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Ángel Longueira-Romero, Rosa Iglesias, Jose Luis Flores and Iñaki Garitano
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Preface to ”Cyber Security and Critical

Infrastructures”

Critical infrastructures are essential for national public security, economic well-being and

national security. Critical vulnerabilities in such infrastructures are increasing with the proliferation

of information technology. As critical infrastructures become more vulnerable to cyber-attacks,

protecting them has become an important issue for any organization or country. Due to the apparent

impact of such conditions, the risks to ongoing operations, such as failure to upgrade legacy

infrastructure or failure to comply with required regulatory regimes, are high.

With the rapid proliferation of complex cyber threats targeting critical infrastructures, which

have a significant disruptive impact, cybersecurity for critical infrastructures is an important issue

for academics, professionals and policy-makers. The effective cybersecurity management of critical

infrastructures requires a comprehensive overview of the technical, political, human and behavioral

aspects. Furthermore, the coronavirus pandemic poses new challenges for companies adapting

to business models in which working from home has become “the new normal”. Businesses are

accelerating digital transformation and cybersecurity is now a major concern.

This book presents manuscripts that were accepted after a careful peer-review process for

publication in the topic “Cyber Security and Critical Infrastructures” by the Applied Sciences,

Electronics, Future Internet, Sensors and Smart Cities MDPI journals. The book includes sixteen

articles: an editorial, fifteen original research papers describing current challenges, innovative

solutions and real-world experiences involving critical infrastructures, and one review paper focusing

on the security and privacy challenges in Cloud, Edge, and Fog computing.

Leandros Maglaras, Helge Janicke, and Mohamed Amine Ferrag

Editors
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Editorial

Cybersecurity of Critical Infrastructures: Challenges
and Solutions

Leandros Maglaras 1,*, Helge Janicke 2 and Mohamed Amine Ferrag 3

1 School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK
2 Cyber Security Cooperative Research Centre, Edith Cowan University, Perth 6027, Australia;

helge.janicke@cybersecuritycrc.org.au
3 Department of Computer Science, Guelma University, Guelma 24000, Algeria;

ferrag.mohamedamine@univ-guelma.dz
* Correspondence: leandros.maglaras@dmu.ac.uk

People’s lives are becoming more and more dependent on information and computer
technology. This is accomplished by the enormous benefits that the ICT offers for everyday
life. Digital technology creates an avenue for communication and networking, which is
characterized by the exchange of data, some of which are considered sensitive or private.
There have been many reports recently of data being hijacked or leaked, often for malicious
purposes. Maintaining security and privacy of information and systems has become a her-
culean task. It is therefore imperative to understand how an individual’s or organization’s
personal data can be protected. Moreover, critical infrastructures are vital resources for the
public safety, economic well-being and national security.

The major target of cyber attacks can be a country’s Critical National Infrastructures
(CNIs) like ports, hospitals, water, gas or electricity producers, that use and rely on Indus-
trial Control Systems but are affected by threats to any part of the supply chain. Cyber
attacks are increasing at rate and pace, forming a major trend. The widespread use of
computers and the Internet, coupled with the threat of activities of cyber criminals, has
made it necessary to pay more attention to the detection or improve the technologies behind
information security. The rapid reliance on cloud-based data storage and third-party tech-
nologies makes it difficult for industries to provide security for their data systems. Cyber
attacks against critical systems are now common and recognized as one of the greatest risks
facing today’s world [1].

This editorial presents the manuscripts accepted, after a careful peer-review process,
for publication in the topic “Cyber Security and Critical Infrastructures” of the MDPI
journals Applied Sciences, Electronics, Future Internet, Sensors and Smart Cities. The
first volume includes sixteen articles: one editorial article, fifteen original research papers
describing current challenges, innovative solutions, and real-world experiences involving
critical infrastructures and one review paper focusing on the security and privacy challenges
on Cloud, Edge, and Fog computing.

Many companies have recently decided to use cloud, edge and fog computing in order
to achieve high storage capacity and efficient scalability. The work presented in [2] mainly
focuses on how security in Cloud, Edge, and Fog Computing systems is achieved and
how users’ privacy can be protected from attackers. The authors mention that there is a
huge potential for vulnerabilities in security and privacy of such system. One good way
of screening systems for possible vulnerabilities is by performing auditing of the systems
based on security standards.

The recent EU Directive on security of network and information systems (the NIS
Directive) has identified transport as one of the critical sectors that need to be secured
in a European level. Smart cars is changing the transport landscape by introducing new
capabilities along with new threats. Focusing on vehicle security, the authors in [3] examine
the bit-level CAN bus reverse framework using a multiple linear regression model. The

Sensors 2022, 22, 5105. https://doi.org/10.3390/s22145105 https://www.mdpi.com/journal/sensors1
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increasingly diverse features in today’s vehicles offer drivers and passengers a more relaxed
driving experience and greater convenience along with new security threats. The reverse
capability of the proposed system can help automotive security researchers to describe
vehicle behavior using CAN messages when DBC files are not available.

Vulnerabilities in computer programs have always been a serious threat to software
security, which may cause denial of service, information leakage and other attacks. The
authors in [4] propose a new framework of fuzzy testing sample generation called CVDF
DYNAMIC. which consists of three parts: Sample generation based on a genetic algorithm,
sample generation based on a bi-LSTM neural network and sample reduction based on a
heuristic genetic algorithm.

The transformation of cities into smart cities is on the rise. Through the use of in-
novative technologies such as the Internet of Things (IoT) and cyber–physical systems
(CPS) that are connected through networks, smart cities offer better services to the citizens.
The authors in propose a novel machine learning solution for threat detection in a smart
city [5].The proposed hybrid Deep learning model that consists of QRNN and CNN im-
proves cyber threat analysis accuracy, loweres False Postitive rate, and provides real-time
analysis. The authors evaluated the proposed model on two datasets that were simulated
to represent a realistic IoT environment and proved its superiority.

The next article in this collection [6] proposes a novel framework for few-shot network
intrusion detection. Based on the fact that DL methods have been widely successful as
network-based IDSs but require sizeable volumes of datasets which are not always feasible,
the authors focus on few-shot solutions. Their proposed method is suitable for detecting
specific classes of attacks. This model could be very helpful for deploying novel IDSs for
Industrial Control Systems, which are the core of Critical Infrastructures, where there is a
general lack of datasets.

In [7] the authors propose a novel reversible data hiding (RDH) scheme that can
be applied to either remote medical diagnosis or even military secret transmission. The
authors utilize a trained multi-layer perception neural network in order to be able to predict
pixel values and then combining those with prediction error expansion techniques (PEE) to
achieve (RDH). The proposed method although efficient is very time consuming and the
authors propose in the future to implement novel solution to improve this aspect.

Focusing on Industrial components that are the main parts of critical infrastructures
the authors in [8] propose a model for vulnerability analysis through the their entire
life-cycle. The model can Identify the root causes and nature of vulnerabilities for the
industrial components. This information is useful extracting new requirements and test
cases, support the prioritization of patching and track vulnerabilities during the whole
life-cycle of industrial components. The proposed model is applicable to existing systems
and can be a good source of information for defining patching, training and security needs.

Android mobile devices are becoming the targets of several attacks nowadays since
they support many of the everyday digital needs of the users. Since many sensitive
applications are offered in these smart devices, like e-banking, adversaries have launched a
number of new attacks. IoT enhances the power of malicious entities or people to perform
attacks on critical systems or services. A lot of connected devices additionally mean a
bigger attack surface for attacks and greater risk. Hackers using infected devices can
generate many frequent, organized and complex malicious attacks. The authors in [9]
propose novel IDS for malware in android devices combining several machine learning
techniques. The proposed classifiers achieved good accuracy outperforming existing state-
of-the-art models.

Having identified a lack of studies related to security in microservices architecture
and especially for for authentication and authorization to such systems, the authors in [10]
perform an analysis about this open issue. Microservices can increase scalability, availability
and reliability of the system but come with an increase in the attack surface and new threats
in the communication between them. Since microservices can become an integral part of
critical systems, a thorough research on the attacks and defence against them is crucial. The
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article concludes that several existing solutions can be applied to make the systems robust
but also novel methods need to be proposed that are tailored to the new architectures.

In another article that deals with machine learning as a defence mechanism for smart
systems, the authors in [11] focus on the correct feature selection. Feature selection is the
process of correctly identifying those features that help the machine learning algorithm
be robust against an adversary. The article proposes a smart feature selection process
and a novel feature engineering process which are proven to be more precise in terms of
manipulated data while maintaining good results on clean data. The proposed solutions
can be easily adopted in real environments in order to deal with sophisticated attacks
against critical infrastructures.

Information Security Awareness Training is used to raise awareness of the users against
cyber attacks and help them build a responsible behavior. In [12] the authors try to answer
the question whether game-based training and Context-Based Micro-Training (CBMT) can
help users correctly identify phishing against legitimate emails. IN order to answer this
question the authors conducted a simulated experiment with 41 participants and the results
showed that both methods managed to improve user behavior in relation to phishing
emails. The paper concludes that training is a strong tool against cyber attacks but must be
combined with other security solutions.

A vital challenge faced nowadays by federal and business decision-makers for choos-
ing cost-efficient mitigations to scale back risks from supply chain attacks, particularly
those from adversarial attacks that are complex, hard to detect and can lead to severe
consequences. Focusing on adversarial attacks and how these can alter the performance
of AI based detection systems, the authors in [13] propose a novel robust solution. Their
proposed model was evaluated in both Enterprise and Internet of Things (IoT) networks
and is proven to be efficient against adversarial classification attacks and adversarial
training attacks.

There are many reasons why it’s vital to know what users can perceive as believable.
It is crucial for service suppliers to grasp their vulnerabilities so as to assess their exposure
to risks and also the associated problems. moreover, recognizing what the vulnerabilities
are interprets into knowing from wherever the attacks are likely to come which leads for
appropriate technical security measures to be deployed to protect against attacks. In [14]
the authors present a solution that combines deep neural network and frequency domain
pre-processing in order to detect images with embedded spam in social networks. The
proposed method is proven to be superior against state-of-the-art detection models in
terms of detection accuracy and efficiency. One of the major contributions of the authors is
the creation of a novel dataset that contains images with embedded spam, which will be
expanded in the near future.

Finding the correct sources that include vital information about securing critical
systems is very important. Unfortunately, the lack of a fully functioning semantic web or
text-based solutions to formalize security data sources limits the exploitation of existing
cyber intelligence data sources. In [15] the authors aim to empower ontology-based cyber
intelligence solutions by presenting a security ontology framework for storing data in
an ontology from various textual data sources, supporting knowledge traceability and
evaluating relationships between different security documents.

Ransomware has become one of the major threats against critical systems the latest
years. The recent report from ENISA has ranked ransomware attacks first in terms of
severity and frequency. Current solutions against ransomware do not cover all possible risks
of data loss. In this article [16], the authors try to address this aspect and provide an effective
solution that ensures efficient recovery of XML documents after ransomware attacks.

Author Contributions: All the authors contributed equally to this editorial. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.
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3 Graduate School of Business, National Research University—Higher School of Economics, 101000 Moscow,
Russia; mkomarov@hse.ru

* Correspondence: jari.nurmi@tuni.fi

Abstract: The field of information security and privacy is currently attracting a lot of research interest.
Simultaneously, different computing paradigms from Cloud computing to Edge computing are
already forming a unique ecosystem with different architectures, storage, and processing capabilities.
The heterogeneity of this ecosystem comes with certain limitations, particularly security and privacy
challenges. This systematic literature review aims to identify similarities, differences, main attacks,
and countermeasures in the various paradigms mentioned. The main determining outcome points
out the essential security and privacy threats. The presented results also outline important similarities
and differences in Cloud, Edge, and Fog computing paradigms. Finally, the work identified that the
heterogeneity of such an ecosystem does have issues and poses a great setback in the deployment
of security and privacy mechanisms to counter security attacks and privacy leakages. Different
deployment techniques were found in the review studies as ways to mitigate and enhance security
and privacy shortcomings.

Keywords: computing; survey; security; privacy; distributed systems; computational offloading

1. Introduction

The goal of having a huge capacity for storage with efficient scalability has recently
been the driving force for different enterprises, organizations, and small companies when
switching to Cloud, Edge, and Fog paradigms from standalone execution [1]. Significantly,
this shift brings numerous challenges along the way. This work mainly focuses on how
security in Cloud, Edge, and Fog Computing systems is achieved and users’ privacy
protected from attackers. Essentially, the vision is a holistic management style for personal
data at the global centers hosting Edge, Fog, and Cloud.

As of today, security and privacy issues have become a major concern when Cloud
providers holding large amounts of data and essential applications share them with cus-
tomers. As a result of these concerns, related topics present major problems in the comput-
ing paradigms research field [2]. Currently, the most attention in each computing model is
on protecting users’ privacy from unauthorized groups or individuals gaining access and
hindering attacks. Moreover, keeping data integrity intact and also maintaining it is a very
vital aspect. This research takes an approach to review the security and privacy aspects in
Cloud, Edge, and Fog paradigms [3–5].

The rapid and ever-increasing need for novel computational offloading strategies is
a great challenge when it comes to protecting personal information and other important
data [6]. Historically, Cloud customers possess legitimate access to their individual infor-
mation and data (in other words, users should have the right as to how, when, and to what
extent other people can gain access to their personal information) [7]. Importantly, five

Sensors 2022, 22, 927. https://doi.org/10.3390/s22030927 https://www.mdpi.com/journal/sensors5
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different features relating to security and privacy aspects are raised in any order: integrity,
accountability, confidentiality, availability, and the preservation of privacy [7–9].

Recently, there has been a sharp, universal shift from traditional operations in organi-
zations to embracing innovations such as Cloud Computing and other paradigms. These
different paradigms have been the subject of many academic studies and reviews from
students and researchers. It is both difficult and very challenging for different Information
and Communication Technology (ICT) engineers, researchers, and students to generally
keep up with the ever-growing pace of new journals, literature, and article reviews. One
important area concerning the various paradigms is the security and privacy aspect, which
we shall systematically review based on PRISMA guidelines [10].

The rest of the paper is organized as follows. First, Section 2 briefly outlines the
explanation of different computing paradigms. Next, Section 3 provides an outlook on the
specifics of security and privacy for each paradigm and their similarities. Furthermore,
Section 4 provides the major identified challenges and vulnerabilities. Section 5 concludes
the discussion.

2. Background on Computing Paradigms

Before diving deeper into the main sections of the paper, a general overview of
the different mentioned paradigms needs to be provided. For clarity and consistency,
each paradigm is carefully discussed concisely. The reason for discussing each of these
paradigms is to have an overview that will guide the understanding of the research
goal for this paper, which is primarily the information security and privacy aspects for
each paradigm.

2.1. Cloud-Related Aspects

Historically, the growth and expansion of the infrastructures of many companies have
come from evolving technologies and innovations. Cloud computing is seen as a unique
solution to provide applications for enterprises [11]. It uses different components such as
hardware and software to render services, especially over the Internet. The possibility of
accessing various data and applications provided was originally made straightforward by
Cloud computing.

Several industrial giants and standardization bodies attempted to define Cloud com-
puting in their understandings and views. The National Institute of Standards and Tech-
nology (NIST) is widely considered to provide the most reliable and precise definition for
Cloud computing as “a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction” [12].

Five different models particularly characterize Cloud computing: on-demand self-
service, broad network access, multi-tenancy and resource pooling, rapid elasticity, and
scalability. Generally, more Cloud computing resources can be provided as required by
manufacturers and different enterprises while avoiding interactions with humans involving
service providers, e.g., database instances, storage space, virtual machines, and many others.
Having access to corporate Cloud accounts is essential as it helps corporations to virtualize
the various services, Cloud usage, and supply of services as demanded [13].

Simultaneously, there is a need for broad network access, i.e., accessing capabilities
via established channels across the network advance the use of heterogeneous thick and
thin customer devices such as workstations, tablets, laptops, and mobile phones [14]. This
access leads to the resource pooling aspect, i.e., computing resources from the provider
are grouped using a particular multi-tenant model used in serving various clients. The
unseen and non-virtual resources are carefully allocated and reallocated according to the
customer’s needs. Usually, customers do not understand or access the spot-on position
or area provided. However, location specification can be established at an advanced state
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of situation or abstraction followed by various examples of resources such as network
bandwidth, processing, memory, and storage [15].

Such a massive heterogeneous environment leads to the scalability aspect [16]. The
growth of a client marketplace or business is made possible due to the tremendous ability
to create specific Cloud resources, enabling improvement or reducing costs. Sometimes,
changes might occur on the user’s need for Cloud computing, which will be immediately
responded to by the platform or system.

Finally, the resource use is keenly observed, regulated, and feedback is given to estab-
lished billing based on usage (e.g., accounts of frequent customers, bandwidth, processing,
and storage). The proper reporting of essential services used can be done transparently if
the used resources are adequately looked into, controlled and account is given [12].

From the architectural perspective, big, medium, and small enterprises use Cloud
computing technology to save or store vital data in the Cloud, enabling them to access
this stored information from any part of the world via connecting to the Internet. Service-
oriented and event-driven architectures are the main combination that makes up the
Cloud computing architecture. The two important parts dividing the Cloud computing
architecture are naturally Front End (FE) and Back End (BE) [17].

As seen in Figure 1, various components are involved in the computing architecture [6].
Furthermore, we take a brief look at each architecture’s different features. Furthermore, we
can see that a network connects both front and back ends via the wired or wireless medium.

Figure 1. Most common task offloading models.

2.2. Edge-Related Aspects

As a new generation of computational offloading, Edge arrived to allocate the re-
sources at the network edge, i.e., closer to various office and home appliances such as
mobile devices, Internet of Things (IoT) devices, clients, and client’s sensors. In recent
years, there has been fast growth in industrial and research investment in Edge computing.
The pivot for Edge computing is the physical availability and closeness, of which end-to-
end latency is influenced by this essential point of Cloudlets, with bandwidth achievable
economically, trust creation, and ability to survive [18].

Communication overheads between a customer and a server site are reduced due to
a decrease in actual transmission distances (in terms of geography and number of hops)
brought about by the Edge computing in the network. As one of the definitions, “Edge
computing is a networking philosophy focused on bringing computing as close to the
source of data as possible to reduce latency and bandwidth use. In simpler terms, Edge
computing means running fewer processes in the Cloud and moving those processes to
local places, such as on a user’s computer, an IoT device, or an Edge server” [19]. Some other
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definitions of Edge computing are “a physical compute infrastructure positioned on the
spectrum between the device and the hyper-scale Cloud, supporting various applications.
Edge computing brings processing capabilities closer to the end-user/device/source of
data which eliminates the journey to the Cloud data center and reduces latency” [20]. There
are several cases in which architectural designs are specifically intended, considering their
work plan and setting up the infrastructure is based on its need.

Considered a state-of-the-art paradigm, Edge computing takes services and applica-
tions from the Cloud known to be centralized to the nearest sites to the main source and
offers computational power to process data. It also provides added links for connecting the
Cloud and the end-user devices. One of the best ways to solve or reduce Cloud computing
issues is to make sure there is an increase in Edge nodes in a particular location, which will
also help in decreasing the number of devices attributed to a sole Cloud [21].

Overall, the main Edge service consumers are resource-constrained devices, e.g., wear-
ables, tracker bands for fitness and medical uses, or smartphones [22]. Fog devices, in turn,
subdues the shortcomings of Cloud by transferring some of the core functions of Cloud
towards the network Edge while keeping the Cloud-like operation possible [23], e.g., Edge
and Fog nodes may act as interfaces attaching these devices to the Cloud [24].

A typical Edge computing architecture comprises three important nodes (see Figure 1):
the Cloud, local Edge, and the Edge Device. Notably, Local Edge involves a well-defined
structure with several sublayers of different Edge servers with a bottom-up power flow in
computation. Both Access Points (APs) and Base Stations (BSs) are Edge servers situated
at the sublayer considered to be the lowest together with proximity-based communica-
tions [25]. These are particularly installed to obtain data during communication from
various Edge devices, returning a control flow using several wireless interfaces.

Cellular BSs transmit the data to the Edge servers found in the (upper) sublayer after
receiving data from Edge devices. Here, the upper sublayer is particularly concerned with
operating computation work. Very fundamental analysis and computation are done after
data are forwarded from BSs. At a recent Edge server, the computational restriction is
placed such that if the difficulty in a given work surpasses it, the work is offloaded and
sent to the upper sublayers with adequate computation abilities. A chain of flow control is
then concluded by these servers with passing back to the access points, and finally, in the
end, send them to Edge devices [26].

The Edge architecture allowed to switch more delay intolerant applications closer
to the computation demanders, e.g., Augmented/Virtual/Mixed Reality (AR/VR/MR)
gaming, cellular offloading, etc., all together following the proximity-driven nature of the
paradigm [27]. Generally, there are two approaches to the proximity between the Edge and
user’s equipment: physical and logical proximity.

Physical proximity refers to the exact distance between the top segment of data
computation and user equipment. Logical proximity refers to the count of hops between
the Edge computing segment and the users’ equipment. There are potential occurrences
of congestion because of the lengthy route caused by multiple hops, leading to increased
latency issues. To avoid queuing that can result in delays, logical proximity needs to limit
such events at the back-haul of the computing network systems.

Despite the shortcomings of the normal Cloud paradigm innovations to match up
with great demands, given lower energy level, real-time, and in particular security and
privacy aspects, the Edge paradigm is not considered a substitute for the Cloud paradigm.
Edge and Cloud paradigms are known to assist each other in a cordial manner in several
situations. The Cloud and Edge paradigms cooperate in some network areas, including
autonomous cars, industrial Internet, as well as smart cities, offices and homes. Importantly,
Edge and Cloud paradigm collaboration offers many chances for reduced latency in robust
software such as autonomous cars, network assets of companies, and information analysis
on the IoT [28].

Nevertheless, Edge operation is executed through supported capabilities from several
actors. Cellular LTE, short-range Bluetooth Low Energy (BLE), Zigbee, and Wi-Fi are
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various technologies that create connectivity by linking endpoint equipment and nodes of
the Edge computing layer. There is great importance for access modalities as it establishes
the endpoint equipment bandwidth availability, the connection scope, and the various
device type assistance rendered [29].

2.3. Fog-Related Aspects

Access gateways or set-top-boxes are end devices that can accommodate Fog com-
puting services. The new paradigm infrastructure permits applications to operate nearby
to observe activities easily and handle huge data originating from individuals, processes,
or items. The creation of automated feedback is a driving value for the Fog computing
concept [30]. Customers benefit from Fog and Cloud services, such as storage, computation,
application services, and data provision. In general, it is possible to separate Cloud from
Fog, which is closer to clients in terms of proximity, mobile assistance for mobility, and
dense location sharing [31], while keeping the Cloud functionality in a distributed and
transparent for the user manner.

According to NIST, “Fog computing is a layered model for enabling ubiquitous ac-
cess to a shared continuum of scalable computing resources. The model facilitates the
deployment of distributed, latency-aware applications and services, and consists of fog
nodes (physical or virtual), residing between smart end-devices and centralized (cloud)
services. The fog nodes are context aware and support common data management and
communication system. They can be organized in clusters – either vertically (to support
isolation), horizontally (to support federation), or relative to fog nodes’ latency-distance to
the smart end-devices” [32]. Generally, Fog computing is considered to be an extension
or advancement of Cloud computing, as the latter one ideally focuses mostly on a central
system for computing, and it occurs on the upper section of the layers, and Fog is respon-
sible for reducing the load at the Edge layer, particularly at the entrance points and for
resource-constrained devices [33].

The use of the term “Fog Computing” and “ Edge Computing” refers to the hosting
and performing duties from the network end by Fog devices instead of having a centralized
Cloud platform. This means putting certain processes, intelligence, and resources to the
Cloud’s Edge rather than deriving use and storage in the Cloud. Fog computing is rated
as the future huge player when it comes to the Internet of Everything (IoE) [34], and its
subgroup of the Internet of Wearable Things (IoWT) [35].

Communication, storage, control, decision-making, and computing close to the Edge
of the network are specially chosen by Fog architecture. Here, the executions and data
storage are executed to solve the shortcomings of the current infrastructure to access critical
missions and use cases, e.g., the data density. OpenFog consortium defines Fog computing
as “a horizontal, system-level architecture that distributes computing, storage, control,
and networking functions closer to the users along a Cloud-to-thing continuum” [36].
Another definition explains Fog as “an alternative to Cloud computing that puts a sub-
stantial amount of storage, communication, control, configuration, measurement, and
management at the Edge of a network, rather than establishing channels for the centralized
Cloud storage and use, which extends the traditional Cloud computing paradigm to the
network Edge” [37].

The deployment of Fog computing systems is somewhat similar to Edge but dedicated
to applications that require higher processing power while still being closer to the user.
This explains why devices belonging to the Fog are heterogeneous, raising the question
of the ability of Fog computing to overcome the newly created adversaries of managing
resources and problem-solving in this heterogeneous setup. Therefore, investigation of
related areas such as simulations, resource management, deployment matters, services,
and fault tolerance are very simple requirements [38].

As of today, Fog computing architecture lacks standardization, and until recently,
there is no definite architecture with given criteria. Despite so, many research articles and
journals have managed to develop their versions of Fog computing architecture. In this
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section, an attempted explanation is detailed in an understanding manner, which describes
the different components which make up the general architecture [38].

Generally, most of the research projects performed on Fog computing have mostly
been represented as a three-layer model in its architecture [39], see Figure 2. Moreover, there
is a detailed N-layer reference architecture [40], established by the OpenFog Consortium,
being regarded as an improvement to the three-layer model. However, we will be looking
at a three-layer architecture.

Figure 2. Most commonly analyzed computing architectures.

Fog computing is considered to be non-trivial addition regarding Cloud computing
based on Cloud-to-Things setup. In fact, it displays a middle layer (also known as the Fog
layer), closing the gap between the local end devices and Cloud infrastructure [41].

Notably, and as in the Cloud, the Fog layer also uses local virtualization technologies.
On the other hand, taking into consideration the available resources, it will be more
adequate to implement virtualization with container-based solutions [38]. It should also be
remembered that Fog nodes found in this layer are large in number. Based on OpenFog
Consortium, Fog node is referred to as “the physical and logical network element that
implements Fog computing services” [42]. Fog nodes have the capability of performing
computation, transmission, and also storing data temporarily and are located in between
the Cloud and end-user devices [43].

The essential pushes for the eminent migration from Cloud computing to Fog comput-
ing are caused by load from computations and bringing Cloud computing close to Edge.
Several characteristics define Fog computing by the tremendous variety of applications and
IoT design services [44]. The major one corresponds to the extreme heterogeneity of the
ecosystem, which provides services between centralized Cloud and different devices found
at the Edge, such as end-user applications via Fog. The heterogeneity of Fog computing
servers comprises shared locations with hierarchically structured blocks.

At the same time, the entire system is highly distributed geographically. Fog com-
puting models consist of extensively shared deployments in actuality to offer a Quality
of Service (QoS) regarding mobile and non-mobile user appliances [45]. The nodes and
sensors of the Fog computing are geographically shared in the case of various stage en-
vironments, for instance, monitoring different aspects such as chemical vats, healthcare
systems, sensors, and the climate.

The ability to effectively react to the primary goal and objective can be called cognition.
Customers’ requirements are better alerted by analytics in a Fog-focused data gateway,
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which helps give a good position to understand where to make a transmission, storage
possibilities, and the control operations along the whole process from Cloud to the In-
ternet of Things continuum. Customers enjoy the best experience due to applications’
closeness to user devices and creating a better precision and reactiveness concerning the
clients’ needs [46].

2.4. Differences and Similarities of Paradigms

The main goal of Fog and Edge paradigms are similar in some areas, unlike the Cloud.
Both of those bring the capabilities of the Cloud closer to the users and offer customers
with lower latency services while making sure, on the one hand, that highly delay-tolerant
applications would achieve the required QoS, and, on the other hand, lowering the overall
network load [47]. It is not straightforward to differentiate and compare Cloud, Edge, and
Fog Computing. This subsection attempts to discern and look into similar features between
the computing paradigms [48]. The differences and similarities of the various paradigms
are summarized in Table 1.

Table 1. Comparison on different computing paradigms.

Attributes Cloud Computing Edge Computing Fog Computing

Architecture Centralized Distributed Distributed

Expected Task Execution Time 1 High High-Medium Low

Provided Services Universal services Often uses mobile networks Vital for a particular domain
and distributed

Security Centralized (guaranteed by the
Cloud provider)

Centralized (guaranteed by the
Cellular operator)

Mixed (depending on the
implementation)

Energy Consumption High Low Varying but higher than for
Edge

Identifying location No Yes Yes

Main Providers Amazon and Google Cellular network providers Proprietary

Mobility Inadequate Offered with limited support Supported

Interaction in Real-Time Available Available Available

Latency High Low Varying but higher than for
Edge

Bandwidth Cost High Low Low

Storage capacity and
Computation High Very limited Varying

Scalability Average High High

Overall usage

Computation distribution for
huge data (Google MapReduce),
Apps virtualization, Storage of

data scalability

Control of traffic, data caching,
wearable applications

CCTV surveillance, imaging of
subsurface in real-time, IoT,

Smart city, Vehicle-to-Vehicle
(V2X)

1 Importantly, Edge may provide higher results but only for computationally simple tasks (benefiting in terms of
communication latency), while Fog would provide higher computational speed maintaining the latency (for, e.g.,
AR/VR applications). Executions in the Cloud would always provide the worst results as the computational unit
is geographically distant from the user, which would naturally require tremendous communication overheads
compared to geographically closer locations.

Nonetheless, it is essential to overview each of these indicated paradigms to address
security and privacy aspects in Cloud, Edge, and Fog paradigms. This subsection described
some fundamental features that constitute each of the said paradigms, making them
unique in their ways. We looked into the different architectures, how these paradigms are
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characterized and how beneficial they are to the industries, and addressed some scenarios
in which they are applied.

Cloud being a centralized architecture and an IoT promoter has several shortcomings
such as high latency, location sensibility, and computation time, just to name a few. Re-
searchers then suggested upgraded technologies known as Edge and Fog paradigms to
lessen the burden on Cloud systems and resolve the issues indicated. Ultimately, we see
that those two paradigms have helped decrease the large quantity of data sent to the Cloud.

Finally, the Edge paradigm is advantageous over the Cloud paradigm, especially
regarding security and privacy. However, the Fog paradigm consisting of Fog nodes is
regarded as an outstanding architecture uniquely created so that IoT appliances render
improved services and support. Next, we shall present some security and privacy analyses
relating to Cloud, Edge, and Fog paradigms, respectively.

3. Security and Privacy of Computing Paradigms

Security and privacy have a symbiotic relationship and are closely related. Many
academics and organizations see the two terms closely related to the ICT domain. The
influence of digitalization has tremendously shaped our daily activities [30]. Industrial
giants currently deal with various computing paradigms involving huge computation and
processing of Big Data. Thus, transmitting these data from one source to another makes it
vulnerable and requires protection. In this section, we will define security, privacy, threats,
countermeasures, and security mechanisms, and we will see some differences and possible
similarities between security and privacy [49].

3.1. Cloud-Related Aspects

The majority of today’s networks and the idea of storing data remotely is greatly
inclined to technologies relating to Cloud computing. One of the exceptional demands is
for the Cloud to see that services are always made available consistently, the reliability is
maintained, and data are supplied as demanded. As mentioned earlier, one of the prime
reasons organizations or individuals are reluctant to embrace the quick movement to the
Cloud model is the huge concern for information security and privacy. Some acknowledged
issues tied to security and privacy in Cloud computing include confidentiality, data security,
phishing, and multi-tenancy [50]. This section looks into the various threats aligned with
security and privacy within the Cloud computing system and suggests some modalities for
threat mitigation.

Cloud computing users adopt different distributed Cloud models based on their spe-
cific needs, and because of this, the Cloud security and privacy threats differ according to
the infrastructure hosted in the Cloud. According to the Cloud Security Alliance (CSA), ma-
jor regular threats are information leakages, Denial of Service (DoS) Attack, and Advanced
Persistent Threats (APT) [51].

Adequate Cloud infrastructural security largely depends on the established protective
technologies with many layers. This brings about the importance of adapting an Intrusion
Detection System (IDS) specifically to trace suspected threats intelligently and intercept
potential attacks over a network. Furthermore, the various events witnessed can be sepa-
rated to carry out network status analysis. Resources and services of Cloud CIA are said to
encounter different types of threats originating from either inside or outside intruders [52].

3.1.1. Cloud Data Security

Data security is an essential aspect that plays a significant role in handling Cloud
devices and keeps them running. This may involve protection and restoration guides for
data and centers for Cloud services, and data involved in transmissions or transfers must
always be protected.

Generally, there is a need for simple yet robust mechanisms that offer a smooth
method of learning about Cloud service capabilities before deployment and those that
align with Cloud security features during the establishing stage. The presence of Cloud
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service providers and Cloud customers also plays a role in the deployment plan since both
parties must meet certain data security requirements [53]. Here, issues such as service level
negotiation, information traffic, and especially data security will arise [54]. It is important
for Cloud service suppliers to properly protect customers’ data stored in the Cloud to
reduce or eliminate security shortcomings. Techniques used in encrypting data must be
very strong to guarantee better data security and implement authentication mechanisms
that monitor other information access. Access control through data encryption should be
established so that only the rightfully selected employees can reach the data.

3.1.2. Cloud Data Privacy

The public Cloud faces more privacy threats, although these threats are very different
based on their Cloud model variants. Some of the concerns of the danger here are the
proliferation of information, malicious usage by an unauthorized person, and incapability
to control by clients [55]. Clients’ sensitive documents stored in the Cloud can be reached
by attackers using the file’s hash codes, with the help of a mechanism used in duplicating
information [56]. Risks about privacy are regarded from several angles, such as access
control, Cloud systems, customers, and stored information [57]. Knowing data privacy and
other relating privacy principles will enormously assist in dealing with the known threat
concerns. One vital setback holding some organizations from moving to the Cloud is the
fear of losing classified data through information leakage [58].

Most often, people’s privacy is breached either knowingly or unknowingly. Accessing
a person’s private data without their knowledge or authorization is strongly considered
an invasion of privacy. Different trends can occur, such as open disclosure, privacy attack,
data violation, and other means of attacks. Privacy leakage can be very damaging, but
privacy issues can be better managed with the points mentioned below:

• Trust: Disclosing data of an individual or organization is considered a breach of
privacy. Trust plays a very pivotal role in decreasing or eliminating fear [59]. There
are various trust standards every customer can agree to, but in general, their concern
is to see minimal or zero breaches of privacy at a reasonable scale [60].

• Access Control: Cloud systems present massive issues, such that an unauthorized
person or group of individuals can obtain access if not properly addressed. An
effective way of handling this is by answering the questions [61]:

- Who? The privileged persons to access certain data and who not to.
- What? Some detailed data are not made accessible to every worker. So what

specific files are permitted for whom?
- When? Some data are needed for a period of time, and that period must strictly be

controlled when that information has been accessed.

These can be made functional by establishing management policies, checks on multi-
domain, and providing strong management keys.

• Encryption of data needs to be sufficiently strong to protect the privacy of the client’s
files. Weak encryption of data poses a serious challenge to Cloud privacy [61].

3.2. Edge-Related Aspects

Since Cloud computing’s performance dropped greatly caused by various factors,
including the growing number of nodes, Edge computing has provided a significant
paradigm shift. Edge Computing is observed as an innovation because it can carry applica-
tions with its new technological capabilities in shared computing while also performing
information processing right at the point of need, without transporting the data to the
Cloud. Users overall have a better feeling when data are processed close to them, improving
their response time. This is made possible thanks to the computation that is directly carried
out at the nodes of distributed equipment [62].

Fifth Generation (5G) networks are taking over many areas and operations of our daily
activities [63]. Edge computing is undeniably the pivot of all these changes being a part of
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5G network, making it vital in terms of smaller resource-constrained devices and how they
interact. Edge Computing shows a relationship with heterogeneous equipment and several
cross-connected networks. The inter-connectivity of these Edge supporting technologies
exposes it to the most concerning aspect of any device, technology, network, and above
all, organizations, which is safety. The threats involved here cannot be taken for granted,
and this now led us to the subject matter, security, and privacy in Edge Computing. With
computation at the node of Edge devices, other security circumstances will show up and
still require continuous research work for improvements [64].

In Edge, the chances for imminent threats and attacks are very likely because of
the decentralized design of the Edge computing system, even though the processing of
information at the nodes offers some security and privacy protection. Smart devices
also expose security issues and dangerous malware to Edge computing. The structure of
Edge computing cannot adequately support the mechanisms for securing and protecting
information. This, therefore, implies that the complexity of this Edge node at the network
leaves the data very exposed and hard to secure.

Despite the growing nature of Edge computing technologies, its security and privacy
development remain a continuous process and tells why there exist not so many research
findings. Researchers and other academics globally have been putting every effort in
performing relevant research work to develop countermeasures to improve the security
and privacy of Edge systems. Different simple mobile Edge computing methods were
used for carrying out security checks, presentation of an overall security and protection
scheme with proposals from the research work done. The Edge security findings do present
a relevant citation from a theoretical approach. As mentioned previously, the existing
known issues in this work relating to Edge computing information security and privacy
are partitioned into four separate parts [65]: Access Control, Identity Authentication,
Information Security, and Privacy Protection. Based on the focused theme of this work,
“Security and Privacy Aspects”, we shall be looking more into only Information security
and data protection.

3.2.1. Edge Data Security

Data integrity, confidentiality, and attack detection are the common goal and reasons
for data security. It assists in designing an Edge-computing system that is secured. Issues
such as information breach and information loss are resolved by outsourcing information
under control, non-fixed storage, and sharing responsibility. Data duties are allowed to
be carried out securely by customers. Presently, it is still challenging to identify works on
Edge Computing security, and privacy since many academics do mostly focus on Cloud
paradigms [66], or perhaps Fog paradigm [67]. The major aim of information security in
Edge systems is to securely move data and ease the heavy load by creating a shared model
with a smoothly operating system. As a result, very acceptable shared information security
and lightweight designs are developed for both end-users and remote nodes.

A key responsibility in safeguarding customers’ secrets and upholding the confidence
involved, especially at the Edge network, should be rendered, e.g., a digitalized building
constructed with many IoT devices, which can be a prime target due to its huge quantity
of personal data produced. Therefore, a more regarded approach to protect the privacy of
customers and gain their confidence is to make sure that data processing occurs at the Edge
network or node of the house [68].

In addition to aspects detected earlier, the following notable Edge-specific elements
should be considered. Note, cloud challenges also generally apply to Edge operation
scenarios:

• Confidentiality, in the case of mobile clients intending to use the services of mobile
applications, is always taken seriously, and for this reason, some clients find it difficult
to decide whether to use it [69]. The authors of [70] list some shortcomings relating to
Edge computing confidentiality, showing a very high risk posed by the providers of
services gaining unpermitted passage to classified information. This occurs during
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data transmission in a distributed or unsecured network later stored and processed
in the Edge distributed network. Data security has constantly been breached. Good
enough, restricting access today to project confidentiality is achievable due to some
newly created mechanisms [71].

• Detecting Attacks: Edge systems can operate smoothly with the assistance of Edge
nodes where the Edge applications are located to offer maximum standard services.
This ensures that the entire Edge system is free from abnormalities or threats. The
Edge node consists of harsh surroundings with an inadequate security guarantee,
exposing the Edge nodes to threats. The performance of an Edge system can mas-
sively be hindered when the threats from one Edge node are mismanaged and might
subsequently extend to another Edge node. Thus, finding a quick solution can be hard
because of the weight of the threat that spreads across the Edge nodes. Furthermore,
added costs would be incurred to find the baseline reason for the problem, and even
recovery might take a while [72]. Therefore, regular checks must be performed to
detect any previous potential or imminent attacks.

3.2.2. Edge Data Privacy

In Edge computing, accessing the system does not reflect trust. Averagely accepted
systems store important data, resulting in critical privacy leakage. Examples of clients’ data
stored are personal information, location, and identity. The focus areas to be discussed
herein any order include privacy, identity, and location privacy safeguarding [73].

Edge computing always raises much concern in stark contrast to other existing com-
puting models protecting information. This is because the challenges, e.g., leakages relating
to Edge data privacy, are daunting. An Edge information center, services, infrastructure
suppliers, and even certain clients are the potential weak link or at least establishments you
cannot fully trust with such interwoven computing/cellular networks. With regard to this,
the act of keeping safe the private information of clients is an obligation that requires very
close attention [74]:

• Protection of Data Privacy: At the Edge nodes, huge amounts of data belonging to
clients are retrieved from applications and other users’ pieces of equipment. This
collected information is then processed and analyzed. Despite the trustworthiness of
the Edge computing nodes, they can still display some level of vulnerability. Classified
information such as an individual’s medical data must be top secret. Therefore,
information privacy protection is very important to avoid leakage at the nodes of Edge
computing [75].

• Identity Privacy: Compared to the Cloud systems, especially Mobile Cloud, Edge
models still lack adequate research attention in protecting the identity of customers
well. Identity privacy protection is a major concern for several organizations and even
individual customers. The third-party identity-designed model is said to still pose
vulnerability [76].

• Location Privacy: Several software and services from Worldwide Web render func-
tional capabilities based on location. For a client to gain access when they want to use
the services in Edge computing, that client must deliver their location as required by
the service provider [77,78]. One of the particularly concerning fears is breaching data
location through possible leaks. Different researchers gave some solution schemes on
how to deal with issues on data leakage. A dynamic distribution in location privacy
protection was presented in a mobile model of social internet platforms. This model
can sort out visitors with low trust levels within a certain range of social interactions.
It performs this by dividing customers’ data location (unidentifiable) and personalities
in individual storage systems. This separation enables the service provider to hide
customers’ location data safely. The importance of this model is that even if an attacker
manages to breach one of the storage facilities, for example, data location, it will not
pose a major threat since the identity of the client is not leaked or exposed [79].
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3.3. Fog-Related Aspects

Many businesses have transformed massively, especially with the fast growth in
large data usage, due to Cloud computing [80]. Meanwhile, the quest for private services
also began to grow hugely. A great number of well-centralized systems is offered by
Cloud computing platforms [81,82], although with some shortcomings. Clouds and their
endpoints show certain unwanted long and irregular delays and time-conscious services
to some [83]. There is a pertinent high risk in a situation whereby there is a breakdown
in the information building and between network interconnected systems. One potential
breach here is possible privacy exposure. To mitigate this challenge, the Fog computing [84]
model was introduced, and it assisted Cloud-Edge in improving computation, security,
and privacy, which is now the leading and most recommended computing service.

Fog devices are considered to be separate and distributed pieces of equipment ranging
from gateways, routers, switches, or professional installation of traditional servers [85].
Furthermore, with the current demand for huge emission reduction, Fog computing is
highly viewed as a smart green platform with sustainability and great security benefits.
Many fog Nodes (FNs) are seen as renewable constitute the Fog computing system. The
geographical placing of FNs can be spread throughout several locations. A great level of
pressure exerted in the information center during computation is vastly decreased due to
the different FNs working independently but together through a well-calculated formula.
Fog can separate or sifter the processing at the central layer found at the middle of the
endpoint and Cloud [86], which may significantly enhance the QoS and brings down
expenses [87]. Fog computing was highly considered in great demand to deal with the
ever-growing IoT issues, as we shall see in the next sub-Section [88].

Fog computing was established as the most viable approach because of its ability
to cross-connect every digital equipment, wireless endpoint, and local device. This in-
terconnectivity is vulnerable to vital security and privacy violations such as disclosing
clients’ data location, leaking classified documents, and stealing private accounts. First
considered by Cisco, Fog computing was brought to expand the Cloud activities to the
system’s Edge. The consideration of Fog computing surfaces as an option to local Cloud
offering huge assistance in terms of QoS, latency, and location distribution [45]. Services
such as networking, storage, and most importantly, computing between the customer
and information center are rendered by Fog computing hugely considered a virtualized
system [89], carrying the related vulnerabilities along the way.

According to the Edge system, every single unit in the Edge computing functions
independently to see that information is not forwarded to the Cloud, and instead, it is
locally handled. On the other hand, transferring to Cloud or processing the data from
various information origins is always a decision made by Fog computing nodes, taking into
account its assets. Fog computing can expand some Cloud services that are not assisted
in Edge structure, such as Infrastructure as a service (IaaS), software as a service (SaaS),
and platform as a service (PaaS). Fog computing is completely Edge inclined but can be
supported by Fog computing while at the Edge of the network, expansion of communication
assets and computation are performed [90].

3.3.1. Fog Data Security

Some attacks usually threaten private and government entities since they function
in Cloud, Edge, and Fog computing. To offer a level of protection to the architecture,
a Threat Intelligence Platform (TIP) is important to be developed [91]. Data security is
the most prioritized aspect in the industrial sector, especially as information must be
safeguarded. Intelligent equipment and sensor devices are deployed to reduce threats and
security attacks extensively. The feature about heterogeneity and geographical sharing
impacts the implementation of Cloud security frameworks into Fog computing systems [5].
Some of the considered security challenges are confidentiality, authentication, availability,
and information privacy. These mentioned frameworks assist in creating and monitoring
accesses to persons and organizations.

16



Sensors 2022, 22, 927

Considering the medical field, we see that patients’ health history involves classified
information and the Fog architecture has several nodes that might present some vulnerabil-
ities. These vulnerabilities can be unpermitted access to information when stored or at the
time of transfer, untrustworthy insiders, and during system distribution of information. Fog
system by means of cable or wireless network consistently receives information transferred
from sensors of medical devices. Tampering with patients’ personal data, integrity, and
device availability is obvious and can occur when communication systems and sensors are
targeted. Some through channels as Denial of Service (DoS) can easily be perpetrated due
to the vulnerabilities found in wireless networks. On the other hand, the absence of proper
frameworks to control access to the Fog nodes that process important information can
compromise information through leakage because of account theft, unpermitted access, and
possibly some unsafe passage. The mentioned problems can be mitigated through thorough
analysis and stringent rules and regulations to establish standard control mechanisms such
as personal systems, selective (limited) encryption, and reciprocated authentication [92].

Overall, Fog provides Edge-like challenges while bridging those even more towards
the decentralized and distributed environment.

3.3.2. Fog Data Privacy

Protecting the privacy of individuals and enterprises is often a primary concern
encountered by the Fog paradigm, especially with the Fog nodes positioned near the indi-
viduals and facilitates the gathering of vital information sometimes relating to geographical
location, identity, social security numbers, and many. One great challenge is that it is quite
hard to keep centralized monitoring due to the distributed nature of Fog nodes.

During transmission, attackers can easily gain access to steal essential information
when the Fog nodes are not well secured. More practical studies are needed to understand
privacy problems better and innovate current solutions to preserve data privacy [93].
Privacy leakage often happens, even though end-users are never in accordance to release
their personal information. There are some main areas of clients’ privacy: data privacy,
location privacy, identity privacy, and usage privacy [94].

4. Main Security and Privacy Challenges

This section briefly describes the major challenges per paradigm and provides a
concise table highlighting the essential ones and the proposed countermeasures identified
in the literature.

4.1. Cloud Paradigm Challenges

Data loss, privacy leakage, multi-tenancy, unpermitted access to management platforms,
Internet protocol, injection attacks are some of the main challenges faced in Cloud [95,96]. Such
challenges turn to make room for potential attacks, letting access control to cybercriminals,
granting access to unauthorized services, therefore disclosing several classified data, if
not all.

Cloud computing faces enormous threats when involved with these vulnerabilities
and thus affects business too, either directly or indirectly. One of the most reliable ways to
repel threats and attacks is to identify any found and analyze the behavior properly. This
section explains the different Cloud computing issues [97].

• Multi-tenancy is used in providing services to different customers and organizations
with a particular software operating on the SaaS provider’s servers within the architec-
tural design. Every user company can use an application that is virtually designed in
dividing data and configuring it virtually with the help of specially designed software.
In this SaaS model, there is a high risk of vulnerability because clients turn to work
with applications of multi-tenancy manufactured by Cloud Service Providers (CSP).
The maximum-security of customer’s data is the direct responsibility of the Cloud
provider since sensitive information such as financial and individual data are hosted
in their Cloud system [55].
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Managing resources and scheduling work are some methods used by certain Cloud
providers [98], but hardware potential is fully attained through virtualization by CSPs
providers. Sandboxed setups refer to Virtual Machines (VM)being completely separate.
Hardware sharing with the clients is considered safe according to this mindset. On the
other hand, cybercriminals can gain access to the host when the sandboxed system has
security setbacks [99]. The virtualization software is strongly recommended since it is
capable of showing recent vulnerabilities in Cloud security, such as retrieving data by
targeting a VM on one machine through attacks through cross-Virtual Machine side
channel [100].

• Data Integrity: Security attention is greatly put on data integrity in the Cloud, which
means any reply to a data request sent must be from someone with an access privilege.
Establishing a general basic data integrity standard is important, though it is not still in
place [101]. Trust is one of those many values that clients are expected to demonstrate
in the computing facet. Today, a lot of companies or institutions encounter the issue of
trust, and this hugely impacts the handling of their data [102].

• Unauthorized Access: One of the most vulnerable aspects of Cloud computing is giv-
ing unauthorized access to management platforms and resources. Users are exposed
to this due to the shared technologies often involved in Cloud services. An acceptable
way of mitigating the security solution of such a scenario is by introducing access
control, and this helps in securing the client’s personal information and its domain for
privacy [103]. It is worth noting that cybercriminals can simply have unauthorized
access to Cloud service systems because of a single-style authentication model and
not very strong authentication mechanisms being used [104].

• Data loss and Leakage: The low cost of Cloud services is one reason customers turn
to migrate to the Cloud, and it is warned that customers should pay attention to
their important information since various diverse aspects can easily breach their data
security. There is an increased chance of data leakage or loss due to high traffic and
usage of the Cloud. The vulnerabilities and threats in Cloud service are undeniable,
posing a great security threat to businesses and institutions. Significantly, it can be
frustrating when you cannot retrieve and restore data after accidentally deleting files
from the Cloud due to a lack of a backup system [105].

• Malicious Insider: Every organization has different rules and regulations regarding
recruitment policies and employee information. However, some employees have
higher status, which guarantees them the privilege of accessing certain essential data
within the company. Based on CSA, they proposed the implementation of transparency
in the general data security and management activities standard, outlining notification
procedures during security failures, while using Service Level Agreement (SLA) as a
demand for human resource, and finally establishing and exercising strict rules in the
management of supply chain [105].
It may be far easier for a person with malicious ideas to work for a CSP since no one is
seen as a suspect [106]. This individual can quickly be involved in malicious events,
especially if they have unhindered access to sensitive information, especially if the
CSP cannot strictly monitor its workers.

• Identity Theft: Victims or organizations can suffer heavy impact due to weak pass-
words due to phishing attacks by some attackers who turn to disguise as authentic
persons to steal the different important data of their victims. The sole reason for iden-
tity theft is to gain access to sensitive digital resources of individuals and companies
by any malicious means. Every protected communication within the Cloud system
happens with access control, and this is made possible using an encryption key [107].

• Man-in-the-Middle Attack: During the flow of data from one end to another or be-
tween different systems, cybercriminals can easily take advantage and gain access,
therefore having control of classified data. This can easily occur when the secure
socket layer (SSL) is insecure due to inadequate configuration. Specifically, in Cloud
systems, hackers can attack the communication within the information centers. Effi-
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cient SSL configuration and data analysis among accepted entities can go a long way
to significantly lower the threat posed by a middle-man attacker [108].

• The DoS attack aims to limit or stop the execution of service and from accessing
needed data. This creates a scenario where actual users partially or fully lack service
availability. Whenever the right person uses the Cloud services to reach the data
server to access information, access is denied. This happens because the attacker uses
a method in which he constantly congests the server of a precise resource through
request flooding, and the targeted server will then be unable to reply to a legitimate
access request. There exist several ways this attack can be performed, for example, by
way of SQL injection attack, bandwidth wastage, and also by way of incorrectly using
model resources [109].

• Phishing Attack is one of the most common attacks in which the criminal turns to im-
personate and deceive their victims by leading them to malicious links. The presence
of the Cloud makes it flexible for hackers to hide their Cloud hosting of numerous
accounts of different clients that uses Cloud services using phishing activities. There
are two kinds of threat divisions in which phishing can be grouped. Primary, irre-
sponsible attitude whereby a cybercriminal can also make full use of Cloud services
to simply host a site for a phishing attack. Secondary, Cloud computing services and
their many accounts can be hijacked [110].

4.2. Edge Paradigm Challenges

The Edge paradigm is considered to offer huge benefits to Edge customers such as
storage, data processing, just to name a few. However, unlike the Cloud paradigm, Edge
computing still faces big security and privacy challenges, which we will explore despite
these many gains in this subsection.

• Data Injection: When a machine is vulnerable, an attacker can push harmful informa-
tion to share negative information. The act of injecting dangerous data by a malicious
attacker into a device is known as poisoning. Data can be faked, then used to create
fraudulent messages to render the nodes of the target compromised, and it is called an
external forgery, for example, in a modern digital industrial production line where the
adversary happens to give false machine readings, therefore causing severe functional
changes with the bad aim to harm the devices [65].

• Eavesdropping: In this scenario, an attacker can mask itself and observe network
traffic during transmission and capture data illegally. It is quite hard to point out this
type of attack because the attacker happens to hide inside the platform [111].

• Privacy Leakage: The absence of strict access control to the node of Edge can easily
lead to data privacy being tampered with. However, the attack strength is very low.
The information generated from devices situated at Edge proximity is stored and
processed in the Edge data building. Customers classified these Edge data buildings
can leak information since the content is known [112].

• Distributed DoS: Attackers usually take advantage of network protocol vulnerabilities
to launch attacks on Edge nodes, causing network damage and restricting resource
access and provision of services. Attackers carry out these attacks by loading the
server with many data packets to shut down the channel by jamming the server’s
bandwidth. Another option is where the Cloud data server or the Edge systems are
being flooded with data packets to massively take out resources [65].

• Permission and Access Control: Unauthorized access is a major challenge in the Edge
paradigm. It is important to know an individual or employee before authorizing them
to access any sensitive information in the system. It can be achieved by establishing
access control protocols. Connectivity between several pieces of equipment and other
services can be considered secured when access control measures and permission are
implemented [113].
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4.3. Fog Paradigm Challenges

The Cloud paradigm has countermeasures for its security and privacy threats. Nev-
ertheless, these countermeasures may not apply to the Fog paradigm due to the active
presence at the network Edge of Fog entities. The immediate vicinity where Fog entities
operate will confront various threats which may not constitute a good functioning Cloud.
The security solutions in the Fog paradigm are improving and increasing as well. However,
most of the published literature on Fog computing security and privacy does not provide
insights with an extensive assessment of the various issues. Importantly, we elaborate on
some security and privacy challenges encountered in the Fog paradigm.

• Trust Issue: Fog systems face trust design challenges due to the reciprocal demand
for trust and the distributed nature of their network. Cloud computing platforms
are different since they already consist of pre-designed security models that match
the industrial security requirements, granting customers and enterprises some trust
measures within the Cloud system. However, this is not so with Fog computing
networks which are more exposed and liable to security and privacy attacks. Even
though the same security mechanism can be deployed to every Fog node that makes
up the Fog computing network, the distributed design also makes it quite challenging
to resolve the trust problem [24].

• Malware Attacks: Infecting the Fog computing system with a malware attack is a very
high-level challenge in the network. It is carried out to steal sensitive data, breach
confidential information, and even refuse service with the help of a virus, spyware,
Trojan horse, or Ransomware. To assist Fog computing applications in mitigating
these malicious attacks, authentic defense mechanisms for virus or worm detection
and advanced anti-malware must be introduced [114].

• Computation—Data Processing: Fog nodes often receive data collected from end-user
equipment, processed, sent to the Cloud system, or end-user pieces of equipment are
forwarded information transmitted from the Cloud. After the various processes, the
data sent from end-users to Cloud systems and the data sent from Fog nodes to the
Cloud are different in size and nature. Another challenge here is that several providers
have these Fog nodes, making them hard to be trusted due to the many security and
privacy shortcomings arising after the processing of data [115].

• Node Attack: Here, the attacker engages physically by targeting to capture the vulner-
able nodes. There are moments when the attacker can decide to alter the whole node,
cause defects to the hardware, or steal sensitive information from the Fog nodes by
digitally sending messages and causing sensor nodes distortion of classified data. Such
attacks can have damaging effects on the nodes of the Fog network, and observing
these node sensors will help identify issues and deploy some node capturing defense
of algorithmic cryptography [114].

• Privacy Preservation: There is a huge concern as customers using CSP, IoT, and wire-
less systems face data leaks of personal information. It is not easy to preserve this
privacy in the Fog network due to the closeness of Fog nodes to the customers’ envi-
ronment, and it can also facilitate gathering plenty of vital information such as identity,
location, and utility usages. Privacy leakage can also occur when communication
between Fog nodes becomes more frequent [94].

4.4. Major Attacks and Countermeasures

It is essential to note that vulnerabilities, threats, or security attacks can appear differently in
different paradigms, and there exists no specific way of solving the various security issues. Thus,
several designed models must be considered to safeguard a Cloud, Edge, or Fog computing
system. This will help create a joint force of many reliable layer defense models [116].

Table 2 presents a detailed comparison of Cloud, Edge, and Fog paradigms based on a
designated OSI model layer. Different attack examples were common to the three involved
paradigms associated with the various layers. These identified security attacks and privacy
leakages are matched to a specific proposed countermeasure. In some situations, the same
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countermeasure of a particular paradigm can be applied to the other ones. However,
due to the complexity of these paradigms or their ecosystem, this deployment of a single
countermeasure is challenging.

Table 2. Attack specifics of paradigms and suggested countermeasures.

L
a

y
e

r

Brief Description Attack
Specifics of Paradigm/Main Proposed Countermeasures

Cloud Edge Fog

A
pp

lic
at

io
n

Data inclined
applications faces
attacks and if
breached,
unpermitted access
on websites is
reached. Malware is
of different forms,
e.g., Trojan horses
and viruses. An
illegal software used
to access legitimate
information. Attacks
HTTP [117].

HTTP
Flood

Application
monitoring is highly
recommended. Web

Application Firewalls
(WAF), Anti-virus,
privacy protection
management [118].

Filtering mechanisms
and intrusion

detection systems [26].

HTTP-Redirect
scheme [119].

SQL Injection

SQL injection
detection using
adaptive deep
learning [120].

Modifying circuits to
minimize information

leakage by adding
random noise or delay,

implementing a
constant execution

path code and
balancing Hamming

weights [121].

SQL injection
detection using

Elastic-pooling [122].

Malwares Use of Antivirus
Softwares [118].

Signature-based and
behavior-based
detection [123].

Mirai botnet
detector [119].

Se
ss

io
n/

Pr
es

en
ta

ti
on

“It is defined as a
pool of virtualized
computer resources.”
Virtualization offers
better usage of
hardware assets with
an opportunity for
additional services
avoiding extra costs
for infrastructures.
Customers are
provided with virtual
storage [124].

Hyper- visor
Strong configurations,
up-to-date Operating

System (OS).

Computational
Auditing

Robust Authentication
scheme.

Data leakage

Encrypt stored
data/use secured

transmission medium,
e.g., SSL/TLS, Virtual

Firewall [125]

Homomorphic
Encryption [126].

Isolation of user’s data,
Access control strictly

based on
positions [114].

VM-Based

Anti-viruses,
anti-spyware to

monitor illegal events
in guest OS [127].

Identity and
Authentication scheme
such as Identity-Based
Encryption (IBE) [126].

Intrusion detection
and prevention

mechanism use for
anomaly detection,

behavioral assessment,
and machine learning
approach in classifying

attacks [119].

Tr
an

sp
or

t

“Provides a total
end-to-end solution
for reliable
communications”.
The two main
protocols are TCP
and UDP. The
smooth performance
in communication
strongly depends on
TCP/IP between user
and server [128].

TCP Flood Firewalls, SYN
Cache [129]. SYN cookies [130]. Integrated

Firewalls [131].

UDP Flood
Graphene design for

secure
communication [132].

Response rate for UDP
packets should be

reduced [131].

Response rate for UDP
packets same as in

Edge, should be
reduced [131].

Session hijacking AES-GCM symmetric
encryption [132].

User light-weight
authentication

algorithm [130].

Encrypting
communication using

two-ways or
multi-purpose

authentication [92].
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Table 2. Cont.

L
a

y
e

r

Brief Description Attack
Specifics of Paradigm/Main Proposed Countermeasures

Cloud Edge Fog

N
et

w
or

k

The routing of data
packets across
different networks
from a source to an
end node, is
performed by the
network layer [133].

DoS attack
Intrusion Detection
System (IDS) [134],

Access Security

Network
Authentication

mechanisms

Deploy routing
security and observing

the behaviour of
nodes [135].

MITM Data Encryption [118].
Time stamps,
encryption

algorithm [121].

Use of Authentication
schemes [114].

Spoofing attacks Identity
Authentication [118].

Secure trust
schemes [39].

Secured identification
and Strong

authentication [39].

PH
Y

/M
A

C

The manner how
types of equipment
are physically
hooked up to a wired
or wireless network
system and can be
sorted for physical
addressing with the
help of a designated
MAC address [136].

Eaves-dropping Encryption,
Cryptography [137]

Data Encryption using
asymmetric AES

scheme [121].

Protection of identity
by use of IBC [138].

Tampe-ring Detection of
behavioural pattern

Observe manner of
behaviour [137].

Multicast
authentication as

PKI [67].

Replay attack

Dynamic
identity-based
authentication
model [139].

Authentication
mechanisms [140].

Key generation
approach [140].

As of now, end devices do not involve any established security measures. For this
reason, during data transmission, security vulnerabilities are likely to be present. Some
vulnerability research is underway to understand the different ways an end device or layer
can face an attack. It is of significance that vulnerability research projects must be carried
out extensively and in-depth when studying attacks and their aspects [141]. At each layer,
we can deduce that security vulnerabilities are safeguarded differently. This attains the
basic security demands such as confidentiality, authenticity, integrity, and not the least,
availability. Cryptography is suggested for data confidentiality in stopping data leakages to
illegitimate persons. Although cryptography turns out to offer better data confidentiality, it
does need additional computation power, therefore causing latency. Users and end-devices
have proximity to each other. For example, FNs pose some level of reach to individuals’
data, especially where the information is generated. Data processed in FNs are significant
security-wise due to their sensitivity more than data being processed in Cloud servers, thus
requiring enhanced protection.

Overall, Cloud, Edge, and Fog paradigms consist of applications, resources, and a
massive quantity of end-devices within a given centralized or decentralized area, existing
together and inter-communicating. Therefore, the huge potential for vulnerabilities in secu-
rity and privacy does exist. One good way of screening systems for possible vulnerabilities
is by auditing security standards.

Vulnerabilities in any system might expressly grant attackers partial or full access to
cause severe harm. If data are breached, it can expose critical information of individuals or
organizations, and an attack can cause serious malfunctioning of an entire network and
create disruptions. We found that the main target of gaining access to sensitive data is
threats, seizures, or vulnerabilities of the examined paradigms, whether joint or apart.

Importantly, we found that these vulnerabilities can be properly discovered with the
right tools and approaches. Despite the constant search for vulnerabilities in systems by
attackers (hackers/cybercriminals), there are up-to-date, sophisticated countermeasures to
mitigate such threats, internal or external. Most essentially, each vulnerability has a specific
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mechanism to counter its threats and attacks. Moreover, another important aspect is that
the vulnerabilities turn to undermine the security and privacy of the related paradigms,
exposing them (data) to potential security attacks and privacy leakages.

5. Discussion and Conclusions

The essential aim of this work was to execute a comprehensive article review on Cloud,
Edge, and Fog paradigms, respectively, with a special focus on identifying similarities,
differences, attacks, and countermeasures based on security and privacy aspects.

Cloud, Edge, and Fog paradigms create a substantial heterogeneous quantity of
data capable of being managed over a centralized or distributed system. Looking at the
discussions presented in this work, we deduced that the security and privacy issues on
the heterogeneity of this ecosystem are a significant challenge. Data transfer from one end
to another opens a way for many security and privacy vulnerabilities, even though some
of these weaknesses can be detected and eliminated quickly. Solutions cannot be swiftly
deployed to user devices simply because of the complexity of the ecosystem. However, IDS
mechanisms are largely significant for different paradigms, as some are considered effective
in countering DoS/DDoS attacks (Zero-day-attack). In certain scenarios, IDS mechanisms
introduce gateway devices to provide higher processing power if needed.

Security and privacy are considered primary drawbacks, limiting several institutions
and organizations to adopt computational offloading technology. As mentioned earlier,
these paradigms face different security and privacy threats, but the most outstanding are
DoS/DDoS attacks. For instance, Cloud customers can suffer heavily if Cloud services and
resources are breached for a moment by attackers. Cloud systems encounter high latency
and high costs in communication and data storage. These issues are present because of
the centralized nature of the Cloud and its geographical distance from end-devices that
produce data. To resolve these shortcomings in the Cloud, Edge Computing was introduced
as a Cloud Computing extension.

As identified during the review, Edge provides much less latency than Cloud platform
to end-devices; thus, there is a rapid drop in security when migrating from the Cloud
platform to the Edge platform due to the Edge network being decentralized (distributed) in
nature. Furthermore, observing the migration of data to end-devices from Cloud platform
via Edge network, the storage capacity sharply reduces. There is also a rapid decrease in
real-time operations as data moves from end-devices via the Edge platform to the Cloud
platform. For longer storage needs, a Cloud platform is used. Storage or processing of
data from the end-devices occurs in the Edge platform. Despite the emerging of Edge
Computing, vulnerabilities and threats still exist, and this, therefore, calls for strict measures
with enhanced security and privacy techniques. Fog paradigm was considered to ameliorate
Cloud and Edge paradigms.

As with the Edge paradigm, Fog is rendering services (computation, networking, data
storage, etc.) closer to the end-devices rather than moving data to the Cloud platform but
in a distributed manner. However, the introduction of the Fog paradigm is seen to improve
the infrastructural network to match the demands of large data quantity while enhancing
the processing strength efficiently. Fog paradigm can improve mobility, complexity in
a distribution environment, location identity, real-time response, as well as security and
privacy. The fog paradigm does not depend on the Cloud data center but instead relies on
end-devices to store and process its data. Broader availability of node access gives some
level of flexibility to the applications. Like the Fog paradigm, the Edge paradigm also
permits computation handling at the network edge, near where data are generated. What
makes the Fog paradigm different from the Edge paradigm is its ability for Fog nodes to
interconnect, while the Edge paradigm operates with separate Edge nodes.

Confidentiality, integrity, and availability are information systems’ most significant
security and privacy properties. The transfer and storage of data must be confidential, with
integrity, and made available. Confidentiality grants data access only to individuals and
organizations that own these data. During the transfer of data within the different user

23



Sensors 2022, 22, 927

layers, the main network, storing and processing data in Cloud, Edge, or Fog paradigm, its
access is strongly restricted. Encrypting data is a way of achieving confidentiality. Data
correctness and consistency is a model of integrity which avoids information being tam-
pered with or modified. Some mechanisms can be used for verifying sent and received
data integrity. Only authorized persons are granted access to available data. Thus, avail-
ability determines that data must be available anywhere based on established policies. To
attain these expectations, various instruments, patterns, methodologies, and mechanisms
such as cryptography, encryption, authentication, and others are deployed to the multiple
platforms (layers) when data are being transferred and stored.

Overall, Cloud, Edge, and Fog paradigms exhibit the same view of providing QoS
to customers, but they all have a separate set of features that makes them differ from one
another, as we have explained in this work. Notably, the Fog paradigm is designated the
most effective and reliable system to better handle the security and privacy challenges en-
countered.

To summarize, even though the Fog paradigm can offer better security and privacy
services to end-devices in general, some features of the Fog paradigm, such as decentral-
ization, constraints of resources, homogeneity, and virtualized systems, are vulnerable to
security and privacy challenges in comparison to the Cloud paradigm, which is centralized.
Due to the absence of standardization regarding countermeasures deployment, highly
effective security and privacy mitigation in the Cloud paradigm cannot be implemented
straight to the Fog paradigm because of the named features above. Therefore, Fog systems
do need innovative countermeasures to address these challenges. Future research should
also address new techniques and mechanisms that fit Fog paradigm features and possibly
cross-platform countermeasure tools. Hence, they should be suggestions for effective and
efficient solutions.

Review Methodology: The systematic literature review is based on PRISMA guidelines [10].
The publication date range was set from 2017 to 2021. We used the most popular ICT sector
databases for research works, such as IEEE, Web of Science, Science Direct, Springer, and
Scopus, while not considering pre-prints, duplicates, and gray literature. Later on, we ana-
lyzed the titles, abstracts, and keywords of the various academic publications to figure out
specific journal articles and other important papers related to security and privacy in Cloud,
Edge, and Fog paradigms. The following search query was formulated for reproducibility:

TITLE (((cloud OR Edge OR fog) AND computing) AND (security OR privacy))
AND
(LIMIT-TO(PUBYEAR, 2021) AND LIMIT-FROM (PUBYEAR, 2017)) AND
(LIMIT-TO(SUBJAREA, "COMP") OR LIMIT-TO (SUBJAREA, "ENGI")) AND
(LIMIT-TO(LANGUAGE, "English")) AND (LIMIT-TO (PUBSTAGE, "final"))

Some exclusion criteria were set to narrow the search outcomes during the first screen-
ing stage from the paper’s titles and abstracts:

• Not related to security and privacy in Cloud, Edge, and Fog computing;
• Not in English;
• Works with no technical content;
• Purely review papers;
• Full text not available.

After applying the exclusion criteria, the selected number of publications was lowered
from 1390 to 447. Sixty-one duplicates were found and were taken off the list. The headings
of the various articles, their abstracts, and important words of the retained 386 papers were
screened, and 187 papers were dismissed since they did not match the exclusion criteria.
The number of papers left was 199, and their whole content were thoroughly analyzed.
After the additional screening, 122 papers were still rejected since they were unrelated to
the topic.
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Abbreviations

The following abbreviations are used in this manuscript:

5G 5th Generation Networks
AES Advanced Encryption Standard
AP Access Point
APT Advanced Persistent Threats
AR Augmented Reality
BE Back End
BLE BLuetooth Low Energy
BS Base station
CCTV Closed-circuit television
CSA Cloud Security Alliance
CSP Cloud service providers
DDoS Distributed Denial of Service
DoS Denial of Service
FE Front End
FN Fog Nodes
GCM Galois/Counter Mode
HTTP Hypertext Transfer Protocol
LTE Long Term Evolution
IaaS Infrastructure as a service
IBC Identity Based Cryptography
IBE Identity-Based Encryption
ICT Information and Communication Technology
IDS Intrusion Detection System
IoE Internet of Everything
IoWT Internet of Wearable Things
MAC Mediul Access Control
MITM Man-in-the-Middle Attack
MR Mixed Reality
NIST National Institute of 66 Standards and Technology
OS Operating System
OSI Open Systems Interconnection model
PaaS Platform as a Service
PKI Public Key Infrastructure
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QoS Quality of Service
SaaS Software as a Service
SLA Service Level Agreement
SQL Structured Query Language
SSL Secure Socket Layer
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SYN SYNchronize message
TCP Transmission Control Protocol
TIP threat intelligence Platform
TLS Transport Layer Security
UDP User Datagram Protocol
V2X Vehicle-to-Vehicle
VM Virtual Machines
VR Virtual Reality
WAF Web Application Firewalls
Wi-Fi Wireless Fidelity
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Abstract: Modern intelligent and networked vehicles are increasingly equipped with electronic
control units (ECUs) with increased computing power. These electronic devices form an in-vehicle
network via the Controller Area Network (CAN) bus, the de facto standard for modern vehicles.
Although many ECUs provide convenience to drivers and passengers, they also increase the potential
for cyber security threats in motor vehicles. Numerous attacks on vehicles have been reported, and
the commonality among these attacks is that they inject malicious messages into the CAN network.
To close the security holes of CAN, original equipment manufacturers (OEMs) keep the Database
CAN (DBC) file describing the content of CAN messages, confidential. This policy is ineffective
against cyberattacks but limits in-depth investigation of CAN messages and hinders the development
of in-vehicle intrusion detection systems (IDS) and CAN fuzz testing. Current research reverses
CAN messages through tokenization, machine learning, and diagnostic information matching to
obtain details of CAN messages. However, the results of these algorithms yield only a fraction of the
information specified in the DBC file regarding CAN messages, such as field boundaries and message
IDs associated with specific functions. In this study, we propose multiple linear regression-based
frameworks for bit-level inversion of CAN messages that can approximate the inversion of DBC files.
The framework builds a multiple linear regression model for vehicle behavior and CAN traffic, filters
the candidate messages based on the decision coefficients, and finally locates the bits describing the
vehicle behavior to obtain the data length and alignment based on the model parameters. Moreover,
this work shows that the system has high reversion accuracy and outperforms existing systems in
boundary delineation and filtering relevant messages in actual vehicles.

Keywords: Controller Area Network; electronic control units; database CAN; reverse; multiple linear
regression; bit-level; vehicle behavior

1. Introduction

The increasingly diverse features in today’s vehicles offer drivers and passengers a
more relaxed driving experience and greater convenience. Vehicle connectivity provides
real-time information and a variety of entertainment options. In addition, vehicle support
features such as advanced driver assistance systems (ADAS), reduce driving stress and
make driving safer. These capabilities have multiplied due to the increasing number of elec-
tronic control units (ECUs) and higher computing power. Current vehicles are equipped
with up to 150 ECUs [1], that need to communicate in a unified network that requires
the vehicles to provide sophisticated real-time performance, sufficient data transmission
volume, and adequate reliability. Control Area Network (CAN), a technology that meets
these requirements, became the international standard for intra-vehicle network communi-
cation in 1993 [2]. However, since CAN uses broadcast communication and lacks security
mechanisms such as encryption and authentication, it increases the probability that the
vehicle will be attacked [3–6].
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Many examples of attacks on vehicles have confirmed that it is possible to attack the
vehicle and perform negative control [7–9]. The most typical attack case is the attack by
Miller et al. on a Jeep Cherokee that was driving on the highway and used a CAN bus-
connected entertainment system and ECU firmware, that resulted in acceleration and brake
failures [10]. More recently, Keen Labs in China exploited vulnerabilities in Tesla’s assisted
driving system to drive the vehicle into the reverse lane and even remotely control the
vehicle’s steering with a gamepad [11]. Regardless of the type of vulnerability, the common
denominator of the attack is the need to inject information into the CAN bus to cause the
vehicle to behave dangerously [12]. To prevent the CAN bus from being infiltrated with
targeted attacks, original equipment manufacturers (OEMs) privatize the database CAN
(DBC) file. The DBC file defines the structure, content, and meaning of each message in
the CAN network [13,14]. Even the DBC file is different for different models of the same
brand. It is very time-consuming for an attacker to work reverse before implementing
CAN bus attacks. For security researchers, private DBC files are a massive obstacle to CAN
security research. The most affected area is the automotive intrusion detection system
(IDS), a crucial research element in automotive security. CAN intrusion detection systems
have been proposed to detect anomalies by analyzing CAN traffic [15–23], but these studies
are based on message transmission characteristics that are practically irrelevant to the
behavior and status of the vehicle. Therefore, the existing IDSs for the CAN are not very
powerful. Another hindered study is the fuzzy test on the CAN bus, which is often used
to automatically test and discover unknown vulnerabilities in ECUs [24–28]. Since the
DBC files are hidden, which causes the fuzzy test intelligence to construct data blindly,
brute force and random data make the test inefficient. In addition, the lack of DBC files
with detailed descriptions of CAN messages hinders automotive aftermarket development.
Without effective access to vehicle status, automotive driver assistance systems and status
display tools become meaningless.

The detailed specification of CAN messages is crucial for CAN network intrusion
detection, fuzz testing, and automotive aftermarket products. To obtain the CAN message
description in the DBC document, the security research field has proposed CAN bus
reversion methods such as CAN message tokenization algorithm, machine learning-based
inversion method, and onboard diagnostics II (OBD-II) diagnostic information matching.
The earliest CAN message tokenization algorithm was the FBCA algorithm proposed by
Markovitz et al. in 2017 [29], followed by the READ algorithm proposed by Marchetii and
Stabili in 2018 [30]. The automatic CAN message translator LibreCAN was proposed by
Pesé et al. in 2019 [31]. Recently, the ReCAN [32] dataset was published by Zago et al.
in 2020 using a similar approach to READ. However, they are limited to classifying and
subdividing data changes, such as constants, multiple values, counters, sensors. These
cannot obtain specific information, such as the meaning and alignment of each tagged data.
It is of minimal help for IDS research and aftermarket. The most typical of the machine
learning-based CAN message reversal methods are Jaynes et al. proposed a method
for efficient identification of sending ECUs, which identifies CAN frame by analyzing a
similarity construction model describing uniform vehicle state information [33]. A data-
driven CAN bus reversion method proposed by Buscemi et al. used already available
open-source DBC files to train a machine learning model to identify unknown CAN
message contents [34], a scheme similar to the unsupervised machine learning-based
scheme proposed by Ezeobi et al. [35]. The accuracy of this type of solution depends
entirely on the coverage of the training set. Since each vehicle is configured with a unique
DBC file, it is almost impossible for the training set of such algorithms to cover all vehicle
models. These approaches have been validated only on simulated data and are practically
infeasible. Methods based on matching OBD-II diagnostic information describe the vehicle
status in CAN information by comparing and matching OBD-II responses. Song and Kim
et al. first proposed to create windows before and after the OBD-II response information to
find candidate information that exactly duplicates the response data and repeat it several
times to determine the information describing the response [36]. Blaauwendraad proposed
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a matching method using correlation coefficients based on Song’s method [37]. While these
methods can yield some inversion results, they can only identify specific vehicle behavior
in CAN messages. The insufficient number of supported vehicle behaviors for per-vehicle
diagnostics limits the application of this scheme. Additionally, the CANHUNTER [38]
proposed by Wen et al. in 2020 reverses the CAN message by disassembling the control APP
that interacts with the car. Although this is a novel idea, this method can only obtain what
is specified in the APP, and the scheme will be completely invalid once the APP commands
are escaped at the server-side. In addition, since such APPs are only valid for the specified
car model, this scheme also receives the limitation of the car model. In summary, existing
CAN message reversal techniques are limited in their implementation by the number of
available DBC files and vehicle models, and their results are unsatisfactory. Solutions that
are not limited by vehicle models and can achieve close to the DBC file reversal results are
urgently needed.

The CAN frame data tags alone do not reveal any valuable information, and one
needs to have DBC files to decode them. However, the DBC files are hidden and usually
different for each model. Reverse engineering solutions for CAN information that are
not constrained by the vehicle model and can access critical information in the DBC files
are urgently needed. To achieve CAN message reversal close to the DBC file, this study
innovatively proposes a multiple linear regression model after an in-depth analysis of the
way the DBC file specifies the vehicle behavior. The model is built using each bit of the
CAN message data field as the independent variable and the vehicle behavior data as the
dependent variable. As the input of our framework additionally includes sensor data,
our framework needs to be very useful. First, the framework uses the R2 of the model to
filter the candidate messages related to vehicle behavior, which has an excellent filtering
result on related messages compared to existing schemes. In addition, the framework
outperforms existing systems in terms of data boundary delineation by locating the bits
describing the vehicle behavior and obtaining the details of field functions, starting bits,
field lengths, and alignment formats in the DBC file based on the β value of each model.
Finally, since commercially available vehicles must be configured with a standard CAN
data interface and the vehicle behavior can be captured by commonly used sensors, the
inverse framework proposed in this study is independent of the vehicle model and brand.

The structure of this study is as follows. Section 2 introduces the CAN bus, DBC file,
multiple linear regression models preliminary introductions and describes the feasibility
of the study’s ideas. Section 3 describes the design and implementation ideas of the
framework. Section 4 evaluates the performance of the CAN reverse framework in actual
vehicles, the reverse accuracy, the time required, the advantages over existing solutions,
and the applicability of the framework. Section 5 concludes the study.

2. Background and Feasibility

2.1. CAN Bus Overview

The CAN bus is a serial communication bus originally developed by Bosch [39]. Later
the international standards organization (ISO) issued the international standard ISO11898
for CAN in 1993 [40]. CANs have become one of the most widely used fieldbuses globally
due to their high transmission rate and high real-time characteristics.

The standard format of a CAN message is shown in Figure 1. It begins with the start of
frame (SOF), followed by an 11-bit identifier (ID) and a remote transmission request (RTR).
The ID defines the meaning and type of the message and is also used to filter irrelevant
messages when the node receives the messages. The ID is also used for arbitration when
multiple nodes send data simultaneously; the smaller the ID is, the higher the priority
is. RTR is used to distinguish the type of message. A six-bit control field follows this:
identifier extension (IDE) and r0 specify the length of the frame, and the data length code
(DLC) specifies the number of bytes in the data field. The data field is the core of the CAN
message and is 64 bits long. It contains the vehicle control commands, the status data, and
any other data to be transmitted (e.g., counters, checksum values, etc.). This is followed by
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the Circular Check Code (CRC), the Acknowledgement Field (ACK), and the end of frame
(EOF), respectively.

 

Figure 1. Standard CAN message frame.

For CAN message reversal work, the main targets of the reversal are the identifier
(ID) and the data fields. When reversing CAN messages, the relevant message ID is
usually locked first, and then the data fields are analyzed to obtain specific bit fields that
characterize the vehicle behavior.

2.2. DBC File

The form and content of each type of CAN message are defined in the DBC file, so
each OEM keeps it private to avoid leakage from the data source and prevent negative
control and modification of the car. However, all CAN messages must be fully translated
using the DBC file as a table, making sense for CAN reverse work. The contents defined
in the DBC file are listed in Table 1. The Name, ID, Cycle Time, and Length describe the
entire message. The Function specifies one or more vehicle behaviors in the message data
fields. Byte Order, Start Byte, Start Bit, Bit Length, Units, Precision, and Offset specify how
the message describes the specific behavior. Typically, the data fields of a message contain
multiple functions.

Table 1. DBC file content definition

Field Name Definition

Name The overall function of this message (e.g., body, speed, etc.)
ID The identifier of this message

Cycle time The sending period of this message
Length The length of this message

Function The specific function contained in this message (e.g., angel change)
Byte order The arrangement of the specific function
Start byte The starting byte of the specific function
Start bit The starting bit in first byte

Bit length The length of the function
Unit The unit of the function

Resolution The resolution of the function
Offset The offset of the function

The message with ID 0x198 is used to explain the correspondence between the DBC
file and the CAN message content. As shown in Figure 2a, the DBC file defines the name of
the message as angle, the message sending period is 10 ms, the message length is 64 bits,
and it contains 3 vehicle behaviors: steering angle, brake pedal angle, and gas pedal angle.
The steering angle is arranged in Motorola (LSB) form from bit 0 to bit 15 with a resolution
of 0.01. Similarly, the gas pedal and brake pedal angles are arranged in bits 16–23 and
48–55 of the data field, respectively. The alignment is Intel (MSB) and Motorola. When
capturing any message with ID 0x198, its data can be decoded according to the provisions
of the DBC file. According to the definition of DBC, the message shown in Figure 2b
describes the angle information of the vehicle at this moment, where the brake pedal angle
is
(
22 + 24 + 25 + 27)× 0.1 = 19.1◦, the steering angle is

(
20 + 24 + 25 + 27)× 0.01 = 1.77◦,

and the throttle angle is 0.
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(a) 

 
(b) 

Figure 2. Correspondence diagram between DBC file and CAN messages: (a) 0x198 Message
definition in DBC; (b) Message data decoded according to DBC.

In summary, the DBC file is vital to study the CAN messages in-depth, which makes
the DBC file a realistic target for reverse work.

2.3. Linear Regression Preliminary

In statistics, the multiple linear regression model describes the linear relationship [41,42]
between the scalar dependent variable y and several explanatory variables defined as
X = (x1, x2, . . . , xk) and the model function is shown in Equation (1), where β = (β0, . . . , βk)
is an unknown model parameter that can be estimated by giving sample set of y and X. The
ordinary least squares method is the most commonly used method for parameter estimation.
For a given sample set ye (see Equation (2)) and Xe (see Equation (3)), the ordinary least
squares method first creates a new matrix Ω, as shown in Equation (4).

y = β0 + β1x1 + β2x2 + . . . + βkxk (1)

ye =

⎛⎜⎜⎜⎝
y1
y2
...

ym

⎞⎟⎟⎟⎠ (2)

Xe =

⎛⎜⎜⎜⎝
x11 . . . x1k
x21 . . . x2k

...
. . .

...
xm1 . . . xmk

⎞⎟⎟⎟⎠ (3)

Ω =

⎛⎜⎜⎜⎝
1 x11 . . . x1k
1 x21 . . . x2k
...

...
. . .

...
1 xm1 . . . xmk

⎞⎟⎟⎟⎠ (4)

The estimation β̂ can be obtained from Equation (5), where ΩT is the transpose of
Ω. The determination coefficient R2 indicates how well the samples fit the linear model
created with β̂ and is calculated by Equation (6), where ŷi = β̂0 + β̂1xi1 + . . . + β̂ixik is the
yi estimated with the linear model and yi is the mean of ye. The value of R2 is in the range
[0, 1], and 1.0 is the best fit.

β̂ =
(

ΩTΩ
)−1

ΩTye (5)

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − yi)

2 (6)
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2.4. Feasibility

Based on the way the CAN messages are defined in the DBC file and the characteristics
of the multiple linear regression model, this section presents the feasibility of a bit-level
inverse CAN message.

According to the definition of the DBC file, the vehicle behavior in the CAN message
is expressed as a binary serial number of bits, and there is also a resolution and an offset
between the actual vehicle behavior data and this value. As shown in Figure 3, the
relationship between the actual vehicle behavior and the corresponding bits in the CAN
message is linear, and the adjacent linear coefficients satisfy the two-fold relationship. A
multiple linear regression model of sensor data and each bit in the CAN message can be
constructed when sensors are used to obtain vehicle behavior data. If the adjacent regression
coefficients β satisfy the doubling relationship, the consecutive bits corresponding to the
coefficients describe the vehicle behavior. In addition, the length, boundary, and alignment
of the data can be determined based on the β that satisfies the condition.

 
Figure 3. Reverse feasibility based on linear regression.

3. Framework Design

According to the previous description, the DBC file defines the detailed content and
form of each message, which is critical for both the research and aftermarket communi-
ties. For the scientific field, obtaining the specific meaning of CAN messages facilitates
the construction of better Intrusion Detection Prevention Systems (IDPS), instead of just
finding anomalies based on data variation patterns. In addition, fuzzy testing can also
improve efficiency by performing more targeted data injections based on the content of
CAN messages. For aftermarket manufacturers, DBC files can help produce more driver
assistance products, such as head-up displays and driver assistance devices. However, for
confidentiality and security reasons, OEMs keep DBC files private. In addition, most of the
existing CAN message reversal solutions are focused on sorting and ID filtering of data
fields. The current CAN message reversal results are limited, obtaining the tags of the data
types, data boundaries, and the message IDs associated with some car behaviors.

In this study, a bit-level automotive CAN message reverse framework is proposed by
building a multiple linear regression model for CAN message data fields and actual physical
measurements of the vehicle. Based on the optimal model parameters, the messages related
to vehicle behavior are filtered. The data content, data boundary, encoding format, and

38



Sensors 2022, 22, 981

linear relationship of CAN messages are extracted to maximize the recovery of the DBC
file. Figure 4 provides an overview of the framework in three phases: data collection and
processing, related message filtering, and bit-level message reverse. The variables used in
each phase are defined below.

• X: the raw CAN dataset of the vehicle obtained from the OBD-II interface, containing
the entire behavioral trajectory of the vehicle.

• Y: the sensor dataset, containing the complete set of measurable vehicle behavior
measurements, collected simultaneously with X.

• Yr: the raw set of measurements of a particular vehicle behavior collected using the
sensor. r is the particular vehicle behavior that includes speed, acceleration, steering
wheel steering angle, brake pedal angle, accelerator pedal angle, gear angle, and
switches angle.

• Ys: a more detailed vehicle behavior dataset obtained after processing Yr, where s
represents more detailed vehicle behavior.

• Xi: the dataset containing data fields of messages with ID i in X, and
i ∈ (id0, id1, . . . , idn).

• Ysi: the result of resampling of Ys according to the frequency of Xi.
• R2

si: the coefficient of determination of a multiple linear regression model between Xi
and Ysi.

• βsi: the regression coefficient set of the multiple linear regression model between Xi
and Ysi.

• Δs the threshold value used for the message filter.
• mi the CAN message with ID i.
• Tβ: the threshold used for filtering the β.

 
Figure 4. Overview of the framework.
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3.1. Data Collection and Processing

This phase aims to acquire and process vehicle behavior measurements, as well as
in-vehicle CAN traffic. The flowchart of this phase is shown in Figure 5, which is mainly
divided into data acquisition, data processing, and data resampling.

Figure 5. Data collection and processing flow.

3.1.1. Data Collection

The basic data needed to execute the message reverse framework are the in-vehicle
CAN bus traces, X, and the raw physical measurements, Yr. Where Yr is the original
sensor data for a particular behavior of the vehicle and X is the CAN trajectory obtained
when the vehicle performs that behavior. The current phase requires the simultaneous
acquisition of X and Yr to reduce errors in linear regression modeling. Therefore, the data
acquisition device shown in Figure 6 is used in this phase, using the same timestamp for
synchronization. The CAN trace acquisition device is shown in Figure 6a. This device
is a combined cable consisting of an OBD-II to DB9 diagnostic cable and a PCAN-USB
FD adapter. The cable connects from the OBD-II port of the vehicle to the USB port on
the side of the computer to allow the real-time collection of CAN traffic. The behavioral
measurements of the vehicle are collected using the sensor device shown in Figure 6b. The
device consists of a global positioning system (GPS) antenna, a universal serial bus (USB)
interface, and a gyroscope angle sensor with a 0–200 Hz sampling frequency. Although the
device is only $78.56 [43], it has a speed sampling accuracy of 0.001 km/h and an angle
sampling accuracy of 0.1◦. To reduce the error of the sensor sampling, the sampling device
should be installed in such a way that the direction of sample change is consistent with the
direction of either axis of the sensor. For example, the Y-axis of the sensor is aligned with
the head direction when collecting vehicle speed, and the X-axis of the sensor is aligned
with the angle change direction when collecting angle data. To represent the behavior and
condition of the vehicle as completely as possible, the location of the sensor deployment
and the collected data are listed in Table 2. The synchronous work of the above two devices
provide the raw data for the reverse framework.
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(a) (b) 

Figure 6. Data acquisition equipment: (a) OBD-II data collection equipment; (b) Vehicle
behavior sensor.

Table 2. Sensor locations and associated physical value.

Location Physical Characteristics

Bodywork Speed, Acceleration
Steering wheel Steering angle

Brake pedal Pedal angle
Accelerator pedal Pedal angle

Gear knob Gear angle
Wiper switch Switch angle

3.1.2. Data Processing and Resampling

Since the raw data collected by the sensors is limited and does not provide a good
picture of the various vehicle states, the collected Yr must be processed to reveal more
vehicle-related state information. Integral, derivative, and discretization processes are
performed on the obtained Yr to get more information. Based on the vehicle behavior in
each Yr, the rate of behavior change is obtained by derivative, the total amount of change is
obtained by integral, and the discrete behavioral states are obtained based on a threshold
value. Take speed as an example, the acceleration of the vehicle could be obtained by
calculating its derivative to time, and the mileage is obtained by calculating its integral for
time. Based on the vehicle speed and the threshold of 1 km/h, the vehicle can be classified
into two discrete states of stationary and driving. The data processing methods and results
are shown in Table 3. After the extension, there are 13 types of vehicle behaviors. The
output after data processing is Ys, which contains more detailed vehicle states.

When processing the raw CAN data collected through the OBD-II port, this framework
classifies the raw CAN messages based on the ID and removes the constant data field CAN
messages. Since the ID identifies the type of the CAN message, Xi is first determined
by grouping by the ID during processing to facilitate the subsequent modeling of the
messages for each ID. Since the framework proposed in this study is based on vehicle
behavior to reverse CAN messages, constant CAN messages during sensor acquisition of
vehicle behavior do not describe any vehicle behavior and are therefore considered as noise.
This noisy data is defined as constant data in READ and LibreCAN, CAN message with
constant data fields. Noisy messages can be removed to reduce the number of resamples
and subsequent modeling, thus reducing the overall time required.
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Table 3. Methods and results of raw data processing.

Raw Data (r) Operation Detailed Vehicle Behavior (s)

Speed
- Speed

Integrals Mileage
Judgment by threshold Drive/Parking

Brake Pedal Angle
- Brake pedal angle

Differential Angle change rate
Judgment by threshold Brake or not

Accelerator Pedal Angle
- Accelerator pedal angle

Differential Angle change rate
Judgment by threshold Accelerate or not

Gear Angle
- Gear angle

Judgment by threshold P/R/N/D

Wiper Switch Angle
- Wiper switch angle

Judgment by threshold Stop or frequency

The next step of data processing is to synchronize the CAN messages with the vehicle
behavior. In this study, the CAN messages in Xi are selected synchronously with the time
interval of the beginning and the end of the vehicle behavior described by Ys. Synchronizing
the data ensures that the CAN messages in Xi and the behavior described by Ys have the
same vehicle behavior and state during this time interval.

Finally, multiple linear regression described in Section 2.2 is a method for modeling the
dependent and explanatory variables in the same dimension. However, since the messages
for each ID appear at a different frequency than the sampling rate of the sensor device,
Ys, must be resampled based on the frequency of Xi to ensure that the two have the same
dimensionality [44]. In the data resampling process, this study uses the resampling method
of time series in Python to resample each vehicle state Ys according to the frequency of each
Xi to facilitate subsequent modeling. The resampled data is Ysi with the same dimensions
as Xi. In this step, a separate resampling must be performed for each Ys based on the
frequency of each Xi to obtain 13 × n Ysi.

3.2. Related Messages Filter

Based on the results of data processing and resampling, the purpose of this stage is to
build a linear regression model with Ysi as the dependent variable and each bit of the data
field in Xi as the independent variable. Based on the R2 of the model, the messages that are
most relevant to the dependent variable are filtered out.

To obtain the relationship between each bit of the data field and the vehicle behavior,
this step starts by expanding the data field in Xi in bit form, which is an l × 64 matrix,
where l is the number of messages with ID i. The dependent variable Ysi, which is an
l × 1 matrix, is defined to represent the vehicle state data resampled according to the
message dimension, where s represents the different vehicle states, s ∈ (s1, s2, . . . , s13). A
threshold Δs is defined to filter out the best model. The outputs of this stage are messages
and linear regression models that are highly correlated with the individual vehicle behavior
data. The flow of this phase is shown in Figure 7. The detailed process is shown below.

• Step 1: After processing, select a resampled vehicle behavior data Ysi and a data set Xi
with ID i in the CAN bus trajectory.

• Step 2: Build a multiple linear regression model with Ysi as the dependent variable
and Xi as the independent variable and calculate the model parameters R2 and β.

• Step 3: Select the R2 obtained in step 2 corresponding to Δs, and keep only the R2

greater than Δs.
• Step 4: Iterate through each Xi and repeat step 1 to step 3. According to the filtering

result, obtain the most relevant messages and the corresponding models with the
vehicle behavior s.
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• Step 5: Execute step 1 to step 4 for all s to obtain the candidate messages and the
corresponding models for each vehicle behavior.

 
Figure 7. Message selection based on β.

3.3. Bit-Level Message Reverse

After the related message filtering phase, the most relevant candidate messages for the
particular vehicle behavior and the corresponding linear regression models are determined.
The linear regression models of Ysi and Xi are shown in Equation (7). This result clearly
shows the relationship between the vehicle behavior and the data fields of mi, where
β = (β0, β1, . . . , β64) represents the linear relationship between this vehicle behavior data
and each bit of the message.

Ysi = β0 + β1xi1 + β2xi2 + . . . + β64xi64 (7)

In this stage, the specific details of how the data fields of candidate CAN messages
describe the behavior of the vehicle are determined by analyzing the regression coefficient β.
As shown in Figure 8, the flow of the bit-level reverse for the candidate messages proceeds
as follows.

• Iterate through each βx in β = (β0, β1, . . . , β64), keeping only those βx that are not less
than the threshold value. If the value of βx is less than the threshold, it means that the
xth bit of the data field is not related to the specific vehicle behavior. Otherwise, this
bit may represent how the behavior of the vehicle is recorded in the CAN messages.
The result after threshold filtering is β′.
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• If the filtered β′ is discrete, the corresponding discrete bit likely represents the state
of vehicle. If the filtered β′ is continuous, then analyze whether Equation (8) or
Equation (9) is satisfied between β′. If satisfied, the bits of the CAN message data field
corresponding to the continuous β′ describe the modeled vehicle behavior s. More-
over, the bits satisfying Equation (8) are in Motorola alignment, and those satisfying
Equation (9) are in Intel alignment. When not satisfied, the CAN message has no
relation to the vehicle’s behavior.

• Analyzing the discrete β′ values and the vehicle state data, the correspondence be-
tween the discrete bits and the vehicle state can be obtained reverse. For continuous β′,
the data length, the alignment form, and the linear relationship describing the vehicle
behavior can be gained.

βi = 2 × βi+1 = 4 × βi+2 = . . . 2n × βi+n (8)

βi =
1
2
× βi+1 =

1
4
× βi+2 = . . .

1
2n × βi+n (9)

Figure 8. Diagram of bit-level reverse.

4. Performance Evaluation

To evaluate the proposed bit-level CAN bus reverse framework, this study implements
it on an actual vehicle and obtains specific details of the vehicle CAN message data fields
depicting the vehicle behavior for that vehicle. Using the reverse results, the accuracy of the
algorithm is evaluated for practical applications based on the available DBC files [45]. In
addition, this section evaluates the execution performance of the framework and compares
the advantages of the algorithm over other reverse methods. Finally, the advantages of
the algorithm in applications are discussed, and an example is given for reversing other
vehicle messages when DBC files are not available.

4.1. Performance in Real Vehicle
4.1.1. Device Description and Data Processing

For the evaluation a 2017 Japanese B-Class sedan was used, whose internal network
implements the standard CAN protocol and whose functionality is representative. A
DBC file for this model has been obtained, which is used as ground truth for the reverse
framework evaluation. To better represent the vehicle behavior, sensors are placed on the
body, steering wheel, brake pedal, gas pedal, gear knob, and wiper switch to collect the
behavioral data of the vehicle components, which are structured as shown in Figure 9.
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The CAN data is collected through the OBD-II interface using the combination cable
synchronously when collecting vehicle data. The collected CAN data is written to a log
file using the upper computer program, containing the ID, type, length, data field, and
timestamp of CAN messages. For accuracy evaluation, more than 3,661,000 consecutive
CAN bus messages were collected, and more than 5,000,000 vehicle behavior sensor data
were sequentially collected in the same period. The dataset (The dataset is partially open
source and can be accessed at http://49.232.218.41:8000/data.zip accessed on 23 January
2022) is quantitatively described in Table 4, which describes the measurements and CAN
data collected synchronously for each vehicle behavior.

 
(a)  

 
(b)  

 
(c) 

 
(d)  

 
(e)  

 
(f)  

Figure 9. Sensor Acquisition Setup: (a) Gear angle; (b) Steering wheel angle; (c) Brake pedal angle;
(d) Gas pedal angle; (e) Wiper switch angle; (f) Vehicle speed.

Table 4. Number of vehicle behaviors and CAN messages.

Vehicle Behavior Number of Sensor Record Number of CAN Messages

Bodywork 298,649 1,769,768
Steering Wheel 16,148 132,122

Brake Pedal 7961 57,399
Accelerator Pedal 6364 60,772

Gear Handle 13,105 113,001
Wiper Switch 12,876 118,095

By analyzing the collected CAN traces, the frequency distribution of the messages is
shown in Figure 10. This result shows that the number of IDs collected from the test vehicle
is 82, which means that there are 82 types of messages in the CAN network. For each type
of CAN message, we analyze whether the data field of this CAN message changes and
eliminate the messages with unchanged data fields. Based on the analysis and processing
of CAN traces, the vehicle behavior data collected in Table 3 is resampled 82 times to obtain
Ysi. A multiple linear regression model is built between Ysi and Xi according to the message
filtering process.

45



Sensors 2022, 22, 981

 

Figure 10. CAN message frequency distribution.

4.1.2. Message Filter Results

The results of the multivariate linear regression of the collected continuous vehicle
behavior with each type of message are shown in Figure 11. The x-axis is the determina-
tion coefficient R2 of the multiple linear regression model, and the y-axis is the effective
ID distribution.

For the linear regression results of vehicle speed and CAN trace, according to the
threshold value 0.6, three types of messages can be filtered out that directly record vehicle
speed information with IDs 0x202, 0x215, and 0x217, as shown in Figure 11a. In addition,
in this result, there are some R2 values close to the threshold, such as 0x130, 0x165, 0x167
and 0x200. This is because they may describe information such as RPM, throttle, etc., that
correlate with the vehicle speed, which explains their larger R2. However, since these
types of vehicle data cannot be collected by sensors, they cannot determine their exact
meaning. As shown in Figure 11b, with a R2 of 0.1 as the dividing line, the messages IDs
strongly correlated with steering wheel angle are 0x086, 0x082, and 0x240. These messages
may contain data describing steering wheel torque and steering rate in addition to the
information directly representing steering angle. In the same way, messages related to the
accelerator pedal are filtered out including messages with IDs 0x165, 0x167, 0x202, 0xFD,
and 0x21F, with 0.2 as the divisor, as shown in Figure 11c. Messages with IDs 0x78, 0x202,
and 0x165 are categorized as related to brake pedal angle with a threshold of 0.18 as shown
in Figure 11d. The results of filtering information related to wiper switch and gear angle
are shown in Figure 11e,f. With a threshold of 0.6, the message IDs related to the wiper are
0x9A, and the message IDs related to the gear are 0x165 and 0x228, respectively.

As can be seen from the results of the message filtering, the R2 and threshold values
for messages related to steering angle, acceleration, and brake pedal are generally small.
This result is due to the slight variations in vehicle behavior when collecting these data. For
example, the pedal is unlikely to be located at the lowest position when collecting the gas
pedal angle while driving. In addition, the results for vehicle speed, gas pedal, and brake
pedal show that a certain number of messages have an R2 value that is below the threshold,
but very close to it. Although these messages do not directly describe the state of the vehicle
speed, gas pedal, and brake pedal, they do describe vehicle behavior correlated with the
state. For example, the near-threshold telegrams in the throttle results describe the vehicle’s
speed, torque, and acceleration, among other things. However, since these messages do
not directly describe the vehicle speed, they are classified as irrelevant messages by the
threshold. Also, as shown in Figure 11e,f, the R2 of the messages related to wiper and gears
are clearly distinguished from others. Since the vehicle behavior (gear angle and wiper
angle) data and the related CAN messages are all discrete, they can be clearly distinguished
from the other messages when the linear regression modeling is performed.
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(a) 

 
(b) 

 
(c) 

 
(d)  

Figure 11. Cont.
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(e)  

 
(f) 

Figure 11. Real vehicle messages filter results: (a) speed-related messages; (b) steer angle-related
messages; (c) gas pedal-related messages; (d) brake pedal-related messages; (e) gear-related messages;
(f) wiper related-messages.

4.1.3. Bit-Level Reverse Results

By analyzing the linear regression result of the filtered messages, it is possible to
reverse the portrayal of the vehicle behavior by the individual bits of the message.

The reverse result for the speed-related messages is shown in Figure 12. There is a
two-fold relationship between the messages with IDs 0x202, 0x215, and 0x217 and the β
of the vehicle speed. As shown in Figure 12a, bits 34 to 42 in the message with ID 0x202
indicate the vehicle’s speed, arranged in the format of Motorola. For the message with
ID 0x215, according to Figure 12b, bits 0 to 12, bits 16 to 28, bits 32 to 44, and bits 48 to
60 represent the vehicle speed information and the arrangement format is Motorola. The
value for the β with ID 0x217 is shown in Figure 12c, and the bits describing the vehicle
speed are 34 to 46, and the arrangement format is also Motorola.

The reverse results of the steering-related messages are shown in Figure 13. Bits 22 to
31 in the message with ID 0x82 describe the steering angle arranged in Motorola. In the
corresponding message with 0x86, the steering angle is specified in bits 3 to 13 and 28 to 36,
respectively. The message with ID 0x240 does not describe the steering angle directly, but
because its R2 is greater than the threshold, it is related to the change in steering.
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(a) 

 
(b) 

 
(c) 

Figure 12. Speed-related messages reverse result: (a) ID 0x202 reverse result; (b) ID 0x215 reverse
result; (c) ID 0x217 reverse result.

 
(a) 

 
(b) 

 
(c) 

Figure 13. Steer-related messages reverse result: (a) ID 0x082 reverse result; (b) ID 0x086 reverse
result; (c) ID 0x240 reverse result.
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The results of the throttle-related message are shown in Figure 14. There is an approxi-
mate relationship of 2 times in the β corresponding to 0xFD, 0x167, and 0x202 in the results,
so based on the β, we find that bits 49 to 55 in the message with 0xFD describe the gas
pedal angle. As shown in Figure 14b, in the message whose ID is 0x167, bits 0 to 7 portray
the angle of the gas pedal. The angle of the gas pedal in 0x202 is represented in bits 39 to
47. For the messages 0x165 and 0x21F, there is no 2x relationship in β. But the bits 40 to
43 of 0x21F indicate the rate of change of the gas pedal angle as shown in Figure 14d. For
0x165, the gas pedal angle is converted to a discrete state using a threshold: accelerated or
not. The result of the discrete value is shown in Figure 14e, from which it can be seen that
bit 29, and bits 22 to 26 of ID 0x165 describe whether the gas pedal is activated or not.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 14. Gas-related messages reverse result: (a) ID 0x0FD reverse result; (b) ID 0x167 reverse
result; (c) ID 0x202 reverse result; (d) ID 0x21F reverse result with gas angle change rate; (e) ID 0x165
reverse result with discrete state.
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The results of the bit reverse for the brakes are shown in Figure 15. Based on the β of
0x78, the bits representing the brake pedal are bits 32 to 37, arranged as Motorola. Since
there are no significant features in the β of 0x202 and 0x165, the linear regression β of these
two types of IDs with discrete states of the brake pedal (braked or not) was calculated using
the same method. The results show that in 0x165, bits 0, 1, 3, 7, and 8 indicate whether the
vehicle’s state is accelerated or not. For the message with 0x202 as ID, the results show
that it does not describe the braking behavior but only the vehicle behavior with respect
to braking.

 
(a) 

 
(b) 

 
(c) 

Figure 15. Brake-related messages reverse result: (a) ID 0x078 reverse result; (b) ID 0x165 reverse
result; (c) ID 0x202 reverse result.

The reverse results for the gears are shown in Figure 16. Since the gear behavior data is
discrete, it is evident from the β that the message with 0x228 describes the gear information
in bits 3, 5 to 7, 10 and 35 to 39, and 0x165 describes the gear in bits 51 to 54. The reverse
result of the wipers is shown in Figure 17. The data describing the wiper speed in 0x9A are
bits 37 to 38 and bit 50, And the specific reverse results are shown in Table 5.

 
(a) 

 
(b) 

Figure 16. Gear-related messages reverse result: (a) ID 0x228 reverse result; (b) ID 0x165
reverse result.
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Figure 17. Wiper-related messages reverse result.

Table 5. Results for gears and wipers of bit-level reverse.

Gear

Status
ID 0x165 ID 0x228

Bits 54–51 Bits 39–35 Bit 10 Bits 7–5 Bit 3

P/N 0110 00010 1 110 0
D 1100 10000 1 001 1
R 1101 00010 1 010 1

Wiper

Status
ID 0x09A

Bit 50 Bits 38–37

Auto 1 10
Slow 0 10
Fast 0 01

4.2. Framework Accuracy

The accuracy of the system proposed in this study is evaluated using the inverse
results of the actual vehicles. The accuracy is evaluated using the DBC files of the test
vehicle, which were determined to be the truth.

The accuracy of message filtering is shown in Table 6. All CAN traces are taken from
the OBD-II interface, so the accuracy is expressed using the percentage of filtered quantities
in the OBD-II. Among all the results, only the brake-related messages have an accuracy of
66.67 %, while all other messages are filtered at 100%. The false-positive result for 0x202 for
brakes is due to the fact the brakes are velocity-dependent to some extent. According to the
DBC file, 0x202 does contain velocity information, which causes R2 to be higher than the
threshold. In addition, message 0x240 in the description of the DBC, describes the vehicle’s
torque information. Although it is a steering-related message, it cannot be inverted at the
bit level because the torque measurement information is not directly available. It is also
worth noting that the messages defined in the DBC file do not fully appear in the OBD-II
interface. This phenomenon is due to a gateway in the vehicle CAN-bus network, which
does not forward all bus traces to OBD-II, but only a portion of the traffic to the OBD-II
interface. The rest of the CAN bus data, especially the traffic related to assisted driving and
vehicle control, flows only within the vehicle and cannot be captured externally.
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Table 6. Message filtering accuracy results for vehicle behavior.

Behavior
DBC Defined

Messages
Messages Captured

from OBD-II
Framework Filtering

Results
Accuracy

Speed 0x25E, 0x217, 0x202,
0x215, 0x35F, 0x361 0x217, 0x202, 0x215 0x217, 0x202, 0x215 100%

Steer 0x86, 0x240, 0x243, 0x82 0x86, 0x240, 0x82 0x86, 0x240, 0x82 100%

Gas 0x202, 0x21C, 0xFD,
0x167, 0x165, 0x21F

0x202, 0xFD, 0x167,
0x165, 0x21F

0x202, 0xFD, 0x167,
0x165, 0x21F 100%

Brake 0x165, 0x78 0x165, 0x78 0x165, 0x78, 0x165 66.67%
Gear 0x228, 0x165 0x228, 0x165 0x228, 0x165 100%

Wiper 0x9A 0x9A 0x9A 100%

The bit-reverse accuracy is shown in Figure 18, which compares the bit reverse results
of this framework with the vehicle behavior defined in the DBC file. Figure 18a shows
the bit-inverse accuracy of the speed-dependent messages. It is observed that bits are
written with speed in 0x202, 0x215, and 0x217 are partially reversed to obtain 9 bits for
16 bits in 0x202, 52 bits for 64 bits in 0x215, and 14 bits for 16 bits in 0x217. The bit reversal
accuracy of the two steering-related messages, 0x082 and 0x086, is shown in Figure 18b.
The proposed framework in this study correctly reverses 9 of the 16 bits in 0x082 and 18 of
the 27 bits in 0x086. The accuracy of gas-related message reversal is shown in Figure 18c.
0x0FD gets 7 out of 8 bits, 0x167 completely reverses 8 bits, 0x202 gets 9 out of 16 bits, and
both 0x21F and 0x165 have only one bit that is not reversed. Only bits 38 to 39 of 0x078
were not found in the brake-related messages’ reverse results, as shown in Figure 18d. For
the gear and wiper-related messages, the bits indicating the gear and wiper switches are
both correctly reversed, which can be seen in Figure 18.

 
(a) 

 
(b) 

Figure 18. Cont.
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(c) 

 
(d) 

 
(e)  

 
(f) 

Figure 18. Bit reverse accuracy: (a) Speed reverse result; (b) Steer reverse result; (c) Gas reverse result;
(d) Brake reverse result; (e) Gear reverse result; (f) Wiper reverse result.

The overall bit-reverse accuracy of the proposed framework for vehicle behavior is
shown in Table 7. The overall reverse accuracy is over 76%, especially for gear, and wiper
reversion can reach 100% because CAN messages and sensor data are discrete and not
easily disturbed by other data. The reverse accuracy for vehicle speed, gas pedal, and
accelerator pedal are all about 80% because these behaviors are difficult to reach the limit
state during vehicle sampling, such as vehicle speed of 255 km/h, gas, and brake pedals
kept at the maximum angle. Therefore, when reversing the messages related to these
behaviors, their high values can barely be detected (i.e., the high value of β does not satisfy
the two-fold relation), which results in poor accuracy. The steering-related information
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performs the worst, with only 65%. Due to the low degree of steering wheel variability in
daily driving, the linear regression model is easily disturbed by irrelevant bits, resulting in
poor accuracy of bit reversals.

Table 7. Bit reverse result with DBC file description.

Vehicle Behavior
Number of Relevant

Bits in DBC
Reverse Results Accuracy

Speed 96 74 77.1%
Steer 43 28 65.1%

Throttle 44 34 77.3%
Brake 13 11 84.6%
Gear 13 13 100%

Wiper 3 3 100%
Total 212 163 76.9%

4.3. Time Consumption

The framework’s time performance analysis was performed on a CentOS server with
an Intel® Xeon® Gold 6248 CPU @ 2.50 GHz and 8 GB of RAM using Python 3. The time
is taken to compute the three critical stages of data resampling, multiple linear regression
modeling, and a bitwise inversion was calculated separately during the evaluation. Table 8
shows the execution time results for each phase. The shortest time-consuming stage is
the bit-inverse stage, which requires no more than 25 us in the longest case and can be
completed within 7 us in the fastest case. The most time-consuming phase is the data
resampling phase. The execution time of the data resampling phase varies from 1.15 s to
190.67 s, with an average time of 37.23 s, which is because this stage resamples the sensor
data based on the number of IDs that occur. The essential linear regression phase does
not take more than 0.84 s. Overall, the time required to reverse the content of a message
correctly averages 37.41 s and does not exceed 191.5 s at most.

Table 8. Implementation time of each stage.

Step Shortest (s) Longest (s) Average (s)

Resample 1.150728 190.674251 37.23192305
Linear regression model 0.007088 0.83345 0.179022554

Bit reverse 0.000007 0.000025 0.0000099
Total 1.157823 191.50772 37.4109555

4.4. Result of Comparison with Other Methods

This section presents the performance comparison results between the bit-level reverse
framework proposed in this study and other CAN message reverse methods. Nowadays,
the effective CAN message reversal algorithms are READ [30], LibreCAN [31], ReCAN,
and Bram’s proposed reversal algorithm based on the correlation coefficient [30]. Among
them, READ, ReCAN [32], and LibreCAN algorithms use bit-flip rates to delimit CAN
message data fields; LibreCAN and Bram’s scheme [37] use correlation coefficients to
find the message IDs describing specific vehicle behavior. The differences between the
existing algorithms and the linear regression framework in reverse results are given in
Table 9. Our proposed scheme is the only one that enables boundary delineation, correlated
message identification, and bit reverse. READ and ReCAN only perform CAN message
data boundary delineation, Bram’s scheme only addresses correlated message screening,
and LibreCAN achieves both results but cannot achieve bit-level inversion. Therefore, this
section only compares the performance of this framework with existing algorithms in terms
of boundary delineation, correlated message filtering, and execution complexity.
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Table 9. Reverse function compared with existing algorithms.

Algorithm
Boundary

Delineation
Related Message

Filtering
Bit-Level
Reverse

Bit-level reverse based on linear regression
√ √ √

READ
√ × ×

LibreCAN
√ √ ×

ReCAN
√ × ×

Reverse engineering based on correlation coefficient × √ ×

4.4.1. Boundary Delineation

In terms of boundary delineation, we compare the linear regression framework of
this paper with the bit-flip rate algorithm used by READ, ReCAN, and LibreCAN. The
performance of the methods in this study and the bit-flip rate method in delineating CAN
messages with discrete states and continuous vehicle behavior is shown in Table 10. The
framework in this paper can delineate the vehicle behavior within the corresponding range
with 100% correctness, while the bit-flip-based rate is only 53.3% correct in delineating
the boundaries. In particular, bit flipping has relatively good results in delineating CAN
messages describing continuous behavior, but boundary delineation errors occur for fields
corresponding to discrete vehicle behavior.

Table 10. Boundary Delineation Comparison.

Vehicle Behavior ID Linear Regression Bit Flip (READ, ReCAN, LbreCAN)

Speed
202

√ √
215

√ √
271

√ √

Steer
082

√ √
086

√ ×

Throttle

0FD
√ ×

167
√ ×

202
√ √

21F
√ √

165
√ ×

Brake
078

√ √
165

√ √

Gear
228

√ ×
165

√ ×
Wiper 09A

√ ×
Total Accuracy 100% 53.33%

The reasons for the different performance of existing methods in delineating bound-
aries are explained in Figure 19 using 0x082 (for steering) and 0x228 (for gears) as examples.
As shown in Figure 19a, this approach may not set the boundary for the boundary delin-
eation of continuous values quite correctly, but the delineation is within the correct range.
In contrast, the bit-flip rate approach is easily affected by bits with the exact change pattern
or are completely changed when dividing the boundary, which leads to the boundary
division outside the normal range. Figure 19b compares the delineation results of the two
methods for discrete values. The bit-flip rate approach fails to delineate the boundary
accurately because the flipped cases of individual bits are generalized to the same field
as the adjacent invariant bits when delineating the boundary. Therefore, the framework
proposed in this study gives better results for discrete values.
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(a) 

 
(b) 

Figure 19. Boundary division results of bit-flip rate and proposed method: (a) Continuous value
division result (0x082 for steering); (b) Discrete value division result (0x228 for gear).

4.4.2. Related Message Filtering

This section describes the outstanding performance of the framework in this paper
compared to existing schemes in related message filtering, where existing schemes mainly
use correlation coefficients (e.g., LibreCAN, Bram’s method) to filter related messages.
Figure 20 compares the performance between our proposed framework and the Pearson
correlation coefficient for correlated message filtering. Regardless of the number of mes-
sages, the multiple linear regression method proposed in this study can filter messages
related to vehicle behavior with 100% accuracy. When using the correlation coefficient
to filter messages, although the accuracy of candidate message filtering increases as the
number of messages rises, the accuracy still does not exceed 95%. When calculating the
correlation between the two vectors, the results of the Pearson correlation coefficient are
easily influenced by outliers in the two vectors, resulting in a reduced correlation coefficient
that does not effectively filter out candidate messages [46]. In this paper, using multiple
linear regression to model each bit of the data field as an independent variable, the effect
of outliers is weakened, and the relevant messages are effectively filtered out. This result
shows that the framework proposed in this study is more accurate than existing message
filtering methods.

Figure 20. Comparison between correlation coefficient and multiple linear regression.

In addition, as shown in Table 11, the accuracy of the linear regression method is not
affected by the number of messages, which remains 100%, while the correlation coefficient
requires a higher number of messages to obtain a higher correct rate. This indicates that
fewer messages are needed to locate messages related to vehicle behavior when using
the linear regression method for CAN message screening, reducing data acquisition and
computation time that speeds up the reverse work.
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Table 11. The influence of different message counts on accuracy.

Methods
Number of Messages

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

Linear
regression 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Correlation
coefficients 80% 72% 82% 86% 90% 92% 90% 92% 92% 90%

4.4.3. Execution Complexity

We compare the algorithms in this section concerning the devices needed for their
execution, the data requirement, the algorithm execution time, and the reverse results. As
shown in Table 12, each algorithm relies on OBD-II data acquisition devices. Only the
framework and LibreCAN require additional sensor devices and smartphones, respectively.
In terms of data requirements, the READ and ReCAN require only CAN traffic, the linear
regression method and LibreCAN require data from additional devices. However, the
correlation coefficient method requires UDS data through interaction with the vehicle [47].
LibreCAN is the algorithm that takes the longest time to execute since some manual work is
also required, and the fastest execution is the correlation coefficient method. The framework
in this paper is close to the average time of the READ algorithm. However, in terms of
reverse results, our scheme is the only one that can achieve bit-level reverse, outperforms
the other algorithms in boundary delineation and message filtering, and does not require
interaction with the vehicle. Although additional sensor devices are required, such sensors
can be purchased very cheaply and used very simply in the market.

Table 12. Execution complexity comparison of different algorithms.

Algorithm Devices Requirements Data Requirements Average Time Reverse Results

Bit-level reverse based
on linear regression

OBD-II data acquisition device,
Behavior sensors

CAN traffic,
Sensors data 37 s

Boundary Delineation,
Related message filtering,

Bit-level reverse
READ OBD-II data acquisition device CAN traffic 35.9 s Boundary Delineation

ReCAN OBD-II data acquisition device CAN traffic 35.9 s Boundary Delineation

LibreCAN OBD-II data acquisition device,
Smartphone

CAN traffic,
Smartphone data >60 s Boundary Delineation,

Related message filtering
Reverse engineering

based on
correlation coefficient

OBD-II data acquisition device CAN traffic,
UDS data <20 s Related message filtering

4.5. Application and Discussion
4.5.1. Application

The bit-level automotive CAN bus reverse framework proposed in this study can be
used in almost all commercially available vehicles, independent of vehicle make and model.
According to Table 12, the implementation of the framework requires OBD-II [48,49] data
collection devices, sensors, and CAN traffic. In-vehicle CAN network traffic is typically
collected using the OBD-II interface, a globally accepted automotive standard. It is required
for almost all commercially available vehicles to be equipped with an OBD-II interface
before they can be marketed [50–54]. Therefore, regardless of vehicle models on the market,
the vehicle CAN traffic can be obtained after connecting OBD-II data collection devices.
Therefore, regardless of vehicle models on the market, the vehicle CAN traffic can be
obtained after connecting OBD-II data collection devices. For OBD-II data acquisition
devices, such devices are readily available on the market today, with prices ranging from
a few tens to a few hundred dollars. The sensor devices used in this framework are
off-the-shelf motion sensors, which are inexpensive and easily placed in various vehicle
parts to collect relevant data. Using CAN traffic and sensor data as input to our proposed
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framework, the algorithm proposed in this paper can obtain how CAN messages in any
vehicle describe the vehicle state.

To verify the applicability of the framework, an electric car with completely a different
power and brand was chosen to apply the framework. The reverse results are shown in
Table A1 in Appendix A. In the absence of relevant DBC files, a script is provided in the
appendix that can display CAN data changes in real-time to confirm the accuracy of each
result. All filtered messages are consistent with the actual results in the actual results, and
the reverse results of the bits remain consistent with the data bit changes. Overall, the
method proposed in this study can be applied to most vehicle CAN message inversions
and is not affected by vehicle changes.

4.5.2. Discussion

In this study, we propose an innovative bit-level reverse framework for automotive
CAN messages. This framework builds a multiple linear regression model between CAN
traces and sensor data, uses decision coefficients to filter candidate messages, and uses
model parameters to determine how data fields represent vehicle behavior and maximally
recover DBC files. In the test vehicle, this framework has high accuracy in both message
screening and bit-inversion. However, the limitation of the test environment results in
the unavailability of the extreme vehicle behavior data, leading to less than perfect results
in bit-reversion. In addition, the framework reverses the candidate messages correctly in
a short time, which improves the reversal efficiency. Our study proposes the only CAN
message translator that can achieve bit-level reversal and has significant advantages over
other existing methods for boundary delineation and message verification. Finally, the
framework can be applied to any standard-compliant commercially available vehicle.

5. Conclusions

5.1. Implication

This study examines the bit-level CAN bus reverse framework using a multiple linear
regression model. This framework is the only method that can achieve bit-level reversion.
It uses sensor data as the dependent variable and each bit of the CAN message data field as
the dependent variable to build a multiple linear regression model to obtain the carving
of vehicle behavior for each bit based on the β. This study shows that the framework
can accurately filter CAN messages related to vehicle behavior, reverse the way each bit
represents vehicle behavior, and obtain the length, boundary, and alignment format of
the signal. Compared to other methods, the framework can delineate the signal length
and message filtering more accurately. In addition, the algorithm uses a globally available
standard interface (OBD-II) and common motion sensors to capture CAN traffic and
vehicle behavior data, which allows access to data that is not limited by model and make,
making the algorithm more usable. The excellent reverse capability of the system can help
automotive security researchers to quickly discover how CAN messages describe vehicle
behavior when DBC files are not available. It is worth mentioning that attackers may also
use our approach to find better attack approaches against cars. Although the framework
makes DBC files less secret, it is more meaningful to study the automotive CAN detection
and defense attack capabilities. In addition, a better attack prevention system could be
developed based on the reverse results of this scheme.

5.2. Limitations and Future Work

The present study has three significant limitations that can be addressed in future studies.
First, the lack of extreme data affected the correctness of the experiment. When CAN

traffic and vehicle behavior data were acquired, CAN data and sensor data could not cover
extreme data, such as vehicle speed reaching 255 km/h, maximum steering wheel angle,
and pedal reaching maximum angle. The lack of extreme data departs the highest position
in the experimental results, resulting in unsatisfactory experimental results. Future research
can obtain extreme data in closed scenarios to optimize the experimental results.
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Second, insufficient DBC files. We use open-source DBC descriptions as truth when
testing the results of validation experiments in vehicles. However, most of the current
open-source DBC files are obtained by extracting the ECU firmware, resulting in a minimal
number. This study can obtain the description of CAN messages without firmware, which
provides a new idea to obtain DBC files for subsequent studies.

Finally, application limitations. Due to the limited number of test vehicles used, this
framework validated its reverse effect in a subset of vehicles. According to the devices
and data on which the framework relies, it can be applied to almost all vehicles. To
address the difficulty of testing in actual vehicles, software and hardware simulations [55]
of the internal networks of vehicles can be investigated in future research to address the
application limitations.
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Appendix A

Table A1 shows the framework’s CAN message reverse for an electric vehicle manu-
factured in China. Although there is no DBC file to verify its correctness, we wrote a script
(It can be found at http://49.232.218.41:8000/ accessed on 23 January 2022) that can display
the data changes of the specified ID in real-time using the experimental equipment in this
paper to verify the correctness of the results.

Table A1. Another vehicle reverse result.

Behavior ID Bits Description

speed
0x212 48–56 real-time speed data
0x23A 32–40, 56–64 real-time speed data
0x21A 17–32 real-time speed data

mileage 0x21A 48–64 mileage per unit of time
steer 0x236 58–64 real-time steering data

brake pedal 0x668 0–16 brake pedal angle
0x668 36 brake status

accelerate pedal 0x668 17–31 accelerate pedal angle

gear 0x235
39, 42, 44 D
39, 42, 43 R
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Abstract: As one of the most effective methods of vulnerability mining, fuzzy testing has scalability
and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing,
and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At
present, the known sample generation methods focus on code coverage or seed mutation under a
critical execution path, so it is difficult to take both into account. Therefore, based on the idea of
ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework
named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The
main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and
path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM
neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of
ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability
for a critical execution path of the program. In order to improve the efficiency of fuzzy testing,
we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put
forward the evaluation index of path depth detection ability (pdda), which can effectively measure
the vulnerability mining ability of the generated test case set under the critical execution path of the
program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific
research results and further propose the future improvement ideas of CVDF DYNAMIC.

Keywords: genetic algorithm; Bi-LSTM neural network; fuzzy testing sample generation; deep learning

1. Introduction and Background

Vulnerability in program has always been a serious threat to software security, which
may cause denial of service, information leakage and other exceptions. Some typical cases
of vulnerability exploitation, such as wannacry ransomware, have a disastrous impact on
social economy and network security. Therefore, mining vulnerabilities scientifically and
efficiently has been a hot topic.

At present, vulnerability mining technology can be divided into static vulnerability
mining and dynamic testing (fuzzy testing) [1]. The former does not construct test cases nor
run source code. By extracting the characteristics or key operations of the corresponding
types of vulnerabilities, static code audit is carried out on the source code to detect the
possibility of various vulnerabilities. The target source code of static vulnerability mining
can be advanced language, assembly language generated by compiler, or binary file. The
advantages of static vulnerability mining lie in fast mining speed, high efficiency, and
good detection accuracy for vulnerabilities with obvious characteristics. However, static
vulnerability mining often leads to high false positive rate and false negative rate for
vulnerabilities with unclear features or diverse types and forms (such as null pointer
reference vulnerability in C/C++). Dynamic fuzzy testing can solve this problem by
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constructing reasonable test examples. However, the efficiency of dynamic fuzzy testing is
lower than that of static vulnerability mining because it needs to construct samples and run
programs to determine whether there are vulnerabilities. Therefore, how to construct test
cases with high pdda and code coverage is the key of fuzzy testing. In practical application,
it is often necessary to combine static vulnerability mining with fuzzy testing to achieve
better vulnerability detection performance. Existing mainstream fuzzy testing can be
divided into the following three categories:

• Black box test (construct test cases to test without source code at all);
• White box test (analyze source code to generate corresponding test cases); e.g., [2];
• Grey box test (introduce lightweight program analysis technology to analyze program

state), e.g., [3].

In black box test, the internal structure of the program is not understood at all, and
the test cases are constructed blindly. Thus, its testing efficiency is very low. White box
test uses program analysis methods [4] (such as path traversal and symbolic execution) to
analyze the program source code and then constructs the corresponding test cases. The
white box test can cover deeper test path, which causes a lot time cost and system resources
with poor scalability. The grey box test [5] can achieve a good balance between the test
efficiency and the coverage of test cases because of the introduction of lightweight program
analysis technology. It is more effective than a black box test and more extensible than a
white box test. At present, the grey box testing program is mainly guided by code coverage.
The typical grey box fuzzers are AFL [6] and so on.

However, the problem of current grey box fuzzers is that they are designed to cover as
many code execution paths as possible. In the regulation of seed energy, they usually use
the idea of average distribution instead of regulating different energies for different test
paths. Nevertheless, most of the source code vulnerabilities are concentrated on a small
number of critical test paths in reality. Existing grey box fuzzers often spend a lot of time to
detect the path whose vulnerability is not easy to be detected, thus reducing the efficiency
of fuzzy testing.

Because the application of a single method in grey box fuzzy testing has its own
limitations, more and more researchers have begun to integrate a variety of methods to
achieve better fuzzy testing results, such as [7].

Based on existing research work [8], this paper proposes a new framework of fuzzy
testing sample generation called CVDF DYNAMIC. It consists of three parts:

(1) The strategy of sample generation based on a genetic algorithm;
(2) The strategy of sample generation based on a bi-LSTM neural network;
(3) The strategy of sample reduction based on a heuristic genetic algorithm.

The genetic algorithm can improve the quality of test cases and expand the code
coverage by simulating the natural process of gene recombination and evolution. The
bi-LSTM time sequence can regulate different energy of the test path, which can make
the seeds on the critical path iterate and mutate for many times, and enhance the path
depth detection ability. The critical contribution of CVDF DYNAMIC is that it integrates
the two methods of sample generation, and simplifies the sample set by using a heuristic
genetic algorithm, which makes the test case set achieve a good balance in code coverage,
path depth detection ability and sample set size. This paper also compares the proposed
method with other fuzzy testing samples and further presents the improvement direction
of that method.

2. Related Work

At present, researchers have applied fuzzy testing to different types of vulnerability
mining. Lin et al. [9] proposed a priority-based path searching method (PBPS) to utilize the
capability of concolic execution better. Peng et al. [10] proposed Angora, a new mutation-
based fuzzer, and proved that Angora has better performance than other fuzzing tools.
Wang et al. [8] used a neural network to guide the sample generation of fuzzy testing
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and proposed a solution called NeuFuzz. NeuFuzz has a very significant performance in
the vulnerability mining of the critical execution path of the program. Zhang et al. [11]
summarized existing fuzzy testing technologies and use case generation technologies
of fuzzy testing. Zhang el al. [12] proposed an algorithm of sensitive region prediction
based on a neural network and improved the detection efficiency and detection depth
through the incremental learning method of sensitive areas. Combining fuzzy testing and
symbolic execution, Xie [13] proposed a hybrid testing method based on a branch coverage
called AFLeer. Xu et al. [14] applied a recurrent neural network to fuzzy testing sample
generation. Luca et al. [2] designed a novel concolic executor to improve the efficiency of
concolic execution and investigate whether techniques borrowed from the fuzzing domain
can be used to solve the symbolic query problem. Stefan [15] proposed the notion of
coverage-guided tracing to improve the efficiency of code coverage guided fuzzy testing.
Yang et al. [16] proposed a novel programmable fuzzy testing framework. Developers
only need to write a small number of fuzzy testing guidance programs to implement
customized fuzzy testing. Patrice et al. [17] proposed learn&fuzz, which used a learned
input probability distribution to intelligently guide fuzzing inputs. Li et al. [18] proposed
symfuzz, which is a method combining directed fuzzy testing technology with selective
symbolic execution technology and can realize vulnerability detection under complex path
conditions. Liang et al. [19] proposed a machine-learning-based framework to improve
the quality of seed inputs for fuzzing programs. Zou et al. [1] described the development
from traditional automation to intelligent vulnerability mining in software vulnerability
mining. This paper also pointed out that the application of traditional machine learning
technology in the vulnerability mining field still has limitations. Ma et al. [20] proposed the
optimization strategy of sample set reduction in the fuzzy process, including approximation
algorithm. Cornelius [21] proposed IJON, an annotation mechanism that a human analyst
can used to guide the fuzzer.

In the experimental part, this paper compares the simplification and efficiency of
sample set between heuristic genetic algorithm and approximation algorithm. He et al. [22]
proposed a tool called VCCFinder to find potential vulnerabilities. Nick et al. [23] used
mined vulnerabilities by utilizing a code attribute graph for fuzzy testing. She et al. [24]
proposed a novel program smoothing technique using a surrogate neural network models
to achieve higher edge coverage and improve the ability of finding new bugs. Chen
et al. [25] proposed POLYGLOT, a genetic fuzzing framework that generates high-quality
test cases for exploring processors of different programing languages. Huang et al. [4]
proposed PANGOLIN, an approach based on polyhedral path abstraction, which preserves
the exploration state in the concolic execution stage and allows more effective mutation and
constraint solving over existing techniques. Zhang et al. [26] proposed a novel incremental
and stochastic rewriting technique STOCHFUZZ that piggy-backs on the fuzzing procedure.
Liang et al. [3] presented DeepFuzzer, an enhanced greybox fuzzer with qualified seed
generation, balanced seed selection and hybrid seed mutation. Chen et al. [7] proposed
an ensemble fuzzing method, EnFuzz. Enfuzz contains many different heuristic genetic
algorithms and achieves a better performance in terms of path coverage, branch coverage
and bug discovery. The idea of ensemble is also similar to the CVDF DYNAMIC proposed
in this paper. Yue et al. [27] presented a variant of the adversarial multi-armed bandit model
for modeling AFL’s power schedule process named EcoFuzz, which can effectively regulate
seed energy in fuzzy testing. Zong et al. [28] proposed FuzzGuard, a deep-learning-based
approach to predict the reachability of inputs and further improve the performance of DGF.
Gan [5] proposed a data flow sensitive fuzzing solution GREYONE, which can further
improve the performance of data flow analysis, and the experiments show that GREYONE
has better performance than the existing fuzzy testing tools such as AFL. Sebastian et al. [29]
proposed ParmeSan, a sanitizer guided fuzzing method to solve the low-bug coverage
problem. Oleksii et al. [30] proposed specfuzz, which is a novel fuzzy testing method,
which can be used to detect speculative execution vulnerabilities including spectre and out-
of-order execution vulnerabilities. Compared with the traditional static analysis method,
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specfuzz has further improved the analysis accuracy. Lee et al. [31] proposed a constraint-
guided directed greybox fuzzing method, which aims to satisfy a sequence of constraints
rather than merely reaching a set of target sites. Christopher et al. [32] proposed a brand-
new token-level fuzzing method. Different from the fuzzy method based on data flow or
seed energy regulation, token-level fuzzing applies mutations at the token level instead of
applying mutations either at the byte level or at the grammar level. The authors found many
unknown bugs through the token-level fuzzing method on popular javascript engines.
In recent years, the safety of deep learning technology has also attracted the attention of
scholars. It is possible for attackers to deduce the sensitive training data of engineering
through the unsafe deep learning model. Ximeng Liu et al. [33] briefly introduced four
different types of attacks in deep learning, reviewed and summarized the security defense
measures of deep learning attack methods and further discussed the remaining challenges
and privacy issues of deep learning security. MB mollah et al. [34] proposed an efficient
data-sharing scheme, which allows smart devices to share secure data with others at the
edge of cloud-assisted IOT.

3. Algorithm Description

3.1. An Introduction of Existing Fuzzy Testing Sample Generation Methods

At present, the generation and variation methods of test cases are mainly described
as follows:

The method based on symbolic execution [13].
The core idea of this method is to take the test case as the symbol value and search

the core constraint information on the test path during the processing. A new test case is
generated by constraint solving to cover different program execution paths. This method
is suitable for testing programs with simple structure and less execution paths. However,
the complexity of the program increases with the diversification of functions, resulting in
the explosion of the number of paths. It is difficult for symbolic execution to be applied to
constructing complex program test cases because of complex constraint solving problems.

The method based on taint analysis [10].
The core idea of this method is to mark the pollution source of the input data by using

the dynamic taint analysis technology, focus on the spread process of the taint, extract the
key taint information from it and use the taint information to guide the generation of seed
variation and related test samples. It is an effective method to construct test samples for
some key execution paths in programs and has good code coverage, such as Angora [10].
However, with the application of genetic algorithm and neural network in fuzzy testing,
the disadvantage of low efficiency of taint analysis technology is gradually emerging.

The method based on evolutionary algorithm [35].
The evolutionary algorithm uses some core rules of biological evolution to guide the

generation of fuzzy testing samples. At present, genetic algorithm is the most widely used
evolutionary algorithm with the best performance. Its core idea is to carry out multiple
rounds of iterative mutation on test cases, eliminate the test cases that do not meet the
requirements according to some rules or select the samples with the best performance from
them as the seeds of the next round of mutation. Genetic algorithm can be used not only to
generate new test cases but also to simplify the sample set, so as to further improve the
efficiency of fuzzy testing.

The method based on neural network [14].
As mentioned above, neural network has a very significant performance advantage

in solving some nonlinear problems. The bi-LSTM neural network is used to mutate the
seeds on a certain execution path to obtain a new test example. In the experiment, we
prove that the bi-LSTM neural network has stronger path depth detection ability in specific
key execution paths than that of the taint analysis. Moreover, Learn & Fuzz proposed by
Patrice [17] et al. can improve the code coverage of fuzzy testing. Therefore, it can be
predicted that the neural network will play a greater role in the future development of
fuzzy testing.
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3.2. Formal Definition

In order to facilitate the subsequent description of the algorithm, we give some related
concepts and formal definitions of the evaluation index.

• Definition 1 PUT (input sample)

We define the program under test as PUT. For CVDF DYNAMIC, PUT is the corre-
sponding binary executable program, and the corresponding test cases are mentioned in
Section 4.1.

• Definition 2 Set Covering Problem (SCP)

A large number of facts show that there is an exponential proportional relationship
between the growth number of execution paths of PUT and the growth number of its branch
conditions, so the test cases cannot completely cover all execution paths. Therefore, in fuzzy
testing, the problem of sample set coverage is transformed into the problem of minimum
set coverage [36]. The minimum set covering problem is an NP hard problem [37]. The
simplest algorithm idea is to use greedy algorithm to find the approximate optimal solution.
The following formal definition is used to describe SCP problem:

For A = [aij], it is a 0–1 matrix of m-row n-columns, where C = Cj is an n-dimensional
column vector. Let p = [1, 2, 3 . . . . . . m] and q = [1, 2, 3 . . . . . . n] be the row and column
vectors of matrix A. Furthermore, let Cj, j ∈ q represent the cost of a column. Without
losing generality, we assume that Cj > 0, j ∈ q. It is specified here that if aij = 1, it
means that column j ∈ q at least covers one row i ∈ p. Therefore, the essence of the SCP
problem is to find a minimum cost subset S ⊆ q. So, for every row i ⊆ p, it is covered
by at least one column j ⊆ S. A natural mathematical model of SCP can be described as
v(SCP) = min ∑

j∈q
Cjxj, and it obeys ∑

j∈q
aijxj ≥ 1, i ∈ p, xj ∈ (0, 1)(j ∈ q). If xj = 1(j ∈ S),

then xj = 0.

• Definition 3 Path Depth Detection Ability

In fuzzy testing, there are many program-execution paths that may have vulnerabilities
in PUT, so the generation of fuzzy testing samples should cover as many as possible for
these program execution paths that may have vulnerabilities. For a program execution
path, the number of detected vulnerabilities may be more than one, and different program
execution paths can detect different numbers of vulnerabilities. We define the total number
of vulnerabilities detected by the fuzzy testing sample under the current path as DNUM, the
total number of vulnerabilities contained in the current path as ANUM and the weight of the
total number of vulnerabilities contained in the current path as W. DetectionCapability(DC)
is a weighted result, and its operation method is shown in Equation (1):

DC =
DNUM
ANUM

× W (1)

Among them, W increases with the number of vulnerabilities in the current path. This
is because the number of vulnerabilities in different paths is different. For the variation
method of the same fuzzy testing sample seed, if more vulnerabilities are contained in a
path, the smaller the value of DNUM

ANUM
is. If the weight W is a constant, the DC value will

decrease, and the path depth detection ability of a test case generation method cannot be
objectively measured.

Suppose that a program under test has n execution paths, we define the average path

detection ability as WDC =

n
∑

i=1
DCi

n : It can measure the ability of a fuzzy testing tool to
detect the overall path depth

3.3. CVDF DYNAMIC Fuzzy Testing Sample Generation

The complete process of fuzzy testing sample generation of CVDF DYNAMIC is
shown in Figure 1.
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Figure 1. Complete Flow Chart of CVDF DYNAMIC Fuzzy Testing sample generation.

In the fuzzy testing part, we learn from the ensemble learning method in artificial
intelligence. The seeds are mutated by genetic algorithm to generate a set of test cases, and
then the seeds are mutated by the bi-LSTM neural network to generate another set of test
cases. Finally, the two sets of test cases are integrated to obtain the final set of test cases.

Considering that the size of the sample set obtained by the integration of the two
methods is too large, which reduces the efficiency of fuzzy testing, we use heuristic genetic
algorithm to simplify the sample set. Finally, the reduced sample set is used for fuzzy
testing, and the parameters in the bi-LSTM neural network are optimized according to the
result feedback.

3.3.1. Theoretical Model and Training Process of BI-LSTM Neural Network

The BI-LSTM neural network training process of CVDF DYNAMIC is shown in the
Figure 2.

Figure 2. Training of neural network.

(a) Preprocessing and Vectorization

We preprocess the training dataset, including unifying the input format of the test cases
and changing the format of some binary executable programs, so that they can adapt to the
input of the neural network without changing the logic function of the original program.

Then, we use the PTFuzz tool, which is a tool to obtain the program execution path by
using the Intel Processor Tracing module (IntelPT). PTFuzz makes a further improvement
on the basis of AFL, which removes the dependence on the program instrument but uses
PT to collect package information and filter package information, and finally obtains the
execution path of the current seed according to the package information. In order to
achieve this goal, our hardware environment should be based on Intel CPU platform
and run under the appropriate version of Linux system. Since the PTFuzz tool stores
the program execution path information in data packets in order to obtain the program
execution path information that can be trained for neural networks, we need to decode the
data packets in the corresponding memory and recover the complete program execution
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path according to the entry, exit and other relevant information of each data packet. The
pseudocode of the Algorithm 1 Extracting program execution path is as follows:

Algorithm 1. Extracting program execution path

Start Func

Func ExtractPath(binary-source-code)
1: Start = LoadBinaryProgram(binary-source-code)
2: ProgStaddr = GetProgramEntry(Start)
3: ExecutionPath = []
4: while True:
5: PackagePath = LoadCurrentPackage(ProgStaddr)
6: ExecutionPath +|= PackagePath
7: If ProgStaddr == JumpNextInstrument()
8: ProgStaddr = GetNextInstruAddr()
9: If ProgStaddr == EndOfMemSpace()
10: break

11: Return ExecutionPath
End Func

In the pseudocode, JumpNextInstrument() and EndOfMemspace() are two judgment
functions, which are used to judge whether to jump to the next instruction address and
whether the end of the memory address of PTFuzz package has been reached, respectively.
The ExecutionPath variable forms a complete program execution path by continuously
connecting the PackagePath variable after decodeding. +|= is a concatenate operation.

After extracting the program execution path, we need to convert the program execution
path containing instruction bytecodes into vector form and save the original semantic
information of the original program execution path as much as possible.

We use the tool word2vec and regard a complete program execution path as a state-
ment and an instruction as a word. Specifically, we regard the hexadecimal code of an
instruction as a token, and then we use word2vec to train the corresponding bytecode
sequence. In order to preserve as much context information as possible in the program
execution path, we choose the Skip-Gram model in word2vec because it often has better
performance in large corpus. The Skip-Gram model structure is shown in the Figure 3.

Finally, we need to transform the output of word2vec into an equal length coding
input, which can be used as the input vector of the neural network. Let us set a maximum
length, which is MaxLen. When the output length of word2vec is less than MaxLen, we use
0 to fill in the back end to make it MaxLen. When the output length of word2vec is larger
than MaxLen, we truncate it from the front end and control the length to MaxLen.

(b) BI-LSTM neural network structure and parameter optimization

The neural network structure we choose is bi-LSTM.
Bi-LSTM has excellent performance in dealing with long-term dependency problems,

such as statement prediction and named entity recognition [38]. The statements associated
with vulnerability characteristics may be far away in the whole program execution path, so
we need the bi-LSTM neural network structure for the long-term memory of the information
related to the vulnerability characteristics. In order to make the bi-LSTM neural network
suitable for fuzzy testing, we modify the corresponding rules of the input gate, output gate
and forgetting gate of the bi-LSTM. The specific structure of the single LSTM neuron and
the specific rules of the input gate, output gate and forgetting gate are shown in Figure 4.

The number of hidden layers in the bi-LSTM neural network, epochs, batch size and
other parameters will affect the final performance of the neural network. According to the
experimental part in Section 4.2, we set the number of hidden layers to 5, the batch size
to 64 and the drop rate to 0.4 and use a BPTT back-propagation algorithm to adjust the
network weight, using random gradient descent (SGD) method to prevent the model from
falling into the local optimal solution. For the hyper parameters in the bi-LSTM neural
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network, we choose to use dichotomy to accelerate the selection of corresponding values.
Figure 5 shows the complete structure of the bi-LSTM neural network.

Figure 3. The Basic Structure Diagram Of Skip-Gram Model.

Figure 4. The Specific Structure of LSTM Neuron.
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Figure 5. The Complete Structure of the bi-LSTM neural network.

From Figure 5, we make the coding input with length MaxLen pass through several
bi-LSTM hidden layers to extract clearer context dependencies. We let the output of the
last bi-LSTM hidden layer pass through a feed forward neural network layer and sigmoid
activation function. The sigmoid activation function also normalizes the final output
vector, which is the vector form of the fuzzy testing sample generated by the bi-LSTM
neural network.

3.3.2. Genetic Algorithm for Constructing Test Cases

The core of the genetic algorithm used to construct samples can be divided into several
parts, including population initialization, tracking and executing the tested program, fitness
calculation and individual selection, crossover and mutation. The overall structure is shown
in Figure 6.

Figure 6. General Flow Chart of Generating Test Cases By Genetic Algorithm.
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(a) Population initialization

In a genetic algorithm, the population is composed of several individuals. We abstract
an individual as a chromosome. Let us set the length of the chromosome as Dlen, which
means the number of bytes of test data. Then, the ith individual in the population can be
expressed as Xi = (xi,1, xi,2, xi,3, . . . , xi,Dlen). Population initialization is performed to assign
a value to each gene xi,k(1 ≤ k ≤ Dlen in Xi). When there are initial test data, each byte of
the initial test data is used to assign a value of xi,k. Otherwise, the whole population can be
initialized by randomized assignment.

(b) Tracking and executing the program under test

Tracking is divided into two aspects:

• Monitor whether the current test data will cause the tested program to crash;
• Record the execution path of the program

Because each program can be divided into many basic blocks during execution, the
essence of the program execution is the process of execution and jump between basic blocks.

Each basic block has only one entry and exit. So, in a basic block, the program enters
from the entry and exits from the exit. Therefore, we can use the entry address Inaddr of
the basic block to represent each basic block. Then, the program execution process can
be expressed as a sequence of basic blocks: (Inaddr1, Inaddr2, . . . , Inaddrn) We define the
jump of a basic block as e = (Inaddrk, Inaddrk+1), where (1 ≤ k ≤ n − 1).

Obviously, if every basic block is regarded as a point in a graph, then E is an edge in
the graph. Since a basic block may be executed multiple times in the execution sequence,
the graph is directed. In this case, the execution path of the program can be expressed as a
sequence of edges Ee = (e1, e2, e3 . . . en−1).

Because some basic blocks may be repeated many times during program execution,
some edges may appear many times. We combine the same edges to obtain a set of edges
with the information of times of occurrence and analyze the frequency statistics of this set
and further divide it into many groups according to the different times of occurrence 1, 2–3,
4–7, 8–15, 16–31, 32–63, 64–127 and 128.

It is easy to see that the significance of this classification is that it can use different bits of
a byte to represent the times information, so it can improve the processing speed of the pro-
gram. Finally, we will obtain a new set of occurrence information Fe = ( f1, f2, f3 . . . fn−1).

We use the above processing method for each basic block to get the final program
execution path information.

(c) Fitness calculation

By tracking the program under test, we can see that an execution path information
can be expressed as a sequence of edges. Therefore, in order to find a new execution path
and improve the path coverage of CVDF DYNAMIC, we need to calculate the fitness. We
define the sequence set of edges as V = (V1, V2, . . . , Vn), where each Vk (1 ≤ k ≤ n) is
equivalent to Ee. For any edge in Ee, let us assume that the final test data are Xi. We can
obtain a binary set of edge information related to the test data, as shown in Equation (2):

Qi = {(ei,1, Xi,1), (ei,2, Xi,2) . . . (ei,n, Xi,n)} (2)

It is not difficult to find that its essence is a weighted digraph, and the weight is the
test data. We define that the fitness (adaptation) f of an individual consists of two functions,
as shown in Equations (3) and (4).

Finding the number of new edges f1 and the number of edges f2 associated with them
in Qi:

f1(Xi) = card(Vi − Et) (3)

f2(Xi) = ∑q
q∈Vi

G(Wq, Xi) (4)
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G(X1, X2) =

{
1(X1 = X2)
0(X1 	= X2)

(5)

Firstly, the fitness f1 of each individual is calculated, and then the fitness f2 of each
individual is calculated after updating the set. The two sets used to calculate the fitness are
updated after each round of testing. When comparing two individuals, first f1 is compared;
if f1 cannot be distinguished, then compare f2.

(d) Individual selection, crossover and variation

Our individual selection method uses elite selection to produce new individuals.
It is a strategy of generating new individuals in genetic algorithm, which makes the
individuals with high fitness enter the next generation. The method of crossover is 2-opt
transformation. A number of random numbers are generated as the intersection points,
and then the fragments of the intersection points in the chromosome are exchanged. Rather
than using the random mutating method, this paper proposes a control mutation method to
improve the effect of mutation. A motivating example of the Algorithm 2 Control Mutation
is as follows:

Algorithm 2. Control Mutation

Start Func

Func ControlPROC(X,Y)
1: A = 1, B = 1
2: IF Y >= B THEN

3: FORK1: A = A × X, B = B + 1
4: ELSE:

5: IF X >= A THEN

6: FORK2: A = A + X, B = B − 1
7: ELSE:

8: FORK3: A = A − X, B = B/2
9: RETURN A
End Func

The input data format of the program is (X, Y) assuming that the template data are
(X = 1, Y = 1), and the variation factor is the operation of replacing 0. Therefore, two test
data can be generated by mutation (X = 1, Y = 0) and (X = 0, Y = 1), which can cover
FORK1 and FORK2. This form of testing could not achieve 100% branch coverage due
to the failure to cover FORK3. For control variation, when the test data (X = 1, Y = 0)
generated by the variation make the program enter the new branch FORK2, the variation
field of this time will be marked as an immutable field, and the variation will be carried
out on the basis of the test data. In this example, the control variation marks Y = 0 as an
immutable field and mutates the remaining fields, the X value, to 0, resulting in test data
(X = 0, Y = 0) that can be overridden by FORK3.

The control mutation strategy consists of the test data and control information that
make the program enter the new branch. The control mutation process is as follows: Firstly,
the control mutation strategy is taken out from the policy database, and the test data
entering the new branch are taken as the mutation template. Secondly, check the stored
control information and each byte in the template to confirm whether it is marked as control
information; if so, check the next byte, if not, modify the byte in combination with random
mutation strategy, generate test data and execute fuzzy testing, then continue to check the
next byte. Finally, after all bytes are checked, we complete one time of mutation, and the
above process is repeated.

After completing the above operations, we have completed a round of iteration of the
genetic algorithm taking the newly generated chromosome data as the test data of the next
round of mutation, that is, continuous iterative mutation.
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3.3.3. Integrating New Test Data with Integration Idea

Firstly, through the above genetic algorithm, test cases with high path coverage are
constructed from the original test case seeds. Then, for the test cases located on different
execution paths, the bi-LSTM neural network is used to construct test cases with stronger
path depth detection ability. Finally, we integrate the test case set constructed by the two
methods to obtain the final test case set. Considering that the test case set generated by the
above two methods may be too large and the efficiency of the fuzzy testing is reduced, this
paper uses heuristic genetic algorithm to simplify the integrated test case set to ensure that
the efficiency of fuzzy testing can be improved without losing the test performance.

3.3.4. Using Heuristic Genetic Algorithm to Reduce Sample Set

In order to reduce the sample set without losing the performance of fuzzy testing
as much as possible, the screening principle of heuristic genetic algorithm in this paper
is to give priority to the samples with stronger code coverage and Path Depth Detection
Ability. Then, select the remaining test samples in the order of decreasing test performance,
until the performance index basically covers the original fuzzy testing sample set (see the
experiment in Section 4.4 for specific results). Here, our heuristic algorithm is a selection
mutation algorithm for chromosomes.

(a) Using a compression matrix to represent chromosomes

At present, the common chromosome representation method is to use a 0–1 matrix [39].
The element of each row vector of the 0–1 matrix is 0 or 1. As mentioned earlier, we treat the
basic block address as a collection of elements. Each basic block is equivalent to the gene in
the genetic algorithm. Therefore, 1 in the 0–1 matrix indicates that a basic block exists in
the sample, while 0 indicates that it does not exist. In this way, the sample set formed by
all samples constitutes a 0–1 matrix, and the set of genes in each column is equivalent to a
chromosome. Considering the complexity of the program execution path, the 0–1 matrix
is a sparse matrix. If it is stored directly in the way of 0–1, the space efficiency will be
significantly reduced. Therefore, this paper compresses the 0–1 matrix. Our storage method
is a triple sequence < Val, Xcor, Ycor >, where Val is the element with the storage value of 1,
and Xcor and Ycor are its X and Y coordinates in the original matrix, respectively. Since the
value of Val is 1 by default, the value of this item can be omitted in the actual operation.

(b) Using heuristic genetic algorithm to improve chromosome

Each chromosome has its own independent gene sequence, but there will also be
a large number of repeated and overlapping genes. Therefore, as mentioned above, we
should solve the SCP when carrying out set coverage and reduce set redundancy as much
as possible. Therefore, the heuristic function of the heuristic genetic algorithm is mainly
reflected in eliminating the redundancy caused by gene duplication and screening better
chromosomes through genetic iteration.

The specific algorithm is described as follows:
We deduce the chromosome from the position information in the compression matrix.

For genes in the same column, if they contain more “1” values, it indicates that the perfor-
mance priority of this column is relatively high, so we give priority to selection, mark the
selected column and so on. Subsequently, we perform gene exchange on chromosomes.
We assume that there are two different chromosomes Fa1 and Fa2 in the parent generation.
After chromosome exchange, we can obtain the child’s chromosomes Ch1 and Ch2. It is
assumed that Ch1 and Ch2 can cover set S1. We use sets T1 and T2 to store the line numbers
not covered in the genes and use sets Cot1 and Cot2 to store the genes contained in Ch1 and
Ch2. First, we calculate the performance priority of each gene in the parents Fa1 and Fa2,
that is, count the number of “1” values in each column for screening. Then, we screen out
the chromosomes with the highest performance priority in Fa1 and Fa2, copy them to Ch1,
count the genes contained in Ch1 and delete the genes contained in Ch1 from Cot1. Then,
we calculate the value of Cot1 − Ch1, which is the difference set, and store its line number
in set T1. Next, we continue to arrange the remaining genes of Fa1 and Fa2 using the same
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performance priority selection method, and then put them into Ch1 again. The remaining
genes will be put into Ch2.

In the process of gene selection and gene exchange, there are some special cases
with the same gene performance. At this time, we need to further screen them to obtain
the optimal gene. Suppose that there are two genes, Gene1 and Gene2, with the same
performance priority in Fa1, and there is one gene Gene3 in set Ch1. At this time, we need
to compare the results of Gene1 ∩ Gene3 and Gene2 ∩ Gene3 to screen out the larger results.
Considering that there will be a corresponding mutation process in the genetic algorithm,
the above calculation should be carried out before and after mutation to ensure that the
optimal result is always selected.

From the above description, the heuristic genetic algorithm proposed in this paper
uses the compression matrix on the basis of the original population and selects the optimal
chromosome according to the way of gene selection and gene exchange. Therefore, this
heuristic genetic algorithm essentially does not change the workflow of ordinary genetic
algorithm, but through the optimization of search conditions, it simplifies the sample set
and further improves the efficiency of fuzzy testing.

The specific process of the ordinary genetic algorithm has been described above. The
heuristic genetic algorithm is different from ordinary genetic algorithm in the following aspects:

(c) Paternal selection

There are three common methods of paternal selection: random selection, tournament
selection and roulette bet. Here, we use roulette method, the specific operation is as follows:

Step 1: The fitness of each individual in the population is calculated fi (i = 1,2,3, . . . n),
where n is the population size.

Step 2: Calculate the probability pi =
fi

∑n
1 fi

of each individual being inherited into the
next generation population.

Step 3: Calculate the probability distribution of each individual:

qi =
i

∑
j=1

p(xj). (6)

Step 4: A pseudo-random number (rand) with uniform distribution is generated in
the interval (0, 1).

Step 5: When rand < q1, q1 is chosen; otherwise, if qk−1 ≤ rand ≤ qk, individual K
is chosen.

Step 6: Repeat step 4 and step 5 several times, and the number of repetitions depends
on the size of the population.

(d) Cross rate selection

Crossover is the main way to produce new individuals. The crossover rate is the
number of chromosomes in the crossover pool. A reasonable crossover rate can ensure
that new individuals will be produced continuously in the crossover pool, but it will not
produce too many new individuals, so as to prevent the genetic order from being destroyed.
This paper adopts the most popular method of the adaptive crossover rate.

(e) Variation rate selection

The mutation rate is the proportion of the number of genes in a population based on
the number of all genes. Because mutation is a way to produce new individuals, we can
control the mutation by setting the number of genes or the rate of random mutation. Too
low a mutation rate will lead to too few chromosomes involved in the mutation, which
leads to the problem that the chromosome containing unique genes cannot be entered into
the set. The high mutation rate will cause too many chromosomes involved in the mutation,
which will generate some illegal data and increase the time cost. After the experiment and
model tuning, the final mutation rate is 0.5.

75



Sensors 2022, 22, 1265

(f) Elite ratio

The elite ratio means that the individuals with the highest fitness in the current popu-
lation do not participate in crossover and mutation operations but replace the individuals
with the lowest fitness in the current population after crossover and mutation operations.

After the experiment and model optimization, the final elite ratio is 0.06.

(g) Stopping Criteria

The genetic algorithm has to go through several rounds of iterative evolution until
it reaches the ideal result or reaches the threshold of the number of iterations. For the
heuristic genetic algorithm, the threshold of iterations is 25.

4. Experiment and Evaluation

4.1. Data Sources

In the training part of the neural network, we need a large number of training samples
to train our neural network so that the time series neural network can effectively capture
the corresponding kinds of vulnerability characteristics from the training set. Therefore, we
first collect a large number of vulnerability information from CVE and CNNVD national
security vulnerability database, then screen out the vulnerability information, which is
obviously suitable for neural network training. Then, we select the corresponding binary
executable program and corresponding test cases from GitHub [40] and SARD [41] dataset
and obtain a small number of training datasets from Symantec Security Company. The
dataset we screened contains a variety of CWE vulnerability types, such as buffer overflow
vulnerability (CWE-119, CWE-120, CWE-131), format string (CWE-134), etc. For the binary
executable program corresponding to each vulnerability information, we filter out two
versions, which are vulnerable version (no patch version) and clean version (with patch
version). The purpose of using two different versions to train the neural network is
to verify whether the corresponding test cases can trigger the vulnerability successfully.
Second, we can further enhance the learning of the neural network for vulnerability features
through this method of comparative training, so as to achieve a better training effect. The
inspiration for the construction of this training dataset comes from the special training
dataset constructed for generator G in GAN neural network, which contains labeled
samples and unlabeled samples. Finally, all the datasets we get are shown in Table 1.

Table 1. Dataset Information of CVDF DYNAMIC.

Data Sources Types of Vulnerabilities

SARD (CWE-119, CWE-120, CWE-131, CWE-134 etc)

Security Focus (CWE-119, CWE-120, CWE-189, CWE-369 etc)

Github (CWE-415, CWE-476, CWE-119, CWE-763 etc)

We randomly select 80% of the data for the bi-LSTM neural network training set
and the remaining 20% for CVDF DYNAMIC framework and subsequent experimental
comparative analysis test set.

In the experiment, we mainly answer the following three questions:
Q1: Is the theoretical model of CVDF DYNAMIC valid?
Q2: Does CVDF DYNAMIC have a performance advantage in test case generation

compared with the existing fuzzy testing tools?
Q3: What is the performance overhead of CVDF DYNAMIC? Does the reduction of

sample sets improve the efficiency of CVDF DYNAMIC sample generation?

4.2. Evaluate the Validity of CVDF DYNAMIC’s Theoretical Model

For Q1, our BI-LSTM neural network optimizes the parameters according to the
method mentioned above, and after seven epochs training, the accuracy and loss perfor-
mance of the model are shown in Figure 7.
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Figure 7. The Relationship Between the Accuracy and Loss Of bi-LSTM And Epochs.

It can be seen from Figure 7 that after seven training epochs, the accuracy of the
BI-LSTM neural network is more than 90%, approaching 93% and stable, while the loss is
less than 20% and tends to be stable.

Figure 8 shows a specific example of parameter optimization for the number of hidden
layers of the bi-LSTM neural network. As can be seen from Figure 8, when the number
of hidden layers is five, the performance of the bi-LSTM neural network on the three
evaluation indices of precision, recall and accuracy is the best. Other parameters such as
drop rate and batch size are optimized in a similar way.

Figure 8. Relationship Between Evaluation Indices And Layer Numbers.

In the part of using the genetic algorithm to generate test cases, we compare the genetic
algorithm with the existing fuzzy testing tool AFLFast under the two evaluation indices
of code coverage and the number of generated edge sequences EdgeNum. The genetic
algorithm has been generated through 25 rounds of iterations, and the test program uses
the media processing program named FFmpeg [42] in the test set constructed above. The
final experimental results are shown in Figure 9.
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Figure 9. Comparative Test Results Of Genetic Algorithm And AFLFast.

In Figure 9, the ordinate dimension of code coverage is a percentage, and the di-
mension of the sequence number of edges is value × 102. As can be seen from Figure 9,
compared with AFLFast, the genetic algorithm has significant performance advantages in
code coverage and the number of edge sequences. The genetic algorithm finds 9246 edge
sequences for FFmpeg, while AFLFast only finds 8137 edge sequences. Because of the
positive correlation between the number of edges and code coverage, the code coverage of
the genetic algorithm is better than that of AFLFast.

So far, we have effectively solved the first problem, that is, the CVDF DYNAMIC
theoretical model is effective. For the bi-LSTM neural network part of CVDF DYNAMIC,
Figure 7 shows that our model achieves ideal training results. For the part of genetic
algorithm generating test cases in CVDF DYNAMIC, our test cases have performance
advantages over AFLFast in terms of code coverage and number of edges.

4.3. Performance Comparison between CVDF DYNAMIC and Existing Fuzzy Testing Tools

For Q2, we use NeuFuzz, which is also based on a neural network to guide the
generation of fuzzy testing samples, and AFLFast tools for comparative testing. In order to
facilitate testing and comparison, we use widely used evaluation metrics in vulnerability
mining and neural networks, including false positive rate (FPR), true positive rate (TPR)
and accuracy rate (ACC).

Firstly, the common definitions of vulnerability evaluation index are given.
TP (true positive): True positive samples are samples with their own vulnerabilities

and are correctly identified.
FP (false positive): False positive samples are samples that do not contain vulnerabili-

ties and are not correctly identified.
FN (false negative): False negative samples are samples that contain vulnerabilities

and are not correctly identified.
TN (true negative): True negative samples are samples that do not contain vulnerabili-

ties and are correctly identified.
The specific forms of FPR, TPR and ACC are as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

ACC =
TP + TN

TP + FP + TN + FN
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On the other hand, in order to intuitively show the performance advantages of the
bi-LSTM neural network and genetic algorithm integration, we also add two evaluation
indices, which are code coverage and path depth detection ability, and use the dataset
constructed in this paper to test it. The experimental results are shown in Table 2.

Table 2. Comparison Test Results Of CVDF DYNAMIC With Other Tools.

Tool

Evaluation Indicator
FPR TPR ACC Code Coverage WDC

CVDF DYNAMIC 5.6% 92.3% 88.9% 89.6% 2.76

NeuFuzz 10.2% 79.8% 83.4% 24.7% 2.78

VDiscover 8.5% 86.7% 85.8% 86.5% 2.33

AFLFast 11.2% 88.7% 82.9% 80.1% 1.94

It can be seen from Table 2 that CVDF DYNAMIC has performance advantages over
other fuzzy testing tools. This is because CVDF DYNAMIC combines the advantages of
neural network and genetic algorithm and is superior to other tools in comprehensive
performance. However, other tools are also very advanced fuzzy testing tools, so they
also have good performance in contrast testing. CVDF DYNAMIC and NeuFuzz are very
close to each other in terms of other evaluation indices, except code coverage. However,
CVDF DYNAMIC has obvious advantages over NeuFuzz in code coverage because it
combines the advantages of the bi-LSTM neural network and genetic algorithm. It should
also be pointed out here that the author of NeuFuzz explains that NeuFuzz focuses on seed
mutation and test case generation under critical execution path rather than code coverage.
However, CVDF DYNAMIC is still in the leading position in comprehensive performance.

4.4. Performance Overhead of CVDF DYNAMIC and Effectiveness of Sample Set Reduction

For Q3, we consider the performance cost of CVDF DYNAMIC and the effectiveness of
sample set reduction from the number of sample sets before and after reduction, the time of
fuzzy testing before and after reduction, the compression ratio and other evaluation indicators.

From Table 3, it can be seen that the compression algorithm greatly reduces the number
of samples, and the compression rate reaches 54.6%. However, because the compressed
sample set basically retains the key path, the execution time has decreased to some extent,
but it is not as obvious as the compression rate. The code coverage and WDC evaluation
index of the compressed sample set are identical with the original sample set. It shows that
the compression of the test case sample set has no loss of performance, and then proves the
significance and necessity of the sample set compression.

Table 3. Index Comparison Of Sample Set Before And After Compression.

Number of Samples Compression Ratio Execution Times/s Code Coverage WDC

Initial sample set 6308
54.6%

46,184 89.6% 2.76

Compressed
sample set 2864 32,428 89.6% 2.76

We use a random sampling method to form 6 initial sample sets with the scales of 1000,
2000, 3000, 4000, 5000 and 6000. The execution efficiency and time of the initial sample set
and of the compressed sample set are compared, and the results are shown in Figure 10.

As can be seen from Figure 10, with the increase in the initial sample set size, the
execution time efficiency after compression is gradually improved compared with that
before compression.
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Finally, this paper compares the compression ratio and test time of the sample set
between the CVDF DYNAMIC heuristic genetic algorithm and the greedy-based approxi-
mation algorithm. The experimental results are shown in Figures 11 and 12.

Figure 10. Execution Time Comparison.

Figure 11. Comparison Of Compression Ratio Between Heuristic Genetic Algorithm And Approxi-
mation Algorithm.

Figure 12. Comparison of Test Time Between Heuristic Genetic Algorithm And Approximation Algorithm.
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It can be seen that the compression ratio based on the heuristic genetic algorithm
has obvious advantages in different size sample sets compared with an approximation
algorithm. With the increase in sample size, the test time of the heuristic genetic algorithm
is more and more advanced.

5. Discussion on Security and Privacy of CVDF DYNAMIC Model

Because CVDF DYNAMIC combines the bi-LSTM neural network and the genetic
algorithm to generate fuzzy testing samples, the final sample set is a mixed sample set,
and the sample set has no label for classification. Therefore, it is very difficult to deduce
the sensitive training data of CVDF DYNAMIC through the final sample set generated
by CVDF DYNAMIC. On the other hand, in the description of experiment part 4.1, the
training data of CVDF DYNAMIC comes from the vulnerability databases of many different
countries or companies. Some of these databases are open access and some are private,
but CVDF DYNAMIC adopts mixed training for datasets from different sources in the
training process and randomly selects 80% as the training set and 20% as the testing set in
the mixed datasets. Therefore, even if the attacker obtains the CVDF DYNAMIC datasets
through reverse derivation, it is also very difficult to further distinguish private data from
the middle. However, the bi-LSTM neural network adopted by CVDF DYNAMIC is a
mature neural network structure, and there are corresponding scientific studies to attack
this neural network structure. The security of the bi-LSTM neural network structure still
needs to be strengthened in the future.

6. Conclusions

Existing fuzzy testing tools and methods only focus on the code coverage or the
test case generation on the critical path. It is difficult to take both the code coverage
and path depth detection ability into account. Therefore, this paper proposes CVDF
DYNAMIC, a fuzzy testing sample generation framework based on the bi-LSTM and the
genetic algorithm.

By combining the genetic algorithm and the bi-LSTM neural network, the framework
has the ability of code coverage and path depth detection and has excellent comprehensive
performance. This paper also proposes path depth detection ability, which is an evaluation
metrics of vulnerability detection ability under critical execution path. Meanwhile, a heuris-
tic genetic algorithm is used for simplifying the sample set. Finally, the experimental results
show that CVDF DYNAMIC is feasible and effective, and its performance is improved
compared with existing fuzzy testing tools, such as AFLFast and NeuFuzz in several evalu-
ation indices. (FPR, TPR, ACC, Code Coverage and WDC). The reduction in the sample
set further improves the efficiency of the CVDF DYNAMIC test case generation. In the
future, we will further optimize the performance of CVDF DYNAMIC by optimizing the
neural network structure in CVDF DYNAMIC and perfecting the iterative rules of genetic
algorithm and integrate more fuzzy testing sample generation methods to further improve
the code coverage and path depth detection ability.
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Abstract: The concept of a smart city requires the integration of information and communication
technologies and devices over a network for the better provision of services to citizens. As a result,
the quality of living is improved by continuous analyses of data to improve service delivery by
governments and other organizations. Due to the presence of extensive devices and data flow over
networks, the probability of cyber attacks and intrusion detection has increased. The monitoring
of this huge amount of data traffic is very difficult, though machine learning algorithms have huge
potential to support this task. In this study, we compared different machine learning models used for
cyber threat classification. Our comparison was focused on the analyzed cyber threats, algorithms,
and performance of these models. We have identified that real-time classification, accuracy, and
false-positive rates are still the major issues in the performance of existing models. Accordingly, we
have proposed a hybrid deep learning (DL) model for cyber threat intelligence (CTI) to improve
threat classification performance. Our model was based on a convolutional neural network (CNN)
and quasi-recurrent neural network (QRNN). The use of QRNN not only resulted in improved
accuracy but also enabled real-time classification. The model was tested on BoT-IoT and TON_IoT
datasets, and the results showed that the proposed model outperformed the other models. Due to this
improved performance, we emphasize that the application of this model in the real-time environment
of a smart system network will help in reducing threats in a reasonable time.

Keywords: cyber threat intelligence; privacy; smart city; machine learning; deep learning; CNN; QRNN

1. Introduction

The transformation of cities into smart cities is on the rise, where technologies such
as the Internet of Things (IoT) and cyber–physical systems (CPS) are connected through
networks for the better provision of quality services to citizens [1]. The smart city concept
refers to urban systems that are integrated with information and communication technolo-
gies (ICTs) to improve city services in terms of monitoring, management, and control to
be more efficient and effective [2]. A smart city contains a huge number of sensors that
continuously generate a tremendous amount of sensitive data such as location coordinates,
credit card numbers, and medical records [3]. These data are transmitted through a net-
work to data centers for processing and analysis so that appropriate decisions, such as
managing traffic and energy, can be made in a smart city [4]. The resource limitations of
technological infrastructure expose smart cities to cyber attacks [5]. For instance, sensors
that generate data and devices that handle the data in a smart city have vulnerabilities
that can be exploited by cybercriminals. Consequently, citizens’ privacy and lives can be at
risk when collected data for analysis and decision making are manipulated, which makes
people intimidated by smart cities [1].
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A smart city environment collects a tremendous amount of private and sensitive data
and depends on ICT, which makes smart cities target for different cyber attacks, such as
distributed denial of service (DDoS), using IoT devices by infecting them with bots and
launch an attack against a target [6–9]. Cyber threat intelligence (CTI) can provide secure
environments for smart cities, where it can rely on cloud services to monitor possible threats
in real time and take appropriate prevention measures without human intervention [10–15].
Moreover, CTI can provide a light security mechanism, as it is not implemented on smart
city devices; rather, it monitors attacks through the cloud to obtain information about
recent threat behavior and indicator of compromise (IoC), and it reports this information to
connected smart city systems. Different techniques and machine learning (ML) models have
been proposed to analyze cyber threats for CTI such as deep learning (DL) models [16,17],
random forest (RF) [18], and K-NN [19]. Nevertheless, artificial intelligence (AI)-based
models can have a high false-positive rates (FPRs) and low true-positive rates (TPRs)
if the attack traffic is not profiled and modeled well enough [20]. This limits real-time
classification efficiency and degrades smart city network security. To address this issue,
improve threat analysis, and lower FPRs, we propose a hybrid DL model that is based
on a convolutional neural network (CNN) and quasi-recurrent neural network (QRNN).
The proposed model can automatically learn spatial features using CNN and temporal
features using QRNN without human intervention. The CNN model can automatically
select the relevant features from the dataset and reduce the irrelevant features to improve
classification performance [21]. For cyber threat analysis, several works have shown
the efficiency of CNN for feature selection, such as [20,22]. The QRNN model performs
computation in parallel, which improves computation time while maintaining sequence
modeling [23]. Thus, this hybrid model (CNN–QRNN) can help improve real-time analysis
in CTI while providing a high accuracy and low FPR. Therefore, the proposed model can
improve CTI performance for smart cities. We evaluated our proposed model with two
IoT network traffic datasets. The evaluation results demonstrate the effectiveness of our
proposed model. The main contributions of this study are summarized as follows:

• We propose a hybrid DL model that consists of QRNN and CNN to improve cyber
threat analysis accuracy, lower FPR, and provide real-time analysis.

• We evaluated our proposed model on two datasets that were simulated to represent a
realistic IoT environment.

The rest of this paper is structured as follows. In Section 2, we discuss related work by
comparing and analyzing different threat classification schemes that have been proposed
in the literature. The proposed model is presented in Section 3. The implementation of the
proposed model is discussed in Section 4, the experiment results and analysis are presented
in Section 5, and conclusions are presented in Section 6.

2. Related Work

In recent years, different studies have proposed mechanisms to predict and analyze
cyber attacks in smart city environments. The authors of [24] proposed an ML-based
detection mechanism that focused on classifying DDoS patterns to protect a smart city from
them. In [25], the authors studied how IoT devices can affect smart city cyber security;
the authors proposed a detection mechanism that depends on the selected features to
improve the threat detection for IoT. The results of the proposed system showed high
accuracy, but the dataset, KDD CUP 99, did not represent the behavior of IoT network
attacks. Soe et al. [21] proposed an algorithm to improve prediction accuracy by selecting
the optimal features for each type of attack in an IoT environment. The authors used ML
models to evaluate the proposed feature selection algorithm, which was able to accurately
predict the threats. However, the proposed algorithm selected a static set of features for
each type of attack, which could be easily bypassed if exposed to the threat environment.
In [26], the authors used a DL model to select the best features for threat prediction to
improve the detection time in an IoT environment. The proposed model selects a set of
features that are fed into feed-forward neural networks (FFNNs) to detect cyber threats and
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classify threat types. However, the proposed model showed limited accuracy in predicting
information theft data.

In [19], the authors discussed how to use the ML model to rapidly and efficiently
detect and classify IoT network attacks. The authors performed an experimental study by
implementing various ML models and evaluating their performance. In [27], the authors
proposed a hybrid ML model to detect IoT network attacks including that of the zero-day.
The proposed model mainly consists of two stages: the first stage classifies the traffic into
two categories (normal or attack), and the second stage classifies the type of attacks using
SVM. Similarly, in [28], the authors proposed a hybrid ML model to detect and classify
IoT network attacks in real time. The first layer of the proposed model uses a decision
tree classifier to detect malicious behavior and the second layer classifies the type of attack
using random forest (RF). In [29], the authors investigated the remote-control threat of
connected cars and used an ML model to predict threats. The authors proposed a proactive
anomaly detection mechanism that profiled the behavior of the autonomous connected
cars using a recursive Bayesian estimator. To evaluate the effectiveness of the proposed
method, the authors designed a dataset for connected cars using hypothetical events routes
and global positioning system coordinates, and they then modeled the data to predict
the anomalies’ behavior. Lee et al. [30] proposed a technique, based on DL models, that
transforms the multitude of security events into individual event profiles. The authors
discussed how anomaly-based detection can be costly since it can trigger many false alerts.
Therefore, they focused on improving security information and event management system
by using DL to reduce the cost to differentiate between true and false alerts. In [31], the
authors proposed a hybrid ML method to detect cyber threats. The authors focused on how
to improve detection accuracy to handle an attacker’s methods to evade detection tools.
To evaluate the proposed method, the authors used different datasets including KDD Cup
and UNSW-NB15. In [32], the authors discussed how to improve the threat analysis and
classification, including novel attacks. The authors proposed a model based on a stacked
autoencoder to enhance and automate feature selection to classify the threats.

Various scientific studies have proposed a hybrid DL model to improve threat analysis
and classification. In [33], the authors proposed an improved version of grey wolf opti-
mization (GWO) and a CNN. In the proposed hybrid model, the first GWO model is used
to select the features and the second CNN model is used for threat classification. Other
studies have used a hybrid DL model that is based on CNNs and RNNs for spatial and
temporal feature extraction to improve attack classification. In [34], the authors used a
CNN for feature selection since it could provide fast feature selection to support real-time
analysis. For threat classification, the authors used one of the variants of the LSTM model:
weight-dropped LSTM (WDLSTM). The proposed hybrid model showed good performance
in terms of execution time. Vinayakumar et al. [35] studied the effect of CNN in threat
classification and intrusion detection system (IDS). The authors investigated different hy-
brid DL models with CNNs including CNN-LSTM, CNN-GRU, and CNN-RNN, and the
model implementing CNN-LSTM outperformed the other models. Moreover, the authors
highlighted that selecting a minimum set of features for threat classification degraded
the performance of the classification. Therefore, DL models can perform well in terms of
feature selection. In [36], the authors proposed a hierarchical model based on CNN-LSTM.
The authors used stacked CNN layers for spatial features learning using image classifica-
tion and then stacked LSTM for temporal features learning. Similarly, in [20], the authors
proposed an LuNet model based on CNN-LSTM. The authors discussed how stacking
LSTM layers after CNN layers could drop some of the temporal features. Thus, the authors
proposed the LuNet block, which consists of LSTM layer stacked after the CNN layer, and
they then stacked the LuNet block in multiple layers to improve classification performance
and lower the FPR.

As shown in Table 1, different network traffic benchmark datasets have been used
to analyze the low-level IoC such as UNSW-NB15, NSL-KDD, and KDD CUP 99. For IoT
attack classification, the BoT-IoT dataset has been used in multiple studies to evaluate
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the performance of proposed models. Different ML and DL models, such as the SVM,
CNN, and LSTM, have been used to analyze threats and provide accurate results, and the
CNN-LSTM hybrid model has been used in multiple studies to improve threat classification
performance.

Table 1. Comparison between proposed attack classification methods.

Ref Cyber Threats Algorithm Data Sources Accuracy FPR

[24] DDoS
Restricted
Boltzmann

machine and FFNN

Simulated smart
water system

dataset
97.5% -

[21] Information theft,
reconnaissance, and DDoS J48 BoT-IoT UNSW - 0.41

[26] Information theft,
reconnaissance, and DDoS FFNN BoT-IoT UNSW - -

[19]
DDoS, DoS, data exfiltration,

keylogging, OS fingerprinting,
and service scan

K-nearest neighbors (K-NN) BoT-IoT UNSW 99.00% -

[27] DDoS, DoS, keylogging, and
reconnaissance C5-SVM BoT-IoT UNSW 99.97% 0.001

[28]
DDoS, DoS, data exfiltration,

keylogging, OS fingerprinting,
and service scan

Decision tree-RF BoT-IoT UNSW 99.80% -

[29] Remote car control Recursive
Bayesian estimation

Route data for
connected cars - -

[30] DoS, probe, R2L, and U2R FCNN, CNN, and LSTM Network events 94.7% 0.049

[31]

Tor traffic (anonymous IP)
C4.5, Multilayer perceptron

(MLP), SVM, and linear
discriminant analysis (LDA)

UNB-CIC TOR
Network Traffic

dataset
100 0

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzers, and
shellcode

UNSW-NB15 97.84% 0.23

[32] Injection, Flooding,
Impersonation Stacked auto-encoder (SAE) AWID-CLS-R 98.66% -

[33] DoS, probe, R2L, and U2R GWO-CNN
DARPA1998 97.92% 3.60

KDD CUP 99 98.42% 2.22

[34]

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzers, and
shellcode

CNN-LSTM UNSW-NB15 98.43% -

[35] DoS, probe, R2L, and U2R CNN-LSTM KDD CUP 99 98.7% 0.005

[36]
DoS, probe, R2L, U2R,

BruteForce SSH, DDoS, and
infiltrating

CNN-LSTM ISCX2012 99.69% 0.22

DARPA1998 99.68% 0.07

[20]

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzes, and
shellcode

CNN-LSTM UNSW-NB15 84.98% 1.89

DoS, probe, R2L, and U2R NSL-KDD 99.05% 0.65

In terms of the CTI for smart cities, multiple papers, including [24,25], have analyzed
the threats pattern based on network traffic. Additionally, in [37], the authors proposed a
trustworthy privacy-preserving secured framework (TP2SF) for smart cities; the authors
used the optimized gradient tree boosting system (XGBoost) and blockchain, and they
evaluated the proposed framework on two datasets: BoT-IoT and TON_IoT. DDoS is one of
the challenging threats in a smart city that has been studied by different researchers, who
have proposed methods to analyze IP addresses and track the sources to prevent this attack
or to identify the behavior of the network when there is overload traffic. Data theft, which
can be described as privacy and identity theft, is another threat that has been studied by
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various researchers. Data theft threats include reconnaissance, information theft, probe,
R2L, and U2R, which may lead to the exposure of various vulnerabilities that can help in
launching data theft attacks such as sniffing passwords and unauthorized access. Some
of the proposed models for smart cites set a fixed threshold to detect attacks, which is
not effective and can raise a lot of false alarms that affect the power consumption of the
connected systems. In smart cities, the normal behavior of a system can change due to the
increasing number of connected devices, so some researchers have achieved high accuracy
but bad performance in terms of FPR.

Even though different researchers have proposed models to enhance threat classifica-
tion for IoT environments, many aspects still require improvement. One of the limitations
that is common between different methods is performance time. Low-level IoCs that are
collected from network traffic have been used to analyze the threats in various papers
to provide timely information to the CTI knowledge base and update the detection and
prevention information for all systems connected to the CTI. However, to enhance classifi-
cation performance, various models have multiple stacked ML model layers. Therefore, it
may take time to train a model and classify threats while not taking advantage of these IoCs.
Secondly, when some models are not provided with enough data for each type of threat,
threat traffic cannot be profiled and modeled well enough. Consequently, ML models can
have high FPRs. Furthermore, some models only provide accurate results when their sys-
tem has precise details of threats. Consequently, the system is not able to recognize threats
that do not have enough data for model training, which affects classification accuracy.

Moreover, we observed that few papers have addressed diverse patterns for threat
analysis while considering time, accuracy, and FPR. Several works have proposed hybrid
models based on the CNN and LSTM to learn spatial and temporal data. However, LSTM
is computationally complex and requires a long time for analysis [38]. The QRNN model is
a type of RNN that allows for sequence modeling by implementing computation in parallel
while maintaining the data’s long- and short-term sequence dependencies [23]. We could
not find a work that used the QRNN model to improve cyber threat classification time
while demonstrating high accuracy. Thus, in this work, we propose a hybrid DL model
for CTI for smart cities that addresses the abovementioned challenges and uses the QRNN
model. The proposed hybrid model can improve threat classification accuracy and lower
the FPR in a reasonable time. Therefore, it can predict different attacks to protect citizens’
data and enhance the security of smart cities.

3. Proposed Model

In this section, we discuss the proposed hybrid DL model in terms of its structure, the
selected DL algorithms, and relevant theoretical concepts. The selected DL models (CNN
and QRNN) can be used to classify a threat type in real time while providing a low FPR.
The architecture of the proposed model is presented in Figure 1.

Figure 1. The architecture of the proposed hybrid model.
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A CNN is an extension of a neural network [39] and it is effective at extracting features
at a low level from the source data, especially spatial features [40].

CNNs are used widely in image processing due to their ability to automate feature
extraction [41]. Additionally, CNNs have demonstrated their effectiveness in many fields
such as biomedical text analysis and malware classification [30]. Based on the shape of
the input data, a CNN can be classified into different types including a two-dimensional
(2D) CNN, which uses data such as images, and a one-dimensional (1D) CNN, which uses
data such as text. A CNN consists of a convolution layer, pooling layer, fully connected
(FC) layer, and activation function [42]. The convolution layer is fundamental building
block in CNNs that takes two sets of information as inputs and performs a mathematical
operation with these inputs. The two sets of information are the data and a filter, which
can be referred to as kernel. The filter is applied to an entire dataset to produce a feature
map [41]. Each CNN filter extracts a set of features that are aggregated to a new feature
map as output [30]. The pooling layer is implemented to reduce feature map dimensions
and to remove irrelevant data to improve learning [20]. The output of the pooling layer is
fed into the FC layer to classify the data [43].

The LSTM-RNN is one of the most powerful neural network models that is used in
cyber security due to its ability to accurately model temporal sequences and their long-term
dependencies [44]. However, LSTM usually takes a longer time for model training and
high computation cost [45]. The QRNN model [23] was designed to overcome the RNN
limitations in terms of each timestep’s computation dependency on the previous timestep,
which limits the power of parallelism. The QRNN combines the benefits of the CNN and
RNN by using convolutional filters on the input data and allowing the long-term sequence
dependency to store the data of previous timestamps [23]. The computation structure of the
QRNN is presented in Figure 2. The QRNN consists of convolutional layers and recurrent
pooling function, which allow the QRNN to work faster than LSTM due to its a 16-times-
increase in speed while achieving the same accuracy as LSTM [46]. The convolutional and
pooling layers allow for the parallel computation of the batch and feature dimensions [23].
The QRNN has been used in different applications such as video classification [45], speech
synthesis [46], and natural language processing [47].

Figure 2. The computation structure of the QRNN.

Our hybrid DL model consists of a 1D convolutional layer, 1D max-pooling layer, a
QRNN, and FC layers. The first 1D convolutional layer selects the spatial features and
produces a feature map that will be processed by the activation function. The Rectified
Linear Unit (ReLU) activation function is used in the convolutional layers because of its
rapid convergence of gradient descent, which made it a good choice for our proposed
model [41]. Then, the feature map is processed by the second layer that uses the max-
pooling operation. The max-pooling operation selects the maximum value in the pooling
operation [41]. The pooling layer reduces dimensionality and removes irrelevant features.
The output of the CNN model retains the temporal feature that is extracted by the QRNN
model. Figure 3 provides details of our proposed model and shows that we used two
QRNN layers to extract the temporal features. In the two layers of the QRNN, the hidden
size represents the number of the hidden units and the output dimension. The hidden units
can be selected based on the value of the number of features [45]. One of the problems
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of a neural network is overfitting, which means that a model learns the data too well.
Consequently, the model is not able to identify variants in new data [22]. We added a
dropout layer to prevent overfitting.

Figure 3. Illustration of the details of the proposed model.

Then, a 1D convolutional layer and max-pooling layer are used to extract more spatial-
temporal features. The output of the CNN model is passed to the Flatten layer, which is a
fully connected input layer that transforms the output of the pooling layer into one vector
to be an input for the next layer [48]. Finally, the dense layer, which is also a fully connected
layer, with the SoftMax activation function is used to classify the threats by calculating the
probabilities for each class [34].

4. Implementation

In this section, we describe the datasets that we selected to evaluate the proposed
model. Additionally, we discuss the data preprocessing steps, model parameter selection
process, and selected evaluation metrics.

4.1. Datasets

In this work, we selected the BoT-IoT and TON-IoT datasets because they have been
simulated to represent realistic IoT environments such as smart homes and cities. The
datasets had a heterogeneity of simulated IoT devices including weather-monitoring sys-
tems, smart lights, smart thermostats, and a variety of cyber threats.

4.1.1. BoT-IoT Dataset

In previous studies, different datasets, such as KDD99, ISCX, and CICIDS2017, have
been used to evaluate ML models; however, few datasets have been produced to reflect
realistic IoT network traffic. These datasets were either not diverse enough in terms of
attacks or not realistic in terms of the testbed [19]. Therefore, Koroniotis et al. [49] designed
the BoT-IoT dataset to address these limitations. The BoT-IoT dataset is used in forensic
analysis and to evaluate IDS. The dataset contains normal IoT traffic and different types of
attack traffic with subcategories for each type, which are listed in Table 2. Reconnaissance
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is one of the privacy threats, and it allows a threat actor to collect data about a victim via
port scanning and OS fingerprinting, among other ways. Information theft includes data
theft by unauthorized access and keylogging. On the other hand, a DoS threat affects the
availability of services and can damage systems, which make it one of the biggest threats to
smart cities. In this dataset, UDP, TCP, and HTTP protocols were used to perform both DoS
and DDoS attacks.

Table 2. Attack categories in BoT-IoT dataset.

Attack Attack Subcategory Number of Instances

Reconnaissance
Service scan 73,168

OS fingerprinting 17,914

DoS

TCP 615,800

UDP 1,032,975

HTTP 1485

DDoS

TCP 977,380

UDP 948,255

HTTP 989

Information theft
Keylogging 73

Data theft 6

4.1.2. TON_IoT Dataset

The ToN_IoT dataset [50] is one of the newest cyber security datasets; it as collected
from a testbed network for industry 4.0 IoT and Industrial IoT (IIoT), which makes it
suitable to evaluate CTI for a smart city. We used the TON_IoT train–test dataset, which is
in the CSV format. The dataset contains a total of 461,043 instances and 9 types of attacks,
which are presented in Table 3 along with the number of instances for each type.

Table 3. Attack categories in TON_IoT dataset.

Attack Number of Instances

DoS 20,000

DDoS 20,000

Scanning 20,000

Ransomware 20,000

Backdoor 20,000

Injection 20,000

Cross-Site Scripting (XSS) 20,000

Password 20,000

Man-In-The-Middle (MITM) 1043

4.2. Data Preprocessing

Since we were interested in evaluating CTI for threat classification, we deleted the nor-
mal traffic from the datasets. Additionally, in the BoT-IoT dataset, we omitted the pkSeqID
feature since it represented an identifier for the traffic records. The datasets contains some
categorical features that could not be processed by the neural network. Thus, we converted
the nominal values into numeric using sklearn LabelEncoder. LabelEncoder converts cate-
gorical values into numerical values [22]. We implemented sklearn StandardScaler to scale
the data. For training and evaluation, several papers have split the dataset into training and
testing, with a ratio of 20% for testing s in [19] and 30% for testing in [21]. However, due to
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the size of the BoT-IoT dataset and the resource constraints of our device, we divided the
data into training and testing sets, with a ratio of 35% for testing, while having the same
ratio of classes in both parts by using the stratify parameter.

4.3. Model Implementation

The parameters of the hybrid model were obtained during the training phase by trial
and error including the number of CNN filters, the number of QRNN hidden units, and
the dropout rate. As mentioned in different studies [35], kernel size values of 3 and 5 are
the most common, so we used kernel size 3 with both datasets in our experiment. A filter
can help in extracting more details from a dataset by increasing the number of filters [51].
Thus, for the first CNN layer, we used 64 filters, and for the other CNN, we used 128 filters.
Additionally, we set the value of the batch size for the training at 128 and the value of the
number of epochs at 10. The details and the selected parameters of the hybrid DL model
are presented in Figure 3.

4.4. Evaluation Tools and Metrics

Different evaluation metrics were used in this work to evaluate the performance of
the proposed model including accuracy, FPR, TPR, precision, recall, and F-Score. Accuracy
represents the ratio of correctly classified threats to the total number of classified threats, so
it demonstrates how accurate an model in classifying threats [52]. The FPR represents the
ratio of misclassified data as a different type of threat, and the TPR represents a model’s
ability to correctly classify threats. A low FPR and a high TPR demonstrate the ability of
a model to correctly classify cyber threats [53]. Precision, recall, and F-Score were used
to evaluate the overall performance of the proposed model; a high value of precision
indicates a low FPR, and recall represents a model’s ability to correctly classify threats.
Equations (1)–(6) represent the evaluation metrics, where FP is false positive, TP is true
positive, TN is true negative, and FN is false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

FPR =
FP

FP + TN
(2)

TPR =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F − Score =
2(Precision × Recall)

Precision + Recall
(6)

5. Results and Discussion

5.1. Results and Analysis

This section presents the results and analysis for model implementation. We used
Jupyter Notebook software with the Python programming language. We used the Keras and
scikitlearn packages for data pre-processing and implementing the proposed model. We
trained the proposed model on a MacBook Air with an Intel Core i5 CPU 1.6 GHz processor
and 8 GB RAM. Additionally, we implemented different state-of-the-art ML models on the
datasets to compare their performance with that of our proposed model. Figure 4 presents
the confusion matrix of our proposed model on the BoT-IoT dataset. The results show that
the model correctly classified most of the cyber threat categories. Furthermore, to illustrate
the quality of the proposed model, the receiver operating characteristic (ROC) curve is
plotted in Figure 5 for the BoT-IoT dataset.
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Figure 4. Confusion matrix based on the BoT-IoT dataset.

Figure 5. ROC curve of using our proposed model on the BoT-IoT dataset.

Figure 6 presents the confusion matrix of our proposed model on the TON_IoT dataset,
and the ROC curve is presented in Figure 7. Both ROC curves show that our proposed
model achieved the highest value of 1. Thus, our proposed model performed very well
with all the classes.

The results of our proposed model on the testing datasets are presented in Table 4.

Table 4. Results of cyber threat classification on both datasets.

Dataset Accuracy% TPR% FPR

BoT-IoT 99.99 99.92 0.0003

TON_IoT 99.99 99.99 0.001
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Figure 6. Confusion matrix based on the TON_IoT dataset.

Figure 7. ROC curve of using our proposed model on the TON_IoT dataset.

As shown in Table 4, the proposed model achieved high accuracy, with an average of
99.99% on both datasets. The TPR reached averages of 99.92% with the BoT-IoT dataset and
99.99% with the TON_IoT dataset. The proposed model achieved a low FPR of 0.0003 with
the BoT-IoT dataset and 0.001 with the TON_IoT dataset. Thus, the proposed model showed
good performance in classifying the threats with both datasets. Moreover, to demonstrate
the effectiveness of the QRNN, we implemented our proposed model with LSTM instead
of the QRNN to compare performance. Cybersecurity threats are very critical [54–56], and
the results shown in Tables 5 and 6 highlight that our proposed approach could be very
effective in dealing with them.

Table 5. Comparison of our proposed model while using LSTM and QRNN based on BoT-IoT dataset.

Model Accuracy Precision Recall F-Score
Avg. Training

Time per Epoch
Classification

Time

With LSTM 99.99% 100% 100% 100% 1717.4 s 326 s

With
QRNN 99.99% 100% 100% 100% 1299.1 s 251 s
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Table 6. Comparison of our proposed model while using LSTM and the QRNN based on TON_IoT
dataset.

Model Accuracy Precision Recall F-Score
Avg. Training

Time per Epoch
Classification

Time

With LSTM 99.99% 100% 100% 100% 86.3 s 16 s

With
QRNN 99.99% 100% 100% 100% 66.5 s 13 s

According to the results in Tables 5 and 6, our proposed model with the QRNN
showed the same performance as our proposed model with LSTM in terms of accuracy,
precision, recall, and F-Score. In terms of time, the proposed model with the QRNN showed
better performance for training the model and testing. The average training time per epoch
demonstrated that the QRNN performed faster than LSTM in terms of training the model
on both datasets, with a 418.3 s difference on the BoT-IoT dataset and a 19.8 s difference on
the TON_IoT dataset. Additionally, for the classification time on the test dataset, the QRNN
model performed faster than LSTM, with a 75 s difference on the BoT-IoT dataset and a 3 s
difference on the TON_IoT dataset. The QRNN showed its effectiveness in increasing the
speed of the model while providing a high accuracy and low FPR. Therefore, the model can
be used for real-time CTI. We further compared the performance of our proposed model on
the BoT-IoT and TON_IoT datasets against the state-of-the-art models for the multi-class
classification of threats. The results of these comparisons are shown in Tables 7 and 8.

Table 7. Comparison of our proposed model with state-of-the-art models based on the BoT-IoT
dataset.

Model Accuracy% Precision% Recall% F-Score%

K-NN [19] 99.00 99.00 99.00 99.00

Hybrid IDS [27] 99.97 - - 95.7

RF [28] 99.80 99.00 99.00 98.80

RF [37] 99.99 79.76 62.98 65.08

TP2SF [37] 99.99 99.97 94.92 97.08

Our model 99.99 100 100 100

Table 8. Comparison of our proposed model with state-of-the-art models based on the TON_IoT
dataset.

Model Accuracy% Precision% Recall% F-Score%

RF [37] 97.81 87.55 85.43 86.41

TP2SF [37] 98.84 97.23 94.03 95.28

Our model 99.99 100 100 100

As shown in Tables 7 and 8, though K-NN [19] and RF [28] showed good performance
for recall and F-score on the BoT-IoT dataset, our proposed model outperformed the state-
of-the-art models on both datasets. Additionally, we implemented different ML models to
compare their performance with that of our model. The accuracy, TPR, and FPR values of
each model are given are Tables 9 and 10. Our model performed better than the other four
models, with accuracy measured as 99.99% on both datasets and low FPR values of 0.0003
on the BoT-IoT dataset and 0.001 on the TON_IoT dataset. The LSTM model showed good
performance in terms of accuracy and FPR, while the GRU showed a high TPR compared
to the LSTM on the BoT-IoT dataset. On the TON_IoT dataset, the GRU performed poorly
compared to the other models.
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Table 9. Comparison of our proposed model with other ML models based on BoT-IoT dataset.

Model Accuracy% TPR% FPR

MLP 99.98 86.42 0.002

CNN 99.98 88.13 0.001

GRU 99.98 96.06 0.001

LSTM 99.99 94.69 0.0004

Our model 99.99 99.92 0.0003

Table 10. Comparison of our proposed model with other ML models based on TON_IoT dataset.

Model Accuracy% TPR% FPR

MLP 99.67 99.51 0.03

CNN 99.88 99.75 0.01

GRU 97.85 96.95 0.27

LSTM 99.83 99.79 0.02

Our model 99.99 99.99 0.001

5.2. Theoretical and Practical Implications

This work describes a model that can correctly classify cyber threats with a low FPR
while considering time performance. Thus, the proposed model can improve decision
making for risk mitigation so that appropriate protection measures against cyber attacks in
smart cities can be taken [57,58]. Additionally, this model will benefit organizations and
services providers in smart cities because of the high costs of implementing and maintaining
cyber security solutions [59]. The organizations and service providers in smart cities can
take accurate proactive measures against detected cyber attacks such as data breaches,
which will help in saving costs [60]. Furthermore, our proposed model can be implemented
in the cloud to monitor cyber security and collect and update cyber threat data from the
connected systems in smart cities.

6. Conclusions

A smart city facilitates the life of its citizens by providing better services than non-
smart cities. Due to the extensive presence of digital data, smart cities are also vulnerable
to various types of attacks. Machine-learning-based cyber threat intelligence can secure
smart city environments by monitoring attacks and analyzing data threats in order to
take prevention measures. In this paper, we have proposed a hybrid deep learning model
to classify threats. The proposed model uses a CNN and a QRNN to improve feature
extraction, increases classification accuracy, and lower the FPR. We evaluated our model on
the BoT-IoT and TON_IoT datasets, and our results showed the effectiveness of our model
in improving classification accuracy and lowering the FPR. In addition, the results showed
that the QRNN model could improve classification time performance while providing high
accuracy and lower FPR than LSTM. Thus, the proposed model for CTI for smart cities can
accurately analyze and classify data in real time.

One of the limitations of this work is the authors’ use of datasets. Due to the security
and privacy of smart city citizens, it was difficult to evaluate the proposed model on
real-time data. Additionally, for implementation, we evaluated the model as a centralized
system. In future work, we can implement the proposed model in a distributed environment
with parallel training to improve classification performance.
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Abstract: Recently, intrusion detection methods based on supervised deep learning techniques (DL)
have seen widespread adoption by the research community, as a result of advantages, such as the
ability to learn useful feature representations from input data without excessive manual intervention.
However, these techniques require large amounts of data to generalize well. Collecting a large-scale
malicious sample is non-trivial, especially in the modern day with its constantly evolving landscape
of cyber-threats. On the other hand, collecting a few-shot of malicious samples is more realistic in
practical settings, as in cases such as zero-day attacks, where security agents are only able to intercept
a limited number of such samples. Hence, intrusion detection methods based on few-shot learning
is emerging as an alternative to conventional supervised learning approaches to simulate more
realistic settings. Therefore, in this paper, we propose a novel method that leverages discriminative
representation learning with a supervised autoencoder to achieve few-shot intrusion detection. Our
approach is implemented in two stages: we first train a feature extractor model with known classes
of malicious samples using a discriminative autoencoder, and then in the few-shot detection stage,
we use the trained feature extractor model to fit a classifier with a few-shot examples of the novel
attack class. We are able to achieve detection rates of 99.5% and 99.8% for both the CIC-IDS2017 and
NSL-KDD datasets, respectively, using only 10 examples of an unseen attack.

Keywords: network intrusion detection; few-shot learning; deep learning; discriminative autoencoder

1. Introduction

Cyber defense is a continuous process that entails tasks, such as prevention, detection,
and recovery, which are applied at various system levels. Network intrusion detection is a
branch of cyber security that deals with the detection of attacks at the network layer level.

Network intrusion detection techniques can be broadly divided into two types:
signature-based and anomaly-based methods [1]. Signature-based methods operate by
matching incoming network traffic against a predefined set of known attack signatures.
Thus, they perform well in detecting previously known attack signatures; however, signature-
based methods fail to detect novel attacks [2]. On the other hand, anomaly-based methods,
which entail machine learning methods, operate by modeling normal network traffic data
and then flag any network traffic that deviates from the model pattern as an anomaly.
However, these approaches sometimes lead to too many false alarm rates (FARs).

Network intrusion detection using machine learning methods has been studied for
a long time, with many commercial intrusion detection systems (IDSs) using machine
learning algorithms as part of their detection engines [3].

Recently, technologies such as cloud computing, IoT, and 5G have led to an explosion
in the volume and diversity of network traffic, which provide fertile ground for applying
deep learning (DL) techniques. Deep learning techniques are end-to-end learning models,
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capable of learning highly complex non-linear functions, which enable them to learn
powerful representations directly from input data [4]. Thus, recent research on intrusion
detection system (IDS) methods are mostly focused on this area [5].

However, network IDSs based on supervised deep learning techniques require huge
amounts of labeled data in order to generalize well. Collecting a large-scale malicious
sample to train DL classifiers is prohibitively expensive, and subject to obsolescence as
the landscape is constantly evolving. Regardless, unsupervised anomaly-based methods
provide an alternative towards generalization of an unseen malicious sample, and these
approaches are highly susceptible to false alarm rates [6]. Hence, there has been an increase
in interest from the research community towards approaches that require a handful of
samples to achieve detection. Since collecting a few samples of malicious traffic is more
realistic in a practical settings, which, for instance, can be realized from a few successfully
detected intrusions from a deployed detection system, few-shot learning is emerging as an
alternative to conventional supervised learning methods to simulate more realistic settings.

Few-shot learning measures the challenging issue of a model’s ability to generalize
new tasks using limited data [7]. This was addressed recently, based on the idea of meta-
learning or “learning to learn” [8–12]. The meta-learning paradigm consist of two disjointed
stages: meta-training and meta-testing. Each of the meta stages consists of a number of
classification tasks with limited training data that require fast adaptability by the learner.
The goal is to leverage the meta-training stage to learn transferable knowledge from a set
of tasks that will enable fast adaptability to novel tasks in the testing stage.

However, recently, it has been established that good learned representations are very
powerful for few-shot classification tasks, and perform on par with, or slightly worse than,
the current set of complicated meta-learning algorithms [13–15]. Therefore, in this paper
we propose a simple framework that relies on learning good representations to achieve
few-shot intrusion detection. Our approach consists of a linear model trained on top of a
pre-trained feature extractor model. The feature extractor model is trained to learn good
representations using a discriminative autoencoder.

In contrast to conventional autoencoders, which are purely unsupervised representa-
tion learning methods, discriminative autoencoders are a form of supervised autoencoders
that leverages the class information of their inputs. Thus, they combine both reconstruction
and classification errors in their objective functions. This makes the representations learned
by discriminative autoencoders more discriminative and more suitable for classification
tasks [16,17].

The remainder of the paper is organized as follows: Section 2 presents the related
work, Section 3 presents our problem formulation of few-shot intrusion detection using dis-
criminative autoencoders, Section 4 presents the results and discussion of our experiments,
and Section 5 concludes the paper.

2. Related Works

Traditionally, networks are defended against intrusion using signature-based tech-
niques, whereby incoming network traffic is compared against commonly known attack
patterns. These approaches perform well against previously known attacks, but fail to
detect novel attacks.

Classical machine learning (ML) methods provide an upgrade over traditional signature-
based techniques. These methods exploit various features of network traffic, which enable
them to detect attack signatures without explicit rule specifications [18]. Thus, popular
classical ML approaches, such as K-nearest neighbor (KNN) [19], support vector machines
(SVM) [20], decision tree (DT) [21], and random forest (RF) [22], have all been employed as
network-based IDSs.

For example, Kutrannont et al. [23] proposed a KNN-based IDS. KNN operates based
on the assumption that a sample belongs to the class where most of its top K-neighbors
reside. Therefore, parameter K affects the performance of the model. In their work,
Kutrannont et al. proposed the integration of a simplified neighborhood classification
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using a percentage instead of group rankings. Taking into account the unevenness of data
distribution, the improve rule selects a fixed percentage (50%) of neighboring samples as
neighbors and its efficiency is enhanced via parallel processing using a graphical processing
unit (GPU). The algorithm performs well on sparse data, achieving an accuracy of 99.30%.

Goeschel et al. [24] employed a combination of SVM, decision tree (DT), and naïve
Bayes classifiers. The SVM was first trained to perform a binary classification to separate
data instances into benign and malicious classes. The malicious classes are then categorized
into specific classes of attacks using a DT classifier. However, since DT can only separate
known classes of attacks, they further employed a naïve Bayes classifier to identify un-
known attacks types. This hybrid method achieved an accuracy of 99.62% and a false alarm
rate of 1.57%.

Malik et al. [25] proposed an IDS using random forest (RF) and particle swarm op-
timization (PSO). They trained the IDS in two stages: feature selection and classification.
The PSO serves as feature selection algorithm, which is used to select appropriate features
for classifying attacks, while the RF is used as a classifier. They evaluated their approach
using the KDD cup99 dataset, and achieved detection rates of 99.92%, 99.49%, and 88.46%
on DoS, Probe, and U2R attack classes.

Recently, there has been widespread adoption of DL techniques for network-based
IDSs for sizeable numbers of datasets. These techniques can operate directly on raw data,
learn features, and perform classifications. Hence, they achieve better performances when
compared to classical machine learning methods [26]. Deep learning models, such as
multi-layer perceptron (MLP), convolutional neural network (CNN), autoencoders (AE),
recurrent neural network (RNN), as well as deep generative networks, such as the deep
belief network (DBN) and generative adversarial networks (GANs) have all been applied
in the context of network-intrusion detection [27,28].

Min et al. [29] proposed an IDS named TR-IDS, which leverages both statistical features
as well as payload features. They employed a CNN to extract important features from the
payload. To accomplish this, they first encoded each byte in the payload in to a word vector
using skip-gram word embedding, and then applied the CNN to extract the features. The
extracted features were then combined with the statistical features generated from each
network flow, which included fields from the packet header and statistical attributes of the
entire flow. The features were then used to train a random forest classifier, which achieves
an accuracy of 99.13%.

In the work by Yin et al. [30], a recurrent neural network (RNN) was directly applied
for intrusion detection tasks. The RNN model achieved better performance on a NSL-KDD
dataset when compared with classical ML techniques consisting of support vector machines
and random forest.

Wang et al. employed a combination of CNN and long short-term memory (LSTM).
Intuitively, the CNN learns the low-level spatial features of network traffic, while the LSTM
learns the high-level temporal features of the data. The learned features enable the model
to improve the false alarm rate of an IDS [31].

In another work, Al Qatf et al. employed a sparse autoencoder (AE) for dimensionality
reduction and the reduced features are then retrained using the SVM classifier. This enables
the model to outperform classical machine learning methods [32].

Similarly, in a recent work by Narayana et al., a hybrid methodology involving a
sparse autoencoder, DNN, and LSTM was employed. In the first stage, the autoencoder
is trained in an unsupervised fashion with smoothed l1 regularization to enforce sparsity.
This enables the autoencoder to learn sparse representations, which are then used to
train the MLP and LSTM classifiers in the second stage. The model performs better than
conventional deep learning classifiers in terms of detection rates and low false positive
rates [33].

Another hybrid intrusion detection method that employs both classical machine
learning and deep learning techniques was proposed by Le, et al. They first built a feature
selection model termed a sequence forward selection (SFS) algorithm (SFSD) and a decision
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tree. The SFSD algorithm selects the best subset of features, which are then used in the
second part to train various forms of RNN (traditional RNN, LSTM and gated recurrent
neural network (GRU)). The model achieves significant improvements in detection rates
when compared with classical methods [34].

However, these techniques require huge amounts of labeled data during training in
order to generalize well. The dynamic nature of the modern-day cyber-threat landscape
makes it unfeasible or prohibitively expensive to acquire sufficient enough malicious sam-
ples to train deep learning classifiers. Therefore, a trend is developing towards techniques
that require only a few shot of malicious examples to achieve detection.

For example, Hindy et al. proposed an intrusion detection model using one-shot
learning. The main idea of one-shot learning is to learn patterns and similarities from
previously seen classes that enable classifying unseen classes using only one instance. Thus,
one-shot learning is an instance of few-shot learning, whereby the number of examples is
restricted to only a single example [35]. To model an IDS using one-shot learning, Hindy
et al. employed a Siamese neural network, a form of neural network consisting of twin
networks. The Siamese network is trained using two pairs of instances to learn patterns
and similarities instead of fitting the model to fixed classes. Therefore, during the training
stage, the Siamese network learns patterns and discriminate between benign traffic and
different classes of a known cyber-attacks. At the evaluation stage, a new traffic instance is
compared against all known classes (used during training) without any form of additional
training. Although the approach provides a simple framework for one-shot learning, in
general, they achieve lower detection rates relative to other works [36].

In another work, Xu et al. proposed an intrusion detection method using few-shot
learning. They employed a deep neural network architecture (DNN) named FC-Net, which
is composed of two parts: a feature extraction network and a comparison network. FC-Net
is trained using a meta-learning approach consisting of two disjointed stages of meta-
training and meta-testing. In the meta-training phase, the feature extraction network of
FC-Net is trained using several meta-tasks, where a meta-task is comprised of a binary
classification between an attack category and benign traffic. This enables FC-Net to learn a
pair of feature maps, which are then used by the comparison network in the meta-testing
stage to determine whether a new traffic instance belongs to the different classes of attacks
learned during training [37]. However, one drawback with their approach is it requires a
complex DNN architecture and computationally intensive optimization procedures.

3. Our Proposed Few-Shot Intrusion Detection Method

Supervised learning approaches for network intrusion detection require all categories
of attacks to be known in advance, with a sufficient number of training examples available
for each category. The basic task is to use a classifier, f , to infer labels for network traffic
samples, N. The number of samples, N, is often very large and is simply composed of two
groups: a training set and a test set. Contrary to this, in real-world settings, new attacks
frequently emerge, and only subset of categories are known beforehand, with few examples
per category. Therefore, in such scenarios, where the number of samples, N, is small, the
problem is considered as a few-shot classification. Applying the conditions of a supervised
learning method to this problem will encounter overfitting.

Few-shot learning is popularly addressed based on the meta-learning paradigm, which
is composed of meta-training and meta-testing. Each one of the meta stages consists of a
number of classification tasks, where each task describes a pair: training (support) and
testing (query). The meta-training set is described as T =

{(
Dtrain

i , Dtest
i
)}I

t=1 and the meta-

testing set is S =
{(

Dtrain
q , Dtest

q

)}Q

q=1
, with each dataset containing pairs of data points

and their ground-truth labels, i.e., Dtrain = {(xt, yt)}T
t=1 and Dtest =

{(
xq, yq

)}Q
q=1, which

are sampled from the same distribution. The objective is to leverage the meta-training stage
to learn good representations, which will enable it to adapt quickly to unseen tasks in the
meta-testing stage, using powerful optimization techniques.
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In a network intrusion detection context, a task, T, can be simply defined as a binary
classification between a normal network traffic sample and a category of malicious samples.
Supposing that there are five different network traffic samples, O, A, B, C and E such that,
sample O is a benign network traffic, samples A, B, C indicate known categories of attacks
with sufficient examples, while the remaining sample, E, refers to a newly found category
of attack with a few examples. The goal is to identify the new attack sample, S, with as few
examples as possible. Then, three different tasks can be constructed, T1, T2 and T3 where
T1, T2 and T3 define a binary classification task between a normal sample O and attack
categories A, B and C. T1, T2 and T3 constitute the meta-training set, while the meta-test set
consists of a normal sample, O, and the novel class, E, which has few examples. The idea
is to leverage the meta-training stage to learn transferable knowledge from T1, T2 and T3
that will enable a classifier to accomplish task T4 (a binary classification between normal
sample O and attack category E) with as few examples as possible during the meta-testing
phase. Thus, in our case, a discriminative autoencoder was employed to acquire such
transferable knowledge.

Feature Extraction with Discriminative Autoencoder

Autoencoders have been proved to be powerful models for learning representations in
an unsupervised fashion. However, discriminative autoencoders are a form of autoencoders
that, in addition to residual errors, considers class information of the input in its objective
function. This ensures that more powerful and discriminative representations are learned
than those learned by conventional autoencoders.

We adopted the discriminative autoencoder proposed in [38], which, in its setup,
uses data from two distributions, termed positive (X+) and negative (X−), with their
labeled information. The discriminative autoencoder then learns a manifold that is good
at reconstructing the data from the positive distribution, while ensuring that those of the
negative distributions are pushed away from the manifold. This enables it to learn robust
patterns and similarities that separate the two distributions.

In our case, the two distributions, X+ and X−, can be generated from benign network
traffic classes and malicious traffic classes.

Let l(x) denote the label of an example, x, with l(x) ∈ {−1, 1} and d(x) is the dis-
tance of that example to the manifold, with d(x) = ‖x − x‖. Then, the loss function is
described as:

L
(
X+ ∪ X−) = ∑

x∈X+∪X−
max(0, l(x) · (d(x)− 1)) (1)

Thus, to train the discriminative autoencoder, we merged all the meta-training tasks
Dtrain

t from T into a single training set, Dnew, of seen classes:

Dnew = ∪
{

Dtrain
1 , ..., Dtrain

t , ..., Dtrain
T

}
(2)

We trained the discriminative autoencoder during the meta-training stage (Algorithm 1).
After training, the decoder part of the model was discarded, while the encoder module,
which then served as our feature extractor was retained. The encoder was then employed
in a fixed state (no fine-tuning) in the meta testing stage. The meta testing stage consists of
the task of identifying a novel class of attack, which has few examples.

For a given task
(

Dtrain
q , Dtest

q

)
sampled from the meta-testing set, S, we trained a

classifier, f , on top of the extracted features to recognize the unseen classes using the
training dataset, Dtrain

q (Algorithm 2).
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Algorithm 1 Discriminative Autoencoder Training

Input: meta-training dataset D containing, n normal data samples and m malicious samples, l(x)
the label of the dataset with l(x) ∈ {1, 0},
Output: encoder fe and a decoder fd
θe ← initialize encoder parameters
θd ← initialize decoder parameters
Repeat

for i = 1 to k do
Draw a batch of k samples x(1), . . . ., x(k) from the dataset D

zi = fe

(
xi
)

x̂i = fd

(
zi
)

LDAE = 1
k ∑k

i=1 max
(

0, l(x).
(
‖ xi − x̂i ‖ −1

))
end for

// update parameters with gradients
θe ← θe −∇θe LDAE

θd ← θd −∇θd
LDAE

until convergence of parameters θe, θd

Algorithm 2 Few-Shot Detection

Input: meta-testing dataset D containing, n normal data samples and m few malicious samples
with n � m, l(x) the label of the dataset with l(x) ∈ {1, 0}, trained encoder fe
Output: classifier cl , prediction lpred
θc ← initialize classifier parameters
Repeat

for i = to k do
Draw a batch of k samples x(1), . . . ., x(k) from the dataset D

f i
extract = fE

(
xi
)

lpred = Cl

(
f i
extract

)
LC = binarycrossentropy

(
l, lpred

)
end for

// update parameters with gradients
θC ← θC −∇θC LC

until convergence of parameters θC

4. Evaluation

4.1. Evaluation Metrics

Accuracy, recall (detection rate) and precision are common metrics normally used
when evaluating a classifier. Accuracy, which indicates the percentage of correctly classified
data items, is a poor metric for a task where the dataset is largely skewed in favor of normal
samples. Similarly, a high detection rate implies fewer chances of a model missing alarming
anomalies, while a high precision highlights the ability of a model to classify normal
data. We consider detection rate (DR) to be more significant in our case than precision;
for example, if a model predicts a normal sample as an attack, it is easier to correct the
prediction of the model through domain knowledge, since there are few attack samples.
However, if the model fails to detect an attack, it is difficult to find the attack in such a huge
dataset. Nonetheless, we consider all three metrics; when comparing our approach with
baseline models, we only considered DR since it is more significant in our situation.

4.2. Datasets

We evaluated the performance of our approach against baseline models using the
following network intrusion detection datasets: CIC-IDS2017 and NSL-KDD. The CIC-
IDS2017 dataset reflects recent attacks, and, to some extent, it satisfies the criteria for
reliable intrusion detection datasets proposed by [39], which are anonymity, attack diversity,
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complete capture, complete interaction, complete network configuration, available protocol,
complete traffic feature set, meta data, heterogeneity, and labeling.

The dataset was developed at the Canadian Institute of Cybersecurity of the University
of New Brunswick (UNB) in 2017. The dataset comprises raw PCAP files, as well as
80 statistical features generated from the PCAP files, which were captured on different days
of a week (from Monday to Friday). The dataset considers several attacks and sub-attacks,
as depicted in Table 1.

Table 1. Attack composition of the CIC-IDS2017 datasets.

Attack Class Subclasses Number of Records

DoS

Dos Hulk 231,073
Dos Slow loris 5796

Dos Golden Eye 10,293
DoS Http Test 5499

Web Attack
Brute force 1507

XSS 652
SQL injection 21

Ports Scan - 158,930
DDoS - 41,835
Botnet - 1966

FTP-Patator - 7938
SSH-Patator - 5897
Infiltration - 36

Benign - 2,358,036

The NSL-KDD dataset was also generated at the Canadian Institute of Cybersecurity.
This dataset was purposely created to solve the problem of the original KDDcup’99 dataset,
which has about 78% and 75% of the training and testing set duplicated, respectively [40].
The NSL-KDD rectifies this problem and still retains the original 41 features.

Table 2 depicts a breakdown of some of the attacks that exist in the dataset with more
than five samples.

Table 2. Attack composition of the NSL-KDD datasets (training set).

Attack Type Subclasses Number of Records

DoS

Neptune 41,214
Smurf 2646

Tear drop 892
Back 956

Probe

Ip sweep 3599
Nmap 1493

Port sweep 2931
Satan 3633

User to root
(U2R)

Buffer overflow 30
Load module 9

rootkit 10

Remote login
(R2L)

Guess password 53
Warezmaster 890

Imap 11
Multihop 7

4.3. Implementation

We employed tensorflow 2.6 as the deep learning framework to implement our ap-
proach. We implemented the feature extractor module (discriminative autoencoder), and
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the classifier was a standard multi-layer perceptron (MLP) neural network. Table 3 present
the architectural details of the modules.

Table 3. Architectural details of our models.

Model Architectural Details

Encoder

Layer 1 Dense, output: 128, activation: Relu
Layer 2 Dense, output: 64, activation: Relu
Layer 3 Dense, output: 32, activation: Relu
Layer 4 Dense, output: 8, activation: Relu

Decoder
Layer 1 Dense, output: 32, activation: Relu
Layer 2 Dense, output: 32, activation: Relu
Layer 3 Dense, output: No, of features, activation: sigmoid

Classifier Layer 1 Dense, output:1, activation: sigmoid

4.4. Experiments and Results

We conducted the following experiments to evaluate our few-shot detection approach.

4.4.1. Experiment 1: Detecting Mutants of Existing Attacks

The objective of this experiment was to evaluate our approach in detecting mutants of
existing attacks. Malicious users develop mutants of existing attacks to evade detection,
as conventional supervised learning models detect such mutants poorly, especially when
there is significant variation with the known existing attack.

To accomplish this, we extracted categories of attacks, which we believed to comprise
variants of one another in both the NSL-KDD and CIC-2017IDS datasets. Tables 1 and 2
depict the compositions of such attack mutants.

To evaluate our approach in detecting a particular mutant, we utilized all the other
mutants of the attack as a data source for the meta-training stage. For instance, if the
attack mutant we wanted to detect was DoS hulk, then our meta-training data source will
comprise all the other DoS subclasses (golden eye, slow loris, slow http test). The DoS
hulk would then serve as the data source for the meta-testing stage. We then trained our
feature extractor using the meta-training set. Thereafter, in the few-shot detection stage, we
selected 10 samples of the meta-testing set and trained our classifier on top of our feature
extractor. We applied the same logic to all attacks in both the NSL-KDD and CIC-IDS2017
datasets. However, we conducted this experiment on classes with sufficient numbers of
samples. Therefore, on the NSL-KDD set we were able to perform the experiment on DoS
and probe classes. While on the CIC-IDS2017 dataset, only the DoS class has a sufficient
number of samples.

Figures 1–3 display the results of our experiment on both the CIC-IDS2017 and NSL-
KDD datasets. As can be seen from the results, our model achieves the highest detection
rate of 99.9% on DoS attack mutant Neptune (Figure 1), followed by 90.0% and 80.0% on tear
drop and smurf attack, respectively. These are good results, considering that we employed
few-shots examples to train our classifier. However, our model achieves a DR of 0.0% on
DoS attack mutant back. In fact, our model scores 0.0% on all the other performance metrics
(accuracy and precision). This indicates that the DoS attack mutant back has significant
variations with other DoS attack subclasses.
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Figure 1. Results of few-shot detection of DoS attack mutant for NSL-KDD dataset.

Figure 2. Result of few-shot detection of probe attack mutants for NSL-KDD dataset.
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Figure 3. Result of few-shot detection on DoS attack mutant for CIC-IDS2017 dataset.

For the probe attack mutants (Figure 2), our model also performs well, achieving the
highest DR score of 99.8% on the port sweep attack, and a DR score of 99.6%, 80.0%, and
70.7% for the port sweep, Nmap and Satan, respectively. All the attack mutants achieved a
good DR, which indicated that the attack mutants had many attributes in common, which
our feature extractor model was able to discover.

Similarly, with the CIC-IDS2017 dataset, our model’s performance was good. We
achieved the highest DR score of 99.1% on DoS http test attack (Figure 3), and DR scores
of 93.5%, 86.7%, and 80.0% on DoS golden eye, DoS slow loris and DoS hulk attacks,
respectively. The results follow a similar trend as in the NSL-KDD dataset.

We also compared our model’s DR with baseline models, and we employed a combi-
nation of classical and deep learning algorithms as our baselines. For deep learning, we
employed a multi-layer perceptron (MLP), while for the classical ML models we employed
K-nearest neighbor (KNN), decision tree, support vector machine (SVM) and random forest.
All the baseline models were trained using the full dataset.

Figures 4–6 depict the results of such comparisons. As can be seen from results, there
was not much of a difference in terms of performance between the DL models, ML models,
and our model. It is well known that classical ML models perform well on small and
medium datasets. The highest DR score was 100% on the Neptune DoS mutant (Figure 4),
which was achieved by all baselines, while our model scored 99.6% (despite having been
trained with only 10 examples), which is quite on par with the baselines results. The lowest
DR score was for the back attack mutant, where our model’s DR score as 0.0%. However,
the lowest DR score from the baselines was achieved by SVM, which scored 40.4% on the
tear drop attack.
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Figure 4. Detection rate (DR) comparison of various classification methods on DoS subclasses for
NSL-KDD datasets.

Figure 5. Detection rate (DR) comparison of various classification methods on probe attack subclasses
for NSL-KDD datasets.

111



Appl. Sci. 2022, 12, 2351

 
Figure 6. Detection rate (DR) comparison of various classification methods on DoS subclasses for
CIC-IDS2017 datasets.

In addition, for the probe attack class, the result followed similar trend, the highest DR
score achieved was 100%, which was achieved by the baseline models on the port sweep
attack mutant (Figure 5), while our model was slightly worse with a DR score of 99.8% on
the same attack class.

Our model also recorded the lowest DR score, 70.7%, on the Satan attack mutant, while
the lowest DR score achieved by the baselines was 79.5%, which was scored by SVM on the
Nmap attack mutant. Overall, there was no significant difference in performance with our
model; our model was either slightly worse or on par with the baselines.

Similarly, Figure 6 presents the results of the comparison with baselines models for the
CIC-IDS2017 dataset. The highest performing model was random forest, which achieved a
DR of 100% for the DoS golden eye attack mutant. The lowest DR score was 48.5% which
was achieved by the decision tree model for the DoS http test attack mutant. Similar to the
NSL-KDD dataset, our model performed competitively with the baseline models, where
it achieved DRs of 99.6%, 99.8%, 80.0%, and 70.7% on IP sweep, port sweep, Nmap and
Satan, respectively.

4.4.2. Experiment: General Anomaly Detection

The objective here was to evaluate our approach in detecting broader classes of attacks
that were not seen before. For example, the NSL-KDD dataset can be broadly categorized
into the following classes: DoS, Probe, R2L and U2R. Similarly, the CIC-IDS2017 dataset,
when classified broadly, is made up of the following classes: DoS, port scan, heart bleed,
Botnet, SSH-Patator, FTP-Patator, and web-based attacks

To perform the experiment, we applied a similar logic as in experiment 1. For instance,
to detect the probe class of attack in the NSL-KDD dataset, our meta-training set consisted
of all other attack classes (DoS, R2L, and U2R). While the meta-testing set comprised the
attack we wanted to classify, which was the probe attack in this case. We applied the same
procedure as for the CIC-IDS2017 dataset.

Figures 7 and 8 present the results of our experiments when the number of samples se-
lected to train our classifier was limited 10 for both NSL-KDD and CIC-IDS2017, respectively.
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Figure 7. Result of experiment 2: general anomaly detection for NSL-KDD dataset.

 
Figure 8. Result of experiment 2: general anomaly detection for CIC-IDS2017 dataset.

For the NSL-KDD dataset, (Figure 7), our approach performed reasonably well, espe-
cially for DoS and probe classes. Our model achieved the highest DR score of 90% with the
DoS class and 70% on probe class. However, overall, our model’s performance was low
compared to the results of experiment 1. Some attacks were poorly detected. For example,
our model’s DR scores was 66% for the R2L class, and it completely failed to detect the U2R
attack class, scoring a DR of 0.0%.

Similarly, the result of our experiment on CIC-IDS2017 (Figure 8) follows similar
trend. There is drop in performance, our model performance was not as good as that
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of experiment 1. The highest DR score was 94.1%, which was achieved for the DDoS
attack class. Our model poorly detects the Patator attack classes, scoring 34.8% and
47.6%, respectively.

4.5. Discussion

Section 4.4 presents a performance evaluation of our approach. We designed two
different experiments to evaluate our approach. The first experiment was designed to
evaluate detecting mutants of existing attacks (subclasses of attacks). This was designed to
addresses situations where attackers introduce some variations of a known existing attack
to evade detection. We hypothesized that finding good representations using existing
known similar attacks will enable the model to detect a novel mutant of that attack by using
a few examples since attack mutants share similar attributes. Thus, our feature extractor
would be able to discover the manifold of a broader class of such attacks.

Figures 1–3 in Section 4.4 present the results of our experiment, which prove our
hypothesis. As we were able to detect several mutants with an excellent detection rate
using only a few shot examples. We achieved up to 99.9% DR on the Neptune DoS mutant
(Figure 1), and, overall, we achieved an excellent detection rate. This shows that our feature
extractor was able to discover the manifold of optimal representations of such a class.

To further validate the efficacy of our feature extractor model, we increased the
number of samples required to train our classifier in the few-shot detection stage from 10
to 20 samples. However, as can be seen in Tables 4–6, respectively, the DR varies slightly,
despite doubling the number of samples. This is contrary to conventional supervised
learning approaches, where the DR increases significantly with an increase in the number
of training examples.

Table 4. Effect of increasing the number of samples on DoS attacks in the NSL-KDD dataset.

Attack Type
No. of Samples = 10

DR (%)
No. Samples = 20

DR (%)

Neptune 99.9 100

Smurf 80.0 81.9

Tear drop 90.0 93.5

Back 0.0 0.0

Table 5. Effect of increasing the number of samples on probe attacks in the NSL-KDD dataset.

Attack Type
No. of Samples = 10

DR (%)
No. Samples = 20

DR (%)

IP sweep 99.6 99.9

Port sweep 99.8 100

Nmap 80.0 82.0

Satan 70.7 71.3

Table 6. Effect of increasing the number of samples on DoS attacks in the CIC-IDS2017 dataset.

Attack Type
No. of Samples = 10

DR (%)
No. Samples = 20

DR (%)

DoS hulk 80.0 81.1

DoS golden eye 93.5 95.0

DoS http test 99.1 99.8

DoS slow loris 86.7 88.0

114



Appl. Sci. 2022, 12, 2351

The more powerful the representations, the smaller the number of training samples
required. This concludes that our feature extractor model is able to discover the mani-
fold of optimal representations, which causes the DR to slightly depends on the number
of examples.

We also compared our approach with the baseline models, which comprised the DL
model and the classical ML, as shown in Figures 4–6. The baseline models were trained on
the full dataset.

As can be observed from the results, our approach performed competitively with the
baseline models. On all the datasets, our model was on par with, or slightly worse than,
the baseline models, despite being trained on few-shot examples.

The second experiment was designed to discover whether it was possible to learn
representations that would be useful in detecting any class of attack, when re-trained with
few-shot examples of that attack. The results of the experiment are presented in Figures 6
and 7. Our model performed reasonably well in detecting certain classes of attacks. For
instance, our model achieved detection rates of 90% and 89% for DoS classes in both the
NSL-KDD and CIC-IDS2017 datasets. This shows that our feature extractor still learns
some useful representations to detect these classes of attacks. However, it performs poorly
in detecting other classes, such as R2L and U2R, from NSL-KDD (Figure 7), where the
detection rate was 66% and 0.0%, respectively. Similarly, it failed to achieve good detection
rates for both FTP-Patator and SSH-Patator attack classes for the CIC-IDS2017 dataset
(Figure 8), scoring 34.8% and 47.6%, respectively. Therefore, as expected, there was a drop
in overall performance for our model compared to the results of experiment 1. This was
due to the fact that our feature extractor tries to discover a singular representation for
identification, based on the different classes of attacks observed in the meta-training stage.
However, it is difficult to discover such representations due to the diverse nature of the
attacks in the meta-training set. Since attacks differ in purpose and implementation, for
instance, the DoS attack class tries to shut down traffic flow to and from a target system, a
U2R attack tries to gain access to the system or network, an R2L attack tries to gain access
to the remote machine, while attacks such as probe try to get information from a network,
we assumed that these attack types are too diverse to allow our feature extractor to learn
singular representations for identification that can enable excellent detection when trained
with a few examples.

5. Conclusions

Network intrusion detection using machine learning methods has been studied for
a long time, with many commercial intrusion detection systems (IDSs) using machine
learning algorithms as part of their detection engines. However, machine learning-based
IDSs are susceptible to false alarm rates, which makes the field an active area of research.

Recently, DL methods have been widely applied in network-based IDSs due to their
success in fields such as natural language processing (NLP) and computer vision. However,
to achieve a better detection rate, DL methods require sizeable volumes of datasets. Col-
lecting large-scale datasets is non-trivial, especially in the cybersecurity domain where the
landscape is constantly changing. Hence, few-shot network intrusion detection is emerg-
ing as an alternative to conventional supervised DL methods. The concept is popularly
addressed based on a meta-learning paradigm, whereby transferable knowledge is learned
in some related tasks using complex optimization techniques, which enables generalization
at test time with limited examples.

However, in this paper, we propose a simple framework for few-shot network intrusion
detection. Our approach relies on learning powerful representations, and is implemented
in two stages. We first train a feature extractor model using discriminative representation
learning with a supervised autoencoder, and we then train a classifier on top of the feature
extractor, which is able to generalize with a few examples.

To validate our approach, we evaluated our model using two publicly available
intrusion detection datasets. Our proposed method achieved excellent detection rates
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in detecting mutants of existing attacks. However, though our approach achieves good
detection rates for certain classes of attacks in the general anomaly detection scenario it
performs poorly for others. This is due to the diverse nature of attacks, and it is difficult to
learn singular representations that can enable generalization with only a few examples.

Therefore, based on the results of the experiments conducted, our approach is more
suited for detecting specific classes of attack or mutants of an existing attack. In addition, it
is safe to say that our model can be used in situations like zero-day attacks, since, even in
such a scenario, a few samples of attacks can be obtained, which will be sufficient enough to
train our model to detect similar occurrences of the same attack or its variants in the future.
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Abstract: In the past few years, with the development of information technology and the focus
on information security, many studies have gradually been aimed at data hiding technology. The
embedding and extraction algorithms are mainly used by the technology to hide the data that requires
secret transmission into a multimedia carrier so that the data transmission cannot be realized to
achieve secure communication. Among them, reversible data hiding (RDH) is a technology for the
applications that demand the secret data extraction as well as the original carrier recovery without
distortion, such as remote medical diagnosis or military secret transmission. In this work, we
hypothesize that the RDH performance can be enhanced by a more accurate pixel value predictor. We
propose a new RDH scheme of prediction-error expansion (PEE) based on a multilayer perceptron,
which is an extensively used artificial neural network in plenty of applications. The scheme utilizes
the correlation between image pixel values and their adjacent pixels to obtain a well-trained multilayer
perceptron so that we are capable of achieving more accurate pixel prediction results. Our data
mapping method based on the three-dimensional prediction-error histogram modification uses all
eight octants in the three-dimensional space for secret data embedding. The experimental results of
our RDH scheme show that the embedding capacity greatly increases and the image quality is still
well maintained.

Keywords: reversible data hiding; three-dimensional prediction-error histogram modification; multi-
layer perceptron

1. Introduction

1.1. Background

With the rapid development of information technology, the internet has been ubiqui-
tous in the world. Thanks to the development of optical communication systems (see [1] for
more discussions), people can easily communicate with each other and share multimedia
messages, including texts, sound, images, videos, etc. Obviously, the internet provides
much more impact on human society than any other medium, while at the same time,
issues regarding information security have received considerable and critical attention.

Data hiding is an available technique to deal with secure communication so that the
secure data is imperceptibly embedded without drawing attention [2]. The multimedia
is used as a cover carrier to hide secret data which will be transmitted in the internet.
Reversible data hiding (RDH) not only guarantees the safe transmission of data content
but also recovers the hidden data as well as the cover images [3,4]. However, most of these
RDH algorithms bring permanent distortions to the original carrier during the embedding
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process, and these distortions are unacceptable in certain applications [5]. In order to
achieve information hiding and distortion-free recovery of the original carrier, distortion-
free reversible data hiding is considered [4]. This technique enables the receiver to both
extract the embedded data correctly and acquire the original carrier without distortion.
Generally, RDH is a fragile hiding technology, which is different from digital watermarking.
When implementing the RDH mothod, the distortion that occurs during the transmission
of the carrier should be avoided. According to the embedding method, the existing image
RDH algorithm can be divided into spatial domain, transform domain, and encryption
domain RDH scheme [6]. In this paper, we focus on RDH of spatial domain. Its embedding
and extraction frameworks are shown in Figure 1. In the embedding side, the sender
embeds secret data into the cover image by a reversible embedding algorithm. In the
extraction side, the receiver extracts the secret data embedded in the stego-image by a
reversible extraction algorithm and achieves distortion-free recovery image exactly the
same as the original image. The performance of RDH algorithm depends on two conflicting
factors as trade-offs: the embedding distortion between the cover image and the stego-
image and the embedding capacity (EC). For the former factor, PSNR (peak-to-noise-ratio)
is widely used (refer to [7] for more discussion). A higher PSNR value means that the
stego-image is more similar to the original one. For the latter factor, EC stands for the
number of bits which can be embedded into the cover image. Therefore, we favor an RDH
algorithm which brings higher EC and lower PSNR, while a trade-off of them is usually
considered to fit specific applications [6].

Figure 1. The embedding and extraction frameworks of the spatial domain RDH.

1.2. Prediction-Error Expansion

In this subsection, we introduce the RDH paradigm we mainly follow: the prediction-
error expansion (PEE) approach, which was first proposed by Thodi and Rodriguez [8]. PEE
is a kind of histogram-shifting technique for which histograms of the feature elements (e.g.,
pixel values, errors between cover pixel values and their predicted values) are shifted to
prepare vacant positions for embedding the secret bits. Since the most frequent feature
elements determines the EC, and moreover, peaks of the prediction-error histograms usually
center at zero, PEE has the advantage over the other histogram-shifting techniques in the
spatial domain, especially for the cover image with flat pixel value histogram [9].

PEE can exploit spatial redundancy in the image. The correlation of local neighborhood
of each pixel is taken into consideration. Following a certain order of scanning the original
image, a predictor is used to make prediction of each pixel. Denote by x̂ the predicted
value of a pixel x. The prediction-error of x is defined as ex = x − x̂. One can expand the
prediction-error ex to be e∗x = f (ex, m) for some shifting operation f and a to-be-embedded
bit m ∈ {0, 1}. When the context is clear, we omit the parameter m in f to make formula
concise. In the stego-image this pixel will be x̃ = x̂ + e∗x. As illustrated in [5],

e∗x =

⎧⎪⎪⎨⎪⎪⎩
ex + m, if ex = 0
ex − m, if ex = −1
ex + 1, if ex > 0
ex − 1, if ex < −1

,
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where m ∈ {0, 1} is a to-be-embedded bit. At pixel x at which ex ∈ {0,−1}, a secret bit
is embedded, while for pixel x at which ex /∈ {0,−1}, the pixel value is shifted by 1 or
−1. With prediction-errors at hand, the prediction-error histogram (PEH) can be created as
h(a) = |{i : ei = a}| for each prediction-error a. Specifically, PEE can be implemented as
histogram modification of the PEH, that is, expanding the bins of −1 and 0 and shifting the
other bins to create space to ensure the reversibility. Such a paradigm has been extended to
2D-PEH (e.g., [10]), where the PEH is defined by h2(a, b) = |i : (e2i−1, e2i) = (a, b)|, and also
3D-PEH (e.g., [5]), where the PEH is defined as h3(a, b, c) = |i : (e3i−2, e3i−1, e3i) = (a, b, c)|.
Here we have f : Z3 �→ P(Z3) to be a mapping which realizes RDH, where P(A) denotes
the power set of a set A, such that f (p) represents the set of marked prediction-errors
for a prediction-error p (e.g., p = (e3i−2, e3i−1, e3i) for some i). As long as f (p) 	= ∅
for any prediction-error p and f (p) ∩ f (q) = ∅ for every two prediction-errors p and
q, the reversibility of the mapping can be guaranteed. PEE has attracted considerable
attention [5,8–27] since it can maintain low embedding distortion while at the same time
provide sufficiently large payload in terms of high EC.

1.3. Our Contribution

As the illustrating example of PEE shows, EC depends on the prediction accuracy of
the pixels. When PEE is applied, the data bits are embedded only when the prediction-error
is −1 or 0. Hence, we have the following hypothesis.

Hypothesis 1. As the prediction accuracy is improved, the performance of the PEE techniques for
RDH is enhanced.

In this paper, we devote our efforts in validating this hypothesis. Specifically, we
aim at improving the prediction accuracy in PEE using deep an artificial neural network (ANN),
which has been developed rapidly and extensively studied in the past decade. We propose a novel
method based on a multilayer perceptron (MLP), which is a well-known ANN consisting of
multiple sequential fully connected layers and providing nonlinear mapping between input
data and output data with nonlinear activation functions. Moreover, we consider eight
octants in the three-dimensional space for embedding, which makes better use of space (c.f. [5]
which considers only the first octant for the embedding). We conduct experiments by
applying our proposed method on six test images, including Lena, Baboon, Boat, Peppers,
Airplane (F-16), and House. The experimental results well support our hypothesis. The EC
greatly increases and is 1.9–9.8 times of previous methods. On the other hand, the image
quality is still well maintained in terms of low PSNR, which is competitive compared with
previous work.

Remark 1. Our MLP consists of layers of nodes. The nodes between consecutive layers are fully
connected by weighted edges. Each node receives input from nodes on the previous layer and sends
output by passing the aggregated input to a nonlinear activation function. It has been shown that the
well-trained MLP can be used to approximate any smooth and measurable function [28]. The MLP
has been proven to be an effective alternative to more traditional statistical techniques [29]. Recently,
the MLP has been widely used in many different fields of research (e.g., see [30–34] for more details).
Our proposed method applies MLP to the pixel prediction phase of prediction-error histogram
modification. We train the MLP network and use it to derive more accurate pixel prediction. Unlike
other statistical techniques, the MLP makes no prior assumptions on the data distribution and can
be accurately applied even when new or unseen data appear. These features of the MLP make it an
attractive alternative when developing numerical models and choosing between statistical methods.

2. Related Work and Comparisons between the Methods

Shi et al. [6] reviewed the recent advances on RDH in the past two decades, including
various RDH schemes in image spatial domain, RDH for compressed images, robust RDH
which aims at recovering hidden message from the lossily compressed image, RDH for
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encrypted images and RDH for video and audio. The RDH in image spatial domain is the
most investigated subject and strongly related to this paper. We summarize progresses on
this subject as below.

1. Lossless compression-based methods.
Most early RDH was implemented based on lossless compression [35–42]. Partial
space is released by lossless compressing a feature set of the original image, and the
data is embedded using the released space to achieve RDH. The performance of this
method depends on the lossless compression algorithm used and the selection of
compressed feature sets. The experimental results suggest that the algorithm based
on lossless compression will result in greater distortion and poorer embedding effect
than the subsequent RDH method.

2. Integer-transform-based methods.
Integer-transform-based methods can be seen in [36,39,41]. In this type of method,
the original image is initially divided, so that multiple adjacent pixels can form an
embedding unit. Subsequently, the secret information is embedded into each unit
using integer transform. However, this type of method usually uses the average value
of a pixel block to predict each pixel in the block, so that the image redundancy cannot
be well utilized. Moreover, its algorithm cannot control the maximum modification
range of each pixel so that the embedded distortion cannot be controlled effectively.
Due to two defects mentioned above, the embedding performance of the integer
transform-based methods is limited. The performance of this type of method has
been significantly improved compared to the lossless compression-based methods;
however, it still cannot achieve good embedding performance.

3. Two-phase embedding with location maps.
There are RDH schemes proceeds with two-phases (e.g., [43–45]) using location maps
which map each pixel to a certain value and also ensure the reversibility of the cover
image. In [44], Malik et al. considered even-valued and odd-valued pixels separately
and embed the secret data bit for each pixel of the cover image by changing its value
by at most 1. Their work improves previous complementary embedding strategy
by Chang and Kieu [43] which uses vertical embedding and horizontal embedding
separately in two phases. Kumar et al. considered even-valued and odd-valued pixels
with location maps as well while the cover image is divided into non-overlapping 2-by-
2 blocks of pixels and the secret bits are converted into 2-bit segments and embedded
into the blocks by increasing or decreasing the pixel value of the corresponding block
by at most 1. Since the second phase embedding has the affect as complement of the
first phase embedding, this kind of approach persist the stego-image’s quality while
doubling the EC.

4. Histogram modification-based methods.
In this type of method, the original image is mapped to space with a lower dimension
at the beginning by using the redundancy of the image. Then generate a histogram
by counting the distribution of the low-dimensional space. Finally, the reversible
embedding is realized by modifying the histogram. The earliest method having a
great impact is proposed by Ni et al. in 2006 [46]. In this method, the secret data
is embedded into the pixels with the highest frequency in the image histogram by
expanding the histogram. The stego-image with this method maintains high image
quality, but the embedding rate is low. Therefore, Lee et al. [47] improved the method
of [46], which uses the image difference histogram that the shape rule is similar to
Laplace distribution. The histogram of the method experiences a very high peak
and rapidly dropping; therefore, it can have a better embedding capacity while
maintaining image quality.
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2.1. Further Discussion on Histograph Modification-Based Approaches

The method of Ni et al. [46] constitutes a rough framework and foundation for RDH
based on histogram modification, and hence has been further developed in the follow-
up research [5,8–27,30,48–51], In these studies, a histogram is first generated from the
prediction error of pixels, and then it is modified by expansion or shifting to achieve
reversible embedding. Currently, such methods, modifying the prediction error histogram
(PEH), are collectively perceived as prediction error expansion (PEE). RDH based on
histogram modification has the following two advantages:

• Using histograms, especially PEHs, can effectively utilize image redundancy.
• Modifying the histogram by expansion or shifting can control the maximum modifica-

tion range of each pixel and the embedding distortion effectively.

From the above points of view, the methods based on histogram modification, espe-
cially PEE based on PEH modification, have better embedding performance than other
methods. Therefore, we focus on histogram generation and three-dimensional histogram
modification. Note that the current RDH methods based on histogram modification mainly
include the following aspects:

• Generation method of histogram.
Combined with PEE, the methods of this research direction mainly aim to generate a
sharp and rapidly dropping PEH by using better image prediction methods, e.g., the
methods of [12,13,19,20,23,24].

• Modification method of histogram.
Different from the early expansion methods [8,9,16,24] using a peak in histogram,
several authors [15,25–27] proposed methods to expand the histogram by adaptively
selecting with the frequency of pixels in the image histogram. These methods can
significantly reduce the embedding distortion of PEE.

• Selection of embedding location.
This type of method firstly selects the image area that is more suitable for reversible
embedding (usually smooth areas), and then uses the selected area as a new carrier
for RDH. The effect of these methods are remarkable. Combining with PEE can
effectively reduce the embedding distortion of PEE. Its idea was first proposed by
Kamstra et al. [18], and many subsequent works have also applied this method as an
auxiliary means to further optimize the embedding performance.

• High-dimensional histogram modification.
Several authors [10,21] proposed the methods based on high-dimensional histogram
modification. They map high-dimensional redundant features of images to two-
dimensional space, and then modify the two-dimensional histogram to achieve re-
versible embedding. In recent works [5,14,17], the methods based on three-dimensional
or high-dimensional histogram modification are proposed. By mapping the redun-
dant features of the image to a higher-dimensional space, the embedding capacity
is increased and the image quality is maintained. This type of method can greatly
improve the embedding performance of existing PEE algorithms.

• Multi-histogram modification.
In [11,22], the reversible embedding methods based on using multi-histograms are
proposed. Compared with the method of using a single histogram, the use of mul-
tiple histograms has greater flexibility and can further improve the performance of
PEE algorithms.

• PEH for color images.
In [51], Zhan et al. applied 3D-PEH to color images. Their approach is to predict the
pixel values of each RGB channel of a color image and establish the 3D prediction-error
histogram. Their results yield low distortion for color images.

Below we summarize two recent progress on the other perspectives on the histogram
modification-based methods.
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• Histogram-shifting-imitated technique based on human visual system (HVS).
Kumar et al. take human visual system into consideration [52] and improves previous
work using histogram-shifting-imitated reversible data hiding method in [53]. Since
human eyes are more sensitive to the changes in lower intensity pixels than higher
ones, this approach divide the intensity levels into four groups of equal size and embed
less bits in the low intensity pixels for less conceived distortion of the stego-image so
that the visual imperceptibility is improved.

• Pixel Value Ordering (PVO).
Li et al. [20] proposed the pixel value ordering (PVO) technique which is an advance-
ment of PEE. When the cover images are divided into blocks, PVO first sorts pixel
values in each block and then computes minimum, maximum, second-minimum and
second maximum pixels which are used for data embedding depending on the mini-
mum and maximum prediction errors in the blocks. PVO changes the pixel values
only by at most 1; hence, it generates high quality stego-images. Kaur et al. [54]
propose RDH technique using PVO and pairwise PEE to improve EC while retain the
quality of the stego image. The embedding strategy is performed in two-phases on
three-pixel blocks. Pixels are traversed in a zig-zag way and then sorted based on their
rhombus means. The key of PVO for increasing EC is that smaller prediction errors
are derived after pixels are sorted. Kaur et al. [55] also considered RDH based on PVO
for roughly texture images. For more thorough survey on RDH approaches based on
PVO can refer to the survey in [54].

2.2. Comparisons and Highlight of Our Approach

According to above discussions, we list the general comparisons of RDH methods in
Table 1. As for the histogram modification-based framework which has attracted much
attention and is strongly related to our work and covers the PEE paradigm we mainly follow,
we highlight in Table 2 our proposed approach by comparisons with other approaches of
this type, such as Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5], using average
experimental results for six gray-scale images. As Table 2 shows, the embedding capacity
of our method is much more than the four other methods, while the image quality is a bit
sacrificed due to slightly larger image distortion, though it is tolerable since the PSNR is
still close to 50dB. Our results reveal that, due to much better prediction accuracy of pixel
values, our method is capable of achieving high embedding capacity while suffering only
slight image distortion.

Table 1. General comparison of RDH methods. ×: poor; Δ: unable to control effectively/limited;
◦: good; �: even better.

RDH Method Types Image Quality Embedding Capacity

Lossless-compression × ×
Integer-transform Δ Δ

Two-phased embedding+location maps ◦ ◦
Histogram modification ◦ �

Table 2. Comparisons of histogram modification-based RDH methods. The image quality is measured
by average PSNR (dB) when maximum embedding capacity is attained. Average embedding capacity
are measured in bits.

Methods Characteristics Image Quality (PSNR (dB)) Embedding Capacity (bits)

Ni et al. [46] first histogram modification/baseline 53.04 4923.67
Lee et al. [47] image-difference histogram 51.75 9729.00
Li et al. [21] 2D-PEH modification 51.07 24,612.50
Cai et al. [5] 3D-PEH modification (1st octant) 63.72 9444.17

Our method 3D-PEH + MLP Prediction (8 octants) 48.55 48,344.17
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3. The Proposed Approach

In this section, we introduce our reversible data hiding scheme based on 3D-PEH
modification and a MLP as the pixel value predictor. As the hypothesis in Section 1 states,
we expect the performance of such a RDH scheme can be greatly enhanced by an accurate
MLP predictor. The characteristics of the correlation between the image pixel value and
the neighboring pixels is used, so that the accuracy of pixel prediction can be hopefully
improved due to a better trained MLP model. This then leads to increased embedding
capacity. Overall, our proposed method includes four parts: the pre-processing phase, the
training and prediction phase, the embedding and shifting phase, and the extraction and
recovery phase. The flowchart of the proposed method is shown in Figure 2. We specify
the four phases in the following subsections.

Figure 2. The flowchart of our method.

3.1. The Pre-Processing Phase

The pixel values of the cover image will be modified by +1 or −1 when the secret
data embed based on 3D-PEH. Therefore, in order to avoid the overflow and underflow,
the cover image will be pre-processed. Amend the pixel with value 0 to 1, and the pixel
with value 255 to 254. Meanwhile, a location map is created to record these modified pixel
positions. The location map is a binary sequence, which can be losslessly compressed
to reduce its size. Then the secret data and the compressed location map are combined
(hereinafter referred to as secret data); thereby, the pre-processing phase has been completed.
After that, they will be embedded in the pre-processed cover image together.

3.2. The Training and Prediction Phase

The PEE method aims at the correlations between the pixels to derive accurate pre-
dictions where the prediction-errors are modified separately. However, the traditional
PEE method uses the same algorithm to predict pixels for all images. This results in poor
prediction accuracy and the prediction error increases as the image is relatively complex.
Therefore, our proposed method, which leverages the power of trained MLP model, can
predict the pixels of the cover image and significantly reduces the prediction-error so that
the embedding capacity can be hopefully increased.

In the MLP training stage, except for pixels located in borders, the pixels are scanned
from left to right and top to bottom to derive the cover sequence (y1, . . . , yn). Consider the
four-neighbor tuple (xtop, xbottom, xleft, xright} of a given pixel yi, shown in the left part of
the Figure 3. The four-neighbor tuple is used as input data of the neural network, and the
desired output value is yi.

The structure of an MLP neural network has one input layer, two hidden layers, and one
output layer, as shown in Figure 3. The input of four-neighbor tuples (xtop, xbottom, xleft, xright)
from the cover image is fed into the input layer of the MLP. Between the input and output
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layers, there have 100 and 200 neurons in two hidden layers, respectively. After the information
income is processed by the network, the output layer of the neural network provides one
output ỹi as the predicted value by the MLP, and the corresponding yi in the cover image is
used as reference data. We use the mean squared error (MSE) as the loss function which is
calculated by taking the average squared difference between the predicted pixel value and the
reference pixel value. The MSE function is defined as the Equation (1). Apparently, there is no
prediction errors if and only if the MSE value is 0.

MSE =
1
N

·
N

∑
i=1

(ỹi − yi)
2. (1)

Here, N is the number of data points, ỹi is the value returned by the model, and yi is
the actual value for data point. Based on those input and reference data, the MLP network
is then trained with the loss function such that the edge weights of the MLP are optimized
to best associate given neighborhoods with the reference pixel values.

Figure 3. The structure of our MLP neural network.

3.3. The Embedding and Shifting Phase

After the training and prediction phase is completed, the scheme enters the embedding
and shifting phase. In order to embed the binary secret data in the cover image, the three-
dimensional PEH (3D-PEH) modification is used for embedding and shifting. However, in
the previous work on 3D-PEH modification, only the points located in the first octant of the
three-dimensional coordinate system are modified. This way of hiding secrets did not make
use of most of the space in the three-dimensional coordinate system for embedding; hence,
the embeddable pixels are relatively less and a less embedding capacity of images is made.
Instead, our proposed method embed secret data in eight octants of the three-dimensional
space, so that we possibly exploit much more space than previous approaches.

We adopt rhombus prediction and double-layered embedding, the same as the way
used in [5,24], for the implementation of the proposed method to generate non-overlapping
prediction-error triple (ex, ey, ez) = (e3i−2, e3i−1, e3i) for feasible i (i.e., each pixel in the triple
has four neighboring pixels). A 3D-PEH is generated by counting each non-overlapping
prediction error triple, and the data embedding is realized by the obtained 3D-PEH modifi-
cation using the designed reversible mapping. The data embedding procedure is briefly
described as follows.

First, adopt double-layered embedding to divide the cover image into two sets denoted
as “star”and “dot”(as shown in Figure 4a). The star and dot sets are embedded with half of
the secret data, separately. Except for the pixels located in borders, the pixels of the star
or dot set are scanned from left to right and top to bottom to derive the cover sequence
(p1, . . . , pn). The scan orders for star and dot pixels are shown in Figure 4b,c.
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Figure 4. (a) Star/dot pixels partition. (b) Scan order for star pixels. (c) Scan order for dot pixels.

Then, the 4-neighbor pixels of each pi are introduced to the trained MLP to obtain its
predicted value p̂i. The predicted value is used to determine the prediction-error sequence
(e1, . . . , en), and the sequence is divided into the prediction-error triples ex, ey, ez. The
prediction-error ei can be obtained as

ei = pi − p̂i. (2)

Lastly, modify each prediction-error triple (ex, ey, ez) to be (e∗x, e∗y , e∗z ) and get ( p̃x, p̃y,
p̃z) = ( p̂x + e∗x, p̂y + e∗y , p̂z + e∗z ) to embed data based on the 3D-PEH in the method shown
in Tables 3–5. The 3D-PEH mapping method is divided into seven types: Type A to Type G.

Table 3. Type A–C of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with embedding as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

A (ex, ey, ez) = (0, 0, 0)

[0], [0], [0]
[0], [0], [1]
[0], [1], [0]
[0], [1], [1]
[1], [0], [0]
[1], [0], [1]

3

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0,−1, 0)
(1, 0, 0)
(0, 0,−1)

(px, py, pz)
(px, py, pz + 1)
(px, py + 1, pz)
(px, py − 1, pz)
(px + 1, py, pz)
(px, py, pz − 1)

A (ex, ey, ez) = (0, 0, 0) [1], [1] 2 (−1, 0, 0) (px − 1, py, pz)

B (ex, ey, ez) = (±1,±1,±1)
[0]
[1] 1

(±1,±1,±1)
(±2,±2,±2)

(px, py, pz)
(px ± 1, py ± 1, pz ± 1)

C ex 	= 0, (ey, ez) = (0, 0) [1], [1], [1] 3 (ex ± 1,−1, 0) (px ± 1, py − 1, pz)

C ex 	= 0, (ey, ez) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(ex ± 1, 0, 0)
(ex ± 1, 0, 1)
(ex ± 1, 1, 0)
(ex ± 1, 0,−1)

(px ± 1, py, pz)
(px ± 1, py, pz + 1)
(px ± 1, py + 1, pz)
(px ± 1, py, pz − 1)

C ey 	= 0, (ex, ez) = (0, 0) [1], [1], [1] 3 (−1, ey ± 1, 0) (px − 1, py ± 1, pz)

C ey 	= 0, (ex, ez) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0, ey ± 1, 0)
(0, ey ± 1, 1)
(1, ey ± 1, 0)
(0, ey ± 1,−1)

(px, py ± 1, pz)
(px, py ± 1, pz + 1)
(px ± 1, py ± 1, pz)
(px, py ± 1, pz − 1)

C ez 	= 0, (ex, ey) = (0, 0) [1], [1], [1] 3 (−1, 0, ez ± 1) (px − 1, py, pz ± 1)

C ez 	= 0, (ex, ey) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0, 0, ez ± 1)
(0, 1, ez ± 1)
(1, 0, ez ± 1)
(0,−1, ez ± 1)

(px, py, pz ± 1)
(px, py + 1, pz ± 1)
(px + 1, py, pz ± 1)
(px, py − 1, pz ± 1)
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Table 4. Type D–F of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with embedding as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

D (ex, ey, ez) = (0,±1,±1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0,±1,±1)
(0,±2,±2)
(1,±2,±2)
(−1,±2,±2)

(px, py, pz)
(px, py ± 1, pz ± 1)

(px + 1, py ± 1, pz ± 1)
(px − 1, py ± 1, pz ± 1)

D (ex, ey, ez) = (±1, 0,±1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(±1, 0,±1)
(±2, 0,±2)
(±2, 1,±2)
(±2,−1,±2)

(px, py, pz)
(px ± 1, py ± 1, pz)

(px ± 1, py ± 1, pz + 1)
(px ± 1, py − 1, pz ± 1)

D (ex, ey, ez) = (±1,±1, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(±1,±1, 0)
(±2,±2, 0)
(±2,±2, 1)
(±2,±2,−1)

(px, py, pz)
(px ± 1, py ± 1, pz)

(px ± 1, py ± 1, pz + 1)
(px ± 1, py ± 1, pz − 1)

E ex = 0, ey, ez /∈ {0,±1} [0], [0]
[0], [1] 2

(0, ey ± 1, ez ± 1)
(1, ey ± 1, ez ± 1)

(px, py ± 1, pz ± 1)
(px + 1, py ± 1, pz ± 1)

E ex = 0, ey, ez /∈ {0,±1} [1] 1 (−1, ey ± 1, ez ± 1) (px − 1, py ± 1, pz ± 1)

E ey = 0, ex, ez /∈ {0,±1} [0], [0]
[0], [1] 2

(ex ± 1, 0, ez ± 1)
(ex ± 1, 1, ez ± 1)

(px ± 1, py, pz ± 1)
(px ± 1, py + 1, pz ± 1)

E ey = 0, ex, ez /∈ {0,±1} [1] 1 (ex ± 1,−1, ez ± 1) (px ± 1, py − 1, pz ± 1)

E ez = 0, ex, ey /∈ {0,±1} [0], [0]
[0], [1] 2

(ex ± 1, ey ± 1, 0)
(ex ± 1, ey ± 1, 1)

(px ± 1, py ± 1, pz)
(px ± 1, py ± 1, pz + 1)

E ez = 0, ex, ey /∈ {0,±1} [1] 1 (ex ± 1, ey ± 1,−1) (px ± 1, py ± 1, pz − 1)

F |ex| > 1, (ey, ez) = (±1,±1)
[0]
[1] 1

(ex ± 1,±1,±1)
(ex ± 1,±2,±2)

(px ± 1, py, pz)
(px ± 1, py ± 1, pz ± 1)

F |ey| > 1, (ex, ez) = (±1,±1)
[0]
[1] 1

(±1, ey ± 1,±1)
(±2, ey ± 1,±2)

(px, py ± 1, pz)
(px ± 1, py ± 1, pz ± 1)

F |ez| > 1, (ex, ey) = (±1,±1)
[0]
[1] 1

(±1,±1, ez ± 1)
(±2,±2, ez ± 1)

(px, py, pz ± 1)
(px ± 1, py ± 1, pz ± 1)

Table 5. Type G of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with shifting as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

G
ex, ey, ez 	= 0,

and
(ex, ey, ez) /∈ TypeB, F

– – (ex±1, ey±1, ez±1) (px±1, py±1, pz±1)

Figure 5 visualizes the mapping how the secret data are embedded. The goal of such
visualization is to provide an intuitive way to verify the reversibility of the our proposed
method. First of all, there are seven types of embedding in the proposed method, the
mapping relationship of Type A, B, ..., and G can be visualized as shown in Figure 5. An
arrow with the starting point x to the end point y represents the data x transforms to the
data y in this mapping. That is, the prediction-error groups ex, ey, ez and the cover pixel
groups px, py, pz are modified by type A to type F according to the condition of the secret
which will be embedded. For example, Type A could hide data by transforming (0, 0, 0) into
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (0, 0,−1), and (−1, 0, 0). Therefore, Figure 5a
shows the six arrows which starts from (0, 0, 0) to the destinations (0, 0, 0), (0, 0, 1), (0, 1, 0),
(0,−1, 0), (1, 0, 0), (0, 0,−1), and (−1, 0, 0), respectively. Therefore, one can check if the
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mapping for data hiding is revertible by checking if one point in the mapping diagram can
be reached by multiple points.

(a) Type-A (b) Type-B

(c) Type-C (d) Type-D

(e) Type-E (f) Type-F

Figure 5. Cont.
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(g) Type-G

Figure 5. The 3D-PEH mappings for the proposed scheme.

After the embedding and shifting phase, the stego-image embedded with secret data
will be obtained. Then, the stego-image and the trained MLP model are sent to the receiver
side through the communication channel.

Example 1. Consider the cover image P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161,
25, 71, 86, 95, 47}, the secret bits S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}, and the prediction error
E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}.

• Step 1:

1. Get the three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 0, 0).
This is a Type-A case.

2. Get three bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the first two bits are [0], [0]. Since
the secret bits are [0], [0], [0], we have (e∗x, e∗y , e∗z ) = (0, 0, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}
and derive ( p̃x, p̃y, p̃z) = (210, 99, 131) + (0, 0, 0) = (210, 99, 131).

The results of this step are E∗ = {0, 0, 0, . . .} and p̃x = {210, 99, 131, . . .}.
• Step 2:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 0, 0).
This is a Type-A case.

2. Get two bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}. Since the secret bits are [1], [1], we
have (e∗x, e∗y , e∗z ) = (−1, 0, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (65, 72, 162) + (−1, 0, 0) = (64, 72, 162).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, . . .} and p̃x = {210, 99, 131, 64, 72, 162, . . .}.
• Step 3:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (1, 1,−1).
This is a Type-B case.

2. Get one bit from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}. Since the secret bit is [0], we have
(e∗x, e∗y , e∗z ) = (1, 1,−1).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}
and derive ( p̃x, p̃y, p̃z)= (17, 19, 25) + (0, 0, 0) = (17, 19, 25).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, . . .} and p̃x = {210, 99, 131, 64,
72, 162, 17, 19, 25, . . .}.
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• Step 4:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (1, 0, 0).
This is a Type-C case.

2. Get three bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the secret bits are [1], [1], [1]. Since
the secret bit is [1], [1], [1], we have (e∗x, e∗y , e∗z ) = (2,−1, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (161, 25, 71) + (1,−1, 0) = (162, 24, 71)

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, . . .} and p̃x = {210, 99, 131,
64, 72, 162, 17, 19, 25, 162, 24, 71, . . .}.

• Step 5:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 1, 0).
This is a Type-C case.

2. Get two bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the secret bits are not [1], [1], [1].
Since the secret bit is [1], [0], we have (e∗x, e∗y , e∗z ) = (1, 2, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (86, 95, 47) + (1, 1, 0) = (87, 96, 47).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0} and p̃x = {210, 99,
131, 64, 72, 162, 17, 19, 25, 87, 96, 47}.

3.4. The Extraction and Recovery Phase

Through the communication channel, the stego-image and the trained MLP model
are received. Next, we consider the secret data extraction from the stego-image and the
stego-image recovery. The scheme then enters the extraction and recovery phase.

In the extraction and recovery stage, the procedure of the secret data extraction and
the stego-image recovery is similar to the procedure of embedding and shifting. The secret
data extraction process is briefly described as follows.

First, rhombus prediction and double-layered embedding is adopted to divide the
stego-image into two sets denoted as “star”and “dot” (as shown in Figure 4a), and half of
the secret data will be extracted from the star and dot sets, respectively. Except for the pixels
located in borders, the pixels of the star or dot set are scanned from top-left to bottom-right
to derive the stego sequence (p′1, . . . , p′n).

Then, the 4-neighbor dots of each p′i are introduced to the trained MLP to obtain its
predicted value p̂′i. The predicted value is used to determine the prediction-error sequence
(e′1, . . . , e′n), and the sequence is divided into the prediction-error triples (e′x, e′y, e′z). The
prediction-error e′i can be obtained as

e′i = p′i − p̂′ i.

Finally, each recovered triple (p′x, p′y, p′z) is extracted based on the 3D-PEH as the
method shown in Table 6–8. The 3D-PEH recovery method is divided into seven types:
Type A′ to Type G′. Besides, (e′x, e′y, e′z) should be the prediction-errors between the “marked
pixels” (in the stego-image) and the prediction of the “marked pixels”. When the prediction-
error e′i is 1, the recovered value is pi = p′i − 1, and when the prediction-error e′i is −1, the
recovered value is pi = p′i + 1.

The secret data bits are extracted by type A′ to type G′ according to the condition of
the prediction-error group and the stego pixel group (p′x, p′y, p′z) is recovered to the recover
pixel groups that have the same pixel values as the cover pixel groups (px, py, pz) . In
addition, the type G′ has no embedded data bits, so only recover the stego pixel groups to
the recover pixel groups without secret data extraction.
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Table 6. Type A′–C′ of the The extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple (p′x, p′y, p′z) in different types of the proposed method with embedding
as the data embedding operations on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

A′

(e′x, e′y, e′z) = (0, 0, 0)
(e′x, e′y, e′z) = (0, 0, 1)
(e′x, e′y, e′z) = (0, 1, 0)
(e′x, e′y, e′z) = (0,−1, 0)
(e′x, e′y, e′z) = (1, 0, 0)
(e′x, e′y, e′z) = (0, 0,−1)
(e′x, e′y, e′z) = (0,−1, 0)

[0], [0], [0]
[0], [0], [1]
[0], [1], [0]
[0], [1], [1]
[1], [0], [0]
[1], [0], [1]
[1], [1]

(0, 0, 0)

(p′x, p′y, p′z)
(p′x, p′y, p′z − 1)
(p′x, p′y − 1, p′z)
(p′x, p′y + 1, p′z)
(p′x − 1, p′y, p′z)
(p′x, p′y, p′z + 1)
(p′x, p′y + 1, p′z + 1)

B′ (e′x, e′y, e′z) = (±1,±1,±1)
(e′x, e′y, e′z) = (±2,±2,±2)

[0]
[1] (±1,±1,±1)

(p′x, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

C′

|e′x| > 1, (e′y, e′z) = (−1, 0)
|e′x| > 1, (e′y, e′z) = (0, 0)
|e′x| > 1, (e′y, e′z) = (0, 1)
|e′x| > 1, (e′y, e′z) = (1, 0)
|e′x| > 1, (e′y, e′z) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(e′x ± 1, 0, 0)

(p′x ± 1, p′y + 1, p′z)
(p′x ± 1, p′y, p′z)
(p′x ± 1, p′y, p′z − 1)
(p′x ± 1, p′y − 1, p′z)
(p′x ± 1, p′y, p′z + 1)

C′

|e′y| > 1, (e′x, e′z) = (−1, 0)
|e′y| > 1, (e′x, e′z) = (0, 0)
|e′y| > 1, (e′x, e′z) = (0, 1)
|e′y| > 1, (e′x, e′z) = (1, 0)
|e′y| > 1, (e′x, e′z) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0, e′y ± 1, 0)

(p′x + 1, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z − 1)
(p′x − 1, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z + 1)

C′

|e′z| > 1, (e′x, e′y) = (−1, 0)
|e′z| > 1, (e′x, e′y) = (0, 0)
|e′z| > 1, (e′x, e′y) = (0, 1)
|e′z| > 1, (e′x, e′y) = (1, 0)
|e′z| > 1, (e′x, e′y) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0, 0, e′z ± 1)

(p′x + 1, p′y, p′z ± 1)
(p′x, p′y, p′z ± 1)
(p′x, p′y − 1, p′z ± 1)
(p′x − 1, p′y, p′z ± 1)
(p′x, p′y + 1, p′z ± 1)

Table 7. Type D′–F′ of the the extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple (p′x, p′y, p′z) in different types of the proposed method with embedding
as the data embedding operations on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

D′
(e′x, e′y, e′z) = (0,±1,±1)
(e′x, e′y, e′z) = (0,±2,±2)
(e′x, e′y, e′z) = (1,±2,±2)
(e′x, e′y, e′z) = (−1,±2,±2)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0,±1,±1)

(p′x, p′y, p′z)
(p′x, p′y ± 1, p′z ± 1)
(p′x − 1, p′y ± 1, p′z ± 1)
(p′x + 1, p′y ± 1, p′z ± 1)

D′
(e′x, e′y, e′z) = (±1, 0,±1)
(e′x, e′y, e′z) = (±2, 0,±2)
(e′x, e′y, e′z) = (±2, 1,±2)
(e′x, e′y, e′z) = (±2,−1,±2)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(±1, 0,±1)

(p′x, p′y, p′z)
(p′x ± 1, p′y, p′z ± 1)
(p′x ± 1, p′y − 1, p′z ± 1)
(p′x ± 1, p′y + 1, p′z ± 1)

D′
(e′x, e′y, e′z) = (±1,±1, 0)
(e′x, e′y, e′z) = (±2,±2, 0)
(e′x, e′y, e′z) = (±2,±2, 1)
(e′x, e′y, e′z) = (±2,±2,−1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(±1,±1, 0)

(p′x, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z − 1)
(p′x ± 1, p′y ± 1, p′z + 1)

E′
e′x = 0, |e′y| > 1
e′x = 1, |e′z| > 1
e′x = −1, (e′y, e′z) 	= (±2,±2)

[0], [0]
[0], [1]
[1]

(0, e′y ± 1, e′z ± 1)
(p′x, p′y ± 1, p′z ± 1)
(p′x − 1, p′y ± 1, p′z ± 1)
(p′x, p′y ± 1, p′z ± 1)
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Table 7. Cont.

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

E′
e′y = 0, |e′x| > 1
e′y = 1, |e′y| > 1
e′y = −1, (e′x, e′z) 	= (±2,±2)

[0], [0]
[0], [1]
[1]

(e′x ± 1, 0, e′z ± 1)
(p′x ± 1, p′y, p′z ± 1)
(p′x ± 1, p′y − 1, p′z ± 1)
(p′x ± 1, p′y + 1, p′z ± 1)

E′
e′z = 0, |e′x| > 1
e′z = 1, |e′y| > 1
e′z = −1, (e′x, e′y) 	= (±2,±2)

[0], [0]
[0], [1]
[1]

(e′x ± 1, e′y ± 1, 0)
(p′x ± 1, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z − 1)
(p′x ± 1, p′y ± 1, p′z + 1)

F′ |e′x| > 2, (e′y, e′z) = (±1,±1)
|e′x| > 2, (e′y, e′z) = (±2,±2)

[0]
[1] (e′x ± 1,±1,±1)

(p′x ± 1, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

F′ |e′y| > 2, (e′x, e′z) = (±1,±1)
|e′y| > 2, (e′x, e′z) = (±2,±2)

[0]
[1] (±1, e′y ± 1,±1)

(p′x, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

F′ |e′z| > 2, (e′x, e′y) = (±1,±1)
|e′z| > 2, (e′x, e′y) = (±2,±2)

[0]
[1] (±1,±1, e′z ± 1)

(p′x, p′y, p′z ± 1)
(p′x ± 1, p′y ± 1, p′z ± 1)

Table 8. Type G′ of the The extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple p′x, p′y, p′z in different types of the proposed method with no embedded
data bit on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

G′ |e′x| > 1, |e′y| > 1, |e′z| > 1,
(e′x, e′y, e′z) /∈ TypeB, F no embedded data bit (e′x ± 1, e′y ± 1, e′z ± 1) (p′x ± 1, p′y ± 1, p′z ± 1)

Through the extraction and recovery phase, the secret data and the recovered image
are obtained.

Example 2. Let P
′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}, and E

′
= {0, 0, 0,

−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}.

• Step 1:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e

′
x, e

′
y, e

′
z) =

(0, 0, 0). This is a Type-A
′

case. The extracted secret bits are (0, 0, 0).
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (210, 99, 131).

The results of this step are S = {0, 0, 0, . . .} and P = {210, 99, 131, . . .}.
• Step 2:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e

′
x, e

′
y, e

′
z) =

(−1, 0, 0). This is a Type-A
′

case. The extracted secret bits are [1], [1].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (64 + 1, 72, 162) = (65, 72, 162).

The results of this step are S = {0, 0, 0, 1, 1, . . .} and P = {210, 99, 131, 65, 72, 162 . . .}.
• Step 3:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e

′
x, e

′
y, e

′
z) =

(1, 1,−1). This is a Type-B
′

case. The extracted secret bits are [0].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (17, 19, 25).

The results of this step are S = {0, 0, 0, 1, 1, 0, . . .} and P = {210, 99, 131, 65, 72, 162, 17,
19, 25 . . .}.
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• Step 4:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e

′
x, e

′
y, e

′
z) =

(2,−1, 0). This is a Type-C
′

case. The extracted secret bits are [1], [1], [1].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (162 − 1, 24 + 1, 71) = (161, 25, 71).

The results of this step are S = {0, 0, 0, 1, 1, 0, 1, 1, 1, . . .} and P = {210, 99, 131, 65, 72,
162, 17, 19, 25, 161, 25, 71 . . .}.

• Step 5:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e

′
x, e

′
y, e

′
z) =

(1, 2, 0). This is a Type-C
′

case. The extracted secret bits are [1], [0].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (87 − 1, 96 − 1, 47) = (86, 95, 47).

The results of this step are S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} and P = {210, 99, 131, 65, 72,
162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.

4. Computational Complexity

Assume that the image has height M and width N respectively. In the pre-processing
phase (where a lossless compression is used for the location map; however, we can assume
that it can be done in time linearly in the number of pixels if we do not require the space
usage as small as possible), training-and-prediction phase, embedding-and-shifting phase
and extraction and recovery phase, the computational complexity is basically O(MN)
because there are O(MN) pixels to be scanned for a constant number of times. We remark
here that though the structure of the MLP neural network is fixed so that this part con-
tributes a constant factor in the complexity, such a constant factor hidden in the asymptotic
notation can actually be huge. More specifically, for each input data point (i.e., a set of four
pixels) fed to the input layer of the MLP neural network in one iteration, there are 100× 200
multiplications required to compute the activation of all the neurons.

5. Experimental Results

The experimental results are shown in this section. Six grayscale images of size 512-
by-512, including Lena, Baboon, Boat, Peppers, Airplane (F-16), and House, are used in
our experiments. The cover images and the stego-images which are embedded 10,000 bits
of secret data are shown in Figure 6 . In addition, the variations in image quality under
different embedding capacities are compared (as shown in Figure 7) . The most common
strategy to measure the image quality is the calculation of Peak Signal to Noise Ratio
(PSNR) function which is defined as

PSNR = 10 · log10

(
255 · 255

MSE

)
,

MSE =
1

MN
·

M

∑
i=1

N

∑
j=1

(xi,j − x′i,j)
2.

The results of the testing image (Lena) is presented in Figure 7. In addition, from
the line chart can be observed that when the embedding capacity is less than 60,000 bits,
the PSNR will decrease steadily. However, when the embedding capacity is more than
60,000 bits, PSNR will begin to decline relatively quickly.
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(a) Lena (b) Baboon

(c) Boat (d) Peppers

(e) Airplane (F-16) (f) House

Figure 6. The cover images and the stego-images (embed 10,000 bits).

(a) PSNR (db) (b) Embedding Capacity (bits)

Figure 7. PSNR (dB) and embedding capacity (bits) of the proposed scheme, for image Lena.

5.1. Performance Comparison between the Proposed Method and Baseline Approaches

In this subsection, the proposed method is compared with the previously mentioned
schemes. The compared results divide into two parts: maximum embedding capacity and
embedding capability in different embedding capacities. The comparison results show
that the proposed method has better embedding capacity, and the image qualities are still
maintained well.
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5.1.1. Maximum Embedding Capacity

We compared the embedding capacity and the image quality when the cover image
was embedded once from beginning to end. The comparison is between the proposed
method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5].
Shown in Table 9 is the comparison of maximum embedding capacity for six test images
between the proposed method and the other schemes . In addition, the Table 10 is the
comparison of PSNR for maximum embedding capacity between the proposed method
and the other schemes.

Table 9. Comparison of maximum embedding capacity (bits) for six test images between the proposed
method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5].

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 2785 10,139 24,255 7964 59,751
Baboon 2717 4069 9885 990 19,136

Boat 5796 7193 17,295 2923 37,938
Peppers 2753 8591 19,687 3040 35,402

Aiprplain (F-16) 8155 15,797 39,843 21,300 66,465
House 7336 12,585 36,710 20,448 71,373

Average 4923.67 9729.00 24,612.50 9444.17 48,344.17

From the results in Table 9, whether in a smooth image (like image Lena) or in a
complex image (like image Baboon), the proposed method has a better embedding capacity.

According to Table 10, the average PSNR of the stego-image among the previous
schemes [5,21,46,47] and the proposed method are 53.04 dB, 51.75 dB, 51.61 dB, 63.72 dB,
and 48.55 dB, respectively. Clearly, the larger the embedding capacity is, the lower the
quality of the image we get. Although the PSNR of the proposed method is lower than
other methods, the embedding capacity of it is much more than other methods. According
to the above results, when the cover image is only embedded once, our proposed method
can have the maximum embedding capacity and maintain good image quality.

Table 10. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for maximum embedding capacity.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 53.70 51.72 51.60 62.16 48.64
Baboon 51.96 51.35 51.34 70.84 48.26

Boat 51.97 51.52 51.47 66.26 48.41
Peppers 52.49 51.60 51.51 65.92 48.39

Aiprplain (F-16) 54.21 52.16 51.90 58.27 48.75
House 53.91 52.14 51.83 58.86 48.84

Average 53.04 51.75 51.07 63.72 48.55

5.1.2. Embedding Capability in Different Embedding Capacities

In this section, the variations in image quality under different embedding capacities
between the proposed method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21],
and Cai et al. [5] are compared. The image quality comparison for six test images in
different embedding capacities between the proposed method and the other schemes are
shown in Tables 11–13 . In addition, the performance comparisons between the proposed
method and other related researches are shown in Figure 8 as line graphs.
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(a) Lena (b) Baboon

(c) Boat (d) Peppers

(e) Airplane (F-16) (f) House

Figure 8. Performance comparisons among the proposed method and other approaches on differ-
ent images.

Table 11. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 1000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 53.75 63.17 66.84 71.30 69.62
Baboon 50.47 55.81 58.59 70.78 57.90

Boat 52.07 60.28 64.63 70.96 64.97
Peppers 50.14 61.14 64.93 70.94 63.61

Aiprplain (F-16) 54.46 63.29 66.68 71.28 66.21
House 54.11 67.52 72.41 72.32 68.51

Average 52.50 61.87 65.68 71.26 65.14

137



Appl. Sci. 2022, 12, 2502

Table 12. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 5,000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 47.81 55.14 59.50 54.14 60.59
Baboon 44.41 47.23 53.89 – 52.52

Boat 51.99 52.98 56.55 – 57.27
Peppers 44.08 53.96 57.82 61.52 57.00

Airplane (F-16) 54.31 57.34 60.50 64.29 59.86
House 53.98 56.60 64.53 65.28 63.48

Average 49.43 53.88 58.80 63.81 58.45

Table 13. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 10,000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena – 51.79 55.90 60.32 57.15
Baboon – – 50.93 – 50.62

Boat 48.24 46.25 53.35 – 54.00
Peppers – 48.66 54.53 – 54.11

Airplane (F-16) 48.10 54.47 57.87 61.43 57.18
House 48.35 52.80 61.09 62.25 60.68

Average 48.23 50.79 55.61 61.33 55.62

5.2. Comparison between the Proposed Method and the Different Embedding Methods with
Different Octant Embed Number

In this subsection, the variations in image quality under different embedding capacities
between the proposed method and the different embedding methods are compared. The
different embedding methods are generated by reducing the octant embed number of the
3D-PEH in the proposed method. The comparison results are shown in Figure 9.

(a) Embedding capacity range: 10 to 100 (b) Embedding capacity range: 1000 to 10,000

(c) Embedding capacity range: 5000 to 50,000

Figure 9. PSNR with different embedding methods and capacity ranges for the image Lena.
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According to the above results, when the bits of embedded secret data are few, the
distortion of the image can be slightly reduced by embedding the secret in fewer octants.
Thus, the reducing effect is limited. Conversely, when the bits of embedded secret data is
larger, the better quality of the image can be kept by embedding secret in more octants of
the 3D-PEH. It can be expected that the more bits of embedded secret data, the larger gap
between different embedding methods occurs. Therefore, we consider embedding secret
data in eight octants in the proposed method.

6. Conclusions

Machine learning, especially deep learning, has made significant progress in many
research areas and applications such as visual recognition, image classification and image
processing, etc. However, to the best of our knowledge, no deep learning approaches have
been successfully applied to RDH schemes which require images to be completely restored
and secret information to be extracted. This motivates us to apply such approaches to RDH.
In this paper, we propose a reversible data hiding scheme based on three-dimensional
prediction-error histogram modification and MLP networks. We utilize a trained MLP
neural network to predict pixel values and combining with PEE to achieve RDH. In addition,
the proposed method of modifying the three-dimensional prediction-error histogram can
better utilize the space in the three-dimensional coordinates for data embedding. Evaluation
of the quality and embedding capacity of the stego-images shows that the proposed method
still maintains a good PSNR and increases the maximum embedding capacity which
is 1.9–9.8 times of previous methods. Nevertheless, the proposed method still has its
disadvantages. Specifically, training the neural network and predicting pixels bit-by-bit
are both time-consuming. Developing methods to enhance the efficiency of the proposed
method, such as reducing the training time and predicting multiple bits at once, deserves
to be further investigated in future works. Moreover, this work focused on proposing a
novel reversible data hiding scheme which trains multilayer perceptrons by utilizing the
correlation between image pixel values and their adjacent pixels so that the accurate pixel
predictions can be achieved. There should be a trade-off between the performance and
the fragility. For a future research direction, it is worthy to discuss the impact of fragility
caused by transmission errors.
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Abstract: The rapid evolution of industrial components, the paradigm of Industry 4.0, and the
new connectivity features introduced by 5G technology all increase the likelihood of cybersecurity
incidents. Such incidents are caused by the vulnerabilities present in these components. Designing
a secure system is critical, but it is also complex, costly, and an extra factor to manage during the
lifespan of the component. This paper presents a model to analyze the known vulnerabilities of
industrial components over time. The proposed Extended Dependency Graph (EDG) model is based
on two main elements: a directed graph representation of the internal structure of the component, and
a set of quantitative metrics based on the Common Vulnerability Scoring System (CVSS). The EDG
model can be applied throughout the entire lifespan of a device to track vulnerabilities, identify new
requirements, root causes, and test cases. It also helps prioritize patching activities. The model was
validated by application to the OpenPLC project. The results reveal that most of the vulnerabilities
associated with OpenPLC were related to memory buffer operations and were concentrated in the
libssl library. The model was able to determine new requirements and generate test cases from
the analysis.

Keywords: CPE; CVE; CVSS; CWE; CAPEC; directed graph; IACS; cybersecurity; vulnerability
assessment; security metrics; IEC 62443; OpenPLC

1. Introduction

Industrial components are the driving force of almost every industrial field, such as
automotive, energy production, and transportation [1–6]. These types of components are
rapidly evolving [7,8] and increasing in number [9]. This increase is related to several
factors: (1) the reuse of open-source hardware and software, (2) new connectivity features,
and (3) more complex systems.

Open-source hardware and software, and Commercial Off-The-Shelf (COTS) compo-
nents are being integrated to speed up their development [10–12]. COTS are easy to use,
but they can introduce vulnerabilities, creating potential entry points for attackers [13,14].

Industrial components are providing more advanced connectivity features, enabling
new automation applications, services, and data exchange. This new connectivity, boosted
by the fifth generation (5G) of wireless technology for cellular networks, will further open
the window of exposure to any threat [6,9,15,16].

The complexity of industrial systems is also increasing with the integration of new
trends, such as the Internet of Things (IoT) [16–19], cloud computing, Artificial Intelligence
(AI) [19,20], and big data. The extensive use of these technologies further opens the
windows for attackers [21–26]. Complexity is a critical aspect of industrial components
design because it is closely related to the number of vulnerabilities [27,28].
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This scenario points to security as a key aspect of industrial components. Moreover,
numerous attacks have been reported targeting industrial enterprises across the globe since
2010 [29]. An exponential rise in such attacks is predicted for future years [30,31].

Although great efforts are being made to develop new and better ways to analyze
vulnerabilities [32,33], to measure them (e.g., Common Vulnerabilities and Exposures
(CVE) [34], Common Vulnerability Scoring System (CVSS) [35–37], or Common Weakness
Enumeration (CWE) [38,39]), or to aggregate them [40], to the best of our knowledge,
existing models do not cover the entire life cycle of industrial components. Performing a
vulnerability analysis at a single point in time (e.g., during development or when a product
has been released) is not enough for industrial components, and their long lifespan has to be
considered [41,42]. Furthermore, both software and hardware should be considered, given
the strong bonding between hardware and software in industrial components [43–46].

In the present paper, we propose an Extended Dependency Graph (EDG) model that
performs continuous vulnerability assessment to determine the source and nature of vul-
nerabilities and enhance security throughout the entire life cycle of industrial components.
The proposed model is built on a directed graph-based structure, and a set of metrics based
on globally accepted security standards.

This paper is structured as follows: First, the related work is reviewed in Section 2.
Then, the main pieces of the proposed model are defined in Section 3. Second, to demon-
strate the potential of this proposal, the proposed model is applied to a real use case in
Section 4. Finally, conclusions and future work of this research are described in Section 5.

2. Related Work

This section will review the current status of vulnerability assessment. This review aims
to find similar approaches from the literature, including the current standard and metrics.

2.1. Vulnerability Analysis in Security Standards

Industry is currently making a significant effort to incorporate security aspects into
the development of industrial components, which has led to a set of standards, such as
the Common Criteria and ISA/IEC 62443. This review is focused on how these standards
conduct vulnerability analysis, the use of metrics, their management of the life cycle of
the device, the techniques that they propose, and the security evaluation of both software
and hardware.

2.1.1. ISA/IEC 62443

ISA/IEC 62443 constitutes a series of standards, technical reports, and related in-
formation that define the procedures and requirements for implementing electronically
secure Industrial Automation and Control Systems (IACSs) [47]. As expressed by this
standard, security risk management shall jointly and collaboratively be addressed by all
the entities involved in the design, development, integration, and maintenance of the
industrial and/or automation solution (including subsystems and components) to achieve
the required security level [48].

This joint effort is reflected in the organization of the documents of the standard, which
is divided into four parts:

1. Part 1—General: Provides background information such as security concepts, termi-
nology, and metrics;

2. Part 2—Policies and procedures: Addresses the security and patch management
policies and procedures;

3. Part 3—System: Provides system development requirements and guidance;
4. Part 4—Component: Provides product development and technical requirements,

which are intended for product vendors.

The ISA/IEC 62443-4-1 technical document is divided into eight practices, which
specify the secure product development life cycle requirements for both the development
and the maintenance phases [49]. The “Practice 5—Security verification and validation
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testing” (SVV) section of this document specifies that a process shall be employed to identify
and characterize potential security vulnerabilities in the product, including known and
unknown vulnerabilities [50,51]. Two requirements in Practice 5 are in charge of the task of
analyzing vulnerabilities, as follows:

• Requirement SVV-3. Vulnerability Testing [49]. This requirement states that a process
shall be employed to perform tests that focus on identifying and characterizing poten-
tial and known security vulnerabilities in the product (i.e., fuzz testing, attack surface
analysis, black box known vulnerability scanning, software composition analysis, and
dynamic runtime resource management testing).

• Requirement SVV-4. Penetration Testing [49]. This requirement states that a pro-
cess shall be employed to identify and characterize security-related issues via tests
that focus on discovering and exploiting security vulnerabilities in the product (i.e.,
penetration testing).

Although the ISA/IEC 62443-4-1 document considers the possibility of analyzing
and characterizing the vulnerabilities of an industrial component, it does not propose
a technique to perform this task but instead refers to other standards for vulnerability
handling processes [52]. In addition, it does not indicate how the data obtained from the
analysis should be interpreted, and it does not define metrics or reference values for the
current state of compliance with the requirement. Finally, it does not take into account
neither the dependencies among the assets of the industrial component (dependency trees)
or their evolution of the number of vulnerabilities over time.

2.1.2. Common Criteria

The Common Criteria (CC) for Information Technology Security Evaluation (ISO/IEC
15408) is an international standard that has a long tradition in computer security certifi-
cation [53]. CC is a framework that provides assurance that the processes of specification,
implementation, and evaluation of a computer security product have been conducted in a
rigorous, standard, and repeatable manner at a level that is commensurate with the target
environment for use.

To describe the rigor and depth of an evaluation, the CC defines seven Evaluation
Assurance Levels (EALs) on an increasing scale [53], from EAL1 (the most basic) to EAL7
(the most stringent security level). It is important to notice that the EAL levels do not mea-
sure security itself. Instead, emphasis is given to functional testing, confirming the overall
security architecture and design, and performing some testing techniques (depending on
the EAL to be achieved).

The CC defines five tasks in the vulnerability assessment class, which manage the
deepness of the vulnerability assessment. The higher the EAL to be achieved, the greater
the number of tasks in the list to be performed [54]:

1. Vulnerability survey,
2. Vulnerability analysis,
3. Focused vulnerability analysis,
4. Methodical vulnerability analysis, and
5. Advanced methodical vulnerability analysis.

Every task checks for the presence of publicly known vulnerabilities. Penetration
testing is also performed. The main difference among the five levels of vulnerability
analysis described here is the deepness of the analysis of known vulnerabilities and the
penetration testing.

The CC scheme defines the general activities, but it does not specify how to perform
them, therefore no technique for analyzing vulnerabilities is proposed. The evaluator
decides the most appropriate techniques for each test in each scenario and for each device,
which adds a large degree of subjectivity to the evaluation. Furthermore, dependencies
among vulnerabilities and assets are not considered in the analysis. Moreover, the CC
does not define a procedure to manage the life cycle of the device. In other words, when
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updated, the whole device has to be reevaluated [55–58]. Finally, although the usage of
metrics is encouraged by the CC, it does not propose any explicitly defined metric to be
used during the evaluation.

2.2. Vulnerability Analysis Methodologies

Vulnerability analysis is a key step towards the security evaluation of a device. Conse-
quently, many research efforts have been focused on solving this issue. In this subsection,
the most relevant works related to vulnerability analysis are reviewed.

Homer et al. [59] present a quantitative model for computer networks that objectively
measures the likelihood of a vulnerability. Attack graphs and individual vulnerability
metrics, such as CVSS and probabilistic reasoning are applied to produce a sound risk
measurement. However, the main drawback is that their work is only applicable to com-
puter networks. Although they propose new metrics based on the CVSS for probabilistic
calculations, they do not integrate standards such as CAPEC to enhance their approach
centered on possible attacks and privilege escalation. They also fail to establish a relation-
ship among existing vulnerabilities, and they fail to obtain the source problem causing
each vulnerability.

Zhang et al. [60,61] developed a quantitative model that can be used to aggregate vul-
nerability metrics in an enterprise network based on attack graphs. Their model measures
the likelihood that breaches can occur within a given network configuration, taking into
consideration the effects of all possible interplays between vulnerabilities. This research
is centered on computer networks, using attack graphs. Although the proposed model
is capable of managing shared dependencies and cycles, only CVSS-related metrics are
used. Moreover, this model assumes that the attacker knows all of the information in the
generated attack graphs. Finally, the method that they proposed for the aggregation of met-
rics is not valid for vulnerability analysis, because the dependency between vulnerabilities
reflected in attacks graphs are is not trivially obtained.

George et al. [30] propose a graph-based model to address the security issues in
Industrial IoT (IIoT) networks. Their model is useful because it represents the relationships
among entities and their vulnerabilities, serving as a security framework for the risk
assessment of the network. Risk mitigation strategies are also proposed. Finally, the
authors discuss a method to identify the strongly connected vulnerabilities. However, the
main drawback of this work is that each node of the generated attack graph represents a
vulnerability instead of representing a device or an asset of that device. This leads to a loss
of information in the analysis because there is no way to know which vulnerability belongs
to which device. Moreover, these methods need to know the relationships among present
vulnerabilities in the devices. This information is not trivially obtained, and a human in the
loop is needed. The proposals of [62,63] follow a similar graph-based approach to study
the effects of cascade failures in the power grid and a subway network.

Poolsappasit et al. [64] propose a risk management framework using Bayesian net-
works that enables a system administrator to quantify the chances of network compromise
at various levels. The authors are able to model attacks on the network, and also to integrate
standardized information of the vulnerabilities involved, such as their CVSS score. Al-
though their proposed model lends itself to dynamic analysis during the deployed phase of
the network, these results can only be applied to computer networks where the relationship
among the existing vulnerabilities is known. Meanwhile, the prior probabilities that are
used in the model are assigned by network administrators, and hence are subjective. The
proposed model also has some issues related to scalability.

Muñoz-González et al. [65] propose the use of efficient algorithms to make an exact
inference in Bayesian attack graphs, which enables static and dynamic network risk assess-
ments. This model is able to compute the likelihood of a vulnerability and can be extended
to include zero-day vulnerabilities, attacker’s capabilities, or dependencies between vul-
nerability types. Although this model is centered on studying possible attacks, it fails to
integrate standards (such as CAPEC) that are related to attack patterns. Moreover, the
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generated graphs are focused on privilege escalation, trust, and users, rather than including
information about vulnerabilities and the analyzed device.

Liu et al. [66] carry out a detailed assessment of vulnerabilities in IoT-based criti-
cal infrastructures from the perspectives of applications, networking, operating systems,
software, firmware, and hardware. They highlight the three key critical infrastructure
IoT-based cyber-physical systems (i.e., smart transportation, smart manufacturing, and
smart grid). They also provide a broad collection of attack examples upon each of the key
applications. Finally, the authors provide a set of best practices and address the necessary
steps to enact countermeasures for any generic IoT-based critical infrastructure system.
Nevertheless, their proposal is focused on attacks and countermeasures, and it leaves aside
the inner analysis of the targets. Continuous evaluation over time is not considered in this
proposal, and no enhancements of the development process are generated. On the other
hand, Pascale et al. [67] proposed the analysis in both spatial and temporal dimensions for
intrusion detection.

Hu et al. [68] propose a network security risk assessment method that is based on the
Improved Hidden Markov Model (I-HMM). The proposed model reflects the security risk
status in a timely and intuitive manner, and it detects the degree of risk that different hosts
pose to the network. Although this is a promising approach, it is centered on computer
networks and is at a higher abstraction level. No countermeasure or enhancement in the
development process is proposed or generated.

Zografopoulos et al. [13] provide a comprehensive overview of the Cyber-Physical
System (CPS) security landscape, with an emphasis on Cyber-Physical Energy Systems
(CPES). Specifically, they demonstrate a threat modeling methodology to accurately repre-
sent the CPS elements, their interdependencies, as well as the possible attack entry points
and system vulnerabilities. They present a CPS framework that is designed to delineate the
hardware, software, and modeling resources that are required to simulate the CPS. They
also construct high-fidelity models that can be used to evaluate the system’s performance
under adverse scenarios. The performance of the system is assessed using scenario-specific
metrics. Meanwhile, risk assessment enables system vulnerability prioritization, while
factoring in the impact on the system’s operation. Although this research work is compre-
hensive, it is focused on enhancing the existing adversary and attack modeling techniques
of CPSs of the energy industry. Moreover, their model does not integrate the internal
structure of the target of evaluation, and it does not take both software and hardware into
account for the evaluation. Continuous evaluation over time is not considered. Finally,
they do not propose countermeasures or any kind of mechanism to enhance the security or
the development of the CPSs.

Most of the works reviewed here are more focused on modeling threats and attacks,
instead of using their results to propose enhancements during other steps in the life cycle
of CPS (e.g., development, and maintenance). It is worth noting that they are still more
focused on software evaluation, while hardware is usually neglected in their proposals.

As shown in this review, most of the research has adopted dependency trees, attack
graphs, or directed graphs as the main tool to manage and assess vulnerabilities in computer
networks. Graphs are an efficient technique to represent the relationships between entities,
and they can also effectively encode the vulnerability relations in the network. Furthermore,
the analysis of the graph can reveal the security-relevant properties of the network. For fixed
infrastructure networks, graphical representations, such as attack graphs, are developed to
represent the possible attack paths by exploiting the vulnerability relationships. For these
reasons, vulnerability analysis techniques based on directed graphs are frequently found in
the literature [69]. However, despite their potential, these analysis techniques have been
relegated to vulnerability analysis in computer networks. Graph-based analysis has rarely
been applied to industrial components.
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2.3. Security Metrics

Standards of measurement and metrics are a powerful tool to manage security and
for making decisions [70–72]. If carefully designed and chosen, metrics can provide a
quantitative, repeatable, and reproducible value. This value is selected to be related
to the property of interest of the systems under test (e.g., number and distribution of
vulnerabilities). The use of metrics enables results to be compared over time, and among
different devices. In addition, they can also be used to systematically improve the security
level of a system or to predict this security level at a future point in time.

Although the capabilities of metrics have been demonstrated, they are not free of
drawbacks. In our previous research work [72], we performed a systematic review of the
literature and standards. To detect possible gaps, our objective was to find which types of
metrics have been proposed and in which fields have been applied. This research work
concludes that, in general, standards encourage the use of metrics, but they do not usually
propose any specific set of metrics. If metrics are proposed, then they are conceived to be
applied at a higher level (i.e., organization level), and then cannot be applied to industrial
components. This type of metric is usually related to measuring the return on security
investment, security budget allocation, and reviewing security-related documentation.

Our previous results also highlight that scientific papers have focused their efforts
on software-related metrics: 77.5% of the analyzed metrics were exclusively applicable
to software (e.g., lines of code, number of functions, and so on), whereas only 0.6% were
related exclusively to hardware (e.g., side-channel vulnerability factor metric). In addition,
14.8% of them could be applied to both software and hardware (e.g., the historically
exploited vulnerability metric that measures the number of vulnerabilities exploited in the
past), and the remaining 7.1% are focused on other aspects, such as user usability. This
shows that there is a clear lack of hardware security metrics in the literature, and the main
contributions are centered on software security.

Other research works also reveal common problems across security metrics [73,74]:

• Hardly any security metric has a solid theoretical foundation or empirical evidence in
support of the claimed correlation.

• Many security metrics lack an adequate description of the scale, unit, and reference
values to compare and interpret the results.

• Only a few implementations or programs were available to test these security metrics
and only one of the analyzed papers performed some kind of benchmarking or
comparison with similar metrics.

• The information provided in the analyzed papers is insufficient to understand whether
the proposed metrics are applicable in a given context, or how to use them.

Under this scenario, it seems reasonable that future research should be focused on the
development of a convincing theoretical foundation, empirical evaluation, and systematic
improvement of existing approaches, in an attempt to solve the lack of widely accepted
solutions. In this research work, metrics constitute a key element. They are developed to
analyze the distribution of vulnerabilities and to track their evolution over time.

3. Proposed Approach

In this research work, we propose an EDG model for the continuous assessment of
vulnerabilities over time in industrial components. The proposed model is intended to:

• Identify the root causes and nature of vulnerabilities, which will enable the extraction
of new requirements and test cases.

• Support the prioritization of patching.
• Track vulnerabilities during the whole lifespan of industrial components.
• Support the development and maintenance of industrial components.

To accomplish this task, the proposed model comprises two basic elements: (1) the
model itself, which is capable of representing the internal structure of the system under test;
(2) a set of metrics, which allow conclusions to be drawn about the origin, distribution, and
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severity of vulnerabilities. Both the model and metrics are very flexible and exhibit some
properties that make them suitable for industrial components, and can also be applied to
enhance the ISA/IEC 62443 standard.

The content in this section is distributed into four sections, namely:

1. Model: The proposed model is explained, together with the systems in which it can
be applied and the algorithms that are used to build it.

2. Metrics: Metrics are a great tool to measure the state of the system and to track its
evolution. The proposed metrics and their usage are described in this section.

3. Properties: The main features of the proposed model and metrics (e.g., granularity
of the analysis, analysis over time, and patching policy prioritization support) are
described in detail.

4. Applicability: Even though the reviewed standards exhibit some gaps, the proposed
model aims to serve as the first step towards generating a set of tools to perform a
vulnerability analysis in a reliable and continuous way. This last section will discuss
the requirements of the ISA/IEC 62443-4-1 that can be enhanced using our model.

3.1. Description of the Model

The proposed model is based on directed graphs. It requires knowledge of the internal
structure of the device to be evaluated (i.e., the assets, both hardware and software, that
comprise it and the relationships between them). This section defines the most basic
elements that make up the model, the algorithms to build it for any given system, and its
graphical representation.

Definition 1. A System Under Test (SUT) (following the denomination in the ISA/IEC 62443
standard [47], the SUT may be an industrial component, a part of an industrial component, a set of
industrial components, a unique technology that may never be made into a product, or a combination
of these) is now represented by an Extended Dependency Graph (EDG) model G = (〈A, V〉, E)
that is based on directed graphs, where A and V represent the nodes of the graphs, and E represents
its edges or dependencies:

• A = {a1, . . . , an} represents the set of assets in which the SUT can be decomposed, where n is
the total number of obtained assets. An asset a is any component of the SUT that supports
information-related activities and includes both hardware and software [75–77]. Each asset is
characterized by its corresponding Common Platform Enumeration (CPE) [78–80] identifier,
while its weaknesses are characterized by the corresponding CWE identifier. In the EDG model,
the assets are represented by three types of nodes in the directed graphs (i.e., root nodes, asset
nodes, and cluster).

• V = {v1, . . . , vq} represents the set of known vulnerabilities that are present in each asset of
A, where q is the total number of vulnerabilities. They are characterized by the corresponding
CVE and CVSS values. In the EDG model, vulnerabilities are represented using two types of
nodes in the directed graphs (i.e., known vulnerability nodes and clusters).

• E = {eij|∀i, j ∈ {1, . . . , n + q} such that i 	= j} represents the set of edges or dependencies
among the assets, and between assets and vulnerabilities. eij indicates that a dependency
relation is established from asset ai to asset aj. Dependencies are represented using two
different types of edges in the EDG (i.e., normal dependency and deprecated asset/updated
vulnerability edges).

In other words, the EDG model can represent a system, from its assets to its vulnerabil-
ities, and its dependencies as a directed graph. Assets and vulnerabilities are represented
as nodes, whose dependencies are represented as arcs in the graph. The information in the
EDG is further enhanced by introducing metrics.

The EDG model of a given SUT will include four types of node and two types of
dependency. The graphical representation for each element is shown in Table 1. Figure 1
shows an example of a simple EDG and its basic elements. All of the elements that make
up an EDG will be explained in more detail below:
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Figure 2. Creating clusters. Application of the two proposed criteria to the creation of clusters to
simplify the graph, where (a) represents the initial EDG: (1) Establishing a threshold to select which
vulnerability stays outside the cluster (upper side). In step (b1), potential clusters are detected
according to the established threshold, while in (c1) the final EDG with the generated clusters is
shown. The severity value (CVSS) for v31 and v32 is supposed to be lower than the establish threshold.
(2) Choosing the absence of vulnerabilities as the criterion to create clusters (lower side). In step (b2),
nodes with no vulnerability are detected. In (c2), the final EDG with the generated clusters is shown.
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Table 1. Overview of the information that is necessary to define each of the EDG elements.

Symbol Notation Meaning Values

� A(t) Root Node /
Device Node CPEcurrent

© a(t) Asset Node CPEprevious, CPEcurrent, CWEai (t)

a(t) Cluster {CPEprevious, CPEcurrent, CWEai (t)}, {CVEai (t), CVSSvi (t), CAPECwi (t)}, {Dependencies}

� v(t) Known Vulnerability Node CVEai (t), CVSSvi (t), CAPECwi (t)

−→ e(t) Dependency Relation —

��� e(t) Updated Asset /
Patched Vulnerability —

3.1.1. Types of Node

The EDG model uses four types of nodes:

• Root nodes represent the SUT,
• Asset nodes represent each one of the assets of the SUT,
• Known vulnerability nodes represent the vulnerabilities in the SUT, and
• Clusters summarize the information in a subgraph.

Root nodes (collectively, set GR) are a special type of node that represents the whole
SUT. Any EDG starts in a root node and each EDG will only have one single root node,
with an associated timestamp (t) that indicates when the last check for changes was done.
This timestamp is formatted following the structure defined in the ISO 8601 standard for
date and time [81].

Asset nodes (collectively, set GA) represent the assets that comprise the SUT. The
EDG model does not impose any restrictions on the minimum number of assets that the
graph must have. However, the SUT can be better monitored over time when there is a
higher number of assets. Moreover, the results and conclusions obtained will be much
more accurate. Nevertheless, each EDG will have as many asset nodes as necessary, and
the decomposition of assets can go as far and to as low-level as needed.

Each asset node node will be characterized by the following set of values:

• CPEcurrent: Current value for the CPE. This points to the current version of the asset it
refers to.

• CPEprevious: Value of the CPE that identifies the previous version of this asset. This
will be used by the model to trace back all the versions of the same asset over time,
from the current version to the very first version.

• CWEai (t): Set of all the weaknesses that are related to the vulnerabilities present in
the asset. The content of this list can vary depending on the version of the asset.

Figure 3 illustrates how the tracking of the versions of an asset using CPE works. On
the one hand, version ai is the current version of asset a. It contains its current CPE value
and the CPE of its previous version. On the other hand, a2 and a1 are previous versions of
asset a. The last value of a1 points to a null value. This indicates that it is the last value in
the chain, and therefore the very first version of the asset a.
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Figure 3. Tracking dependencies between the previous and current CPE values for asset a.

Known vulnerability nodes (collectively, set GV) represent a known vulnerability
present in the asset that it relates to. Each asset will have a known vulnerability node for
each known vulnerability belonging to that asset. Assets alone cannot tell how severe or
dangerous the vulnerabilities might be, so unique characterization of vulnerabilities is
crucial [30].

To identify each known vulnerability node, each will be characterized by the following
set of features (formally defined in Section 3.2:

• CVEai (t): This serves as the identifier of a vulnerability of asset ai.
• CVSSvi (t): This metric assigns a numeric value to the severity of vulnerability vi.

Each CVE has a corresponding CVSS value.
• CAPECwi (t): Each vulnerability (CVE) is a materialization of a weakness (CWE) wi

that can be exploited using a concrete attack pattern. In many cases, each CWE has
more than one Common Attack Pattern Enumeration and Classification (CAPEC) [82,83]
associated. Consequently, this field is a set that contains all the possible attack patterns
that can exploit the vulnerability that is being analyzed.

Clusters (collectively, set GS) are a special type of node that summarizes and simplifies
the information contained in a subgraph in an EDG. Figure 2 shows how the clusters work.

To identify each cluster, and to be able to recover the information that they sum-
marize, each is characterized by the data that define each of the elements that they
contain: {CPEprevious, CPEcurrent, CWEai (t)}, (CVEai (t), CVSSvi (t), {CAPECwi (t)}), and
their dependencies.

Two types of criteria can be used to create clusters and to simplify the obtained graph
Figure 2:

1. Absence of vulnerabilities: Using this criterion, clusters will group all nodes that
contain no associated vulnerabilities.

2. CVSS score below a certain threshold: With this criterion, a threshold for the CVSS
scores will be chosen. Nodes whose CVSS score is less than the defined threshold will
be grouped into a cluster.

3.1.2. Types of Edge

In the EDG model, edges play a key role in representing dependencies. Two types of
edge can be identified:

• Normal dependencies relate two assets, or an asset and a vulnerability. They represent
that the destination element depends on the source element. Collectively, they are
known as set GD.

• Deprecated asset or patched vulnerability dependencies indicate when an asset or a
vulnerability is updated or patched. They represent that the destination element used
to depend on the source element. Collectively, they are known as set GU .

The possibility of representing old dependencies brings the opportunity to reflect
the evolution of the SUT over time. When a new version of an asset is released, or a
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vulnerability is patched, the model will be updated. Their dependencies will change
from a normal dependency to a deprecated asset or vulnerability dependency to reflect
that change.

3.1.3. Conditions of Application of EDGs

The EDG model is applicable to SUTs that meet the following set of criteria:

• Software and hardware composition: In our approach, the model is created by means
of a white-box analysis. The absence of or impossibility to perform a white-box
analysis limits the ability to create an accurate model. Some knowledge about the
internal structure and code is expected. This information is usually only known by
the manufacturer of the component unless the component is publicly available or
open-source. It should be also possible to decompose the SUT into simpler assets to
generate a relevant EDG.

• Existence of publicly known vulnerabilities: The EDG model focuses on known vul-
nerabilities. This is not critical because many industrial components use commercial
or open-source elements. The SUT must be composed of assets for which public
information is available. If the majority of SUT assets are proprietary, or the SUT is an
ad hoc development that is never exposed, then the generated EDG will not evolve.
Therefore, the analysis will not be relevant.

3.1.4. Steps to Build the Model

This section explains the process and algorithms that were used to build the corre-
sponding EDG of a given SUT. The main scenarios that can be found are also described.

Before extracting useful information about the SUT, the directed graph associated with
the SUT has to be built. This comprises several steps, which are described in the following
paragraphs (see the flowchart in Figures 4 and 5):

Step 1—Decompose the SUT into assets. For the model to work properly, it relies on
the SUT being able to be decomposed into assets. With this in mind, the first step involves
obtaining the assets of the SUT, either software or hardware. In the CC, this process is
called modular decomposition of the SUT [53]. Ideally, every asset should be represented
in the decomposition process, but this is not compulsory for the model to work properly.
Each one of the assets obtained in this step will be represented as an asset node. In this
step, the dependencies among the obtained assets are also added as normal dependencies.

Step 2—Assign a CPE to each asset. Once the assets and their dependencies have been
identified, the next task is to assign the corresponding CPE identifier to each asset. If there
is no publicly available information of a certain asset, and therefore, it does not have a CPE
identifier, then it is always possible to generate one using the fields described in the CPE
naming specification documents [79] for internal use in the model.

Step 3—Add known vulnerabilities to the assets. In this step, the vulnerabilities
(CVEai (t)) of each asset are set. This is done by consulting public databases of known vul-
nerabilities [34,84] looking for existing vulnerabilities for each asset. When a vulnerability
is found, it is added to the model of the SUT, including its dependencies. If there were no
known vulnerabilities in an asset, then the asset would become the last leaf of its branch.
In this step, the corresponding value of the CVSS of each vulnerability is also added to
the model.

Step 4—Assign to each asset its weaknesses and possible CAPECs. After the vulnera-
bilities, the corresponding weaknesses to each vulnerability (CWEai (t)) are added, along
with the corresponding attack patterns (CAPECwi (t)) for each weakness. If there is no
known vulnerability in an asset, then there will be no weaknesses. Meanwhile, it would
be possible to have a known vulnerability in an asset, but no known weakness or attack
pattern for that vulnerability. Finally, more than one CAPEC can be assigned to the same
weakness. Consequently, it would be common to have a set of possible CAPECs that can be
used to exploit the same weakness. It is worth noting that not all of them could be applied
in every scenario.

153



Sensors 2022, 22, 2126

Step 5—Computing Metrics and tracking the SUT. At this point, the EDG of the SUT is
completed with all the public information that can be gathered. This last step is to calculate
the metrics defined (for further information, see Section 3.2), generate the corresponding
reports and track the state of the SUT for possible updates in the information of the model.
This step is always triggered when the SUT is updated. This can imply that a new asset can
appear, an old asset can disappear, an old vulnerability can be patched, or a new one can
appear in the SUT. All of these scenarios will be reflected in the model as they arise during
its life cycle.
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Figure 4. Algorithm to generate the initial EDG of a given SUT.

154



Sensors 2022, 22, 2126

a4

At

a1 a6

a2 a3 a5

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4 CPE6

CPE2
CPE3

CPE5

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4 CPE6

CPE2
CPE3

CPE5

CVE31 CVE32

CVE61

CVSS31 CVSS32

CVSS61

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4 CPE6

CPE2
CPE3

CPE5
CVE31 CVE32

CVE61

CVSS31 CVSS32

CVSS61

CWE61

CWE31
CWE32

CAPEC61
CAPEC62

CAPEC32CAPEC31
CAPEC31

CAPEC63

(a)

(b)

(c)

(d)

Figure 5. Example of the process of building the EDG model of a given SUT A. (a) Decompose of the
SUT into assets. (b) Assign a CPE to each asset. (c) Add known vulnerabilities. (d) Add weaknesses
and attack patterns.

3.2. Security Metrics

The EDG model that was proposed in the previous sections is by itself capable of
representing the internal structure of the SUT, and it can display it graphically for the user.
This representation not only includes the internal assets of the SUT, but also captures their
relationships, existing vulnerabilities, and weaknesses. Moreover, assets, vulnerabilities,
and weaknesses are easily identified using their corresponding CPE, CVE, and CWE values,
respectively. Altogether, this constitutes a plethora of information that the model can use
to improve the development and maintenance steps of the SUT, enhance its security, and
track its status during its whole life cycle. Metrics are a great tool to integrate these features
into the model.
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Metrics can serve as a tool to manage security, make decisions, and compare results
over time. They can also be used to systematically improve the security level of an industrial
component or to predict its security level at a future point in time.

In this section, the basic definitions that serve as the foundation of the metrics are
described. Then, the proposed metrics are introduced to complement the functionality of
the EDG model. The main feature of these metrics is that they all depend on time as a
variable, so it is possible to capture the actual state of the SUT, track its evolution over time,
and compare the results.

3.2.1. Basic Definitions

In this section, the basic concepts on which the definitions of the metrics will be based
are formalized.

Definition 2. The set of all possible weaknesses at a time t is represented as CWE(t), where

CWE(t) = {cwe1, . . . , cwem} (1)

and m is the total number of weaknesses at time t. This set contains the whole CWE database defined
by MITRE [38].

Definition 3. The set of all of the possible vulnerabilities at a time t is represented as CVE(t) where

CVE(t) = {cve1, . . . , cvep} (2)

and p is the total number of vulnerabilities. This set contains the whole CVE database defined by
MITRE [34].

Definition 4. The set of all possible attack patterns at a time t is represented as CAPEC(t), where

CAPEC(t) = {capec1, . . . , capecq} (3)

and q is the total number of attack patterns at time t. This set contains the whole CAPEC database
defined by MITRE [82].

Definition 5. The set of weaknesses of an asset ai at a time t is defined as

CWEai (t) = {cwej|cwej is in the asset ai at time t ∧ cwej ∈ CWE(t)

∧∀k 	= j, cwej 	= cwek}
(4)

From this expression, the set of all the weaknesses of a particular asset throughout its life cycle
is defined as

CWEai =
T⋃

t=1

CWEai (t) (5)

where |CWEai | is the total number of non-repeated weaknesses in its entire life cycle.

Definition 6. The set of vulnerabilities of an asset ai at a time t is defined as

CVEai (t) = {cvej|cvej is in the asset ai at time t ∧ cvej ∈ CVE(t)} (6)

From this expression, the set of vulnerabilities of an asset throughout its entire life cycle is
defined as

CVEai =
T⋃

t=1

CVEai (t) (7)

where |CVEai | is the total number of vulnerabilities in its entire life cycle.

156



Sensors 2022, 22, 2126

Definition 7. The set of weaknesses of a SUT A with n assets at a time t is defined as:

CWEA(t) =
n⋃

i=1

CWEai (t) (8)

Definition 8. The set of vulnerabilities of a SUT A with n assets at a time t is defined as:

CVEA(t) =
n⋃

i=1

CVEai (t) (9)

Definition 9. The set of vulnerabilities associated with the weakness cwej and to the asset ai at a
time t is defined as:

CVEai |cwej
(t) = {cvek|cvek associated with weakness cwej and to asset ai at time t} (10)

It is worth noting that CWE is used as a classification mechanism that differenti-
ates CVEs by the type of vulnerability that they represent. A vulnerability will usually
have only one associated weakness, and weaknesses can have one or more associated
vulnerabilities [85].

Definition 10. The partition j of an asset ai at time t conditioned by a weakness cwek is defined as

CVEai |cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CVEai (t)} (11)

Definition 11. The partition j of the SUT A at time t conditioned by a weakness cwek is defined as

CVEA|cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CVEA(t)} (12)

Definition 12. The set of attack patterns associated to a weakness wi at a time t is defined as

CAPECwi (t) = {capecj|capecj can exploit weakness wi at time

t ∧ capecj ∈ CAPEC(t)} (13)

.
Definition 13. The set of metrics that are defined in this research work based on the EDG model is
defined as

M = {m1, . . . , mr} (14)

where r is the total number of metrics. This set can be extended, defining more metrics according to
the nature of the SUT.

3.2.2. Metrics

This section will describe the metrics that were defined based on the EDG model
and the previous definitions. Although it might seem trivial, the most interesting feature
of these metrics is that they all depend on time. Using time as an input variable for the
computation of the metrics opens the opportunity to track results over time, compare
them, and analyze the evolution of the status of the SUT. Furthermore, some metrics take
advantage of time to generate an accumulated value, giving information about the life
cycle of the SUT. Table 2 shows all of the proposed metrics, their definition, and their
reference values.
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Table 2. Proposed metrics for the model.

Metric Definition Reference Value

V
U

LN
ER

A
BI

LI
T

IE
S

M0(A) = |CVEA(t)|
n(t) Arithmetic mean of vulnerabilities in the SUT

A, where n(t) is the number of assets in a SUT
at a time t. M0 shows how many vulnerabil-
ities would be present in each asset if they
were evenly distributed among the assets of
the SUT. The result of M0 can serve as a pre-
liminary analysis of the SUT, related to the
criticality of its state. From Equation (8).

M0 < 1: The number of vulnerabilities is
lower than the number of assets. M0 ≥ 1:
Every asset has at least one vulnerability.

M1(A, t) = |CVEA(t)| Number of vulnerabilities in a SUT A at time
t. From Equation (8).

Ideally, the values of M1 should be zero (no
vulnerability in A), but the lower the value of
M1, the better.

M2(A) = ∑T
t=1 |CVEA(t)| = ∑T

t=1 M1(A, t) Number of vulnerabilities in a SUT A
throughout its entire life cycle T. This metric
computes the accumulated value of the num-
ber of vulnerabilities of a SUT throughout its
entire life cycle. From Equation (8).

The lower the value of M2, the better.

M3(ai, t) = |CVEai (t)| Number of vulnerabilities in an asset ak at
time t The values of M3 can be useful during
a vulnerability analysis, or when performing
a penetration test, to identify the asset with
more vulnerabilities. From Equation (6).

Ideally, the value of M3 should be zero.

M4(ak, t) =
|CVEak (t)|

∑n
i=1 |CVEai (t)|

Relative frequency of vulnerabilities of the
asset ak at a time t. From Equation (6).

Ideally, the value of M4 should be zero, or
at least M4 ≤ 1

n(t) , being n(t) the number
of assets in the SUT. This value can also be
expressed as the percentage of vulnerabili-
ties of asset ai respect to the total number
of vulnerabilities in the SUT, M4(ak, t) =

|CVEak (t)|
∑n

i=1 |CVEai (t)|
·100

M5(ai, cwej, t) = |CVEai |cwej
(t)| Multiplicity of weakness cwej of the asset ai

at a time t. This metric represents the num-
ber of times a weakness is present among the
vulnerabilities of the asset ai. This is possible
because a vulnerability can have associated
the same weakness as other vulnerabilities.
From Equation (9).

Ideally, the value of M5 should be zero, or at

least, M5 ≤
|CVEA|cwej

(t)|
n(t) , being n(t) the num-

ber of assets in the SUT. The value of the met-
ric could be further narrowed by assuming
that cwej will be present in all but one asset, so

M5 ≤
|CVEA|cwej

(t)|
n(t)−1 to be in acceptable values.

M6(A, cwej, t) = |CVEA|cwej
(t)| Multiplicity of weakness cwej of the SUT A at

a time t. This metric represents the number
of times a weakness is present among the vul-
nerabilities of the SUT A. From Equation (11).

Ideally, the value of M6 should be zero.

W
EA

K
N

ES
SE

S M7(A, t) = |CWEA(t)| Number of weaknesses in a SUT A at time t.
From Equation (7).

Ideally, the value of M7 should be zero (no
weakness in A), but the lower the value of
M7, the better.

M8(A) = ∑T
t=1 |CWEA(t)| = ∑T

t=1 M7(A, t) Number of weaknesses in a SUT A through-
out its entire life cycle T. This metric com-
putes the accumulated value of weaknesses
of a SUT throughout its entire life cycle. From
Equation (7)

The lower the value of M8, the better.

In addition to the metrics in Table 2, the model allows the definition of other types
of metrics according to the analysis to be performed, and the nature of the SUT (e.g., the
vulnerability evolution function for SUT A up to time t for all vulnerabilities could be
defined as the linear regression of the total number of vulnerabilities in each time t for SUT
A, or using any other statistical model).

3.3. Properties

Together, the EDG model and the defined metrics exhibit a series of characteristics that
make them suitable for vulnerability assessment. These properties represent an advantage
over the techniques reviewed in the state of the art, including automatic inference of root
causes, spatial and temporal distribution of vulnerabilities, and prioritization of patching,
which will be described in the following subsections.

3.3.1. Automatic Inference of Root Causes

Each CWE natively contains information that is directly related to the root cause of a
vulnerability. From this information, new requirements and test cases can be proposed.

3.3.2. Spatial and Temporal Distribution of Vulnerabilities

The key feature of the proposed model is the addition of the temporal dimension
in the analysis of vulnerabilities. This makes it possible to analyze the location of the
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vulnerabilities both in space (in which asset) and time (their recurrence), which allows us
to track the state of the device throughout the whole life cycle. This approach also enables
further analysis of the SUT, by updating data in the model, such as new vulnerabilities that
are found or new patches that are released.

Each time that a new vulnerability is found, or an asset is patched (i.e., via an update),
the initial EDG is updated to reflect those changes. An example of this process can be seen
in Figure 6.

At time t0, the initial graph of the SUT A is depicted in Figure 6. Because there is no
vulnerability at that time, this graph can be simplified using the cluster notation, with just
a cluster containing all assets. At time t1, a new vulnerability that affects the asset a2 is
discovered. At time t2, the asset a2 is updated. This action creates a new version of asset
a2, asset a3. Because the vulnerability was not corrected in the new update, both versions
contain the vulnerability that was initially presented in asset a2. Finally, at time t3, the asset
a3 is updated to its new version a4, and the vulnerability is corrected.

This approach enables a further analysis of the SUT, including updated data, according
to new vulnerabilities that are found or new patches that are released.
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Figure 6. Representation of the temporal behavior in the graphical model using the two kinds of
dependencies of the model. It is worth mentioning that these graphs could be further simplified by
taking advantage of the cluster notation, as shown at the bottom of this figure.

3.3.3. Patching Policies Prioritization Support

The proposed model is not only able to include known vulnerabilities associated with
an asset, but it also provides a relative importance sorting of vulnerabilities by CVSS. Rely-
ing on the resulting value, it is possible to assist in the vulnerability patching prioritization
process. Furthermore, the presence of an existing exploit for a known vulnerability can be
also be taken into account, when deciding which vulnerabilities need to be patched first. A
high CVSS value combined with an available exploit for a given vulnerability is a priority
when patching.

4. Real Use Case

In this section, we applied the EDG model to analyze the vulnerabilities of the Open-
PLC project. For the sake of simplicity, the use case focuses on version one (V1) of OpenPLC.
We centered the analysis on two of the assets that compose this version of the project:
libssl and nodejs.
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OpenPLC is the first functional standardized open-source Programmable Logic Con-
troller (PLC), both in software and hardware [86–89]. It was mainly created for research
purposes in the areas of industrial and home automation, the Internet of Things (IoT),
and SCADA. Given that it is the only controller that provides its entire source code, it
represents an engaging low-cost industrial solution—not only for academic research but
also for real-world automation [90,91].

4.1. Structure of OpenPLC

The OpenPLC project consists of three parts:

1. Runtime: It is the software that plays the same role as the firmware in a traditional
PLC. It executes the control program. The runtime can be installed in a variety of
embedded platforms, such as the Raspberry Pi, and in Operating Systems (OSs) such
as Windows or Linux.

2. Editor: An application that runs on a Windows or Linux OS that is used to write and
compile the control programs that will be later executed by the runtime.

3. HMI Builder: This software is to create web-based animations that will reflect the
state of the process, in the same manner as a traditional HMI.

When installed, the OpenPLC runtime executes a built-in webserver that allows
OpenPLC to be configured and new programs for it to run to be uploaded. In this use case,
we focused the analysis on the runtime of OpenPLC V1.

4.2. Setup Through the Analysis

Ubuntu Linux was selected as the platform to install the runtime of OpenPLC V1.
Ubuntu Linux provides comprehensive documentation, previous versions are accessible,
and software dependencies can easily be obtained.

To make the analysis fair, a contemporary operating system was selected, according
to the version of Ubuntu that was available at the release time of OpenPLC V1. The Long
Term Support (LTS) version was chosen because industry tends to work with the most
stable version available of any software and security updates are provided for a longer
time. OpenPLC V1 was released in 2016/02/05, so we found that Ubuntu 14.04 LTS was
the most suitable version [92]. The setup consisted of OpenPLC installed on 14.04 LTS
Ubuntu Linux in a virtual machine. All configuration options were by default.

4.3. Building the EDG

We built the entire EDG for OpenPLC V1, which can be found in Appendix B. Never-
theless, for the sake of clarity, we restricted this analysis in two ways: (1) focusing on two
assets, libssl and nodejs; (2) integrating only security updates (discarding updates that
introduced more functionalities). Table 3 shows the updates and their date of availability for
both libssl [93] and nodejs [94] for Ubuntu 14.04 LTS. There were two security updates
available for the amd64 architecture for each asset. Figure 7 illustrates step by step the
partials EDG graphs, and Figure 8 shows the final EDG with all the updates merged in a
single graph.

Table 3. Update information of both libssl and nodejs.

Asset 1st Update Solved Vulnerabilities (CVSS) 2nd Update Solved Vulnerabilities (CVSS)

libssl 2014/04/07 CVE-2014-0076 (1.9)
CVE-2014-0160 (5.0)

2018/12/06 CVE-2018-5407 (1.9)
CVE-2018-0734 (4.3)

nodejs 2014/03/27 — 2018/08/10 CVE-2016-5325 (4.3)
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Figure 7. Temporal evolution of the EDG for OpenPLC V1 for both libss and nodejs.
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Figure 8. Final EDG for libssl and nodejs integrating all the updates for Ubuntu Linux 14.04 for
amd64 architecture.

4.4. Analysis of the EDG

Using Figure 8 as reference, we can analyze the obtained EDG:

1. Analysis of the induced EDG model: The structure, assets, and dependencies are the
focus of this first step.
We can observe that libssl is used by nodejs, and they are not at the same level of
the hierarchy. So vulnerabilities could propagate upwards through the EDG.

2. Vulnerability analysis: Vulnerability number, distribution, and severity are analyzed
in this step. A proposal for vulnerability prioritization is also generated.
We can highlight that nodejs had one vulnerability discovered after its first update,
whereas libssl had vulnerabilities in both periods of time. We could argue that, as
nodejs is the most accessible asset from the exterior, its vulnerabilities should be first
addressed, even though the associated CVSS is not the highest one.

3. Weaknesses analysis: Finally, the root cause of each vulnerability is found. In this
step, new requirements, test cases, and training activities are proposed based on the
results of the analysis.
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Table 4 shows the root cause for each vulnerability. Using this data, new requirements,
test cases, and training activities were proposed (see Appendix C).

Table 4. Relationship between vulnerabilities and weaknesses for both libssl and nodejs.

CVE CVSS CWE Description

CVE-2014-0076 1.9 CWE-310 Cryptographic Issues
CVE-2014-0160 7.5 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
CVE-2016-5325 6.1 CWE-113 Improper Neutralization of CRLF Sequences in HTTP Headers (’HTTP Response Splitting’)
CVE-2018-0734 5.9 CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CVE-2018-5407 4.7
CWE-203
CWE-200

Observable Discrepancy
Exposure of Sensitive Information to an Unauthorized Actor

5. Conclusions and Future Work

Vulnerability analysis is a critical task which ensures the security of industrial com-
ponents. The EDG model that we propose performs continuous vulnerability assessment
throughout the entire life cycle of industrial components. The model is built on a directed
graph-based structure and a set of metrics based on globally accepted security standards.
Metrics can be used by the model to improve the development process of the SUT, enhance
its security, and track its status. The key feature of the proposed model is the addition of
the temporal dimension in the analysis of vulnerabilities. The location of vulnerabilities
can be analyzed in both space (in which asset) and time (their recurrence), which allows
the state of the device to be tracked throughout the whole life cycle.

The model was successfully applied to the OpenPLC use case, which demonstrated its
advantages, applicability, and potential. The use case showed that the model can assist in
updating management activities, applying patching policies, launching training activities,
and generating new test cases, and requirements. This has significant implications for
cybersecurity evaluators, as it can serve as a starting point for identifying vulnerabilities,
weaknesses, and attack patterns.

Further research will enhance the EDG by adding a mathematical model to aggregate
the values of the CVSS metric for each asset, and a value for the whole SUT. This will
enable the comparison of different SUTs over time. More improvements will be made in
the prioritization of patching, taking into account the context and the functionalities of the
SUT. Finally, historical information about the developers can be integrated into the EDG
model to predict future vulnerabilities.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CC Common Criteria
CAPEC Common Attack Pattern Enumeration and Classification
COTS Commercial Off-The-Shelf
CPE Common Platform Enumeration
CPS Cyber-Physical System
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
EAL Evaluation Assurance Level
EDG Extended Dependency Graph
ES Embedded System
IACS Industrial Automation Control System
IoT Internet Of Things
PLC Programmable Logic Controller
SUT System Under Test

Appendix A. Applicability in the Context of ISA/IEC 62443

In this section, the potential application of the proposed EDG model to the existing
security standards is described. The proposed EDG model can be used isolated by itself, or
in combination with other techniques that complement the analysis. In this sense, the EDG
model can be used to enhance some tasks in the security evolution processes defined by
security standards.

The ISA/IEC 62443-4-1 standard specifies 47 process requirements for the secure
development of products used in industrial automation and control systems [49]. Thus, the
EDG model was developed to enhance the execution of one of those requirements defined
by the standard: the “SVV-3: Vulnerability testing” requirement, serving as a support
for the execution of Practice 5—Security Verification and Validation testing. According
to the SVV-3 requirement, both known and unknown vulnerability analysis has to be
performed. The EDG model proposed in this research work is intended to support the
identification of known vulnerabilities, their dependencies, and the possible consequences
of their propagation, yielding the opportunity to analyze them systematically. Nevertheless,
more requirements of the ISA/IEC 62443 can be mapped to one or more of the metrics
defined in this research work. Using this relationship, it is possible to apply the EDG model
to enhance the analysis and review of the following requirements:

Appendix A.1. Security Requirements—2: Threat Model (SR-2)

“A process shall be employed to ensure that all products have a threat model specific
to the current development scope of the product. The threat model shall be reviewed and
verified periodically” [49]. The proposed EDG model can serve as an abstraction of the
threat model that has to be obtained. Moreover, the standard states that this threat model
has to be reviewed periodically for updates. Given that the EDG of a given SUT evolves
with every update, the threat model would be always up-to-date. Potential threats and
their severity using the CVSS can also be analyzed with this proposal. Finally, these results
can be used to enhance the risk assessment of the SUT.

Appendix A.2. Security Management—13: Continuous Improvement (SM-13)

“A process shall be employed for continuously improving the secure development life
cycle” [49]. The EDG model can be used to identify recurrent issues in the development of
an industrial component, due to its ability to track the state of a SUT over time. Consider
the scenario where a piece of code contains an unknown vulnerability. For example, this
code can implement a communication protocol or the generation of a cryptographic key.
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If this piece of code is recurrently integrated into many types of devices, then when they
are released to the market, the end-users can identify that vulnerability and report it to the
product supplier. The EDG can reflect the presence of that vulnerability. If an EDG is done
for each type of device, then this problem can be detected beforehand. Using the CWE, the
root problem can be detected. With this information, new training and corrective actions
can be proposed to avoid this issue.

Appendix A.3. Specification of Security Requirements—5: Security Requirements Review (SR-5)

“A process shall be employed to ensure that security requirements are reviewed,
updated, and approved” [49]. As before, taking advantage of the previous scenario,
the information extracted from the generated EDG model can be used to propose new
requirements or to update the existing requirements.

Appendix A.4. Security Verification and Validation Testing—4: Penetration Testing (SVV-4)

“A process shall be employed to identify and characterize security-related issues via
tests that focus on discovering and exploiting security vulnerabilities in the product” [49].
The EDG model facilitates the identification of possible entry points to the SUT when carry-
ing out a penetration test. In addition, existing attack patterns (CAPEC) and weaknesses
(CWE) can serve as a starting point to discover unknown vulnerabilities and exploits.

Appendix A.5. Management of Security-Related Issues—3: Assessing Security-Related
Issues (DM-3)

“A process shall be employed for analyzing security-related issues in the product” [49].
When a new vulnerability is detected, end-users will report it to the product suppliers.
Then, the corresponding EDG model of that SUT will be updated to reflect that change.
This information, in addition to that previously contained in the EDG, can be used to obtain
the severity value of the discovered vulnerability using the CVSS. This also facilitates the
identification of root causes, related security issues, or the impact.

Table A1. Mapping between the developed metrics and the requirements they refer in the ISA/IEC
62443. SR (Security Requirements), SM (Security Management), SVV (Security Validation and
Verification), DM (Management of Security-Related Issues).

Metric SR-2 SR-5 SM-13 SVV-4 DM-3

M0(A) = |CVEA(t)|
n(t) � � � � �

M1(A, t) = |CVEA(t)| � � � � �
M2(A) = ∑T

t=1 |CVEA(t)| = ∑T
t=1 M1(A, t) � � � � �

M3(A, t) = |CVEai (t)| � � � � �
M4(ak, t) =

|CVEak (t)|
∑n

i=1 |CVEai (t)|
� � � � �

M5(ai, cwej, t) = |CVEai |cwej
(t)| � � � � �

M6(A, cwej, t) = |CVEA|cwej
(t)| � � � � �

M7(A, t) = |CWEA(t)| � � � � �
M8(A) =

⋃T
t=1 |CWEA(t)| =

⋃T
t=1 M7(A, t) � � � � �

Finally, the ISA/IEC 62443-4-2 document defines four types of components of an IACS
(i.e., software applications, embedded devices, host devices, network devices) [95]. The
proposed model is capable of representing the inherent complexity of each of them.

Appendix B. EDG for OpenPLC V1

This appendix contains the generated EDG for OpenPLC V1.
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Figure A1. EDG for OpenPLC V1. Notice that, for simplicity, CWE and CAPEC values are omitted,
and only the CPE identifier of the SUT is shown.

Appendix C. Proposed Requirements, Training, and Test Cases

In this appendix, we show the generated requirements, training, and test cases from
the EDG model of OpenPLC V1.

Table A2. An example of generated requirements for OpenPLC V1.

CWE ID Requirements

CWE-119 Use languages that perform their own memory
management.

CWE-119

Use libraries or frameworks that make it easier
to handle numbers without unexpected conse-
quences. Examples include safe integer han-
dling packages such as SafeInt (C++) or Inte-
gerLib (C or C++).

CWE-119, CWE-200
Use a CPU and operating system that offers
Data Execution Protection (NX) or its equiva-
lent.

CWE-190, CWE-200

Ensure that all protocols are strictly defined,
such that all out-of-bounds behaviors can be
identified simply, and require strict confor-
mance to the protocol.
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Table A2. Cont.

CWE ID Requirements

CWE-310

Clearly specify which data or resources are valu-
able enough that they should be protected by en-
cryption. Require that any transmission or stor-
age of this data/resource should use well-vetted
encryption algorithms. Up-to-date algorithms
must be used, and the entropy of the keys must
be sufficient for the application.

CWE-113 Use an input validation framework such as Struts
or the OWASP ESAPI Validation API.

CWE-113

Assume all input is malicious. Use an "accept
known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform
to specifications. Reject any input that does not
strictly conform to specifications, or transform it
into something that does.

CWE-113

Hard-code the search path to a set of known-safe
values (such as system directories), or only allow
them to be specified by the administrator in a con-
figuration file. Do not allow these settings to be
modified by an external party.

CWE-119

Run or compile the software using features or ex-
tensions that automatically provide a protection
mechanism that mitigates or eliminates buffer
overflows.

CWE-119

Replace unbounded copy functions with analo-
gous functions that support length arguments,
such as strcpy with strncpy. Create these if they
are not available.

Table A3. Example of proposed training for OpenPLC V1.

CWE ID Training

CWE-113, CWE-119

Identification of all potentially relevant properties
of an input (length, type of input, the full range of
acceptable values, missing or extra inputs, syntax,
consistency across related fields).

CWE-113, CWE-119 Input validation strategies.

CWE-113, CWE-119, CWE-200 Allowlists and Denylists.

CWE-113, CWE-119 Character encoding compatibility.

CWE-113, CWE-119

Buffer overflow detection during compilation
(e.g., Microsoft Visual Studio /GS flag, Fe-
dora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice).

CWE-113, CWE-119CWE-200 Secure functions, such as strcpy with strncpy. Cre-
ate these if they are not available.

CWE-113, CWE-119CWE-190 Secure programming: memory management.

CWE-113, CWE-119
Understand the programming language’s under-
lying representation and how it interacts with nu-
meric calculation.

CWE-113, CWE-119 System compartmentalization.

CWE-200, CWE-310 Certificate management.

CWE-200, CWE-310 Certificate pinning.

CWE-310 Encryption integration (do not develop custom or
private cryptographic algorithms).

CWE-310 Secure up-to-date cryptographic algorithms.

CWE-200 Shared resource management.

CWE-200 Thread-safe functions.
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Table A4. Example of generated test cases for OpenPLC V1.

Capec ID Test Cases

CAPEC-119
Check for buffer overflows through manipulation
of environment variables. This test leverages im-
plicit trust often placed in environment variables.

CAPEC-119 Static analysis of the code: secure functions and
buffer overflow.

CAPEC-119

Feed overly long input strings to the program in
an attempt to overwhelm the filter (by causing a
buffer overflow) and hoping that the filter does
not fail securely (i.e. the user input is let into the
system unfiltered)

CAPEC-119

This test uses symbolic links to cause buffer over-
flows. The evaluator can try to create or manip-
ulate a symbolic link file such that its contents
result in out-of-bounds data. When the target
software processes the symbolic link file, it could
potentially overflow internal buffers with insuffi-
cient bounds checking.

CAPEC-119 Static analysis of the code: secure functions and
buffer overflow.
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Abstract: With the rapid expansion of the use of smartphone devices, malicious attacks against
Android mobile devices have increased. The Android system adopted a wide range of sensitive
applications such as banking applications; therefore, it is becoming the target of malware that exploits
the vulnerabilities of the security system. A few studies proposed models for the detection of
mobile malware. Nevertheless, improvements are required to achieve maximum efficiency and
performance. Hence, we implemented machine learning and deep learning approaches to detect
Android-directed malicious attacks. The support vector machine (SVM), k-nearest neighbors (KNN),
linear discriminant analysis (LDA), long short-term memory (LSTM), convolution neural network-
long short-term memory (CNN-LSTM), and autoencoder algorithms were applied to identify malware
in mobile environments. The cybersecurity system was tested with two Android mobile benchmark
datasets. The correlation was calculated to find the high-percentage significant features of these
systems in the protection against attacks. The machine learning and deep learning algorithms
successfully detected the malware on Android applications. The SVM algorithm achieved the highest
accuracy (100%) using the CICAndMal2017 dataset. The LSTM model also achieved a high percentage
accuracy (99.40%) using the Drebin dataset. Additionally, by calculating the mean error, mean square
error, root mean square error, and Pearson correlation, we found a strong relationship between the
predicted values and the target values in the validation phase. The correlation coefficient for the
SVM method was R2 = 100% using the CICAndMal2017 dataset, and LSTM achieved R2 = 97.39%
in the Drebin dataset. Our results were compared with existing security systems, showing that the
SVM, LSTM, and CNN-LSTM algorithms are of high efficiency in the detection of malware in the
Android environment.

Keywords: android applications; malware; machine learning; deep learning; cybersecurity

1. Introduction

In recent years, the popularity of the Android operation system has attracted the
attention of malware developers, whose work has grown rapidly [1,2]. Many malware
developers focus on hacking mobile devices and changing them into bots. This allows
hackers to access the infected device and other connected devices and form botnets. Botnets
are used to execute different malicious attacks, such as distributed denial-of-service (DDoS)
attacks, sending spam, data theft, etc. The malicious botnet attacks are developed with
advanced techniques (e.g., multi-staged payload or self-protection), making it difficult to
identify the malware. This, in turn, poses major threats that require the design of effective
approaches to detect these attacks [3].

Android botnets are used to perform attacks on the targeted devices. DDos attacks
are achieved by flooding the target machine with superfluous requests and blocking
legitimate requests, thus, causing a failure of the targeted system and disruption of the
services [4]. Consequently, to protect against such attacks, machine learning methods are
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proven to be effective in detecting and tracking these threats in the internet of things [5,6].
Haystack [7] reported that a third-part of software-development companies manage 70% of
the mobile application and control the personal data of users. According to the AV-TEST
Security Institute [8], malicious programming increased, with 5.7 million malware Android
packages detected by Kaspersky in 2020, three times more than in 2019 (2.1 million). Figure 1
summarize the increase of malware installation packages for smartphone devices in the
last five years. Therefore, signature-based malicious installation packages for the extraction
of malware patterns relying on their characteristics can be an effective strategy to secure
mobile applications.

Figure 1. Malware installation packages for smartphone devices.

Malicious attacks occur in different enrolments with a variety of methods such as
fuzzing, denial of service, DDoS, port scanning, and probing [9]. These attacks can be
threatening to transport, application layers, or different protocols such as internet control
message protocol, file transfer protocol, user datagram protocol, simple mail transfer
protocol, transmission control protocol, hypertext transfer protocol, etc. Network-based
intrusion detection systems can be used to deal with such attacks by scanning the network
and detecting them [10].

Usually, in the Android system, security is in-built, where the sandboxing method
and permission system are designed to reduce the risk of Android applications [11]. The
former was developed using the Linux environment for running Android applications,
which allows users to enable permission for the installation of any Android application [12].
However, when updating or upgrading mobile applications, security and privacy features
such as time permission, background location, storage, etc., are changed, giving a timeframe
for malware attacks. It is possible to exploit Android vulnerabilities during the application
developed by users since the Google Play Store cannot detect malicious attacks after the
publication of the applications [13]. The percentage of Android malware is presented in
Figure 2.
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Figure 2. Percentage of Android malware [14].

Intrusion detection systems are developed using machine learning and deep learning
methods. However, the machine learning technique cannot cope with the huge traffic of
data flooding the system. Similarly, deep learning methods fail to provide low general-
ization errors due to the absence of optimization. Fixed Android botnet datasets make it
feasible to design detectors with high detection rates [15], but having complex traffic data
hinders the obtention of an accurate prediction rate. This has motivated the development
of techniques that are based on Android-malware neuro-evolution classification, thus,
providing the number of layers and neurons along with the detection process [16].

The present study aimed to extract static and dynamic features from unknown applica-
tions; these features show if a particular application is “normal” or “attack”. These features
are used to examine the performance of several machine learning and deep learning mod-
els, including the k-nearest neighbors (KNN) [17], support vector machine (SVM) [18],
convolutional neural networks (CNN) [19], dense neural networks [20], gated recurrent
units (GRU), long short-term memory (LSTM) [21], and the hybrid deep learning convolu-
tional neural networks long/short-term memory (CNN-LSTM) and convolutional neural
networks/gated recurrent units CNN-GRU [22] methods.

In this study, we investigated and estimated the performance of various machine
learning and deep learning algorithms in the detection of mobile malware attacks. This
study offers the optimal algorithms for the monitoring of Android applications against
malicious attacks. Thus, our research aims to contribute to this field with the following:

1. The development of intrusion detection in the Android system using various machine
learning and deep learning algorithms.

2. The proposed system was tested and evaluated using two standard Android datasets.
3. A comparison between the tested algorithms and different state-of-the-arts models

is presented.
4. The sensitivity analysis was used to find significant relationships between dataset

features and the proposed classes of the datasets.

2. Background of Study

This section offers an overview of previous research related to intrusion detection
systems, Android malware detection, and standard datasets of Android malicious at-
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tacks. Furthermore, it provides an overview of the machine learning and deep learning
approaches applied to the design of cybersecurity systems.

The regular improvement of sophisticated Android malware families, e.g., Chamois
malware, has made the task of detecting malicious attacks daunting. To tackle this, re-
searchers developed machine learning techniques that improved the available systems.
Recently, many studies have applied machine learning models for Android botnet detection,
such as linear regression, KNN [23], SVM, and decision trees (DT) algorithms [24]. Some of
these recent studies [25,26] used deep learning algorithms, although they do not provide a
thorough understanding of their effectiveness. Therefore, the current study compares with
deep learning models to examine their effectiveness in Android botnet detection with the
use of the available installation support center of expertise (ISCX) botnet dataset [27–29].

Kadir et al. [30] used deep learning models to analyze Android botnet attacks in an
attempt to understand the latter’s hidden features. The system was evaluated using the
ISCX Android botnet dataset, which contained 1929 samples. Anwar et al. [31] proposed an
Android botnet detection approach based on static functions. The features of permissions,
MD5 signatures, and broadcast receivers were combined and processed with machine
learning algorithms. The input data collected from the ISCX dataset were 1400 from differ-
ent botnet applications, with the system achieving an accuracy of 95.1% in distinguishing
Android botnet attacks [32].

Several machine learning algorithms were proposed to classify normal and abnormal
botnet attacks. In one study, the results indicated that the random forest approach had
0.972% precision and 0.96% recall. In [33], machine learning approaches were proposed for
detecting Android botnets. The ISCX dataset consisted of 1635 benign and 1635 attacks.
The random forest tree model achieved 97%. In another study [34], the DT, Naive Bayes,
and random forest machine learning algorithms were used to detect Android attacks. The
information gain method was used to select the significant features. The random forest
algorithm achieved a 94.6% accuracy. Karim et al. [35] proposed the static analysis approach
to explore the pattern of the features of Android botnet attacks. The features were compared
with the intrusion application using the Drebin dataset [36]. Artificial intelligence (AI)
approaches using a knowledge-based system were used to secure Android mobiles against
malicious attacks [37,38]. Inspired by a meta-heuristic rule and based on fuzzy logic,
intrusion detection and data mining systems were developed [39], while machine learning
approaches were applied in the development of IDS applications [40–42]. The design of
IDS systems employed the artificial bee colony [43], particle swarm optimization [44], grey
wolf optimization [45], and artificial fish swarm [46] algorithms.

Many systems were developed based on signature-based Android malware detection
approaches and behavior-based Android malware intrusion detection approaches [47].
The former is a simple detection method that manages intrusions’ low degree of false
positives. The latter is based on anomaly detection and is a very common method using
AI algorithms to detect malicious attacks. Numerous research articles aimed to detect
and classify Android malware and attacks using machine learning and deep learning
approaches, such as the DT and deep learning approaches [48]. By using the generative
adversarial networks algorithm [49], it was shown that traditional machine learning was
successful in detecting malware in an Android environment [50].

Most of the published studies used datasets from Google Play [51], AndroZoo, An-
droid Permission [52], Andrototal [53], Wandoujia [54], Kaggle [55], and CICMaldroid [56].
The present study aimed at developing a system to detect malware attacks in Android
environments that have an in-built security system. However, there are still many An-
droid applications with design weaknesses and security flaws that can be threatening to
end-users. Therefore, it is crucial to use machine learning and deep learning algorithms to
detect Android malware and vulnerability analysis to prevent the development of malware
and attacks by hackers [57,58].
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3. Materials and Methods

In 2008, Android was developed. With the increasing number of Android applications,
companies immediately discussed and built security tools [2]. Nevertheless, the Android
system is suffering from security weaknesses. In the last five years, AI approaches focused
on protecting the Android system, with many researchers studying the appropriate AI
approaches to obtain high accuracy. The framework of the present research is presented
in Figure 3. The machine learning algorithms support vector machine (SVM), k-nearest
neighbors (KNN), linear discriminant analysis (LDA) and the deep learning algorithms
long short-term memory (LSTM), convolution neural network-long short-term memory
(CNN-LSTM), and autoencoder algorithms were used to detect malware and attacks against
Android applications. These algorithms were tested using two standard datasets. The
research questions of this study were:

(1) What are the appropriate machine learning and deep learning algorithms to detect
malware in Android?

(2) What are the validation accuracy, robustness, and efficiency of the proposed machine
learning and deep learning models related to the detection of Android malware?

Figure 3. A generic representation of the models applied for the detection of Android malware.

3.1. Android Dataset

The experiments were conducted with two standard datasets: the Canadian Institute
for Cybersecurity (CICAndMal2017) and Drebin datasets. The percentage of the classes for
the entire CICAndMal201 and Drebin datasets is presented in Figure 4.

3.1.1. CICAndMal2017

The CICAndMal2017 was developed by Canadian Institute; the Cybersecurity dataset
is a standard mobile malware dataset containing static and dynamic features of log files. The
dataset was generated from 80 network flows using CICFlowMeter-V1 and CICFlowMeter-
V3. To examine the proposed system, 667 Android malware packets consisting of 413
features were considered for the injection of malicious and normal packets. The dataset is
available from this link: https://www.kaggle.com/saurabhshahane/android-permission-
dataset, (accessed on 25 November 2021).
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Figure 4. Percentage of classes of the datasets (a) CICAndMal2017 and (b) Drebin.

3.1.2. The Drebin Dataset

The Drebin dataset was extracted from 15,037 applications of the Drebin project,
which contains 215 features and the injection of 5560 malware and 9476 normal applica-
tions. The dataset was developed by the Drebin project and published as the DroidFusion
paper in the IEEE Transactions on Cybernetics journal [59]. The dataset was generated
with different Android applications and is available through the following link: https:
//www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning (ac-
cessed on 25 Novmber 2021).

3.2. Preprocessing

The Android datasets have different formats and characteristics; therefore, preprocess-
ing is very important for managing the dataset.

Min–Max Normalization Method

Normalization is a scaling approach to shift and rescale the values of datasets. The
min–max normalization method was applied to scale the data in the range between 0 and
1. The normalization method was applied for the overlap of the entire dataset using the
following equation:

V́ =
V − xmin

max(A)− min(A)
(new_max(A)− new_min(A)) + new_min(A) (1)

where, min(A) and max(A) are the minimum and maximum data, respectively, new_min(A)
and new_max(A) are the new values of the minimum and maximum used for the scaling
of the data, and V́ is the normalized data.

3.3. Classification Algorithms

In this section, the theoretical description of the machine learning and deep learning
algorithms used in this research is presented.

3.3.1. K-Nearest Neighbors (KNN)

The KNN algorithm is a simple and common machine learning algorithm used to
classify numbers of real-life applications by discovering neighbors. The mechanism of the
KNN algorithm is finding the distance between the classes of normal values and attacks by
selecting object values close to the class k-values. The algorithm starts by loading network
data with the length of input data [60]. KNN is utilized to determine the k-values that
are near a set of specific values in the training dataset. The majority of these k-values fall
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into a confirmed class. Furthermore, the input sample is classified. In this research, the
Euclidean distance function (Ei) was used to find the distance between the object values.
The expression of the Euclidean distance function is as follows:

Ei =

√
(a1 − a2) + (b1 − b2)

2 (2)

where a1, a2, b1, and b2 are variables of the input data.

3.3.2. Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm developed to solve complex problems
in linear and nonlinear applications. It is used to draw the hyperplane between the data
points that are near the hyperplane and calculate the effect of the location and orientation
of the hyperplane, called the support vector (SV) [61]. The good performance of SV is
attained when the distance of the data points is close to the hyperplane. The support
vector machine has a number of functions, linear and non-liner; the RBF is appropriate
for separable patterns because the network data has a complex format. In this research, a
Gaussian radial basis function was proposed to detect Android malware:

K
(
y, y′
)
= exp

(
−||y − y′||2

2σ2

)
(3)

where, y, and y’ are vector features of the training data, ||y − y||2 is the squared Euclidean
distance between the features of the training data, and σ is the parameter.

3.3.3. Linear Discriminant Analysis (LDA)

LDA is a linear machine learning algorithm used to solve applications with high
dimensionality [62]. It is used to model and transform data from a high-space dimension
into a low-space dimension by separating the classes of the data into two groups: normal
and malicious packets. Figure 5 represent the LDA method for analyzing normal and
abnormal packets, where the red line linearly separates the two classes of the data.

Figure 5. The linear discriminant analysis (LDA) method for analyzing datasets.

3.3.4. Deep Learning Models

CNN-LSTM is a fusion model created with the combination of CNN and LSTM; both
are deep learning AI algorithms. In CNN, there are hidden neurons with trainable weights
and bias parameters. It is broadly applied to analyze the data in a grid layout, making it
different from other structures [63]. It is also called a feed-forward network because the
input data stream in one way, from the input to the production layer [64]. Three are the
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main components in the CNN structure: the convolutional, pooling, and fully connected
layers. For feature extraction and the reduction of dimensionality, the convolutional and
pooling layers are employed. The fully connected layer is completely folded and attached
to the output of the previous layer. The main architecture of the CNN model for detecting
Android malware applications is displayed in Figure 6.

Figure 6. Structure of the CNN model.

Hochreiter et al. [65] introduced the LSTM algorithm for learning long-term data
dependency. The LSTM is one type of recurrent neural network (RNN). The distinction
between the LSTM and RNN techniques is the memory cells present in the LSTM structure.
Every memory cell comprises four gates: the input, candidate, forget, and output gates.
The forget gate categorizes the input features as to whether they must be discarded or kept.
The input gate revives the memory cells in the LSTM structure, and the hidden state is
always controlled by the output gate. Furthermore, LSTM uses an embedded memory block
and gate mechanism that enables it to address complications related to the disappearing
gradient and the explosion gradient present in the RNN learning [66]. The structure of the
LSTM model is presented in Figure 7. Table 1 show the parameters of the LSTM model. It
is investigated that these parameter values were significant for obtaining high performance
to detect the android malware. The kernel size of convolution was 4, the max pool size
id 4 for selecting significant features from the filter layer. The drop out value was 0.50
for preventing the model from overfitting; in order to optimize the model, the RSMprop
optimizer function is presented. The error gradient is used batch size 150. The equations
for the LSTM-related gates are defined as follows:

ft = σ
(

Wf . Xt + Wf . ht−1 + b f

)
(4)

it = σ(Wi. Xt + Wi . ht−1 + bi) (5)

St = tan h(Wc. Xt + Wc . ht−1 + bc) (6)

Ct = (it ∗ St + ft ∗ St−1) (7)

ot = σ(Wo + Xt + Wo . ht−1 + Vo .Ct + bo) (8)

ht = ot + tan h(Ct) (9)

where Xt is the vector of the input features sent to the memory cell at a time t. Wi, Wf ,
Wc, Wo, and VO represent the weight matrices, bi, b f , bc, and bo indicate the bias vectors,
ht is the point of the stated value of the memory cell at a time t, St and Ct are the defined
values of the candidate state of the memory cell and the state of the memory cell at time t,
respectively. σ and tanh are activation functions, and it, ft, and ot are obtained values for
the input gate, the forget gate, and the output gate at time t, respectively. ht−1 represents
the short memory vector.
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Figure 7. The structure of the LSTM technique.

Table 1. Parameters of the LSTM model.

Parameters Values

Kernel size 4
Max pooling size 4

Drop out 0.50
Fully connected layer 32
Activation function Relu

Optimizer RSMprop
Epochs 10, 20

Batch size 20

The CNN-LSTM model was built, as shown in Figure 8. It was trained using the
training dataset, and its hyperparameters were adjusted using the Adam optimizer and
the validation dataset. The CNN-LSTM model was next implemented on the test dataset,
including features of each testing record to its real class: normal or a particular class of
attack [67]. The training and optimization processes of the CNN-LSTM model consisted of
two one-dimensional convolution layers that cross the input vectors with 32 filters and a
kernel size of 4, two fully connected dense layers composed of 256 hidden neurons, and
an output layer that applies the nonlinear SoftMax activation function used for multiclass
classification tasks. To overcome the model’s overfitting, the global max-pooling and
dropout layers were applied. The global max-pooling layer prevents overfitting of the
learned features by captivating the maximum value, while the dropout layer is used to
deactivate a set of specific neurons in the CNN-LSTM network. The Adam optimizer
updates the weights and improves the cross-entropy loss of function. Table 2 show the
parameters of the CNN-LSTM model.
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Figure 8. The structure of the CNN-LSTM model.

Table 2. Parameters of the CNN-LSTM model.

Parameters Values

Kernel size 4
Max pooling size 4

Drop out 0.50
Fully connected layer 32
Activation function Relu

Optimizer RSMprop
Epochs 20

Batch size 150

3.3.5. Autoencoder (AE)

AE is a type of AI algorithm based on deep neural networks that use unsupervised
learning for encoding and decoding the input data and are commonly utilized for feature
extraction and denoising [68]. Two different processes are performed by AE: encoding
and decoding. Hence, its structure is symmetrical. The input data are passed through
three different layers: the input, latent, and output layers. These layers make up the AE
architecture (Figure 9). The input and output layers have the same size, and the latent layer
has a smaller size than the input layer [69]. Encoding and decoding are achieved with the
following equations, respectively:

e = fθ(x) = s(Wx + b) (10)

x̃= g θ ′(e) = s
(
W ′e + b′

)
(11)

where x is the input vector, e ∈ [0, 1] d represents the latent vector, and x̃ ∈ [0, 1] D is
the produced vector. From the input layer to the latent layer, the encoding process is
repeated. Next, the decoding process is repeated from the latent layer to the output layer.
W and W ′ represent the weight from the input to the latent and from the latent to the
output layers, respectively. b and b′ denote the bias vectors of the input layer and the latent
layer. The activation functions of the latent layer neurons and the output layer neurons are
represented with fθ and g θ ′ , respectively. The weight and bias parameters are learned in
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the AE structure after reducing the reconstruction error. Equation (12) is used to measure
the error between the reconstructed x̃ and the input data x for individual instances:

J
(
W, b′, x, x̃

)
=

1
2
‖hw,b(x)− x̃ ‖2 (12)

Figure 9. The structure of the auto-encoder (AE) model.

In a training dataset including D instances, the cost function is defined as follows:

∑nl −1
l=1 ∑sl

i=1 ∑sl +1
j=1 (W(l)

ji )
2
=

[
1
D ∑D

i=1(
1
2
‖hw,b

(
x(i) − x̃(i)

)
‖2)

]
+

λ

2 ∑nl −1
l=1 ∑sl

i=1 ∑sl +1
j=1 (W(l)

ji )
2

(13)

where D refers to the total number of instances, s to the number of neurons in layer l, λ
represents the weight attenuation parameter, and the square error is the reconstruction
error of each training instance.

3.4. Performance Measurements

The statistical analysis included the calculation of the mean square error (MSE),
Pearson’s correlation coefficient (R), and the root-mean-square error (RMSE) to test the
proposed algorithms’ efficiency in detecting Android malware. The equations of these
parameters are presented below:

MSE =
1
n ∑n

i=1

(
yi,exp − yi, pred

)2
(14)

RMSE =

√√√√
∑n

i=1

(
yi,exp − yi,pred

)2

n
(15)

R% =
n
(

∑n
i=1 yi,exp × yi, pred

)
− (∑n

i=1 yi,exp
)(

∑n
i=1 yi, pred

)
√[

n
(
∑n

i=1 yi,exp
)2 − (∑n

i=1 yi,exp
)2][n(∑n

i=1 yi,pred

)2 −
(

∑n
i=1 yi,pred

)2
] × 100 (16)

R2 bn1 − ∑n
i=1 (yi, exp − yi, pred)

2

∑n
i=1 (yi, exp − yavg, exp)

2 (17)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (18)

Speci f icity =
TN

TN + FP
× 100% (19)
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Sensitivity =
TP

TP + FN
× 100% (20)

Precision =
TP

TP + FP
× 100% (21)

Fscore =
2 ∗ preision ∗ Sensitivity

preision + Sensitivity
× 100% (22)

where yi,exp is the experimental value of the data point i, yi,pred is the predicted value of the
data point i, yavg,exp is the average of the experimental values, R is Pearson’s correlation
coefficient, yi,exp are the Android network packets of the input data i, yi,class are the classes
of Android malware and normal input data i, n is the total number of the input data, the
true positive (TP) represents the total number of samples that are successfully classified as
positive sentiment, false positive (FP) is the total number of samples that are incorrectly
classified as negative sentiments, true negative (TN) denotes the total number of samples
that are successfully classified as negative sentiment, and false negative (FN) represents the
total number of samples that are incorrectly classified as positive sentiments.

4. Results

The investigation of the effect of the proposed models on the standard Android
malware datasets was conducted using the Python programing language. The statistical
analysis evaluated the results of the proposed models.

4.1. Splitting the Data

The datasets were divided into 70% training and 30% testing data. The random
function for splitting the training and testing was proposed. The training phase was
applied to fit the models using the Android malware datasets. The test phase was designed
to validate the proposed models using new data. Table 3 show the datasets’ volume.

Table 3. Volume of datasets.

Datasets Total Volume Training Testing

CICAndMal2017 676 473 203
Drebin 15,031 10,521 4510

4.2. Experimental Environments

The platform used to detect intrusion in Android applications is presented in Table 4.

Table 4. Environment requirements of the proposed model.

Hardware Software

RAM size 8 GB Python Version 3.6
C.P.U. Numpy Version 1.18.1

TensorFlow library Version 2.10
Keras library Version 2.3.1

Matplotlib Version 3.2.0
NumPy library Version 1.01

4.3. Model Performance

The highly efficient performance of machine learning and deep learning models
guarantees the detection of Android malicious applications. The algorithms for intru-
sion detection were tested using two standard malware mobile datasets. The Drebin
dataset contained 10,525 Android applications, and the CICAndMal2017 dataset contained
676 injections of various attack and normal packets.
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4.3.1. Performance of the Machine Learning Models

In this work, the SVM, KNN, and LDA models were applied to identify Android
malicious packets. The SVM algorithm achieved maximum accuracy (100%) with respect
to all the performance measurements in the CICAndMal2017 dataset (Table 5). However, it
achieved lower accuracy (80.71%) with the Drebin dataset.

Table 5. Results of the SVM method.

CICAndMal2017 Dataset

Metrics Precision (%) Recall (%) F1-score (%)
Normal 100 100 100
Attacks 100 100 100

Accuracy 100
Weighted average 100 100 100

Drebin dataset
Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.97 0.51 0.67
Attacks 0.77 0.99 0.86

Accuracy 80.71
Weighted average 0.84 0.81 0.79

The SVM method showed the efficiency performance with the CICAndMal2017 dataset
and satisfying results in the Drebin dataset. The confusion metrics of the SVM method
are presented in Figure 10. In the CICAndMal2017 dataset, the percentage of the normal
data classified as true negative was 45.81%, whereas the true positive represented 54.19%
and were classified as malware attacks. Furthermore, the false positive and false negative
data were 0, indicating that the SVM method successfully detected malicious attacks in the
Drebin dataset. The confusion metrics of the SVM approach applied on the Drebin dataset
were as follows: 61.56% were classified as abnormal applications, 19.15% true negatives
were classified as normal applications, whereas the true positive and false negatives were
18.62% and 0.67%, respectively. We conclude that the performance of the SVM method is
good since the false positive is low.

Figure 10. The confusion metrics of the SVM method using the (a) CICAndMal2017 and (b) Drebin
datasets.

Table 6 summarize the performance of the KNN method in the detection of malware
attacks in both datasets. We considered the scope of the KNN method with (k = 5). In the
CICAndMal2017 dataset, the KNN method achieved high accuracy (90%), contrary to the
Drebin dataset (81.57%).
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Table 6. Results of KNN algorithm.

CICAndMal2017

Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.89 0.89 0.89
Attacks 0.91 0.91 0.91

Accuracy 0.90
Weighted average 0.90 0.90 0.90

Drebin dataset
Metrics Precision (%) Recall (%) F1-score (%)
Normal 0.96 0.53 0.68
Attacks 0.78 0.99 0.87

Accuracy 81.57
Weighted average 0.85 0.82 0.80

Figure 11 show the confusion metrics for the KNN method. In the CICAndMal2017
dataset, 40.89% of the dataset was classified as true negative (normal applications), 49.26%
as malware, and 4.93% as false positives (normal data classified as attacks). In the Drebin
dataset, the KNN method classified 61.87% of the dataset as true positives (attacks), 19.71%
as true negatives (normal), and the false positives were <0.80%. Overall, the KNN method
achieved higher accuracy in the CICAndMal2017 dataset than in the Drebin dataset.

Figure 11. The confusion metrics of the KNN method using the (a) CICAndMal2017 and (b) Drebin
datasets.

The results of the LDA method are presented in Table 7. Overall, the results were not
adequate due to the complexity of the network dataset. The nonlinear algorithms are not
appropriate for the analysis of network datasets. The accuracy of LDA was 45.32% in the
CICAndMal201 dataset, a percentage that reached 81% in the case of the Drebin dataset.
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Table 7. Results of the LDA method.

CICAndMal201

Metrics Precision (%) Recall (%) F1-Score (%)

Normal 0.46 0.98 0.62
Attacks 0.33 0.01 0.02

Accuracy 45.32
Weighted average 0.39 0.45 0.29

Drebin Dataset

Metrics Precision (%) Recall (%) F1-score (%)

Normal 0.95 0.53 0.68
Attacks 0.78 0.98 0.87

Accuracy 81.35
Weighted average 84 0.81 0.82

The confusion metrics of the LDA method are presented in Figure 12. The percentage
of true positives was high (49%), whereas that of true negatives (classified as normal
applications) was low (44.83%) in the CICAndMal2017 dataset. The percentage of false
positives was high (53.69%), showing that the LDA model is not appropriate for this dataset.
In the Drebin dataset, the confusion metrics showed that 19.15% were true negatives and
1.02% false positives, classifying normal applications as malware. Overall, the LDA method
had good performance with the Drebin dataset.

Figure 12. The confusion metrics for the (a) CICAndMal2017 and (b) Drebin datasets.

4.3.2. Performance of the Deep Learning Models

In this section, the results of the deep learning algorithms, namely LSTM, CNN-LSTM,
and AE, are presented. The dataset was divided into 70% training and 30% test data.
Table 8 show the results of the LSTM, CNN-LSTM, and AE models. The performance of
the CNN-LSTM model achieved high accuracy (95.07%) compared with the LSTM and AE
models in the CICAndMal2017 dataset.

Table 8. Results of the deep learning algorithms in the CICAndMal2017 dataset.

Models Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LSTM 0.20 94.58 95.41 94.54 94.97
CNN-LSTM 0.16 95.07 97.16 93.63 95.53

AE 1.43 75.79 92.15 66.78 77.44

Figure 13 show the accuracy performance of the LSTM, CNN-LSTM, and AE algo-
rithms using the CICAndMal2017 dataset. The performance plots show that the CNN-
LSTM model achieved an accuracy of 99.9% in the training phase, and in the validation
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phase, the initial 75% accuracy reached 95.07%. The LSTM model achieved good perfor-
mance in the training phase (99%) and the validation phase it reached 94.58%.

Figure 13. Performance of the deep learning models with the CICAndMal2017 dataset. (a) LSTM. (b)
CNN-LSTM.

The binary_crossentropy method was used to calculate the accuracy loss in the training
and testing phases. Figure 14 show the validation accuracy of the deep learning models.
The accuracy loss of the LSTM model in the validation phase changed from 0.5 to 0.2, while
in the case of the CNN-LSTM model, this changed from 0.6 to 0.2.

Figure 14. Accuracy loss of the deep learning models in the CICAndMal2017 dataset. (a) LSTM. (b)
CNN-LSTM.

Table 9 show the results of the LSTM, CNN-LSTM, and AE models using the Drebin
dataset. The LSTM model achieved high accuracy (99.40%). Furthermore, the CNN-
LSTM model showed high accuracy of 97.20%, and the performance of the AE model
was satisfying.

Table 9. Results of the deep learning models using the Drebin dataset.

Models Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LSTM 0.05 99.40 99.32 99.74 99.53
AE 3.65 56.65 41.18 65.71 51.11

CNN-LSTM 0.09 97.20 97.72 97.92 97.82
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Figure 15 show the accuracy performance of the deep learning models. The validation
accuracy of the LSTM model started from 97% and reached 99.40% with 20 Epochs. The
LSTM model in the training phase achieved an accuracy of 100%. The performance of the
CNN-LSTM model was 97.20% in the validation phase.

Figure 15. Performance of the deep learning models in the CICAndMal2017 dataset. (a) LSTM.
(b) CNN-LSTM.

Figure 16 show the validation loss of the deep learning models. In the LSTM model,
the validation loss changed from 0.10 to 0.7, whereas for the CNN-LSTM model, it changed
from 0.7 to 0.1 with 20 Epoch.

Figure 16. Accuracy loss of the deep learning models in the CICAndMal2017 dataset. (a) LSTM.
(b) CNN-LSTM.

The accuracy performance of the AE model using the CICAndMal2017 and Drebin
datasets is presented in Figure 17. The performance of AE was not satisfying, with the
accuracy in the training phase being 79% and in the validation phase 75.79% for the
CICAndMal2017 dataset. For the Drebin dataset, the accuracy in the validation phase was
56%. The accuracy percentage of the LSTM and CNN-LSTM models outperformed the
AE model.
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Figure 17. Accuracy of the AE model in the (a) CICAndMal2017 and (b) Drebin datasets.

Figure 18 display the accuracy loss of the AE model in both datasets. The accuracy loss
was high (from 0.70 to 0.55) for the CICAndMal2017 dataset. Furthermore, the validation
loss changed from 0.9 to 0.4 in the case of the Drebin dataset. Overall, the validation loss of
the AE model was high; therefore, the AE model’s performance is not appropriate for the
detection of Android malicious attacks.

Figure 18. Accuracy loss of the autoencoder model in the (a) CICAndMal2017 and (b) Drebin datasets.

4.4. Sensitivity Analysis

Sensitivity analysis is an approach used to measure the influence of uncertainties of
the input data variables. Analyzing the input data is very useful in extracting the patterns
from the dataset. The Pearson’s correlation coefficient was applied to find the correlation
between the input features and the classes. Some features had significant relationships
between the classes (normal and attacks) [70,71].

We selected the features that had a relationship >50% between the class. Figure 19
show the features that have a significant correlation with the classes variables in the CI-
CAndMal2017 dataset. We considered four features with correlation >50%. The correlation
coefficient results for the Drebin dataset are presented in Figure 20. It was observed that the
Drebin dataset revealed a strong correlation between classes, while in the CICAndMal2017
dataset, they were <50%.
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Figure 19. The correlation coefficient results using the CICAndMal2017 dataset.

Figure 20. The correlation coefficient for the Drebin dataset.

We applied the statistical metrics mean absolute error (MAE), MSE, RMSE, and R2

to identify the prediction error between the target class and the predicted values. The
prediction error of the machine learning algorithms is presented in Table 10. The SVM
algorithm displayed fewer prediction errors, and the R2 between the predicted values and
the target values was 100% for the CICAndMal2017dataset. The KNN method showed
fewer prediction errors (MSE = 0.1842), and the relationship between the predicted and
target values was 33.35%.
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Table 10. Statistical analysis of the machine learning algorithms’ results using the CICAndMal2017
dataset.

Models MAE MSE RMSE R2 (%)

SVM 0.00 0.0 0.0 100
KNN 0.0985 0.09852 0.313 63.31
LDA 0.429 0.4189 0.647 53.68

Table 11 show the prediction potential of the SVM, KNN, and LDA methods. The
prediction performance of the KNN method was R2 = 33.35, achieving the best correlation
between the predicted and target values in the Drebin dataset. Overall, the prediction
results of the machine learning algorithms were satisfactory.

Table 11. Statistical analysis of the machine learning models using the Drebin dataset.

Models MAE MSE RMSE R2 (%)

SVM 0.1915 0.1915 0.437 31.57
KNN 0.1842 0.1842 0.429 33.35
LDA 0.1864 0.1864 0.431 32.09
SVM 0.1915 0.1915 0.437 31.57

The prediction errors of the deep learning algorithms are summarized in Table 12.
The LSTM model achieved lower prediction levels (MSE = 0.0054), and the correlation
between the predicted and target values was 88.25% in the CICAndMal2017 dataset. In the
Drebin dataset, the LSTM model showed lower prediction levels (MSE = 0.0059) and high
correlation (R2 = 97.39%). The prediction performance of LSTM was good in both datasets.

Table 12. Statistical analysis of the deep learning models.

CICAndMal2017 Dataset

Models MAE MSE RMSE R2 (%)

LSTM model 0.0054 0.0541 0.232 88.25
Autoencoder

model 0.339 0.339 0.5830 31.74

CNN-LSTM 0.049 0.049 0.221 80.31

Drebin dataset

Models MAE MSE RMSE R2 (%)
LSTM model 0.0059 0.0059 0.077 97.39
Autoencoder

model 0.2425 0.2279 0.177 17.91

CNN-LSTM 0.027 0.027 0.1671 87.84

5. Discussion

With rapidly developing technology, the use of smartphones with new features and
associated Android applications has increased. Statista reported that 1.3 billion smart-
phones will be used by 2023. This also brings challenges for the researchers and developers
of security mechanisms for these applications, originating in the new complexities and
vulnerabilities of the Android applications that hackers can quickly exploit.

Considering that Android applications of digital e-commerce, e-business, savings, and
online banking are associated with confidential and appreciated information communicated
within the mobile network, it is important to evaluate the application data in terms of
accomplishing proper security. Machine and deep learning algorithms are used to monitor
the detection of malicious attacks against Android applications to ensure that security
openings do not occur within this network. The present research contributes to the area
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of cybersecurity by developing a system based on machine learning and deep learning
algorithms to detect anomalies in signature databases, thus, permitting the system to detect
unknown attacks.

As we know, the network has a very complex format; in this study, nonlinear models
were proposed to achieve high accuracy, whereas linear, namely LDA and KNN, models
achieved slightly worse performance. The accuracy performance of LDA was 45.32% in
the CICAndMal2017 dataset, and the accuracy performance improved to 81.35% using the
Drebin dataset. It was observed that the KNN model achieved little accuracy, 81.57%, using
the Drebin dataset. We observed that the LDA and KNN algorithms are not appropriate
for detecting Android malware. In deep learning models, the AE mode results were not
satisfactory for detecting the mobile attacks. The AE achieved 75.79% and 56.65% with
respect to the CICAndMal2017 and Drebin datasets. The AE is composed of the encoder
and decoder models; the encoder compresses the input data, whereas the decoder is used
to recreate the input from the encoder. Overall, we observed that these models did not
achieve good results due to the research datasets being binary data.

Furthermore, using the support vector machine, LSTM and CNN-LSTM algorithms
achieved high accuracy performance for developing an appropriate system that can support
the security of smartphones against malware. Two standard datasets were used. The SVM
model achieved an accuracy of 100% using the CICAndMal2017 dataset and the LSTM
algorithm achieved 99.40% using the Drebin dataset.

Our system was compared with existing systems of machine learning and deep learn-
ing models that detect malware for the security of Android applications. The mechanism
of the proposed system is based on the pattern of dataset behavior for detecting the attacks.
The LSTM model had an accuracy of 99.40% in the case of the Drebin dataset, indicating
that it is a robust model to handle Android security vulnerabilities. Recently, by employing
a CNN model on an Android platform, the system was found to achieve high accuracy;
however, our system is more accurate against all systems. Table 13 show the results of our
system against existing security systems using the same dataset. The graphic representation
of our system and other existing systems’ results with respect to the accuracy metrics is
presented in Figure 21. Overall, the system we propose achieved the highest accuracy.

Table 13. Results of the proposed system against existing security systems using the Drebin dataset.

Reference Year Datasets Model Accuracy (%)

Ref. [72] 2021 Drebin CNN 91

Ref. [73] 2018 Drebin

RF, J.48, NB, Simple Logistic,
BayesNet TAN, BayesNet K2,
SMO PolyKernel, IBK, SMO

NPolyKernel

88–96

Ref. [74] 2021 Drebin CBR, SVM, DT 95
Ref. [75] 2019 Drebin Random forest tree 96.7
Ref. [76] 2018 Drebin DT 97.7
Ref. [77] 2019 Drebin RF with 1000 decision trees 98.7
Ref. [78] 2019 Drebin SVM 93.7
Ref. [79] 2019 Drebin Random forest tree 94
Ref. [80] 2019 Drebin Random forest tree 96
Ref. [81] 2016 Drebin Random forest tree 97
Ref. [82] 2021 Drebin CNN 98.2

Proposed model 2022 Drebin LSTM
CNN-LSTM

99.40
97.82
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Figure 21. Comparative performance of the proposed system against existing systems in the detection
of malware against Android applications using the Drebin dataset.

Table 14 display the results of the proposed system and other existing Android cyber-
security systems that use the machine and deep learning algorithms applied to different
Android datasets. To confirm the results of the proposed system against other Android
security systems, we compared recent systems’ results with ours, with the latter achieving
high accuracy. The graphic representation of these results is presented in Figure 22.

Table 14. Results of the proposed system against existing security systems using different Andriod
datasets.

Reference Year Datasets Model Accuracy (%)

Ref. [83] 2019 MalGenome, Kaggle,
Androguard

Random forest
tree 93

Ref. [84] 2018 Google Play, VirusShare,
MassVet LSTM 97.4

Ref. [85] 2017 Genome, IntelSecurity,
MacAfee, Google Play Deep CNN 87

2022 Drebin LSTM
CNN-LSTM

99.40
97.82

Figure 22. Comparative performance of the proposed system against existing systems in the detection
of malware against Android applications using different datasets.
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6. Conclusions

Smartphones are becoming more and more popular, constituting a profitable target
for hackers due to their susceptibility to security breaches. Android is an open gate
for attackers who exploit it with malicious applications, benefiting from the system’s
security flaws. An emerging method for signature-based malicious attack detection is
the antivirus applications against new malware, created with AI, machine learning, and
deep learning algorithms that predict malware. In this study, a security system was built
and designed based on the support vector machine (SVM), k-nearest neighbors (KNN),
linear discriminant analysis (LDA), long short-term memory (LSTM), convolution neural
network-long short-term memory (CNN-LSTM), and autoencoder algorithms. According
to the promising results of the present research, the following conclusions can be drawn:

The proposed system was evaluated and examined using two standard Android
malware applications datasets: CICAndMal2017 and Drebin. The SVM, KNN, and LDA
methods proved to be efficient machine learning algorithms and successfully detected mal-
ware, with SVM being the most effective. The LSTM and CNN-LSTM models are proposed
to detect malicious applications, with the LSTM model being more efficient for developing
Android security. Sensitive analysis examining the metrics MSE, RMSE, and R2 revealed
the errors between the predicted output and the target values in the validation phase. The
LSTM and CNN-LSTM algorithms achieved fewer prediction errors in the Drebin dataset,
while the SVM method was more effective in the case of the CICAndMal2017 dataset.
The validation phase results of the machine learning and deep learning methods were
satisfying, with the LSTM and SVM models achieving superior performance. The results of
the present study were compared with recent research findings, confirming the robustness
and effectiveness of our results. We implemented machine learning and deep learning
algorithms and experimented with them to obtain optimal malware detection. Both of the
proposed classifiers achieved good accuracy, but the LSTM accuracy was 99.40%, indicating
it can outperform other state-of-the-art models.
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Abstract: The microservice architectural style splits an application into small services, which are
implemented independently, with their own deployment unit. This architecture can bring benefits,
nevertheless, it also poses challenges, especially about security aspects. In this case, there are several
microservices within a single system, it represents an increase in the exposure of the safety surface,
unlike the monolithic style, there are several applications running independently and must be secured
individually. In this architecture, microservices communicate with each other, sometimes in a trust
relationship. In this way, unauthorized access to a specific microservice could compromise an entire
system. Therefore, it brings a need to explore knowledge about issues of security in microservices,
especially in aspects of authentication and authorization. In this work, a Systematic Literature Review
is carried out to answer questions on this subject, involving aspects of the challenges, mechanisms
and technologies that deal with authentication and authorization in microservices. It was found
that there are few studies dealing with the subject, especially in practical order, however, there is a
consensus that communication between microservices, mainly due to its individual and trustworthy
characteristics, is a concern to be considered. To face the problems, mechanisms such as OAuth
2.0, OpenID Connect, API Gateway and JWT are used. Finally, it was found that there are few
open-source technologies that implement the researched mechanisms, with some mentions of the
Spring Framework.
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1. Introduction

The microservice architectural style is represented by an ecosystem of small services,
each running in its own process and communicating through lightweight protocols, such
as HTTP (Hypertext Transfer Protocol), built around business resources and deployed
independently [1]. Breaking an application into microservices can bring some benefits, such
as optimizing management, scalability, availability and reliability [2,3]. However, it may
bring challenges in relation to security, because, in this case, an individual attention about
it must be observed in each microservice developed, different from the monolithic style
where security strategies are applied in a single application [3,4]. Furthermore, there are
few practical demonstrations in the literature describing solutions to improve the security
of [4] service-oriented architectures.

Regardless of the implemented architecture, the authentication and authorization
aspects are relevant, considering them as key elements for the security mechanisms [5].
Authentication is the process of determining whether someone or something is, in fact, who
they claim to be. Authorization is the process of giving someone or something permission
to do or possess something [6]. There are protocols that deal with authorization and
authentication issues, such as OAuth 2.0, the standard for delegated authorization, and
OpenID Connect, the authentication layer on top of OAuth 2.0 [7]. It is important to
note that there is a distinction between user authentication and service authentication. In
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the case of authentication between microservices, there are specific mechanisms for this,
such as Mutual Transport Layer Security (MTLS) [7]. Using MTLS, each microservice will
legitimately identify who it talks to, while also ensures data confidentiality and integrity in
this communication [8].

According to some studies, microservices are usually designed in such way that there
is a relationship of trust between them [3,9]. However, it is possible to find microservice
architectures that use the “zero-trust” paradigm [10]. In this last case, there is a premise
that trust is never granted implicitly but must be continually evaluated [11]. Thus, a lack
of observation about authentication and authorization in a single microservice can affect
the entire ecosystem. It is important that studies related to security issues in microservices
emphasize aspects involving authentication and authorization. Therefore, in this paper, we
carried out a Systematic Literature Review (SLR) to identify in the literature the studies
that address authentication and authorization in microservice environments, what are
their challenges, security mechanisms used to deal with these challenges and open-source
technologies that implement the mechanisms identified in the review. The focus on open-
source is to provide technologies that can reduce costs, free access to source code and
customization [12]. There are advantages for use open-source in the public sector, such
as avoiding monopoly dominance in the market [12]. Last, but not least, even software
developed by commercial firms is being released under open-source licenses as well [13].
It is important to note that the adoption of open-source, although it has the advantage of
free use, it will not necessarily bring an adequate cost/benefit for the organization [14].
Therefore, it is recommended that its adoption be based on metrics such as the Total Cost
of Ownership (TCO), an instrument that assesses the cost of adapting, managing and
maintaining the proposed software [14].

Our main findings reveal that authentication and authorization challenges involving
microservices are mostly related to the communication between them and the complexity
of implementing security in each microservice, generating a complexity both in the devel-
opment and in the increase of the attack surface, since individual attention must be given
to each microservice. The most mentioned mechanisms in the literature that address the
challenges of authentication and authorization in microservices are OAuth 2.0, JWT, API
Gateway and OpenID Connect, in addition to Single Sign-on strategy. These mechanisms
can be implemented together, with their respective role in the security context. The API
Gateway acts as an intermediary between the external client and the microservices, provid-
ing a private network environment that allows the exchange of data between them [15].
Single Sign On (SSO) allows users to authenticate only once and use all apps associated
with their user accounts, without requiring them to enter their credentials each time they
access a different app [16]. Finally, we identified that the Spring Framework is widely used
in the context of open-source applications.

2. Systematic Literature Review

To achieve the research goal, we performed a Systematic Literature Review (RSL),
in accordance with the guidelines proposed by Kitchenham and Charles [17] and the
structuring applied by Kitchenham et al. [18]. According to the authors, an RSL is “a
means of identifying, evaluating and interpreting all available research relevant to a specific
research question, or topic area, or phenomenon of interest” [17]. In addition, we used the
online tool Parsifal [19] to support the screening and analysis of the identified studies.

2.1. Research Questions

We conducted the SLR to answer the following research questions (RQ):

1. RQ.1. What are the challenges mentioned in the literature to perform authentication
and authorization in the context of microservice architecture systems?

2. RQ.2. What mechanisms are used in the literature to deal with the challenges related
to authentication and authorization in a microservices architecture?
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3. RQ.3. What are the main open-source technology solutions that implement the
authentication and authorization mechanisms identified in the literature?

2.2. Search Process

To identify studies in the literature, we performed an automatic search in the main
digital databases in the field of Computer Science. The digital databases used in the
systematic literature review were: DBLP (https://dblp.uni-trier.de, accessed on 4 February
2022), IEEE Digital Library (http://ieeexplore.ieee.org, accessed on 4 February 2022) and
Scopus (http://www.scopus.com, accessed on 4 February 2022). The search string used in
digital databases was defined according to the keywords that must appear in the search
results. The search string used was:

(“MICROSERVICE” OR “MICROSERVICES”) AND (“SECURITY” AND “AU-
THENTICATION” AND “AUTHORIZATION”) AND (“CHALLENGE*” OR
“PROBLEM*” OR “ISSUE*” OR “SOLUTION*” OR “PROTOCOL*” OR “MECH-
ANISM*” “STRATEG*” OR “IMPLEMENTATION*” OR “OPENSOURCE” OR
“OPEN-SOURCE” OR “OPEN SOURCE”).

We also applied the “snowballing” process which aims to prevent relevant studies
from being omitted [20]. In this process, references about the research object in each selected
study are verified. Thus, we searched for papers where selected studies were cited.

2.3. Inclusion and Exclusion Criteria

The selection criteria for primary studies seek to identify papers that provide infor-
mation about the research questions. Therefore, we defined the following inclusion and
exclusion criteria, based on the research questions:

Inclusion Criteria

• IC.1 Studies dealing with challenges involving authentication and authorization in
microservices;

• IC.2 Studies related to security mechanisms that deal with authentication and autho-
rization challenges in microservices;

• IC.3 Studies related to open-source technologies that implement security mechanisms.

Exclusion Criteria

• EC.1 Studies that do not address the research object;
• EC.2 Studies prior to 2010;
• EC.3 Duplicate studies;
• EC.4 Studies published as short paper.

2.4. Quality Assessment

To differentiate selected studies according to quality criteria we check in each selected
study whether they answer the research questions. The criteria adopted were:

1. Is the research objective clearly described?
2. Do the authors describe the limitation of the study?
3. Does the study identify problems and/or challenges involving authentication and

authorization in microservices architecture?
4. Does the study identify the mechanisms that mitigate the problems and/or challenges

involving authentication and authorization in microservices architecture?
5. Does the study present solutions that implement security mechanisms using open-

source technology?

The answer of each quality criterion question received a score, as follows:

1. Yes (1);
2. Partially (0.5);
3. No (0).
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Although the primary studies were selected using specific criteria, there is an individ-
ual assessment of the quality for each study, to verify which of them are more aligned with
the research questions that were defined.

2.5. Data Collection and Analysis

The following data were collected in the selected primary studies: (1) Authentication
and/or authorization challenges found in microservices; (2) The mechanisms that deal with
the authentication and/or authorization challenges found in microservices; (3) Open-source
technologies that implement mechanisms which deal with authentication and authorization
challenges in microservices.

The identified challenges, mechanisms and solutions were organized in a ranking
to verify the most mentioned in the primary studies. This ranking aims to show what
manuscripts have more answers about the research questions, this does not mean that the
lowest rated manuscripts are worse than the first ones, it just means that the top-rated
manuscripts have more information to answer our questions. Subsequently, the items most
present in the studies were submitted to an individual analysis for a better understanding
of their basic concepts. Finally, it was verified which specific mechanisms deal with the
challenges found.

3. SLR Results

This section presents the results of performing the systematic literature review. Figure 1
shows the complete execution process of the proposed protocol to execute the SLR, with the
respective quantity of studies identified in each step of the protocol. In the automatic search
performed in the digital databases using the initial query, 22 papers were found. These
studies were submitted to the snowballing process, resulting in 13 new selected papers. Of
the 22 papers found initially, 11 were eliminated due to the exclusion criteria (5 studies that
do not address the research object and 6 duplicate). Thus, 11 primary studies were selected
from the digital databases and 13 studies on snowballing execution, totaling 24 primary
studies. The selected primary studies are shown in Table 1. The filters applied during the
SLR based on inclusion and inclusion criteria are demonstrated in Figure 2.

Figure 1. Protocol application process.

200



Appl. Sci. 2022, 12, 3023

Table 1. Selected Studies.

ID Year Title Ref

S1 2021 Security in microservice-based systems: A Multivocal literature review [4]

S2 2021 Security in microservices architectures [3]

S3 2020 Authentication and authorization in microservice-based systems: survey
of architecture patterns

[8]

S4 2020 Information system development for restricting access to software tool
built on microservice architecture

[21]

S5 2020 Research on Unified Authentication and Authorization in Microservice
Architecture

[22]

S6 2020 Secure Edge Computing Management Based on Independent Microser-
vices Providers for Gateway-Centric IoT Networks

[23]

S7 2019 Applying Spring Security Framework and OAuth 2.0 To Protect Microser-
vice Architecture API

[24]

S8 2019 A survey on security issues in services communication of Microservices-
enabled fog applications

[25]

S9 2019 Enhancing security to the MicroService (MS) architecture by implement-
ing Authentication and Authorization (AA) service using Docker and
Kubernetes

[26]

S10 2019 Implementing secure applications in smart city clouds using microser-
vices

[16]

S11 2019 Microservice Security Agent Based On API Gateway in Edge Computing [15]

S12 2019 Securing Microservices [27]

S13 2019 Security Mechanisms Used in Microservices-Based Systems: A Systematic
Mapping

[28]

S14 2018 Authentication and authorization orchestrator for microservice-based
software architectures

[29]

S15 2018 Defense-in-depth and Role Authentication for Microservice Systems [30]

S16 2018 Fine-Grained Access Control for Microservices [31]

S17 2018 Overcoming Security Challenges in Microservice Architectures [7]

S18 2018 Security considerations for microservice architectures [32]

S19 2018 Unified account management for high performance computing as a ser-
vice with microservice architecture

[33]

S20 2017 A Secure Microservice Framework for IoT [34]

S21 2017 Access control with delegated authorization policy evaluation for data-
driven microserviceworkflows

[35]

S22 2017 Authentication and Authorization of End User in Microservice Architec-
ture

[36]

S23 2017 Integrating Continuous Security Assessments in Microservices and Cloud
Native Applications

[37]

S24 2015 Security-as-a-Service for Microservices-Based Cloud Applications [9]
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Figure 2. Filters applied in SLR process.

3.1. Quality Assessment of Reviews Carried out

According to the quality criteria, the selected studies were analyzed and scored, as
shown in Table 2. All primary studies mentioned challenges involving authorization and
authentication in microservices (AQ3), as well as mechanisms to mitigate such problems
(AQ4), even if partially. However, there is a smaller amount of work (15) mentioning
open-source technologies that implement the mechanism (AQ5). In general, the studies are
clear about the objective (AQ1), but 11 of them do not describe its limitations (AQ2).
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Table 2. Ranking of scores according to Quality Assessments.

ID AQ1 AQ2 AQ3 AQ4 AQ5 Total

S1 1 1 1 1 1 5.0
S8 1 0.5 1 1 1 4.5
S16 1 1 1 1 0.5 4.5
S23 1 1 1 0.5 1 4.5
S17 1 1 1 1 0.5 4.5
S21 1 0.5 0.5 1 1 4.0
S5 1 0 1 1 1 4.0
S6 1 0.5 0.5 1 1 4.0
S13 1 1 1 1 0 4.0
S7 1 0.5 0.5 0.5 1 3.5
S3 1 0 1 1 0.5 3.5
S15 0.5 0 1 1 1 3.5
S10 1 0.5 1 1 0 3.5
S11 1 0 0.5 1 1 3.5
S20 1 1 0.5 0.5 0 3.0
S14 1 0 1 1 0 3.0
S12 1 0 1 1 0 3.0
S2 1 0 1 1 0 3.0
S19 1 0.5 0.5 0.5 0.5 3.0
S4 0.5 0 1 0.5 0.5 2.5
S24 0.5 0.5 1 0.5 0 2.5
S22 0.5 0 0.5 0.5 0.5 2.0
S18 0.5 0 0.5 0.5 0 1.5
S9 0 0 0.5 0.5 0 1.0

3.2. Quality Factors

We have done a verification to understand if there is any kind of relationship between
the quality score and the year the study was published. Although it is possible to verify
that the average score increased over the years, the standard deviation and the coefficient
of variation show that the data are heterogeneous, and it is not possible to conclude that
the quality has increased over the period, as shown in the Table 3. It is possible to verify in
this situation that the standard deviation increases in the same proportion as the average,
in addition to the coefficient of variation being in a high degree.

Table 3. Average study quality score by year.

2015 2017 2018 2019 2020 2021

Number of Studies 1 4 6 7 4 2

Rating Average 2.5 3.38 3.33 3.29 3.50 4.00

Standard deviation 0 1.1087 1.1255 1.1127 0.7071 1.4142

Coefficient of variation 0 0.3285 0.3376 0.3386 0.2020 0.3536

We performed analyzes on data extracted from selected studies to answer the research
questions.

3.3. RQ.1. What Are the Challenges Mentioned in the Literature to Perform Authentication and
Authorization in the Context of Microservice Architecture Systems?

The challenges identified about authentication and authorization in the context of
microservice architecture systems are presented in Table 4. Such challenges were presented
according to the number of mentions in the selected studies, therefore, it does not mean
that these are the most critical in terms of vulnerabilities or how much they occur in
a microservices environment. The number of mentions of the challenges found in the
studies does not necessarily reflect a level of priority in which they should be observed
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in a practical environment. Among the identified challenges, the five most mentioned
in the literature were: “Communication between microservices” (13 mentions), “Trust
between microservices compromised by unauthorized access” (12 mentions), “Individual
concern for each microservice” (12 mentions), “Increased attack surface” (12 mentions),
and “Microservice Access Control” (10 mentions).

Table 4. Challenges related to authentication and authorization in microservices

Pos Challenge ID Number of Occurrences

1st Communication between
microservices

S1, S2, S3, S4, S7, S9, S10, S15,
S16, S17, S18, S23, S24 13

2nd
Trust between microservices

compromised by
unauthorized access

S1, S2, S4, S6, S8, S12, S15, S16,
S19, S21, S23, S24 12

3rd Individual concern for each
microservice

S1, S2, S5, S10, S12, S13, S15,
S16, S21, S22, S23, S24 12

4th Increased attack surface
(compared to monolithic)

S1, S2, S3, S7, S8, S13, S14, S16,
S17, S23 10

5th Microservice access control S5, S8, S10, S11, S14, S15, S19,
S20, S21 9

6th Authorization between
services

S1, S7, S8, S15, S16, S17, S18,
S21 8

7th Lack of studies about
microservices S1, S2, S4, S8, S10, S13, S17 7

8th Lack of security patterns in
microservices S1, S13, S15, S17, S20, S21 6

9th

Different teams working on
different microservices must

have the same understanding
of security

S3, S15, S17, S20, S23 5

10th Bypass on Api Gateway S3, S4, S6, S12 4

11th Intrusion
detection/monitoring S1, S12, S24 3

12th Escalation of privileges S2, S16, S24 3

13th
Lack of study demonstrating
practical implementation of

security in microservices
S7, S13, S23 3

14th Coordinate authentication
server with new microservices S1, S22 2

15th Lack of attention in attack
reaction/recovery S1, S13 2

16th Token validation at each
microservice request S5, S6 2

17th Public Images may be
compromised S1 1

18th

Many applications in
commercial microservices

without possibility to
evaluate code

S4 1

19th

Use of
authentication/authorization

server that handles all
microservices

S3 1

20th Possibility of development in
various technologies S23 1

In general, the studies that mentioned the existing challenges made comparisons
between monolithic and microservices architectures, explaining that in the monolithic
model, there is only one surface to be protected, however, in the microservice environment,
each autonomous service must be a point of concern regarding security, making it more
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complex to keep this entire ecosystem properly protected. Although each service needs
particular attention, Yarygina and Bagge [7] alerted that manual security provisioning of
hundreds or thousands of service instances is infeasible. Pereira-Vale et al. [4] compared
monolithic with microservices using a KLOC metric (kilo Lines of Code), they say that
in a monolithic application, every 100 kloc will have an average of 39 vulnerabilities.
The same quantity of lines of code in a microservice application, will have an average of
180 vulnerabilities. They also alert about the decomposition of monolithic into microservices
because security needs to be a global property, not the sum of local security defenses.

Nehme et al. [27] argue the importance of authentication and authorization in the con-
text of microservice security. They mentioned that “Microservices should only be invoked
after requesting authentication and, ideally, authorization if levels of privileges are avail-
able.”. Pereira-Vale et al. [28] performed a systematic mapping about security mechanisms
used in microservices and they discovered that the most reported security mechanisms
are related to authorization, authentication and credentials. Banat et al. [29] also agreed
that authentication and authorization need to be carefully observed in a microservice
architecture, because this scenario presents many points of access for users and the other
parts of the application. They argued that the data being especially sensitive, the crucial
point of the development is the authentication and the authorization process. Cao et al. [33]
proposed the implementation of a global authentication and authorization mechanism
named Unified Account Management as a Service (UAMS). In this implementation, they
used a RESTful API divided into several microservices. All sensitive data is transferred
encrypted by the HTTPS protocol.

The studies also highlighted that microservices have the characteristic of communi-
cating with each other, usually through the HTTP protocol, and this is a point of attention
that differs from the traditional monolithic approach and should be properly analyzed and
observed in terms of security. Regarding the communication issue, the authors mentioned
the implementation of Transport Layer Security (TLS), used to protect the communication
channels [30].

The challenges presented, in general, complement each other, or even act transversally.
Mateus-Coelho et al. [3] stated that “Microservices are often designed to trust their peers
and, if one of them is compromised and accessed improperly, it is possible that there
is a great advantage for all others to be exploited”. Dongjin et al. [25] agreed when
they affirmed that “When a single service is controlled by an attacker, the service may
maliciously influence other services”. Nehme et al. [31] mentioned an access control
problem that may be found in microservice architecture named “confused deputy attack”,
in their words, it is a privilege escalation attack in which a microservice that is trusted by
other microservices is compromised. Sun et al. [9] brought the concern about trust between
services, they affirmed that the “compromise of a single microservice may bring down
the entire application”. They also reported the challenge of monitoring and auditing the
microservices interaction over the network and proposed a design of a security-as-service
infrastructure for microservices-based cloud applications, that helps to monitor the network
aiming to find possible non-expected behaviors in the communication between them.

Pereira-Vale et al. [4] stated that the communication between microservices is exposed
through the network environment, which creates a potential attack surface. The authors
also mentioned the problem of increasing the attack surface, as the decomposition of
an application into several services increases the attack surface and the security of the
application becomes more difficult to manage, because it becomes the sum of several
independent defenses, rather than being managed in a global way, as was done in the
monolithic approach.

Nguyen and Baker [24] warned that network communication between microservices
can occur in the internet environment, which increases, in addition to exposure, the number
of possible attackers. Kramer et al. [16] reinforce this concern to implement secure applica-
tion in smart city clouds using microservices, because it will handle with a huge amount
of data, including sensitive information about infrastructure and citizens. Xu et al. [15]
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shared the same concerned, in this case, using microservice in IoT devices. Lu et al. [34]
is also concerned about security in IoT devices using microservices architecture, mainly
because of sensitive data that can be shared among services. They encourage the use of API
gateways, that will remove all the concerns about microservices, because all interactions
with the components will be performed with the API Gateway. Safaryan et al. [21] are also
concerned about communication among different microservices because it is carried out
through network interaction, being necessary to secure each of the service and the network.
They also alert about the need of a pattern to be implemented. The lack of a correct pattern
can compromise the network environment. Nguyen and Baker [24] agreed about the need
to observe communication between the services. Banati et al. [29] argued that the network
used in microservices communication can be secured using system administration tools
such as VPN, Firewall and HTTPS.

Dongjin et al. [25] and Jander et al. [30] raised a concern that if a single service were
controlled by an attacker, it could maliciously influence all other services. Concerns related
to communication between microservices, increased surface exposure, access control and
individual concern in each microservice, the API Gateway strategy, and use of mechanisms
such as OAuth 2.0 and JWT were widely mentioned. They are also concerned about the
industry, which are not fully aware about security issues involving microservices.

API Gateway helps to limit exposure between microservices as requests will be cen-
tered on it, and no longer on a microservice directly [3,8]. Jin et al. [23] mention that API
gateway will secure a microservices environment because it will filter all requests. They
also proposed an edge gateway to manage microservices. Nehme et al. [27] not recom-
mended the access token validation in the gateway level, this role need to be performed in
an authentication server. In contrast, Torkura et al. [37] proposed a security gateway used
as security control for enforcing security policies. They also alerted about discoverability,
that means, a gateway feature that allows a microservice to subscribe in it. If the discovery
service can accept any subscription, vulnerable microservices could be pushed to produc-
tion environments. OAuth 2.0 is a popular authorization protocol and could protect access
to microservices from unauthorized access as access tokens are issued to trusted clients
that could access certain services [25]. Nguyen and Baker [24] explained that OAuth 2.0 is
not only used in web-based application but can be applied into backend services with no
need of web browser or user interaction. ShuLin and JiePing [22] mentioned that the JWT
is an open standard (RFC 7519) that defines a compact and independent way to securely
transmit information between parties as a JSON object. This information can be verified
and trusted because it is digitally signed.

Barabanov and Makrushin [8] warned that implementing authorization directly in
the source code of each microservice can lead to future problems, especially in different
teams working on independent microservices, because of new security updates must
be performed in all projects, individually. He and Yang [36] followed in the same line,
they alerted that imitate the way of monolithic structure in each microservice has several
deficiencies, mainly when a new service join in the system, it will be necessary to implement
the security function in this case. They proposed a solution creating a specific service
focused on authentication and authorization, as a result, each service is focused on its own
business, ensuring better scalability and decoupling the system.

Jander et al. [30] mentioned that different teams can implement their own internal
security approach in the microservice which they have responsibility for, but this may
require more specialized knowledge from the teams. Torkura et al. [37] brought the concern
that development by different teams can bring microservices using not only different
standards in development, but also different technologies, which must implement the same
security standards.

Lu et al. [34] stated that the development of microservices by different teams and
even different companies is completely possible, is there is an alignment on the security
implementations in each microservice. Finally, it is important to mention that the lack of
security patterns in microservices, added to the few studies on the subject, both theoret-
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ical and practical, can influence the management of the development of the architecture.
Torkura et al. [37] warned that there are several literatures that highlight security problems
in microservice architectures, however, none of them offer practical solutions to deal with
these situations.

Pereira-Vale et al. [4] alerted about the use of an authentication and authorization
service to be used in an architecture of microservices. The use of this server must be robust
enough to authenticate the user and carry out the token validations that are made with each
client request. The lack of concern about these challenges can cause a single point of failure
of failure (SPOF), that is, if this part of system fails, will affect the entire application [38].
ShuLin and JiePing [22] stated that the authentication server may affect the performance of
the entire system, mainly if there are several requests to this server.

Preuveneers and Joosen [35] alerted about the flow of the data among microservices.
Even if each individual microservice is protected, it is important to note if the workflow is
valid. In that work, they presented a workflow-oriented framework to avoid not expected
communication between microservices.

Mateus-Coelho et al. [3] enumerated some examples of mechanisms which must be
observed during the developing in a microservice architecture: complex passwords, authen-
tication, web security flaws (what are the most flaws observed), people and processes. They
also listed the most critical web application security risks: injection, broken authentication
and session management, cross-site scripting, broken access control, security misconfig-
uration, sensitive data exposure, insufficient attack protection, cross-site request forgery,
components with known vulnerabilities and under protected APIs. All of them may be
exploited in a microservice environment. Nguyen and Baker [24] also pointed some web
security risks and carried out some experiments using CSRF attack, XSS attack and Brute
Force attack in an API endpoint protected by OAuth 2.0. In this case, all of tests were
prevented by the configuration proposed in the Proof of Concept presented in that work.

3.4. RQ.2. What Mechanisms Are Used in the Literature to Deal with the Challenges Related to
Authentication and Authorization in a Microservices Architecture?

The mechanisms identified in the literature used to deal with authentication and
authorization challenges in microservices architecture are presented in Table 5. The OAuth
2.0 protocol was the most mentioned (16 mentions), followed by JWT (14 mentions), API
Gateway (14 mentions), Single Sign-ON (8 mentions) and OpenID Connect (7 mentions).
Figure 3 shows the number of occurrences of the mechanisms used in the selected studies.
Some mechanisms were used in only one study. It is important to emphasize that, in
general terms, the identified mechanisms do not need to be implemented in a unique way,
that is, they can coexist in the same environment, each one acting with a specific purpose.
We identified in the selected studies some implementations in which the mechanisms act
together, to mitigate possible vulnerabilities involving authentication and authorization in
the microservices environment. It important to observe that some studies only point the
mechanisms without explain deeply or demonstrate a practical implementation of them,
such as the work of Pereira-Vale et al. [28], which is more concerned in perform a systematic
mapping of security mechanisms.
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Table 5. Security mechanisms used in microservices architecture

Pos Mechanism ID Number of Occurrences

1◦ OAuth 2.0
S1, S3, S5, S6,S7, S8, S10, S11,
S12, S13, S14, S15, S16, S17,

S20, S21
16

2◦ JWT S1, S3, S4, S5, S6, S9, S11, S12,
S13, S14, S15, S17, S21, S22 14

3◦ API Gateway S2, S3, S4, S5, S6, S11, S12, S13,
S14, S16, S17, S19, S20, S22 14

4◦ Single Sign-ON SSO S1, S2, S9, S10, S14, S19, S21,
S22 8

5◦ OpenID Connect S1, S3, S8, S12, S16, S17, S21 7
6◦ HTTPS S2, S10, S14, S15, S17, S19, S20 7
7◦ RBAC S1, S3, S5, S13, S14, S17, S21 7
8◦ ABAC S1, S8, S14, S17, S20, S21 6
9◦ XACML S1, S3, S13, S15, S16, S21 6
10◦ HMAC S2, S3, S5, S14, S21 5
11º SAML S1, S2, S13, S14, S21 5
12º TLS S1, S10, S14, S15, S16 5
13º OAuth S1, S5, S8, S16 4
14º Multilevel Security S1, S3, S13 3
15º DAC S14, S21 2
16º IAM S14, S21 2
17º RSA S5, S11 2
18º SASL S1, S13 2
19º SSL S2, S13 2
20º MTLS S1, S17 2
21º OpenID S2, S14 2
22º API Keys S2 1
23º Captcha S19 1
24º CAS S8 1
25º X509 Certificates S1 1
26º EAS S3 1
27º ECDSA S5 1
28º GSI S8 1
29º IDS S12 1
30º LDAP S8 1
31º MFA S19 1
32º NGAC S3 1
33º PBAC S1 1

We will present a brief description of the most mentioned mechanisms in the selected
studies:

• OAuth 2.0 (Open Authorization): The OAuth 2.0 protocol is defined by RFC 6749 [39].
According to Banati et al. [29] OAuth 2.0 is an authorization framework that allows
users to access different services without having to share their credentials. In a
practical scenario, the user authenticates to an authorization server and receives an
authorization code or an access token, which can be used to access resources, without
the need to contact the authorization server again or have to inform the username and
password [25]. Access tokens are validated on each request for some service [15,35].
This procedure poses a risk for affecting the performance of a distributed architec-
ture because if there is a large number of requests, the authentication server may be
affected [22]. OAuth 2.0 is one of the protocols most used by microservice architec-
tures for access delegation [25,31] and can be applied both in web applications and in
backend services, in addition to meeting both the authentication and authorization
proposal [24,28]. It is important to mention that OAuth 2.0 is widely used as an
authorization protocol to protect services that use the REST (Representational State
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Transfer) [23,25,27], in addition to adopting the HTTPS protocol in data communica-
tion [25].

• JWT (JSON Web Token): The JWT is defined by RFC 7519 [40]. It is an open standard
that provides a compact and independent way to securely transmit information be-
tween applications using a JSON (Javascript Object Notation) object. This information
is verifiable and trustworthy as it is digitally signed using a secret [22]. It has a format
divided into three parts: Header, Payload and Signature. The header is separated into
two parts, token type and the algorithm, that may be a HMAC, SHA256 or RSA [29].
The JWT has an advantage over traditional tokens, this verification can be done di-
rectly on the resource server, without connecting to the authentication server [22,36].
Using JWT it is possible to retrieve user information directly from the token [22,26].
In addition to user information, it is common to find in a JWT their permissions and
expiration time of the token [36]. The JWT has adherence to “stateless” applications,
that is, those that do not keep a session on the server side, but stay data with the
client side, and must be used in each client request to the resource [26]. In a mi-
croservices environment, JWTs can be transferred during the communication between
them [35]. Finally, it is important to know that JWT can be integrated with the OAuth
2.0 protocol [4,23].

• API Gateway: In the microservices environment, API Gateway acts as an intermediary
between the client and the microservices, providing a private network environment
that allows the exchange of private data [3,15], that is, clients do not communicate
directly with services, but only with a Gateway, which is responsible for communicates
with the requested service. It can be an input that performs the filtering of client
requests, making the appropriate forwarding to the microservice [23], and it can
check the user’s credentials, to find out if he owns the proper authorization [7,37].
We realized that API Gateway is a technique to decrease microservice exposure.
Nevertheless, it is important in a future work compares the communication in different
scenarios. These scenarios could be using or not using the API gateway between the
client and microservices. Consequently, it will be possible to collect the strengths and
weakness of both approaches and verify the possibility of hybrid scenarios.
Lu et al. [34], stated that the API Gateway can aggregate multiple microservices in
a single client interface, being an element that stands between the client and the
requested service. Using the API Gateway helps to reduce the exposure of systems,
then, the microservices are all protected behind the API Gateway [8]. Although
several advantages for its implementation have been observed, its use may not prove
advantageous when it becomes a single decision point, because, in case of failure in
this element, the entire application may become inaccessible [8]. An API Gateway can
use services such as JWT and OAuth 2.0 [7,8,15,23,25,34,36].

• OpenID Connect: OpenID Connect is an open authentication standard that ensures
users have only one digital identity for multiple applications or services [29]. Dongjin
et al. [25] stated that it is an authentication layer over the OAuth protocol, allowing ser-
vices to read the user’s basic information. Nehme et al. [27,31] observed that OpenID
Connect is built on top of the OAuth protocol. Yarygina and Bage [7] reinforced
that OpenID Connect provisions the user’s identity. OpenID Connect can be used
in conjunction with OAuth 2.0 [4,8,35]. There is a difference between OpenID and
OpenID Connect (OIDC). According to the OpenID Foundation website, “OpenID
Connect performs many of the same tasks as OpenID 2.0, but does so in a way that is
API-friendly, and usable by native and mobile applications” [41]. They also explain
that “OpenID Connect defines optional mechanisms for robust signing and encryption.
Whereas integration of OAuth 1.0a and OpenID 2.0 required an extension, in OpenID
Connect, OAuth 2.0 capabilities are integrated with the protocol itself” [41].

• SSO (Single Sign-On): SSO allows a user to be authenticated only once when log-
ging into a particular system, therefore, users can access all authorized resources and
services on a system without needing another authentication [29,36]. According to

209



Appl. Sci. 2022, 12, 3023

Banati et al. [29], the main purpose of this mechanism is the exchange of authorization
credentials and not the authentication by itself. The authors also reinforced that the
mechanism guarantees unified authentication in microservices and the implementa-
tion of this feature can improve the user experience [33]. In the same way as the API
Gateway, the implementation of an SSO server may cause a “Single Point of Failure”,
that is, if there are problems in this system, every application can be compromised, as
it centralizes all authentication of a system [36]. It is possible to implement a Single
Sign-On system based on OAuth 2.0 [16,29,35].

• HTTPS: The Hyper Text Transfer Protocol Secure is defined by RFC 2818 [42]. It
describes the use of HTTP over TLS (Transport Layer Security). Using the HTTPS
protocol will ensure that the communication be encrypted [16]. It provides a channel
between two hosts identified by certificates [30]. The use of HTTPS not just limited to
encrypt data, but ensures that a given client is communication with whom he wants
to [3].

• RBAC: Role-Based Access Control is used in authorization process [4]. It is a very
know identity-based access control model [35]. The use of a role-based access control
will increase the flexibility of the system because the role will define what access the
client is allowed [22]. RBAC is user-centric access control model, it does not account for
relationship between the requesting entity and the resource [7]. RBAC authorization
roles can be incorporated into JWT tokens as an additional attribute [7].

• ABAC: Attribute-Based Access Control, based in the words of Preuveneers and
Joosen [35] “grants access rights to subjects through the use of policies or rules that
combine various types of attributes to facilitate user access to the right resources
under the right conditions”. They complemented that it offers more expressivity and
flexibility compared to another access control models such as RBAC. The primary
goal of ABAC in the words of Yu et al. [25] is “an access control model is to fulfill
the requirements of highly heterogeneous environments such as multi-cloud envi-
ronment”. They also pointed the benefit of centralized security management and
orchestration that will protect the application according to consistent policies. ABAC
is recommended to be used when there is fine-grained authorization of resources, such
as access to a specific API call [7].

• XACML: eXtensible Access Control Markup Language is defined by RFC 7061 [43].
According to this document, XACML “defines an architecture and a language for
access control (authorization). The language consists of requests, responses, and
policies”. It is used to create access control policies and can be used with OAuth 2.0
protocol [31]. Nehme et al. [31] proposed a model using XACML along with OAuth
2.0. In this case, OAuth 2.0 acts as an authorization service and XACML with policy
administration and decision points. Barabanov and Marushin [8] discourage the use
of XAML because it use a complicated syntax, causing more work for developers,
adding to the fact that there were not many open-source integrations.

• HMAC: Hash-based Message Authentication Code is defined by RFC 2104. It provides
a way to check the integrity of an information transmitted in a medium [44]. In the
words of Mateus-Coelho et al., HMAC consists in “hash-based messaging code to sign
the request”. According to the same authors, there are many examples that can be
found in internet suggesting the use of HMAC over HTTP. HMAC algorithm can also
be used to sign a JWT [22].

• SAML: The Security Assertion Markup Language (SAML) 2.0 is defined by RFC
7522 and is defined as an XML-based framework that allows identity and security
information to be shared across security domains [45]. In a microservices environment,
SAML is used to exchange user attributes stored at the identity provider [35]. Mateus-
Coelho et al. [3] affirmed that “SAML and OpenID is perfect for Authentication
and Authorization of someone’s on a system but it’s also great for service-to-service
authentication as well”. Nevertheless, they admitted that SAML is complex when it is
compared to other technologies such as Api Keys.
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Figure 3. Number of occurrences versus security mechanisms found

3.5. RQ.3.What Are the Main Open-Source Technology Solutions That Implement the
Authentication and Authorization Mechanisms Identified in the Literature?

The main open-source solutions that implement the authentication and authorization
mechanisms identified in the literature are presented in Table 6. It is possible to notice
that the Spring [46] ecosystem libraries are the most mentioned (Spring Security, Spring
Cloud, Spring Boot, Gateway Zuul and Eureka Server), totaling 10 mentions. We realized
that Spring Boot and Eureka are not focused on security, but they have specific security
libraries that can be used together. For instance, implementing Spring Boot allows to
implement Spring Security library, and Eureka helps to implement an API Gateway using
Spring Cloud. Some of these studies demonstrated a practical implementation of Spring
framework using security mechanisms [21,22,24,25].

Although the research found several references to the Spring ecosystem, which is
built by Java programming language, it is important to mention that there are alternative

211



Appl. Sci. 2022, 12, 3023

frameworks based in other languages that implement the security mechanisms found into
a microservice environment, such as GoKit (Golang) [47], Flask (Python) [48] and .NET
Core (C#) [49].

The other open-source solution mentioned more than once is called Kong [50] (2 men-
tions), the others being mentioned only once. It is important to note that the Spring
Framework uses the Java programming language and has several libraries for implement-
ing security mechanisms in microservices, such as API Gateway, OAuth 2.0 and OpenID
Connect [46]. The Kong application refers to the “Kong API Gateway”, that is, among all
the mechanisms raised, it supports the implementation of an API Gateway.

Table 6. Open-source technologies that implement security in microservices architecture.

Open-Source ID

Spring Security S1, S4, S5, S7, S8
Kong S6, S11

Spring Boot S6, S7
Gateway Zuul S4, S5
Eureka Server S5

Jadex S15
Jarvis S1

Lagom S15
VertX S15

4. Discussions

Given the challenges, mechanisms and open-source solutions presented, it was verified
which of the mechanisms and solutions could be implemented to face the challenges,
according to what was collected in this RSL. Table 7 presents the solutions that act on the
related challenges. It was verified that part of the challenges does not have a direct link on
the open-source mechanism and/or implementation. The mechanisms identified could be
applied to face 09 challenges of the 20 listed in Table 4. Although it seems a low number,
these challenges are the most mentioned by the authors.

The mechanisms were widely mentioned by the authors, most of them can face the
challenges, with emphasis once again on the implementation of OAuth 2.0, JWT, API
Gateway, OpenID Connect and Single Sign ON (SSO). Nevertheless, it does not mean that
they are better or will solve any kind of security issues related to microservices architecture.
Even the less mentioned mechanisms could be more appropriate, depending on the case.
It is important to know what each mechanism is individually and what it does, for then,
implement a good security architecture in a system.
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Table 7. Linking Challenges, Mechanism and Open-Source Solutions.

Challenge Mechanism Open-Source

Increased attack surface (compared to
monolithic)

API Gateway (S2, S3, S4, S6, S12, S13, S16,
S17, S20, S22), OAuth 2.0 (S7, S12, S13),

SSO (S14)
Spring (S4, S7), Kong (S6, S11)

Authorization between services

OAuth 2.0 (S1, S5, S6, S7, S8, S10, S12, S13,
S14, S15, S16, S17, S21), SAML(S2),

OpenID(S2, S14, S16, S17), JWT (S9, S12,
S13, S14, S15, S17, S21)

Spring (S1, S5)

Bypass in Api Gateway
XACML (S3), NGAC (S3), JWT (S3, S6,
S12), OpenID (S3, S12, S16), OAuth 2.0
(S3, S6, S12, S16), TLS (S3), IDS (S12)

Spring (S4), Kong (S6)

Communication between microservices

TLS (S1, S10, S14, S15), MTLS (S17), SSL
(S2), HTTPS (S2, S10, S14, S15, S17, S20),
SAML(S2, S14, S21), XACML (S16, S21),

OpenID(S2, S3, S8, S16, S17), JWT (S4, S5,
S6, S12, S13, S14,15, S16, S17, S21), OAuth
2.0 (S5, S6, S7, S8, S10, S13, S15, S17, S21),

GSI (S8)

Spring (s5), Kong (S6)

Trust between microservices
compromised by unauthorized access

JWT (S1, S3, S4, S5, S6, S9, S11, S12, S13,
S14, S15, S17, S21, S22), OAuth 2.0 (S1, S3,
S5, S6, S7, S8, S10, S11, S12, S13, S14, S15,
S16, S17, S20, S21), OpenID Connect S1,

S2, S3, S8, S12, S14, S16, S17, S21)

Spring (S4, S5)

Microservice Access Control

OAuth 2.0 (S1, S5, S8, S10, S11, S12, S13,
S14, S15, S16, S20, S21), OpenID (S1, S2,

S3, S8, S12, S14, S16), TLS(S1), MTLS(S1),
SASL (S1), SSO (S1, S2), JWT (S1, S5, S11,
S12, S13, S14, S15, S21), HMAC(S2, S21),

ABAC (S8, S17, S20, S21), RBAC (S17,
S21), CAS (S8), RSA (S11), XACML (S16),
Captcha (S20), Multiple FA (S20), DAC

(S21), IAM (S21)

Spring (S1, S5, S11)

Coordinate authentication server with
new microservices

LDAP (S8), SSO (S1, S2, 10, S13, s14, S20,
S21, S22), OAuth 2.0 (S12, S14, S16),

OpenID (S12, S14, S16),

Individual concern for each microservice

JWT (S1, S3, S4, S5, S6, S9, S11, S12, S13,
S14, S15, S17, S21, S22), OAuth 2.0 (S1, S3,
S5, S6, S7, S8, S10, S11, S12, S13, S14, S15,
S16, S17, S20, S21), OpenID Connect (S1,

S2, S3, S8, S12, S14, S16, S17, S21)

Spring (S4, S5)

Use of authentication/authorization
server that handles all microservices

SSO (S1, S2, 10, S13, s14, S20, S21, S22),
OAuth 2.0 (S12, S14, S16)

Study Limitations

The study was performed with searches in DBLP, IEEE and Scopus databases. To
prevent relevant works from being discarded, the snowballing process was applied. Even
with this concern, it is possible that, increasing the number of databases for consultations,
new studies may be found. However, as verified in some studies collected, there is currently
a lack of studies on the subject [3,4,7,16,21,25,28]. It was also verified that there is a lack of
studies demonstrating the practical implementation of security in microservices [24,28,37].
Hence, it is likely that over the next few years, if the research related to the subject in
question increases, a new systematic review will be necessary, in order to complement
the knowledge collected in this work. We cannot conclude that the mechanisms less
mentioned in the studies are less used, therefore, it is important to explore all of them, that
can be done in a future work. Finally, it is important to note that this study is more focused
on identifying answers to the research questions, that is, it is possible that the answers to
these questions may be the subject of further studies pointing out which challenges are
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most critical in terms of vulnerability, how much they occur in a practical environment, or
even which of these challenges should be addressed with priority. The mechanisms can
also be implemented and tested in order to find out in a practical environment which of the
challenges are mitigated with the implemented mechanism.

5. Final Remarks

As verified during the execution of this work and demonstrated in Table 4, there is a
lack of studies related to security in microservices architecture. The lack increases when
the study is specific for authentication and authorization, especially in a practical approach.
It is important that the subject be better explored, because, as verified in this work, within
a microservice environment, it is necessary to be concerned with security aspects in each
service, individually, as the adoption of this architecture can increase the attack surface
and still generate attention points in the communication between them, in this way, the
lack of attention in these questions can make the applications vulnerable to unauthorized
accesses. Of all the points listed in Table 4, there are issues related to the implementation of
technologies themselves, however, there are other aspects related to the subject, such as the
organization of development teams working on different microservices within the same
system, therefore, is a theme with vast field to be explored.

Several mechanisms were found that mitigate the main points of attention observed, all
of them listed in Table 5, with OAuth 2.0 being the most mentioned, along with the Json Web
Token (JWT) and the use of API Gateway. The correct implementation of these can reduce
the possibility of any type of unauthorized access to one or more microservices, making
the environment better protected. There are few studies on practical implementations, thus,
a scenario for future work is foreseen, especially with proposals for specific patterns within
this context.

Finally, it was found that the literature indicates few open-source solutions that
implement the mechanisms found. In this case, a viable alternative expands the search
into new sources, including gray literature, which is literature produced at all levels of
government, academic, business and industrial, in print and electronic formats, but which
is not controlled by commercial publishers, that is, where publication is not the primary
activity of the producing body[51]. Such findings can be properly experimented with
scientific rigor and identified as technical solutions that solve the challenges collected in
this work.
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Abstract: Malicious domains are increasingly common and pose a severe cybersecurity threat. Specif-
ically, many types of current cyber attacks use URLs for attack communications (e.g., C&C, phishing,
and spear-phishing). Despite the continuous progress in detecting cyber attacks, there are still critical
weak spots in the structure of defense mechanisms. Since machine learning has become one of the
most prominent malware detection methods, a robust feature selection mechanism is proposed that
results in malicious domain detection models that are resistant to evasion attacks. This mechanism
exhibits a high performance based on empirical data. This paper makes two main contributions: First,
it provides an analysis of robust feature selection based on widely used features in the literature. Note
that even though the feature set dimensional space is cut by half, the performance of the classifier
is still improved (an increase in the model’s F1-score from 92.92% to 95.81%). Second, it introduces
novel features that are robust with regard to the adversary’s manipulation. Based on an extensive
evaluation of the different feature sets and commonly used classification models, this paper shows
that models based on robust features are resistant to malicious perturbations and concurrently are
helpful in classifying non-manipulated data.

Keywords: malware detection; robust features; domain

1. Introduction

Cybersecurity attacks have become a significant issue for governments and civilians [1].
Many of these attacks are based on malicious web domains or URLs (see Figure 1 for an
example of a URL structure). These domains are used for phishing [2–6] (e.g., spear
phishing), Command and Control (C&C) [7] and a vast set of virus and malware [8]
attacks. Therefore, the ability to identify a malicious domain in advance is a massive
game-changer [9–26].

Figure 1. The URL structure.

A common way of identifying malicious/compromised domains is to collect informa-
tion about the domain names (alphanumeric characters) and network information (such
as DNS and passive DNS data). This information is then used to extract a set of features,
according to which machine learning (ML) algorithms are trained based on a massive
amount of data [11–15,17–22,24,26–28]. A mathematical approach can also be used in
various ways [16,26], such as measuring the distance between a known malicious domain
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name and the analyzed domain (benign or malicious) [26]. Nonetheless, while ML-based
solutions are widely used, many of them are not robust; an attacker can easily bypass
these models with minimal feature perturbations (e.g., changing the domain’s length or
modifying network parameters such as Time To Live (TTL)) [29,30]. In this context, one
of the main problems is how to train a robust malicious domain classifier, one that is
immune to the presence of an intelligent adversary that can manipulate domain properties,
to classify malicious domains as benign.

For this purpose, a feature selection process is executed to differentiate between robust
and non-robust features. Given the robust feature set, the defender is still guaranteed to
provide an efficient classifier, which is harder to manipulate. Even if the attacker has black-
box access to the model, tampering with the domain properties or network parameters will
have a negligible effect on the classifier’s accuracy. In order to achieve this goal, we collected
a broad set of both malicious and benign URLs. In addition, we reviewed related work
and identified a set of features commonly used for the classification task. These features
were then artificially manipulated to show that some, although widely used, are not robust
in the face of adversarial perturbations. In a complementary manner, we engineered an
original set of novel and robust features. Therefore, we created a hybrid set of features,
combining the robust well-known features with our novel features. Finally, the different
feature sets (e.g., common, robust common, and novel) were evaluated using common
machine learning algorithms, with emphasis on the importance of feature selection and
feature engineering processes.

The rest of the paper is organized as follows: Section 2 summarizes related work.
Section 3 describes the methodology and the novel features. Section 4 presents the empirical
analysis and evaluation. Finally, Section 5 concludes and summarizes this work.

2. Related Work

The issue of identifying malicious domains is a fundamental problem in cybersecurity.
This section discusses recent results in identifying malicious domains, focusing on two
significant methodologies, mathematical theory (MT) approaches and machine learning
(ML)-based techniques.

The use of graph theory to identify malicious domains was more pervasive in the
past [16,26,31–33]. Yadav et al. [26] presented a method for recognizing malicious domain
names based on fast flux. Fast flux is a DNS technique used by botnets to hide phishing
and malware delivery sites behind an ever-changing network of compromised hosts acting
as proxies. They analyzed the DNS queries and responses to detect if and when domain
names were being generated by a Domain Generation Algorithm (DGA). Their solution
was based on computing the distribution of alphanumeric characters for groups of domains
and by statistical metrics with the KL (Kullback Leibler) distance, Edit distance and Jaccard
measure to identify these domains. For a fast-flux attack using the Jaccard Index, they
achieved impressive results, with 100% detection and 0% false positives. However, for
smaller numbers of generated domains for each TLD, their false-positive results were much
higher, at 15% when 50 domains were generated for the TLD using the KL-divergence over
unigrams, and 8% when 200 domains were generated for each TLD using the Edit distance.

Dolberg et al. [16] described a system called Multi-dimensional Aggregation Monitoring
(MAM) that detects anomalies in DNS data by measuring and comparing a “steadiness”
metric over time for domain names and IP addresses using a tree-based mechanism. The
steadiness metric is based on a domain similar to IP resolution patterns when comparing
DNS data over a sequence of consecutive time frames. The domain name to IP mappings
were based on an aggregation scheme and measured steadiness. In terms of detecting
malicious domains, the results showed that an average steadiness value of 0.45 could be
used as a reasonable threshold value, with a 73% true positive rate and only a 0.3% false
positive one. The steadiness values might not be considered a good indicator when fewer
malicious activities are present (e.g., <10%).

218



Electronics 2022, 11, 969

However, the most common approach to identifying malicious domains is by means of
machine learning (ML) and Deep Learning (DL) [11,14,20,23,24,27,28,34–42]. Researchers
can train ML algorithms to label URLs as malicious or benign using a set of extracted
features. Shi et al. [23] proposed a machine learning methodology to detect malicious
domain names using the Extreme Learning Machine (ELM) [19], which is closest to the
one employed here. ELM is a new neural network with a high accuracy and fast learning
speed. The authors divided their features into four categories: construction-based, IP-based,
TTL-based, and WHOIS-based categories. Their evaluation resulted in a high detection rate
with an accuracy exceeding 95% and a fast learning speed. However, as shown below, a
significant fraction of the features used in this work emerged as non-robust and ineffective
in the presence of an intelligent adversary.

Sun et al. [24] presented a system called HinDom, which generates a heterogeneous
graph (in contrast to homogeneous graphs created by Rahbarinia et al. [22] and Yadav
et al. [26]) in order to robustly identify malicious attacks (e.g., spam, phishing, malware,
and botnets). Even though HinDom collected DNS and pDNS data, it also has the ability
to collect information from various clients inside networks (e.g., CERNET2 and TUNET);
thus, its perspective is different from the perspective of this study (i.e., client perspective).
Nevertheless, HinDom has achieved remarkable results using a transductive classifier and
achieved a high accuracy and F1-scores of 99% and 97.5%, respectively.

Bilge et al. [13] created a system called Exposure, which is designed to detect mali-
cious domain names. Their system uses passive DNS data collected over some time to
extract features related to known malicious and benign domains. Passive DNS Replica-
tion [11,13,20,22,25,27,28] refers to the reconstruction of DNS zone data by recording and
aggregating live DNS queries and responses. Passive DNS data can be collected without
requiring the cooperation of zone administrators. The Exposure system is designed to
detect malware- and spam-related domains. It can also detect malicious fast-flux and
DGA-related domains based on their unique features. The system computes the following
four sets of features from anonymized DNS records: (a) time-based features related to the
periods and frequencies that a specific domain name was queried in; (b) DNS-answer-based
features calculated according to the number of distinctive resolved IP addresses and do-
main names, the countries in which the IP addresses reside, and the ratio of the resolved IP
addresses that can be matched with valid domain names and other services; (c) TTL-based
features that are calculated based on a statistical analysis of the TTL over a given time
series; and (d) domain name-based features that are extracted by computing the ratio of
the numerical characters to the domain name string, and the ratio of the size of the longest
meaningful substring in the domain name. Using a Decision Tree model, Exposure reported
a total of 100,261 distinct domains as being malicious, which resulted in 19,742 unique
IP addresses. The combination of features used to identify malicious domains led to the
successful identification of several domains related to botnets, flux networks, and DGAs,
with low false-positive and high detection rates. It may not be possible to generalize the
detection rate results reported by the authors (98%) since they were highly dependent
on comparisons with biased datasets. Despite the positive results, once an identification
scheme is published, it is always possible for an attacker to evade detection by mimicking
the behaviors of benign domains.

Rahbarinia et al. [22] presented a system called Segugio, which is an anomaly detection
system based on passive DNS traffic to identify malware-controlled domain names based
on their relationship to known malicious domains. The system detects malware-controlled
domains by creating a machine domain bipartite graph representing the underlying rela-
tions between new domains and known benign/malicious domains. The system operates
by calculating the following features: (a) machine behavior, based on the ratio of “known
malicious” and “unknown” domains that query a given domain d over the total number of
machines that query d. The larger the total number of queries and the fraction of malicious
related queries, the higher the probability that d is a malware-controlled domain; (b) Do-
main activity, where given a time period, domain activity is computed by counting the total
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number of days in which a domain was actively queried; (c) IP abuse, where, given a set
of IP addresses that the domain resolves to, this feature represents the fraction of those IP
addresses that were previously targeted by known malware-controlled domains. Using a
Random Forest model, Segugio was shown to produce high true positive and meager false
positive rates (94% and 0.1%, respectively). It was also able to detect malicious domains
earlier than commercial blacklisting websites. However, Segugio is a system that can only
detect malware-related domains based on their relationship to previously known domains
and therefore cannot detect new (unrelated to previous malicious domains) malicious
domains. Additional information concerning malicious domain filtering and malicious
URL detection can be found in [34,42].

Adversarial machine learning is a subfield of machine learning in which instances
used to train the model and instances in the wild may be characterized by different distri-
butions. For example, given perturbations on a malicious instance so that it will be falsely
classified as benign. These manipulated instances are commonly called adversarial examples
(AE) [43]. AE are samples that an attacker changes based on some model classification func-
tion knowledge. These examples are slightly different from correctly classified examples.
Therefore, the model fails to classify them correctly. AE are widely used in the fields of
spam filtering [44], network intrusion detection systems (IDS) [45], anti-virus signature
tests [46] and biometric recognition [47].

Attackers commonly follow one of two models to generate adversarial examples:
(1) white-box attacker [48–51], which has full knowledge of the classifier and the train/test
data and (2) black-box attacker [48,52,53], which has access to the model’s output for each
given input. Various methods have emerged to tackle AE-based attacks and make ML
models robust. The most promising are those based on game-theoretic approaches [54–56],
robust optimization [48,49,57], and adversarial retraining [30,58,59]. These approaches
mainly concern feature-space models of attacks where feature space models assume that
the attacker changes the values of features directly. Note that these attacks may be an
abstraction of reality as random modifications to feature values may not be realizable or
avoid the manipulated instance functionality.

Note that the topic of robust feature selection has attracted an increasing number of
researchers in recent years [30,60,61]. In the domain of PDF malware, Tong et al. [30] ex-
tracted a set of features termed “conserved features” that the adversary cannot unilaterally
modify without compromising malicious functionality. In the domain of APK malware,
Chen et al. [60] demonstrated the need for robust feature selection in their tool, Android
HIV. This tool takes advantage of non-robust features to easily bypass state-of-the-art
android malware classifiers.

3. Methodology

The structure of this section is as follows: Section 3.1 outlines the characteristics
and methods of collection of the dataset. Section 3.2 presents our evaluation metrics.
Section 3.3 defines each of the well-known features from the literature. Section 3.4 covers
the evaluation of their robustness, and Section 3.5 presents novel features and evaluates
their robustness.

3.1. Data Collection

The main ingredient of ML models is the data on which the models are trained. Data
collection should be as heterogeneous as possible to model reality. The data collected for
this work include both malicious and benign URLs: the benign URLs are based on the Alexa
top 1 million [62], and the malicious domains were crawled from multiple sources [63,64]
to allow diversity and due to the fact they are fairly rare.

According to [65], 25% of all URLs in 2020 were malicious, suspicious, or moderately
risky. Therefore, to make a realistic dataset, all the evaluations include all 1356 malicious
active unique URLs, and consequently, 5345 benign active unique URLs as well. For each
instance, the URL and domain information properties were crawled from Whois and their

220



Electronics 2022, 11, 969

DNS records. Whois is a widely used Internet record listing that identifies who owns a
domain, how to get in contact with them, the creation date, update dates, and expiration
date of the domain. Whois records have been proven to be extremely useful and have
developed into an essential resource for maintaining the integrity of the domain name
registration and website ownership. Note that according to a study by ICANN (Internet
Corporation for Assigned Names and Numbers) [66], many malicious attackers abuse the
Whois system. Hence, only the information that could not be manipulated was used. A
graphical representation of the data collection framework is illustrated in Figure 2.

Finally, based on these resources (Whois and DNS records), the following features
were generated: the length of the domain, the number of consecutive characters, and the
entropy of the domain from the URLs’ datasets. Next, the lifetime of the domain and the
active time of domain were calculated from the Whois data. Based on the DNS response
dataset (a total of 263,223 DNS records), the number of IP addresses, distinct geo-locations
of the IP addresses, average Time to Live (TTL) value, and the Standard deviation of the
TTL were extracted. For extracting the novel features (Section 3.5), Virus Total (VT) [67]
and Urlscan [68] were used, where Urlscan was used to extract parameters such as the IP
address of the page element of the URL.

Figure 2. Data collection framework.

3.2. Evaluation Metrics

Machine Learning (ML) is a subfield of computer science aimed at causing computers
to act and improve over time autonomously by feeding them data in the form of observa-
tions and real-world interactions. In contrast to traditional programming, where input and
algorithms are provided to receive an output, with ML, a list of inputs and their associated
outputs are provided to extract the algorithm that maps the two.

ML algorithms are often categorized as either supervised or unsupervised. In su-
pervised learning, each example is a pair consisting of an input vector (also called data
point) and the desired output value (class/label). Unsupervised learning learns from data
that have not been labeled, classified, or categorized. Instead of responding to feedback,
unsupervised learning identifies commonalities in the data and reacts based on the presence
or absence of such commonalities in each new piece of data.

In order to evaluate how a supervised model is adapted to a problem, the dataset
needs to be split into two, namely, a training set and testing set. The training set is used
to train the model, and the testing set is used to evaluate how well the model “learned”
(i.e., by comparing the model predictions with the known labels). Usually, the train/test
distribution is around 75%/25% (depending on the problem and the amount of data).
Standard evaluation criteria are as follows: recall, precision, accuracy, F1-score, and loss.
All of these criteria can easily be extracted from the evaluation’s confusion matrix.

A confusion matrix (Table 1) is commonly used to describe the performance of a
classification model. Recall (Equation (2)) is defined as the number of correctly classified
malicious examples out of all the malicious ones. Similarly, precision (Equation (3)) is the
number of correctly classified malicious examples from all examples classified as malicious
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(both correctly and wrongly classified). Accuracy (Equation (1)) is used as a statistical
measure of how well a classification test correctly identifies or excludes a condition. That
is, the accuracy is the proportion of true results (both true positives and true negatives)
among the total number of cases examined. Finally, the F1-score (Equation (4)) is a measure
of a test’s accuracy. It considers both the precision and the recall of the test to compute the
score. The F1-score is the harmonic average of the precision and recall, where an F1-score
reaches its best value at 1 (perfect precision and recall) and worst at 0. These criteria are
used as the main evaluation metric.

The problem of identifying malicious web domains is a supervised classification
problem, as the correct label (i.e., malicious or benign) can be extracted using a blacklist-
based method, as we describe in the next section.

Accuracy =
TP + TN

TP + FP + TN + FN
=

T
P + N

(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
=

TP
P

(3)

F1 − score = 2 · Precision · Recall
Precision + Recall

(4)

Table 1. Confusion matrix.

Prediction Outcome

Positive Negative Total

Actual Value

Positive True
Positive

False
Negative TP + FN

Negative False
Positive

True
Negative FP + TN

Total P N

3.3. Feature Engineering

Based on the previous works surveyed, a set of features that are commonly used for
malicious domain classification [11,13,22,23,27,28,35,69,70] were extracted. Specifically, the
following nine features were used as the baseline (note that the focus of this work is on the
potential use of robust features and not on the specific features; thus, WLOG, we evaluated
a set of nine commonly used features):

• Length of domain: The length of a domain is calculated by the domain name followed
by the TLD (gTLD or ccTLD). Hence, the minimum length of a domain is four since
the domain name needs to be at least one character (most domain names have at
least three characters), and the TLD (gTLD or ccTLD) is composed of at least three
characters (including the dot character) as well. For example, for the URL http:
//www.ariel-cyber.co.il; accessed on 20 March 2022, the length of the domain is 17
(the number of characters for the domain name—”ariel-cyber.co.il”).

• Number of consecutive characters: This is the maximum number of consecutive
repeated characters in the domain. This includes the domain name and the TLD
(gTLD or ccTLD). For example, for the domain “caabbbccccd.com” the maximum
number of consecutive repeated characters value is 4, due to the four consecutive
“c” characters.

• Entropy of the domain: The entropy of a domain is defined as: −∑ni
j=1

count(ci
j)

length(Domain(i))
·

log2
count(ci

j)

length(Domain(i))
, where each Domain(i) consists of ni distinct characters
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{ci
1, ci

2, . . . , ci
ni
}. For example, for the domain “google.com”, the entropy is −(5 ·

( 1
10 · log2

1
10 ) + 2 · ( 2

10 · log2
2
10 ) + 3(· 3

10 · log2
3
10 )) = 1.25 The domain has 5 characters

that appear once (“l”, “e”, ".", “c”, and “m”), one character that appears twice (“g”)
and one character that appears three times (“o”).

• Number of IP addresses: This is the number of distinct IP addresses in the domain’s
DNS record. For example, for the list [“1.1.1.1”, “1.1.1.1”, and ”2.2.2.2”], the number
of distinct IP addresses is 2.

• Distinct geo-locations of the IP addresses: For each IP address in the DNS record, the
countries for each IP were listed and the number of different countries was counted.
For example, for the list of IP addresses [“1.1.1.1”, “1.1.1.1”, and ”2.2.2.2”] the list
of countries is [“Australia”, “Australia”, and “France”] and the number of distinct
countries is 2. Note that this feature relates to the number of different countries and
not the country itself.

• Mean TTL value: For all the DNS records of the domain in the DNS dataset, the TTL
values were averaged. For example, if a domain’s DNS records were checked 30 times,
and in 20 of them the TTL value was “60” and in 10 the TTL value was “1200”, the
mean is 20·60+10·1200

30 = 440.
• Standard deviation of the TTL: The standard deviations of the TTL values for all the

DNS records of the domain in the DNS dataset were calculated. For the “Mean TTL
value” example above, the standard deviation of the TTL values is 537.401.

• Lifetime of domain: This is the interval between a domain’s expiration date and
creation date in years. For example, the domain “ariel-cyber.co.il”, according to Whois
information, which was updated on 4 June 2018, was created on 14 May 2015 and
expires on 14 May 2022. Therefore, the lifetime of the domain is the number of years
from 14 May 2015 to 14 May 2022, i.e., 8.

• Active time of domain: Similar to the lifetime of a domain, the active time of a domain
is calculated as the interval between a domain’s updated date and creation date in
years. Using the same example as in the “Lifetime of domain”, the active time of the
“ariel-cyber.co.il” domain is the number of years between 14 May 2015 and 14 May
2021, i.e., 6.

3.4. Robust Feature Selection

Next, the robustness of the set of features described above was evaluated to filter those
that could significantly harm the classification process due to the adversary’s manipulations.
Table 2 lists the common features along with the mean value and standard deviation
(note that the std in some cases (e.g., mean TTL value) is higher due to fact that these
features have a positive value by definition.) For malicious and benign URLs based on our
dataset, note that some features have similar mean values for both benign and malicious
instances while they are commonly used. Furthermore, whereas “Standard deviation of
the TTL” has distinct values for benign and malicious domains, we later show that an
intelligent adversary can easily manipulate this feature, leading to a benign classification of
malicious domains.

In order to understand the malicious abilities of an adversary, the base features were
manipulated over a wide range of possible values, one feature at a time. This analysis
considers an intelligent adversary with black-box access to the model (i.e., a set of features
or output for a given input). The robustness analysis is based on an ANN model that
classifies the manipulated samples, where the train set is the empirically crawled data,
and the test set includes the manipulated malicious samples. Figure 3 depicts the possible
adversary manipulations over any of the features. We chose recall for the evaluation metric,
representing the average detection rate after modifications.
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Table 2. Classic features and statistical properties (*—robust features).

Feature Benign Mean (std) Malicious Mean (std)

Length of domain 14.38 (4.06) 15.54 (4.09)

Number of consecutive characters * 1.29 (0.46) 1.46 (0.5)

Entropy of the domain 4.85 (1.18) 5.16 (1.34)

Number of IP addresses 2.09 (1.25) 1.94 (0.94)

Distinct geo-locations of the IP
addresses 1.00 (0.17) 1.02 (0.31)

Mean TTL value * 7578.13 (17,781.47) 8039.92 (15,466.29)

Standard deviation of the TTL 2971.65 (8777.26) 2531.38 (7456.62)

Lifetime of domain * 10.98 (7.46) 6.75 (5.77)

Active time of domain * 8.40 (6.79) 4.64 (5.66)

Figure 3. Base feature manipulation graphs (*—robust features).

The well-known features were divided into three groups: robust features, robust
features that seemed non-robust (defined as semi-robust), and non-robust features. Next,
it it is shown how an attacker can manipulate the classifier for each feature and define
its robustness:

1. “Length of domain”: an adversary can easily purchase a short or long domain to
result in a benign classification for a malicious domain; hence, this feature was
classified as non-robust.

2. “Number of consecutive characters”: as depicted in Figure 3, manipulating the
“Number of consecutive characters” feature can significantly lower the prediction
percentage (e.g., move from three consecutive characters to one or two). Still, as
depicted in Table 2, on average, there were 1.46 consecutive characters in malicious
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domains (with a low standard deviation). Therefore, as this feature’s minimal value is
1, it is considered to be a robust feature.

3. “Entropy of the domain”: in order to manipulate the “Entropy of the domain” feature
as a benign domain entropy, the adversary can create a domain name with an entropy
of less than 4. For example, the domain “ddcd.cc” is available for purchase. The
entropy for this domain is 1.44. This value falls precisely in the entropy area of the
benign domains defined by the trained model. This example breaks the model and
causes a malicious domain to look like a benign URL. Hence, this feature was classified
as non-robust.

4. “Number of IP addresses”: note that an adversary can add many A records to the
DNS zone file of its domain to imitate a benign domain. Thus, to manipulate the
number of IP addresses, an intelligent adversary only needs to have several different
IP addresses and add them to the zone file. This fact causes this feature to be classified
as non-robust.

5. “Distinct Geo-locations of the IP addresses”: in order to be able to circumvent the
model with the “Distinct Geolocations of the IP addresses” feature, the adversary
needs to use several IP addresses from different geo-locations. Suppose the adversary
can determine how many different countries are sufficient to mimic the number of
distinct countries of benign domains. In that case, he will be able to append this
number of IP addresses (a different IP address from each geo-location) in the DNS
zone file. Moreover, because this feature counts the number of the countries, the
attacker can choose a set of countries to meet the desired number. Thus, this feature
was also classified as non-robust (this assumption gave us the motivation for one of our
novel features which is based on the rank of the countries and not only the number of
the countries).

6. “Mean TTL value” and “Standard deviation of the TTL”: there is a clear correlation
between the “Mean TTL value” and the “Standard deviation of the TTL” features
since the value manipulated by the adversary is the TTL itself. Thus, it makes no
difference if the adversary cannot manipulate the “Mean TTL value” feature if the
model uses both. In order to robustify the model, it is better to use the “Mean TTL
value” feature without the “Standard deviation of the TTL”. Solely in terms of the
“Mean TTL value” feature, Figure 3 shows that manipulation will not result in a false
classification since the prediction percentage does not drop dramatically, even when
this feature is drastically manipulated. Therefore, this feature (“Mean TTL value”) is
considered to be robust.
An adversary can set the DNS TTL values to [0,120,000] (according to the RFC 2181 [71]
the TTL value range is from 0 to 231 − 1). Figure 3 shows that even manipulating the
value of this feature to 60,000 will deceive the model and cause a malicious domain to
be wrongly classified as a benign URL. Therefore, the “Standard deviation of the TTL”
is considered a non-robust feature.

7. “Lifetime of domain”: As for the lifetime of domains, based on Shi et al. [23], we
know that a benign domain’s lifetime is typically much longer than a malicious
domain’s lifetime. In order to deceive the model by manipulating the “Lifetime of
domain” feature, the adversary must buy an old domain that is available on the
market. Even though it is possible to buy an appropriate domain, it is expensive (if
feasible). Hence, we considered this to be a robust feature.

8. “Active time of domain”: Similar to the previous feature, in order to overcome
the “Active time of domain” feature, an adversary has to find a domain with a
particular active time, which is much more tricky. It is complex, expensive, and
perhaps unfeasible. Therefore we considered it to be a robust feature.

Based on the analysis above, the robust features presented in Table 2 were selected, and
the non-robust ones were dropped. Using this subset, the model was trained and achieved
an accuracy of 95.71% with an F1-score of 88.78%, compared to an accuracy of 97.2% and an
F1-score of 90.23% when using all the features (i.e., including the robust ones). Therefore,
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we extended our analysis and searched for new features that would meet the robustness
requirements to build a robust model with a higher F1-score.

3.5. Novel Features

We aim to validate that manipulating the features in order to result in the misclassifica-
tion of malicious instances will require a disproportionate effort that will deter the attacker
from doing so. The four novel features were designed according to this paradigm based on
two communication information properties, passive DNS changes, and the expiration time
of the SSL certificate. For each IP, we used Urlscan [68] to extract the geo-location, which in
turn was appended to a communication country list. The communication Autonomous
System Numbers (ASNs) is a list of ASNs, extracted using Urlscan, each IP address, and
appended the ASNs list. Benign-malicious ratio tables for communication countries, and
communication ASNs (Figures 4 and 5) were created using the URL dataset and the Urlscan
service. The ratio tables were calculated for each element E (country—for the communi-
cation countries ratio table; ASN—for the communication ASNs ratio table). Each table
represents the probability that a URL associated with a country (ASN) is malicious. In order
to extract the probabilities, the number of malicious URLs associated with E was divided
by the total URLs associated with E. Initially, due to the heterogeneity of the dataset (i.e.,
there exist some elements that appear only a few times), the ratio tables appeared to be
biased. To overcome this challenge, an initial threshold was set as an insertion criterion
which is later detailed in Algorithm 1.

Figure 4. Communication countries ratio.
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Figure 5. Communication ASNs ratio.

The following is a detailed summary of the novel features:

• Communication Countries Rank (CCR): This feature looks at the communication
countries with respect to the communication IPs, and uses the countries ratio table to
rank a specific URL. The motivation is to gain a broader perspective.

• Communication ASNs Rank (CAR): Similarly, this feature analyzes the communi-
cation ASNs with respect to the communication IPs, and uses the ASNs ratio table
to rank a specific URL. While there is some correlation between the ASNs and the
countries, the second feature examines each Autonomous System (AS) within each
country to gain a broader perspective.

• Number of passive DNS changes: When inspecting the passive DNS records, benign
domains emerged as having much more significant DNS changes that the sensors (of
the company that collects the DNS records) could identify, unlike malicious domains
(i.e., 26.4 vs. 8.01, as reported in Table 3). The number of DNS record changes was
counted for the “Number of passive DNS changes”, which is somewhat similar to
other features described in other works [11,25]. Nonetheless, these features require
much more elaborated information, which is not publicly available. On the other hand,
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this feature can be extracted from passive DNS records obtained from VirusTotal,
which are scarce (in terms of record types).

• Expiration time of SSL certificate: When installing an SSL certificate, a Certificate
Authority (CA) conducts a validation process. Depending on the type of certificate, the
CA verifies the organization’s identity before issuing the certificate. When analyzing
our data, it was noted that most malicious domains do not use valid SSL certificates
and those that only use one for a short period. Therefore, this feature was engineered
in order to represent the time the SSL certificate remains valid. The “Expiration time
of SSL certificate”, in contrast to the binary feature version used by Ranganayakulu et
al. [69], extends the scope and represents both the existence of an SSL certificate and
the remaining time until the SSL certificate expires.

Algorithm 1 Communication Rank
Input: URL, Threshold, Type
Output: Rank (CCR or CAR)

if Type = Countries then
ItemsList = communication countries list of the URL

else
ItemsList = ASNs list of the URL

end if
Rank = 0
for Item in ItemsList do

Ratio = 0.75 {Init value}
Total_norm = 1 {Init value}
if TotalOccurrences(Item) >= Threshold then

Total_norm = Normalize(Item)
Ratio = BenignRatio(Item)

end if
Rank+ = (log0.5(Ratio + ε)/Total_norm)

end for

Table 3. Novel features and statistical properties.

Feature Benign Mean (std) Malicious Mean (std)

Communication Countries Rank (CCR) 31.31 (91.16) 59.40 (215.15)

Communication ASNs Rank (CAR) 935.59 (12,258.99) 12,979.38 (46,384.86)

Number of passive DNS changes 26.40 (111.99) 8.01 (16.63)

Expiration time of SSL certificate 1.547×107 (2.304×107) 4.365×106 (1.545×107)

Algorithm 1 receives a URL as an input and returns its communication country rate or
the ASN communication rate (based on the type of the input in the algorithm). For each
item (i.e., country or ASN), first the algorithm initializes the value of the ratio variable to
0.75 (according to [65], 25% of all URLs in 2020 were malicious, suspicious, or moderately
risky). It then normalizes an item’s total occurrences (Total_norm) to be 1. Next, in Step 9,
if an item’s total number of occurrences is ≥ to the threshold, the algorithm replaces the
ratio. It normalizes occurrences to the correct values according to the ratio tables given in
Figures 4 and 5. Finally, the algorithm sums the rank with a log base of 0.5 of the ratio (ε is
a very small value that was added for the special case where Ratio = 0) and divides this
value by the normalized total occurrences.

Figure 6 depicts the detection rate as a function of the novel features’ values for each
feature in Table 3. This evaluation proves that manipulating our novel features does not
affect the robust model (i.e., the detection rate remains steady). The negative correlation
between “Expiration time of SSL certificate” feature and the detection rate may raise
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concern. Nevertheless, it is noteworthy that the average value for malicious domains is
three times higher than the benign ones. While, theoretically, the adversary can lower
this value, the implications of such an action mean acquiring (or attaining for free) an
SSL certificate. Since there is a validation process involved in the acquisition of an SSL
certificate, doing so will cause the adversary to lose its anonymity and disclose its identity.

Figure 6. Novel robust feature manipulation graphs.

4. Empirical Analysis and Evaluation

This section describes the testbed used to evaluate models based on the types of
features (both robust and not). General settings are provided for each of the models
(e.g., the division of the data into training and test sets), as well as the parameters used
to configure each of the models, and the efficiency of each model. (our code is publicly
available at https://github.com/nitayhas/robust-malicious-url-detection; accessed on
20 March 2022).

4.1. Experimental Design

In addition to intelligently choosing the model parameters, one should verify that the
data used for the learning phase accurately represent the domain malware’s real-world
distribution. Hence, the dataset was constructed such that 75% were benign domains,
and the remaining 25% were malicious domains (~5000 benign URLs and ~1350 malicious
domains, respectively) [65].

There are many ways to define the efficiency of a model. A broad set of metrics was
extracted to account for most of them, including accuracy, recall, F1-score, and training
time. Note that for each model, the dataset was split into train and test sets where 75%
of the data (both benign and malicious) were assigned to the train set, and the remaining
domains were assigned to the test set. Note that the entire dataset included 75% benign
samples. Later, when we trained a model, we used 75% of the dataset for the training
process and 25% for the evaluation (i.e., test set).

The evaluation measured the efficiency of the different models while varying the
robustness of the features included in the model. Specifically, four classical models (i.e.,
Logistic Regression, SVM, ELM, and ANN) were trained using the following feature sets:

• Base (B)—the set of commonly used features in previous works (see Table 2 for
more details).

• Base Robust (BR)—the subset of robust base features (marked with a * in Figure 3).
• “TCP” (TCP)—the four novel features: Time of SSL certificate, Communication ranks

(CCR and CAR) and PassiveDNS changes (see Table 3).
• Base Robust + “TCP” (BRTCP)—the combination (union) of BR and TCP, the robust

subset of all features.
• Base + “TCP” (BTCP)—the union of B and TCP.
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4.2. Experimental Results

Four commonly used classification models were considered: Logistic Regression (LR),
Support Vector Machines (SVM), Extreme Learning Machine (ELM), and Artificial Neural
Networks (ANN). All the models were trained and evaluated on a Dell XPS 8920 computer,
Windows 10 64Bit OS with 3.60GHz Intel Core i7-7700 CPU, 16GB of RAM, and NVIDIA
GeForce GTX 1060 6GB. In the following paragraphs, we describe the experimental results
for each model, followed by a short discussion of the findings and their implications.

4.2.1. Logistic Regression

As a baseline for the evaluation process, and before using the nonlinear models, the LR
classification model was used. The LR model with the five feature sets (Base, Robust Base,
TCP, BRTCP, BTCP) was trained. Table 4 shows that the different feature sets resulted in
similar accuracy rates. However, the accuracy rate measures how well the model predicts
(i.e., TP + TN)with respect to all the predictions (i.e., TP + TN + FP + FN). Thus, given the
unbalanced dataset (75% of the dataset are benign and 25% are malicious domains), ~90%
accuracy is not necessarily a sufficient result for malware detection. For example, the TCP
feature set has high accuracy and, at the same time, a very poor F1-Score, due to the high
precision rate and poor recall rate. As the recall is low for all features sets, the accuracy rate
is not a good measure in this domain. Consequently, we focused on the F1-score measure,
the harmonic mean of the precision, and the recall measures.

4.2.2. Support Vector Machine (SVM)

Compared to the results of the LR model (Table 4), the results of the SVM model
(Table 5) show a significant improvement in the recall and F1-score measures; e.g., for Base,
the recall and the F1-score measures were both above 90%. It should be noted that the model
that trained on the Base feature set resulted in a higher recall (and F1-score) compared to the
one trained on the Robust Base feature set. Nonetheless, it is also noteworthy that the Robust
Base feature set is robust to adversarial manipulation and uses less than half of the features
provided in the training phase with the Base feature set. This discussion also applies to the
BRTCP and BTCP feature sets. Another advantage of including the novel features is that
models converge much faster. The results are based on the analysis of a non-manipulated
dataset. As stated above, the Base feature set includes some non-robust features. Hence, an
intelligent adversary can manipulate the values of these features, resulting in the wrong
classification of malicious instances (to the extreme of 0% recall). However, an intelligent
adversary will need to invest much more effort with a model that was trained using the
Robust Base or TCP features since each was specifically chosen to avoid such manipulations.
In order to find models that were also efficient on the non-manipulated dataset, the two
sophisticated models were examined in the analysis, the ELM model Shi et al. [23] provided
and the ANN model.

Table 4. Model performance—logistic Regression.

Feature Set Accuracy Recall F1-Score

Base 89.99% 38.82% 53.21%

Robust Base 88.33% 38.87% 49.42%

TCP 86.20% 8.30% 14.99%

BRTCP 88.82% 52.46% 65.57%

BTCP 92.86% 64.14% 72.48%
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Table 5. Model performance—SVM.

Feature Set Accuracy Recall F1-Score

Base 96.49% 91.20% 91.36%

Robust Base 90.14% 56.51% 69.93%

TCP 83.10% 60.21% 54.21%

BRTCP 96.78% 91.37% 92.02%

BTCP 97.95% 90.73% 92.83%

4.2.3. ELM

The architecture of the ELM is the one previously used [23]: one input layer, one
hidden layer, and one output layer. Activation function: first layer—ReLU; hidden layer—
Sigmoid. Overall, the ELM model resulted (see Table 6) in a high accuracy and higher recall
rates compared to Table 4, for any feature set. When compared to the SVM models, the
Base model resulted in a lower recall rate (though a higher F1-score was achieved with the
ELM model). On the other hand, the Robust Base resulted in a higher recall rate with the
ELM model compared to the SVM model. Even though the Robust Base feature set had a
low dimensional space, the three rates (i.e., accuracy, recall, and F1-score) were higher than
those of the Base feature set. Using the sets that include the novel features increased these
metrics while improving the robustness of the model at the same time.

Table 6. Model performance—ELM.

Feature Set Accuracy Recall F1-Score

Base 98.17% 88.81% 92.92%

Robust Base 98.83% 92.24% 95.81%

TCP 98.88% 94.64% 96.84%

BRTCP 98.86% 95.82% 97.07%

BTCP 98.19% 93.09% 95.34%

4.2.4. ANN

The architecture of the neural network was as follows: one input layer, three hidden
layers, and one output layer. Activation function: first layer—ReLU; first hidden layer—
RELU; second hidden layer—LeakyReLU; third hidden layer—Sigmoid. Batch size: −150,
with a learning rate of 0.01; solver: Adam with β1 = 0.9 and β2 = 0.999. Similar to the ELM
results, the ANN results (Table 7) show high performance with all feature sets. For the
“basic” feature sets (i.e., Base and Robust Base), the ELM models resulted in higher recall and
F1-score. Nevertheless, the main focus was in the BTCP feature set and, more specifically,
on the BRTCP variant, where the ANN models resulted in a higher recall and F1-score.

Table 7. Model performance—ANN.

Feature Set Accuracy Recall F1-Score

Base 97.20% 88.03% 90.23%

Robust Base 95.71% 83.63% 88.78%

TCP 98.03% 96.83% 95.24%

BRTCP 99.36% 98.77% 98.42%

BTCP 99.82% 99.47% 99.56%
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Our analysis concludes with Figure 7, which depicts the F1-scores of the feature sets
for all the models.

Figure 7. The F1-Score by feature sets and models.

All the results provided in this article are based on clean data (i.e., with no adversarial
manipulation). Naturally, given an adversarial environment where the attacker can manip-
ulate the values of the features, models which are based on the Robust Base or TCP feature
sets will dominate models that are trained using the Base dataset. Thus, by showing that
the Robust Base feature set does not dramatically decrease the performance of the classifier
using clean data and that adding the novel feature improves the model’s performance as
well as its robustness, it leads to the conclusion that malicious domain classifiers should
use this feature set for robust malicious domain detection.

5. Conclusions

Numerous attempts have been made to tackle the problem of identifying malicious
domains. However, many fail to successfully classify malware in realistic environments
where an adversary can manipulate the features in order to make the model wrongly
classify malicious domains. Specifically, this research used a large empirical dataset that
was crawled over a significant amount of time at different hours of the day, and captures
traffic generated in various countries and continents. Based on this rich dataset, this paper
tackled the case where an attacker has access to the model (i.e., a set of features or output for
a given input) and tampers with the domain properties. This tampering has a catastrophic
effect on the model’s efficiency. As a countermeasure, we propose two feature-based
mechanisms: (I) an intelligent feature selection procedure that is robust to adversarial
manipulation. We evaluated the robustness of each feature, taking into account both the
hardness of changing its value and the effects of such manipulations on the classifier;
(II) a novel and robust feature engineering process. Based on the domains’ properties, we
engineered a set of four features which are robust to adversarial manipulation and, together
with the common features, improve the classifiers’ performance.

We empirically evaluated the common feature set as well as our novel ones using
a large dataset, which took into account both malicious and benign models. To extend
our evaluation, we picked a broad set of well-known machine learning algorithms. Our
evaluation showed that models trained using the robust features are more precise in terms
of manipulated data while maintaining good results on clean data as well.

From the industry perspective, our solution can be easily adopted either in any organi-
zation’s DPI center solution, Firewall, Load Balancer, behavioral analytic or as a client agent
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that will query a cloud-service dataset. Further research is needed to create models that
classify malicious domains into malicious attack types, either in terms of a more extensive
list of models or by sampling data in a stratified way, validating the amount of data for any
feature value. Another promising direction would be to cluster a set of malicious domains
into one cyber campaign.
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Abstract: Cybersecurity is a pressing matter, and a lot of the responsibility for cybersecurity is put on
the individual user. The individual user is expected to engage in secure behavior by selecting good
passwords, identifying malicious emails, and more. Typical support for users comes from Information
Security Awareness Training (ISAT), which makes the effectiveness of ISAT a key cybersecurity issue.
This paper presents an evaluation of how two promising methods for ISAT support users in acheiving
secure behavior using a simulated experiment with 41 participants. The methods were game-based
training, where users learn by playing a game, and Context-Based Micro-Training (CBMT), where
users are presented with short information in a situation where the information is of direct relevance.
Participants were asked to identify phishing emails while their behavior was monitored using eye-
tracking technique. The research shows that both training methods can support users towards secure
behavior and that CBMT does so to a higher degree than game-based training. The research further
shows that most participants were susceptible to phishing, even after training, which suggests that
training alone is insufficient to make users behave securely. Consequently, future research ideas,
where training is combined with other support systems, are proposed.

Keywords: usable security; cybersecurity training; ISAT; SETA; phishing; user awareness; security
behavior

1. Introduction

The world is continuing a journey towards an increasingly digital state [1]. The
use of computers and online services has been a natural component of the lives of most
people in developed countries for decades and adoption in developing regions is on the
rise [2]. Furthermore, populations that previously demonstrated low adoption rates are
now adopting and using digital services at a rapid pace [3,4]. This development is positive.
On a national level, Internet adoption has been shown to positively impact financial
development [2]. On the individual level, the use of digital services makes it easier for the
individual to access information, healthcare, and more, while enabling social contact in
situations where meeting physically is challenging or even impossible [5,6].

However, digitalization is not without risk. The move to more digital work, leisure
and more also means a move to more digital crime and threats [7]. Digital threats expose
users and organizations to risks daily, and the need for cybersecurity to protect against
those risks is undeniable. The threat landscape is multi-faceted and includes various types
of threats that can be broadly classified as technological or human [8]. Technological threats
include, for instance, malware or hacking where the attacker is using technological means
to destroy or gain access to devices or services. Human threats involve exploiting user
behavior, typically for the same purpose. A common type of human threat is phishing,
where an attacker sends an email to the target victim and attempts to persuade the victim
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into behaving in an insecure way by, for instance, downloading an attachment or clicking
a link and then submitting login credentials to some service. Phishing is continuously
reported as the most common threat to both organizations and individuals, and therefore
the topic of this paper [9–11].

At its core, phishing is when an attacker attempts to trick a user into insecure behavior.
Insecure behavior typically includes downloading a malicious attachment, clicking a link
or giving up sensitive information in reply to the email [12]. Phishing has traditionally
been easy to spot as generic messages which are often poorly formatted with poor spelling
and grammar [13]. While that is still true for some of today’s phishing campaigns, now
many phishing emails are well-written and use various techniques to invoke trust [12].
Furthermore, attackers employ targeted attacks where they tailor emails to a specific
recipient, a technique known as spear-phishing [9]. In such an attack, the attacker may
steal the email address of a friend or coworker of the target victim and make the email
appear to come from that known sender. The attacker may also research the victim and
ensure that the content of the malicious email is content that the victim would, given the
victim’s job position or interest, expect to receive [14].

Techniques used by attackers and techniques used to defend against phishing both
include technical and human aspects [15]. An attacker will exploit human behavior to
invoke trust and persuade the victim into insecure behavior. As part of the attack, the
attacker may also exploit technical weaknesses in the email protocols to pose as a trusted
sender or use another technical weakness to take control of the victim’s system once the
victim opens a malicious attachment [12]. Likewise, several organizations employ technical
measures, such as automatic filters, to defend against phishing. However, educating users
on detecting phishing emails remains the most commonly suggested defense mechanism.
While both technical and human aspects of phishing are important, the primary focus of
this paper is on the human side, particularly on user behavior and how it can be understood
and improved.

As explained by the knowledge, attitude, and behavior (KAB) model, behavior is
influenced by knowledge, and attitude [16]. KAB describes that increased knowledge about
an expected behavior will lead to increased awareness and, finally, a change in behavior.
This relationship has been evaluated in the security domain and found to hold [17].

Information Security Awareness Training (ISAT) is commonly suggested as the way to
improve user awareness [18–20]. There are several different ways to train users presented
in the literature. These include providing lectures, text-based warnings, video instruc-
tions sent out via email at regular intervals, instructive games and training automatically
provided to users in risky situations [21–25]. There are, however, several publications
suggesting that many training efforts fail to support users towards secure behavior to
a high enough degree [26,27]. Suggested reasons include that it is hard to make users
participate in on-demand training, that acquired knowledge is not retained for long enough,
and that knowledge does not necessarily translate to correct behavior [20,28]. Some re-
search even suggests that training methods are not empirically evaluated to a high enough
extent [29,30].

This paper seeks to evaluate the effectiveness of two promising methods for ISAT;
game-based training and Context-Based Micro-Training (CBMT). Game-based training
means that users are presented with an educative game and is argued to increase user
participation rates and provide a more realistic training environment compared to lectures,
videos, or similar [31]. CBMT means that users are presented with condensed information
in situations where the training is of direct relevance. In the context of phishing, a user will
receive training when opening a mailbox. CBMT is argued to increase users’ awareness
and has been evaluated in the context of password security with positive results [32]. The
research question addressed in this paper is:

To what extent can the two methods, game-based training and CBMT, support
users to accurately differentiate between phishing and legitimate email?
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The research was carried out as a simulated experiment with 41 participants. The
participants were asked to identify phishing emails while their behavior was monitored
using an eye-tracking technique. The results show that both training methods can support
users towards secure behavior and that CBMT does so to a higher degree than game-based
training, which makes the first contribution of this research. The research further shows
that most participants were susceptible to phishing, even after training which suggests
that training alone is not enough to make users behave securely. The upcoming section
will elaborate on ISAT and justify the selection of CBMT and game-based training as the
focus of this research. The rest of this paper will, in turn, present the research methodology
results, and discuss those results and their limitations.

2. Information Security Awareness Training

ISAT has been discussed in the scientific literature for several decades, and the im-
portance of providing ISAT as a means of improving user behavior is widely acknowl-
edged [33–35]. ISAT intends to increase user knowledge and awareness through training.
There are many and diverse, options for ISAT, and recent publications [35–37] categorize
ISAT methods differently. In general terms, ISAT methods can be described as seen in
Table 1. Table 1 is based on the classifications by [36,37].

Table 1. Overview of ISAT methods.

Method Description

Classroom training Typically provided on-site as a lecture attended as a
specific point in time.

Broadcasted online training Typically, brief training delivered as broadcast to large
user groups using e-mail or social networks.

E-learning ISAT typically delivered using an online platform that is
accessible to users on-demand.

Simulated or contextual training Training delivered to users during a real or simulated
event.

Gamified training Gamified training is described as using gamification to
develop ISAT material.

While ISAT has been long discussed in scientific literature and used in practice, several
publications suggest that many ISAT methods fail to adequately support users towards
secure behavior [26,27]. This notion is emphasized by the continuous reports of incidents
where human behavior is a key component [38,39]. Three core reasons for why ISAT does
not always provide its intended effect can be found in recent research:

• Knowledge acquired during training deteriorates over time [21].
• It is challenging to get users to participate in training delivered on-demand [28].
• Users are provided with knowledge, but not motivated to act in accordance to that

knowledge [20].

The ISAT methods included in this research are game-based training and Context-
Based Micro-Training (CBMT). Gamified training means that game concepts are applied to
ISAT, with the intent to better motivate users to actively participate [28]. It is considered
in this research since it is argued to better motivate and engage users when compared
to other ISAT alternatives. There are several examples of gamified ISAT. The landscape
includes multi-player competitive games, story-based single-player games, board games,
role-playing games, quizzes, and more [28,40].

CBMT is an example of contextual training. ISAT using the CBMT method is delivered
to users in short sequences and in situations where the training is of direct relevance.
Phishing training is, for instance, delivered to users that are in a situation with an elevated
risk of being exposed to phishing. It is argued to counter the knowledge retention and user
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participation problems by automatically appearing in those relevant situations [32]. It is
also argued to motivate users towards secure behavior by providing them with training
that directly relates to the users’ current situation.

3. Materials and Methods

The purpose of this study was to evaluate user behavior when assessing if emails are
malicious or not. To that end, a controlled experiment where the participants were exposed
to an inbox and asked to classify the email contained in that inbox was conducted. The par-
ticipants were scored based on how accurately they classified the emails. Furthermore, the
participants’ behavior was monitored during the experiment by an eye tracker that recorded
where the participants were looking on screen. Before the experiments, the participants
were randomised into three groups; game-based training, CBMT-based training or control.
A between-group analysis was performed to identify differences between training meth-
ods and answer the research question posed. As detailed at the end of paper statements,
data supporting this paper is available as open data (https://doi.org/10.5878/g6d9-7210
(accessed on 6 March 2022)). Furthermore, the study did not require ethical review, but all
participants signed a written informed consent form detailing how the study was executed
and how data were handled. An overview of the research process is presented in Figure 1.
The rest of this section provides a detailed description of the experiment environment, data
collection procedures, collected variables, and data analysis procedures.

Figure 1. Research process overview.

3.1. Experiment Environment

An experiment environment containing an email system was set up on Ubuntu Linux
using the email server and management platform Modoboa (https://modoboa.org/en/
(accessed on 6 March 2022)). Both Ubuntu Linux and Modoboa were installed with default
settings. Modoboa allowed for the creation of unlimited email domains and addresses and
provided a webmail interface. Several email domains were configured so that different
types of emails could be created:

• Legitimate emails from service providers such as Google and banks.
• Phishing emails that imitated phishing emails from hijacked sender accounts.
• Phishing emails from domains made up to look similar to real domains, for instance,

lundstro.mse instead of lundstrom.se.

The fictitious company Lundström AB, and the character Jenny Andersson were
developed. The company was given the domain lundstrom.se and the character was given
the email address jenny@lundstrom.se. A persona was developed for Jenny Andersson.
The experiment participants were asked to assume Jenny´s persona and classify the email
in her inbox. The persona was expressed as follows:
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Jenny is 34 years old and works as an accountant at a small company (Lundström
AB), and her manager is Arne Lundtröm. She lives with her husband and kids
in a small town in Sweden. Your email address is jenny@lundstrom.se. You use
the banks SBAB and Swedbank and is interested in investing in Bitcoin. You
are about to remodel your home and have applied for loans at several banks
to finance that. You shop a fair bit online and are registered at several e-stores
without really remembering where. You are currently about to remodel your
bathroom. Ask the experiment supervisor if you need additional information
about Jenny or the workplace during the experiment.

Jenny’s inbox was populated with 11 emails where five were legitimate, and six were
phishing. The legitimate emails were crafted as reasonable questions from her manager
or communications from banks and craftsmen. The communications from banks and
craftsmen were based on real emails taken from one of the researcher’s inboxes. The
six phishing emails were crafted to include different phishing identifiers. Five different
phishing identifiers were included in the experiment. They are commonly mentioned in
scientific and popular literature and were the following [41–44]:

1. Incorrect sender address where the attacker may use an arbitrary incorrect sender
address, attempt to create an address that resembles that of the true sender, or use a
sender name to hide the actual sender address.

2. Malicious attachments where the attacker will attempt to make the recipient down-
load an attachment with malicious content. A modified file extension may disguise
the attachment.

3. Malicious links that are commonly disguised so that the user needs to hover over
them to see the true link target.

4. Persuasive tone where an attacker attempts to pressure the victim to act rapidly.
5. Poor spelling and grammar that may indicate that a text is machine translated or not

written professionally.

The included phishing emails are described as follows:

1. The first phishing email came from the manager’s real address and mimicked a spear-
phishing attempt, including a malicious attachment and hijacked sender address.
The attachment was a zip file with the filename “annons.jpeg.zip (English: advertise-
ment.jpeg.zip)”. The text body prompted the recipient to open the attached file. In
addition to a suspicious file extension, the mail signatures differed from the signature
in other emails sent by the manager.

2. The second phishing email came from Jenny’s own address and prompted the recipi-
ent to click a link that supposedly led to information about Bitcoin. The email could
be identified as phishing by the strange addressing and the fact that the tone in the
email was very persuasive.

3. The third phishing email appeared to be a request from the bank SBAB. It prompted
the user to reply with her bank account number and deposit a small sum of money
into another account before a loan request could be processed. It could be identified by
improper grammar, an incorrect sender address (that was masked behind a reasonable
sender name), and the request itself.

4. The fourth phishing email was designed to appear from Jenny´s manager. It prompted
Jenny to quickly deposit a large sum of money into a bank account. It could be
identified by the request itself and because the sender address was arne@lundstro.mse
instead of arne@lundstrom.se.

5. The fifth phishing email mimicked a request from Google Drive. It could be identified
by examining the target of the included links that lead to the address xcom.se instead
of google.

6. The sixth phishing email appeared to be from the bank Swedbank and requested the
recipient to go to a web page and log in to prove the ownership of an account. It could

241



Future Internet 2022, 14, 104

be identified as phishing by examining the link target, the sender address, which was
hidden behind a sender name, and the fact that it contained several spelling errors.

The experiment was set up so that most phishing emails had similar legitimate coun-
terparts. The legitimate emails included where:

1. The first legitimate email was a request from Jenny’s manager Arne. The request
prompted Jenny to review a file on a shared folder.

2. The second legitimate email was a notification from a Swedish bank. It prompted
Jenny to go to the bank website and log in. It did not contain any link.

3. The third legitimate email was an offering from a plumber. While containing some
spelling errors, it did not prompt Jenny to make any potentially harmful actions.

4. The fourth legitimate email is a request for a meeting from Jenny’s manager Arne.
5. The fifth email is a notification from a Swedish bank. This notification prompts the

user to go to the bank website and log in. It does not contain any greeting or signature
with address.

The webmail interface is demonstrated in Figure 2. Figure 2 displays the layout of the
included emails and is annotated to show the ordering of the emails. Legitimate emails are
denoted Ln, in green, and phishing emails are denoted Pn in red.

Figure 2. Webmail interface used in the experiment.

3.2. Participant Recruitment

Participants were recruited using a convenience sampling approach where students
and employees from the University of Skövde were recruited. Participants with education
or work experience in cybersecurity were excluded from the study. All participants were
invited with a direct email that they were asked to reply to in order to participate. Upon
registration, participants were randomly assigned to one of the three groups and provided
with a description of the experiment, a description of the persona, and an informed consent
form. The three groups were the following:

• Game: Participants in this group were prompted to play an educational game be-
fore arriving for the experiment. The game is called Jigsaw (https://phishingquiz.
withgoogle.com/) (accessed on 6 March 2022) and is developed by Google. It is an
example of game-based training that is implemented as a quiz and was selected for use
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in this research because it is readily available for users. It also covers all the identifiers
of phishing previously described. Jigsaw takes about five minutes to complete.

• CBMT: Participants in this group received computerized training developed by the
research team according to the specifications of CBMT. It was written information that
appeared to the participants when they opened Jenny’s inbox, as demonstrated in
Figure 3. The participants were presented with a few tips and prompted to participate
in further training, which led the participants to a text-based slide show in a separate
window. The training takes about five minutes to complete.

• CONTROL: This group completed the experiment without any intervention.

Figure 3. Demonstration of CBMT-based training.

3.3. Experiment Procedure

On arriving for the experiment, the participant was seated in a regular office in front
of a 24′′ computer monitor that displayed the experiment environment. The monitor was
equipped with a Gazepoint GP3 HD eye tracker (https://www.gazept.com/product/gp3
hd/) (accessed on 6 March 2022). The participant was asked to read the informed consent
form and given the opportunity to ask questions about the experiment and study before
signing it. The participant was then asked to respond to a survey with demographic
questions and asked to take a seat in front of the monitor. The eye tracker was calibrated
using the manufacturer’s built-in calibration sequence with nine points [45]. The calibration
was considered successful when the control software deemed all nine points valid. In
cases where the eye tracker could not be successfully calibrated, eye-tracking data were
disregarded for that participant. This happened for three participants.

The participant was then reminded of Jenny’s persona and asked to classify the email
in Jenny’s inbox. The participant was instructed to delete all phishing emails and keep
all legitimate emails. The participant was asked to think aloud during the experiment,
especially about how decisions to delete emails were made. The participant was also
told that at least one of the emails was phishing and that a score was to be calculated
based on the participants’ performance. The intent was to make the participant as aware
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of phishing as possible. The rationale was that mere inclusion in the experiment would
increase the participant’s awareness level, and by priming all participants to high awareness
would make the awareness levels of the participants comparable. Consequently, the
gathered data reflects the participants’ best ability to delete phishing rather than the ability
they can be assumed to have during their daily work. Gazepoint analysis UX Edition
(https://www.gazept.com/product/gazepoint-analysis-ux-edition-software/) (accessed
on 6 March 2022) was used to monitor the participant’s performance in real time on
an adjacent screen and for post-experiment analysis of the collected eye-tracking data.
Following the experiment, the participants in the game group were asked if they had
played the game before the experiment as instructed. The experiment process, from the
participant’s point of view, is visualized in Figure 4.

Figure 4. Visualization of experiment procedure. Dashed boxes only applied to some groups.

3.4. Collected Variables

Variables reflecting the participants’ demographic background, score and behavior
were captured during the experiment. The demographic variables were collected to enable
a descriptive presentation of the sample’s demographic attributes. The score variables
reflected the total number of correct classifications the participants made. The behavior
variables described how the participants acted during the experiment by counting how
many of the previously described phishing identifiers the participants used. Two behavior
variables were collected. The first was collected manually during the experiment (be-
havior_manual). It was based on real-time monitoring, and the participants expressed
thoughts. It reflected how many of the following actions the participant performed at
least once:
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1. Evaluated the sender address by hovering over the displayed name to see the real
sender address.

2. Evaluated attachments by acknowledging their existence and describing it as suspi-
cious or legitimate.

3. Evaluated links by hovering over them or in some other way verified the
link destination.

4. Evaluated if the tone in the email was suspiciously persuasive.
5. Evaluated if spelling and grammar made the email suspicious.

Please note that the variables reflect what identifiers the participants used but not if
they accurately interpreted the information provided by the identifier. A participant who,
for instance, incorrectly evaluated a sender address as legitimate would still get the point
for evaluating the sender address. The second behavior variable, behavior_tracked, was
computed automatically by defining Areas of Interest in Gazepoint analysis UX Edition
and counting how many times the participant gazed in those areas. Areas of Interest are
defined screen areas that allow for collecting the number of times the participants gaze in
those particular areas. The following three Areas of Interest were defined.

• Address, which covered the area holding the sender and recipient addresses.
• Attachment covering the area where email attachments are visible.
• Link covering the area where the true link destination appears.

The Areas of Interest were only active when they included the intended information.
For instance, the Attachment area was only active when an attachment was visible on the
screen. The Areas of Interest are demonstrated in Figure 5 which also shows how red dots
denote where the participant is currently looking.

Figure 5. Demonstration of how areas of interest were defined, with AOI definitions enlarged. Please
note that the Link area contains the target address of a link that is hovered over.

3.5. Data Analysis

The data were analyzed using SPSS version 25. The demographic properties of the
sample were first described followed by a descriptive overview of the three variables
SCORE, behavior_manual, and behavior_tracked. The proportion of participants that
received perfect scores was then reported. A perfect score means that a participant iden-
tified all 11 emails correctly, or used all phishing identifiers assessed by the variables
behavior_manual and behavior_tracked, respectively.

Next, Kruskal–Wallis H tests were used, with pairwise Mann–Whitney U test with
Bonferroni correction as post hoc procedure, to identify significant between-group differ-
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ences. Kruskal–Wallis H test performed on three or more samples will return a significant
result if at least one sample is different from the others. In such a case, the Mann–Whitney
U test with Bonferroni correction is used between all pairs in the sample to analyze what
individual samples that are different from each other. Kruskal–Wallis H test was used over
ANOVA because the data must show a normal distribution for ANOVA to be robust, and
most samples did not in this case [46]. The conventional significance level of 0.05 is used
throughout this paper.

4. Results

This section outlines the results of the study. It is divided into two sections were
the first section outlines a descriptive overview of the data. The second section outlines
the results in relation to the research question. It should be noted that three participants
in the Game group reported that they did not play the provided game. This is to be
expected given previous works suggesting that it is challenging to get users to participate
in training [28]. All statistical procedures have been performed with and without those
three participants. Results concerning the Game group are reported as n(m) were n is the
result when the complete group is considered and m is the result when participants that
did not play the game are omitted.

4.1. Data Overview

Data was collected over a period of about two months and included 41 participants.
Two participants were removed from the data set since they reported having formal training
in cybersecurity. The data collection period was intended to be longer, but data collections
stopped after a security incident where the IT department warned all students and staff
at the university about phishing involving attachments. Continued data collection would
have risked the validity of the data set. The mean participant age was 37. Twenty-three
participants identified themselves as female and 16 as male. Twenty-three participants
reported being employees and 16 reported being students. An overview of the mean and
median values for the collected variables and the distribution form of the variables is
presented in Table 2. Please note that eye-tracking failed for three participants and the
participants included for the variable behavior_tracked is therefore only 36.

Table 2. Data overview.

Variable Group Mean Median Normal Distribution

SCORE Control (n = 11) 8.82 9 YES
out of 11 CBMT (n = 14) 10 10 NO

Game (n = 14) 8.86 (9.09) 9 (9) NO
Total (n = 39) 9.26 9 NO

behavior_manual Control (n = 11) 3 3 NO
out of 5 CBMT (n = 14) 4.57 5 NO

Game (n = 14) 3.64 (3.82) 3.5 (4) NO
Total (n = 39) 3.79 4 NO

behavior_tracked Control (n = 10) 1.9 2 NO
out of 3 CBMT (n = 12) 2.5 3 NO

Game (n = 14) 2.29 (2.55) 2 (3) NO
Total (n = 36) 2.25 2 NO

4.2. The Effect of Training

The effect of training was assessed by first examining the proportion of participants
that received perfect scores. A perfect score means that the participants used all phishing
identifiers or identified all emails correctly. The proportions of perfect scores are presented
in Table 3.

Table 3 suggests that participants who received training performed better than partici-
pants in the control group for the behavior variables and that the participants in the CBMT
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group outperformed the other groups for the variable SCORE. The same tendency is seen
in Table 2 where mean and median results for the different sample groups are presented.
Table 2 suggests that participants in the group game performed slightly better than the
control group while the participants in the group CBMT outperformed the other groups
with a bigger margin. The exception is for the variable behavior_tracked where the groups
CBMT and game performed equally when participants who reported not playing the game
were omitted from the game group.

Table 3. Proportions of perfect scores.

Variable Group Perfect Scores

SCORE Control (n = 11) 0%
CBMT (n = 14) 21.4%
Game (n = 14) 0% (0%)
Total (n = 39) 7.7% (8.3%)

behavior_manual Control (n = 11) 0%
CBMT (n = 14) 64.3%
Game (n = 14) 14.3% (18.2%)
Total (n = 39) 28.2% (30.6%)

behavior_tracked Control (n = 10) 9.1%
CBMT (n = 12) 57.1%
Game (n = 14) 42.9% (54.5%)
Total (n = 36) 38.5% (45.5%)

Kruskal–Wallis H test was used to identify variables with statistically significant
between-group differences. The results are presented in Table 4.

Table 4. Kruskal–Wallis H tests.

Variable Kruskal–Wallis H p-Value

SCORE 13.965 (12.531) 0.001 (0.002)

behavior_manual 16.270 (15.434) 0.000 (0.000)

behavior_tracked 5.569 (7.332) 0.062 (0.026)

The Kruskal–Wallis H tests suggest that at least one sample is different from the others
when p < 0.05, as is the case for the variables SCORE and behavior_manual. The same is also
true for the variable behavior_tracked when users who did not play the game are omitted.
Pairwise Mann–Whitney U tests with Bonferroni correction was used to test what variables
that were significantly different from each other. The results are presented in Table 5.

Table 5. Pairwise post hoc tests. Please note that post hoc tests for the variable behavior_tracked
were only computed in the case when participants in the group Game, who did not play the game
was omitted because the corresponding Kurskal-Wallis H tests was only significant in that case.

Variable Groups p-Value

SCORE Control-Game 1.000 (1.000)
Control-CBMT 0.005 (0.003)
Game-CBMT 0.003 (0.023)

behavior_manual Control-Game 0.502 (0.277)
Control-CBMT 0.000 (0.000)
Game-CBMT 0.021 (0.102)

behavior_tracked Control-Game X (0.083)
Control-CBMT X (0.036)
Game-CBMT X (1.000)
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In this case, the difference between two variables is statistically significant when
p < 0.05. Table 5 shows that CBMT is separated from the groups game and control for the
variables SCORE and behavior_manual while control and game cannot be separated. For
behavior_tracked, game and CBMT cannot be separated but are both separated from control.

5. Discussion

This research explores how effectively Information Security Awareness Training (ISAT)
can support users to accurately identify phishing emails. The research evaluated two meth-
ods that were discussed as being promising in recent literature, namely game-based training
and training based on CBMT. The research was conducted as a simulated experiment that
measured how the participants behaved when assessing whether emails were phishing or
not, and how accurately they classified email. The statistical analysis shows that partici-
pants in the CBMT group had higher scores than users in the game or control group. In
terms of behavior, participants in the CBMT group performed better than the game and
control group for the manually collected variable. However, the CBMT and game groups
were equally strong for the variable computed based on eye-tracking data. In conclusion,
both game-based training and CBMT are shown to improve user behavior in relation to
phishing while only CBMT can be shown to improve users’ ability to accurately classify
phishing emails.

One reason could be that CBMT provides an awareness increasing mechanism in
addition to training while game-based training does not. The game-based training is
delivered to participants on a regular basis and was mimicked in the experiment by letting
the participants take the training prior to arriving for the experiment. CBMT is, by design,
presented to users when they are entering a risky situation and that was mimicked by
presenting the CBMT training to participants just before starting the experiment. The
difference in how the training was delivered could account for the difference in results
between the two groups. In fact, the effect of awareness increasing mechanisms have been
evaluated in prior research with good results [47,48]. This research extends those results
by suggesting that awareness increasing mechanisms combined with training are likely to
have a positive effect on users’ ability to accurately identify phishing emails.

While training was proven to improve participants’ ability to identify phishing, it can
be noted that less than 10% of the participants were able to identify all emails correctly.
Furthermore, less than 50% of the participants evaluated all of the phishing identifiers
and even if the participants in the CBMT group received training just before starting the
experiment, 35.7% of those participants missed one or more phishing identifiers. Yet,
most organizations explicitly or implicitly expect users to correctly identify all phishing
emails all the time. The present research shows that even if users are provided with
training just before being tasked with identifying phishing, and instructed to actively
search for phishing, very few users are able to fulfill the expectations of that security
model. The implication of this result is that the security model or the feasibility of using
training alone to reach it must be questioned. One could, for instance, question if we
should follow a paradigm where users are expected to change according to how computers
work. A more useful paradigm could be to modify the way that computers work to match
the abilities of the users. A similar viewpoint is presented by [49] who questions why
the responsibility for cybersecurity is individualized through the notion of the “stupid
user”. Instead, ref. [49] suggest that user-oriented threats should be managed by security
professionals, and managers, at a collective level. Likewise, ref. [50] calls for a more holistic
approach to anti-phishing methods.

5.1. Limitations

A given limitation of this study comes from participation bias. Participation bias is
known to impact simulated experiments in cybersecurity awareness [22]. The expected
effect in this study is that participants are more aware than they would be in a naturally
occurring situation. Thus, the scores are expected to reflect the participants’ best ability
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rather than their average performance. Using a between-group design, we still argue that
differences between ISAT methods identified in this research are valid. However, it is likely
that the actual performance of the included methods will be lower in a natural environment.
On a similar note, the method cannot account for organizational factors such as leadership
support and social pressure, which are know to impact cybersecurity behavior [51].

A second limitation concerns sampling where this research included participants
studying, or working at, a university. As such, the results are representative of that
population and any inference beyond that population should be avoided. On this topic,
recent research argues that there are indeed demographic differences in the ability to detect
phishing [52]. The number of participants is a further limitation and a higher participant
number would have been preferable. In this case, data collection was stopped following a
cybersecurity incident that prompted the IT department to broadcast a phishing warning.
Participants performing the experiment after that event would have been exposed to
information not presented to other participants and that would have introduced bias into
the dataset.

A third possible discussion under the umbrella of limitations is how the different
types of training were presented to the participants. The participants placed in the game
group were asked to play a game before arriving for the experiment while participants
in the CBMT group were subjected to training on arrival. There is, therefore, a chance
that participants in the game group forgot some of the training, or forgot to play the game
entirely. The design is argued to mimic the natural behavior of the two training types and
both retention and failure to play are two previously discussed obstacles with game-based
training delivered in a format that requires active participation [28]. Consequently, any
effect of the experimental design mimics an expected effect in a natural environment.

5.2. Future Work

While training can undoubtedly support users to identify phishing emails, this study
suggests that training alone is not enough and that opens up several future research
directions. First, future studies could focus on combining training with modifying the
way emails are presented to users. One could imagine that finding ways to make it easier
for users to find and interpret phishing identifiers could improve users’ ability to identify
malicious emails. A possible example could be to rewrite links in the text body of emails
to always show the full link address, which is unclickable, instead of allowing clickable
hyperlinks with arbitrary display names. A similar possible direction is to further research
predicting user susceptibility to phishing using artificial intelligence [53]. That could
identify a user in need to training and then provide tailored training. A second direction
for future work could be to replicate this study with a different population. That would
allow for identification of differences and similarities between, for instance, technical and
non-technical users, male and female users, and users of different age.

A more theoretical direction for future work could be to evaluate the strength of the
relationships in the KAB model and to evaluate the relationship between behavior and
actual outcomes of that behavior. In certain situations, including phishing, applying a
correct behavior is not enough, since a user also has to interpret the result of that behavior.
For instance, a correct behavior would make a user control the real target of a link, and to
make a decision about the email the user needs to interpret the trustworthiness of the link
target. Furthermore, one could assess the possible effect of usability on the relationship
between the constructs in the KAB model. One can imagine that knowledge about a certain
behavior is more likely to result in that behavior if the effort to comply is low.
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Abstract: Adversarial attacks pose a major threat to machine learning and to the systems that rely
on it. In the cybersecurity domain, adversarial cyber-attack examples capable of evading detection
are especially concerning. Nonetheless, an example generated for a domain with tabular data must
be realistic within that domain. This work establishes the fundamental constraint levels required to
achieve realism and introduces the adaptative perturbation pattern method (A2PM) to fulfill these
constraints in a gray-box setting. A2PM relies on pattern sequences that are independently adapted
to the characteristics of each class to create valid and coherent data perturbations. The proposed
method was evaluated in a cybersecurity case study with two scenarios: Enterprise and Internet of
Things (IoT) networks. Multilayer perceptron (MLP) and random forest (RF) classifiers were created
with regular and adversarial training, using the CIC-IDS2017 and IoT-23 datasets. In each scenario,
targeted and untargeted attacks were performed against the classifiers, and the generated examples
were compared with the original network traffic flows to assess their realism. The obtained results
demonstrate that A2PM provides a scalable generation of realistic adversarial examples, which can
be advantageous for both adversarial training and attacks.

Keywords: realistic adversarial examples; adversarial attacks; adversarial robustness; machine
learning; tabular data; intrusion detection

1. Introduction

Machine learning is transforming the way modern organizations operate. It can be
used to automate and improve various business processes, ranging from the recognition
of patterns and correlations to complex regression and classification tasks. However,
adversarial attacks pose a major threat to machine learning models and to the systems
that rely on them. A model can be deceived into predicting incorrect results by slightly
modifying original data, which creates an adversarial example. This is especially concerning
for the cybersecurity domain because adversarial cyber-attack examples capable of evading
detection can cause significant damage to an organization [1,2].

Depending on the utilized method, the data perturbations that result in an adversarial
example can be created in one of three settings: black-, gray- and white-box. The first
solely queries a model’s predictions, whereas the second may also require knowledge
of its structure or the utilized feature set, and the latter needs full access to its internal
parameters. Even though machine learning is inherently susceptible to these examples, a
model’s robustness can be improved by various defense strategies. A standard approach
is performing adversarial training, a process where the training data is augmented with
examples generated by one or more attack methods [3,4].

Nonetheless, a method can only be applied to a given domain if the examples it
generates are realistic within that domain. In cybersecurity, a domain with tabular data, if
an adversarial example does not resemble real network traffic, a network-based intrusion
detection system (NIDS) will never actually encounter it because it cannot be transmitted
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through a computer network. Furthermore, if an example can be transmitted but is incom-
patible with its intended malicious purpose, evading detection will be futile because no
damage can be caused. Consequently, training machine learning models with unrealistic
cyber-attack examples only deteriorates their generalization to real computer networks and
attack scenarios. Therefore, the generation of realistic adversarial examples for domains
with tabular data is a pertinent research topic.

This work addressed the challenge of generating realistic examples, with a focus
on network-based intrusion detection. The main contributions are the establishment of
the fundamental constraint levels required to achieve realism and the introduction of the
adaptative perturbation pattern method (A2PM) to fulfil these constraints in a gray-box
setting. The capabilities of the proposed method were evaluated in a cybersecurity case
study with two scenarios: Enterprise and Internet of Things (IoT) networks. It generated
adversarial network traffic flows for multi-class classification by creating data perturbations
in the original flows of the CIC-IDS2017 and IoT-23 datasets.

Due to the noticeably different internal mechanics of an artificial neural network
(ANN) and a tree-based algorithm, the study analyzed the susceptibility of both types of
models to the examples created by A2PM. A total of four multilayer perceptron (MLP)
and four random forest (RF) classifiers were created with regular and adversarial training,
and both targeted and untargeted attacks were performed against them. To provide a
thorough analysis, example realism and time consumption were assessed by comparing the
generated examples with the corresponding original flows and recording the time required
for each A2PM iteration.

The present article is organized into multiple sections. Section 2 defines the funda-
mental constraint levels and provides a survey of previous work on adversarial examples.
Section 3 describes the proposed method and the key concepts it relies on. Section 4 presents
the case study and an analysis of the obtained results. Finally, Section 5 addresses the main
conclusions and future work.

2. Related Work

In recent years, adversarial examples have drawn attention from a research perspective.
However, since the focus has been the image classification domain, the generation of
realistic examples for domains with tabular data remains a relatively unexplored topic. The
common adversarial approach is to exploit the internal gradients of an ANN in a white-box
setting, creating unconstrained data perturbations [5–7]. Consequently, most state-of-the-
art methods do not support other types of machine learning models nor other settings,
which severely limits their applicability to other domains. This is a pertinent aspect of the
cybersecurity domain, where white-box is a highly unlikely setting. Considering that a
NIDS is developed in a secure context, an attacker will commonly face a black-box setting,
or occasionally gray-box [8,9].

The applicability of a method for adversarial training is significantly impacted by the
models it can attack. Despite an adversarially robust generalization still being a challenge,
significant progress has been made in ANN robustness research [10–14]. However, various
other types of algorithms can be used for a classification task. This is the case of network-
based intrusion detection, where tree-based algorithms, such as RF, are remarkably well-
established [15,16]. They can achieve a reliable performance on regular network traffic,
but their susceptibility to adversarial examples must not be disregarded. Hence, these
algorithms can benefit from adversarial training and several defense strategies have been
developed to intrinsically improve their robustness [17–20].

In addition to the setting and the supported models, the realism of the examples
generated by a method must also be considered. Martins et al. [21] performed a systematic
review of recent developments in adversarial attacks and defenses for cybersecurity and
observed that none of the reviewed articles evaluated the applicability of the generated
examples to a real intrusion detection scenario. Therefore, it is imperative to establish the
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fundamental constraints an example must comply with to be applicable to a real scenario
on a domain with tabular data. We define two constraint levels:

1. Domain constraints—Specify the inherent structure of a domain.
2. Class-specific constraints—Specify the characteristics of a class.

To be valid on a given domain, an example can solely reach the first level. Nonetheless,
full realism is only achieved when it is also coherent with the distinct characteristics of its
class, reaching the second. In a real scenario, each level will contain concrete constraints for
the utilized data features. These can be divided into two types:

• Intra-feature constraints—Restrict the value of a single feature.
• Inter-feature constraints—Restrict the values of one or more features according to the

values present in other features.

In a real computer network, an example must fulfil the domain constraints of the
utilized communication protocols and the class-specific constraints of each type of cyber-
attack. Apruzzese et al. [8] proposed a taxonomy to evaluate the feasibility of an adversarial
attack against a NIDS, based on access to the training data, knowledge of the model and
feature set, reverse engineering and manipulation capabilities. It can provide valuable
guidance to establish the concrete constraints of each level for a specific system.

Even though some methods attempt to fulfil a few constraints, many exhibit a clear
lack of realism. Table 1 summarizes the characteristics of the most relevant methods of the
current literature, including the constraint levels they attempt to address. The keyword ‘CP’
corresponds to any model that can output class probabilities for each data sample, instead
of a single class label.

Table 1. Summary of relevant methods and addressed constraint levels.

Method Setting
Supported

Models
Domain

Constraints
Class-Specific

Constraints

FGSM [3] White-box ANN � �

C&W [22] White-box ANN � �

DeepFool [23] White-box ANN � �

Houdini [24] White-box ANN � �

StrAttack [25] White-box ANN � �

ZOO [26] White-box ANN � �

JSMA [27] White-box ANN � �

Polymorphic [28] Gray-box ANN � �
Reconstruction [29] Gray-box ANN � �

OnePixel [30] Black-box CP � �

RL-S2V [31] Black-box CP � �

BMI-FGSM [32] Black-box Any � �

GAN [33] Black-box Any � �

WGAN [34] Black-box Any � �

Boundary [35] Black-box Any � �

Query-Efficient [36] Black-box Any � �

Regarding the Polymorphic attack [28], it addresses the preservation of original class
characteristics. Chauhan et al. developed it for the cybersecurity domain, to generate
examples compatible with a cyber-attack’s purpose. The authors start by applying a
feature selection algorithm to obtain the most relevant features for the distinction between
benign network traffic and each cyber-attack. Then, the values of the remaining features,
which are considered irrelevant for the classification, are perturbed by a Wasserstein
generative adversarial network (WGAN) [34]. On the condition that there are no class-
specific constraints for the remaining features, this approach could improve the coherence
of an example with its class. Nonetheless, the unconstrained perturbations created by
WGAN disregard the domain structure, which inevitably leads to invalid examples.
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On the other hand, both the Jacobian-based saliency map attack (JSMA) [27] and
the OnePixel attack [30] could potentially preserve a domain structure. The former was
developed to minimize the number of modified pixels in an image, requiring full access to
the internal gradients of an ANN, whereas the latter only modifies a single pixel, based on
the class probabilities predicted by a model. These methods perturb the most appropriate
features without affecting the remaining features, which could be beneficial for tabular
data. However, neither validity nor coherence can be ensured because they do not account
for any constraint when creating the perturbations.

To the best of our knowledge, no previous work has introduced a method capable of
complying with the fundamental constraints of domains with tabular data, which hinders
the development of realistic attack and defense strategies. This is the gap in the current
literature addressed by the proposed method.

3. Proposed Method

A2PM was developed with the objective of generating adversarial examples that fulfil
both domain and class-specific constraints. It benefits from a modular architecture to assign
an independent sequence of adaptative perturbation patterns to each class, which analyze
specific feature subsets to create valid and coherent data perturbations. Even though it
can be applied in a black-box setting, the most realistic examples are obtained in gray-box,
with only knowledge of the feature set. To fully adjust it to a domain, A2PM only requires
a simple base configuration for the creation of a pattern sequence. Afterwards, realistic
examples can be generated from original data to perform adversarial training or to directly
attack a classifier in an iterative process (Figure 1).

 

Figure 1. Adaptative perturbation pattern method (business process model and notation).

The generated examples can be untargeted, to cause any misclassification, or targeted,
seeking to reach a specific class. New data perturbations could be generated indefinitely,
but it would be computationally expensive. Hence, early stopping is employed to end the
attack when the latest iterations could not cause any further misclassifications. Besides
static scenarios where the full data is available, the proposed method is also suitable for
scenarios where it is provided over time. After the pattern sequences are created for an
initial batch of data, these can be incrementally adapted to the characteristics of subsequent
batches. If novel classes are provided, the base configuration is used to autonomously
create their respective patterns.

The performed feature analysis relies on two key concepts: value intervals and value
combinations. The following subsections detail the perturbation patterns built upon these
concepts, as well as the advantages of applying them in sequential order.
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3.1. Interval Pattern

To perturb uncorrelated numerical variables, the main aspect to be considered is the
interval of values each one can assume. This is an intra-feature constraint that can be
fulfilled by enforcing minimum and maximum values.

The interval pattern encapsulates a mechanism that records the valid intervals to create
perturbations tailored to the characteristics of each feature (Figure 2). It has a configurable
‘probability to be applied’, in the (0, 1] interval, which is used to randomly determine if an
individual feature will be perturbed or not. Additionally, it is also possible to specify only
integer perturbations for specific features.

Figure 2. Interval pattern (business process model and notation).

Instead of a static interval, moving intervals can be utilized after the first batch to
enable an incremental adaptation to new data, according to a configured momentum. For a
given feature and a momentum k ∈ [0, 1], the updated minimum mi and maximum Mi of
a batch i are mathematically defined as:

mi = mi−1 ∗ k + min(xi) ∗ (1 − k) (1)

Mi = Mi−1 ∗ k + max(xi) ∗ (1 − k) (2)

where min(xi) and max(xi) are the actual minimum and maximum values of the samples
xi of batch i.

Each perturbation is computed according to a randomly generated number and is
affected by the current interval, which can be either static or moving. The random number
ε ∈ (0, 1] acts as a ratio to scale the interval. To restrict its possible values, it is generated
within the standard range of [0.1, 0.3], although other ranges can be configured. For a
given feature, a perturbation Pi of a batch i can be represented as:

Pi = (Mi − mi) ∗ ε (3)

After a perturbation is created, it is randomly added or subtracted to the original value.
Exceptionally, if the original value is less or equal to the current minimum, it is always
increased, and vice-versa. The resulting value is capped at the current interval to ensure it
remains within the valid minimum and maximum values of that feature.

3.2. Combination Pattern

Regarding uncorrelated categorical variables, enforcing their limited set of qualitative
values is the main intra-feature constraint. Therefore, the interval approach cannot be
replicated even if they are encoded to a numerical form, and a straightforward solution
can be recording each value a feature can assume. Nonetheless, the most pertinent aspect
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of perturbing tabular data is the correlation between multiple variables. Since the value
present in a variable may influence the values used for other variables, there can be several
inter-feature constraints. To improve beyond the previous solution and fulfil both types of
constraints, several features can be combined into a single common record.

The combination pattern records the valid combinations to perform a simultaneous
and coherent perturbation of multiple features (Figure 3). It can be configured with locked
features, whose values are used to find combinations for other features without being
modified. Due to the simultaneous perturbations, its ‘probability to be applied’, in the
(0, 1] interval, can affect several features.

 

Figure 3. Combination pattern (business process model and notation).

Besides the initially recorded combinations, new data can provide additional possi-
bilities. These can be merged with the previous or used as gradual updates. For a given
feature and a momentum k ∈ [0, 1], the number of updated combinations Ci of a batch i is
mathematically expressed as:

Ci = Ci−1 ∗ k + unique(xi) (4)

where unique(xi) is the number of unique combinations of the samples xi of batch i.
Each perturbation created by this pattern consists of a combination randomly selected

from the current possibilities, considering the locked features. It directly replaces the
original values, ensuring that the features remain coherent.

3.3. Pattern Sequences

Domains with diverse constraints may require an aggregation of several interval and
combination patterns, which can be performed by pattern sequences. Furthermore, the
main advantage of applying multiple patterns in a sequential order is that it enables the
fulfilment of countless inter-feature constraints of greater complexity. It is pertinent to note
that all patterns in a sequence are independently adapted to the original data, to prevent
any bias when recording its characteristics. Afterwards, the sequential order is enforced to
create cumulative perturbations on that data.

To exemplify the benefits of using these sequences, a small, but relatively complex,
domain will be established. It contains three nominal features, F0, F1 and F2, and two
integer features, F3 and F4. For an adversarial example to be realistic within this domain, it
must comply with the following constraints:

• F0 must always keep its original value,
• F1 and F4 can be modified but must have class-specific values,
• F2 and F3 can be modified but must have class-specific values, which are influenced

by F0 and F1.

258



Future Internet 2022, 14, 108

The base configuration corresponding to these constraints specifies the feature subsets
that each pattern will analyze and perturb:

1. Combination pattern—Modify {F1};
2. Combination pattern—Modify {F2, F3}, Lock {F0, F1};
3. Interval pattern—Modify {F3, F4}, Integer {F3, F4}.

A2PM will then assign each class to its own pattern sequence. For this example, the
‘probability to be applied’ will be 1.0 for all patterns, to demonstrate all three cumulative
perturbations (Figure 4). The first perturbation created for each class is replacing F1 with
another valid qualitative value, from ‘B’ to ‘C’. Then, without modifying the original F0 nor
the new F1, a valid combination is found for F0, F1, F2 and F3. Since the original F2 and F3
were only suitable for ‘A’ and ‘B’, new values are found to match ‘A’ and ‘C’. Finally, the
integer features F3 and F4 are perturbed according to their valid intervals. Regarding F3, to
ensure it remains coherent with F0 and F1, the perturbation is created on the value of the
new combination.

Figure 4. Exemplification of a perturbation pattern sequence.

4. Experimental Evaluation

A case study was conducted to evaluate the capabilities of the proposed method, as
well as its suitability for multi-class classification on the cybersecurity domain. Assessments
of example realism and time consumption were performed by comparing the examples
generated by A2PM with the original data and recording the time required for each iteration.
To thoroughly analyze example realism, the assessment included examples generated by
the potential alternatives of the current literature: JSMA and OnePixel.

Since the internal mechanics of an ANN and a tree-based algorithm are noticeably
different, the susceptibility of both types of models to A2PM was analyzed by performing
targeted and untargeted attacks against MLP and RF classifiers. Two scenarios were
considered: Enterprise and IoT networks. For these scenarios, adversarial network traffic
flows were generated using the original flows of the CIC-IDS2017 and the IoT-23 datasets,
respectively. In addition to evaluating the robustness of models created with regular
training, the effects of performing adversarial training with A2PM were also analyzed.

The study was conducted on relatively common hardware: a machine with 16 gi-
gabytes of random-access memory, an 8-core central processing unit, and a 6-gigabyte
graphics processing unit. The implementation relied on the Python 3 programming lan-
guage and several libraries: Numpy and Pandas for data preprocessing and manipulation,
Tensorflow for the MLP models, Scikit-learn for the RF models, and Adversarial-Robustness-
Toolbox for the alternative methods. The following subsections describe the most relevant
aspects of the case study and present an analysis of the obtained results.

259



Future Internet 2022, 14, 108

4.1. Datasets and Data Preprocessing

Both CIC-IDS2017 and IoT-23 are public datasets that contain multiple labeled cap-
tures of benign and malicious network flows. The recorded data is extremely valuable
for intrusion detection because it includes various types of common cyber-attacks and
manifests real network traffic patterns.

CIC-IDS2017 [37] consists of seven captures of cyber-attacks performed on a standard
enterprise computer network with 25 interacting users. It includes denial-of-service and
brute-force attacks, which were recorded in July 2017 and are available at the Canadian
Institute for Cybersecurity. In contrast, IoT-23 [38] is directed at the emerging IoT networks,
with wireless communications between interconnected devices. It contains network traffic
created by malware attacks targeting IoT devices between 2018 and 2019, divided into
23 captures and available at the Stratosphere Research Laboratory.

From each dataset, two captures were selected and merged, to be utilized for the
corresponding scenario. Table 2 provides an overview of their characteristics, including the
class proportions and the label of each class, either ‘Benign’ or a specific type of cyber-attack.
The ‘PartOfAHorizontalPortScan’ label was shortened to ‘POAHPS’.

Table 2. Main characteristics of utilized datasets.

Scenario
Dataset

(Captures)
Total

Samples
Class

Samples
Class
Label

Enterprise
Network

CIC-IDS2017
(Tuesday and
Wednesday)

1,138,612

873,066 Benign
230,124 Hulk
10,293 GoldenEye
7926 FTP-Patator
5897 SSH-Patator
5796 Slowloris
5499 Slowhttptest

11 Heartbleed

IoT
Network

IoT-23
(1-1 and 34-1) 1,031,893

539,587 POAHPS
471,198 Benign
14,394 DDoS
6714 C&C

Before their data was usable, both datasets required a similar preprocessing stage.
First, the features that did not provide any valuable information about a flow’s benign
or malicious purpose, such as timestamps and IP addresses, were discarded. Then, the
categorical features were converted to numeric values by performing one-hot encoding.
Due to the high cardinality of these features, the very low frequency categories were
aggregated into a single category designated as ‘Other’, to avoid encoding qualitative
values that were present in almost no samples and therefore had a small relevance.

Finally, the holdout method was applied to randomly split the data into training
and evaluation sets with 70% and 30% of the samples. To ensure that the original class
proportions were preserved, the split was performed with stratification. The resulting CIC-
IDS2017 sets were comprised of eight imbalanced classes and 83 features, 58 numerical and
25 categorical, whereas the IoT-23 sets contained four imbalanced classes and approximately
half the structural size, with 42 features, 8 numerical and 34 categorical.

4.2. Base Configurations

After the data preprocessing stage, the distinct characteristics of the datasets were ana-
lyzed to identify their concrete constraints and establish the base configurations for A2PM.
Regarding CIC-IDS2017, some numerical features had discrete values that could only have
integer perturbations. Due to the correlation between the encoded categorical features,
they required combined perturbations to be compatible with a valid flow. Additionally,
to guarantee the coherence of a generated flow with its type of cyber-attack, the encoded
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features representing the utilized communication protocol and endpoint, designated as
port, could not be modified. Hence, the following configuration was used for the Enterprise
scenario, after it was converted to the respective subset of feature indices:

1. Interval pattern—Modify {numerical features}, Integer {discrete features};
2. Combination pattern—Modify {categorical features}, Lock {port, protocol}.

Despite the different features of IoT-23, it presented similar constraints. The main
difference was that, in addition to the communication protocol, a generated flow had to be
coherent with the application protocol as well, which was designated as service. The base
configuration utilized for the IoT scenario was:

1. Interval pattern—Modify {numerical features}, Integer {discrete features};
2. Combination pattern—Modify {categorical features}, Lock {port, protocol, service}.

It is pertinent to note that, for the ‘Benign’ class, A2PM would only generate benign
network traffic that could be misclassified as a cyber-attack. Therefore, the configurations
were only applied to the malicious classes, to generate examples compatible with their
malicious purposes. Furthermore, since the examples should resemble the original flows
as much as possible, the ‘probability to be applied’ was 0.6 and 0.4 for the interval and
combination patterns, respectively. These values were established to slightly prioritize
the small-scale modifications of individual numerical features over the more significant
modifications of combined categorical features.

4.3. Models and Fine-Tuning

A total of four MLP and four RF classifiers were created, one per scenario and training
approach: regular or adversarial training. The first approach used the original training sets,
whereas the latter augmented the data with one adversarial example per malicious flow. To
prevent any bias, the examples were generated by adapting A2PM solely to the training
data. The models and their fine-tuning process are described below.

An MLP [39] is a feedforward ANN consisting of an input layer, an output layer and
one or more hidden layers in between. Each layer can contain multiple nodes with forward
connections to the nodes of the next layer. When utilized as a classifier, the number of input
and output nodes correspond to the number of features and classes, respectively, and a
prediction is performed according to the activations of the output nodes.

Due to the high computational cost of training an MLP, it was fine-tuned using a
Bayesian optimization technique [40]. A validation set was created with 20% of a training
set, which corresponded to 14% of the original samples. Since an MLP accounts for the loss
of the training data, the optimization sought to minimize the loss of the validation data.
To prevent overfitting, early stopping was employed to end the training when this loss
stabilized. Additionally, due to the class imbalance present in both datasets, the assigned
class weights were inversely proportional to their frequency.

The fine-tuning led to a four-layered architecture with a decreasing number of nodes
for both training approaches. The hidden layers relied on the computationally efficient
rectified linear unit (ReLU) activation function and the dropout technique, which inherently
prevents overfitting by randomly ignoring a certain percentage of the nodes during training.
To address multi-class classification, the Softmax activation function was used to normalize
the outputs to a class probability distribution. The MLP architecture for the Enterprise
scenario was:

1. Input layer—83 nodes, 512 batch size;
2. Hidden layer—64 nodes, ReLU activation, 10% dropout;
3. Hidden layer—32 nodes, ReLU activation, 10% dropout;
4. Output layer—8 nodes, Softmax activation.

A similar architecture was utilized for the IoT scenario, although it presented a de-
creased batch size and an increased dropout:

1. Input layer—42 nodes, 128 batch size;
2. Hidden layer—32 nodes, ReLU activation, 20% dropout;
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3. Hidden layer—16 nodes, ReLU activation, 20% dropout;
4. Output layer—4 nodes, Softmax activation.

The remaining parameters were common to both scenarios because of their equivalent
classification tasks. Table 3 summarizes the MLP configuration.

Table 3. Summary of multilayer perceptron configuration.

Parameter Value

Objective Loss Categorical Cross-Entropy
Optimizer Adam Algorithm

Learning Rate 0.001
Maximum Epochs 50

Class Weights Balanced

On the other hand, an RF [41] is an ensemble of decision trees, where each individual
tree performs a prediction according to a different feature subset, and the most voted class
is chosen. It is based on the wisdom of the crowd, the idea that a multitude of classifiers
will collectively make better decisions than just one.

Since training an RF has a significantly lower computational cost, a five-fold cross-
validated grid search was performed with well-established hyperparameter combinations.
In this process, five stratified subsets were created, each with 20% of a training set. Then, five
distinct iterations were performed, each training a model with four subsets and evaluating
it with the remaining one. Hence, the MLP validation approach was replicated five times
per combination. The macro-averaged F1-Score, which will be described in the next
subsection, was selected as the metric to be maximized. Table 4 summarizes the optimized
RF configuration, common to both scenarios and training approaches.

Table 4. Summary of random forest configuration.

Parameter Value

Splitting Criteria Gini Impurity
Number of Trees 100

Maximum Depth of a Tree 32
Minimum Samples in a Leaf 2

Maximum Features
√

Number of Features
Class Weights Balanced

4.4. Attacks and Evaluation Metrics

A2PM was applied to perform adversarial attacks against the fine-tuned models
for a maximum of 50 iterations, by adapting to the data of the holdout evaluation sets.
The attacks were untargeted, causing any misclassification of malicious flows to different
classes, as well as targeted, seeking to misclassify malicious flows as the ‘Benign’ class. To
perform a trustworthy evaluation of the impact of the generated examples on a model’s
performance, it was essential to select appropriate metrics. The considered metrics and
their interpretation are briefly described below [42,43].

Accuracy measures the proportion of correctly classified samples. Even though it is
the standard metric for classification tasks, its bias towards the majority classes must not
be disregarded when the minority classes are particularly relevant to a classification task,
which is the case of network-based intrusion detection [44]. For instance, in the Enterprise
scenario, 77% of the samples have the ‘Benign’ class label. Since A2PM was configured to
not generate examples for that class, even if an adversarial attack was successful and all
generated flows evaded detection, an accuracy score as high as 77% could still be achieved.
Therefore, to correctly exhibit the misclassifications caused by the performed attacks, the
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accuracy of a model was calculated using the network flows of all classes except ‘Benign’.
This metric can be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP and TN are the number of true positives and negatives, correct classifications,
and FP and FN are the number of false positives and negatives, misclassifications.

Despite the reliability of accuracy for targeted attacks, it does not entirely reflect the
impact of the performed untargeted attacks. Due to their attempt to cause any misclassifi-
cation, their impact across all the different classes must also be measured. The F1-Score
calculates the harmonic mean of precision and recall, considering both false positives
and false negatives. To account for class imbalance, it can be macro-averaged, which
gives all classes the same relevance. This is a reliable evaluation metric because a score
of 100% indicates that all cyber-attacks are being correctly detected and there are no false
alarms. Additionally, due to the multiple imbalanced classes present in both datasets, it
is also the most suitable validation metric for the employed fine-tuning approach. The
macro-averaged F1-Score is mathematically defined as:

Macro-averaged F1−Score =
1
C
∗

C

∑
i=1

2 ∗ Pi ∗ Ri
Pi + Ri

(6)

where Pi and Ri are the precision and recall of class i, and C is the number of classes.

4.5. Enterprise Scenario Results

In the Enterprise network scenario, adversarial cyber-attack examples were generated
using the original flows of the CIC-IDS2017 dataset. The results obtained for the targeted
and untargeted attacks were analyzed, and assessments of example realism and time
consumption were performed. To assess the realism of the generated examples, these were
analyzed and compared with the corresponding original flows, considering the intricacies
and malicious purposes of the cyber-attacks. In addition to A2PM, the assessment included
its potential alternatives: JSMA and OnePixel. To prevent any bias, a randomly generated
number was used to select one example, detailed below.

The selected flow had the ‘Slowloris’ class label, corresponding to a denial-of-service
attack that attempts to overwhelm a web server by opening multiple connections and
maintaining them as long as possible [45]. The data perturbations created by A2PM
increased the total flow duration and the packet inter-arrival time (IAT), while reducing the
number of packets transmitted per second and their size. These modifications were mostly
focused on enhancing time-related aspects of the cyber-attack, to prevent its detection.
Hence, in addition to being valid network traffic that can be transmitted through a computer
network, the adversarial example also remained coherent with its class.

On the other hand, JSMA could not generate a realistic example for the selected flow.
It created a major inconsistency in the encoded categorical features by assigning a single
network flow to two distinct communication endpoints: destination ports number 80 (P80)
and 88 (P88). Due to the unconstrained perturbations, the value of the feature representing
P88 was increased without accounting for its correlation with P80, which led to an invalid
example. In addition to the original Push flag (PSH) to keep the connection open, the
method also assigned the Finished flag (FIN), which signals for connection termination
and therefore contradicts the cyber-attack’s purpose. Even though two numerical features
were also slightly modified, the adversarial example could only evade detection by using
categorical features incompatible with real network traffic.

Similarly, OnePixel also generated an example that contradicted the ‘Slowloris’ class.
The feature selected to be perturbed represented the Reset flag (RST), which also causes
termination. Since the method intended to perform solely one modification, it increased
the value of a feature that no model learnt to detect because it is incoherent with that
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cyber-attack. Consequently, neither JSMA nor OnePixel are adequate alternatives to A2PM
for tabular data. Table 5 provides an overview of the modified features. The ‘–’ character
indicates that the original value was not perturbed.

Table 5. Modified features of an adversarial ‘Slowloris’ example.

Feature Original Value A2PM Value JSMA Value OnePixel Value

Flow duration 109,034,141 119,046,064 109,034,140 –
Mean flow IAT 13,600,000 19,374,259 – –

Flow packets per second 0.0825 0.0429 0.0824 –
Mean forward packet length 49.4 48.1 – –

Minimum forward segment size 40 36 – –
Connection flags ‘PSH’ – ‘PSH’ + ‘FIN’ ‘PSH’ + ‘RST’
Destination port ‘P80’ – ‘P80’ + ‘P88’ –

Regarding the targeted attacks performed by A2PM, the models created with regu-
lar training exhibited significant performance declines. Even though both MLP and RF
achieved over 99% accuracy on the original evaluation set, a single iteration lowered their
scores by approximately 15% and 33%. In the subsequent iterations, more malicious flows
gradually evaded MLP detection, whereas RF was quickly exploited. After 50 iterations,
their very low accuracy evidenced their inherent susceptibility to adversarial examples. In
contrast, the models created with adversarial training kept significantly higher scores, with
fewer flows being misclassified as benign. By training with one generated example per
malicious flow, both classifiers successfully learned to detect most cyber-attack variations.
RF stood out for preserving the 99.91% it obtained on the original data throughout the
entire attack, which highlighted its excellent generalization (Figure 5).

 
Figure 5. Targeted attack accuracy of Enterprise network scenario.

The untargeted attacks significantly lowered both evaluation metrics. The accuracy
and macro-averaged F1-Score declines of the regularly trained models were approximately
99% and 79%, although RF was more affected in the initial iterations. The inability of both
classifiers to distinguish between the different classes corroborated their high susceptibility
to adversarial examples. Nonetheless, when adversarial training was performed, the
models preserved considerably higher scores, with a gradual decrease of less than 2% per
iteration. Despite some examples still deceiving them into predicting incorrect classes,
both models were able to learn the intricacies of each type of cyber-attack, which mitigated

264



Future Internet 2022, 14, 108

the impact of the created data perturbations. The adversarially trained RF consistently
reached higher scores than MLP in both targeted and untargeted attacks, indicating a better
robustness (Figures 6 and 7).

Figure 6. Untargeted attack accuracy of Enterprise network scenario.

Figure 7. Untargeted attack F1-Score of Enterprise network scenario.

To analyze the time consumption of A2PM, the number of milliseconds required for
each iteration was recorded and averaged, accounting for the decreasing quantity of new
examples generated as an attack progressed. The generation was performed at a rate
of 10 examples per 1.7 milliseconds on the utilized hardware, which evidenced the fast
execution and scalability of the proposed method when applied to adversarial training and
attacks in enterprise computer networks.

4.6. IoT Scenario Results

In the IoT network scenario, the adversarial cyber-attack examples were generated
using the original flows of the IoT-23 dataset. The analysis performed for the previous
scenario was replicated to provide similar assessments, including the potential alternatives
of the current literature: JSMA and OnePixel.
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The randomly selected flow for the assessment of example realism had the ‘DDoS’
class label, which corresponds to a distributed denial-of-service attack performed by the
malwares recorded in the IoT-23 dataset. A2PM replaced the encoded categorical features
of the connection state and history with another valid combination, already used by other
original flows of the ‘DDoS’ class. Instead of an incomplete connection (OTH) with a bad
packet checksum (BC), it became a connection attempt (S0) with a Synchronization flag
(SYN). Hence, the generated network flow example remained valid and compatible with
its intended malicious purpose, achieving realism.

As in the previous scenario, both JSMA and OnePixel generated unrealistic examples.
Besides the original OTH, both methods also increased the value of the feature representing
an established connection with a termination attempt (S3). Since a flow with simultane-
ous OTH and S3 states is neither valid nor coherent with the cyber-attack’s purpose, the
methods remain inadequate alternatives to A2PM for tabular data. In addition to the states,
JSMA also assigned a single flow to two distinct communication protocols, transmission
control protocol (TCP) and Internet control message protocol (ICMP), which further evi-
denced the inconsistency of the created data perturbations. Table 6 provides an overview
of the modified features, with ‘–‘ indicating an unperturbed value.

Table 6. Modified features of an adversarial ‘DDoS’ example.

Feature Original Value A2PM Value JSMA Value OnePixel Value

Connection state ‘OTH’ ‘S0’ ‘OTH’ + ‘S3’ ‘OTH’ + ‘S3’
Connection history ‘BC’ ‘SYN’ – –

Communication protocol ‘TCP’ – ‘TCP’ + ‘ICMP’ –

Regarding the targeted attacks, A2PM caused much slower declines than in the pre-
vious scenario. The accuracy of the regularly trained MLP only started being lower than
50% at iteration 43, and RF stabilized with approximately 86%. These scores evidenced the
decreased susceptibility of both classifiers, especially RF, to adversarial examples targeting
the ‘Benign’ class. Furthermore, with adversarial training, the models were able to preserve
even higher rates during an attack. Even though many examples still evaded MLP detec-
tion, the number of malicious flows predicted to be benign by RF was significantly lowered,
which enabled it to keep its accuracy above 99%. Hence, the latter successful detected most
cyber-attack variations (Figure 8).

Figure 8. Targeted attack accuracy of IoT network scenario.

266



Future Internet 2022, 14, 108

The untargeted attacks iteratively caused small decreases of both metrics. Despite
RF starting to stabilize from the fifth iteration forward, MLP continued its decline for
an additional 48% of accuracy and 17% of macro-averaged F1-Score. This difference in
both targeted and untargeted attacks suggests that RF, and possibly tree-based algorithms
in general, have a better inherent robustness to adversarial examples of IoT network
traffic. Unlike in the previous scenario, adversarial training did not provide considerable
improvements. Nonetheless, the augmented training data still contributed to the creation of
more adversarially robust models because they exhibited fewer incorrect class predictions
throughout the attack (Figures 9 and 10).

 
Figure 9. Untargeted attack accuracy of IoT network scenario.

 
Figure 10. Untargeted attack F1-Score of IoT network scenario.

A time consumption analysis was also performed, to further analyze the scalability
of A2PM on relatively common hardware. The number of milliseconds required for each
iteration was recorded and averaged, resulting in a rate of 10 examples per 2.4 milliseconds.
By comparing the rate obtained in both scenarios, it can be observed that it was 41% higher
for IoT-23 than for CIC-IDS2017. Even though the former dataset had approximately
half the structural size, a greater number of locked categorical features were provided to
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the combination pattern. Therefore, the increased rate suggests that the more complex
inter-feature constraints are specified, the more time will be required to apply A2PM.
Nonetheless, the time consumption was still reasonably low, which further evidenced the
fast execution and scalability of the proposed method.

5. Conclusions

This work established the domain and class-specific constraint levels, which an ad-
versarial example must comply with to achieve realism on tabular data and introduced
A2PM to fulfil these constraints in a gray-box setting, with only knowledge of the feature
set. The capabilities of the proposed method were evaluated in a cybersecurity case study
with two scenarios: Enterprise and IoT networks. MLP and RF classifiers were created
with regular and adversarial training, using the network flows of the CIC-IDS2017 and
IoT-23 datasets, and targeted and untargeted attacks were performed against them. For
each scenario, the impact of the attacks was analyzed, and assessments of example realism
and time consumption were performed.

The modular architecture of A2PM enabled the creation of pattern sequences adapted
to each type of cyber-attack, according to the concrete constraints of the utilized datasets.
Both targeted and untargeted attacks successfully decreased the performance of all MLP
and RF models, with significantly higher declines exhibited in the Enterprise scenario.
Nonetheless, the inherent susceptibility of these models to adversarial examples was
mitigated by augmenting their training data with one generated example per malicious flow.
Overall, the obtained results demonstrate that A2PM provides a scalable generation of valid
and coherent examples for network-based intrusion detection. Therefore, the proposed
method can be advantageous for adversarial attacks, to iteratively cause misclassifications,
and adversarial training, to increase the robustness of a model.

In the future, the patterns can be improved to enable the configuration of more
complex intra and inter-feature constraints. Since it is currently necessary to use both
interval and combination patterns to perturb correlated numerical features, a new pattern
can be developed to address their required constraints. It is also imperative to analyze
other datasets and other domains to contribute to robustness research. Future case studies
can further reduce the knowledge required to create realistic examples.
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Abstract: As a result of the rapid development of internet technology, images are widely used on
various social networks, such as WeChat, Twitter or Facebook. It follows that images with spam can
also be freely transmitted on social networks. Most of the traditional methods can only detect spam
in the form of links and texts; there are few studies on detecting images with spam. To this end, a
novel detection method for identifying social images with spam, based on deep neural network and
frequency domain pre-processing, is proposed in this paper. Firstly, we collected several images with
embedded spam and combined the DIV2K2017 dataset to build an image dataset for training the
proposed detection model. Then, the specific components of the spam in the images were determined
through experiments and the pre-processing module was specially designed. Low-frequency domain
regions with less spam are discarded through Haar wavelet transform analysis. In addition, a feature
extraction module with special convolutional layers was designed, and an appropriate number of
modules was selected to maximize the extraction of three different high-frequency feature regions.
Finally, the different high-frequency features are spliced along the channel dimension to obtain
the final classification result. Our extensive experimental results indicate that the spam element
mainly exists in the images as high-frequency information components; they also prove that the
proposed model is superior to the state-of-the-art detection models in terms of detection accuracy
and detection efficiency.

Keywords: social networks; images with spam; Haar wavelet transform; feature extraction module

1. Introduction

Digital images are widely utilized in various social networks such as WeChat or
Facebook, due to their convenience, fast acquisition, and abundance of redundant infor-
mation [1–6]. While digital images bring convenience to people’s lives, some security
risks also follow. To receive free advertising and for other more harmful purposes, some
criminals paste links, text, and additional pictures on images that seriously disrupt the
order and security of social networks. Therefore, finding ways to accurately and quickly
detect images containing spam is a huge challenge for researchers [7–10]. This research
field is also of great significance for purifying social networks and improving the security
of the social network environment.

In the past few decades, most research has focused on how to detect target objects,
such as links, emails, texts, etc., and research on detecting images that include spam is
still very rare. Zhu et al. [11] proposed a supervised matrix factorization method with
social regularization (SMFSR) for spammer detection in social networks. Their method
realized the detection task by combining the user’s social behavior and social relationships,
detecting some data from Renren.com and obtaining relatively good detection results. Hu
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et al. [12] focused on studying how to use network and content information together in
Weibo to perform effective social spam detection. In addition, an optimization formula is
designed to combine social network and content information for optimizing the model.
The experimental results also show that their model can achieve good detection results
on Twitter. Wu et al. [13] proposed a unified detection method for the collaborative
combination of social spammers and spam messages on Weibo. Their approach combines
social spam detection with spam detection exploiting the publishing relationship between
the users and the message. Furthermore, an optimization schedule is introduced to improve
the capability of their model, and an acceleration strategy is also proposed to improve
the detection efficiency of the model. Chen et al. [14] analyzed the vulnerabilities of
current detection methods from the perspective of three aspects: data, features, and models.
Traditional machine learning technology is introduced to extract features for accomplishing
binary classification tasks. In addition, the detection performance of the proposed method
was evaluated in terms of the different aspects of the factors. Masood et al. [15] proposed
a detection classification method for Twitter spam. The proposed method compared
techniques based on several features, such as user characteristics, content characteristics,
graphic characteristics, structural characteristics, temporal characteristics, etc. In addition,
this paper also expounded on the future development direction of this field and offered
solutions for some of the issues. Ahmed et al. [16] analyzed the advantages and challenges
of machine learning in the field of spam detection and performed detailed comparative
experiments to illustrate the scalability of machine learning in this field. In the same year,
Sokhangoee et al. [17] proposed a new method for spam detection based on association-rule
mining and genetic algorithm theory. The premise of this method effectively improved the
detection accuracy for spam because more refined features can be extracted by combining a
genetic algorithm and association rules. According to the above research, it can be seen
that the current detection methods for links and text content are very mature; however, the
detection methods for images that include spam are rarely studied, which shows that this
field regarding images with spam is still in the initial stages.

In recent years, with the rapid development of computer hardware and network band-
width, the field of artificial intelligence and deep learning has attracted extensive interest
from researchers. So far, deep learning and CNN (convolutional neural networks) have
provided many good solutions in various fields, such as image recognition [18,19], speech
recognition, and natural language processing [20]. Therefore, in this era of deep learning,
CNN provides an opportunity for the detection of images with spam. Xie et al. [21] pro-
posed a detection method for pornographic images based on global classification and local
sensitive information classification. CNN was introduced to extract image features such as
color and texture, and an attention mechanism was utilized as the backbone of the network.
Finally, discriminant results were obtained via the Softmax activation function. The experi-
mental results show that their method can detect pornographic images efficiently from a
specific dataset. Zhang et al. [22] proposed an image classification method for bad images,
based on deep learning model integration, which achieved semantic complementarity by
utilizing the image representation capabilities of multiple different deep networks and
fused all the obtained features to improve the classification performance of the proposed
model. Compared with traditional classification methods, their model has greatly improved
upon previous accuracy rates. Cai et al. [23] proposed a method for detecting spam on
the Internet, based on the BERT (Bidirectional Encoder Representation from Transformers)
model, where the processing object comprises text information. Firstly, a bidirectional
transformer structure was used to extract the contextual relationship information of the
text content, then the trained BERT model was directly used to encode the sentences of the
new task. Then, sentences of any length were encoded into fixed-length vectors to detect
and analyze spam websites. From research in recent years, it can be seen that deep learning
has made some progress in the field of spam detection, but most of the models focus on the
detection of target objects, such as links and text, and research on spam detection in the
context of images is still sparse.
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To tackle the existing problems of detecting images containing spam, this paper
proposes a detection method for social network images with spam based on deep neural
network and frequency domain pre-processing. For this paper, first, we collected some
images that included spam and combined the DIV2K2017 dataset to build a dataset for
training the detection model. (Please note: the DIV2K dataset is a popular single-image
super-resolution dataset that contains 1000 images of different scenes. In addition, this
dataset contains low-resolution images with different types of degradations, which conform
to all kinds of images that are common in everyday life; therefore, the dataset was suitable
for training the proposed model). In the pre-processing stage, Haar wavelet transform
analysis was utilized to extract different frequency domain information from the input
image. Meanwhile, the low-frequency information of the image was discarded and the
high-frequency information of three different frequency components was used as the input
of the feature extraction stage, to improve the efficiency of the model. In the feature
extraction stage, a feature extraction module with the designated convolution layers was
designed, and an appropriate number of modules was selected through experiments to
extract the vertical, horizontal, and diagonal high-frequency features of the input image,
so as to maximize the extraction of the defective image characteristics of the information.
The obtained different frequency domain features were subjected to the concat operation to
obtain the final target feature, then the classification result was obtained. In addition, it has
been verified through experiments that most spam exists in the image as high-frequency
components, which provides a theoretical and experimental basis for the frame design of
the model. The detection model also verified that it is completely feasible to apply deep
learning to the field of spam detection.

Section 1 of this paper summarizes the background and research development of
the social spam research field. Section 2 presents the proposed model framework in
detail. Section 3 analyzes and summarizes the experimental results. Finally, a preliminary
discussion is presented on the research significance of this paper and future research
directions that are worthy of attention.

2. The Proposed Methods

According to the component of the spam existing in the image (please note: the experi-
ments in Section 3.2 have verified that spam mainly exists in the image with high-frequency
components, so the proposed detection model was designed based on experimental val-
idation), the special detection model was designed to improve detection accuracy. The
detection model can be divided into three stages to accomplish the detection task, which
can be described as the pre-processing stage, the feature extraction stage, and the classifica-
tion prediction stage. In the pre-processing stage, the input image is first decomposed by
Haar wavelet analysis to obtain the low-frequency information, horizontal high-frequency
information, vertical high-frequency information, and diagonal high-frequency information
of the image. The experimental results show that most of the spam existed in the image as
high-frequency information (see Section 4 for the experimental analysis). Therefore, in the
feature extraction stage, a special feature extraction module and an appropriate number of
modules are selected to extract the frequency feature. In the classification prediction stage,
the obtained frequency domain features are subjected to the concat operation to obtain the
final target feature, then the classification result is obtained. The overall architecture of the
detection model is shown in Figure 1.
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Figure 1. Visualization of the architecture for our proposed detection model.

2.1. The Stage of Pre-Processing

The primary focus of this paper was to verify that the spam mainly existed in the image
in the form of high-frequency components, which also indicated that the low-frequency
features of the input image have little effect on improving the accuracy of the detection
model. To this end, in the pre-processing stage, the input image IC was first subjected to
wavelet transform analysis to obtain the corresponding low-frequency and high-frequency
information; the operation is calculated as follows:

IL, (IH , IV , ID) = Haar(IC) (1)

where Haar represents the Haar wavelet transform, IL is the corresponding low-frequency
image after wavelet transform, IH , IV and ID represent the horizontal high-frequency
image, vertical high-frequency image, and diagonal high-frequency image after wavelet
decomposition. At this stage, the low-frequency image containing few instances of spam
information was discarded, and the three types of high-frequency images were reserved as
the input information for the next stage.

2.2. The Stage of Feature Extraction

The task of the feature extraction stage is to extract representative features to determine
whether the input image carries spam. The input of this stage is the horizontal high-
frequency image IH , the vertical high-frequency image IV and the diagonal high-frequency
image ID after wavelet decomposition. The three high-frequency images enter the feature
extraction block F with a fixed number of blocks with the same convolutional layer. The
corresponding target feature can be obtained as follows:

fH = nF(IH) (2)

fV = nF(IV) (3)

fD = nF(ID) (4)

where n represents the number of feature extraction blocks, F represents the feature extrac-
tion block with the designed convolutional layers, and the relationship between n and F
is not a product operation. I_H, I_V and I_D are used as the input of F to get the feature
vectors f_H, f_V and f_D, which represent the high-frequency features obtained in the
feature extraction stage, respectively. During this stage, fH , fV and fD represent the feature
vectors for different high-frequency components. By selecting an appropriate number of
feature extraction blocks, feature information that has spam in the images can be further
extracted from high-frequency images, thereby improving the detection efficiency of the
proposed model.

2.3. The Stage of Classification Prediction

In our model, unlike other current detection models, three feature components are
obtained in the classification prediction stage, namely, the horizontal high-frequency fea-
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ture, vertical high-frequency feature, and diagonal high-frequency feature, respectively.
Therefore, the obtained high-frequency features are first concatenated by dimension; that is:

f = concat( fH , fV , fD) (5)

The final target feature f is obtained by splicing the high-frequency features, which
contains most of the spam in the images, then the target features are operated as follows:

Resultprediction = Sigmoid(FC( f )) (6)

As shown in Equation (6), the final target feature f is first sent to the fully connected
layers, FC. Fully connected layers are able to map the learned distributed feature represen-
tation f to the sample label space. In this paper, FC layers consist of the input layer, hidden
layer, and ReLU non-linear layer. The final target f is utilized as the input of the input
layer. The ReLU layer is also used to enhance the nonlinear fitting ability of the model. The
output of the FC layer is used as the input of the Sigmoid function. Finally, a prediction
result is obtained through the Sigmoid function.

3. Experimental Results and Analysis

3.1. Dataset and Setup

In the process of our experiments, a PC with a GPU NVIDIA GeForce Tesla V100 16G
was used, and the experimental environments Pytorch 1.1 and Python 3.7 were adopted.
We built up our dataset to train the model proposed in this paper. To observe the detection
effect of the proposed model, we collected some images with spam and combined the
DIV2K2017 dataset to build a dataset for training the detection model (please note: the
created dataset contained normal images without spam); some of the training images can
be seen in Figure 2. The number of training images was 4000 and the size of the training
images was cropped to 256 × 256; the number of test images for the test subset was set to
500. The image data in the training subset did not appear in the test subset. In addition,
the architecture of the proposed detection model borrows from the idea of the VGG16
network; many experiments have been carried out on the setting of hyper-parameters, and
the optimal parameter combination was selected. (In the training process, the batch size for
the image dataset is set to 4, the number of training epochs was set to 350, and the learning
rate was set to 0.005.)

 

Figure 2. Example training images from the collected and created image dataset.

3.2. The Elements of Spam in the Images

The specific components of the spam in the image determine the structural design
of the proposed detection model. If the spam exists in the image in the form of high-
frequency components, the feature extraction module of the proposed detection model can
use the deep architecture to extract the high-frequency information of the image, to better
detect the image with spam. Similarly, if the spam in the image comprises low-frequency
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components, the architecture of the detection model can appropriately reduce the number
of network layers. Therefore, the components of the spam are first analyzed, and Haar
wavelet transform analysis is utilized to decompose the image with the spam in the first-
order frequency domain. The low-frequency information and the horizontal, vertical,
and diagonal high-frequency information for images that include spam are obtained,
respectively, as shown in Figure 3.

Figure 3. The corresponding frequency domain images after Haar wavelet decomposition of an image
with spam.

From the experimental results in Figure 3, it is clear that spam mainly exists in the
image in the form of high-frequency information, while the background occupies most of
the low-frequency region of the image. In order to further verify that the spam exists in a
specific region of the image, we also performed a Haar wavelet transform analysis on the
original image without spam to obtain images corresponding to the different frequency
domains. Then, we replaced the corresponding frequency domain of the image containing
spam with the frequency domain of the original image for inverse Haar wavelet transform
analysis. The reconstructed experimental results are shown in Figure 4.

 

Figure 4. Reconstructed images lacking different frequency domain information.

From the analysis of the experimental results in Figure 4, when only the low-frequency
components of spam are replaced, there is less loss of spam in the reconstructed image, and
only the background of the image is not perfectly reconstructed; when the high-frequency
components are replaced, it is clear that the reconstruction effect of spam is very poor and
only the reconstructed background information is more prominent. When the image is
reconstructed using only the low-frequency components, we can see that the background
of the image is almost the only part to be reconstructed. Therefore, we can conclude
that the spam mainly exists in the high-frequency components in the image; that is to
say, as long as the detection model can extract most of the high-frequency features of the
image containing spam, the detection accuracy for the model can be improved. From the
analysis of the experimental results in Table 1, when the inputs of the model are only the
low-frequency components, the detection accuracy can only reach 36.5%; when the inputs
of the model are the high-frequency components, the detection accuracy can is as high as
86%; when the input of the model is the whole image, the detection accuracy drops to only
74.5%. The experimental results in Table 1 also indicate that the spam mainly exists in the
high-frequency components in the image.
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Table 1. The influence of the detection model under a combination of different frequency domain
components.

Detection Accuracy

Only low-frequency components 36.5%
Only high-frequency components 86%

Low-frequency components + high-frequency components 74.5%

3.3. The Architecture Depth of the Proposed Model

In order to verify the influence of the network architecture depth on the detection
model in terms of its detection ability, we conducted an experimental comparison with
different numbers used for the feature extraction block; that is, feature extraction blocks
with different numbers (3, 7, 11, 15, 21, 25), and 400 images including spam (not included
in the model training dataset) were randomly selected for testing. The experimental results
are shown in Table 2.

Table 2. The influence on the detection ability of the detection model under different numbers of
feature extraction blocks.

Number of the Feature Extraction Block 3 7 11 15 21 25

Detection accuracy 15% 36.5% 56.5% 82% 91% 84.5%

It can be seen from the experimental results in Table 2 that when the feature extraction
block was set at 3, the model could only obtain a detection accuracy of 15%. As the number
of the feature extraction block increased, its detection capability increased accordingly;
when the feature extraction block number increased from 21 to 25, the detection accu-
racy dropped by 6.5%, which indicates that when the network architecture of the model
reaches a certain level, its feature extraction ability will be affected. From the whole of the
experimental results, the detection ability of the detection model with shallow layers is
low; conversely, the detection ability of the model based on a deep architecture is stronger,
which also verifies the conclusion drawn in Section 2.1: the spam mainly exists in the
high-frequency components in the image.

3.4. The Influence of Pre-Processing Module

The main task of the proposed model was to detect the spam contained in the image.
We know that most of the spam information existed in the image as high-frequency in-
formation. In order to improve the detection accuracy of the proposed model, an image
pre-processing module was designed. Firstly, the input image was decomposed using Haar
wavelet analysis to obtain low-frequency information and horizontal, vertical, and diagonal
high-frequency information. Then the low-frequency information was discarded, and the
horizontal, vertical, and diagonal high-frequency information was used as the input of the
model. Finally, a classification result was obtained. In the experiment, we used the same
image dataset to train the detection model with and without the image pre-processing
module and randomly selected 200 images (not present in the training dataset) to test the
trained detection model. Table 3 shows the experimental comparison results obtained by
the models trained with and without the image pre-processing module.

Table 3. The comparison results obtained by the models trained with and without the image pre-
processing module.

Detection Accuracy Training Time (min)

With Pre-processing Module 84.5% 657.3
Without Pre-processing Module 77% 771.4
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From the experimental results in Table 3, it can be seen that the image pre-processing
module is equivalent to performing a feature extraction operation on the image in advance;
it takes less time to train this model than the model without an image pre-processing
module. At the same time, the input of the model with the image pre-processing module
comprises high-frequency information that focuses on the region where the spam exists
and achieves a better detection accuracy. Compared to the model without the image
pre-processing module, the detection accuracy was improved by nearly 8%.

3.5. Comparison with State-of-the-Arts

Table 3 compares the detection results between the proposed model and the current
popular detection models. These comparison detection models include AlexNet [24],
VGG13 [25], VGG16, VGG19, GoogleNet [26], and ResNet50 [18]. The same image dataset
and hyper-parameters (learning rate, number of iterations, etc.) were used to train different
detection models and 200 test images were randomly selected for testing. Regarding the
other detection models, since the detection task was not aimed at detecting spam in the
images, during the training process the input and output of other detection models were
adjusted to suit the comparison task in this paper. In order to observe the performance
of different detection models more intuitively, we compared the detection accuracy and
training time, respectively. The detection accuracy can provide a visual indication of the
performance of the new detection model, while the length of training time can indicate
the ability of the model to extract features. The comparison results obtained are shown in
Table 4.

Table 4. The comparison results between the proposed model and the current popular detection
models.

Detection Accuracy Training Time (min)

AlexNet 32.5% 1412.5
VGG13 35.5% 1355
VGG16 44% 1156.3
VGG19 54% 968.5

GoogleNet 66.5% 1045.4
ResNet50 77% 825

The Proposed Method 91% 657.3

From the experimental results in Table 4, compared with the current popular detection
models, the proposed method is superior in terms of detection accuracy (please note: the
input and output of other detection models have been modified to meet the requirements
of the detection task). In addition, from the perspective of the detection accuracy of VGG13,
VGG16, and VGG19, VGG19 shows the best performance in terms of detection accuracy,
because VGG19 has the deepest network architecture for extracting the detailed information
(high-frequency information) in the input image. This also shows that the spam mainly
exists in the high-frequency components in the image. In addition, from the perspective of
training time, the proposed method can achieve a balanced state with the shortest time and
number of iterations, which indicates that the proposed algorithm is superior to the other
current detection models in terms of computational cost. From another point of view, the
shorter the training time of the detection model, the stronger its ability to extract features.
Therefore, it can be seen from the experimental results in Table 3 that the proposed model
also has advantages in terms of feature extraction.

4. Conclusions

In this paper, a detection method is proposed for identifying social media images
containing spam, based on a deep neural network and frequency domain pre-processing.
Our research contributions can be summarized as follows:
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(1) An image dataset including spam was collected and created; to the best of our knowl-
edge, in the field of social network spam detection, this is the first time that an
image-level training dataset has been proposed.

(2) It has been verified that the spam mainly existed in the high-frequency components
in the images. On this basis, Haar wavelet transform analysis was introduced as the
pre-processing module of the model, and the high-frequency information of the image
is extracted as the input of the feature extraction module.

(3) In the feature extraction stage, a special feature extraction block is designed and an
appropriate number is selected, according to our experiment and the spam component,
which improves the accuracy and efficiency of the detection model.

Unlike the current detection models, this paper first verifies the specific components
of spam in the image and then designs a more targeted detection framework, which can en-
hance the detection efficiency and accuracy of the proposed model. In future work, we will
further expand the created image dataset and improve the recognition ability and efficiency
of the proposed model. In addition, although the proposed model demonstrates good
detection performance on fixed image datasets, it lacks breadth, which will be addressed.
Improving the applicability of the model is another future research focus.
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1 Department of Information Technologies, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
2 Orchestra Group, Tel Aviv-Yafo 6688314, Israel; shein@orchestra.group
3 Department of Information Systems, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania;
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Abstract: Cybersecurity solutions are highly based on data analysis. Currently, it is not enough to
make an automated decision; it also has to be explainable. The decision-making logic traceability
should be provided in addition to justification by referencing different data sources and evidence.
However, the existing security ontologies, used for the implementation of expert systems and serving
as a knowledge base, lack interconnectivity between different data sources and computer-readable
linking to the data source. Therefore, this paper aims to increase the possibilities of ontology-
based cyber intelligence solutions, by presenting a security ontology structure for data storage to
the ontology from different text-based data sources, supporting the knowledge traceability and
relationship estimation between different security documents. The proposed ontology structure is
tested by storing data of three text-based data sources, and its application possibilities are provided.
The study shows that the structure is adaptable for different text data sources and provides an
additional value related to security area extension.

Keywords: security; ontology; structure; formalization

1. Introduction

The development of modern information and communications technologies (ICTs)
brings new possibilities for users and organizations, whereby the user is not strictly at-
tached to physical data storage, can access their data anytime and anywhere, use different
methods and services for data processing and sharing instantly, etc. Together with the ITC
possibilities, the variety of cyberattack vectors has also increased. This is expected because
of the complexity of modern technologies, as well as orientation to user experience (UX).
Therefore, the spending on security and risk management increases every year, reaching
155 billion USD worldwide in 2021 [1].

The growth of spending on security and risk management is affected by multiple
factors [2]: transition to remote or mixed working; cloud, SaaS security assurance; the
rise of new threat landscapes. A solution to fight the current spending needs on security
and risk management is cyber intelligence. In cyber intelligence, artificial intelligence (AI)
solutions are used to automate the process, while providing additional benefits to specific
security and risk management areas [3,4].

The development of cyber intelligence is affected by a lack of data for data analysis
and decision support. While supervised learning AI solutions are mostly oriented on some
specific tasks (data classification, anomaly detection), ontologies as a knowledge base for
process automation might have a wider application (semantic modeling, extraction of
needed knowledge, etc.) [5].

The ontology structure defines the simplicity of knowledge extraction, while the
real value of the ontology relies upon the data it stores. The biggest portion of security
knowledge at the moment is not structured; it is presented as text data and is, therefore,
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currently limited for application in cyber intelligence solutions. It is important to have a
mechanism, assuring a wide range of up-to-date and qualitative data from different sources
it. Manually updating security ontology is not practical because of the wide variety of
data sources, potential impact of data interpretation, lack of resources, etc. Some methods
for text transformation to ontology exist [6]; however, they concentrate on the estimation
of concepts, instances, hypernyms, and hyponyms, with no relationship between the
data source and concept. When adopting ontology knowledge application and decision
justification by mapping knowledge to appropriate data sources, the ontology structure
has to be suitably designed.

This paper aims to increase the possibilities of ontology-based cyber intelligence
solutions by presenting a security ontology structure for data storage to the ontology from
different text-based data sources, supporting the knowledge traceability and relationship
estimation between different security documents. Therefore, the main contribution of
the paper is answering the research question regarding the main principles of text-based
security document formalization to the ontology for gathered data usability and generation
of new knowledge.

The paper reviews related works on security ontology and text transformation to
ontologies. On the basis of the review results, a new security ontology structure is proposed
to provide a linking of the concepts to original data sources. The proposed structure is
validated by presenting some numerical results of its application and directions of usage of
such an ontology structure.

2. Related Works

“An ontology is a formal and explicit specification of a shared conceptualization” [7]. It
is a basis of semantic modeling and allows the storage of different concepts, as well as their
properties and relationships. Therefore, ontologies are known as knowledge bases rather
than databases. Because of the properties of ontologies, they represent one of the solutions
for cyber intelligence and a future research direction [8]. The potential of ontologies can be
seen in different application areas, such as digital evidence review [9], software requirement
and security issue detection [10], modeling of Internet of things design [11], security alert
management [12], and as a standard for cyber threat sharing [13].

Ontologies are mostly created by area experts. The expert designs the ontology by
formalizing its knowledge using different data sources. Ontologies based only on expert
knowledge mostly present the landscape of an area, while additional tools and transfor-
mations are used to incorporate existing knowledge into the structure of the designed
ontology. Ontologies, with formalized knowledge of different sources, have a higher value,
as they present not only the general concepts of the area but consolidate knowledge of
different data sources and serve as a knowledge base. However, the transformation from
different data sources to ontology might be complicated because of different data formats
and types. One of the most complex data types for formalization is text-based data. The
same knowledge can be presented in very different texts, and word-to-word matching
might not be enough for knowledge matching. Therefore, it is important to find the best
solution for text-written knowledge extraction and transformation to ontology.

The next two sections are dedicated to analyzing the existence of security ontology, as
well as presenting knowledge of different security area documents and existing solutions
to transform text-written knowledge to ontology.

2.1. Security-Related Ontologies

The number of publications on security ontology-related topics in the Web of Science
Core Collection has increased every year. Analyzing the publication number in the period
between 2000–2021, the distribution of publications containing the terms “cyber ontology”
or “security ontology” and publications containing the term “security” was very similar
year by year (see Figure 1 below). Despite the number of publications on the general term
“security” being more than 400 times higher (572,311 records for “security”, compared to

282



Electronics 2022, 11, 1103

2663 records for “cyber ontology” or “security ontology”), the tendencies were the same,
i.e., the popularity of the topic is increasing in scientific publications. This indicates that
the security ontology topic has been analyzed in scientific papers with the same growth as
security in general.

 

Figure 1. Growth of security ontology and security-related scientific papers.

Some of the analyzed papers proposed a new security ontology, others presented
solutions based on the ontology or simply reviewed the current situation in the landscape of
existing ontologies. One of the first attempts to present a general-purpose security ontology
was by Schumacher [14]. The author presented nine concepts and relations between them.
The same basic structure of concepts was applied by Tsoumas and Gritzalis [15] to present
an idea of security management, based on security ontology. Since this time, the variety
of security ontologies has increased and been directed to more specific areas of security,
such as for annotating resources [16], for corporate assets and their threats [17], for incident
analysis [18], for security requirement elicitation [19], for cloud security [20], for Internet of
things security [21], and for the cross-site scripting attack [22].

One of the ways to increase the content of the ontology is to incorporate the data and
content of some existing security-related systems. Example of such data sources are the
CVE (Common Vulnerabilities and Exposures), CWE (Common Weakness Enumeration),
CPE (Common Platform Enumeration), and CAPEC (Common Attack Pattern Enumeration
and Classification) [23,24]. These sources have a clear structure and discrete values for
specified attributes. Therefore, the transformation of the data to security ontology does not
require intelligent solutions.

A big portion of security knowledge is presented as text in security standards and best
practices. These security-related documents are also incorporated into security ontologies.
One of the first cases to reflect security document data was presented by Parkin et al. [25].
These authors incorporated the ISO27002 standard structure (chapter, section, guideline,
guideline step) to the ontology, by mapping it to the asset. Several other ontologies were
also based on the ISO27002 standard [26,27]; however, all the ontologies were based on
manual human work, where the security standard is analyzed, interpreted, and presented in
the ontology by a human expert. Furthermore, in most cases, the requirements or guidelines
of the security standards were not expressed in very basic and general concepts; they had
a higher level of detail and were, thus, not fully adapted for fully automated content
extraction. Therefore, solutions for text-based document analysis and transformation to
ontology are needed.
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2.2. Text Transformations to Ontology

Manually designing the ontology is not an option when wide and complex domains
are presented and automated tools are needed to simplify the task [28]. Meanwhile, possible
solutions for the automated ontology construction from text documents are implemented
in different ways. Moreno and Perez [29] relied on statistics when multiple data sources
were analyzed to extract the most frequent terms and incorporate them into the ontology.
The principle of multiple data sources was used to extract the main knowledge in [30]. This
approach is limited as it extracts just the terms identified in multiple sources. Therefore,
more specific terms can be missed or ignored. At the same time, the detection of synonyms
is very important to prevent ignorance or rarer terms and their synonyms. To solve this
problem, some reference sources can be used. For example, in the tourism domain, the
named entities are extracted as the main knowledge on the tourism domain ontology,
mostly including locations, organizations, and persons [31]. Another option is to use
natural language processing (NLP) solutions [32]. In most cases, the part of speech (POS) is
estimated, where the nouns are identified as key concepts [33]. The concepts are additionally
processed by using synonym tables [33]; however, this can be applied to narrow domain
areas, as a detailed list of synonyms can be an issue for more complex domains. In such
a case, clustering might be used to organize the concepts, find synonyms, and indicate
relations between the concepts [34–36].

The ontology construction can be executed on very different levels to define terms,
synonyms, concepts, concept hierarchies, relations, or rules [37]. A more detailed (including
all levels of concepts) ontology increases its application possibilities, but also increases
its construction complexity. Therefore, research on relation estimation between concepts
is an important aspect of ontology construction. Semantic patterns can be extracted to
identify relations between concepts [38,39], while grammar-based transformation [40] and
supervised learning can also be applied [41,42]. For relation extraction, the semantic lexicon,
syntactic structure analysis, and dependency analysis are mostly used [43].

Despite the variety of existing solutions for ontology learning from unstructured text,
the performance of the transformations lacks accuracy, better results can be achieved when
some specific domain is analyzed [44]. The transformation of unstructured text to ontology
according to the domain allows adding some specific rules or solutions, enabling a more
detailed presentation of the knowledge [39,45].

In cybersecurity, research on knowledge extraction from text exists [46,47]; however,
automated ontology building or enrichment is mostly achieved using different data sources
rather than unstructured text [48–50]. In the field of security ontology, Gillani and Ko [51,52]
proposed a ProMine solution to enhance or maintain ontologies by using text-mining tech-
nologies. These solutions are based on the application of an existing ontology and external
data sources (for synonym estimation) to indicate additional concepts from unstructured
text. These solutions illustrate the need for a reference ontology to which the extracted
data will be added. The ontology main structure is needed to define the main rules for the
presentation of the extracted terms and relations. However, security ontology structures
and transformations, dedicated to transforming security standards and best practices for
data construction of security ontology, are still missing.

2.3. Summary of Related Work

The analysis of existing security ontologies and data source transformation methods
as knowledge bases revealed that most knowledge source generation is based on manual
work involving experts (see yellow blocks in Figure 2). Fully automated solutions [51,52]
(presented as a green block in Figure 2) are oriented toward the presentation of security
concepts without the presentation of the data source at different aggregation levels. Security
metadata and aggregated data sources exist; however, full integration between formalized
security concepts and data sources is missing in the existing security knowledge data
sources (see X-axis in Figure 2).
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Figure 2. Summary of analyzed related words, based on presented security area and concept
presentation level.

UCF Mapper [53] has a semi-automatic solution (presented in blue in Figure 2) when
initial security text analysis is executed automatically, while human work is used to adjust
the knowledge. This solution defines security document controls, linked together by
using security concept similarity. The integration between security concepts and security
documents exists but is implemented at a very abstract level only.

Further examples of partly integrated knowledge between security concepts and doc-
uments are security ontologies for mapping of security standards [25–27]. Those ontologies
are mostly oriented toward security documents and aggregated knowledge, with just some
links to formalized security concepts. This complicates their usage by automated systems;
therefore, to realize the full potential of security document formalization, knowledge of
different abstraction levels should be presented with its interconnections.

3. Security Ontology Structure for Text-Based Security Source Formalization

A security ontology for text-based security source formalization should define the
structure and principles for knowledge extraction from different sources. This would allow
automated composition of the security knowledge base using multiple data sources, rather
than the perception of the ontology developer. Such a knowledge base presented as an
ontology might serve as a base for different security intelligence tasks.

One of the requirements in modern knowledge and decision support systems is a
justification of the decision. To do so, some relations between the data source and extracted
terms, as well as the associated concepts, should be implemented. At the same time, the
data source can give additional value and clarity for the decision traceability. Therefore,
the structure of the proposed security ontology has three main layers (see Figure 3): data
sources, including structure and content (documents); security concepts, as well as their
properties and relations between concepts (knowledge); relations between data source and
security knowledge, expressed as atomic sentences with links to concepts (mapping).

To present the security source, the document structure is important. Division into
sections, subsection, controls, description, and other components is standard for a well-
written security document; therefore, it should also be reflected in security ontology.
However, different security documents might have different structural elements. This
complicates the alignment of several data sources. Therefore, we ensure the adaptability of
the security ontology structure to different data sources by applying class inheritance. The
reference structure for data sources is composed of main classes and properties. Figure 4
illustrates the main structure of the ontology, where blue notated elements define main
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classes and gray elements denote properties, associated with an appropriate class. Each
document is presented as an instance of the “security document” class, while its structure
is presented as a hierarchical structure of chapters (presenting a tree of iterative chapters
and subchapters). The content of the document should be defined on the basis of the type
of content: control, testing procedure, attack description, and definition. Each text element
has a “text” property and allows the presentation of the full, not formalized content. For
the formalization, each text is divided into atomic sentences, as a link from the document
structure to the security concepts.

DOCUMENTS

•Document structure
•Document content

MAPPING

•Atomic sentences
•Linking to 
knowledge

KNOWLEDGE

•Concepts
•Properties
•Relations

Figure 3. The main layers of the proposed ontology structure.

 

Figure 4. The main structure of security ontology data source layer: blue elements—classes; gray
elements—data properties of the class; purple elements—class of mapping layer; arrows—data
properties, connecting the instances of separate classes.

When a new data source is added to the ontology, new classes should be created for
each of the actual (having an analogue component in it) classes in the security ontology
data source reference structure. This will allow using reference classes for the selection of
data in all inserted data sources. On the other hand, for more specific, defined data sources,
the child classes can be used.

Close to the adding of inherited classes, the security document should be presented
in the ontology, by creating instances of the classes. Instances reflect the object and data
source rather than their structural elements. The naming of the instance can reflect the
data source title for a faster search. One instance of security document class is created, in
addition to one for each chapter and other elements of the data source.

Classes of the instance define the data source structure and go from abstract instances
to more detail, where not only is the title presented but also the text defining the control,
testing procedure, or concept description. The text is difficult to analyze as it contains
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multiple sentences, whereby one sentence might include different concepts on security.
Therefore, each text should be divided into sentences. This can be achieved by using such
solutions as finite state machines, part-of-speech tags, conceptual graphs, domain ontology
and dependency trees, etc. The main functionality of sentence structure analysis and
identification of the subsentence can be completed using widely available programming
toolkits, such as NLTK. This simplifies the text division into sentences and later into atomic
sentences, to be presented in the mapping layer.

In the mapping layer, each sentence should be divided into atomic sentences. In
Figure 5, the sentence is presented in white, while atomic sentences are presented in red.
Atomic sentences should present only one idea, without any side sentences. In one sentence,
several atomic sentences might be presented and linked by some keywords. The keyword
should also be used to link the atomic sentences in the ontology (in Figure 5, the link
“leads to” defines the link between two atomic sentences of the same composite sentence).
Consequently, appropriate object properties should be used, or an event should be newly
added to the ontology if the analyzed sentence has a different keyword than presented
in the ontology. However, to assure the ontology data’s adaptability to machine usage,
keyword processing should be used to eliminate nonmeaningful terms and term conversion
to standard form. Therefore, “as a means of” could be converted to the term “leads to”
or similar.

 

Figure 5. An example of sentence presentation as multiple atomic sentences, where each sentence is
divided into subject, action, and object, as well as segmented to the lowest-granularity elements.

While atomic sentences present separate ideas and might indicate the logical sequence
of concepts, text-based expression is not effective for machine usage. Therefore, each
atomic sentence is divided into smaller elements, identifying the subject (blue in Figure 5),
action (green in Figure 5), and object (yellow in Figure 5) in it. Such a separation allows an
estimation of who is acting, what they are doing, and what object they are using for it. This
division might be executed by a human or by natural language processing (NLP). Human-
based transformation might be more accurate, as security experts might understand the
meaning of the atomic sentence and express some terms in more popular synonyms (for
a better match with other data sources). However, this is very time-consuming and, in
some cases, requires not general, but very specific security knowledge and situational
understanding. Therefore, NLP solutions for subject–object–verb extraction can be adapted
for content extraction automation.

To make the content usable for machine systems and concept matching between several
data sources, each subject, action, or object is divided into the lowest-level part-of-speech
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elements. The hierarchical structure of security concepts is adapted to present the idea,
whereby a combination of several concepts might be differently interpreted in comparison
to the sum of separate concepts. For example, “firewall and router configuration” might
not be identical to the sum of “firewall configuration” and “router configuration”, as the
interdependencies between those two might also be considered. At the same time, the
division into lower-level part-of-speech elements allows an estimation of concept similarity,
with not only a full, but also a partial match.

The division of subject, action, and object into smaller elements covers the security
knowledge layer. The terms for this layer are added by incorporating new data sources and
identifying new, non-existing instances, which are needed to reflect the atomic sentence.
At the same time, the object properties are important in this layer. The composite term is
divided into lower-granularity terms according to NLP principles. Therefore, the object
properties between concepts might indicate the logical operator (and, or, not), property of
the elements, etc.

An example of text-based data division into atomic sentences and smaller components
is presented in Figure 6. It presents the first two sentences of MITRE ATT&CK technique
T1003.001, stored as four atomic sentences (two for each of the sentences). Additionally,
the subject of the attack is presented in the purple background to help the identification
of relations between system and attack behavior. This situation indicates that the storage
of credential material in LSASS process memory is sensitive and directly related to attack
actions, thus deserving attention for security assurance. The situation illustrates the formal-
ization principle when two different sentences can be associated by analyzing the linking to
the same security concepts. In the same manner, more sentences, chapters, or even security
sources can be linked.

 

Figure 6. An example of attack technique description formalization, by indicating matching concepts
between two sentences and the attack relation to system behavior.

The traceability to elements with a higher abstraction level helps identification of the
flow, and this can be used for estimation of the distance between different elements. At
the same time, such a structure is not optimized in the sense of data storage; it stores full
text and duplicates its parts in lower-level elements. This solution is more oriented toward
data usability rather than storage optimality. However, to solve the issue, the ontology data
can be transformed, by filtering out unnecessary elements, i.e., leaving only the elements
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of the needed level (security document structure, atomic sentences, lowest-granularity
elements, etc.).

4. Application of the Security Ontology and Its Data

This paper presented a security ontology structure and principles of how this ontology
should be supported with data from different data sources. It is difficult to compare it
to existing ontologies. This paper presented the reference structure for different security
document presentations, while other existing security ontologies were mostly dedicated to
knowledge presentation. Therefore, several approaches were applied to analyze the security
ontology structure suitability to store knowledge of different text-based data sources, as
well as its applicability.

4.1. Numeric Results of Sample Data Presentation in the Security Ontology

Structure suitability can be estimated by applying it for the formalization of different
security data sources. In the current state, human-based sample data from ISO 27,002
(five chapters, three subchapters, and seven controls), PCI DSS (six chapters, four sub-
chapters, two general requirements with four detailed requirements, and three testing
procedures) standards, and MITRE ATT&CK enterprise techniques (descriptions of two
techniques and two sub-techniques with 10 sentences in total) were added to validate the
security ontology structure suitability for different text-based security data sources.

The formalization process does not require the adjustment of the reference security
ontology structure. However, not all classes were used for instance creation in different data
sources; MITRE ATT&CK techniques did not require chapter presentation, while security
standard requirements and testing procedures were mostly presented, not attack techniques.

To review the specifics of the mapping layer, the results revealed (see Table 1) 1.88 atomic
sentences on average for each analyzed sentence (requirement, testing procedure, control,
technique descriptions). This illustrates the complex structure of the texts, presenting
several interconnected concepts.

Table 1. Summary of the number of instances in sample data of the analyzed security documents.

Measurement

Value

ISO 27002 PCI DSS
MITRE ATT&CK

Technique

Number of instances in document structure 8 10 0
Number of atomic sentence instances 13 12 24
Number of instances of initial terms
(subjects, actions, objects) 30 29 55

Number of lower granularity term instances 64 55 147

At the same time, 2.33 lower-granularity term instances on average (not taking into
account the match between different security documents) were generated from first-level
composite term instances. This does not accurately reflect the situation as the majority of sub-
jects and actions were presented as one term, while objects were mostly presented as complex
structures, requiring hierarchical presentation to lower-level granularity term instances.

The experiment illustrates that text-based data (technique descriptions) were writ-
ten in a more complex manner (usage of complex sentences and terms), but the same
term was more often used (probably because the technique description was longer or
contained more sentences) in comparison to analyzed security standard requirements and
testing procedures.

4.2. Analysis of Knowledge Extraction Possibilities Using the Proposed Security Ontology

Suitability to store different text-based security data sources is not enough if there are
no use cases of the presented data. Therefore, we present some use cases where the security
ontology, with data integrated from different data sources, can add value in comparison to
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existing solutions. The list is not limited to these examples; however, it presents the most
relevant, easily implementable application use cases.

4.2.1. Summary of Data Source Coverage or Security Landscape

To understand what concepts one or several selected data sources cover up, the data
sources should be read and summarized. Using the security ontology, a list of mentioned
terms can be easily obtained. The list can be reduced by adding requirements to provide
only the most popular terms. At the same time, the data can be used to understand which
area of the security landscape is covered by the data source in comparison to the full
landscape of cybersecurity.

Different data sources analyze different aspects of the security area; therefore, the
integration of different security data sources enables a wide security knowledge base. With
the help of hierarchical term division into lower-granularity (simple words) terms and
knowledge of different data sources, the link between different concepts can be established.
Therefore, the term graph can be used as a presentation of a wide range of security areas,
thereby forming the full landscape of cybersecurity. Such a data source can be used for
learning purposes, as well as security area concept interdependencies analysis.

4.2.2. Mapping of Security Documents

Mapping of security documents allows a better understanding of what is common
between multiple security documents, as well as their uniqueness and specifics. Some
solutions to map different security standards using a reference ontology exist [26]. However,
they are based on a very detailed security ontology, and the mapping of the security
document to the security ontology must be done by a security expert. An automated
solution is used by UCF [53], where text analysis is applied to extract the main terms.
The mapping between the security documents is mostly implemented by the proportion
of matching terms. However, the solution relies on the relational database rather than
the ontology for knowledge storage; therefore, opposite statements such as “password is
required” and “password is not required” lead to a high similarity because the proportion
between matching terms is high.

Using the proposed security ontology structure and the hierarchical division of com-
plex terms can allow more accurate mapping of security documents. The manual labeling
of the most appropriate versions of the term used in UCF Mapper can be replaced by
automated matching of terms where the relations are established by incorporating differ-
ent security documents. Furthermore, the links between different granularity terms will
allow the identification of opposite meanings or terms, enabling more accurate mapping of
security documents.

4.2.3. Cybersecurity Threat Modeling

Security threat modeling tools exist; however, the data for the modeling must be man-
ually transformed from different sources to a specified language or model. Xiong et al. [54]
used the MITRE ACC&CK matrix as a data source and transformed it into an enterprise
system. This allowed security threat modeling, but a manual expert-based transforma-
tion of the knowledge had to be implemented. Using the proposed security document
formalization, the subject, action, object, and properties, as well as links between them, can
be estimated. This might represent a basis for modeling different security situations. For
example, the pre-conditions and post-conditions can be easily identified by analyzing the
relations between atomic sentences. This can allow the generation of attack graphs or trees.
Subject classification can be used to define attack and mitigation relations for security risk
evaluation, while attack subject identification can be used to identify attack flows. This
would align with the MITRE ENGENUITY attack flow project [55] as the formalization at
different levels would enable flow automated identification based on the relations between
concepts, while linking to the data source would allow relationship aggregation to the
technique level.
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5. Discussion and Conclusions

Security-related research and ontology applications are experiencing constant growth.
However, the absence of fully functioning semantic web- or text-based security data
source formalization solutions limits the exploitation of existing data sources in the cyber
intelligence area. This paper goes one step further to solve the problem and provides an
ontology structure, dedicated to linking the ontology content with a text-based data source.

The division of the proposed ontology structure into three layers allows a separation
of the security area content, security document structure with texts, and mapping between
the two. Therefore, the data can be easily filtered to use the security area content only,
while additional layers can provide additional values, related to links between different
data sources, automated mapping between them, etc.

While the ontology structure is suitable for human-based security document formaliza-
tion, as shown in Section 4.1, the automated solution should be provided for simplification
of text data transformation. The current solutions for text transformation to ontology are
ideal for estimating concepts and their relations. For application to this security ontology
structure, additional adaptation is needed, as document structure and sentence relation
analysis must be incorporated.
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26. Ramanauskaitė, S.; Olifer, D.; Goranin, N.; Čenys, A. Security ontology for adaptive mapping of security standards. Int. J. Comput.

Commun. Control (IJCCC) 2013, 8, 813–825. [CrossRef]
27. Fenz, S.; Plieschnegger, S.; Hobel, H. Mapping information security standard ISO 27002 to an ontological structure. Inf. Comput.

Secur. 2016, 25, 452–473. [CrossRef]
28. Missikoff, M.; Velardi, P.; Fabriani, P. Text mining techniques to automatically enrich a domain ontology. Appl. Intell. 2003,

18, 323–340. [CrossRef]
29. Moreno, A.; Perez, C. From text to ontology: Extraction and representation of conceptual information. In Proceedings of the

Conference on TIA, Nancy, France, 3–5 May 2001.
30. Buitelaar, P.; Olejnik, D.; Sintek, M. A protégé plug-in for ontology extraction from text based on linguistic analysis. In Proceedings

of the European Semantic Web Symposium, Heraklion, Greece, 10–12 May 2004.
31. Velardi, P.; Fabriani, P.; Missikoff, M. Using text processing techniques to automatically enrich a domain ontology. In Proceedings

of the International Conference on Formal Ontology in Information Systems, Ogunquit, ME, USA, 17–19 October 2001.
32. Witte, R.; Khamis, N.; Rilling, J. Flexible Ontology Population from Text: The OwlExporter. In Proceedings of the International

Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta, 17–23 May 2010.
33. Kang, Y.B.; Haghighi, P.D.; Burstein, F. CFinder: An intelligent key concept finder from text for ontology development. Expert

Syst. Appl. 2014, 41, 4494–4504. [CrossRef]
34. Biemann, C. Ontology learning from text: A survey of methods. LDV Forum 2005, 20, 75–93.
35. Poon, H.; Domingos, P. Unsupervised ontology induction from text. In Proceedings of the 48th Annual Meeting of the Association

for Computational Linguistics, Uppsala, Sweden, 11–16 July 2010.
36. Lee, C.S.; Kao, Y.F.; Kuo, Y.H.; Wang, M.H. Automated ontology construction for unstructured text documents. Data Knowl. Eng.

2007, 60, 547–566. [CrossRef]
37. Buitelaar, P.; Cimiano, P.; Magnini, B. Ontology learning from text: An overview. Ontol. Learn. Text Methods Eval. Appl. 2005,

123, 3–12.
38. Dahab, M.Y.; Hassan, H.A.; Rafea, A. TextOntoEx: Automatic ontology construction from natural English text. Expert Syst. Appl.

2008, 34, 1474–1480. [CrossRef]
39. Kaushik, N.; Chatterjee, N. Automatic relationship extraction from agricultural text for ontology construction. Inf. Processing

Agric. 2018, 5, 60–73. [CrossRef]
40. Mathews, K.A.; Kumar, P.S. Extracting ontological knowledge from textual descriptions through grammar-based transformation.

In Proceedings of the Knowledge Capture Conference, Austin, TX, USA, 4–6 December 2017.
41. Celjuska, D.; Vargas-Vera, M. Ontosophie: A semi-automatic system for ontology population from text. In Proceedings of the

International Conference on Natural Language Processing (ICON), Hyderabad, India, 19–22 December 2004.
42. Wang, J.; Liu, J.; Kong, L. Ontology construction based on deep learning. In Proceedings of the International Conference on

Ubiquitous Information Technologies and Applications (CUTE 2016), Bangkok, Thailand, 19–21 December 2016.
43. Wong, W.; Liu, W.; Bennamoun, M. Ontology learning from text: A look back and into the future. ACM Comput. Surv. (CSUR)

2012, 44, 1–36. [CrossRef]
44. Al-Aswadi, F.N.; Chan, H.Y.; Gan, K.H. Automatic ontology construction from text: A review from shallow to deep learning

trend. Artif. Intell. Rev. 2020, 53, 3901–3928. [CrossRef]

292



Electronics 2022, 11, 1103

45. Couto, F.M.; Silva, M.J.; Coutinho, P.M. Finding genomic ontology terms in text using evidence content. BMC Bioinform. 2005,
6, 1–6. [CrossRef] [PubMed]

46. Mulwad, V.; Li, W.; Joshi, A.; Finin, T.; Viswanathan, K. Extracting information about security vulnerabilities from web text. In
Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Lyon,
France, 22–27 August 2011.

47. Joshi, A.; Lal, R.; Finin, T.; Joshi, A. Extracting cybersecurity related linked data from text. In Proceedings of the 2013 IEEE
Seventh International Conference on Semantic Computing, Washington, DC, USA, 16–18 September 2013.

48. Wali, A.; Chun, S.A.; Geller, J. A bootstrapping approach for developing a cyber-security ontology using textbook index
terms. In Proceedings of the 2013 International Conference on Availability, Reliability and Security, Washington, DC, USA, 2–6
September 2013.

49. Geller, J.; Chun, S.A.; Wali, A. A Hybrid Approach to Developing a Cyber Security Ontology. In Proceedings of the 3rd
International Conference on Data Management Technologies and Applications, Vienna, Austria, 29–31 August 2014.

50. Aksu, M.U.; Bicakci, K.; Dilek, M.H.; Ozbayoglu, A.M.; Tatli, E.I. Automated generation of attack graphs using NVD. In
Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, Tempe, AZ, USA, 19–21 March 2018.

51. Gillani, S.; Ko, A. Incremental ontology population and enrichment through semantic-based text mining: An application for it
audit domain. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2015, 11, 44–66. [CrossRef]

52. Ko, A.; Gillani, S. Ontology maintenance through semantic text mining: An application for it governance domain. In Innovations,
Developments, and Applications of Semantic Web and Information Systems; Lytras, M.D., Aljohani, N., Damiani, E., Chui, K.T., Eds.;
IGI Global: Hershey, PN, USA, 2018; pp. 350–371.

53. UCF Mapper. Available online: https://www.ucfmapper.com/overview/mapping-approach/modern/ (accessed on 13
March 2022).

54. Xiong, W.; Legrand, E.; Åberg, O.; Lagerström, R. Cyber security threat modeling based on the MITRE Enterprise ATT&CK
Matrix. Softw. Syst. Modeling 2021, 21, 1–21.

55. Attack Flow—Beyond Atomic Behaviors. Available online: https://medium.com/mitre-engenuity/attack-flow-beyond-atomic-
behaviors-c646675cc793 (accessed on 26 March 2022).

293





Citation: Al-Dwairi, M.; Shatnawi,

A.S.; Al-Khaleel, O.; Al-Duwairi, B.

Ransomware-Resilient Self-Healing

XML Documents. Future Internet

2022, 14, 115. https://doi.org/

10.3390/fi14040115

Academic Editor: Leandros

Maglaras

Received: 12 March 2022

Accepted: 5 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Ransomware-Resilient Self-Healing XML Documents

Mahmoud Al-Dwairi 1,†, Ahmed S. Shatnawi 2,*,†, Osama Al-Khaleel 1,† and Basheer Al-Duwairi 3,†

1 Department of Computer Engineering, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan; mndwairi14@cit.just.edu.jo (M.A.-D.); oda@just.edu.jo (O.A.-K.)

2 Department of Software Engineering, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan

3 Depatment of Network Engineering & Security, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan; basheer@just.edu.jo

* Correspondence: ahmedshatnawi@just.edu.jo; Tel.: +962-7910-803-57
† These authors contributed equally to this work.

Abstract: In recent years, various platforms have witnessed an unprecedented increase in the number
of ransomware attacks targeting hospitals, governments, enterprises, and end-users. The purpose
of this is to maliciously encrypt documents and files on infected machines, depriving victims of
access to their data, whereupon attackers would seek some sort of a ransom in return for restoring
access to the legitimate owners; hence the name. This cybersecurity threat would inherently cause
substantial financial losses and time wastage for affected organizations and users. A great deal
of research has taken place across academia and around the industry to combat this threat and
mitigate its danger. These ongoing endeavors have resulted in several detection and prevention
schemas. Nonetheless, these approaches do not cover all possible risks of losing data. In this paper,
we address this facet and provide an efficient solution that would ensure an efficient recovery of XML
documents from ransomware attacks. This paper proposes a self-healing version-aware ransomware
recovery (SH-VARR) framework for XML documents. The proposed framework is based on the
novel idea of using the link concept to maintain file versions in a distributed manner while applying
access-control mechanisms to protect these versions from being encrypted or deleted. The proposed
SH-VARR framework is experimentally evaluated in terms of storage overhead, time requirement,
CPU utilization, and memory usage. Results show that the snapshot size increases proportionately
with the original size; the time required is less than 120 ms for files that are less than 1 MB in size;
and the highest CPU utilization occurs when using the bzip2. Moreover, when the zip and gzip are
used, the memory usage is almost fixed (around 6.8 KBs). In contrast, it increases to around 28 KBs
when the bzip2 is used.

Keywords: ransomware; XML documents; secure document engineering self-healing

1. Introduction

The progression of cybercrime and the development and adoption of new techniques
to jeopardize sensitive information and impart damage across the Internet present an alarm-
ing threat to businesses, governments, and nations. Recent cybersecurity research (e.g., the
works in [1–6]) confirms cybercriminals’ determination to develop newer techniques for
achieving their malicious objectives. Ransomware is just one of the methods that have
been used recently by cybercriminals to achieve financial gains in return for releasing
ransomware-encrypted files to their rightful owners. Ransomware attacks represent a real
security threat to users’ data files and various network resources that would contain backup
files. Amongst others, a conservative estimate is that ransomware criminals received USD
412 million in payments in 2020 [7]. Ransomware attacks impact individuals and orga-
nizations in the public and private sectors, including, amongst many, the health sector,
e-commerce, educational institutions, government agencies, and the business sectors, in a
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manner that leads to economic and moral loss. In 2017, the WannaCry Ransomware [8], a
recent massive Ransomware attack, impacted up to 300,000 users in 150 countries world-
wide, preventing them from accessing their devices and demanding Bitcoin payments in
exchange for unlocking the files involved.

With an ever-increasing rate of storing and sharing data, document security is becom-
ing one of the biggest challenges that faces both individuals and organizations. Here, digital
documents are represented in many formats, one of the most popular of which includes
the Extensible Markup Language (XML). When Ransomware attacks victims’ machines,
it will seek to lock or encrypt users’ crucial files and documents, including XML-based
documents such as “.docx” and “.odt” file types.

Since 2010, the rate of infection by Ransomware has increased significantly. This
growing threat has received significant attention from both academia and industry. Many
research studies have intensely served to analyze Ransomware and develop new techniques
to detect it, as long as it considers backup. However, a significant portion of all proposed
detection techniques claims to have a high detection success rate. Nonetheless, most
detection and protection systems in use have several limitations.

In this study, we address the problem of recovering XML documents once a ran-
somware attack has taken place. We propose a self-healing version-aware XML recovery
framework to combat Ransomware to achieve this goal. The proposed framework takes
advantage of the structure of XML documents and combines link-based version control
with well-known access-control mechanisms.

The Version-Control System (VCS) manages all the changes made to documents,
including tracking and storing versioning data. In this paper, VCS will be tapped into by
presenting a novel approach directed at recovering ransomware-infected XML-based files
and documents. Version-Aware XML-based documents are part of a distributed version-
control system that does not rely on a central repository but refers to the document file
itself in tracking each subsequent version of a document.

The work presented in this paper focuses mainly on protecting XML-based documents
such as “.docx” and “.odt” files from being encrypted by Ransomware. The proposed frame-
work integrates decentralized version control that utilizes file links with access-control
mechanisms to prevent Ransomware from tampering with the protected file version. There-
fore, It ensures complete recovery of protected XML-based documents from ransomware
infection. To that end, the main contributions of this work are as follows:

• A self-healing version-aware ransomware recovery framework for XML-based docu-
ments is identified.

• The proposed framework is evaluated according to different performance metrics, includ-
ing storage overhead, CPU utilization, and memory requirements for about 500 XML-based
documents of various sizes, ranging from a few kilobytes to 30 Megabytes.

The rest of this paper is organized as follows: Section 2 provides background informa-
tion on information security, Ransomware, and version-control systems. Section 3 reviews
some pieces of related work. Section 4 presents the proposed system. The performance
evaluation part is presented in Section 5. Finally, we conclude in Section 6.

2. Background

The field of Information Security is one of the most critical fields in the IT world.
Ensuring the protection of information assets is a top priority for users and organizations
because the data stored on a computer are certainly worth more than the computer itself.
Cybersecurity’s critical goal is to protect data transferred over the network and its connected
resources against any security threat. There are three main objectives for information
security that are deemed primary pillars of cybersecurity. These pillars are Confidentiality,
Integrity, and Availability; otherwise referred to as the Security Requirements Triad [9] or
the CIA triangle. These three objectives are highly recognized across the security-concerned
communities. Confidentiality means that the information is accessed only by authorized
parties with sufficient privileges. It guarantees privacy, meaning that the individuals control
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what information is related to them, who can collect such information, and to whom a
set of given data can be revealed. Integrity guarantees that the data stored on computers
and other resources are correct and that either unauthorized people or malware do not
manipulate pieces of data. It is more critical than availability and confidentiality. On the
other hand, availability ensures connectivity for authorized users of network resources.

Two additional objectives are sometimes added to these pillars: Authenticity and
Accountability. The extended model is known as the CIA+ model, as elaborated in [10]. Au-
thenticity ensures that the message received is the same as the one sent without alteration
or tampering; it ensures that it was sent from trusted sources; something that warrants
truthfulness of origins. Accountability is related to the individual or organization’s re-
sponsibility to trace the actions performed on their systems and perform preventive and
defensive measures to counter these threats. This includes taking backup for essential data,
instating fault isolation, ensuring proper intrusion detection and prevention, conducting
after-action recovery, and taking legal action.

2.1. Ransomware

Ransomware is defined as a form of malware that prevents users from accessing their
resources and files either by encryption or blockage until a ransom is rendered to restore
access to infected files. It provides a means for money-based extortion that affects both
individuals and organizations [11]. It is a piece of software designed and implemented by
cybercriminals to gain access to legitimate users without their knowledge and to perform
malicious activities such stealing sensitive data and asking for a ransom. Due to a lack of
proper technical background with little knowledge of how to preserve their data, short of
making necessary file backups, some users, especially naive ones, end up paying ransom to
restore access to their files. This ultimately leads cybercriminals and attackers to gain more
significant revenues and helps to make this an opportunity for thriving businesses [12].

In 1989, the first ransomware attack was reported when infected floppy disks with
AIDS Trojan were distributed amongst biologists. The malware encrypted all the victims’
system files with a ransom of USD 189 to undo the damage. The earliest variants of
Ransomware were developed in 1980 [13]. Ransom was paid via postal mail. Today,
ransomware authors order that payment is rendered via credit cards or cryptocurrency
such as bitcoin [14].

In recent years there has been an increasing proliferation rate of different types of
ransomware families that are spread like a worm, which involve advanced recovery-
prevention schemes. This impacts home users, organizations, and the infrastructures of
vital governmental establishments around the world [11].

WannaCry and Petaya [8] are examples of recent Ransomware which spreads through
insecure compromised websites, exploiting weaknesses inherent in Microsoft Windows. On
12 May 2017, WannaCry was first observed as part of massive attacks over multiple coun-
tries [15]. These attacks affected many vital sectors, including government organizations
and the healthcare and telecommunications sectors. WannaCry is an example of crypto
Ransomware that is based on public-key cryptography; something that is rather challenging
to mitigate or recover from, as the encryption keys are stored on a remote command and
control server (C&C). In the following subsections, we explain the ransomware lifecycle
and main ransomware categories:

2.1.1. Ransomware Lifecycle

The authors of [16] analyzed 25 ransomware families and found that they all possess
similar dynamics. They differ somewhat, however, according to the ransomware versions in
place, but exhibit a similar overall high-level pattern. In general, the ransomware lifecycle
spans the following six steps [16]:

• Ransomware distribution: Like other malicious software programs, Ransomware uses
social-engineering strategies to seduce victims to click links that lead to ridiculous
content or download a malicious dropper or payload that causes infection.
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• Infection: The malicious code is downloaded at this stage, and the execution of the code
begins. At this stage, a victim’s machine will have been compromised by Ransomware,
with the underlying files still not yet encrypted. Encryption is a reversible process,
involving highly intensive CPU calculations operations. Encryption does not readily
happen in a typical ransomware attack as it requires time for data evaluation by the
malware and the scope for data encryption. Once this stage becomes active, all the
automatic detection systems will have stopped. The firewall, proxy, antivirus, and
intrusion detection programs will have been compromised to allow all malicious
communications to take place, ultimately putting the ransomware in total control.

• C2 Communications: The malicious code continues to maintain access to its command-
and-control server (C2) at this stage. Here, an attacker manages a C2 server and begins
to send commands to the compromised system. The primary C2 communications
objective with Ransomware entails the acquisition of an encryption key. Once that is
complete, different systems are changed, and persistence is determined.

• File search-scanning: This is when things start to slow down a bit. The malware
searches the computer to find files to encrypt first. It also scans for cloud data that are
synced through folders and shown as local data. Then it starts searching for file shares.
This may take time, depending on how much activity there is across the network.
The goal is to examine the available information and determine the victim’s level of
permissions (e.g., list, published, delete).

• Encryption: The encryption starts once all data have been inventoried. Local file
encryption may take minutes, but it may take several hours to encrypt a network
file; this is because data on network file shares are locally copied and encrypted in
most ransomware attacks. Then this is followed by uploading the encrypted files and
removing the original ones. This phase takes a bit of extra time.

• Ransom demand: At this stage, a victim will receive a ransom message instructing
them to render ransom; the Ransomware message is issued immediately once en-
cryption has taken place. The Ransomware shows a screen that instructs its victim
to pay before criminals delete the key to decrypt the files. The last function usually
performed by Ransomware is to end and uninstall itself from a victim’s machine. At
this point, the hackers are ready to receive the ransom to their Bitcoin wallet.

2.1.2. Ransomware Categories

Ransomware falls under three main categories ranging from severe to damaging:
Scareware, Locker Ransomware, and crypto Ransomware. Table 1 summarizes these
categories. Scareware is a form of malicious software that overwhelms users’ screens with
warnings and pop-ups claiming that issues are detected on the users’ PC and it requires
money to fix them. If the victim falls in for this trick and installs the malware on their
machines, the cybercriminal/s would use this malware to access their files, send out fake
emails in their names, and/or track their online activity. Locker Ransomware is malicious
software that infects the operating system and prevents users from accessing their files and
data. It hijacks one or more of the victim’s system services, such as desktops, smartphones,
and applications, depriving users of those tools from accessing them [11]. This attack
usually takes the form of a locking computer interface asking the user to pay a ransom for
re-access. Often, infected computers are left with limited capabilities to allow the user to
communicate with ransomware and conduct-related activities to pay the requested ransom.
For example, W32. Rasith is a worm that locks the victim’s desktop, making the system
unusable [17]. This type is not limited to PCs or servers alone, but it also affects mobile
devices. Android.Lockdroid.H is an example of a trojan that locks the screen of mobile
devices and displays a ransom message [17]. Since Locker ransomware is designed to
prevent access to the device’s interface, the underlying system and files are left untouched.
It is possible to restore the computer to a state close to its original condition. Thus, Locker
ransomware is less effective at eliciting ransom payments.
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Although cryptography is regarded as a critical defense mechanism in computer
and network applications [18], it can also be used to perform crypto crimes. The work
in [19] is one of the earliest research studies on fraudulent cryptographic use. What
distinguishes Ransomware from conventional malware is that it utilizes cryptography
techniques, including symmetric and asymmetric key-based encryption, against victims, as
discussed in [20]. This type is the most common type of Ransomware. It is the most harmful
type and can cause a great deal of damage, thereby extorting vast amounts of money. This
type of Ransomware is considered the most dangerous because once the attacker gets hold
of the files, there is no way to restore them until a ransom is rendered for file restoration.
Here, WannaCry [8] is one famous example.

Crypto ransomware encrypts victims’ files, file contents, and file names without
notification by utilizing different cryptographic methods and notifies victims that their data
have been encrypted, forcing them to pay a ransom to decrypt files [12]. Since 2016, crypto
Ransomware attacks have increased dramatically. According to a report by [21], 58.43%
of ransomware attacks are conducted by a crypto Ransomware strain called TeslaCrypt.
CTB-Locker was considered one of the primary ransomware attacks in 2016. CTB-Locker
can attack multiple victims at the same time. Thus, during the same attack, it can extort
several victims. This infects web servers by encrypting webroot, causing web servers, host
applications, and websites to become paralyzed [21].

Table 1. Ransomware Categories.

Category Symptoms Example

Locker prevents users from accessing their files and data W32. Rasith
Data

Crypto

Encrypts victims’ files, file contents, and file names without
notification by utilizing different cryptographic methods
and notifies victims that their data have been encrypted,
forcing them to pay a ransom to decrypt files.

WannaCry

Double
extortion

Encrypts files and asks victims to pay a ransom.
Attackers threaten to publicize stolen data if their
demands are not met.

Maze

RaaS Involves perpetrators leasing access to ransomware
from the ransomware author, who delivers it as a paid service. Locky

2.2. Version-Control System (VCS)

Version-control systems (VCS) are used to manage all changes made to documents,
including tracking and storing version data. In this paper, VCS will be tapped into by
presenting a novel approach to recovering XML documents affected when Ransomware
attacks victims’ machines, causing locking of file encryption. Version-Aware XML-based
documents is a distributed version-control system that does not rely on a central repository
but refers to the document file to utilize the changes between different versions of the same
document. version-control is a system used for tracking all files or file set changes over time
to allow for the subsequent release of a specific version of the file so that you can obtain
a specific version of the file later. As VCS became popular, new techniques continued to
evolve. It uses two main techniques to store versions of data. The first one is to keep a
copy of each new version of the file, while the second one would keep only the deltas,
which are the data differences between the two versions of the file. There are two major
version-control types: centralized and distributed. A centralized version-control system is
based on client–server architecture where a central repository is used to store the document
versions. Centralized VCS must be used online as it requires the end-user (client) to be
connected to the system (central repository) at all times. Using this approach makes it
possible to elicit single points of failure [22].
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A distributed version-control system, also known as Version-Aware XML document
(used in our approach) was first introduced in [22]. In contrast to centralized VCS, ver-
sion–aware VCS does not depend on a central repository to store versions data. It utilizes
reverse deltas stored inside the document file itself, which are the data differences between
the two versions of a file, rather than storing the whole document every time. By using
Version-Aware XML document technology, users are not worried about the need to use
a repository or network connection to remote servers. LibreOffice documents (ODT) are
XML schemas that store files, styles, and settings. The authors of [23] created a Custom
Microsoft Word plugin to support Version-Aware XML documents technology. Revisions
of the document content are stored as a separate copy (snapshot) in a sub-directory inside
the document. Shatnawi et al. [24,25] proposed a secure framework for XML documents
that improves security for XML documents and their provenance and provides persis-
tent integrity, detects tampering, and provides tools for performing forensics by utilizing
version-aware XML document technology. Their approach provides an extensive document
history with author signatures at each step, which also enhances the performance when
applying security policies applied to documents.

3. Related Work

Cybersecurity researchers have extensively investigated malware attacks over the last
few years. In particular, Ransomware has received significant attention among existing
research works. Many researchers have studied Ransomware, analyzed its characteristics
and properties, and explored how it affects impacted victims. Meanwhile, they have
conducted their research work by proposing different approaches to detect and recover
from ransomware attacks.

3.1. Ransomware Analysis

To recover from a ransomware attack and mitigate its impacts, we should understand
how Ransomware is staged and, in the process, analyze what takes place. Analysis can
be achieved by looking at the structure of Ransomware and what it does by invoking a
reverse-engineering approach for multiple occurrences. The authors of [26] used reverse
engineering to study ransomware samples based on code quality, functionality, and crypto-
graphic primitives, if any. In their study, they concluded that the code is relatively basic
for the most part, with high-level languages used in most instances. Both symmetric and
asymmetric cryptography were employed. The analyzed samples were mainly purposed
to masses, with no specific objects being targeted. While reverse engineering provides
an in-depth look inside the structure of Ransomware, it is not considered a cost-effective
alternative to performing reverse engineering for every ransomware sample to find a way
to prevent attacks due to the complications and overheads involved.

The work in [27] performed a long-term ransomware attack analysis and reports
the results of examining over 1300 samples collected between 2006 and 2014 belonging
to 15 separate Ransomware families. They show that monitoring the activities in the
file system would help with Ransomware detection. They concluded that families of
Ransomware share very similar features in their core part, though their implementation
differs. The author of [28] conducted their study on malware samples, which is readily
valid for Ransomware. They proposed TTAnalyze, which can analyze the behavior of
malware that comes as a Windows-executable file process on a virtual processor under
an isolated environment. Other researchers were involved in studying the behavior of
ransomware families on the network rather than on the local machine. The authors of [29]
have, in particular, sought to analyze the network behavior of the CryptoWall Ransomware
family. Here, they used HoneyPot technology, which is based on dynamic analysis concepts
and an automatic run-time malware analytical system. They completed their study with
the conclusion that they could identify infected machines in a dedicated environment
and understand ransomware samples’ network behavior. Malicious parties commonly
associate Ransomware with a particular type of server called Command and Control (C&C)
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servers. These are used to automatically control Ransomware and anonymously instruct it
on what to do to infect other machines on the network. An approach is presented in [30]
to detect communication activities between infected hosts and Command and Control
servers by finding communication aggregates from multiple internal hosts that share
common characteristics. The authors concluded that three aggregation functions could
detect communication based on the hosts’ destination, payload, and platform.

Another research effort was conducted in [31] to study how Command and Control
servers operate. Instead of detecting communication activities to these servers, the authors
proposed a way to make automata that can reveal the hidden specification of closed-type
protocols. The solution they created does not require any information upfront, such as
source code or specifications about the implementation, and was found to be able to suc-
cessfully develop automata for FTP traces. The same principle could be applied to C&C
servers, which are closed-type protocol automata that send replies to ransomware requests.
The work in [32] presents the analysis of 14 strains of ransomware families that infect Win-
dows platforms. This study compares the baseline of standard operating-system behavior
operations, and Windows Application Programming Interface (API) calls made through
Ransomware processes. This study reports notable features of Ransomware, as indicated
by the frequency of API calls, without identifying code signatures within the ransomware
code in order to provide a better understanding of what a particular Ransomware does
to the system in API calls. The work in [33] applies data-mining techniques to connect
components of multi-level code to find unique association rules to classify ransomware
families through implementing static or dynamic reverse-engineering processes. The au-
thors carried out this study using 450 ransomware samples in which they were able to
identify the strong connection between the different code components that emerged from
the experiments.

In [34], the authors examined ransomware attacks in a healthcare setting, duties, and
the costs related to such infections as they would affect the healthcare business in general.
They also discussed risk-impacts mitigation. They suggested that healthcare facilities
should have a disaster plan with appropriate data backups and recovery plans and increase
employees’ awareness.

3.2. Ransomware Detection

In this section, we discuss the main research efforts for ransomware detection, mitiga-
tion and prevention. Detection methods rely on ransomware attack behaviors that affect
computer systems such as files or network systems. They give an alarming signal to the
end-users to prompt responses towards their files and important data. A SDN-based system
that can improve protection against Ransomware by observing the ransomware attack is
presented in [29]. By analyzing the behavior of two popular Ransomware, Cryp-toWall
and Locky, they could be leveraged to detect Ransomware based on HTTPS messaging
sequences and content size based on network-communication observations.

The authors of [35] proposed a Paybreak recovery solution to recover corrupted files
on a victim’s machine by extracting the encryption keys used to decrypt infected files
following a Ransomware attack. PayBreak effectively implements a key escrow mechanism
to store session keys in a key vault that can be encoded with a public user key; thus, the user
may decrypt the key vault with his private key following ransomware attack. In another
research work, Continella proposed ShieldFS in [36]. In this approach, the proposed scheme
acts upon the operating and file system levels and serves as a shield to detect and correct
any suspicious activities.

Kharraz in [27] carried out a long-term study of ransomware attacks and presents
results leveraging analysis of more than 1300 samples collected between 2006 and 2014 that
belong to 15 different Ransomware families. Further, the study showed that monitoring
activities in the file system would ultimately help with Ransomware detection. R-locker,
a general technique intended to prevent crypto Ransomware action, was first introduced
by [37]. The researchers used the honeyfile technique to prevent a ransom once it accessed
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a trap file. Therefore, the honeyfile technique helps to preserve the data on the system.
Moreover, while the ransom is blocked, a countermeasure to eliminate the issue would be
beneficial to eradicate the environment’s problem.

The study presented in [29] came with the ultimate objective of detecting the underly-
ing Ransomware and mitigating its impact on the systems. The work in [38] provides a
signature-based detection approach by observing the original semantics of the dataset of
malware. Here, semantics are required to be as effective as malware. However, the authors
conclude that malware could be detected commensurate with these signatures at higher
error rates with broad classes such as Trojans. In [39], the authors introduced CryptoDrop;
an early warning system for ransomware attacks to notify users during any unusual file
operation. Based on popular ransomware behavior criteria, the proposed solution tracks
victim data and identified Ransomware in the process. Their study conducted experi-
ments on 492 real-world samples of Ransomware, representing 14 families, and was able to
achieve high detection rates with low false positives. Ransomware designers continually
keep improving their techniques to spread their attacks, especially for Ransomware types
that are not easily detected. They use encryption algorithms to hide malicious code within
benign code to be executed later.

Shafiqq, Khayam, and Farooq [40] proposed a detection scheme to detect embedded
malware, malicious code that is hidden within benign files, using statistical abnormal
detection. Yfuksel, den Hartog, and Etalle [41] described a protocol-aware anomaly de-
tection framework that aims to monitor a network from embedded malware access by
scanning a network for SBM and Microsoft Remote Procedure Call (RPC) messages. The
work presented in [42] studies the whole life cycle of Ransomware creation, design, and
implementation using Dynamic Data Exchange (DDE) in Python scripting language and
REST APIs in PHP, with the back-end being a MySQL database. Their study aimed to
prove that even though many security measures and several top-quality antivirus pro-
grams are currently in use, ransomware authors continue to develop and write dangerous
malicious codes that can be distributed easily through connected devices. Meanwhile,
various research endeavors have widely explored analysis and detection of Ransomware
based on its characteristics, leveraging machine learning techniques. In [43], Lim and Ramli
applied machine learning techniques to classify extracted static and behavioral analysis,
and they developed an efficient malware analysis framework based on the mentioned
analysis features addressed thus far.

An approach to efficiently detect Ransomware was presented in [44]. The authors
incorporated feature-generation engines and machine learning in a reverse-engineering
framework. The purpose of malware code segments is to achieve better examination and
interpretation in the proposed framework by performing multilevel analyses such as raw
binaries, libraries, function calls, and assembly language. Binaries are decoded to assembly
level instructions and DLL libraries using the object-code dump tool (Linux) and portable
executable (PE) parser. The experiments were conducted using supervised ML techniques
on both Ransomware and normal binaries. Seven of the eight ML classifiers that were
tested had a detection rate of at least 90%.

In [45], G. Cusack, O. Michel, and E. Keller proposed a solution using programmable
data-transmission from the network-traffic-monitoring engines between the infected com-
puter and command and control server. They derived high-level flow features from this
traffic and used this dataset to detect Ransomware. A detection rate of around 0.86 was
achieved in this classification model.

While Ransomware is commonly found to infect personal computers rather more
frequently, the rapid spread and increased usage of mobile devices and smartphones have
often led Ransomware writers and hackers to pay particular attention to this evolving
market. Although mobile applications are subject to specific standards by stores before they
are made available to end-users, users can still find and download infected applications
from these stores. Andronio, Zanero, and Maggi [46] developed a detection scheme based
on training ransomware samples called HelDriod. Their approach detects whether a
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particular application will attempt to lock or encrypt a mobile device without the user’s
approval. It can also detect ransom requests from within the text of the application itself.

Stokkel, M. [47] proposed a code using an open-source intrusion detection system
called Bro to detect many samples. Alfredo Cuzzocrea, Fabio Martinelli, and Francesco
Mercaldo [48] presented a fuzzy logic classification method to identify whether a mobile
application exhibits Ransomware behavior; they performed their evaluation based on a
dataset containing 10,052 legitimate and illegitimate android mobile applications.

The work presented in [49] proposed a detection method leveraging a Support Vector
Machine (SVM). This, inherently, is considered one of a group of supervised algorithms
for machine learning. By using this approach, they can identify the API calls logs of
Ransomware samples based on their features. These authors evaluated this scheme using
276 real Ransomware samples and they concluded that their technique indeed increases
the predictive accuracy and the correct Ransomware detection rate. Ref. [50] conducted
a survey on Ransomware Detection Using the Dynamic Analysis and Machine Learning
from 2019 to 2021.

3.3. Recovery from Ransomware

This section provides an overview of the literature for recovery from ransomware
attacks, the proposed schemes to counter them, and the efficiencies involved. Zimba A,
Wang Z, and Simukonda in [51] examined samples from crypto Ransomware through
reverse engineering and dynamic analysis to evaluate a Ransomware’s underlying attack
structures and deletion techniques. They conclude that no matter how disruptive a crypto
Ransomware attack is, the key to data recovery is the underlying attack structure and
the deletion technique applied. They show that data recovery based on the structure of
the attack is possible. The work presented in [52] studies the recovery of lost files due to
ransomware attacks in a network-shared volume scenario. It presents a software tool that
monitors the traffic and records all user actions on the file. The authors demonstrate that
their proposed tool can recover the file from previous and subsequent operations without
taking the encrypted content as valid data. This tool, which could recover files successfully,
is evaluated based on test-traffic records of 18 different families. The work presented in [53]
presents a tool to perform evaluations for Ransomware backup systems during security-
risk assessment; this study would make auditors analyze backup systems effectively and
improve organizational abilities to detect and recover from Ransomware attacks.

RDS3 is a novel Ransomware Defense Strategy in which it stealthily backs up data
in the spare space of a computing device so that the data encrypted by ransomware can
be restored [54,55]. Kim et al. [56] proposed a method to decrypt Hive ransomware and
recover infected data. Continella et al. [36] described a self-healing, ransomware-aware
file system by monitoring low-level filesystem activity. If a process violates a previously
trained model, its operations are deemed malicious, and the side-effects on the filesystem
are transparently rolled back. The work carried out by Ye et al. [57] suggests monitoring
and analyzing operating systems events to ensure that a back up is created whenever a
suspicious event is detected. In case the misgiving comes true, it can be rolled back.

4. Proposed Version-Aware Ransomware Recovery Framework

In this section, we describe the proposed framework for Self-Healing Version-Aware
Ransomware Recovery (SH-VARR). The main goal of the proposed framework is to serve
as a version-control system and assist in recovery against ransomware attacks targeting
XML-based documents. To achieve this goal, we implemented a distributed version-control
system by adding the absolute URL path of the original file to keep track of file versions.
Further, we employed access-control techniques to protect file versions from modification
or deletion. These techniques ensure protection from ransomware attacks while allowing
users to keep track of older versions of their files. Here, we point out that the novelty
of our proposed framework relies on the way we combine well-known techniques from
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access-control theory and version-control mechanisms to achieve the desired Self-Healing
Version-Aware Ransomware Recovery of XM-based documents.

Figure 1 depicts the overall framework architecture. In this framework, all XML-based
documents in a predefined directory go through the version-control module at the time of
file closing to maintain the latest version of each document. The access-control module is
activated by invoking the root daemon service to perform write protection for the snapshot
version, which would be already pointing to the original file.

Figure 1. The overall architecture of SH-VARR framework.

4.1. Details of the Proposed SH-VARR Framework

We first describe the version-control module, illustrating the importance of using
absolute URL links to keep track of old versions of a file. This is followed by a detailed
description of the access-control module.

4.1.1. Version-Control Module

The version-control module is designed to maintain a copy of the XML-based file at
the time of file closure so that the latest version can be retrieved in case of any corruption
or system failure. We use the term snapshot to refer to the resulting file version. This can
be achieved by adding a special plugin for Microsoft Word or LibreOffice. As part of this
work, we have implemented a custom plugin for Microsoft Word 2013.

Our framework is specifically designed to recover XML-based documents in a prede-
fined folder/directory in case of a ransomware attack. Microsoft documents and LibreOffice
documents are XML-based documents that are originally compressed using the zip com-
pression algorithm. To create a snapshot of a .odt or .docx file, the plugin performs the
following steps:

• Step 1: Changing the .odt/.docx extension of the file to .zip.
• Step 2: Extracting the document archive. By unzipping the resulting .zip file, we

obtain the document structure containing XML-based files and directories generated
originally by Microsoft Word or LibreOffice. This includes configurations, meta
information, content, settings, etc.
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• Step 3: Adding a new XML file (link.XML) to the file archive that contains an absolute
URL (i.e., a link) of the file version to be created in step 5.

• Step 4: Compressing the resulting ZIP archive, including the link.XML file.
• Step 5: Copying the resulting .zip file to a predefined directory that stores the protected

versions. Access control permissions are added by the access control module as
discussed in Section 4.1.2.

• Step 6: Changing the .zip extension of the file to .odt.

As an illustrative example, consider Figure 2, which shows the main steps performed by our
distributed version-control module to obtain a new version for an XML-based file abc.odt. In this
example, we assume that the file is in the user directory /home/user/documents. The version
(i.e., a file snapshot) is created by renaming the file to abc.zip and then unzipping the re-
sulting file to obtain the XML file archive. The main reason for performing this step is to add
an absolute path (i.e., a link) to the location of the newly introduced version. Assuming that
the file version will be stored in: /home/user/versions with the nameabc-version1.zip,
then the absolute path /home/user/versions/abc-version1.zip will be saved in the
link.XML file that is added to the document archive in step 3. In step 4, the XML-based doc-
ument archive is compressed back to obtain abc.zip. At this point, the file is copied to the
predefined protected versions directory /home/user/versions. Finally, the file extension
is changed to .odt.

Here, note that the version-control module is invoked at the time of closing the
document. This ensures that a new snapshot of the XML-based document is saved each
time the user closes the file. Here, we emphasize that keeping track of document history
(i.e., versions) is achieved by following the absolute path stored in the link.XML file stored
in each version. Figure 3 shows the approach used to retrieve older versions. Staring with
the newest version (VN ), it is possible to retrieve the preceding version by following the
link found in the link.XML file stored in the version itself. Older versions can be retrieved
similarly. For recovery from a ransomware attack, it would be sufficient to keep the latest
version only. However, suppose the objective was to retrieve older file versions while
providing ransomware recovery capability. In that case, the system can be configured to
store protected versions in precisely the same way as described in this section.

Figure 2. An illustrative example of the main steps of the version-control module.
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Figure 3. Keeping track of file version history based on link concept.

4.1.2. Access-Control Module

The access-control module is implemented as a root daemon that performs write/delete
protection for the files produced by the version-control module each time a file version is
created. This is achieved by running the chattr command (Change Attribute) with root
privileges. chattr is a command line in Linux that is used to set/unset specific attributes to
a file in a Linux environment to secure accidental deletion or modification of important files
and folders, even by root users. Through this process, file snapshots are protected from cor-
ruption or deletion by using the change file attribute permissions with the immutable flag
(i) under the Linux environment, preventing any user, including the root, from accidentally
modifying and/or deleting files. An example using this command is shown in Figure 4.

Figure 4. An example using chattr command to perform file write/delete protection.

It is important to note that the default setting for standard users is assumed to be non-
admins, with the access-control module configured as a system daemon with root access
privileges executing the chattr command; this would inherently ensure the protection of
newly created versions in the version-control directory. Any attempt to modify or delete a
protected file will not be permitted, as shown in the example in Figure 5. This is considered
a valid setting for two reasons: (i) users usually do not log into their systems as admins.
In fact, one of the best practices of computer usage emphasizes that users never log in as
admins. (ii) A recent report showed that 90% of ransomware instances in the wild could
infect systems and encrypt files without administrative privileges [58]. This indicates that
while users log in as non-admins, there is still a high possibility that Ransomware may
encrypt their files. In our proposed solution, ensuring a specific access control process with
administrative privileges will protect files created/edited by non-admin users.

Figure 5. The file is immutable when trying to write or delete.

4.2. Recovery from Ransomware Attack

The focus of our framework for ransomware recovery is all about maintaining control
of the latest possible versions of the files. As the proposed framework preserves protected
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versions of the files, we can gain access to the files in case of a ransomware attack. The
result of the attack will corrupt the original file or even delete it. However, self-healing
is achieved using the proposed SH-VARR framework by retrieving the protected version
for each file stored in the version-control directory. In case the original file is deleted or
encrypted by Ransomware, our SH-VARR framework allows immediate recovery of the
last protected version of the file(s) involved, fulfilling the self-healing property. Based on
the proposed framework, the protected snapshots will not be affected and can be recovered
under root privileges assumed to be protected. The recovery process is performed by
removing the sticky bit attribute to ensure that the file extension is .odt. Recovering a file
from the protected versions directory is performed as follows:

• Removing the immutable flag (i) attribute. This is achieved by performing the com-
mand with root privileges only:
$chattr -i file.dot.

• Changing the file name extension from .zip to .odt for Linux or .docx for a Win-
dows environment.

4.3. Implementation Challenges and Limitations

Throughout this work, we conducted several experiments to ascertain that our goal
of keeping a protected version of our XML-based files was achieved. Having set out to
build a distributed version-aware control system for XML-based documents that ensures
portability that would not depend on a centralized repository, the implemented approach
was indeed found to warrant portability as it keeps a link to the original file as described
above. During the implementation phase, the system was found to experience certain
limitations, which can be summarized as follows:

• The proposed approach assumes a daemon is running with root privileges to keep
versions protected.

• Under the Windows environment, and to ensure that our framework was well in place,
we implemented a Microsoft office plugin working as a version-control system by
keeping a complete snapshot of the active Word document inside the document itself
upon document closure. A background process goes through iterations to span all
files inside a directory or folder by calling this function. The main challenge here deals
primarily with applying the permissions to the created version of each file; this is so
because, under a Windows operating system, the read–write operation does not fall
under permissions, but file attributes, which will be readily lost after compressing the
file archive.

5. Performance Evaluation

In this section, we evaluate the proposed approach in terms of several performance
metrics. To conduct our experiments, we use a repository of 500 .odt files collected from
different sources, with different sizes ranging from 10 KB to 30 MB. All experiments were
conducted on a Ubuntu 18.0 machine with a Core i5-1.8 GHz Intel processor and 4 GB
RAM. Creating a protected version of each file was achieved by running a shell script
that included all the steps outlined in the proposed framework discussed in Section 4. We
performed multiple experiments to measure the performance of the proposed SH-VARR
framework. SH-VARR uses zip/unzip for file compression/decompression as it is the
default compression/decompression algorithm used in connection with XML documents.
Meanwhile, SH-VARR still has the flexibility of operating with any other compression
algorithm. Therefore, different compression algorithms were investigated investigated (zip,
gzip, and bzip2) under our experimental set up. In this effort, we evaluate our proposed
SH-VARR framework opposite storage overhead, time requirement, CPU utilization, and
memory usage.

Creating a protected version of a file (i.e., a snapshot) represents a major step in our
framework which results in extra storage requirements. Hence, our objective is to quantify
the amount of the resulting storage. This overhead depends mainly on the compression
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algorithm used to create the snapshot. Figure 6a–c show how the storage overhead increases
with the original file size for the cases when using the zip, gzip, and bzip2 compression
algorithms. Figure 6d illustrates all cases together for the purpose of comparison. Generally,
by increasing the file size, the size of the resulting snapshot increases proportionately. With
that said, the size of the resulting file remains smaller than that of the original file. It is
quite evident from the comparison that the bzip2-based SH-VARR slightly outperforms
the other two versions. However, it consumes more time, as we will discuss next. This
would also imply that there is a trade-off between time and storage overhead. Meanwhile,
given the lower storage costs involved in today’s technologies, the time required to create a
protected snapshot may play out as a more pronounced factor.
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Figure 6. Storage overhead by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.

The proposed SH-VARR framework involves several steps to create a protected snap-
shot for each file version. Therefore, it is important to measure the amount of time required
to perform such an operation. Figure 7a–c show how the time requirement increases with
the original file size for creating the snapshot in the proposed SH-VARR approach when
leveraging the zip, gzip, and bzip2 compression algorithms, respectively. Figure 7d illus-
trates all cases together for comparison purposes. Creating a protected version for small
files (e.g., less than 1 MB) takes a negligible amount of time that would, on average, not
exceed 120 ms. However, for larger file sizes exceeding 10 MBs, more time is required
to create the protected version. It can be observed that the amount of time varies as file
compression depends on the amount of redundancy in each file and the type of content
(e.g., text, images, etc.) contained in each file. It is evident from the outcomes of using both
the zip and the gzip algorithms that the results are fairly comparable and they are seen
to offer much better results than when using the bzip2 algorithm. In fact, the bzip2 is ob-
served to consume considerable amounts of time to create the protected version, especially
when the file sizes involved are quite large.
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Figure 7. Time requirement for SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.

Figure 8a–c show how the CPU utilization varies against the original file size for
creating the snapshot in the proposed SH-VARR schema when leveraging the zip, gzip,
and bzip2 compression algorithms, respectively. Figure 8d illustrates all cases together
for the purpose of comparison. Here, CPU utilization is the amount of work handled by
the CPU while creating a protected version for each file. Generally, for small files, CPU
utilization increases with increasing file size. However, for larger file sizes, it levels off to
some decent value. By monitoring the CPU utilization for each job executed when creating
a protected version, we observed that when the bzip2 compression algorithm was used
the CPU utilization was evidently the highest.

Figure 9a–c show how the memory usage changes against the original file size to
create the snapshot in the proposed SH-VARR schema when leveraging the zip, gzip,
and bzip2 compression algorithms. Figure 9d illustrates all cases together for comparison
purposes. It is readily seen that the memory usage, for the cases when the zip and gzip
compression algorithms are used, is almost fixed (around 6.8 KBs) where it does not show
any dependence on file size. Meanwhile, memory usage for the case involving the bzip2
compression algorithm is seen to increase with increasing file size, then it remains constant
(around 28 KBs) for files with large sizes. This is because all the compression algorithms
(zip, gzip, and bzip2) involved in our assessment of the proposed framework do not
capture the entire file into the memory. Instead, they acquire it as a stream requiring a
specific amount of memory each time (i.e., takes a chunk of data of a specific size each
time), and the amount needed depends on the compression method used and the file
size involved.
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Figure 8. CPU utilization by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.
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Figure 9. Memory usage by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.
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Finally, we compare the proposed mechanism with the work presented in [54,55].
In [55], the authors presented a Ransomware protection framework that depends on a
network connection to backup files on a local or a remote server. However, they did not
provide any performance evaluation of their framework in terms of time and storage
requirements. In [54], the authors proposed backing up critical data in a fully isolated
spare space that is not reachable by Ransomware, regardless of what privilege it can obtain.
The authors assumed that the computing device has a particular portion of extra space,
which can be utilized to create the backup volume to store encoded files with reverse
deltas. This is different than the proposed work, where we can hold both reverse deltas
and complete snapshots of files. We also used compression techniques to utilize the storage
better. Moreover, our proposed work is portable because it can be shipped as a plugin that
can be attached to documents; a feature that is not supported by [55] or [54].

6. Conclusions

In this paper, we introduced a Self-Healing Version-Aware Ransomware Recovery
Approach (SH-VARR) of XML-based documents. This proposed system consists mainly of
two modules. The first is a decentralized version-aware control system that periodically
takes a backup version for each file and keeps the latest one. The second is the access-
control module that executes special commands to protect the resulting versions from
corruption or deletion caused by ransomware attacks; something that is carried out under
administrator privileges.

The conducted set of experiments to assess the system focused on measuring the
system performance in terms of the performance metrics: time, storage overhead, memory
usage, and CPU utilization. Since compression is one of the main steps in the version-
control system module, we evaluated these metrics by considering two commonly used
compression algorithms: bzip2 and gzip. Our technique (SH-VARR), introduced in this
paper, uses the default zip algorithm. Comparisons show that the zip algorithm has the
minimum time, size, utilization, and memory usage requirements. We conclude that this
solution would protect XML-based files such as .docx and .odt files from ransomware
attacks. The user can recover from such attacks even when the original files are deleted or
encrypted. This is based on the assumption that these file types are compressed structures.
In addition, we used a distributed version-aware control system to acquire a backup and
keep track of each version. We observed access-control rules on these versions to achieve
the core pillars of information security: Confidentiality, Integrity, and Availability.
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