenon is consistent with the results
of previous studies [42,62,63].

Figure 11. Time–longitude plot of the interannual to decadal sea level anomalies (cm) averaged along
the 20◦S–20◦N latitudinal band from (a) altimetric observation, (b) steric effect, and (c) the 1.5-layer
model.
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The sea level variations induced by the steric effect strongly reflect the characteristics
of the altimeter sea level variations. Its spatial distribution presents a structure similar to
the altimeter sea level variations, which is driven by ENSO (Figure 11), which indicates that
the steric sea level variations have a dominant effect on the altimeter sea level variations.
At the same time, the spatial pattern of the low-frequency dynamic sea level variations in
the latitude 165◦E–135◦W region is roughly the same as the altimeter sea level variations.
However, the magnitude of the variations is small, indicating that the dynamic sea level
variations affect the low-frequency altimeter sea level variations. The dynamic process
mainly involves the interannual to decadal sea level variations in the TPO through the
westward propagation of Rossby waves (Figure 11c). Therefore, similar to the sea level
variations from interannual to decadal time scales, the steric effect and the dynamic process
works together to influence the sea level variations in the TPO, with the steric effect being
dominant.

4.4. Interannual and Decadal Sea Level Fingerprints of TPO

The contribution of the PDO to sea level variations can be inferred from the increase of
the sea level climate index. Based on the PDO index and Multivariate ENSO Index (MEI),
using multiple regression methods, Zhang and Church (2012) defined new interannual
and decadal climate indexes to explain the low-frequency sea level variations in the Pacific
Ocean since 1993. They concluded that 60% of the observed low-frequency sea level
variations originated from internal climate models (ENSO and PDO) [64].

Therefore, in order to explore the impact of ENSO and PDO on sea level variations
in the TPO, we used the multiple regression model (MVLR) to simulate the interannual
and decadal sea level fingerprints of TPO (Figure 12a,b). The annual sea level fingerprint
is expressed as the regression of sea level relative to ICI, equivalent to the regression
coefficient a1 in Equation (2) and closely related to ENSO. For the interannual sea level
fingerprint, the regions with the most significant regression results are western and eastern
TPO. The maximum interannual sea level fingerprint reaches 80 mm/unit ICI in the eastern
regions, and the largest in the western sea is −80 mm/unit ICI; this spatial feature is
similar to a “seesaw”. During El Niño Taimasa, the abnormal movement of the zonal
wind and the corresponding wind stress curl lead to the “seesaw” pattern of the sea level
of TPO, manifesting as sea level rise in the eastern TPO and a decline in the warm pool
area (10◦S–10◦N, 60◦W–150◦E). In the northwest and southeastern TPO, the sea level
meridional seesaw mode with 5◦N as the fulcrum is also related to the air–sea coupling
mode [30,65–67]. Secondly, we used Equation (1) to calculate the contribution of ENSO-
related sea level variations to interannual to decadal sea level variations (Figure 12c), which
corresponded to the interannual sea level fingerprint. In the eastern and western regions of
the TPO, ENSO-related sea level variation explanation reaches more than 65%, while the
variance in the north American coast reached 60%. The contribution of ENSO in the regions
near the C-shaped east–west boundary of the “seesaw” is low, less than 10%. Therefore,
the ENSO can better explain the interannual sea level variations in the western and eastern
TPO and the coast of north America. The interannual sea level fingerprint and the spatial
characteristics of its contribution are consistent with the impact of the ENSO dynamic on
the interannual sea level variations in the TPO [31,68].
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Figure 12. (a) Interannual sea level fingerprint (mm) (b) decadal sea level fingerprint (mm), (c) the
explained variances of the interannual sea level associated with the ENSO, (d) the explained variances
of the decadal sea level related to the PDO.

In addition, we used Equation (1) to calculate the decadal sea level fingerprint as the
regression of sea level with respect to DCI, which is equivalent to the regression coefficient
a2 in Equation (2) (closely related to PDO). For the decadal sea level fingerprint, the most
significant region of the regression result is located in the northwest TPO, namely the
eastern Philippines, with a maximum of −80 mm/unit DCI. In addition, the regions with
more significant variations include the eastern and northeastern regions of the Pacific Ocean.
The north American coast ranges between 40–70 mm/unit DCI, and the “seesaw” structure
is no longer apparent compared with the interannual sea level fingerprint (Figure 12b).
We used Equation (1) to calculate the contribution of PDO-related sea level variations
to the interannual to decadal altimeter sea level variations (Figure 12d), which strongly
corresponds to the decadal sea level fingerprint. The regions in the narrow and long
latitudes with high contributions contribute more than 60%, and the contribution in the
northwestern region is between 35–50%. In comparison, it contributes less than 40% in all
other regions, indicating that PDO can better explain the interannual to decadal sea level
variations only in the northwest and northeast TPO.

From the perspective of interannual sea level fingerprint, decadal sea level fingerprint,
and their respective contributions to sea level variations, the combined effect of ENSO and
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PDO can explain 100% of the interannual to decadal sea level variations in the northwest
and East TPO. For the coast of north America, the contribution of ENSO and PDO can
explain more than 90%. In the southwestern TPO, the joint action of ENSO and PDO
has little impact on the interannual to decadal sea level variations in this region. The
low-frequency sea level variations in this region are dominated by the steric effect and
other processes (Figure 6a, Figure 7a, Figure 9a, Figure 10a).

5. Summary and Discussion

5.1. Discussion

The quantitative analysis results of the influence of wind field and heat steric factors on
sea level variations have many interannual scales and a relative lack of decadal scales. The
length and quality of the data are the key factors that affect the quantitative analysis of sea
level variations in the TPO [29]. The satellite altimeter data, thermohaline data, and model
data used in this paper span only 27 years, which is insufficient to study decadal sea level
variations. Secondly, substantially different sources of wind field data and temperature
and salt data are also reasons for the above problems. In addition, the dynamic sea level
simulated by the 1.5-layer reduced gravity model is only driven by the wind field. The
simulation is not the real dynamic sea level due to the lack of real terrain and stratification.
Therefore, it is necessary for a high-precision three-dimensional ocean numerical model
to quantitatively compare the effect of different wind forcing in future research. Finally,
although the method estimates the magnitude of interannual to decadal sea level variations
associated with ENSO, the regression was based on a limited time frame spanning only a
few ENSO events. With the continuous growth of time series, the regression amplitude
could be improved.

5.2. Summary

In this paper, we used satellite altimeter data, temperature and salinity data, and the
1.5-layer reduced gravity model to analyze the characteristics of the sea level temporal and
spatial variations in the TPO and quantitatively assess the contribution of the steric effect
and the dynamic process to sea level variations at different time scales. At the same time,
we also discuss the impact of wind forcing in different regions on sea level variations in
the TPO. Based on a multiple regression model, we quantified the relative contribution
of interannual variations related to ENSO and decadal variations related to PDO to low-
frequency sea level variations in the TPO. The sea level variations in the TPO exhibit
significant multi-timescale variations [15–18]. Seasonally, the meridional mean sea level
of TPO produces negative anomalies from January to May and positive anomalies from
June to December. The steric sea level variations are the same as the satellite altimeter sea
level variations. In contrast, the dynamic sea level propagates westward from the eastern
Pacific Ocean, distinct from the altimeter sea level. In terms of the spatial distribution,
the sea level variations are most significant in the long and narrow latitude zone from
170◦W eastward between 5◦ and 15◦N, with a variance range of 30–50 cm2, explaining
40–60% of the monthly variations. Secondly, it is also more evident in the southeastern and
southwestern regions of the Tropical Pacific 30–50 cm2. The seasonal sea level variations
range from 10–40 cm2 and explained 35–45% of the monthly mean sea level variations. The
steric effect and the dynamic process together influences the seasonal sea level variations in
the TPO. Among them, the steric effect is dominant, and the contribution in most regions
exceeds 70%. The dynamic process mainly affects the regions on both sides of the equator
and the southwestern TPO. The contribution of this region is about 55–85%. Concurrently,
the dynamic sea level variations are induced by the combined effect of the local wind
forcing and the subtropical north Pacific Ocean wind forcing, of which the local wind
forcing plays a leading role.

On the interannual time scales, the eastern and western TPO exhibits a seesaw spatial
pattern during ENSO. During the El Niño period, the sea level in the eastern Pacific Ocean
presented positive anomalies, and the sea level in the western Pacific Ocean presented
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negative anomalies. The opposite is the case during the La Niña period. The sea level
anomalies are consistent with the altimeter sea level anomalies in changeable amplitude
and phases. The dynamic process mainly affects the interannual sea level variations in
the central and eastern TPO through the westward propagation of Rossby waves. At the
same time, there are significant spatial differences in the interannual sea level variations in
the TPO. The interannual variations are most significant in the northwest, southwest, and
central and eastern regions of TPO, with a variance of more than 40 cm2. The interannual
sea level variations vary from month to month, while the contribution of the mean sea level
variations is as high as 45–60%. The steric effect and the dynamic process strongly explains
the interannual sea level variations in the TPO. Among them, the steric effect contributes
relatively higher, up to 95% near the equator, to the interannual sea level variations in
the TPO. The influence of the dynamic process is mainly concentrated in the northwest,
northeast, and southern regions of the TPO, and its contribution is about 55–80%. The local
wind forcing in the TPO is the dominant influence on interannual sea level variations, and
the contribution of wind forcing in other regions is small or even negative.

On the decadal time scales, sea level variations in the TPO are mainly controlled
by large-scale ocean–atmosphere processes such as PDO and the decadal variations of
ENSO [29]. The region with the most dramatic decadal sea level variations in the TPO
is located in the northwestern region of the eastern Philippines, and its variance exceeds
40 cm2. This area can explain 25–45% of the monthly mean sea level variations. The regions
with the greatest contribution to the monthly mean sea level variations are in the southeast
and northwest, 50–70%. The steric effect and the dynamic process explained 100% of the
decadal sea level variations in most regions of the TPO. The region near the equator mainly
contributed more than 85% of the steric effect. The dynamic process primarily acts on the
southwest and northwest regions of the TPO, contributing only about 55–70% in others.
The local wind forcing in the TPO is the leading role of decadal sea level variations. The
contribution of wind forcing in other regions is small or even negative.

The most significant regions with interannual and decadal sea level fingerprints in the
TPO are located in the western and central-eastern regions of TPO, with their maximum
reaching 80 mm/unit ICI and 80 mm/unit DCI. The combined effect of ENSO and PDO
explains 100% of the interannual to decadal sea level variations in the northwestern and
eastern TPO. For the coast of north America, ENSO and PDO explained more than 90%.
In the southwestern TPO, the combined effect of ENSO and PDO has minimal effect on
the interannual to decadal sea level variations. The process that dominated this region’s
low-frequency sea level variations is mainly the steric effect and other processes.
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Abstract: Severe meteorological drought is generally considered to lead to crop damage and loss.
In this study, we created a new standard value by averaging the values distributed in the middle
30–70% instead of the traditional mean value, and we proposed a new index calculation method
named Normalized Indices (NI) for meteorological drought monitoring after normalized processing.
The TRMM-derived precipitation data, GLDAS-derived soil moisture data, and MODIS-derived
vegetation condition data from 2003 to 2019 were used, and we compared the NI with commonly
used Condition Indices (CI) and Anomalies Percentage (AP). Taking the mid-to-lower reaches of
the Yangtze River (MLRYR) as an example, the drought monitoring results for paddy rice and
winter wheat showed that (1) NI can monitor well the relative changes in real precipitation/soil
moisture/vegetation conditions in both arid and humid regions, while meteorological drought was
overestimated with CI and AP, and (2) due to the monitoring results of NI, the well-known drought
event that occurred in the MLRYR from August to October 2019 had a much less severe impact on
vegetation than expected. In contrast, precipitation deficiency induced an increase in sunshine and
adequate heat resources, which improved crop growth in 78.8% of the area. This study discusses
some restrictions of CI and AP and suggests that the new NI index calculation provides better
meteorological drought monitoring in the MLRYR, thus offering a new approach for future drought
monitoring studies.

Keywords: meteorological drought; drought impact; paddy rice; winter wheat

1. Introduction

Drought, rainstorms, typhoons, high-temperature-induced damage, low temperature
chilling injuries, and hailstorms have occurred frequently around the world in recent
years. These meteorological disasters have a negative impact on normal socioeconomic
development [1–4]. Drought is one of the most devastating natural disasters [5], especially
in areas that rely heavily on rain-fed subsistence agriculture. Drought-induced famine
seriously affects human survival and agricultural production [6–8].

Remote Sens. 2021, 13, 3858. https://doi.org/10.3390/rs13193858 https://www.mdpi.com/journal/remotesensing
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After vegetation indices were developed in the 1980s, the Normalized Difference
Vegetation Index (NDVI) was used to effectively monitor rainfall and drought and to
estimate the impact of weather on crops and pastures in nonhomogeneous areas [9–12].
The problem is that, in addition to the weather influence, the difference in vegetation levels
in these areas is also related to the differences between geographical resources (climate,
soil, vegetation types, and terrain). For eliminating that portion of the NDVI, Kogan [13]
calculated with Advanced Very High Resolution Radiometer (AVHRR) data the largest
and lowest NDVI values during 1984–1987 for each of the 52 weeks of the year and for
each pixel of Sudan. The maximum and minimum NDVI were used as the criteria for
estimating the upper (favorable weather) and lower (unfavorable weather) limits of the
ecosystem resources [14,15]. The difference between the maximum and minimum NDVI
time series is due to weather variation. For enhancing the weather-related signal in NDVI
values, the Vegetation Condition Index (VCI) was developed. The results showed that VCI
was linearly positively correlated with precipitation. It was not sufficiently comprehensive
to monitor drought only by the decline in NDVI, but the research proposed a generalized
global meteorological disaster monitoring method based on the remote sensing index, so
disaster monitoring achieved development from point to surface [16]. Similar to the VCI
algorithm, various drought evaluation indexes based on different meteorological factors
appeared gradually.

In 1995, the Temperature Condition Index (TCI) was developed by Kogan to estimate
the maximum/minimum of the temperature envelope, which was used to determine
temperature-related vegetation stress in addition to stress caused by excess rain [17]. High
temperatures in the middle of the season indicate unfavorable or drought conditions,
while low temperatures indicate mostly favorable conditions. Based on the Tropical
Rainfall Measuring Mission (TRMM) precipitation data, Rhee et al. [18] proposed Scaled
TRMM, which has the same calculation method as the VCI, while in 2013, Zhang and
Jia [19] proposed the Soil Moisture Condition Index (SMCI) based on Advanced Microwave
Scanning Radiometer for EOS (AMSR-E)-derived soil moisture. Over a long period of time,
a variety of remote sensing drought monitoring indices have been developed for assessing
meteorological drought, agricultural drought, and hydrological drought based on these
Condition Indices (CI, such as VCI, TCI, PCI, and SMCI), some of which are shown in
Table 1 [20–26].

The “Classification of Meteorological Drought” implemented in China on 1 November
2006, is the first national standard for monitoring meteorological drought disasters. It
specifies the indicator, percentage of precipitation anomalies, which represents the changes
in precipitation in a certain period compared with the average precipitation of all years.
This indicator is used in daily business by the departments of the China Meteorological
Administration, and it can assess monthly, seasonal, and annual drought events. The
anomalies of soil moisture, vegetation, and temperature are also widely used in many
studies [27–34], and they are collectively referred to as the Anomalies Percentage (AP).
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Reviewing past studies, CI, AP, and synthetic indices based on them, have been
widely used in existing drought monitoring, but there are few studies on their drought
monitoring effects in southern China. In addition, the monitored results of these drought
indices were usually validated by observed precipitation or statistical crop yield data. The
conclusion was that the more severe the meteorological drought, the more severe the crop
yield reduction (Table 1). However, contradictory phenomena are often overlooked in areas
with abundant precipitation. Therefore, it is necessary to propose more effective drought
monitoring methods in areas with abundant precipitation. Thus, there were three main
objectives in this study: (1) to explore the applicability of the CI and AP for meteorological
drought monitoring in southern China; (2) to propose a new index calculation approach,
Normalized Indices (NI), for meteorological drought monitoring in southern China; and
(3) to study the actual relationship between meteorological drought and crop health, such
as paddy rice (Oryza sativa L.) and winter wheat (Triticum aestivum L.). The study developed
a new drought index calculation method and provides a novel approach for future drought
monitoring studies.

2. Study Area and Data

2.1. Study Area

The study area is located in the mid-to-lower reaches of the Yangtze River (MLRYR),
extending from 24.5◦ N to 35.1◦ N and 108.4◦ E to 121.9◦ E (Figure 1). The area covers five
administrative provincial units: Jiangsu, Anhui, Hubei, Jiangxi, and Hunan. While a single-
cropped rice cultivation system is dominant in Jiangsu, Anhui, and Hubei Provinces, paddy
rice is mainly cropped in rotation with winter wheat; a double-cropped rice cultivation
system is practiced in Jiangxi and Hunan Provinces. The area has a subtropical monsoon
climate with warm temperatures and abundant precipitation (Figure 2). From August
to October, when crops mature, the East Asian Summer Monsoon retreats southward.
Droughts and floods happen easily in this season and have caused serious economic losses
and environmental damage [40–43]. In addition, the catchment area of the Yangtze River is
the most concentrated area of freshwater lakes in China. Most parts of the study area are
relatively flat and low-lying, including the famous Poyang and Dongting Lakes [44,45].

Figure 1. The study area.
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Figure 2. Average rainfall from 2003 to 2019 in study area.

2.2. Data

To achieve drought evolution process monitoring, long-term precipitation, root zone
soil moisture, and vegetation data were integrated. Additionally, distribution maps of
winter wheat and paddy rice were used to explore the impact of drought on crops. The crop
yield data were also calculated for validation purposes. The data and related information
used in this study are shown in Table 2.

Table 2. Data and related information used in the study.

Data Source Study Year
Temporal

Resolution
Spatial

Resolution

Precipitation TRMM3B42/
TRMM3B43 2003–2019 8 days/month 0.25◦

Soil Moisture GLDAS-2.1 2003–2019 8 days/month 0.25◦

Vegetation MOD09A1/
MYD09A1 2003–2019 8 days/month 500 m

Cropland MCD12Q1 2013 year 500 m

Wheat map Decision Tree
Classification 2011–2015 year 500 m

Rice map PhenoRice 2011–2015 year 500 m
Growth stage CMDSC 2011–2015 - -

Yield JMIC 2003–2019 year County level

2.2.1. TRMM Data

The Tropical Rainfall Measuring Mission (TRMM), a joint project of the National
Aeronautics and Space Administration (NASA) of the USA and the Japan Aerospace Ex-
ploration Agency (JAXA), was launched in November 1997 [46]. For this study, daily 3B42
precipitation data and monthly 3B43 precipitation data were used at a spatial resolution of
0.25◦. The eight-day precipitation data were generated through temporal averaging of the
daily 3B42 precipitation data. The precipitation data were preprocessed and downloaded
on the Google Earth Engine (GEE) platform.

2.2.2. GLDAS Data

Root zone soil moisture is important and relatively stable compared with the surface
soil moisture because the surface soil moisture is sensitive to other environmental variables
(e.g., temperature) that drive atmospheric evaporative demand. The Global Land Data
Assimilation System version 2 (GLDAS-2) has two components: one forced entirely with
Princeton meteorological forcing data (GLDAS-2.0) and the other forced with a combination
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of model and observation-based forcing datasets (GLDAS-2.1) [47,48]. The three-hourly
GLDAS-2.1 Noah Land Surface Model L4 product at 0.25◦ resolution from 2003 to 2019 was
used to generate the eight-day root zone soil moisture data through temporal averaging,
which were preprocessed and downloaded on the GEE platform.

2.2.3. MODIS Data

The 500 m, eight-day composite surface reflectance products (MOD09A1 and MYD09A1)
of the Terra and Aqua satellites from 2003 to 2019 were downloaded from NASA’s
Level 1 and Atmosphere Archive and Distribution System (LAADS) (26 February 2020:
https://ladsweb.modaps.eosdis.nasa.gov/search/). With the data processing method
combination of EVI2_BLUE_MYO [49], the processing procedures mainly included image
mosaicking, subsetting, spectral indices calculation, data quality labeling, cloudy pixel
removal, interpolation of vegetation index images, image stacking, and Savitzky–Golay
smoothing [50], all of which were implemented using Python v.3.7 programming language.

2.2.4. Land Cover Data

The distribution of winter wheat in Jiangsu Province from 2011 to 2015 came from
Chen [51], and the spatial resolution had been resampled from 250 m to 500 m. The
distribution of rice from 2011 to 2015 was obtained by the PhenoRice algorithm, with a
resolution of 500 m [49,52]. Both maps are based on decision tree classification, combined
with the phenology information of crops, with accuracies greater than 90%. The 500 m
MODIS Land Cover Type products (MCD12Q1) of 2013 were downloaded from LAADS.
Land_Cover_Type_1 was selected from datasets of land cover type products. The types of
land cover had been merged from the original 17 categories to form 6 categories for use as
a base map; the results are shown in Figure 1.

2.2.5. Other Data

Yield data of paddy rice were provided by the Jiangsu Meteorological Information
Centre (JMIC) of China, including the statistical area and yield data of 72 counties in
Jiangsu Province (Region A) from 2003 to 2019. The growth stage data of field observations
from 2003 to 2015 were downloaded from the China Meteorological Data Service Centre
(CMDSC, 25 June 2018: http://data.cma.cn/). The entire growing season of winter wheat
was divided into two stages: Wheat Stage 1 (from sowing to the end of the regreening
period—late October of the previous year to late February) and Wheat Stage 2 (from
jointing period to maturity—early March to early June). The growing season of paddy rice
was also divided into two stages: Rice Stage 1 (from transplanting to the end of jointing
period—mid-June to late July) and Rice Stage 2 (from booting period to maturity—early
August to mid-October).

3. Methodology

3.1. Calculation of the Condition Indices and Anomalies Percentage

PCI, SMCI, and VCI, calculated using TRMM, GLDAS, and MODIS data, respectively,
are collectively called the Condition Indices (CI) and are computed as follows:

CIi =
Fi − Fmin

Fmax − Fmin
(1)

where Fi, Fmax, and Fmin are the pixel values of precipitation (or root zone soil moisture or
EVI2) and its maximum and minimum values, respectively. CIi varies from 0 to 1, but a
value of 0.5 is usually set as the threshold to monitor anomalous events. When CIi equals
0.5, it is not difficult to obtain

Fi = StandardCI =
Fmax + Fmin

2
(2)
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Take PCI as an example. During a meteorological drought with low precipitation, the
PCI is close to or equal to 0, while during flooding conditions it is close to 1. If the PCI is
less than 0.5, it means the precipitation is less than StandardPCI.

The Precipitation Anomalies Percentage (PAP), Soil Moisture Anomalies Percentage
(SMAP), and Vegetation Anomalies Percentage (VAP), collectively referred to here as the
Anomalies Percentage (AP), are computed as follows:

APi =
Fi − F

F
× 100% (3)

where Fi and F are the pixel values of precipitation (or root zone soil moisture or EVI2),
and the mean value is computed as follows:

StandardAP = F =
F1 + F2 + · · ·+ Fn

n
(4)

Taking PAP as an example, in the ideal condition of a meteorological drought with
low precipitation, PAP is close to or equal to –100%, while during flooding conditions the
PAP is close to positive infinity. When PAP is less than 0, it means that the precipitation is
less than StandardPAP; that is, less than the average precipitation over the years.

3.2. Principle and Construction of the Normalized Indices

When using multiyear RS data to monitor drought, whether CI or AP, the purpose
of the calculation is to compare with a standard value to judge the degree of drought or
moisture. Therefore, this standard value needs to be typical and can represent the normal
level of the pixel over a long period of time; thus, we proposed a new index calculation
method named Normalized Indices (NI), the development of which is shown in Figure 3.

 

Figure 3. The development of Normalized Indices. Note: F is the mean value of precipitation (or
root zone soil moisture or vegetation index) over many years. F′ is calculated by arranging the
precipitation value of a single pixel over many years, from small to large, and averaging the values
distributed in the middle 30–70% (40% in total).

Because the extreme values are added to the calculation of StandardPCI and StandardPAP,
they cannot represent well the real normal level of the pixels. Based on the AP calculation
method, we use F′ instead of F to obtain the calculation formula of Enhanced Anomalies
Percentage (EAP):

EAPi =
Fi − F′

F′ × 100% (5)
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F′ is calculated by arranging the precipitation value (or soil moisture/vegetation
index) of a single pixel for many years, from small to large, and averaging the values
distributed in the middle 30–70% (40% in total). However, when Fi exceeds twice F (or
F′), PAP and EPAP are greater than 100%. Since there is no upper limit for PAP and EPAP
under ideal conditions, the modified Normalized Indices (NI) is proposed to monitor
changes in precipitation (Normalized Precipitation Index, NPI), soil moisture (Normalized
Soil Moisture Index, NSMI), and crop growth status (Normalized Vegetation Index, NVI),
which is defined as follows:

NIi =
Fi − F′

Fi + F′ (6)

NIi varies from –1 to 1, and the value of 0 is set as the threshold for monitoring the
anomalous change:

StandardEAP = StandardNI = F′ (7)

Take the multiyear precipitation events of typical pixels in the study area as an example
(Figure 4). The area where Pixel 2 is located experienced extraordinary rainstorm events
from 2003 to 2019, but Pixel 1 did not. Due to the small difference in precipitation over
the years for Pixel 1, StandardPCI, StandardPAP, and StandardNPI are not very different;
they are all close to the normal level. For Pixel 2, because the extreme maximum value
was added to the calculation, the StandardPCI is much higher than the pixel values of
normal years. Precipitation for all years was less than StandardPCI, except in the year when
the maximum occurred. As a result, PCI-based algorithms monitor different degrees of
meteorological drought in the subsequent 16 years, which is completely inconsistent with
the facts. The AP also has the same problem with CI, but the degree is relatively minor. In
contrast, StandardNI is typical and can represent the normal level of the pixel over a long
period of time.

 

Figure 4. Time series curve of eight-day average TRMM data of typical pixels in the study area from 2003 to 2019. The row
and column number of Pixel 1 is (36,50), shown in blue; Pixel 2, which encounters an abnormal rainy event with coordinates
of (24,76), is given in red. Note: Study years sort by TRMM value from small to large.

3.3. Differences in Monitoring Effects of Different Indices

Take precipitation as an example. Assume that the precipitation range (true value) is
between 0 and 10, where 0 means no precipitation, 10 means the maximum precipitation
recorded in the history of all regions, and 5 is the normal precipitation in an ordinary
semiarid and semihumid region. Among them, the omitted year (ellipsis) pixel value in the
first column (Figure 5(a1,b1,c1)) is the same as in Year n. Taking Figure 5(b1) as an example,
all of them are 0.25. Pixel 1 represents normal pixels that show no extreme drought or
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extraordinary rainstorm event occurring, or that show places where both have occurred
with similar severity in all monitoring years; Pixel 2 represents only severe drought events
that occurred in a certain year; Pixel 3 represents only severe humid events that occurred
(such as a sudden increase in precipitation, sudden irrigation, dry land becoming paddy
field, etc.).

 
Figure 5. The simulation of different indices calculated in (a1–a5) normal regions, (b1–b5) arid regions, and (c1–c5) humid
regions, using the data of various pixels for many years. Pixel 1 represents normal pixels; Pixel 2 represents pixels where
only severe drought events occurred; Pixel 3 represents pixels where only severe flood events occurred.

The monitoring results of the CI (Figure 5, column 2) have two problems: (1) Once an
extreme precipitation event occurs in one year, drought overestimation is likely to occur
in other years. Compared with a1 and a2, Pixel 1 is a normal pixel, and the degree of
drought and flood is more consistent, so the CI is relatively symmetrical; Pixel 2 only
shows a severe water shortage in Year 1, which makes the CI of other nonextreme years
generally larger; Pixel 3 has an extreme precipitation event in Year 4, which makes the CI
of other nonextreme years generally small. In other words, for years (Year 2, Year 3, Year n,
etc.) when precipitation is normal (the pixel value is 5 in a normal region), the monitoring
results of CI show that Pixel 1 is consistent with the actual situation, Pixel 2 is wetter, and
Pixel 3 has severe drought overestimation, compared with the actual situation (Figure 5a2).
The results of b2 and c2 have the same problem as a2. This is because the StandardPCI of all
pixels is very different due to the extreme value being added to the calculation, as shown
in Figure 5, resulting in the same true value of pixels in normal years, but the precipitation
status shown by PCI is very different. (2) Due to the calculation method of the CI, there
are always the values of 0 (extreme drought) and 1 (extraordinary precipitation) for each
pixel, regardless of whether real extreme events occurred. It is easy to monitor extreme
abnormalities (a1—Pixel 1 and a2—Pixel 1) even if the true values of pixels are similar.
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NI does not have this problem (Figure 5, column 5). In regions with similar daily
conditions, the same true value will have very similar monitoring results (a5/b5/c5—Years
2 and 3); for regions with different moisture conditions, the same true value will have
different monitoring results, such as all the pixels with a true value of 5 in a5, b5, and
c5. The true value of 5 in a1, b1, and c1 has completely different meanings: it is the
normal rainfall in normal (semiarid and semihumid) regions (a1); it means high rainfall
in arid regions (b1); it means low rainfall in a humid region (c1). NI can monitor the
relative changes of real precipitation (or soil moisture or vegetation conditions) of pixels in
different regions. It changes from –1 to 1, which is convenient for mapping. However, the
legend display of NI is not symmetrical, as shown in Table 3. The main advantages and
disadvantages of CI, AP, EAP, and NI are summarized in Table 4.

Table 3. Legend meaning of Normalized Indices.

n (×Standard) Label n (×Standard) Label n (×Standard) Label

0 −1 1 0 2 0.333
0.1 −0.818 1.1 0.048
0.2 −0.667 1.2 0.091 3 0.5
0.3 −0.538 1.3 0.130
0.4 −0.429 1.4 0.167 4 0.6
0.5 −0.333 1.5 0.20
0.6 −0.250 1.6 0.231 10 0.818
0.7 −0.176 1.7 0.259
0.8 −0.111 1.8 0.286 100 0.980
0.9 −0.053 1.9 0.310
1 0 2 0.333 MAX ≈1

Table 4. The advantages and disadvantages of Condition Indices, Anomalies Percentage, Enhanced
Anomalies Percentage, and Normalized Indices.

Index Advantages Disadvantages

CI

(1) CI is accurate in places where both
drought and flood have occurred
with similar severity.
(2) The legend display is symmetrical.

(1) Once extreme precipitation event
occurs in one year, drought
overestimation is likely to occur in other
years and vice versa.
(2) There are always the values of 0
(drought) and 1 (precipitation) for each
pixel, regardless of whether the real
extreme events occur.

AP
(1) AP can well present the distance
between the current value and the
average value.

(1) The same as point (1) of CI to a
lesser degree.
(2) There is no upper limit under
ideal conditions.

EAP
(1) EAP can monitor the relative
changes of real situation of pixels in
both arid and humid regions.

(1) There is no upper limit under
ideal conditions.

NI

(1) NI does not have the limitations of
above indices, and can monitor the
relative changes of real precipitation
(or soil moisture or vegetation
conditions) of pixels in both arid and
humid regions.

(1) The legend display is not symmetrical.

The monitoring results of the AP (Figure 5, column 3) have the following problems:
(1) The first problem of CI, but the degree is relatively minor. When extreme events occur
in certain years of the pixel, for other years with normal pixel values (Year 2, Year 3,
Year n, etc.), the monitoring results using AP will be wetter (a3,b3,c3—Pixel 2) or drier
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(a3,b3,c3—Pixel 3) than the actual situation. (2) When the pixel value exceeds twice F (or
F′), the AP will be greater than 100%. The monitoring results of the EAP (Figure 5, column
4) do not have the first problem of the AP, but the second problem persists.

3.4. Validation of Study Results

The Yearbook of Meteorological Disasters in China and crop yield data from 2003 to 2019
were used to validate the study results. The drought and flood events recorded in the
disaster yearbook are a summary of the meteorological observation data of China’s meteo-
rological departments at all levels and of the on-site monitoring results of meteorological
stations. The main resource for drought and flood disaster analysis is precipitation data
from field observations. In addition, when a severe drought is encountered, there will be
records related to the state of soil moisture and crops, facilitating a comprehensive vali-
dation of remote sensing monitoring results. We also conducted a field survey in Jiangxi
Province (Region B) in 2019 as a supplement, to validate the RS monitoring results.

Meteorological disasters, insects, diseases, and nutrients can all affect crop health and
yield variation, but the meteorological factor is usually the main factor in crop monitoring
of a large region. In this study, we used the changes in vegetation index to monitor the
health of crops. The correlation between NVI and crop yield was used to validate the
vegetation index monitoring results. Except for the Yield Anomalies Percentage (YAP) and
Normalized Yield Index (NYI), the Standardized Variable of Yield (SVY) of each county [35]
was also used to monitor the variation of crop yield, which is calculated as follows:

SVYi =
Yi − Y

σ
× 100% (8)

where Yi is the crop yield in i year of one county, Y is the average, and σ is the standard
deviation of crop yield from 2003 to 2019.

4. Results

4.1. Application and Results Validation of Different Indices
4.1.1. Temporal Differences in PCI, PAP, EPAP, and NPI

Region A experienced continuous rainy weather from 6 August to 18 September 2014.
The province’s average precipitation was 60% higher than in the same period in normal
years, which has been rare in recent years. This included a number of heavy rainstorms,
sometimes accompanied by typhoons, which caused water to accumulate in farmland and
crops to fail. From mid-June to late July 2014, there was a severe precipitation reduction,
and the precipitation in December was also much lower than in previous years (as recorded
in the Yearbook of Meteorological Disasters in China).

Compared with the actual results, PCI was significantly lower than the actual pre-
cipitation, so the rainy weather from 6 August to 18 September could not be monitored
(Figure 6). This was because, compared with normal pixels that had no extreme events,
pixels with extraordinary rainstorm events occurred and would have larger values of
StandardPCI, as shown in Figure 6—Pixel 2, resulting in a lower PCI value for normal years
(Figure 5(a2,b2,c2)—Pixel 3). The results of PCI would suggest more severe drought events
than the actual situation. Compared with PCI, the trend changes in precipitation monitored
by PAP were more realistic. EPAP tended to have a value greater than the upper limit of
the map display (far greater than 100%), which was not conducive to statistics and display.
The NPI could monitor well the abnormal events of precipitation in the long-term series.
The monitoring of the start and end time of the abnormal event was also more accurate
and in line with the actual situation.
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Figure 6. Average crop pixel values of PCI, PAP, EPAP, and NPI in Region A from May 2014 to
December 2014, while PCI, PAP, EPAP, and NPI were updated every eight days and are marked in
different colors; 0.5 is the threshold of PCI, whereas the other indices use 0.

4.1.2. Spatial Differences in Normalized Indices and Condition Indices

Regional changes and intensity changes in precipitation in the entire study area
monitored by NPI from July to October were highly consistent with the drought and heavy
rain events recorded in the yearbook. The changes in soil moisture monitored by NSMI
were also in good agreement with changes in precipitation (NPI) (Figure 7a). The following
Yearbook records are introduced in chronological order (months): (1) There were torrential
rains and floods in the study area in July 2014, while a moderate to severe meteorological
drought occurred in north-central Jiangsu, northwest Anhui, and central Hubei in the
same month. (2) From 7 to 31 August, there were continuous low temperatures and
rainy weather in the entire study area. The temperature in most areas was 2–3 ◦C lower
than normal, and the sunshine hours were 60–80 h fewer than normal. Among them,
the sunshine hours in Jiangsu Province were the lowest since 1961. The continuous low
temperature and inadequate illumination in August caused damage to vegetation growth
and decreased NVI (Figure 7a). (3) Jiangsu Province experienced continuous rainy weather
from 1 to 18 September; Anhui Province’s average precipitation was 32 days from 1 August
to 30 September, the most in the same period since 1961; there were continuous rainy days
in most parts of Hubei Province from 8 to 19 September. (4) However, drought occurred
in central and southern Jiangxi from mid-September to early November and obvious
meteorological droughts occurred in southern and eastern Hunan from mid-September
to late October. From 16 to 21 October, there was continuous rain in western Hubei; from
27 to 30 October, there was continuous heavy rainfall in the MLRYR. Heavy to extreme
rain occurred in some regions, which adversely affected crop growth (2014 Yearbook of
Meteorological Disasters in China).

Compared with the meteorological observation results, the precipitation events moni-
tored by PCI from July to October 2014 were generally small in scope and low in intensity, as
shown in the purple circles of Figure 7. The results of soil moisture distribution monitored
by SMCI were quite different from the PCI results. For example, except for Hubei Province,
August showed continuous rainy weather with little sunshine; the PCI monitoring result
was that the precipitation was relatively low, while the soil moisture monitored by the
SMCI was obviously humid. This is mainly because the precipitation event in August had
a long duration and wide range, but the overall intensity was not large. The total monthly
rainfall was not high in the same month of all years, so the PCI monitoring result was
drought (as shown in Figure 7b), which did not match the actual situation. For regions
that suffered heavy rainfall events, the monitoring results of the Condition Indices would
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reflect severe drought overestimation, in which the error of precipitation (PCI) would be
greater than that of soil moisture and vegetation (SMCI and VCI).

 
Figure 7. Spatial evolution of NPI/NSMI/NVI (a) and PCI/SMCI/VCI (b) in Jiangsu, Anhui, Hubei,
Jiangxi, and Hunan Provinces, China. The results are organized on a timeline from July 2014 to
October 2014 (the main growth season of rice). All indices were updated monthly.

4.2. Multiyear Drought Monitoring Based on Normalized Indices
4.2.1. Temporal Evolution of NPI, NSMI, and NVI

The PCI from 2011 to 2015 was below 0.5, indicating a four-year meteorological
drought event that was obviously inconsistent with the facts; it did not match the excessive
precipitation events recorded in the Yearbook (Figure 8a). The NPI could better monitor
the drought and precipitation events recorded in the Yearbook than PCI (Figure 8b). The
difference between VCI and NVI was smaller than that between PCI and VCI because the
weather-related part of EVI2 affected by weather changes (precipitation, drought, high
temperature, etc.) was relatively small [16], leading to more accurate results for VCI. How-
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ever, the occasional excessive rainfall increases the value of StandardPCI, making the PCI of
normal years relatively small and causing the overestimation of meteorological drought.

Figure 8. Average values of wheat and rice pixels of PCI/SMCI/VCI (a) and NPI/NSMI/NVI (b).
(c–f) NI temporal evolution of four typical meteorological drought events in detail. The values of
0.5 and 0 are the threshold of CI and NI, respectively; meteorological drought is indicated when
PCI is less than 0.5 or NPI is less than 0. Wheat Stage 1 means the sowing to regreening period of
wheat; Wheat Stage 2 means the jointing to maturity; Rice Stage 1 means the transplanting to the
jointing period of rice; Rice Stage 2 means the booting to maturity (see Section 2.2.5). All indices were
updated every eight days and are marked in different colors.

It is especially worth noting that when the NPI was less than 0, the NVI (Figure 8b–f)
was greater than 0; in other words, when meteorological drought (precipitation lower than
the normal level) occurred, the crops grow better in Rice Stage 2 and wheat growing seasons
in the MLRYR. This is because, in arid regions that rely on precipitation for irrigation, water
is the main factor affecting crop health. However, in the MLRYR, which has abundant
precipitation and numerous rivers and lakes, the continuous rainy weather is usually
accompanied by reduced illumination and lower temperatures, which are not conducive
to crop growth. In contrast, the meteorological drought means adequate illumination
in the MLRYR, so crops grow better. However, during the wheat sowing period or rice
transplanting period, severe meteorological drought will affect the growth and survival of
seedlings, which causes serious damage to crops.

4.2.2. Spatial Evolution of Drought in 2019

In the postmonsoon (August–October) season of 2019 [53], there was great public
concern about the severe drought event in the MLRYR, so we carried out a week-long field
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survey in Region B of Jiangxi Province in late October 2019. We visited the Agricultural
Meteorological Center, surveyed a total of 180 rice samples (evenly distributed in the
main rice-growing areas), and interviewed 12 rice growers to understand the evolution of
drought (Figure 9).

 

Figure 9. Field survey and ground geotagged photos of paddy rice with different health conditions
in Region B in late October 2019. (c) Topography of Region B and the distribution of field survey
points; (a,b,d) rice paddies with irrigation; (e) rice paddies without irrigation.

The survey results showed that Region B had abundant precipitation before August,
and some regions had more than 40 consecutive days of precipitation before 14 July.
Starting in late July, most areas of Region B had more than 100 consecutive days without
precipitation. The growth conditions of rice were roughly divided into three types: (1) In
most areas, due to the large water storage capacity of the reservoir and the good irrigation
system, the soil moisture was normal or slightly lower than in previous years. The growth
of rice was not significantly affected (Figure 9b,d) and the estimated yield had not changed
obviously from previous years. (2) In the area close to Poyang Lake, water could be
seen in the fields (Figure 9a). Due to the abundant sunshine from August to October, a
slight increase in yield was expected. (3) In the small area with higher altitudes or poorer
irrigation conditions, the soil moisture was obviously lower, reducing the yield by about
50% (Figure 9e) or even resulting in no harvest.

The NPI-based precipitation monitoring results showed severe meteorological drought
(Figure 10). The soil moisture of most pixels in the entire study area was lower than that of
the same period by about 20%. Since the soil moisture in the MLRYR was high in normal
years, the reduction in soil moisture in most parts of the study area did not cause serious
damage to vegetation growth. The NVI of the entire study area increased from −0.015 in
July to 0.012 in October month by month, indicating that the vegetation growth showed a
tendency to improve.
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Figure 10. Spatial evolution of NPI, NSMI, and NVI in study area from June to October 2019 (growth
season of rice). All indices were updated monthly.

We used changes in the vegetation index to monitor the crop health and the correlation
between NVI and crop yield to validate the vegetation index monitoring results. The NPI
and NVI of the main growing season of rice in Region A were averaged, and the results
(Figure 11a,b) showed that the meteorological drought in the east was more serious but that
the EVI2 had increased compared with previous years because there were more lakes in
the western part of Region A. Compared with the average value of the entire rice growing
season, the NVI of the harvest period was more consistent with the spatial variation of
rice yields (Figure 11c,f). The effect of increasing production in the west was more obvious
than in the east and, compared with YAP (Figure 11d) and SVY (Figure 11e), the spatial
variation of NYI (Figure 11f) was more consistent with NVI. Both the vegetation index and
the rice yield were negatively correlated with precipitation (Figure 12). With the decrease
in precipitation, the vegetation index of 78.8% of pixels increased, while the yield of 97.1%
of pixels increased.

Figure 11. Spatial evolution of NPI, NVI, and rice yield change of Region A in growth season of rice
in 2019.
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Figure 12. Scatter plot and correlation analysis between precipitation deficit, vegetation index (a), and rice yield (b) of
region A in 2019.

5. Discussion

Most of our understanding of drought is based on remote sensing data, using calcu-
lated RS drought indices to monitor the conditions of precipitation, soil moisture, tem-
perature, and vegetation. Each factor was assigned different weights based on empirical
analysis, principal component analysis (PCA), kernel entropy component analysis (KECA),
spatial principal component analysis (SPCA), and other methods [23,35,54,55]. New com-
posite drought indices were then formed and used to monitor meteorological drought,
agricultural drought, or hydrological drought in different regions. When using RS data for
many years in drought monitoring, the purpose of the calculation is to compare the current
state with a standard value, judging the drought or moisture degree in the region at a
certain time. Due to the calculation principle of existing Condition Indices and Anomalies
Percentage, drought overestimation occurs easily, especially in regions with abundant
precipitation. However, the StandardNI can better represent the normal level of a region,
which makes the results of precipitation, soil moisture, and vegetation changes monitored
by Normalized Indices more consistent with the actual situation. Based on Normalized
Indices, we realized the accurate monitoring of meteorological drought events in the study
area over many years.

In addition, we studied the well-known meteorological drought event that occurred in
the MLRYR from August to October 2019 and found that it had a much less severe impact
on vegetation than expected. Meteorological or climatological drought is defined simply in
terms of the magnitude and duration of a precipitation shortfall (16 August 2020: https://
www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-in-
force/drought/). When a severe meteorological drought event occurs, people generally
associate it with damaged crops and reduced yields. This phenomenon is evident in arid
regions that rely solely on precipitation irrigation, which is also the focus of most studies.
However, the fact that meteorological drought induces an increase in the vegetation index
and crop yield is readily overlooked due to the lack of systematic studies. Our investiga-
tions have found that in southern China the water demand of crops can be satisfied by
irrigation when meteorological drought occurs. The irrigation sources include lakes, reser-
voirs, pond water storage, and underground pumping. At the same time, a reduction in
rainfall means an increase in illumination and adequate heat resources, so crops grow better.
Anderson et al. [56] suggested that a finer crop model was needed that could consider
moisture and temperature extremes during critical phenological stages of crop growth. We
should also give more attention to the illumination. In addition, in accordance with the
definition of meteorological drought as only a shortage of rainfall, it is not recommended
to add on other factors such as soil moisture or vegetation; this would cause adverse effects
because precipitation is not simply positively correlated with the vegetation index.
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Agricultural drought links meteorological drought characteristics to agricultural im-
pacts, associating precipitation shortages most immediately with higher evapotranspiration
levels and soil moisture deficits. Our results prove that severe precipitation deficiency
and meteorological drought do not necessarily lead to agricultural drought. Even when
precipitation is the main water input for crops, in some regions a statistically weak rela-
tionship between precipitation and yield loss may be seen [36,57], while the timing of the
precipitation is also an important factor. Therefore, it is not sufficient to use only measured
precipitation to assist in the construction of agricultural drought monitoring models (such
as determining the weight of each component) or for validating the monitoring results. Our
results can provide some new ideas for the construction of agricultural insurance models.

Despite the good performance at capturing drought impacts, some key limitations
exist when using Normalized Indices, as seen in this study.

The first limitation was introduced by the computation method. When calculating
Condition Indices or Anomalies Percentage using soil moisture or vegetation index data
over many years, the types of land cover are not distinguished, which is also one of
the sources of error. For example, there was one area where a certain pixel had been
represented as dry land for many years and only one year where it was used as a paddy
field. When calculating CI or AP, if this single “paddy field” year was not removed using
land cover data, other years would have appeared as having low soil moisture and severe
drought, which was inconsistent with the real situation (Pixel 3 of Figure 5(a1,a2)). Land
cover changes, such as crops to trees or farmland to ponds, will also increase the error in
drought monitoring. Using Normalized Indices can avoid calculation errors, but the land
use inconsistency of time series can also cause errors in judgment. Therefore, the use of
multiyear land cover data to filter the time series in index calculations can improve the
accuracy of disaster identification. Another limitation is the data requirement. The spatial
resolution of the data used in this study was too low, especially for soil moisture. It is
necessary to use the same resolution for soil moisture data as for the vegetation index. Soil
moisture is a factor that directly impacts vegetation health, and the response of different
vegetation changes in soil moisture varies. Adding high-spatiotemporal-resolution soil
moisture data will be the basis for the high-precision monitoring of agricultural drought in
the future.

6. Conclusions

According to the calculation principle of commonly used RS drought indices, and for
achieving more accurate drought monitoring, we proposed a new index calculation method,
referred to as Normalized Indices or NI. TRMM precipitation, GLDAS soil moisture, and
MODIS reflection datasets were used to calculate drought indices. The disaster events
recorded in the Yearbook of Meteorological Disasters in China, field survey data, and statistical
crop yield data were used to validate the monitoring results of paddy rice and winter
wheat. Through the simulation of different types of moisture conditions and multiyear
drought monitoring of the study area, the monitoring results showed:

• NI can monitor well the relative changes in real precipitation/soil moisture/vegetation
conditions, in both arid and humid regions, while meteorological drought is easily
overestimated with CI in areas with abundant precipitation;

• The error of precipitation (PCI) is greater than that of soil moisture and vegetation
(SMCI and VCI), the same as AP;

• The well-known drought event that occurred in the MLRYR from August to October
2019 had a much less severe impact on vegetation than expected. In contrast, the
precipitation deficiency induced an increase in sunshine and adequate heat resources,
which improved crop growth in most areas.

This study shows some restrictions and shortcomings of recognized CI and AP, and it
proposes a new index calculation method of NI to better monitor meteorological drought
in the MLRYR of China, providing a new method for future drought monitoring studies.
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Abbreviations

AMSR-E Advanced Microwave Scanning Radiometer for Earth Observing System
AP Anomalies Percentage
AVHRR Advanced Very High Resolution Radiometer
CI Condition Indices
CMDSC China Meteorological Data Service Centre
EAP Enhanced Anomalies Percentage
EPAP Enhanced Precipitation Anomalies Percentage
ESMAP Enhanced Soil Moisture Anomalies Percentage
EVAP Enhanced Vegetation Anomalies Percentage
EVI2 2-band Enhanced Vegetation Index
GEE Google Earth Engine
GLDAS Global Land Data Assimilation System
JAXA Japan Aerospace Exploration Agency
JMIC Jiangsu Meteorological Information Centre
KECA Kernel Entropy Component Analysis
LAADS NASA’s Level 1 and Atmosphere Archive and Distribution System
MCDIs Composite Drought Indices based on multivariable linear regression
MI Moisture Index
MIDI Microwave Integrated Drought Index
MLRYR Mid-to-Lower Reaches of the Yangtze River
MODIS Moderate-resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDDI Normalized Difference Drought Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NI Normalized Indices
NMDI Normalized Multiband Drought Index
NPI Normalized Precipitation Index
NPP Net Primary Productivity
NSMI Normalized Soil Moisture Index
NVI Normalized Vegetation Index
NYI Normalized Yield Index
OMDI Optimized Meteorological Drought Index
PADI Process-based Accumulated Drought Index
PAP Precipitation Anomalies Percentage
PCA Principal Component Analysis
PCI Precipitation Condition Index
PDSI Palmer Drought Severity Index
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PR Precipitation Radar
PSMCI TRMM Precipitation and Soil Moisture Condition Index
PTCI TRMM Precipitation and Temperature Condition Index
RS Remote Sensing
RSDEI Remote Sensing Drought Evaluation Index
SDCI Scaled Drought Condition Index
SDI Synthesized Drought Index
SMAP Soil Moisture Anomalies Percentage
SMCI Soil Moisture Condition Index
SMTCI Soil Moisture and Temperature Condition Index
SPCA Spatial Principal Component Analysis
SPEI Standardized Precipitation Evapotranspiration Index
SPI standardized precipitation index
SVY Standardized Variable of crop Yield
TCI Temperature Condition Index
TMI TRMM Microwave Imager
TRMM Tropical Rainfall Measuring Mission
VAP Vegetation Anomalies Percentage
VCI Vegetation Condition Index
VIRS Visible and Infrared Scanner
YAP Yield Anomalies Percentage
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Abstract: Ecological engineering is a widely used strategy to address environmental degradation
and enhance human well-being. A quantitative assessment of the impacts of ecological engineering
on ecosystem services (ESs) is a prerequisite for designing inclusive and sustainable engineering pro-
grams. In order to strengthen national ecological security, the Chinese government has implemented
the world’s largest ecological project since 1999, the Grain for Green Program (GFGP). We used a
professional model to evaluate the key ESs in Lvliang City. Scenario analysis was used to quantify
the contribution of the GFGP to changes in ESs and the impacts of trade-offs/synergy. We used
spatial regression to identify the main drivers of ES trade-offs. We found that: (1) From 2000 to 2018,
the contribution rates of the GFGP to changes in carbon storage (CS), habitat quality (HQ), water
yield (WY), and soil conservation (SC) were 140.92%, 155.59%, −454.48%, and 92.96%, respectively.
GFGP compensated for the negative impacts of external environmental pressure on CS and HQ,
and significantly improved CS, HQ, and SC, but at the expense of WY. (2) The GFGP promotes the
synergistic development of CS, HQ, and SC, and also intensifies the trade-off relationships between
WY and CS, WY and HQ, and WY and SC. (3) Land use change and urbanization are significantly
positively correlated with the WY–CS, WY–HQ, and WY–SC trade-offs, while increases in NDVI
helped alleviate these trade-offs. (4) Geographically weighted regression explained 90.8%, 94.2%, and
88.2% of the WY–CS, WY–HQ, and WY–SC trade-offs, respectively. We suggest that the ESs’ benefits
from the GFGP can be maximized by controlling the intensity of land use change, optimizing the
development of urbanization, and improving the effectiveness of afforestation. This general method
of quantifying the impact of ecological engineering on ESs can act as a reference for future ecological
restoration plans and decision-making in China and across the world.

Keywords: Grain for Green Program; ecosystem services trade-offs; scenario analysis; spatial
regression; Midwestern Shanxi

1. Introduction

Ecosystem services (ESs) refer to all the benefits that human beings obtain directly or
indirectly from the natural ecosystem to meet and maintain their living needs [1,2]. The
Millennium Ecosystem Assessment (MEA) divides ESs into four basic types, including
regulating services (e.g., soil conservation and carbon storage), provisioning services
(e.g., water and timber), supporting services (e.g., biodiversity conservation and nutrient
cycling), and cultural services (e.g., forest recreation) [2,3]. Human development patterns
over the last few centuries have detrimentally affected the health and resilience of natural
ecosystems [3,4]. Declines in ESs have been observed at global and regional scales, and these
declines pose a significant threat to human well-being [2,5]. Ecological engineering is a
widely adopted countermeasure that attempts to mitigate the contradiction between human
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development and ecosystem protection [6,7]. Ecological engineering aims to increase
the sustainable supply of ESs by repairing or improving ecosystem functioning [8,9].
At present, global investment in the development of ecological engineering amounts to
billions of dollars per year [9], and quantitative assessment of the effects of ecological
engineering on ESs has attracted the attention of many managers, research organizations,
and researchers [10].

ESs are good indicators for evaluating the ecological benefits of ecological engineering,
as they effectively connect human well-being and the natural environment [1,11]. ES
trade-offs occur when the increase of a certain ES is at the cost of reducing another ES [2,12].
Therefore, revealing the influencing factors of ES trade-offs is crucial to maintaining the
sustainable supply of multiple ESs [12,13]. The frequent conversion between land use types
caused by high-intensity human activities is the main cause of ES declines [14,15]. Rebuilding
the ecological functioning of degraded ecosystems by changing land use patterns and
intensity of use is the main aim of most ecological projects [8,16], which will have strong
impacts on the supply and trade-offs between ESs [17,18]. Ecological engineering that
unilaterally promotes a single ES makes it difficult to maximize ecological benefits [19], and
may even negatively affect ecosystem functioning and cause other services to decline [20,21].

Ecological degradation is one of the main reasons for the increasing frequency of
natural disasters [22]. In order to achieve carbon neutrality and strengthen national eco-
logical security, the Chinese government has implemented the world’s largest ecological
project since 1999: the Grain for Green Program (GFGP) [23]. With the implementation
of the GFGP, vegetation cover has increased significantly [24] and various ESs, such as
biodiversity and climate regulation, have been significantly improved [25]. However, large-
scale planting of non-native vegetation not only leads to a significant increase in water
consumption and evapotranspiration [26], which aggravates the potential conflict between
regional ecosystem functioning and human demand for water resources [27], but also
further challenges the achievement of balance between green and grain land, especially in
arid regions [28,29]. This has rendered uncertain the sustainability of the ecological benefits
of the GFGP. Therefore, quantitative assessment of the impacts of ecological engineering
on ESs and analysis of the dominant factors driving ES trade-offs are prerequisites for the
design of inclusive and sustainable ecological engineering [30].

In the context of rapid socio-economic development, most studies have confirmed
that the GFGP can improve ESs and change the relationship between ecosystem support
services and regulation services [31,32]. However, this change is influenced by multiple
factors, such as natural, anthropogenic, climatic, and socio-economic factors [33]. There are
few studies that quantify the contribution rate of ecological engineering to changes in ESs
and the impacts of ecological engineering on the relationship between different ESs. In this
study, we focus on Lvliang City, Shanxi Province, an area typical of the GFGP. This region
has serious soil erosion and is a typical ecologically fragile zone. Our specific objectives
are: (1) to quantify the contribution rate of the GFGP to changes in ESs; (2) to analyze the
impacts of the GFGP on the trade-offs and synergy between ESs; and (3) to identify the
factors influencing the trade-offs between ESs and put forward suggestions for promoting
the inclusive and sustainable development of the GFGP. This research should serve as a
reference for future ecological engineering projects in China and around the world.

2. Materials and Methods

2.1. Study Area

Lvliang City is located in the east-central region of China’s Loess Plateau and the
western region of Shanxi Province, and has an area of about 21,100 km2 (Figure 1). Lvliang
City has a continental monsoon climate with four distinct seasons, synchronized rain and
heat, and sufficient sunlight. The average annual temperature is between 0.4 ◦C and 12.2 ◦C,
and the average annual precipitation is between 438 and 588 mm. The elevation of the
study area ranges from 561 to 2806 m a.s.l., with high terrain in the middle of the study area
and lower terrain on the edges (Figure 1). Vegetation cover in the mountains of the central
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and eastern regions is relatively high, and human activities and industrial development are
mainly concentrated in the southeastern plains; the western loess hilly regions have broken
terrain, barren soil, and sparse vegetation [34,35]. Due to the low coverage rate of surface
vegetation coupled with the landform type of prevalent ravines, the area has serious soil
erosion and is typically an ecologically fragile area [34]. In recent years, because of the
GFGP, the vegetation coverage rate in this area has increased significantly, the functions
of various ecosystems such as climate regulation and soil conservation have improved
significantly, and ESs have, accordingly, changed significantly [24,35].

Figure 1. Location and elevation of study area.

2.2. Data Sources and Descriptions

In this study, we used multi-source data products, such as land use, meteorology, soil,
and digital elevation models, to evaluate ESs. Detailed descriptions and data sources are
shown in Table 1. In ArcGIS 10.2, all data are converted to the same projected coordinate
system (WGS_1984_UTM_Zone_49N), and the “Resample” tool is used to unify the raster
data resolution to 30 m.

Table 1. Description and sources of data used to evaluate ESs.

Data Data Format Data Description Data Sources

Land use maps Raster
(30 m)

Land use maps interpreted
from Landsat TM/ETM/OLI
images. Land use types are

classified into seven
categories: farmland, forest,
grassland, shrub land, water
body, construction land, and

unused land.

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

(http://www.resdc.cn/ (accessed on 16 March
2021))

Digital Elevation Model Raster
(30 m) Elevation data. Geospatial Data Cloud (http://www.gscloud.cn

(accessed on 16 March 2021))

Meteorological data Raster
(1 km)

Including monthly average
temperature and precipitation,
annual average temperature

and precipitation, and
potential evapotranspiration.

National Earth System Science Data Center
(http://www.geodata.cn/ (accessed on 16

March 2021))

Soil properties Raster
(1 km)

Including soil texture, topsoil
sand fraction, topsoil silt

fraction, topsoil clay fraction,
topsoil organic carbon, root
restricting layer depth, and

plant available water content.

Harmonized World Soil database
(http://www.iiasa.ac.at/Research/LUC/

External-World-soil-database/HTML/
(accessed on 16 March 2021))
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Table 1. Cont.

Data Data Format Data Description Data Sources

Evapotranspiration
coefficient (Kc) Excel format Plant evapotranspiration for

different land use types.

Food and Agriculture Organization of the
United Nations (FAO)

(http://www.fao.org/3/X0490E/x0490e0b.htm
(accessed on 16 March 2021))

Watershed boundary Shapefile Digital watershed atlas. HydroSHEDS (http://hydrosheds.org/
(accessed on 16 March 2021))

2.3. Quantifying Ecosystem Services

The InVEST model is used to quantify four key ESs: water yield (WY), soil conser-
vation (SC), habitat quality (HQ), and carbon storage (CS). WY is calculated based on
the difference between annual average precipitation and actual annual evapotranspira-
tion [29,36]. SC refers to the erosion control ability of the ecosystem to prevent soil loss
and the ability to store and maintain sediment [36,37]. The sediment delivery ratio module
calculates soil conservation services based on the difference between potential (under
extremely degraded conditions without vegetation cover) and actual (under current land
cover and management conditions) soil loss [19,36,37]. HQ refers to the ability to provide
resources and environmental conditions for the survival and development of species or
populations, which depends on the abundance of natural resources [36,38]. The habitat
quality module calculates the HQ according to the habitat suitability of each land use type,
the impact distance and weight of threat factors, and the sensitivity of each land use type to
threat factors [36,38]. Through previous studies [38–41], we determined the impact distance
and weight of threat factors, the habitat suitability of each land use type, and the sensitivity
parameters to each threat factor (Tables S1 and S2). The carbon module quantifies CS using
previous local research on the carbon density of different land use types [42–44] (Table S3).
To avoid the influence of abnormal climate fluctuations in a single year, we selected the
average rainfall and temperature from 2000 to 2018 as the general results from the study
area [45,46]. Table 2 provide greater detail on the process of assessment of each ES.

Table 2. Methods for quantifying ESs.

ESs Methods Mathematical Expression

WY InVEST model water yield
module

WYx = (1 − AETx/Px)× Px
WYx: annual water yield for each grid cell; AETx: annual actual evapotranspiration for
pixel x; Px: annual precipitation on pixel x; Biophysical coefficients of model input are
shown in Table S3.

SC InVEST model sediment
delivery ratio module

SC = R × K × LS × (1 − C × P)
SC: soil conservation; R: rainfall erosion factor; K: soil erosion factor; LS: slope length
and gradient factor; C: vegetation cover factor; P: support practice factor. R and K are
calculated to refer to the method of Yang et al. [32] and Zhang et al. [37]. We assigned C
and P values according to existing literature [17,36,39] (Table S3).

HQ InVEST model habitat quality
module

HQ = Hj ×
[

1 −
(

DZ
xj

DZ
xj+KZ

)]
HQ: habitat quality; Hj: habitat suitability for habitat type j; Dxj: degree of habitat
degradation in pixel x that is in habitat type j; K: half-saturation constant; Z: default
parameter of the normalized constant model.

CS InVEST model carbon module
CS = Ca + Cb + Cs + Cd
CS: carbon storage; Ca, Cb, Cs, and Cd are carbon densities in aboveground biomass,
belowground biomass, soil, and dead matter, respectively, for each land use type.

2.4. Calculation of Trade-Offs Between Ecosystem Services

Correlation analysis is an effective tool to identify relationships between pairs of
ESs, with significant negative correlations representing trade-offs and positive correlations
representing synergies [47]. The size of the Pearson correlation coefficient indicates the
strength of the trade-off and synergy relationships [47]. Obviously, this method ignores the
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difference in the geographical space of the change rate of the ES trade-offs. The root mean
squared error (RMSE) quantifies the average difference between the standard deviation of
a single ES and the average ES’s standard deviation [47,48]. The dispersion degree of the
standard deviation of distance of average ESs is described, and reflects the difference in the
geographical space of the change rate of the ES’s trade-offs [49,50]. Therefore, this study
uses the RMSE to quantify the trade-offs between ESs. To eliminate the influence of ES unit
differences, we first standardize the value of each ES.

ESi =
ESi,obs − ESi,min

ESi,max − ESi,min
. (1)

where ESi is the standardized value; ESi,obs is the raw value; and ESi,min and ESi,max are the
minimum and maximum values of the i ESs, respectively. RMSE is calculated as follows:

RMSE =

√
1

n − 1

n

∑
i=1

(
ESi − ES

)2
(2)

where ES is the expected value of n kinds of ESs. In two dimensions, RMSE represents the
distance from the coordinate point to the diagonal, and the relative position of the coordinate
point represents the relative benefit of a certain ecosystem service [49]. Lu et al. [48] and
Luo et al. [50] provide detailed instructions and procedures for the calculation of such
trade-offs.

2.5. Actual Land Use Changes and Scenarios

The local administrative department of the GFGP provided vector data for the imple-
mentation area of the GFGP in Lvliang City as of the end of 2018. We set up a scenario
where the GFGP was not implemented and quantified the impact of the GFGP on regional
ESs by comparing this alternative scenario with the actual scenario.

(1) Actual scenario: we evaluated ESs before (2000) and after (2018) the implementation
of the GFGP based on actual land use. By comparing ESs in 2000 and 2018, we can
understand actual changes of ESs under the implementation of the GFGP.

(2) Alternative scenarios where the GFGP was not implemented (2018S): this is a
simulated scenario. We assume that during the period 2000–2018, the actual GFGP im-
plementation area did not implement the GFGP; that is, the land use types remained,
unchanged, at their state in 2000, while the land use types in other regions were consistent
with actual changes. By comparing ESs in 2018S and 2018, we were able to quantify the
impact of the GFGP on ESs.

Terrain fragmentation due to soil erosion is the main cause of ecological degradation in
the Loess Plateau [51]. The design and implementation of the GFGP on the sub-watershed
scale to carry out comprehensive control of soil erosion has achieved good results [19,52].
In addition, as a physical geographical unit, the sub-watershed scale can more accurately
reflect biophysical characteristics [19]. Therefore, we obtained the average value of each
ES at the sub-watershed scale through the Zonal Statistics tool in ArcGIS 10.2. At the
sub-watershed scale, the impact of GFGP on ESs was quantified and the trade-offs among
ESs and their influencing factors were analyzed.

2.6. Geographically Weighted Regression Model

Previous studies have confirmed that there are obvious geographical differences in
ESs [53,54]. It is difficult for the classic global regression to reflect the differences in the
relationship between ES trade-offs and influencing factors in geographic space, and not
fully reflect actual local processes [55]. Geographically weighted regression (GWR) obtains
local coefficients by minimizing residuals, taking into account differences in the spatial
variation in the relationship between ES trade-offs and influencing factors, which improves
the reliability of the model [56].
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ESs and their trade-off relationships are affected by factors such as land use [57],
climate [58], vegetation [19], geomorphology [59], and urbanization [60]. We selected eight
influencing factors to include in our model: the dynamic degree of comprehensive land use
change (LUD; Refer to Li et al. [61] method for calculation), annual average temperature
(TEM), NDVI, annual average precipitation (PRE), percentage of construction land (CON),
elevation (DEM), slope (SLO), and potential evapotranspiration (PET) (Table S4 provides
detailed calculation methods or sources). To avoid the influence of multicollinearity, all
factors were tested for multicollinearity in SPSS 21, and the factors with VIF greater than
five were eliminated (Table S5). These preliminary analyses left us with LUD, NDVI, PRE,
DEM, and CON as independent variables and the trade-off relationships between ESs as
dependent variables for our GWR model. The lower the AICc value of the model output,
the more concise the model and the more reliable the regression estimation. The higher
adjusted R2 indicates a higher explanatory power and a better fit [56]. The mathematical
expression of the model is as follows:

yi = β0(ui, vi) +
p

∑
j=1

β j(ui, vi)xij + εi, i ∈ {1, 2, . . . , n} (3)

where y is the dependent variable; (ui, vi) is the spatial location of the i-th sample; β0 (ui,
vi) is the intercept; p is the number of influencing factors; xij represents the independent
variables; βj (ui, vi) is the estimated coefficient of the i-th sample for the j-th driving factors;
and εi is the error term.

3. Results

3.1. Land Use Change

Figure 2 shows the land use patterns in 2000, 2018, and 2018S (the scenario if the GFGP
were not implemented). Compared with 2000, the area of farmland decreased by 28.90%
in 2018, and the area of construction land, forest, grassland, and shrub land increased
by 259.31%, 13.7%, 23.98%, and 4.51%, respectively (Table 3). The area of farmland and
forest under the 2018S scenario decreased by 5.21% and 10.92%, respectively, and the area
of grassland and shrub land increased by 4.20% and 0.87%, respectively (Table 3). Our
results show that the GFGP led to a decrease of 23.69% in the area of farmland, and an
increase of 24.62%, 19.78%, and 3.64% in the area of forest, grassland, and shrub land,
respectively (Table 3), and thus was the main driving force for the significant increase in
regional vegetation cover.

Figure 2. Land use patterns in 2000, 2018, and 2018S. 2018S: the scenario if the GFGP were not implemented.
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Table 3. Land use changes from 2000 to 2018 and 2018S. 2018S: the scenario if the GFGP were not implemented.

Land Use Types Farmland Forest Grassland
Shrub
Land

Water
Body

Construction
Land

Unused
Land

2018
Change area (km2) −2515.04 527.15 1214.05 140.63 −24.39 656.97 0.62
Change ratio (%) −28.90% 13.70% 23.98% 4.51% −17.36% 259.31% 87.06%

2018S
Change area (km2) −453.05 −420.01 212.61 27.23 −24.39 656.97 0.64
Change ratio (%) −5.21% −10.92% 4.20% 0.87% −17.36% 259.31% 90.36%

Effect of GFGP on land
use change (%) −23.69% 24.62% 19.78% 3.64% 0 0 −3.30%

3.2. ESs Change

Figure 3 shows the spatial pattern of ESs in 2000, 2018, and 2018S (the scenario if
the GFGP were not implemented). The spatial pattern of CS is consistent with land use, and
high-value areas are distributed in mountainous regions with higher forest cover (Figure 3).
Compared with 2000, the average CS in 2018 and 2018S increased by 15.47 (Mg/ha) and
decreased by 6.33 (Mg/ha), respectively. During the study period, the contribution rate
of the GFGP to CS changes was 140.92% (Figure 3). The central and eastern areas are
dominated by forest and grassland, with high HQ, while in the western loess hilly region
and the southeastern plains, HQ is relatively low (Figure 3). Compared with 2000, the
average HQ in 2018 and 2018S increased by 0.035 and decreased by 0.019, respectively.
During the study period, the contribution rate of the GFGP to HQ changes was 155.59%
(Figure 3). WY was high in the center of the study area and low in the outer regions
(Figure 3). Compared with 2000, the average WY in 2018 and 2018S increased by 0.79 (mm)
and 4.36 (mm), respectively. During the study period, the GFGP had a significant negative
impact on WY, with a contribution rate of −454.48% (Figure 3). The central and eastern
regions had high SC values, while the southeast and western regions had relatively low
SC (Figure 3). Compared with 2000, the average SC in 2018 and 2018S increased by
0.947 (ton/ha) and 0.067 (ton/ha), respectively. During the study period, the contribution
rate of the GFGP to SC changes was 92.96% (Figure 3). In general, the implementation of the
GFGP from 2000 to 2018 compensated for the negative impacts of external environmental
pressures on CS and HQ, and significantly improved CS, HQ, and SC; however, this
improvement came at the expense of WY.

3.3. Trade-Offs Between ESs

The correlation between changes in ESs from 2000 to 2018 and 2018S (the scenarios if
the GFGP were not implemented) was analyzed at the sub-watershed scale. CS, HQ, and
SC have a significant synergistic relationship, and there is a significant trade-off between
these ESs and WY (Table 4). In addition, the correlation coefficients (including positive and
negative correlations) between paired ESs in the actual scenario are larger than those in the
alternative scenario if the GFGP were not implemented (Table 4). This indicates that the
GFGP has intensified the trade-offs and synergies between ESs.

We visualized the WY-CS, WY-HQ, and WY-SC trade-offs using root mean squared
error (RMSE), and our results show that the west and southeast are the high value areas of
the trade-offs (Figure 4). Average tradeoff values of WY-CS, WY-HQ, and WY-SC are 0.051,
0.050, and 0.016, respectively, in the actual scenario, and the average tradeoff values of WY-
CS, WY-HQ, and WY-SC are 0.028, 0.030, and 0.014, respectively, in the alternative scenario
if the GFGP were not implemented (Figure 4). This indicates that the implementation of
the GFGP strengthens the trade-offs between WY-CS, WY-HQ, and WY-SC.
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Figure 3. Spatial pattern of ESs in 2000, 2018, and 2018S. 2018S: the scenario if the GFGP were not implemented. The bar
chart on the right represents the average value of ESs in 2000, 2018, and 2018S and the contribution rate of the GFGP to the
changes in ESs. Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality.

Table 4. Pearson’s correlation analysis between changes in ecosystem services.

N = 181 CS2018 HQ2018 SC2018 WY2018 CS2018S HQ2018S SC2018S WY2018S

CS2018 1
HQ2018 0.920 ** 1
SC2018 0.835 ** 0.889 ** 1

WY2018 −0.804
**

−0.898
**

−0.641
** 1

CS2018S 1
HQ2018S 0.684 ** 1
SC2018S 0.384 ** 0.397 ** 1

WY2018S −0.645
**

−0.878
** −0.075 1

CS2018 (CS2018S), HQ2018 (HQ2018S), SC2018 (SC2018S), and WY2018 (WY2018S), respectively, indicate changes
in carbon storage, habitat quality, soil conservation, and water yield in 2018 (scenarios with and without the
implementation of the GFGP) relative to 2000; N represents the number of sub-watersheds; ** indicates significance
at the p < 0.01 level.

88



Remote Sens. 2021, 13, 3966

Figure 4. The spatial distributions of trade-offs between ESs. The radar graph on the right represents the average values of
trade-offs between ESs.

3.4. FACTORS Influencing ESs Trade-Offs

We built a GWR model to explore the geospatial relationship between ES trade-offs
and the factors that influence them. Compared with OLS, the adjusted R2 of the GWR
model was greater, and the AICc value decreased significantly (Table 5), indicating that the
GWR results have higher explanatory power and can more accurately reflect the processes
at play.

Table 5. Model fit metrics for ordinary least squares (OLS) regression and GWR.

ES Trade-Offs Fit Metrics
Model

OLS GWR

WY-CS
R2 (adjust) 0.837 0.908

AICc 194.958 128.907

WY-HQ R2 (adjust) 0.901 0.942
AICc 104.279 48.576

WY-SC
R2 (adjust) 0.721 0.882

AICc 291.957 182.843
Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality.

The correlation coefficient of the GWR model reflects the spatial non-stationary re-
sponse of ES trade-offs to influencing factors (Figure 5). LUD is significantly positively
correlated with WY-CS, WY-HQ, and WY-SC trade-offs, and the correlation coefficient is
relatively high in the northeast (Figure 5 (a1–a3), Table 6). NDVI is significantly negatively
correlated with WY-CS, WY-HQ, and WY-SC trade-offs, and the correlation coefficient is
relatively high in the southwest (Figure 5 (b1–b3), Table 6). PRE is positively correlated
with WY-CS and WY-HQ trade-offs, but negatively correlated with the WY-SC trade-off,
and the correlation coefficient is high in the southeast (Figure 5 (c1–c3), Table 6). DEM is
negatively correlated with the WY-HQ trade-off, but positively correlated with WY-CS and
WY-SC trade-offs, and the correlation coefficient is larger in the north (Figure 5 (d1–d3),
Table 6). CON is negatively correlated with the WY-CS trade-off, but significantly positively
correlated with WY-HQ and WY-SC trade-offs, and the correlation coefficient is larger in
the south (Figure 5 (e1–e3), Table 6).
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Figure 5. GWR coefficients between ES trade-offs and their influencing factors. Abbreviations: CS: carbon storage;
WY: water yield; SC: soil conservation; HQ: habitat quality; LUD: dynamic degree of comprehensive land use change;
NDVI: Normalized Difference Vegetation Index; PRE: precipitation; DEM: elevation; CON: percentage of construction land.

Table 6. Mean statistics of GWR coefficients between ES trade-offs and influencing factors.

ESs Trade-Offs LUD NDVI PRE DEM CON

WY-CS 0.888 −0.036 0.044 0.070 −0.143
WY-HQ 0.794 −0.052 0.120 −0.126 0.206
WY-SC 0.595 −0.054 −0.010 0.424 0.619

Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality; LUD: dynamic
degree of comprehensive land use change; NDVI: Normalized Difference Vegetation Index; PRE: precipitation;
DEM: elevation; CON: percentage of construction land.

Local R2 maps describe spatial differences in model goodness of fit, ranging between
0 and 1. Our results show that the selected five influencing factors are closely related
to ES trade-offs, explaining 90.8%, 94.2%, and 88.2% of the WY-CS, WY-HQ, and WY-SC
trade-offs, respectively (Figure 6, Table 5). In general, LUD, CON, and NDVI are the most
important driving factors of ES trade-offs, and they are significantly positively correlated
with LUD and CON while being negatively correlated with NDVI (Figure 6, Table 6). This
means that increasing vegetation cover, controlling the intensity of land use change, and
optimizing the development of urbanization are effective ways to alleviate the trade-offs
between ESs and realize the synergistic promotion of multiple ESs.
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Figure 6. Spatial patterns of local R2 from GWR between ES trade-offs and influencing factors.
Abbreviations: CS: carbon storage; WY: water yield; SC: soil conservation; HQ: habitat quality.

4. Discussion

4.1. Effects of the GFGP on ESs

The GFGP is a successful program for coping with environmental degradation and
increasing the supply of ESs [31]. Although the quality of the regional ecological environ-
ment has been greatly improved [17,62], realizing the coordinated development of multiple
ESs is still a key consideration in optimizing GFGP policies. Our results show that the
implementation of the GFGP significantly increased forest, grassland, and shrub land area
(Table 3), and vegetation cover increased significantly [24], leading to significant increases
in CS, HQ, and SC. This indicates that the GFGP promoted the synergistic relationship
among CS, HQ, and SC. However, CS and HQ, under an alternative scenario where the
GFGP was not implemented, significantly decreased (Figure 3), indicating that the GFGP
effectively compensated for the negative impacts of external environmental pressures on
CS and HQ. By comparing the actual scenario in 2018 with the alternative scenario, we
found that the GFGP is the most important driving force for the increase in SC, with a
contribution rate of 92.96% (Figure 3). In addition, our results show that the GFGP has
had a significant negative impact on WY, with a contribution rate of −454.48% (Figure 3).
This is mainly due to the large-scale planting of non-native vegetation, which leads to a
significant increase in water consumption and evapotranspiration [27,63]. Our research
confirms that the GFGP produces significant ecological benefits while also exacerbating
regional water resource conflicts, which is consistent with previous studies [26,27,51,64].
However, unlike previous studies, we quantified the contribution rate of the GFGP to ES
changes and the impact on the trade-offs/synergies between ESs, providing a more direct
reference for alleviating regional water resource conflicts and realizing the synergistic
promotion of multiple ESs.

4.2. Suggestions on the Inclusiveness and Sustainable Development of the GFGP

Identifying the dominant factors influencing the trade-offs between ESs is critical to
formulating an inclusive and sustainable plan for the GFGP. There are obvious spatial
differences in the relationships between ES trade-offs and their influencing factors [65,66],
and classical global regression models did not fully reflect the relationships between the two
in geographic space [59]. The local coefficients obtained by the GWR model by minimizing
the residuals reflect the spatial non-stationary relationships between them [56], effectively
overcoming the problems with classic regression models. We used the GWR model to
explore the spatially non-stationary relationship between ES trade-offs and their influencing
factors, and our results show that LUD, CON, and NDVI are the most important driving
factors for ES trade-offs (Figure 5, Table 6). The WY–CS, WY–HQ, and WY–SC trade-offs
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were significantly positively correlated with LUD and CON, but negatively correlated with
NDVI (Figure 5 (a1–a3, b1–b3, e1–e3), Table 6).

Land use change and urbanization are the main drivers of declines in CS, HQ, and
SC [57,67], and also have negative impacts on the water conservation capacity of ecosys-
tems [68]. However, land use change and urbanization also reduced the evapotranspiration
of surface vegetation to a certain degree [69], and their impacts on precipitation at smaller
timescales are also limited [70]. Therefore, increases in LUD and CON intensify the trade-
offs between WY–CS, WY–HQ, and WY–SC. NDVI is the most direct manifestation of the
effectiveness of afforestation [71]. The GFGP is the main driver of the increase in regional
NDVI [24], which not only improves CS, HQ, and SC but also improves the water conser-
vation capacity of the ecosystem [72,73]. Therefore, increasing NDVI helps to alleviate the
trade-offs between WY–CS, WY–HQ, and WY–SC.

The correlation coefficient of the GWR model reflects the spatial non-stationary re-
sponse of ES trade-offs to their influencing factors (Figure 5). In the northeast and south of
the study area, urbanization developed rapidly and the intensity of human activity was
high (Figure 2), so the correlation coefficient between LUD, CON, and ES trade-offs was
relatively large (Figure 5 (a1–a3, e1–e3)). In the southwestern region, the terrain is rugged
and vegetation is relatively scarce [34], so the correlation coefficient between NDVI and
ESs trade-offs is relatively high (Figure 5 (b1–b3)). Therefore, controlling LUD and CON in
the northeast and south, and increasing vegetation cover in the southwest, is essential to
alleviate the WY–CS, WY–HQ, and WY–SC trade-offs.

In summary, we propose that future engineering projects should take into account the
geospatial relationships between ES trade-offs and their influencing factors. By control-
ling the intensity of land use change, optimizing the development of urbanization, and
improving the effectiveness of afforestation, the inclusive and sustainable development of
the regional GFGP can be realized.

4.3. Uncertainties and Limitations

Our research provides a direct and flexible method to quantify the impacts of the
GFGP on ESs, but it still has certain limitations. First, changing ESs is a complex process
driven by factors such as nature, human activities, and climate change [17,74]. It is very
difficult to completely quantify the impact of the GFGP on ESs. Our study used the average
climate parameters from 2000 to 2018. Although this method is widely adopted [45,46],
climate change during the research period will certainly have had an impact on ESs. Second,
the input parameters of the model evaluation are taken from previous studies, but due to
the limitations of our data sources, quality, and availability, we did not verify the results
of the ES evaluations. Third, because of the limited availability of data, we had to ignore
some details of the GFGP, such as tree species selection and configuration, vegetation
management methods, etc., although these practices certainly could have a strong impact
on ESs [71]. These problems may introduce some uncertainty into our model results.
Therefore, it is necessary to obtain long-term positioning observation data and conduct
more detailed research on the impacts of the GFGP.

5. Conclusions

Based on scenario analysis, we quantified the impacts of the GFGP on changes in ESs
in Lvliang City, a typical ecologically fragile area, and analyzed the main forces driving ES
trade-offs through spatial regression. Our research shows that the GFGP compensated for
the negative impacts of external environmental pressures on CS and HQ, and significantly
improved CS, HQ, and soil conservation (SC), but this improvement came at the expense of
water yield (WY). While the GFGP promotes the synergistic development of CS, HQ, and
SC, it also intensifies the trade-off relationships between these services and WY. Land use
change and urbanization are significantly positively correlated with the trade-offs between
WY–CS, WY–HQ, and WY–SC, while increasing NDVI helped to alleviate these trade-offs.
Therefore, controlling the intensity of land use change, optimizing the development of
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urbanization, and improving the effectiveness of afforestation are effective ways to realize
the inclusive and sustainable development of the GFGP. The general methods used in this
study to quantify the impacts of ecological engineering on ESs can provide a reference for
future ecological restoration plans and decision-making in China and around the world.
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Abstract: Global alpine ecosystems contain a large amount of carbon, which is sensitive to global
change. Changes to alpine carbon sources and sinks have implications for carbon and climate
feedback processes. To date, few studies have quantified the spatial-temporal variations in ecosystem
carbon storage and its response to global change in the alpine regions of the Qinghai-Tibet Plateau
(QTP). Ecosystem carbon storage in the northeastern QTP between 2001 and 2019 was simulated and
systematically analyzed using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
model. Furthermore, the Hurst exponent was obtained and used as an input to perform an analysis
of the future dynamic consistency of ecosystem carbon storage. Our study results demonstrated that:
(1) regression between the normalized difference vegetation index (NDVI) and biomass (coefficient
of determination (R2) = 0.974, p < 0.001), and between NDVI and soil organic carbon density (SOCD)
(R2 = 0.810, p < 0.001) were valid; (2) the spatial distribution of ecosystem carbon storage decreased
from the southeast to the northwest; (3) ecosystem carbon storage increased by 13.69% between 2001
and 2019, and the significant increases mainly occurred in the low-altitude regions; (4) climate and
land use (LULC) changes caused increases in ecosystem carbon storage of 4.39 Tg C and 2.25 Tg C
from 2001 to 2019, respectively; and (5) the future trend of ecosystem carbon storage in 92.73% of the
study area shows high inconsistency but that in 7.27% was consistent. This study reveals that climate
and LULC changes have positive effects on ecosystem carbon storage in the alpine regions of the
QTP, which will provide valuable information for the formulation of eco-environmental policies and
sustainable development.

Keywords: InVEST model; global change; ecosystem carbon storage; Hurst exponent;
Qinghai-Tibet Plateau

1. Introduction

Ecosystem carbon storage is recognized as a key indicator of ecosystem function
because it is closely related to the climate regulation and productivity of terrestrial ecosys-
tems [1,2]. Ecosystem carbon storage refers to the cumulative amount of carbon stored
in terrestrial ecosystems [3]. The maintenance of ecosystem carbon storage is one of the
hotspots of common concern around the world [4,5]. Quantitative studies of ecosystem
carbon storage can provide a theoretical basis for the integrated management of natural
ecosystems and the sustainable utilization of natural resources [5,6].
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The quantitative methods of ecosystem carbon storage include field surveys, model
simulations, and remote sensing [7]. As one of the assessment methods, modeling is
becoming increasingly prominent because it can conduct evaluations of carbon storage
at different scales, including global [8], national [9], and regional [10]. Many models
have been used to evaluate carbon storage, such as Vector Autoregression (VAR) [11],
High Accuracy Surface Modeling (HASM) [12], Century [13], Biome-BGC [14], General
Ensemble Biogeochemical Modeling System (GEMS) [4,15], and InVEST [16,17]. The In-
VEST model provides new technology for conducting spatial expression, dynamic analysis,
and quantitative evaluations of ecosystem service function [18]. More importantly, the
InVEST model can easily be used to assess the impacts of climate and LULC changes on
ecosystem carbon storage.

The InVEST model has been used in the United States, Tanzania, Indonesia, and
China [7,19,20]. However, most of these studies have focused on the carbon pool of
single ecosystems, and there are few systematic studies on the carbon storage of terrestrial
ecosystems [7]. Previous studies have shown that climate and LULC changes are the major
factors affecting ecosystem carbon storage [21–24]. Generally, climate change controls
the balance between carbon inputs from plant productivity and carbon outputs from
soil carbon decomposition and alters ecosystem carbon storage [25]. LULC change is an
important process that affects carbon storage: changes in LULC from one type to another
are usually accompanied by a large amount of carbon exchange [23,26]. LULC change can
alter the carbon cycle process by changing the ecosystem’s structure (species composition,
biomass) and function (energy balance, biodiversity, and the cycle of carbon, nitrogen,
and water.) [23].

The QTP is the highest and largest plateau in the world, with an average elevation of
more than 4000 m [22,27]. The soil has been reported to have accumulated plentiful soil
organic matter, and its carbon density is obviously higher than that at similar latitudes,
mainly due to its relatively low temperature and very high altitude, and thus the QTP has
been regarded as a huge carbon pool [22,28,29]. Some studies of the QTP have evaluated
carbon storage by using the InVEST model, but the spatial-temporal pattern of ecosystem
carbon storage is still uncertain due to studies with low statistical power and insufficient
sample sizes [30]. In addition, due to its unique geographic and ecological conditions,
the alpine ecosystem of the QTP is very fragile and sensitive to climate change [31]. In
the past 50 years, the air temperature of the QTP has increased by 0.2 ◦C per decade,
roughly twice the observed rate of global warming [22], and annual precipitation has
increased at the rate of 0.91 mm per year (1961–2007) [32]. Rapid warming and wetting
undoubtedly shape the structures and processes of the ecosystem, which, in turn, lead
to dramatic changes in the carbon cycle. Because climate warming tends to boost both
plant production and soil respiration, there is some uncertainty about the change trend of
ecosystem carbon [33,34]. It should be noted that the global warming trend will continue,
according to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) [35], which may further modify the dynamics of ecosystem carbon storage
and amplify the uncertainty regarding the QTP. Hence, it has become urgent to analyze
the spatial-temporal patterns of ecosystem carbon storage in the QTP more accurately,
assess the impact of global change on ecosystem carbon storage, and detect the dynamic
consistency of ecosystem carbon in the future.

Currently, studies on the spatial-temporal patterns of ecosystem carbon storage and
their response to global change in the Shule River Basin on the northeastern margin of the
QTP are especially rare. Taking the upstream regions of the Shule River Basin as a case
study, the main goals of this research were: (1) to clarify and analyze the spatial-temporal
patterns of ecosystem carbon storage and its change trend; (2) to explore the response
characteristics of ecosystem carbon storage to climate and LULC changes; and (3) to detect
the consistency of dynamic of ecosystem carbon storage in the future. This study has
important guiding significance for the rational planning of environmental protection and
the formulation of relevant policies in alpine regions.
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2. Materials and Methods

2.1. Study Area and Climate Conditions

The Shule River, known as the “natural water tower” and “lifeline” of herders and
farmers, is the second-largest inland river in the Hexi Corridor of China [36]. The up-
stream regions of the Shule River Basin (96.2◦–99.0◦E, 38.2◦–40.0◦N) lies in a mountainous
area with abundant precipitation, which is the catchment area of the main stream of the
Shule River Basin, and covers an area of about 1.38 × 104 km2 (Figure 1). The altitude
ranges from 1900 to 5733 m and gradually decreases from the edge to the middle region.
Further, dozens of glaciers lie in this area [37]. The study area has a typical continental
climate [38,39], with a low mean annual air temperature, little precipitation, and high
actual evaporation [36,37]. The mean annual air temperature and annual precipitation
from 1990 to 2019 were −5.24 ◦C and 201.64 mm, respectively (Figure 2). During this
period, the mean annual air temperature and annual precipitation increased at the rate of
0.03 ◦C and 4.70 mm per year (p < 0.01), respectively. The change in climate in the study
area showed a trend towards warmer and wetter conditions. In addition, the dominant
vegetation types are alpine swamp meadows, alpine steppes, and alpine meadows [40].

Figure 1. Location of the study area and ecological plots.

2.2. Data Source and Processing

Meteorological data. The meteorological station data from around China from 1990–2019
were provided by the China Meteorological Data Service Center (http://data.cma.cn/
(accessed on 7 October 2019)). Original air temperature and precipitation data were interpo-
lated into grid data using the spatial interpolation tool of geographic information systems.

LULC data. The Moderate Resolution Imaging Spectroradiometer (MODIS) Land
Cover Type (MCD12Q1) Version 6 product provides global LULC types at yearly intervals
(2001–2019). The classification method of the International Geosphere Biosphere Program
(IGBP) was used in this study. The product was provided by NASA Earth Science Data
Systems (https://search.earthdata.nasa.gov/search (accessed on 16 October 2020)).
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Figure 2. Temporal dynamics of the mean annual air temperature (A) and annual precipitation
(B) in 1990–2019. These dots are data points for each year, and the shaded areas represent the 99.0%
confidence intervals of the regression equation.

NDVI data. Based on the SPOT/VEGETATION NDVI satellite remote sensing data,
datasets of monthly NDVI were generated using the maximum value synthesis method.
The NDVI values for the growth seasons (May to September) from 2000 to 2019 were
obtained for this study. The datasets were provided by the Resource and Environmental
Science and Data Center (http://www.resdc.cn/ (accessed on 21 November 2020)).

Ecosystem carbon parameters. Biomass and SOCD data were collected in 2000.
The biomass data were obtained from the Carbon Dioxide Information Analysis Cen-
ter (CDIAC), and SOCD data were provided by the European Soil Data Centre (ESDAC)
(0–30 cm). Because biological carbon is relatively stable and small, it was obtained from
field surveys and the literature [7,41–43]. In addition, the root-to-shoot ratios (RSRs) of
different LULC types were collected from the IPCC 2006 national greenhouse gas emission
inventory [44].

Field survey data. The LULC type of the ecological plots is grassland. Sampling
occurred during the growth seasons of 2011–2019. The locations of the ecological plots can
be found in Figure 1. We collected about 374 biomass samples (including aboveground
biomass (AGB) and belowground biomass (BGB)) and 585 soil organic carbon (SOC)
samples. In detail, each 50 × 50 cm quadrat was selected randomly in each ecological
plot, and the living AGB was harvested. Previous studies reported that more than 90%
of the BGB in alpine grassland is concentrated in the top 30 cm of the soil [38,45]. Hence,
we collected BGB from each quadrat at a depth of 0–30 cm using soil cores 4.8 cm in
diameter. Soil samples were crumbled by hand, rocks were removed, and samples were
then passed through a sieve with a 0.2 cm pore size, then cleaned repeatedly to obtain the
BGB. The AGB and BGB were weighed (0.01 g) after drying (24 h at 80 ◦C), and the carbon
contents were converted by a ratio of 0.475 [44].

Samples for SOC were collected from each quadrat and were split into 0–10, 10–20, and
20–30 cm sections, then packed in plastic bags and brought to the laboratory. The dichromate
oxidation method (Walkley–Black procedure) was used to measure the SOC [46]. In addition,
volumetric soil samples for each depth were sampled using a cutting ring (volume of
100 g/cm3) and dried at 105 ◦C to determine the bulk density. The volume of rock frag-
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ments (i.e., coarser than 2 mm) was measured by submerging moist rock fragments and
recording the volume of displaced water [38]. The soil organic carbon density (SOCD, unit:
kg/m2) was calculated using Equation (1) [38,47]:

SOCD =
n

∑
i=1

hi × BDi × SOCi × (1 − Ci)/100 (1)

where hi, BDi, SOCi, and Ci are soil thickness (cm), bulk density (g/cm3), SOC (g/kg),
and the volume percentage of soil particles >2 mm at layer i, respectively.

In addition, all grid data were resampled with a spatial resolution of 500 m and
projected using the World Geodetic System 1984.

2.3. Methods
2.3.1. Carbon Module

The carbon storage module in the InVEST model was used to estimate the ecosystem
carbon storage in a specific region. This module consists of four carbon pools: aboveground
biomass carbon, belowground biomass carbon, SOC, and humus carbon [1]. Aboveground
biomass includes living plant materials above the soil level (such as leaves, bark, branches,
trunks, etc.); belowground biomass refers to the living root systems of the aboveground
plants. In contrast, soil organic matter comprises the organic component of soil, whereas
humus is derived from leaf litter and the wood of standing and lying trees. The LULC
types and their carbon density are the basic parameters of the module [18]. In the InVEST
3.2.0 User’s Guide, more detailed descriptions can be found [48]. The calculation formulae
are shown in Equations (2) and (3):

Cecosystem = Cabove + Cbelow + Csoil + Chumus (2)

Czone =
n

∑
i=1

Ci × Ai (3)

where Cecosystem, Cabove, Cbelow, Csoil , and Chumus are the ecosystem carbon, aboveground
biomass carbon, belowground biomass carbon, SOC, and humus carbon, respectively; Ci is
the carbon density of the LULC type i; and Ai is the area of LULC type i.

2.3.2. Parameter Inversion of the Key Carbon Pool

Reviewing previous studies, we found that four main methods are used to esti-
mate carbon density: literature reviews, field measurements, empirical modeling, and
remote sensing. Due to differences in the estimation methods, the results may vary
greatly [30]. Some studies used MODIS-NDVI products to establish the relationship
between biomass and SOCD and demonstrated the scientific adaptability of this ap-
proach [30,49–51]. In this study, we used the spatial analysis tool of ArcGIS to acquire
various values (including NDVI, biomass carbon, and SOCD) for each LULC type based
on the dataset of 2000. Jan Joseph et al. [52] thought that the carbon density of built-up
land and water bodies is zero, and thus the urban and built-up land, permanent snow and
ice, and other water bodies were not considered in our study. In addition, nonirrigated
farmland and bare land were also not considered due to their anomalous carbon density
data. In accordance with the requirements of the fit of strong correlation, two quadratic
curve equations, namely Biomass–NDVI and SOCD–NDVI, were constructed (Table 1). The
key parameters (including biomass and SOCD) were calculated for 2001–2019 according
to the regression equations and NDVI. Additionally, the biomass of each LULC type was
divided into AGB and BGB according to the RSRs.

In addition, the performance of regression equations can be assessed by comparing
the simulated and observed values, and systematic quantification of their performance
accuracy can be determined by the coefficient of determination (R2) (ranging from 0 to 1),
p-value (p), and root mean squared errors (RMSE). Among these, the R2 describes the
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decrease in collinearity between the measured and simulated data [39,53]. A higher value
of R2 represents less error variance, and values above 0.5 are regarded as acceptable. RMSE
is one of the statistical indicators of error. It is commonly accepted that the lower the RMSE,
the better the model performance [54]. All R2 values in the text refer to the adjusted R2.

Table 1. The regression equations of biomass–NDVI and SOCD–NDVI.

Regression Equations R2 p

Biomass = −45.64 × NDVI2 + 32.08 × NDVI − 1.27 0.974 0.001
SOCD = −471.71 × NDVI2 + 289.33 × NDVI + 5.67 0.810 0.001

2.3.3. Hypotheses of Climate and LULC Changes

Generally, changes in ecosystem carbon storage in the region can be attributed to
changes in the LULC type and carbon density [49]. To some extent, the change in carbon
density is a direct indicator that reflects the effect of climate change on ecosystem carbon
storage. To further explore the main factor affecting the change in ecosystem carbon storage,
we took 2001 as the control year, and three hypotheses were designed regarding 2019 values:
actual condition, LULC change only, and climate change only (Figure 3). This process is
described as follows [49]:

1. The change in ecosystem carbon storage under actual condition is described as ΔC,
and the formula is expressed in Equation (4):

ΔC =
n

∑
i=1

(Ai2Di2 − Ai1Di1) (4)

where Ai1 and Ai2 are the area of LULC type i before and after the change, respectively;
Di1 and Di2 are the ecosystem carbon densities of LULC type i before and after the
change, respectively.

2. The change in ecosystem carbon storage caused by climate change only can be ex-
pressed by Equation (5):

ΔCD =
n

∑
i=1

Ai1(Di2 − Di1) (5)

3. The ecosystem carbon density of each LULC type is constant, and thus the change in
ecosystem carbon storage is caused by LULC change only, which can be expressed as
Equation (6):

ΔCL =
n

∑
i=1

Di1(Ai2 − Ai1) (6)

4. According to all three hypotheses, the contribution of climate and LULC change to
the change in the ecosystem carbon storage can be described by Equations (7) and (8):

RL =
ΔCL

ΔCL + ΔCD
× 100% (7)

RD =
ΔCD

ΔCL + ΔCD
× 100% (8)

where RL and RD are the contributions of LULC and climate changes to the change in
ecosystem carbon storage, respectively.
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Figure 3. Simulation of ecosystem carbon storage under different hypotheses.

2.3.4. Linear Regression Analysis

Linear regression analysis was used to detect the spatial change in the research objects
(including meteorological elements and ecosystem carbon storage) with time-series data.
The slope of the linear regression is considered to be the best index for quantifying the
change trend of the research object during the study period. The slope can be calculated by
Equation (9):

slope =
n × ∑n

i=1 i × Bi − (∑n
i=1 i)(∑n

i=1 Bi)

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (9)

where n is the number of years in the study period, i is the serial number of the year,
and Bi is the value of research object in the year i. Positive and negative values of the slope
refer to positive and negative trends, respectively.

The correlation coefficient (r) of the linear regression can be used to test the significance
of the change trend. It is expressed in Equation (10):

r =
cov(i, Bi)√

var(i)var(Bi)
(10)

where cov and var are the covariance and variance functions, respectively. When p < 0.01,
the change trend is extremely significant; when 0.01 < p < 0.05, the change trend is signifi-
cant; and when p > 0.05, the change trend is non-significant.

2.3.5. Hurst Exponent

The Hurst exponent is a classic method for detecting long memory in time series,
which was proposed by the hydrologist H.E Hurst in 1951 [55]. R/S analysis is a superior
and well-known method used for estimating Hurst exponent and was introduced by
Mandelbrot [55,56]. In this study, we used this method to test the consistency of the
future dynamics of ecosystem carbon. The main calculation procedures are shown in
Equations (11)–(15) [56]:

1. Divide the time series {ξ(τ)} (τ = 1, 2, . . . , n) into τ subseries x(t), and, for each
subseries, t = 1, . . . , τ.

2. Define the mean sequence of the time series:

ξτ =
1
τ ∑τ

t=1 x(t), τ = 1, 2, . . . , n (11)
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3. Calculate the cumulative deviation:

X(t, τ) =
t

∑
u=1

(ξ(u)− (ξ)τ), 1 ≤ t ≤ τ (12)

4. Create the range sequence:

R(τ) = max
1≤t≤τ X(t, τ)− min

1≤t≤τ X(t, τ), τ = 1, 2, . . . , n (13)

5. Create the standard deviation sequence:

S(τ) =

(
1
τ

τ

∑
t=1

(ξ(t)− (ξ)τ)
2

)1/2

, τ = 1, 2, . . . , n (14)

6. Rescale the range:
R(τ)
S(τ)

= (cτ)H (15)

The value of the Hurst exponent ranges from 0 to 1, according to Hurst [57] and
Mandelbrot [58]. When the value is equal to 0.5, this indicates that the time series is a
random series without consistency (i.e., the change trend of the time series in the future
would not be related with that in the study period); when the value is greater than 0.5,
it refers to the consistency of the time series (i.e., the change trend of the time series in
the future is the same as that in the study period, with the greater value for the more
consistency); and when the value is less than 0.5, which indicates the inconsistency of the
time series in the future, with theless value for the more inconsistency.

3. Results

3.1. Verification of Key Carbon Pool Parameters

To evaluate the performance of the regression equations, we analyzed the relationships
between the observed values from the field survey and the simulated values (including
AGB, BGB, and SOCD) for 2011–2019 (Figure 4). The R2, p, and RMSE were used to evaluate
the agreement between the observed and simulated variables. The results indicated that
the simulated values were sufficiently consistent with the measured values (p < 0.01),
with correlation coefficients of 0.901, 0.925, and 0.866, respectively. Additionally, the RMSE
values were relatively small.

Figure 4. Comparisons of the simulated and observed aboveground biomass (AGB) (A), belowground biomass (BGB) (B),
and soil organic carbon density (SOCD) (C) of grassland in 2011–2019. These lines are the fitting lines of the regression
equation, and the shaded areas represent the 99.0% confidence intervals of the regression equations.
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3.2. Climate Change

The spatial distribution of mean air annual temperature and annual precipitation
could be characterized by large regional features. Specifically, the spatial variation range in
the mean annual air temperature was -17.35 to 6.20 ◦C, gradually increasing from southeast
to northwest (Figure 5A), while annual precipitation varied from 100.17 to 533.24 mm,
diminishing from the southeast to northwest (Figure 5B). In addition, as shown in Figure 5C,
significant warming mainly occurred in parts of the northwest (p < 0.05) from 2001 to 2019,
and the rest of the study area also experienced obvious increases (p > 0.05). Figure 5D
shows the changes in annual precipitation during the study period, which clearly indicate
an extremely significant increase in precipitation across the whole study area (p < 0.01).

Figure 5. Distributions of the mean annual air temperature (A), and annual precipitation (B), and
changes in the mean annual air temperature (C) and annual precipitation (D) in 2001–2019.

3.3. Distribution of LULC and Change in LULC

In this study area, grassland is the major LULC type, encompassing more than 44.74%
of the regional area. This LULC type is mostly located at the east of the northwest and
in low-altitude regions of the southeast (Figure 6). The second most common LULC type
is desert, accounting for about 41.40%, mainly distributed in the west of the northwest
and in high-altitude regions of the southeast. Further, cropland, permanent snow and ice,
permanent wetland, and built-up land accounted for about 4.72%, 4.04%, 2.73%, and 2.37%,
respectively. In the marginal high-altitude regions, the main LULC types are desert and
permanent snow and ice. Cropland and permanent wetland are located in the northwest of
the study area, while built-up land is scattered throughout the study area.

In Table 2, the rows and columns represent the area of the six LULC types in 2001
and 2019, respectively. The values of the main diagonal represent the area of each LULC
type that persisted in 2019, and the off-diagonal values show the converted area of each
LULC type from 2001 to 2019. In fact, only the desert showed a diminishing trend in 2019
compared with 2001, shrinking by 1492.86 km2. Compared with 2001, the area increased by
1174.33 km2 for grassland and by 128.11, 97.28, 60.64, and 32.49 km2 for permanent snow
and ice, cropland, permanent wetland, and built-up land in 2019, respectively (Table 2).
Hence, the area of grassland increased the most during the study period (78.66%), followed
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by permanent snow and ice (8.58%). In practice, there was a decline in desert, which can
be mainly attributed to the transition from desert to grassland, permanent snow and ice,
cropland, and permanent wetland: 691.85, 300.59, 322.26, and 151.05 km2, respectively.
Additionally, a small part of the grassland was also converted to built-up land (17.50 km2)
and permanent snow and ice (11.04 km2).

Figure 6. Geographical distribution of LULC types during the study period.

Table 2. Conversion of LULC types between 2001 and 2019 (unit: km2).

LULC Type
2019

GL PW CL BUL PSI DL

2001

GL 5438.18 51.72 48.7 17.5 11.04 15.84
PW 168.09 132.44 18.8 9.37 6.42 10.36
CL 237.64 35.98 246.47 26.89 16.07 38.81

BUL 121.88 19.41 24.69 115.75 7.83 20.62
PSI 99.67 15.52 38.22 13.77 279.62 46.66
BA 691.85 151.05 322.26 159.39 300.59 4830.95

Note: Grassland—GL; permanent wetland—PW; cropland—CL; built-up land—BUL; permanent snow and
ice—PSI; Desert land—DL

3.4. Differences in Ecosystem Carbon among LULC Types

The ecosystem carbon density in different LULC types is shown in Figure 7A. The high-
est amount of ecosystem carbon density was found in grassland, reaching 52.80 Mg/ha,
followed by permanent wetland and cropland (about 44.83 and 42.00 Mg/ha, respec-
tively), whereas the ecosystem carbon density of desert was the lowest, up to 29.87 Mg/ha.
Compared with 2001, the ecosystem carbon density of grasslands, permanent wetland,
cropland, and desert increased by 4.14, 7.90, 6.71, and 2.15 Mg/ha in 2019, respectively; the
permanent wetland increased the most.

In terms of ecosystem carbon storage, grassland had the highest, reaching 32.48 Tg C,
followed by desert (up to 16.87 Tg C) (Figure 7B). In contrast, the ecosystem carbon storage
of permanent wetland and cropland was relatively small, up to just 1.81 and 2.86 Tg C,
respectively. Ecosystem carbon storage in 2001 and 2019 was 50.56 and 57.49 Tg C, respec-
tively, implying that ecosystem carbon storage increased during this period. Specifically,
the ecosystem carbon storage of grassland increased the most (8.69 Tg C), followed by
permanent wetland (0.61 Tg C) and cropland (0.88 Tg C), while ecosystem carbon storage
in deserts decreased (−3.26 Tg C).
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Figure 7. The ecosystem carbon density (A) and ecosystem carbon storage (B) of various LULC types.

3.5. Spatial Distribution of and Change in Ecosystem Carbon Storage

The ecosystem carbon storage exhibited strong spatial heterogeneity in the study
area, and the spatial distribution of the ecosystem carbon storage was basically consistent
throughout the study period, i.e., decreasing from southeast to northwest (Figure 8).
In detail, the lowest value of ecosystem carbon storage was for water bodies (close to 0),
where were mainly distributed in marginal high-altitude regions. The highest value of
ecosystem carbon storage occurred in the east of the northwest and in low-altitude regions
of the southeast.

Figure 8. Distribution of ecosystem carbon storage in 2001(A) and 2019 (B).

The change trend of ecosystem carbon storage of each pixel is shown in Figure 9,
indicating that the linear trend of ecosystem carbon storage showed distinct spatial dif-
ferences from 2001 to 2019. In sum, more than 51.48% of the study area experienced ex-
tremely significant (p < 0.01) or significant (p < 0.05) increases in ecosystem carbon storage,
mainly distributed in the east of the northwest and low-altitude regions of the southeast,
while 6.11% of the area had extremely significant or significant decreases; these locations
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were scattered throughout the study area. In contrast, the area with non-significant changes
in ecosystem carbon storage made up about 42.41%, mainly concentrated in the northwest
and high-altitude regions of the southeast.

Figure 9. Changes in ecosystem carbon storage between 2001 and 2019.

3.6. Impacts of Changes in Climate and LULC on Ecosystem Carbon Storage

Under actual conditions, the ecosystem carbon storage increased by 6.92 Tg C between
2001 and 2019 (Table 3). Under the hypothesis with LULC change, the ecosystem carbon
storage increased or decreased with LULC change, depending on the type of conversion.
However, the amplitude of the increase was greater than the amplitude of the decrease,
leading to a net increase of 2.25 Tg C in total ecosystem carbon storage. The major increase
in ecosystem carbon storage was caused by land conversion from desert to grassland
(691.85 km2), cropland (322.26 km2), and permanent wetland (151.05 km2). In contrast,
land conversion from grassland, cropland, and permanent wetland to desert caused only
minor variations in ecosystem carbon storage. Under the hypothesis with climate change,
the total ecosystem carbon storage increased by 4.39 Tg C in 2019 compared with 2001,
an increase of 8.69%, which can be attributed to the increase in carbon density promoted
by climate warming and wetting.

Table 3. Ecosystem carbon storage under the different hypotheses (unit: Tg C).

LULC Type

Control Actual Hypothesis with Hypothesis with
Year Condition LUCC Change Climate Change

2001 2019 2019 2019

GL 28.14 36.82 34.04 35.57
PW 1.51 2.12 1.78 1.68
CL 2.42 3.30 2.81 2.57
DL 18.50 15.24 14.18 15.14

Regional carbon storage 50.56 57.49 52.81 54.95

When the three hypotheses were compared, we found that the contribution of climate
change to the change in total regional ecosystem carbon storage was 66.10%, whereas
LULC change only accounted for 33.90%. This reveals the fact that the impact of climate
change on the total ecosystem carbon storage was far greater than that of LULC change.
Further, under the hypothesis with LULC change, the ecosystem carbon density per pixel
was lower than actual conditions (Figure 10A,B). The main regions with a reduction in
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ecosystem carbon storage were distributed in the northwest under the hypothesis with
climate change (Figure 10C), compared with actual conditions.

Figure 10. Ecosystem carbon storage under actual condition (A), the hypotheses with LULC change (B), and the hypothesis
with climate change (C) in 2019.

3.7. Future Trends of Ecosystem Carbon Storage

The Hurst exponent of the ecosystem carbon storage time series in the study area
distinctly increased from southeast to northwest (Figure 11), but the Hurst exponent in
most of the study area, accounting for about 92.73%, was lower than 0.5, indicating that
the trend in ecosystem carbon storage in the future is highly inconsistent. The trend for
ecosystem carbon storage was consistent with the future in only 7.27% of the study area;
these areas were scattered throughout the region.

Figure 11. Distribution of Hurst exponent for the ecosystem carbon storage time series.

4. Discussion

4.1. Temporal Dynamics and Factors Influencing Ecosystem Carbon Storage

The QTP makes an important contribution to the global carbon pool and carbon cycle,
and this ecosystem’s carbon dynamics can mitigate or enhance the impact on atmospheric
CO2 and global warming [59]. In this context, some scholars have explored the temporal
dynamics of ecosystem carbon storage in the QTP. Among them, Zhao et al. [49] found
that the ecosystem carbon storage of the QTP exhibited overall growth in 2001–2010.
The Qinghai Lake Basin (QLB), located in the northeastern margin of the QTP, is the largest
saltwater lake in China and is an important wetland globally. Li et al. [7] evaluated the
temporal dynamics of the ecosystem carbon storage of the QLB in 1990–2015, indicating
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that the ecosystem carbon storage increased by 1.60 Tg C. Located in the hinterland of
the QTP, the Three-River Headwaters Region (TRHR) is the source of the Yangtze River,
the Yellow River, and the Lancang River, and it is also an extremely sensitive area of
China’s ecological environment and the initiating area of climate change. Zhang et al. [60]
discovered that the ecosystem carbon storage in the TRHR fluctuated upward in 2000–2010.
In this study, we found that ecosystem carbon storage obviously increased in the upstream
regions of the Shule River Basin between 2019 and 2001, which is consistent with the
results of the abovementioned studies. This may be attributed to the increase in vegetation
productively caused by climate and LULC changes. On the one hand, over the past few
decades, the study area has experienced warming and wetting. Meanwhile, a significant
portion of it is underlaid by permafrost, and with climate warming, permafrost thawing is
likely to occur. These changes have induced changes in the ecosystem carbon processes,
such as carbon gains attributed to stimulated vegetation productivity and carbon losses
from thawing permafrost; the balance of these fluxes depends on the feedback of permafrost
to warming [30,61]. In fact, the increase in carbon inputs from vegetation caused by climate
change was greater than the loss of carbon, resulting in an obvious increase in ecosystem
carbon storage during the study period. Further, the increase in ecosystem carbon density in
the desert was the least, and deserts were largely replaced by other LULC types, resulting
in the ecosystem carbon storage of deserts decreasing by 3.26 Tg C from 2001 to 2019.
However, the increase in ecosystem carbon storage of other LULC types (which increased
by 10.18 Tg C) is enough to offset the corresponding decrease in deserts; most of the
increased ecosystem carbon storage is due to grassland. Interestingly, compared with other
LULC types, although the ecosystem carbon density of permanent wetland increased the
most (7.90 Mg/ha) in 2019 compared with 2001, its carbon storage increased the least, up
to just 0.61 Tg C, mainly attributed to its relatively small area.

Through analysis of the three hypotheses, we found that the contribution of climate
change to the change in ecosystem carbon storage was 66.10%, while the contribution of
LULC change was 33.90%. Thus, climate change is more important than LULC change in
affecting the regional ecosystem carbon storage, which has been confirmed by previous
studies [49]. The main reason is that the scale of LULC change is small, and the conversion
patterns between LULC types can cause both positive and negative effects on ecosystem car-
bon storage, whereas climate change can directly alter the inputs and outputs of ecosystem
carbon storage.

4.2. Spatial Distribution and Factors Affecting Ecosystem Carbon Storage

The spatial distribution of ecosystem carbon storage in the study area was basically
consistent over the study period. Under the integrated impact of climate and LULC changes,
ecosystem carbon storage exhibited strong spatial heterogeneity, decreasing from southeast
to northwest. The lowest values were mainly located in the marginal high-altitude regions.
Because the mean annual air temperature of the high-altitude regions is lower than 0 ◦C,
the LULC type is dominated by permanent snow and ice, so it is difficult for vegetation
to survive, and the ecosystem carbon storage is close to 0. In contrast, the low-altitude
regions can provide more suitable water and temperature environments for vegetation
growth, and the ecosystem carbon storage in these areas is higher. In particular, the highest
ecosystem carbon storage was found in the east of the northwest and in low-altitude
altitude regions of the southeast due to their relatively low air temperature and favorable
precipitation. Plants in these regions grow well and create higher primary productivity,
which is beneficial for carbon accumulation, whereas the opposite is true in the other parts
of the northwest.

In 2001–2019, the precipitation in the whole study area increased significantly, and air
temperature showed an obvious increasing trend. Previous studies [62–64] have demon-
strated that warming and wetting can stimulate plant growth, thus promoting gross and
net primary production. Further, desert has been largely replaced by grassland. Hence,
more than 51.48% of the study area experienced significant increases in ecosystem carbon
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storage in 2001–2019. Additionally, only 6.11% of the study area experienced significant
decreases in ecosystem carbon storage, which can be attributed to the conversion of a
small part of the desert and grassland into built-up land between 2001 and 2019. It is
worth mentioning that the inconsistent dynamic trend of ecosystem carbon storage in the
future may be related to climate change and the intensification of human activities such as
urbanization and overgrazing.

4.3. Uncertainties and Limitations

Firstly, the InVEST model can reliably estimate ecosystem carbon storage in alpine re-
gions, but the model does not consider the process of carbon sequestration and release [49].
Secondly, the parameter inversion of the regression model springs from remote sensing
data, which may bring some uncertainty to estimates of carbon storage. Thirdly, RSRs
usually change under the influence of grazing and climate change [59]. The RSRs come
from the IPCC in this study, which may increase the uncertainty of the simulation. Further,
due to the defects of the InVEST model, we assessed the impact of climate change on
ecosystem carbon storage by controlling the change in carbon density. Finally, detecting the
future trend of ecosystem carbon storage using R/S analysis was a great advance in this
study, but the time of the expected dynamic trends in the future could not be determined.

5. Conclusions

We analyzed the spatial-temporal patterns and change trends of ecosystem carbon
storage and explored the impact of climate and LULC changes on ecosystem carbon
storage between 2001 and 2019. Under the integrated influence of climate and LULC
changes, ecosystem carbon storage increased from 50.56 Tg C in 2001 to 57.49 Tg C in 2019,
an increase of 13.69%. Between 2001 and 2019, more than 51.48% of the ecosystem carbon
storage in the study area increased significantly, and regions with significant decreases
accounted for 6.11%. Additionally, the spatial distribution of ecosystem carbon storage was
heterogeneous, i.e., it decreased from southeast to northwest. By varying three hypotheses,
we found that climate change has a dominant impact on the change in ecosystem carbon
storage, while LULC change has a relatively small impact. The future trend of ecosystem
carbon storage may be dominated by inconsistency. Evaluations of ecosystem carbon
storage in alpine areas are of great significance for decision-making regarding ecological
environmental protection and sustainable development.
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Abstract: Atmospheric carbon monoxide (CO) significantly impacts climate change and human
health, and has become the focus of increased air quality and climate research. Since 2018, the Tropo-
sphere Monitoring Instrument (TROPOMI) has provided total column amounts of CO (CTROPOMI)
with a high spatial resolution to monitor atmospheric CO. This study compared and assessed the
accuracy of CTROPOMI measurements using surface in-situ measurements (SKME) obtained from an
extensive ground-based network over South Korea, where CO level is persistently affected by both
local emissions and trans-boundary transport. Our analysis reveals that the TROPOMI effectively
detected major emission sources of CO over South Korea and efficiently complemented the spatial
coverage of the ground-based network. In general, the correlations between CTROPOMI and SKME

were lower than those for NO2 reported in a previous study, and this discrepancy was partly at-
tributed to the lower spatiotemporal variability. Moreover, vertical CO profiles were sampled from
the ECMWF CAMS reanalysis data (EAC4) to convert CTROPOMI to surface mixing ratios (STROPOMI).
STROPOMI showed a significant underestimation compared with SKME by approximately 40%, with
a moderate correlation of approximately 0.51. The low biases of STROPOMI were more significant
during the winter season, which was mainly attributed to the underestimation of the EAC4 CO at
the surface. This study can contribute to the assessment of satellite and model data for monitoring
surface air quality and greenhouse gas emissions.

Keywords: carbon monoxide; TROPOMI; surface mixing ratio; Korea; EAC4; climate; air quality

1. Introduction

Major sources of atmospheric carbon monoxide (CO) include the incomplete com-
bustion of fossil fuels, biomass burning, and the oxidation of methane and non-methane
hydrocarbons, predominately activated by the hydroxyl radical (OH). CO is removed by
photochemical oxidation, which consumes OH during the process [1,2], thus affecting the
atmospheric cleansing capacity [2] and lifetime of methane (CH4) [3,4]. In addition, this
reaction produces greenhouse gases such as carbon dioxide (CO2) and tropospheric ozone
(O3); therefore, CO is regulated by worldwide air quality standards and is designated a
significant greenhouse gas with a radiative forcing of 0.23 W m−2 [5]. The lifetime of CO
varies from weeks to months [6], which is long enough to persist through horizontal and
vertical transport but too short to be well mixed globally. Owing to the moderate lifetime
of CO, it is frequently utilized as a tracer for the propagation of pollution [7,8]. For these
reasons, the Monitoring Atmospheric Composition and Climate (MACC) project of the
Global Monitoring for Environment and Security (GMES) program prioritized CO as an
important chemical species for air quality and climate studies [9].
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Nadir-viewing passive sensors provide global distributions of CO retrievals from
either near-infrared or thermal-infrared (TIR) radiances. Since the first measurement of CO
during four flights of the space shuttle between 1981 and 1999 [10], the measurement of
pollution in the troposphere (MOPPIT) has provided decades of global CO retrievals since
2000 from the 1-0 CO absorption band at 4.7 μm [11]. These TIR measurements are sensitive
to CO in the middle troposphere and depend on the spectral resolution and thermal contrast
in the lower troposphere. The Atmospheric Infrared Sounder [12] onboard the Aqua
launched in 2002, the Tropospheric Emission Spectrometer (TES) [13] onboard the Aura
launched in 2004, and the Infrared Atmospheric Sounding Interferometer [14] onboard the
Meteorological Operational (METOP) also utilize this TIR absorption band of CO.

For clear atmospheric conditions, the shortwave-infrared (SWIR) earth-radiances near
the first overtone 2-0 absorption band of CO (between 2.30–2.39 μm) is negligibly affected
by scattering in the atmosphere but is dominated by atmospheric absorption and surface
reflectance. Therefore, SWIR measurements are sensitive to the total column amount
of CO along the light path, making CO retrievals using these wavelengths suitable for
detecting emission sources of CO. In addition to the more recent progress of the MOPITT
using its SWIR measurements [15], the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography [16] on the Envisat satellite has provided continuous time
series of global CO SWIR measurements since 2002. Worden et al. (2010) combined the
TIR and SWIR measurements of MOPITT to retrieve global CO trends and assessed its
theoretical information content, which showed increased retrieval sensitivity near the
surface compared with those using a single band [17]. In October 2017, the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) of the European
Space Agency (ESA) was launched and continues to measure CO using SWIR radiances
with higher spatial resolution and better radiometric performance [18]. Moreover, the
TROPOMI allows for the detection of weak regional sources, such as individual wildfires,
from its daily overpasses.

The retrieval sensitivity of CO near the surface is critical for the operational use of
satellite data for air quality and climate applications, as its emissions and major chemical
interactions occur within the boundary layer. In addition to the nadir-viewing sensors,
instruments on solar occultation satellites such as the Atmospheric Chemistry Experiment-
Fourier Transform Spectrometer (ACE-FTS) on board SCISAT [19–21], or of a limb viewing
geometry including the Michelson Interferometer for Passive Atmospheric Sounding (MI-
PAS)/ENVISAT [22] and Microwave Limb Sounder (MLS) /Aura [23] provide informative
CO profile retrievals. However, CO retrievals from these sensors are limited by their
lower horizontal resolution and coverage compared with those from the nadir viewing
instruments; therefore, they are not suitable for accurately identifying regional emissions.
Retrievals using both SWIR and TIR radiances show promising results with high sensitivity
near surfaces [17]; however, to the best of our knowledge, these retrieval data are not
currently available as an operational product. To overcome the limitations of satellite
products, previous studies have combined model simulations and column retrievals from
satellites to derive surface concentrations of aerosols [24] and to trace gases [25].

Zhang et al. (2020) reported that the annual mean values of the MOPITT CO over
Asia decreased significantly at a rate of 0.58 ± 0.15% per year from 2003 to 2017 and associ-
ated this decrease with reduced biomass burning over southeast Asia during the spring
season [26]. Similar results were reported by Buchholz et al. (2021), who demonstrated a
decreasing global CO trend of approximately 0.5% per year between 2002 and 2018 based
on MOPITT data. They also attributed the significant decline in CO over Northeast China
from 2002 to 2018 to improvements in combustion efficiency [27]. Zheng et al. (2018)
suggested that decreased CO emissions in China from four primary sectors (iron and
steel industries, residential sources, gasoline-powered vehicles, and construction materials
industries) could be responsible for 76% of the inversion-based trend of east Asian CO
emissions [28]. Kang et al. (2019) estimated that the anthropogenic contribution of CO
decreased to approximately 94% from 2001 to 2011 over east China [29]. Figure 1 shows
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the mean total column amounts of CO over east and southeast Asia for 2019 from the
TROPOMI, which were binned to a 0.05◦ × 0.05◦ horizontal grid. To calculate the average
values, the CO data with a quality flag greater than or equal to 0.5, were sampled. As
shown in this figure, significant amounts of CO prevailed over east China throughout
2019, which also affected downwind regions, including the Korean peninsula [30]. Jeong
and Hong (2021) derived surface-level NO2 by combining the TROPOMI and reanalysis
data to assess long-term exposure for epidemiological studies [25]. They compared the
estimated NO2 with an extensive ground-based network over South Korea managed by the
Korean Ministry of Environment (KME). To the best of our knowledge, only a few studies
have compared satellite-retrieved and ground in-situ CO measurements, despite their
significance for assessments of satellite retrievals [31,32]. This study is a follow-up study
of [25], which aimed to compare and assess CO products of the TROPOMI (CTROPOMI)
for complementing surface measurements using an extensive ground-based network over
South Korea, and thereby to contribute to the improvement of our understanding of the air
quality impacts of CO and provide a guideline for climate studies.

Figure 1. Average CO total column amounts for 2019 from TROPOMI binned to a 0.05◦ × 0.05◦

horizontal grid over east and southeast Asia. TROPOMI CO data with quality flags ≥0.5 were used
to calculate the average values.

2. Data

2.1. TROPOMI Total Column Density of CO

The TROPOMI is the unique payload of the S5P satellite mission and has measured
reflected solar light by the Earth using two spectrometer modules since 2017: one covering
the ultraviolet–visible (270–495 nm) and near-infrared (675–775 nm) spectra and the other
covering the SWIR between 2305 and 2385 nm. The SWIR spectrometer was developed
by Surrey Satellite Technology Limited, United Kingdom, and has a spectral resolution
of approximately 0.25 nm with a sampling resolution of approximately 0.1 nm. The
TROPOMI also measures the Sun directly through the irradiance port and internal diffuser
for calibration [18,33].

The SWIR measurements of the TROPOMI feed the Shortwave Infrared CO Retrieval
(SICOR) algorithm to retrieve total CO column amounts and effective cloud parameters
(i.e., cloud optical thickness and cloud center height) [34,35]. The SICOR algorithm is
based on the SCIAMACHY heritage [36] and is improved for cloudy and aerosol-loaded
atmospheres. The inversion utilizes a profile-scaling method based on monthly averaged
vertical profiles of CO from the global chemistry transport model, version 5 (TM5) [37].
Moreover, it generates vertically integrated columns of CO with an averaging kernel for
each retrieval [35], which are tested extensively using SCIAMACHY measurements and
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cover the TROPOMI spectral range with a similar spectral resolution [38]. The SICOR
algorithm consists of two steps. In the first step, the SICOR algorithm retrieves the total
amount of CH4 from the TROPOMI radiances between 2315 and 2324 nm to filter optically
thick clouds and aerosols assuming a non-scattering atmosphere. A full-physics algorithm
retrieves CTROPOMI in the second step from radiances between 2324 and 2338 nm. The
CH4 retrievals from the first step were used to derive the effective cloud parameters at this
stage. One of the merits of the SICOR algorithm is that it provides reliable retrievals for
cloudy conditions because the sensitivity of the measurement to the CO above the cloud is
utilized to retrieve CTROPOMI assuming a certain vertical profile shape from the TM5 [35].
In addition, the high reflectance of the cloud enhances retrieval sensitivity.

Borsdorff et al. (2018) compared CTROPOMI with the European Center for Medium-
Range Weather Forecasts (ECMWF)/Integrated Forecasting System (IFS) products of the
Copernicus Atmosphere Monitoring Service (CAMS), which assimilates IASI and MOPITT
observations of CO [35,39]. Both CO observations show a marginal mean difference of
3.2 ± 5.5% with a Pearson correlation coefficient (r) of 0.97. Martínez-Alonso et al. (2020)
compared CTROPOMI to the MOPITT and airborne (ATom, Atmospheric Tomography mis-
sion) datasets, which showed excellent agreement with a mean bias of less than 3.73% [40].
CTROPOMI also showed good agreement with ground-based Total Carbon Column Observ-
ing Network (TCCON) measurements, with a mean bias of about 6.2 ppb [41]. In general,
the accuracy and precision of the CO data product meets the level 2 user requirements:
within an accuracy of <15% and a precision with ≤10%.

2.2. Surface Network of CO Measurements

The KME has monitored particulate matter, NO2, CO, O3, and SO2 since the 2000s
from extensive surface air quality monitoring stations in South Korea. In 2019, 569 stations
measured the surface mixing ratios of CO. These stations are predominately situated
at ambient locations in urban and rural areas far from major roadways and typically
deployed on the roofs of public buildings with fewer than five stories. To monitor roadside
air quality, several stations (41 in 2019) are situated near major roads with a height of
approximately 2.5 m above the ground level. The KME measures CO mixing ratios based
on a nondispersive method using CO analyzers (model 3008, Dasibi Environmental Corp.;
US Environmental Protection Agency reference method RFCA-0488-067) with a lower
detection limit of 0.1 ppm and response time of 120 s. Linearity of the detector is better
than 1%, and span drift is about ±1% for 24 h and ±2% for one week. Instruments are
inspected monthly. The standard inspection procedure consisted of a two-step process: first,
abnormal samples were screened based on the conditions of the instrument (i.e., calibration,
inspection, or malfunction). Next, data exceeding the normal range or rate of change were
screened [42,43]. Five minutes of temporal resolution of the raw data was averaged hourly
after the quality assurance procedures and then reported to the public [42].

2.3. ECMWF Atmospheric Composition Reanalysis 4

The 4th generation global CAMS reanalysis data of the ECMWF (EAC4) assimi-
lates the total column CO, tropospheric column NO2, aerosol optical depth, and total
column/profiles of O3 from satellite retrievals to furnish the three-dimensional fields of
these species [44]. The EAC4 covers the period from 2003 with a three-hour temporal
resolution and a horizontal resolution of approximately 80 km (0.75◦ × 0.75◦) at 60 vertical
model grids. The EAC4 assimilates the MOPITT TIR total column CO (TCCO, Version 6)
retrievals that are sensitive to those in the mid and upper troposphere [45]. We sampled the
vertical profile shape of the CO from EAC4 to convert CTROPOMI to a surface-mixing ratio
(STROPOMI) for comparison with the surface measurements (SKME). Table 1 summarizes the
measurement parameters for CO used in this study, obtained from different sources.
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Table 1. Descriptions of different parameters of CO from TROPOMI, surface measurements, and
reanalysis data (EAC4).

Acronym Definition

CTROPOMI Total vertical column density of CO from TROPOMI
CEAC4 Total vertical column density of CO from EAC4

SKME
Surface mixing ratio of CO from ground network of

Korea Ministry of Environment
STROPOMI Surface mixing ratio of CO converted from CTROPOMI

SEAC4 Surface mixing ratio of CO from EAC4

3. Results

3.1. Comparison of Spatial Distributions of CO from TROPOMI and Ground Network

The mean values of CTROPOMI for 2019 over South Korea are shown in Figure 2 and
were binned to a comparable resolution of the TROPOMI (0.05◦ × 0.05◦ horizontal grid).
Panel (a) of Figure 2 represents South Korea, and panels (b) to (d) focus on the most
significant emission areas of CO in the domain of panel (a). In general, high CTROPOMI
values were observed in eastern South Korea, where the low CTROPOMI vales in Figure 2a
were predominately observed over mountainous areas. Figure 2b depicts the values over
the Seoul metropolitan area, where more than half of the Korean population (~26 million)
is distributed. As shown in this figure, the TROPOMI clearly indicate high values of
the CTROPOMI over Seoul, Incheon, and active ironworks in Dangjin. One of the largest
industrial complexes in Gwangyang and the ironworks in Pohang resulted in a significant
CO burden, as shown in Figure 2c,d, respectively. Large amounts of CTROPOMI over the
western sea of the Korean peninsula are likely associated with trans-boundary transport
from East China [30] (also see Figure 1).

Figure 2. Average TROPOMI CO total columns for 2019 binned to a 0.05◦ × 0.05◦ horizontal grid over (a) South Korea,
(b) Seoul metropolitan area, (c) Gwangyang, and (d) Pohang. TROPOMI CO data with quality flags ≥0.5 were used to
calculate the average values to avoid optically thick cloud and aerosol contaminations. The black circles in panel (a) indicate
major CO sources in South Korea.
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The annual mean value of the CO surface mixing ratio measured by the KME net-
work in South Korea is shown in Figure 3. The domains of the panels in Figure 3 are
the same as those shown in Figure 2. As shown in this figure, the KME network was
densely distributed over highly populated areas, particularly in cities situated in the Seoul
metropolitan area (Figure 3b). Such strategic distribution of the ground-based network is
efficient for monitoring NO2, which is predominantly emitted from transportation in South
Korea [25]. However, these network spatial distributions are not optimal for monitoring
CO, as this compound is predominately emitted from industrial activities. As indicated in
Figures 2 and 3, a vast number of stations over the Seoul metropolitan area demonstrate
the spatial distribution of CTROPOMI (indicated by the comparison of Figures 2b and 3b),
whereas the sparse distribution of surface measurements detected limited areas of the emis-
sion sources (as shown by comparing the lower panels of Figure 2 with those of Figure 3).
Satellite retrievals, such as TROPOMI, can efficiently complement such limitations of
ground-based networks.

The circles and squares in Figure 2 indicate ambient and roadside monitoring stations,
respectively; Jeong and Hong (2021) reported significantly higher values of NO2 from the
roadside stations than the nearby ambient monitoring sites [25]. By comparing the values
of the circles and squares in Figure 2b, we determined that unlike NO2, the CO mixing
ratios measured at roadside stations did not show significant differences from those at
ambient monitoring stations. This is likely due to the relatively longer lifetime of CO; the
emitted burden of CO remains in the atmosphere for a sufficient period to be well-mixed
within a boundary layer over the Seoul metropolitan areas. Therefore, CTROPOMI is likely
to experience less horizontal heterogeneity within its footprint but is more closely related
to boundary layer height.

Figure 3. Mean values of surface CO mixing ratio from ground air-quality monitoring network of
Korea Ministry of Environment in 2019. Panel (a) depicts the values over South Korea, and panels
(b–d) show large emission sources in domain (a). Panel (b) represents the Seoul metropolitan area,
and panels (c,d) indicate industrial complexes in Gwangyang and ironworks in Pohang, respectively.
The squares within these panels indicate air quality monitoring stations on the side of roads with
heavy traffic and the circles represent ambient air quality monitoring sites.
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Figure 4a compares the annual mean values of CTROPOMI and SKME over the KME
stations. CTROPOMI values within ±0.025◦ from each ground station were averaged for
spatial collocation. Note that the CTROPOMI and SKME are not linearly comparable due
to the spatiotemporal variabilities of vertical profile. However, as a major fraction of
CO supposed to be distributed within the mixing layer, we expect such comparison may
provide a primitive but basic assessment of the satellite retrievals before converting the
CTROPOMI to surface mixing ratio for direct comparison. The green circles and red rectangles
in Figure 4a represent the ambient urban/rural monitoring stations and roadside stations,
respectively. The RMSE denotes the root-mean-square error, and the MBE represents
the mean bias error. For a similar comparison for NO2, the annual mean values of the
TROPOMI and surface measurements show a high correlation (r = 0.84), particularly over
the ambient monitoring sites (r = 0.88) [25]. However, the correlation between CTROPOMI
and SKME was lower (r = 0.37), partly attributed to the lower variability of CO compared to
that of NO2. As discussed, the comparison for the roadside monitoring stations did not
show a notable difference from that of the ambient sites (revealed by comparing the green
circles and red squares in Figure 4a). Spatiotemporally coincident samples (CTROPOMI
within ±0.025◦ of the KME stations and SKME within ±30 min of the TROPOMI overpass
time) of CTROPOMI and SKME in 2019 are compared in Figure 4b, and show a slightly lower
correlation (r = 0.33) than that in panel (a).

Figure 4. Comparison of total column CO from TROPOMI (CTROPOMI) and in-situ surface mixing ratio from KME network
(SKME) over South Korea in 2019. Panel (a) compares annual mean values at each station, and panel (b) compares all
collocated samples. Green circles and red rectangles in panel (a) indicate ambient and roadside monitoring stations,
respectively. The RMSE stands for root-mean-squared-error, and the MBE denotes mean-bias-error.

The correlation coefficients between CTROPOMI and SKME at each KME station in 2019
are shown in Figure 5. In general, a higher correlation appeared near the emission sources
of CO owing to the higher retrieval sensitivity of the TROPOMI and variability of CO. For
NO2, the correlations between the TROPOMI retrievals and KME measurements over the
roadside stations (squares) were significantly lower than those over the ambient stations
(circles) because of their higher spatiotemporal variability near the source areas [25]. Such
differences were not observed for CO, as shown in this figure, which was attributed to its
relatively longer lifetime, as shown in Figure 3.
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Figure 5. Correlation coefficients between CTROPOMI and SKME at the KME monitoring stations
over (a) South Korea, (b) Seoul metropolitan area, (c) industrial complexes in Gwangyang, and
(d) ironworks in Pohang in 2019. Circles and squares represent ambient air-quality monitoring sites
and roadside air-quality monitoring stations, respectively.

The TROPOMI retrievals utilize the profile-scaling method based on monthly averaged
vertical profiles of CO from the TM5 [35,37], thus the ratio of SKME to CTROPOMI is assumed
to be higher near strong emission sources: the CO mixing ratio at the surface of these
areas is likely higher than that at ambient (well-mixed) stations. The ratios over the KME
stations are shown in Figure 6 and were significantly high near emission sources in South
Korea. The ratios along the coastal line were highly variable at each station, and could
likely be attributed to complex boundary layer processes occurring over these areas (see
Figure 6c,d). A similar complexity was observed for NO2 [25], which again emphasizes
the importance of intensive field campaigns combined with model simulations over these
areas (e.g., ozone water-land environmental transition study [46]).

3.2. Estimation of CO Surface Mixing Ratio from TROPOMI and CAMS Reanalysis Data

To derive surface air quality from satellite data, Jeong and Hong (2021) utilized the
ratio of surface mixing ratios to total column amounts from the EAC4, which are multiplied
by CTROPOMI as follows [25]:

STROPOMI =
SEAC4

CEAC4
CTROPOMI (1)

where STROPOMI is the estimated surface CO mixing ratio from CTROPOMI, and SEAC4 and
CEAC4 are the surface mixing ratio and total column amount of CO from EAC4, respectively.
As the CAMS model system (for EAC4) and TM5 (for CTROPOMI) utilizes the same chemical
mechanism, which is a modified and extended version of the CB05 [47,48], we expected
the biases that arose from the different averaging kernels to be minimized. Furthermore,
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some of the systematic biases (e.g., emission inventory) could be canceled out because the
ratio of SEAC4 to CEAC4 was relatively more accurate than their absolute values.

Figure 6. Ratio of surface mixing ratio to total column density for CO at the KME monitoring stations
over (a) South Korea, (b) Seoul metropolitan area, (c) industrial complexes in Gwangyang, and
(d) ironworks in Pohang in 2019. Circles and squares represent ambient air-quality monitoring sites
and roadside air-quality monitoring stations, respectively.

Figure 7 shows the annual statistics of the CO vertical profiles from the EAC4 of
longitudes from 125◦ to 131◦ and latitudes from 33◦ to 39◦. The black line with circles
depicts the mean values of the CO mixing ratio at each layer, the dark gray area indicates
the standard deviation (±σ), and the light gray area shows the data range (minimum and
maximum values) at each level. The mean values with a ±σ of SKME for entire stations are
indicated by the red circle with an error bar (466 ± 218 ppb), which was significantly higher
than that of the EAC4 (193 ± 95 ppb). This difference is partially attributable to the spatial
coverage of the KME network; most of the ground stations are located near urban areas
or large emission sources, whereas the EAC4 values in this figure were calculated from
data over the entire target region of South Korea. The mean (±σ) values of CTROPOMI over
this target domain and over the KME stations were 24.8 (±3.6) × 1017 molec. cm−2 and
25.3 (±4.5) × 1017 molec. cm−2, respectively. The horizontal heterogeneity of CO within
a TROPOMI pixel is relatively small due to its moderate lifetime; therefore, the spatial
coverage of the KME stations does not fully explain the difference between SKME and
SEAC4. Turquety et al. (2008) [49] compared the Laboratoire de Météorologie Dynamique,
zoom; version 4 (LMDz) and Interactive Chemistry and Aerosols; version 2 (INCA) model
simulations [50,51] to the Measurement of Ozone and Water Vapor on Airbus In-Service
Aircraft (MOZAIC) aircraft-based in-situ profiles [52] over Asia, and reported relatively
lower biases of CO from the model in the troposphere, suggesting the underestimation of
CO emissions. The uncertainties of CO emissions over South Korea in the EAC4 may have
propagated errors in the CO vertical profiles, particularly near the surface, which could
have affected the difference between SKME and SEAC4.
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Figure 7. Statistics of CO vertical profiles from ECMWF CAMS reanalysis data (EAC4). The black
line with circles indicates the mean values at each level, the dark gray area indicates ±one standard
deviation, and the light gray area shows the minimum and maximum values. Profiles were sampled
at longitudes from 125◦ to 131◦ and latitudes from 33◦ to 39◦ in 2019. The red circle denotes the mean
CO value from all stations of the KME network for 2019, and the red line presents its ±one standard
deviation.

The surface mixing ratios of CO from EAC4 and derived from TROPOMI were com-
pared with the KME measurements in Figure 8. A comparison between Figures 4 and 8
reveals that the correlations of the CO surface mixing ratios between the different sources
showed a higher correlation (r = 0.48–0.51) than that between SKME and CTROPOMI. More-
over, STROPOMI shows a slightly higher correlation with SKME than that between SEAC4
and SKME with a statistical significance (z-score of about 4.04). The slope of the regres-
sion line between the STROPOMI and SKME also shows slightly better consistency than that
between the SEAC4 and SKME (t-value of about 6.9). Accordingly, the RMSE and MBE
values between the STROPOMI and SKME were lower than those between the SEAC4 and
SKME, which quantifies the benefit of using TROPOMI to derive the surface CO mixing
ratio. However, such agreement between the STROPOMI and SKME was lower than that for
NO2 using the identical technique over the same spatiotemporal domain [25], and the low
bias of STROPOMI (MBE = −187.6 ppb) compared to SKME was still significant with respect
to the average value of SKME (466 ± 218 ppb) which is discussed at following figures.
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Figure 8. (a) Comparison of surface CO mixing ratios from ECMWF CAMS reanalysis data (SEAC4) and measured from
KME stations (SKME) over South Korea for 2019. Panel (b) compares the ratios estimated from TROPOMI (STROPOMI) and
SKME during the same period.

Monthly mean values of CTROPOMI (red circles) and CEAC4 (green squares) are shown
in Figure 9a. The dark colors indicate the mean values over the KME stations, and
the lighter colors depict those over the entire domain of South Korea (longitudes from
125◦ to 131◦ and latitudes from 33◦ to 39◦). Over the KME stations, the mean CEAC4
values were lower than those of CTROPOMI throughout the year by approximately 10%
(2.6 × 1017 molec. cm−2). This could be partly attributed to the lower spatial resolution of
the EAC4 (i.e., approximately 80 km) compared to that of the TROPOMI (i.e., approximately
7 km), as the greater collocated pixels of the EAC4 for each site may contain a greater
fraction of background areas around the KME stations. The average values of CEAC4 and
CTROPOMI over broader and identical spatial domains experienced these sampling issues to
a lesser degree, as demonstrated by the light colors in Figure 9a. The mean values of CEAC4
over the entire target domain were 7% lower than those of CTROPOMI. Regarding similar
comparisons, Borsdorff et al. (2018) reported biases of approximately ±15% depending
on the region (see Figure 2 of [35]), and we expected that these biases were within the
uncertainty ranges of CTROPOMI and CEAC4. In addition, the monthly variations over the
KME stations showed an excellent correlation (r = 0.98), as shown in Figure 9a.

As shown in Figures 7 and 8, significant underestimations of SEAC4 (by approximately
46%) and STROPOMI (by approximately 40%) compared to SKME were also observed in the
monthly mean values of these parameters throughout the year (Figure 9b). The black
diamonds in Figure 9b depict the monthly mean values of SKME for 24-h measurements,
and the blue squares indicate those for the TROPOMI overpass time. In general, the SKME
values were high in winter and low in summer, despite the CTROPOMI peak observed in
March (revealed by comparison of Figure 9a,b). The high CTROPOMI values in March were
likely associated with active biomass burning over southeast Asia, whereas the SKME peak
in January was attributed to the stable boundary layer during this period. The mean
SKME values from 24-h samples and from the TROPOMI overpass time showed slight
differences of approximately 6–10% in spring and winter but comparable values in summer,
which was attributed to diurnal boundary layer development. Note that the NO2 from the
KME at the TROPOMI overpass time was consistently lower by approximately 23% than
the 24-h mean values because of a combination of its chemical processes and boundary
layer development during the daytime [25]. The monthly mean SEAC4 values showed
generally similar tendencies (r = 0.89), but with significantly low biases throughout the
year, particularly in winter. Such relatively low biases of SEAC4 resulted in similar degrees
of underestimation of STROPOMI, as presented in Figure 9b.
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Figure 9. (a) Monthly variations of total column CO from ECMWF CAMS reanalysis data (CEAC4;
green square) and TROPOMI (CTROPOMI; red circle) in 2019. Dark colors of this panel depict their
mean values over the KME stations, and light colors indicate the mean values over the entire South
Korean domain (125◦ to 131◦ longitude and 33◦ to 39◦ latitude). Panel (b) presents monthly variations
in the surface CO mixing ratio from the KME stations (black diamond: 24-h average, blue square: at
TROPOMI overpass time, approximately 13:00 local time), EAC4 (green circle), and the TROPOMI
(red triangle).

4. Summary and Discussions

This study aimed to assess CTROPOMI using an extensive ground-based network over
South Korea to derive the surface mixing ratio of CO over the globe, key information in
understanding its role in the regional air quality climate. Our analysis reveals that the
CO concentration over South Korea is persistently affected by both local emissions and
trans-boundary transport, emphasizing the importance of satellite-based remote sensing
over the region. The TROPOMI accurately detected major sources of CO over South Korea
(e.g., Seoul, Dangjin, Pohang, and Gwangyang), complementing the spatial coverage of
ground-based networks. In general, the correlations between CTROPOMI and SKME (r = 0.33
for all coincident samples, r = 0.37 for annual mean values at each site) were lower than
those for NO2 reported in a previous study [25], and this observation was partly attributed
to the lower spatiotemporal variability. Moreover, higher correlations were observed near
the emission sources. We utilized vertical profiles from EAC4 to convert the total column
amounts of CO from TROPOMI to the surface mixing ratio. This converted STROPOMI was
directly compared to SKME, which showed a significant underestimation of approximately
40%, with a moderate correlation of approximately 0.51. The relatively low biases of
STROPOMI were more significant in winter and were associated with the underestimation
of SEAC4.

Turquety et al. (2008) also reported a significant underestimation of CO (by approxi-
mately 49% below 850 hPa) from the LMDz-INCA model compared to the MOZAIC aircraft
measurements over highly polluted areas in Bangkok, Thailand. They suggested that part
of this underestimation could be attributed to the relatively low horizontal resolution of the
model (i.e., 3.75◦ in longitude 2.5◦ in latitude) [49], which may not accurately resolve highly
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polluted areas. Moreover, Khan et al. (2017) also reported a significantly low bias of the
MOPITT CO compared to the KME measurement in Seoul, South Korea, by approximately
35%, with a low correlation of 0.28 [53]. To the best of our knowledge, the factors affecting
the low biases of the surface CO mixing ratio from satellites and models over this region
remain uncertain. Intensive field campaigns combining various chemistry models of high
spatial resolution (comparable to that of the TROPOMI) and in-situ profile measurements
(e.g., from aircraft or unmanned aerial systems) may help to better understand these dis-
crepancies. Moreover, multi-band retrievals of CO using both SWIR and TIR [17] may also
help to detect the surface burden of CO more efficiently over a broader region. One of the
important merits of this study is that this method is applicable to other regions (e.g., other
Asian or developing countries, where in-situ measurements are sparse) as the EAC4 and
TROPOMI provides relatively uniform quality over globe. However, comparison studies
between the satellite retrievals and surface measurements are essential for broader regions
to understand uncertainties in the assumed CO profiles and emissions.
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Abstract: Runoff signatures (RS), a special set of runoff indexes reflecting the hydrological process,
have an important influence on many fields of both human and natural systems by flooding, drought,
and available water resources. However, the global RS changes and their causes remain largely
unknown. Here, we make a comprehensive investigation of RS changes and their response to total
water storage anomalies (TWSA) from GRACE satellites, atmospheric circulation, and reservoir
construction by using daily runoff data from 21,955 hydrological stations during 1975–2017. The
global assessment shows that (1) in recent years, the global extreme flow signatures tend to decrease,
while the low and average flow signatures are likely to increase in more regions; (2) the spatial
patterns of trends are similar for different RS, suggesting that the runoff distribution tends to
entirely upward in some regions, while downward in other regions; (3) the trends in RS are largely
consistent with that in TWSA over most regions in North America and eastern South America during
1979–2017, indicating that the GRACE-based TWSA have great potential in hydrological monitoring
and attribution; (4) atmospheric circulation change could partly explain the global spatiotemporal
variation patterns of RS; (5) dams have important influences on reducing the high flow signature
in the catchments including dams built during 1975–2017. This study provides a full picture of RS
changes and their possible causes, which has important implications for water resources management
and flood and drought disaster assessment.

Keywords: runoff signatures; GRACE satellites; atmospheric circulation; floods

1. Introduction

River runoff is a crucial link in the earth’s water cycle and the most important compo-
nent of available water resources; therefore, the accurate description of runoff characteristics
is vital for hydrological risk assessment and water resources management [1]. Despite its
importance in water resources management and flood and drought disaster assessments,
unfortunately, the global spatial patterns of runoff signatures (RS) and its response to total
water storage anomalies (TWSA), atmospheric circulation, and human activities remain
largely unknown yet. This is primarily due to the lack of global observation data and
the scarcity of indicators to comprehensively characterize runoff change [2]. Therefore, to
better describe the process of runoff change, we introduce a special set of runoff indexes
based on a synthetic set of daily runoff data that can fully reflect the change characteristics
of river runoff, namely RS [3]. They are divided into five categories: low flow signature,
high flow signature, average flow signature, flow dynamic signature, event frequency, and
duration. We selected eight RS and show them in Table 1. The abbreviations used later for
RS are also shown in Table 1.
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Table 1. Summary of eight runoff signatures in the 10,044 stations.

Group Signature Definition Unit Median

Low flow

ZFR Zero flow ratio Unitless 0.00

Q10 Daily flow at the 10th percentile m3/s 1.32

Q50 Daily flow at the 50th percentile m3/s 3.91

High flow Q99 Daily flow at the 99th percentile m3/s 49.48

Mean flow

Qm Mean daily flow m3/s 7.77

Qw Mean daily flow during winter
(Dec.–Jan.–Feb.) m3/s 5.77

Qs Mean daily flow during summer
(Jun.–Jul.–Aug.) m3/s 7.84

Flow dynamics Qstd Standard deviation of daily streamflow m3/s 10.48

At present, most studies on runoff change analysis are limited to regional or national
scales, such as these in China [4], United States [5], and Australia [3]. However, there
are some limitations in the attribution investigation of runoff change at the regional scale:
(1) runoff change is influenced by the local catchment microclimate and underlying surface
conditions [6], and the results cannot represent the universal regular globally; (2) due
to different research methods and different comparison periods, it is difficult to carry
out comparative studies on large spatial scales. In recent years, a few studies have been
conducted on the attribution of global runoff change [7–9]. However, due to the lack
of observation data, researchers mostly use reconstructed data to analyze global runoff
change [10,11]. These efforts have created conditions for the development of global runoff
research, but the detection results are still affected by the uncertainty of simulated runoff
data. In addition, these studies mostly take mean runoff as the research object, hence their
results cannot comprehensively show the change characteristics of RS, such as extreme
hydrological events, flood peak runoff and dry water runoff [3].

The large-scale river runoff change is the consequence of the complex interaction
of climate conditions, human activity, vegetation, topography, total water storage, and
other factors. Among them, total water storage, climate change, and human activities have
relatively large variability, which is the main influencing factor of runoff change [12–14].
Therefore, we evaluate the RS variation trend from three aspects of TWSA, atmospheric
circulation, and reservoir regulation. First, TWSA includes all the water components of the
earth’s continental regions and is an important indicator of global climate change [15]. At
present, a few studies have already explored the response of floods to TWSA. For example,
Reager et al. [16] point out that gradual changes in TWSA are a prerequisite for local flood
potential. However, the response of RS to TWSA is not very clear yet. Therefore, our study
can provide more supporting evidence for the causes of RS change from the perspective
of TWSA change based on remote sensing satellite data. Second, atmospheric circulation
strongly influences precipitation variability, thus affecting runoff changes [17,18]. Some
studies have concentrated on the connection between large-scale atmospheric circulation
change and catchment runoff processes or extreme runoff events, embedding basin runoff
processes in the global atmospheric circulation context [19]. For example, changes in
catchment runoff in North America, Australia, Africa, and elsewhere have been affected by
the ENSO in large part [20,21]. However, the response of global runoff variation to large-
scale atmospheric circulation has not been adequately studied, especially, the possible roles
of geopotential height, horizontal wind, and water vapor flux in atmospheric circulation are
still unclear yet. This study reveals the action process and underlying physical mechanism
of atmospheric circulation on RS through spatiotemporal variation of atmospheric variables.
Third, except TWSA and atmospheric circulation, human activities on the ground such
as historical water and land management also influence surface runoff and hydrological
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extreme events [2]. For example, the construction and operation of dams would have an
impact on runoff change. Additionally, the change of surface runoff will further affect
the agriculture, natural environment, fishery industry, and infrastructure construction of
the local river catchment [22]. However, due to the lack of reliable reservoir models and
attribution methods, little is known about the effects of dam construction and operation on
runoff. Therefore, our study evaluates the effect of dams on the changing trend of RS by
applying field significance resampling methods at the global scale.

Overall, the RS changes are not investigated at the global scale, and the possible
mechanisms of global RS changes remain largely unknown. Hence, the scientific questions
that this study attempts to solve are as follows: (1) What is the temporal and spatial
variation trend of the RS globally? (2) How does the RS respond to TWSA and atmospheric
circulation? (3) What is the impact of dams on RS change?

2. Materials

2.1. Runoff Signatures Data

As mentioned in the introduction, due to the lack of hydrometric gauging stations,
most studies on runoff change are limited to regional or national scales. To investigate the
global RS changes and their causes, a set of daily runoff data from 21,955 gauging stations
globally is synthesized. The specific data sources are shown in Table 2 below [23–25].

Table 2. Summary of station observations’ sources.

Number Source Website or Reference

9180 stations National Water Information System of the US;
GAGES-II database

https://waterdata.usgs.gov/nwis; Falcone et al., 2010
(accessed on 4 August 2021)

4628 stations Global Runoff Data Centre http://grdc.bafg.de (accessed on 4 August 2021)

3029 stations HidroWeb portal of the Brazilian Agência Nacional de Águas
http://www.snirh.gov.br/hidroweb (accessed on

4 August 2021)

2260 stations EURO-FRIEND-Water http://ne-friend.bafg.de (accessed on 4 August 2021)

1479 stations Canada National Water Data Archive https://www.canada.ca/en/environment-climate-change
(accessed on 4 August 2021)

776 stations Commonwealth Scientific and Industrial Research
Organization (CSIRO); Australian Bureau of Meteorology

http://www.bom.gov.au/waterdata;Zhang et al., 2013
(accessed on 4 August 2021)

531 stations Chilean Center for Climate and Resilience
Research; CAMELS-CL

http://www.cr2.cl/recursos-y-publicaciones/bases-de-
datos/datos-de-caudales; Alvarez-Garreton et.al., 2018

(accessed on 4 August 2021)

Considering the runoff datasets were obtained from different sources, we carried
out a series of criteria to control the quality of daily flow by referring to some mature
data processing methods [26]. The relevant details of the standards used in this study are
as follows:

1. The runoff data with more than 10 consecutive data are regarded as missing data [27].
2. For each station, the data in the year with missing observations more than 10% is

discarded [28].
3. The station is deleted if the streamflow valid recording length is less than 10 years

(not necessarily continuous) at a station during 1975–2017 (the period chosen for
the research).

Finally, observations from a total of 10,044 gauging stations meet these requirements,
namely dataset A. The global distribution of hydrological stations for dataset A is shown
in Figure 1.
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Figure 1. The spatial distribution of hydrological stations and dams. (a) The blue points indicate the selected the hydrological
stations used in this study. (b) The global distribution of the dam is at the bottom. The grey points are the collected 7320 dams
in the world, and the yellow points are selected 5182 dams located in the selected catchment boundaries from 1975 to 2017.
Brown areas represent the arid regions of the world, and light and dark colors represent the percentage of arid land area.

2.2. GRACE Satellite Data

Global total water storage anomalies (TWSA) have been monitored by NASA’s Gravity
Recovery and Climate Experiment (GRACE) satellites via satellite gravimetry with un-
precedented precision. GRACE data may be valuable for monitoring trends in the extreme
runoff by providing information on both base flow stored in soil and groundwater and
event flow driven by precipitation [29]. However, since the GRACE satellite was launched
in 2002, the GRACE TWSA only covers the period of 2002–2017. Hence, we used a newly
released reconstructed TWSA data based on GRACE observation, which covers the period
of 1979–2019 with the spatial resolution of 0.5◦ [30]. Additionally, we assess the relationship
between TWSA and RS changes by using the GRACE global monthly mass concentration
blocks version RL05m from the Jet Propulsions Laboratory. To keep the same temporal
resolutions, we used the common coverage periods of GRACE-based TWSA and RS in
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the analysis, i.e., 1979–2017. For the spatial resolutions, we also extracted the catchment-
scale TWSA, and compared their trends with RS trends in the same catchment scale. The
dataset could be downloaded (https://doi.org/10.5061/dryad.z612jm6bt, accessed on
4 August 2021).

2.3. Atmospheric Circulation Data

It is significant to evaluate the response of RS to atmospheric circulation. Fortunately,
the Japan Meteorological Agency (JMA) has launched the Japanese global atmospheric
reanalysis project, which is named the Japanese 55-year Reanalysis (JRA-55) [31]. In this
study, the JRA-55 was used to explore the impacts of atmospheric circulation on RS. It
covers a total of 62 years from 1958 to 2019. Monthly horizontal wind and geopotential
height at 850,500, and 300 hPa level with the 2.5◦ × 2.5◦ spatial resolution and the water
vapor flux with a spatial resolution of 1.25◦ × 1.25◦ was chosen to carry on attribution
analysis of RS change. The reanalysis dataset could be available on the NCAR/UCAR
website (https://rda.ucar.edu/, accessed on 4 August 2021).

2.4. Dams Data

To evaluate the impact of dams on RS change globally, we collected a dam dataset
with a relative complete variable from the Global Reservoir and Dam Database (GRanD)
(http://wp.geog.mcgill.ca/hydrolab/grand/, accessed on 4 August 2021). This database
includes 7320 dams with a height greater than 15 m or storage capacity larger than 0.1 km3.
It should be noted that this dataset was obtained voluntarily from various research groups
around the world, which had different observation equipment, methods of data collection,
and collation. Therefore, it is not realistic to provide a uniform description of the same stan-
dard for all dams globally [28]. In this dataset, there are 5182 dams built during 1975–2017.
We determined the number of dams in each catchment according to the shapefiles of the
catchment boundary. If there was one (or more) dam within the catchment boundary of
a hydrological station, we regarded it as a dam-affected station. After this process, there
were 193 dam-affected stations, named dataset A1. The remaining 9851 stations without
dams were considered as dataset A2 (“no dams” group).

3. Methods

3.1. Trend Detection

The nonparametric Mann–Kendall test [32,33] was used for trend significance detec-
tion, which can exclude the interference of abnormal values and is also applicable to data
with abnormal distribution or nonlinear trends. The null hypothesis of this test is that data
are identically distributed and independent. At present, the Mann–Kendall test is widely
used for trend examination, which can capture the overall trend of time series, including
the detailed trend in recent years [9,27]. In this study, we detected spatial and temporal
patterns of trends in eight RS and three large-scale environmental variables, that is, geopo-
tential height, horizontal wind, and water vapor flux. In addition, we also examined the
trends in TWSA measured by NASA’s GRACE mission globally. The significance of the
trend is set as the 0.05 confidence level.

3.2. Field Significance Resampling Methods

We evaluated the significance levels for the proportion of the stations showing signif-
icant trends by applying a field significance resampling procedure [34–36]. The specific
resampling details of the method are summarized as follows:

1. Select a time series as the reference period for resampling, such as {1975, 1976, 1977,
1978, 1979, ..., 2009, 2010}, then randomly resample based on this reference to make
the length of the new sequence unchanged and the order change. For example, {1980,
1996, 2003, 1975, 1986, ..., 2009, 1978}.

135



Remote Sens. 2021, 13, 4084

2. The time series obtained through resampling in step (1) corresponds to the observation
value of RS in the corresponding year one by one for all stations to get a new resampled
dataset [37].

3. Conduct the Mann–Kendall test for the time series obtained in step (2) at each station
at the 0.05 significance level. Additionally, the percentages of stations with significant
increase and decrease trends are calculated, respectively.

4. Repeat steps (1) through (3) 2000 times to obtain a dataset that can reflect the percent-
age distribution of stations with significant trends.

5. Calculate the 95th percentile in the dataset obtained in step (4), which represents
the ratio of stations with significant trends. Additionally, the ratio of stations with
significant trends in the reference observations is also calculated.

6. Compare the 95th percentile with the observed percentage value, if the latter is larger,
it indicates that the observed percentage value is not generated randomly but is
significant. That is, the no-change null hypothesis is rejected while the observed ratio
value is outside the 90% confidence interval of the resampling distribution.

4. Results

4.1. Spatial Patterns of Trends in Runoff Signatures

The RS trends were examined by using the Mann–Kendall test based on dataset
A records during 1975–2017 at the 0.05 significance level. As shown in Figure 2, zero
flow ratio (ZFR) has a significantly increasing trend (SIT) in southern North America,
eastern South America, southern Europe, and eastern Oceania, while it has a significantly
decreasing trend (SDT) in northern North America, central Europe, southern Africa, and
northwestern Oceania. The low flow signatures, Q10 and Q50, roughly share consistent
spatial patterns, with a SIT in most areas of northern North America, southeastern South
America, central and northern Europe, and northern Asia, while a SDT in eastern South
America, southwestern Europe, central East Asia, and eastern Oceania. Notable is the high
flow signature, Q99. Its trend change direction is generally opposite to ZFR. Additionally,
Q99 shows an SIT in eastern and central North America, Western Europe, and central South
America while showing a SDT in southwest North America, southern Europe, eastern
South America, and eastern Oceania. Interestingly, the spatial patterns of average RS, Qm,
Qw, and Qs are roughly consistent, with SIT in northeastern North America, northern
Europe, central and southern South America while with SDT in southwestern North
America, eastern South America, southern Europe, and eastern Oceania. However, Qs is
slightly different, and the stations showing a SIT in most of northern Europe and northern
Oceania are denser and more abundant. The flow dynamic signature, Qstd has a SIT in
northeastern North America, Western Europe, and central South America, while it has a
SDT in southwestern North America, southern Europe, eastern South America, southern
Africa, Southeast Asia, and southeastern Oceania.

Generally, the extreme flow signatures tend to decrease in more stations. Overall,
there are 18.2% and 9.9% stations with ZFR and Q99 showing SDT, respectively, while
14.5% and 6.7% of stations showing a SIT. For low and average flow signatures, however,
the number of stations with a SIT is distinctly larger than that showing a SDT. Overall, the
percentages of stations with Q10, Q50, Qs showing a SIT reach 22.6%, 17.7%, 15.4%, while
that showing a SDT is only 13.8%, 12.3%, 8.4%, respectively. As for average RS, Qm, and
Qw, the number of stations showing a SIT is similar to that showing a SDT.

In summary: (1) the extreme RS, including ZFR and Q99, show a SDT in more stations
globally, implying that the flood risk tends to decrease in more regions over the past
decades; (2) in addition, more stations show a SDT for Qstd, i.e., the standard deviation of
streamflow is reducing, implying that the interannual variability of streamflow tends to be
more stable; (3) the change direction (positive and negative) of runoff signatures, Q10, Q50,
Q99, Qm is usually consistent, which suggests that the runoff distribution tends to entirely
upward in some regions, while downward in other regions. It is worth mentioning that
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the spatial pattern of trend in ZFR is usually contrary to that of other RS, since different to
other RS, lower ZFR (zero flow ratio) represents larger runoff.

Figure 2. Spatial patterns of trends in eight runoff signatures based on the Mann-Kendall test at the
0.05 significance level (1975–2017). The red (blue) triangle represents a significant increase (decrease).
The bar chart shows the percentages of stations with significant trends.

4.2. The Response of Runoff Signatures to Atmospheric Circulation

Investigation of atmospheric circulation change is an effective perspective to explain
the causes and physical processes behind the RS trends [38]. Here, we explore the response
of RS change to multiple atmospheric circulation indexes, including geopotential height,
horizontal wind, and water vapor flux.

According to the different geopotential heights and horizontal wind in Figure 3, we can
find that, in southwestern North America, the pressure has been increasing in recent years.
Additionally, there is generation of a high-pressure center relative to the surrounding area
and formation of an anticyclone at 850-hPa level with the strengthening of the prevailing
downdraft. Meanwhile, due to the influence of the dry northeast trade winds from the
inland, the water vapor flux is reducing, and then the precipitation is decreasing (Figure 4),
thus resulting in the decreasing trend in most RS except for the ZFR. This is because a
higher ZFR (zero flow ratio) means a smaller runoff, which is contrary to other RS. In
contrast, in northern North America, where the prevailing westerlies are the main influence
factor, it brings much warm water moisture from the northern Pacific. Compared with
other regions, the increasing trend of air pressure is milder, and the vigorous updraft in the
vertical structure promotes more water vapor convergence and condensation [39], which
leads to the increasing trend in runoff in this region.
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Figure 3. Spatial patterns of annual trends in atmospheric circulation. Trends in (a–c) geopotential height and
(d–f) horizontal wind at 850 (top), 500 (middle), 300 (bottom) hPa based on the Mann-Kendall test. The red (blue) shades
indicate the positive (negative) trends at the 0.05 level. The arrow represents the direction of the horizontal wind and its
length represents the magnitude of significance. Blank areas indicate that the trend is not significant.

In eastern South America, it is mainly controlled by the intensive air pressure at
different geopotential heights. Meanwhile, the air is becoming drier and sinks stronger. In
addition, the dry west wind is enhanced from South America inland and brings more water
vapor flux. However, wet northeasterly winds from the mid-Atlantic are weaker, and the
corresponding water vapor flux is also decreasing. The increase of water vapor by the dry
westerly wind is not enough to offset the decrease of water vapor by the wet northeast wind,
which leads to the decrease of cloud formation and precipitation. As a result, decreasing
runoff is observed in those regions. In central and southern South America, the trend
change direction is just the opposite. As the region is mainly affected by the strengthening
westerly wind from the southeast Pacific Ocean, which brings more warm and humid
water vapor from the ocean. Thus, the precipitation is increasing, resulting in an increasing
trend in the runoff.

In the whole European continent controlled by temperate climate (Temperate marine
climate, Mediterranean climate), atmospheric circulation changes are relatively mild. Ex-
cept for a slight increasing trend in air pressure, horizontal wind and water vapor flux
changes are not particularly significant. However, we can still find out that the polar
easterly winds at the 850 hPa level in northern Europe have a slightly enhanced trend, and
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the corresponding water vapor flux from the Arctic Ocean also shows an increasing trend
as well as precipitation. Therefore, it causes an increasing flow in this region. In addition,
we also find that the process of atmospheric circulation and the response of RS to it in some
catchments of northern Asia is roughly the same as that of northern Europe.

Figure 4. Spatial patterns of annual trends of the water vapor flux during 1975–2017 based on the Mann-Kendall test. The
red (blue) shades represent the degree of positive (negative) trends at the 0.05 level. The arrow represents the direction
of the water vapor flux and its length represents the magnitude of significance. Blank areas indicate that the trend is
not significant.

In eastern Oceania, the air pressure at different geopotential heights shows an increas-
ing trend, while the downdraft strengthens and the air becomes drier. At the same time,
the humid southeast trade winds from the western Pacific are weakening along with the
decrease of water vapor flux and precipitation, resulting in the decreasing trend in runoff
in this region. In general, the consistent spatial and temporal patterns between atmospheric
circulation variables and the change of RS are detected roughly, indicating that atmospheric
circulation changes have a partial impact on the trend of RS [18].

4.3. The Response of Runoff Signatures to TWSA of GRACE Satellite

TWSA is a comprehensive reflection of regional precipitation, runoff, evapotranspira-
tion, and groundwater, and it has already become an important parameter of global water
cycle observation [29]. To explain the possible mechanisms of RS changes, we investigate
the changing trend of RS from the perspective of the TWSA. We used the common coverage
periods of GRACE-based TWSA and RS in the analysis, i.e., 1979–2017. In general, the
spatial patterns of trend in TWSA are consistent with that in RS over most regions in North
America and eastern South America from 1979 to 2017 (Figures 5 and 6). Specifically, the
same SIT between RS and TWSA is found in central and western North America, northern
Europe, and central South America. Meanwhile, consistent SDT is observed in southern
North America, eastern and southwestern South America. This consistent appearance of
positive/negative trends in most RS and TWSA indicates that gradual changes in catch-
ment humidity influenced by a combination of climate and anthropogenic factors are a
prerequisite for local extreme runoff potential [16,29]. In the process of the water cycle, if
we assume that all the specific conditions in the basin are constant, runoff is generated only
from precipitation. However, runoff change is not only affected by the pattern, duration,
and location of precipitation, but also by the antecedent soil moisture and hydraulic charac-
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teristics of the watershed [40]. Hence, when TWSA is a decreasing trend in the catchment,
a certain amount of precipitation will preferentially replenish the reduced water in the soil.
Additionally, runoff will show a decreasing trend due to the decrease in the water supply.
When TWSA shows an increasing trend, it indicates that the soil moisture is becoming
more and more saturated and the precipitation required gradually decreases. In addition,
runoff will be an increasing trend due to increased water supply. We assume, of course,
that the other variables remain unchanged. Therefore, this provides evidence for the reason
why the trend direction of TWSA is consistent with that in RS.

Figure 5. Spatial patterns of trends in eight runoff signatures, (a) ZFR, (b) Q10, (c) Q50, (d) Q99,
(e) Qm, (f) Qw, (g) Qs, (h) Qstd based on the Mann–Kendall test at the 0.05 significance level, as
well as trends in GRACE liquid water equivalent thickness in cm/year (1979–2017). The red circles
indicate increasing trends, the blue represents decreasing trends. The green in the background
shows an increasing trend in liquid water equivalent (basin water storage), and the orange shows a
decreasing trend. The darker the color, the more obvious the changing trend.

To compare the trends in RS and TWSA in the same spatial resolution, we extracted
the TWSA for each catchment, and investigated the trends at the catchment scale (Figure 6).
Generally, the RS changes are consistent with TWSA, with more 60% of stations showing
consistent trends. It is worth mentioning that the percentage for ZFR is less than 40%. This
is because larger ZFR represents less streamflow, which is contrary to other RS. Hence, the
trends in all RS are consistent with TWSA in most stations, implying that the impacts of
TWSA on streamflow indeed exist and are not random.
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Figure 6. (a) Spatial patterns of trends in TWSA based on the Mann–Kendall test at the 0.05 significance level (1979~2017).
The red (blue) triangle represents a significant increase (decrease). The bar chart shows the percentages of stations showing
significant trends. (b) The percentage of stations with consistent increase/decrease in TWSA and eight RS. Red (blue)
indicates the proportion of stations with consistent increase (decrease) in TWSA and RS.

4.4. The Influences of Dams on Runoff Signatures

To evaluate the differential impact of dams on positive and negative trends of RS,
we applied the Mann–Kendall test combined with resampling to investigate whether
the proportion of stations showing an increasing/decreasing RS is significantly based
on dataset A1 (dam-affected stations) [34]. The percentage distributions of dam-affected
stations with significant trends are shown in Figures 7 and 8. For low flow signatures,
i.e., ZFR, Q10, and Q50, the percentage of stations with a SIT are close to that with a SDT.
Specifically, the proportions of stations that show a SIT reach 1.55%, 13.98%, and 8.29%,
while the percentages of stations with a SDT are 1.04%, 14.50%, and 11.91% for ZFR, Q10,
and Q50, respectively. These low flow signatures show that the percentages of stations with
a SIT/SDT are field significant and are inconsistent with the no-change null hypothesis.
Additionally, this result indicates that the dams seem to have no material effect on the
overall trend results of ZFR, Q10, and Q50.
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Figure 7. The proportion of stations with significant trends for 193 stations in the “dam” dataset on the four runoff
signatures, i.e., (a,b) ZFR, (c,d) Q10, (e,f) Q50, (g,h) Q99, based on the Mann–Kendall test. Left panels indicate the results for
the proportion of stations showing a significantly increasing trend, while right panels represent results for the proportion of
stations showing a significantly decreasing trend. The histogram represents the distribution of proportion obtained from
the 2000 moving-blocks field significance resampling procedure. The red dot indicates the observation value while the red
line indicates the 95th percentile.

142



Remote Sens. 2021, 13, 4084

 

Figure 8. The same as Figure 7, but for the four runoff signatures, i.e., (a,b) Qm, (c,d) Qw, (e,f) Qs, (g,h) Qstd.

For high flow signature (Q99), the percentages of stations showing SDT are more than
two times higher than that showing SIT. The proportion of stations with a SDT and SIT
accounts for 8.29% and 3.63%, respectively. Similar results can be found in mean flow
signatures (Qm and Qw) and flow dynamic signature (Qstd). Their percentages of stations
showing a SDT are approximately twice as much as those showing a SIT. In particular, the
percentages of stations showing a SDT reach 10.36%, 10.36%, and 8.30%, respectively, while
the percentages of stations with a SIT are 5.18%, 5.69%, and 4.15%. Q99, Qm, Qw, and Qstd
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all show that the percentages of stations with a SIT are not the field significant and are
consistent with the no-change null hypothesis, but the percentages of stations with a SDT
are just the opposite. These results indicate that the increasing (decreasing) trend of Q99,
Qm, Qw, and Qstd are (are not) caused by random changes, implying that dams have an
important influence on reducing floods, mean runoff, and runoff variability.

5. Discussion

Although we collect global hydrological observation data as much as possible (Table 2),
the conclusions in regions with fewer data are constrained (e.g., Asia) or muted (e.g., Africa).
Consequently, the coverage of observations and the un-homogeneous of spatial distribution
are still the limited factors of this study [2]. In fact, it is almost impossible to collect all
hydrological stations across the globe with a regular distribution, particularly for some
regions without rives and gauging stations. As shown in the new Figure 1, the regions
without stations mainly distribute in the arid regions where no river and hydrological
stations exist. At present, most studies on global hydrological change are still limited by
uneven data distribution, such as Liu et al. [9], Do et al., [28], and Gudmundsson et al. [27].
Due to the diversity of instruments, collection and the limitations of documents, the GSIM
dataset, with more than 30,000 stations, cannot guarantee its regular distribution across the
world [41].

Over the past decades, the extreme RS in more stations shows a SDT globally, implying
that both the flood and hydrological drought is more likely to decrease over the world.
Generally, these results are consistent with previous regional research. For example,
Hodgkins et al. [42] found that the flood in North America and Europe tends to decrease in
more regions; Gudmundsson et al. [6] indicated that the runoff shows a decreasing trend
in recent years in most regions of southern Europe. What is more, the change direction
(positive and negative) of RS, Q10, Q50, Q99, Qm is usually consistent in the same station,
implying that the runoff distribution tends to entirely upward in some regions, while
downward in other regions, which agrees with the results of Gudmundsson et al. [27].

Atmospheric circulation has a significant impact on runoff variability, which has
been widely verified in different regions, e.g., North America [43], Europe [44], and Aus-
tralia [45]. Here, we assess the response of RS to atmospheric circulation on a global scale
by focusing on precipitation as an intermediate variable. Additionally, our study finds
that atmospheric circulation can explain the RS change in most regions. Nevertheless,
atmospheric circulation is found to have a limited influence on RS changes in some regions
due to the complexity of the hydrological process and its driving factors. The RS change
driven by atmospheric circulation indicators such as geopotential height, horizontal wind,
and water vapor flux is only a large-scale control factor [17]. However, except for the pre-
cipitation changes regulated by atmospheric circulation, the RS changes can be influenced
by a series of other driving factors, such as soil moisture and groundwater (associated
with TWSA) [46], and human activities (e.g., dams) [40]. Hence, we further investigate the
response of RS to TWSA and dams to explore the possible mechanisms of global RS change.

GRACE is, to date, the first and only tool that is capable of global monitoring for
TWSA. Besides, the Global Climate Observing System (GCOS) Steering Committee has
been committed to treating TWSA as a new Essential Climate Variable (ECV) [30]. In conse-
quence, it is reasonable and meaningful to explore the impacts of TWSA from GRACE on
RS. Our results show that the trends in RS are generally consistent with that in TWSA over
most regions in North America and eastern South America from 1979 to 2017, implying
that the TWSA from the GRACE can largely explain spatial patterns of RS changes. These
suggested that TWSA is an important factor affecting RS changes. On the one hand, larger
TWSA always represents that more water storage (e.g., underground water and lake water)
can recharge the river. On the other hand, the higher antecedent soil moisture accompa-
nying larger TWSA favors a larger flooding and runoff. Additionally, previous studies
suggested that the floods tend to decrease in the regions where TWSA and antecedent soil
moisture showed decreasing trends [17,18]. Diffenbaugh et al. [47] found that California’s
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severe TWSA shortage led to the reduction of soil moisture and the worst drought (low
RS) on the west coast of the United States in centuries. Louise et al. [29] indicated that the
broad shifts of TWSA with the soil moisture decreasing that occurs at the land surface and
subsurface (TWSA change) is an important driving factor of flooding (high RS). In the dry
soil moisture condition, the increase of precipitation does not have to translate into the
increase of streamflow, and the reduced soil moisture and groundwater will reduce RS [14].

In addition, we also investigated the impacts of dams on RS by using the stations with
dams in their catchments. Our results show that the percentages of stations showing SDT
are almost twice more than that showing SIT for Q99, Qm, Qw, and Qstd. This suggests
that dams play an important role in reducing the peak and mean value of streamflow,
as well as the streamflow variability. Nonetheless, we also find that dams have limited
impacts on the low flow signatures, ZFR, Q10, Q50. From a hydrological point of view,
large dams are expected to have an important impact on flood flows; as, in many situations,
dams are designed to lessen the floods risks and disasters [48,49].

6. Conclusions

This study, for the first time, assesses the spatiotemporal patterns of RS changes and
their possible mechanisms on a global scale based on 10044 stations. Compared with previ-
ous studies restricted to regional scale or using only the specific runoff index, our research
not only breaks through the regional limitations and eliminates the disturbance of the uncer-
tainty of the simulation data but also introduces a complete set of RS indicators that could
reflect the runoff characteristics. Therefore, this investigation provides a comprehensive
picture of temporal and spatial characteristics of global RS, with important implications in
global water resource management and flood and drought disaster assessment.

The extreme RS, ZFR, and Q99 show a SDT in more stations globally over the past
decades, implying that the flood and the drought tend to decrease in more regions. In
addition, more stations show a SDT for Qstd, implying that the interannual variability of
streamflow tends to be more stable. Generally, the change direction (positive and negative)
of most runoff signatures is usually consistent. This indicates that the runoff distribution
tends to be entirely upward in some regions, while downward in other regions (consistently
drier or wetter).

Through the temporal and spatial variations of geopotential height, horizontal wind,
and water vapor flux globally, we reveal the active mechanism of atmospheric circulation
on the RS change. Although these atmospheric circulation indicators are only the large-
scale controlling factors, the atmospheric circulation can roughly explain the RS change in
many regions. Additionally, this suggests that the global atmospheric circulation variation
has an important impact on regional RS changes.

The spatial patterns of trends in RS agree well with that in TWSA from GRACE
satellites over most regions in North America and eastern South America from 1979 to
2017. This suggests that GRACE satellites productions have great potential in simulation
and attribution of hydrological change. In addition, the dams have important impacts on
the peak, mean, and variability of runoff. In the dam-impacts stations, our results show
that the percentages of stations showing SDT are almost twice more than that showing SIT
for Q99, Qm, Qw, and Qstd.
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Abstract: The three-river headwater region (TRHR) supplies the Yangtze, Yellow, and Lantsang rivers,
and its ecological environment is fragile, hence it is important to study the surface vegetation cover
status of the TRHR to facilitate its ecological conservation. The normalized difference vegetation
index (NDVI) can reflect the cover status of surface vegetation. The aims of this study are to quantify
the spatial heterogeneity of the NDVI, identify the main driving factors influencing the NDVI, and
explore the interaction between these factors. To this end, we used the global inventory modeling and
mapping studies (GIMMS)-NDVI data from the TRHR from 1982 to 2015 and included eight natural
factors (namely slope, aspect, elevation, soil type, vegetation type, landform type, annual mean
temperature, and annual precipitation) and three anthropogenic factors (gross domestic product
(GDP), population density, and land use type), which we subjected to linear regression analysis, the
Mann-Kendall statistical test, and moving t-test to analyze the spatial and temporal variability of
the NDVI in the TRHR over 34 years, using a geographical detector model. Our results showed that
the NDVI distribution of the TRHR was high in the southeast and low in the northwest. The change
pattern exhibited an increasing trend in the west and north and a decreasing trend in the center and
south; overall, the mean NDVI value from 1982 to 2015 has increased. Annual precipitation was
the most important factor influencing the NDVI changes in the TRHR, and factors, such as annual
mean temperature, vegetation type, and elevation, also explained the vegetation coverage status
well. The influence of natural factors was generally stronger than that of anthropogenic factors. The
NDVI factors had a synergistic effect, exhibiting mutual enhancement and nonlinear enhancement
relationships. The results of this study provide insights into the ecological conservation of the TRHR
and the ecological security and development of the middle and lower reaches.

Keywords: NDVI; spatiotemporal variation; driving factors; geographical detector; three-river
headwater region

1. Introduction

The vegetation cover is an important component of surface ecosystems that connects
the atmosphere, hydrosphere, pedosphere, and areas inhabited by humans [? ]; thus, the
study of regional vegetation cover is essential to regional ecological conservation. The
normalized difference vegetation index (NDVI) can accurately reflect the status of surface
vegetation cover, which is the best indicator of vegetation coverage and the most effective
indicator for monitoring regional vegetation change and the ecological environment [? ?

]. Regional vegetation coverage changes and their drivers have been studied at different
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scales, including globally [? ], as well as in Central Asia [? ], northern China [? ], the
Loess Plateau [? ], the Qinghai–Tibet Plateau [? ], the Yangtze River Basin [? ], and the
Amur-Heilongjiang River Basin [? ], using the NDVI.

The geographical detector model proposed by Wang et al. [? ] bridges the gap between
the correlation analysis methods used in previous studies, and can quantify the spatial
heterogeneity of vegetation and its driving factors, as well as the interaction between factors.
This method has been successfully used to quantify the influence of driving factors on
vegetation change. Zhao et al. [? ] found that precipitation plays a crucial role in the growth
of vegetation in northern China and even in other arid regions of the world. Yuan et al. [? ]
showed that vegetation exhibited significant spatial heterogeneity throughout the Heihe
River Basin. Zhu et al. [? ] found that land use types and precipitation were the main factors
driving vegetation change in the middle reaches of the Heihe River Basin. Ran et al. [? ]
concluded that natural factors had a greater influence on vegetation than anthropogenic
factors in northern Tibet. Zhang et al. [? ] found that the influence of anthropogenic factors
was greater than that of natural factors in the oasis-desert ecotone. Liu et al. [? ] reported
that precipitation was the main factor affecting the difference in the spatial distribution of
the NDVI in the Qinghai–Tibet Plateau.

The ecological conservation of river sources is of vital importance to the ecological
environment and the development of the middle and lower reaches of rivers. Located in the
hinterland of Qinghai–Tibet Plateau, the TRHR is a natural ecological barrier in China with
special alpine vegetation system and fragile ecological environment. Vegetation coverage
plays an important role in its preservation. Studying the spatial and temporal variation
characteristics of vegetation in alpine areas and its driving forces can better explain the
environmental change process. Previous studies on the characteristics of vegetation change
in the TRHR have had short time series and incomplete datasets, therefore the conclusions
obtained are inconsistent [? ? ]. There remains a gap in studying the temporal and spatial
changes of vegetation in long time series, which cannot accurately reflect the distribution
characteristics of vegetation in the TRHR at both temporal and spatial scales. Previous
studies on the driving factors of vegetation change in the TRHR have mostly been limited to
examining the effect of climatic factors, such as temperature and precipitation [? ? ? ], and,
hence, there remains a lack of research on the influence of other natural and anthropogenic
factors on the NDVI. Furthermore, the traditional methods, such as correlation analysis,
used in the existing studies are not suitable for studying the interaction between factors and
to quantitatively analyze the factors affecting NDVI. Therefore, the aims of the present study
are to analyze the spatial and temporal variability of the NDVI in the TRHR over a 34-year
period from 1982 to 2015, using linear regression analysis, the Mann-Kendall statistical
test, and the moving t-test, and quantitatively investigate the natural and anthropogenic
driving factors of NDVI variability and their interactions using a geographical detector that
capable of identifying spatial heterogeneity. The results of this study provide a scientific
basis for ecological restoration and conservation in the TRHR.

2. Materials and Methods

2.1. Study Area

The TRHR (31◦39′N–36◦16′N, 89◦24′E–102◦23′E) (Figure ??) is located south of Qing-
hai Province, and it supplies the Yangtze, Yellow, and Lantsang Rivers. It includes 21
counties and Tanggula Township, covering a total area of 38.1 × 104 km2. The topography
is high in the West and low in the East (Figure ??c), with an average altitude of 3500–4800
m. It has a continental plateau climate, with temperature and precipitation decreasing
from the southeast to the northwest (Figure ??g,h). The main vegetation types are alpine
meadows and alpine grasslands. The Qinghai–Tibet Plateau is a vast semi-natural area
with relatively little artificial influence [? ]. The TRHR is located in the central part of
the Qinghai–Tibet Plateau, with high altitude and sparse population. The TRHR is an
important ecological barrier in China with a fragile ecological environment; therefore, its
ecological conservation is crucial for the sustainable development of a vast area in China.
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Figure 1. Sketch map of the three-river headwater region.

  

  

  
Figure 2. Cont.
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Figure 2. Classification of factors: (a) Slope; (b) Aspect; (c) Elevation; (d) Soil type; (e) Vegetation type; (f) Landform type;
(g) Temperature; (h) Precipitation; (i) GDP; (j) Population density; (k) Land-use type.

2.2. Data and Processing

The data included in this study included natural factors, such as the NDVI, digital
elevation model (DEM), climate data, landform type, soil type, and vegetation type, as
well as anthropogenic factors, such as land use type, population density, and GDP in
the TRHR. NDVI data were obtained from the Big Earth Data Platform for Three Poles,
using GIMMS NDVI3g data with a spatial resolution of 8 km and a temporal resolution
of 16 days [? ? ], the NDVI images for each year from 1982 to 2015 were obtained
by maximum value composite (MVC) [? ]. Vegetation coverage was divided into five
classes according to NDVI values: low coverage (≤0.2), medium–low coverage (0.2–0.4),
medium coverage (0.4–0.6), medium–high coverage (0.6–0.8), and high coverage (>0.8).
The annual mean temperature and annual precipitation data were obtained from daily
standard meteorological data of 26 meteorological stations in and around the TRHR from
1982 to 2015 using the inverse distance weighting method. DEM data were GDEMV2 30 m
resolution digital elevation data from the Geospatial Data Cloud of the Chinese Academy
of Sciences (http://www.gscloud.cn/ (accessed on 3 August 2021)), and the elevation,
slope, and aspect data were obtained from the DEM data. Other data were obtained from
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the Resource and Environmental Sciences Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/ (accessed on 3 August 2021)). All the above data were extracted
according to the vector boundary of the TRHR [? ] and were resampled to make them
consistent with the 8-km NDVI data image. Using ArcGIS to create a fishnet, 5853 random
sampling points were generated based on 8 × 8 km grids according to the scope of the
TRHR, and the spatial attribute values were extracted.

We selected NDVI as the dependent variable and six categories of topography (slope,
aspect, elevation), soil (soil type), vegetation (vegetation type), landform (landform type),
climate (annual mean temperature, annual precipitation), and human activity (GDP, popu-
lation density, land use type), a total of 11 representative and easily quantifiable factors,
as independent variables. Precipitation and temperature are important factors affecting
vegetation changes [? ], elevation, slope, aspect, and landform type affect vegetation
distribution by changing water and heat conditions [? ]. Soil and vegetation types are im-
portant environmental elements for vegetation growth [? ]; economic development affects
ecological environment, land use type, GDP, and population density are indicators that
can quantify changes in socioeconomic development [? ]. The independent variables in the
geographical detector model must use discrete quantities, therefore we have to classify the
factors. According to the actual situation of the TRHR, slope was divided into 7 categories
according to the Technical Regulations for Land Use Status Survey; aspect was divided
into 9 categories according to slope orientation; Soil type was divided into 10 categories
according to the traditional “Soil Occurrence Classification” system; vegetation type was
divided into 9 categories according to the 1:1,000,000 Chinese Vegetation Atlas; landform
type was divided into 6 categories according to the 1:1,000,000 Landform Atlas of the
People’s Republic of China; land use type was divided into 6 categories according to the
1:1,000,000 Land Use Map of China; the elevation, annual mean temperature and annual
precipitation were divided into 9 categories according to the natural breakpoint method [?
], and the GDP and population density were divided into 7 categories according to the
natural breakpoint method [? ] (Figure ??).

2.3. Methods
2.3.1. Linear Regression Analysis

Linear regression analysis can analyze the trend of each raster in an image [? ]. The
raster calculator of ArcGIS was used to analyze the NDVI trend of each image element in
the TRHR from 1982 to 2015, and categorized the NDVI change trend into seven classes
according to the natural breakpoint method [? ]: significant degradation, moderate degrada-
tion, slight degradation, basically unchanged, slight improvement, moderate improvement,
and significant improvement. The slope can be calculated through Equation (1) [? ]:

Slope =
n × ∑n

i=1(i × NDVIi)− (∑n
i=1 i)(∑n

i=1 NDVIi)

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

In Equation (1): n is the total number of the year series (n = 34 in this study), i ranges
from 1 to n, NDVIi is the NDVI value of the ith year, and Slope is the variation trend of
the NDVI; if Slope > 0, the vegetation coverage shows an increasing trend; if Slope < 0, the
vegetation coverage shows a decreasing trend; if Slope = 0, there is no significant change in
the vegetation coverage.

2.3.2. Mann-Kendall Test

The Mann-Kendall method is a nonparametric statistical test used to determine the
significance of trends [? ]. The change trend was significant when |Z| > Z0.05. In this study,
the Mann-Kendall statistical test was used to test the mutation points of the NDVI. The
significance level was set at 0.05. The intersection of UF and UB is the mutation point; if
there is more than one intersection, it is not certain whether it is the mutation point, and
further testing is needed [? ].
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2.3.3. Moving t-Test

The moving t-test was used to test for mutations by examining whether the difference
between the means of the two sample groups was significant [? ]. If the difference between
the mean values of the two subsequences exceeded the significance level of p = 0.05,
the mutation was considered to be present; otherwise, no mutation was considered to
be present.

2.3.4. Geographical Detector

The geographical detector is a statistical method used to detect spatial heterogeneity
and its driving factors [? ]. We used a geographical detector to compare the spatial
distribution of NDVI vegetation with the spatial distribution characteristics of the detection
factors; if a factor drives the NDVI variation, then the spatial distribution of the NDVI will
be similar to the spatial distribution of that factor. This method has been successfully used
to study the drivers of NDVI change [? ? ? ? ? ? ].

(1) Factor detector. The factor detector q-statistic measures the degree of spatial
stratified heterogeneity of a variable Y; and the determinant power of an explanatory
variable X of Y. A factor detector is used to detect the spatial heterogeneity of the NDVI
and the explanatory power of the independent variable X on the dependent variable Y,
expressed by the q value [? ]:

q = 1 − 1
Nσ2

L

∑
h=1

Nhσh
2 = 1 − SSW

SST
(2)

SSW =
L

∑
h=1

Nhσh
2, SST = Nσ2 (3)

In Equations (2) and (3): q is the explanatory power of the independent variable X
on the dependent variable Y, with a value range of [0, 1]; the larger the q value, the more
obvious the spatial heterogeneity and the stronger the explanatory power of X on Y. The
study area is divided into h = 1, 2 . . . , L regions; Nh and N are the number of units in
layer h and the whole region, respectively; σh

2 and σ2 are the variances of the Y values of
layer h and region, respectively; SSW and SST are the sum of variance within layer and
total variance of region, respectively.

In this study, the independent variable X represents the detection factor Xs (s = 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, and 11), as is shown in Table ??, and the dependent variable Y is the
NDVI.

Table 1. Detection factors.

Type
Detection

Factors
Index Unit Type

Detection
Factors

Index Unit

Topography X1 Slope ◦ Climate X7 Annual mean
temperature

◦C

X2 Aspect ◦ X8 Annual
precipitation mm

X3 Elevation m Human
activity X9 GDP 10,000 yuan/km2

Soil X4 Soil type - X10 Population
density people/km2

Vegetation X5 Vegetation type - X11 Land use type -
Landform X6 Landform type -

(2) Interaction detector. The interaction detector reveals whether the factors X1 and
X2 (and more X) have an interactive influence on a response variable Y. Because the factors
in nature do not exist independently, there are interactions between the factors, and the
interactions between the factors need to be analyzed in the study. An interaction detector
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was used to detect the interaction between NDVI detection factors. It can detect any
relationship between factors as long as they exist. The assessment methods used are
presented in Table ??.

Table 2. Types of interaction.

Foundation Interaction

q (X1∩X2) < Min [q (X1), q (X2)] Nonlinear weakening
Min [q (X1), q (X2) < q (X1∩X2) < Max (q (X1), q (X2)] Univariate weakening

q (X1∩X2) > Max [q (X1), q (X2)] Bivariate enhancement
q (X1∩X2) = q (X1) + q (X2) Independent
q (X1∩X2) > q (X1) + q (X2) Nonlinear enhancement

(3) Risk detector. A risk detector was used to compare whether there was a significant
difference between the mean values of the dependent variables in the two regions. This
study was used to detect the appropriate range or types of the driving NDVI factors. The
t-statistic used was the following [? ]:

t −
y h=1−

−
y h=2

=

−
Y h=1 −

−
Y h=2⎡

⎣Var
( −

Y h=1

)
nh=1

+
Var

( −
Y h=2

)
nh=2

⎤
⎦

1/2 (4)

In Equation (4):
−
Y h denotes the attribute mean within subregion h, nh is the number

of samples within subregion h, and Var denotes the variance. According to the null

hypothesis H0:
−
Y h=1 =

−
Y h=2, if H0 is rejected at confidence level α, it is considered that

there is a significant difference in the attributed means between the two subregions.
(4) Ecological detector. An ecological detector was used to detect whether there was a

significant difference in the influence of different factors on NDVI changes, as measured by
the F-statistic [? ]:

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
(5)

SSWX1 =
L1

∑
h=1

Nhσh
2, SSWX2 =

L2

∑
h=1

Nhσh
2 (6)

In Equations (5) and (6): NX1 and NX2 denote the sample sizes of the two factors X1
and X2, respectively, SSWX1 and SSWX2 denote the sum of within-layer variances of the
strata formed by X1 and X2, respectively, and L1 and L2 denote the number of strata of the
variables X1 and X2, respectively. According to the null hypothesis H0: SSWX1 = SSWX2, if
H0 is rejected at the significance level of α, this indicates that there is a significant difference
in the effect of the two factors X1 and X2 on the spatial distribution of attribute Y.

3. Results

3.1. Spatial and Temporal Variation Characteristics of the NDVI in the TRHR

The NDVI values in the TRHR were high in the southeast and low in the northwest
(Figure ??). Regions with low vegetation coverage were mainly distributed in the northwest,
with most being low coverage grassland; regions with high vegetation coverage were
mainly in the southeast, where the hydrothermal conditions were better, the elevation was
relatively low, and the vegetation was mainly high coverage grassland and forest.
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Figure 3. Spatial distributions of the NDVI: (a) NDVI in 1982; (b) NDVI in 2015.

In this study, the annual mean NDVI values from 1982 to 2015 were selected to repre-
sent the annual vegetation coverage status in the TRHR. The change observed exhibited
an increasing trend, which is consistent with the findings of Zhai et al. [? ]. With an
increase rate of 0.002/10 a, the mean NDVI value increased from 0.454 in 1982 to 0.458 in
2015, and the maximum (0.493) and minimum (0.430) NDVI values occurred in 2010 and
1995, respectively (Figure ??). These results indicate that the vegetation coverage of the
TRHR has been improving, but with small changes from 1982 to 2015. Due to overgrazing,
the ecological degradation of the TRHR as serious and the vegetation coverage was low.
After 2005, the vegetation coverage gradually increased due to the increase in artificial
precipitation and the implementation of ecological projects, such as the return of grazing
to grass.

 
Figure 4. Change trend of the NDVI during 1982–2015 (The statistical significance level is 0.05).

3.2. Trend Analysis of NDVI Changes in the TRHR

In 1982 and 2015, high and medium-high vegetation coverage areas accounted for
more than 33% and 31%, respectively, of the TRHR area, while low and medium–low areas
accounted for approximately 42% and 41%, respectively, of the total TRHR area. From
1982 to 2015 the low and high vegetation coverage areas decreased, with the former type
decreasing the most (by 3.08%). During the same period, the medium vegetation coverage
area increased the most (by 2.78%; Table ??).
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Table 3. The transfer matrix of NDVI changes during 1982–2015 (km2).

NDVI Grade. ≤0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8 Total in 2015 Shifted-In

≤0.2 52,380.30 3574.52 28.62 40.13 0.00 56,023.57 3643.27
0.2–0.4 15,250.20 79,604.60 7079.04 67.18 0.00 102,001.02 22,396.42
0.4–0.6 136.95 11,649.30 75,441.70 15,042.10 21.39 10,2291.44 26,849.74
0.6–0.8 0.00 234.22 9102.26 81,869.60 14,528.30 105,734.38 23,864.78

>0.8 0.00 0.00 40.50 4214.91 10,510.80 14,766.21 4255.41
Total in 1982 67,767.45 95,062.64 91,692.13 101,233.92 25,060.49 380,816.63
Shifted-out 15,387.15 15,458.04 16,250.43 19,364.32 14,549.69
Variation −11,743.88 6938.38 10,599.31 4500.46 −10,294.28

Percentage (%) −3.08 1.82 2.78 1.18 −2.70

The NDVI transfer matrix of the TRHR showed that there was a transformation in
the NDVI at all levels from 1982 to 2015 (Table ??). The shifted-out areas were mainly
medium–high vegetation coverage, which shifted mainly to medium vegetation coverage,
and the shifted-in areas were mainly medium–low, medium, and medium–high vegetation
coverage, with a significant increase in medium vegetation coverage and a substantial
decrease in high vegetation coverage.

Although the trend of the NDVI value of the TRHR was increasing, it was still
dominated by low, medium, and medium–high vegetation coverage, which all accounted
for more than 25% of the area, while the high vegetation coverage area accounted for the
smallest proportion and decreased significantly. Previously, the ecological environment was
severely damaged, and the restoration was difficult and slow. Land use is still dominated
by low-coverage grassland, thus, the status of the vegetation coverage of the TRHR was
still not optimistic.

From the linear regression analysis, it was concluded that the vegetation coverage of
the TRHR showed an increasing trend from 1982 to 2015 (Figure ??), thereby indicating
that the vegetation coverage of the TRHR gradually recovered. The area with the largest
increase in vegetation coverage was mainly distributed in the west and north, covering a
total of 14.5 × 104 km2 and accounting for 37.86% of the total area; this area was mainly
dominated by grassland, meadow, and alpine vegetation. The area with the largest decrease
in vegetation coverage was mainly concentrated in the center and the south, covering a
total of 12.6 × 104 km2 and accounting for 32.87% of the total area. Areas with unchanged
vegetation were distributed throughout the region (Table ??). The NDVI change trend in
the TRHR increased in the north and west and decreased in the south and center. The
desert in the northeast of the TRHR has gradually transformed into grassland and meadow
vegetation types [? ]. The unused land in the Sanjiangyuan Ecological Protection Project
area has been transformed into low-coverage grassland, and the area of high-coverage
grassland has increased significantly (Table ??), therefore the implementation of ecological
projects has significantly improved the vegetation coverage of Zhiduo, Qumalai and Mado
counties in the north and northwest of the TRHR. The decrease in vegetation coverage in
Yushu, Jiuzhi, and Banma counties in the south may be due to the decrease in precipitation.

The M-K test showed that none of the intersection points of the UF and UB exceeded
the critical value. Significance test indicated that |Z| = 0.048 < Z0.05 = 0.236, thereby
indicating that the trend of the NDVI change in the TRHR was not significant, but had
multiple intersection points (Figure ??). Therefore, the mutation points needed to be further
examined using the moving t-test.
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Figure 5. Distribution of the NDVI change trend during 1982–2015.

Table 4. Change trend of the NDVI during 1982–2015.

Change Trend Gradient Area/km2 Percentage (%)

Significant degradation −0.0107–−0.0024 5511.50 1.44
Moderate degradation −0.0024–−0.0010 40,788.80 10.65

Slight degradation −0.0010–−0.0002 79,577.90 20.78
Basically unchanged −0.0002–0.0005 112,079.00 29.27
Slight improvement 0.0005–0.0013 94,305.40 24.63

Moderate improvement 0.0013–0.0026 44,664.90 11.66
Significant improvement 0.0026–0.0179 6025.25 1.57

 
Figure 6. The results of the M-K test.

The moving t-test showed that 2008 was the mutation point of the NDVI (Figure ??),
which experienced a decreasing trend before 2008 and a significantly increasing trend in
2008 according to the cumulative departure method (Figure ??). Therefore, the combination
of the M-K test, moving t-test, and cumulative departure method led to the conclusion that
the NDVI of the TRHR was mutated in 2008.
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Figure 7. The results of the moving t-test.

Figure 8. NDVI cumulative departure.

3.3. Factor Detection

According to the q values of each factor obtained from the factor detector (Table ??),
the magnitude of the influence of each factor on the NDVI of the TRHR was as follows:
annual precipitation (0.550) > annual mean temperature (0.463) > vegetation type (0.409)
> elevation (0.350) > land use type (0.244) > landform type (0.216) > population density
(0.204) > soil type (0.147) > slope (0.141) > GDP (0.088) > aspect (0.055).

Table 5. q values of factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

q value 0.141 0.055 0.350 0.147 0.409 0.216 0.463 0.550 0.088 0.204 0.244
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The q value of annual precipitation was the largest, with an explanatory power of
55%, which was much more influential than other factors; therefore, annual precipitation
was the main driving factor of vegetation change in the TRHR, followed by annual mean
temperature, vegetation type, and elevation, with an explanatory power of more than 30%;
land use type, landform type, population density, soil type, and slope had an explanatory
power of more than 10%; GDP and aspect had little explanatory power.
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3.4. Ecological Detection

Ecological detection reflects whether there is a significant difference in the influence
of each detection factor on the NDVI in the TRHR. The results showed that there were
significant differences in the effects of all factors on NDVI, except for the effects of soil and
slope, population, and landform on NDVI (Table ??). The effects of annual precipitation
on the NDVI in the TRHR were significantly different from those of the other factors.
The factor detection showed that annual precipitation was the dominant driver of NDVI
changes in the TRHR, and the results of ecological detection further proved that the effects
of annual precipitation were stronger than those of other factors. The non-significant
differences between the effects of soil and slope, population density, and landform on the
NDVI indicated that both had little influence on vegetation.

Table 6. Ecological detection of factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1
X2 Y
X3 Y Y
X4 N Y Y
X5 Y Y Y Y
X6 Y Y Y Y Y
X7 Y Y Y Y Y Y
X8 Y Y Y Y Y Y Y
X9 Y Y Y Y Y Y Y Y

X10 Y Y Y Y Y N Y Y Y
X11 Y Y Y Y Y Y Y Y Y Y

Note: Y indicates a significant difference in the influence of two factors on vegetation NDVI, while N indicates no
significant difference (confidence level is 95%).

3.5. Interaction Detection

A single variable could not explain the spatial variation in the NDVI, and the syn-
ergistic effects of multiple natural and anthropogenic factors needed to be considered.
The geographical detector can reveal the interactions among the factors and their effect
on NDVI changes. The results showed that all factor interactions enhanced the influence
of a single factor on the NDVI, showing a bivariate and non-linear enhancement effects.
Among them, the interactions of aspect with elevation, annual mean temperature, GDP,
and population density, the interactions of soil type with GDP and population density, and
the interactions of GDP with population density and land use type showed a non-linear
enhancement effect, and the interactions of other factors showed a bivariate enhancement
effect. Among them, the q value of the interaction between annual precipitation and other
factors was high, with the explanatory power reaching more than 58%. This was higher
than the explanatory power of the single factor of annual precipitation on vegetation,
whose q value of interacting with elevation, annual mean temperature, and vegetation type
was the largest, reaching approximately 68% (Table ??). The annual precipitation was the
dominant factor influencing the NDVI changes in the TRHR, and the interaction between
the annual precipitation and other factors could further increase its influence on the NDVI
in the TRHR. Among other factors, the q value of the interaction among vegetation type,
elevation, and annual precipitation was larger, reaching approximately 60%; although the
influence of GDP and aspect on the NDVI was small, their interaction with other factors
greatly increased their explanatory power of the NDVI.
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Table 7. Interaction detection of factors.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0.141
X2 0.176 0.055
X3 0.473 0.415 0.350
X4 0.258 0.164 0.461 0.147
X5 0.468 0.431 0.599 0.468 0.409
X6 0.265 0.255 0.548 0.356 0.507 0.216
X7 0.522 0.532 0.611 0.597 0.660 0.535 0.463
X8 0.583 0.585 0.680 0.610 0.677 0.605 0.679 0.550
X9 0.227 0.149 0.376 0.247 0.487 0.301 0.487 0.586 0.088

X10 0.304 0.266 0.485 0.371 0.558 0.352 0.527 0.607 0.352 0.204
X11 0.324 0.263 0.501 0.324 0.492 0.369 0.573 0.628 0.334 0.360 0.244

3.6. Risk Detection

We used the risk detector to determine the range or types of factors suitable for
vegetation growth (Table ??); the suitable range or types of factors is very important for
vegetation growth, the larger the NDVI value, the better the vegetation growth. The results
of the risk area detection can be applied to the ecological protection project of the TRHR.
The suitable range or types of different factors can be combined with the spatial distribution
of temperature, precipitation, and population density to increase the vegetation coverage.

Table 8. Suitable range or types of natural factors.

Factors Suitable Range or Types NDVI

Slope (◦) >25 0.610

Aspect North, Northeast, East, West,
Northwest 0.484

Elevation (m) 3446–3851 0.743
Soil type Semi-leached 0.689

Vegetation type Coniferous forest, broadleaf
forest, scrub 0.712

Landform type Medium undulating
mountains 0.601

Annual mean temperature (◦C) 1.65–3.82 0.681
Annual precipitation (mm) 578–708 0.770

GDP (10,000 yuan/km2) 12–37, 104–242 0.609
Population density (people/km2) 74.95–94.31 0.699

Land use type Forest land, construction land 0.743

3.6.1. Annual Precipitation

The spatial distribution of vegetation coverage in the TRHR was consistent with the
spatial distribution pattern of annual precipitation. The annual precipitation was divided
into nine subzones. The mean NDVI value generally increased with the increase in annual
precipitation and peaked in the 578 to 708 mm range, thereby indicating that this range
promoted vegetation growth. The results showed that the annual precipitation subzone 9
was significantly different from the other subzones, so that the vegetation coverage was
best in the 578 to 708 mm annual precipitation range in the TRHR (Table ??). The interaction
detector showed that interaction with other factors can further enhance the influence of
annual precipitation on the NDVI.
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Table 9. Mean value of the NDVI and significant differences in annual precipitation between
two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y N
9 Y Y Y Y Y Y Y Y

NDVI 0.310 0.282 0.329 0.462 0.572 0.664 0.696 0.691 0.771
Note: Y indicates a significant difference in the influence of two regions on vegetation NDVI, while N indicates
no significant difference (confidence level is 95%); numbers 1–9 indicate (unit: mm) 184–278, 278–314, 314–345,
345–378, 378–414, 414–454, 454–506, 506–578, and 578–708, respectively.

3.6.2. Annual Mean Temperature

The factor detector showed that the annual mean temperature also had an important
influence on the NDVI in the TRHR. The annual mean temperature was divided into
nine subzones. The mean NDVI value increased and then decreased with the increase in
the annual mean temperature, and peaked in the 1.65 ◦C to 3.82 ◦C range. There were
significant differences between the mean NDVI values in subzone 6 and other subzones
(Table ??). The interaction of annual mean temperature with other factors enhanced the
effect of the former on the NDVI. Temperature changes can cause changes in other factors
in the region, and within the temperature range suitable for vegetation growth, the higher
the temperature, the better the vegetation coverage, beyond which vegetation growth will
be inhibited.

Table 10. Mean NDVI value and significant differences in the annual average temperature between
two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 N
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y N Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.260 0.275 0.294 0.482 0.598 0.682 0.659 0.497 0.553
Note: Y and N same as Table ??; numbers 1–9 indicate (unit: ◦C) −4.00–−2.49, −2.49–−1.57, −1.57–−0.63,
−0.63–0.49, 0.49–1.65, 1.65–2.82, 2.82–4.22, 4.22–6.02, and 6.02–9.52 respectively.

3.6.3. Vegetation Type

The vegetation type had an important influence on the NDVI of the TRHR, and the
interaction with other factors further enhanced its influence on the NDVI. Vegetation
types were divided into nine subzones. The mean NDVI values peaked in the coniferous
forest vegetation type. There was no significant difference among the mean NDVI values
in vegetation type subzones 2, 3, and 4. There were significant differences between the
coniferous forest vegetation type and other vegetation type subzones; the coniferous forest,
broadleaf forest, and scrub vegetation covers were better (Table ??).
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Table 11. Mean NDVI value and significant differences in terms of vegetation types between two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y N
4 Y N N
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y N Y Y Y
8 Y Y N Y Y Y Y
9 Y Y N Y Y Y N N

NDVI 0.159 0.714 0.583 0.702 0.229 0.270 0.544 0.368 0.466
Note: Y and N same as Table ??; numbers 1–9 indicate other, coniferous forest, broadleaf forest, scrub, desert,
grassland, meadow, alpine vegetation, and cultivated vegetation, respectively.

3.6.4. Elevation

Elevation affects the spatial distribution of natural elements and human activity.
The elevation was divided into nine subzones. The mean NDVI value increased and
then decreased with the elevation of the TRHR, and it was better in the 3446 to 3851 m
range. There were significant differences between this elevation range and other elevation
subzones (Table ??). At elevations higher than 3851 m, the NDVI decreased as the elevation
increased.

Table 12. Mean NDVI values and significant differences between two regions in terms of elevation.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y N Y Y Y Y
8 N Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.297 0.418 0.744 0.704 0.550 0.457 0.396 0.303 0.253
Note: Y and N same as Table ??; numbers 1–9 indicate (unit: m) 1950–2979, 2979–3446, 3446–3851, 3851–4177,
4177–4436, 4436–4665, 4665–4895, 4895–5183, and 5183–6826, respectively.

3.6.5. Land Use Type

The land use types were divided into six subzones. The NDVI value peaked in
construction land, with no significant difference from the value obtained in forest land,
and with significant differences from other land use types; therefore, construction land
and forest land had the best vegetation coverage. The main land use type in the TRHR
was grassland, accounting for 68%, of which low-coverage grassland accounts for 38%,
followed by unused land, water area and forest land, which accounted for 23%, 5%, and
4%, respectively, of the total area. The cropland, forest land, middle-coverage grassland,
and low-coverage grassland areas in the TRHR decreased from 1980 to 2015, while the high-
coverage grassland, water area, construction land, and unused land areas increased, with
the low-coverage grassland area decreasing the most and the high-coverage grassland and
unused land area increasing the most (Table ??). Both the forest and construction lands were
small, but both were distributed in the middle–high and high vegetation coverage areas
east and south of the study area, with better hydrothermal conditions; the construction
land was affected by human activities and had more green vegetation, thus the NDVI
values were higher there.
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3.6.6. Synergistic Effects of Other Factors

The factor detector demonstrated that the single factors of landform type, soil type,
slope, aspect, GDP, and population density had small effects on NDVI changes in the
TRHR, but the interactions of these factors with others could enhance the effects on NDVI
changes.

The landform types of the TRHR were diverse and affected the distribution of vegeta-
tion. The landform types were divided into six subzones. The mean NDVI values peaked
in the medium-undulating mountains; there were significant differences between this and
other landform types, thereby indicating that the vegetation coverage in the medium-
undulating mountains was the best. The soil types were divided into 10 subzones. The
mean NDVI value peaked in semi-leached soil; there were significant differences between
the mean NDVI value in this soil type and other soil types. Therefore, semi-leached soil
had the best vegetation coverage. Different slopes and aspects led to differences in climatic
elements, and suitable slopes and aspects were conducive to vegetation growth. The slope
was divided into seven subzones. The mean NDVI value increased and then decreased
with slope increases, and peaked in the 35◦ to 45◦ range. The vegetation of this slope
consisted mainly of scrubs and alpine meadows. There were no significant differences
between the mean NDVI value of this slope and those of slope subzones 6, 5, and 7, while
there were significant differences with other subzones. Therefore, the vegetation growth
conditions were better in the slope range of >25◦. As shown by the q value (Table ??), aspect
had a minimal effect on the NDVI. The aspect was divided into nine subzones. The mean
NDVI value fluctuated little with aspect changes. The NDVI value of the eastern slope was
the largest, with no significant NDVI differences between this and aspect subzones 2, 3, 8,
and 9, and significant differences with the other aspect subzones. Therefore, the vegetation
coverage of the northern, northeastern, eastern, western, and northwestern aspects was
the best.

Among the anthropogenic factors, both GDP and population density had little in-
fluence. The GDP was divided into seven subzones. The NDVI value peaked at a
GDP of 12 × 104–37 × 104 yuan/km2 and was not significantly different from that of the
area with a GDP of 1.04 × 104–2.42 × 104 yuan/km2; therefore, the vegetation growth
was good in both of these areas. The population density was divided into seven sub-
zones. The largest NDVI value was observed in the area with a population density of
74.95–94.31 people/km2, with no significant differences with the area with a population
density of 8.43–19.37 people/km2; therefore, the vegetation coverage was optimal in both
areas. The area with a population density in the 74.95–94.31 people/km2 range was very
small, accounting for only 0.02% of the total area, which may have led to inaccurate results.
If this area is not considered in the analysis, the NDVI will increase and then decrease with
increasing population density, with larger values in the range of 8.43 to 19.37 people/km2,
this result would be more accurate.

4. Discussion

Global warming over the last few decades has led to changes in the regional environ-
ment. Under the influence of climate change and human activities, vegetation green has
generally increased in China [? ]; the NDVI has shown an increasing trend in northern
China over the past 40 years [? ]; the Qinghai–Tibet Plateau tends to become warm and
wet, and the vegetation status has gradually improved [? ]. This study showed that the
NDVI of vegetation in the TRHR also showed an increasing trend from 1982 to 2015, which
is consistent with the trend of the NDVI change in China and Qinghai–Tibet Plateau during
this period.

In this study, four geographical detectors were used to quantify the main drivers of
the NDVI in the TRHR and the interaction of the factors. In the following sections, we will
discuss the effects of natural and anthropogenic factors separately.

164



Remote Sens. 2021, 13, 4175

4.1. Effects of Natural Factors

The Qinghai–Tibet Plateau is a sensitive area for climate change in China [? ]. This
study indicated that climate factors were the main drivers of the NDVI changes in the
TRHR, which is consistent with the findings of Chen [? ]. The factor detector showed
that the q value of annual precipitation was the largest and was the dominant factor
influencing NDVI changes in the TRHR, which is consistent with the findings of Zheng [?
] and Xiong [? ]. In contrast, Xu [? ] and Zhu [? ] considered temperature as the
dominant factor influencing NDVI variation in the TRHR; the differences in the results may
be attributed to the different time scales of the study or the different spatial resolutions
of the NDVI used. The warming trend in the TRHR was greater than the Chinese, as
well as global average during 1982–2015, and precipitation was lower compared to the
global [? ]. Extreme temperature increases, and extreme precipitation is relatively stable.
The rapid increase in temperature and slow increase in precipitation in the TRHR has led
to regional warming and drought [? ], while studies have shown that precipitation is the
main factor affecting changes in vegetation NDVI in arid and semi-arid alpine meadow
and alpine grassland regions [? ]. The M-K test showed that the annual precipitation in
the TRHR changed abruptly in 2004 and 2006 (Figure ??), and extreme drought events
occurred frequently. In 2006, the TRHR suffered an extreme drought, and the growth of
forage grasses was disrupted and the grassland ecosystem was damaged [? ], resulting
in a decrease in NDVI. Precipitation increased abruptly around 2007 [? ], since the NDVI
has a lag effect on precipitation [? ], the NDVI increased abruptly from 2008 onwards. The
influence of extreme precipitation events on NDVI in the Qinghai–Tibet Plateau region
is more pronounced than that of extreme temperature events, indicating that vegetation
is more sensitive to changes in precipitation. Extreme wetness would offset the negative
effects caused by extreme drought, and extreme high temperature events occurring in
May would stimulate vegetation growth, while extreme low temperatures would inhibit
vegetation growth [? ]. The effects of extreme climatic events on the vegetation of the TRHR
need further study. The influence of temperature on the NDVI gradually decreased, while
precipitation occupied a more dominant position [? ]. The annual precipitation and annual
mean temperature of the TRHR decreased from southeast to northwest. The increasing
trend of temperature in the TRHR was significantly greater than that of precipitation, can
lead to the warming and drying of the TRHR, which will inhibit vegetation growth [? ].
Seasonally, precipitation in the TRHR increases in spring and winter, and in summer when
the temperature rises, precipitation also increases [? ]. The growing season of vegetation in
the TRHR is from May to September, and the climate is conducive for vegetation growth.
Water resources are closely related to vegetation, and vegetation changes interact with
hydrological processes [? ]. Changes in temperature and precipitation lead to changes in
vegetation patterns, which can alter surface hydrological characteristics, which, in turn,
can affect changes in vegetation coverage [? ]. The artificial rainfall implemented by the
ecological project of the TRHR has restored the vegetation coverage and the increase in
precipitation is beneficial to the growth of vegetation, but the excessive precipitation may
cause soil erosion [? ], which will instead damage vegetation, therefore the artificial rainfall
project should be implemented scientifically and consistently to promote the growth of
vegetation in the TRHR.

The vegetation types of the TRHR were mainly alpine meadows and alpine grasslands.
During 1982–2015, part of the desert vegetation was converted to grassland and meadow
vegetation types, increasing the vegetation coverage. Coniferous forests were mainly
distributed in the elevation range of 3446 to 3851 m, and natural environmental conditions
were more suitable for vegetation growth. The medium-undulating mountains were mainly
dominated by meadow and scrub vegetation types, which were distributed in the southern
part of the TRHR, with sufficient hydrothermal conditions and relatively suitable elevation,
which are favorable for vegetation growth. The soil is the basis for vegetation growth.
The fertilizer retention capacity of semi-leached soil is high, and the semi-leached soil of
the TRHR is mainly distributed in mountainous areas, which are favorable for vegetation
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growth. In this study, the influence of soil type on vegetation change was small, but the
interaction with other factors could enhance this influence; for example, the interaction of
soil type with temperature and precipitation had a higher influence on the NDVI than did
soil by itself. Soil temperature has an important effect on vegetation growth [? ].

Topography affects vegetation distribution by changing water and heat conditions [? ].
According to Chen [? ], the 3500 to 3800 m elevation range is relatively low and precipitation
and temperature conditions are good, thus the NDVI value is the largest in this elevation
range. In elevations higher than 3800 m, the natural conditions become worse as the
elevation increases, thus the NDVI value decreases as well. Slope affects vegetation growth
by changing surface runoff, and vegetation coverage generally decreases with increasing
slope. However, in this study, the gentle slope was more influenced by human activities;
the vegetation coverage was low, while, with increasing slope, human influence decreased
and vegetation coverage was relatively high. Aspect affects light intensity, which, in turn,
changes the hydrothermal conditions for vegetation growth. The sunny slope has strong
light, less soil water content, less nutrient accumulation, and lower vegetation coverage,
while the shady, semi-shady, and semi-sunny slopes have sufficient soil water and high
nutrient content [? ], which are suitable for vegetation growth.

4.2. Effects of Anthropogenic Factors

According to the results of factor detection, anthropogenic factors had little influence
on the NDVI. However, the combination of anthropogenic with natural factors can increase
the impact. The population density in the TRHR was relatively small, and economic
development was slow. Land use type had the greatest influence on the NDVI among
anthropogenic factors. Low-coverage grassland is mainly located in the northwest, where
water resources are scarce and the altitude is high, while high-coverage grassland is mainly
located in the southeast where water and heat conditions are better. From 1980 to 2015, the
conversion area between unused land and grasslands is large, and most unused land is
converted into low-cover grasslands, but overall the increase in the area of unused land
is greater than the decrease. Due to increase in population, land for construction has
expanded. Ecological protection projects have increased the area of waters and lakes and
improved the condition of wetlands. Before 2000, overgrazing led to the degradation of
grassland; therefore, although the grassland area was large in the TRHR, the NDVI value
was low. The implementation of the Sanjiangyuan Ecological Project in 2005 resulted in the
slight recovery of the grassland, but the effects were short-term [? ]. The areas with the
highest NDVI values under the influence of GDP and population density were all located
in the northeastern part of the TRHR, which is relatively densely populated, vegetation is
affected by human activities, and the population is usually distributed in areas with better
vegetation coverage [? ] which have good survival conditions. Such natural conditions are
also suitable for the growth of vegetation, but the increase in population will also cause
some damage to vegetation, and the NDVI of vegetation will decrease beyond a certain
range of population numbers.

The main conclusion of this study is that, compared with natural factors, anthro-
pogenic factors had less influence on the NDVI of the TRHR. Natural factors, especially
climatic factors, dominated the changes in the NDVI in the vegetation of the TRHR. In the
context of global climate change, climatic factors have a strong association with vegetation
change [? ]. This is also verified by this study. The TRHR is at a high altitude, the population
is sparse and the area of cultivated land is small. The impact of human farming activities is
small, and although there is a certain degree of grazing, the impact is minimal relative to
the climate, so the study area in this paper is basically equivalent to an undisturbed area.
Therefore, the impact of human activities on the vegetation of the TRHR is very limited.
As the impact of anthropogenic factors is short-lived, ecological engineering needs to be
implemented continuously. Effective interventions for the restoration of vegetation in the
TRHR can be based on the appropriate range or types of factors or a combination of factors.
Separating natural factors from anthropogenic factors and quantitatively studying the
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influence of factors on vegetation is important for the ecological protection and sustainable
development of the TRHR, as well as the middle and lower reaches of the region.

4.3. Effectiveness, Limitations, and Future Directions

To the best of our knowledge, this study is the first to use a geographical detector
to quantify the effects of natural and anthropogenic factors on vegetation activity and
effectively distinguish between the effects of natural and anthropogenic factors on the
NDVI in the TRHR. The natural environment of the TRHR is complex, diverse, and
spatially heterogeneous. Previous studies on vegetation drivers have used correlation
analysis, which assumes a linear relationship between the NDVI and drivers, whereas
correlation studies have shown a nonlinear relationship [? ]; in contrast to traditional
methods, the geographical detector can quantify the non-linear effects of factors and their
interactions on vegetation change, making it well suited for this study. We also made the
selection of factors with reference to existing studies, and the factors selected in this paper
have been shown to be effective many times [? ? ? ? ? ], so that the factors selected can be
non-independent and the geographical detector method selected for this study allows the
analysis of interactions between factors that have been neglected by traditional methods.
However, the independent variable input to the geographical detector consists of type
quantities, thus the numerical quantities must be classified. This study was based on the
natural break method of classifying independent variables, which has been applied before
and proven to be effective [? ]; different methods of classification can affect the results. To
ensure the length and completeness of the time series, NDVI data with a spatial resolution
of 8 km were used in this study, which may have had some influence on the results owing
to the low data resolution. Although NDVI is currently considered to be the most effective
indicator for detecting vegetation change, it has shortcomings, such as the NDVI can
reach saturation in dense vegetation canopies, which may lead to inaccurate trends in
areas of dense biomass, and the effect on soil background in low vegetation coverage
areas is not addressed [? ], which were did not consider in this paper. Additionally, the
different time ranges of the selected data may lead to some differences in the results, for
example, if the growing season data are selected for analysis, the spatial and temporal
distribution pattern of the NDVI in the growing season is basically the same as that of
the whole year, the influence results are opposite to the annual data, and the influence of
temperature (0.458) is slightly greater than the influence of precipitation (0.448). Although
there are some differences in the results, the influence of climate factor is still the largest
and is the dominant factor of vegetation coverage change in the TRHR, and this main
result is unchanged. Therefore, for further research, data resolution should be further
improved, while classification methods also need further improvement. To obtain a more
accurate result, future studies could use the improved enhanced vegetation index (EVI) for
comparison. The effect of growing season climate change on vegetation NDVI also needs
further study.

5. Conclusions

In this study, which was based on GIMMS- NDVI data from 1982 to 2015 and 11 de-
tection factors from the same period, we analyzed the spatial and temporal variation
characteristics of the NDVI in the TRHR using linear regression analysis, the Mann-Kendall
test, and the moving t-test. We also analyzed its spatial heterogeneity and driving factors
using a geographical detector, and determined the appropriate range or types of factors
suitable for vegetation growth. The main conclusions of the study are as follows:

(1) The NDVI distribution of the TRHR was high in the southeast and low in the
northwest; the change had an increasing trend in the west and north and a decreasing trend
in the center and south. The annual mean value of the NDVI from 1982 to 2015 generally
followed a slow increasing trend with a growth rate of 0.002/10 a; regions with low and
high vegetation coverage decreased, while other regions increased. The NDVI increased
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abruptly in 2008. Overall condition of the TRHR has been improving, but vegetation
coverage remains poor.

(2) The magnitude of the influence of each factor on the NDVI was as follows: annual
precipitation > annual mean temperature > vegetation type > elevation > land use type
> landform type > population density > soil type > GDP > aspect. Among them, annual
precipitation had an explanatory power of more than 50% and was the dominant factor
influencing NDVI changes in the TRHR. The annual mean temperature, vegetation type,
and elevation had an explanatory power of more than 30% and also explained NDVI
changes well. Land use type, landform type, and population density had an explanatory
power of more than 20%, while other factors had less explanatory power. Compared with
the natural factors, the influence of anthropogenic factors on the NDVI of vegetation in the
TRHR was smaller. Climatic factors were the main drivers of NDVI changes in the TRHR.

(3) Interactions of bivariate and non-linear enhancements among the NDVI factors
were observed, and there were no factors with weakening and independent effects. The
interactions of annual precipitation, elevation, mean annual temperature, and vegetation
type enhanced the influence of the factors to the greatest extent. Although factors such as
the GDP and aspect had small influence on the NDVI, their interaction with other factors
greatly increased their explanatory power on the NDVI.

(4) We analyzed the NDVI changes in the TRHR from 1982 to 2015, revealed the
natural and anthropogenic factors driving NDVI changes, and determined the appropriate
range or types of factors, which is important for ecological conservation and the sustainable
development of the TRHR.
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Figure 1. M-K test for annual precipitation.
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Abstract: The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads
which dominate the vertical exchange of energy, especially in cold seasons, despite covering only
a small fraction of the surface. Motivated by the need of a spatiotemporal analysis of sea ice lead
distribution, a practical workflow was developed to classify the high spatial resolution aerial images
DMS (Digital Mapping System) along the Laxon Line in the NASA IceBridge Mission. Four sea
ice types (thick ice, thin ice, open water, and shadow) were identified, and relevant sea ice lead
parameters were derived for the period of 2012–2018. The spatiotemporal variations of lead fraction
along the Laxon Line were verified by ATM (Airborne Topographic Mapper) surface height data
and correlated with coarse spatial resolution sea ice motion, air temperature, and wind data through
multiple regression models. We found that the freeboard data derived from sea ice leads were
compatible with other products. The temperature and ice motion vorticity were the leading factors of
the formation of sea ice leads, followed by wind vorticity and kinetic moments of ice motion.

Keywords: sea ice classification; ice motion vorticity; multiple linear regression; wind; temperature

1. Introduction

Arctic sea ice functions as a sensitive indicator of global warming because sea ice
responds to even a small increase in temperature [1–3]. On the other hand, Arctic sea
ice is also an important driver of climate change, and it plays an important role in the
Earth’s solar radiation budget. This is due to how sea ice has a significantly higher albedo
compared to that of the water surface. Therefore, when the Arctic sea ice starts to melt, the
oceans absorb more solar radiation and warm up, accelerating the melting of sea ice in a
positive feedback [4].

Among all types of sea ice features, leads have unique characteristics. A lead is an
elongated crack in the sea ice developed by the divergence or shear of floating ice floes
when moving with currents and winds [5]. Leads vary in width from meters to hundreds
of meters depending on their development and the directions of surrounding pressure and
tension. Since a lead is physically an open water body, thin ice, or mixed open water and
thin ice within (thicker) sea ice floe or between sea ice floes, it allows the direct interaction
between the atmosphere and the ocean and is the only (or major) channel in the cold Arctic.
Thus, leads play an important role in the local radiation energy budget, ship navigation,
and the Arctic sea ice ecosystem [6]. In particular, they dominate the vertical exchange of
energy during winter when turbulent heat fluxes over leads can be orders of magnitude
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larger than that over thick ice. The width of leads and their orientation markedly influence
associated vertical sensible and latent heat fluxes and associated cloud formation [7,8].
Recent studies suggest that these fluxes could influence the atmospheric properties tens
to hundreds of kilometers downstream [9–11]. Even a small fraction of thin ice and open
water within the sea ice pack can significantly modify the total energy transfer between the
ocean and the atmosphere [12]. Furthermore, leads are elusive and inconsistent features. If
sea water temperature drops below around −1.8 ◦C, the open water within a lead quickly
refreezes (in a few hours), and leads will be partly or entirely covered by a thin layer of
new ice [13–15]. Therefore, leads are an important component of the Arctic surface energy
budget, and more quantitative studies are needed to explore and model their impact on
the Arctic climate system.

Arctic climate models require a detailed spatial distribution of leads to simulate
interactions between the ocean and the atmosphere. Remote sensing techniques can be
used to extract sea ice physical features and parameters and calibrate or validate climate
models [16]. However, most of the sea ice leads studies focus on low-moderate resolution
(~1 km) imagery such as Moderate Resolution Imaging Spectroradiometer (MODIS) or
Advanced Very High-Resolution Radiometer (AVHRR) [17–20], which cannot detect small
leads, such as those smaller than 100 m. On the other hand, high spatial resolution (HSR)
images such as aerial photos are discrete and heterogeneous in space and time, i.e., images
usually cover only a small and discontinuous area with time intervals between images
varying from a few seconds to several months [21,22]. Therefore, it is difficult to weave
these small pieces into a coherent large-scale picture, which is important for coupled sea ice
and climate modeling and verification. Onana et al. used operational IceBridge airborne
visible DMS (Digital Mapping System) imagery and laser altimetry measurements to detect
sea ice leads and classify open water, thin ice (new ice, grease ice, frazil ice, and nilas),
and gray ice [23]. Miao et al. utilized an object-based image classification scheme to
classify water, ice/snow, melt ponds, and shadow [24]. However, the workflow used in
Miao et al. was based on some independent proprietary software, which is not suitable
for batch processing in an operational environment. In contrast, Wright and Polashenski
developed an Open Source Sea Ice Processing (OSSP) package for detecting sea ice surface
features in high-resolution optical imagery [25,26]. Based on the OSSP package, Wright
et al. investigated the behavior of meltwater on first-year and multiyear ice during summer
melting seasons [26]. Following this approach, Sha et al. further improved and integrated
the OSSP modules into an on-demand service in cloud computing-based infrastructure for
operational usage [22].

Following the previous studies, this paper focuses on the spatiotemporal analysis
of sea ice lead distribution through NASA’s Operation IceBridge images, which used a
systematic sampling scheme to collect high spatial resolution DMS aerial photos along
critical flight lines in the Arctic. A practical workflow was developed to classify the
DMS images along the Laxon Line into four classes, i.e., thick ice, thin ice, water, and
shadow, and to extract sea ice lead and thin ice during the missions 2012–2018. Finally,
the spatiotemporal variations of lead fraction along the Laxon Line were verified by ATM
surface height data (freeboard), and correlated with sea ice motion, air temperature, and
wind data. The paper is organized as follows: Section 2 provides a background description
of DMS imagery, the Laxon Line collection, and auxiliary sea ice data. Section 3 describes
the methodology and workflow. Section 4 presents and discusses the spatiotemporal
variations of leads. The summary and conclusions are provided in Section 5.

2. Dataset

2.1. IceBridge DMS Images and Study Area

This study uses IceBridge DMS images to detect Arctic sea ice leads along the Laxon
Line one day over the course of 7 years in 2012–2018, since these are the longest continuous
yearly data available in this Arctic region. The DMS images were collected during the
IceBridge sea ice flights using an airborne digital camera. DMS has a high spatial resolution
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0.1–2.5 m [27], depending on the aircraft flight height. It has three natural color (red, green,
and blue) bands, and each image has a field of view of approximately 400 m by 600 m. The
IceBridge campaigns had been designed to survey the Arctic region in March and April
since 2009 to partially fill the temporal gap between the ICESat (2003–2009) and ICESat-2
(2018–present) missions.

DMS images are collected, processed, and maintained by the Airborne Sensor Facility
located at the NASA AMES Research Center. We downloaded the Level 1B geolocated
and orthorectified images for the Arctic Laxon Line in spring from 2012 to 2018 from the
NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC
DAAC) (https://nsidc.org/data/iodms1b) (accessed on 6 August 2021). The Laxon Line
starts from the Thule Air Base, Greenland to Fairbanks, AK, USA, transiting across the
Arctic Ocean (Figure 1). It passes through both multiyear ice (MYI) regions in the north of
the Canadian Archipelago and the first-year ice (FYI) regions in northern Alaska. Thus, sea
ice data along this line provides useful insights on the transition of sea ice conditions over
the Central Arctic in the spring. Furthermore, the IceBridge mission collected data along
this track repeatedly every year from 2012 to 2018, which is appropriate for spatiotemporal
analysis of sea ice leads. The overall DMS image collection along the Laxon Line is
106,674 aerial photos (1.54 TB) with an overlap of 60–90% along the track. The photo
distribution from 2012–2018 is summarized in Table 1. The overall distance of the Laxon
Line is around 3398 km, and the distance for the overlapped track through the years is
around 2437 km.

 

Figure 1. Spatial distribution of the seven tracks along the Laxon Line from 2012 to 2018. The tracks
are highly overlapped.

Table 1. The DMS images selected for lead detection along the Laxon Line from 2012 to 2018.

Name Date Image # # Image with Sea Ice Leads Selected/Original Image Size (GB) Lighting Condition

Flight 12-426-04 14 March 2012 16,544 1066 14.8/260 Cloudy
Flight 13-426-05 21 March 2013 18,480 993 13.8/290 Normal
Flight 14-426-14 14 March 2014 14,322 492 5.2/150 Cloudy
Flight 15-439-08 26 March 2015 20,038 816 9.3/250 Normal
Flight 16-043-08 20 April 2016 15,205 1069 18.4/270 Normal
Flight 17-426-05 10 March 2017 10,939 659 8.67/93 Cloudy
Flight 18-426-38 6 April 2018 11,146 1040 22.2/240 Normal
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2.2. Auxiliary Sea Ice Data
2.2.1. AMSR Data

AMSR (Advanced Microwave Scanning Radiometer) is a passive microwave satellite
sensor developed by the Japan Aerospace Exploration Agency. Due to its low spatial
resolution, the AMSR data can only be used to examine sea ice concentrations at the regional
scale. We collected the AMSR-E/AMSR-2 Unified Level 3 daily brightness temperature
and sea ice concentration data which has a spatial resolution of 25 km through NSIDC
(Table 2) [28]. The data contain vertically polarized and horizontally polarized brightness
temperatures at four frequency channels: 18.7, 23.8, 36.5, and 89.0 GHz. The Arctic sea ice
concentration (SIC) was calculated by the NASA Team 2 (NT2) algorithm, which provides
<2% of error compared with the high-resolution optical data [29–31]. The collected AMSR
data coincides with the days of the IceBridge mission from 2012 to 2018, so that the SIC
can be compared with that retrieved from the DMS images. Furthermore, the passive
microwave data can be used to calculate thin ice concentration (TIC). Röhrs and Kaleschke
used brightness temperatures at the vertically polarized 18.7 and 89.0 GHz to identify
water and thin ice (i.e., new ice, nilas, and pancake ice) from thick ice, and the sea ice
leads and TIC showed a good agreement with the MODIS, Envisat ASAR, and CryoSat-2
data [14]. In this study, we calculated TIC following the Röhrs and Kaleschke’s algorithm.
The coarser spatial resolution of 25 km of TIC were compared with our lead and thin ice
fractions retrieved from the DMS images.

Table 2. Auxiliary sea ice datasets.

Product Name Type Source Spatial Resolution Category

AMSR-E/AMSR2 Unified L3
Daily Brightness Temperatures

& Sea Ice Concentration
Passive microwave NSIDC 25 km Sea Ice

IceBridge Airborne Topographic
Mapper (ATM) Laser altimeter NSIDC ~1 m footprint

(resampled to 2 m grid) Sea Ice

Global sea ice type Sea ice type EUMETSAT OSI SAF 10 km Sea Ice

Polar Pathfinder Daily EASE-Grid
Sea Ice Motion Vectors Sea ice motion NSIDC 25 km Dynamic

ERA5 (air temperature
and wind velocity) Climate reanalysis

European Centre for
Medium-Range Weather

Forecasts (ECMWF)
0.25◦ Dynamic and

thermodynamic

2.2.2. ATM Surface Height Data (DMS Level)

Our DMS-based lead detection results can be used to cross-validate sea ice freeboard
products derived from IceBridge Airborne Topographic Mapper (ATM) Level 1B data [23].
The ATM is an airborne conically scanning laser altimeter with a wavelength of 532 nm.
A laser pulse is emitted from the ATM at a rate of 5 kHz, and it has ~1 m of footprint at a
typical 500 m altitude above the surface. Since ATM covers exactly the same location and
time with the DMS images with a smaller cross-track width (~400 m), DMS images are
usually used as good reference for extracting the ATM-based freeboard data [32,33]. In this
study, the ATM data are resampled in a 2 m grid and projected to the same projection system
as DMS (NSIDC sea ice polar stereographic North) to match the geographical location.
After retrieving thin ice and leads through DMS images, we geographically linked the
leads with the ATM data to extract freeboard variations along the Laxon Line, and compare
with freeboard data derived from SILDAMS (Sea Ice Lead Detection Algorithm) [23,32].

2.3. Oceanic and Atmospheric Geophysical Parameters

NSIDC provides sea ice motion data (nsidc.org/data/NSIDC-0116) with a spatial
resolution of 25 km on the Equal-Area Scalable Earth grid [34]. This sea ice motion vec-
tor is derived from multiple data sources, including AVHRR, AMSR-E, SMMR, SSMI,
SSMI/S satellite sensors, International Arctic Buoy Program (IABP) buoys, and the Na-
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tional Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis.

We also acquired a global sea ice type product provided by the European Organization
for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite
Application Facility (OSI SAF, www.osi-saf.org) (6 August 2021) [35]. This product assigns
different sea ice types, such as multiyear ice (MYI), first-year ice (FYI), and open water,
from various satellite data. This is a daily product and has 10 km of spatial resolution.

Other data we used included air temperature (2 m above sea level) and wind velocity
data coincident with the DMS images acquired from the European Centre for Medium-
Range Weather Forecasts ERA-5 reanalysis. The ERA-5 product has 0.25◦ spatial resolution
and consists of hourly variables, and we integrated this hourly data into daily products and
resampled them to 25 km resolution to match the ice motion data. This ERA-5 product was
downloaded from the Climate Data Store (cds.climate.copernicus.eu) of the Copernicus
Climate Change Service.

In this study, the high spatial resolution lead fractions derived from DMS along the
Laxon Line were linearly regressed with the coarse spatial resolution sea ice motion, air
temperature, and wind velocity products to identify potential significant drivers.

3. Methods

3.1. Batch Classification Processing Workflow

Since the IceBridge DMS images are highly overlapped along the track (60–90%), we
selected one image from every three consecutive images along the Laxon Line to reduce
the computation burden. All images in continental land masses and poor-quality images
due to overwhelming cloud coverage and low lighting conditions were manually removed,
finally generating a collection of sea ice lead images (Figure 2).

Figure 2. Sea ice lead detection workflow.

The object-based classification scheme was designed based on the color and texture
of sea ice features on DMS images. Four sea ice classes were defined: (1) thick ice is
usually thick ice or snow-covered ice with a high albedo; (2) thin ice is usually fresh and
newly formed ice, which has a smooth surface with a low albedo, since solar radiation
is partially absorbed by the water beneath it; (3) open water is dark and smooth due to
its strong absorbance of solar radiation; and (4) shadow is within a thick-ice area and is a
relative dark feature projecting on the ice surface by surrounding ridges or snow dunes.
DMS images collected in different years have different lighting conditions, which affects
the image quality (Table 1). Furthermore, even in the same year, the quality of images
was quite distinctive due to the local cloud coverage and lighting conditions, as shown
in Figure 3. For example, three subgroups were identified in 2012 DMS images: normal
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images contained regular sea ice scenes with an appropriate exposure and contrast, and all
sea ice classes were recognizable by color and texture; gray images were partially cloudy
images with a poor lighting condition, so they were relatively dark, and shadows were
difficult to detect; and poor images were under extremely poor lighting conditions, and the
boundaries between water, thick ice, and thin ice were blurred due to low contrast.

Figure 3. DMS sea ice sample images in 2012 were classified into three subgroups based on different
lighting conditions.

Therefore, training samples were selected using a divide-and-conquer strategy based
on image quality. All DMS images taken in 2013, 2015, 2016, and 2018 were under good
lighting conditions, and training samples were selected for all four sea ice features. How-
ever, the images taken for the other three years were processed in different ways. The
training samples for all images taken in 2012, 2014, and 2017 were only selected for thin
ice, open water, and thick ice, without considering shadow due to low lighting conditions.
Furthermore, the 2012 images were manually classified into three subgroups, i.e., normal,
medium, and poor. The 2014 images were manually classified into two subgroups, i.e., nor-
mal and medium, and all poor images were abandoned due to serious vignetting, caused by
light hitting the lens aperture at a large angle, and significantly reduced brightness values
on the four corners of the image. The 2017 images were all classified into the medium
subgroup only. In summary, the independent training samples were collected for each
subgroup and year for supervised classification.

The OSSP package uses an object-based classification scheme. For each image, the
watershed segmentation method is used to convert pixels into objects. Therefore, training
samples are labelled at the object level. Only distinctive and typical sea ice objects are
selected across the whole scene, and each sea ice class has around 120–250 objects. The
attributes of objects such as color values, band ratios, textures, and shape indexes are
calculated and served as supervised classification features. Based on these training datasets,
the OSSP package uses the random forest classification method to label all unknown objects
in DMS images [24,25].

To evaluate the accuracy of classification results, the independent test object samples
were also collected. Table 3 lists the selected image and object numbers for the training and
testing process of each classification group. Finally, the confusion matrix was generated at
the pixel level and was used for calculating the overall accuracy, user’s accuracy, producer’s
accuracy, and Kappa coefficient.

178



Remote Sens. 2021, 13, 4177

Table 3. The DMS images selected for lead detection in the Laxon Line from 2012 to 2018.

Testing Group # Training Image # Training Object # Test Image # Test object

DMS2012_normal 6 50 5 114
DMS2012_medium 7 90 5 94

DMS2012_ poor 7 65 5 124
DMS2013 13 196 7 221

DMS2014_normal 8 106 6 178
DMS2014_medium 6 66 6 119

DMS2015 11 150 9 254
DMS2016 8 144 12 444
DMS2017 12 140 6 150
DMS2018 13 135 9 319

3.2. Sea Ice Leads Parameters Definitions

Based on the classified result in each surface type, we derived the sea ice leads by
combining thin ice and open water. Then, the sea ice lead fraction, open water fraction,
thin ice fraction, and sea ice concentration were calculated on a per-scene basis. The sea ice
lead fraction for each DMS image can be calculated using the following equations:

Sea Ice Lead Fraction (SILF):

SILF = (ThinIce + OpenWater)/(ThickIce + ThinIce + OpenWater + Shadow) ∗ 100, (1)

where ThinIce, OpenWater, ThickIce, and Shadow are pixel numbers of classified thin ice
area, open water, thick ice, and shadow for a DMS image, respectively.

3.3. Spatiotemporal Analysis with Auxiliary Sea Ice Data

The auxiliary sea ice datasets can be used to assess the DMS-based lead detection
results to deepen the understanding of the formation mechanism of leads. In this research,
first, our lead detection result was used to determine local sea reference height and calculate
the sea ice freeboard. This retrieved freeboard was compared with the existing NSIDC
freeboard data at the scale of 400 m [36]. Furthermore, the coincident AMSR thin ice concen-
tration (TIC) data, and the geophysical atmosphere and ocean data, such as air temperature,
wind velocity, and sea ice motion, were compared with the lead fraction results.

Based on our DMS lead detection algorithm, sea ice freeboards were retrieved from
the ATM lidar data using the same method as in [32]. Specifically, we removed variations
in the instantaneous sea surface height by subtracting geoid and ocean tide height. Then,
we calculated the freeboard by subtracting locally determined leads surface height (zshh)
from the corrected height (Hcorr).

Freeboard = Hcorr − zshh, (2)

where zshh is determined from the sets of individual lead elevation estimates through
ordinary kriging. We calculated the mean freeboard for each DMS image (around 400 m by
600 m) and resampled the value to 400 m resolution. On the other hand, Kurtz et al. used
an automated lead detection algorithm through the minimal signal transform [23,32] and
then retrieved the freeboard at the resolution of 400 m. Therefore, the two products can be
compared and cross-verified at this scale.

TIC could be calculated from the AMSR as described in Röhrs and Kaleschke [14] with
a rather coarse spatial resolution of 25 km. This AMSR-based TIC represents the existence
of open water and thin ice on sea ice leads. This TIC is conceptually equivalent to our
SILF. Since the AMSR and DMS have different resolutions and geographical coverage, they
cannot be compared directly. Therefore, we resampled and averaged the DMS-based ice
lead fractions for every 25 km grid cell to match the spatial resolution of AMSR data, as
shown in Figure 4. Then, the mean of sea ice lead fractions within the range of each 25 km
block was calculated.
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Figure 4. Data fusion diagram with derived geophysical parameters and DMS-based sea ice leads
(each 25 km AMSR pixel covers around 5–70 point of HSR image locations).

Furthermore, the 25 km resampled lead fractions were also correlated with other 25
km resolution sea ice and atmospheric data including NSIDC sea ice motion, ERA5 air
temperature, and wind velocity. Since kinetic moments of sea ice movement can play an
important role in formations of leads, four kinetic moments or tensions were calculated
from the NSIDC sea ice motion data by the following equations [37]:

divergence =
∂Fx

∂x
+

∂Fy

∂y
(3)

vorticity =
∂Fy

∂x
− ∂Fx

∂y
(4)

shearing de f ormation =
∂Fy

∂x
+

∂Fx

∂y
(5)

stretching de f ormation =
∂Fx

∂x
− ∂Fy

∂y
(6)

where Fx and Fy refer to the velocity of sea ice along the x and y axes, respectively. Diver-
gence is a measure of parcel area change without the change of orientation or shape, and
vorticity is a measure of orientation change without area or shape change. Shearing and
stretching deformation are measures of shape change produced by differential motions
parallel and normal to the boundary, respectively [37].

Finally, based on the assumption that these atmosphere and sea ice variables for a
series of the previous days would contribute to the formation of sea ice leads, the average
of these dynamic and thermodynamic variables up to 30 successive days before the DMS
acquisition day were calculated (Table 4). By comparing these variables and the lead
fractions, we hoped to identify the potential contribution of these explanatory variables to
lead formation.

Multiple linear regression (MLR) was used for modelling the mean lead fractions in
terms of large-scale sea ice dynamic–thermodynamic variables, including the NSIDC sea
ice motion data with four kinetic moments, ERA-5 air temperature, and wind velocity
data. The forward and backward stepwise regression methods were used to identify the
most important explanatory variables. This strategy refers to the process of building a
regression model by adding or removing explanatory variables in a stepwise manner until
the predicted variable does not change significantly [38].
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Table 4. Variables for the multiple linear regression models.

Department Factors Description

Sea Ice Leads mean_leads Mean lead fraction for 25 km segment

Temperature tmpXX Averaged air temperature for last XX days (e.g., tmp03 means average temperature of last 1, 2, 3 days)

Wind
U10_XX Averaged u-component of wind velocity for last XX days
V10_XX Averaged v-component of wind velocity for last XX days

wind_XX Averaged wind velocity for last XX days (e.g., wind_10 means wind velocity for last 10 days)

Sea Ice Motion

u_ice_XX Averaged u-component of ice velocity for last XX days (e.g., u_ice_10 means u-velocity for last 10 days)
v_ice_XX Averaged v-component of ice velocity for last XX days (e.g., v_ice_10 means v-velocity for last 10 days)

vel_ice_XX Averaged ice velocity for last XX days (e.g., v_ice_10 means ice velocity for last 10 days)
divXX Averaged divergence of sea ice motion for last XX days (e.g., div10 means divergence for last 10 days)
vorXX Averaged vorticity of sea ice motion for last XX days (e.g., vor10 means vorticity for last 10 days)

shrXX Averaged shearing deformation of sea ice motion for last XX days (e.g., shr10 means shearing
deformation for last 10 days)

stcXX Averaged stretching deformation of sea ice motion for last XX days (e.g., stc10 means stretching
deformation for last 10 days)

4. Result and Discussion

4.1. Classification Result

A total of 106,674 DSM images along the Laxon Line from 2012–2018 were processed,
and a total of 6135 images with sea ice leads were visually selected (Table 1). All images
were classified through the OSSP package integrated in the ArcCI online service [22].

Six classified images in 2012 are shown in Table 5. The first row shows the classification
results for the subgroup of normal images, the second row for the medium images, and
the third row for the poor images. All six images were selected to show a variety of sea
ice features under different lighting conditions. The classified results illustrate four sea ice
classes: open water, shadow, thin ice, and thick ice.

Table 5. Comparison of original 2012 DMS images and classified results for three subgroups. Two samples were selected for
each subgroup.

Sample Result 1 Sample Result 2

Raw Image Classified Result Raw Image Classified Result

Normal

Medium

Poor
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The classification accuracies were evaluated at the pixel-level, and all calculated
accuracies are summarized in Table 6. The overall accuracy across the 10 test samples
selected by year and illumination conditions was 90.9 ± 3.5%, where the latter number is
the standard deviation, and the Kappa coefficient was 0.85 ± 0.05. Since sea ice leads were
defined as a combination of thin ice and open water, classification accuracy was determined
by these two classes. The user’s accuracy for thin ice and water were 90.7 ± 5.9% and
92.7 ± 11.0%, respectively. The low accuracy of 61.9% for open water in the 2012 poor
subgroup was due to the confusion between water and thin ice under extremely poor
lighting conditions.

Table 6. Pixel-level classification accuracy for each production group. All values except Kappa coefficient are in percentages.

Testing Group
Overall

Accuracy
Kappa
Coef.

UA_
Thick **

UA_
Thin

UA_
Shadow

UA_
Water

PA_
Thick **

PA_
Thin

PA_
Shadow

PA_
Water

DMS2012_normal 88.9 0.83 88.0 91.7 83.8 nan * 98.4 94.2 63.8 nan
DMS2012_medium 93.6 0.85 97.3 85.0 nan 95.5 93.8 93.1 nan 97.5

DMS2012_poor 93.8 0.86 95.0 96.0 nan 61.9 98.9 81.2 nan 94.9
DMS2013 96.4 0.95 92.2 100.0 99.4 95.5 99.7 96.5 88.3 99.9

DMS2014_normal 88.0 0.82 74.7 86.2 93.9 98.0 97.1 81.3 99.7 89.0
DMS2014_medium 93.7 0.89 91.7 96.3 nan 97.1 100.0 75.7 nan 97.1

DMS2015 86.4 0.78 86.6 83.5 98.6 93.4 99.8 80.9 82.2 57.9
DMS2016 87.9 0.83 82.1 89.3 95.0 95.7 99.4 68.8 89.7 90.2
DMS2017 86.7 0.75 87.4 82.8 nan 99.4 97.6 76.5 nan 60.7
DMS2018 93.5 0.88 91.9 96.5 95.2 97.9 98.5 79.1 89.4 98.4

Average Accuracy 90.9 0.84 88.7 90.7 94.3 92.7 98.3 82.7 85.5 87.3

*,** User’s accuracy and producer’s accuracy for each classified ice type represented as UA_XX, and PA_XX, and XX could be thick ice, thin
ice, shadow, or open water.

4.2. Overall Integrated Statistical Analysis and Trend of Sea Ice Leads and Freeboard
4.2.1. Sea Ice Leads Fraction, Area, and Frequency

Figure 5a shows the averaged lead fraction for every 25 km along the Laxon Line.
Relatively large lead fractions (>15%) were only observed near the Beaufort Sea area (track
distance > 1200 km) in 2013, 2014, and 2016, where they were generally located in the FYI
region or transition region between FYI and MYI. However, the smaller lead fraction region
in the central Arctic (track distance < 1200 km) was primarily covered by MYI and thick
ice. Although these observations of one day per year for seven years cannot represent the
overall continuous spatiotemporal variations of lead fraction, this general spatial pattern
agrees with that of previous lead studies [5,18,19,39]. Figure 5b portrays the averaged area
of individual leads for the 25 km track segment, and Figure 5c portrays the ratio of the
number of lead-included images to the total number of images for the 25 km segment. The
lead fraction (Figure 5a) was determined by the individual lead area (Figure 5b) and the
frequency of leads (Figure 5c). For example, although large leads were observed in 2013
for 0–500 km (Figure 5b), lead frequency for this part was low (Figure 5c) due to the small
number of large leads. As a result, the averaged lead fraction for this segment was not high
because of the low lead frequency. In addition, the lead frequency in 2018 for 1000–2500 km
was relatively high, but the averaged lead fraction was not so high due to the large number
of small leads.
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Figure 5. (a) Averaged lead fraction for every 25 km; (b) averaged area of individual leads for every 25 km; (c) frequency of
lead-included images for every 25 km. Gray parts indicate missing/invalid data.

4.2.2. Retrieval of Freeboard

Based on the DMS lead detection result, we calculated the 400 m mean sea ice freeboard
from the ATM surface height data (Figure 6). The MYI area (near central Arctic Ocean)
at track distance <1200 km showed a higher freeboard (i.e., thicker ice) compared to that
of the FYI area (near the Beaufort Sea with a track distance beyond 1200 km). As shown
in Table 7, the FYI area always showed a lower freeboard than the MYI area. In addition,
the freeboard retrieved from our lead detection shows a good correlation with the ATM
freeboard product provided by NSIDC [32]—correlation coefficient (R) was 0.832, and root
mean square difference (RMSD) was 0.105 m (Table 8). It is also noted that 2015, 2016, and
2017 showed relatively lower R and higher root mean square error (RMSE) than the other
years (Table 8 and Figure 7), which might be due to the lower classification accuracy of these
years (Table 6). Some misclassified leads can make substantial differences in estimation of
sea surface height, eventually leading to the differences between our freeboard estimation
and the NSIDC freeboard products. Nevertheless, the freeboard differences between MYI
and FYI and the cross-validation with the NSIDC freeboard product showed that our lead
detection result was reasonable and compatible with other lead detection products.
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Figure 6. Averaged ATM freeboard for every 25 km for each year.

Table 7. ATM sea ice freeboard retrieved from the DMS lead detection.

Year FYI MYI Total

2013 0.263 0.519 0.409
2014 0.277 0.339 0.320
2015 0.275 0.470 0.407
2016 0.335 0.398 0.354
2017 0.211 0.467 0.366
2018 0.320 0.505 0.414

Table 8. R and RMSE between our freeboard estimation and NSIDC freeboard estimation.

Year R RMSD (m)

2013 0.928 0.089
2014 0.907 0.063
2015 0.755 0.140
2016 0.784 0.114
2017 0.742 0.119
2018 0.869 0.082
Total 0.832 0.105

Figure 7. Scatter plot between ATM freeboard derived by our lead detection and NSIDC freeboard
product for every 400 m (2% random selection of the total points).
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4.3. Sea Ice Lead Fraction Modelling with Auxiliary Sea Ice Product

In general, March and April have the lowest lead fraction and lead frequency in a
year because of the highly packed sea ice conditions [5,23]. Since the OIB missions were
conducted during these months of packed sea ice, the widths of individual observed leads
were usually less than 1 km. Indeed, as shown in Figure 5b, most leads had less than
0.1 km2 of area, which accounts for a tiny portion of the entire 25 × 25 km grid cells.
Hence, it is reasonable that the DMS-based lead detection and AMSR-based TIC were not
highly correlated (R~0.21, Figure 8), because narrow leads are hardly detected by the coarse
resolution satellite data [14,40]. For example, we found that most of AMSR-based TIC
along the track was zero and AMSR-based SIC was 100% even though the DMS images
clearly showed leads in that area.

Figure 8. Scatter plot between DMS-based lead fraction (this study) and AMSR-based TIC.

Figure 9 shows the lead fractions and related dynamic and thermodynamic variables
at the scale of 25 km on the same days that DMS images were taken from 2012 to 2018. In
general, the lead fractions did not show significant correlation with any single auxiliary
variable or kinetic property from sea ice motion data. This is reasonable because (1) these
ancillary data have 25 km spatial resolution, which is much coarser than the spatial
resolution of the DMS image; (2) the DMS images have only ~500 m of width, representing
only a small portion along the Laxon Line; and (3) the formation of sea ice leads results from
the accumulative and complex effects of multiple dynamic and thermodynamic variables,
rather than just one variable.

Although the DMS images have different spatial scale with the ancillary datasets, we
attempted to explore the potential relationship the DMS-based lead fractions and sea ice
dynamic and thermodynamic variables from the ancillary datasets. Assuming that (1) these
variables are the results of the large-scale atmosphere and ocean circulation and (2) the
combination of these variables somehow affects the formation of leads, we normalized
all explanatory variables and constructed a series of multiple-variables linear regression
models, as shown in Equation (7).

SILF =

n

∑
k=0

akxk (7)

where xk is one of the normalized dynamics-thermodynamic variables, and ak are corre-
sponding coefficients.
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Figure 9. (a) DMS-based lead fraction and nearby ice types; (b) ERA5 air temperature; (c) ERA5 wind velocity; (d) sea ice
motion for each year.
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The lead fraction variable is the mean of all DMS image-based lead fractions within
a 25 km block. On the other hand, all dynamic-thermodynamic variables, including four
kinetic moments from the NSIDC sea ice motion data, ERA5 air temperature, and wind
velocity data, were averaged by 1, 2, 5, 10, 20, and 30 days prior to the date when the DMS
image was taken, considering the accumulative effects of these explanatory variables.

After exploring all possible multiple linear regression models, we found that dynamic-
thermodynamic variables integrated by 10 days showed the highest correlation coefficient.
Therefore, these explanatory variables were used to reconstruct the linear regression mod-
els using the forward and backward stepwise regression approach. The coefficients of
all normalized explanatory variables for all models are illustrated in Table 9. There were
11 thermodynamic-dynamic variables, including one thermodynamic variable (tempera-
ture), six dynamic variables (velocity of wind and ice motion), and four kinetic moments
caused by ice motion.

Table 9. Selected variables and coefficients in 14 stepwise linear regressions.

Year Approach R2 Tmp10 U10_10 V10 _10 Wind_10 U_Ice_10 V_Ice_10 Vel_Ice_10 Div10 Vor10 Shr10 Stc10 Constant

2012
Forward 0.26 / / / / −0.39 −0.38 0.16 −0.10 −0.08 / / 0.41

Backward 0.26 0.10 / / / −0.34 −0.19 / −0.12 / / / 0.31

2013
Forward 0.48 −1.19 / / 0.35 −6.46 −2.78 9.51 / −0.01 −0.14 / 0.60

Backward 0.48 −1.18 / / 0.35 −6.44 −2.75 9.45 / / −0.15 / 0.08

2014
Forward 0.87 4.61 −5.60 −0.97 1.09 1.24 15.31 −12.98 / 0.89 −0.55 / −2.08

Backward 0.87 4.64 −5.37 / / 1.16 13.34 −11.25 −0.16 0.87 −0.59 / −1.94

2015
Forward 0.34 / / −0.53 / −1.35 / 1.19 0.15 0.14 0.28 −0.33 0.40

Backward 0.34 / / −0.53 / −1.35 / 1.19 0.15 0.14 0.28 −0.33 0.40

2016
Forward 0.29 / −0.79 / / / / 0.29 0.30 −0.39 0.57 0.15 0.21

Backward 0.34 0.67 −4.62 −0.53 4.09 / / / / −0.36 0.46 / 0.22

2017
Forward 0.66 −1.17 −6.54 −3.08 6.77 2.98 −0.09 −2.01 −0.19 / / / 1.50

Backward 0.66 −1.15 −6.57 −3.11 6.86 3.02 / −2.09 −0.19 / / / 1.45

2018
Forward 0.30 0.34 −1.40 −1.40 1.83 / / / / −0.03 / −0.31 0.45

Backward 0.30 0.34 −1.31 −1.33 1.72 / / / / / / −0.32 0.42

The forward and backward stepwise regression models for each year identified dif-
ferent sets of explanatory variables. Both 2012 models identified ice motion velocity and
divergence as the significant explanatory variables. The 2013 models mainly identified
the ice motion velocity and temperature variables. Other than ice motion velocity and
temperature, the 2014 models included wind velocity at u-direction, and the correlation
coefficient was significantly higher than that of other models. The 2015 models emphasized
the functions of wind and ice motion velocity. The 2016 forward model identified more
kinetic moments, but the backward model emphasized wind velocity, which represents
the possible correlation among these variables. Finally, the 2017 and 2018 models showed
significant influence of wind velocity and temperature.

Except for that of 2014, all other models had only moderate correlation, and R2 ranged
from 0.26 to 0.66. This was because (1) the sea ice fractions were derived from high spatial
resolution DMS images, and the dynamic-thermodynamic variables had a much coarser
resolution of 25 km; (2) the atmospheric and oceanic dynamics that contribute to lead
formation can occur in a much smaller scale (<25 km scale), which cannot be captured
by coarse resolution products; and (3) the uncertainty of the DMS-based lead detection
(accuracy of 90%) can be carried and exaggerated in the data fusion and resampling process.

Based on all stepwise regression results, the relative explanatory variable importance
could be ranked based on their frequencies in a total of 14 regression models (Table 9), as
summarized in Figure 10. It showed that temperature and ice motion vorticity were the
leading factors of the formation of sea ice leads, followed by wind vorticity and kinetic
moments or tensions of ice motion. However, since this result is only based on stepwise
regression of several available variables, it cannot clearly explain the detailed mechanism
of lead formation that is a complex combination of multiple ocean and atmospheric param-
eters. In addition, it is noted that the spatial resolution of the variables can be too coarse to
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represent the formation of leads in the DMS image scale. Therefore, more comprehensive
studies are needed to clearly understand small-scale lead formations in the future.

 

Figure 10. Relative importance of dynamic-thermodynamic explanatory variables.

5. Conclusions

This research demonstrates a scientific case study for sea ice lead detection during
2012–2018 along the IceBridge Laxon Line. To address the lack of standard image processing
workflow for sea ice parameter extraction from massive and long-term HSR imagery,
a practical object-based image classification workflow was implemented based on the
OSSP package to extract multiscale multitype sea ice features and to calculate sea ice
lead fractions and freeboard parameters. These sea ice products could be directly used to
validate other coarse resolution remote sensing images/products. Furthermore, the high-
spatial-resolution sea ice fractions were statistically modeled using large scale dynamic-
thermodynamic models.

We found that thick ice, thin ice, water, and shadow could be successfully classified
using an object-based classification algorithm or the OSSP package with reasonable overall
accuracies of 86.4–96.4%. The sea ice lead fractions along the Laxon Line could be calculated
for each DMS image accordingly. The temporal and spatial distribution of leads were
verified by ATM surface height data and an independent freeboard product. Finally,
the lead fractions were aggregated and modelled with 25 km resolution dynamic and
thermodynamic variables including sea ice motion, air temperature, and wind data. All
stepwise linear regression models had medium to high correlation coefficients. It seems
that temperature and ice motion vorticity were the leading factors of the formation of
sea ice leads, and each year could have different dominant factors. The results could
provide insightful understanding of the mechanism of sea ice leads, which is useful for
climate modelling.

In the future, novel image classification algorithms such as deep learning could be
used to improve the traditional machine learning methods. The methods can be extended
to other sea ice regions and data types. The results and parameters derived from this
study can help the sea ice community to better understand the mechanisms driving sea ice
variability so that they can be better represented in climate models.
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Abstract: Ice Pathfinder (Code: BNU-1), launched on 12 September 2019, is the first Chinese polar
observation microsatellite. Its main payload is a wide-view camera with a ground resolution of 74 m
at the subsatellite point and a scanning width of 744 km. BNU-1 takes into account the balance
between spatial resolution and revisit frequency, providing observations with finer spatial resolution
than Terra/Aqua MODIS data and more frequent revisits than Landsat-8 OLI and Sentinel-2 MSI. It
is a valuable supplement for polar observations. Geolocation is an essential step in satellite image
processing. This study aims to geolocate BNU-1 images; this includes two steps. For the first
step, a geometric calibration model is applied to transform the image coordinates to geographic
coordinates. The images calibrated by the geometric model are the Level1A (L1A) product. Due to
the inaccuracy of satellite attitude and orbit parameters, the geometric calibration model also exhibits
errors, resulting in geolocation errors in the BNU-1 L1A product. Then, a geometric correction method
is applied as the second step to find the control points (CPs) extracted from the BNU-1 L1A product
and the corresponding MODIS images. These CPs are used to estimate and correct geolocation errors.
The BNU-1 L1A product corrected by the geometric correction method is processed to the Level1B
(L1B) product. Although the geometric correction method based on CPs has been widely used to
correct the geolocation errors of visible remote sensing images, it is difficult to extract enough CPs
from polar images due to the high reflectance of snow and ice. In this study, the geometric correction
employs an image division and an image enhancement method to extract more CPs from the BNU-1
L1A products. The results indicate that the number of CPs extracted by the division and image
enhancements increases by about 30% to 182%. Twenty-eight images of Antarctica and fifteen images
of Arctic regions were evaluated to assess the performance of the geometric correction. The average
geolocation error was reduced from 10 km to ~300 m. In general, this study presents the geolocation
method, which could serve as a reference for the geolocation of other visible remote sensing images
for polar observations.

Keywords: geolocation; microsatellite; Ice Pathfinder; BNU-1; geometric correction; image division;
image enhancement

1. Introduction

Visible remote sensing plays an important role in earth observations by providing
super-width and high spatial resolution visual images. Along with its advantages, it has a
wide range of applications in environmental surveying and mapping, disaster monitoring,
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resource investigation, vegetation monitoring, etc. [1–5]. In polar regions, visible remote
sensing provides comprehensive observations of features on the earth’s surface, and thus it
is a supplement to limited field observations. With climate warming, dramatic changes
have taken place in the polar regions where glaciers have retreated [6,7], ice flow has
accelerated [8,9], and sea-ice has shrunk rapidly [10]. However, many of the rapid changes
occurring in polar regions are difficult to monitor due to the trade-off between the temporal
and spatial resolutions of existing satellite sensors (fine spatial resolution with a long revisit
period; coarse resolution with a short revisit period) [4,11]. For example, the Moderate-
Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra/Aqua satellites
can provide daily observations that facilitate the capture of rapid surface changes [4],
but the coarse spatial resolution (250–1000 m) of MODIS sensors is often inadequate for
monitoring the collapse of small glaciers or the disintegration of small icebergs. In contrast,
the Landsat-8 OLI/Sentinel-2 MSI sensor has a higher spatial resolution (30 m/10 m)
than MODIS, providing more details of the snow and ice surface changes. However, the
16-day/10-day revisit period of the Landsat-8 OLI/Sentinel-2 MSI sensor limits its applica-
tion in the study of time-sensitive events, such as sea ice drift, which may evolve rapidly
in a few days. Therefore, a sensor that provides high-resolution remote sensing data on a
daily frequency or satellite constellations are needed for observing the rapid changes in
polar regions.

Launched on 12 September 2019 and developed through the collaboration between Bei-
jing Normal University, Sun Yat-sen University, led by Shenzhen Aerospace Dongfanghong
HIT Satellite Ltd., Ice Pathfinder (Code: BNU-1) is the first Chinese polar-observing mi-
crosatellite. It is in a sun-synchronous orbit (SSO) with an altitude of 739 km above Earth’s
surface, a semi-major axis of 7,116,914.419 m, an inclination of 98.5238 Degrees, and an
eccentricity of 0.000220908. Weighing only 16 kg, BNU-1 carries an optical payload with a
panchromatic band and four multispectral bands. The spatial resolution at the sub-satellite
point is approximately 74 m from the ground. The wide swath of BNU-1 (744 km) provides
a 5-day revisit period of polar regions up to 85◦ latitude. BNU-1 takes into account the
balance between spatial resolution and revisit frequency, providing observations with finer
spatial resolution than Terra/Aqua MODIS data and more revisit frequency than Landsat-8
OLI and Sentinel-2 MSI, benefiting the environmental monitoring of the polar regions. Also,
the low cost of BNU-1 makes it financially feasible to construct a constellation observation
system [12]. A five-satellite constellation system provides the ability to observe polar
environmental elements on a daily basis with a spatial resolution finer than 100 m.

Image geolocation is an essential process prior to the application of satellites. How-
ever, geolocation errors are commonly found in visible images. For example, the images
from MODIS have a geolocation error of 1.3 km in the along-track direction and 1.0 km in
the along-scan direction without correction [13]. Geolocation errors need to be corrected
because they cause uncertainty in satellite data and have a serious impact on the appli-
cations of satellite data for environmental monitoring [14]. The geolocation errors are
usually corrected by parametric and non-parametric correction models [13,15,16]. Both
these models correct the errors of a satellite image by matching the CPs obtained from
the target image (the image with geolocation errors) and the corresponding points from
the reference image with high geolocation accuracy [17]. The parametric correction model
corrects the errors by optimizing the inner and external orientation parameters in the
geometric calibration model based on the differences between the CPs from the target and
reference images [13,15,18], while the non-parametric model is performed by establish-
ing the coordinates transformation model between coordinates of the target image and
coordinates of the reference images based on the CPs [8,11,12].

Both the parametric and non-parametric correction models are highly dependent on
the amount of CPs [17,19,20]. Various methods have been used to increase the number
of CPs extracted from the images, such as image division [21,22] and histogram equaliza-
tion [22], and GCP sampling optimization [17]. Other methods have been used to eliminate
the mis-matched CPs such as random sample consensus (RANSAC) [17,19], etc. These
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methods are commonly used for images with rich textures at low- and mid-latitudes. How-
ever, due to the high reflectance of ice and snow surfaces at high latitudes, the texture of
images in polar regions is rarely observed. It is necessary to explore methods for correcting
the geolocation errors of the images of polar regions.

This study aims to develop a geolocation method for polar images from BNU-1. The
BNU-1 images for several regions of Antarctica and Greenland were used to demonstrate
the effectiveness of this proposed geolocation method to deliminate the geolocation errors.
This paper is organized as follows. Section 2 describes the data and the study area. Section 3
describes the geolocation method of the BNU-1 images in detail. Section 4 shows the
performance of the geolocation method. The discussion of the results is shown in Section 5.
Conclusions are given in Section 6.

2. Data

BNU-1 Imagery. BNU-1 has obtained more than 6000 images covering Antarctica
and Greenland since it was launched. It provides the observations in panchromatic, blue,
green, red, and red-edge spectral bands. Twenty-eight images of Antarctica and fifteen
images of Greenland in the panchromatic band were collected for geolocation and accuracy
evaluation. As shown in Figure 1, the images of Antarctica are distributed over the Amery
Ice Shelf, Victoria Land, Dronning Maud Land, and Pine Island Glacier. The images of
Greenland cover the west and north of Greenland.

Figure 1. Distributions of the sample images of BNU-1 for (a) Antarctica and (b) Greenland. Black
and red rectangles refer to the footprints of 43 sample BNU-1 image scenes, in which red rectangles
show the 6 Sample Images (A–F) used for the analysis in this study. Sample Images A–F were
acquired for the Amery Ice Shelf on 8 October 2019, Victoria Land on 11 October 2019, Greenland on
7 July 2020, Greenland on 18 July 2020, Dronning Maud Land on 18 December 2019, and Pine Island
Glacier on 28 December 2019, respectively.

MODIS Imagery. MODIS is a key instrument onboard the Terra and Aqua satellites,
which were launched on 18 December 1999, and 4 May 2002, respectively, providing global
coverage every one to two days. Since the MODIS sensor has high geolocation accuracy (50
m for one standard deviation) [4] and a daily revisit capability, we used MOD02QKM and
MYD02QKM products as the reference images for the geometric correction of the BNU-1
images in this study. The geolocation error of MOD02QKM (MYD02QKM) is 50 m or better,
which is finer than the pixel size of the MODIS image [13,23,24]. It is reasonable to use
MODIS images as the reference data in this study since the spatial resolution of BNU-1
images is 80 m.

Coastline dataset. We used the high-resolution vector polylines of the Antarctic
coastline (7.4) [25] of 2021 from the British Antarctic Survey (BAS). We also used the

193



Remote Sens. 2021, 13, 4278

MEaSUREs MODIS Mosaic of Greenland (MOG) 2005, 2010, and 2015 Image Maps,
Version 2 [26] from the NASA National Snow and Ice Data Center (NSIDC) to obtain
the Greenland coastline. We evaluated the geolocation error of the BNU-1 image visually
by comparing the coastline dataset with the geolocation of the BNU-1 image.

3. Methods

There are two steps for geolocating the BNU-1 images in this study. The first step is
geometric calibration. In this step, a geometric calibration model is constructed to transform
the image coordinates to geographic coordinates. The images with geographic coordinates
are the BNU-1 Level 1A (L1A) product. The second step is the geometric correction. The
geolocation errors of the BNU-1 L1A product are corrected by an automated geometric
correction method in this step. This method is designed to correct the geolocation errors of
the images of polar regions where surface textures rarely exist. The corrected BNU-1 L1A
product, which has high geolocation accuracy, is named the BNU-1 Level 1B (L1B) product.

3.1. Geometric Calibration Model
3.1.1. Description of Geometric Calibration Model

A rigorous geometric calibration model was constructed for transforming the image
coordinates to the geographic coordinates for the BNU-1 images. The timing, position, and
altitude of satellites and camera position parameters are used as inputs of the model. The
model is shown as follows [27]:⎡

⎣ X
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Z

⎤
⎦

WGS84

=

⎡
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where t is the scanning time of an imaginary line.
[

Xs(t) Ys(t) Zs(t)
]T

WGS84 indicates
the coordinates of the Global Positioning System (GPS) antenna phase center, which are
measured by a GPS receiver on the satellite in the WGS84 coordinate system (derived from
ECEF) at t. m is the scale factor determined by the orbital altitude.

(
RWGS84

J2000

)
t
,
(

RJ2000
body

)
t

and Rbody
camera are the rotation matrix of the coordinate system from J2000 to WGS84 at t, the

rotation matrix from the satellite’s body-fixed coordinate system to J2000 coordinate system
at t, and the rotation matrix from the camera coordinate system to the satellite’s body-
fixed coordinate system, respectively.

[
Dx Dy Dz

]T is the coordinates of the GPS

antenna phase center in the satellite’s body-fixed coordinate system.
[

dx dy dz
]T is

the translations of the origin of the camera coordinate system relative to the satellite’s body-
fixed coordinate system.

[
tan ψx tan ψy 1

]T represents the value of the coordinates of
point (x, y) corresponding to the detector direction angle model composed of the camera’s
principal point, focal length, charge coupled device (CCD) installation position, and lens
distortion.

[
X Y Z

]T
WGS84 represents the ground coordinates of the point (x, y) in the

World Geodetic System 1984 (WGS84) coordinate system.
tan ψx and tan ψy describe the directional angle of point (x, y) in the camera coordinate

system [27–29], and this can be calculated by Equation (2), where f is the focal length of
the camera.

tan ψx = x
f

tan ψy = y
f

(2)

This step is conducted on the Windows Server 2016 Standard operating system on the
Intel(R) Xeon(R) Gold 5220R CPU @2.20 GHz, 256 GB RAM. It is a whole-day unattended
automatic data production system.

3.1.2. Uncertainty Evaluation of Geometric Calibration Model

In addition to systematic errors, the geolocation of acquired images is also affected
by random errors. The satellite imaging process is affected by various complex conditions
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such as attitude adjustment, attitude measurement accuracy, and imaging environment.
In addition, as a microsatellite, BNU-1′s low cost and the imaging environment of polar
regions limit, to a certain extent, the overall accuracy and stability of the measurement
equipment of attitude and position. Moreover, due to the wide swath of BNU-1′s camera,
the imaging time of its single-scene image is long. As the satellite attitude is adjusted along
the imaging, random errors in attitude measurement cause random geolocation errors in
single-scene images and multiple-scene images. Since the measurement error of GPS can
be regarded as translation error (Equation (1)), which is equivalent to the satellite rotating
at a small angle, we only designed and carried out an experiment to simulate the influence
of the satellite’s attitude angle change on the geolocation change through Equation 1. The
satellite’s attitude is determined by the roll angle, pitch angle, and yaw angle. We randomly
selected an image and simulated the angles of roll, pitch, and yaw, which changed from 0◦
to 0.5◦ with a step size of 0.1◦, to obtain 216 (6 * 6 * 6) groups of geolocations. The quintic
polynomial method was used to fit the scatter plot.

3.2. Automated Geometric Correction Processing Method

Since the space environment is complex and variable during satellite launch and
operation [15,28,30,31], the geographic coordinates calculated by geometric calibration
models with the pre-launch laboratory measurement parameters usually have geolocation
errors of about several hundred meters to several kilometers [32,33]. In addition, the
random error of the attitude measurement cannot be eliminated due to the lack of ground
control points in polar regions. An automated geometric correction method based on CPs
matching was developed to improve the geolocation accuracy of the BNU-1 L1A product.
There are three steps involved in the method. Firstly, we selected the reference image
with a high geolocation accuracy for the BNU-1 images. Then, the Scale Invariant Feature
Transform algorithm (SIFT) [33] was used to extract the CPs from both the BNU-1 image
and the corresponding reference image. Finally, geometric correction was conducted on
the BNU-1 image based on the CPs. The flow chart is shown in Figure 2. Our experiment
was conducted on the operating system of Windows 10 on the Intel(R) Core (TM) i5-
5200 CPU @2.20 GHz, 8 GB RAM. We used the programming language of python2.7 to
implement the one-stop processing of the automatic geometric correction. In this process,
the programming language of MATLAB was used to realize SIFT algorithm, and the
software of ArcGIS 10.6 was used to realize data preprocessing and geometric correction.
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3.2.1. Step 1: Reference Images Selection

There were three criteria for selecting a reference image. Firstly, we selected the
MODIS images with the same spatial coverage as the BNU-1 image as well as up to 5 h
of different acquisition times. Secondly, the MODIS images covering the BNU-1 image
and its surrounding 10 km area were chosen (one BNU-1 image corresponds to multiple
MODIS images). Thirdly, the SIFT algorithm was adopted to extract the CPs from each
image pair, where the BNU-1 image and the MODIS image are the target image and the
reference image, respectively. The MODIS image with the most CPs was used as a reference
image for the geometric correction. If more than one MODIS image has the highest number
of CPs, the one whose acquisition time is closer to the BNU-1 image’s acquisition time is
preferred as the reference image. The reference image used for geometric correction of the
BNU-1 image is referred to as the corresponding MODIS image hereinafter.

3.2.2. Step 2: Automatic CPs Extraction

The amount and spatial distribution of CPs are key factors for geometric correction
because they have direct impacts on the geometric correction accuracy of the corrected
images. In this study, we applied the SIFT algorithm based on MATLAB language to extract
the CPs automatically from the BNU-1 L1A and the corresponding MODIS image. Due
to the lack of texture features of snow and ice surfaces at high latitudes, CPs extracted
from the original image pair are usually not sufficient for correcting the geolocation errors.
When the number of CPs extracted from the image pair needs to be increased, image
division and image enhancement methods are used to enhance the texture features of
satellite images [1,21,22,34].

The combination of an image division method and an image enhancement method
was applied to highlight surface features of the BNU-1 and MODIS images in this study.
The extraction of CPs was carried out in three steps in Step 2 (Figure 2). Firstly, we extracted
the CPs from the original BNU1-1 image and the corresponding MODIS image by using
the SIFT algorithm. The Euclidean distances between each pair of CPs from the image
pair were calculated. To avoid mismatches of the points, we eliminated the largest 10%
points in the Euclidean distance. Secondly, we extracted the CPs from the image pair after
processing by different image division schemes. The paired images were divided into
2 × 2 = 4 (Scheme 1) and 3 × 3 = 9 (Scheme 2) sub-images [22]. Then, an adaptive piecewise
linear enhancement consisting of three rules for low, middle, and high reflectance ranges
was used to enhance each sub-image [34]. We extracted the CPs from all the pairs of the
sub-images again by the SIFT algorithm. The largest 30% of the extracted CPs in Euclidean
distance were eliminated in this step. Finally, the CPs extracted in the above two steps
were merged and de-duplicated to obtain the CPs with the largest number, which were
taken as the final CPs for the geometric correction.

3.2.3. Step 3: Geometric Correction

This study performed the geometric correction of the BNU-1 L1A product with the
original spatial resolution (74 m) by using a quadratic polynomial (POLYORDER2) model in
ArcGIS 10.6 software. We obtained the BNU-1 L1B product by resampling the geolocation
error-corrected image to 80 m spatial resolution using the nearest resampling method.

3.3. Geolocation Accuracy Evaluation

To evaluate the geolocation accuracy of the BNU-1 L1A/L1B product, we re-extracted
the CPs from the BNU-1 L1A/L1B product by the SIFT algorithm as the verification points
and calculated the root mean squared error (RMSE) of the verification points:

RMSE =

√
∑n

i = 1[Rxi
2 + Ryi

2]

n
(3)
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where n is the number of points participating in the accuracy evaluation, Rxi and Ryi
represent the residuals of the i-th extracted points from the BNU-1 and the reference
MODIS image in the X and Y coordinates, respectively.

4. Results

4.1. Geolocation Accuracy of the BNU-1 L1A Product

The BNU-1 L1A images with 50% transparency are superimposed on the correspond-
ing MODIS images in Figure 3. The sub-figures (a), (b), (c), and (d) correspond to the
Sample Images A, B, C, and D shown in the red box in Figure 1. The prominent features
in the images, such as coastlines, rocks, sea ice, etc., are blurred, indicating the mismatch
of the geometric position between the BNU-1 images and the corresponding MODIS im-
ages. Obvious geolocation errors are observed in the BNU-1 L1A images. Table 1 shows
the geolocation errors of the 42 scene BNU-1 L1A images. The errors of the BNU-1 L1A
images range from 3 to 20 km, with an average of about 10 km. The geolocation errors
of the sub-graphs in Figure 3a–d are 6544.83 m, 7919.60 m, 15,071.02 m, and 7778.63 m,
respectively (Table 1).

Figure 3. BNU-1 L1A images superimposed on the corresponding MODIS images. Red polygons refer to the outline of the
Sample Image scenes shown in Figure 1. (a) Sample Image A; (b) Sample Image B; (c) Sample Image C; (d) Sample Image D.
The images in the yellow boxes below are the enlarged versions of the part in the sample images.
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Table 1. Geolocation errors of the BNU-1 L1A/L1B product (unit: meter).

Scene ID
RMSE

Scene ID
RMSE

L1A L1B L1A L1B

Amery Ice Sheet Victoria Land
1 (A) 1 6544.83 270.19 1 7639.83 412.85

2 8613.73 180.87 2 (B) 7919.60 253.40
3 5061.16 234.17 3 4683.40 277.69
4 10,848.59 175.13 4 17,855.48 277.47
5 7079.49 245.66 5 8602.73 293.14
6 9572.81 237.79 6 17,380.35 339.21

Dronning Maud Land Greenland
1 5642.45 362.99 1 16,236.81 283.33
2 6916.70 243.97 2 19,828.19 189.23
3 3625.91 189.88 3 15,870.7 229.51
4 5680.75 203.38 4 12,435.58 299.84
5 6761.34 258.69 5 9959.07 321.84
6 8142.78 220.03 6 10,836.43 258.28
7 8012.31 324.15 7 7854.03 339.87
8 8036.76 484.89 8 18,738.91 178.34
9 7759.36 279.76 9 13,244.36 216.14

10 7007.99 203.37 10 (C) 15,071.02 269.83
11 6786.16 242.65 11 13,489.89 265.7
12 5045.67 506.19 12 17,819.43 414.26
13 10,215.28 458.47 13 19,880.35 331.14
14 6880.00 575.88 14 16,219.35 292.06

15 (E) 7309.43 221.59 15 (D) 7778.63 302.29
Pine Island Glacier

1(F) 19,765.58 783.90

Average L1A: 10,480.31 L1B: 301.14
1 (A) indicates Sample Image A.

Figure 4 shows the distributions of the geolocation errors of the CPs in the X and
Y directions for each image shown in Figure 3. The length and direction of the vectors
in Figure 4 represent the magnitude and direction of the CPs’ geolocation errors. The
directions and the magnitude of geolocation errors for each image are not consistent
(Figure 4). For example, the CPs’ geolocation errors of Sample Image A, B, and D are less
than 12 km, while most CPs’ geolocation errors of Sample Image C are up to 19 km. And
the geolocation errors in the middle part of Sample Image A are smaller than the errors
in the edges of the image, while Sample Image B shows a quite different distribution of
geolocation errors. In addition, the direction of the geolocation errors of the CPs shown
in Sample Images B, C, and D are also different from the center to the periphery of the
images. The CPs’ geolocation errors within an image also vary significantly. For example,
geolocation errors in Sample Image C are less than 2000 m in the center-west parts and
more than 15,000 m in the east and southwest parts (Figure 4). The results illustrate that
the distribution of the CPs’ geolocation errors varies in each image and indicates that some
local distortions exist in the BNU-1 L1A product.
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Figure 4. Displacement vectors of the CPs for the four sample BNU-1 L1A images and the corre-
sponding MODIS images in Figure 3. The vectors start and end at the CPs’ coordinates in polar
stereographic projection on the BNU-1 L1A images and the corresponding MODIS images, respec-
tively. The color of the vectors represents the error magnitude according to the legend.

4.2. Uncertainty Evaluation of Geolocation of BNU-1 L1A Product

Figure 5 shows the three-dimensional scatter diagram of the influence of the change in
the satellite’s attitude angle—roll, pitch, and yaw—on the geolocation change. The results
show that when the angles of roll, pitch, and yaw change from 0.1◦ to 0.5◦, the geolocation
change in the upper left corner point of the image changes from −6256 m to 6594 m in the
longitude and from −13,915 m to −112 m in the latitude. Similarly, the geolocation change
in the center point of the image changes from −6431 m to 4998 m in the longitude and from
−11,889 m to −251 m in the latitude. These geolocation changes are non-linear (Figure 5).
Under imaging conditions in polar regions, the random error of attitude measurement
cannot be eliminated due to the lack of ground control points in polar regions [28]. To
obtain high-precision geolocation products, it is necessary to add CPs to the image for
geometric correction. Since there are few textures observed on high-reflectance ice and
snow surface in polar regions, the extraction of CPs is the key to geometric correction.
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Figure 5. Three-dimensional scatter diagram of the influence of the satellite’s attitude angle change
on the geolocation change. (a,b) show the impact of the satellite’s attitude changes on the longitude
change and the latitude change of the upper left corner point of the image, respectively. (c,d) show
the impact of the satellite’s attitude changes on the longitude change and the latitude change of the
center point of the image, respectively. The color of the scatters represents the longitude/latitude
change according to the legend.

4.3. Influence of Image Division and Enhancement on the CPs Extraction

Sample Image E is a typical image for polar regions. Most of the features in the
image are ice sheets and snow with limited boundary features, and only a few of them
are sea ice with well-defined boundaries. However, due to the high reflectance of ice
and snow surfaces in polar regions, the textures of the ice sheet and snow can rarely be
observed in images. The ice sheet area of Sample Image E is a good case for evaluating the
effectiveness of various image enhancement methods for increasing the control points on
the ice sheet. Five image enhancement methods, which are linear enhancement, piecewise
linear enhancement, Gaussian enhancement, equalization enhancement, and square root
enhancement, were applied to enhance Sample Image E. Figure 6 shows the distributions
of CPs extracted from the images enhanced by different image enhancement methods. The
numbers of CPs extracted from the original image and the image stretched by the five
enhancement methods were 31, 32, 76, 37, 27, and 22, respectively. By comparing these five
enhancement methods, we found that the piecewise linear enhancement method makes the
surface textures in the interior of the ice sheet more distinct, and as a result, the most CPs
were extracted from the image. Therefore, the piecewise linear enhancement (Figure 6c) is
considered to be more suitable for enhancing the images of polar regions.
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Figure 6. Comparisons of the number and distribution of CPs in the original image (a) and the
image adopting different enhancement methods: (b) Linear; (c) Piecewise Liner; (d) Gaussian;
(e) Equalization; (f) Square Root.

Sample Image E was also used to assess the influence of image division on CPs
extraction. The image was divided into four sub-images (Scheme 1) and nine sub-images
(Scheme 2) and then each sub-image was individually enhanced with the piecewise linear
stretching method. Figure 7 shows the distribution of CPs extracted from the original
image by Scheme 1, and by Scheme 2, respectively. The number of extracted points are
245, 435, and 596, respectively. More CPs are extracted in the center and the lower right
corner of the image (the blue border area) divided by Scheme 2 (Figure 7c) compared to
the original image (Figure 7a) and the image divided by Scheme 1 (Figure 7b). As shown
in Table 2, the amount of CPs extracted from the image increases by 30% to 182% when the
image division and piecewise linear enhancement were applied to the images. However,
this does not mean we can get more CPs if the image is divided into more sub-images. The
amount of CPs extracted from the Sample Image A, B, C, and D is less when Scheme 2 is
applied to divide these images.

The CPs extracted from Sample Image E were used to correct the geolocation er-
rors of the image. The BNU L1A/L1B image with 50% transparency is superimposed
on the corresponding MODIS image in Figure 8. There is a distinct displacement be-
tween the BNU-1 L1A image and the MODIS image, while the displacement between
the BNU-1 L1B image and the MODIS image can barely be discerned. This result indi-
cates that the geolocation correction method improves the geolocation accuracy of the
BNU-1 L1Aproduct.
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Figure 7. Schematic diagram of the number and distribution of the CPs extracted by different division
strategies. (a) The original image; (b) Scheme 1; (c) Scheme 2.

Table 2. The number of the extracted CPs with different image division schemes.

Sample Image
Number of CPs

Extracted from the
Original Image

Number of CPs
Extracted from

Scheme 1

Number of CPs
Extracted from

Scheme 2

Optimal Increment of
CPs (%) 2

A 1071 2100 1 1840 96
B 935 2280 1 1624 144
C 1334 2236 1 1905 68
D 447 580 1 579 30
E 245 435 596 1 143
F 17 32 48 1 182

1 represents the optimal number of the extracted CPs for geometric correction. 2 represents the ratio of the difference between the optimal
number and the original image number to the original image number.

Figure 8. The BNU-1 images superimposed on the corresponding MODIS images. (a) BNU-1 L1A
image; (b) BNU-1 L1B image. Red boxes refer to the extent of the BNU-1 L1A/L1B images.

In addition to Sample Image E, Sample Image F was also selected to evaluate the
effectiveness of the CPs extraction scheme proposed. Most of the areas of Sample Image F
are covered by the ice sheet, and only a few areas are fjords. Figure 9 shows the image after
geometric correction of the BNU-1 L1A image using the CPs extracted from the original
image and the optimal control point extraction scheme (Scheme 2). The CPs extracted
from the original image are few and unevenly distributed. If these points are directly used
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for geometric correction of the BNU-1 L1A image, the corrected image will be severely
distorted (Figure 9a). More, and more evenly distributed CPs are extracted of the image
divided by Scheme 2 (Figure 9b) compared to the original image (Figure 9a). The corrected
BNU-1 image overlaps well with the MODIS image (Figure 9b).

Figure 9. BNU-1 image after geometric correction of the BNU-1 L1A image using the CPs extracted
from the original image (a) and Scheme 2 (b). The corrected image with 50% transparency is
superimposed on the corresponding MODIS image in (b).

4.4. Geolocation Accuracy of the BNU-1 L1B Product

The verification points used to evaluate the geolocation errors of the BNU-1 L1B
product for the Sample Images A, B, C, and D are shown in Figure 10a. We compared
the coordinates of verification points in the BNU-1 L1A/L1B images with those in the
corresponding MODIS images in Figure 10b, c. The verification points extracted from the
BNU-1 L1A product (green dots) are distributed on one side of the 1:1 line (black diagonal
line), which means that geolocation errors exist in the BNU-1 L1A product, while the
verification points extracted from the BNU-1 L1B product (red dots) are almost scattered
on the 1:1 line. We fitted the linear relationships between the coordinates of the verification
points from BNU-1 L1A/BUN-1 L1B and the MODIS image. The regression coefficients,
intercepts, and determined coefficients of the relationship fitted by the BNU-1 L1B product
are significantly better than those fitted by BNU-1 L1A. The coordinates of the points from
the BNU-1 L1B product show great consistency with the coordinates from the MODIS
images. The geolocation accuracy of the BNU-1 L1B images was improved significantly.
After geometric correction, the average geolocation error was reduced from 10,480.31 m to
301.14 m (Table 1).

We obtained the image mosaics of the Amery Ice Shelf and Victoria Land in Antarctica
and northern Greenland in the panchromatic band of BNU-1 (Figure 11). Mismatches in
the coastlines were found in the image mosaics from the BNU-1 L1A product. However,
the coastlines in the image mosaics from the BNU-1 L1B product are consistent with the
existing coastline dataset [25]. Even though the junction of adjacent images in the image
mosaic from the BNU-1 L1B product has greatly improved coherence compared to the
BNU-1 L1A product, the BNU-1 L1B product still has an average geolocation error of
~300 m. For example, the discontinuous waters at the junction are found in Victoria Land
(obvious mismatches in the yellow circle in Figure 11a) from the BNU-1 L1A product,
while the mosaic from the BNU-1 L1B product has consistent waters at the junction regions
(slight mismatches in the green circle in Figure 11a).
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Figure 10. Spatial distribution of the verification points for accuracy evaluation of BNU-1 L1B
Sample Images A, B, C, and D (a); and the coordinates comparison of the verification points of BNU-1
L1A/L1B Sample Image A, B, D, and E and their corresponding MODIS images, in X-direction (b) and
Y-direction (c), respectively. Green and red dots represent the verification points on the BNU-1 L1A
image and the BNU-1 L1B image, respectively. The black diagonal line in the sub-figures represents
that the coordinates of points in the BNU-1 image are almost equal to those in the corresponding
MODIS image. The two small graphs in each sub-graph are the enlarged version of the orange and
blue rectangular areas on the black diagonal line.
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Figure 11. Mosaic of the panchromatic band images of some BNU-1 L1A/L1B Sample images:
(a) Antarctica; (b) Greenland. The blue lines represent the existing coastline dataset.
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5. Discussion

Although microsatellites have the advantages of compactness, low cost, and flexibility,
their flight attitude may be unstable occasionally and the equipment measuring the attitude
and position may be inaccurate or perform poorly, which leads to large geolocation errors
in the images [35]. For example, the geolocation errors in UNIFORM-1′s visible images are
50–100 km [35]. The BNU-1 L1A product has smaller geolocation errors, but the average
geolocation error can still be up to 10 km, which is close to that of the Luojia 1-01 data [30].

The non-parametric geometric correction methods are widely applied to geolocation
correction of images without distinguishing the error sources [16,31], such as HJ-1A/B CCD
images [36] and Unmanned Aerial Vehicle (UAV) images [37]. The geolocation accuracy of
these geometric correction methods relies mainly on adequate CPs. However, the limited
texture features of the ice and snow surface in polar images make it difficult to extract
the CPs. Some studies prove that image division and image enhancement have the ability
to increase the amount of extracted CPs [1,21,22,34]. However, images used by these
previous studies are from low- and mid- latitudes and contain rich land surface features.
The correction for polar images with few texture features is rarely documented. This study
proposes the geometric correction method to reduce the geolocation errors of the visible
images for polar regions. The results indicate that piecewise linear enhancement highlights
more surface features of ice and snow surfaces than other image enhancement methods.
Some other studies have also proved that piecewise linear enhancement is effective in
highlighting more texture features of the ice and snow surfaces in polar images [34]. More
CPs can be observed after the image pair is processed by image division and piecewise
linear enhancement. Different division schemes can be adopted to obtain more CPs for
different image pairs.

In addition, we compared the geolocation accuracy of Sample Image A–F after the
correction through the CPs extracted from the original image and the geolocation accuracy
after correction through the optimal CPs extraction scheme (Table 3). It was found that the
geolocation accuracy of Sample Image A–E was not significantly improved. The geolocation
accuracy of Sample Image A–E after geometric correction based on the CPs extracted from
the original image was close to the level of 250 m (the pixel size of MODIS image), and it
was difficult to further improve by adding CPs on this basis. However, for some images
where the ice sheet is widely distributed, such as Sample Image F, the proposed method
effectively prevents the distortion of the corrected image caused by the lack of CPs on the
ice sheet by adding CPs. The increase in CPs can remarkably improve the geolocation
accuracy of such images. Therefore, the automatic geometric correction method proposed
in this study is of great significance for the correction of images in polar regions with rare
feature points.

Table 3. Comparison of the geolocation accuracy of the BNU-1 images corrected through different
CPs extraction Scheme.

Sample Image

Geolocation Accuracy of the Corrected
BNU-1 Image (m) Improvement in

Geolocation
Accuracy (%)

Corrected by the CPs
Extracted from the

Original Image

Corrected by the CPs
Extracted from the
Optimal Scheme

A 279.42 270.19 3.30
B 260.80 253.40 2.84
C 275.79 269.83 2.16
D 305.28 302.29 0.98
E 242.43 221.59 8.60
F /(Serious distortion) 783.90 /

Although the method presented in this study has some advantages in correcting the
geolocation errors of polar images, it also has its limitations. For example, only two division
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schemes were applied in the BNU-1 images, and the division fractions for different images
are still worth further study. Besides, the geolocation accuracy of some sub-images with
relatively uniform surface features is difficult to improve by using the proposed method.
This indicates that the SIFT algorithm has its limitation for finding more CPs. Therefore, it
is necessary to explore some other CPs extraction methods for increasing the number of
CPs. Since deep learning methods have been widely used in image registration [38,39], it is
worth exploring the possible application of deep learning methods on CPs extraction from
the images of polar regions.

6. Conclusions

In this study, we present the geolocation method for BNU-1 images including two
steps. For the first step, a rigorous geometric calibration model was applied to transform
the image coordinates to the geographic coordinates for the BNU-1 images. The images
geolocated by the geometric calibration model are the BNU-1 L1A product. For the second
step, an automated geometric correction method was used to reduce the geolocation errors
of the BNU-1 L1A product. The images corrected by the geometric correction method are
the BNU-1 L1B product.

The geometric correction method is commonly used for improving the geolocation
errors of the visible image. However, the texture features of the ice and snow surfaces are
rarely seen in polar images, which makes it difficult to find the CPs. The combination of the
image division method and piecewise linear image enhancement method was applied to
the BNU-1 L1A product and the corresponding MODIS images, and the results indicate that
the CPs extracted increased by 30% to 182%, which can effectively improve the geometric
accuracy of the BNU-1 images.

The geolocation method was applied to 28 images of Antarctica and 15 images of
Arctic regions. The average geolocation error was reduced from 10 km to ~300 m. The
coastlines in the image mosaics from the BNU-1 L1B product were consistent with the
coastline dataset. These results suggest that the geolocation method has the ability to
improve the geolocation errors of BNU-1 images and other satellite images in polar regions.
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Abstract: This study investigated monthly variations of surface urban heat island intensity (SUHII)
and the applicability of the local climate zones (LCZ) scheme for land surface temperature (LST) dif-
ferentiation within three spatial contexts, including urban, rural and their combination, in Shenyang,
China, a city with a monsoon-influenced humid continental climate. The monthly SUHII and LST
of Shenyang were obtained through 12 LST images, with one in each month (within the period
between 2018 and 2020), retrieved from the Thermal InfraRed Sensor (TIRS) 10 in Landsat 8 based on
a split window algorithm. Non-parametric analysis of Kruskal-Wallis H test and a multiple pairwise
comparison were adopted to investigate the monthly LST differentiations with LCZs. Overall, the
SUHII and the applicability of the LCZ scheme exhibited spatiotemporal variations. July and August
were the two months when Shenyang underwent strong heat island effects. Shenyang underwent a
longer period of cool than heat island effects, occurring from November to May. June and October
were the transition months of cool–heat and heat–cool island phenomena, respectively. The SUHII
analysis was dependent on the definition of urban and rural boundaries, where a smaller rural
buffering zone resulted in a weaker SUHI or surface urban cool island (SUCI) phenomenon and
a larger urban area corresponded to a weaker SUHI or SUCI phenomenon as well. The LST of
LCZs did not follow a fixed order, where in July and August, the LCZ-10 (Heavy industry) had the
highest mean LST, followed by LCZ-2 (Compact midrise) and then LCZ-7 (Lightweight low-rise). In
comparison, LCZ-7, LCZ-8 (Large low-rise) and LCZ-9 (Sparsely built) had the highest LST from
October to May. The LST of LCZs varied with urban and rural contexts, where LCZ-7, LCZ-8 and
LCZ -10 were the three built LCZs that had the highest LST within urban context, while LCZ-2, LCZ-3
(Compact low-rise), LCZ-8, LCZ-9 and LCZ-10 were the five built LCZs that had the highest LST
within rural context. The suitability of the LCZ scheme for temperature differentiation varied with
the month, where from July to October, the LCZ scheme had the strongest capability and in May, it
had the weakest capability. Urban context also made a difference to the suitability, where compared
with the whole study area (the combination of urban and rural areas), the suitability of built LCZs in
either urban or rural contexts weakened. Moreover, the built LCZs had a higher level of suitability
in an urban context compared with a rural context, while the land-cover LCZs within rural had a
higher level of suitability.

Keywords: land surface temperature; local climate zones; spatial variability; temporal heterogeneity;
urban heat island intensity
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1. Introduction

Cities are already the main human settlements since global urban population exceeded
rural population in 2007, and about 68% of the world population is projected to live in cities
by 2050 [1]. The increasing urbanization trend has brought a variety of challenges to cities,
such as urban climate change, limited access to open and public spaces, low-quality housing
conditions and constrained access to public transport [2]. One of the most acknowledged
urban climate change phenomena is the urban heat island (UHI) effect, referring to the fact
that cities are warmer than their surrounding suburban or rural areas [3,4]. Addressing the
UHI effect is critical considering its significant impacts on urban systems, citizens’ living
and ecosystems [5]. Many studies have revealed that urban warming leads to an increase
in energy and water consumption for cooling [6,7], deteriorates outdoor thermal comfort
and air quality [8], and thereby results in an increase in mortality and morbidity [9]. What
is worse, the heat-induced impacts can be more severe because of the interaction of UHI
and heat waves that are getting more frequent, longer and more severe along with global
warming [10,11].

An accurate measurement, assessment and identification of UHI effects is essential
for the better communication of urban climate knowledge to urban planners and decision
makers [12]. Understanding surface UHI (SUHI) effects based on land surface temperature
(LST) and its associated drivers has been an important theme to achieve this, apart from
studies on the canopy UHI effects [13]. Many studies have adopted SUHI intensity (SUHII),
an important indicator that has significant implications for land use and land cover change
changes [14,15], energy demand [16] and urban living suitability [17], to measure SUHI
effects, and examined the drivers of SUHII variations. For instance, Peng, Piao [18]
examined the UHII of 419 cities around the world, pointing out that average annual
daytime SUHII was higher than the nighttime one and the driving factors for the daytime
and nighttime ones were different. Li et al. [19] analyzed the SUHI effects of Berlin based on
several hypothesized scenarios and pointed out that SUHII was affected by city size, urban
density and compactness. Liu et al. [15] further analyzed the SUHI of 1288 urban clusters
in China, concluding that the daytime SUHII was also more prominent than nighttime one
and the SUHII was a function of urban size, shape, centrality and background conditions.

UHII calculation is a relative value of urban–rural/suburban temperature differences
according to its original definition, implying that the UHII can be sensitive to the selection
of urban and rural/suburban sites [20]. On the one hand, the LST in cities is strongly
associated with land use/land cover (LULC), where LST of buildings and roads could be
up to 10 ◦C higher than that of water bodies and grass land and the locations of different
LULCs in both radial and circumferential directions influence the LST [21–23]. Moreover,
urban artificial landscapes exhibit a high degree of heterogeneity, making it difficult to
accurately choose urban sites for SUHI assessment. On the other hand, the determination
of representative rural sites is also important considering the different ecosystems of the
rural surface properties [24]. For instance, Peng et al. [18] assessed the sensitivity of UHII
to the suburban areas in Beijing, suggesting that SUHII could have a similar magnitude
when the suburban areas were 50%, 100% and 150% of the urban areas. These results may
indicate that the suburban/rural sites should be at least at the suburban ring–buffer zone
border of the 50% of the urban areas. Liu et al. [15] found that the sensitivity of SUHII to
the rural sites decreased with the increase of ex-urban distance or area, implying that an
arbitrary selection of rural sites could under-estimate SUHII magnitude [15,18].

To overcome such challenges in urban climate studies, the identification of the ho-
mogeneity and heterogeneity of local morphology has been prioritized as an important
approach [25–27], among which, the local climate zones (LCZ) scheme was proposed by
Stewart and Oke [20] to standardize surface structure and cover description and thereby
standardize urban and suburban/rural sites for temperature comparisons. The LCZ scheme
has been widely adopted as an objective framework to analyze intra-urban temperature
differences in numerous cities such as Berlin [28], Dublin [29], Hong Kong [30], Nagpur [31],
Nairobi [32], Olomouc [33], Shanghai [34], Vancouver [35] across various continents [36–39].
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Overall, the LCZ scheme that is comprised of 10 built types and seven land cover types
indicates that both air and surface temperatures reduce from compact to sparse built form
and at the same time, from high-rise to low-rise built form [20]. Nevertheless, the responses
of LST to the LCZ types can vary significantly because of the combination of different
built-land cover types, geographical conditions, background climates and landscape ef-
fect (e.g., topography, distance from the sea) [31,37], making it significant to examine the
suitability of the application of the LCZ scheme for SUHI studies. The work conducted by
Eldesoky, Gil [40] confirmed that the LCZ scheme is applicable for tropical, temperate and
cold climates, but not arid climates, with different levels of uncertainty.

Pending queries relevant to the LST responses to LCZ types include the seasonality or
thermal anisotropy [41]. For instance, Du, Chen [42] analyzed LST variability of LCZ types
in different seasons in Nanjing, China, concluding that the warmest or coolest zones varied
with seasons, while the LST of built-up types increased with the reduction of building
height. Geletič et al. [41] analyzed the seasonal LST variations of different LCZ types in
Prague, Brno and Novi Sad, reporting that SUHII of a specific LCZ type exhibited the
largest difference in summer and spring and the lowest in winter. Meanwhile, the dense
built-up type and industrial type had the largest SUHII, and the sparse built-up types had
the smallest. Some other studies have also examined the seasonal responses of LST or
SUHII to LCZ types [43,44]. Nevertheless, the seasonal variation of SUHI to LCZ types has
not been well understood, especially in different geographic and macroclimatic contexts.
Given the seasonal variability, the applicability of the LCZ scheme to assess SUHI should
be examined. Moreover, the impact of landscape effect on the SUHI responses to LCZ types
should be further analyzed.

To address the above-mentioned challenges and expand the application of the LCZ
scheme in urban planning and design, this study aims to detect monthly variations of LST
responses to different LCZ types in the city of Shenyang, China. This study will analyze the
impact of landscape effects on such variations through analyzing the variations of SUHII
and the LST responses to LCZ types in urban (not fully urbanized) and rural landscapes.
Built upon this, the applicability of the LCZ scheme to assess SUHI will be examined.
This paper is structured as follows. Section 2 introduces the case study area and its urban
heat challenges. Section 3 presents data sources and research methods. Section 4 analyzes
the results in aspects of overall LST and SUHII variations, seasonal variations of SUHI
responses to LCZ types and the applicability of LCZ schemes for SUHI studies. Following
this, Section 5 discusses the results and Section 6 concludes this paper.

2. Study Area

This study is conducted in Shenyang (41◦11′51′ ′N–43◦02′13′ ′N, 122◦25′09′ ′E–123◦48′
24′ ′E), the capital city of Liaoning Province in the southern part of the Northeast China
(Figure 1). The terrain of Shenyang is flat, gradually extending eastward into hilly areas,
with an altitude of 5–441 m. Shenyang has a monsoon-influenced humid continental
climate (Dwa), with four distinctive seasons. Summers are hot and humid, where July is
the hottest month, with an average temperature of 24.6 ◦C. Winters are dry and cold, where
January is the coldest month with the average temperature of −11.2 ◦C. The annual average
temperature is 8.5 ◦C. Recently, subject to climate change, Shenyang is also undergoing
extreme climatic conditions like many other cities, with the extreme temperature of 39.3 ◦C
on 2 August 2018. South-dominant wind prevails in Spring, Summer and Autumn, while
in winter the prevailing wind is north-dominant. The annual average wind speed is about
2.6 m/s, where the wind is the strongest in April and the weakest in August. The rainfall
of Shenyang ranges between 600 and 800 mm, while the average annual rainfall of the
central city (Figure 1) is about 716.2 mm. In addition, the annual average relative humidity
of Shenyang is about 55.7% [45].
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Figure 1. Location of study area and its composition according to China’s land use status remote sensing monitoring
database (http://www.resdc.cn, accessed on 19 October 2021).

Shenyang is the geographic center of Northeast Asia. Economically, it is in the center
of the Northeast Asia Economic Circle and the Bohai Rim Economic Circle. Being a major
city of the Greater Shenyang Metropolitan Area, Shenyang covers an area of 12,948 km2,
where the central city is about 3495 km2 [45]. The city has seen rapid population increase
in the past 20 years from 7.20 million in 2000 to 9.07 million in 2020 [46]. Accordingly,
Shenyang is now a megacity, the only one in Northeast China. Meanwhile, Shenyang is
urbanizing rapidly with the urbanization ratio increasing from 70.33% in 2000 to 84.52% in
2020 [47]. More than 50% of the population and infrastructure are within the three-ring
area (the core city, Figure 1), consisting of Heping, Shenhe, Dadong, Huanggu, Tiexi and
some parts of other districts such as Dongling, Yuhong and Hunnan New District, with the
area of about 455 km2. Within the three-ring area, the SUHII could reach 4–5 ◦C [23].

Along with the upward trend of urbanization, Shenyang is undergoing three trends
including urban densification (inner city), urban sprawl (outer ring) and industrial structure
change (China’s land use status remote sensing monitoring database, http://www.resdc.cn,
accessed on 19 October 2021). First, the population within the three-ring area saw an
upward trend from 2.998 million in 1985 to 3.772 million in 2015 [23]. Second, upon the
three-ring area, the urbanized area of central city has been expanding towards different
directions, forming a new urban pattern (built-up area A, 635.36 km2 in area in Figure 1).
Third, Shenyang has traditionally been an old industrial base for heavy industry and
manufacture, while such factories are relocating from the middle of Shenyang to the
surrounding cities, counties and suburban areas to ensure environmental and living quality
during urbanization. Fourth, to create the Greater Shenyang Metropolitan Area, some
factories have been relocated to the middle of Shenyang and surrounding cities (e.g.,
Fushun), along which a new built-up area B (29.03 km2 in area) forms (Figure 1).
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3. Data and Methodology

3.1. Data Pre-Processing and Date Selection

The LST information, as well as the information of SUHII of the study area was
obtained through Landsat 8 images (at the path/row of 119/31). To investigate the monthly
variation of LST and SUHII, 12 remotely sensed thermal-infrared images (resolution:
30 m) (Table 1) collected by the United States Geological Survey were downloaded from
http://earthexplorer.usgs.gov, accessed on 25 September 2021. These images present the
thermal information of 10:27 a.m. local Shenyang time with a cloud coverage below 0.1%.
Other meteorological conditions at 10:00–11:00 a.m. (UTC +8) were obtained from the local
Bureau of Meteorology (Table 1).

Table 1. Date list and weather conditions in different months corresponding to 12 thermal-infrared imageries.

Date Air Temperature/◦C Relative Humidity/% Wind Speed/m·s–1 Surface Temperature/◦C

24 December 2018 −7.1 59 0.9 −9.5
25 January 2019 −6.9 35 2.6 −3.5

26 February 2019 1.5 36 1.9 6.9
14 March 2019 4.8 37 2.1 13.9
15 April 2019 18.9 21 4.0 30.4
1 May 2019 16.7 24 4.2 34.2
20 June 2020 29.4 44 5.4 49.9
4 July 2019 28.5 47 4.6 48.5

2 August 2018 33.2 38 4.0 40.5
22 September 2019 20.4 46 5.2 33.7

8 October 2019 11.4 30 8.0 24.6
9 November 2019 7.5 47 1.3 18.7

3.2. Retrieval of LST

The split window algorithm proposed by Qin, Karnieli [48] was used to retrieve LST
from the only spectral band of Thermal InfraRed Sensor (TIRS) 10 in Landsat 8. In particular,
the LST was obtained after the atmospheric correction of reflective and thermal bands.
According to Equation (1), the digital number was converted to the spectral radiance Lλ at
the top of the atmosphere.

Lλ = ML·DN + AL (1)

where Lλ is spectral radiance, W/
(
m2 sr μm

)
, ML is the re-scaled gain corresponding to

a specific band, W/
(
m2 sr μm

)
and AL is the re-scaled bias corresponding to a specific

band, W/
(
m2 sr μm

)
.

At-sensor brightness temperature Tb (Unit: K) was calculated, based on Equation (2),
from TIRS 10, corresponding to the OLI sensor.

Tb = k2/(ln(k1/Lλ) + 1) (2)

where k1 and k2 are constants, with values of 774.89 (Unit: W/
(
m2 sr μm

)
) and 1321.08

(Unit: W), respectively. Next, the LST was subsequently obtained after emissivity correction
of ground radiance B(LST) (Unit: K) via mono window algorithm Equations (3)–(6).

B(LST) = {a(1 − C − D) + [(b − 1)(1 − C − D) + 1]Tb − DTa}/C (3)

C = ετ (4)

D = (1 − ε)[1 + (1 − ε)τ] (5)

LST = B(LST)/(ln ε (λ·B(LST)/ρ+ 1) (6)

where a and b are constants, ε and τ are the land surface emissivity and atmospheric
transmittance of band i, respectively. Ta is effective mean atmospheric temperature (Unit: K).
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λ is the wavelength of emitted radiance (11.5 μm). ρ is a constant (1.438 × 10−2 m·K),
calculated by Planck’s constant, light velocity and Boltzmann’s constant.
The effective mean atmospheric temperature Ta (Unit: K) was calculated based on the
following empirical formula [48].

For mid-latitude summer :
Ta = 16.0110 + 0.92621 T0

For mid-latitude winter :
Ta = 19.2704 + 0.91118 T0

(7)

where T0 actual air temperature at the time when Landsat images are captured (Unit: K).

3.3. Local Climate Zone Classification

This study follows the LCZ classification scheme developed by Stewart and Oke [20]
that consists of 10 types of built-up zones and seven types of land-cover areas to characterize
the land surface properties of the study area. First, the training LCZ samples were selected
based on the Google Earth image of 2 August 2018, without clouds and with 30 m resolution
through visual interpretation. In general, 5–28 training samples were selected for the
17 types of LCZ types, respectively. Each training area should have an area of at least
1 km2 and the length/width should be at least 200 m. In addition, urban morphological
characteristics should be homogeneous, so that small areas that may be heterogeneous or
irregular could be excluded. A buffer zone between different LCZ training zones should
have a width of at least 100 m to avoid fuzzy recognition of boundaries. Through the
random forest algorithm on the SAGA GIS platform, the LCZ training samples were
classified, during which the Landsat TM image (on 2 August 2018) was also used to
generate the LCZ map. Through several rounds of iteration and verification, the LCZ
map of the study area was generated, as shown in Figure 2. More statistics of the area of
different LCZ types of the study area, built-up area and rural areas are presented in Table 2.

Figure 2. Distribution of local climate zones in the study area.
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Table 2. The area of different LCZ types in the study area, built-up area and rural areas.

LCZ Types Study Area /km2 Built-Up Area (A and B) /km2 (%) Rural Area/km2 (%)

LCZ 1 (Compact high-rise) 22.02 21.34 (96.9%) 0.67 (3.1%)
LCZ 2 (Compact midrise) 63.19 61.87 (97.9%) 1.37 (2.1%)
LCZ 3 (Compact low-rise) 77.84 30.6 (39.3%) 47.24 (60.7%)

LCZ 4 (Open high-rise) 73.25 53.69 (73.3%) 19.79 (26.7%)
LCZ 5 (Open midrise) 93.89 75.79 (80.7%) 17.97 (19.3%)
LCZ 6 (Open low-rise) 103.49 24.54 (23.7%) 78.93 (76.3%)

LCZ 7 (Lightweight low-rise) 160.93 90.64 (56.3%) 70.25 (43.7%)
LCZ 8 (Large low-rise) 77.53 50.77 (65.5%) 26.94 (34.5%)
LCZ 9 (Sparsely built) 359.88 65.26 (18.1%) 294.71 (81.9%)

LCZ 10 (Heavy industry) 77.98 68.55 (87.9%) 8.98 (12.1%)
LCZ A (Dense trees) 75.29 2.13 (2.8%) 73.17 (97.2%)

LCZ B (Scattered trees) 16.21 3.58 (22.1%) 12.59 (77.9%)
LCZ C (Bush, scrub) 4.53 0.77 (17.0%) 3.76 (83.0%)
LCZ D (Low plants) 1132.68 30.28 (2.7%) 1102.25 (97.3%)

LCZ E (Bare rock or paved) 77.01 42.55 (55.3%) 34.4 (44.7%)
LCZ F (Bare soil or sand) 125.38 40.16 (32.0%) 85.28 (68.0%)

LCZ G (Water) 39.09 1.32 (3.4%) 37.74 (96.6%)

3.4. Data Analysis

This study presents the LST distribution and the SUHII of the study area, with the
division of two pairs of ‘urban’ and ‘suburban/rural’ areas including (i) three-ring and
suburban areas and (ii) built-up areas and rural areas (Figure 1d,e). The SUHII is the LST
difference between ‘urban’ and ‘suburban/rural’ areas (Equation (8)), in which the defi-
nition of suburban/rural areas is critical. First, consistent with existing studies [15,18,49],
rural/suburban areas are buffer zones which have an area of 50% or 100% of the core area
(three-ring or built-up area), excluding water pixels. Moreover, the literal suburban/rural
area was also defined by the whole area excluding the core area. Accordingly, there are
three types of ‘suburban/rural’ areas in two pairs of ‘urban’ and ‘suburban/rural’ areas.

SUHII = LSTurban − LSTsuburban/rural (8)

where LSTurban is average land surface temperature in urban area and LSTsuburban/rural is
average land surface temperature of suburban/rural areas.

Furthermore, the monthly LST of different LCZs was analyzed within three contexts
including the whole study area, the built-up areas and the rural areas (Figure 1e). The
analysis was conducted in aspects of LST range and mean value, and departure of the
average LST of a specific LCZ from the average LST of all LCZs was analyzed to examine
their positive or negative contributions to the urban temperature. Moreover, the monthly
suitability of LCZ scheme to indicate LST differentiation of the study area in Shenyang
was also examined. The suitability was assessed by the significant difference between the
LSTs of a pair of LCZs. Non-parametric analysis of Kruskal–Wallis H test was performed
to determine the significance of differences between LSTs, since the LST dataset did not
follow a normal distribution, after which a multiple pairwise-comparison between groups
was conducted to examine which pairs of groups were different [5].

4. Results and Analysis

4.1. Monthly LST Variation

Figure 3 presents the monthly LST variation in the study area from 2018 to 2020, in
which the three-ring area (inner circle) and 100% suburban area (outer circle) were marked
to compare the urban–suburban–rural temperature for heat/cool island phenomenon. The
results indicate an upward trend in the monthly maximum temperature from 4.35 ◦C in
January to 45.56 ◦C in August and then a downward trend to 5.53 ◦C in December. The
monthly minimum temperature increased from −32.33 ◦C in December to 22.52 ◦C in
August and then decreased to −15.91 ◦C in November. December and January were the
two coldest months of the year, with the lowest minimum and maximum temperatures,
consistent with the lowest air and surface temperatures in Table 1.

August was the hottest month with the highest minimum and maximum temperatures,
consistent with the data given in Table 1 as well. However, it should be noted that July has
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been statistically the hottest month of the year (Section 2). The disparity might be caused
by air temperature differences in this study for 2019 compared to the climatological values,
that August was hotter than July (Table 1). The similar scenario was applicable for the
minimum temperatures in April and May.

Moreover, Shenyang is enduring a longer period of cool island phenomenon than
heat island. The heat island phenomenon was obvious in July, August and September
where urban–suburban temperature was generally higher than rural one. Along the urban–
suburban–rural profile, there was an obvious gradient of LST reduction. In comparison, the
cool island phenomenon was observed in November, December, January, February, March,
April and May when rural temperature was generally higher. Along the urban–suburban–
rural profile, there was a LST increase gradient, particularly in January, February, March,
April and May. In both October and June, the LST distributed evenly within the study
area and a clear pattern of cool/heat island phenomenon was not recognizable. Therefore,
October was a month corresponding to the transition of heat island to cold island, while
June was the transition month towards heat island from cold island.

 
Figure 3. Monthly (instantaneous) land surface temperature variations and the identification of
heat/cool island phenomenon from 2018 to 2020.
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4.2. Monthly Variation of Urban Heat/Cool Island Intensity

This section quantifies SUHII and analyses the monthly variation of SUHII of the
study area. Figure 4 presents the monthly LST and SUHII variations of the three-ring, the
Central city, in buffer 50%, buffer 100% and buffer 0% scenarios. Overall, the maximum,
mean and minimum LSTs in the central city, suburban-50%, suburban-100% and rural
scenarios exhibited similar patterns. Nevertheless, some differences were observed, and
the extent of such differences was dependent on the month. For instance, mean LSTs of
the Central city were lower than those of rural/suburban areas, indicating cool island
phenomenon, from November to May. In comparison, mean LSTs of the Central city were
higher, indicating heat island phenomenon, from July to September. There were small
differences among rural/suburban LSTs and central city LST in June and October. Such
results were consistent with the recognition of cool/heat island phenomenon and the
transition months in Section 4.1.

Figure 4. Monthly LST and SUHII variations of the three-ring area in buffer 50%, buffer 100% and buffer 0% scenarios from
2018 to 2020.

Both maximum and minimum LSTs exhibited different patterns, in aspect of the tem-
perature order of Central city, buffer 50%, buffer 100% and buffer 0% scenarios. Regarding
the maximum LST, the Central city had the lowest value from February to October and the
rural (buffer 0%) area had the highest value from January to October, compared with those
of buffer 50% and buffer 100%. Nevertheless, the central city had the highest minimum
LST throughout the year and the buffer 50%, buffer 100% and buffer 0% areas had the same
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LST. The minimum LST of Central city was about 2.86–13.72 ◦C higher than those of buffer
50%, buffer 100% and buffer 0% scenarios.

The SUHII varied seasonally and the SUHII was different depending on the definition
of rural/suburban areas. The months of June, July, August and September underwent heat
island phenomenon, in which the heat island phenomenon in July and August was the
most intense with the highest SUHII of 2.86 and 3.06 ◦C according to the Buffer 0% scenario.
The study area underwent cool island phenomenon from October to December, in which
the cool island phenomenon was the most intense in February, March and April with an
intensity of 2.78, 2.36 and 2.46 ◦C (Buffer 0% scenario), respectively. It should be noted
that whilst June and October experienced heat and cool island phenomena, respectively,
their intensities were very weak, further indicating that these two months were transition
months. Furthermore, in the buffer 50% scenario, both SUHII and surface urban cool island
intensities (SUCII) were the weakest, compared with those in both buffer 100% and buffer
0% scenarios. Such results indicate that a larger rural area corresponded to stronger SUHII
or SUCII on the one hand, and it is important to define appropriate rural/suburban areas.

Figure 4 presents the monthly variation of temperature with respect to the three-ring
area, while Figure 5 presents monthly variation of LST of the built-up areas and those of
SUHII, in buffer 50%, buffer 100% and buffer 0% scenarios. Overall, the monthly variation
of maximum, mean and minimum LSTs in the case of built-up area (Figure 5) were similar
to those in the case of three-ring area (Figure 5). For instance, the urban area (built-up area)
had the highest minimum LST and buffer 50%, buffer 100% and buffer 0% areas had the
same LST. From July to September, the mean LSTs of the built-up area was much higher,
while the ones of the built-up area were lower from October to June. SUHII based on
the built-up area also exhibited a similar pattern to that based on a three-ring area. July
and August underwent the highest SUHI effects, and February, March and April had the
most intense cool island impacts. However, the cool island phenomenon in May was also
obvious, with a SUHII of 2.91 ◦C (Buffer 0% scenario). June underwent cool island effects
according to the built-up area (Figure 5), different from heat island effects according to the
three-ring area (Figure 4). Under such conditions, June, September and October were the
transition months with very weak heat island or cool island phenomenon. In addition, the
SUHII in the buffer 0% scenario was the strongest, followed by the buffer 100% scenario
and then buffer 50% scenario.

Moreover, the heat island phenomenon according to built-up area was less intense than
that according to three-ring area, and the cool island phenomenon according to the built-up
area was more intense. Overall, according to the results in Figures 4 and 5, the definition
of urban area also influences the SUHII, apart from the definition of rural/suburban area.
A different definition of urban area could lead to diverse results in SUHII magnitude,
cool/heat island phenomenon and transition months.
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Figure 5. Monthly LST and SUHII variations of the built-up area in buffer 50%, buffer 100% and
buffer 0% scenarios from 2018 to 2020.

4.3. Temporal Variation of Land Surface Temperature with Local Climate Zones

Table 3 presents the LST of different types of LCZs in 12 months. The results indicate
that in July and August, when the SUHII was the strongest, Heavy industry areas (LCZ-10)
had the highest mean LST of 34.58 and 36.87 ◦C, followed by Compact midrise (LCZ-2,
34.34 and 36.10 ◦C) and then Lightweight low-rise (LCZ-7). In comparison, the land cover
of water was the strongest heat sink with the mean LST of 24.91 and 28.91 ◦C, respectively,
in July and August. Both dense trees and low plants were also heat sinks with the second
and third lowest LST.

Table 3. Land surface temperature of different local climate zones in different months from 2018 to 2020 (◦C).

LCZ
December January February March

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) −20.28~1.63 −4.65 −16.26~−0.05 −4.80 −9.04~13.13 6.21 −4.89~18.78 10.73
LCZ-2 (Compact midrise) −18.43~2.81 −4.15 −14.45~1.46 −4.21 −6.30~16.34 7.27 −1.08~21.18 12.04
LCZ-3 (Compact low-rise) −26.15~3.74 −3.91 −22.25~4.35 −3.48 −12.47~15.19 9.11 −9.83~23.37 14.21

LCZ-4 (Open high-rise) −20.80~4.43 −4.54 −19.65~3.86 −4.52 −6.54~15.52 6.71 −3.09~21.65 11.42
LCZ-5 (Open midrise) −23.72~4.03 −4.52 −18.91~2.98 −4.27 −8.72~15.36 7.42 −3.01~23.30 12.47
LCZ-6 (Open low-rise) −13.75~2.17 −4.01 −12.38~1.82 −3.58 −0.97~16.05 8.89 −1.19~21.61 13.67

LCZ-7 (Lightweight low-rise) −25.58~3.32 −3.87 −24.72~3.36 −3.66 −12.77~18.41 9.10 −7.00~24.26 14.31
LCZ-8 (Large low-rise) −27.04~3.35 −3.73 −22.01~2.50 −3.60 −11.93~18.60 8.90 −9.09~25.71 14.25
LCZ-9 (Sparsely built) −26.81~4.36 −3.70 −21.74~3.88 −3.26 −12.69~18.13 9.46 −9.58~24.55 13.91

LCZ-10 (Heavy industry) −17.34~4.66 −4.03 −13.74~3.35 −3.69 −6.36~19.79 8.64 −2.35~26.64 13.79
LCZ-A (Dense trees) −9.26~4.50 −4.52 −9.22~3.26 −4.76 0.35~15.75 7.21 −4.75~20.80 10.98

LCZ-B (Scattered trees) −9.62~2.35 −4.24 −9.17~1.59 −3.83 0.77~15.20 8.44 3.79~20.41 13.37
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Table 3. Cont.

LCZ-C (Bush, scrub) −7.58~3.10 −3.20 −6.76~3.78 −2.80 3.95~15.56 10.26 7.33~20.66 15.50
LCZ-D (Low plants) −27.50~2.93 −2.66 −21.34~3.95 −2.39 −12.18~22.84 11.59 −9.23~25.97 15.82

LCZ-E (Bare rock or paved) −28.64~4.05 −4.12 −22.09~3.98 −3.64 −16.53~16.04 8.85 −13.12~25.15 13.91
LCZ-F (Bare soil or sand) −32.33~2.76 −3.69 −27.79~2.42 −3.19 −22.77~16.62 9.56 −18.21~23.09 14.48

LCZ-G (Water) −8.97~5.53 −4.77 −9.30~4.16 −5.04 −0.89~14.78 3.77 −4.82~19.09 6.90

LCZ
April May June July

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 11.87~29.62 21.33 6.29~34.15 25.36 23.14~38.19 31.80 19.99~40.09 32.93
LCZ-2 (Compact midrise) 13.23~30.09 22.44 11.79~35.20 26.77 23.58~38.04 32.98 23.23~40.59 34.34
LCZ-3 (Compact low-rise) 7.36~31.86 24.42 1.84~35.45 27.58 19.21~41.46 32.53 17.36~40.92 32.16

LCZ-4 (Open high-rise) 10.62~30.18 22.02 6.88~35.50 25.44 20.72~39.05 31.37 19.37~38.31 31.66
LCZ-5 (Open midrise) 12.31~31.11 22.99 8.20~38.25 26.69 21.84~41.46 32.46 20.92~40.06 32.87
LCZ-6 (Open low-rise) 13.34~30.61 24.23 15.06~35.36 27.74 24.23~37.17 32.23 21.68~39.98 31.57

LCZ-7 (Lightweight low-rise) 6.56~33.08 24.27 3.36~39.63 27.64 19.28~41.82 32.96 16.28~42.95 32.95
LCZ-8 (Large low-rise) 7.24~33.81 24.24 1.91~41.34 27.79 18.91~42.03 33.05 17.24~43.34 33.02
LCZ-9 (Sparsely built) 6.20~32.18 24.24 1.87~36.46 27.03 19.18~38.55 29.85 16.78~39.83 29.05

LCZ-10 (Heavy industry) 13.34~32.57 23.81 9.81~39.29 27.92 23.43~42.60 33.59 22.68~44.20 34.58
LCZ-A (Dense trees) 13.35~31.64 22.93 15.07~37.05 24.55 21.25~38.30 28.28 22.22~36.89 27.87

LCZ-B (Scattered trees) 15.22~32.92 24.56 16.35~35.03 27.37 23.56~37.73 30.91 23.88~38.61 30.27
LCZ-C (Bush, scrub) 18.62~31.22 25.93 20.52~35.33 29.13 26.59~38.84 32.24 25.62~37.58 30.87
LCZ-D (Low plants) 5.15~35.48 26.18 0.28~37.45 29.22 15.70~39.86 30.97 15.89~39.72 28.55

LCZ-E (Bare rock or paved) 5.00~31.36 24.05 −2.75~38.29 27.52 17.85~41.97 32.61 13.85~40.77 32.43
LCZ-F (Bare soil or sand) 0.77~31.19 24.65 −7.61~35.43 28.00 14.82~42.15 32.48 10.94~41.52 31.69

LCZ-G (Water) 10.36~29.27 16.29 12.34~34.90 18.14 20.71~36.06 24.83 20.76~36.39 24.91

LCZ
August September October November

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 27.82~41.69 34.79 8.41~32.27 25.02 −0.27~23.89 17.08 −3.36~17.41 9.04
LCZ-2 (Compact midrise) 27.15~41.55 36.10 12.78~35.71 26.47 2.93~26.55 18.34 −1.34~20.44 9.88
LCZ-3 (Compact low-rise) 23.64~42.65 34.50 4.33~34.04 25.37 −4.09~26.42 18.87 −8.29~18.13 11.18

LCZ-4 (Open high-rise) 24.31~42.21 34.18 5.07~33.06 24.45 1.26~25.94 17.16 −3.45~16.78 9.67
LCZ-5 (Open midrise) 26.77~42.99 35.38 9.04~37.76 25.50 1.97~28.35 17.98 −6.92~18.49 10.10
LCZ-6 (Open low-rise) 26.30~41.79 34.15 13.76~32.89 24.87 6.58~24.96 18.41 1.61~17.74 11.22

LCZ-7 (Lightweight low-rise) 22.62~45.48 35.54 2.24~37.64 26.06 −5.15~30.87 19.04 −7.07~19.85 11.48
LCZ-8 (Large low-rise) 23.93~45.19 35.54 4.09~38.02 26.14 −3.99~30.36 19.18 −9.97~20.55 11.34
LCZ-9 (Sparsely built) 22.64~42.29 31.24 1.49~33.66 23.03 −5.79~26.26 17.15 −8.97~18.09 11.10

LCZ-10 (Heavy industry) 28.86~45.56 36.87 12.26~37.85 27.19 3.03~30.28 19.34 −1.50~22.39 10.98
LCZ-A (Dense trees) 25.09~39.13 30.70 18.93~28.96 21.59 11.05~25.11 14.91 5.92~18.12 11.20

LCZ-B (Scattered trees) 26.89~41.82 33.45 19.24~32.62 −1.00 11.48~24.65 17.27 4.99~17.28 11.50
LCZ-C (Bush, scrub) 28.21~41.89 33.82 21.18~30.51 24.36 14.55~23.59 19.05 6.90~20.28 12.45
LCZ-D (Low plants) 22.52~41.71 30.52 1.04~45.45 22.92 −6.11~27.09 18.13 −10.03~20.06 12.54

LCZ-E (Bare rock or paved) 24.32~42.93 35.23 0.05~38.23 25.55 −5.98~29.51 18.78 −11.45~28.21 −1.00
LCZ-F (Bare soil or sand) 22.59~43.61 34.24 −3.27~35.96 25.08 −12.84~29.03 18.86 −15.94~19.63 11.46

LCZ-G (Water) 25.72~40.09 28.19 18.57~28.97 20.78 11.95~22.71 15.40 5.38~17.93 8.72

In February and March, when the cool island phenomenon was the most obvious, the
strongest heat sinks and sources were found in the land cover types of the LCZ scheme.
The land cover of Low plants (LCZ-D) had the highest average LST of 11.59 and 15.82 ◦C,
followed by Bush, scrub (LCZ-C) with the average LST of 10.26 and 15.50 ◦C, implying
the strongest heat sources. Water (LCZ-G) exhibited the lowest average temperature of
−5.04 and 6.90 ◦C, indicating the strongest heat sink. In addition, that built from Compact
high-rise (LCZ-1) exhibited the lowest LST of 6.21 and 10.73 ◦C, followed by the Open
high-rise (LCZ-4) with the average LST of 6.71 and 11.42 ◦C.

In June, a transition month from cool to heat island, the land cover of Water (LCZ-G)
was the strong heat sink (24.83 ◦C), followed by Dense trees (LCZ-A, 28.28 ◦C), while Bare
rock or paved was a strong heat source (LCZ-E, 32.61 ◦C), followed by Bush, scrub (LCZ-C,
32.24 ◦C) and Bare soil or sand (LCZ-F, 32.48 ◦C). For the built LCZs, the Sparsely built
(LCZ-9) exhibited the lowest LST (29.85 ◦C), while the Heavy industry (LCZ-10) indicated
the highest LST (33.59 ◦C). In October, a transition month from heat to cool island, the land
cover of Bush, scrub (LCZ-C) had the highest average LST of 19.05 ◦C, followed by Bare soil
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or sand (LCZ-F, 18.86 ◦C), while dense trees had the lowest average LST of 14.91 ◦C and
then the second lowest LST of Water (LCZ-G, 15.40 ◦C). The built LCZ of Heavy industry
(LCZ-10) had the highest average LST (19.34 ◦C) while the Compact high-rise (LCZ-1) had
the lowest LST of 17.08 ◦C.

Overall, LST of different types of LCZs varied temporally. In hot seasons (e.g., July,
August), Heavy industry (LCZ-10) had the highest LST, forming the strongest heat sources
among the built LCZs. Such results were relevant to the waste heat emissions during
factory operation in hot seasons [50] and the strong solar radiation incidence due to large
sky view factor [20]. Following this, the Compact midrise (LCZ-2), Lightweight low-rise
(LCZ-7) and Large low-rise (LCZ-8) were also strong heat sources (Figure 6), which may be
because of strong solar radiation incidence. In comparison, in cold seasons (from December
to March), Sparsely built (LCZ-9) and Compact low-rise (LCZ-3) had the highest LST
among all built LCZs, whilst the Compact high-rise (LCZ-1) had the lowest LST (Figure 6).

Temporal variation of LST to LCZs was also observed in land-cover LCZs. Whilst the
Water had the lowest LST in almost all months, the Scattered trees (LCZ-B), Dense trees
(LCZ-A) and Low plants (LCZ-D) exhibited the lowest average LST in September, October
and November, respectively (Figure 6). Both Bush, scrub (LCZ-C) and Low plants (LCZ-D)
had the highest average LST from December to May, which may be because of the dual
impacts of the acceptance of solar radiation and vegetation. In comparison, the Bare-rock
or paved (LCZ-E) and Bare soil or sand (LCZ-F) had the highest average LST from June to
September, and the Bush, scrub (LCZ-C) had the highest LST in October and November
(Figure 6).

4.4. Spatial Variation of the Responses of Land Surface Temperature to Local Climate Zones

Responses of LST to different types of LCZs within urban and rural areas is examined
to analyze the impact of spatial context. The LSTs of different LCZs in urban and rural
contexts are given in Appendices A and B. Table 4 presents the two maximum LSTs and
two minimum LSTs within urban and rural areas in 12 months. Overall, there was an
obvious difference between the LST patterns of urban and rural built LCZs. In urban area,
LCZ-7 (Lightweight low-rise), LCZ-8 (Large low-rise) and LCZ-10 (Heavy industry) had
the highest LSTs among ten built LCZs depending on months, while the LCZ-2 (Compact
midrise), LCZ-3 (Compact low-rise), LCZ-8 (Large low-rise), LCZ-9 (Sparsely built) and
LCZ-10 (Heavy industry) underwent the highest LSTs within rural context. The LCZ-10
(Heavy industry) within an urban context had the highest temperatures from May to
October with the average temperature ranging between 19.27 and 36.88 ◦C, while the LCZ-
10 (Heavy industry) within a rural context showed the highest temperature throughout the
year, excluding two months of January and April, with average temperature ranging from
−3.43 to 36.83 ◦C.
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Figure 6. Deviation of the LST of different types of LCZs from the average LST of whole study area from 2018 to 2020 (◦C).
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Table 4. The maximum and minimum temperatures in different months and corresponding built local climate zones within
urban and rural contexts (◦C).

Urban Rural Urban Rural

Max-1 Max-2 Max-1 Max-2 Min-1 Min-2 Min-1 Min-2

December LCZ-8 (–3.86) LCZ-7 (–3.92) LCZ-10 (–3.43) LCZ-8 (–3.47) LCZ-4 (–4.74) LCZ-1 (–4.69) LCZ-1 (–4.35) LCZ-5 (–4.29)
January LCZ-7 (–3.70) LCZ-10 (–3.75) LCZ-3 (–3.14) LCZ-9 (–3.14) LCZ-1 (–4.87) LCZ-4 (–4.82) LCZ-1 (–3.81) LCZ-4 (–3.80)

February LCZ-7 (9.00) LCZ-8 (8.60) LCZ-10 (10.03) LCZ-9 (9.76) LCZ-1 (6.12) LCZ-4 (6.22) LCZ-1 (7.79) LCZ-4 (7.93)
March LCZ-7 (14.28) LCZ-8 (13.91) LCZ-10 (15.33) LCZ-8 (14.89) LCZ-1 (10.65) LCZ-4 (10.97) LCZ-1 (12.36) LCZ-4 (12.47)
April LCZ-7 (24.19) LCZ-8 (23.85) LCZ-8 (24.98) LCZ-3 (24.97) LCZ-1 (21.25) LCZ-4 (21.64) LCZ-4 (22.87) LCZ-1 (22.97)
May LCZ-10 (27.82) LCZ-7 (27.80) LCZ-10 (28.73) LCZ-8 (28.08) LCZ-4 (25.24) LCZ-1 (25.31) LCZ-4 (25.86) LCZ-1 (25.97)
June LCZ-10 (33.59) LCZ-7 (33.33) LCZ-10 (33.58) LCZ-2 (32.81) LCZ-9 (31.44) LCZ-4 (31.56) LCZ-9 (29.49) LCZ-4 (30.78)
July LCZ-10 (34.63) LCZ-2 (34.37) LCZ-10 (34.26) LCZ-2 (33.36) LCZ-9 (31.44) LCZ-4 (32.06) LCZ-9 (28.52) LCZ-1 (30.49)

August LCZ-10 (36.88) LCZ-7 (36.42) LCZ-10 (36.83) LCZ-2 (36.03) LCZ-9 (34.09) LCZ-4 (34.54) LCZ-9 (30.62) LCZ-1 (32.99)
September LCZ-10 (27.18) LCZ-7 (26.65) LCZ-10 (27.32) LCZ-2 (26.40) LCZ-4 (24.54) LCZ-9 (24.57) LCZ-9 (22.69) LCZ-1 (23.94)

October LCZ-10 (19.27) LCZ-7 (19.25) LCZ-10 (19.92) LCZ-8(19.35) LCZ-4 (16.93) LCZ-1 (17.04) LCZ-9 (17.03) LCZ-1 (17.58)
November LCZ-7 (11.43) LCZ-8 (11.11) LCZ-10 (12.37) LCZ-8 (11.80) LCZ-1 (8.96) LCZ-4 (9.26) LCZ-1 (10.62) LCZ-4 (10.71)

Note: Max-1 means the highest temperature and Max-2 means the second highest temperature. Min-1 means the lowest temperature and
Min-2 means the second lowest temperature. LCZ-1, Compact high-rise; LCZ-2, Compact midrise; LCZ-3, Compact low-rise; LCZ-4, Open
high-rise; LCZ-5, Open midrise; LCZ-7, Lightweight low-rise; LCZ-8, Large low-rise; LCZ-9, Sparsely built; LCZ-10, Heavy industry.

Apart from the LCZ-10 (Heavy industry), within the urban area, the LCZ-7 (Lightweight
low-rise) and LCZ-8 experienced the top two highest temperature throughout the year
excluding July (11 times), and LCZ-8 (Large low-rise) was prominent for five times. In
comparison, within a rural context, apart from LCZ-10 (Heavy industry), the top two
highest temperatures were observed in different built LCZs, including LCZ-2 (Compact
midrise, 4 times), LCZ-3 (Compact low-rise, 2 times), LCZ-8 (Large low-rise, 6 times) and
LCZ-9 (Sparsely built, 2 times). For the minimum temperature, LCZ-1 (Compact high-rise),
LCZ-4 (Open high-rise) and LCZ-9 (Sparsely built) were the built LCZs undergoing the
lowest temperature within an urban context. Likewise, it was such three built LCZs that
experienced the lowest LST within a rural context. It should be noted that the built LCZs
of Compact high-rise, Compact midrise and Compact low-rise were not the case with the
highest temperatures, different from the situation of the whole study area (Figure 6), while
the Compact high-rise underwent the lowest temperature.

Table 5 compares the LSTs of land-cover LCZs within urban and rural contexts. In
both urban and rural contexts, LCZ-C (Bush, scrub), LCZ-D (Low plants) and LCZ-E (Bare
rock or paved) had the highest temperature among seven land-cover LCZs. Moreover, the
LCZs with peaked temperatures with urban and rural contexts were generally the same
throughout a year excluding December, May and September. From January to April, LCZ-D
(Low plants) had the highest temperature within both urban and rural contexts, LCZ-E
(Bare rock or paved) had the highest temperature from July to September, and LCZ-C (Bush,
scrub) had the highest temperature from October to November. Within urban area, the
LCZ-G (Water) was a strong heat sink, where it had the lowest temperature from December
to August, and it had the second lowest temperature from September to November. A
similar case was observed in the rural context; LCZ-G (Water) had the lowest temperature
from November to August, and it had the second lowest temperature in September and
October. Likewise, the LCZ-A (Dense trees) had the minimum temperature within both
urban and rural contexts.
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Table 5. The maximum and minimum temperatures in different months and corresponding land-cover local climate zones
within urban and rural contexts (◦C).

Urban Rural Urban Rural

Max-1 Max-2 Max-1 Max-2 Min-1 Min-2 Min-1 Min-2

December LCZ-C (−3.65) LCZ-B (−3.80) LCZ-D (−2.63) LCZ-C (−3.10) LCZ-G (−4.84) LCZ-E (−4.41) LCZ-G (−4.77) LCZ-A (−4.54)
January LCZ-D (−3.08) LCZ-C (−3.34) LCZ-D (−2.37) LCZ-C (−2.69) LCZ-G (−5.03) LCZ-A (−4.51) LCZ-G (−5.04) LCZ-A (−4.77)

February LCZ-D (9.47) LCZ-C (9.16) LCZ-D (11.65) LCZ-C (10.48) LCZ-G (4.40) LCZ-A (6.69) LCZ-G (3.75) LCZ-A (7.22)
March LCZ-D (14.52) LCZ-C (14.41) LCZ-D (15.83) LCZ-C (15.14) LCZ-G (7.96) LCZ-A (11.63) LCZ-G (6.83) LCZ-A (11.02)
April LCZ-D (24.89) LCZ-C (24.84) LCZ-D (26.13) LCZ-C (25.67) LCZ-G (18.53) LCZ-A (21.87) LCZ-G (16.16) LCZ-A (22.90)
May LCZ-C (28.38) LCZ-D (28.36) LCZ-D (29.29) LCZ-C (29.21) LCZ-G (20.56) LCZ-A (21.66) LCZ-G (18.00) LCZ-A (24.65)
June LCZ-C (32.84) LCZ-E (32.80) LCZ-E (32.43) LCZ-C (32.42) LCZ-G (27.02) LCZ-A (27.42) LCZ-G (24.73) LCZ-A (28.21)
July LCZ-E (32.93) LCZ-F (32.45) LCZ-E (31.92) LCZ-F (31.33) LCZ-G (27.40) LCZ-A (27.57) LCZ-G (24.80) LCZ-A (27.81)

August LCZ-E (35.77) LCZ-F (35.31) LCZ-E (34.71) LCZ-C (34.00) LCZ-G (30.29) LCZ-A (30.34) LCZ-G (28.09) LCZ-D (30.49)
September LCZ-E (25.90) LCZ-F (25.54) LCZ-E (25.27) LCZ-F (24.88) LCZ-A (21.62) LCZ-G (22.02) LCZ-B (-1.00) LCZ-G (20.71)

October LCZ-C (18.84) LCZ-E (18.71) LCZ-C (19.04) LCZ-F (18.97) LCZ-A (14.71) LCZ-G (15.61) LCZ-A (14.88) LCZ-G (15.37)
November LCZ-C (11.63) LCZ-D (11.28) LCZ-C (12.63) LCZ-D (12.57) LCZ-E (−1.00) LCZ-G (8.87) LCZ-G (8.71) LCZ-A (11.22)

Note: Max-1 means the highest temperature and Max-2 means the second highest temperature. Min-1 means the lowest temperature and
Min-2 means the second lowest temperature. LCZ-A, Dense trees; LCZ-B, Scattered trees; LCZ-C, Bush, scrub; LCZ-D, Low plants; LCZ-E,
Bare rock or paved; LCZ-F, Bare soil or sand; LCZ-G, Water.

Overall, the results indicate the urban context affected the responses of LST to LCZs.
The highest temperature within built LCZs within an urban context exhibited a higher
divergence compared with that within a rural context. Compared with built LCZs, the
temperature of land-cover LCZs was more convergent. Moreover, there were limited
differences between the land-cover LCZs with maximum (LCZ-C, -D, and -E) and minimum
(LCZ-A, -G) temperatures within urban and rural contexts. Furthermore, the overall LST
patterns in urban and rural contexts were different, as presented in Appendices C and D.

4.5. Land Surface Temperature Difference among Different Local Climate Zones

Given the spatiotemporal variations of the responses of LST to LCZs, the suitability
of the LCZ scheme for LST differentiation was further examined, as shown in Figure 7.
The results indicate that LSTs of different LCZ types were generally different through-
out the year, while some types of LCZs failed to differentiate LST. For instance, there
was no significant difference between the LST of LCZ 1 (Compact high-rise) and LCZ-2
(Compact midrise) in December. The same results were found among other pairs includ-
ing LCZ-2 (Compact midrise) and LCZ-5 (Open midrise), LCZ-4 (Open high-rise) and
LCZ-5 (Open midrise), LCZ 3 (Compact low-rise) and LCZ-6 (Open low-rise), LCZ-3
(Compact low-rise) and LCZ-7 (Lightweight low-rise), LCZ-6 (Open low-rise) and LCZ-7
(Lightweight low-rise), and LCZ-8 (Large low-rise) and LCZ-9 (Sparsely built) in December.
Such results indicate the suitability of the LCZ scheme was compromised in differentiat-
ing urban temperatures. The insignificant difference occurred among the pairs with the
same characteristics in terms of compactness (e.g., compact, open) and building height
(e.g., low-rise).

The suitability of the LCZ scheme for surface temperature differentiation varied
temporally. For instance, in July, there was no significant difference between the LST of
LCZ-1 (Compact high-rise) and that of LCZ-5 (Open midrise). The same case was also
found in the pairs of LCZ-1 (Compact high-rise) and LCZ-8 (Large low-rise), LCZ-5 (Open
midrise) and LCZ-8 (Large low-rise), and LCZ-7 (Lightweight low-rise) and LCZ-8 (Large
low-rise). In August, there was no significant difference in the three pairs including LCZ-6
(Open low-rise) and LCZ-4 (Open high-rise), LCZ-5 (Open midrise) and LCZ-8 (Large low-
rise), and LCZ-7 (Lightweight low-rise) and LCZ-8 (Large low-rise). In July and August,
the insignificant pairs including LCZ-5 and LCZ-8, and LCZ-7 and LCZ-8 were observed.
However, two pairs of LCZ-1 and LCZ-5, and LCZ-1 and LCZ-8 were found in July, but
not in August.

Suitability of LCZ scheme for LST differentiation was also compromised among land-
cover LCZs and it exhibited temporal variations. In December, there was no significant
difference between five pairs, including LCZ-A (Dense trees) and LCZ-C (Bush, scrub),
LCZ-B (Scattered trees) and LCZ E (Bare rock or paved), LCZ-D (Low plants) and LCZ-F
(Bare soil or sand), LCZ-D (Low plants) and LCZ G (Water), and LCZ-F (Bare soil or sand)
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and LCZ-G (Water). Only temperatures of LCZ-A (Dense trees) and LCZ-G (Water) did not
have significant differences in July. The pair of LCZ-C (Bush, scrub) and LCZ-F (Bare soil
or sand) did not have significant differences in their surface temperatures.

 

Figure 7. Difference of land surface temperatures of local climate zone types within the whole study area (Circle denotes
significant difference at p < 0.05 level, blank demotes no significant difference).

Table 6 assesses the capability of the LCZ scheme in differentiating LST in different
months. It shows that for the built LCZs within the whole study area, the LCZ scheme
could differentiate 93.9% of the LST in August, indicating the strongest capability. This was
followed by that in January, March and October, with a proportion of 91.1%. In comparison,
the LCZ scheme could only differentiate 80.0% of the LST in May, indicating the weakest
capability. For land-cover LCZs, the LCZ scheme could differentiate 95.2% of the temper-
ature in July, August and October. However, the capability was the lowest in December
with a proportion of 76.2%.

Table 6. An assessment of the capability of local climate zone scheme in differentiating land surface temperatures.

Whole Study Area Urban (Built-Up) Area Rural Area

Built LCZs Land-Cover LCZs Built LCZs Land-Cover LCZs Built LCZs Land-Cover LCZs

December 86.7% 76.2% 71.1% 47.6% 48.9% 76.2%
January 91.1% 85.7% 77.8% 71.4% 57.8% 85.7%

February 84.4% 81.0% 91.1% 81.0% 62.2% 85.7%
March 91.1% 90.5% 95.6% 81.0% 77.8% 85.7%
April 88.9% 90.5% 88.9% 81.0% 75.6% 90.5%
May 80.0% 90.5% 84.4% 85.7% 62.2% 85.7%
June 88.9% 85.7% 88.9% 76.2% 75.6% 90.5%
July 91.1% 95.2% 86.7% 71.4% 88.9% 95.2%

August 93.3% 95.2% 86.7% 81.0% 86.7% 95.2%
September 88.9% 90.5% 88.9% 81.0% 33.3% 57.1%

October 91.1% 95.2% 82.2% 81.0% 75.6% 81.0%
November 84.4% 81.0% 91.1% 61.9% 62.2% 71.4%
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Figures 8 and 9 reveal the suitability of LCZ scheme in differentiating LST in urban
and rural area, respectively. Compared with the whole study area, the suitability weakens
within the purely urban area. For instance, in December, there were 13 pairs of LCZ types,
indicating insignificant LST difference within the urban area, while there were only six
pairs when analyzing the whole study area. Compared with the urban area, there were
23 pairs of LCZs indicating insignificant LST difference in December. Such results indicate
the spatial variation of the suitability of LCZ scheme in dividing LST. In hot seasons
when urban thermal environments were a critical problem, there were six pairs of LCZs,
exhibiting insignificant LST difference in both July and August within the urban area.

In comparison, there were five and six pairs in such two months within the rural area.
Nevertheless, the pairs were different. For instance, in July, the six pairs in the urban area
were LCZ-1 (Compact high-rise) and LCZ-3 (Compact low-rise), LCZ-1 (Compact high-rise)
and LCZ-5 (Open midrise), LCZ-1 (Compact high-rise) and LCZ-7 (Lightweight low-rise),
LCZ-3 (Compact low-rise) and LCZ-5 (Open midrise), LCZ-4 (Open high-rise) and LCZ-6
(Open low-rise), LCZ-7 (Lightweight low-rise) and LCZ-8 (Large low-rise). In August, such
six pairs in urban area were LCZ-1 (Compact high-rise) and LCZ-4 (Open high-rise), LCZ-1
(Compact high-rise) and LCZ-6 (Open low-rise), LCZ-2 (Compact midrise) and LCZ-7
(Lightweight low-rise), LCZ-2 (Compact midrise) and LCZ-8 (Large low-rise), LCZ-4 (Open
high-rise) and LCZ-6 (Open low-rise), and LCZ-7 (Lightweight low-rise) and LCZ-8 (Large
low-rise). In addition, the results indicate that many pairs of land-cover LCZs did not have
significant differences in their average LSTs.

 

Figure 8. Difference of land surface temperatures of local climate zone types within an urban context (Circle denotes
significant difference at p < 0.05 level, blank demotes no significant difference).
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Figure 9. Difference of land surface temperatures of local climate zone types within a rural context (Circle denotes significant
difference at p < 0.05 level, blank demotes no significant difference).

Table 6 also presents the capability of the LCZ scheme in differentiating urban tem-
peratures of urban and rural areas. It is observed that the built LCZs had the strongest
capability in March by differentiating 95.6% of the urban temperatures. Following this,
in both February and November, the built LCZs could differentiate 91.1% of the urban
temperatures. However, the weakest capability was observed in December where only
71.1% of the urban temperatures was distinct significantly. The capability of built LCZs was
far weaker when differentiating rural temperatures, compared with urban temperature.
The strongest capability of built LCZs in differentiating rural LSTs was found in July, with
89.9% of the temperature distinguishable. However, only 48.9% of the temperature was
differentiated by built LCZs in December, indicating the weakest capability. Moreover,
the land-cover LCZs, compared with built LCZs, showed a much weaker capability in
differentiating LSTs. The strongest capability of land-cover LSTs was recognized in May,
with 85.7% of (urban) LSTs differentiable, while the weakest, with only 47.6% of the (urban)
LSTs distinguishable, was observed in December. In July and August, the rural land-
cover LCZs exhibited the strongest capability (95.2%), while the lowest (57.1%) was found
in September.

5. Discussion and Implications

5.1. Spatiotemporal Variations of Urban Thermal Environments and the Proper Month and Method
Selection for Accurate Assessment

This study revealed that in July and August, Shenyang underwent the worst thermal
environments with the highest LST, and both December and January were the coldest
months throughout the year. Shenyang underwent an obvious heat island phenomenon in
summertime, while it had a longer period of cool island phenomenon from November to
May. In comparison, both June and October were transition months, implying cool–heat
and heat–cool island alterations, respectively. Such results, on the one hand, indicate the
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dependency of LST and SUHII on month variations because of solar incidence, cooling
performance and thermal inertia of vegetation and water bodies, aerodynamic properties
and their interactions with urban form (e.g., materials, typology). On the other hand, LST
and SUHII have been important indicators for the quantification and assessment of urban
thermal environment and heat stress so that an appropriate selection of the month for study
is essential, in order to avoid an underestimation of heat-related impacts and hazards. For
instance, whilst June and September were also typical months in summer and autumn, the
LST and SUHII were much lower than those in July and August.

Apart from temporal variations, the SUHII experienced spatial variations which is
relevant to the definition of urban and suburban/rural boundaries. The adoption of
economic (three-ring, Figure 4) and administrative (built-up area, Figure 5) border to
screen urban and suburban/rural areas resulted in the upper limits of SUHII or SUCII. The
definition of 50% and 100% buffering zones, adjacent to urban areas, as the suburban/rural
areas, resulted in a lower SUHII or SUCII, and a smaller buffering zone corresponded
to a weaker SUHI or SUCI phenomenon. This result was different from the findings,
reported in a study by Peng et al. [18] which originally introduced the buffering method for
quantifying the SUHI phenomenon, that the definition of 50%, 100% and 150% buffering
zones as suburban/rural areas did not make differences to SUHII in Beijing. Our results
indicate that such a hypothesis was not applicable to the case study city of Shenyang,
where the SUHII based on a 100% buffering zone was 0.13–0.16 ◦C higher than that based
on a 50% buffering zone in July and August. With a larger buffering zone, the SUHII went
higher until the upper SUHII limits, about two times that based on the 50% buffering zone.

The definition of the urban area also made a difference to the SUHII or SUCII because
of the variation of land use/land cover included in the study area. Our results indicate that
the SUHI for the built-up (urban) area was weaker than that calculated for the three-ring
(urban) area, while the SUCI for the built-up area was stronger. With the change of urban
area, the months that underwent cool island or heat island phenomenon varied as well
so that the transition months migrated. Such results further exhibited the significance
of definition of urban/suburban/rural area and the importance of determining proper
months for investigating urban thermal environment and assessing heat-induced impacts.

Overall, the same definition of urban/suburban/rural area resulting in distinct SUHII
within different cities may be relevant to the fact that the SUHII formation is associated
with urban form (e.g., urban size, shape, density, centrality) and urban macro climatic
background [15,19,51,52]. Therefore, there is a need to seek for a flexible method for
suburban/rural definition that could result in stable SUHII [15,24,53].

5.2. Spatiotemporal Variations of the Responses of Land Surface Temperature to Local Climate Zone

The LCZ scheme was developed to differentiate temperature across different urban
zones and existing studies have indicated that Compact high-rise (LCZ-1), Compact midrise
(LCZ-2), Large low-rise (LCZ-8) and Heavy industry (LCZ-10) could generally have the
highest LST [20,54]. Nevertheless, our results revealed that the heat sinks/sources varied
significantly with the month. In hot months (e.g., June, July, August), Compact midrise
(LCZ-2), Heavy industry (LCZ-10), Open low-rise (LCZ-6) and Lightweight low-rise (LCZ-
7) were the built LCZs with the highest LST. Such results were partially similar to the
existing results [20,54]. However, this was not a fixed pattern. Lightweight low-rise (LCZ-
7), Large low-rise (LCZ-8) and Sparsely built (LCZ-9) had the highest LST, while Compact
high-rise (LCZ-1) and Open high-rise (LCZ-4) had the lowest LST among ten built LCZs
from October to May. Urban greenery and water bodies and their relationship with built
LCZs could show different cooling/heating influences due to thermal inertia, resulting
in the change of temperature pattern of LCZs [45,55]. The inconsistent pattern of LST
temperature of different built LCZs also indicate the variations of different combinations
of heat sources and sinks, such as deciduous trees for shading and evapotranspiration (a
lower urban greenery ratio in winter compared that in summer), the intermittent operation
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of factories, the use of heating/cooling system in cold/hot seasons and heat linkages, and
the alternation of macro climate in hot–cold seasons.

For land-cover LCZs, the Water (LCZ-G) and Dense trees (LCZ-A) were the strong heat
sinks throughout the year, while in other studies, the Water (LCZ-G) could be heat sources
in winter because of its high inertia [42]. Such results were consistent with previous studies
that water bodies and forestry land were conducive to lowering urban temperature [23].
Moreover, icing and snow, in combination with Water and Dense trees, fostered its lowest
LST in winter. Nevertheless, the contribution of other land-cover LCZs varied temporally.
The Bare rock and paved (LCZ-E) was a heat source in warm months (e.g., from June to
October), while it was heat sinks from December to May (Figure 6). Such results may be
relevant to the capability of heat absorption and storage of rock and paved materials (e.g.,
stone, concrete, asphalt) in summer, while in winter the higher radiative capacity, compared
with other land-cover LCZS, made it have a lower temperature. Likewise, the Low plants
(LCZ-D) made different contributions depending on cold or warm seasons, where it was a
heat source from December to May and it was a heat sink from June to November. This
result might be relevant to the growth cycle of low vegetation (e.g., rice with irrigation,
grass), where in warm months vegetation grows and generates cooling performance, while
it changes to the land with dry grasses (e.g., straw, detritus) contributing to heat sources in
cold months. Such a result may imply a change of LCZ types in different months.

The response of LST to LCZs diversified with urban and rural contexts. For instance,
Lightweight low-rise (LCZ-7), Large low-rise (LCZ-8) and Heavy industry (LCZ -10) were
the three built LCZs that had the highest LST throughout the year within an urban context.
Different from this, the Compact midrise (LCZ-2), Compact low-rise (LCZ-3), Large low-
rise (LCZ-8), Sparsely built (LCZ-9) and Heavy industry (LCZ-10) were the five built LCZs
that had the highest LST within rural context. Both the hottest built LCZs within urban and
urban contexts were different from those within the whole study area. Nevertheless, the
Compact high-rise (LCZ-1), Open high-rise (LCZ-4) and Sparsely built (LCZ-9) were the
three built LCZs that had the lowest LST within both urban and rural contexts. Moreover,
Bush, scrub (LCZ-C), Low plants (LCZ-D), Bare rock or paved (LCZ-E) and Bare soil
or sand (LCZ-F) had the highest LST within urban contexts, which was consistent with
that within rural context. Both Dense trees (LCZ-A) and Water (LCZ-G) had the lowest
LST within both urban and rural areas. Overall, such results indicate that the responses
of LST to LCZs was a function of the scope of area of interest, particularly the highest
urban temperature. LCZ scheme have been thought of as an effective tool [12], to support
climate-sensitive urban planning and design (e.g., outdoor thermal comfort, heat exposure,
heat stress) [56–58]. The spatiotemporal change of the hottest LCZs in our study implies
the consideration of only a month or an improper selection of study area for identifying
heat stress may lead to inaccurate results and mislead actions of urban heat mitigation and
adaptation.

5.3. Suitability of Local Climate Zone Scheme for Urban Temperature Differentiation

Existing studies have found that the suitability of the LCZ scheme for LST differen-
tiation can be affected by macroclimate (e.g., tropical, arid, temperate and cold) [40] and
seasons (e.g., spring, summer, autumn and winter) [42]. It has been indicated that the LCZ
scheme had the weakest capability of differentiating LST within arid climates, and it had a
moderate level of capability within cold climates [40]. The study area of Shenyang is in
cold regions and the LCZ scheme could differentiate LST, with 80.0–93.3% and 76.2–95.2%
of the urban and rural temperature being differentiated, respectively. Nevertheless, the
capability was dependent on different months and urban context (e.g., urban and rural
areas). The case study in Nanjing indicated the capability was about 86.1%, 93.1%, 77.88%
and 82.0% in spring, summer, autumn and winter, respectively [42]. In comparison, our
study indicated in hot months (from July to October), the LCZ scheme had the strongest
capability (89.9-93.3%) and in May it had the weakest capability (80.0%). For land-cover
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LCZs, our study indicated that the LCZ scheme had the strongest capability from July to
October (90.5–95.2%) and the lowest from November to February (76.2–85.7%).

Our study further added a new finding that the capability of the LCZ scheme in
differentiating temperature is dependent on the urban context (e.g., urban and rural),
apart from macroclimate, seasons and months. Compared with the whole study area (a
combination of urban and rural areas), the capability of built LCZs in either urban or
rural contexts weakened. From July to October, the built LCZs could differentiate less
than 90% of the urban temperature and only 71.1% and 77.8% of the temperature were
differentiated in December and January, respectively. Furthermore, in a rural context, apart
from 86.7% and 88.9% in August and July, less than 80% of the urban temperature was
differentiated in all other months and even peaked at 48.9% in December. Such results
can indicate that built LCZs had a higher level of applicability in urban context (highly
urbanized area) compared with rural context (barely urbanized area). However, land-cover
LCZs indicated a different result from built LCZs that within rural context the land-cover
LCZs had a higher level of capability compared with that within urban context. Overall,
spatiotemporal suitability of LCZ scheme for differentiating LST implies that the adoption
of LCZ in urban planning and design should be pre-examined to avoid misleading results.
One-month (e.g., in summer) LCZ data within a specific urban/rural context cannot fully
represent and identify heat-induced impacts such as outdoor thermal comfort, heat stress
and heat exposure of a city. It is essential to document several-month data based on specific
contexts to overall support urban planning and design.

6. Conclusions

An accurate quantification of urban thermal environments is the premise of mitigating
and avoiding the several consequences of urban heat challenges which are experienced
by many cities. LST and SUHII are two important indicators, and the LCZ scheme is
an important tool to differentiate surface temperatures and intra-urban temperatures.
However, the landscape effects on monthly variation of SUHII and the applicability of
LCZ scheme are not well understood. This study investigated the variation of SUHI effects
and the suitability of the LCZ scheme for LST differentiation in Shenyang, China. The
findings indicated that both the SUHII and the suitability of the LCZ scheme exhibited
spatiotemporal variations. An accurate analysis of SUHII should, therefore, properly
define urban and rural contexts and specify the month, and one-month analysis cannot
fully represent urban thermal environments of a season. The LST of both built and land-
cover LCZs could not follow a fixed order, particularly for the highest temperature that
varied significantly with both month and spatial boundary. Moreover, the suitability of
LCZ scheme for LST differentiation depended on both urban context and the month. In
hot months such as July and August, the LCZ scheme in aspects of both built types and
land-cover types had a high level of suitability while in cold months such as November,
December and January the suitability weakened. The built LCZs within urban areas could
have a higher level of suitability than that within rural areas, while the land-cover LCZs
exhibited a reverse pattern. Overall, this paper added new findings on spatial variability
and temporal heterogeneity of urban temperature and the applicability of LCZ scheme
for LST differentiation. It can also provide important implications for the assessment of
heat-induced impacts and supports climate-sensitive planning and design.

This paper has some possible limitations and future studies are needed to reveal the
spatiotemporal variations of LST distribution, responses of LST to LCZs and the suitability
of the LCZ scheme. First, built upon the landscape in August, this study only applied one
suite of the LCZ scheme, which as a result cannot respect the possible LCZ variation (e.g.,
changes of both built and land-cover LCZs with deciduous trees and vegetation death
in cold seasons) throughout the year. Therefore, it is essential to reproduce seasonal and
monthly LCZ images to further verify the results and conclusions. Second, the urban and
rural contexts considered in this study were differentiated within a same city, which might
be not capable of representing highly urbanized and barely urbanized cities. Therefore,
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future studies are needed to verify the results and conclusions relevant to the urban context
with the selection of metropolitans and their surrounding satellite cities. Third, this study
analyzed the monthly variation of LST distribution, responses of LST to LCZs and the
suitability of LCZ scheme within only one city with Dwa in cold regions and it is wise
to conduct further investigations in other cities with diverse climates to gain a better
understanding of the dynamics of the LCZ–LST relationships. Fourth, this study analyzed
the single-year LST responses to the LCZ scheme, while the multi-year analysis could be of
interest to indicate the LCZ–LST relationships in a dynamic context along with urbanization
and climate change.
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Appendix A

Table A1. Land Surface Temperature of Different Local Climate Zones in Different Months within Urban Context.

LCZ
December January February March

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) −20.28~1.63 −4.69 −16.26~−0.13 −4.87 −9.04~12.74 6.12 −4.89~17.95 10.65
LCZ-2 (Compact midrise) −18.43~2.81 −4.15 −14.45~1.46 −4.22 −6.30~16.34 7.23 −1.08~21.18 12.00
LCZ-3 (Compact low-rise) −24.17~3.74 −4.36 −20.47~3.72 −4.01 −11.48~15.19 8.22 −9.37~21.75 13.29

LCZ-4 (Open high-rise) −9.54~1.62 −4.74 −8.45~1.97 −4.82 1.02~14.49 6.22 2.96~19.05 10.97
LCZ-5 (Open midrise) −19.14~0.70 −4.57 −17.30~0.49 −4.40 −6.30~13.82 7.16 −3.01~20.11 12.18
LCZ-6 (Open low-rise) −9.28~1.02 −4.55 −8.38~0.54 −4.07 1.21~14.21 7.69 5.30~19.39 12.68

LCZ-7 (Lightweight low-rise) −21.00~3.56 −3.92 −18.69~4.35 −3.70 −8.51~18.41 9.00 −3.57~25.09 14.28
LCZ-8 (Large low-rise) −25.42~3.35 −3.86 −22.25~2.02 −3.80 −12.47~18.88 8.60 −9.83~25.71 13.91
LCZ-9 (Sparsely built) −26.81~1.58 −4.32 −21.74~2.07 −3.83 −12.69~16.74 8.11 −9.58~20.13 13.13

LCZ-10 (Heavy industry) −17.34~4.66 −4.11 −13.72~3.21 −3.75 −6.36~19.79 8.47 −2.35~24.74 13.60
LCZ-A (Dense trees) −7.35~−0.48 −3.89 −6.63~−1.41 −4.51 2.41~12.19 6.69 5.06~17.59 11.63

LCZ-B (Scattered trees) −9.43~0.08 −3.80 −7.99~0.26 −3.99 2.32~14.36 7.80 6.77~19.91 12.98
LCZ-C (Bush, scrub) −7.58~0.08 −3.65 −6.68~−0.74 −3.34 4.41~13.72 9.16 8.64~18.53 14.41
LCZ-D (Low plants) −27.50~0.45 −3.83 −21.84~0.84 −3.08 −12.18~15.67 9.47 −9.23~21.13 14.52

LCZ-E (Bare rock or paved) −18.09~3.12 −4.41 −14.37~3.36 −3.85 −3.10~15.18 8.42 −0.09~20.33 13.45
LCZ-F (Bare soil or sand) −19.68~1.34 −4.15 −17.41~1.03 −3.56 −8.43~15.17 8.65 −3.24~20.42 13.67

LCZ-G (Water) −8.57~−0.09 −4.84 −7.88~0.50 −5.03 1.23~12.42 4.40 2.23~16.99 7.96
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Table A1. Cont.

LCZ
April May June July

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 11.87~27.52 21.25 6.29~33.23 25.31 23.14~38.19 31.82 19.99~40.13 33.00
LCZ-2 (Compact midrise) 13.42~29.88 22.40 11.79~35.20 26.74 24.99~38.04 32.99 23.63~40.59 34.37
LCZ-3 (Compact low-rise) 7.93~28.92 23.53 3.66~34.73 27.20 20.70~37.93 32.73 18.60~40.39 32.99

LCZ-4 (Open high-rise) 15.00~29.17 21.64 16.11~33.46 25.24 24.02~37.08 31.56 24.46~38.31 32.06
LCZ-5 (Open midrise) 12.31~29.58 22.70 8.20~38.25 26.48 21.84~38.99 32.45 20.92~40.06 32.95
LCZ-6 (Open low-rise) 17.68~28.89 23.21 18.59~35.18 26.80 25.71~37.17 32.15 26.08~39.98 32.17

LCZ-7 (Lightweight low-rise) 7.83~33.64 24.19 7.01~40.99 27.80 20.31~42.03 33.33 19.29~43.34 33.65
LCZ-8 (Large low-rise) 7.36~33.81 23.85 1.84~41.34 27.63 18.91~41.77 33.19 17.36~43.11 33.47
LCZ-9 (Sparsely built) 6.20~29.52 23.54 1.87~34.83 26.77 19.18~38.55 31.44 16.78~39.83 31.44

LCZ-10 (Heavy industry) 13.34~32.96 23.66 9.81~40.41 27.82 24.54~41.63 33.59 22.68~44.20 34.63
LCZ-A (Dense trees) 16.01~29.27 21.87 16.93~33.90 21.66 24.71~34.97 27.42 25.15~35.36 27.57

LCZ-B (Scattered trees) 18.40~28.98 23.27 19.96~33.98 25.90 26.49~36.75 30.73 26.56~37.20 30.47
LCZ-C (Bush, scrub) 19.04~28.83 24.84 22.38~35.27 28.38 28.42~36.07 32.84 27.70~37.58 31.67
LCZ-D (Low plants) 5.15~29.77 24.89 0.28~35.04 28.36 17.69~37.58 31.75 15.89~39.15 30.96

LCZ-E (Bare rock or paved) 12.91~29.37 23.56 9.37~34.96 27.24 24.45~38.46 32.80 22.14~40.76 32.93
LCZ-F (Bare soil or sand) 12.54~29.51 23.92 10.62~34.19 27.66 22.82~38.33 32.70 20.79~39.12 32.45

LCZ-G (Water) 13.33~26.61 18.53 15.63~30.26 20.56 21.41~35.41 27.02 22.19~34.78 27.40

LCZ
August September October November

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 27.82~41.69 34.84 8.41~32.27 25.03 −0.27~24.25 17.04 −3.36~14.72 8.96
LCZ-2 (Compact midrise) 28.98~41.55 36.10 12.78~35.71 26.48 2.93~26.11 18.33 −1.34~20.44 9.85
LCZ-3 (Compact low-rise) 24.30~42.52 35.63 6.48~33.72 25.87 −1.84~25.29 18.53 −5.47~18.13 10.59

LCZ-4 (Open high-rise) 27.80~41.30 34.54 15.51~31.60 24.54 11.36~23.63 16.93 2.33~15.53 9.26
LCZ-5 (Open midrise) 26.77~41.78 35.44 9.04~32.95 25.50 1.97~24.53 17.84 −2.71~16.55 9.90
LCZ-6 (Open low-rise) 27.92~41.79 34.85 19.75~32.89 25.01 12.14~24.12 17.86 5.50~15.71 10.15

LCZ-7 (Lightweight low-rise) 24.00~45.48 36.42 4.48~37.95 26.65 −0.49~30.16 19.25 −6.05~20.62 11.43
LCZ-8 (Large low-rise) 23.64~45.19 36.06 4.12~37.86 26.44 −4.09~30.36 19.09 −7.54~20.55 11.11
LCZ-9 (Sparsely built) 22.64~42.12 34.09 1.49~33.66 24.57 −5.79~26.17 17.67 −8.97~16.44 10.73

LCZ-10 (Heavy industry) 28.86~45.56 36.88 12.26~37.43 27.18 3.03~29.81 19.27 −1.50~22.39 10.81
LCZ-A (Dense trees) 26.98~36.70 30.34 20.13~27.15 21.62 13.00~20.80 14.71 6.84~14.41 10.61

LCZ-B (Scattered trees) 29.66~38.81 33.52 20.38~29.61 23.79 12.89~23.51 16.88 5.92~15.91 10.82
LCZ-C (Bush, scrub) 30.65~40.36 34.83 22.39~29.27 25.20 14.55~22.89 18.84 7.11~17.64 11.63
LCZ-D (Low plants) 22.52~41.15 33.35 1.04~31.69 24.34 −6.11~24.67 18.25 −10.03~16.80 11.28

LCZ-E (Bare rock or paved) 27.49~42.40 35.77 10.50~33.25 25.90 2.70~25.43 18.71 −0.90~28.21 −1.00
LCZ-F (Bare soil or sand) 25.76~41.44 35.31 9.67~32.60 25.54 1.02~25.31 18.64 −2.33~16.73 10.80

LCZ-G (Water) 26.93~37.58 30.29 19.64~28.27 22.02 13.09~20.90 15.61 6.17~13.77 8.87
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Appendix B

Table A2. Land Surface Temperature of Different Local Climate Zones in Different Months within Rural Context.

LCZ
December January February March

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) −9.25~1.00 −4.35 −8.58~−0.05 −3.81 0.45~13.13 7.79 5.10~18.78 12.36
LCZ-2 (Compact midrise) −8.62~1.39 −4.05 −8.10~0.99 −3.48 1.23~14.72 8.97 2.53~21.02 14.02
LCZ-3 (Compact low-rise) −20.21~2.08 −3.61 −16.59~2.62 −3.14 −5.83~15.00 9.69 −1.77~22.67 14.80

LCZ-4 (Open high-rise) −20.80~4.43 −4.07 −19.65~3.86 −3.80 −6.54~15.52 7.93 −3.09~21.65 12.47
LCZ-5 (Open midrise) −17.00~4.03 −4.29 −14.46~2.98 −3.76 −1.76~15.36 8.50 2.00~20.92 13.55
LCZ-6 (Open low-rise) −13.75~2.17 −3.84 −12.38~1.82 −3.43 −0.97~16.05 9.26 −1.48~21.61 13.91

LCZ-7 (Lightweight low-rise) −25.58~2.88 −3.81 −24.72~2.83 −3.60 −12.77~16.78 9.24 −7.00~23.26 14.38
LCZ-8 (Large low-rise) −16.87~1.96 −3.47 −16.28~2.50 −3.19 −5.57~16.55 9.50 1.56~22.89 14.89
LCZ-9 (Sparsely built) −17.26~4.36 −3.56 −15.85~3.88 −3.14 −4.97~18.13 9.76 −3.19~24.55 14.07

LCZ-10 (Heavy industry) −15.81~2.86 −3.43 −13.74~3.35 −3.16 −2.03~16.77 10.03 2.86~23.11 15.33
LCZ-A (Dense trees) −9.26~4.50 −4.54 −9.22~3.26 −4.77 0.35~15.75 7.22 −1.90~20.80 11.02

LCZ-B (Scattered trees) −9.62~2.35 −4.36 −9.17~1.59 −3.79 0.77~15.20 8.63 3.79~20.07 13.24
LCZ-C (Bush, scrub) −7.03~3.10 −3.10 −5.71~3.78 −2.69 3.95~15.56 10.48 6.71~20.66 15.14
LCZ-D (Low plants) −21.72~2.93 −2.63 −19.35~3.95 −2.37 −9.85~22.84 11.65 −9.00~25.97 15.83

LCZ-E (Bare rock or paved) −28.64~4.05 −3.78 −22.09~3.98 −3.37 −16.53~16.04 9.37 −13.12~21.71 14.25
LCZ-F (Bare soil or sand) −32.33~2.76 −3.47 −27.79~2.42 −3.02 −22.77~16.62 9.98 −18.21~23.09 14.87

LCZ-G (Water) −8.88~5.53 −4.77 −9.30~4.16 −5.04 −0.89~14.78 3.75 −2.30~19.05 6.83

LCZ
April May June July

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 15.15~29.62 22.97 17.42~34.15 25.97 24.96~36.63 30.91 25.77~37.50 30.49
LCZ-2 (Compact midrise) 13.23~30.09 24.04 14.95~33.94 27.91 23.58~36.47 32.81 23.23~38.27 33.36
LCZ-3 (Compact low-rise) 9.70~30.32 24.97 5.45~35.45 27.85 21.00~37.79 32.41 18.51~37.90 31.65

LCZ-4 (Open high-rise) 10.62~29.54 22.87 6.88~35.50 25.86 20.72~37.78 30.78 19.37~37.96 30.52
LCZ-5 (Open midrise) 13.71~29.78 24.05 10.71~34.16 27.49 22.12~40.02 32.45 21.18~39.95 32.47
LCZ-6 (Open low-rise) 13.34~30.61 24.45 15.06~35.36 28.00 24.23~37.16 32.25 21.68~38.43 31.39

LCZ-7 (Lightweight low-rise) 6.56~30.60 24.37 3.36~35.53 27.45 19.28~40.51 32.49 16.28~40.62 32.07
LCZ-8 (Large low-rise) 12.73~30.76 24.98 9.56~34.86 28.08 21.88~38.29 32.80 21.64~40.32 32.17
LCZ-9 (Sparsely built) 11.72~31.23 24.35 9.75~36.46 27.10 21.15~37.78 29.49 21.55~39.49 28.52

LCZ-10 (Heavy industry) 14.29~30.81 24.94 13.89~35.29 28.73 23.43~40.80 33.58 24.18~42.88 34.26
LCZ-A (Dense trees) 13.35~31.64 22.90 15.07~37.05 24.65 21.25~36.92 28.21 22.22~36.89 27.81

LCZ-B (Scattered trees) 15.44~30.28 24.60 16.35~35.03 27.65 23.98~37.73 30.84 23.88~38.61 30.17
LCZ-C (Bush, scrub) 18.40~29.39 25.67 20.36~35.33 29.21 27.29~38.84 32.42 25.62~37.09 31.03
LCZ-D (Low plants) 7.48~35.48 26.13 1.81~37.00 29.29 15.70~39.66 30.96 16.66~38.73 28.55

LCZ-E (Bare rock or paved) 5.00~31.19 24.42 −2.81~35.08 27.78 17.85~39.04 32.43 13.85~38.80 31.92
LCZ-F (Bare soil or sand) 0.77~31.04 24.97 −7.61~35.43 28.21 14.82~39.08 32.38 10.94~40.33 31.33

LCZ-G (Water) 10.36~29.27 16.16 12.34~34.90 18.00 20.71~36.06 24.73 20.76~35.05 24.80

LCZ
August September October November

Range Mean Range Mean Range Mean Range Mean

LCZ-1 (Compact high-rise) 28.10~39.92 32.99 19.38~30.54 23.94 11.86~23.13 17.58 4.62~17.41 10.62
LCZ-2 (Compact midrise) 27.15~40.44 36.03 19.90~33.69 26.40 14.43~26.55 19.19 7.31~17.78 11.39
LCZ-3 (Compact low-rise) 25.10~40.60 33.79 6.42~32.82 25.06 2.21~26.10 19.08 −4.64~17.54 11.58

LCZ-4 (Open high-rise) 24.31~42.21 33.17 5.07~33.06 24.13 1.26~26.19 17.67 −3.45~16.78 10.71
LCZ-5 (Open midrise) 26.81~42.52 35.08 9.18~34.49 25.45 3.10~28.35 18.47 −0.74~18.49 10.89
LCZ-6 (Open low-rise) 26.30~41.25 33.97 13.76~32.16 24.86 6.58~24.96 18.57 1.61~17.74 11.55

LCZ-7 (Lightweight low-rise) 22.62~44.59 34.44 2.24~37.64 25.33 −5.15~30.87 18.80 −7.07~19.85 11.55
LCZ-8 (Large low-rise) 26.15~44.23 34.56 10.33~34.04 25.62 4.29~26.28 19.35 −2.23~19.05 11.80
LCZ-9 (Sparsely built) 25.22~42.23 30.62 9.11~33.25 22.69 2.55~24.89 17.03 −2.73~18.09 11.19

LCZ-10 (Heavy industry) 28.90~45.01 36.83 13.17~36.66 27.32 6.06~30.28 19.92 1.21~19.47 12.37
LCZ-A (Dense trees) 25.09~39.13 30.67 18.93~29.11 21.56 11.17~23.92 14.88 5.92~18.12 11.22

LCZ-B (Scattered trees) 27.09~41.82 33.36 19.24~32.62 −1.00 11.34~24.65 17.32 4.99~17.28 11.70
LCZ-C (Bush, scrub) 28.23~41.89 34.00 21.18~30.51 24.53 14.78~23.46 19.04 6.90~20.28 12.63
LCZ-D (Low plants) 23.88~41.71 30.49 2.05~45.45 22.91 −3.64~27.09 18.19 −8.46~20.06 12.57

LCZ-E (Bare rock or paved) 24.10~42.93 34.71 0.05~33.23 25.27 −6.37~25.64 18.86 −11.45~20.26 11.62
LCZ-F (Bare soil or sand) 22.59~43.61 33.76 −3.27~35.96 24.88 −12.84~29.03 18.97 −15.94~19.63 11.77

LCZ-G (Water) 25.72~40.09 28.09 18.57~28.97 20.71 12.31~22.71 15.37 5.38~17.93 8.71
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Appendix C

Figure A1. Deviation of the LST of Different Types of LCZs from the Average LST within an Urban
Context (◦C).
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Appendix D

Figure A2. Deviation of the LST of Different Types of LCZs from the Average LST within a Rural
Context (◦C).

237



Remote Sens. 2021, 13, 4338

References

1. United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050. In 2018 Revision of World Urbanization
Prospects; United Nations: New York, NY, USA, 2018.

2. Department of Economic and Social Affairs, Sustainable Development, United Nations. Goal 11: Make Cities and Human
Settlements Inclusive, Safe, Resilient and Sustainable. 2021. Available online: https://sdgs.un.org/goals/goal11 (accessed on 19
October 2021).

3. Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around
It; Darton, J.H., Longman, A.A., Highley, S.H., Hunter, R., Eds.; Joseph Rickerby: London, UK, 1833; Volume 3. Available
online: https://books.google.co.jp/books?id=-yllMDVOz1IC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&
cad=0#v=onepage&q&f=false (accessed on 19 October 2021).

4. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
5. He, B.-J.; Zhao, D.; Xiong, K.; Qi, J.; Ulpiani, G.; Pignatta, G.; Prasad, D.; Jones, P. A framework for addressing urban heat

challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in
Chongqing, China. Sustain. Cities Soc. 2021, 75, 103361. [CrossRef]

6. Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113.
[CrossRef]

7. Guhathakurta, S.; Gober, P. The Impact of the Phoenix Urban Heat Island on Residential Water Use. J. Am. Plan. Assoc. 2007, 73,
317–329. [CrossRef]

8. Santamouris, M.; Kolokotsa, D. Urban Climate Mitigation Techniques; Routledge: Oxfordshire, UK, 2016.
9. Lowe, S.A. An energy and mortality impact assessment of the urban heat island in the US. Environ. Impact Assess. Rev. 2016, 56,

139–144. [CrossRef]
10. Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994.

[CrossRef]
11. He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human

thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [CrossRef]
12. Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim.

2018, 23, 188–203. [CrossRef]
13. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017.
14. Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between LULC Changes and SUHI in Cities: Insights

from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [CrossRef]
15. Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning

implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [CrossRef]
16. Yang, J.; Wang, Y.; Xue, B.; Li, Y.; Xiao, X.; Xia, J.; He, B. Contribution of urban ventilation to the thermal environment and urban

energy demand: Different climate background perspectives. Sci. Total. Environ. 2021, 795, 148791. [CrossRef] [PubMed]
17. Luo, X.; Yang, J.; Sun, W.; He, B. Suitability of human settlements in mountainous areas from the perspective of ventilation: A

case study of the main urban area of Chongqing. J. Clean. Prod. 2021, 310, 127467. [CrossRef]
18. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island

Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [CrossRef] [PubMed]
19. Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat.

Commun. 2020, 11, 2647. [CrossRef]
20. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900.

[CrossRef]
21. Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt.

J. Remote. Sens. Space Sci. 2017, 20. [CrossRef]
22. Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial–temporal dynamics of land surface temperature in relation

to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617.
[CrossRef]

23. Zhao, Z.-Q.; He, B.-J.; Li, L.-G.; Wang, H.-B.; Darko, A. Profile and concentric zonal analysis of relationships between land
use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282–295. [CrossRef]

24. Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci.
Total Environ. 2018, 624, 262–272. [CrossRef] [PubMed]

25. Adolphe, L. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities.
Environ. Plan. B Plan. Des. 2001, 28, 183–200. [CrossRef]

26. Osmond, P. The urban structural unit: Towards a descriptive framework to support urban analysis and planning. Urban Morphol.
2010, 14, 5–20.

27. He, B.-J.; Ding, L.; Prasad, D. Enhancing urban ventilation performance through the development of precinct ventilation zones: A
case study based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [CrossRef]

28. Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ‘local climate zone’ variability of air temperature as observed
by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [CrossRef]

238



Remote Sens. 2021, 13, 4338

29. Alexander, P.J.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755. [CrossRef]
30. Lau, K.K.-L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An

approach of adopting local climate zone (LCZ) classification. Build. Environ. 2019, 154, 227–238. [CrossRef]
31. Kotharkar, R.; Bagade, A. Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc. Urban Plan.

2018, 169, 92–104. [CrossRef]
32. Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-local climate zone differ-

entiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540.
[CrossRef]
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Abstract: Monitoring urban area expansion through multispectral remotely sensed data and other
geomatics techniques is fundamental for sustainable urban planning. Forecasting of future land use
land cover (LULC) change for the years 2034 and 2050 was performed using the Cellular Automata
Markov model for the current fast-growing Epworth district of the Harare Metropolitan Province,
Zimbabwe. The stochastic CA–Markov modelling procedure validation yielded kappa statistics above
80%, ascertaining good agreement. The spatial distribution of the LULC classes CBD/Industrial
area, water and irrigated croplands as projected for 2034 and 2050 show slight notable changes.
For projected scenarios in 2034 and 2050, low–medium-density residential areas are predicted to
increase from 11.1 km2 to 12.3 km2 between 2018 and 2050. Similarly, high-density residential areas
are predicted to increase from 18.6 km2 to 22.4 km2 between 2018 and 2050. Assessment of the
effects of future climate change on potential soil erosion risk for Epworth district were undertaken
by applying the representative concentration pathways (RCP4.5 and RCP8.5) climate scenarios, and
model ensemble averages from multiple general circulation models (GCMs) were used to derive
the rainfall erosivity factor for the RUSLE model. Average soil loss rates for both climate scenarios,
RCP4.5 and RCP8.5, were predicted to be high in 2034 due to the large spatial area extent of croplands
and disturbed green spaces exposed to soil erosion processes, therefore increasing potential soil
erosion risk, with RCP4.5 having more impact than RCP8.5 due to a higher applied rainfall erosivity.
For 2050, the predicted wide area average soil loss rates declined for both climate scenarios RCP4.5
and RCP8.5, following the predicted decline in rainfall erosivity and vulnerable areas that are erodible.
Overall, high potential soil erosion risk was predicted along the flanks of the drainage network for
both RCP4.5 and RCP8.5 climate scenarios in 2050.

Keywords: land use land cover (LULC); Cellular Automata Markov model; representative
concentration pathways; climate scenarios

1. Introduction

Soil erosion by water has become a global threat undermining environmental sustain-
ability [1]. This is attributed to various controlling factors related to Land Use and Land
Cover (LULC) changes influenced by population growth, rising economic activities, unsus-
tainable agricultural practices and climate change [2,3]. LULC change has been reviewed
as one of the main driving forces of global environmental change, making it an important
factor to assess at different spatio-temporal levels [4,5]. The LULC changes at both local and
global levels are dynamic processes [2] and their drivers correspond to complex systems
with dependent characteristics and interactions having a wide array of implications for the
future ecological balance and environmental sustainability. Urbanization, as one among
the major drivers of LULC change, depends on population growth, migration and desires
to change the current state of the Earth. These actions could be for the betterment of
livelihoods and in turn could be detrimental to the environment and humankind [6,7]. The
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resulting ramifications include the modification of the landscape due to the sprawling of
unplanned urban built-up areas, development of urban heat islands and over-exploitation
of natural resources as direct impacts, and collateral land degradation, climate change, soil
erosion and siltation [7–9].

The United Nation’s World Urbanization Prospects reveal that the global urban pop-
ulation increased from about 30% in 1950 to approximately 54% in 2014, with almost
2.5 billion urban dwellers expected by 2050 [10]. For India, approximately 50% of the popu-
lation have been projected to be living in cities by 2050 as a result of rural–urban migration
due to increased economic activities in the urban areas, which have become a strong pulling
factor [11]. Rapid urbanization in Africa has been reported due to population growth and
it has been projected to almost triple by 2030 [11]. However, according to information
from the World Economic Forum, in 2020 56.2% of the global population already lived in
cities [12], with highly variable rates between regions, ranging from 81.2% urban dwellers
in Latin America and the Caribbean to 43.5% in Africa [13]. Breaking these data down
to Zimbabwe, about a quarter of the country’s population lives in urban areas. Focusing
on the case study of Epworth district, being part of the Harare Metropolitan Province,
approximately 47% of the population increase was registered between 1992 and 2012 [14],
with a triplication of built-up areas from about 19.5% in 1984 to 61.3% in 2018 [15]. Such
trends in urban population growth directly impact the ecosystem of the urbanizing area, in-
cluding the peri-urban area. This earmarks a gap which requires monitoring of the impacts
driven by rampant LULC changes through urban expansion on the ecosystem as a basis to
implement a proper spatial policy to enable effective decision-making processes [16,17].
This implies a rich understanding of the trends of urban expansion and development, and it
requires the integration of spatially differentiated data, applying geomatics to quantify and
predict future spatial distributions [18,19]. By the case study of the Epworth district in the
Harare Metropolitan Province, it will be demonstrated that future land use models provide
a valuable basis for foresight spatial planning to ensure environmental sustainability.

The LULC changes occurring at unprecedented levels threaten multiple ecological
processes such as surface runoff, soil erosion, siltation and agricultural non-point source
pollution, resulting in landscape degradation, habitat loss and inaccessibility to prop-
erties [20,21]. Focusing on sub-Saharan metropolitan areas, the example of the Harare
Metropolitan Province documents a rapid transformation of urban agricultural land and
shrub lands to built-up areas and other sealed settlement areas over the past decades [9,22].
For example, Epworth district, as part of the Harare Metropolitan Province, has witnessed
an increase in built-up areas linked with high soil erosion risk due to increased impervious
surfaces and construction activities which facilitate surface runoff [23]. This results in
accelerated soil loss in sensitive areas mostly within active built-up areas. The radical
LULC changes in this area also include the loss of water bodies due to siltation resulting
from sand mining and brick moulding along the river banks; encroachment of wetlands
by construction activities; and grading of unpaved roads which later facilitate accelerated
surface runoff due to compaction [24].

Furthermore, climate change is reiterated to be heavily associated with locally increas-
ing rainfall intensity, frequency and extent, resulting in increasing rainfall erosivity [25].
The Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate
Change) highlights that global mean precipitation and surface temperatures have signif-
icantly changed with reference to observed changes between 1850 and 1900, and these
changes are likely to continue to be experienced in the 21st century [26]. Several studies
point out that accelerated soil erosion by water due to climate change accentuates processes
that alter soil physiochemical and biological properties [27–29]. This entails the need to curb
soil erosion through minimizing the removal of vegetation cover, improving surface rough-
ness to facilitate infiltration capacity and reducing rainfall-runoff processes [30]. Climate
change also inevitably triggers a shift in land use, forcing the adoption of new management
practices and planting new crops in order to mitigate detrimental impacts [31,32].
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The sketched interrelations between LULC change and climate change and its possible
environmental impacts emphasize the need to investigate future potential impacts of
LULC change and climate change on potential soil erosion risks caused by water. For
the coming decades, for wider areas, the increasing intensity of the hydrological cycle
is projected by multiple global circulation models (GCMs), pronouncing more intense
rainfall events that directly influence rainfall erosivity [26]. We want to investigate these
interrelations using the example of Epworth district, a fast-growing urban area of the
Harare Metropolitan Province. Soil erosion by water has been repeatedly investigated in
different regions of Zimbabwe, focusing on either catchments or arable areas [33–35]. There
is limited knowledge regarding estimated future soil loss rates and potential soil erosion
risk in Zimbabwe as impacted by future climate change and land use changes, knowledge
indispensable for future policy decision-making processes. The current study examines
the potential future effects of land use change as well as of climate change on soil erosion
risk. Overall, climate change scenarios as provided by the IPCC [26] and forecasts of LULC
change were applied for the assessment of future potential soil erosion risk for the years
2034 and 2050.

1.1. Modelling Land Use Changes in Urban Areas

Multiple studies on future soil erosion focus mainly on the dynamics of climate vari-
ables such as temperature and rainfall [32,36], while land use changes are rarely considered
regardless of the high awareness of processes such as population growth, immigration and
urbanization occurring at alarming rates. There is a wide range of spatial models able to
simulate and predict land use changes based on the application of remote sensing tech-
niques [37,38]. The spatial transition model and statistical description model are the two
major models widely used for the assessment and monitoring of land use changes [8,37,39].
Furthermore, the Markov chain model is widely applied to simulate urban growth due to its
capability of quantifying land use changes, their trends and their dimensions [9,22,40–43].
Markov chain models correspond to stochastic processes [44] that summarize changes by
developing a transition probability matrix of land use change, indicating that the probabil-
ity of a system being in one state at a given time can be determined if the state at an earlier
period is known [40,45]. The Cellular Automata (CA) are simple and flexible dynamic
spatial systems able to integrate complex urban systems in order to simulate future urban
growth patterns [46–48]. The CA are based on the supposition that land use change for any
given location (grid cell) can be explained by its present state and the transformations in
its neighbouring cells [49]. Therefore, the inability of the Markov chain model to simulate
spatial changes over time is superseded by integrating it into the CA to enhance the spatial
predictive accuracy of the urban land use dynamics [47,50–53].

Previous studies have adopted simulation models that apply GIS and remote sensing
techniques for land use change modelling and monitoring of dynamic urban growth
patterns [40,46,50]. In the case of Harare Metropolitan Province, due to the dynamic nature
of urban growth, some parts of its districts were simulated using the CA–Markov model
in order to predict the impact of urban land use change on future microclimate [9], while
Sibanda and Ahmed [52] predicted the future LULC and their impacts on wetland areas in
the Shashe sub-catchment of Zimbabwe. According to Mushore et al. [9], accelerated urban
growth without the conservation of green spaces and adherence to mitigation policies
contribute to locally increasing microclimate temperatures, causing thermal discomfort in
urban areas. The CA–Markov model was also applied to project future LULC scenarios
for Arasbaran biosphere reserve in Iran [54]. Future LULC distribution patterns were also
simulated with high accuracy using the CA–Markov model for Jordan’s Irbid governorate,
with built-up areas predicted to increase from about 19.5% to approximately 64.6% between
2015 and 2050 [55]. Due to the plausible outcomes, recommendations indicate that the
CA–Markov model is an effective tool in monitoring and assessing future land use patterns
for policy and decision-making processes [40,51–53].
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1.2. Climate Change Emission Scenarios

The establishment of the Representative Concentration Pathways (RCPs) as future
climate change mitigation scenarios followed a response call on the effectiveness of climate
policy inclusion in future climate change modelling and research [26,56,57]. The RCPs
illustrate how the future climate may evolve, considering a range of variables which
encompass socio-economic changes, technological advancement, energy, greenhouse gas
emissions and land use changes [26]. Most precipitation projections from GCMs have been
widely used on land surface processes for the assessment of climate change impacts and
adaptation [1,58,59]. However, uncertainties in GCMs primarily exist on biases of raw
outputs, resulting in either over or underestimation of climate variables due to erroneous
assumptions in the model’s development [60,61]. As such, many studies have embarked
on the use of multi-modelling techniques to minimize the uncertainty of future predictions
in order to obtain plausible future projections [62–66].

The climate change emission scenarios approximate radiative forcing levels of green-
house gas concentrations, aerosols, and tropospheric ozone precursors by 2100 [57]. The
RCP8.5 scenario is characterized by increasing levels of greenhouse gas concentrations [67].
Further, the RCP8.5 is a highly energy-intensive scenario attributed to high population
growth and a lower rate of technology development; this is a scenario with little to no
climate policy, making it possible to represent all future climatic possibilities [26,57]. For
the RCP4.5 scenario, historical emissions and land cover information are integrated in order
to follow a cost-effective pathway through stabilization of anthropogenic components to
reach the target radiative forcing [56,68]. The RCP4.5 considers technological advances
such as combining bioenergy production with CO2 capture and geologic storage to enhance
more energy production with negative carbon emissions [68,69].

2. Materials and Methods

2.1. Study Area

The Harare Metropolitan Province is the capital city of Zimbabwe, with Epworth dis-
trict 17◦40′–18◦00′S, 30◦55′–31◦15′E located approximately 12 km southeast of the Central
Business District (CBD) (Figure 1). Epworth district is a high-density residential suburb of
Harare Metropolitan Province and the smallest in terms of area-wide coverage among the
four districts which comprise the Harare Metropolitan Province, occupying an estimated
area of 35 km2; the area is characterized by the densification of built-up structures and
overcrowdings [70] and an above-average increase in informal urban development in com-
parison to other urban districts in Zimbabwe [71,72]. There has been rampant population
growth and mushrooming urban built-up structures due to rural–urban migration which
dates back to the pre-and post-independence phase (1980) in search of better livelihoods,
employment and a hive of economic activities in the capital city [14,72,73]. Since then,
Epworth district has grown from about 500 families recorded in 1950, to a total population
of approximately 114,047 in 2002, to a total population of 167,462 in 2012 [14,73,74].

The Harare Metropolitan area is located on the Highveld at an elevation between
1455 m and 1556 m a.s.l., with a general topography characterized by undulating to
slightly rolling terrain in the plateau areas. Annual precipitation in Harare Metropolitan
Province varies between 470 mm and 1350 mm, falling mainly during the four months
of the rainy season between mid-November to mid-March. Daily temperature ranges
between 13 ◦C and 28 ◦C during the hot-dry season (September to mid-November) and
low temperature averages between 7 ◦C and 20 ◦C are experienced during the cool-dry
season (mid-May to August) [22]. Dominating soil types in Epworth district are the widely
spread Paraferrallitic soils (coarse grained) covering the high-altitude areas and clayey
Fersiallistic soils developed predominantly from dolerite in the central plateau [75]. Both
soil types are largely influenced by nutrient loss through moderately to strongly occurring
leaching processes [75,76].
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Figure 1. Study site—Epworth district of the Harare Metropolitan Province. (a) Zimbabwe provincial boundaries including
the Harare Metropolitan Province. (b) Elevation and district boundaries of the Harare Metropolitan Province. (c) Epworth
district with hydrological network, retrieved from OSM data (OSM-Geofabric).

2.2. Urban Land Use Change Modelling Using CA–Markov

The CA–Markov analysis was adopted to predict land use future scenarios. The CA–
Markov model is embedded into the IDRISI software (Clarks Lab), an image processing
software useful for improved digital image display and spatial analysis [77]. The Markov
chain analysis describes the probability of LULC changes from one state to another at
given times t1 and t2 by developing a transition probability [49,78,79]. The Markov chain
model simulates land use changes and generates a transition probability matrix, which
indicates the probability of each LULC to change from one state to another, and this is
obtained by cross tabulation of the earlier and later LULC maps. The proportional changes
become the transition probability, indicating that each land use class will change to other
categories using Equation (2). The conditional suitability maps are produced and display
the probability that each land use category might be found at each pixel, with values
standardized between 0 and 255 [9,42,80–82]. The transition probability of converting the
current state of a system to another state in the next time step is determined using the
mathematical expression Equation (1) [80,83]:

P = (Pij) =

∣∣∣∣∣∣∣∣
P11 P12 . . . P1n
P21 P22 . . . P2n
. . . . . . . . .
Pn1 Pn2 Pnm

∣∣∣∣∣∣∣∣
(1)

where Pij is the probability from state i to state j and Pn is the state probability of any time.
Equation (1) must satisfy the following conditions:

n

∑
j=1

Pij = 1 (i, j = 1, 2, 3 . . . . . . . . . , n) (2)

0 ≤ Pij ≤ 1 (i, j = 1, 2, 3 . . . . . . . . . , n) (3)
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These steps are performed to obtain the Markov chain model’s primary matrix and
the matrix of the transition probability (Pij). The Markov prediction model is expressed as:

P(n) = P(n − 1) Pij = P(0)P
n
ij (4)

where Pn refers to the state probability of any time and P(0) stands for the primary matrix.
High transitions have probabilities near 1, while low transitions attract probabilities near
0 [80,84].

The Markov chain probabilities of change represent all multi-directional LULC changes
between land use classes [82]. The Markov chains were selected as a result of their simplic-
ity, robustness and capability in mapping LULC transitions in complex urban areas [9,81].
Despite forecasting transition probabilities per land use category and their growth trends,
the major limitation of the Markov chain model is its inability to simulate the spatial
distribution of each land use category’s occurrence [42,79,82]. Due to the heterogeneity of
urban systems and structures, historical information is essential for a better understanding
and interpretation of simulated future spatial trends [19]. The subsequent limitations of the
Markov chains can be addressed by combining their outputs with other models that have
open structures, including the Cellular Automata (CA), Multi-Layer Perceptron (MLP) and
the Stochastic Choice [77,84]. In the present study, we integrated the Cellular Automata
(CA) into the Markov chain approach to address the spatiality limitations of the Markov
chain model and the probable spatial transitions occurring in the study area over the given
time [40,47,54,81].

The CA have high spatial resolution and computational efficiency, enabling the predic-
tion of future urban growth trends based on the supposition that the state of each cell at the
present time depends on the previous state of cells within the neighbourhood [46,85,86].
Thus, the CA models are based on four major attributes, which include the cell, the state,
the neighbourhood, and the transition rule [47,87]. The cell element of the CA signifies
spatial shapes and sizes on the ground, while real characteristics of the area (land use) at a
discrete time, represented as grid cells, show the state [47,48,87]. The neighbourhood cells
are the immediate adjacent cells that form the kernel, and the transition rules theoretically
code for the transformation from one cell state to another state resulting from the changes
in neighbouring cells at a discrete time and state [39,47]. Despite being a powerful and
simple tool in modelling urban growth patterns, the CA models have a limited capability
for quantifying aspects, and the simulation processes do not include urban growth driving
forces [50,51].

The CA–Markov modules embedded in the IDRISI GIS software were used to simulate
LULC distribution patterns for the year 2018 and to predict future LULC for the years
2034 and 2050. Primarily, the simulation phase of the 2018 LULC scenarios applied the
Markov chain to generate a transition probability matrix, and transition suitability images
between 1990 and 2008 using the LULC maps of the same period were generated using
support vector machines (SVMs) by Marondedze and Schütt [15]. A proportional error of
15% was set during the modelling of the transition probability matrix [77]. The Markov
chain analysis outputs from 1990 and 2008 formed the basis of input parameters for the
probable simulation of LULC spatial characteristics and their occurrence in the CA for the
prediction of LULC patterns for 2018 (Figure 2). The contiguity filter specified the spatial
characteristics applied by the CA modelling approach [40,77]. For this study, a contiguity
filter of 5*5 pixels was applied to define the kernel due to higher spatial characterization
when applied to determine the occurrence or position of the simulated LULC category
compared to 3*3 or 7*7 [88,89].
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Figure 2. Conceptual framework for the prediction of future LULC and soil erosion risk for Epworth district. LULC: land
use and land cover. RCPs: representative concentration pathways, GCMs: global circulation models.

The spatiality characteristics in the CA approach were developed in a spatially explicit
weighting that enabled the transformation of single and random grid cells in areas closer
to the existing and widely spread land use [54,90]. This is further simplified by assuming
that a pixel that is near one specific land cover class is more likely to be transformed to
that category than pixels farther apart [78]. This assumption was used to initially test the
predictive capability of the CA–Markov model set of the LULC distribution patterns for
2018. The cross validation of the 2018 simulated LULC patterns was performed applying the
LULC patterns as provided by a support vector machines (SVMs) supervised classification
map [15]. Finally, the CA–Markov techniques were applied between the LULC patterns
of 2000 and 2018 for the prediction of future LULC distribution patterns for 2034, whilst
the LULC distribution patterns of 1984 and 2018 were applied for the future prediction of
2050 LULC patterns. A 5*5 contiguity filter was applied for the prediction of future LULC
patterns for the years 2034 and 2050.

2.3. Cellular Automata–Markov Chain Validation

The simulated LULC distribution patterns for 2018 were compared with the SVMs
classified map for the same year to test the level of agreement. A two-phase validation ap-
proach was performed, which includes visual inspection and quantitative evaluation [9,91].
Visual inspection allowed close comparison and the agreement assessment between the
simulated 2018 LULC map and the SVMs supervised classification LULC map. The kappa
index of agreement (KIA) was used to assess the prediction accuracy for the 2018 actual
map and the simulated LULC maps [54,91,92]. In general, kappa is referred to as a member
of a family of indices with the properties (a) kappa = 1, when the level of agreement is
perfect, and (b) kappa = 0, when the observed agreement is equal to the expected propor-
tion due to chance [18]. Considering the model validity and performance in predicting
LULC patterns for 2018, the LULC patterns for 2000–2018 and 1984–2018 were used in the
prediction of 2034 and 2050 LULC spatial trends in the CA–Markov model. This introduces
kappa indices to assess the performance and agreement of the model: the traditional kappa,
which measures a simulation’s ability to attain perfect classification, that is, the closer to 1
the values are, the higher the level of agreement (Kstandard); the improved general kappa
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statistic, which is described as kappa for no ability (Kno); followed by the sophisticated
kappa statistics (Kquantity and Klocation) used for distinguishing placement accuracies in
both the quantity and location [54,92]. The Kno denotes the proportion classified correctly
relative to the expected proportion classified correctly by a simulation without the ability
to accurately specify quantity or location [18,92].

2.4. Predicting Future Soil Erosion Risk

The empirical RUSLE model was used to predict the spatially differentiated risk
of long-term average annual soil loss. The selection of the empirical RUSLE model to
assess future potential soil erosion risk considered the availability of data, robustness,
complexity of the landscape and calibration [93,94]. The RUSLE model is widely used
and a powerful tool to quantitatively assess spatial interactions of land use, topographic
characteristics, climate, and soil characters in order to predict the spatial distribution of soil
erosion [31,34,95–97]. The wide use of the empirical RUSLE model is based on its simplicity
and easy accessibility of data compared to complex physical models [1,98]. Unlike other
physical and process-based soil erosion models, the stochastic RUSLE model does not
address soil deposition but mainly displays areas of sheet and rill erosion processes [98],
allowing land managers to direct limited resources for landscape management [99]. The
estimation of spatial soil erosion risk by the RUSLE model makes use of the factors soil
erodibility (K), rainfall erosivity (R), slope length and steepness (LS), land cover and
management (C) and the support practices (P) [97]. The RUSLE model calculates the risk
of long-term average annual soil loss rates by multiplying the different factors:

A = K∗ R∗ C∗ LS∗ P (5)

where A: annual average soil loss (t ha−1 yr−1), R: rainfall erosivity factor (MJ mm ha−1

h−1 yr−1), K: soil erodibility factor (t ha h ha−1 MJ−1 mm−1), C: cover-management factor
(dimensionless), LS: slope length and slope steepness factor (dimensionless) and P: support
practices factor (dimensionless).

The RUSLE factors harmonized at 30 × 30 m spatial resolution for the compatibility
of data from different sources [100] are multiplied to predict the soil erosion risk for the
district using raster calculator in ArcGIS® 10.2. The computation of the RUSLE model
integrates remote sensing and GIS techniques to analyse factors and geostatistics for the
graphical interpretation [97,101].

Soil erodibility factor (K). The soil erodibility factor (K) represents the susceptibility
of the soil to detachment due to rainfall erosivity (R) [97]. The soil erodibility factor varies
corresponding to soil properties such as soil texture, type and size of aggregates, shear
strength, soil structure, infiltration capacity, bulk density, soil depth, organic matter and
other chemical constituents [97,102]. Based on the RUSLE model, the estimated K-factor
values range between 0 and 1, indicating the degree of soils’ susceptibility to erosion [97].
Thus, soils being highly susceptible to erosion have soil erodibility values near 1, whereas
the corresponding values close to 0 designate the resistive ability of a particular soil to
erosion processes [103]. For this research, available data for the computation of the K factor
were retrieved from ISRIC (International Soil Reference Information Centre), available
at 250 m spatial resolution [104]. The estimation of the K factor was performed using
the equation by Sharpley and Williams [105], which excludes soil structure and profile
permeability due to the unavailability of experimental based information.

Slope length and slope steepness factor (LS). The RUSLE model considers the ef-
fects of topography on soil erosion, including slope length (L) and slope steepness (S).
The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a
spatial resolution of 30 × 30 m (https://earthexplorer.usgs.gov/SRTM1Arc; accessed on
19 September 2020) was used for the computation of the LS factor using the Hydrology
module (field-based), embedded in SAGA 2.3 software [106,107].
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Land cover and management factor (C) and support practice factor (P). The land
cover and management factor of the RUSLE model represents the effects of vegetation
cover on soil erosion rates [97]. The C factor ranges from 0 for high-density vegetation
to 1 for barren land; bare land is frequently used as the reference land use for C factor
calibration [108,109]. The vegetation cover plays a vital role in dissipating raindrop energy
before reaching the surface, thereby reducing the harsh effects posed by raindrop impact
on the soil surface [101,108]. The C factor values in Table 1 result from the weighted
field-based observations, and additional biophysical characterizations were adopted [23].
The support practice factor (P) was assigned to be 1, corresponding to the lack of support
practice all over the study area [23].

Table 1. The weighted C factor values.

Land Use Class Weighted C Factors

CBD/industrial areas 0.017
LMD (less concentrated residential area) 0.066

HD (concentrated residential area) 0.083
Irrigated cropland 0.166
Rainfed cropland 0.239

Green spaces 0.03
Water 0

Rainfall erosivity factor (R) estimation: The R factor describes the soil loss poten-
tial triggered by rainfall [97,102,110]. As such, the analysis of the spatial distribution
of rainfall erosivity was computed following the empirical relations developed by El-
Swaify et al., [111] Equation (6), as cited [34,112],

R = 38.5 + 0.35 × M (6)

where R = rainfall erosivity factor (MJ mm ha−1 h−1 yr−1), and M = mean annual rainfall.
The further analysis highlights the likely potential effects of climate change on the

R factor. The representative concentration pathway (RCP) 4.5 and 8.5 climate scenarios
projected by multiple general circulation models (GCMs) were selected for the assessment
of future climate change, primarily variations in precipitation magnitudes on soil erosion
risk (downloaded from https://earthobservatory.nasa.gov/images/86027/; accessed on 2
October 2020). These climate change scenarios constitute a set of greenhouse gas concen-
tration and emission pathways to facilitate decision and policy makers in the crafting of
sustainable climate policies due to their plausibility [57,68]. To predict future rainfall erosiv-
ity, future RCP 4.5 and 8.5 climate scenarios proposed by the Intergovernmental Panel on
Climate Change [26] were applied (Table 2). Annual rainfall, as required for Equation (6),
was the sum of mean monthly rainfall data retrieved from the NASA Exchange Global
Daily Downscaled Projections (NEX-GDDP), as listed in Table 2, which was statistically
downscaled to a 0.25◦ by 0.25◦ spatial resolution [62,113]. The NEX-GDDP general circula-
tion models grid point data locations do not match with the Harare Meteorological gauging
points, as the spatial coverage of station data is not uniform; to cope with the varying
spatial resolutions, annual averages were interpolated using the inverse distance-weighted
methods [2].
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Table 2. Global circulation models (GCMs) used for data retrieval.

Global Circulation Model Source Original Resolution

(Lat × Lon) ◦

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization/Bureau of
Meteorology, Australia 1.875 × 1.25

BNU-ESM College of Global Change and Earth System Science, Beijing Normal
University, China 2.8 × 2.8

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8 × 2.8
CCSM4 National Centre for Atmospheric Research, United States 1.25 × 0.94

CNRM-BGC National Centre for Meteorological Research, France 1.4 × 1.4
GFDL-ESM2G NOAA/Geophysical Fluid Dynamics Laboratory, United States 2.5 × 2.0
GFDL-ESM2M NOAA/Geophysical Fluid Dynamics Laboratory, United States 2.5 × 2.0

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France 2.5 × 1.25

MIROC-ESM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and
Ocean Research Institute (The University of Tokyo), and National Institute

for Environmental Studies
2.8 × 2.8

MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and
Ocean Research Institute (The University of Tokyo), and National Institute

for Environmental Studies
2.8 × 2.8

MIROC5
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology, Japan
1.4 × 1.4

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.9 × 1.9
MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.9 × 1.9
MRI-CGCM3 Meteorological Research Institute, Japan 1.1 × 1.1
NorESMI-M Norwegian Climate Center, Norway 2.5 × 1.9

General circulation models’ performance was assessed, comparing their average an-
nual rainfall data as provided per grid cell between 1980 and 2005 with the observed data
from Harare gauging stations. This evaluation was processed by applying the interpolated
GCMs average rainfall data from six available grid points within the Harare Metropolitan
Province in parallel with observed average precipitation from the Harare Meteorological
stations (Table 3) using the standard statistical metrics [114]. The evaluation of the GCMs
performance was assessed using the standard metrics to outweigh GCMs that are not rep-
resentative: the coefficient of determination (R2), relative root mean square error (rRMSE)
(%), correlation coefficient (r), and index of agreement (d) [63,115,116]. With values ranging
between 0 and 1, the lower the values of the rRMSE, the better the model’s performance,
while the higher the value for R2, the better the goodness of fit of the model [115–117].
For the index of agreement (d), the closer values are to 1, the better they document the
increasing goodness of the fit of the model, ascertaining that there is good agreement
between the simulated and observed annual precipitation [63,118,119].

Table 3. Location of Harare Metropolitan Province gauging stations.

Rain Stations Coordinates Altitude (m.a.s.l)
Mean Annual Precipitation (mm)

1980–2005

Kutsaga 17◦55′S, 31◦08′E 1488 825.3
Belvedere 17◦50′S, 31◦01′E 1474 862.6

Airport 17◦55′S, 31◦06′E 1502 798.2

Separate runs of the GCMs ensemble averages from 2019 to 2034 and 2035 to 2050
were used for the assessment of climate variability and its impact on future soil erosion
risk under RCP4.5 and RCP8.5 climate scenarios. Estimations of future climate change
scenarios from single GCMs relay limited information required for the direct calculation
of the R factor [120,121]. Therefore, the application of multi-GCM ensemble averages
decreases individual model errors and provides more robust predictions for future climate
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change [61,63,64,122,123]. Accordingly, empirical relations were used between monthly
and annual precipitation in order to analyse GCM outputs relative to R factor changes [120].
Thus, long-term model ensemble averages were analysed for trends in rainfall erosivity
factor (R) using suitable empirical relations [97,121,124].

3. Results

3.1. Land Use Land Cover Changes

The LULC maps (1990–2008, 2000–2018 and 1984–2018) generated by supervised clas-
sification applying SVMs [15] were used to simulate LULC distribution patterns for 2018;
simultaneously, they were used as the reference for the simulation accuracy and to forecast
future land use for 2034 and 2050 (Figure 3). The adopted supervised classification maps of
the years 1984–2018 [15] show seven distinct classes (Table 4). The overall classification of
each LULC map for 1984, 1990, 2000, 2008 and 2018 was estimated to be 90.1, 85.1, 88.9,
87.6 and 89.7%, respectively. The overall Kappa coefficient values produced were 0.87, 0.82,
0.86, 0.85 and 0.87 [15]. The data reveal that spatial LULC patterns will significantly change
during the forecasted periods, indicating that the expansion of the built-up areas will be
at the expense of green spaces and croplands (Figure 3). The built-up areas will continue
to grow towards the peripheries and into the southward direction of the Epworth district
(Figure 3).

Figure 3. Land use and land cover maps for Epworth district from the support vector machines supervised classification,
simulated and predicted using the CA–Markov chain model: (a) actual 2018 supervised classification [15], (b) simulated
2018, (c) projected 2034 and (d) projected 2050. CBD: central business department, LMD: low–medium density, HD: high
density.
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Table 4. Description of LULC classes for the study (source: [15]).

LULC Class Description

CBD/industries
Industries and central business district defined with high fraction of

impervious surfaces, mainly buildings, and a low proportion of
vegetation

LMD residential Leafy and well-established low- and medium-density suburbs
surrounded by high vegetation

HD residential High-density residential areas with low vegetation cover or clustered
settlements with areas undergoing developments and bare exposed land

Irrigated cropland Cultivated land under irrigation schemes

Rainfed cropland Cultivated land or land with crop residues after harvesting

Vegetation All wooded areas, shrubs and bushes, riverine vegetation and
grass-covered areas

Water Areas occupied by water, rivers, wetlands, reservoirs and dams

Comparison of LULC areas for 2018, resulting from the supervised classification ap-
plying SVMs, with 2018 simulated LULC classes shows that the land use land cover classes
CBD/industrial, croplands, green spaces and water (Figure 3a,b) fit reasonably when
comparing each class category, while slight differences between mapped and simulated
distribution patterns occur for low–medium density and high-density residential areas
(Figure 4). To summarize, for the period 2018 to 2050, the LULC class of CBD/industrial
areas are estimated to remain stable, with an area expansion of +/−0.5–0.6% (Table 5). The
spatial distribution of the LULC classes CBD/industrial area, water and irrigated croplands
as projected for 2034 and 2050 widely correspond to those as mapped for 2018 (Figure 4).
For both projected scenarios 2034 and 2050, the low–medium residential areas are predicted
to increase slightly from 11.1 km2 to approximately 11.9 km2 between 2018 and 2034 and
up to 12.3 km2 in scenario 2050. Similarly, high-density residential areas are predicted to
increase from 18.6 km2 to 20.3 km2 between 2018 and 2034, and to reach 22.4 km2 in 2050
(Figure 4).

Low–medium-density residential areas (LMD) are predicted to increase in coverage
from 31.5% to 34.8% between 2018 and 2050, while high-density (HD) residential areas are
predicted to increase in coverage from 52.6% to 63.3% between 2018 and 2050 (Table 5).
During the period 2018–2050, the spatial distribution of croplands is predicted to decrease
from 9.5% to 1.1% of the total Epworth district area, while green spaces will shrink from
5.8% to 0.1%, largely due to the spatial expansion of built-up areas.

Table 5. Relative proportions of LULC classes by area extent (km2) and percentage (%) for the
adapted 2018 and the projected 2034 and 2050.

LULC Class
2018 2034 2050

Km2 % Km2 % Km2 %

CBD/industrial 0.2 0.5 0.2 0.6 0.2 0.6
LMD residential 11.1 31.5 11.9 33.7 12.3 34.8
HD residential 18.6 52.6 20.3 57.3 22.4 63.3

Irrigated cropland 0.1 0.4 0.1 0.2 0.1 0.1
Rainfed cropland 3.2 9.1 1.6 4.6 0.3 1.0

Green spaces 2.1 5.8 1.2 3.5 0.1 0.1
Water 0.01 0.04 0.01 0.03 0.01 0.03

CBD: central business department, LMD: low–medium density, HD: high density.
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Figure 4. The spatial area extent of different land use land cover classes for Epworth district: the depiction shows the
variation between actual 2018 support vector machines (SVMs) supervised classification and the simulated 2018 LULC
classes, including the predicted area LULC class extent for 2034 and 2050. CBD: central business department, LMD:
low–medium density, HD: high density.

The summary of the probability matrix for major LULC conversions that occurred
in Epworth district between 1990 and 2008 is documented in Table 6. The probability of
change for CBD/industrial areas to remain CBD/industrial areas between 1990 and 2008
was 96.5%, displaying that built-up areas widely remained stable and will remain stable
(Table 6). In contrast, irrigated croplands had a probability of change of 19.1%, that is,
to remain irrigated cropland between 1990 and 2008, while the probability of change of
irrigated cropland to rainfed cropland was 7.3% and to high-density residential areas was
47.2%. For green spaces, the probability to remain as green spaces between 1990 and 2008
was as low as 18.3%, while the probability of the change of green spaces to low–medium-
density residential areas was 18.5%, to high-density residential areas was 40.8% and to
croplands was 13.9% (Table 6).

Table 6. Markov chain transition probability matrix from LULC maps between 1990 and 2008.

Changing from: Probability of Changing to Another Land Use Class by 2008: Total

1990 CBD/Industrial LMD HD
Irrigated
Cropland

Rainfed
Cropland

Green
Spaces

Water

CBD/industrial 0.9650 0.0183 0.0129 0.0033 0.0000 0.0005 0.0000 1.000
LMD residential 0.0062 0.9716 0.0150 0.0051 0.0000 0.0005 0.0016 1.000
HD residential 0.0071 0.0138 0.9712 0.0027 0.0052 0.0000 0.0000 1.000

Irrigated cropland 0.0708 0.1630 0.4721 0.1910 0.0725 0.0273 0.0033 1.000
Rainfed cropland 0.0416 0.2110 0.4357 0.0574 0.2041 0.0502 0.0000 1.000

Green spaces 0.0850 0.1848 0.4080 0.0412 0.0976 0.1834 0.0000 1.000
Water 0.0295 0.0838 0.0521 0.1121 0.0000 0.0213 0.7012 1.000

CBD: central business department, LMD: low–medium density, HD: high density.

The Markov chain transition probability matrix computed LULC maps between 2000
and 2018 for the prediction of 2034 future LULC distribution patterns (Table 7), which
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indicates that in 2018 the built-up area classes have a probability of more than 95% to remain
as built-up areas in the future, documenting a stable distribution at least until 2034. For
the irrigated croplands, a probability of 10.1% is indicated to remain as irrigated croplands
until 2034, while at the same time 24.1% of the irrigated croplands have a probability to
be converted into low–medium-density residential areas, and even 40.4% of the irrigated
croplands underly a probability to be converted into high-density residential areas until
2034. For rainfed cropland, a probability of 33% is indicated to remain as rainfed cropland
until 2034, while there is a 42.8% probability that rainfed cropland will be converted into
high-density residential areas. There is a probability of 14.1% that rainfed cropland will
be converted into low–medium-density residential areas by 2034, while at the same time
there is an 8.3% probability that the rainfed croplands will be converted into green spaces.
Similarly, green spaces have a probability of 24.7% to remain as green spaces until 2034,
while for the same period, green spaces have a 30.6% probability to be converted into high-
density residential areas, and a 16.1% probability to be converted into low–medium-density
residential areas.

Table 7. Markov chain transition probability matrix from LULC maps between 2000 and 2018.

Changing from: Probability of Changing to Another Land Use Class by 2018: Total

2000 CBD/Industrial LMD HD
Irrigated
Cropland

Rainfed
Cropland

Green
Spaces

Water

CBD/industrial 0.9523 0.0109 0.0186 0.0081 0.0043 0.0058 0.0000 1.000
LMD residential 0.0000 0.9507 0.0212 0.0164 0.0000 0.0102 0.0015 1.000
HD residential 0.0064 0.0185 0.9694 0.0000 0.0057 0.0000 0.0041 1.000

Irrigated cropland 0.0500 0.2405 0.4036 0.1011 0.1310 0.0697 0.0033 1.000
Rainfed cropland 0.0000 0.1405 0.4282 0.0183 0.3297 0.0833 0.0000 1.000

Green spaces 0.0370 0.1606 0.3062 0.0641 0.1852 0.2469 0.0000 1.000
Water 0.0026 0.1332 0.1071 0.1290 0.0000 0.0000 0.6281 1.000

CBD: central business department, LMD: low–medium density, HD: high density.

Based on the period 1984–2018, the transition probability matrix for the prediction
of 2050 LULC distribution patterns was calculated (Table 8). The results indicate that
built-up areas have probabilities higher than 90% to remain as built-up areas until 2050. In
contrast, irrigated croplands have only a probability of 15% to remain as irrigated croplands
until 2050, while they simultaneously have a probability of 41% to be transformed into
high-density residential areas and a 21.4% probability to be transformed into low–medium-
density residential areas. The rainfed croplands have a probability of 22.3% to remain as
rainfed cropland until 2050; simultaneously, a 5.1% probability occurs that rainfed cropland
will be transformed into irrigated croplands, a 5.3% probability occurs that rainfed cropland
will be transformed into green spaces and a 42.5% probability occurs that rainfed cropland
will be transformed into high-density residential areas.

Table 8. Markov chain transition probability matrix from LULC maps between 1984 and 2018.

Changing from: Probability of Changing to Another Land Use Class by 2018: Total

1984 CBD/Industrial LMD HD
Irrigated
Cropland

Rainfed
Cropland

Green
Spaces

Water

CBD/industrial 0.9240 0.0308 0.0404 0.0000 0.0017 0.0031 0.0000 1.000
LMD residential 0.0000 0.9467 0.0251 0.0162 0.0000 0.0103 0.0017 1.000
HD residential 0.0064 0.0191 0.9621 0.0041 0.0060 0.0000 0.0023 1.000

Irrigated cropland 0.0612 0.2140 0.4104 0.1501 0.1268 0.0363 0.0012 1.000
Rainfed cropland 0.0640 0.1813 0.4251 0.0534 0.2229 0.0513 0.0002 1.000

Green spaces 0.0454 0.2102 0.4305 0.0313 0.0904 0.1922 0.0000 1.000
Water 0.0142 0.0965 0.1013 0.1199 0.0500 0.0000 0.6181 1.000

CBD: central business department, LMD: low–medium density, HD: high density.
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3.2. Validation of CA–Markov Model

A two-stage model validation approach was performed, including the visual inspec-
tion and quantitative assessment. The visual inspection shows that there is close agreement
between the 2018 LULC distribution patterns derived from the support vector machines
supervised classification (actual) and the 2018 LULC patterns simulated using the CA–
Markov model (Figure 3). The computed kappa statistics recorded a kappa for a no ability
Kno of 0.8893, a kappa for quantity accuracy KlocationStrata of 0.8943, a traditional kappa
Kstandard of 0.9044 and a kappa for location accuracy Klocation of 0.925. To summarize,
the kappa index of agreement values indicates that there is good agreement between the
actual and simulated 2018 LULC maps. Therefore, the model can be applied with a high
confidence in its reliability to forecast LULC maps for 2034 and 2050 (Table 9).

Table 9. Kappa indices computed between the actual and simulated 2018 LULC maps.

K Indices 2018

Kno 0.8893
Klocation 0.9251
Kstandard 0.9044

Klocationstrata 0.8943

3.3. Future Climate Data Analysis

The predicted meteorological data, as provided by the global circulation model ensem-
ble, show slightly diverging data in terms of precipitation regimes by the different climate
scenarios for the observation period 2019–2050. Comparing annual rainfall predictions as
provided by the RCP8.5 climate scenario and RCP4.5 climate scenario (Figure 5) indicates
similar trends with varying magnitude. In climate scenario RCP4.5, the predicted annual
rainfall oscillates with an overall decrease until 2050; the maximum predicted annual pre-
cipitation reaches around 950 mm in the years 2022, 2025, 2029 and 2031 and then decreases,
reaching 855 mm in 2041 and around 785 mm in 2045 and 2050 (Figure 5). Underlying the
same overall decline in precipitation, the minimum annual precipitation as predicted by
climate scenario RCP4.5 varies between 814 mm in 2027 and 770–780 mm in 2034 and 2046.
In climate scenario RCP8.5, the predicted annual rainfall also oscillates but does not show
a distinct decrease during the forecasted period until 2050, as shown by the outcomes of
RCP8.5. Maximum predicted annual precipitation varies between 800 and 900 mm and
minimum predicted annual precipitation varies between 705 and 740 mm. The years of
maximum predicted annual precipitation in RCP4.5 and RCP8.5 widely concur, but offsets
can also be repeatedly observed (Figure 5).

3.4. Model Performance Evaluation

The performance evaluation carried out for each of the 15 statistically downscaled
global circulation models’ outcomes with in situ historical observations from the Harare
gauging stations varied, as displayed in Table 10. The global circulation model performance
evaluations show that fourteen GCMs (ACCESS1-0, BNU-ESM, CanESM2, CNRM-BGC,
GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR and
NorESM1-M, CCSM4, IPSL-CM5A-LR, MIROC-ESM-CHEM) have sufficient performance
when evaluated against observations (d > 0.7, r > 0.7 and R2 > 0.5). The least successful
performance in terms of accuracy when evaluating historical observations and global
circulation models’ average precipitation data was observed for MRI-CGCM3 (R2 < 0.5),
but the results show that the model has a strong positive correlation (r > 0.7) with a high
index of agreement (d > 0.7), and an rRMSE below 20% (Table 10). As such, there is
confidence to apply the GCM data for future soil erosion risk estimation for Epworth
district (Table 10).
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Figure 5. Annual rainfall variations for Epworth district, 2019–2050, based on global circulation model ensemble climate
scenarios RCP4.5 and RCP8.5.

Table 10. The GCMs’ performance evaluation against the observed precipitation dataset from 1980 to
2005.

GCM RRMSE (%) d r R2

ACCESS1-0 15.64 0.84 0.77 0.60
BNU-ESM 16.36 0.79 0.78 0.62
CanESM2 16.49 0.80 0.78 0.61
CCSM4 18.70 0.75 0.71 0.51

CNRM-BGC 16.34 0.85 0.78 0.61
GFDL-ESM2G 17.65 0.82 0.79 0.61
GFDL-ESM2M 17.73 0.80 0.79 0.62
IPSL-CM5A-LR 17.43 0.77 0.71 0.51

MIROC-ESM 18.69 0.78 0.78 0.61
MIROC-ESM-CHEM 17.82 0.77 0.71 0.55

MIROC5 15.38 0.80 0.79 0.64
MPI-ESM-LR 16.55 0.80 0.77 0.60
MPI-ESM-MR 16.43 0.81 0.78 0.61
MRI-CGCM3 18.10 0.75 0.69 0.47
NorESMI-M 14.45 0.87 0.79 0.63

3.5. RUSLE Model Factor Maps

To be able to later assess the impact of future climate change on the future long-term
potential soil erosion risk for Epworth district, the analysis of future predicted precipitation
was split into two time intervals, 2019–2034 and 2035–2050; applying the RCP4.5 climate
scenario between 2019 and 2034, annual rainfall averages 886 mm, and for the time interval
2035–2050, annual rainfall averages 839 mm; applying the RCP8.5 climate scenario between
2019 and 2034, annual rainfall averages 827 mm, and for the time interval 2035–2050
annual rainfall averages 799 mm. For the time period 2019–2034, rainfall erosivity factor
(R) values, as derived from RCP4.5 model ensemble, are on average between 333 and
338 MJ mm ha−1 h−1 yr−1 and significantly exceed the values of the R factor based on
the RCP8.5 model ensemble of 318–324 MJ mm ha−1 h−1 yr−1 (Figure 6). For the period
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2035–2050, the R factor calculated on the basis of the RCP4.5 climate scenario varies between
321 and 328 MJ mm ha−1 h−1 yr−1, again exceeding the R factor derived from the RCP8.5
model ensemble, which varies between 313 and 318 MJ mm ha−1 h−1 yr−1. The variation
in the R factor values dictates the temporal variation in annual rainfall for different climate
scenarios. High R factor values were recorded from the RCP4.5 model ensemble averages
for both future periods considered, the highest R factor being predicted for the period
2019–2034.

Figure 6. The rainfall erosivity factors (R) for Epworth district for the time periods: (Top right) 2019–2034 (RCP4.5);
(Top left) 2019–2034 (RCP8.5); (Bottom right) 2035–2050 (RCP4.5); and (Bottom left) 2035–2050 (RCP8.5).

The soil texture in Epworth district corresponds largely to sand, sandy loam and
clayey loam; only along the alluvial plains do predominantly sandy loams occur. Cor-
respondingly, soil erodibility factor values (K) range between 0.06 and 0.09 (Figure 7b).
The topography of Epworth district is undulating to gently rolling, with steep sloping
areas along the river banks and at the intersections of tributary channels into the major
receiving streams. Related topographic factor values (LS) range from 0 in the plateau areas
up to approximately 22 on the steep sloping areas (Figure 7a). The width of the weighted
land cover and management factor values (C) range between 0 and 0.239, with different
distribution patterns in 2034 and 2050 (Figure 7c,d). Major differences in land cover and
management relate to shifts in land use over time, as predicted by the CA–Markov model
(Figure 3). Due to the lack of support practices in the study area, the support practice factor
values (P) are set as 1.
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Figure 7. RUSLE input factors for modelling potential soil erosion risk for Epworth district. (a) Topographic factor (LS); (b)
soil erodibility factor (K); (c) the crop cover and management factor (C) for 2034; (d) the crop cover and management factor
(C) for 2050.

3.6. Potential Soil Erosion Risk

Potential soil erosion risk mapping was performed independently for the years 2034
and 2050 as selected time slices, considering the two climate scenarios RCP4.5 and RCP8.5.
The predicted average soil erosion risk, applying precipitation data as provided by RCP4.5
for the period 2019–2034, totals 1.2 t ha−1 yr−1 for 2034 and 1.1 t ha−1 yr−1 for the period
2035–2050. Applying the R factor based on the annual precipitation data, as provided
by climate scenario RCP8.5, the predicted average potential soil erosion risk amounts
to 1.1 t ha−1 yr−1 in 2034 and 1.0 t ha−1 yr−1 in 2050. The estimated soil loss rate for
the climate scenario RCP4.5 in 2034 varies between 0 and 69.3 t ha−1 yr−1 and 0 and
48.9 t ha−1 yr−1 in 2050. Applying the R factor based on the annual precipitation data, as
provided by climate scenario RCP8.5, soil loss rates ranged between 0 and 62.4 t ha−1 yr−1

in 2034 and 0 and 42.3 t ha−1 yr−1 in 2050. Future potential soil erosion risk predictions
for climate scenarios RCP4.5 and RCP8.5 were significantly different (p < 0.05) for each
time interval, 2034 and 2050, highlighting that the presented changes can be attributed to
various predicted factors, including land use and rainfall erosivity changes.
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High potential soil erosion risk areas are predicted for the south-eastern periphery
of Epworth district and along the tributaries, as well moving downwards in the south
direction along the stream, as depicted in Figure 8. The predicted spatial patterns of
potential soil erosion risk applying annual precipitation data, as provided by the RCP4.5
and RCP8.5 climate scenarios for the time slices 2034 and 2050, reveal in all cases high
potential soil erosion risk along the flanks of the major rivers and along the flanks of steep
tributaries (Figure 8). The displayed potential soil erosion risk maps in Figure 8 reveal
that the predicted decrease in the R factor in the long term, corresponding to decrease
in annual rainfall averages, reduces soil erosion processes, which simultaneously is on
the rise in some localized parts of the district, and this is purportedly triggered by land
use changes. Environmental characters, predominantly topography and soil properties
(Figure 7), control the overall vulnerability of the area to soil erosion, finally displayed as
potential soil erosion risk, including rainfall and land use.

The area-wide potential soil erosion risk predicted for the year 2034, applying R factors
derived from the RCP4.5 climate scenario, indicates that 62.0% of the Epworth district will
be exposed to low potential soil erosion risk and 27.9% to moderate potential soil erosion
risk, while 8.1% will be exposed to high potential soil erosion risk and 2.0% to very high
and extreme potential soil erosion risk (Table 11). The predicted results evidently show
that there is an extensive distribution of areas of low potential soil erosion risk across the
district, while high potential soil erosion risk is predicted predominantly along the channel
networks. Applying R factors from the same climate scenario, RCP4.5, for the year 2050,
approximately 74.3% of the entire district will be exposed to low potential soil erosion risk,
14.7% will be exposed to moderate potential soil erosion risk, 5.6% will be exposed to high
potential soil erosion risk and 5.4% to very high and extreme potential soil erosion risk.
The area-wide proportion of low potential soil erosion risk extended extensively across the
entire district in 2050, attributed to the decline in the average rainfall erosivity in climate
scenario RCP4.5. Applying R factors based on the RCP8.5 climate scenario in the year 2034,
about 66.7% of the Epworth district is predicted to be exposed to low potential soil erosion
risk, 24.6% to moderate potential soil erosion risk, 7.4% to high potential soil erosion risk
and 1.3% to very high and extreme potential soil erosion risk (Table 11). Furthermore, for
the year 2050, based on RCP8.5 climate scenario, the predicted area of Epworth district
exposed to low potential soil erosion risk will be 77.7%, 14.1% will be exposed to moderate
potential soil erosion risk, 4.6% to high potential soil erosion risk and 3.6% of the entire
district will be exposed to very high and extreme potential soil erosion risk (Table 11).
Applying climate scenario RCP8.5, similar to the application of climate scenario RCP4.5,
high-intensity potential soil erosion is predicted predominantly along channel networks
and predominates in the southern area of Epworth district (Figure 8).

Table 11. Predicted proportion of the spatial area of Epworth district exposed to potential soil erosion risk.

Soil Loss
(t ha−1 yr−1) Soil Erosion Risk

Area (%) in 2018 Area (%) in 2034 Area (%) in 2050
RCP4.5 RCP8.5 RCP4.5 RCP8.5

0–1 Low 59.5 62.0 66.7 74.3 77.7
1–2 Moderate 29.3 27.9 24.6 14.7 14.1
2–5 High 10.0 8.1 7.4 5.6 4.6
5–10 Very high 1.1 1.6 1.1 3.5 2.3
>10 Extreme 0.1 0.4 0.2 1.9 1.3
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Figure 8. Predicted spatio-temporal potential soil erosion risk for Epworth district. (a) Potential
soil erosion risk for 2034 applying R factors based on RCP4.5; (b) potential soil erosion risk for 2034
applying R factors based on RCP8.5; (c) potential soil erosion risk for 2050 applying R factors based
on RCP4.5; and (d) potential soil erosion risk for 2050 applying R factors based on RCP8.5.
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The average area-wide potential soil erosion risk in Epworth district predicted for the
time slices 2034 and 2050 shows extended areas exposed to low potential soil erosion rates
between 0 and 1 t ha−1 yr−1, considering annual precipitation as provided by the RCP8.5
climate scenario. In contrast, the average area-wide potential soil erosion risk predicted
for the time slices 2034 and 2050, considering annual precipitation as provided by RCP4.5
climate scenario, distinctively exposes a smaller area to low soil loss rates between 0 and
1 t ha−1 yr−1 compared to the respective predictions applying climate scenario RCP8.5.
In relation to the study on the present-day soil erosion risk in Epworth district [23], the
current area exposed to low soil erosion risk amounts to 59.5%; thus, it is predicted to
distinctly increase in the future (Table 11). In contrast, currently 10% of the Epworth district
is exposed to high soil erosion risk and up to 1.2% is exposed to very high and extreme
soil erosion risk (Table 11). Correspondingly, it is expected that in the future, the areas in
Epworth district exposed to high potential soil erosion risk with soil loss rates between
2 and 5 t ha−1 yr−1 will markedly decrease, and most likely will even halve by 2050.
Furthermore, areas exposed to very high to extreme potential soil erosion risk with soil loss
rates of more than 5 t ha−1 yr−1 will massively increase under future changes in land use
and climate, while in 2034, under the RCP8.5 climate scenario, areas exposed to very high
potential soil erosion risk will be widely stable compared to 2018 area coverage. By 2050,
the spread of this category will double and might even triple when applying R-factors
from the RCP4.5 climate scenario (Table 11). This development is even more distinctive
when focusing on areas exposed to extreme potential soil erosion risk compared to the
present-day situation until 2034, where areas exposed to extreme potential soil erosion risk
will steadily increase by doubling the area extent when applying R-factors resulting from
the RCP8.5 climate scenario, and up to 4 times the area extent when applying R-factors
resulting from the RCP4.5 climate scenario. In 2050, areas exposed to extreme potential soil
erosion risk will have increased by more than tenfold, independent of whether applying
R-factors resulting from the RCP8.5 or RCP4.5 climate scenario. However, the total area
exposed to extreme potential soil erosion risk remains small and predominantly will occur
along the river banks (Table 11).

4. Discussion

The predicted CA–Markov model results reveal an increase in the spatio-temporal
pattern of built-up area, with built-up area expected to cover over 95% in 2050 from an
approximated total of 84.5% in 2018 (Figure 3, Table 5). The forecasted results indicate
that green spaces and croplands will continue to decline at the expense of built-up area
(Table 5). Thus, the transition probability matrices for different periods reveal the prob-
ability of each class (n) in the LULC maps changing in the next distinct period (tn+1) in
respect of the surrounding cells [22,81]. These predictions of built-up area growth at the
expense of green spaces and croplands in the Harare Metropolitan Province concur with
the conversion rates predicted by Mushore et al. [9] using CA–Markov model analysis.
The same analysis agrees with the predicted urban growth and the development of Irbid’s
governorate of Jordan, with projected built-up area growth amounting to almost 65% in
total area from an estimated 14.5% between 2015 and 2050, at the expense of vegetation and
farmlands [55]. Therefore, such developments indicate the core principle of the CA mod-
els, which stipulates that the present state of development is a continuation of historical
changes induced by the neighbourhood interactions [40,49,81]. This predicted expansion
pattern is a result of the neighbourhood effect, which exhibits that the converted land use
is next or close to the existing dominant land use, and predominantly built-up area exists
for this scenario [39,47,49].

The predicted loss of green spaces and croplands may result in the detrimental loss of
urban agricultural land and areas of aesthetic value to the ecosystem, which provide envi-
ronmental protection. With the escalating socioeconomic woes and poverty in the city [70],
the loss of urban agricultural land to urban development will leave many poorly resourced
Epworth residents with detrimental food insecurities, threatening their livelihoods since

261



Remote Sens. 2021, 13, 4360

many survive on market gardening and other urban farming activities [125,126]. The loss of
green spaces also results in the reduction in vegetation cover and biomass which dissipates
rainfall, reducing its direct impacts on the soil surface and facilitating percolation [101].
Further, with the current economic meltdown and population growth, the surge of urban
built-up area predicted by the CA–Markov model can be justified; the Epworth district will
be no exception in terms of absorbing more inhabitants from other spheres of the Harare
Metropolitan Province. This push could be exacerbated by unaffordable rental charges and
cost of living in other affluent suburbs of the Harare Metropolitan Province, resulting in
further densification and overcrowding in Epworth district. However, due to excessive
demand for shelter and anticipated population growth, the conversion of croplands and
green spaces to a built-up area will intensify impervious surfaces across the district [15,127].

The GCM ensembles were used to quantify the hydrological impacts of climate
change under different climate scenarios, RCP4.5 and RCP8.5, to obtain reliable projec-
tions [61,65,122,128]. Based on statistical metrics, the evaluation of the performance showed
that fourteen GCMs (Table 10) have sufficient performance when evaluated with obser-
vations from Harare Metropolitan gauging stations (d > 0.7, r > 0.7 and R2 > 0.5), with
the exception of MRI-CGCM3, observed to have the lowest determination coefficient of
0.47. This may suggest that the general circulation model could have other specific years
that were not properly simulated [63]; however, the analysis shows that most GCMs
displayed good simulation. Above all, the GCMs have an rRMSE below 20%, which is
reasonably acceptable [116,117,129]. Further, coarse grid resolutions from GCMs make it
difficult to match, with few in situ observations which are not uniformly distributed at-
tributed to increases in spatial variation and uncertainty to clearly define local precipitation
characteristics, therefore increasing the simulation bias [130–132].

For the RUSLE model, potential soil erosion risk maps were produced using the
geostatistical ArcGIS package (raster calculator) to multiply the RUSLE factor maps
(Figures 6 and 7). The predicted potential soil erosion risk averaged at 1.2 t ha−1 yr−1

in 2034 and 1.1 t ha−1 yr−1 in 2050 for the RCP4.5 climate scenario, while 1.1 t ha−1 yr−1

and 1.0 t ha−1 yr−1 were the predicted averages for 2034 and 2050 for the RCP8.5 climate
scenario. Meanwhile, studies on the influence of land use change or the impact of soil
erosion risk on crop productivity indicated that a tolerable soil loss rate at 1 t ha−1 yr−1 was
sustainable for the tropics [95,133–135]. Based on the slow rate of soil formation across the
tropics, including Europe and America (<1 t ha−1 yr−1) [95,133,136,137], the sustainable
soil loss tolerance at 1 t ha−1 yr−1 was considered across the entire Epworth district. The
resulting arguments around the proposed 10 t ha−1 yr−1 as the estimated soil erosion
tolerance threshold for tropical ecosystems showed that it was highly overestimated, con-
sidering threats to the landscape and impacts on crop productivity likely to occur at such a
high risk threshold [138]. Furthermore, other studies indicated that average soil loss rates
of 5 t ha−1 yr−1 may be sustainable soil loss rates in the tropics [139,140]. Nevertheless, an
estimated 1 t ha−1 yr−1 soil loss threshold subsisted for the current study and the predicted
area-wide averages were unsustainable in that they slightly surpassed the recommended
soil loss threshold, except for the RCP8.5 climate scenario in 2050. However, the slight no-
table deviation from the 1 t ha−1 yr−1 sustainable threshold can be justified as the averages
fall within the applicable tolerable range of c.a 1.4 t ha−1 yr−1 proposed for some parts of
the tropics, including America and Europe [137]. Thus, the estimated soil loss tolerance
threshold was used to describe a sustainable soil loss rate [141].

The integrated average annual precipitation between 2019 and 2034, based on the
climate scenario RCP4.5 results, shows high average annual soil loss rates ranging between
0 and 69.3 t ha−1 yr−1 and 0 and 62.4 t ha−1 yr−1 for the RCP8.5 climate scenario in 2034. In
contrast, applying average annual precipitation between 2035 and 2050, the R factor-based
values show a decline in soil loss rates for the year 2050 in both climate scenarios ranging
between 0 and 48.9 t ha−1 yr−1 for RCP4.5 and 0 and 42.3 t ha−1 yr−1 for RCP8.5. However,
these results show a continuous declining trend of soil loss rates when compared with the
baseline period that applied the R factor based on the average annual precipitation data
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derived from in situ observations between 1984 and 2000 for Epworth district, estimating
high soil erosion risk with average annual soil loss rates between 0 and 92.8 t ha−1 yr−1 in
2000 [23]. In summary, the soil loss rates for both the RCP4.5 and RCP8.5 climate scenarios
are observed to be decreasing in spatial coverage over the years 2034 and 2050. Regardless
of the high rainfall erosivity predicted between 2019 and 2034 in comparison with soil
loss rates estimated for the year 2000 [23], it is revealed that land use changes, including
the shrinking of croplands and disturbed shrublands, predominantly reduce the soil loss
impact due to increases in impervious surfaces across the Epworth district.

The increasing potential soil erosion risk predicted for Epworth district along the
channel networks has been attributed to the steep slopes along the streams in combination
with massive impervious surfaces, resulting in the accumulation of overland flow [142].
Correspondingly, high topographic factor values appear on valley flanks (Figure 7), expos-
ing surfaces to severe runoff and flooding resulting from the increased slope inclination and
reduced infiltration capacity [143,144]. Displayed soil loss rates exceeding 1 t ha−1 yr−1

for Epworth district will be considered unsustainable [95,137], and therefore, the need for
sound policy implementation to avoid detrimental environmental damage. Such estimates,
as indicated in Table 11, reveal that a larger proportion of the study area will be exposed
to tolerable soil loss rates [95,133,134]. Nevertheless, there is a predicted increase in soil
erosion risk in vulnerable areas, mainly downslope and low-lying areas along the flanks of
the channel networks [23,142,145].

The study results predict that soil loss rates vary with precipitation and land use
changes for all the climate scenarios. The results suggest that the soil erosion response with
regard to climate change could be complex, as it varies with time and on a climate scenario
basis [25]. Consequently, the proportion of area exposed to high potential soil erosion risk
with average soil loss rates between 2 and 5 t ha−1 yr−1 will markedly decline and most
likely will even halve by 2050, as opposed to the doubling and triplicating proportional
areas exposed to very high and extreme potential soil erosion risk for both climate scenarios
in 2050. This is linked with the increasing vulnerability to smaller proportional area
occupied by sparse green spaces and bare areas along channel networks. Such increasing
trends in potential soil erosion risks are primarily accelerated by concentrated overland
flow resulting from reduced infiltration processes across the Epworth district [99,143,146].
This vulnerability and response to rainfall impact and runoff processes with regard to
reduced spatial area exposed to direct soil displacement in 2050 underpins the effects of
land use changes and sloping topography along the channel network [114,147].

The decreasing rainfall erosivity for both scenarios over time concurs with the future
analysis that incorporated regional climate models (RCMs) by Hudson and Jones [130], in
which they highlighted the likelihood of increasing consecutive dry days in southern Africa;
however, with some increases in other parts of the region [148]. Additionally, interannual
high rainfall intensity impact is relatively expressed as this would be masked in annual
rainfall averages due to low rain-day frequency [148]. The contraction of the rainfall season
was projected following the observed late onset and early rainfall cessation in sub-Saharan
Africa, mostly in central Mozambique, large parts of Botswana and the northern and south-
ern parts of Zimbabwe [148]. Such responses to climate change tally with the predicted
decline in overall soil erosion risk in 2050, which, however, still require more robust regional
analysis on precipitation uncertainties to global climate change [130,148,149]. Nevertheless,
the use of model ensemble averages could have limited the impact of other predicted
extreme rainfall events [61,65,122]. Such changes and manipulations of rainfall intensities
could negatively impact the final soil erosion prediction outcome [150,151]. Furthermore,
the use of coarse grid resolutions and numerical methods reduces models’ data indepen-
dency, and therefore increases the bias and uncertainty range of the outcomes [61,122,123].
The empirical RUSLE model is also limited only to the predictive capacity of sheet, inter-rill
and rill soil erosion processes spanning over long periods, as it is not an event-based model,
which also does not consider gullying erosion processes [1,93,97,152,153]. Other data-
driven processes integrated in the empirical RUSLE technique increase the uncertainty of
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future soil erosion risk due to varying data sources applied without rigorous quantification
of their uncertainties and propagation [1,154].

Overall, high potential soil erosion risk displayed within the vicinity of Jacha river and
tributaries extending from the north and southeast parts of the district draining southwards
continue to increase, as predicted by the RUSLE model widely in 2050. This is attributed to
the increasing sealed surface area and the sloping topography contributing to increased
overland flow and surface runoff [143,155]. Taking into account human activities, previous
studies reiterated that sand poaching activities along riverbanks are associated with heavy
trucks ferrying sand to construction sites, contributing to high soil compaction on unpaved
roads [23,24,142], reducing the infiltration capacity, and hence increasing surface runoff
processes. For Epworth district, activities such as sand poaching and extraction along the
riverbanks will be inevitable due to the predicted built-up area expansion and due to the
fact that for many locals, informal activities provide employment for the sustenance of
their livelihoods. Therefore, there is a need to implement sound policies and sustainable
environmental management approaches in order to curb environmental damage and the
future extinction of water bodies and their ecosystem services. Uncertainties exist in
this study about policy amendments regarding the functionality of the Local Boards and
Authorities in regulating developmental plans. This, in turn, will affect LULC changes in
the Epworth district of the Harare Metropolitan Province. However, this was held constant
in the prediction of future LULC distribution patterns for Epworth district.

5. Conclusions

The study uses LULC distribution patterns between 1990 and 2008 to apply a Markov
chain model which allows the development of a transition probability matrix and suitability
maps, and later defines the complex dynamic spatial patterns of urban area by the flexible
Cellular Automatons. The validation of the simulated 2018 LULC distribution patterns
and the actual 2018 LULC map displayed strong spatial agreement, both quantitatively
and through visual inspection. The strong agreement and consistency of the LULC spatial
patterns from the cross validation displayed the reliability and usability of the CA–Markov
model to predict 2034 and 2050 future LULC distribution patterns for Epworth district. The
predicted findings show a continuous increase in urban built-up area over the years 2034
and 2050 at the expense of croplands and perturbed green spaces, predominantly with the
expansion of high-density residential areas towards Epworth district peripheries.

Further, future potential soil erosion risk was predicted for the years 2034 and 2050
using the RUSLE model, which integrated R factors based on the average annual precipita-
tion between 2019 and 2034 and 2035 and 2050, as provided by climate scenarios RCP4.5
and RCP8.5. The goodness of fit measures highlighted that the general circulation models
(GCMs) are useful for the assessment of future soil erosion risk, following the evaluation
of GCMs performance with gauged observations, which showed a good performance,
ascertaining their feasibility. As such, ensemble average outcomes from multiple GCMs
under both the RCP4.5 and RCP8.5 climate scenarios were incorporated in the regional
statistical relations equation to derive the rainfall erosivity factor for use in the RUSLE
model.

Future trends in climate variability reveal that the projected high rainfall for the
RCP4.5 climate scenario between 2019 and 2050 compared to the RCP8.5 climate scenario
will contribute to high localized soil erosion risk in vulnerable areas, including perturbed
green spaces, agricultural land and stream banks. High soil loss rates were predicted
in 2034 for both climate scenarios RCP4.5 and RCP8.5, in comparison with low soil loss
rates in 2050 for both climate scenarios, and this is largely attributable to the predicted
dynamic land use changes resulting in the reduction in surface area exposed to soil erosion
processes over time. The predicted results also indicate that average annual soil loss rates
will approximately halve in 2050 from an estimated 0–93 t ha−1 yr−1 in 2000, independent
of whether the RCP4.5 or RCP8.5 climate scenario is applied. Nevertheless, for 2050,
increasing soil erosion risks have been predicted along the flanks of the drainage networks.
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Overall, this study highlights the application of the CA–Markov model in combination
with the RUSLE model to derive useful simulations for predicting future LULC and soil
erosion risk. In addition, based on the stipulated IPCC policy recommendations from the
Fifth Assessment Report (AR5), governments and policy makers need to implement sound
climate policies in order to curtail and curb environmental degradation and landscape
fragmentation at the local scale.
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M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.
PLoS ONE 2017, 12, e0169748. [CrossRef]

105. Sharpley, A.N.; Williams, J.R. EPIC—Erosion/Productivity Imappct Calculator: 1. Model Documentation.; Technical Bulletin; U.S.
Department of Ariculture: Washington, DC, USA, 1990; Volume 1768.

106. Desmet, P.J.J.; Govers, A. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex
Landscape Units. J. Soil Water Conserv. 1996, 51, 427–433.

107. Panagos, P.; Borrelli, P.; Meusburger, K. A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil
Erosion by Water. Geosciences 2015, 5, 117–126. [CrossRef]

108. Kefi, M.; Yoshino, K.; Setiawan, Y.; Zayani, K.; Boufaroua, M. Assessment of the Effects of Vegetation on Soil Erosion Risk by
Water: A Case of Study of the Batta Watershed in Tunisia. Environ. Earth Sci. 2011, 64, 707–719. [CrossRef]

109. Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of
Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [CrossRef]

110. Stocking, M.A.; Elwell, H.A. Rainfall Erosivity over Rhodesia. Trans. Inst. Br. Geogr. 1976, 1, 231. [CrossRef]
111. El-Swaify, S.A.; Gramier, C.L.; Lo, A. Recent Advances in Soil Conservation in Steepland in Humid Tropics. In Proceedings of the

International Conference on Steepland Agriculture in the Humid Tropics, Kuala Lumpur, Malaysia, 17–21 August 1987.
112. Merritt, W.S.; Croke, B.F.W.; Jakeman, A.J.; Letcher, R.A.; Perez, P. A Biophysical Toolbox for Assessment and Management of

Land and Water Resources in Rural Catchments in Northern Thailand. Ecol. Model. 2004, 171, 279–300. [CrossRef]
113. Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature

Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [CrossRef]
114. Sardari, M.R.A.; Bazrafshan, O.; Panagopoulos, T.; Sardooi, E.R. Modeling the Impact of Climate Change and Land Use Change

Scenarios on Soil Erosion at the Minab Dam Watershed. Sustainability 2019, 11, 21. [CrossRef]
115. Bsaibes, A.; Courault, D.; Baret, F.; Weiss, M.; Olioso, A.; Jacob, F.; Hagolle, O.; Marloie, O.; Bertrand, N.; Desfond, V.; et al. Albedo

and LAI Estimates from FORMOSAT-2 Data for Crop Monitoring. Remote Sens. Environ. 2009, 113, 716–729. [CrossRef]
116. Chen, J.-L.; Liu, H.-B.; Wu, W.; Xie, D.-T. Estimation of Monthly Solar Radiation from Measured Temperatures Using Support

Vector Machines—A Case Study. Renew. Energy 2011, 36, 413–420. [CrossRef]
117. Chen, J.-L.; Li, G.-S.; Wu, S.-J. Assessing the Potential of Support Vector Machine for Estimating Daily Solar Radiation Using

Sunshine Duration. Energy Convers. Manag. 2013, 75, 311–318. [CrossRef]
118. Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, K.M.; Kisekka, I.; Martorano, L.G. Assessment of Maize Growth and Yield

Using Crop Models under Present and Future Climate in Southwestern Ethiopia. Agric. For. Meteorol. 2015, 214–215, 252–265.
[CrossRef]

119. Willmott, C.J. Some Comments on the Evaluation of Model Perfomance. Am. Meteorol. Soc. 1982, 63. [CrossRef]
120. Nearing, M.A. Potential Changes in Rainfall Erosivity in the U.S with Climate Change during the 21st Century. J. Soil Water

Conserv. 2001, 56, 229–232.
121. Zhang, X.-C. A Comparison of Explicit and Implicit Spatial Downscaling of GCM Output for Soil Erosion and Crop Production

Assessments. Clim. Change 2007, 84, 337–363. [CrossRef]
122. Sperna Weiland, F.C.; van Beek, L.P.H.; Weerts, A.H.; Bierkens, M.F.P. Extracting Information from an Ensemble of GCMs to

Reliably Assess Future Global Runoff Change. J. Hydrol. 2012, 412–413, 66–75. [CrossRef]
123. Vrochidou, A.-E.K.; Grillakis, M.G.; Tsanis, I.K. Drought Assessment Based on Multi-Model Precipitation Projections for the

Island of Crete. J. Earth Sci. Clim. Change 2013, 4. [CrossRef]
124. Ferro, V.; Porto, P.; Yu, B. A Comparative Study of Rainfall Erosivity Estimation for Southern Italy and Southeastern Australia.

Hydrol. Sci. J. 1999, 44, 3–24. [CrossRef]
125. Tawodzera, G. Vulnerability in Crisis: Urban Household Food Insecurity in Epworth, Harare, Zimbabwe. Food Secur. 2011, 3,

503–520. [CrossRef]
126. UNDP Urban Agriculture: Foods, Jobs and Sustainable Cities 1996. Available online: http://jacsmit.com/book/Chap01.pdf

(accessed on 23 April 2021).
127. Wania, A.; Kemper, T.; Tiede, D.; Zeil, P. Mapping Recent Built-up Area Changes in the City of Harare with High Resolution

Satellite Imagery. Appl. Geogr. 2014, 46, 35–44. [CrossRef]

269



Remote Sens. 2021, 13, 4360

128. Hagemann, S.; Göttel, H.; Jacob, D.; Lorenz, P.; Roeckner, E. Improved Regional Scale Processes Reflected in Projected Hydrological
Changes over Large European Catchments. Clim. Dyn. 2009, 32, 767–781. [CrossRef]

129. Arumugam, P.; Chemura, A.; Schauberger, B.; Gornott, C. Near Real-Time Biophysical Rice (Oryza Sativa L.) Yield Estimation to
Support Crop Insurance Implementation in India. Agronomy 2020, 10, 1674. [CrossRef]

130. Hudson, D.A.; Jones, R.G. Regional Climate Model Simulations of Present-Day and Future Climates of Southern Africa. Tech Rep
Hadley Cent. Tech. Note 39 Hadley Cent. Clim. Predict. Res. Met Off. 2002, 39, 42.

131. Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J.; Shongwe, M.E. Evaluation and Projections
of Extreme Precipitation over Southern Africa from Two CORDEX Models. Clim. Change 2016, 135, 655–668. [CrossRef]

132. Shongwe, M.E.; Oldenborgh, G.J.V. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part
II: East Africa. J. Clim. 2011, 24, 16. [CrossRef]

133. Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Prediction of Spatial Soil Loss Impacted by Long-Term Land-
Use/Land-Cover Change in a Tropical Watershed. Geosci. Front. 2019, 10, 389–403. [CrossRef]

134. Khosrokhani, M.; Pradhan, B. Spatio-Temporal Assessment of Soil Erosion at Kuala Lumpur Metropolitan City Using Remote
Sensing Data and GIS. Geomat. Nat. Hazards Risk 2014, 5, 252–270. [CrossRef]

135. Kouli, M.; Soupios, P.; Vallianatos, F. Soil Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS
Framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [CrossRef]

136. Jones, R.J.A.; Le Bissonnais, Y.; Bazzoffi, P.; Sanchez Diaz, J.; Düwel, O.; Loj, G.; Øygarden, L.; Prasuhn, V.; Rydell, B.; Strauss, P.
Interim Report Version 3.31, 28 October 2003. 2003, Volume 3, p. 28. Available online: https://esdac.jrc.ec.europa.eu/ESDB_
Archive/pesera/pesera_cd/pdf/WP2ErosInterimRepV331_4CD.pdf (accessed on 11 April 2021).

137. Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus Actual Soil Erosion Rates in Europe. Earth-Sci. Rev. 2009,
94, 23–38. [CrossRef]

138. Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing Ltd: Oxford, UK, 2005.
139. Bamutaze, Y. Revisiting Socio-Ecological Resilience and Sustainability in the Coupled Mountain Landscapes in Eastern Africa.

Curr. Opin. Environ. Sustain. 2015, 14, 257–265. [CrossRef]
140. Lufafa, A.; Tenywa, M.M.; Isabirye, M.; Majaliwa, M.J.G.; Woomer, P.L. Prediction of Soil Erosion in a Lake Victoria Basin

Catchment Using a GIS-Based Universal Soil Loss Model. Agric. Syst. 2003, 76, 883–894. [CrossRef]
141. Alewell, C.; Egli, M.; Meusburger, K. An Attempt to Estimate Tolerable Soil Erosion Rates by Matching Soil Formation with

Denudation in Alpine Grasslands. J. Soils Sediments 2015, 15, 1383–1399. [CrossRef]
142. Braud, I.; Breil, P.; Thollet, F.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Evidence of the Impact of

Urbanization on the Hydrological Regime of a Medium-Sized Periurban Catchment in France. J. Hydrol. 2013, 485, 5–23.
[CrossRef]

143. Dams, J.; Dujardin, J.; Reggers, R.; Bashir, I.; Canters, F.; Batelaan, O. Mapping Impervious Surface Change from Remote Sensing
for Hydrological Modeling. J. Hydrol. 2013, 485, 84–95. [CrossRef]

144. Le Roux, J.J.; Sumner, P.D. Factors Controlling Gully Development: Comparing Continuous and Discontinuous Gullies. Land
Degrad. Dev. 2012, 23, 440–449. [CrossRef]

145. Opeyemi, O.A.; Abidemi, F.H.; Victor, O.K. Assessing the Impact of Soil Erosion on Residential Areas of Efon-Alaaye Ekiti,
Ekiti-State, Nigeria. Int. J. Environ. Plan. Manag. 2019, 5, 9.

146. Phil-Eze, P.O. Variability of Soil Properties Related to Vegetation Cover in a Tropical Rainforest Landscape. J. Geogr. Plan. 2010, 3,
174–188.

147. Renschler, C.S.; Mannaerts, C.; Diekkrüger, B. Evaluating Spatial and Temporal Variability in Soil Erosion Risk—Rainfall Erosivity
and Soil Loss Ratios in Andalusia, Spain. CATENA 1999, 34, 209–225. [CrossRef]

148. Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.J.J.M.; de Boer, B.; Coelho, C.A.S.; van Aalst, M.K. Projected Changes in
Mean and Extreme Precipitation in Africa under Global Warming. Part I: Southern Africa. J. Clim. 2009, 22, 3819–3837. [CrossRef]

149. IPCC, (Intergovernmental Panel on Climate Change) Climate Change: The Physical Science Basis, Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007. Available online: https:
//www.ipcc.ch/report/ar4/wg1/ (accessed on 18 March 2021).

150. Boardman, J. Soil Erosion Science: Reflections on the Limitations of Current Approaches. CATENA 2006, 68, 73–86. [CrossRef]
151. Turnbull, L.; Parsons, A.J.; Wainwright, J.; Anderson, J.P. Runoff Responses to Long-Term Rainfall Variability in a Shrub-

Dominated Catchment. J. Arid Environ. 2013, 91, 88–94. [CrossRef]
152. Shamshad, A.; Azhari, M.N.; Isa, M.H.; Hussin, W.M.A.W.; Parida, B.P. Development of an Appropriate Procedure for Estimation

of RUSLE EI30 Index and Preparation of Erosivity Maps for Pulau Penang in Peninsular Malaysia. CATENA 2008, 72, 423–432.
[CrossRef]

153. Phinzi, K.; Ngetar, N.S. The Assessment of Water-Borne Erosion at Catchment Level Using GIS-Based RUSLE and Remote Sensing:
A Review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [CrossRef]

154. Falk, M.; Denham, R.J.; Mengersen, K.L. Estimating Un-Certainty in the Revised Universal Soil Loss Equation via Bayesian
Melding. J Agric Biol Env. Sta. 2010, 15, 20–37. [CrossRef]

155. Cantón, Y.; Solé-Benet, A.; de Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A Review of Runoff
Generation and Soil Erosion across Scales in Semiarid South-Eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [CrossRef]

270



remote sensing 

Article

Correlation Analysis between Land-Use/Cover Change and
Coastal Subsidence in the Yellow River Delta, China:
Reviewing the Past and Prospecting the Future

Yi Zhang 1,*, Yilin Liu 2, Xinyuan Zhang 1, Haijun Huang 3,4, Keyu Qin 3, Zechao Bai 5 and Xinghua Zhou 1

Citation: Zhang, Y.; Liu, Y.; Zhang,

X.; Huang, H.; Qin, K.; Bai, Z.; Zhou,

X. Correlation Analysis between

Land-Use/Cover Change and Coastal

Subsidence in the Yellow River Delta,

China: Reviewing the Past and

Prospecting the Future. Remote Sens.

2021, 13, 4563. https://doi.org/

10.3390/rs13224563

Academic Editors: Baojie He,

Ayyoob Sharifi, Chi Feng and

Jun Yang

Received: 8 October 2021

Accepted: 7 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Ocean Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; nancy2710@163.com (X.Z.); xhzhou@fio.org.cn (X.Z.)

2 College of Earth Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; lyilin@msn.com

3 Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences,
Qingdao 266071, China; hjhuang@qdio.ac.cn (H.H.); qdqky924@126.com (K.Q.)

4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5 School of Information Science and Technology, North China University of Technology, Beijing 100144, China;

baizechao1991@163.com
* Correspondence: 7706465@163.com

Abstract: In recent years, noticeable subsidence depressions have occurred along the coastal zone of
the Yellow River Delta. Consistent with these changes, dramatic human modifications within the
coastal zone stand out, and the coastline is altered from an undisturbed natural area to an artificial
coastline. However, very few studies have attempted to quantitatively analyze the relationship
between subsidence depression and human activities. Here, the subsidence characteristics of the
different land-use types in the Yellow River Delta are examined, and their spatiotemporal trends are
quantified using a long-term satellite-observed time series of 30 years (1984–2017) regarding the land
use map in combination with the InSAR-derived vertical ground deformations during three typical
periods (P1: 1992–2000, P2: 2007–2010, and P3: 2016–2017). Noticeably, the highest subsidence rates
were observed in areas where substantial human activities were observed, such as the subsidence in
the salt fields ranging from 13 mm/year to 32 mm/year to 453 mm/year, respectively. Moreover,
through the land-use prediction of Land Change Modeler (LCM), it is found that the salt field area
will be further expanded in the future. The ecological vulnerability of the Yellow River Delta coastal
zone should receive more attention in the future in terms of planning environmental protection
strategies.

Keywords: land-use/cover change; coastal subsidence; underground brine exploitation; Sentinel-1A;
Landsat; GIS

1. Introduction

There is no doubt that the amount of human interference in Earth systems has strongly
increased during the last century and has now reached a new high level, with even greater
effects than those of many natural processes on Earth [1]. In recent decades, most of the
deltas in the world have undergone artificial transformations. In East Asia, the Yellow
River Delta is highlighted as a hotspot due to its dramatic coastal land-use changes [2,3].
The delta’s natural coastline has become dominated by artificial shorelines due to the boom
of the nearshore salt and aquaculture industries, with natural areas decreasing from 70% in
1974 to 11% in 2015 [4].

On the other hand, deltaic sediments are naturally prone to sinking due to their
high compressibility and low bearing capacity. It is clear that human activity has ac-
celerated this natural process, primarily through the exploitation of groundwater and
hydrocarbons [5–7]. In the Yellow River Delta, an increasing number of case studies have
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shown that groundwater (including underground brine water) pumping and hydrocarbon
extraction are responsible for the large amount of sinking in coastal regions [8–14].

However, the relationship between land-use changes and subsidence has not been well
analyzed, and it is still not clear whether there is a causal relationship between them [15,16].
This study demonstrates the evolution of the coastal land-use of the Yellow River Delta,
which is represented by shrimp farms, oil fields, and salt pans, and these aspects have
been subjected to tremendous alterations due to human activities over the past 30 years.
Specifically, the study aims to evaluate the relationship between land-use evolution and
land subsidence risk in this delta. Moreover, we attempt to predict the future trend of
land use based on the land-use history and relevant terrain factors (see Section 3.1.3 for
details), such as slope, aspect, and a digital elevation model (DEM). It is expected that
this prediction can provide a scientific basis for land-use planning and the exploitation of
groundwater.

2. Study Area

The Yellow River Delta is one of the most active areas of land use/cover change
(LUCC) in China, and one of the fastest land-making deltas in the world (Figure 1). The
delta is formed by the accumulation of delta sediments since the Yellow River diverted in
1855, so the thickness of sediments gradually thickens from land to sea, from 4 m to 16 m.
The spatial distribution of sediment thickness is shown in the previous article [17].

Figure 1. The location of the study area is outlined by the yellow polygon within the standard
false-color Landsat 8 OLI image of the Yellow River Delta in September 2017.

The Yellow River Delta is located between the Jiyang fault depression and the Chengn-
ing uplift, with rich reserves of oil, gas, brine, and water resources [11]. The groundwater
in the Yellow River Delta is mainly composed of loose-rock pore water and mainly occurs
in alluvial and marine sediments in the upper part of the Quaternary system [18]. Since
the late Pleistocene, there have been three major transgression–regression events in the
delta [17]. Consequently, a large amount of underground brine has been found in the
Pleistocene aquifer. It has been shown that there is a large underground brine resource belt
along the coast of Bohai Bay. According to its burial depth, the belt is generally divided into
three categories: shallow brine (100 m to the surface), medium brine (100 to 400 m), and
deep brine (400 m and deeper). Previous studies [18] have shown that the development of
underground brine resources is limited to shallow underground brines. The salt pan area
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of the whole province is approximately 400 km2, with approximately 5600 brine wells and
an annual output of 6.53 million tons of raw salt.

3. Materials and Methods

3.1. Land-Use Maps
3.1.1. Remote Sensing Datasets

We built a novel constant time series of land-use maps by employing optical satellite
remote sensing Landsat mission images. Landsat-series images were chosen due to the
long period of available images, the appropriate ground resolution (30 m × 30 m), the
broad range of spectral bands, and the free access to the images (Accessed date: 10 February
2019 http://earthexplorer.usgs.gov/). The Landsat tile (path 121, row 34) covering the
entire delta was selected and outlined as the study area (Figure 1). To analyze the land-use
evolution with the maximum access to the land-use history, quantify the synchronous
subsidence rates obtained from InSAR-derived subsidence rates (see 3.3 for details), and
reduce the classification errors caused by seasonal variation (especially vegetation cover),
six Landsat satellite images (1984, 1992, 2000, 2007, 2010, and 2017) with low cloud coverage
during autumn (August–October) were screened (Table 1). We use all satellite images
passing through during the day, so it is in a descending mode.

Table 1. The detailed information of the six Landsat satellite images.

Sensor ID Date Acquired Path/Row Resolution Cloud Cover

Landsat5 TM 3 September 1984 121/34 30 m × 30 m 9.92%
Landsat5 TM 24 August 1992 121/34 30 m × 30 m 0.02%
Landsat5 TM 17 October 2000 121/34 30 m × 30 m 0.42%

Landsat7 ETM+ 11 September 2007 121/34 30 m × 30 m 0.31%
Landsat7 ETM+ 17 November 2010 121/34 30 m × 30 m 0

Landsat8 OLI 30 September 2017 121/34 30 m × 30 m 3.08%

For our research, we defined the three most representative manmade land-use classes
to include shrimp ponds, salt pans, and oil wells in the deltaic coastal zone. To encompass
the major human-induced zones, we produced a buffer polygon (~2500 km2, with a 10 km
radius) around the 2017 coastline (~350 km) as the study area in our analyses (Figure 1,
yellow polygon).

Furthermore, the topographic map constructed in 1998 was employed to depict the
locations of oil wells that are too small to be identified from the Landsat images.

3.1.2. Image Classification

The Landsat images were classified with a supervised method according to the follow-
ing two primary steps: (1) the choice of training samples and (2) the use of an appropriate
classification algorithm. We employed a “maximum likelihood classification” (MLC) algo-
rithm to assign the land-use types to the patches in the Landsat images [19]. We define

X = {xi}N
i=1,

as an original image pixel and
Y = {yi}N

i=1,

as the classification result. The MLC algorithm can be described as follows:

Ŷ = a{yi}N
i=1,

where N is the number of pixels in the original dataset and Ŷ is the solution of the opti-
mization problem. We should note that this algorithm is conducted under the presumption
that each pixel to be classified is normally distributed in each class [20].
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According to the results of the image classification, the transformation matrix can be
realized to quantitatively examine the land-use changes. First, two different land-use maps
with identical class names were dissolved by merging the matching records into a single
map to improve the following processing. Then, these two dissolved maps were intersected
based on the overlay analysis. The above two steps were accomplished in ArcGIS 10.2.
Subsequently, these two maps were used to produce a transformation matrix in Excel.

3.1.3. Land-Use Prediction

The land change modeler (LCM) model is an integrated module in the IDRISI soft-
ware. It has been developed by the Clark Laboratory and Conservation International for
many years [21]. It is becoming one of the commonly used models to measure land-use
changes [22]. The LCM model consists of a multilayer perceptron–artificial neural network
(MLP-ANN), a Markov chain, cellular automata, and soft and hard prediction models. The
model can predict the future land-use status through simulation of the existing land-use
status and provides a good reference for decision-makers who plan and protect. Here,
we randomly selected two-thirds of the samples as training samples, and the remaining
one-third of the samples to verify the accuracy of the model. Moreover, the model can
predict and analyze land-use changes in the environment provided by IDRISI and runs by
following a set of rules in an orderly manner.

3.2. Land Subsidence Measurement
3.2.1. Rerunning Geodetic Leveling

The land subsidence in the study area in recent decades was monitored through
repeated geodetic leveling by employing the benchmark network produced by the Yellow
River Conservancy Commission from 1964 to 2007. The leveling dataset used for this study
is available from Liu and Huang (2013) between 2000 and 2007 (Figure 1, red triangle)
and from the Shandong Provincial Lubei Geo-engineering Exploration Institute from 2016
to 2017 (Figure 1, green triangle), with random errors of 3–5 mm/km and 1 mm/km,
respectively. The original leveling measurements were digitized and interpolated to derive
a homogeneous set of contour maps of the land subsidence rates (Figure 2b).

 

Figure 2. Land subsidence rate maps ((a,c,d,) derived from InSAR; (b) geodetic leveling) [11,13].
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3.2.2. InSAR Observations

In comparison with the traditional investigation method of geodetic leveling, the
InSAR technique has great advantages due to its broad coverage and high spatial–temporal
resolution under all weather conditions. More recently, radar acquisitions by various
satellites (ERS-1/2, ENVISAT-ASAR, and Sentinel-1A/B) were processed through synthetic
aperture radar (SAR) interferometry over the delta [8–14]. In the ArcGIS software environ-
ment, the conversion from InSAR vector feature point data to grid data was realized, and
then the land subsidence maps were generated by Kriging interpolation method. The land
subsidence map was shown in Figure 2a (1992–2000) and 2c (2007–2010), with estimated
errors caused by spatiotemporal variability in the surface scattering properties of 6.1 and
7.2 mm/year, respectively [11,13]. Except forSsentinel-1A, which was in ascending orbit
mode, all satellites were in descending orbit mode.

As shown in Figure 2d, we further measured recent subsidence rates in P3, by anal-
ysis of interferometric synthetic aperture radar (InSAR) imagery, using 15 C-band as-
cending track Sentinel-1A images acquired over the period from Jan 2016 to Apr 2017.
InSAR-derived subsidence rates are consistent with the leveling-based rates (mentioned in
Section 3.2.1, Figure 1, green triangle). The comparative results are shown in Figure 3. The
mean and standard deviation of the difference of the deformation rate between the two
measurements are 3.52 mm/year and 6.87 mm/year, respectively. This small error indicates
that the InSAR observations are in good agreement with the results from repeated geodetic
leveling. The settlement extremes in Figure 3 are consistent with other references [8,14].

 
Figure 3. Comparison between InSAR and leveling measurements from 2016 to 2017.

3.3. Coupling Land-Use and Land-Cover Change with Subsidence

The land-use sequence maps were integrated with the corresponding land subsidence
maps to quantify the subsidence rates for each land-use class during each time period. To
improve the integration accuracy, the four corresponding Landsat images (1992, 2000, 2007,
and 2010) were chosen for combination with the two available groups of InSAR-based
subsidence measurements (Figure 2a,c).

First, the massive vector data (millions of InSAR feature points and image patches)
were converted into a raster format by employing a conversion tool embedded in ArcGIS to
improve the processing efficiency. Then, a relational equal-to operation was performed on
two inputs (e.g., 1992 and 2000 classified raster maps) on a cell-by-cell basis using the map
algebra functions in GIS. It was set to 1 in cells where the first raster (1992) was equal to
the second (2000) and to 0 otherwise. Finally, the statistical values (such as the maximum,
minimum, median, and average) of the input rasters (e.g., change or no change between
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1992 and 2000) acquired within the zone of another dataset (e.g., land subsidence rates over
1992–2000) were retrieved through zonal statistical analysis with ArcGIS 10.2 software.

3.4. Analysis of Brine Exploitation Potential

The mining potential coefficient method is used to analyze and evaluate the potential
of brine resources. The exploitation potential coefficient refers to the ratio between the
allowable exploitation amount of regional brine and the current exploitation amount, and
the calculation formula is as follows:

P = Qz/Qk

where P is the exploitation potential coefficient, Qz is the exploitable quantity of brine
(104 m3/year), and Qk is the current exploitation amount of brine (104 m3/year).

Here, the mining potential coefficient is calculated according to the above formula.
According to the zoning standards [23] shown in Table 2, the brine distribution area is
divided into the potential area, compensation balance area, and overexploitation area.

Table 2. Evaluation criteria for brine resource potential.

Zoning Standards P ≥ 1.2 0.8 < P < 1.2 P < 0.8

Evaluation potential area compensation
balance area overexploitation area

4. Results

4.1. Land-Use and Land-Cover Change
4.1.1. Land-Use Structure Change

Six maps of land-use/cover classifications were produced based on the Landsat
satellite images, as shown in Figure 4. With the help of the topographic map dated 1998
(scale 1:50,000), the oil wells constructed since 2000 were digitized and added (black dots
in Figure 4). The areal coverage of each land-use type is shown in Figure 5. The overall
accuracies of the six land-use maps are mostly greater than 90% (Table 3).

Figure 4 shows that over approximately the past 30 years, the coastal land-use structure
of the delta has undergone major changes. The most prominent change was the remarkable
increase in the area of salt fields and shrimp ponds, which increased from less than 3%
of the study area in 1984 to more than half of the area in 2017. Meanwhile, in response
to the increased aquaculture and salt industries, residential areas have constantly grown.
These developments directly reflect human activities and urbanization in the Yellow River
Delta over the past few decades. Without artificial intervention, other land-use classes
have remained relatively stable. Bare land mainly includes intertidal zones along the
coast, and its size is greatly affected by the satellite image acquisition time. Water bodies
include reservoirs, ponds, seasonal rivers, and tributaries of the Yellow River. The areas of
farmland, forest, and grassland are primarily affected by seasonal alternations.

Table 3. Validation statistics of each land-use map.

Land-Use 1984 1992 2000 2007 2010 2017

Overall accuracy 94.8 92.6 91.6 92.0 80.5 90.1
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Figure 4. Land-use maps of the coastal area of the Yellow River Delta, China, derived from Landsat
images from 1984, 1992, 2000, 2007, 2010, and 2017.
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Figure 5. Changes in the area of each land-use type for each classified Landsat image.

4.1.2. Land-Use Dynamic Change

Using a transition matrix, we can quantitatively describe the land-use conversion
during a certain period. Since the satellite images in 1984 suffered from heavy cloud
cover (~10%), two transfer matrices were built for the periods of 1992–2007 (Table 4) and
2007–2017 (Table 5). The bins are colored from blue (small) to purple (large). The values
on the diagonals are those without land-use changes. A zero value means that no change
occurred. The most noticeable conversion that occurred was the growth of salt pans, mainly
by reclaiming bare fields, with the area increasing almost threefold (Table 4, 10–29%) during
P1 (1992–2007). In this period, farmland, forest, and saline alkali land increased slightly,
while shrimp ponds remained basically unchanged. Subsequently, during the next 10 years
(P2: 2007–2017, Table 5), the salt field area steadily continued to expand, and the shrimp
pond area increased by a third. Due to persistent urbanization, the areas of farmland, forest,
grassland, and saline alkali land have been greatly reduced.

Table 4. Land use/cover change transfer matrix of the study area in P1 (percentage).

Bare field Farm Forest Residential
Saline
Land

Salt Pan
Shrimp

Farm
Water

Total
1992

Bare field 13 0 8 0 4 13 2 6 47
Farm 0 1 1 0 0 0 0 0 1
Forest 1 2 14 0 0 2 0 2 21

Resident 0 0 0 0 0 0 0 0 0
Saline
land 1 0 0 0 1 1 0 0 4

Salt pan 0 0 0 0 0 9 0 0 10
Shrimp

farm 0 0 0 0 0 3 7 0 11

Water 1 0 1 0 1 1 0 2 6
Total in

2007 17 3 25 0 6 29 10 10 100
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Table 5. Land use/cover change transfer matrix of the study area in P2 (percentage).

Bare
Field

Farm Forest Residential
Saline
Land

Salt Pan
Shrimp

Farm
Water

Total
2007

Bare field 8 0 0 0 0 2 4 2 17
Farm 1 0 1 0 0 0 0 0 3
Forest 8 0 11 0 0 4 1 1 25

Resident 0 0 0 0 0 0 0 0 0
Saline
land 4 0 1 0 0 0 1 0 6

Salt pan 3 0 0 2 1 21 2 1 29
Shrimp

farm 1 0 0 0 0 3 6 0 10

Water 2 0 1 0 1 3 1 3 10
Total in

2017 25 1 15 2 3 34 13 7 100

4.2. Subsidence Rates of Each Land-Use Type

The InSAR-derived subsidence rates measured from P1 and P2 to P3 for each land-use
sequence are shown in Figure 6 (unchanged) and Figure 7 (changed). Since P3 is only one
year (2016–2017), we assume that there is no significant change in land-use type during P3.

 

Figure 6. Statistics of the subsidence for unchanged land-use types from P1 (1992–2000) and P2
(2007–2010) to P3 (2016–2017).

The category shown in Figure 6 comprises the constant land-use sequences during
both periods (P1, P2, and P3). After the slow growth of the first two periods (P1 and
P2), the subsidence rate of the land-use class exhibited explosive growth in P3. The
highest subsidence rates occurred for salt pans, which increased from 13 mm/year (P1)
and 32 mm/year (P2) to 453 mm/year (P3). The lowest subsidence rates were observed for
bare land, which increased from 16 to 22 mm/year in the two periods. The average land
subsidence rate varied from 3–5 mm/year (P1) and 9–12 mm/year (P2) to 24–83 mm/year
(P3). The standard deviation was less than 7 mm/year.
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A total of 26 patterns of changes were identified in the other category. The maximum
value occurred for saline-alkali fields (27 mm/year, P2) that were previously bare lands,
closely followed by salt pans (25 mm/year, P2) that were previously bare fields. In particu-
lar, severe coastal subsidence appeared in both of the typical anthropogenic conversions to
shrimp ponds and salt fields (Figure 7).

Significantly, due to the insufficient coverage of the land settlement dataset in this
study, the settlement in P2 is too small. However, the existing literature [8] shows that in
the P2 period, the subsidence rate in the coastal area of the Yellow River Delta reached
250 mm/year.

 
Figure 7. Statistics of the subsidence for changed land-use types in P1 (1992–2000) and P2 (2007–2010).

4.3. Evolution and Prediction of Land-Use/Cover and Subsidence

The land-use map of 2050 (Figure 8) predicted by the LCM model shows that the
scale of salt fields will further expand, and this prediction agrees with the distribution
characteristics of the brine resources in the coastal zone of the Yellow River Delta. It has
been shown that there are two large underground brine reserves on the southwest bank
of Laizhou Bay and the south bank of the Bohai Sea [24]. Currently, the distribution of
mining intensity is uneven, and the Yangkou salt field on the southwest bank is in a state
of overmining; however, the other areas were all deemed to be potential mining areas (see
potential area in Figure 8). The predicted distribution area of the salt fields is consistent
with the distribution of underground brine in this area. The prediction results show that in
the next 30 years, the scale of salt fields will increase by 38% at the cost of a reduction in
natural land (e.g., bare land, saline-alkali land, and forest grassland). With the development
of urbanization, the scale of residential areas will increase by 7%. Compared with the
actual land-use maps for 2010 and 2017, the prediction accuracy-based land-use maps from
1984–2007 reached 51% and 68%, respectively, due to insufficient relevance of the input
maps.
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Figure 8. Distribution map of brine exploitation potential (see Section 3.4) and land-use distribution
map in 2050 based on the LCM model.

5. Discussion

5.1. Expansion of Salt Pans and Exploitation of Underground Brine

Over the past 30 years, land-use changes in the coastal zone of the Yellow River
Delta have featured the rapid expansion of salt fields and aquaculture. These features
are in line with spatial–temporal patterns reported for the delta in other studies [2,25]. In
particular, the expansion of salt pans is the most remarkable land-use transformation, with
an area growth rate of 23 km2/year, corresponding to the findings of Qiao [4]. The salt
industry remained stable with slight variations from 1984 to 1992. Long-term unreasonable
extraction has led to a decline in the underground brine concentration over time. For
example, the concentration of brine in the Guangrao salt field decreased from 100–130 g/L
at the beginning of 1959 to 40–70 g/L in 2007. Studies have shown that the underground
brine in the salt field on the southeastern coast of Bohai Bay has declined by as much as
1 mm/year [17]. The appearance of land subsidence depressions in the salt fields denotes
direct evidence of the decline in the underground brine levels [14].

5.2. Aquaculture and Oil Fields

In addition to salt fields, aquaculture (mainly shrimp ponds) and oil fields are two
typical types of human activities in the delta, as well as two representative manmade
subsidence factors supported by other studies [8–10]. Actually, all three of these land-use
classes are closely related in space (Figure 4). In the Yellow River Delta, the terrain is
relatively low-lying and flat, and groundwater resources are rich. Therefore, it is common
to use underground salt water for shrimp culture. Recently, shrimp breeding ponds have
been built in salt pan areas, increasing the yield of prawns and providing obvious economic
benefits. Moreover, on the north bank of the Yellow River Delta, many oil wells have been
interspersed among salt fields and shrimp ponds for decades. Long-term and high-intensity
exploitation has contributed to declines in reservoir pressure. Furthermore, as the main
method of oil exploration, water-driven exploitation accounts for 81.3% of the reservoir
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pressure effects. Therefore, artificial water injection pumped from shallow strata usually
leads to more ground subsidence than does the exploitation of deep oil with a burial depth
of 700–3500 m [13].

5.3. Land Subsidence per Land-Use Sequence

According to the InSAR measurement results of the three periods (P1, P2, and P3) and
the spatial analysis of land-use classification data, the temporal and spatial characteristics
of land subsidence under different land-use classes can be identified. In P1, in the early
stage of the construction of the delta, the influence of human activities on the natural
environment was not remarkable and was even less than the self-weight consolidation
compaction effect of the sedimentary strata [26].

In P2, the average annual subsidence rates of all land-use classes changed markedly
and became 2–3 times larger than those of the previous period. However, the differences in
subsidence rates among different land-use types were still not significant, with values of
less than 2 mm/year.

Although the average subsidence rates of various land-use classes were relatively
similar (all less than 2 mm) during the period of either P1 or P2, the interperiod change
of magnitude of subsidence increased by 2–3 times from P1 to P2. Remarkably, in P3,
the subsidence rates were approximately an order of magnitude higher than those in P2,
ranging from 24 mm/year (oil well) to 83 mm/year (salt field). This finding is consistent
with the results of several recent studies [8,14]. In particular, due to the existence of
subsidence depressions caused by groundwater exploitation (shown in Figure 2d), some
land-use types around the subsidence center show a higher subsidence rate (Figure 6).

We believe that from P1 to P3, the salt field has further expanded in space, which is
accompanied by excessive underground brine mining. Therefore, land subsidence disasters
in the delta coastal zone are caused.

5.4. Prospect for the Future

To meet the needs of economic development, the scale of the salt industry is expected
to expand further. According to Feng et al. [24], predatory exploitation of underground
brine in 2005–2008 resulted in an average annual decrease in the brine level of 1.39 m.
At present, shallow brine is the main resource in brine mining, while deep brine has not
been developed. Therefore, the exploitation potential of brine is still great. Due to the
unreasonable development of shallow brine resources, some environmental problems,
such as the depletion of underground brine resources, waste of resources, ground fissures,
ground subsidence funnels, and environmental pollution, have emerged.

Figure 9 shows the cumulative distribution function of the level-based (see locations
in Figure 1) subsidence rates for different study areas during the same period (2016–2017).
The 90% cumulative distribution of the coastal zone (red curve) is close to 100 mm/year,
which is six times larger than that of the inland area (blue curve). Even during the early
days of deltaic construction, the subsidence rates in the coastal zone were higher than
those in the inland zone. For example, the 90% cumulative distribution of the subsidence
rate from 2000 to 2007 (cyan curve) was 38 mm/year, which was more than twice that of
16 mm/year in 2016–2017 (blue curve).

According to the existing investigation, the average annual subsidence rate of the salt
fields along the coastal zone varies from tens of millimeters to hundreds of
millimeters [8,11,13,14,26,27]. Coastal zone subsidence combined with the absolute an-
nual sea level rise in the Bohai Sea and extreme disaster events such as storm surges will
likely have a great impact on the ecological environment and human life as well as on
safety in the delta.
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Figure 9. Cumulative distribution functions (CDF) of the subsidence rates in two periods.

6. Conclusions

In the past three decades, the coastal zone of the Yellow River Delta has changed
from an undisturbed natural condition to a state dominated by salt fields and shrimp
ponds characterized by artificial activity. At the expense of the development of the natural
ecological environment, approximately 50% coverage of the coastal zone has been used
for salt fields and shrimp ponds. Such a rapid expansion of salt fields has led to the
excessive extraction of groundwater (i.e., underground brine), presumably leading to
serious geophysical disasters such as land subsidence depressions and ground fissures.

Through the analysis of land-use changes and InSAR data, it was found that after the
slow growth (increased by 2–3 times) of the first two periods (P1 and P2), the subsidence
rate of the land-use class increased by an order of magnitude in P3. Moreover, extreme land
subsidence includes different characteristics and often occurs in areas with strong human
imprints, such as salt fields and shrimp ponds. With the development of underground brine
production and the coastal brine industry, as well as the environmental impact of future
sea level rise, the ecological vulnerability of the deltaic coastal area should deserve more
attention from broad public and governmental managers. Addressing the relationship
between economic development and environmental protection is a problem worthy of
consideration. We should pay more attention to the development of underground brine.
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Abstract: The temperate forests in Northeast China are an important ecological barrier. However, the
way in which temperate forests regulate the regional temperature and water cycling remains unclear.
In this study, we quantitatively evaluated the role that temperate forests play in the regulation
of the regional temperature and precipitation by combining remote sensing observations with a
state-of-the-art regional climate model. Our results indicated that the forest ecosystem could slightly
warm the annual air temperature by 0.04 ± 0.02 ◦C and bring more rainfall (17.49 ± 3.88 mm) over
Northeast China. The temperature and precipitation modification function of forests varies across
the seasons. If the trees were not there, our model suggests that the temperature across Northeast
China would become much colder in the winter and spring, and much hotter in the summer than the
observed climate. Interestingly, the temperature regulation from the forest ecosystem was detected in
both forested regions and the adjacent agricultural areas, suggesting that the temperate forests in
Northeast China cushion the air temperature by increasing the temperature in the winter and spring,
and decreasing the temperature in the summer over the whole region. Our study also highlights
the capacity of temperate forests to regulate regional water cycling in Northeast China. With high
evapotranspiration, the forests could transfer sufficient moisture to the atmosphere. Combined with
the associated moisture convergence, the temperate forests in Northeast China brought more rainfall
in both forest and agricultural ecosystems. The increased rainfall was mainly concentrated in the
spring and summer; these seasons accounted for 93.82% of the total increase in rainfall. These results
imply that temperate forests make outstanding contributions to the maintainance of the sustainable
development of agriculture in Northeast China.

Keywords: forest ecosystem; regional temperature and precipitation regulation; Northeast China;
WRF regional climate model

1. Introduction

Forest ecosystems are some of the crucial components of the terrestrial ecosystem.
They provide a variety of ecosystem services, including water and soil conservation, carbon
concentrations, climate regulation, and biodiversity maintenance, etc. [1–3]. Reforestation
or afforestation is regarded as one of the most effective natural climate solutions in terms of
maintaining warming below 2 ◦C [4,5]. China and various other countries have launched
a series of forest protection and restoration programs to make full use of the role that
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forests play in improving the vulnerable ecological environment [6,7]. The six reports
from the Intergovernmental Panel on Climate Change (IPCC) documented unprecedented
global warming and increasingly frequent extreme events over the past decade resulting
from human activities [8], suggesting that forests’ buffering impact on climate change has
become more and more critical.

Generally, the forest ecosystem regulates the climate through biogeochemical pro-
cesses and biogeophysical processes [9,10]. From the biochemical perspective, forest
ecosystems are a crucial carbon sink, storing ~45% of terrestrial carbon [11]. Both tropical
and temperate forests have high carbon storage capacities, and deforestation and forest
fires convert the carbon sink into carbon dioxide sources, contributing to warming [12].
The biogeophysical processes are the energy, moisture, and momentum exchanges between
the surface of the land and the atmosphere [13–15]. There is a general consensus regarding
the cooling effects of tropical forests and the warming effects of boreal forests [16–19].
The competition between evapotranspirational cooling and albedo warming determines
the final impact on temperature resulting from forests [20]. In tropical areas, deforesta-
tion significantly suppresses evapotranspiration (ET) and moderately increases albedo,
exerting a warming influence on Earth’s climate [21]. Contrarily, deforestation in boreal
regions strongly increases albedo and causes a slight decrease in ET, resulting in a cooling
effect [18,19,22]. Bonan et al. (2008) believe that the net climate impact of temperate forests
is highly uncertain because of the competition between low albedo in winter and high
ET in summer [12]. As a result, the climate effects caused by temperate forests are much
more complex, with apparent regional and seasonal dependence [23–27]. For example,
Peng et al. (2014) demonstrated that afforestation in China cools the surface temperature,
except in dry regions [23]. He et al. (2015) studied the impact of temperate forests on the
local surface temperature, and found that the conversion from forests to farmland may
lead to warming in summer and cooling in winter [24].

The temperate forests in Northeast China are a natural barrier for the Northeast Plain
and Hulunbuir grasslands of Inner Mongolia. They play an indispensable role in main-
taining the regional ecological balance and ensuring ecological security and environmental
quality at the local and national levels. Furthermore, the Northeast Plain, surrounded by
temperate forests, is one of the main grain-producing areas in China. The forest ecosystem
provides plenty of ecological services at the regional scale, including water conservation,
wind prevention, sand fixation, and climate regulation, which have been widely docu-
mented. However, the way in which the forest activity alters the agricultural climate, which
may further influence crop growth and grain yield in the Northeast China plain, still lacks
comprehensive understanding.

Therefore, the primary objective of this study was to quantitatively evaluate the role
of forest ecosystems in the regulation of the temperature and precipitation pattern across
Northeast China. First, spatial-temporal continuous multisource remote sensing datasets
were used to characterize the land use/land cover pattern and surface properties for all
the ecosystems in Northeast China. Moreover, we incorporated these remote sensing-
based parameters into the regional climate model in order to better simulate the regional
temperature and precipitation pattern. Thereafter, we adopted scenario simulations based
on a regional climate model to identify the impact of forests on the regional temperature
and precipitation. Finally, the biogeophysical mechanisms through which forest ecosystems
regulate the regional temperature and water cycling were further analyzed, i.e., the energy
exchanges and water cycling processes between the land surface and the atmosphere. Our
study will provide a scientific basis for temperate forest ecological protection and decision
support for the sustainable development of agriculture in Northeast China.

2. Materials and Methods

2.1. Study Area

Northeast China (Figure 1) extends from a latitude of 38◦40′ N to 53◦34′ N and a
longitude of 115◦05′ E to 135◦02′ E [28]. Its total area is 1.24 million square kilometers,

286



Remote Sens. 2021, 13, 4767

accounting for 12.9% of the total land area of China. It is primarily made up of mountains
and plains. The mountains are mainly located in the east, west, and north of Northeast
China, while the plains are in the middle and south. The climate is characterized as a
temperate monsoon climate, with long and cold winters, and mild and wet summers.
The average minimum temperature in January is lower than −20 ◦C, while the average
temperature in July ranges from 18 ◦C to 20 ◦C. Influenced by the summer monsoon
from the Pacific, most of the precipitation is concentrated in the summer, which can reach
400–700 mm. The soil types are mainly black soil, chernozem, dark brown soil, and brown
soil, which provide excellent conditions for both forests and crops. Forests and farmland
are the main landscape types in Northeast China, accounting for 35% and 30% of the
total area, respectively. The forests in the region are mainly distributed in the mountains,
including the Great Khingan Range, the Lesser Khingan Mountains, and the Changbai
Mountains. Moreover, the farmland is primarily located in the plain regions, including the
Songnen plain, the Liaohe plain, and the Sanjiang plain.

Figure 1. The geographic location of Northeast China.

The temperate forests in Northeast China are cold-temperate coniferous forests in
the north and temperate summer green forests in the south [29]. As a result, the forest
composition is mainly characterized as deciduous coniferous forest, deciduous broadleaf
forest, and mixed forest (Figure 2). The forest in Northeast China comprises one belt of
the “two screens and three belts” national ecological security pattern. It is an essential
ecological barrier for the environment in Northeast China. Northeast China is also China’s
commodity grain production base, and thus, sustainable agricultural development is
the primary objective in this region. Therefore, studying the way in which temperate
forests modify the regional temperature and precipitation patterns is vital in order to
fully understand the ecological functions of forests on both the individual forest and
forest-agriculture ecosystem scale.
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Figure 2. Spatial distribution of the land use/land cover in our simulation domain.

2.2. Data Sources
2.2.1. Land Use/Land Cover (LULC) Data

The land use/land cover data used in this study were divided into two parts: first, we
selected the land use/land cover data in China from the resource and environmental science
and data center of the Chinese Academy of Sciences (CAS). These LULC data were from
Landsat Operational Land Imager, and had a spatial resolution of 1 km. Secondly, regarding
the LULC pattern outside of China but within the simulation study area, we utilized the
European Space Agency (ESA) climate change initiate (CCI) LULC data from 2015 [30].
Both LULC datasets were uniformly converted using the USGS LULC classification system,
and then were projected onto the Lambert equal area projection system to match the model
setup. Thereafter, the LULC percentage for each LULC category was calculated, and the
primary LULC type in each 10 km grid was identified in order to update the original
LULC-related datasets in the WRF model.

2.2.2. Other Surface Parameter Data

The spatially continuous surface parameter data used in this study mainly included
leaf area index (LAI), the fraction of vegetation coverage (FVC), and albedo data. In the
Noah land surface model, LAI and FVC are essential land surface parameters to express
the energy, moisture, and carbon exchanges between the land surface and atmosphere.
LAI reflects the physiological structure of plants and determines the water and carbon
cycle for the vegetation canopy. For the water transfer process, LAI determines the canopy
transpiration, respiration, and stomatal conductance, while for the carbon process, LAI
is also an indispensable parameter for the calculation of vegetation photosynthesis and
the soil carbon accumulation from falling leaves. In contrast, FVC is mainly involved in
the energy and water cycle, which is used to calculate the physical processes, including
radiation partitioning between vegetation canopy and soil, canopy evaporation intercep-
tion, and precipitation interception and transmission to the surface. The LAI and FVC were
obtained from the Global Land Surface Satellite Data Set (GLASS) [31], spanning from 1981
to 2018. The spatial resolution of the LAI and FVC data products is 0.05◦, and the temporal
resolution is eight days. In order to match the model requirements, the datasets were first
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integrated into monthly average data. Surface albedo data, which reflect the optical charac-
teristics of the surface, were obtained from the fifth-generation reanalysis dataset of the
European Center for medium range weather forecasting (ERA5-land) monthly dataset; they
have a spatial resolution of 0.1◦. In order to eliminate the impact of climate fluctuations on
the surface parameters, we used the 3-year mean monthly averaged LAI, FVC, and albedo
data from 2016 to 2018 to update the spatiotemporal data of the corresponding surface
parameters in the WRF model.

2.2.3. Climate Forcing Data and Surface Meteorological Observational Data

We used the ERA5 data to provide the initial and boundary conditions for the model
simulation. The ERA5 is a long-term, hourly climate reanalysis dataset, which has been
widely used in climate change research [32]. The dataset provides near-real-time mete-
orological data concerning the surface and pressure levels from 1979, and has a spatial
resolution of 0.25◦ × 0.25◦. The meteorological observational data were obtained from the
National Meteorological Science Data Center (http://data.cma.cn/, accessed on 8 May
2021). Our study area included 98 and 95 observational stations from 2016 to 2018 for
temperature and precipitation, respectively. In this study, we used the annual average
temperature and annual total precipitation to evaluate the accuracy of the model simulation
results. We interpolated the meteorological observational data into the model resolution
to eliminate the scale mismatch between the station and the model resolution using the
Australian National University Spline (ANUSPLIN) method [33].

2.3. Experiment Design and Regional Climate Simulation

In this study, we used the weather research and forecasting (WRF) model to separate
the biophysical impacts that forests have on the regional climate. The WRF model was
developed by the National Center for Atmospheric Research (NCAR), the National Center
for environmental prediction (NCEP), and other institutions, and has been widely used in
numerical weather prediction and regional climate change research due to its flexibility
in parametric scheme selection and simulation resolution setting [34]. The model has
been registered and used by scientific researchers and relevant personnel in more than
160 countries. We chose the advanced research WRF (ARW) version 4.2 to conduct our
experiments. As a result of the high spatial resolution of the ERA5 climate forcing data, we
designed one domain covering Northeast China to carry out our simulation. The domain
center is located at a latitude of 46◦ N and a longitude of 125◦ E. The horizontal resolution
of the domain is 10 km, including 180 × 200 grids in the east-west and south-north
directions (Figure 2).

We used two sets of simulation experiments, i.e., a forested scenario and an all-
grassland scenario, to quantitatively evaluate the biophysical impact of the forest ecosystem
on the local and regional climate. In the forested scenario, we used the LULC pattern from
2015, 3-year averaged monthly LAI, FVC, and albedo data from 2016 to 2018 to drive the
regional climate model. Because there were no available LULC data from 2016 to 2018
in China from the Chinese Academy of Sciences, the LULC data from 2015 were used
instead. In the all-grassland scenario, we assumed that all of the forests were degraded into
grassland. All of the forests’ types from the LULC data were replaced with grassland, and
the surface parameters—including LAI, FVC, and albedo—for the degraded forest were
updated with the statistical mean values of grassland (Table 1). The surface parameters
of the three dominant forest types are also displayed in Table 1 in order to distinguish
the differences in the surface properties between forest and grassland. It should be noted
that the input albedo in the WRF model was the background albedo, suggesting that
the actual albedo in the snow-covered months should be calculated based on both the
background albedo and snow properties, including the snow depth. Therefore, the snow
albedo (SNOWALB) of the original forest (0.44) was replaced with the regional statistical
mean values of grassland (0.66) to update the snow albedo in the all-grassland scenario.
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Table 1. The regional statistical monthly mean albedo, FVC (%), and LAI (m2/m2) for grassland and forests.

Vegetation
Types

Parameters January February March April May June July August September October November December

Grass Albedo 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.18 0.18 0.19 0.19 0.20
FVC 1.54 1.26 1.07 1.70 10.79 22.80 32.82 33.44 18.14 4.51 2.29 1.86
LAI 0.11 0.10 0.14 0.22 0.43 0.78 1.17 1.12 0.61 0.25 0.17 0.15

Mixed
forest

Albedo 0.26 0.24 0.23 0.19 0.17 0.17 0.17 0.16 0.15 0.18 0.23 0.24
FVC 4.76 4.42 5.04 7.43 26.82 53.92 67.48 67.43 40.06 12.40 7.36 5.88
LAI 0.29 0.27 0.32 0.63 1.27 2.00 2.67 2.58 1.57 0.74 0.46 0.36

Deciduous
coniferous

forest

Albedo 0.33 0.32 0.28 0.21 0.13 0.13 0.14 0.13 0.12 0.18 0.27 0.32
FVC 14.98 14.00 13.51 20.85 54.93 80.21 85.56 79.17 42.53 22.33 18.09 16.45
LAI 0.67 0.61 0.58 0.75 2.05 3.84 4.36 3.95 2.11 0.81 0.75 0.69

Deciduous
broadleaf

forest

Albedo 0.34 0.33 0.29 0.16 0.15 0.16 0.16 0.15 0.13 0.14 0.25 0.29
FVC 11.31 9.47 9.20 19.33 59.27 79.48 86.96 85.11 60.77 23.79 15.54 13.38
LAI 0.49 0.50 0.50 0.79 2.52 4.02 4.44 4.16 2.64 0.92 0.58 0.49

In the two groups of scenario simulation experiments, we used the same initial and
boundary conditions and the same surface physical parameterization schemes to isolate
the contribution of forests to the regulation of the local and regional climate. Specifically,
we used the ERA5 climate variables at 00:00 on 1 June 2015, to initialize the WRF model,
and the data from 2015 to 2018 as the lateral boundary. The WRF model was started on
1 June 2015, and ran until 31 December 2018. The simulated model results from 1 June
2015 to 30 November 2015 were used for the model spin-up, and the results from the
next three years and one month were used for further analysis. The differences between
the forested and all-grassland scenarios were used to represent the biophysical impact of
forests on the regulation of the regional climate. The scenario differences in air temperature
at 2 m and the energy components—including incoming shortwave radiation, outgoing
shortwave radiation, downward longwave radiation, upward longwave radiation, latent
heat flux, sensible heat flux, and ground heat flux—were used to illustrate the temperature
impact from forests, while the evapotranspiration, precipitation, and U-V wind were used
to represent the impact of forests on water cycling.

3. Results and Discussion

3.1. Biophysical Impact of Temperate Forests on the Local and Regional Air Temperature

In this study, we estimated the biophysical impact of temperate forests on both the
local and regional temperature by combining a land surface model and a high-resolution
regional climate model. On the basis of the differences between the simulated results of
the forested scenario and the all-grassland scenario, we separated the role that temper-
ate forests play in the regulation of the local and regional temperature (Figure 3). From
the perspective of biogeophysical processes, the temperature-regulating effect of the tem-
perate forest in Northeast China was generally characterized as a slight warming effect
(0.04 ± 0.02 ◦C), which was generally consistent with various previous studies [35–39].
Moreover, the temperature regulation effects of the temperate forests exhibited significant
seasonal differences. Generally, the forest activity in Northeast China decreased the annual
temperature range by cooling the air temperature in the summer and autumn, and warm-
ing the air temperature in the winter and spring. Specifically, the summer air temperature
would rise by 0.88 ± 0.05 ◦C (p < 0.01) and the autumn temperature would increase by
0.05 ± 0.04 ◦C if the trees were not there. In contrast, the winter and spring would become
much colder, with the air temperature decreasing by 0.65 ± 0.06 ◦C and 0.44 ± 0.11 ◦C,
respectively, if there were no trees.

Figure 3 illustrates the spatial pattern of the air temperature changes across different
seasons compared to the scenario in which trees are absent. Generally, the temperature
benefits from forests are usually evaluated locally or regionally based on observational
and model simulation results. Contrary to previous studies, our results highlight the role
that temperate forests in Northeast China play in the regulation of the temperature in the
surrounding agricultural ecosystems. We found that temperate forests could warm the
cropland by 0.47 ± 0.11 ◦C and 0.38 ± 0.10 ◦C in the winter and spring, respectively, and
that they could cool the cropland by 0.51 ± 0.05 ◦C in the summer. This indicates that the
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forests provide a cushioning effect that acts against the regional cold and high temperatures
in the cropland regions.

Figure 3. Differences (all-grassland scenario minus the forested scenario) in the air temperature (◦C) at 2 m in December–
January–February (a) March–April–May (b) June–July–August (c) and September–October–November (d) between the
forested and all-grassland scenarios.

The surface energy budget and energy redistribution are often used to explain the
mechanisms related to local temperature responses to land use and land cover changes.
Given that the forest’s air temperature regulation varied across different seasons, we
quantitatively evaluated how the forest ecosystem modifies the local temperature by
altering shortwave radiation, longwave radiation, sensible heat flux, latent heat flux, and
ground heat flux (Figure 4).
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Figure 4. Differences (all-grassland scenario minus the forested scenario) in net shortwave radiation (NetS), net longwave
radiation (NetL), net radiation (RN), latent heat flux (LE), sensible heat flux (SH), and ground heat flux (GRDFLX) for the
forest ecosystem. (a) Winter; (b) spring; (c) summer; (d) autumn. *, **, and *** indicate that the differences are significant at
p < 0.05, p < 0.01, and p < 0.001, respectively.

The simulated results from the regional climate model showed that forests significantly
cooled the local summer air temperature, mainly due to their evapotranspiration being
higher than grassland. Moreover, with higher surface roughness, the turbulent heat
exchange between the forests and the atmosphere is more significant than when trees are
absent. As a result, the latent heat flux would decline by 22.90 ± 2.05 W/m2 (p < 0.001).
In the winter, the higher albedo with the loss of forest cover due to snow cover could
significantly increase solar radiation reflection and reduce the net shortwave radiation
by 18.39 ± 0.50 W/m2 (p < 0.001). Without the sheltering from forests, the decreased
surface temperature would reduce the longwave radiation emitted by the surface and
increase the net longwave radiation by 4.24 ± 0.35 W/m2 (p < 0.001). As a result, the
surface net radiation would significantly decrease by 14.16 ± 0.40 W/m2 (p < 0.01) if the
trees were not there. The ET differences between the forested and all-grassland scenarios
are not evident (3.83 ± 0.48 W/m2, p < 0.001) compared with the net solar radiation,
implying that the albedo-climate feedback plays a dominant role in determining the
winter temperature changes. These results are in general accordance with the study of
He et al. (2015) [23]. Using remote sensing observations and a space-for-time approach,
He et al. (2015) concluded that the annual net climate effect, which signifies the land surface
temperature change, is not evident because of the contrary effects of the energy budget
change in summer and winter [23].

Unlike He et al.’s study, we also observed spring warming effects from forests. With
lower snow albedos, forests can absorb more shortwave radiation (33.96 ± 2.78 W/m2,
p < 0.01) in spring, the change magnitude of which is even greater than that in winter. This
can be explained by the limited incoming solar radiation in winter, although with higher
albedo differences. The growing season starts significantly earlier in the forests of Northeast
China compared with the grassland. As a result, the latent heat flux in the forested scenario
is higher by 15.76 ± 0.82 W/m2 (p < 0.001) due to stronger evapotranspiration. Due to forest
loss, the sensible heat flux would reduce by 18.22 ± 1.65 W/m2 (p < 0.01) to balance the
reduced net radiation. This means that the forest cooling effects due to evapotranspiration
can be fully counteracted by the albedo warming effects in spring.
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3.2. The Influence of Temperate Forests on the Regional Water Cycle

Evapotranspiration is one of the most important factors for the maintainance of the
land surface water cycle. The simulated results indicated that temperate forests support
higher rates of evapotranspiration compared with grassland. Without the forests, the total
annual ET would decrease by 59.91 ± 0.44 mm (p < 0.001) in Northeast China. The decline
in evapotranspiration was mainly concentrated in the summer, which registered decreases
of 30.64 ± 2.68 mm (p < 0.01), followed by the spring (19.63 ± 1.00 mm, p < 0.05), autumn
(5.60 ± 1.86 mm), and winter (4.10 ± 0.60 mm, p < 0.001). The spatial pattern of ET changes
between the forested and all-grassland scenarios, as illustrated in Figure 5, showed that the
significant ET changes were mainly concentrated in the forested areas.

Moreover, the ET responses showed apparent regional heterogeneity. The ET capacity
of forests is highly dependent on latitude, forest type, season, and elevation [11,40–42].
Through all four seasons, the reduction in ET in the temperate forest areas at low latitudes
was much more significant than that in the Great Khingan Range forests, which are located
at a higher latitude. Because the deciduous broad-leaved forests at low latitudes have
a larger leaf area index than the deciduous coniferous forests at a higher latitude, the
evapotranspiration capacity of their vegetation canopy is higher. Furthermore, warmer
temperatures have the potential to increase ET [43]. Compared with the all-grassland
scenario, the temperate forests cool the summer air temperature, inhibiting the local ET
in some agricultural areas without land surface changes. The summer ET in regions,
including the west side of the Lesser Khingan and Changbai Mountains and the Sanjiang
plain, would increase by approximately 10–30 mm if the forests were not there.

By comparing and analyzing the differences in precipitation in the two scenarios
(Figure 6), we found that the forest ecosystem in Northeast China plays a critical role in the
regulation of the regional precipitation patterns. Our climate model simulations showed
that the forests increased the annual precipitation in Northeast China by 17.49 ± 3.88 mm
compared with the all-grassland scenario. The precipitation improvement was most evi-
dent in the summer and spring seasons, which were 9.94 ± 5.08 mm and 6.46 ± 2.07 mm,
respectively. The spatial pattern of the precipitation differences between the two scenarios,
as illustrated in Figure 6, demonstrated that the precipitation regulation from forests was
not only focused on the forested areas but also the surrounding regions. For example,
the forest activity could increase the rainfall by 25.81 ± 7.86 mm in the forest ecosystem,
and 55.68% and 29.19%, in the spring and summer, respectively. Regarding the agricul-
tural ecosystem, our simulated results demonstrated that the annual precipitation would
decrease by 21.31 ± 5.76 mm if the trees were not there, of which 15.60 ± 6.23 mm and
4.65 ± 0.88 mm occurred in the summer and spring. In some specific regions of the Song-
nen and Sanjiang plains, the loss of the forests would decrease the summer precipitation
by more than 30 mm.

Sufficient water vapor and water vapor convergence are the conditions which are
necessary for precipitation formation [42,44]. With higher surface roughness and surface
drag coefficient, forests also modify the wind field and atmospheric circulation (Figure 7).
The winter season in our study area is significantly affected by the extreme cold in Siberia.
Without the forest barrier, the northwesterly wind on the northeast plain would intensify,
bringing more cold air and reducing the air temperature in this region (Figure 3a). In the
spring, although cyclonic conditions form in the border area between Northeast China and
Russia, the evapotranspiration would decrease significantly if the forests were converted
to grassland, making precipitation formation difficult due to a lack of water vapor.
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Figure 5. Differences (all-grassland scenario minus the forested scenario) in evapotranspiration (mm) in December–January–
February (a) March–April–May (b) June–July–August (c) and September–October–November (d) between the forested and
all-grassland scenarios.
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Figure 6. Differences (All-grassland scenario minus forested scenario) in precipitation (mm) in December–January–
February (a) March–April–May (b) June–July–August (c) September–October–November (d) between the forested and
all-grassland scenarios.
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Figure 7. Differences (all-grassland scenario minus the forested scenario) in 700-hPa U-V wind (m/s) in December–January–
February (a) March–April–May (b) June–July–August (c) and September–October–November (d) between the forested and
all-grassland scenarios.

In the summer, the forests can provide sufficient water vapor with higher evapotran-
spiration capacity, combining with the moisture convergence, generating more rainfall
(Figure 6c). This is consistent with a recent study from O’Connor et al. (2021). They
reported that the forest land cover in the upwind precipitationshed can reduce the monthly
precipitation variability downwind [45]. The forest cover in the Lesser Khingan and
Changbai mountains promoted atmospheric moisture recycling and caused increased
precipitation in the plain regions compared to the scenario in which there is an absence
of trees.
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3.3. Model Validation and Uncertainty Analysis

By comparing the simulated model annual average temperature and precipitation
data with the meteorological observational data, we found that the physical parameteriza-
tion schemes and near-real-time surface parameters adopted in this study can accurately
simulate the temperature and precipitation characteristics in Northeast China (Figure 8).
Specifically, we found that the temperature simulated by the model had a cold bias of
0.07 ◦C, and the correlation coefficient with the observed temperature was 0.97. Regarding
precipitation, the model overestimated the precipitation by 0.42 mm/d, and the correlation
coefficient with the observed precipitation was 0.85. Considering the capability of the
climate model to simulate precipitation, we assumed that the precipitation differences
between scenarios are able to describe the precipitation benefits from forest ecosystems.

Figure 8. Simulated and observed air temperature at 2 m, and precipitation.

4. Conclusions

The temperate forest in Northeast China is an essential ecological barrier from the per-
spective of regional climate regulation. In this study, we quantitatively evaluated the role
that temperate forests play in the regulation of the regional temperature and precipitation
pattern by combining remote sensing observations and a state-of-the-art regional climate
model (WRF). Our results indicated that the forest ecosystem slightly warms the annual air
temperature by 0.04 ± 0.02 ◦C and brings more rainfall (17.49 ± 3.88 mm) over Northeast
China. The temperature and precipitation modification function of forests varies across
the seasons. If the trees were not there, our model suggests that the temperature across
Northeast China would become much colder in the winter and spring, and much hotter
in the summer than the observed climate. Interestingly, the temperature regulation from
forest ecosystems was detected in both forested regions and the adjacent agricultural areas,
suggesting that the temperate forests in Northeast China cushion the air temperature by
increasing the temperature in the winter and spring, and decreasing the temperature in the
summer over the whole region. Our study also highlights the capacity of temperate forests
to regulate regional water cycling in Northeast China. With high evapotranspiration, the
forests could transfer sufficient moisture to the atmosphere. Combined with the associated
moisture convergence, the temperate forests in Northeast China brought more rainfall in
both forest and agricultural ecosystems. The increased rainfall mainly occurred in the
summer and spring; these seasons accounted for 93.82% of the total increase in rainfall.
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It should be pointed out that there may exist some limitations in this study. First,
our research assumed that the surface properties reflected by remote sensing products
are reliable. In other words, the quality of the remote sensing products may affect the
simulated results presented here. Second, this study used idealized experimental scenarios
(forested and all-grassland) to evaluate the role that temperate forests play in the regulation
of the regional temperature, precipitation, and atmospheric circulation in Northeast China.
Future studies should assess the impact that the forest structure and changes in forest
quality have on regional climates by using long-term observations and simulations to
support regional ecological development and sustainable agricultural development.
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