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1. Introduction

In recent years, artificial intelligence (AI) has drawn significant attention with respect
to its applications in several scientific fields, varying from big data handling to medical
diagnosis. The use of AI is already present in our daily lives with several uses, such as
personalized ads, virtual assistants, autonomous driving, etc. Not surprisingly, AI method-
ologies have found a wide range of uses and applications in engineering fields, including
civil and structural engineering [1,2], with impressive results [3–5]. Figure 1 shows the
research articles related to AI published in the field of civil engineering. In particular, these
are results from the Scopus database (www.scopus.com, obtained on 2 June 2022), using
the query “TITLE-ABS-KEY ((“artificial intelligence” or “AI”) and (“civil” or “structural” or
“transportation” or “geotechnical” or “hydraulic” or “environmental” or “construction” or “shm”
or “structural health”)) and PUBYEAR > 1999 and (LIMIT-TO (SUBJAREA, “ENGI”))”, which
returned 14,059 document results in total (for years from 2000 to 2022). The increase in
AI studies with great acceleration shows that the use of AI in civil engineering is gain-
ing momentum and will keep increasing in the coming years, bringing new innovations
and applications.

 
Figure 1. Published articles (in Scopus) using AI in civil engineering-related fields (2000–2021).

This research topic contains applications and recent advances of AI in civil engi-
neering problems, promoting cross-fertilization between these scientific fields. In par-
ticular, the focus is on hybrid studies and applications related to structural engineering,
transportation engineering, geotechnical engineering, hydraulic engineering, environmen-
tal engineering, coastal and ocean engineering, structural health monitoring, as well as
construction management.

Appl. Sci. 2022, 12, 7595. https://doi.org/10.3390/app12157595 https://www.mdpi.com/journal/applsci1
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2. Contributions

The research topic has been quite successful, gathering 35 contributions in total, from
19 different countries around the world, covering a broad range of topics related to the
applications of AI in civil engineering. Three MDPI journals participated by cross-listing the
research topic. Most of the articles (29) were published in the “Applied Sciences” journal,
while 3 of them were published in “Mathematics” and another 3 in “Symmetry”.

The articles are divided into 6 groups, as follows: (i) Optimization methods and ap-
plications (7 articles), (ii) Combined machine learning and optimization methodologies
(2 articles), (iii) Machine learning in identification problems (3 articles), (iv) Applications of
convolutional neural networks (8 articles), (v) Combined and multiple AI-based methodolo-
gies (6 articles), and (vi) Other AI-based methods, formulations, and applications (9 articles).
A brief description of each article, for every category, is presented in the following sections.

2.1. Optimization Methods and Applications

Rosso et al. [6] propose an enhanced multi-strategy Particle Swarm Optimization (PSO)
variant to solve constrained problems with a different approach to the classical penalty
function technique. The authors propose several improvements to the original algorithm,
including a new local search operator based on the Evolutionary Strategy (ES). Li et al. [7],
propose an optimization approach with a parallel updated particle swarm optimization
(PUPSO) algorithm aiming at minimizing the objective function of the levelized cost of
energy of the prestressed concrete–steel hybrid wind turbine towers. This is conducted in a
life cycle perspective which represents the direct investments, labor costs, machinery costs,
and the maintenance costs.

Cucuzza et al. [8] study the size and shape optimization of a guyed radio mast for
radiocommunications, using the genetic algorithm (GA) and carrying out both static and
dynamic analyses considering the action of wind, ice, and seismic loads. Guo et al. [9],
propose the use of GA, correlation analysis, and two parametric design methods (floor
plan generation method and component selection method) for optimizing the building
performance of prefabricated buildings.

Uray et al. [10] use the Taguchi method integrated hybrid harmony search algorithm,
carry out a statistical investigation of the optimum values for the control parameters of the
harmony search algorithm and examine their effects on the best solution. The new hybrid
method has been successfully applied to different real-world engineering optimization
problems. Sarjamei et al. [11] use the Gold Rush Optimization (GRO) algorithm for the
optimal design of real-scale symmetric structures under frequency constraints. The efficacy
of the concept of cyclic symmetry to minimize the needed time is assessed with three
examples, including Disk, Silo, and Cooling Tower.

Bao et al. [12], investigate the decision-making problem of pavement maintenance
prioritization considering both quality and cost. They consider a linear optimization model
that maximizes maintenance quality with limited maintenance costs and a multi-objective
optimization model that maximizes maintenance quality while minimizing maintenance
costs. These models are employed in making decisions for actual pavement maintenance
using sequential quadratic programming and GA.

2.2. Combined Machine Learning and Optimization Methodologies

3D printing is already established in the production processes of several industries
while more are continuously being added. Lately, parametric design has become popular
in the architectural design literature, while topology optimization has become part of the
design procedure of various industries. Kallioras and Lagaros [13] propose MLGen, a novel
generative design framework which integrates machine learning (ML) into the generative
design practice. Several benchmark topology optimization problems are examined to show
the ability of MLGen to efficiently handle different engineering problems.

In order to deal with dynamic traffic flow, adaptive traffic signal controls using rein-
forcement learning are being studied. Gu et al. [14] propose a reinforcement learning-based
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signal optimization model with constraints. The model maintains the sequence of typical
signal phases and considers the minimum green time. It is trained using Simulation of
Urban MObility (SUMO), a microscopic traffic simulator and it is evaluated in a virtual
environment similar to a real road with multiple intersections.

2.3. Machine Learning in Identification Problems

In recent years, deep learning-based detection methods have been successfully applied
to pavement crack detection problems. In this field, Li et al. [15] propose a method to
improve the accuracy of crack identification by combining a semantic segmentation and
edge detection model. Their work is inspired by the U-Net semantic segmentation network
and holistically nested edge detection network. A side-output part is added to the U-Net
decoder that performs edge extraction and deep supervision. A network model is proposed,
combining two tasks that can output the semantic segmentation results of the crack image
and the edge detection results of different scales. The model can also be used for other
tasks that need both semantic segmentation and edge detection. On the topic of concrete
structures, Liu and Li [16] propose an improved self-organizing mapping (SOM) neural
network (NN) model to solve the problem of intelligent detection of damage to modern
concrete structures under complex constraints. The method is based on a small number of
samples and the use of a self-developed 3D laser scanning system. The improved SOM
model method fully combines the network topology and its unique image features and
can accurately identify structural damage, contributing to the realization of high-precision
intelligent health monitoring of damage to modern concrete structures.

In railway engineering, the performance of the passing train and the structural state of
the track bed are common concerns regarding the safe operation of the subway. Monitoring
the vibration response of the track bed structure and identifying abnormal signals within it
can help address these concerns. In this direction, Li et al. [17] propose an unsupervised
learning-based methodology for identifying the abnormal signals of the track beds de-
tected by the ultra-weak fiber optic Bragg grating sensing array. The experimental results
demonstrate that the established unsupervised learning network and the selected metric
for quantifying error sequences can serve the threshold selection well, based on the receiver
operating characteristic curve.

2.4. Applications of Convolutional Neural Networks

In earthquake engineering, the analysis of site seismic amplification characteristics
is one of the most important tasks of seismic safety evaluation. Yang et al. [18] propose
a new prediction method for the amplification characteristics of local sites, using a CNN
combined with real-time seismic signals. The CNN is used to establish the relationship
between the amplification factors of local sites and eight parameters, while the training
and testing samples are generated through observed and geological data. The results
show that the CNN method can provide a powerful tool for predicting the amplification
factors of local sites both for recorded and unrecorded positions. Yan et al. [19] propose a
measurement method of bridge vibration by unmanned aerial vehicles (UAVs) combined
with convolutional neural networks (CNNs) and the Kanade–Lucas–Tomasi (KLT) optical-
flow method. The KLT optical-flow method is used to track the target points on the structure
and the background reference points in the video to obtain the coordinates of these points
on each frame, while the characteristic relationship between the reference points and the
target points is learned by a CNN according to the coordinates of the reference points and
the target points. The objective is to correct the displacement time–history curves of target
points containing the false displacement caused by the UAV’s egomotion.

Based on the features of cracks, Wang et al. [20] propose the concept of a crack key
point as a method for crack characterization and establish a model of image crack detection
based on the reference anchor points method, named KP-CraNet. The accuracy of the model
recognition is controllable and can meet both the pixel-level requirements and the efficiency
needs of engineering. The results show that the method can improve crack detection
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quality and has a strong generalization ability. Dos Santos Junior et al. [21] propose an
architecture for segmenting cracks in facades with Deep Learning (DL) that includes an
image pre-processing step. The authors also propose the Ceramic Crack Database, a set of
images to segment defects in ceramic tiles. The proposed model can adequately identify
the crack even when it is close to or within the grout.

Blockage of culverts by transported debris materials is the salient contributor to
originating urban flash floods, with conventional hydraulic modeling having no success
in addressing the problem. Iqbal et al. [22] explore a new dimension to investigate the
issue by proposing the use of intelligent video analytics (IVA) algorithms for extracting
blockage-related information. Their research aims to automate the process of manual visual
blockage classification of culverts from a maintenance perspective by remotely applying DL
models. On the other hand, Calton and Wei [23] use transfer learning on three advanced
NNs, ResNet, MobileNet, and EfficientNet, and apply techniques for damage classification
and damaged object detection to a post-hurricane image dataset comprised of damaged
buildings from the coastal region of the southeastern USA. The dataset includes 1000 images
for the classification model with a binary classification structure containing classes of floods
and non-floods and 800 images for the object detection model with four damaged object
classes, i.e., damaged roof, damaged wall, flood damage, and structural damage.

Lin et al. [24] aim at the long-term (24–72 h ahead) prediction of wind power with
a mean absolute percentage error of less than 10% by using the Temporal Convolutional
Network (TCN) algorithm of DL networks. In their experiment, they perform TCN model
pretraining using historical weather data and the power generation outputs of a wind
turbine from a Scada wind power plant in Turkey.

Chen et al. [25] propose a text-mining-based accident causal classification method
based on a relational graph convolutional network (R-GCN) and pre-trained bidirectional
encoder representation from transformers (BERT). The proposed method avoids preprocess-
ing such as stop word removal and word segmentation, but also avoids tedious operations,
while the dependence of BERT retraining on computing resources can also be avoided.

2.5. Combined and Multiple AI-Based Methodologies

Some of the research works use multiple AI-based methodologies, either for compar-
ison purposes or in a combined way to achieve better results. In particular, Benbouras
et al. [26] elaborate on a new alternative model for predicting the bearing capacity of piles
based on eleven new advanced ML methods, in order to overcome the problems of the
time-consuming and costly traditional methods. The modeling phase uses a database of 100
samples collected from different countries. Additionally, eight relevant factors are selected
in the input layer based on recommendations from the literature. Su et al. [27] propose a
data processing framework that uses a long short-term memory (LSTM) model coupled
with an attention mechanism to predict the deformation response of a dam structure. The
results of the case study show that, of all tested methods, the proposed coupled method per-
forms best. In addition, it was found that temperature and water level both have significant
impacts on dam deformation and can serve as reliable metrics for dam management.

Zhao et al. [28] use a sparrow search algorithm to improve a backpropagation NN,
and an Elman NN and support vector regression models to predict the thickness of an
excavation damaged zone. The proposed model can provide a reliable reference for the
thickness prediction of an excavation-damaged zone and is helpful in the risk management
of roadway stability. Ma et al. [29] investigate the performance of the extreme gradient
boosting (XGboost) method in predicting multiclass of clay sensitivity, and the ability of the
synthetic minority over-sampling technique (SMOTE) in addressing imbalanced categories
of clay sensitivity. The results reveal that XGBoost shows the best performance in the
multiclassification prediction of clay sensitivity.

In transportation engineering, Xiang et al. [30] propose a two-phase approach in an
effort to predict highway passenger volume. The datasets subsume highway passenger
volume and impact factors of urban attributes. The findings provide useful information
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for guiding highway planning and optimizing the allocation of transportation resources.
Cheng et al. [31] use smartcard data from the bus system to identify important variables
that affect passenger flow. These data are combined with other influential variables to
establish an integrated-weight time-series forecast model. The results show that the model
can improve passenger flow forecasting based on three bus routes with three different
series of time data.

2.6. Other AI-Based Methods, Formulations, and Applications

Kruachottikul et al. [32] aim to improve collaboration on bridge inspections that
typically require the involvement of many people, personal judgement, and extensive travel
to survey bridges across the country of Thailand. One major challenge is to standardize
human judgement. To address this, the authors develop a user-centric bridge visual defect
quality control mobile application to improve collaboration and assist field technicians to
conduct visual defect inspections. Based on nonlinear finite element numerical simulation
and synergistic theory, the cooperative control problems of the bridge–subgrade transition
section are studied in the work by Zhang et al. [33]. Huang et al. [34] propose a data-
driven reinforcement-learning (RL)-based approach to achieve automatic bucket-filling.
An automatic bucket-filling algorithm based on Q-learning is developed to enhance the
adaptability of the autonomous scooping system. A nonlinear, non-parametric statistical
model is also built to approximate the real working environment using the actual data
obtained from tests.

Chen et al. [35] summarize the main factors affecting the large deformation of soft rock
tunnels, including the lithology combination, weathering effect, and underground water
status, by reviewing the typical cases of largely-deformed soft rock tunnels. The method
can be used to invert the geological parameters of the surrounding rock mass for a certain
point, which can provide important mechanical parameters for the design and construction
of tunnels. Lin et al. [36] introduce a modern space remote sensing technology, InSAR, as a
direct observable for the slope dynamics. The InSAR-derived displacement fields and other
in situ geological and topographical factors are integrated, and their correlations with land-
slide susceptibility are analyzed. Moreover, multiple ML approaches are applied with the
goal to construct an optimal model between these complicated factors and landslide suscep-
tibility. Zenkour et al. [37] introduce the thermoelastic coupled response of an unbounded
solid with a cylindrical hole under a traveling heat source and harmonically altering heat.
A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized
thermoelastic coupled solution is developed by using Laplace’s transforms technique.

Heo et al. [38] highlight that many human resources are needed on the research and
development (R&D) process of AI and discuss factors to consider in the current method of
development. Labor division of a few managers and numerous ordinary workers as a form
of the light industry appears to be a plausible method of enhancing the efficiency of AI R&D
projects. Inspired by the powerful ability of NNs in the field of representation learning,
Xie et al. [39] design a hierarchical generative embedding model (HGE) to map nodes
into latent space automatically. Then, with the learned latent representation of each node,
they propose an HGE-GA algorithm to predict influence strength and compute the top-K
influential nodes. Extensive experiments on real-world attributed networks demonstrate
the outstanding superiority of the proposed HGE model and HGE-GA algorithm compared
with the state-of-the-art methods, verifying the effectiveness of the proposed model and
algorithm. Xie et al. [40] incorporate a co-embedding model for KG embedding, which
learns low-dimensional representations of both entities and relations in the same semantic
space. To address the issue of neglecting uncertainty for KG components, they propose a
variational auto-encoder that represents KG components as Gaussian distributions.
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Abstract: Nowadays, optimization problems are solved through meta-heuristic algorithms based
on stochastic search approaches borrowed from mimicking natural phenomena. Notwithstanding
their successful capability to handle complex problems, the No-Free Lunch Theorem by Wolpert and
Macready (1997) states that there is no ideal algorithm to deal with any kind of problem. This issue
arises because of the nature of these algorithms that are not properly mathematics-based, and the
convergence is not ensured. In the present study, a variant of the well-known swarm-based algorithm,
the Particle Swarm Optimization (PSO), is developed to solve constrained problems with a different
approach to the classical penalty function technique. State-of-art improvements and suggestions
are also adopted in the current implementation (inertia weight, neighbourhood). Furthermore, a
new local search operator has been implemented to help localize the feasible region in challenging
optimization problems. This operator is based on hybridization with another milestone meta-heuristic
algorithm, the Evolutionary Strategy (ES). The self-adaptive variant has been adopted because of its
advantage of not requiring any other arbitrary parameter to be tuned. This approach automatically
determines the parameters’ values that govern the Evolutionary Strategy simultaneously during the
optimization process. This enhanced multi-strategy PSO is eventually tested on some benchmark
constrained numerical problems from the literature. The obtained results are compared in terms of
the optimal solutions with two other PSO implementations, which rely on a classic penalty function
approach as a constraint-handling method.

Keywords: particle swarm optimization (PSO); multi-strategy PSO; self-adaptive evolutionary
strategies (ES); local search operator; constraints handling

1. Introduction

In optimization problems, the aim is optimizing certain mathematical functions, called
Objective Functions (OF) f (x). These problems can be divided into single-objective or
multi-objective problems, depending on the number of OFs, and a further subdivision for
single-objective problems is based on the presence of constraints. Unconstrained problems
are defined as:

min
x∈Ω

{ f (x)} (1)

meanwhile, constrained problems are defined as:

min
x∈Ω

{ f (x)}
s.t. gq(x) ≤ 0 ∀q = 1, . . . , nq

hr(x) = 0 ∀r = 1, . . . , nr

(2)
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where x = {x1, . . . , xj, . . . , xn}T is the design vector whose terms are the parameters to be
optimized. The search domain is a multidimensional space Ω based on the admissible
intervals of values for each j-th variable, which are defined by its lower and upper bounds
[xl

j, xu
j ]. This detects a box-type hyper-rectangular search space Ω, which is typically defined

as the Cartesian product (denoted by the × symbol) among the admissible intervals:

Ω = [xl
1, xu

1 ]× . . . × [xl
j, xu

j ]× . . . × [xl
n, xu

n] (3)

The constraints in (2) can belong to two different categories: inequality gq(x) and/or
equality hr(x) constraints. Each equality constraint can be easily converted into a couple of
inequality constraints; therefore, without any loss of generality, it is possible to consider
only inequality constraints in (2), i.e., gp(x) ≤ 0, where p = 1, . . . , nq, nq+1, . . . , np, being
np = nq + 2nr.

The adoption of evolutionary algorithms (EAs) has received much more attention
in recent years because of their successful capability to handle complex optimization
problems. This is addressed mainly to the fact that they do not require any first-order
(gradient) or second-order (Hessian) information coming from the problem to be solved,
which is conversely a prerogative of the traditional gradient-based mathematical search
approaches. Furthermore, the quite simple implementation of EAs has determined their
rapid spread, and they have immediately become an attractive tool among practitioners.
Among the many alternatives available nowadays, the genetic algorithm (GA) proposed
by J. Holland in the 1970s [1] still represents one of the most popular population-based
tools, which tries to simulate the biological evolutionary process of a set of candidates
solutions mimicking the biological Darwinian Theory. This is realized by adopting specific
pseudo-random-based operators such as crossover, mutation, and selection in order to
reproduce the long-term process of evolution in a population with the survival of the
fittest individuals [2]. In the last two decades, the adoption of metaheuristic algorithms in
many engineering applications highlighted their successful capabilities to deal with real-
world constrained problems [3–8], e.g., dealing with structural design [9–12] and structural
optimization tasks [13–16].

In the framework of EAs, a more recent but already well-known approach is the parti-
cle swarm optimization (PSO) algorithm. It was mentioned by Kennedy and Eberhart [17]
in 1995 for the first time, and then it rapidly became widespread during the following years.
Contributions from the Scientific Community have not ended yet, and still nowadays there
is active research about this topic to improve the search operators and the performances.
The PSO is also a population-based algorithm which takes inspiration from the study of
the behavioural models of birds flocking or fish schooling, whose individuals explore the
natural environment in order to find and reach some source of food. Similarly, the algorithm
tries to evolve a particle swarm of candidate solutions in the domain search space in order
to find the optimum. The PSO was originally developed to face unconstrained problems,
but it was later adapted to also solve constrained problems exploiting specific strategies.

The following section presents a brief review of the PSO mechanisms, and the main
adopted strategies to solve constrained problems are mentioned. After that, the description
of the proposed enhanced multi-strategy PSO method is illustrated. Finally, the authors
try to merge several state-of-the-art concepts to obtain an improved PSO algorithm to
successfully handle constrained problems with a non-penalty based approach. The novel
contributions of this article can be summarized as follows:

• PSO implementation with the main state-of-art improvements, adopting a multi-
strategy approach. In this way, the algorithm attempts to avoid wasting many itera-
tions when the algorithm stalls or is trapped in local minima, etc.;

• A non-penalty approach for constraint handling which instead exploits information of
swarm positions in terms of the objective function and the actual degree of constraint
violation to guide the swarm evolution;
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• A novel unfeasible local search operator is presented to help the PSO when it stalls in
an unfeasible region quite close to the actual feasible one. This local search operator
relies on the meta-heuristic, self-adaptive Evolutionary Strategy (ES) approach, which
does not require any other further arbitrary parameter.

In a different recent contribution of the authors [18], some further novel approaches
to deal with constraints have been presented, considering a hybridization of the PSO
with a machine learning support vector machine. However, the current paper presents
a completely different approach based on handling constraints directly based on infor-
mation which can be retrieved from the swarm positions in terms of objective function
and constraints violations. Finally, the enhanced multi-strategy PSO is successfully tested
on some benchmark constrained mathematical problems from the literature compared
with other PSO implementations that adopt more standard penalty-based constraint han-
dling techniques. In conclusion, the proposed multi-strategy PSO has been validated on
real-world case studies, considering some literature on three-dimensional truss design
structural optimization problems.

2. Review of PSO and Constraint Handling Approaches

The PSO algorithm was directly inspired by biological behavioral models of birds
flockings, school fishing or swarming of insects. In nature, these animals adopt a collective
behaviour to ensure their survival, even though each individual acts as an intelligent
independent entity making its own decisions. Mimicking this trend, Kennedy and Eberhart
in 1995 proposed a first model of the PSO algorithm [17]. The PSO algorithm encodes
a population of candidate solutions in the search space, which is composed of a certain
number N of intelligent agents. Although the latter can independently move inside the
domain, in order to ensure an emerging intelligent collective behaviour toward the op-
timum, the dynamic movement of each agent is affected by some information obtained
from the swarm. One of the first proposed methods is related to a Newtonian dynamics
perspective, in which each i-th particle (with i = 1, . . . , N, where N is the population size)
is completely defined by its position kxi and its velocity kvi at the k-th generation. The
velocity is thus updated taking into account two main kinds of information: First, the
self-cognitive memory of each particle, which is related to the so far best visited position
kxPb

i (cognitive term) and, second, the attraction toward the other particles’ best visited
positions kxGb (social term). Therefore, the position and the velocity of the i-th particle in
the next k + 1 iteration can be written as:

(k+1)vi =
kvi + c1

(k+1)r1i ∗
[

kxPb
i − kxi

]
+ c2

(k+1)r2i ∗
[

kxGb
i − kxi

]
, (4)

(k+1)xi =
kxi + τ (k+1)vi (τ = 1), (5)

where the symbol ∗ denotes the term-by-term vector multiplication (Hadamard product, [19]),
and the positive scalar acceleration factors c1 and c2 are denoted as cognitive and social
parameters, respectively. The terms (k+1)r1i, (k+1)r2i = rand[0, 1] are two random weights
of the social and cognitive terms, respectively. These terms are fundamental for the purpose
to introduce some randomized behaviour inside this quite deterministic model with the
aim of enhancing the exploration capabilities of the model. The cognitive term is also
denoted as pbest, whereas the social term is denoted as gbest when it is referred to the best
global visited position so far among all the particles of the swarm. This explains why this
latter strategy is also known as the gbest PSO model [20]. Later studies revealed that a good
practise is to protect the cohesion of the swarm by restricting the velocity component to a
maximum value, typically assumed as vmax = γ(xu − xl)/τ, where τ = 1 is a time-related
parameter, whereas γ ∈ [0.1, 1] (generally set to 0.5) defines how far a particle can move
starting from its current position [21]. The typical stopping criterion of the PSO is generally
set as a maximum number of iterations kmax. However, a predetermined maximum number
of iterations for each problem is not usually known in advance, therefore, one can refer
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to the suggestions of [22] or conduct experimental trial and error tuning of the minimum
kmax, which allows one to achieve the optimum, reducing the overall computational cost.
Later on, for the sake of improving the exploration capacity of the swarm, [23] introduced
an inertia weight term kw multiplied to the current kth velocity in the update rule (4).
This parameter can be a constant or a variable with respect to the iterations flow, e.g.,
from an initial value 0w to a final one Lw with a linearly decreasing law, but there are also
many other variants in [20]. The performance of the algorithm is strongly affected by the
choice of the parameters such as the swarm size N, usually set in a range of [20, 100] with
n ≤ 30, or such as the acceleration factors, which are usually assumed statically fixed to
c1 = c2 = 2 [21]. In this study, it is assumed which of all of them are constant values equal
to c1 = c2 = 2, 0w = 0.90 and Lw = 0.40 [24].

One of the most important aspects to enhance the PSO performances is to improve
the way in which the information are exchanged among the particles. With efficient in-
formation sharing, the swarm can exhibit a better collective convergent behaviour. The
information exchange is related to the structure of the neighbourhood of each particle,
which is denoted as neighbourhood topology. This kind of implementation is also called a
local PSO model or simply lbest model to differentiate it from the classical so-called global
PSO model or simply gbest model [1,20,21]. The classical gbest model approach can also
be regarded as a neighbourhood strategy in which the neighbourhood is composed of
the entire population. In this sense, the swarm is denoted as fully informed or fully con-
nected. A schematic graphical representation of the swarm with the information flows
is depicted in Figure 1a. The main negative aspect of this latter strategy is the greater
inclination to premature convergence. If the global attractor gbest is entrapped in a local
minimum, the entire swarm may probably fall down in the same local minimum with-
out a sufficient exploration capability. The enhancement of the PSO was performed by a
counter-intuitive approach which relies on slowing down the rapid convergence attitude
of the PSO through channelling and limiting the information exchange, the neighbourhood
concept indeed [1,20,21]. In the lbest models, it is necessary to define, firstly, the structure
of the neighbourhood which controls the way in which the particles are interconnected
and, secondly, the size of the neighbourhood which affects the influence of the swarm on
each particle [1]. Considering the most popular time-invariant neighbourhood topologies,
the ring topology is one of the easiest to be implemented, and it has also been adopted
in the present study. As illustrated in Figure 1b,c, each particle in this topology forms a
neighbourhood considering the nearest particles (nearest indices in a vector of positions), re-
sulting in an ideal circular interconnection. The total number of the particles which belongs
to the neighbourhood is denoted as radius R, as depicted in Figure 1b, in which R = 2, and
(c), in which R = 4. These methods can be implemented considering that each particle
in the numerical vector has a unique index, therefore, each particle can unequivocally be
selected to enter in a neighbourhood through its index [25], as schematically depicted in
Figure 2. A very great number of different neighbourhood topologies were developed in
the last decades as showed in [25,26]. Some other implementations also involve a dynamic
update of the neighbourhood size, which identifies new types of lbest models which are
denoted as multi-populations or multi-swarm PSO, such as in [27].

State of the Art of Constraint Handling

In order to adapt EAs to deal with constrained problems, several strategies were
developed by the scientific community. As a matter of fact, constraint handling is a big
challenge because it is related to find the optimal point respecting all the constraints, and
therefore, the algorithms may be able to deal with unfeasible solutions in an efficient way.
Despite several studies (e.g., [28]) demonstrating that PSO has a good convergence rate, it
was originally proposed to solve unconstrained optimization problems, such as many other
Soft Computing techniques. The implementation of some effective constraint-handling
mechanisms is a crucial issue for all biologically inspired optimizers [29–32]. The several
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strategies developed have been classified by different authors into basically five main
categories (see, for instance, the state-of-the-art review by [30,33,34]):

• Penalty-functions-based methods;
• Methods based on special operators and representations;
• Methods based on repair algorithms;
• Methods based on the separation between OFs and constraints;
• Hybrid methods.

(a) Fully-connected

(b) Ring (R = 2) (c) Ring (R = 4)

Figure 1. Some examples of PSO Neighborhood Topologies.

Figure 2. Graphical schematization of the Ring topology implementation (R = 2).
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The most adopted method due to its simplicity is the exterior penalty approach
which allows to convert the problem in an unconstrained version [35,36]. Many different
approaches such as the death, static, dynamic, or adaptive penalty functions have been
proposed in time, e.g., one can refer to [35]. A proper choice of the constraint-handling
mechanism affects the performance of the algorithm, and one of the critical issues to take
into account is the preservation of the diversity of the population. The brutal elimination of
the unfeasible particles, such as in the death penalty rule, can jeopardize the exploration
performances due to a loss of information [30,37]. In general, the penalty approach rely on
the evaluation of a factor that applies a certain penalty to the OF, depending on the degree
of violation and the number of violated constraints. Therefore, the constrained OF f (x) is
transformed into an analogous unconstrained OF φ(x):

min
x∈Ω

{φ(x))} = min
x∈Ω

{ f (x) + H(x)} (6)

where H(x) is the penalty function, whose specific definition depends on the strategy
adopted. If the penalty is constant during the iterations, it is a static penalty function, while
if it is changing at each iteration, it is addressed as a dynamic penalty function. These two
techniques are the most popular tools in structural optimization, see, for instance, the
papers by Hasançebi et al. [38] and Dimopoulos [39].

In the case of static-penalty-based techniques, the equivalent unconstrained problem
is formulated with a static penalty factor Hs(x) that is generally expressed as follows
(see [40,41]):

Hs(x) = w1HNVC(x) + w2HSVC(x) (7)

where HNVC is the number of constraints that are violated by the particle x, HSVC is
the sum of all violated constraints, and w1 and w2 are static control parameters of the
penalty scheme:

HSVC(x) =
np

∑
p=1

max{0, gp(x)} (8)

The numerical values adopted by Parsopoulos and Vrahatis [40] are w1 = w2 = 100. In
the present research, some standard penalty PSO approaches are adopted for making
comparisons with the enhanced PSO version, which is presented in the following section.
For these PSOs with penalty approaches, w1 = 0 and 1000 < w2 < 10, 000 have been
assumed, depending on the analysed problem. Depending on the values of w1 and w2, it is
possible to set the level of severity of the constraint violations: In case of extremely high
control parameters, the penalty is called the death penalty, and it tries to completely avoid
any kind of research inside the unfeasible region, even if the number of violated constraints
is rather limited.

The popularity of the penalty function technique is due to its simple implementation,
and it strongly enhances the performance of an algorithm that is trying to solve constrained
optimization problems. To improve the effectiveness of the penalty factor, a penalty function
which changes the weight of the penalty during the iterations is also adopted in the current
study. Indeed, it is possible to better control the search space of the particles with this
latter dynamic approach, allowing a more relaxed constraint handling at the beginning
and an increasing penalty value approaching the end of the available iterations. Firstly
proposed by Parsopoulos and Vrahatis [42], it has recently been adopted by Barakat and
Altoubat [43] for the optimum design of RC water tanks. To this end, the (7) is readily
modified as follows:

min
x∈Ω

{ f (x) + khHd(x)} (9)

in which kh is a dynamic penalty whose numerical value was evaluated as ([42,43]):
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kh =
√

k (10)

and Hd(x) is the dynamic penalty factor:

Hd(x) =
np

∑
p=1

θp(x)[max{0, gp(x)}]γp(x) (11)

Typical assignments for the penalty parameters are (see, for instance, [42,43]):

θp(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
10 if max{0, gp(x)} ≤ 0.001
20 if 0.001 < max{0, gp(x)} ≤ 0.100
100 if 0.100 < max{0, gp(x)} ≤ 1.000
300 otherwise.

(12)

γp(x) =

{
1 if max{0, gp(x)} ≤ 1
2 otherwise.

(13)

It is evident that dynamic penalty methods require a larger number of control parame-
ters in comparison to the static one. Considering kh as defined in (10), in the present paper,
the dynamic penalty factor is assumed to have:

10 < Hd(x) < 1000 (14)

The evaluation of a proper penalty is a fundamental passage to achieve a good solution
of an optimization problem: Ideally, it should be set as low as possible to avoid high
computational efforts and problems arising when the global optimum is close to the
constraint. Indeed, if the optimum is at the boundary and the penalty is too high, the
element which is attracted by that area is immediately pushed back when the boarder is
crossed. This mechanism is avoided by adopting a low penalty that is not too severe in case
of small violations and also allows a good investigation in such critical areas. However,
if the penalty is too low and it does not contrast the constraint violation properly, a lot
of effort will be spent in the unfeasible region, providing no useful information for the
minimization purpose.

3. Enhanced PSO with a Multi-Strategy Implementation and Hybridisation with an
ES-Based Operator

In the present work, starting from the standard Newtonian-dynamics-based PSO ap-
proach proposed by Kennedy and Eberhart (1995) in [17], an enhanced PSO is implemented
adopting some of the most well-known available strategies in literature and adding a
special operator in order to increase the search performance of the standard version. The
various strategies are merged together, and the flowchart of the implemented algorithm is
illustrated in Figure 3.

At first, the initial population is generated randomly in the hyper-rectangle search
space, adopting the Latin Hypercube Sampling (LHS) to generate an initial population with
minimum correlation between samples [44]. Thereafter, for each particle, the OF and the
constraints are evaluated defining the level of violation of each constraint. Each particle
is addressed to a specific aim according to their violation value. If none of the constraints
are violated, this particle is labelled as feasible, and it will be addressed to minimize the
objective function. Otherwise, if it violates at least one constraint, it is labelled as unfeasible,
and it will try to find the right path to minimize the constraint violation. If more than one
constraint is violated, only the maximum violation is considered at that point. Therefore, it
is possible to assume that each particle is able to see only the envelope of the maximum
violations for all points in the solution space. For this reason, the current approach has
been named as a “multi-strategy” PSO. In this way, it is not necessary to define some
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arbitrary violation penalty factor because the code directly relies on the envelope of the
violation of the constraints in a particle position at a certain iteration number. After the
first population is randomly sampled and evaluated, the role and the aim of each particle
have been defined, and the swarm evolution cycle can start, as illustrated in Figure 3.
The evolutionary phase of the PSO involves the Velocity update according to the before
mentioned formulation (4) and the Position update according to Equation (5). After that,
the cognitive memory (pbest) of each particle is updated if a better feasible position is
reached with respect to the previous iterations, and the local best attractor (lbest) and the
best position for the current generation (gbest) are also updated. The termination criterion
is encountered when a predefined maximum number (kmax) of iterations is reached.

Figure 3. Enhanced PSO multi-strategy flowchart.

It may happen that the feasible region is quite little and narrow with respect to the
entire search space; therefore, after some iterations, the swarm also may not have found
the feasible region yet. Since the swarm has so far minimized the constraint violation,
the swam has probably converged to an unfeasible point with the minimum value of
constraint violation, and the feasible region may be located relatively close to that point.
This fact suggests that by enhancing the local exploration around the so far unfeasible gbest
founded point, the algorithm could be able to identify the feasible search space. Therefore,
if the swarm has stalled to an unfeasible point for a number k = kES operator of iterations, a
local search operator based on the Evolutionary Strategy approach is thus performed. The
Evolutionary Strategy (ES) algorithm is another famous paradigm of the classical EAs based
on Darwinian Selection and it was developed by Ingo Rechenberg and Hans-Paul Schwefel
at the Technical University of Berlin around the 1960s [1,45]. Without entering deeper into
the details of this algorithm, it is necessary to recall that this is a population-based method
which relies on the survival of the fittest members. Starting from a parent population,
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the best individuals have a greater chance to be selected and evolve, forming a certain
number of offspring which are generated throughout a slight mutation in the genome of
the selected parents. The degree of mutation is governed by a mutation step, which is
usually drawn by a Gaussian normal distribution N(0, σ), in which σ is also known as the
mutation step size [45,46]. In formulae, it is possible to express that each gene of a selected
parent xi undergoes a mutation procedure which produces a new offspring’s gene equal
to xi + N(0, σ). Then, the parents and the offspring will compete for survival, and only
the best individuals will survive to the next generation. The main advantage of ES is that
it is based on a single parameter to be tuned, the mutation step σ. Many variants of ES
were developed in recent decades as mentioned in [45], but the self-adaptation strategy
(also denoted as σSA-ES or simply SA-ES [47–49]) is taken into account in the current study.
To perform an SA-ES, it is necessary to consider a new representation for the individuals.
From a practical point of view, when the parent genome is slightly mutated, if the generated
offspring is better in terms of OF evaluation, this offspring will probably survive to the next
generation, and it will probably spread its improved genome in the next iterations. Based
on this observation, the mutation step can also be added to the original genome of the
parent chromosome, giving a new individual representation such as (x1, . . . , xn, σ). In this
way, not only the genes but also the mutation step undergoes the mutation operator. Thus,
if a better offspring is obtained, it will survive and spread its chromosome information,
which now implicitly takes into account a new adaptive mutation step. Therefore, in an
indirect manner, good individuals will also generate good mutation steps which will be
adaptively tuned during the next generations. The above-mentioned approach is known
in the literature as SA-ES with uncorrelated mutation with one step size [46,48]. When a
number of different mutation steps are considered, one for each gene in the chromosome,
such as (x1, . . . , xn, σ1, . . . , σn), the adaptive ES strategy is called SA-ES with uncorrelated
mutation with n step size [46,48]. It is now clear that the main advantage to introduce the
ES local search operator to the current enhanced PSO implementation is due to the fact
that it can be implemented without manually tuning other parameters because they are
self-tuned by the algorithm itself. For example, in [50], a hybridization of the PSO with
ES was performed to enhance the classical velocity update with an adaptive update of the
inertia weight and the acceleration factors. For the sake of completeness, there are more
sophisticated self-adaptive approaches which take into account also the correlations among
the various step sizes associated with the various genes, which are named as SA-ES with
correlated mutation [46,48] or covariance matrix adaptation CMA-ES [47,48,51]. In the
current study, the SA-ES with uncorrelated mutation with n step size operator is integrated
with the PSO inside a local search operator in order to try to locate the feasible region if
the swarm stalls to an unfeasible point for kES operator = 10 iterations. From the unfeasible
gbest starting point xGb,unfea, a population of Np = 50 parent points is sampled from a
multivariate Gaussian mixture model in which each component has mean equal to the
gbest’s i-th component, xGb,unfea

i , and covariance equal to a first attempt mutation step σi.
Each i-th mutation step is defined by:

σi = |τ · N(0, 1)| (15)

i.e., the absolute value of the product of a random number sampled from a normal standard
distribution N(0, 1) multiplied to a learning rate parameter τ, which is suggested in [47] to
be assumed as 1/

√
Np. Then, a first population of No = 100 mutated offspring is generated

by randomly selected parents adopting a mutation scheme in which the i-th new mutation
step size component is updated as:

σi,off = max(0, |σi + N(0, 1)|). (16)

Thereafter, a new offspring point is obtained by adding to the parent position the mutated
vector sampled by the multivariate Gaussian mixture model with a mean equal to a zero
array and covariance equal to the mutation step size vector updated as above. Subsequently,
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the mutated offspring are added to the parent population, and the best Np individuals
are selected to survive to the next iteration in terms of constraints violations (or in case
of feasible points in term of OF). In the ES jargon, this approach is called the μ + λ−ES
strategy because the μ (Np) parents will compete with both each other and also new λ
(No) offspring, but finally, only μ individuals will survive, whereas the others will be
discarded [47]. This mechanism resembles the steady-state approach of other EAs likewise
in the genetic algorithm GA [1]. The ES operator could theoretically perform a maximum
number of local iterations equal to kmax,Local = 50, but in the case that a feasible point is
found, the ES evolutionary cycle is interrupted. This new feasible point is thus set up as
the gbest of the previous PSO swarm, which remained in a sort of standby state while
the local ES operator was in action. In summary, the PSO cycle, which has entered in the
ES operator due to the fact that it stalled for kES operator = 10 iterations on an unfeasible
gbest point, can now restart again as usual with an improved knowledge provided by
a new feasible posed gbest point found by the local search ES operator. The numerical
example Problem g06, whose statement is in the Appendix A (Sickle Problem [52]), has
been depicted in Figures 4 and 5 to graphically show the enhanced multi-strategy PSO
procedure. Each swarm particle is able to see only the sub-figures (a), (c), and (e) of Figure 4
when its position is inside the feasible region (with the role to minimize the OF); otherwise,
it is able to see only the landscape produced by the constraint envelope, subfigures (b),
(d), and (f) of Figure 4. After 10 stagnations on the unfeasible gbest point (black cross in
sub-figures (a), (b), (c), and (d) of Figure 4), the ES operator was performed. It generated
a local population of points near the unfeasible gbest point, which are colored as purple
if they are unfeasible or green if they are feasible. Then, this population evolves with the
before explained SA-ES approach until at least one point falls inside the feasible region
(which is the space between the two blue parabolas) or the maximum number of local
iterations is reached. In that specific case, at the first local iteration, some feasible points
were already found. Therefore, the best individuals in term of OFs was selected among the
green points of Figure 4c,d, and then the PSO could continue its evolutionary cycles until
the maximum number of iterations were reached (kmax = 500). The history of the optimal
solution found during the PSO iterations is depicted in Figure 5.

For some very hard problems, it may also happen that after the action of the ES
local search operator, the feasible region is not found. In that case, the PSO starts the
evolution cycle again with the same unfeasible gbest point for some other iterations until the
feasible region is found. Otherwise, when the iterations reach a total number of unfeasible
stagnations kmax Unfeas Stagn = 15, the complete reset of the population is performed. In
practise, the algorithm completely restarts again from the first point of the flowchart, as
shown in Figure 3. Therefore, the hope is that a completely new random sampling of the
initial swarm will generate a new initial configuration which may find this time the right
path to the optimal solution of the optimization problem.

On the contrary, when the PSO normally finds the feasible region and it optimizes
the solution until it reaches a gbest which stagnates for a certain number of iterations
kmax Feas Stagn = 50, the population is restarted as well. This is due to the fact that the
so far found optimal solution could be a local minimum. If there is a certain number
of iterations left before reaching the maximum PSO available iterations, k < kmax, the
swarm is thus restarted again from the first step of the PSO flowchart. In that case, all
the memories of the population are reset (pbests and lbests), but the so far found optimal
solution (gbest) remains unchanged, unless a better solution in terms of OF is found from
the new restarted-swarm exploration phase.

In the following section, the enhanced multi-strategy PSO has been tested on some
constrained numerical benchmark literature problems, and the results are compared with
two PSO implementations, which adopt a typical penalty approach.

18



Appl. Sci. 2022, 12, 2285

Generation :12

-7000
-7000

-6000
-6000

-5000
-5000

-4000
-4000

-3000
-3000

-2000
-2000

-1000
-1000

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x 2

OF
Feasible reg

(a) OF—Generation 12

Generation :12

55
5

5

10

10

15

15

20

20

20

25

25

25

30

30

30

35

35

35

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x 2

Constraint env.
Feasible reg

(b) Constraints—Generation 12
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(d) Constraints—ES operator Generation 1
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Figure 4. Example Problem g06, see the Appendix A (Sickle Problem [52]); (a,b) the OF and constraints
envelope contour representations, respectively at generation 12. The black cross marker is the
unfeasible gbest, the red dots are the swarm points. (c,d) After 10 unfeasible stagnations, the ES
local search operator generate a local search population (purple dots) to find the feasible region
(green dots). (e,f) the OF and constraints envelope contour representations, respectively, at the final
generation 500. The black cross marker is the feasible gbest point, the red ones are the particles in a
unfeasible region, and the green ones are the particle inside the feasible region.
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Figure 5. Example Problem g06, see Appendix A (Sickle Problem [52]); Objective function history of
the gbest (optimal solution).

4. Numerical Test and Comparisons

The new enhanced multi-strategy PSO illustrated in the previous section was imple-
mented in a Matlab environment and some numerical constrained benchmark tests from
the literature were analysed. In particular, the statements of the mathematical constrained
problems were taken from [53], in which a total of 13 constrained problems are illustrated.
In the current study, only some problems were considered, in particular, the problems with
inequalities constraints only were analysed. As stated before, the PSO does not perform
very well with equality constraints despite some strategies being proposed in literature to
convert each equality constraint into a couple of equivalent inequality constraints. For the
sake of completeness, the selected problem statements are also reported in the Appendix
A of the present paper. In order to make some comparisons with the other more classical
constraint handling approaches, the current enhanced multi-strategy PSO is compared
with a more classic penalty approach. For this purpose, the PSO code proposed by [54]
was adopted and modified in order to take into consideration both a static penalty ap-
proach as previously mentioned in (6) and also with a dynamic penalty as in (9). The
penalty factors were properly tuned problem by problem in order to obtain the optimal
results. The swarm size was set to N = 100, and the maximum allowable iterations were
fixed to kmax = 500 for all the PSOs considered. The comparisons shown in Table 1 are
developed from the results obtained by 50 independent runs and making comparisons
among best and worst results and the mean and standard deviation of the OF from the
dataset of the 50 final results for the 3 different PSOs. The results in Table 1 produced
by the enhanced multi-strategy PSO are satisfactory for the selected numerical problems,
and they are generally consistent if compared with the theoretical results and with the
other penalty-based PSO implementations. This proves the effectiveness of the current
enhanced PSO implementation to deal with constrained optimization problems without
the tedious calibration of too many arbitrary parameters. Because of these initial promising
results, future works should therefore include some other numerical applications and some
engineering practical optimization problems.
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Table 1. Selected numerical benchmark examples taken from [53] and comparisons of the final results
for 50 runs among the enhanced multi-strategy PSO (PSO_MS), the PSO with static penalty (PSO_ST),
and the PSO with dynamic penalty (PSO_DYN).

Problem g01 PSO_MS PSO_ST PSO_DYN

optimum −15.000

best OF −15.000 −15.000 −15.0
worst OF −12.002 −12.000 −12.000

mean −14.443 −13.938 −13.920
std 0.89478 1.4333 1.4546

Problem g02 PSO_MS PSO_ST PSO_DYN

optimum 0.803619

best OF 0.80357 0.80146 0.79358
worst OF 0.60963 0.52013 0.38285

mean 0.75896 0.70105 0.66597
std 0.063604 0.07356 0.087006

Problem g04 PSO_MS PSO_ST PSO_DYN

optimum −30,665.539

best OF −30,666.0 −30,666.0 −31,207.0
worst OF −30,666.0 −30,665.0 −30,137.0

mean −30,666.0 −30,665.0 −31,138.2
std 2.20e-05 0.86587 252.2036

Problem g06 PSO_MS PSO_ST PSO_DYN

optimum −6961.81388

best OF −6961.8 −6973.0 −6963.0
worst OF −6958.4 −6973.0 −6963.0

mean −6960.7 −6973.0 −6963.0
std 0.97521 0.0000 0.0000

Problem g07 PSO_MS PSO_ST PSO_DYN

optimum 24.3062091

best OF 24.426 25.034 24.477
worst OF 27.636 30.203 30.112

mean 25.4129 28.508 27.043
std 1.1209 1.4351 1.8821

Problem g08 PSO_MS PSO_ST PSO_DYN

optimum 0.095825

best OF 0.095825 0.095825 0.095825
worst OF 0.095825 0.095825 0.095825

mean 0.095825 0.095825 0.095825
std 6.96e-17 6.77e-17 7.10e-17

Problem g09 PSO_MS PSO_ST PSO_DYN

optimum 680.6300573

best OF 680.64 680.63 680.63
worst OF 680.98 680.72 680.73

mean 680.73 680.66 680.66
std 0.079365 0.017526 0.018915
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Table 1. Cont.

Problem g12 PSO_MS PSO_ST PSO_DYN

optimum 1.0

best OF 1.0 1.0 1.0
worst OF 1.0 1.0 1.0

mean 1.0 1.0 1.0
std 0.0000 2.12e-15 0.0000

5. Structural Optimization on Literature Benchmarks

In this final part, some well-acknowledged structural engineering optimization prob-
lems from the literature have been adopted for evaluating the performances of the proposed
multi-strategy PSO algorithm with the unfeasible local search operator. In the analysed
benchmarks, the multi-strategy PSO has been compared with other optimization strategies,
i.e., the PSO with static and dynamic penalty inspired by the code of [54] and with the GA
from Matlab’s built-in code functions. Structural optimization problems can be mainly
grouped into three main categories [55]: the size optimization, where the aim is to find the
optimal size of the structural elements; the shape optimization, in which the design variables
govern the structural shape; the topology optimization, which is the more complex because
it involves the modification of the structural typology and morphology. These problems
could be tackled separately or even combined. Mainly focusing on the contribution of [56],
in the current study, three different truss design constrained size optimization problems
have been analysed. The main goal of truss design problems is to minimize the total weight
w of the structure, which is indirectly connected to the material consumption volume
amount and thus to the cost of the structure [55]. Indeed, adopting a certain material with
unit weight ρi, the main goal results in seeking for the optimal cross-sectional areas Ai to be
devoted to every structural element in the design domain. A first constraint is represented
by the box-constraint related to the admissible range of cross section area values to be
adopted Ai ∈ [ALB

i , AUB
i ]. Thereafter, at least two other inequality constraints have to be

considered. The first one is related to the respectfulness of the maximum allowable stress
σadm in each truss member (resistance-side constraint) and the second one is referred to the
respectfulness of a maximum displacement threshold δadm (deformation-side constraint).
The general formulation of the truss design problem can be stated as follows:

min
x∈Ω

f (x) =
Nel

∑
i=1

ρiLi Ai

s.t. ALB
i ≤ Ai ≤ AUB

i

σi ≤ σadm

δ ≤ δadm

(17)

where Nel is the total number of elements in the truss design domain and Li is the actual
length of each member. The material adopted in the current study is structural steel with
unit weight of ρi = ρ = 0.1 lb/in3 (1 lb/in3 is equal to 0.0276799 kg/cm3) and Young’s
modulus of 107 psi (1 psi is equal to 0.00689476 MPa).

5.1. Ten-Bar Truss Design Optimization

The first problem analysed is referred to as a 10 bar truss cantilever structure, as
depicted in Figure 6. In the cantilever structure, each member has been labelled with
a number from 1 to 10. The cantilever span is in total 720 inches (1 inch is equal to
25.4 mm), and the depth is 360 in. The truss structure is loaded by 2 downward forces
of 100 kips each (1 kips is equal to 4.4482 kN). The design vector considers cross-section
areas as continuous variables belonging to the a close interval [0.1, 35] in2. The maximum
allowable deflection both in horizontal and vertical direction for every node has been set to
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δadm = ±2 in, whereas the maximum allowable stress is equal to σadm = ±25 ksi. In total,
100 independent executions have been performed, and the mean and standard deviation of
the OFs have been calculated. A population size of 50 particles and a maximum iterations
number of 500 have been set both for the multi-strategy PSO and the GA. For the PSO
with penalty approaches, 500 particles have been set as the swarm size because of their
very poor results when only 50 particles have been considered. The optimization results
obtained are reported in Table 2, which compares the multi-strategy PSO with the PSO
with static penalty (PSO-Static), with dynamic penalty (PSO-Dynamic), and with GA. It is
worth noting that the penalty approaches fail dreadfully, in this case, to deal with real-life
structural design problems, whereas the proposed multi-strategy PSO algorithm produces
good results which are comparable with the GA and quite close to the actual unknown
optimum solution.

Figure 6. Graphical representation of the 10 bar truss design optimization problem.

5.2. Twenty-Five-Bar Truss Design Optimization with Multi-Load Cases Conditions

The second structural optimization problem analysed is referred to as the 25 bar
three-dimensional truss tower structure, as depicted in Figure 7. In plan view, the tower
footprint is a square of side 200 in, which tapers to 75 in at an elevation of 100 in, and finally
reaches the maximum elevation at 200 in from the ground. The structural nodes have been
labelled with a number from 1 to 10. The design vector considers the cross section areas of
each member as continuous variables belonging to the close interval [0.01, 3.40] in2. The
cross-sectional areas have been gathered into eight groups, as depicted in Figure 8, in order
to reduce the dimensionality of the design vector. The maximum allowable displacement
has been set to δadm = ±0.35 in in every direction, whereas the maximum allowable stress
of each member has been to σadm = ±40 ksi. Furthermore, the current structural problem
takes into account two different load cases during the optimization process, as shown in
Figure 7. In total, 100 independent executions have been performed, and the mean and
standard deviation of the OFs have been calculated. A population size of 50 particles
and a maximum iterations number of 500 have been set both for the multi-strategy PSO
and the GA. For the PSO with penalty approaches, 500 particles have been set as the
swarm size because of their very poor results when only 50 particles have been considered.
The optimization results obtained are reported in Table 3, which compares the multi-
strategy PSO with the PSO with the static penalty (PSO-Static), with the dynamic penalty
(PSO-Dynamic), and with the GA. It is worth noting that, even in this case, the penalty
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approaches dreadfully fail to deal with real-life structural design problems, whereas the
proposed multi-strategy PSO algorithm produces good results which are comparable with
the GA and quite close to the actual optimum solution.

Table 2. Ten-bar truss design example: results comparisons for 100 runs among the enhanced multi-
strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the PSO with dynamic penalty
(PSO-Dynamic) and GA.

Cross-Section [in2]

Element Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 28.920 29.6888 30.3092 30.145 30.372
2 0.100 18.3211 14.7464 0.100 0.110
3 24.070 19.9891 16.5717 22.466 23.644
4 13.960 18.2381 25.1945 15.112 15.391
5 0.100 2.3404 4.5489 0.101 0.101
6 0.560 20.8674 26.1207 0.543 0.496
7 21.950 21.1805 32.2698 21.667 20.984
8 7.690 16.0851 0.2168 7.577 7.410
9 0.100 6.0845 7.5871 0.100 0.103
10 22.090 25.5632 23.524 21.695 21.378

best OF [lb] 5076.310 6141.986 6333.035068 5063.250 5063.328

worse OF [lb] - 8415.134 8675.749551 5144.148 5229.108

mean [lb] - 7294.455 7501.394582 5079.744 5076.473

std. dev. [lb] - 516.7823 475.3885728 14.1194 24.8666

Figure 7. Graphical representation of the 25 bar truss design optimization problem.
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Figure 8. Graphical representation of the 8 bar groups in which are collected all the members of the
25 bar truss design optimization problem.

Table 3. Twenty-five bar truss design example: results comparisons for 100 runs among the enhanced
multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the PSO with dynamic
penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 0.100 2.054 1.116 0.010 0.011
2 1.800 2.675 2.670 2.023 1.976
3 2.300 1.402 1.942 2.941 2.989
4 0.200 3.388 0.166 0.010 0.010
5 0.100 0.204 0.342 0.010 0.011
6 0.800 0.453 1.985 0.671 0.690
7 1.800 1.274 1.976 1.673 1.689
8 3.000 0.048 2.345 2.694 2.654

best OF [lb] 546.010 568.186 596.058 545.236 545.249

worse OF [lb] - 100,583.118 22,954.297 557.755 552.378

mean [lb] - 1673.393 1122.518 547.828 546.003

std. dev. [lb] - 9991.0201 3129.3192 2.0743 0.7879

5.3. Seventy-Two-Bar Truss Design Optimization with Multi-Load Cases Conditions

The last structural optimization problem analysed in the current study is referred to as
a 72 bar three-dimensional truss tower structure, as depicted in Figure 9. In plan view, the
tower footprint is a square of side 120 in, with 4 modular floors, each of them with a height
of 60 in. The structural nodes have been labelled with a number from 1 to 20. The design
vector considers the cross-sectional areas of each member as continuous variables belonging
to the close interval [0.1, 3.0] in2. There are 18 bars inside each modular floor which can
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be grouped in 4 groups, as depicted in Figure 10. Therefore, since there are 4 floors, the
cross-sectional areas have been parametrized into 16 groups in total in order to reduce
the dimensionality of the design vector. The maximum allowable displacement has been
set to δadm = ±0.25 in in every direction, whereas the maximum allowable stress of each
member has been set to σadm = ±25 ksi. Furthermore, the current structural problem takes
into account two different load cases during the optimization process, as shown in Figure 9.
In total, 100 independent executions have been performed, and the mean and standard
deviation of the OFs have been calculated. A population size of 50 particles and a maximum
iterations number of 500 have been set both for the multi-strategy PSO and the GA. For
the PSO with penalty approaches, 500 particles have been set as the swarm size because
of their very poor results when only 50 particles have been considered. The optimization
results obtained are reported in Table 4, which compares the multi-strategy PSO with the
PSO with the static penalty (PSO-Static), with the dynamic penalty (PSO-Dynamic), and
with the GA. Similarly to the previous cases, it is worth noting that the penalty approaches
dreadfully fail to deal with real-life truss design structural optimization problems, whereas
the proposed multi-strategy PSO algorithm produces good results which are comparable
with the GA and quite close to the actual optimum solution. It is worth noting that the
mean value and the best one are very close to the reference optimal solution from [56]. The
final solution is even characterized by a low standard deviation among the 100 algorithm
runs, demonstrating that the multi-strategy PSO is able to reach the optimal results in a
more reliable way, reducing the uncertainties and scattering of the final results.

Figure 9. Graphical representation of the seventy-two bars truss design optimization problem.
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Figure 10. Graphical representation of the four bar groups in which are collected the members inside
one module of the seventy-two bars truss design optimization problem.

Table 4. Seventy-two bars truss design example: results comparisons for 100 runs among the
enhanced multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static) and the PSO with
dynamic penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 2.026 2.176 0.746 1.801 1.856
2 0.533 0.661 0.539 0.545 0.523
3 0.100 2.686 0.523 0.100 0.100
4 0.100 1.771 2.660 0.100 0.100
5 1.157 1.662 2.316 1.311 1.301
6 0.569 0.276 1.051 0.511 0.519
7 0.100 0.158 0.642 0.100 0.100
8 0.100 0.986 2.370 0.100 0.100
9 0.514 0.271 0.757 0.531 0.539

10 0.479 1.240 0.793 0.520 0.507
11 0.100 0.517 0.453 0.100 0.100
12 0.100 0.378 1.754 0.107 0.101
13 0.158 0.119 2.236 0.157 0.157
14 0.550 0.794 1.677 0.534 0.540
15 0.345 1.363 0.824 0.386 0.403
16 0.498 1.190 0.830 0.561 0.564

best OF [lb] 379.310 629.108 662.148 380.150 379.753

worse OF [lb] - 1054.764 1110.795 400.147 381.541

mean [lb] - 874.024 854.233 383.377 380.150

std. dev. [lb] - 88.8254 82.1187 3.7299 0.2766

6. Discussion

In the previous sections, it has been demonstrated that the proposed multi-strategy
PSO algorithm provided quite interesting results. Foremost, focusing on numerical bench-
mark problems, the multi-strategy PSO technique has been compared with two other
traditional PSO implementations which adopt the penalty function approaches to deal
with constraints. The three algorithms have been executed 50 independent times for each
numerical problem stated in the Appendix A, and the final results have been collected in
Table 1. The optimization results have been presented in terms of the best solution, the
worst solution, the mean of the OF values, and the standard deviation of the final results.
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These parameters evidence the scattering in the found solutions by the various algorithms.
Specifically, the standard deviation parameter gives a direct insight into the degree of
failure of the meta-heuristic algorithm to find the known benchmark solutions among the
independent executions. In particular, the multi-strategy PSO presents in general lower
values of a standard deviation compared with PSO-penalty methods, or at least the same
order of magnitude. Furthermore, the multi-strategy PSO appears to be a more reliable
algorithm because, focusing, e.g., on the problem g06, despite the standard deviation of
the PSO-penalty being zero, they fail to reach the optimum solution. This fact highlights
that, notwithstanding that the penalty functions method is very simple and easy to im-
plemented, in general, it does not always represent the best approach to successfully deal
with every kind of problem. Indeed, e.g., in problem g06, the nil value of the standard
deviation actually points out how the penalty method provides a quite deterministic PSO
algorithm which is trivially entrapped in the same local optimum among the independent
runs, jeopardizing the potentialities of the stochastic search.

On the other hand, focusing on real-world engineering structural optimization prob-
lems, the multi-strategy PSO algorithm has revealed its powerful capabilities to deal with
complex, combinatorially demanding, and highly non-linear optimization problems. For
the sake of completeness, in these problems, a further comparison has been provided by the
GA algorithm from the Matlab environment. This latter comparison is extremely relevant
because it allows for performing a more objective evaluation which relies on a completely
different implementation with respect to the PSO framework only. The optimization re-
sults of the 10 bar truss, 25 bar truss, and 72 bar truss problems have been reported in
Tables 2–4, respectively. In all the analysed cases, the multi-strategy PSO provided very
interesting results, which are really close or even better to the reference solution obtained
from [56]. The penalty method revealed their weakness when dealing with these kinds
of highly non-linear problems because they provided mean solutions quite far from the
reference one and even more scattered when considering the standard deviation values. In
conclusion, the proposed multi-strategy PSO algorithm provides an enhanced and more
reliable implementation because it results in lower standard deviation values than the GA
ones, at least in the last two problems hereby analysed, which are the most complex and
computationally demanding.

7. Conclusions

The research and developments in the EAs field to solve optimization problems are
continuously increasing because of their lack of mathematical proofs and also because the
perfect algorithm to solve any kind of problem does not exist. Therefore, in the present
study, a new variant of the PSO has been implemented for the purpose of studying a
different way to deal with constrained optimization problems. In fact, the standard version
of the PSO [17] lacked a proper mechanism to deal with constrained problems, and in
literature [30,33,34], there are at least five main kinds of constraint-handling approaches.
The so far most extensively used method in many different practical applications is the
penalty function method. The main disadvantage of this technique is that it requires the
user to tediously tune some arbitrary penalty factors, which is not always an easy task. In
the current study, for the purpose of enhancing the performance of the standard version
of the algorithm, the most important state-of-the-art improvements are also implemented,
such as the inertia weight [23] and the neighbourhood topology [25]. Furthermore, in
order to avoid a penalty-based approach, the violation degree of the constraints is directly
exploited to define the aim of a particle which has to minimize this violation if it lies in
the unfeasible region. Otherwise, if a particle lies in the feasible region, this particle is
dedicated to minimize the OF. Another improvement is given by a local search self-adaptive
ES operator, which takes action if the feasible region is not found by the PSO for a certain
number of iterations. This allows the algorithm to spread the exploration around the so far
unfeasible best solution found, which may be very close to the feasible region, if it is located
in near this point. If the ES operator successfully finds the feasible region, this allows it
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to boost the PSO, giving it an important hint on where the feasible region is located, as
demonstrated in Figure 4. If the local operator fails to identify the feasible region, the
swarm has probably been entrapped in a local unfeasible minimum quite far from the
feasible region. Consequently, only a new randomly resampled swarm may probably find
the right path to the feasible region and thus to the real optimum. This new enhanced
PSO appears to be noticeably effective compared to other PSO algorithms which adopt a
more traditional penalty-function-based method, as shown in Table 1. Outstanding results
have been pointed out in the structural optimization benchmark analysed in the current
study, which involves three truss design problems from the literature. The proposed PSO
effectively dealt with real-life optimization problems, much better than traditional penalty
approaches, and reached results comparable and competitive with other state-of-the-art
implementations such as the GA.

Although the PSO algorithm already possesses two kinds of memories (cognitive
and social), most of the information about the swarm visited positions is discarded, and a
better exploitation of the past particles positions remains to be fully determined. In another
recent work [18], a first promising step in that direction has been already made. In [18], the
PSO has been hybridized with a machine learning algorithm, the support vector machine
(SVM). The SVM has been trained on the dataset composed by all the visited swarm
positions in order to build a predictive model which is able to learn where the feasible
and the unfeasible regions are located in the search domain. The improvement in the
managing information provided by the swarm positions during all the iterations allowed
the algorithm to reduce the search space extension and considerably improve the PSO’s
performance. In future studies, another promising direction can be a hybridization with
the estimation distribution algorithm (EDA) [57], which relies on building and updating
a complex probability distribution model of the search space domain, and therefore, it is
potentially able to give considerably much more information about the fitness landscape
with respect to a simple blind sampling inside the search space.
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Appendix A. Test Functions Constrained Problems

In the following, the statements of the selected benchmark numerical problems, taken
by [53], which were tested in the present work are exposed.

1. Problem g01

Minimize:

f (x) = 5
4

∑
i=1

xi − 5
4

∑
i=1

x2
i −

13

∑
i=5

xi
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Subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100
(i = 10, 11, 12), 0 ≤ x13 ≤ 1. The optimum is located at x∗ = [1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1],
where f (x) = −15.

2. Problem g02

Maximize:

f (x) =

∣∣∣∣∣∣∑n
i=4 cos4(xi)− 2 ∏n

i=1 cos2(xi)√
∑n

i=1 ix2
i

∣∣∣∣∣∣
Subject to:

g1(x) = 0.75 −
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi − 7.5n ≤ 0

where n = 20 and the search space is defined as 0 ≤ xi ≤ 10 (i = 1, . . . , n). The
optimum OF is f (x) = 0.803619.

3. Problem g04

Minimize:

f (x) =5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to:

g1(x) =85.334407 + 0.0056858x2x5 + 0.0006262x1x4 + 0.0022053x3x6 ≤ 92,

g2(x) =− 85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x6 ≤ 0,

g3(x) =80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0,

g4(x) =− 80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0,

g5(x) =9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,

g6(x) =− 9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,

where the search space is defined as 78 ≤ x1 ≤ 102 and 33 ≤ x2 ≤ 45 and
27 ≤ x3, x4, x5 ≤ 45. The optimum is located at x∗ = [78, 33, 29.995256025682, 45,
36.775812905788], where f (x) = −30, 665.539.

4. Problem g06

Minimize:

f (x) = (x1 − 10)3 + (x2 − 20)3
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Subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 − (x2 − 5)2 − 82.81 ≤ 0

where the search space is defined as 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum
is located at x∗ = [14.095; 0.84296], where f (x∗) = −6961.81388.

5. Problem g07

Minimize:

f (x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

Subject to:

g1(x) =− 105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) =10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) =− 8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) =3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) =5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) =x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) =0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) =− 3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where the search space is defined as −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The optimum OF
is f (x∗) = 24.3062091.

6. Problem g08

Maximize:

f (x) =
sin3(2πx1) sin 2πx2

x3
1(x1 + x2)

Subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

where the search space is defined as 0 ≤ x1, x2 ≤ 10. The optimum is located at
x∗ = [1.2279713; 4.2453733], where f (x∗) = −0.0958250414.

7. Problem g09

Minimize:

f (x) =(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

Subject to:

g1(x) = −127 + 2x2
1 + 3x4

2 ++x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0
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where the search space is defined as −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The optimum OF is
f (x∗) = 680.6300573.

8. Problem g12

Maximize:

f (x) =
100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100

Subject to:

g(x) =(x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 7.
The optimum OF is f (x∗) = −1.
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Abstract: The prestressed concrete–steel hybrid (PCSH) wind turbine tower, characterized by re-
placing the lower part of the traditional full-height steel tube wind turbine tower with a prestressed
concrete (PC) segment, provides a potential alterative solution to transport difficulties and risks
associated with traditional steel towers in mountainous areas. This paper proposes an optimization
approach with a parallel updated particle swarm optimization (PUPSO) algorithm which aims at
minimizing the objective function of the levelized cost of energy (LCOE) of the PCSH wind turbine
towers in a life cycle perspective which represents the direct investments, labor costs, machinery costs,
and the maintenance costs. Based on the constraints required by relevant specifications and industry
standards, the geometry of a PCSH wind turbine tower for a 2 MW wind turbine is optimized using
the proposed approach. The dimensions of the PCSH wind turbine tower are treated as optimization
variables in the PUPSO algorithm. Results show that the optimized PCSH wind turbine tower can
be an economic alternative for wind farms with lower LCOE requirements. In addition, compared
with the traditional particle swarm optimization (PSO) algorithm and UPSO algorithm, the proposed
PUPSO algorithm can enhance the optimization computation efficiency by about 60–110%.

Keywords: prestressed concrete–steel hybrid (PCSH) wind turbine tower; optimal design; parallel
updated particle swarm optimization (PUPSO) algorithm; wind; earthquake; levelized cost of
energy (LCOE)

1. Introduction

The wind turbine tower, as the structure supporting the wind turbine, represents a
highly significant component of wind turbine systems and accounts for approximately
30% of the overall investment in onshore installations [1]. With the increase in unit power
capacity of wind turbines, the heights of wind turbine towers have increased for the
purpose of capturing wind energy efficiently, as wind profiles are strong and steady at
higher elevations [2–4]. In recent years, wind turbine towers with a height of over 100 m
have been widely employed in practice alongside increasing investment [5]. Many wind
farms have been developed or are under construction in mountainous areas in the mainland
of China after decades of wind farm development in plain areas. The transportation of
segmental steel tubes and long blades to the top of mountains is a challenging task with
risks. Moreover, the construction of temporary transportation roads with large turning
radii in mountains leads to additional investment and environmental destruction [6]. The
traditional steel-tubular wind turbine tower systems are typical soft supporting systems,
and it is hard to meet the stiffness requirements of large capacity wind turbines due to the
limitation of steel-tube diameter transportation.
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In recent years, the prestressed concrete–steel hybrid (PCSH) wind turbine tower
has been proposed to overcome the difficulty of transportation and the limitation of the
structural mechanical behavior of traditional steel tubular towers. Compared with the
full-height steel tubular tower, the PCSH wind turbine tower results in a lower center of
gravity and higher flexural stiffness. The use of concrete leads to a lower sensitivity to
fluctuations in steel prices [2]. Moreover, by replacing parts of the steel tubular segments
with prestressed concrete (PC), the total cost of the PCSH tower system can be decreased
while the design–servicing life of PC is much longer than steel. This leads to reasonable
life-cycle cost savings and decreases in the levelized cost of energy (LCOE) in a life-cycle
perspective. The development of the PCSH wind turbine tower has received great attention
in recent years. Singh [7] investigated concrete construction for wind energy towers and
highlighted the advantages of concrete as the major construction material for wind turbine
towers. Seidel [8] compared a steel and concrete hybrid tower with a steel tower and
concluded that hybrid towers are an effective alternative to traditional steel towers, can be
built at nearly every site, and help overcome transportation issues caused by mountains or
other terrains.

The optimization algorithm plays key roles in realizing the economical results that
withstand the most demanding functional requirements arising during their service life [9].
Hani et al. [10] proposed and tested five different optimization strategies for a 100 kW wind
turbine system considering the natural frequencies as the most representative objective
function. Uys et al. [11] used optimization to calculate the least cost of a steel wind
turbine tower that meets the structural demands and emphasized the influence of ring
stiffeners. Nicholson et al. [12,13] redesigned wind turbine towers with a generalized
reduced gradient (GRG) method and analyzed how individual design variables affected
the objective function of a hybrid wind turbine tower. Employing the genetic algorithm
(GA), Ma et al. [14] optimized a 100 m PC tower system for a 5 MW wind turbine and
discussed the advantages of a PC wind turbine tower. Oest et al. [15] explored three
different state-of-the-art analytical gradient-based optimization approaches to minimize the
mass of a jacket structure for wind turbines considering fatigue and frequency constraints
and provided insight into critical structural and modeling parameters. Adopting GA, Chen
et al. [16] suggested that the optimal height of the concrete segment should be 80.5 m for
one 120 m PCSH wind turbine tower. The safety factors of the tower are improved and
the total construction cost can be reduced by about 20% after optimization. However, the
optimization result is easily stuck at locally optimal values and the material utilization
ratio of the optimization result is comparatively low. Different from the direct investment
or construction cost for a wind turbine system investigated in the above studies, it is more
important to minimize its LCOE in a life-cycle perspective, which is treated as the objective
function for geometry optimization for PCSH wind turbine towers in this study.

Particle swarm optimization (PSO) has proven to be a powerful method for opti-
mization problems [17]. Adopting PSO, Poitras et al. [18] investigated the optimum floor
configuration by minimizing the total mass or cost while satisfying all design criteria.
Ye et al. [19] conducted a comprehensive investigation on cold-formed steel beam designs
using PSO techniques. Luo et al. [20] proposed a computational approach based on PSO
to obtain the lower bound of the buckling load of shell structures with geometric imper-
fections. Based on a PSO algorithm, Xu et al. [21] optimized the active control strategy
for machinery-equipment-induced structural vibrations. Tsiptsis et al. [22] carried out
structural optimization employing isogeometric tools in PSO for a two-dimensional truss
or a frame tower. Farias et al. [23] introduced a new hybrid algorithm based on PSO and
GA to find optimal fiber orientation of stiffened laminated composite panels to reach their
maximum buckling load. Kaveh and Eslamlou optimized a series of usual-size skeletal
structures by transplanting a harmony search-based mechanism to particle swarm opti-
mization with an aging leader and challengers (HALC-PSO) and multistage particle swarm
optimization (MSPSO) and obtained satisfactory results [24].
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In this paper, in order to enhance the computation efficiency for the geometry opti-
mization of the PCSH wind turbine towers, a parallel updated PSO (PUPSO) method is
proposed to optimally design a PCSH wind turbine tower subjected to both wind and
seismic excitations, considering the constraints of load-carrying capacity, fatigue, stability,
natural frequency, and maximum top displacement. It employs the LCOE as the objective
function. The proposed approach is used to optimally design a 2 MW PCSH wind turbine
tower with a design height of 77.5 m as an alternative to the traditional steel tubular tower.
The optimal result is evaluated by utilization ratio of the tower. Results show that the
PUPSO algorithm efficiently optimizes the PCSH wind turbine towers when compared
with the traditional particle swarm optimization (PSO) algorithm and the LCOE of the
optimized PCSH wind turbine significantly decreases when compared with the benchmark
wind turbine tower. The height of the steel segment of the optimized PUPSO tower is rec-
ommended to be 30% of total height of the PCSH wind turbine tower. Compared with the
original PCSH tower, the increased utilization rates of both PC and steel segments illustrate
the effectiveness of the PUPSO algorithm. Moreover, the fundamental natural frequency of
the optimized PCSH wind turbine tower increases significantly when compared with that
of the original wind turbine tower.

2. Effects of Wind and Earthquake Excitations on Wind Turbine Tower

Under normal operation, wind power generation systems are subjected to wind loads
and are also affected by earthquakes in seismically active areas over their service life.
These effects are of importance to the performance, durability, and safety of wind turbine
towers. In this study, the PCSH wind turbine tower is geometrically optimized with the
consideration of both wind and earthquake loads. The effects of both wind and earthquakes
on the PCSH wind tower system are discussed in the following sections.

2.1. Wind Load Applied to the PCSH Wind Turbine Towers
2.1.1. Aerodynamic Load Determination

Due to differences in wind pressure, the aerodynamic wind load applied on the top
of a wind turbine tower is usually calculated under four different working conditions,
including the annual average wind speed, nominal wind speed, cut-out wind speed, and
extreme wind speed [25]. The aerodynamic load can be determined by the following
equations [26,27]:

F1 = CpρVa
2πR2 (1)

F2 = CpρVn
2πR2 (2)

F3 = 0.4CpρVc
2πR2 (3)

F4 = 0.5CtρVe
2 A (4)

ρ = 0.00125e−0.0001z3
(5)

where F1 is the wind load under the annual average wind speed, Cp is the wind energy
utilization coefficient which can take the value of 4/9 for an ideal wind turbine but 0.4
is chosen for the PCSH wind turbine tower in this study, ρ is the density of air, Va is the
annual average wind speed, R is the impeller radius of the wind turbine, F2 is the wind
load applied to the turbine under the nominal wind speed, Vn is the nominal wind speed,
F3 is the wind load under the cut-out wind speed, Vc is the cut-out wind speed, F4 is the
wind load under the strongest wind speed in 50 years, the drag coefficient Ct = 1.6, Ve is
the extreme wind speed, A is the projection of the blades in the plane perpendicular to the
direction of the wind, and z is the height.

37



Appl. Sci. 2021, 11, 8683

2.1.2. Pitching Moment

The pitching moment, MP, caused by inhomogeneity in the wind speed can be calcu-
lated by the following Equation (6) [13]:

MP =
4

27
ρ

B
πR3

(
V2

1 − V2
2

)
(6)

where B is the number of blades and V1 and V2 are the wind speeds at locations 1 and 2,
respectively, as illustrated in Figure 1.

Figure 1. Computational locations for V1 and V2.

2.1.3. Deflecting Torque

The deflecting torque on the wind turbine tower is mainly caused by the generator
impeller. The equation for deflecting torque T can be simplified as [27]:

T = 0.23ρVc
2πR2eh (7)

where eh is the horizontal distance between the center of the hub and the center of the tower.

2.2. Wind Load Acting on the Tower

According to the load code for the design of building structure GB50009-2012 [28], the
characteristic value of the wind load can be calculated with the following equations:

ωk = βzμsμzω0 (8)

βz = 1 + 2g f I10Bz

√
1 + R2

f (9)

R f =

√√√√ π

6ζ1

x2
1(

1 + x2
1
)4/3 (10)

x1 =
30 f1√
kwω0

(11)

Bz = k f r Ha1 ρxρz
φ1(z)

μz
(12)

ρz =
10
√

H + 60e−H/60 − 60
H

(13)

where ω0 is the basic wind speed at a height of 10 m, βz is the wind-induced vibration
factor, μs is the wind load shape coefficient and μz is the wind pressure height coefficient,
g f equals to 2.5, I10 is the nominal turbulence intensity, Bz is background component of
fluctuating wind load, R f is the resonance component of the fluctuating wind load, ζ1 is
the damping ratio and is equal to 0.03 in this paper, f1 is the first-order natural frequency,
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kw is the surface roughness correction coefficient and is equal to 1.0 in this paper, H is the
height of the tower, ρx is the horizontal correlation coefficient and equals 1.0 due to the
small width of the windward side of the tower, ρz is the vertical correlation coefficient, and
the k f r, a1, φ1(z) can be determined according to GB 50009-2012 [28].

The lateral static force is applied along the height of the tower as a distributed load.
The force of the tower section at height i owing to the wind can be calculated as [28]:

Fi = ωk Ai (14)

where Fi is the wind force of the tower section at height i and Ai is the wind pressure area
of the section.

2.3. Additional Bending Moment

The additional bending moment, Me, at the top of the wind turbine tower can be
calculated according to Equation (10):

Me = megee (15)

where g is the acceleration of gravity, me is the weight of the equipment at the top of the
tower, including the blades, nacelle, hub, etc., and ee is the distance between the center of
the equipment and the center of the tower.

2.4. Earthquake Effect

In order to consider the effect of earthquakes on the wind turbine tower, it is reasonable
to model the tower structure as a mass-lumped structure. The natural frequencies are
determined for calculating the earthquake effect on the wind turbine tower [29]. For
the PCSH wind turbine structure, the tower is simplified as a five degrees-of-freedom
(DOF) model with five lumped masses as shown in Figure 2 [30]. The lumped mass
on the top of the wind turbine tower is the largest because of the existence of blades,
nacelle, hub, etc. The other lumped mass is determined by the distributed mass along the
tower. The bending stiffness of the model changes with the height of the tower. Based
on the seismic influence coefficient curve, the earthquake effect can be estimated by the
mode–superposition response spectrum method [31].

Figure 2. Simplified tower model.

2.5. Load Combination

Referring to the relevant literatures [28,32,33], the load combinations are given in
Table 1. In this table, WL is the wind load on the tower, DL is the dead load, and EQ is the
effect of an earthquake.
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Table 1. Load combinations.

Load Combinations Load Factors

Ultimate 1 1.4 × DL + 1.4 × 0.2 × WL + 1.3EQ
Ultimate 2 1.0 × DL + 1.4 × WL
Service 1 1.0 × DL + 0.2 × WL + 1.0 × EQ
Service 2 1.0 × DL + 1.0 × WL

3. Design Constraints for Optimization of the PCSH Tower

The PCSH wind turbine tower can be modelled as a typical cantilever beam with vari-
able cross sections. The following assumptions are made during the geometry optimization
of the PCSH wind turbine tower in this paper. The bottom of the tower is fixed on the
ground, and a concentrated mass representing the blades, nacelle, hub, and top part of
the tower is attached at the top of the tower while the distributed mass along the tower is
simulated by four lumped masses [30]. The nonlinearity of both PC and steel materials
is not considered. The stress concentration around the door opening and the connection
between the concrete and steel are not considered in the geometry optimization model due
to the fact that a local strengthening measure is adopted around the door opening [16]. The
optimization analysis is only performed in the fore-and-aft direction.

3.1. Constraints on the Steel Tubular Segment
3.1.1. Local Buckling

According to the code for the design of chimneys GB50051-2013 [34], the following
condition should be satisfied in order to avoid local buckling of the steel tubular tower:

Ni
Ani

+
Mi
Wni

≤ σcrt (16)

where Mi is the design maximum bending moment of a cross section i, Ni is the design
axial tension or pressure associated with Mi, Ani is the net cross-sectional area of a cross
section i, and Wni is the net cross-sectional resistance moment of the cross section. The local
buckling critical stress of the steel segment σcrt = 0.4 E

k
t
D , E is the elastic modulus of steel,

k is the regulation factor of local bearing strength, t is the thickness of the segment, and D
is the outer diameter of the segment.

3.1.2. Overall Stability

According to the code for the design of steel structures GB50017-2003 [35], the mono-
lithic stability should fulfill the following requirement:

Ni
ϕAbi

+
Mi

Wbi(1 − 0.8Ni/NEx)
≤ ft (17)

where Abi is the gross cross-sectional area of cross section i, Wbi is the gross cross-sectional
resistance moment of cross section i, ϕ is the coefficient of stability of the axial compression
members of level cross section i, ft is the yield strength value of the steel segment, and NEx
is the Euler critical load.

3.1.3. Load-Carrying Capacity

According to Agbayani [36], the following constraints need to be considered:

fcu ≤ φcFcn (18)

fvu ≤ φvFvn (19)

fTu ≤ φT FTn (20)

fvu/(φvFvn) + fTu/(φT FTn) ≤ 1 (21)
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and
For fTu/(φT FTn) ≤ 0.2:

fcu/(φcFcn) ≤ 1 (22)

For fTu/(φT FTn) > 0.2:[
fcu/(φcFcn)]

2+[ fvu/(φvFvn) + fTu/(φT FTn)]
2 ≤ 1 (23)

where fcu is the compression stress of the steel segment, φc = 0.9, Fcn is the nominal
compressive strength, fvu is the transverse shear of the steel segment, φv = 0.9, Fvn is the
nominal shear strength of the steel segment, but Fvn should not exceed Fy/

√
3, fTu is the

torsion of the steel segment, φT = 0.9, Tu is the design torsional moment, and FTn is the
nominal torsional strength of the steel segment.

3.1.4. Fatigue

The supporting structures for wind turbines are usually subjected to variable am-
plitude stress cycles caused by wind over their service life. As a result, the investiga-
tion of fatigue strength is of considerable significance for the design of wind-turbine-
supporting structures.

According to the code for the design of steel structures GB50017-2017 [35], the allow-
able stress range of fatigue can be calculated by the equation:

[Δσ] = (
C
n
)

1
β

(24)

where n is the number of stress cycles and C and β can be determined by the code for the
design of steel structures.

The Weibull Distribution function is commonly used to represent the wind speed
frequency distribution. Based on the wind data for a given site, a method for estimating the
wind speed frequency distribution is used [37]. The wind speed over 5.29 × 108 cycles for a
20-year fatigue design life of a wind farm can be synthesized [32]. The stress amplitude of
the steel tubular tower segment can be determined based on the wind turbine tower model,
the probability distribution, and the rain-flow counting method [38]. Fatigue assessment
can be performed according to the amplitude, Miner rule, and code for the design of steel
structures [35]. The equivalent stress range of the variable amplitude fatigue Δσe can be
identified with the following equation:

Δσe = [
∑ nl(Δσl)

β

∑ nl
]

1
β

(25)

where ∑ nl is the life expectancy of the structure expressed in the number of stress cycles
and nl is the number of stress cycles of stress range Δσl during the expected lifespan of the
structure.

3.2. Constraints on the PC Segments
3.2.1. Load-Carrying Capacity

The minimum concrete compressive stress is set to be larger than zero. According to
the code for design of high-rising structures GB50135-2006 [39] and code for the design
of concrete structures GB50010-2010 [40], the following conditions must be fulfilled for
compressive load-carrying capacity:

0 < σc < fc (26)

Vu

1.2tD
+

Tu

Wt
< 0.7 ft + 0.05

Np0

1.2tD
(27)
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where σc is the concrete stress, fc are the concrete axial compressive load-carrying capacity,
Vu is the design shear force, Tu is the design torsional moment, Wt is the torsional section
modulus, ft is the concrete axial tensile load-carrying capacity, Np0 is the concrete normal
prestressing force of the cross section, t is the thickness of the segment, and D is the
outer diameter.

3.2.2. Fatigue

According to GB50010-2010 [40], the following constraints for concrete fatigue stress
must be fulfilled:

σ
f
cc,max ≤ f f

c (28)

Δσ
f
p ≤ Δ f f

py (29)

where σ
f
cc,max is the maximum concrete compressive stress of a cross section, f f

c is the axial
compressive fatigue strength, Δσ

f
p is the prestressed reinforcement stress amplitude, and

Δ f f
py is the fatigue stress amplitude limit of prestressed reinforcement.

3.2.3. Geometry Constraint

According to GB50135-2006 [39], the thinnest thickness of the wall tmin (mm) should
fulfill the following Equation (30) and be thicker than 180 mm:

tmin = 100 + 0.01D (30)

3.3. Other Constraints
3.3.1. Natural Frequency

To avoid resonance of the PCSH tower caused by the rotation of wind turbine blades,
there should be a 10% safety margin between the natural frequencies of the whole system
and the excitation frequencies of the rotating turbine blades. The value of natural frequen-
cies of the tower system should be away from the blade passing frequency and the blade
rotor frequency [41].

3.3.2. Maximum Top Displacement

To avoid excessive vibration and displacement, the maximum deflection at the top of
the PCSH tower is restricted [10]:

Wmax

Wal
< 1 (31)

θmax

θal
< 1 (32)

where Wmax is the maximum top deflection, Wal is the allowable deflection, θmax is the
maximum rotation angle of the top section, and θal is the allowable rotation angle of the
top section. According to GB50135-2006 [39], Wal = H/100 and θal = 5◦, where H is the
height of the wind turbine tower.

4. PUPSO Approach with the Objective Function of LCOE

4.1. Updated Partial Swarm Optimization (UPSO) Approach

With the development of intelligent optimization algorithms, solving engineering
computing problems by simulating biological behavior is becoming increasingly popular
in a series of practical applications [42]. In this paper, the geometry optimization problem
of PCSH wind turbine towers can be expressed as the following equations:{

Ztarget = min f (x) = min f (
(

x1, x2, · · ·, xn)T)
c(x) = [h1(x), h2(x), · · ·, hn(x)]

T ≤ 0
(33)
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where x is an N-dimensional vector to represent the particle, Ztarget is the optimal target,
f (x) is a function to calculate the total cost of the tower and has been described above, and
c(x) is the vector of constraints functions. Both f (x) and c(x) are nonlinear functions.

The particles are operated by the following equations:⎧⎪⎪⎨⎪⎪⎩
vk+1

q = w × vk
q + c1 × ξ ×

(
xq(best) − xk

q

)
+c2 × ξ ×

(
xg(best) − xk

q

)
xk+1

q = xk
q + vk+1

q

(34)

in which vk
q and xk

q are the speed and position, respectively, of the qth particle in the kth
loop, w is the inertia weight, c1 and c2 are the learning factors of the algorithm, xq(pbest) is
the position of the optimal point of the qth particle in the cycles from 1st to kth, xg(best) is
the position of the optimal point of all particles in the periods from 1st to kth, and ξ is an
uniformly distributed random number within (0, 1).

A penalty term in the fitness valuation process is added to coordinate the movement
of particles within the feasible region and ensure that the wind turbine tower design fulfills
the design constraints.

Because the basic PSO algorithm usually encounters premature convergence issues, it
is first updated in this paper. The updated PSO (UPSO) is carried out as follows.

1. Weight function’s learning factor

The algorithm with a weight function’s learning factor [43] is adopted in this paper to
speed up the computation. Unlike the traditional PSO algorithm, the learning factor and
inertia weight can be calculated as:⎧⎨⎩

w = wmin + (wmax − wmin)exp(−20
(
m/M)6)

c1 = 0.5w2 + w + 0.5
c2 = 2.5 − c1

(35)

where m is the number of iterations, M is the maximum number of iterations, w is the
inertia weight, wmin is the minimum inertia weight, wmax is the maximum inertia weight,
and c1 and c2 are the learning factors.

2. Random perturbation

To avoid premature convergence, a random operator is introduced to the optimization
process in this paper [23]. The fitness variance of particles is defined as the following equation:

σ2 =
n

∑
i=1

(
fq − favg

fN
)

2

(36)

where fq is the fitness of the qth particle; favg is the average value of fitness of particles;
and fN is the normalized scaling factor, which can be calculated by the following equation:

fN =

{
max(

∣∣ fq − favg
∣∣), max(

∣∣ fq − favg
∣∣) > 1

1, others
(37)

The mutation probability pm can be calculated by the following equation:

pm =

{
ζ, σ2 < σ2

d
0, others

(38)

where ζ takes the values within [0.1, 0.3] and σ2
d is set to be 0.15.

For the purpose of mutating the operator xg(best) in the kth loop, random perturbation
is adopted according to the following equation:
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xgm(best) = xg(best) × (1 + 0.5η) (39)

where η follows a Gaussian distribution, xgm(best) is the position of the optimal point of
all particles in the periods from 1st to kth after mutation, and xg(best) is the position of the
optimal point of all particles in the periods from 1st to kth.

4.2. Objective Function

With the start of bidding in wind power markets, LCOE, as the world’s most com-
monly used index to evaluate the cost of electricity, has been favored by participants
involved in wind power projects. Bruck et al. suggests that LCOE can be used as a basis for
setting appropriate power purchasing agreement terms [44]. Based on the LCOE method,
Myhr et al. studied the influence of deployable operating depth and other factors on
offshore wind power platforms [45]. Khojasteh et al. proposed and optimized a distributed
generation by adding a shroud to the wind turbine and assessed it by LCOE [46]. In this
paper, the LCOE is chosen as the objective function and can be calculated by Equation (40):

LCOE =
∑n

t=1
It+Mt+Ft
(1+r)t

∑n
t=1

Et
(1+r)t

(40)

where It are the investment expenditures in year t (including financing); Mt is the opera-
tions and maintenance expenditures in year t; Ft is the fuel expenditures in year t; Et is the
electricity generation in year t; r is the discount rate; and n is the life of the system. There
are four types of wind energy resource areas in China and the LCOE of each area needs to
be calculated separately.

Table 2 shows the costs and fees of the wind farm, which are estimated based on official
files and engineering experiences [16]. Management expenses and measure expenses are
33.3% and 15.3% of the total labor and machinery costs, respectively. However, due to
the difficulties of considering extra costs during the project, such as wind curtailment,
transportation, and road construction, these factors are not considered in the optimization.

The geometry of a PCSH wind turbine tower, including the heights of the PC and
steel segments, is optimized in this paper. Figure 3 shows the cost evaluation flow chart
for the PCSH tower. As illustrated in Figure 3, the function of LCOE can be determined
accordingly when the design is completed.

Table 2. The comprehensive cost of LCOE.

Title Item Unit Price

Direct cost

Concrete 600 yuan/m3

Reinforcement 5500 yuan/ton
Prestressing steel strand 14,390 yuan/ton

Sheeting 50 yuan/m2

Timber support 15 yuan/m2

Metallic pipe 679 yuan/100 m
Flange 40,000 yuan/pcs
Q345 1000 yuan/ton

Labor cost and
mechanical cost

Reinforcement 1500 yuan/ton
Prestressing steel strand 1000 yuan/ton

Sheeting 300 yuan/100 m2

Timber support 15 yuan/m2

concrete 60 yuan/m3
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Table 2. Cont.

Title Item Unit Price

Project condition

Installed capacity 50 MW
Equipment fee 5200 yuan/kW

Other cost 1200 yuan/kW

Annual cost during operation 80 yuan/kW (Year 1–5)
120 yuan/kW (Year 6–20)

construction period 1 a
Loan-to-value ratio 80%

Depreciation life 20 a
Ratio of remaining value 5%

Length of maturity 15 a
Interest rate 4.9%

Figure 3. Flow chart of cost evaluation for the PCSH tower.

When the particle violates the constraint, measures need to be taken to orchestrate
the motion of the particle. As shown in Figure 3, the penalty term is set to 0.5, which
coordinates the movement of particles within the feasible region and cannot be treated
as the ultimate goal of cost calculation. When a constraint violation occurs, the checking
procedure is interrupted directly and the penalty term is employed to evaluate the fitness
value for enhancing the computing efficiency of the optimal algorithm.

4.3. Optimization Variables

In this paper, the influence of geometric dimensions is considered to achieve a more
economical design in the form of LCOE. The independent variables are shown in Figure 4
and their ranges are listed in Table 3. The ranges of the variables are set according to
engineering and design experience. The thickness of each steel segment is assumed to
be constant along the height direction. The range of the thickness of the steel section
can be narrowed down with increasing design experience and determined in the cost
estimate function to reduce the optimization variables and to accelerate the optimization
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computation. Based on the assumption that the length of each steel section is basically the
same, the number of flanges is determined by the length and stress condition of the steel
tower. For the PC segments, the thickness and diameter of the bottom cross section should
not be smaller than the upper cross section of the segment.

Figure 4. Design parameters of the tower.

Table 3. Variables and their ranges.

Variable Range

Length of the jst steel section Hj
s (mm) 500–70,000

Thickness of the jst steel section tj
s (mm) 10–25

Outer diameter of the top end of the jst steel section Dj
st

2686 (j = 1)
Dj−1

sb (j > 1)
Outer diameter of the bottom end of the jst steel section Dj

sb > Dj
st

Steel segments 1–3
Length of the concrete section Hc 7500–77, 000

Thickness of the top end of the concrete part tct (mm) 180–500
Thickness of the bottom end of the concrete part tcb (mm) tct-500

Outer diameter of the top end of the concrete part Dct (mm) -
Outer diameter of the bottom end of the concrete part Dcb (mm) > Dct

Area of prestressed reinforcement (mm2) 31,150–62,300

Apart from the aforementioned variables, there are some known dependent variables.
The total length of the tower is 77.5 m. Therefore, the length of the steel segment determines
the length of the concrete segments. The length of each steel section is the longitudinal
dimension of the whole steel segment divided by the number of steel segments. The
diameter of the steel tubular segment at the top of the tower is determined by the design of
the nacelle and hub. Hence, their values are constant during the optimization. To simplify
the problem and construction process, it is assumed that the generatrix of every section of
the tower is a straight-line segment rather than a curved segment to easily determine the
dimension of the tower at any height.

4.4. Flow Chart of PUPSO Algorithm

The above mentioned UPSO algorithm is carried out in a sequential form and the
optimization process is usually time-consuming when the speed and position of a large
number of particles are updated. In this study, further efforts are made to improve the
computational efficiency by proposing a parallel UPSO (PUPSO) approach, where the
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computing body is divided into several concurrent tasks on the basis of different particles
when evaluating the objective function. The flow chart of the PUPSO algorithm is shown
in Figure 5.

Figure 5. Flow chart of the proposed PUPSO.

The PUPSO algorithm starts by reading the initial conditions of the PCSH tower
model, including the number of particles, the optimization parameters, and the termination
condition. The termination condition for this implementation is the maximum number
of iterations. Then, the particle swarm is generated randomly in the range mentioned in
Section 4.3 and sent into the fitness value function. Based on the fitness value function, the
fitness value of every particle can be determined and fed back to the PUPSO algorithm.
Based on the returned values, the parameters are modified as described in Section 4.1.
Then, new particles are generated according to the modified parameters and sent to the
next loop. The optimal solution is then obtained after a number of cycles.

5. Optimization for PCSH Wind Turbine Tower

5.1. Design Parameters

It is assumed that the wind farm is built in a mountainous area, and site information
and the parameters of the wind turbine studied in this paper are listed in Table 4 [25,47]. In
the PCSH wind turbine tower, the upper steel part of the tower is made of Q345 steel and
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the lower PC part is made of C50 concrete. The height of the wind turbine tower is 77.5 m.
The material properties are determined by GB 50010-2010.

Table 4. Parameters of the wind turbine.

Wind Turbine Parameters Value

Generator model XE93-2000
Rated power 2 MW

Rotor diameter 93.4 m
Nacelle and hub weight 80 t

Distance from gravitational center of the nacelle and hub to the center of tower 3000 mm
Weight of blades 48.5 t

Distance from gravitational center of the blades to the center of tower 4864 mm
IEC wind zone IECIIIA

Annual average wind speed 7.5 m/s
Cut-in wind speed 3 m/s

Nominal wind speed 11 m/s
Cut-out wind speed 25 m/s
Extreme wind speed 52.5 m/s

Rotational speed 23 rpm
Maximum turbulence intensity 0.18

The parameters used in the PUPSO approach are listed in Table 5.

Table 5. Parameters of the PUPSO approach.

Parameter Value

wmax 0.9
wmin 0.4

M 50
N 30

Penalty term 0.5
ζ 0.3

5.2. Optimization Results for the PCSH Wind Turbine Tower
5.2.1. LCOE Optimization

The relationship between the LCOE under the category IV wind energy resource area
and the number of iterations is illustrated in Figure 6. According to Figure 6, by the use of
the proposed PUPSO optimization approach, the LCOE of the PCSH tower defined above
decreases clearly with the iteration of the approach and the minimization of the objective
function is realized when the number of the iteration reaches 31. The LCOE decreases
sharply in the first iterations because the algorithm in this paper strengthens the searching
space diffusion and heightens the weight of particle optimization in the early stage and
the weight of global optimum in the later iterations. The LCOE also drops fast in the early
stage of the PSO optimization. However, the optimal result of PSO is inferior to that of the
PUPSO algorithm proposed in this paper after the process is iterated four times.

The LCOE of four types of wind energy resource areas are presented in Table 6.
Compared with the LCOE of the original wind turbine tower, the LCOE of the optimized
wind turbine tower reduced by about 4% due to the reduction in construction costs.
Theoretically, if the LCOE is higher than the electricity price, the project is not economically
feasible. Therefore, the optimized PCSH wind turbine tower can increase profits and make
it economically possible to build wind farms in areas with lower electricity prices.
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Figure 6. Optimization of costs of PCSH wind tower as a function of iteration number.

Table 6. LCOE measurement.

Category
Equivalent Available

Duration (h)
Electricity Price in
2019 (Yuan/kWh)

LCOE for the Benchmark
PCSH Tower (Yuan/kWh)

LCOE for the Optimized
PCSH Tower (Yuan/kWh)

I 2850 0.34 0.3613 0.3474
II 2600 0.39 0.3874 0.3722
III 2500 0.43 0.3993 0.3835
IV 2000 0.52 0.4769 0.4571

The optimization rates, that is, the ratio of the difference of variables before and after
optimization to the value before optimization, using the PUPSO are shown in Figure 7. It
can be seen that the variables illustrated in the figure are less than zero, which means the
variables are smaller than they were before the optimization. As the number of iterations
increases, the variable tends to decrease.

Figure 7. The optimization ratio of variables.

The comparison of corresponding dimensions for the PCSH wind turbine tower is
listed in Table 7. Compared with the original design, the height of the upper steel segment
is greatly reduced to 22 m and approximately 30% of the total height of the PCSH tower
while the steel segment number is 1. The thickness of the tower, including the steel segment
and concrete segment, is also reduced, which decreases the material consumption of the
PCSH tower.
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Table 7. PCSH tower dimension before and after optimization.

Tower Variable Before Optimization After Optimization

Steel tube segment

Segment 3 1
t1
s (mm) 14 10

D1
st (mm) 2686 2686

D1
sb (mm) 3485 3296

H1
s (mm) 21,500 22,000

t2
s (mm) 18 -

D2
st (mm) 3485 -

D2
sb (mm) 4046 -

H2
s (mm) 20,000 -

t3
s (mm) 20 -

D3
st (mm) 4046 -

D3
sb (mm) 4400 -

H3
s (mm) 20,000 -

PC segment

tct (mm) 500 270
tcb (mm) 500 285
Hc (mm) 16,000 55,500
Dct (mm) 4878 3549
Dcb (mm) 6900 5800

Prestressed duct number 36 36
Prestressed reinforcement 8ΦS1 × 7 (d = 15.2 mm) 7ΦS1 × 7 (d = 12.7 mm)

Prestressed reinforcement area (mm2) 40,320 24,872

5.2.2. Utilization Ratio Comparison

In order to evaluate the utilization of both concrete and steel material of the optimized
PCSH wind turbine tower and the effectiveness of the approach, the material utilization
ratio as the ratio of the actual to maximum allowable performance values is determined.
Figure 8 shows the maximum constraint activity of all cases for the optimized design.
According to Figure 8, it can be seen that all utilization rates are less than one but greater
than zero and local buckling for the steel section and fatigue damage for the concrete
section are prominent. Therefore, no constraint was violated and the safety of the structure
is ensured. The utilization rate at the upper part of the steel segment is less than that at the
lower part of the steel segment due to the fact that D1

st is not optimized and is determined
by the wind turbine and that the thickness of the steel section is constant along the height
direction. The maximum utilization rate of the concrete segment is close to one along with
the height, which means that the optimal result is close to the global optimal solution.

The maximum utilization ratio of the PCSH tower before and after optimization
are listed in Table 8. According to Table 8, the utilization ratio of steel and concrete has
been enhanced significantly. That both maximum utilization ratios of prestressing bars
are close to one means the prestressing bars are fully used. The change of prestressed
reinforcement is mainly due to the change of structural internal forces caused by the change
of structural dimensions. The maximum utilization ratio for the load-carrying capacity of
the PC segment at windward side is below zero, which means that the windward side of the
tower is compressed rather than tensioned under the impact of prestress. The maximum
utilization rate of the optimized PCSH wind turbine tower is close to one, which illustrated
the effectiveness of the PUPSO algorithm.
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Figure 8. The utilization ratio for constraints along the tower.

5.2.3. Fundamental Natural Frequency Comparison

The rotating speed of the rotor in the rated power is 23 rpm. Therefore, the correspond-
ing rotational frequency is 0.38 Hz and the blade passing frequency is 1.15 Hz. The natural
frequency of the different tower is listed in Table 9. The fundamental natural frequency
of the original wind turbine tower is 0.45 Hz and the natural frequency of the optimized
PCSH wind turbine tower is 0.56 Hz. The natural frequency of the PCSH tower is higher
than that of the original tower. Moreover, the natural frequency of the proposed PCSH
wind turbine tower has a safety margin of 0.18 Hz away from the rotational frequency and
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0.59 Hz away from the blade passing frequency, which means a better dynamic behavior
compared with the original design.

Table 8. The maximum utilization ratio of PCSH tower before and after optimization.

Tower Maximum Utilization Ratio Before Optimization After Optimization

Steel segment

Local buckling 0.45 0.84
Overall stability 0.40 0.52

Compressive load-carrying capacity 0.53 0.76
Shear load-carrying capacity 0.15 0.37

Torsion load-carrying capacity 0.00075 0.0013
Combined load-carrying capacity 0.29 0.67

Fatigue 0.41 0.52

PC segment

Load-carrying capacity of windward side 0.064 0.34
Load-carrying capacity of leeward side 0.48 0.25

Combined load-carrying capacity 0.091 0.45
Fatigue of windward side 0.56 0.94

Fatigue of leeward side 0.21 0.48
Fatigue of prestressing bar 0.93 0.91

Table 9. Natural frequency comparison of different tower.

Tower Frequency (Hz)

Before optimization 0.45
After optimization 0.56

5.2.4. Weight Comparison

The weight of the wind turbine tower before and after optimization are listed in
Table 10. Due to the reduction in the proportion of steel sections, the consumption of
steel is reduced by about 82% and the weight of PC segment is increased by about 56%.
The optimized design greatly reduces the steel consumption of the tower. The weight of
the structure is increased by about 27%, which strengthens the anti-overturning capacity
of the structure.

Table 10. Weight comparison of different tower.

Weight Before Optimization After Optimization

Steel segment (t) 90 16
PC segment (t) 338 528

Total (t) 428 544

5.2.5. Computation Efficiency Comparison

To verify the effectiveness of the proposed PUPSO algorithm for the optimization of
the PCSH wind turbine tower, the comparison of computational times at different number
of cycles between the PUPSO approach and the UPSO computation is shown in Table 11.
When the cycle was 5, the computation time was saved by 49% and 38%, respectively.
When the cycle was 10, the computation time was saved by 47% and 51%, respectively. It
can be seen that by the use of the proposed PUPSO approach, the optimization computation
efficiency was clearly enhanced.

Table 11. Comparison of computational time with two computing method.

Cycle Number PSO Computation (s) UPSO Computation (s)
PUPSO

Computation (s)

5 55,074 44,912 27,845
10 99,352 107,553 52,427
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The comparison of computational time for PSO, UPSO, and PUPSO is shown in
Table 12. The proposed PUPSO algorithm has better optimization abilities compared with
the PSO and UPSO. As shown in Table 12, the computation time of the proposed PUPSO
can be saved by 51% and 53% when compared with the PSO and UPSO, respectively.
In conclusion, compared with the PSO and UPSO algorithm, the PUPSO algorithm can
improve the optimization efficiency by 60–110%. The reason for the large difference in
calculation efficiency is that computing time will be saved when a constraint violation
occurs as the checking procedure is interrupted directly and employs the penalty term, as
shown in Figure 3. Not only does the approach speed up the calculation efficiency but it
also avoids premature convergence as much as possible.

Table 12. Comparison of computational time with three computing methods.

PSO Computation (s) UPSO Computation (s) PUPSO Computation (s)

432,759 451,480 212,801

6. Conclusions

Based on the PUPSO algorithm, a geometry optimization approach for PCSH wind
turbine towers has been proposed in this paper. During the optimization procedure, several
working conditions, including wind and earthquakes as well as combinations of these
factors, are considered. The LCOE of the PCSH tower is treated as the objective function
and the geometry variables for the optimization of the PCSH tower include the dimensions
of the PC and steel segments of the PCSH wind turbine tower. Based on this analysis, a
geometrically optimal result was obtained, and the following findings can be made:

1. The proposed PUPSO algorithm performs better when compared with the traditional
PSO algorithm and the UPSO. The computation time is greatly reduced by using
parallel algorithms. Fulfilling the design constraints of relevant specifications and
industry standards, the PUPSO algorithm provides an optimal design for the PCSH
wind turbine towers with considerably improved computational efficiency.

2. The levelized cost of energy (LCOE) of the PCSH wind turbine tower in a life cycle
perspective is considered as the objective function as an alternative to the direct
investment. The LCOE of the optimized PCSH wind turbine clearly decreases when
compared with the benchmark tower and increases the material utilization rate of the
tower. The optimized PCSH wind turbine tower can be an economic alternative for
wind farms with lower LCOE requirements. The height of the steel segment of the
optimized PUPSO tower is recommended to be 30% of the total height of the PCSH
wind turbine tower.

3. The optimized tower can provide better dynamic behavior to avoid the resonance
caused by wind turbine excitation.

4. The optimization results for PCSH wind turbine towers provide valuable references
in practice for PCSH wind turbine tower design in mountainous areas. This paper,
based on a linear hypothesis and limited deformation, has been conducted as the
preliminary optimization. Because of the nonlinearity present in prestressed concrete
towers, nonlinear calculations should be investigated in the future.
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Abstract: This paper discusses the size and shape optimization of a guyed radio mast for radio-
communications. The considered structure represents a widely industrial solution due to the recent
spread of 5G and 6G mobile networks. The guyed radio mast was modeled with the finite element
software SAP2000 and optimized through a genetic optimization algorithm (GA). The optimization
exploits the open application programming interfaces (OAPI) SAP2000-Matlab. Static and dynamic
analyses were carried out to provide realistic design scenarios of the mast structure. The authors
considered the action of wind, ice, and seismic loads as variable loads. A parametric study on the
most critical design variables includes several optimization scenarios to minimize the structure’s total
self-weight by varying the most relevant parameters selected by a preliminary sensitivity analysis. In
conclusion, final design considerations are discussed by highlighting the best optimization scenario
in terms of the objective function and the number of parameters involved in the analysis.

Keywords: guyed mast; structural optimization; genetic algorithm; structural design

1. Introduction

Guyed masts are extensively used in the telecommunications industry, and the
size, shape, and topology optimization can significantly benefit their transportation and
installation. The main loads acting on guyed mast structures arise from wind [1,2],
earthquakes [3–6], sudden rupture of guys [7], galloping of guys [8], and sudden ice
shedding from ice-laden guy wires [9].

Their optimization must fulfil several requirements under ultimate and service limit
states [10]. Specifically, service limit states are crucial for guyed mast structures due to high-
amplitude oscillations caused by their high deformability. In some cases, these vibrations
have led to a signal loss caused by excessive displacement and rotation of the antennas
and, in other cases, have resulted in permanent deformation or failure. Therefore, size
optimization of the guyed mast structure represents a challenging task since the increment
of the performance ratio of the materials should be counterbalanced by an adequate lateral
stiffness to reduce high-vibration drawbacks [11].

Saxena [12] reported several happenings where heavy icing combined with moderate
wind resulted in severe misalignment of towers and complete failure. Novak et al. [13]
showed that ice accumulation on some parts of the guy wires and moderate winds could
lead to the guy galloping, resulting in unacceptable stress levels throughout the structure.
The main topics investigated in the field of guyed structures can be summarized as follows:

• Structural design. Several researchers investigated the dynamic response of guyed
mast structures through experimental tests and numerical modeling to derive design
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approaches and recommendations [14–16]. In particular, there are studies dealing
with the dynamic identification and accurate estimate of the wind loads [17–21].

• Nonlinear dynamics. The proneness to global and local instabilities challenged several
scholars to estimate and predict the nonlinear behaviour of guyed masts [22–26].

• Structural optimization. The need for guyed structures that are easy to install and
transport challenged several scholars to optimize their shape in order to reduce
the structural mass without reducing the lateral stiffness and prevent instability
phenomena [27].

• Structural control. There are some attempts of control methods to reduce vibrations
in mast-like structures [28–30]. Among others, Blachowski [31] proposed the use of a
hydraulic actuator to control cable forces in guyed masts using Kalman filtering.

This paper tackles the size and shape optimization of guyed mast structures. A video
of the considered structure is available in Supplementary Material. Since the first attempts
by Bell and Brown [32], many engineers attempted to optimize guyed masts under wind
loads using deterministic global optimization algorithms. However, as pointed out by [27],
this approach leads to local optimum points, since each design variable was considered
separately. Thornton et al. [33] and Uys et al. [34] proposed general procedures for
optimizing steel towers under dynamic loads. To the author’s knowledge, Venanzi and
Materazzi [35] were the first to implement a multi-objective optimization method for guyed
mast structures under wind loads using the stochastic simulated annealing algorithm for
size optimization. The objective function implemented by [35] included the sum of the
squares of the nodal displacements and the in-plan width of the structure. Zhang and
Li [36] attempted to achieve both shape and size optimization in a two-step procedure
using the ant colony algorithm (ACA). Cucuzza et al. [37] proposed an alternative approach
in which the multi-objective optimization problem has been reduced to a single-objective
problem through suitable parameters. Luh and Lin [38] were challenged in achieving
the topology, size, and shape optimization of guyed masts using a modification of the
binary particle swarm optimization (PSO) and the attractive and repulsive particle swarm
optimization.

This paper discusses the size optimization of guyed masts using a genetic algorithm (GA)
by considering different design scenarios (e.g., Cucuzza et al. [37] and Manuello et al. [39]).
Kaveh and Talatahari [40] noticed that the particle swarm optimization (PSO) is more effec-
tive than ACA and the harmony search scheme for optimizing truss structures. However,
Deng et al. [41] and Guo and Li [42] were successful in optimizing tapered masts and
transmission towers using modifications of genetic algorithms (GA). Moreover, Belevivcius
et al. [27] attempted the topology-sizing optimization problem of the guyed mast as a
single-level single-objective global optimization problem using GAs.

Therefore, given the numerous successful solutions of guyed masts using GAs, the
authors chose to investigate the size optimization of a guyed mast structure using GAs. Fol-
lowing [35], this paper focuses on the size optimization by considering eight possible design
scenarios. The purpose of the present paper is two-fold. Firstly, this work aims at achieving
a size optimization on a real application case adopting structural verification according
to Eurocode 3. During the load evaluation phase, detailed analyses have been conducted,
including wind, ice, and seismic actions and the verifications against instabilities. Secondly,
the computational intelligence procedure adopted by the authors allowed the investigation
of several scenarios simultaneously. As a result, the parameters that mainly affected the
design process have been detected to provide preliminary indications to engineers in the
practical design of similar structural typologies. Furthermore, the considered case study
may represent a benchmark case for validating the reliability and accuracy of alternative
numerical approaches. Therefore, the paper is organized as follows. After the case study
description and the FE model, the authors introduce the first numerical results and the
outcomes of the size and shape optimization.
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2. Case Study

The considered structure is a guyed radio mast. It is a thin, slender, vertical structure
sustained by tension cables fixed to the ground and typically arranged at 120° between
each other.

The main body is a single central column made of tube profiles or truss systems when
a high elevation must be reached, see Figure 1. More than one set of cables is placed at
different elevations to prevent instability phenomena. Guyed towers are usually built for
meteorological purposes or to support radio antennas, such as the one considered in this
research. In particular, this structure can be used for a limited time during an event or
maintenance of primary transmission towers. Therefore, it is also called a temporary base
transceiver station (BTS), typically adopted to supply the immediate service. Sporting
events, concerts, motor racing, military camps, and emergency events are typical examples
of temporary BTS applications. The BTS is usually mounted on a moveable platform called
the shelter.

The considered structure is located in Bassano Del Grappa, in the north of Italy, at
a 129 m elevation from the sea level. The surrounding area is low-urbanized, with no
relevant obstacles to the wind loads. The total height of the mast is 30.00 m. It is sustained
by a central pole where 21 cables are fixed, see Figure 2. Other structural elements with
rectangular cross-sections are used to create truss systems connecting cables and the
central pole.

(a) (b)

Figure 1. (a) Render model realized using Tekla Structures. (b) Technical drawing of the structure
investigated with dimensions in mm.
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The central pole consists of five circular hollow steel profiles with flanged joints and
6 m in length. All connections are bolted, as well as those connecting the cables to the pole.
The shelter is a steel box devoted to partially sustaining the structure and hosting electronic
equipment. It is usually mounted on a moveable platform.

Figure 2. Pictures and details of the considered structure.

3. Load Analysis

This section details the loads acting on the structures, from the dead to the variable
loads. According to the Italian Standard Regulation NTC2018, the load combinations of the
actions have been evaluated at the ultimate limit state (ULS) and, for seismic conditions,
at the life safety (LS) limit state. In Appendix A, Table A4 illustrates the most critical
combinations for both static and dynamic configurations. Partial safety factors γ and
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combination coefficients ψ were adopted in order to consider maximization (positive sign)
or minimization (negative sign) of effects both for vertical and horizontal actions.

3.1. Dead Loads

The structure is made of steel S355, whose mechanical stress-strain behaviour is
depicted in Figure 3, and the characteristics are listed here: fus = 510 MPa, fys = 355 MPa,
Es = 210,000 MPa, which are the ultimate and yielding stresses and Young’s modulus,
respectively.

Figure 3. Mechanical stress–strain behaviour of steel S355 implemented in SAP2000.

The cables are made of galvanized steel consisting of 6 strands (216 wires) with an
independent metal core (49 wires). The main characteristics are illustrated in Table 1.

Table 1. Technical specifications of the steel ropes.

Steel Ropes (Cables)

Model 6 × 36WS + IWRC/265 wires

Construction pattern 6 × (14 + (7 + 7) + 7 + 1) + (7 × 7)

Winding direction right cross
Material galvanized steel

Resistance 1170 N/mm2–180 kg/mm2

Cable diameter Weight Area Wire diameter Load to failure

[mm] [kg/m] [mm2] [mm] [kN]

16 1.36 173.25 0.91 161
18 1.67 212.74 1.03 204
20 2.02 257.32 1.14 252
22 2.41 307.01 1.26 305

The structure investigated consists of a few types of elements, as indicated in Table 2.
Dead loads are calculated from the weight per unit length of each member.
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Table 2. Computation of the dead loads.

Computation of Dead Loads

Profile [mm] w
[kg/m]

Length [m] n° Wtot
[kg]

Circular
D168.3 × 12.5 48 6 5 1440
D168.3 × 12.5 48 5.65 2 543

Rectangular
60 × 40 × 3 4.35 3.16 9 124
60 × 40 × 3 4.35 1.8 9 71
100 × 40 × 3 6.13 0.45 6 17

Rope

D16 1.3667 12.45 3 51
D16 1.3667 15.44 3 63
D16 1.3667 24.43 9 300
D16 1.3667 5.76 3 24
D16 1.3667 8.46 3 35

2651 Kg

The non-structural dead loads originate from the wiring weight and the steel ladder
for inspection and maintenance. This load results in 0.3 kN/m. Antennas and parabo-
las represent the weight of the equipment. Two groups of three antennas are located at
26.00 and 29.25 m in height, with a 120° in mutual spacing. The first one is the model
AOC4518R7v06 produced by Huawei®. The second one is the model 6888670N manufac-
tured by Amphenol®. Finally, there are three parabolas located at 23.15 m height, spaced
120° apart from each other, 30 cm in diameter. Tables 3 and 4 detail the weight of the
equipment and the non-structural dead loads.

Table 3. Weight of equipment, H, W, and D stand for height, width, and depth.

Typology Model No Elevation [m] H×W×D [mm] Self-Weight [kg] Clamps [kg] Total [kg]

Antenna AOC4518R7v06 3 29.25 1509 × 469 × 206 39.3 2 × 5.8 153
Antenna 6888670N 3 26 1997 × 305 × 163 32 2 × 3.9 119
Parabola n.d 3 23.15 Diameter = 300 15 2.2 51.6

Table 4. Non-structural dead loads.

Item qk [kN/m] Qk [kN]

Steel ladder,
other

0.3 -

Antenna - 1.53
Antenna - 1.19
Parabolas - 0.52

3.2. Variable Loads

In this section, the detailed load modeling phase, for each variable load considered, is
described. With specific reference to the wind action evaluation, the drag and lift forces are
calculated according to the CNR-DT 207 R1/2018 [43]. The relationship between inertia
and viscous forces, i.e., how wind load impacts to the surface, is taken into account with
the Reynold’s number Re with the following expression:

Re(z) =
l · vm(z)

ν
(1)

where z is the elevation, l is the characteristic length, vm is the averaged wind speed, while
ν is the kinematic viscosity of air (ν = 15 × 10−6 m2/s).
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3.2.1. Maintenance and Repairing Loads

Following the Italian national recommendations [44], it is supposed that a typical
situation of inspection or maintenance is performed by an operator working on the steel
ladder. A concentrated load of 120 kg is applied at the top of the tower. Despite that, it
is reasonable to believe that the operator could work by using a basket elevator, without
loading the structure.

3.2.2. Wind Loads

The wind action was evaluated according to the Italian recommendations in [43].
Firstly, the peak kinetic pressure (qp) was evaluated as follows:

qp =
1
2
· ρ · v2

r · ce(z) (2)

where p is the kinetic pressure, while:

• ρ is the air density;
• v2

r is the reference wind velocity;
• ce is the exposure coefficient, varying with the elevation z of the structure.

For this purpose, the equivalent longitudinal or drag forces, fD, and transverse or lift
force, fL, are evaluated as follows:

fdrag = qp(z) · l · cdrag; fli f t = qp(z) · b · cli f t (3)

where

• qp(z) is the peak kinetic pressure evaluated at height z;
• l is the characteristic element size;
• b is the reference transverse dimension of the section;
• cdrag and cli f t are the longitudinal and transverse dynamic coefficients.

Drag D and Lift L forces are reported in Tables A2 and A3.

3.2.3. Ice Load

Ice and snow attached to the structural surface can significantly increase the variable
loads in flexible and light structures. In particular, the radio mast is very sensitive to
changes in the wind-exposed surface. In addition, the ice covering can increase the volume
and the surface of the structural elements more than twice due to the low thickness of the
central pole. The recommendations in [43] provide several scenarios for ice coverings. In
the absence of more detailed evaluations, it is customary to consider an ice sleeve formation
that is 12.5 mm thick. After the estimate of the wind loads, the influence of the ice sleeve
formation on the structure is considered by assuming an additional exposed surface equal
to 15% of the original one.

3.2.4. Seismic Action

Seismic action is evaluated according to the Italian seismic hazard map [44]. A linear
dynamic analysis with seismic elastic response spectrum corresponding to the service limit
state was carried out. Specifically, seismic actions are considered as acting independently
in the X and Y plane directions.

The elastic response spectrum considered in the analysis was calculated by considering
the topographic category of the site and geometry of the building (Figure 4). The first
33 vibration modes of the structure are included in the analysis, to reach 85% of the total
participating mass according to the national regulations in [44]. The mass participating
ratios are listed in Appendix A.
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Figure 4. Elastic response spectrum corresponding to the service limit state (SLV), where Sa is the
spectral acceleration.

4. Finite Element Modeling

The structural model was developed using two different element types: beams and
cables. Beam elements model the main pole and all structural elements except for the
cables. They possess the geometric and material properties of structural elements. The
beam elements are used to model the main pole and secondary elements. Moreover, except
for the main pole, rotation releases are applied at the ends in order to consider no flexural
rigidity, as occurring for trussed structures.

Cable elements are used to simulate the steel ropes. Cable elements undergo large
displacements that give rise to geometric nonlinearities. Therefore, the equilibrium of
the cables is considered in the deformed configuration using SAP2000. As a result, the
structural behaviour of guyed towers can be highly nonlinear, especially for low pre-tension
cables, which are prone to large displacements. On the contrary, the nonlinear behaviour
becomes less pronounced by increasing the pre-tension, resulting in high compression
levels and minor instability effects. This paper considers the envelope of the maximum
and minimum responses associated with each load condition.

Figure 5 plots the three modes with a higher mass participation ratio. These are the
10th, 11th, and 12th modes obtained from the dynamic analysis of the mast structure
with the dead loads. On the contrary, the first modes arising from the dynamic analysis
have lower mass participation factors and are characterized by local deformation of the
structural elements. The 10th, 11th, and 12th modes are the first modes exhibiting the
global deformation of the mast structure.

X and Y identify the in-plane orthogonal directions. The 10th and 11th modes have
an approximate 26% mass participation factor in the Y and X directions, respectively. The
natural period is very low and at approximately 0.4 s. The 13th mode is mainly torsional
with nearly a 7 and 4% mass participation factor in the X and Y directions.

Figure 6 shows the positive (in dark green and purple) and negative (in red and light
green) maximum and minimum envelopes of the axial, shear forces, and bending moments
acting on the structural elements. Figure 7 plots the performance ratios of all structural
elements except for the cables. The performance ratio is the ratio between the maximum
stress in the structural element and the yielding stress. The performance ratios are defined
by the colour map next to Figure 7. The plots highlight the presence of a structural element
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in the first half of the central pole with a high-performance ratio, depicted in yellow. The
first section of the central pole has a low performance ratio, lower than 0.25. After the
section with a performance ratio in the range 0.4–0.65, the following sections fall in the
range 0.25–0.4 and are coloured in green. The top sections of the central pole are not
significantly stressed, with a performance ratio of 0–0.25. The bracings have low stress,
plotted in cyan, with performance ratios of 0–0.25.

(a) (b) (c)

Figure 5. (a) Mode 10th—Ts = 0.437 s—mass participation ratio X = 9.6%, Y = 26.2%; (b) Mode
11th—Ts = 0.434 s—mass participation ratio X = 26.4% Y = 9.2%; (c) Mode 12—Ts = 0.206 s—mass
participation ratio X = 7.2% Y = 4.4%.

Figure 8 shows the maximum displacements in the X (u1), Y (u2) directions and their
combination (ut) at the service limit state. The maximum displacement is located at the top
of the tower, in particular at joint 6 (z = 30.00 m), with a maximum displacement equal to
ut = 18.7 mm.
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(a) (b) (c) (d) (e)

Figure 6. (a) Axial force, (b) shear force (V2), (c) bending moment (M2), (d) shear force (V3),
(e) bending moment (M3).

Figure 7. Performance ratios of the pole before optimization. Cables are depicted with magenta
colour because their performance ratios are not included in the current representation.
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Figure 8. Displacements vs. elevation at the service limit state in two in-plane orthogonal directions
(u1, u2) and their combination (tot).
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5. Structural Optimization

In optimization problems, the main goal is to find the best conditions in terms of the
optimal set of design parameters collected in the design vector x, which minimizes an ob-
jective function (OF) f (x) [45–47]. These problems can be categorized into single-objective
or multi-objective based on the number of OFs involved, and a further classification is
based on the presence (or not) of constraints [48–50]. In the structural optimization field, it
is common to deal with constrained optimization, whose general statement is [51]:

min
x∈Ω

{ f (x)}
s.t. gq(x) ≤ 0 ∀q = 1, . . . , nq

hr(x) = 0 ∀r = 1, . . . , nr

(4)

where x = {x1, . . . , xj, . . . , xn}T is the design vector to be optimized, whose terms are
limited into a hyper-rectangular multidimensional box-type search space domain of interest
denoted as Ω, given by the Cartesian product of the range of interest of each j-th of each
design variable bounded in [xl

j, xu
j ], Ω = [xl

1, xu
1 ]× . . . × [xl

j, xu
j ]× . . . × [xl

n, xu
n]. The term

gq(x) in (4) denotes inequality constraints whereas hr(x) are equality ones, which further
reduce the feasible search space inside Ω. In structural optimization, it is typical to deal
with inequality constraints, and a common goal is to minimize the global cost of the
structure. Since this involves many terms, the main attempt is minimizing the self-weight
of the structure, indirectly connected to material cost, i.e., material usage and natural
resources consumption [51]. Several strategies have been developed over the years to
handle constraints [52–54]. In the present work, the penalty function-based approach was
implemented due to its simplicity, allowing converting the problem with OF f (x) into a
new unconstrained version φ(x):

min
x∈Ω

{φ(x))} = min
x∈Ω

{ f (x) + H(x)} (5)

where H(x) is the penalty function. Adopting a static-penalty strategy, H(x), assume this
form [55,56]

Hs(x) = w1HNVC(x) + w2HSVC(x) (6)

where HNVC is the number of violated constraints and HSVC is the sum of all violations:

HSVC(x) =
np

∑
p=1

max{0, gp(x)} (7)

w1 and w2 are the violation control parameters, whose numerical values are assumed equal
to w1 = w2 = 100 following [55].

In the current study, the authors carried out a parametric study on the design variables
of the guyed mast. This fact has led to eight different scenarios, summarized in Table 5. In
addition, the starting initial values of the design parameter are listed in Table 6, while the
general optimization workflow is illustrated in Figure 9. To compare the results, the focus
is related only to the performance ratios PR of the central pole of the guyed radio mast,
being the pole the most stressed element. It consists of five segments 6.00 m long with the
same cross-section. Thus, starting from the ground level:

1. Pole1 (0.00 to 6.00 m);
2. Pole2 (6.00 to 12.00 m);
3. Pole3 (12.00 to 18.00 m);
4. Pole4 (18.00 to 24.00 m);
5. Pole5 (24.00 to 30.00 m).

Starting with a constant diameter of the cross-section for the pole, at the end of the
optimization, it is advisable to find a tapered solution following a linear relationship with

68



Appl. Sci. 2022, 12, 4875

the height, as represented in Figure 10f. Accordingly, it is possible to shape the pole cross-
section with two design variables described by the bottom Φi and top Φ f diameters. In the
following, the different scenarios obtained from the parametric study based on the design
variables involved in the optimization problem are described:

• Scenario A: this scenario involves the diameter Φ, as a sole variable, in the attempt to
reduce the material consumption with a constant pole cross-section diameter with the
height, as illustrated in Figure 10a.

• Scenario B: this scenario attempts to refine the previous case by adopting a tapered
solution for the pole, by using the bottom Φi and the top Φ f diameters, as represented
in Figure 10b.

• Scenario C: further improvements are considered concerning scenario B by adding
the cable pre-stressing force F as a variable of the optimization, as represented in
Figure 10c.

• Scenario D: further improvements are considered to scenario B by using a unique
value for the pole thickness t of the tapered elements of the pole, as represented in
Figure 10c.

• Scenario E: further improvements are considered with respect to scenario B by op-
timizing both cable pre-stressing force F with a unique value of thickness t for the
tapered elements of the pole, as represented in Figure 10e.

• Scenario F: from the structural analysis of scenario E, it is possible to point out how
the linear law for the tapering forces to use a larger section where it is not necessary.
Elements 2 and 3 are the most stressed ones. Therefore it is possible to further refine
scenario E by considering a thickness value for the intermediate pole elements tinter
and a different thickness for the other extremal pole elements tends.

• Scenario G: in this scenario, the five different thickness values only have been governed
for every pole element {t1, t2, t3, t4, t5} for a constant diameter solution with height,
as depicted in Figure 10f.

• Scenario H: in this last scenario, a complete approach involves both the tapered
solution by governing the initial bottom Φi and the final top Φ f diameters, the
five values of thickness for every pole element {t1, t2, t3, t4, t5}, and even the cable
pre-stressing force.

Figure 9. Workflow of the optimization problem.

Table 5. Parametric study on the design variables involved and summary of the different scenarios.

Scenario No. Parameters

A(Φ) 1
B(Φi , Φ f ) 2
C(Φi , Φ f , F) 3
D(Φi , Φ f , t) 3
E(Φi , Φ f , t, F) 4
F(Φi , Φ f , tends, tinter , F) 5
G(t1, t2, t3, t4, t5) 5
H(Φi , Φ f , t1, t2, t3, t4, t5) 8
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Table 6. Total mass of the main pole.

Parameter Measure Value

Φ0 [mm] 168.3
t0 [mm] 12.5
L [mm] 6000

Mass [kg] 288
no elements [-] 5
Total Mass [kg] 1440

(a) Scenario A (b) Scenario B (c) Scenario C

(d) Scenario D (e) Scenario E

(f) Scenario F (g) Scenario G

Figure 10. Parametric study on the design variables involved and representation of the different
scenarios described in Table 5.

Constraints Involved in the Structural Optimization Problem

The optimization problem statement is reported in (4) and the constraints were treated
with the penalty-based approach illustrated in (5), by converting the constrained problem
into an equivalent unconstrained one. The resolution of the optimization task considers the
structural design assessment required by national and international codes to ensure the
safety of constructions. In particular, the structural verifications derive from Eurocode 3

70



Appl. Sci. 2022, 12, 4875

(EN 1993-1-1: 2005) and are referred to the ultimate limit state (ULS). The design verifica-
tions include tensile, compression, and buckling verification, and a combined assessment,
such as the interaction capacity according to Annex B of the Eurocode 3:

D
C

=
NEd

χy A fyk
γM1

+ kyy
My,Ed

χLTWpl,y fyk
γM1

+ kyz
Mz,Ed
Wpl,z fyk

γM1

≤ 1 (8)

D
C

=
NEd

χz A fyk
γM1

+ kzy
My,Ed

χLTWpl,y fyk
γM1

+ kzz
Mz,Ed
Wpl,z fyk

γM1

≤ 1 (9)

where D stands for the demand and C stands for the capacity of the structure. Specifically,
NEd is the acting axial force, whereas My,Ed and Mz,Ed represent the acting bending mo-
ments in the two principal directions of a planar local reference system centered on the
cross section center of gravity. A is the cross section area of the pole, Wpl,y and Wpl,z are
the plastic section modulus in the two principal directions, fyk is the yielding strength of
the steel, whereas γM1 is the partial safety factor for instability conditions, equal to 1.05
from the Italian National Annex. χLT is the reduction factor for lateral–torsional buckling,
whereas kyy, kyz, kzy, and kzz are interaction factors whose values are derived according
to two alternative approaches based on Annex A (method 1)and Annex B (method 2). The
global structural deformation referred to the service limit state (SLS) has also been consid-
ered by verifying the top displacement of the mast. Specific recommendations for guyed
mast structures are missing in national and international codes. Therefore, the authors
adopted the suggestions defined in the Italian Technical Code NTC2018 (D.M.17/01/2018)
reported in Chapter 4.2.4.2.2 Table 4.2.XIII related to limitations of lateral displacements
of steel multi-storey frame structures. These limitations express a threshold condition in
terms of the total height of the structure H:

δSLS,top ≤ δSLS,top,lim =
H

500
=

30000 mm
500

= 60 mm (10)

Since this condition is specific for steel multi-storey frame structures, the authors will
assume this value as a reasonable choice to ensure service life assessment and preservation
of working conditions of the telecommunication guyed mast tower. In the next section, a
discussion on the results is carried out.

6. Results and Discussion

The paper compares the outcomes of the size and shape optimization in eight different
scenarios, distinguished by different design variables. Scenario A is associated with the
worst improvement of the structural performance since a single diameter is used for the
central pole. Additionally, industrial steel profiles do not cover all possible ranges of the
diameter. Improvements in the structural performance and weight reduction are achieved
in the following scenarios when the search space becomes larger by increasing the number
of design variables.

Scenario B introduces the tapering of the central pole with a linear variation from the
bottom to the top. In this case, the optimal solution is affected by intermediate sections,
which are more stressed. Consequently, the end cross-sections are over-estimated. In
response to that, Scenario F introduces the linear tapering of the tube thickness tends,tinter
to enhance the performance of the optimal solution. Parallelly, in Scenario G, five different
thicknesses are adopted (t1, t2, t3, t4, t5), and the results are analogue to case F. Therefore,
the thickness of the steel members is a suitable optimization parameter. At the same
time, the diameter alone is not capable of returning attractive solutions because a linear
interpolation trend is used. In addition, lower and upper limits were imposed for d and
t. In particular, for this kind of structure, a minimum diameter dmin ≥ 100 mm and a
minimum thickness tmin ≥ 3 mm was imposed.
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The cross-section area depends on the square of the thickness. Therefore, small
changes in t significantly affect the resulting area. Conversely, if the diameter is the sole
search space, despite being tapered linearly with height, even significant modifications
may not produce notable improvements. Still, the increment of design variables involved
in the structural optimization typically increases the computational efforts. However,
the scenario with the highest number of variables was characterized by an average time
iteration close to 18s, using a computer with average performance. The computational
effort cost of the optimization procedure strongly depends on the machine performance,
no convergence issues occur. Table 7 lists the average values of performance ratio obtained
from the eight optimization scenarios. All scenarios were collected in terms of number
of parameters involved during the analysis. Table 7 proves that the increment in the
number of design variables is associated with higher performance ratios. The target
of the optimization achieves the best weight reduction, fully exploiting the structural
material, without exceeding the ultimate and service limit states. Table 7 lists three sets
of performance ratios: the initial one before optimization, the optimized, and the one
obtained using commercial steel profiles, called the design performance ratio. The averaged
performance ratio is equal to 28% before optimization. It significantly increases from
scenario A, nearly 45%, to scenario G with 68%.

Table 7. Averaged performance ratios obtained in each optimization scenario.

No Parameters PR Initial PR Optimized PR Design

[%] [%] [%]

1

28.0

45.7 40.5
2 39.5 43.1
3 50.5 50.6
4 54.4 58
5 65.8 60.2
8 68 66

Essentially related to PR, mass reduction gives an idea about how much lighter (or
heavier) the structure becomes due to the optimization process. It directly provides an
estimate of cost savings.

Therefore, the results in Table 8 are consistent with the ones in terms of performance
ratios, shown in Table 7.

Table 8. Mass values before/after optimization and after proper approximation (design) using
commercial steel profiles.

No Parameters Initial Mass [kg] Optimized Mass [kg] Design Mass [kg]

1

1440

1003 1176
2 1051 1111
3 803 818
4 574 588
5 403 453
8 385 408

Figure 11 shows the optimization results for the Scenario G, in term of the performance
ratio obtained by averaging the performance ratios for each structural element. The results
for all scenarios are reported in Appendix A. Scenario G, depicted below, exhibits higher
values of the performance ratios. This fact becomes become more evident for poles 2, 3, and
4. In these cases, the performance ratios, associated with the design solutions, achieved
values equal or greater than the optimized one due to the approximation of the design
section adopted. In the post-processing phase, in fact, the optimized section chosen by
the list of the FE software was manually edited since the structural constraint violation
or the maximum performance ratio was not reached during to the optimization process.
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Moreover, in Table 9, the optimized design section for different independent iterations and
the proposed industrial solutions according to product list, provided by the software, are
listed. As expected, the mass reduction achieved during the optimization process results
higher than the design solution due to the approximation issue. For the proposed scenario,
the iteration (Ntrial) that guarantees the best objective function is the second. In Appendix A,
the graphical (through histogram charts) and numerical representation (through tables) of
the optimization result for each scenario are provided. In order to provide an overview of
the objective function trend, the performance ratios and mass reduction for each scenario
were collected into Figures 12 and 13. The mentioned values were obtained for each
scenario, making an average of the results, before and after optimization, independently,
for each steel profile composing the central pole.

Figure 11. Scenario G.—PRs trend. In blue—the performance ratios of each pole before optimization
are illustrated, otherwise orange for the optimized solution. In green—PRs at a design configuration
according to the product list.

Figure 12 highlights an almost monotone increment of the performance ratios to the
number of design variables. Interestingly, for a number of variables n ≥ 5, no significant
improvements are achieved. Figure 13 emphasizes an important reduction of structural
mass as the design variables increase. Once again, n = 5 represents trade-off. If the number
of variables exceed 5, no significant improvements are observed.

Figures 12 and 13 show a comparison between each scenario in terms of the average
performance ratio and mass reduction, respectively. Figure 12 highlights the difference
with the initial state, which has an average performance ratio PR0 = 25.6%. An evident
improvement is achieved for scenarios that include the thickness t as the design variable.
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Figure 12. In blue, orange, and green, the average PRs, respectively, at the initial condition, after
optimization, and design solution.

Figure 13. Increasing the number of design variables, the final mass becomes gradually smaller, until
385 kg (scenario H).
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Table 9. Scenario G results: optimized solutions for the different independent executions (Ntrial) and
proposed industrial one, according to the product list.

SCENARIO G—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 3 6000 73
Pole 2 (6–12 m) 168.3 4 6000 97
Pole 3 (12–18 m) 168.3 3 6000 73
Pole 4 (18–24 m) 168.3 3 6000 73
Pole 5 (24–30 m) 168.3 3 6000 73

Total Mass [kg] Σ 391

Mass variation [kg] −1050 Mass variation [%] −72.88

SCENARIO G—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 4 6000 97
Pole 2 (6–12 m) 168.3 4 6000 97
Pole 3 (12–18 m) 168.3 3 6000 73
Pole 4 (18–24 m) 168.3 3 6000 73
Pole 5 (24–30 m) 168.3 3 6000 73

Total Mass [kg] Σ 414

Mass variation [kg] −1026 Mass variation [%] −71.22

Ntrial = 3

t1 t2 t3 t4 t5 OF
[mm] [mm] [mm] [mm] [mm] [kN]

3 4 4 3 3 34.985

3 4 3 3 3 34.751

3 4 3 4 3 34.985

In particular, from Scenarios D, E, F, G, H, the average performance ratios exceed 50%,
resulting in a more than 40% difference compared to the initial state. Figure 12 shows
that the commercial profiles are sufficient to accommodate the optimized solution. An
exception is noticeable in Scenario A because the optimization is performed using just one
diameter Φ, which is optimal for a few parts of the structure, while others are “over-fitted”,
resulting in a decrease of the performance ratios −28.4% and an increase of structural mass
(+173 kg), as shown in Figure 13.

Similarly, a monotonic increment of the structural mass at the end of the optimization
process is evident from Figure 13. In this case, the tonnage decreases with the increasing of
the parameter’s number. There is an overall mass reduction of about −67.5% (−972 kg)
from scenario D to H. In scenarios A, B, and C, the thickness t of structural members is not
considered. Therefore, the mass loss is not satisfactory, at about −28.4% (−409 kg). The
choice of the best scenario should depend on one of the five situations described above
(from D to H) related to the better PRs gain and mass loss.

7. Conclusions

In this paper, a guyed radio mast’s size and shape optimization process was carried
out to identify the equilibrium solution that guarantees the lighter optimized model,
verifying strength, instability, and deformation requirements. The paper considers a
detailed evaluation of the variable loads according to the Eurocodes recommendations.
Furthermore, the OAPI was used to perform a structural analysis with the finite element
software SAP2000 by considering the non-linearity of the cables. The optimization was
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carried out using a genetic optimization algorithm. Eight scenarios (labeled from A to
H) were investigated, considering different arrangements of the geometric characteristics
of the central pole and cables. The input parameters were increased from Scenario A to
H to achieve the best fitness value of the self-weight. From Scenario A to H, the mass
reduction index generally increased with the computational effort except in scenarios B and
E, in which the input parameter did not represent the best vector design for the structural
optimization. At this stage, the best design solution was evaluated from the database
of cross-sections inside the finite element software. Though Scenario A provides the
worst structural solution in terms of objective function, it represents the most convenient
optimization strategy due to its low computational effort; on the contrary, Scenario H
exhibits the best fitness value with the lowest self-weight, but it represents the most time-
consuming solution. The best solution is achieved when the thickness values of each
member, which, composed of the central pole, are included in the optimization process. An
improvement of the structural behaviour against instability is observed with increasing
thickness. This verification is critical for this structure, mainly subjected to normal stresses
resulting from self-weight and pre-stressing cable force. The entire optimization process
seems to not be sensible to the pole diameter, chosen as the input parameter of the design
vector. Although the final results of the FEM analyses are based on the Italian standards,
other codes (e.g., Eurocodes, American code, etc.) can be selected from the SAP2000 settings.
However, since no detailed analysis was carried out and many standards are based on the
semi-probabilistic approach, the final results should be similar, even with different code
formulations. Nevertheless, the partial safety factors involved in load combinations remain
quite the same from the numerical point of view, regardless of the followed code.

In future developments, the authors will attempt to replace circular hollow sections
with built-up steel solutions to achieve the best structural performance and assemblage
procedures. Especially for higher structures, guyed radio masts generally consist of a
truss skeleton. Another possible development could be a structural optimization for a
cable-stayed radio antenna adopting other optimization strategies, such as particle swarm
optimization, PSO, and the evolution differential algorithm (EDA), which could be less
time-consuming. Finally, it could perform a typological optimization by managing the
position of the cable connection, trying to find the best attachment points.
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Appendix A

Table A1. Drag and lift forces according to [36] at ULS in [Kg/m].

Wind Action (Drag D, Lift L) at ULS

z (m) Drag_1 Lift_1 Drag_2 Lift_2 Drag_2 Lift_3

1 3.92 6.5 6.01 5.2 6.85 1.95
2 3.92 6.5 6.01 5.2 6.85 1.95
3 3.92 6.5 6.01 5.2 6.85 1.95
4 3.92 6.5 6.01 5.2 6.85 1.95
5 3.92 6.5 6.01 5.2 6.85 1.95
6 4.2 6.97 6.44 5.58 7.34 2.09
7 4.44 7.37 6.81 5.9 7.76 2.21
8 4.66 7.73 7.15 6.19 8.14 2.32
9 4.85 8.05 7.44 6.44 8.48 2.42

10 5.03 8.35 7.71 6.68 8.79 2.5
11 5.19 8.61 7.96 6.89 9.07 2.58
12 5.34 8.86 8.19 7.09 9.33 2.66
13 5.48 9.09 8.4 7.27 9.57 2.73
14 5.61 9.31 8.6 7.45 9.8 2.79
15 5.73 9.51 8.79 7.61 10.01 2.85
16 5.85 9.7 8.97 7.76 10.22 2.91
17 5.96 9.88 9.13 7.91 10.41 2.97
18 6.06 10.06 9.29 8.04 10.59 3.02
19 6.16 10.22 9.45 8.18 10.76 3.07
20 6.25 10.38 9.59 8.3 10.92 3.11
21 6.34 10.53 9.73 8.42 11.08 3.16
22 6.43 10.67 9.86 8.54 11.23 3.2
23 6.51 10.81 9.99 8.65 11.38 3.24
24 6.59 10.94 10.11 8.75 11.52 3.28
25 6.67 11.07 10.23 8.86 11.66 3.32
26 6.75 11.19 10.35 8.96 11.79 3.36
27 6.82 11.31 10.46 9.05 11.91 3.39
28 6.89 11.43 10.56 9.14 12.03 3.43
29 6.96 11.54 10.67 9.23 12.15 3.46
30 7.02 11.65 10.77 9.32 12.27 3.5

Table A2. Drag and lift forces according to [36] at SLS in [Kg/m].

Wind Action (Drag D, Lift L) at SLS

z (m) Drag_1 Lift_1 Drag_2 Lift_2 Drag_2 Lift_3

1 2.29 3.81 3.52 3.05 4.01 1.14
2 2.29 3.81 3.52 3.05 4.01 1.14
3 2.29 3.81 3.52 3.05 4.01 1.14
4 2.29 3.81 3.52 3.05 4.01 1.14
5 2.29 3.81 3.52 3.05 4.01 1.14
6 2.31 3.84 3.54 3.07 4.04 1.15
7 2.32 3.86 3.57 3.09 4.06 1.16
8 2.34 3.88 3.58 3.1 4.08 1.16
9 2.34 3.89 3.6 3.11 4.1 1.17
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Table A2. Cont.

Wind Action (Drag D, Lift L) at SLS

z (m) Drag_1 Lift_1 Drag_2 Lift_2 Drag_2 Lift_3

10 2.35 3.9 3.61 3.12 4.11 1.17
11 2.36 3.92 3.62 3.13 4.12 1.17
12 2.37 3.93 3.63 3.14 4.13 1.18
13 2.37 3.94 3.64 3.15 4.14 1.18
14 2.38 3.94 3.64 3.15 4.15 1.18
15 2.38 3.95 3.65 3.16 4.16 1.19
16 2.39 3.96 3.66 3.17 4.17 1.19
17 2.39 3.96 3.66 3.17 4.17 1.19
18 2.39 3.97 3.67 3.18 4.18 1.19
19 2.4 3.98 3.67 3.18 4.19 1.19
20 2.4 3.98 3.68 3.19 4.19 1.19
21 2.4 3.99 3.68 3.19 4.2 1.2
22 2.4 3.99 3.69 3.19 4.2 1.2
23 2.41 4 3.69 3.2 4.21 1.2
24 2.41 4 3.7 3.2 4.21 1.2
25 2.41 4 3.7 3.2 4.21 1.2
26 2.41 4.01 3.7 3.21 4.22 1.2
27 2.42 4.01 3.71 3.21 4.22 1.2
28 2.42 4.01 3.71 3.21 4.23 1.2
29 2.42 4.02 3.71 3.21 4.23 1.21
30 2.42 4.02 3.72 3.22 4.23 1.21

Table A3. Modal participating mass ratios.

Modal Participating Mass Ratios

n. Modes Period (s) Frequence (Hz) Part. Mass X (%) Part. Mass Y [%]

1 3.99 0.251 0.0 0.28
2 3.99 0.251 0.83 0.0
3 3.99 0.251 0.0 0.55
4 3.473 0.288 0.0 0.25
5 3.473 0.288 0.75 0.0
6 3.472 0.288 0.0 0.5
7 2.929 0.341 0.0 2.52
8 2.925 0.342 0.0 0.05
9 2.916 0.343 2.55 0.0

10 0.437 2.290 9.58 26.24
11 0.434 2.304 26.41 9.16
12 0.206 4.853 7.16 4.44
13 0.203 4.934 5.64 4.78
14 0.155 6.437 27.38 0.78
15 0.144 6.935 3.67 26.10
16 0.116 8.584 0.14 0.00
17 0.116 8.595 0.00 0.32
18 0.106 9.436 2.35 9.82
19 0.057 17.410 0.03 0.08
20 0.057 17.442 0.01 0.01
21 0.054 18.573 0.48 0.45
22 0.050 20.163 0.03 0.00
23 0.047 21.496 0.00 0.00
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Table A3. Cont.

Modal Participating Mass Ratios

n. Modes Period (s) Frequence (Hz) Part. Mass X (%) Part. Mass Y (%)

24 0.046 21.516 0.00 0.00
25 0.036 27.906 0.27 0.11
26 0.035 28.313 0.04 0.13
27 0.032 31.224 0.01 0.48
28 0.032 31.722 0.20 0.00
29 0.031 32.590 0.01 0.06
30 0.024 40.831 0.00 0.00
31 0.024 40.836 0.00 0.00
32 0.023 42.600 12.32 0.00
33 0.022 44.518 0.01 10.59

Table A4. Load combination.

Load Combination

ULS Max1 1.3 · G1 + 1.5 · G2 + 1.5 · Wind1 + 1.5 · 0.5 · Ice1 + 1.5 · 0 · QM

ULS Max12 1.3 · G1 + 1.5 · G2 + 1.5 · QM + 1.5 · 0.6Wind1 + 1.5 · 0.2Ice1

ULS Min1 1 · G1 + 0.8 · G2 + 1.5 · Wind1 + 1.5 · 0.5Ice1 + 1.5 · 0QM

Quake1 E + G1 + G2 + 0 · Wind1 + 0Ice1 + 0QM

ULS Max2 1.3 · G1 + 1.5 · G2 + 1.5 · Wind2 + 1.5 · 0.5 · Ice2 + 1.5 · 0 · QM

ULS Max21 1.3 · G1 + 1.5 · G2 + 1.5 · QM + 1.5 · 0.6Wind2 + 1.5 · 0.2Ice2

ULS Min1 1 · G1 + 0.8 · G2 + 1.5 · Wind2 + 1.5 · 0.5Ice2 + 1.5 · 0QM

Quake2 E + G1 + G2 + 0.8 · Wind2 + 1.5Ice2 + 1.5QM

Figure A1. Cont.
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Figure A1. Scenarios A, B. In blue, orange, and green, the average PRs, respectively, at the initial
condition, after optimization, and the design solution.

Figure A2. Scenarios C, D. In blue, orange, and green, the average PRs, respectively, at the initial
condition, after optimization, and the design solution.
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Figure A3. Scenarios E, F, H. In blue, orange and green, the average PRs, respectively, at the initial
condition, after optimization, and the design solution.
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Table A5. Scenario A results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one, according to the product list.

SCENARIO A—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 121 12.5 6000 201
Pole 2 (6–12 m) 121 12.5 6000 201
Pole 3 (12–18 m) 121 12.5 6000 201
Pole 4 (18–24 m) 121 12.5 6000 201
Pole 5 (24–30 m) 121 12.5 6000 201

Total Mass [kg] Σ 1003

Mass variation [kg] −437 Mass variation [%] −30.36

SCENARIO A—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 139.7 12.5 6000 235
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 139.7 12.5 6000 235
Pole 5 (24–30 m) 139.7 12.5 6000 235

Total Mass [kg] Σ 1176

Mass variation [kg] −264 Mass variation [%] −18.36

Ntrial = 5

Φopt [mm] OF [kN]

121 40.758

121 40.758

121 40.758

121 40.758

122 40.849

Table A6. Scenario B results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO B—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 149 12.5 6000 252
Pole 2 (6–12 m) 138 12.5 6000 231
Pole 3 (12–18 m) 126 12.5 6000 210
Pole 4 (18–24 m) 115 12.5 6000 189
Pole 5 (24–30 m) 103 12.5 6000 168

Total Mass [kg] Σ 1051

Mass variation [kg] −389 Mass variation [%] −27.02

SCENARIO B—Design proposed according to product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 12.5 6000 288
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 114.3 12.5 6000 188
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Table A6. Cont.

Pole 5 (24–30 m) 101.6 12.5 6000 165

Total Mass [kg] Σ 1111

Mass variation [kg] −329 Mass variation [%] −22.84

Ntrial = 5; best solutions

Φi [mm] Φ f [mm] OF [kN]

148 94 41.248

146 103 41.466

148 94 41.248

146 103 41.466

149 92 41.230

Table A7. Scenario C results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO C—Optimized solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 147 12.5 6000 249
Pole 2 (6–12 m) 136 12.5 6000 228
Pole 3 (12–18 m) 125 12.5 6000 208
Pole 4 (18–24 m) 114 12.5 6000 188
Pole 5 (24–30 m) 103 12.5 6000 167

Total Mass [kg] Σ 1040

Mass variation [kg] −400 Mass variation [%] −27.79

SCENARIO C—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 12.5 6000 288
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 114.3 10 6000 154
Pole 5 (24–30 m) 101.6 10 6000 135

Total Mass [kg] Σ 1048

Mass variation [kg] −392 Mass variation [%] −27.22

Ntrial = 5

Φi [mm] Φ f [mm] F [kN] OF [kN]

152 92 1.8 41.393

151 92 1.4 41.339

149 92 1 41.230

156 92 2.4 41.610

147 92 0.8 41.121
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Table A8. Scenario D results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO D—Optimized solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 161 6 6000 138
Pole 2 (6–12 m) 147 6 6000 125
Pole 3 (12–18 m) 133 6 6000 113
Pole 4 (18–24 m) 120 6 6000 101
Pole 5 (24–30 m) 106 6 6000 89

Total Mass [kg] Σ 565

Mass variation [kg] −875 Mass variation [%] −60.75

SCENARIO D—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 6 6000 144
Pole 2 (6–12 m) 168.3 6 6000 144
Pole 3 (12–18 m) 139.7 6 6000 119
Pole 4 (18–24 m) 114.3 6 6000 96
Pole 5 (24–30 m) 101.6 6 6000 85

Total Mass [kg] Σ 588

Mass variation [kg] −853 Mass variation [%] −59.20

Ntrial = 5

Φi [mm] Φ f [mm] t [mm] OF [kN]

161 92 6 36.465

146 117 7 37.389

162 92 6 36.491

162 92 6 36.491

163 92 6 36.517

Table A9. Scenario E results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO E—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 165 6 6000 141
Pole 2 (6–12 m) 150 6 6000 128
Pole 3 (12–18 m) 135 6 6000 115
Pole 4 (18–24 m) 121 6 6000 102
Pole 5 (24–30 m) 106 6 6000 89

Total Mass [kg] Σ 574

Mass variation [kg] −866 Mass variation [%] −60.13

SCENARIO E—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 6 6000 144
Pole 2 (6–12 m) 168.3 6 6000 144
Pole 3 (12–18 m) 139.7 6 6000 119
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Table A9. Cont.

Pole 4 (18–24 m) 114.3 6 6000 96
Pole 5 (24–30 m) 101.6 6 6000 85

Total Mass [kg] Σ 588

Mass variation [kg] −853 Mass variation [%] −59.20

Ntrial = 5; best solutions

Φi Φ f t F OF
[mm] [mm] [mm] [kN] [kN]

150 97 7.8 1.3 37.766

153 112 6.4 1.6 36.964

165 91 6 2.3 36.552

160 91 7 1.3 37.287

139 104 8.8 1.3 38.337

Table A10. Scenario F results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO F—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 157 4 6000 91
Pole 2 (6–12 m) 144 6 6000 122
Pole 3 (12–18 m) 131 4 6000 75
Pole 4 (18–24 m) 118 4 6000 67
Pole 5 (24–30 m) 105 4 6000 60

Total Mass [kg] Σ 415

Mass variation [kg] −1025 Mass variation [%] −71.16

SCENARIO F—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 4 6000 97
Pole 2 (6–12 m) 168.3 5 6000 121
Pole 3 (12–18 m) 139.7 4 6000 80
Pole 4 (18–24 m) 114.3 4 6000 65
Pole 5 (24–30 m) 101.6 4 6000 58

Total Mass [kg] Σ 421

Mass variation [kg] −1019 Mass variation [%] −70.75

Ntrial = 3; best solutions

Φi Φ f tends tinter F OF
[mm] [mm] [mm] [mm] [kN] [kN]

155 92 4 7 3.2 35.141

157 92 4 6 0.9 34.993

151 92 4 7 1.3 35.058
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Table A11. Scenario H results: optimized solutions for the different independent executions (Ntrial)
and the proposed industrial one according to the product list.

SCENARIO H—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 158 3 6000 69
Pole 2 (6–12 m) 146 6 6000 124
Pole 3 (12–18 m) 133 4 6000 76
Pole 4 (18–24 m) 121 4 6000 69
Pole 5 (24–30 m) 108 3 6000 47

Total Mass [kg] Σ 385

Mass variation [kg] −1055 Mass variation [%] −73.27

SCENARIO H—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 5 6000 121
Pole 2 (6–12 m) 168.3 4 6000 97
Pole 3 (12–18 m) 139.7 4 6000 80
Pole 4 (18–24 m) 139.7 3 6000 61
Pole 5 (24–30 m) 114.3 3 6000 49

Total Mass [kg] Σ 408

Mass variation [kg] −1032 Mass variation [%] −71.65

Ntrial = 3

Φi Φi t1 t2 t3 t4 t5 F OF
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN]

164 109 4 5 4 3 3 0.9 34.789

167 111 3 6 4 3 3 2 34.839

158 96 3 6 4 4 3 2 34.695
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27. Belevičius, R.; Jatulis, D.; Šešok, D. Optimization of tall guyed masts using genetic algorithms. Eng. Struct. 2013, 56, 239–245.

[CrossRef]
28. Gawronski, W.; Bienkiewicz, B.; Hill, R. Wind-induced dynamics of a deep space network antenna. J. Sound Vib. 1994, 178, 67–77.

[CrossRef]
29. Fujino, Y.; Warnitchai, P.; Pacheco, B. Active Stiffness Control of Cable Vibration. J. Appl. Mech. 1993, 60, 948–953. [CrossRef]
30. Lacarbonara, W.; Ballerini, S. Vibration mitigation of guyed masts via tuned pendulum dampers. Struct. Eng. Mech. Int. J. 2009,

32, 517–529. [CrossRef]
31. Błachowski, B. Model based predictive control of guyed mast vibration. J. Theor. Appl. Mech. 2007, 45, 405–423.
32. Bell, L.C.; Brown, D.M. Guyed tower optimization. Comput. Struct. 1976, 6, 447–450. [CrossRef]
33. Thornton, C.H.; Joseph, L.; Scarangello, T. Optimization of tall structures for wind loading. J. Wind Eng. Ind. Aerodyn. 1990,

36, 235–244. [CrossRef]
34. Uys, P.; Farkas, J.; Jarmai, K.; Van Tonder, F. Optimisation of a steel tower for a wind turbine structure. Eng. Struct. 2007,

29, 1337–1342. [CrossRef]
35. Venanzi, I.; Materazzi, A. Multi-objective optimization of wind-excited structures. Eng. Struct. 2007, 29, 983–990. [CrossRef]
36. Zhang, Z.Q.; Li, H.N. Two-level optimization method of transmission tower structure based on ant colony algorithm. In Advanced

Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2011; Volume 243, pp. 5849–5853.
37. Cucuzza, R.; Costi, C.; Rosso, M.M.; Domaneschi, M.; Marano, G.C.; Masera, D. Optimal strengthening by steel truss arches in

prestressed girder bridges. In Proceedings of the Institution of Civil Engineers—Bridge Engineering; Thomas Telford Ltd.: London,
UK, 2021; pp. 1–21. [CrossRef]

38. Luh, G.C.; Lin, C.Y. Optimal design of truss-structures using particle swarm optimization. Comput. Struct. 2011, 89, 2221–2232.
[CrossRef]

39. Manuello Bertetto, A.; Marano, G. Numerical and dimensionless analytical solutions for circular arch optimization. Eng. Struct.
2022, 253, 113360. [CrossRef]

40. Kaveh, A.; Talatahari, S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization
of truss structures. Comput. Struct. 2009, 87, 267–283. [CrossRef]

41. Deng, Z.Q.; Zhang, Y.; Huang, H.L.; Li, B. Parametric optimization for a tapered deployable mast in an integrated design environ-
ment. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2012; Volume 346, pp. 426–432.

42. Guo, H.; Li, Z. Structural topology optimization of high-voltage transmission tower with discrete variables. Struct. Multidiscip.
Optim. 2011, 43, 851–861. [CrossRef]

43. delle Ricerche, C.N. Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni. CNR-DT 2009, 207, 2008.
44. Mordà, N.; Mancini, A. Norme Tecniche per le Costruzioni (NTC 2018) D. Min. Infrastrutture e Trasporti 17 Gennaio 2018; Ministero

delle Infrastrutture e dei Trasporti: Roma, Italy, 2018.
45. Melchiorre, J.; Bertetto, A.M.; Marano, G.C. Application of a Machine Learning Algorithm for the Structural Optimization of

Circular Arches with Different Cross-Sections. J. Appl. Math. Phys. 2021, 9, 1159–1170. [CrossRef]

87



Appl. Sci. 2022, 12, 4875

46. Rosso, M.M.; Cucuzza, R.; Aloisio, A.; Marano, G.C. Enhanced Multi-Strategy Particle Swarm Optimization for Constrained
Problems with an Evolutionary-Strategies-Based Unfeasible Local Search Operator. Appl. Sci. 2022, 12, 2285. [CrossRef]

47. Rosso, M.M.; Cucuzza, R.; Di Trapani, F.; Marano, G.C. Nonpenalty machine learning constraint handling using PSO-svm for
structural optimization. Adv. Civ. Eng. 2021, 2021, 6617750. [CrossRef]

48. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019.
49. Aloisio, A.; Pasca, D.P.; Battista, L.; Rosso, M.M.; Cucuzza, R.; Marano, G.; Alaggio, R. Indirect assessment of concrete resistance

from FE model updating and Young’s modulus estimation of a multi-span PSC viaduct: Experimental tests and validation.
Elsevier Struct. 2022, 37, 686–697. [CrossRef]

50. Sardone, L.; Rosso, M.M.; Cucuzza, R.; Greco, R.; Marano, G.C. Computational Design of Comparative models and geometrically
constrained optimization of a multi-domain variable section beam based on Timoshenko model. In Proceedings of the
EUROGEN2021, 14TH ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization
and Control, Athens, Greece, 28–30 June 2021. [CrossRef]

51. Christensen, P.W.; Klarbring, A. An Introduction to Structural Optimization; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2008; Volume 153.

52. Coello Coello, C.A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of
the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]

53. Koziel, S.; Michalewicz, Z. Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization.
Evol. Comput. 1999, 7, 19–44. [CrossRef] [PubMed]

54. Michalewicz, Z.; Fogel, D. How to Solve It: Modern Heuristics; Springer Science & Business Media: Berlin/Heidelberg, Ger-
many, 2008.

55. Parsopoulos, K.; Vrahatis, M. Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems.
In International Conference on Natural Computation; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3612, pp. 582–591.
[CrossRef]

56. Coello, C. Self-adaptive penalties for GA-based optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Hoboken, NJ, USA, 1999; Volume 1, pp. 573–580.
[CrossRef]

88



Citation: Guo, J.; Li, M.; Jiang, Z.;

Wang, Z.; Zhou, Y. Optimized Design

of Floor Plan and Components of

Prefabricated Building with

Energy-Cost Effect. Appl. Sci. 2022,

12, 3740. https://doi.org/10.3390/

app12083740

Academic Editors: Edyta

Plebankiewicz and Jürgen

Reichardt

Received: 14 February 2022

Accepted: 5 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Optimized Design of Floor Plan and Components of
Prefabricated Building with Energy-Cost Effect

Juanli Guo 1, Mingchen Li 2,*, Zixin Jiang 2, Zhoupeng Wang 2 and Yangkong Zhou 2

1 School of Architecture, Tianjin University, Tianjin 300072, China; guojuanli@tju.edu.cn
2 Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China; jiangzx@tju.edu.cn (Z.J.);

wangzhoupeng@tju.edu.cn (Z.W.); zyk36@tju.edu.cn (Y.Z.)
* Correspondence: limingchen@tju.edu.cn; Tel.: +86-13059077720

Abstract: Optimizing building performance and economic benefits through feedback in building
design is a hot topic in current academic research. However, few studies on prefabricated buildings
have been undertaken in this field. Meanwhile, the methodology used for achieving optimized
solutions is still poor. In this paper, genetic algorithms and correlation analysis are employed
and two parametric design methods—i.e., the floor plan generation method and the component
selection method—are proposed for the modularity of the prefabricated buildings. Taking a typical
high-rise building in Tianjin as an example, correlation analyses are performed on the basis of the
two proposed methods to enhance the depth of the optimized finding approach. The outcome of
this research demonstrates the feasibility of the proposed numerical approach, which can produce
the optimized floor plan and construction set under the local conditions. This also reveals that the
shape coefficient and window-to-wall ratio are strongly correlated with the energy performance
of a building, which can help architects to pursue optimized design solutions in the schematic
design process.

Keywords: building energy saving; prefabricated building; genetic algorithm; parametric design;
multi-objective optimization; correlation analysis

1. Introduction

The issue of global energy consumption is in the spotlight today. The U.S. Information
Administration presents a future scenario in which global energy consumption will increase
by nearly 50% over the next 30 years or so [1]. Building energy consumption accounts for
21.7% of the national energy consumption in China [2], and there is still work to be done to
reduce overall energy consumption in the building industry.

Cost limits, of course, are crucial factors in restricting building energy efficiency [3].
The optimization of energy efficiency without the consideration of cost may result in high
incremental costs and the inability to promote applications. As a result, energy usage and
cost should be considered throughout the optimization process.

Many earlier researchers have investigated this topic using the genetic algorithm
technique. I2n 2002, Caldas et al. used evolutionary algorithms on the DOE2.1E platform
to improve the arrangement and size of windows in public buildings to lower the yearly
energy consumption [4]. Ferrara et al. optimized near-zero-energy buildings to achieve
a low economic cost [5]. Thalfeldt et al. identified the design priorities for cold-climate
building facades [6]. However, related research has revealed that diverse optimization
targets have conflicting characteristics [7], suggesting that focusing on a single goal is
unsuitable in particular optimization schemes. As a result, an increasing number of
researchers are attempting to adapt the multi-objective optimum design technique to the
purpose of the architecture. With illumination and energy consumption as the optimization
targets, Khoroshiltseva et al. employed modeFRONTIER and Daysim to optimize the
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spacing and angle of the sunshade for the south window of an office [8]. To complete the
façade design while guaranteeing building performance, Mohammadjavad et al. exploited
the twin aims of lighting and heating to optimize the curtain wall design parameters
(surface angle) of an office building [9]. By using the Grasshopper platform, Cheng Sun
et al. achieved the performance optimization of a large public building focusing on energy,
cost, and daylight [10]. Shaoqing Gou et al. used the Energyplus and JEPlus platforms to
create an architectural design plan for a residential project in Shanghai to improve indoor
thermal comfort and lower energy consumption [11].

However, the basic models commonly employed in related studies are primarily used
for non-assembled buildings—i.e., the optimized solutions often find it difficult to meet the
standardization, modularity, and modulization needs of prefabricated buildings.

The trend of building industrialization has been evident in recent years. With the
deepening of the concept of green and sustainable development, prefabricated buildings
are receiving more and more attention from the domestic and international construction
community because of their standardization, energy efficiency, and economy [12–14].
Prefabricated building envelopes can be selected to have an appropriate envelope structure
based on the building orientation, climate conditions, and economic costs, among other
factors, in order to achieve low energy costs, thanks to their modular design, factory
manufacturing, and assembly construction [15]. The application of this approach to the
design process, as well as the successful combination of genetic algorithm and assembly
construction, is the focus of this study. In summary, the previous studies also had the
following shortcomings:

• Few scholars have applied the synergy of energy consumption and cost to prefabri-
cated buildings.

• The models of the former studies can mainly be divided into two categories: one
is a generic model with similar characteristics to that obtained from our research
(it is usually a city building and is used to propose some common optimization
conclusions [4,8–10]); the other is generally a specific model, usually for a public
building, and the findings primarily relate to the renovation and refurbishment of
the building [5,6,11]. However, there are numerous phases in the architectural design
process, including conceptual design, preliminary design, and detailed design [16].
In this article, we think that applying the two models to conceptual and preliminary
design is most beneficial.

• Many of the articles in this area end up focusing on the optimization results, while
in practice designers tend to make changes based on these. These articles tend to
lack any discussion of which parts need to be changed to have less impact on the
optimization results.

Therefore, this paper proposes two design methods based on the genetic algorithm
to take building energy consumption into consideration: a floor plan generation method
for the conceptual design process and a complement selection method for the prelimi-
nary design. The designer can then use the results of the optimization and parameter
correlation analysis as a theoretical basis to make further modifications to the computer-
aided optimization design. The total workflow of the two design methods is shown
in Figure 1.
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Figure 1. Optimized design workflow based on floor plan generation and component selection.

2. Methods

2.1. Optimization Method

The genetic algorithm (GA) was utilized as the optimization approach in this work; it
has been frequently used in similar papers in recent years [17]. Genetic algorithms, which
were researched and proposed by Professor Holland of Michigan University in 1975, are
based on the theory of biological evolution and incorporate the evolutionary concepts of
reproduction, hybridization, mutation, competition, and selection into the optimization
process to achieve global optimization [18]. Figure 2 depicts the optimization concept [19].
This study uses the Galapagos and Octopus plug-ins integrated with the Grasshopper
platform. Galapagos is a GA component that comes with the new version of Grasshopper
and can perform optimization solutions for a single objective with a simple operation,
fast computation, and easy convergence. However, it has the drawback of being able
to optimize solutions for only one goal. Developed by the University of Applied Arts
Vienna, Austria, and Bollinger + Grohmann Engineering, Germany, the Octopus plug-in
is a Grasshopper component that combines Pareto frontier solution sets and GA for the
optimization of multiple objectives. Pareto frontier solution sets can provide a basis for
analyzing the trade-offs made between design objectives [20].

Figure 2. Genetic algorithm calculation process.
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2.2. Correlation Analysis Method
2.2.1. Standard Regression Coefficient

The size of the absolute value of the standard regression coefficient, which is the
regression coefficient obtained after eliminating the impact between the objective and the
units of the parameters, directly represents the degree of effect of the parameters on the
objective [21]. Its regression model can be expressed as Function (1):

Y =
N

∑
i=1

βi
Xi − X

σX
+ ε (1)

where βi is the ith parameter’s standard regression coefficient, X is the ith parameter’s
mean, σX is the ith parameter’s standard deviation, ε is a constant, and N is the number
of parameters.

We need to test the problem of multicollinearity suggested by Frisch in 1934 over the
course of the investigation [22]. To detect multicollinearity, a variety of approaches are
used, including partial correlation coefficient, tolerance, variance inflation factor (VIF), and
conditional index [23]. The variance inflation factor measured by the SPSS software is used
to assess the aforementioned problem in this study. A result of greater than one and less
than ten generally suggests that the problem does not exist [24].

2.2.2. Pearson Correlation Coefficient

The Pearson correlation coefficient, which is used to estimate the correlation be-
tween X and Y variables, can be calculated using Function (2). The coefficient takes
values in the range of [−1, 1]: the closer it is to 1, the more likely the two variables are
positively correlated; the closer it is to −1, the more likely it is that the two variables are
negatively correlated; a value of 0 indicates that the two variables are uncorrelated. The
article was followed up with calculations conducted using SPSS to obtain the Pearson
correlation coefficient.

ρX,Y =
cov(X, Y)

σXσY
(2)

where cov(X, Y) is the covariance between X and Y and σX and σY are their respective
standard deviations.

3. Model, Parameters, and Objectives

3.1. Model

In this study, the thresholds of room bays, depths (Table 1), and the laws of arrange-
ment of each functional space (Figure 3) were summarized from several sets of house types,
which were based on the prototype of prefabricated high-rise (one-staircase, two-family)
commercial houses with a PC frame shear wall structure in Tianjin. After this, random
values in the parameter range were used to form the base floor plan.

Table 1. Building geometric parameter threshold.

Geometric Parameters
Parameter

Thresholds

Bay depth of the living room (m × m) (2.8–3.3) × (4.0–6.0)
Bay depth of the dining room (m × m) (2.8–3.3) × (4.0–6.0)

Bay depth of the master bedroom (m × m) (2.4–3.0) × (3.2–3.6)
Bay depth of the secondary bedroom (m × m) (2.1–2.4) × (2.4–2,9)

Bay depth of the kitchen (m × m) (1.5–2.1) × (1.95–3.1)
Bay depth of the bathroom (m × m) (1.5–1.8) × (1.8–2.65)
Bay depth of the balcony (m × m) (1.8–3.3) × (1.2–1.5)
Bay depth of the corridor (m × m) —–
Window-to-wall ratio of each room 0.1–0.9

Interleaved length between each functional space (m) −1.8–1.8
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Figure 3. The laws of arrangement of each functional space.

Following that, specific common attributes are assumed to finish the model’s develop-
ment, and their values are provided in Table 2. After the attributes are specified, a complete
3D building model (Figure 4) can be created, which is the default model used in this study.

Table 2. The value of the attributes used in the optimization process.

The Name of the Attributes Value

Height between floors 3 m
Number of floors 30
Envelope walls Default values of constructs and materials

Operation schedules, equipment load Related standards [25,26]

Figure 4. Three-dimensional axonometric drawing of the building model.

3.2. Parameters
3.2.1. Parameters of the Floor Plan Generation Method

The control variables required for the floor plan generation method are the window-
to-wall ratio of each orientation, the bays and depths of each functional space, and the
interleaved length between them. The research object of this paper is the prefabricated
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building. One of the core tasks to promote the degree of industrialization of the building is
to adopt a modular coordinated system to achieve the universality and interchangeability
of the components [27]. Therefore, a novel qualification method that considers the modulus
of prefabricated buildings is proposed when defining the control variables of space types.
This method can reduce the range of control variables based on the modulus to enhance
the optimization efficiency and ensure the reasonable size of the prefabricated buildings.
The objective function can be seen in Function (3).

x = [x1, x2, x3, · · · , xn]
T

ki = [1, 2, · · · , bi−ai
jM ]

T

min yec = f (x) = f (x1, x2, · · · , xn)

s.t.
{

am ≤ xm ≤ bm m ∈ {1, 2, 3, 4}
xi ∈ {x|x = ai + jM·ki}

(3)

where x is the vector of control variables; ki is the step vector of xi control variables; xm is
the window-to-wall ratio for each orientation; am and bm are the minimum and maximum
values of the corresponding window-to-wall ratio; xi is the interleaved length of the bay,
depth, and spaces, i ∈ {5, 6···n}, m; j is a constant in dimensional transformation which
is used to expand the step length of the building modulus in a single transformation,
j ∈ N+; and M is the basic modulus of the building at the dimensional transformation of
the prefabricated building (M = 0.1 m), bi−ai

jM ∈ Z.

3.2.2. Parameters of the Component Selection Method

The parameters used in this optimization are the material of the insulation layer, the
thickness of the insulation layer, and the construction of the wall components, which can
be divided into qualitative and quantitative indexes. The range of values shown Table 3 are
determined by summarizing after researching manufacturers.

Table 3. Ranges of the component selection method’s parameters.

Parameters of Components Ranges

Material of insulation layer {Extruded polystyrene, expanded polystyrene,
foamed polyurethane, rock wool}

Construction of components {External insulation, internal insulation,
sandwich insulation}

Thickness of insulation layer in
each direction (m) 0–0.5

In the optimization process of the component selection method, the physical prop-
erties and cost of each material are considered as attributes, assuming that they are
constant throughout the construction phase. The specific attributes are shown in Table 4.
In the optimization process, material and construction are qualitative indicators, and
there are few desirable types. The optimal solution can be selected using the exhaus-
tive method. On the basis of this solution, the thickness of the insulation material for
each orientation is used as the optimization variable, while the total building energy
consumption and total cost of insulation material are used as the optimization objectives
for the next optimization step.
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Table 4. The value of the attribute of the optimized process.

Material
Density
kg/m3

Specific Heat Capacity
J/kg·◦C

Heat Transfer
Coefficient
W/(m2·K)

Material Price
CNY/m3

Extruded polystyrene 35 1380 0.033 450
Expanded polystyrene 25 1380 0.042 280
Foamed polyurethane 30 1380 0.027 650

Rock wool 150 1220 0.0045 260

3.3. Objectives
3.3.1. Objective of the Floor Plan Generation Method

The goal energy consumption in the floor plan generation design technique is confined
to the use phase, since most buildings consume around 70% of their total energy over
their whole life cycle during their use phase [28]. Lighting energy consumption and
equipment energy consumption are not affected by control variables [29]. The annual
energy consumption (yec) per unit area of the building optimized in this study can be
calculated using Function (4):

yec =
Eh + Ec

A
(4)

where Eh is the annual heating energy consumption of the buildings, kWh; Ec is the annual
cooling energy consumption of the buildings, kWh; and A is the gross floor area of the
buildings, m2.

3.3.2. Objective of Component Selection Method

gec is the same as the expression of yec in the floor plan generation method. Instead,
only the cost of materials used during the construction phase is considered. The changes
in the dimensions of the structural material will affect the energy use of buildings. We
assume that the structural material cannot be changed during the selection process, which
means that the cost of the structural material is constant for the same floor plan. In order
to simplify the calculation, the material cost during construction is considered only as the
insulation construction cost (gic), which can be expressed through Function (5).

gic =
4

∑
i=1

CidiSi (5)

where i from 1 to 4 are the four orientations of the buildings; Ci is the price of the insulation
board used for each facade orientation, CNY/m3; di is the thickness of the insulation
board used in each direction of the external wall, m; and Si is the total area of each facade
orientation, m2.

The optimization objective function can be expressed as Function (6).

x = [x1, x2, x3, · · · , xn]
T

min g = g(x) = {gec(x), gic(x)}
s.t. x ∈ B = {x|hs(x) ≤ 0, s = 1, 2, · · · , p}

(6)

where x is the vector of control variables; g is the vector of objectives; and hs(x) is the sth
constraint of the vector x, from which the feasible domain B is formed.

After completing the above settings, we can obtain the details of the changes in
parameters and properties for each phase of the complete workflow, as shown in Figure 5.
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Figure 5. Goals, parameters, and attributes of the different phases of the floor plan generation and
component selection methods.

4. Results and Discussion

Two design methods were applied on the above case and then the correlation between
some parameters or attributes with the energy consumption was analyzed.

4.1. Optimization Results

In the floor plan generation method, the specific range of values for window-to-wall
ratio, bays, depths, and interleaved length parameters could be determined using Function
(3). In this case, j = 3. The threshold was adjusted appropriately according to the limitation
of bi−ai

jM ∈ Z. Finally, the bays, depths, and interleaved lengths were limited to a small
range of values. The Galapagos parameters were set as stated in Table A1 during the
optimization process, and convergence was mostly obtained at around 80 iterations, with
the optimization ending after around 120 generations. Table 5 shows a comparison of the
model before and after the plan optimization with improved energy consumption as the
aim. Table A1 in the Appendix A shows the detail of optimization technique used. It can be
seen that after the optimization, the building energy consumption and interleaved length
between each functional space are reduced.

Table 5. Model comparison before and after optimization.

Number of Iterations 0 120

Plan shape

Energy consumption (kWh/m2) 86.18 18.11

In the optimization of the component selection method, the model was inherited from
the previous optimization step without any modification and then the enumeration method
was used to optimize the material and structure. The Octopus parameters were set as
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stated in Table A3 during the optimization process. The step size of the thickness in the
optimization process was 0.05 m and the distribution was between 0 and 0.15 m. The
curves of the energy consumption and cost for different insulation materials with different
constructions is shown in Figure 6.

Figure 6. Energy consumption and cost charts of various orientations and different insulation materials.

The energy-cost charts for the four orientations show the same pattern. Rock wool
board material and polystyrene board material were closer to the 0-coordinate point of the
coordinate system—i.e., they were better than the other insulation materials in terms of their
reducing energy consumption and cost. Considering the cost of fire protection, rock wool
board was selected as the optimal material in the next dual-objective optimization. From
Figure 6, it can be seen that the two innermost curves are for sandwich insulation, which
indicates that the effect of sandwich insulation is better than that of external insulation and
internal insulation. Thus, sandwich insulation was chosen as the construction method for
the optimization determination.

The thickness was selected as the optimization object, and basic convergence was
achieved after 10 iterations. The Pareto frontier solution set (Figure 7) was derived
after reaching the maximum number of iterations, and correlation plots between in-
sulation thickness, total energy consumption, and total cost for each orientation were
derived (Figure 8).

From the Pareto frontier solution set, it can be seen that the cost kept increasing and
the total energy consumption kept decreasing as the total thickness increased within a
certain thickness range, in accordance with the objective law.
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Figure 7. Pareto frontier solution set.

Figure 8. Chart of thickness–total energy consumption–cost.

4.2. Correlation Analysis Results
4.2.1. Correlation Analysis of Floor Plan Generation Method

Eleven influencing factors were selected as variables for regression analysis from the
parameters that may affect energy consumption—namely, interleaved length, east window
wall ratio, south window wall ratio, west window wall ratio, north window wall ratio, east
exterior wall area, south exterior wall area, west exterior wall area, north exterior wall area,
shape coefficient, and aspect ratio. After exporting 3680 sets of data from the optimization
process and eliminating 3 sets of invalid data, we obtained 3677 sets of valid data. The
validity of the selected variables was first determined by testing the multicollinearity; if the
variance inflation factor (VIF) of each variable was tested to be less than 10 (Table 6), this
meant that each variable had a certain degree of independence. A significance test was then
performed, yielding an overall p-value of 0.0001 less than 0.05—i.e., the proposed model
was valid at a 95% confidence interval. Additionally, the p-value for each variable (Table 7)
was less than 0.05—i.e., each variable was significant at a 95% confidence interval. The
larger the standard regression coefficient of a variable is, the more important the variable
is under the same condition. The variables are ranked in Table 7, and it can be seen that
parameters such as the shape coefficient and the window-to-wall ratio are more important
than the area of the exterior walls of each orientation—i.e., when making adjustments, the
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radiant area of the walls and windows of each orientation can be appropriately altered
while controlling the shape coefficient and the window-to-wall ratio.

Table 6. VIF value of each parameter.

Aspect
Ratio

East
Window-to-
Wall Ratio

West
Window-to-
Wall Ratio

Interleaved
Length

South
Window-to-
Wall Ratio

South
Exterior

Wall Area

Shape Co-
efficient 1

North
Exterior

Wall Area

North
Window-to-
Wall Ratio

West
Exterior

Wall Area

East
Exterior

Wall Area

VIF 7.79 5.71 5.61 5.33 4.62 4.37 4.21 3.94 3.67 2.22 2.2

1 Shape coefficient: the ratio of the exterior area of a building in contact with the outdoor atmosphere to the
volume it encloses.

Table 7. Standard regression coefficient of each parameter after standard regression.

Shape Co-
efficient

North
Window-to-
Wall Ratio

South
Window-to-
Wall Ratio

West
Window-to-
Wall Ratio

East
Window-to-
Wall Ratio

Interleaved
Length

South
Exterior

Wall Area

Length-
Width
Ratio

North
Exterior

Wall Area

East
Exterior

Wall Area

West
Exterior

Wall Area

p-value 0 0 0 0 0 0 0 0 0 0 0.012
Coefficient 0.492 0.221 0.209 0.168 0.142 0.071 0.0465 0.029 0.020 0.015 0.004

4.2.2. Correlation Analysis of Component Selection Method

In the phase of correlation analysis, only the relationship between the percentage of
the thickness of the insulation in each orientation to the total insulation thickness and the
total energy consumption is required, given that the types of material and construction
have already been determined (Table 8).

Table 8. Comparison of the model before and after the generation of building shape.

Thickness of Insulation Layer in Each Direction/Total Thickness Pearson Correlation

East ratio −0.427
West ratio 0.361
South ratio −0.252
North ratio 0.318

A negative correlation could be observed between the insulation thickness in the
east/south directions and total energy consumption—i.e., increasing the proportion of
the insulation in the east and south directions will decrease the total energy consumption;
conversely, increasing the proportion of the insulation in the west and north directions will
increase the total energy consumption. From a correlation point of view, in order to reduce
the total building energy consumption, the insulation of east- and south-oriented buildings
should be appropriately increased and the insulation of west- and north-oriented buildings
should be reduced under a certain cost limit.

5. Conclusions

1. Simulation-based single-objective or multi-objective optimization can be performed
for prefabricated buildings. Unlike traditional buildings, the building modulus and
component selection need to be considered in the optimization process. This not
only meets the demand for the standardization of prefabricated buildings, but also
increases the speed of optimization computation through reducing the number of
values taken from parameters.

2. A novel, modular parametric modeling approach was proposed and applied in the
floor plan generation method. After this, the optimal generation of prefabricated high-
rise buildings in Tianjin was completed based on this method. The correlation between
each parameter and energy consumption was also studied, and it was concluded
that the shape coefficient and window-to-wall ratio are the main factors affecting the
energy consumption of the buildings in Tianjin.

3. A preliminary component selection method based on computer simulation was
proposed—i.e., the component selection for the prefabricated building was mainly
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carried out to determine the construction of exterior walls, the selection of insulation
materials, and the thickness of the insulation layer. By optimizing the generated
models, it was finally concluded that sandwich insulation constructions and rock
wool board insulation materials should be selected for buildings in Tianjin. According
to the correlation analysis, the thickness of the insulation material in the east and
south directions should be increased under a certain cost limit in order to reduce the
total energy consumption of buildings.
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Appendix A

Table A1. Parameter setting of Galapagos.

Project
The Maximum Number of

Iterations
Population Size

Multiplier of
Initial Boost

Value 120 30 2
Project Proportion of retained elites Crossover ratio
value 5% 75%

Table A2. Tianjin area floor plan generation process results.

Number of Iterations 0 4 8 12

Plan shape

Energy consumption
(kWh/m2) 86.18 70.54 63.13 51.97

Number of iterations 15 19 23 27

Plan shape

Energy consumption
(kWh/m2) 42.86 34.52 28.09 27.55

Number of iterations 31 35 39 43
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Table A2. Cont.

Number of Iterations 0 4 8 12

Plan shape

Energy consumption
(kWh/m2) 27.14 26.78 26.21 25.95

Number of iterations 47 51 55 59

Plan shape

Energy consumption
(kWh/m2) 24.51 24.19 24.01 23.88

Number of iterations 62 66 70 74

Plan shape

Energy consumption
(kWh/m2) 23.31 22.89 22.45 22.13

Number of iterations 78 82 85 89

Plan shape

Energy consumption
(kWh/m2) 21.95 21.15 20.92 20.3

Number of iterations 93 97 101 105
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Table A2. Cont.

Number of Iterations 0 4 8 12

Plan shape

Energy consumption
(kWh/m2) 19.9 19.6 19.22 18.87

Number of iterations 108 112 116 120

Plan shape

Energy consumption
(kWh/m2) 18.73 18.66 18.55 18.11

Table A3. Parameter setting of Octopus.

Project
The Maximum Number of

Iterations
Population Size

Multiplier of
Initial Boost

Value 50 60 50%
Project Ratio of variation Crossover ratio
Value 50% 80%
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Abstract: Performance of convergence to the optimum value is not completely a known process due to
characteristics of the considered design problem and floating values of optimization algorithm control
parameters. However, increasing robustness and effectiveness of an optimization algorithm may
be possible statistically by estimating proper algorithm parameters values. Not only the algorithm
which utilizes these estimated-proper algorithm parameter values may enable to find the best fitness
in a shorter time, but also it may supply the optimum searching process with a pragmatical manner.
This study focuses on the statistical investigation of the optimum values for the control parameters of
the harmony search algorithm and their effects on the best solution. For this purpose, the Taguchi
method integrated hybrid harmony search algorithm has been presented as an alternative method for
optimization analyses instead of sensitivity analyses which are generally used for the investigation
of the proper algorithm parameters. The harmony memory size, the harmony memory considering
rate, the pitch adjustment rate, the maximum iteration number, and the independent run number
of entire iterations have been debated as the algorithm control parameters of the harmony search
algorithm. To observe the effects of design problem characteristics on control parameters, the new
hybrid method has been applied to different engineering optimization problems including several
engineering-optimization examples and a real-size engineering optimization design. End of extensive
optimization and statistical analyses to achieve optimum values of control parameters providing rapid
convergence to optimum fitness value and handling constraints have been estimated with reasonable
relative errors. Employing the Taguchi method integrated hybrid harmony search algorithm in
parameter optimization has been demonstrated as it is a reliable and efficient manner to obtain the
optimum results with fewer numbers of run and iteration.

Keywords: hybrid harmony search algorithm; Taguchi method; algorithm control parameter
optimization; engineering design problems; reinforced cantilever retaining wall design

1. Introduction

The well-functioning optimum designs, which aim to reach stable and economic or
productive mechanisms in engineering regulation, are based on mathematical theorems and
approaches. While optimization methods were applied by Newton, Lagrange, Cauchyeski,
and so on for smaller-sized problems in ancient times, today produce the solutions with
improved or hybrid versions of the optimization algorithms for large-size complex engi-
neering designs. In this conjuncture, metaheuristic optimization algorithms that enable
them to achieve reasonable solutions in a shorter time have been commonly employed in
complicated engineering designs, since environmental and global phenomena due to devel-
oping technology and increasing population have been raised in the last two decades [1].
Although each of them adopts a different process and texture within itself, many effective
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and robust metaheuristic optimization algorithms hitherto have been developed dealing
with better optimization processes than previous ones.

Metaheuristic optimization methods are the algorithms that generate solutions to large-
scale design optimization problems which are inspired by natural events such as swarms
(bird, fish, etc.), physics, evolution, or uniqueness [2]. Major metaheuristic optimization
algorithms improved by mimicking the characteristics and feeling of swarms that try to
survive and meet some needs such as nutrition, defense, and migration in nature are the ant
colony optimization (ACO) [3], the particle swarm optimization (PSO) [4], the artificial bee
colony algorithm (ABC) [5], and the whale optimization algorithm (WOA) [6]. While the
gravitational search algorithm (GSA) [7] and big bang-big crunch algorithm (BB-BC) [8] are
evaluated as based on physics, optimization methods such as the cuckoo search algorithm
(CSA) [9], the firefly algorithm (FA) [10], and the bat algorithm (BA) [11] are inspired
by animals’ nature. The differential evolution (DE) [12] and the biogeography-based
optimization (BBO) [13] are based on evolution concepts such as the genetic algorithm
(GA) [14] and the simulated annealing algorithm (SA) [15].

As different from the other algorithms the harmony search algorithm (HSA) presented
by Geem et al. [16] is based on the music and mimics the process of finding the best
harmony of the notes performed by musicians’ intuition. The HSA, which is a powerful
and effective optimization method because of its simple algorithm scheme, gives fast
results, has an easy-to-apply algorithm, has been exceedingly employed by the researchers
for design optimization analysis. Thanks to the implementation of the algorithm to design
optimization problems effectively and convergence achievement of optimum solutions,
hybrid and improved versions of HSA have been employed in the several fields of civil,
electrical, industrial, software, mechanical engineering, scheduling, clustering, networking,
image processing, and so on [2].

To boost the convergence performance of metaheuristic algorithms and their capacity
to produce solutions with fewer iterations, improved versions [17,18] and hybrid versions
of algorithms [19–21] combined each other have been proposed by researchers. In Figure 1a,
the number and the percentage of conducted studies considering hybrid optimization
algorithms in literature [22] are demonstrated as a comparison graph by years. It is seen
that the usage of hybrid metaheuristic optimization algorithms has increased considerably
in the last two decades. The distribution of hybrid optimization studies for the different
fields has been examined by utilizing the Web of Science database and obtained results
are given in Figure 1b [22]. Although other studies except for the fields given in the figure
correspond to 78% out of whole fields, it is obvious that the hybrid optimization algorithm
studies have a considerable extent of usage in, especially multidisciplinary engineering
studies. Hybrid HSA studies included setting algorithm parameters and hybridization of
HSA with other metaheuristic algorithms as well as collocation of the artificial intelligence
algorithms, which are depicted in Figure 1c as the result of a comprehensive literature
survey [23]. According to the graph, harmony search hybrid optimization studies carried
out in the last five years being 72% out of all studies published between 2008 and 2021
shows that hybrid studies of HSA substantially have been preferred by researchers. Results
given in Figure 1 belong to all types of studies such as research articles, proceeding papers,
early access, book chapters, review articles, and so on.
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Figure 1. Web of Science citation report studies in literature following: (a) Change between published
years of hybrid optimization studies and numbers with percentages; (b) Distribution of hybrid
optimization studies according to fields; (c) Change between published years of hybrid and based on
harmony search optimization studies and numbers.

In the literature, the number of optimization studies carried out utilizing metaheuristic
algorithms and their improved or hybrid versions so far is mainly due to the researcher’s
effort to reach better convergence to the optimum solution. The literature survey has been
demonstrated the popularity of these algorithms in applying engineering design problems
even for real-size complex ones. While the possibility of finding new solutions has increased
by adding some algorithm parameters to the optimum search process, formed mathematical
expressions combining two or more optimization algorithms effectively enable to reach
optimum results. Even though new or hybrid versions of metaheuristic algorithms have
been suggested in this manner, investigating the reasonable values of the current algorithm
parameters is an important issue for convergence to the optimum with fewer computational
attempts. To investigate reasonable factors, design comprehensive sensitivity analyses
have been performed considering different values of algorithm control parameters [24].
Although sensitivity analyses are employed as a path for the researcher to converge to the
optimum result, it takes time because it follows a trial-and-error method. In addition, it
can’t guarantee the appropriate value of a parameter when it is closest to the optimum
solution. In most of the studies using metaheuristic algorithms, the values of the algorithm
parameters are chosen by referring to the studies in the literature. As it may vary depending
on discrete-continuous design variables, constraint-unconstrained cases, and the size of
the current design problem with the numbers of design variables and constraints and
so on in the search for the appropriate value of the metaheuristic algorithm parameter,
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it would be a better manner to find algorithm parameter values considering the current
handled optimization problem. According to a study presented by Uray et al. [25] which
investigated optimum values of the scatter search algorithm parameters by the Taguchi
method, it has been seen that it is possible to estimate the statistically appropriate values of
the algorithm parameters according to a selected objective.

One of the statistical experimental design methods commonly utilized to investigate
the parameter effect on the quality in the manufacturing or design process of goods is the
Taguchi method [26,27]. Thanks to this successful and robust design method, it can esti-
mate the optimum value of considering effective parameters according to specific response
values depending on desired aim. Studies for Taguchi method hybridization of the meta-
heuristic optimization algorithms such as the simulated annealing (SA) algorithm [28], the
genetic algorithm (GA) [29,30], and particle swarm optimization (PSO) [31] are instances
to overcome problems encountered in their field and obtained better results. In the study,
which is conducted shape optimization design by employing Taguchi method hybrid ver-
sion with the HSA, more optimum design variable values have been acquired regardless of
the investigating for optimum values of the HSA parameters [32]. In the study which used
statistical mathematical models improved by considering the Taguchi method employed as
objective function and design constraints, the optimum design of the cantilever retaining
wall has been investigated via HSA [33]. According to the extensive research results in the
literature, no study has been found in which the optimum values for the number of runs
and the number of maximum iterations with optimum HSA control parameters have been
investigated based on the Taguchi method with different engineering problems.

Thus, in this study, some of the considered complex benchmark engineering design
optimization problems and a real-size engineering design optimization problem have been
employed to examine HSA parametric effect and to investigate the optimum values of
algorithmic parameters. In this scope, statistical and optimization analyses to be presented
in this paper have been conducted as follows:

• The effect of variable run values on finding the optimum solution by employing
different complex benchmark engineering design optimization problems and a real-
size engineering design problem, frequently considered in optimization analyzes in
the literature has been investigated;

• Taguchi method integrated hybrid harmony search algorithm (TIHHSA) has been
generated based on the HSA and Taguchi method, namely the proposed hybridization
can be defined as initial optimization for optimum algorithm parameter values of HSA;

• The effect of HSA parameters on the objective function and the optimum number
of runs and maximum iterations with optimum HSA control parameters have been
examined for different engineering optimization design problems utilizing TIHHSA;

• Whether the variation of the optimum values of the HSA parameters depending on
the nature of the engineering design optimization problem has been evaluated;

• According to accomplished optimum results for engineering design optimization
problems, the robustness, and the benefits of TIHHSA presented a new method have
been interpreted and evaluated with previously reported studies in the literature.

2. Materials and Methods

2.1. Complex Benchmark Engineering Design Optimization Problems

In this section, the welded beam design (WBD), the pressure vessel design (PVD),
the gear train design (GTD), and the speed reducer design (SRD) engineering design
optimization problems demonstrated in Figure 2 have been presented with their design
variables, constraints, and objective functions.
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Figure 2. Engineering design optimization problems: (a) Welded beam design problem (WBD);
(b) Pressure vessel design problem (PVD); (c) Gear train design problem (GTD); (d) Speed reducer
design problem (SRD).

2.1.1. Welded Beam Design Problem

The first considered benchmark engineering design example is the design of the weld
joint of thickness h and length l between the bar and beam with cross-section b x t and the
total length L + l (Figure 2a). The welded beam benchmark engineering design problem
(WBD) [34], which considers the shear stress in the weld (τ), bending stress in the beam
(σ), buckling load on the bar (Pc), end deflection of the beam (δ), and side constraints for
the minimum cost, are employed in the optimization analyses (Equation (A1), Appendix A
section). Design variables are the thickness of the weld (h) as x1 within the range [0.1 in.,
2 in.], the length of the welded joints (l) as x2 within the range [0.1 in., 10 in.], the width of
the beam (t) as x3 within the range [0.1 in., 10 in.], and the thickness of the beam (b) as x4
within the range [0.1 in., 2 in.].

2.1.2. Pressure Vessel Design Problem

The pressure vessel design (PVD) problem [35], in which a cylindrical pressure vessel
is capped with hemispherical heads at both ends of a vertical cylindrical shell by using the
welded joint, is demonstrated in Figure 2b. For PVD, the thickness of the shell (Ts), the
thickness of the head (Th), inner radius (R), and the length of the cylindrical section of the
vessel (without including the head) are treated as the design variables. It is one of the well-
known complex engineering design optimization problems that gives its minimum cost,
including material, forming, and welding, under the influence of constraints such as the
thickness of heads and shell, certain values of working pressure, volume, and shell length.

While the design variables of R (x3) and L (x4) are taken as continuous, which are
between ranges in [10 in., 200 in.], the discrete integer design variables as multiples of 0.0625
between ranges in [(0.0625 × 99) in., (0.0625 × 99) in.] are considered for Ts (x1) and Th (x2),
due to the available thicknesses of rolled steel plates (Equation (A2), Appendix A section).
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2.1.3. Gear Train Design

Sandgren [35] introduced the gear train design (GTD) with discrete and integer design
variables, then it has been treated as an engineering design optimization problem to research
the numbers of teeth on each gear with the desired gear ratio. The output shaft’s angular
velocity ratio to the input shaft’s angular velocity should be close to 1/6.931 for the desired
gear ratio. In the GTD problem, each design variable corresponds to Ta (x1), Tb (x2), Td (x3),
and Tf (x4), which takes a value between 12 and 60 as an integer due to considering the
number of them (Figure 2c).

The objective function without constraints, which aims to minimize the difference
between desired gear ratio and the current gear ratio, is given by Equation (A3) (Appendix A
section).

2.1.4. Speed Reducer Design

Speed reducer design (SRD), one of the complex benchmark engineering design
optimization problems, was first studied by Golinski [36]. The SRD problem satisfies eleven
constraints at the minimum gear box’s weight and is accepted as a benchmark for the new
metaheuristic optimization methods. The design consists of gears between the engine and
propeller working at its most efficient speed of rotating with seven design variables. In
the design problem demonstrated in Figure 2d, face width, b (x1), teeth module, m (x2),
number of pinion teeth (x3), shaft length 1 (x4), shaft length 2 (x5), shaft diameter 1 (x6),
and shaft diameter 2 (x7) are considered as design variables.

Design variables of the design problem are determined following ranges, [2.6 cm, 3.6
cm] is for x1, [0.7 cm, 0.8 cm] is for x2, [17 pieces, 28 pieces] is for x3, [7.3 cm, 8.3 cm] is for x4
and x5, [2.9 cm, 3.9 cm] is for x6, and [5.0 cm, 5.5 cm] is for x7. Mathematical formulations
for the objective function and the constraints include the limits on the bending stress of the
gear teeth, surface stress, transverse deflections of shafts 1 and 2 due to transmitted force,
and stresses in shafts 1 and 2 (Equation (A4), Appendix A section).

2.2. Real-Size Engineering Design Optimization Problem

In today’s world, where obtaining the most economical designs in a short time gains
importance, metaheuristic optimization algorithms have become an alternative method.
In this context, Afzal et al. [37] have reported that hundreds of retaining wall design
optimization studies for solving such real-life designs were conducted in the literature. In
geotechnical engineering, the design of a cantilever retaining wall is a complex engineering
problem used to provide stability against lateral soil loads that happen between two
soil levels. Furthermore, the trial-error method utilized in the traditional wall design is
challenging, and finding the safe design is time-consuming considering many iterations
due to the existence of various soil and slope properties.

The reinforced concrete cantilever retaining wall design (RCRW) (Figure 3) has been
selected as a real-size engineering design optimization problem because of the abovemen-
tioned cases. In investigating optimum RCRW designs, Building Code Requirements for
Structural Concrete (ACI 318-05) and commentary (ACI 318R-05) [38] have been consid-
ered as design provisions for stable and safe design. Arranged mathematical expressions
by investigating some of the optimum RCRW studies in the literature [39–43] have been
presented in this section. In the design problem demonstrated in Figure 3a, base width (x1),
toe extension, (x2), stem bottom width (x3), stem top width (x4), base thickness (x5), key
distance from toe (x6), key width (x7), key thickness (x8), vertical steel area in the stem per
unit length of the wall (x9), horizontal steel area of the toe slab (x10), horizontal steel area of
the heel slab (x11), and vertical steel area of the shear key per unit length of the wall (x12) are
considered as design variables in the design optimization of an RCRW. The RCRW design
stability conditions taken as design constraints in the optimization process are checked
according to acting loads on the wall demonstrated in Figure 3b for geotechnical external
and internal reinforced concrete stability conditions.
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Figure 3. Reinforced concrete cantilever retaining wall design (RCRW): (a) Design variables;
(b) Acting loads on retaining wall; (c) Design details.

The steel areas (As) of x9, x10, x11, and x12 design variables have been determined
with the number (n) and diameter (db) of the rebar. The steel areas for x9, x10, x11, and x12
design variables have been determined by considering together the number and diameter
of reinforcement for the stem, toe, heel, and key of the wall, respectively.

By employing the limit bounds of the design variables tabulated in Table 1 the design
space has been formed. Input parameters utilized for geotechnical and design as RCRW
design problem are demonstrated in Table 2.

Mathematical formulations of sliding, overturning, and bearing capacity safety factors
detailed given in Equation (A5) (Appendix A section) have been utilized to satisfy of
geotechnical external stability of the wall [44].

In terms of providing internal reinforced concrete stability, the flexural strengths
(Mns,t,h,k) resistance to design moments (Mds,t,h,k) have been examined for four critical
cross-sections; (i) the section linked stem to base slab, (ii) the initial section of the toe
extension from the stem, (iii) initial section of heel extension from the stem, (iv) the section
linked the key to base slab (Figure 3c). In the same way, the design shear forces (Vds,t,h,k)
should be safely fulfilled by nominal shear strength (Vns,t,h,k) at critical cross-sections of
the wall. The nominal shear and flexural strengths for the critical cross-sections of the wall
have been computed via Equation (A6) (Appendix A section) [38]. In Equation (A6), b is
the width of the section (1000 mm), d is the height of the section, and a is the depth of the
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equivalent rectangular stress block. Design shear forces (Vds,t,h,k) and moments (Mds,t,h,k)
due to lateral soil and surcharge loads given Figure 3b at critical cross-sections, which are
stem, toe, heel, and key have been determined by utilizing Equation (A7) (Appendix A
section), respectively [39,41,45,46].

Table 1. The design variables and limit bounds for wall dimensions and reinforcement.

Design Variables Lower Bound Upper Bound

x1 (m) 1.96 5.50
x2 (m) 0.65 1.16
x3 (m) 0.25 0.50
x4 (m) 0.25 0.50
x5 (m) 0.40 0.50
x6 (m) 1.96 5.50
x7 (m) 0.20 0.50
x8 (m) 0.20 0.50

x9, x10, x11, x12

n (piece) 3 30
db (mm) 10 30
As (cm2) 2.356 212.0575

Table 2. Input parameters for optimization analyses of RCRW.

Input Parameters Symbol Value Unit

Stem height H 4.5 m
Surcharge load q 30 kPa
Backfill slope β 0 ◦

Internal friction angle of the retained soil and the base soil Ør and Øb 36 and 34 ◦
Unit weight of retained soil, base soil, and concrete γr, γb, and γc 17.5, 18.5, 23.5 kPa

Cohesion of base and retained soils cb and cr 0 kPa
Depth of soil in front of the wall Df 0.75 m

Terzaghi bearing capacity factors for Øb = 34◦ [45] Nc, Nq, Nγ 52.64, 36.50, 38.04 –
The factor of safety for sliding and overturning stability SFss and SFso 1.50 –

The factor of safety for bearing capacity SFsb 3.00 –
Reinforcing steel yield strength fy 400 MPa
Concrete compressive strength fc 21 MPa

Concrete cover cc 0.07 m
Shrinkage and temperature reinforcement percentage ρst 0.002 –
Nominal strength coefficient for the flexural moment φm 0.90 –

Nominal strength coefficient for shear force φ 0.75 –
Reinforcement location factor (1.0 for concrete below < 30.48 cm) ψt 1.00 –

Coating factor (for uncoated bars) ψe 1.00 –
Lightweight aggregate concrete factor (1.0 for normal-weight conc.) λ 1.00 –

Cost of steel and concrete Cs and Cc 0.4 and 40 $/kg and
$/m3

Randomly selected steel areas (Ass,t,h,k) from the design pool for calculating flexural
strengths (Mns,t,h,k) should be greater than the minimum steel area (Asmins,t,h,k) and smaller
than the maximum steel area (Asmaxs,t,h,k). Furthermore, obtained reinforcement bar lengths
in the optimum design should be satisfied bond strength as minimum development length
(Lds,t,h,k) or minimum hook development length (Ldhs,t,h,k) for all members according
to design code. The abovementioned design criteria with required details have been
demonstrated by Equation (A8) (Appendix A section) [38].

The mathematical expression of an RCRW design categorized as one of the most
challenging real-size engineering design optimization problems is given in Equation (A9)
(Appendix A section). The equation is presented each of stem (s), toe (t), heel (h), and key
(k) critical cross-sections of RCRW. Due to the necessity of satisfying external and internal
stability conditions RCRW optimum design is a complex engineering problem with 12
design variables and 26 design and side constraints.

112



Mathematics 2022, 10, 327

2.3. Harmony Search Algorithm

The harmony search algorithm which is applied to many complex and real-size engi-
neering design problems successfully is based on the principle of finding the best harmony
with the notes played by the musicians in an orchestra [16]. In this process of reaching the
best harmony, each musician may play notes or choose any notes randomly from whole
possible combinations in their mind, which correspond to design space filled with different
values of design variables. The harmony memory (HM) matrix, which stores the design
variables values of the problem in the algorithm, is created by mimicking the situation
which plays the notes from the musicians’ minds in the music-making process. The HM
matrix is depicted by Equation (1).

HM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(1,1) x(2,1) . . . . . . x(Nvar−1,1) x(Nvar,1)
x(1,2) x(2,2) . . . . . . x(Nvar−1,2) x(Nvar,2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
x(1,HMS−1) x(2,HMS−1) . . . . . . x(Nvar−1,HMS−1) x(Nvar,HMS−1)

x(1,HMS) x(2,HMS) . . . . . . x(Nvar−1,HMS) x(Nvar,HMS)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
HMS × Nvar

(1)

where HMS and Nvar correspond to harmony memory matrix size and the number of
design variables, respectively.

A new harmony (solution vector) improves by considering three cases which are
memory consideration, random selection, and pitch adjustment mechanisms. In memory
consideration and a random selection, whether selecting the note in the mind of the
musician or not is decided according to the value of harmony memory consideration rate
(HMCR), which is an algorithm control parameter. If a random number (rnd (0,1)) assigned
in the algorithm is smaller than HMCR, a harmony is selected from HM. Otherwise, a
random harmony is selected from the design space with the possibility of (1−HMCR).
The probabilistic process of updating for each design variable value depending on HMCR,
where xi

′ is the new solution vector and Xi is a random selection from the defined range of
design variables in design space, is given by Equation (2).

x′i =
{

x′i ∈
{

x1
i , x2

i , x3
i , . . . , xHMS

i
}

w.p.(HMCR)
x′i ∈ Xi = {xi(1), xi(2), . . . , xi(K)} w.p.(1 − HMCR)

(2)

Similar to the process of achieving the best harmony by tuning each musical instrument
appropriately, the pitch adjustment mechanism in the algorithm is applied considering
pitch adjustment rate (PAR) if HMCR possibility is valid in updating the value of the
current design variable. If assigned new rnd (0,1) value for current design variable is
smaller than PAR, design variable is updated according to possibility HMCRxPAR which
is given in Equation (3). Otherwise, the updating process is not applied (1 − PAR) [16,47].

x′i =

⎧⎨⎩
xi(k + m) w.p. HMCRxPARx × PAR × 0.5
xi(k − m) w.p. HMCR × PAR × 0.5
xi(k) w.p. HMCR × (1 − PAR)

(3)

Here, xi(k) and m correspond to the kth element in Xi and neighboring value (usually
is taken a value of 1), respectively.

In addition, the steps of classical HSA are itemized as follows:

• Step 1: HSA is initialized by determining the constant algorithm parameters (HMS,
HMCR, PAR, and maximum iteration number) and generating design space with
design variable values according to range limitation;

• Step 2: HM matrix is formed randomly by selecting from design space;
• Step 3: Improvisation of a new HM matrix conceiving memory consideration, random

selection, and pitch adjustment mechanisms is carried out;
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• Step 4: HM matrix is updated depending on whether a better solution is obtained, and
then the worst solution is drawn from HM by replacing the better one;

• Step 5: Until the current iteration is reached the predefined maximum iteration number,
Step 3 and Step 4 are repeated. If it is conducted HSA is ended.

2.4. Taguchi Method Background

By determining the proper orthogonal array for the current problem is possible to
limit the number of analyses required for pre-research in the Taguchi method [26,27], which
is based on statistical and a robust design manner. Thus, the orthogonal array which has a
specific array configuration with an extraordinary set of Latin Squares reduces research
costs and allows parametric analysis with fewer trials [48]. The general representation of
orthogonal array is Ld(a)k or Ld mean that d is the total number of trials; a is the number of
levels; k is the number of parameters; L is the type of the orthogonal array. In the Taguchi
design, initially, the parameters that are assumed to be effective on the response value
are determined, and the appropriate orthogonal arrays tabulated in Table 3 are selected
according to the definite number of parameters and the number of levels.

Table 3. Orthogonal array.

Ld
Ld(a)k L4 L4 L8 L8 L9 L9 L9 L18 L16 L16 L16 L16 L25 L25 L25 L25

d 4 4 8 8 9 9 9 18 16 16 16 16 25 25 25 25
k 2 2 4 5 2 3 4 5 2 3 4 5 2 3 4 5
a 2 3 2 2 3 3 3 3 4 4 4 4 5 5 5 5

Finding the best combination of parameters from the cluster which is formed with
different levels of the parameter is possible by using Taguchi Method with less trial,
contrary to performing all analyses as in the full factorial design. For instance, if it is
desired to investigate the parameter effect and the optimum values of the parameters in
a design problem that has five parameters with four levels, 1024 (45) trials are required
in a full factorial design demonstrated schematically in Figure 4. The data set of 1024
combinations is repeated with each other with a specific rule and in order. The harmony
search algorithm must be run to find the best combination from between 1024 algorithm
parameter combinations, including all values of design parameters with their levels. Here,
the best combination means the minimum value of the objective function for the best-
acquired value of parameters. In Figure 4, Pmn (m = 1, . . . ,k; n = 1, . . . ,a) corresponds to
design parameters with their levels, which have an impact on the response. The number of
design parameters (k) and their levels (m) have been taken as five and four, respectively.

However, only 16 trials are performed, which is sufficient to predict the desired results
with an acceptable error employing the L16 orthogonal array according to the Taguchi
method. Calculating the Signal/Noise (S/N) ratio is another of two important steps in the
Taguchi design method. The Signal/Noise ratio (S/N) is described by Taguchi to decrease
variance and is used as performance criteria in experiment design. The S/N ratio is divided
into three depending on the purpose of application; smaller is better, nominal is best, larger
is better as given in, respectively, Equations (4)–(6).

S/N = −10 log
[
∑

(
Y2

)
/n

]
(4)

S/N = −10 log
[
∑

(
Y
)
/σ2

]
(5)

S/N = −10 log
[
∑

(
1/Y2

)
/n

]
(6)
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Figure 4. Full factorial design combinations.

Here, Y is the response value; n is the number of repetitions; Y and σ are the arithmetic
mean and the standard deviation of the Y values. The S/N ratios are determined for
the obtained Y values by the Taguchi designs. By employing the ascertained S/N ratios,
the arithmetic mean of all S/N ratios (η) is calculated and then ηij is determined via
Equation (7). While ηij informs about the change depending on the response value in all
levels of each parameter, (S/N)ij is the sum of the S/N ratios whose levels are equal to j
for the ith design parameter. The effect of the parameters on the selected response value is
determined by the variance value which shows the distance of the numbers in the series
to the mean of all the numbers in the series. The variance (νi), which is defined as the
sum of the squares of the deviations of the data from the arithmetic mean, is calculated
according to the ηi values, and variance analyses (ANOVA) are performed (Equation (8)).
In the Taguchi approach, the prediction of the response value (ηprediction) by considering
the value that has the most influential parameter level on the design for each parameter
is ascertained via Equation (9), which ηpi is the average S/N ratio value in the estimated
optimum parameter level for the current parameter. The relative error (ε) is calculated by
employing the predicted response value (ηprediction) and the real value of response (ηreal)
which is acquired by substituting the predicted optimum parameter level of parameters by
Equation (10).

ηij =
(S/N)ij

a
(i = 1, . . . , k; j = 1, . . . , a) (7)

ν2
i =

[
j

∑
i=1

(
ηij − η

)2
]

1
a − 1

(8)

ηprediction = η+
k

∑
i=1

(
ηpi − η

)
(9)

ε =
ηprediction − ηreal

ηreal
× 100 (10)
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2.5. A New Hybrid Method Based on Taguchi for Optimum Values of Algorithm Parameters

In this study, a novel Taguchi method integrated hybrid harmony search algorithm
(TIHHSA) has been presented that enables optimum algorithm parameter values by statis-
tically predicting the best fitness value. The TIHHSA flowchart, which explains of forming
Taguchi design matrix, initializing HSA, and performing Taguchi analyses, is depicted as
three sections in Figure 5.

Figure 5. Flowchart of Taguchi Method Integrated Hybrid Harmony Search Algorithm (TIHHSA).
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2.5.1. Forming Taguchi Design Matrix

Finding the best combination is possible by using Taguchi Method with the least
trial, contrary to performing 1024 analyses such as full factorial design which is involved
formed by design parameters with their parameter levels. Initially, the design parameters
and their defined ranges which affect the response value of the optimization problem
to investigate the best combinations that give the minimum fitness (objective) value are
specified according to the process of forming the Taguchi design matrix given in Figure 5.

As the Taguchi design matrix (DM) is not created randomly or repetitively according
to a certain rule, the parameter and its parameter level given differently for each design in
the orthogonal array table are considered for generating DM. In this study, the harmony
memory size (HMS), the harmony memory consideration rate (HMCR), the pitch adjust-
ment rate (PAR), the maximum iteration number (MAXITER), and the independent run
number of whole iterations (RUN) have been accepted as design parameters that directly
affect the convergence rate to the desired fitness value. Parameter levels have been set as
20, 30, 40, 50 for HMS, 0.80, 0.85, 0.90, 0.95 for HMCR, 0.10, 0.20, 0.30, 0.40 for PAR, 2000,
4000, 6000, 8000 for MAXITER and 30, 100, 500, 1000 for RUN. To generate the Taguchi
design matrix (DM), the appropriate orthogonal array L16 (L16(4)5) from Table 3 has been
chosen by five different design parameters, each of which has four levels. If an example
is given for the creation of the 8 of design no in the DM, the parameter levels take as 2
for HMS, 4 for HMCR, 3 for PAR, 2 for MAXITER, and 2 for the RUN as seen in Table 4.
Accordingly, design no 8 is generated by selecting 30 for HMS, 0.95 for HMCR, 0.30 for
PAR, 2000 for MAXITER, and 100 for the RUN. Similarly, the other designs are formed
according to parameter level for the current parameter.

Table 4. L16 orthogonal array and Taguchi design matrix.

Design No
Design Parameters with Levels DM

P1 P2 P3 P4 P5 HMS HMCR PAR MAXITER RUN

1 1 1 1 1 1 20 0.80 0.10 2000 30
2 1 2 2 2 2 20 0.85 0.20 4000 100
3 1 3 3 3 3 20 0.90 0.30 6000 500
4 1 4 4 4 4 20 0.95 0.40 8000 1000
5 2 1 2 3 4 30 0.80 0.20 6000 1000
6 2 2 1 4 3 30 0.85 0.10 8000 500
7 2 3 4 1 2 30 0.90 0.40 2000 100
8 2 4 3 2 1 30 0.95 0.30 4000 30
9 3 1 3 4 2 40 0.80 0.30 8000 100

10 3 2 4 3 1 40 0.85 0.40 6000 30
11 3 3 1 2 4 40 0.90 0.10 4000 1000
12 3 4 2 1 3 40 0.95 0.20 2000 500
13 4 1 4 2 3 50 0.80 0.40 4000 500
14 4 2 3 1 4 50 0.85 0.30 2000 1000
15 4 3 2 4 1 50 0.90 0.20 8000 30
16 4 4 1 3 2 50 0.95 0.10 6000 100

2.5.2. Initializing HSA Process

The process of HSA is performed by employing pre-defined design variables, design
constraints, and objective function of complex benchmark engineering design optimization
problems which are the welded beam (WBD), the pressure vessel (PVD, the gear train (GTD),
and the speed reducer (SRD) engineering design problems and the real-size reinforced
concrete cantilever retaining wall (RCRW) design.

In the optimization process of 16 designs, the algorithm parameters are assigned
by considering DM tabulated in Table 4. End of the optimization process the best fit-
ness values are acquired as response values for each row of DM and engineering design
optimization problems.
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2.5.3. Performing Taguchi Analyses

In this section, the S/N ratios of response value have been calculated via Equation (4),
which is given for smaller is the better purpose, for WBD, PVD, GTD, SRD, and RCRW
engineering design optimization problems, separately. The graphs that show the variation
between the determined ηij values via Equation (7) and the design parameter with their
levels were drawn. The variance (ν) values of design parameters by employing η and ηi
values according to Equation (8) and the parameter effect (PE) on response value based on
the sum of squares for the design parameters are specified.

And then the verification analyses are performed vis a vis estimated optimum values
of design parameters which are suggested for ηprediction value depicted in Equation (9). By
assigning the HMS, HMCR, PAR, MAXITER, and RUN optimum values that come from
the Taguchi approach results to HSA, optimization analyses are conducted again for each
design optimization problem and ηreal is determined. The relative error (ε) which is a
reliability criterion of the Taguchi design is calculated by Equation (10).

3. Design Experiments and Results

In this section, the optimization analysis results reached by the HSA and the proposed
TIHHSA method have been given with the aim of investigating different engineering
optimization design problem’s characteristic effect on the fitness value. In the optimization
analyses performed with HSA, the variation of the fitness values achieved for different
numbers of run values according to the characteristics of different engineering optimization
problems has been examined. The robustness of the proposed TIHHSA method has been
evaluated for engineering optimization design problems and the optimum values of the
algorithm parameters have been estimated with the HMS, HMCR, PAR, MAXITER, and
RUN effects obtained from the variance analyses (ANOVA).

3.1. Optimization Analyses of Engineering Design Problems and Real-Size Engineering Design
Optimization Problem

In this section, the optimization analyses result of the welded beam (WBD), the
pressure vessel (PVD), the gear train (GTD), and the speed reducer (SRD) benchmark
engineering design problems and the real-size reinforced concrete cantilever retaining wall
(RCRW) design have been presented. In the optimization analysis through harmony search
algorithm (HSA) [16], the algorithm parameters are selected as HMS = 20, HMCR = 0.90,
and PAR = 0.35 [47]. Deb’s rules [49] are implemented as a constraint-handling strategy. The
best solution is determined according to penalty values of all constraints with the fitness
values. The best solution is evaluated according to the current fitness value if solutions
have the same penalty value or no penalty.

Different run cases (R30, R100, R500, R1000) have been chosen to investigate the effect
of variable run values on the minimum objective function, in the optimization analyses. HS
algorithm is performed until maximum iteration numbers reach 30,000. This process has
been repeated for different independent runs as 30, 100, 500, and 1000. In the evaluation
of the results, while the best iteration number (BIN) corresponds to the iteration in which
no more minimum objective function value is yielded with ongoing analysis, the best run
number (BRN) is the best-obtained fitness value among all runs for each case. The best,
the worst, the mean, the standard deviation (StD), and the median values of the minimum
objective function (fitness value) have been determined for BRN and BIN, separately.

Achieved statistical evaluations of optimization analyses satisfied the constraints are
tabulated in Table 5 for WBD, PVD, GTD, and SRD.
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According to Table 5, the minimum fitness value of the WBD problem has been found
for the R1000 case as $1.74026 in 28,817 iterations, which corresponds to 96% of the optimum
search process performed with 30,000 iterations. After this value was accomplished for
276 runs out of 1000 (276/1000 × 100 = 28%), no more minimum fitness was not reached
during continuing runs. For the other run cases (R30, R100, R500), while the optimum
values have been achieved on the average of 80% of 30,000 iterations, it is seen that the
average of 38% of all runs is enough for this search process.

It is clearly shown that the minimum fitness value of PVD has been gained for the
R1000 case as $5959.86 in 82% out of 30,000 iterations and 795 runs out of 1000 (80%). While
the minimum fitness values have been found in an average of 70% of the optimum search
process, an average of 42% of independently operated runs has been sufficient to acquire
the minimum objective function value for R30, R100, and R500 cases.

Though increasing the run number has been caused that the algorithm obligates to
investigate more optimum value, the only best fitness value of GTD problem has revealed
as 2.70086 × 10−12 in the case of R100. While the algorithm has been reached the best
fitness value in 210 and 10 trials out of 30,000 iterations, it is seen that 34 and 198 runs are
enough to find the optimum solution for R500 and R1000 cases, respectively.

When the values tabulated for the SRD problem are examined, it is observed that
the best fitness value (2994.79 kg) has been just attained for the R100 case alike for the
GTD problem, even though the optimization process for more runs which is ongoing. The
searching process for the minimum fitness value of the SRD problem has been performed
with 30,000 iterations and the best value has been found in 23,877 iterations out of entire
iterations that means 80% of the process. The more minimum fitness value has not been
reached for increasing runs.

Since the algorithm cannot reach a better solution after reaching the best solution, the
process is conducted again to possibly find a more minimum result with different runs.
It is observed that more fitness values have been generally yielded with increasing runs
for different design problems. The fitness values of WBD and PVD design problems have
been achieved for the R1000 case when given statistical result tables are examined. The
fitness value of GTD and SRD design problems has been obtained for the R100 case in
optimization analyses which are seen that the fitness value is not changing with continuing
analysis any longer.

It has been seen from the statistical results given in Table 6 for the optimum cost
(RCRW1) and the optimum weight (RCRW2) of the real-size engineering design optimiza-
tion problem (RCRW) that the optimum results are not achieved at the equal runs for
different objective functions of the same optimization problem. The optimum results have
been reached in the R500 case for RCRW1 as $179.449/m and the R100 case for RCRW2 as
5883.61 kg/m. For RCRW1, the optimization process has been completed in 98% iterations
out of whole iterations and 359(72%) run out of 500 runs. In contrast with RCRW1, it has
been seen that this process for RCRW2 is conducted at the time when is operated in 25,444
iterations out of 30,000 and 38 runs out of 500 runs.

Table 6. Statistical results for f(x) optimum values of real-size RCRW engineering design
optimization problem.

Case
Run Iteration

BRN Best Mean Worst StD Median BIN Best Mean Worst StD Median

R
C

R
W

1
($

/m
)

R30 11(37%) 180.082 185.85 194.525 4.52073 185.329 29,447(98%) 180.082 186.376 627.563 21.5973 181.305
R100 76(76%) 179.842 186.153 198.7 4.39706 186.333 29,975(99%) 179.842 186.275 468.5 21.6613 181.156
R500 359(72%) 179.449 186.049 200.756 4.72074 185.306 29,405(98%) 179.449 184.779 480.697 21.1682 180.267

R1000 379(38%) 179.693 186.064 200.572 4.6882 185.019 23,496(78%) 179.693 184.553 462.683 19.8148 179.699

R
C

R
W

2
(k

g/
m

) R30 4(13%) 5886.67 5964.16 6411.61 128.141 5898.14 26,196(87%) 5886.67 5987.62 9578.21 348.742 5894.12
R100 38(38%) 5883.61 5962.77 6302.54 108.939 5910.18 25,444(85%) 5883.61 5964.5 11,125.5 358.102 5884.06
R500 319(64%) 5883.64 5958.45 6764.28 126.388 5903.05 22,311(74%) 5883.64 6007 9570.89 401.738 5892.82

R1000 735(74%) 5884.09 5955.51 6966.85 115.767 5901.38 28,442(96%) 5884.09 6005.54 9984.8 449.616 5884.82

NOTE: the bolded values are the best fitness values.
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The minimum objective function value comparison between the previously reported
studies in the literature which were conducted by utilizing different metaheuristic algo-
rithms and the obtained results of design optimization problems are given for WBD, PVD,
GTD, and SRD in Figure 6a [35,50–70]. In the same figure, general (b) and zoomed (c)
view iteration history graphs of the best solution (fmin) for the best run among all runs are
demonstrated. Detailed comparisons of results for design problems of WBD, PVD, GTD,
and SRD with the studies in the literature are given for optimum solutions in Tables A1–A4
and for constraints in Table A5 of the Appendix A section.
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Figure 6. Optimization analyses result for WBD, PVD, GTD, and SRD, respectively: (a) Comparisons
graphs between the best fitness values and the literature studies; (b) General view iteration history
graphs; (c) Zoomed view iteration history graphs.

It is seen that the optimal fmin value ($1.74026) acquired with the HSA algorithm when
is R1000 case in this study is approximately 1% greater than the value ($1.7248) yielded
with the hybrid Taguchi harmony search algorithm [54] according to comparison given
in Figure 6a for WBD. The fmin value acquired as $5959.86 in the R1000 case for PVD is
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above the best fitness value with 2% ($5852.6394) presented according to the study by Gao
et al. [58], which utilized the HSA with the bandwidth improvisation to the pitch adjustment
rate. The reached optimum value of GTD in the R30 case which is 2.70086 × 10−12 is the
same as the best values presented in the literature [61–64]. The acquired optimum value
(2994.79 kg) for SRD is higher than the best fitness value (2876.22 kg) presented in the
literature study [66] with 4% obtained according to the Taguchi-aided optimization search
method.

The comparison between obtained minimum objective function values of RCRW
designs of the optimum cost (RCRW1) and the optimum weight (RCRW2) and the opti-
mization study of retaining wall design in the literature are shown in Figure 7a [40]. The
optimum search process at the run value which is the best solution (fmin) for R30, R100,
R500, and R1000 is given as the general view and zoomed view of iteration history graphs
in Figure 7b,c, respectively. Detailed results with the comparison of the optimum values
in the literature for RCRW1 and RCRW2 designs are listed in Tables A6 and A7 of the
Appendix A section, respectively.

RC
RW

1 

   

RC
RW

2 

   
 (a) (b) (c) 

Figure 7. Optimization analyses result for the optimum cost and the optimum weight of RCRW
designs, respectively: (a) Comparisons graphs between the best fitness values and the literature
study; (b) General view iteration history graphs; (c) Zoomed view iteration history graphs.

According to the comparison of optimum designs with the literature studies given
in Figure 7a, it is obvious that RCRW1 and RCRW2 optimum objective function val-
ues ($179.4495/m and 5883.61 kg/m) are greater than the best values ($163.98/m and
5668.5 kg/m) presented by Gandomi et al. [40] as 9% and 4%, respectively. In this study,
it has been determined that the optimum solutions yielded by the HSA for two different
objective functions of a real size engineering design optimization problem are close to the
literature values which were reached by using different algorithms in general for compari-
son. Although it is presented as the best solution acquired with the biogeography-based
optimization (BBO) algorithm considering the optimization problem, it is not specified
whether the optimum solution of the 26 constraints utilized in the study is provided. Since
it is important to obtain the best solution that provides all constraints of the optimization
problem, the values of the constraints accomplished for this study, in which the math-
ematical model of the optimization problem is compared, are given in Table A8 of the
Appendix A section.
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Conducted analyses have been shown that the appropriate numbers of iteration and
the independent run of entire iterations, which formed the extent of the acquiring optimum
process, are significant to reaching the best fitness value instead of many or fewer numbers
of them. The reaching process of the maximum iteration number defined as the run is
accepted 30 times in the literature of optimization studies and the most minimum fitness
value satisfying the design constraints is presented as the optimum result. The minimum
fitness values have been yielded by operating different design problems with different runs
when the number of the runs is greater than 30 according to the results given in the tables.
It observed that while the more minimum fitness values generally are obtained with the
increasing runs in some engineering design problems, the minimum result may not be
found with larger runs too in some of them. This brings to the fore the necessity that the
number of executions of the optimization algorithm may have an optimum value.

3.2. Taguchi Analyses

The best combination, which provided the best fitness value for the welded beam
design (WBD), the pressure vessel design (PVD), the gear tear design (GTD), the speed
reducer design (SRD), the reinforced concrete cantilever retaining wall design (RCRW1)
optimization problems have been investigated in terms of design parameters effective
on the searching optimum solutions via the Taguchi method integrated hybrid harmony
search algorithm (TIHHSA) as visualized in Figure 5.

3.2.1. Part I: Investigation of Five Optimum Design Parameter Values with Effect on the
Fitness Value

For the abovementioned aim, by considering different values of design parameters,
the harmony memory size (HMS), the harmony memory consideration rate (HMCR), the
pitch adjustment rate (PAR), maximum iteration number (MAXITER), and the independent
run number of the whole iterations (RUN), 16 designs given in Table 4 formed according to
L16 orthogonal array have been performed. By utilizing obtained the minimum objective
function values, f(x), for each design optimization problem, the Signal/Noise ratios (S/N),
defined in Equation (4) with the aim of the case of smaller is better, have been calculated
and listed with the response values of different engineering design optimization problems
in Table 7.

Table 7. Response values (f(x)) and S/N ratios of response values.

Design
No

f(x) S/N

WBD
($)

PVD
($)

GTD
(Unitless)

SRD
(kg)

RCRW1
($/kg)

WBD PVD GTD SRD RCRW1

1 2.1880 6595.36 9.94 × 10−11 3002.24 196.841 −6.8010 −76.38 200.052 −69.5489 −45.882
2 1.8766 6315.66 2.70 × 10−12 2996.59 183.264 −5.4672 −76.01 231.37 −69.5325 −45.262
3 1.8656 6040.75 2.70 × 10−12 2996.09 181.325 −5.4165 −75.62 231.37 −69.5311 −45.169
4 1.8073 5985.52 2.70 × 10−12 2996.03 180.652 −5.1405 −75.54 231.37 −69.5309 −45.137
5 1.8383 6039.20 2.70 × 10−12 2995.6 183.881 −5.2881 −75.62 231.37 −69.5297 −45.291
6 1.8528 6014.33 2.70 × 10−12 2995.81 181.395 −5.3564 −75.58 231.37 −69.5303 −45.173
7 2.1053 6116.35 2.31 × 10−11 3002.82 189.297 −6.4661 −75.73 212.736 −69.5506 −45.543
8 2.5046 6389.99 2.70 × 10−12 3001.70 187.417 −7.9747 −76.11 231.37 −69.5474 −45.456
9 2.1041 6257.68 2.70 × 10−12 2996.93 185.566 −6.4615 −75.93 231.37 −69.5335 −45.370

10 2.0103 6385.19 9.94 × 10−11 2998.29 186.013 −6.0654 −76.10 200.052 −69.5375 −45.391
11 1.7921 6105.73 2.70 × 10−12 2997.21 183.491 −5.0673 −75.71 231.37 −69.5343 −45.272
12 2.0951 6286.05 2.70 × 10−12 3000.60 188.117 −6.4240 −75.97 231.37 −69.5442 −45.489
13 1.9126 6136.63 2.70 × 10−12 2998.17 190.651 −5.6324 −75.76 231.37 −69.5371 −45.605
14 2.0021 6169.29 2.70 × 10−12 3002.63 195.777 −6.0298 −75.80 231.37 −69.550 −45.835
15 1.9833 6186.53 2.70 × 10−12 2998.66 183.548 −5.9477 −75.83 231.37 −69.5386 −45.275
16 2.1366 6147.29 2.70 × 10−12 2997.24 183.776 −6.5943 −75.77 231.37 −69.5344 −45.286

η 2.0047 6198.22 1.61 × 10−11 2998.50 186.313 −6.0083 −75.84 226.29 −69.5382 −45.402
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The rank (R) which indicates the order of design parameters effect from largest to
smallest have been accomplished by using ηij values for each design optimization prob-
lem. The sum of squares (SS), variance (ν), and rank (R) values acquired from ANOVA
analyses are demonstrated in Table 8. The Taguchi method which is a fractional factorial
design is a saturated model [71,72]. It means that all degrees of freedom are used in the
estimation. For this reason, p values are not given in Table 8 as no residual error occurs in
the Taguchi design with L16(4)5. While the RUN is the most effective parameter being that
the biggest variance value having for WBD, PVD, and GTD designs, the MAXITER is the
most important parameter for SRD and RCRW1 in reaching minimum objective function.
Although the possibility of obtaining the more minimum or the most minimum fitness
value is triggered by extending the optimization process with more iteration such as SRD
and RCRW1 designs, it occurs the outcome that unavailability of no more optimum values
with continuing analyses and needed for a new independent run process such as WBD,
PVD, and GTD problems.

Table 8. Results of variance analyses of WBD, PVD, GTD, SRD, and RCRW1 optimization problems.

Optimization
Problem

Evaluation
Criteria

Design Parameter

HMS HMCR PAR MAXITER RUN

WBD
SS 0.6492 1.7416 1.2039 1.1445 4.0607
ν 0.216309 0.580439 0.401491 0.381525 1.35359
R 5 2 3 4 1

PVD
SS 0.0754 0.0865 0.0188 0.1542 0.4473
ν 0.02515 0.028833 0.006269 0.051393 0.149109
R 4 3 5 2 1

GTD
SS 164.432 164.432 456.416 456.416 654.917
ν 54.8032 54.8032 152.065 152.065 218.268
R 4 5 2 3 1

SRD
SS 4.44 × 10−5 9.58 × 10−6 4.53 × 10−5 6.15 × 10−4 1.36 × 10−4

ν 1.48 × 10−5 3.21 × 10−6 1.51 × 10−5 2.05 × 10−4 4.55 × 10−5

R 4 5 3 1 2

RCRW1
SS 0.052 0.1184 0.0349 0.4879 0.0535
ν 0.0173 0.0395 0.0116 0.1626 0.0179
R 4 2 5 1 3

It is observed from the variance results that the PAR and the HMS have an average
or minimal effect with rank values of 3 or 5 and 3, 4 or 5. In improvising a new solution
of the HSA, if the assigned random number is smaller than HMCR, the PAR is compared
to a new random number. In satisfying this condition, the solution is improved, and its
new fitness value is determined. As including the PAR in this process depends on the
possibility of an assigned random number, it is commented that the PAR may not be a
much effective parameter to find the minimum except for the GTD problem. The PAR
is the second effective design parameter on the best fitness value for GTD which is an
unconstrained design problem. The HMS design parameter may not be the most critical
one since the solutions of HM become the same each other with increasing iteration for
each different run to reach the fmin.

In addition, the prediction of the response value (ηprediction), and the optimum param-
eter combination have been determined separately for each design problem (Table 9). The
real response values (ηreal) which are specified by considering the optimum parameter
combination have been obtained with verification analyses (Table 10).
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Table 9. Verification analyses data and results with optimum values of design parameters.

Optimization Problem Optimum Parameter Combination fmin (ηprediction)

WBD HMS1-HMCR3-PAR2-MAXITER4-RUN4 $1.63817
PVD HMS2-HMCR3-PAR4-MAXITER4-RUN4 $5813.73
GTD HMS4-HMCR4-PAR2-MAXITER2-RUN3 2.60398 × 10−12

SRD HMS1-HMCR1-PAR2-MAXITER3-RUN3 2994.16 kg
RCRW1 HMS1-HMCR3-PAR2-MAXITER4-RUN3 $177.724/m

Table 10. Statistical results from verification analyses of engineering design optimization problems.

Case

Run Iteration

BRN
Best

(ηreal)
Mean Worst StD Median BIN

Best
(ηreal)

Mean Worst StD Median

WBD 202/1000(20%) 1.7455 2.8743 5.10816 0.54932 2.8190 2598/8000
(32%) 1.7455 1.82 9.44763 0.418665 1.7455

PVD 897/1000(89%) 6054.14 7000.4 8272.08 427.637 7032.49 7828/8000
(98%) 6054.14 7153.31 42,950.5 3947.25 6180.14

GTD 2/500 (0.4%) 2.70086 ×
10−12

5.4247
× 10−8

1.38114
× 10−6

1.34484
× 10−7

1.31252
× 10−8

312/4000
(8%)

2.70086
× 10−12

2.99998
× 10−5

5.5068 ×
10−3

3.7964 ×
10−3

2.70086
× 10−12

SRD 399/500
(80%) 2995.97 3004.43 3022.88 4.62559 3003.84 5746/6000

(96%) 2995.97 3062.32 5322.68 296.145 2996.6

RCRW1 425/500
(85%) 181.035 191.431 206.659 5.36727 191.363 7740/8000

(97%) 181.035 199.648 386.834 38.1441 189.368

Since the optimum values of MAXITER and RUN have been accomplished as their
maximum values (MAXITER = 6000 and 8000 and RUN = 500 and 1000) for different
optimization design problems except for GTD, it is concluded that finding more fitness
values are needed more research process for constrained optimization design problems.
Generally, it is detected from the yielded results that the optimum values of algorithm
parameters of HSA (HMS, HMCR, PAR) have been altered according to the characteristics
of the design problem. In cases with smaller HMS values (20, 30) for WBD, PVD, and
RCRW1, the large HMCR value (0.90) has increased the probability that the new solutions
improvised in the algorithm is selected from the HM, while the new solution has been
randomly selected from the design space with the possibility of small HMCR value (0.80)
for SRD. The GTD unconstrainted design problem whose optimum values are obtained for
HMS = 50 and HMCR = 0.95 shows that the optimum search has been sufficient with fewer
iterations and runs due to the different characteristics of the design optimization problem
and its small size.

3.2.2. Part II: Investigation of Four Optimum Design Parameter Values with Effect on the
Fitness Value

It is apparent from analyses that the most effective algorithm parameter for reaching
the best fitness value is mostly the RUN with S/N ratios and a change percentage of
parameter effect for the 5P case. Furthermore, the minimum objective function value is
estimated via the TIHHSA, when the optimum RUN value equals 1000 for WBD and PVD
and 500 for GTD, SRD, and RCRW1 problems. For this reason, the S/N ratios, variance,
and optimum Taguchi parameter values have been repeated by analyses which are taken
as fix values whose optimum RUN value for four parameters (the 4P case) to reasonably
observe the parameter effect of the other design parameters. According to DM given in
the first section of Table 11, optimization analyzes have been performed and then response
values given in the second section of Table 11 have been obtained.
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In contrast to the Taguchi design with L16(4)5, obtained p values with SS and R values
which are due to the reduction of the number of parameters for the Taguchi design with
L16(4)4 are given in Table 12. The variance values (Table 12) have been specified by utilizing
the S/N ratios (the third section of Table 11) have been calculated with the aim of smaller
is the best. MAXITER is the most effective algorithm parameter according to variance
and rank values for PVD, SRD, and RCRW1 design optimization problems. While the
MAXITER has the first rank value for SRD and RCRW1 problems whose sizes are higher
than the others due to the number of design constraints and design variables, it hasn’t been
a critical factor for the WBD problem. The HMS and HMCR design parameters are the
first and second effective factors, respectively. It is noticed that the HMCR and PAR design
parameters, which are included in the process of reaching the best solution according to the
random number assigned in the algorithm, generally have lower variance. Conducting the
statistical analysis with four design parameters instead of five has not shown reasonable
and changing results for the GTD problem which is unconstrained and has a relatively
small problem size.

Table 12. Results of variance analyses of WBD, PVD, GTD, SRD, and RCRW1 optimization problems.

Optimization
Problem

Evaluation
Criteria

Design Parameter

HMS HMCR PAR MAXITER

WBD

SS 1.803926 0.53773 0.061213 0.45212
ν 0.60131 0.17924 0.020407 0.150711
p 0.100039 0.353229 0.901733 0.405384
R 1 2 4 3

PVD

SS 0.031716 0.001684 0.003575 0.040544
ν 0.0105718 0.000560958 0.00119166 0.0135146
p 0.405366 0.971217 0.921773 0.332366
R 2 4 3 1

SRD

SS 1.98 × 10−5 1.33 × 10−6 1.20 × 10−6 5.93 × 10−6

ν 6.57677 × 10−6 4.40671 × 10−6 4.02287 × 10−7 1.97717 × 10−4

p 0.046127 0.077733 0.658534 0.000333
R 3 2 4 1

RCRW1

SS 0.094191 0.092708 0.050628 0.598937
ν 0.0314006 0.0309005 0.0168764 0.199651
p 0.141871 0.144468 0.272054 0.012293
R 2 3 4 1

In Table 13, the prediction of the response value (ηprediction), and the optimum pa-
rameter combination have been demonstrated for each design problem. In verification
analyses, the minimum objective function values (ηreal) with the statistical evaluations have
been obtained for estimated optimum values of design parameters (Table 14). While the
optimum value of MAXITER has been found as its maximum level as 4 (8000) for PVD,
SRD, and RCRW1, its optimum level is 2 (4000) and 1 (2000) for WBD and GTD, respec-
tively. It is observed that the optimum level of HMS is equal to 1 (20) for all optimization
design problems except for WBD to reach the minimum objective function. Consequently,
it is concluded that the optimum values of HSA parameters act upon properties of the
considered design optimization problem although the convergence of the minimum fitness
value has increased with many iterations.
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Table 13. Verification analyses data and results with optimum values of design parameters.

Optimization Problem Optimum Parameter Combination fmin (ηprediction)

WBD HMS2-HMCR2-PAR4-MAXITER2 $1.7291
PVD HMS1-HMCR4-PAR2-MAXITER4 $5973.13
GTD HMS1-HMCR1-PAR1-MAXITER1 2.70086 × 10−12

SRD HMS1-HMCR1-PAR2-MAXITER4 2995.11 kg
RCRW1 HMS1-HMCR3-PAR2-MAXITER4 $177.842/m

Table 14. Statistical results from verification analyses of engineering design optimization problems.

Case

Run Iteration

BRN
(%)

Best
(ηreal)

Mean Worst StD Median BIN (%)
Best

(ηreal)
Mean Worst StD Median

WBD 373/1000
(37%) 1.78312 1.88853 6.22216 0.320969 1.82613 3561/4000

(89%) 1.78312 2.82897 4.61973 0.492371 2.74472

PVD 881/1000
(88%) 6005.19 7125.64 8728.03 503.107 7169.81 7870/8000

(%98) 6005.19 7442.32 67288.7 3342.35 6395.62

GTD 89/500
(%18)

2.70086
× 10−12

5.4247
× 10−8

1.38114
× 10−6

1.34484
× 10−7

1.31252
× 10−8

1250/2000
(63%)

2.70086
× 10−12

2.99998
× 10−5

5.5068
× 10−3

3.7964
× 10−3

2.70086
× 10−12

SRD 195/500
(40%) 2995.63 3002.75 3275.14 13.0823 3001.31 7187/8000

(90%) 2995.63 3037.28 5194.7 234.639 2998.37

RCRW1 460/500
(92%) 180.301 190.495 206.994 5.28013 190.4 7841/8000

(98%) 180.301 204.729 385.939 48.688 188.459

4. Discussion

In this section, yielded results from optimization and statistical analyses by utilizing
proposed TIHHSA with different design parameters have been evaluated in terms of
different design optimization problems. In addition, the examination of the change of
design parameters for different design problems in terms of 5P and 4P cases has been made
according to the comparison graphics given in Figures 8 and 9. By utilizing S/N ratios,
the ηij values have been determined and the variation between response value and design
parameter levels are demonstrated for each design optimization problem according to
five design parameters (the 5Pcase) and four design parameters (the 4P case) as shown in
Figure 8a–e.

The S/N ratios which are control parameters in the Taguchi design supply information
about the variation of the design parameters in different levels. In variation evaluations
of ηij values based on S/N ratios, three features have been observed. The first feature is
belonging to the WBD problem with four design variables and seven design constraints
and the PVD problem with four design variables and three design constraints and it is
detected that there is an important change between S/N ratios of 5P and 4P. It is assumed
that the contributions of other design parameters (HMS, HMCR, PAR, and MAXITER) are
perceived more clearly, since the RUN parameter, which has the most variation in the 5P
case, is taken as constant for its optimum value in the 4P case. The second feature, which
has not emerged any change from 5P to 4P, is observed for the GTD problem with four
design variables and no design constraints. It has been interpreted as no change because
there are no design constraints, and it is a relatively small-size design optimization problem.
The third feature has been determined for large-size design optimization problems which
are SRD with seven design variables and eleven design constraints and RCRW1 with twelve
design variables and twenty-six design constraints. As it has been apparent in the figures,
since the RUN design parameter is not significantly effective in the 5P case, there is no
significant change in other parameters in the 4P case.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. The change between the ηij values and the design parameter with their levels for:
(a) WBD; (b) PVD; (c) GTD; (d) SRD; (e) RCRW1 and (f) Relative error (ε, %) of all optimization
design problems.
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Figure 9. PE values for 4P and 5P cases of all optimization design problems in terms of
design parameters.

The parameter percentage (PE, %) values which are based on the sum of squares
values acquired from variance analyses are demonstrated for 4P and 5P cases of all design
optimizations problems in Figure 9. In the 4P case where the RUN design parameter is
taken as constant for depending on optimum values of the current design optimization
problem, an increase has been monitored in the PE values yielded for the HMS, HMCR,
PAR, and MAXITER design parameters compared to the 5P case. The PE values of the
RUN design parameter in the 5P case have been obtained 46%, 57%, 35%, 16%, and 7% for
WBD, PVD, GTD, SRD, and RCRW1 problems, respectively. When the PE values 4P and
5P cases have been compared in terms of changes in MAXITER values, it has been seen
that the PE values have increased from 13% to 16% for WBD, from 20% to 52% for PVD,
from 24% to 25% for GTD, from 72% to 95% for SRD and from 65% to 72% for RCRW1
problem. The HMS, HMCR, PAR, MAXITER and RUN design parameters have been the
most effective factor for cases of WBD-4P (63%), GTD-4P (25%), GTD-4P (25%), SRD-4P
(95%), and PVD-5P (57%), respectively.

When the optimum design parameter combinations estimated for the 4P and 5P cases
of different design optimization problems (Figure 10) are compared, it is detected that a
generalization cannot be made because it changes depending on the nature of the design
optimization problem. This result has recognized that taking into account the different
number of design variables, the process of reaching the best solution providing many
design constraints has occurred differently for especially HSA design parameters. While
the ηreal values for 5P case have been accomplished as $1.7455, $6054.14, 2.70 × 10−12,
2995.97 kg and 181.035 ($/m), they have been found for 4P case as $1.78312, $6005.14,
2.70 × 10−12, 2995.63 kg, and 180.301($/m) for WBD, PVD, GTD, SRD, and RCRW1 prob-
lems, respectively. Except for the WBD problem with 2% of change, it has not been found
more minimum objective function values. When the relative error (ε, %) values, which are
calculated by using ηreal and ηprediciton, for all design optimization problems and the cases
have been examined, the maximum ε value has been marked as 6% (Figure 8f).

130



Mathematics 2022, 10, 327

  
(a) (b) 

  
(c) (d) 

Figure 10. Parametric investigation of design parameters for all cases and optimization problems in
terms of optimum values for; (a) HMS; (b) HMCR; (c) PAR; (d) MAXITER.

A comparison of the best fitness values presented in this study with those reported in
the literature [73], which was shared the best fitness values of HSA and their variant, has
been conducted for the WBD design optimization problem. When the mentioned study
has been examined in terms of the best fitness value and the optimum values of the HS
algorithm, it is seen that fmin value ($1.72489123) is obtained for HMS = 8, HMCR = 0.80,
PAR = 0.30, and MaxIter = 200,000. In this study, the fmin value has been estimated as
$1.7291 and has been found as $1.7455 with verification analyses at HMS = 20, HMCR
= 0.95, PAR = 0.20, MAXITER = 8000, and RUN = 1000. These results show that it is
possible to convergence to the best fitness value with fewer iterations in the optimization
process. Besides, it is concluded that the fmin value ($1.7455) is reasonable according to
compared with the optimum values acquired for other heuristic optimization methods
given in Table A1 of the Appendix A section. Being almost the close fmin values eachother
show that the Taguchi method is an alternative and effective in estimating the optimum
algorithm parameter values of HSA.

The optimum values of MAXITER and RUN have been found as their maximum
values (MAXITER = 6000 and 8000 and RUN = 500 and 1000) for different optimization
design problems, except for GTD. While the f(x) minimum values of WBD and PVD for
HMS = 20, HMCR = 0.90, PAR = 0.35, MAXITER= 30,000 and RUN = 1000 have been
obtained as $1.74026 and $5959.86, the same values of GTD and SRD for HMS = 20, HMCR
= 0.90, PAR = 0.35, MAXITER = 30,000 and RUN = 100 have been found as 2.70086 × 10−12

and 2994.79 kg (Table 5). While fmin (ηreal) of WBD $1.7455 which is quite close to $1.74026
has been found for HMS = 20, HMCR = 0.90, PAR = 0.20, MAXITER = 8000 and RUN =
1000, fmin (ηreal) of PVD $6054.14 which is quite close to $5959.86 too has been found for
HMS = 30, HMCR = 0.90, PAR = 0.40, MAXITER = 8000 and RUN = 1000.
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5. Conclusions

In this study, optimum values of harmony search algorithm (HSA) design parameters,
which are the harmony memory size (HMS), the harmony memory consideration rate
(HMCR), the pitch adjustment rate (PAR), maximum iteration number (MAXITER), and the
independent run number of whole iterations (RUN), have been investigated for complex
benchmark engineering design problems (the welded beam (WBD), the pressure vessel
(PVD), the gear train (GTD), and the speed reducer (SRD)) and complicated real-size
reinforcement cantilever retaining wall (RCRW) design problem. To examine the optimum
values of algorithm design parameters, the Taguchi method integrated hybrid harmony
search algorithm (TIHHSA) has been presented as a new hybrid method based on the
Taguchi Method which is a statistical-based experiment procedure utilized in boosting
algorithmic quality. In addition, the effect of algorithm design parameters on the best fitness
value and characteristics of the optimization problem has been studied. The results yielded
according to the optimum algorithm design parameters and the best fitness values, whose
values do not change with repetitive statistical, and optimization analyzes for different
engineering design optimization problems, are as follows;

Accomplished results from the Taguchi analyses show that converging to the best
fitness value is possible with fewer iteration numbers in a shorter time;

• The obtained estimations have a reasonable relative error in determining optimum
values of algorithm design parameters without performing many trials;

• It has been seen that the optimum values of the algorithm design parameters vary de-
pending on the nature of the design optimization problem, which includes the number
of design variables, the number of design constraints, exposure to the constraints.

• Instead of taking into account the value of the algorithm parameter proposed for char-
acteristically different optimization problems in the literature, it has been concluded
that using the optimum values yielded statistically according to the nature of the
problem is an effective and prosperous manner in converging to the optimum.

• Instead of the trial-error method, which is time-consuming and exhaustive, it has
been concluded that the newly proposed TIHHSA is a robust and reliable method
for estimating the optimum algorithm parameter values of the harmony search meta-
heuristic optimization technique in a shorter time without conducting sensitivity
analyses which are utilized to increase convergence rate in the solution of the design
optimization problem.
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Appendix A

Design variables :
→
x = [h, l, t, b]T

Minimize : f
(→

x
)
= 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)

Subject to : g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= x1 − x4 ≤ 0

g4

(→
x
)
= 0.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5

(→
x
)
= 0.125 − x1 ≤ 0

g6

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g7

(→
x
)
= P − Pc

(→
x
)
≤ 0

where τ
(→

x
)
=

√
(τ′)2 + 2(τ′)(τ′′ ) x2

2R + (τ′′ )2 τ′ = P√
2x1x2

τ′′ = MR
J

M = P
(
L + x2

2
)

R =

√
x2

2
4 +

(
x1+x3

2

)2
σ
(→

x
)
= 6PL

x4x2
3
δ
(→

x
)
= 4PL3

Ex3
3x4

J = 2
{√

2x1x2

[
x2

2
12 +

(
x1+x3

2

)2
]}

Pc

(→
x
)
=

4.013E
√

x2
3x6

4
6L2

(
1 − x3

2L

√
E

4G

)
P = 6000lb L = 14in. E = 30 × 106psi G = 12 × 106psi
τmax = 13, 600psi σmax = 30, 000psi δmax = 0.25in.

(A1)

Design variables :
→
x = [Ts, Th, R, L]T

Minimize : f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.8621x2

1x3

Subject to : g1

(→
x
)
= −x1 + 0.0193x3 ≤ 0

g2

(→
x
)
= −x2 + 0.00954x3 ≤ 0

g3

(→
x
)
= −πx2

3x4 − 4
3πx3

3 + 1, 296, 000 ≤ 0

g4

(→
x
)
= x4 − 240 ≤ 0

(A2)

Design variables :
→
x = [Ta, Tb, Td, Tf]

T

Minimize : f
(→

x
)
=

(
1

6.931 − x2x3
x1x4

)2 (A3)

Design variables :
→
x = [x1, x2, x3, x4, x5, x6, x7]

T

Minimize : f
(→

x
)
= 0.7854x1x2

2
(
3.3333x3

3 + 14.9334x3 − 43.0934
)− 1.5079x1

(
x2

6 + x2
7
)

+7.4777
(
x3

6 + x3
7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)

Subject to : g1

(→
x
)
= 27x−1

1 x−2
2 x−1

3 ≤ 1.0

g2

(→
x
)
= 397.5x−1

1 x−2
2 x−2

3 ≤ 1.0

g3

(→
x
)
= 1.93x3

4x−1
2 x−1

3 x−4
6 ≤ 1.0

g4

(→
x
)
= 1.93x3

5x−1
2 x−1

3 x−4
7 ≤ 1.0

g5

(→
x
)
=

(
7452x2

4x−2
2 x−2

3 + 16.9 × 106
)

/1102x6
6 ≤ 1.0

g6

(→
x ) =

(
7452x2

5x−2
2 x−2

3 + 157.5 × 106
)

/852x6
7 ≤ 1.0

g7

(→
x
)
= x2x3/40 ≤ 1.0 g8

(→
x
)
= 5x2/x1 ≤ 1.0 g9

(→
x
)
= x1/12x2 ≤ 1.0

g10

(→
x
)
= (1.5x6 + 1.9)x−1

4 ≤ 1.0 g11

(→
x
)
= (1.1x7 + 1.9)x−1

5 ≤ 1.0

(A4)
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Fss =
(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2

3 Ob)+ 2
3 x1cb+∑ PP

∑ PAx

Fso =
∑ Wixi+∑ PAyxPAy

∑ PAxxPAx
Fsb =

qult
qmax

∑ Wc = [x1x5 + Hx4 + 0.5(x3 − x4)H + x7x8]γc
∑ Ws = [H + 0.5 tan(β)(x1 − x2 − x3)](x1 − x2 − x3)γr
∑ PAx = [q + 0.5γrKa[tan(β)(x1 − x2 − x3) + H + x5]][tan(β)(x1 − x2 − x3) + H + x5]Kacosβ
∑ PAy = [q + 0.5γrKa[tan(β)(x1 − x2 − x3) + H + x5]][tan(β)(x1 − x2 − x3) + H + x5]Kasinβ
∑ PP = 0.5γb(Df + x8)

2Kp + 2c(Df + x8)
2√Kp

Ka = cosβ cosβ−
√

(cosβ)2−(cos Or)
2

cosβ+
√

(cosβ)2−(cos Or)
2 Kp = tan2

(
45 + Ob

2

)
qult = cbNc + γb(Df + x8)Nq + 0.5γbx1Nγ

q min
max

=
(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2

3 Ob)+ 2
3 x1cb+∑ PP

x1

(
1 ± 6e

x1

)
e =

∑ Wixi+∑ PAyxPAy−∑ PAxxPAx

(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2
3 Ob)+ 2

3 x1cb+∑ PP

(A5)

Vns,t,h,k = φ0.17
√

fcbd
Mns,t,h,k = φmAsfy

(
d − a

2
) (A6)

Mds = 1.7
[

qKacosβ ((x1−x2−x3)tanβ+H)2

2 + Kaγrcosβ ((x1−x2−x3)tanβ+H)3

6

]
Vds = 1.7

[
qKacosβ(Hs + H − ds) + Kaγrcosβ ((x1−x2−x3)tanβ+H−(x5−cc))

2

2

]
Mdt =

[
1.7

(
(qmax − qmin)

x1−x2+qminx1
6x1

+
qmax

3

)
− 0.9(γcx5 + γrDf)

]
x2

2

Vdt =
[
1.7

(
(qmax − qmin)

x1−x2+qminx1
2x1

+
qmax

2

)
− 0.9(γcx5 + γrDf)

]
(lt − (x5 − cc))

Mdh =
[(

1.7q+1.4γcx5+1.4γrH
2

)
+
(

1.4W5
3

)
−
(

q1+2qmin
6

)]
(x1 − x2 − x3)

2

Vdh =

⎡⎣ 1.7q + 1.4
(
γcx5 + γrH + W5

2

(
1 + (x5−cc)+qmin(x1−x2−x3)

x1−x2−x3

))
−0.9

(
qmin

2 +
(qmax−qmin)(x1−x2−x3+(x5−cc)+qminx1)

2x1

) ⎤⎦(lh − (x5 − cc))

Mdk =

[
Kpγbx3

8
3

]
Vdk =

[
Kpγb(x8−(x7−cc))+Kpγbx8

2

]
(x8 − (x7 − cc))

(A7)

Asmin = 0.25
√

fc
fy

bd ≥ 1.4 bd
fy

Asmax = 0.75 × 0.85 fc
fy
β1

(
600

600+fy

)
bd

Ld =

⎧⎨⎩
12fyψtψeλ

25
√

fc
≥ 300mm for db < 19mm

12fyψtψeλ

20
√

fc
≥ 300mm for db ≥ 19mm

Ldh =
(

0.24fy√
fc

)
db ≥ 150mm or 8db

(A8)

Design variables :
→
x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]

T

Minimize : fcost

(→
x
)
= CsWst + CcVc

fweight

(→
x
)
= Wst + 100Vcγc

Subject to : g1

(→
x
)
= 1 − Fss

SFss
g2

(→
x
)
= 1 − Fso

SFso
≤ 0 g3

(→
x
)
= 1 − Fsb

SFsb
≤ 0 g4

(→
x
)
= −qmin ≤ 0

g[5–8]

(→
x
)
= Mdcase

Mncase
− 1 ≤ 0 g[9–12]

(→
x
)
= Vdcase

Vncase
− 1 ≤ 0 g[13–16]

(→
x
)
= Asmincase

Ascase
− 1 ≤ 0

g[17–20]

(→
x
)
= Ascase

Asmaxcase
− 1 ≤ 0 g21

(→
x
)
= x2+x3

x1
− 1 ≤ 0 g22

(→
x
)
= x6+x7

x1
− 1 ≤ 0

g23

(→
x
)
=

(
Lds

x5−cc
− 1

)
or
(

Ldhs
x5−cc

− 1
)
≤ 0 g24

(→
x
)
=

(
Ldt

x1−x2−cc
− 1

)
or
(

12dbt
x5−cc

− 1
)
≤ 0

g25

(→
x
)
=

(
Ldh

x2+x3−cc
− 1

)
or
(

12dbh
x5−cc

− 1
)
≤ 0 g26

(→
x
)
=

(
Ldk

x5−cc
− 1

)
or
(

Ldhk
x5−cc

− 1
)
≤ 0

(A9)
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Table A1. Optimum values and comparison of the best solutions in literature for WBD.

Optimum Solutions x1(h)(in.) x2(l) (in.) x3(t) (in.) x4(b) (in.) f(x) ($)

Li
te

ra
tu

re

Ragsdell and Phillips [50] 0.24550 6.1960 8.2730 0.2455 2.38593
Deb [51] 0.2489 6.173 8.1789 0.2533 2.433116

Coello [52] 0.2088 3.4205 8.9975 0.21 1.7483
Huang et al. [53] 0.203137 3.542998 9.033498 0.206179 1.73346

Yildiz [54] 0.20573 3.47042 9.03649 0.205735 1.7248
Çarbaş and Saka [55] 0.203907 3.499898 9.063898 0.205594 1.72966

C
as

e
PS

R30 0.206741 3.65285 8.54856 0.231265 1.85149
R100 0.171535 4.42418 8.98313 0.208289 1.80231
R500 0.198864 3.66442 8.94678 0.209895 1.75598

R1000 0.19823 3.64539 9.02857 0.206407 1.74026
WBD-5P 0.195872 3.70387 9.07235 0.205574 1.7455
WBD-4P 0.188171 3.95948 8.91723 0.21133 1.78312

PS Present study.

Table A2. Optimum values and comparison of the best solutions in literature for PVD.

Optimum Solutions x1(Ts) (in.)
x2(Th)
(in.)

x3(R) (in.) x4(L) (in.) f(x) ($)

Li
te

ra
tu

re

Sandgren [35] 1.125 0.625 48.97 106.72 7982.5
Kannan and Kramer [56] 1.25 0.625 50 120 7198.20

Deb [57] 0.9375 0.50 48.329 112.679 6410.381
Coello [52] 0.8125 0.4375 40.3239 200.0 6288.7445

Gao et al. [58] 0.75 0.375 38.8441 221.612 5852.639
Çarbaş and Saka [55] 0.8125 0.4375 42.09845 176.6366 6059.7143

C
as

e
PS

R30 0.876366 0.434563 45.3293 140.344 6089.66
R100 0.915835 0.454142 47.2497 121.872 6195.1
R500 0.833985 0.413952 43.1577 163.94 6000.09

R1000 0.814181 0.403799 42.1533 176.032 5959.86
PVD-5P 0.84119 0.430252 43.5749 159.245 6054.14
PVD-4P 0.822121 0.409189 42.367 173.44 6005.19

PS Present study.

Table A3. Optimum values and comparison of the best solutions in literature for GTD.

Optimum Solutions
x1(Ta)

(piece)
x2(Tb)
(piece)

x3(Td)
(piece)

x4 (Tf)
(piece)

Gear ratio f(x) (unitless)

Li
te

ra
tu

re

Zhang and Wang [59] 43 16 19 49 0.1442 2.36 × 10−9

Deb and Goyal [60] 33 14 17 50 0.1442 1.362 × 10−9

Parsopoulos and Vrahatis [61] 43 16 19 49 0.1442 2.701 × 10−12

Gandomi [62] 43 16 19 49 0.1442 2.701 × 10−12

Arora et al. [63] 43 16 19 49 0.1442 2.701 × 10−12

Deniz [64] 43 16 19 49 0.1442 2.701 × 10−12

C
as

e
PS

R30 44 13 21 43 0.144292 1.54505 × 10−10

R100 43 16 19 49 0.144281 2.70086 × 10−12

R500 49 16 19 43 0.144281 2.70086 × 10−12

R1000 49 16 19 43 0.144281 2.70086 × 10−12

GTD-5P 49 16 19 43 0.144281 2.70086 × 10−12

GTD-4P 49 16 19 43 0.144281 2.70086 × 10−12

PS Present study.

135



Mathematics 2022, 10, 327

Table A4. Optimum values and comparison of the best solutions in literature for SRD.

Optimum Solutions x1 (cm) x2 (cm) x3 (piece) x4 (cm) x5 (cm) x6 (cm) x7 (cm) f(x) (kg)

Li
te

ra
tu

re

Li and Papalambros
[65] 3.50 0.70 17.00 7.30 7.71 3.3500000 5.2900000 2996.30977

Kuang et al. [66] 3.60 0.70 17.00 7.30 7.80 3.4000000 5.0000000 2876.22
Azarm and Li [67] 3.50 0.70 17.00 7.30 7.71 3.3500000 5.2900000 2996.30978
Vanderplaats [68] 3.50 0.70 17.00 7.30 7.30 3.3502145 5.2865176 2985.15188

Ray [69] 3.50 0.70 17.00 7.30 7.30 3.3502145 5.2865176 2985.15188
Carbas et al. [70] 3.50 0.70 17.00 7.17984 7.70889 3.35009 5.28668 2993.13917

C
as

e
PS

R30 3.5001 0.700016 17.0017 7.30052 7.71562 3.35025 5.28667 2994.93
R100 3.50014 0.700021 17.0002 7.30117 7.71637 3.35053 5.28667 2994.79
R500 3.50029 0.700019 17.0001 7.3009 7.71572 3.35053 5.28681 2994.90
R1000 3.50025 0.700016 17.0004 7.30034 7.71652 3.35036 5.28673 2994.84

SRD-5P 3.50184 0.700073 17.0008 7.3036 7.72133 3.35036 5.28679 2995.97
SRD-4P 3.50006 0.700006 17.0034 7.30108 7.71868 3.3516 5.28677 2995.63

PS Present study.

Table A5. Constraint values of WBD, PVD, and SRD optimization problems.

R30 R100 R500 R1000 5P 4P R30 R100 R500 R1000 5P 4P

WBD

g1(x) −8.821 −0.086 −7.948 −7.525 −65.745 −32.706

SRD

g1(x) 0.92592 0.92598 0.92595 0.92595 0.92536 0.92587
g2(x) −178.142 −14.670 −1.819 −45.079 −213.275 −7.722 g2(x) 0.80178 0.80190 0.80188 0.80187 0.80134 0.80165
g3(x) −0.025 −0.037 −0.011 −0.008 −0.010 −0.023 g3(x) 0.50085 0.50086 0.50081 0.50079 0.50141 0.50012
g4(x) −3.317 −3.338 −3.400 −3.414 −3.407 −3.368 g4(x) 0.09535 0.09539 0.09536 0.09539 0.09555 0.09545
g5(x) −0.082 −0.047 −0.074 −0.073 −0.071 −0.063 g5(x) 0.99994 0.99944 0.99944 0.99974 0.99975 0.99752
g6(x) −0.235 −0.235 −0.235 −0.236 −0.236 −0.235 g6(x) 0.99998 0.99998 0.99982 0.99991 0.99985 0.99987
g7(x) −2211.802 −202.416 −330.005 −55.908 −1.921 −446.574 g7(x) 0.29754 0.29751 0.29751 0.29751 0.29755 0.29756

PVD

g1(x) −0.002 −0.002 −0.004 −0.001 −0.001 0.000 g8(x) 0.99999 0.99999 0.99994 0.99995 0.99958 0.99999
g2(x) −0.002 −0.002 −0.003 −0.002 −0.002 −0.015 g9(x) 0.41667 0.41667 0.41669 0.41669 0.41684 0.41667
g3(x) −89.466 −89.466 −636.323 −9.038 −412.835 −498.618 g10(x) 0.94861 0.94859 0.94862 0.94866 0.94824 0.94882
g4(x) −99.656 −99.656 −118.128 −76.060 −63.968 −80.755 g11(x) 0.99996 0.99987 0.99997 0.99986 0.99924 0.99958

Table A6. Optimum values of RCRW design for the optimum cost (RCRW1).

Optimum
Solutions

x1

(m)
x2

(m)
x3

(m)
x4

(m)
x5

(m)
x6

(m)
x7

(m)
x8

(cm2)
x9

(cm2)
x10

(cm2)
x11

(cm2)
x12

(cm2)
f(x)

($/kg)

Li
te

ra
tu

re

Gandomi
[40] 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 163.98

Gandomi
[40] 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 182.79

Gandomi
[40] 2.816 0.988 0.447 0.294 0.422 2.223 0.367 0.203 21.9911 15.2681 15.2681 12.7234 185.05

Gandomi
[40] 2.694 0.836 0.403 0.27 0.405 2.346 0.227 0.445 23.7504 12.7234 22.6195 26.1380 182.84

C
as

ePS

R30 3.3439 1.1598 0.3526 0.2504 0.4 2.5435 0.2002 0.2 21.2999 14.3212 18.8016 7.1532 180.082
R100 3.3431 1.1596 0.3917 0.25 0.4001 2.4623 0.2001 0.2002 18.8963 14.2586 18.9194 9.5172 179.842
R500 3.3351 1.1593 0.4418 0.25 0.4001 3.0523 0.2004 0.2002 16.6776 14.3189 16.557 7.2319 179.449
R1000 3.3394 1.1593 0.3916 0.2501 0.4 2.7275 0.2004 0.2003 18.691 14.392 18.7638 7.2583 179.693

RCRW1−5P 3.36761 1.15955 0.391877 0.250366 0.400094 2.84595 0.200248 0.201545 18.7689 14.4128 18.7273 10.0995 181.035
RCRW1−4P 3.34757 1.15992 0.394711 0.250081 0.400157 2.37294 0.202173 0.201494 18.7718 14.1765 18.7523 9.34978 180.301

PS Present study.
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Table A7. Optimum values of RCRW design for the optimum weight (RCRW2).

Optimum
Solutions

x1

(m)
x2

(m)
x3

(m)
x4

(m)
x5

(m)
x6

(m)
x7

(m)
x8

(cm2)
x9

(cm2)
x10

(cm2)
x11

(cm2)
x12

(cm2)
f(x)

($/kg)

Li
te

ra
tu

re

Gandomi
[40] 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 5668.5

Gandomi
[40] 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 6034.4

Gandomi
[40] 2.816 0.988 0.447 0.294 0.422 2.223 0.367 0.203 21.9911 15.2681 15.2681 12.7234 6095.9

Gandomi
[40] 2.694 0.836 0.403 0.27 0.405 2.346 0.227 0.445 23.7504 12.7234 22.6195 26.1380 6094.4

C
as

ePS

R30 3.342 1.1599 0.2505 0.2504 0.4 3.1292 0.2001 0.2001 35.1479 14.1715 21.5672 7.0299 5886.67
R100 3.3426 1.16 0.2501 0.2501 0.4 3.0709 0.2001 0.2002 35.1127 15.0607 21.2321 7.0677 5883.61
R500 3.343 1.1581 0.25 0.25 0.4001 3.0355 0.2001 0.2002 35.247 14.4184 21.3267 7.3429 5883.64
R1000 3.3434 1.1594 0.2501 0.25 0.4 3.1304 0.2001 0.2001 35.2741 14.1095 21.2558 9.3741 5884.09

RCRW1−5P 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 5668.5
RCRW1−4P 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 6034.4

PS Present study.

Table A8. Constraint values of RCRW designs for optimum cost and optimum weight.

Optimum Cost (RCRW1) Optimum Weight (RCRW2)

R30 R100 R500 R1000 5P 4P R30 R100 R500 R1000

g1(x) −0.0462 −0.043 −0.037 −0.0421 −0.0497 −0.0441 −0.0536 −0.0537 −0.0543 −0.0541
g2(x) −0.638 −0.6334 −0.6224 −0.6305 −0.6613 −0.6376 −0.6468 −0.6472 −0.648 −0.6484
g3(x) −2.5539 −2.569 −2.5824 −2.5638 −2.6425 −2.5813 −2.5106 −2.5112 −2.5092 −2.5137
g4(x) −0.1129 −0.1141 −0.0221 −0.0199 −1.8384 −0.3677 −0.0072 −0.0142 −0.0149 −0.0925
g5(x) −0.0001 −0.0004 0.0000 −0.0002 −0.0009 −0.0085 −0.0633 −0.0615 −0.061 −0.0615
g6(x) −0.4023 −0.4058 −0.4103 −0.4057 −0.4115 −0.4066 −0.3937 −0.4242 −0.3951 −0.3944
g7(x) −0.0326 −0.0701 −0.0052 −0.0728 −0.0531 −0.07 −0.062 −0.0482 −0.0464 −0.0472
g8(x) −0.9964 −0.9973 −0.9964 −0.9964 −0.9974 −0.9973 −0.9964 −0.9964 −0.9964 −0.9973
g9(x) −0.3955 −0.4637 −0.5333 −0.4635 −0.464 −0.4684 −0.1169 −0.1154 −0.115 −0.1154
g10(x) −0.4032 −0.4065 −0.4107 −0.4064 −0.4096 −0.407 −0.3956 −0.3955 −0.3964 −0.3959
g11(x) −0.065 −0.0845 −0.1132 −0.0858 −0.0767 −0.0847 −0.0179 −0.0175 −0.0167 −0.017
g12(x) −0.9936 −0.9935 −0.9936 −0.9935 −0.9934 −0.9936 −0.9935 −0.9935 −0.9935 −0.9935
g13(x) −0.4189 −0.2727 −0.0625 −0.2729 −0.2724 −0.2671 −0.7519 −0.7523 −0.7524 −0.7523
g14(x) −0.0097 −0.0095 −0.0095 −0.0097 −0.0095 −0.0093 −0.0097 −0.0618 −0.0095 −0.0097
g15(x) −0.2573 −0.2571 −0.151 −0.2573 −0.2571 −0.257 −0.3504 −0.3408 −0.3406 −0.3408
g16(x) −0.0087 −0.2569 −0.0077 −0.0077 −0.3028 −0.2492 −0.0092 −0.0092 −0.0092 −0.2569
g17(x) −0.6471 −0.7181 −0.7813 −0.718 −0.7182 −0.7202 −0.1734 −0.1721 −0.1718 −0.1721
g18(x) −0.7929 −0.793 −0.793 −0.7929 −0.793 −0.793 −0.7929 −0.7814 −0.793 −0.7929
g19(x) −0.7239 −0.724 −0.7585 −0.7239 −0.724 −0.724 −0.6844 −0.689 −0.689 −0.689
g20(x) −0.7931 −0.7241 −0.7934 −0.7934 −0.7059 −0.7269 −0.793 −0.793 −0.793 −0.7241
g21(x) −0.5477 −0.536 −0.5199 −0.5356 −0.5393 −0.5356 −0.578 −0.5781 −0.5788 −0.5784
g22(x) −0.1795 −0.2036 −0.0247 −0.1232 −0.0954 −0.2308 −0.0038 −0.0214 −0.0321 −0.0039
g23(x) −0.2382 −0.3654 −0.3654 −0.3652 −0.3654 −0.3655 −0.3652 −0.3652 −0.3654 −0.3652
g24(x) −0.6364 −0.6365 −0.6365 −0.6364 −0.6365 −0.6365 −0.6364 −0.4909 −0.6365 −0.6364
g25(x) −0.6364 −0.6365 −0.6365 −0.6364 −0.6365 −0.6365 −0.4182 −0.5636 −0.5638 −0.5636
g26(x) −0.1113 −0.3654 −0.1115 −0.1113 −0.1115 −0.3655 −0.1113 −0.1113 −0.1115 −0.3652
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Abstract: The optimal design of real-scale structures under frequency constraints is a crucial problem
for engineers. In this paper, linear analysis, as well as optimization by considering natural frequency
constraints, have been used for real-scale symmetric structures. These structures require a lot of
time to minimize weight and displacement. The cyclically symmetric properties have been used
for decreasing time. The structure has been decomposed into smaller repeated portions termed
substructures. Only the substructure elements are needed when analyzing and designing with the
concept of cyclic symmetries. The frequency constrained design of real-scale structures is a complex
optimization problem that has many local optimal answers. In this research, the Gold Rush Optimiza-
tion (GRO) algorithm has been used to optimize weight and displacement performances due to its
effectiveness and robustness against uncertainties. The efficacy of the concept of cyclic symmetry to
minimize the time calculated is assessed by three examples, including Disk, Silo, and Cooling Tower.
Numerical results indicate that the proposed method can effectively reduce time consumption, and
that the GRO algorithm results in a 14–20% weight reduction of the problems.

Keywords: structural optimization; frequency constraints; cyclic symmetry; Gold Rush Optimization
algorithm

1. Introduction

In vibrational analysis, the optimal design of real-scale symmetric structures under
frequency constraints is a crucial problem. Since the modal properties of a structure
determine its dynamic behavior, the frequency constraints and the capacity to adjust the
values of natural frequencies are sensitive items in the analysis and design. Concerning
the frequency constraints, including non-convex search spaces, sophisticated methods are
needed [1]. Since the frequency constrained design of large-scale structures is a complex
optimization problem with many local optima, an appropriate optimization technique is
usually required. Among the research conducted to optimize the design of structures under
frequency constraints, the following studies can be briefly reviewed.

Using laws of momentum and energy between collisions bodies, Kaveh and Mah-
davi [2] introduced a new Colliding Bodies Optimization algorithm (CBO). Kaveh and
Mahdavi [3] looked into the effectiveness of CBO for the problem and conducted parametric
research on its internal characteristics. Enhanced Colliding Bodies Optimization (ECBO)
introduced by Kaveh and Ilchi Ghazaan [4] improved the function of the CBO algorithm.
ECBO uses memory to save some optimal solutions. Enhanced Colliding Bodies Optimiza-
tion (ECBO) was used by Kaveh and Ilchi Ghazaan [5] to demonstrate the algorithm’s
efficiency in frequency-constrained structural optimization. Song and Zhang [6] assessed
the wind deflection of a railway catenary in a crosswind under frequency constraints, based
on wind tunnel tests and a nonlinear finite element model. Ho-Huu et al. [7] proposed
a new version of the Differential Evolution (DE) method called Roulette Wheel Selection-
Elitist-Differential Evolution (ReDE), which employs elitism in the selection phase using the
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Roulette Wheel Selection technique. Lieu et al. [8] proposed the Adaptive hybrid Evolution-
ary Firefly Method by combining the differential evolution (DE) algorithm and the Firefly
Algorithm (FA) (AHEFA). Tejani and Mirjalili [9] used Symbiotic Organisms Search (SOS)
to optimize the size of space trusses. SOS is based on the biological interactions between
organisms in an ecosystem. Kaveh and Dadras [10] have introduced a chaotic version of
a newly-established metaheuristic algorithm called the Water Strider Algorithm (WSA)
to tackle this problem. Kaveh and Ilchi Ghazaan [1] used the ECBO method to optimize
large-scale dome trusses with frequency limitations, incorporating multi-stage cascading
techniques. The possibilities of the Vibrating Particles System (VPS), an algorithm inspired
by the damped oscillation of a single degree of freedom system, to cope with large-scale
dome trusses were examined by Kaveh and Ilchi Ghazaan [11]. To handle a large number
of variables, Kaveh and Ilchi Ghazaan [12] combined the VPS technique with multi-design
variable configuration (Multi-DVC) cascade optimization, as well as employing an upper
bound strategy (UBS) to reduce computing time. Weight optimization of truss structures
with different frequency constraints was investigated by Carvalho et al. [13]. Rao [14] cre-
ated the Teaching-Learning-Based Optimization (TLBO) algorithm based on a traditional
school learning. Kar et al. [15] proposed a Craziness-based Particle Swarm Optimization
(CRPSO), which they used. They employed cardinality constraints and frequency con-
straints to limit the maximum number of distinct cross-sectional areas, lowering the cost
of selecting a different cross-section of elements and weights of structures. The Charged
System Search (CSS) algorithm was introduced using principles from physics and me-
chanics [16]. Furthermore, they utilized a combination of governing Coulomb law from
electrostatics and the Newtonian laws of mechanics. The (CSS) algorithm and its enhanced
version (ECSS) are being used to optimize various truss structures [17]. To improve the
CSS algorithm’s convergence time, Jalili and Talatahari [18] devised a hybrid Charged
System Search (CSS) method with a Migration-based Local Search (MBLS) mechanism. The
effectiveness of the proposed hybrid approach was proved in their research by proving the
optimum design of many benchmark truss instances with frequency constraints. For the
best design of large-scale cyclically symmetric dome trusses with frequency constraints,
Kaveh and Zolghadr [19] employed the Cyclical Parthenogenesis Algorithm (CPA). They
used the block diagonalization technique to divide the domes’ repeated patterns into
smaller parts, lowering the computer time necessary for the analysis. Liu et al. [20] added
the vision search radius for each fruit fly as well as an enhanced Deb (IDeb) rule to handle
the limitations to the Fruit Fly Optimization Algorithm (FOA) utilizing a memory-based
search strategy. They used this technique to optimize truss structures with frequency
constraints, demonstrating that the new algorithm finds better answers. To modify the at-
tractiveness and light absorption coefficients of FA, Kaveh, and Javadi [21] used two chaotic
maps, namely Logistic and Gaussian maps. These chaotic algorithms were used to optimize
large-scale domes that have various frequency constraints.

Real-scale structures need a lot of effort to find the modal parameters, whereas sym-
metric structures can be solved rapidly. Wang [22] optimized the real-scale bridge cables
under frequency constraints. For tackling rotationally periodic structures, Williams [23]
presented an accurate eigen solution technique. The component mode technique was used
by Tran [24] for vibration analysis of cyclic symmetry systems. He used a scaled finite
element approach for cyclically symmetric domain heat transport and structural mechanics
difficulties [25,26]. For optimal structural analysis, graph theory [27,28] has been suggested
as a helpful solution. Kaveh and Koohestani [29] created graph models for ordinary finite
element meshes. In the free vibration analysis of cyclically repeated structures, Kaveh and
Rahami [30] used block circulant matrices. Kaveh and Rahami [31] proposed a method
for efficiently computing graph product-generated repeating structures. Using the force
method, Koohestani [32] proposed an orthogonal self-stress matrix for quickly evaluating
cyclically symmetric space truss designs. Koohestani [33] applied the properties of symme-
try in graph theory to finite and boundary elements. For the free vibration analysis of cyclic
symmetry, Koohestani [34] implemented the decomposition of extended Eigen problems.
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This research aimed to optimize the design of real-scale symmetric structures under
frequency constraints using the GRO metaheuristic algorithm. It has been practically
impossible to optimize real-scale symmetric structures in the previous research using
meta-heuristic algorithms due to the large volume and time of calculations. This study
hypothesized that the abilities of the cyclic symmetric concept could reduce the time and
volume of calculations. Using the metaheuristic algorithm and the concept of cyclic sym-
metry, real-scale structures such as a Disk, Silo, and Cooling Tower have been investigated.
Furthermore, the results are discussed and compared with CSS and TLBO algorithms.

2. Materials and Methods

In this section, the methodology of the frequency constraint, cyclically symmetric
formulation, and optimization algorithm are introduced.

2.1. Methodology of the Frequency Constraint Optimization Problem

This problem aims to find the optimal design for structures with real-scale cyclic sym-
metry and multiple frequency constraints, where the cross-sectional area of the structural
members is constantly changing in the search space. In such problems, size optimiza-
tion minimizes weight while satisfying the constraints. The mathematical formula of the
problem can be expressed as Equation (1).

Find X = [x1, x2, . . . , xnDV ] , xi ∈ Ri
to minimize P(X) = fpenalty (X) × W(X);

subject to :

{
ωj ≤ ω∗

j f or some natural f requencies j
ωK ≤ ω∗

k f or some natural f requencies k
xL

i ≤ xi ≤ xU
i

Ri =
{

xi
∣∣xi ∈ [

xL
i , xU

i
]}

(1)

where the vector X contains the design variables (sections), the ith design variable is xi.
(nDV) is the number of design variables according to the grouping of elements. W(X)
shows the weight of the structure. The penalty approach is used to consider the constraints,
in which the cost function is defined as that which must be minimized. fpenalty(X) is
a penalty function. When certain constraints are violated in a particular solution, the
penalty function fpenalty(X) artificially increases the weight of the structure by taking
values more significant than one. Also, ωj is the jth natural frequency of the structure, ω∗

j
is the upper limit, ωk is the kth natural frequency of the structure, and ω∗

k is the lower limit.
xL

i and xU
i are the lower and upper bounds of the design variable xi. Ri is the allowable

range of the ith design variable. The design variable xi can be constantly changed in Ri.
The weight of the structure is calculated from Equation (2).

W(X) =
nDV

∑
i=1

xi

nm (i)

∑
j=1

ρj Lj (2)

In which nm(i) is the number of members allocated to the ith element. ρj and Lj are
the material density and the length of the jth member, respectively. The penalty function is
defined in Equation (3).

fpenalty(X) = (1 + ε1.ν)ε2 (3)

For a particular solution, ν shows the sum of violations, defined in Equation (4).

ν =
s

∑
i=1

νi (4)
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In which S is the number of frequency constraints. Values of νi can be considered as
shown in Equation (5).

νi =

⎧⎪⎨⎪⎩
0 if the ith constraint

is satisfied∣∣∣1 − ωi
ω∗

i

∣∣∣ else
(5)

In this study, ε1 and ε2 are calculated from Equation (6) to create a suitable balance
between the algorithm’s exploration and exploitation.

ε1 = 1.5 + 0.5 × NSA
MaxNSA

ε2 = 1.5 + 1.5 × NSA
MaxNSA

(6)

where NSA is the current analysis number and MaxNSA is the total number of structural
analyses for the optimization process and is defined as the criterion for the optimization
termination. As the value of NSA increases, the values of ε1 and ε2 grow. It can be inferred
that the algorithm explores the search space in the early stages but in the final stages
tends to choose solutions without violations. Equation (6) helps the algorithm search near
a low-cost solution as a final design and converge to reduce errors.

2.2. Cyclically Symmetric Formulation

One of the general tasks in engineering is to determine the natural frequency of
structures on a real scale. The system displays a specific pattern in structures with cyclic
symmetry. The rotations of several repeating identical units (called substructures) along the
central axis make up a cyclically symmetric structure [29]. Structural analysis is performed
on only one of the substructures using the cyclic symmetry concept. Except at support
nodes, points and elements are numbered in each substructure from top to bottom. The
pattern of stiffness and mass matrices is obtained by using the right way of numbering
nodes, which is the same as the Canonical Form F matrix as shown:

K =

⎡⎢⎢⎢⎢⎣
K11 K12 K21
K21 K11 K12

. . .
K21 K11 K12

K12 K21 K11

⎤⎥⎥⎥⎥⎦
n×n

M =

⎡⎢⎢⎢⎢⎣
m11 m12 m21
m21 m11 m12

. . .
m21 m11 m12

m12 m21 m11

⎤⎥⎥⎥⎥⎦
n×n

In which n is the number of repetitive substructures, K12 = Kt
21, and m12 = mt

21. Given
this, determining the natural frequency of the cyclically symmetric structure is a matter of
total eigenvalue, as shown in Equation (7):

Kφ= MφD (7)

In Equation (7), the matrix D is diagonal. The values of matrix D are λi general
eigenvalues. The Ti periods of the substructure are obtained from Equation (8).

Ti = 2π/
√

λi i = 1, . . . , n (8)

ϕi the eigenvector corresponds to the ith eigenvalues, and Equation (7) is rewritten as
follows for each substructure Equation (9):

Kϕi = λi M ϕi i = 1, . . . , n (9)
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The mass and stiffness matrix for each substructure is as follows in Equation (10) to
reduce computing time using the canonical concept:

K = I ⊗ k11+H ⊗ k12+Ht ⊗ k21
M = I ⊗ m11+H ⊗ m12+Ht ⊗ m21

(10)

In Equation (10), I and H are an n × n identity matrix and a special and important
matrix, respectively, with the desired pattern presented as follows:

I =

⎡⎢⎢⎢⎢⎢⎢⎣

1
1

.
.

1
1

⎤⎥⎥⎥⎥⎥⎥⎦
n×n

H =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

. .
. 1

0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦
n×n

A full description of this section can be found in Kaveh [29].

2.3. Optimization Algorithm

In this study, the GRO, CSS, and TLBO algorithms are used for Equation (1). These
algorithms have been adopted due to their ability to optimize truss structures in previous
studies. The algorithms are stated below:

2.3.1. Gold Rush Optimization (GRO) Algorithm

Massoudi and Sarjamei created a GRO algorithm [35] based on the power of human
thinking and decision making, and which will be called a Gold Rush Optimization. The
GRO algorithm is a population-based evolutionary algorithm with a higher convergence
speed than other optimization algorithms. The aim is to find the place of gold. Firstly,
a group of people called operators stand in a random spot of search space. Every operator
uses a device (metal detector) to find gold. In every stage, the operators move altogether
and listen to the sound until they hear an increase in the sound and then stop at that point.
Every operator would also listen to the sounds produced by other devices and constantly
monitor if any other devices create a louder sound. At each stage, the group moves to
the place of the loudest sound. In the end, the exact location of the gold is determined.
Three parameters α, β, and γ indicate the probability of moving towards the loudest sound
or moving away from it. The parameters α, β, and γ in the interval [0–1] are selected.

Level 1: Initialization

Each operator stands randomly in one spot inside the search space as represented in
Equation (11). lbi and ubi are the lower and upper bounds of a domain (search space). rand
in the interval [0–1] is a random number, and N is the number of operators.

location(0)
i = lbi + (ubi − lbi) ∗ rand, i = 1, 2, . . . , N (11)

Level 2: Monitoring-Choosing the best locations

SOP is an operator who is successful in finding the optimal location. In this step, SOP
should be generated. At the end of every iteration, the top ten percent of operators should
be chosen and kept in the SOP.

Level 3: Fitness-distance

The analysis of the loudness of every sound (rate), operator with the most probability
to extract gold, is calculated from Equation (12):

rate(i) =
Di
ρ

∗ sound(highest volume)− sound(i)
(sound(highest volume)− sound(lowest volume) + ε)

(12)
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The epsilon (ε) is a small positive number to avoid singularities. To prevent errors
from environmental, the coefficients, ρ, and Di represented in Equation (13) are used. The
indices i and j indicate the current position of the two operators.

ρ = 2 − iter
maxiter

, Di =
√(

xi − xj
)2

+
(
yi − yj

)2
+ . . . (13)

Level 4: Think-Decisions-move

In this step, every operator will create completely different selections based on a mix
of sounds represented in Equation (14).

new location(i) = location(i) + md × [(rate(j)− rate(i)) ∗ ( location(j)− location(i)) ∗ rand] (14)

The coefficients md means move direction determined from Equation (15):

md =

{
+1 ⇒ towards a loudest sound? α > rand
−1 ⇒ away f rom a loudest sound? α < rand

(15)

Level 5: Correct location

If the location obtained in Equation (14) does not meet the problem’s constraints,
Equation (16) is utilized to generate new locations. β and γ coefficients are selected as
0 < β < γ < 1.

new location(i) =

⎧⎨⎩
choose a neighboring location rand < β
select a new location randomly β < rand < γ
do not move γ < rand

(16)

Level 6: Termination

Steps 4 to 6 are eventually repeated in a loop until one of the following terminating
conditions is met:

1. The maximum number of tries.
2. There has been no noticeable change in the optimal location.
3. The gap between the SOP function’s values and the obtained most optimal answer

is smaller than a pre-determined expected threshold. The parameters in the interval
[0–1] are selected.

4. If the difference between the best and worst location’s objective values is smaller than
a given accuracy.

In this study, the GRO algorithm is used for Equation (1). The optimum amount of
weight of an element is obtained. The algorithm is performed using MATLAB.

The flowchart of the GRO algorithm is illustrated in Figure 1.

2.3.2. Charged System Search (CSS) Algorithm

The Charged System Search (CSS) algorithm was created by Kaveh and Talatahari [16,36]
as an efficient population-based metaheuristic using some physics and mechanics concepts,
and it has been effectively applied to a variety of structural optimization problems [37–40].
CSS is based on the electrical Coulomb laws and the Newtonian rules of mechanics. Each
agent in this algorithm is a charged particle (CP) with a fixed radius. The charge of
a particle’s magnitude qi is calculated based on its quality from Equation (17):

qi =
f it(i)− f itworst

f itbest − f itworst
i = 1, 2, . . . , N (17)

The best and the worst fitness of all the particles are f itbest and f itworst, respectively;
f it(i) represents the fitness of the agent i, and N is the total number of CPs.
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Figure 1. The Gold Rush Optimization algorithm flowchart.

Between two charged particles, the separation distance rij is defined from Equation (18):

rij =
‖Xi − Xj‖

‖(Xi − Xj
)
/2 − Xbest‖+ ε

(18)

Here Xi and Xj are the positions of ith and the jth of charged particles. The posi-
tion of the best charge particles is Xbest. The epsilon (ε) is a small positive number to
avoid singularities.

Each good particle generates an electric field that attracts other electrically charged
things from Equation (19):

pij =

{
1 f it(i)− f itbest

f it(j)− f it(i) > rand ∨ f it(j) > f it(i)
0 else

(19)
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As a result, charged particles can interact with another one depending on their fitness
values and separation distance from Equation (20):

Fj = qj ∑
i,i �=j

(
qi
a3 rij.i1 +

qi

r2
ij

.i2

)
pij

(
Xi − Xj

) 〈 j = 1, 2, . . . , N
i1 = 1, i2 = 0 ⇔ rij < a
i1 = 0, i2 = 1 ⇔ rij ≥ a

(20)

The resultant force acting on the jth charged particle is Fj. (a) the radius of the charged
sphere is set to unity.

The new position and velocity of each CP are computed by Equation (21):

Xj,new = randj1.ka.
Fj
mj

.Δt2 + randj2.kν.Vj,old.Δt + Xj,old

Vj,new =
Xj,new−Xj,old

Δt

(21)

Ka and Kv are the acceleration coefficient and the velocity coefficient, respectively;
randj1 and randj2 in the interval [0–1] are random numbers. mj is the mass of the charged
particles, and Δt is the time step set to one. Electrostatics laws are used to calculate the
magnitude of the resultant force, whereas Newtonian mechanics laws are used to define
the quality of the movement.

2.3.3. Teaching-Learning-Based Optimization (TLBO) Algorithm

Rao [14] created the Teaching-Learning-Based Optimization (TLBO) algorithm based
on traditional school learning. The influence of a teacher on students and the effect of
students on each other are the two stages of this algorithm. The population of random solu-
tions in TLBO was dubbed students or learners at the start and initialized the population
size (Pn). In TLBO, the regular distribution of marks received by pupils is considered as
the performance of the class in learning or the teacher’s performance in instructing. In
each iteration, the best learner or most intelligent student with the best goal function is
designated as the instructor. Students are updated iteratively to find the best solution in
two phases: the first is based on the knowledge that transferred from a teacher (teacher
phase), and the second is based on interaction with other students (interaction phase)
(learner phase).

In the first phase (teacher phase), the mean of each design variable is calculated. The
best solution that will act as a teacher is given by Equation (22).

Xteacher = X f (x)=min (22)

f (X) is the objective function, and X is a design variable.
The critical difference between the two normal distributions is the mean value (M),

which means that a better instructor will teach pupils with higher average scores. In
the teacher phase, TLBO enhances other pupils by utilizing the difference between the
instructor’s knowledge and the intermediate knowledge of all students. Modified solution
based on the best solution is given by Equation (23):

Xnew,i = Xold,i + ri(Mnew − TF Mi) (23)

ri in the interval [0–1] is a random number. Determining the change in mean value is
a teaching factor (TF) and is explained in Equation (24).

TF = round[1 + rand(0, 1){2 − 1}] (24)

rand in the interval [0–1] is a random number.
In the second phase (learner phase), each student’s knowledge is derived from their

position in the search space. Students can also improve themselves by conversing with
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another student after the teacher has finished teaching. The mathematical expression is
explained as follows (25).{

Xnew,i = Xold,i + ri
(
Xi − Xj

)
f (Xi) < f

(
Xj
)

Xnew,i = Xold,i + ri
(
Xj − Xi

)
else

(25)

TLBO increases each student’s knowledge after contact with another randomly se-
lected student throughout the learner phase

In this study, three numerical examples, including a Disk, Silo, and Cooling Tower,
have been studied to evaluate the efficiency of the proposed method. In numerical examples,
the results of optimal design by the GRO algorithm are evaluated and compared with
two other famous algorithms.

3. Numerical Examples

In this section, the effectiveness of the concept of cyclic symmetry for minimizing the
time required is assessed by three examples with continuous environments, including Disk,
Silo, and Cooling tower. It is assumed that the number of frequencies in Equation (1) is equal
to the number of degrees of freedom of the substructure. Structural properties which should
be considered in all problems are listed in the following: the number of elements of the
substructure is 30, the number of nodes of the substructure is 31, the number of repetitions
of the substructure is 60, the number of elements of the structure is 1800, and the number
of nodes of the structure is 1860. Material properties of these structures are: modulus of
elasticity (E) = 2.4 × 107 (kN/m2), mass per unit volume (ρ) = 2.4 (kNs2m-4), Poisson’s
ratio (ν) = 0.2. Examples have used a flat thin-shell element. This element is obtained by
combining two elements, Q4 and DKQ. The isoperimetric four-node quadrilateral Q4 [41]
element and the Discrete Kirchhoff Quadrilateral DKQ [42] element. The quadrilateral flat
shell element has 24 degrees of freedom (6 for each node). The structure’s weight is obtained
from Equation (1). Furthermore, CSS and TLBO, two well-known algorithms in structural
engineering problems, are used for optimization. The whole structure is then modeled in
MATLAB using the approach mentioned above. In all examples, due to the random nature
of meta-heuristic algorithms, each algorithm was run 20 times independently. The best
result from 20 independent performances was reported as the best answer. Calculations
were performed on the first-generation Intel Corei3 CPU. Frequency and displacement
constraints were considered. Frequency constraints are considered to control the structure’s
dynamic behavior.

3.1. Disk

The first numerical example is a Disk, as shown in Figure 2. It is simply supported
where R = 0.1 and R = 10.

Figure 2. (a) A Disk discretized by quadrilateral shell finite elements, (b) substructure of Disk, (c) Disk
dimensions.

The coordinate of the nodes of the Disk’s substructure is presented in Table 1. This
substructure is rotated 60 times around the center to create a Disk. The whole structure uses
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a four-node quadrilateral flat shell element. In each element, the active mass is considered
at the nodes.

Table 1. Coordinates of the nodes of the Disk.

Node
Number

Coordinates (x,
y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (0.1, 0, 0) 12 (1.5052, 0, 0) 23 (5.4865, 0, 0)
2 (0.1213, 0, 0) 13 (1.7607, 0, 0) 24 (5.9762, 0, 0)
3 (0.1639, 0, 0) 14 (2.0374, 0, 0) 25 (6.4871, 0, 0)
4 (0.2277, 0, 0) 15 (2.3355, 0, 0) 26 (7.0194, 0, 0)
5 (0.3129, 0, 0) 16 (2.6548, 0, 0) 27 (7.5729, 0, 0)
6 (0.4194, 0, 0) 17 (2.9955, 0, 0) 28 (8.1478, 0, 0)
7 (0.5471, 0, 0) 18 (3.3574, 0, 0) 29 (8.7439, 0, 0)
8 (0.6961, 0, 0) 19 (3.7407, 0, 0) 30 (9.3613, 0, 0)
9 (0.8665, 0, 0) 20 (4.1452, 0, 0) 31 (10.0, 0, 0)
10 (1.0581, 0, 0) 21 (4.5710, 0, 0)
11 (1.2710, 0, 0) 22 (5.0181, 0, 0)

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:

First constraint: first and third frequencies assumed to be less than 0.155 and 0.149,
respectively (ω1 < 0.155, ω3 < 0.149).

Second constraint: first and third frequencies assumed to be less than <0.155 and
<0.149, respectively (ω1 < 0.155, ω3 < 0.149), and the displacement of node number two
under a load of 10,000 kN in the Y direction is less than <0.0103.

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclically symmetric structure, only the matrix with
dimensions 186, equal to the substructures, is calculated. Only once the calculation for
the frequency of the structure without using the concept of cyclic symmetry was stopped
after about 4 h without any result. The calculation time using the proposed method is
significantly reduced.

For Disk evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5, γ = 0.8.
For 100 operators working in the Disk, a maximum of 500 repetitions was determined as
a termination condition in the example. For this purpose, the structure was optimized with
ten elements or variables (three elements in one group) and once with thirty variables, as
shown in Figure 3.

Figure 3. Disk discretized by ten and thirty quadrilateral shell finite elements.
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The structure’s weight with an initial thickness of 0.35 m is 263.3873 kN. The results
are presented in Tables 2 and 3. The results in Table 2 show that, under the first and
second constraint, the structure’s weight is 210.6800 kN (20.0113% weight reduction)
and 225.1152 kN (14.5307% weight reduction) by using the GRO algorithm, respectively,
indicating the GRO algorithm’s very intimate performance and better efficacy compared
with the other two algorithms.

Table 2. Optimal design results for Disk with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.3223 0.25432 0.32055 0.32432 0.31181 0.30816
2 0.31358 0.26921 0.28618 0.29656 0.32971 0.32527
3 0.35 0.30995 0.28575 0.31167 0.32477 0.33627
4 0.27218 0.28793 0.27218 0.30292 0.3174 0.30797
5 0.29664 0.27156 0.31867 0.27249 0.26037 0.30335
6 0.28693 0.30716 0.27789 0.25351 0.27004 0.27181
7 0.27102 0.3094 0.27254 0.32775 0.25913 0.27129
8 0.30973 0.30414 0.34035 0.30485 0.29696 0.32472
9 0.27882 0.29335 0.2535 0.32963 0.29731 0.33487
10 0.26383 0.25606 0.28665 0.27671 0.33245 0.28385

Weight (kN) 210.68 214.0883 215.5785 225.1152 227.3797 227.8022

Weight reduction
(percentage) 20.0113 18.7173 18.1515 14.5307 13.671 13.5106

Table 3. Optimal design results for Disk with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.32895 0.34863 0.3236 0.27153 0.28859 0.31611
2 0.3392 0.27333 0.27333 0.29466 0.26096 0.28818
3 0.2831 0.2831 0.31302 0.27043 0.31731 0.27222
4 0.30319 0.2946 0.34495 0.29997 0.33555 0.29043
5 0.25 0.28761 0.28761 0.29314 0.30404 0.25802
6 0.34779 0.32129 0.34832 0.32587 0.33136 0.34974
7 0.30548 0.30548 0.29013 0.33109 0.3306 0.28823
8 0.26898 0.26898 0.33433 0.3434 0.2793 0.27152
9 0.29968 0.33482 0.28475 0.32096 0.29732 0.25
10 0.2951 0.30222 0.29329 0.3207 0.27777 0.34179
11 0.34994 0.29251 0.28194 0.33587 0.32934 0.32385
12 0.28303 0.30634 0.25284 0.32524 0.34933 0.28928
13 0.34992 0.31479 0.25787 0.33255 0.3445 0.30287
14 0.33866 0.28642 0.26022 0.33715 0.34862 0.31572
15 0.31011 0.27181 0.25 0.25431 0.30349 0.28225
16 0.2935 0.2935 0.29923 0.25576 0.27672 0.33805
17 0.30241 0.34981 0.31378 0.25793 0.29611 0.30806
18 0.32113 0.33979 0.28981 0.29638 0.32797 0.30032
19 0.28916 0.32681 0.35 0.31963 0.25141 0.3022
20 0.258 0.258 0.25008 0.31484 0.2888 0.26151
21 0.33324 0.30111 0.35 0.26566 0.3161 0.35
22 0.28162 0.30381 0.31155 0.30963 0.29594 0.26372
23 0.30371 0.30371 0.33676 0.35 0.29573 0.25857
24 0.29568 0.29568 0.29316 0.26058 0.31643 0.34493
25 0.26007 0.26007 0.26432 0.3004 0.34709 0.28111
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Table 3. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

26 0.27469 0.29141 0.27469 0.33481 0.27642 0.3143
27 0.25478 0.27388 0.29988 0.28506 0.3321 0.33521
28 0.34821 0.34837 0.32301 0.34921 0.32673 0.28613
29 0.26503 0.26503 0.26624 0.30049 0.30046 0.32646
30 0.30911 0.32668 0.33041 0.25829 0.25107 0.31654

Weight (kN) 220.815 225.397 225.4451 226.4353 227.5151 231.0375

Weight reduction
(percentage) 16.1634 14.4237 14.4055 14.0295 13.6196 12.2822

The results in Table 3 show that, under the first constraint, the structure’s weight
is 220.8150 kN (16.1634% weight reduction) by using the GRO algorithm, indicating its
very intimate performance and better efficacy compared with the other two algorithms.
However, under the second constraint, the structure’s weight is 226.4353 kN (14.0295%
weight reduction) by using the GRO and 227.5151 kN (13.6196% weight reduction) by
using the CSS, indicating the GRO and CSS algorithms’ very intimate performances, and
a better efficacy compared with the TLBO algorithms. Tables 2 and 3 show the calculated
thicknesses obtained by all algorithms. As can be seen, the thicknesses are in a suitable
range, indicating the correct operation of the algorithms in finding the optimal answers in
the search space.

3.2. Silo

The second numerical example is a Silo, as shown in Figure 4. It is simply supported
at Z = 0.

Figure 4. (a) A Silo discretized by quadrilateral shell finite elements, (b) substructure of Silo (c), Silo
dimensions.

The coordinate of the nodes of Silo’s substructure is presented in Table 4. This sub-
structure is rotated 60 times around the center to create a Silo. The whole structure uses
a four-node quadrilateral flat shell element. In each element, the active mass is considered
at the nodes.

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:
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First constraint: first and third frequencies assumed to be less than 0.49 and 0.3,
respectively (ω1 < 0.49, ω3 < 0.3).

Second constraint: first and third frequencies assumed to be less than <0.49 and <0.3,
respectively (ω1 < 0.49, ω3 < 0.3), and the displacement of node number one under a load
of 10,000 kN in the Y direction is less than <0.327.

Table 4. Coordinates of the nodes of the Silo.

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (4, 0, 28) 12 (5, 0, 18) 23 (4.61111, 0, 7.111)
2 (4.25, 0, 27.25) 13 (5, 0, 17) 24 (4.22222, 0, 6.22222)
3 (4.5, 0, 26.5) 14 (5, 0, 16) 25 (3.83333, 0, 5.33333)
4 (4.75, 0, 25.75) 15 (5, 0, 15) 26 (3.4444, 0, 4.44444)
5 (5, 0, 25) 16 (5, 0, 14) 27 (3.05556, 0, 3.55556)
6 (5, 0, 24) 17 (5, 0, 13) 28 (2.66667, 0, 2.66667)
7 (5, 0, 23) 18 (5, 0, 12) 29 (2.27778, 0, 1.77778)
8 (5, 0, 22) 19 (5, 0, 11) 30 (1.88889, 0, 0.88889)
9 (5, 0, 21) 20 (5, 0, 10) 31 (1.5, 0, 0)
10 (5, 0, 20) 21 (5, 0, 9)
11 (5, 0, 19) 22 (5, 0, 8)

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclically symmetric structure, only the matrix with
dimensions 186, equal to the dimensions of the substructure, is calculated. Only once
was the calculation for the frequency of the structure without using the concept of cyclic
symmetry was stopped after about 4 h without any result. The calculation time using the
proposed method is significantly reduced.

For Silo evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5, γ = 0.8.
For 120 operators working in the Silo, a maximum of 600 repetitions was determined as
a termination condition in the example. For this purpose, the structure was optimized with
ten elements or variables (three elements in one group) and once with thirty variables, as
shown in Figure 5.

Figure 5. Silo discretized by ten and thirty quadrilateral shell finite elements.
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The structure’s weight with an initial thickness of 0.35 m is 673.2002 kN. The results
are presented in Tables 5 and 6. Table 5 shows that the optimal weights obtained by
GRO and CSS algorithms were almost similar. Under the first constraint, the structure’s
weight is 555.6478 kN (17.7588% weight reduction) by using the GRO algorithm and
553.9053 kN (17.7206% weight reduction) by using the CSS algorithm, indicating their very
similar performance and a better efficacy compared with the TLBO algorithms. Under the
second constraint, the GRO algorithm obtained a weight of 584.8135 kN (13.1293% weight
reduction), indicating its very intimate performance and also a better efficacy compared
with the CSS and TLBO algorithms. Moreover, the calculated thicknesses obtained by all
algorithms are in a suitable range indicating the correct operation of the algorithms in
finding the optimal answers in the search space.

Table 5. Optimal design results for Silo with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.32025 0.32399 0.33612 0.29212 0.34293 0.27209
2 0.27501 0.27337 0.28823 0.33717 0.32757 0.33174
3 0.26468 0.27171 0.28095 0.3301 0.29867 0.33572
4 0.27503 0.27634 0.27058 0.2539 0.29358 0.27366
5 0.29596 0.29512 0.30204 0.33178 0.29467 0.35
6 0.30478 0.30104 0.30587 0.29637 0.28063 0.29641
7 0.26461 0.26172 0.2746 0.2635 0.30085 0.26175
8 0.32331 0.32247 0.32201 0.34564 0.30107 0.32959
9 0.25977 0.25875 0.27422 0.27857 0.33176 0.31459
10 0.31475 0.3161 0.32023 0.31055 0.32948 0.30645

Weight (kN) 553.6478 553.9053 567.7535 584.8135 589.7962 591.6707

Weight reduction
(percentage) 17.7588 17.7206 15.6635 13.1293 12.3892 12.1107

Table 6. Optimal design results for Silo with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.25297 0.34543 0.32236 0.32116 0.30579 0.28185
2 0.33252 0.32762 0.3451 0.26957 0.32116 0.3034
3 0.30635 0.33772 0.29503 0.31626 0.35 0.25899
4 0.34707 0.25129 0.30513 0.32934 0.35 0.26117
5 0.28937 0.32143 0.29793 0.27499 0.34743 0.26362
6 0.28224 0.30234 0.34672 0.27977 0.27941 0.31786
7 0.26436 0.29812 0.25715 0.34766 0.31038 0.29951
8 0.25862 0.28594 0.32884 0.33849 0.25 0.26897
9 0.25809 0.3413 0.34648 0.33029 0.30293 0.2995
10 0.34392 0.2599 0.34856 0.28625 0.25 0.26476
11 0.32459 0.33119 0.29741 0.26383 0.32394 0.25549
12 0.32583 0.30706 0.32901 0.31237 0.33197 0.33507
13 0.29277 0.33953 0.27285 0.33736 0.25 0.30605
14 0.29757 0.26708 0.26982 0.26647 0.25 0.34296
15 0.2946 0.33958 0.30887 0.3001 0.35 0.31966
16 0.29474 0.25971 0.27594 0.31944 0.34774 0.30827
17 0.33942 0.32193 0.26614 0.30722 0.32049 0.33153
18 0.28089 0.31204 0.30539 0.26862 0.25 0.3379
19 0.3167 0.30271 0.25261 0.27952 0.28465 0.34889
20 0.31116 0.25531 0.26994 0.26276 0.25 0.25005
21 0.3238 0.29538 0.29521 0.34741 0.31815 0.33654
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Table 6. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

22 0.25836 0.31413 0.33671 0.28007 0.32062 0.31125
23 0.27941 0.26399 0.30183 0.31973 0.35 0.34899
24 0.26723 0.27624 0.28075 0.32454 0.26019 0.30276
25 0.34343 0.28986 0.32634 0.33977 0.33982 0.29795
26 0.35 0.26216 0.25405 0.25345 0.25 0.33013
27 0.33301 0.25092 0.33797 0.27689 0.31054 0.27278
28 0.25373 0.33171 0.27102 0.28472 0.35 0.2998
29 0.26444 0.30078 0.27342 0.29952 0.35 0.34008
30 0.31457 0.32356 0.34425 0.31369 0.30959 0.30746

Weight (kN) 576.8934 577.6467 579.7768 580.8192 583.9202 584.0356

Weight reduction
(percentage) 14.3058 14.1939 13.8775 13.7227 13.262 13.2449

Table 6 shows that under the first and second constraint, the structure’s weight is
576.8934 kN (14.3058% weight reduction) and 580.8192 kN (13.7227% weight reduction),
respectively, by using the GRO algorithms, indicating the GRO algorithms’ very intimate
performance and better efficacy compared with the other two algorithms. The CSS and
TLBO algorithms had a lower ability to optimize the structure’s weight. Moreover, the
calculated thicknesses obtained by all algorithms are in a suitable range indicating the
correct operation of the algorithms in finding the optimal answers in the search space.

3.3. Cooling Tower

The third numerical example is a Cooling Tower, as shown in Figure 6. It is simply
supported at Z = 0.

Figure 6. (a) A Cooling Tower discretized by quadrilateral shell finite elements, (b) substructure of
Cooling Tower, (c) Cooling Tower dimensions.

The coordinates of the nodes of the Cooling Tower’s substructure are presented in
Table 7. This substructure is rotated 60 times around the center to create the Cooling Tower.
The whole structure uses a four-node quadrilateral flat shell element. In each element, the
active mass is considered at the nodes.

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:

First constraint: first and third frequencies assumed to be less than 0.3 and 0.28,
respectively (ω1 < 0.3, ω3 < 0.28).
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Second constraint: first and third frequencies assumed to be less than <0.3 and <0.28,
respectively (ω1 < 0.3, ω3 < 0.28), and the displacement of node number one under a load
of 10,000 kN in the Y direction is less than <0.024.

Table 7. Coordinates of the nodes of the Cooling Tower.

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (30, 0, 0) 12 (19.4492, 0, 22) 23 (13.9331, 0, 44)
2 (28.9589, 0, 2) 13 (18.6435, 0, 24) 24 (13.9331, 0, 46)
3 (27.929, 0, 4) 14 (17.8796, 0, 26) 25 (14.0328, 0, 48)
4 (26.9115, 0, 6) 15 (17.163, 0, 28) 26 (14.2302, 0, 50)
5 (25.9079, 0, 8) 16 (16.5, 0, 30) 27 (14.5214, 0, 52)
6 (24.9199, 0, 10) 17 (15.8972, 0, 32) 28 (14.9007, 0, 54)
7 (23.9493, 0, 12) 18 (15.3616, 0, 34) 29 (15.3616, 0, 56)
8 (22.9985, 0, 14) 19 (14.9007, 0, 36) 30 (15.8972, 0, 58)
9 (22.0699, 0, 16) 20 (14.5214, 0, 38) 31 (16.5, 0, 60)
10 (21.1665, 0, 18) 21 (14.2302, 0, 40)
11 (20.2916, 0, 20) 22 (14.0328, 0, 42)

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclic symmetric structure, only the matrix with dimen-
sions 186, equal to the dimensions of the substructure, is calculated. Only once was the
calculation of the frequency of the structure without using the concept of cyclic symmetry
stopped after about 4 h without any result. The calculation time using the proposed method
is significantly reduced.

For Cooling Tower evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5,
γ = 0.8. For 150 operators working in the Cooling Tower, a maximum of 750 repetitions was
determined as a termination condition in the example.

For this purpose, the structure was optimized with ten elements or variables (three el-
ements in one group) and once with thirty variables, as shown in Figure 7.

Figure 7. Cooling Tower discretized by ten and thirty quadrilateral shell finite elements.
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The structure’s weight with an initial thickness of 0.35 m is 6.3602 × 103 kN. The
results are presented in Tables 8 and 9. Table 8 shows that the optimal weights obtained
by GRO and CSS algorithms were almost similar. Under the first constraint, the struc-
ture’s weight is 5.1639 × 103 kN (18.8092% weight reduction) using the GRO algorithm
and 5.1791 × 103 kN (18.5702% weight reduction) by using the CSS algorithm, indicating
their very close performances and better efficacy compared with the TLBO algorithms.
Under the second constraint, the structure’s weight is 5.2833 × 103 kN (16.9319% weight
reduction) by using the GRO algorithm, indicating the GRO algorithm’s very intimate
performance and a better efficacy compared with the other two algorithms. Moreover, the
calculated thicknesses obtained by all algorithms are in a suitable range indicating the
correct operation of the algorithms in finding the optimal answers in the search space.

Table 8. Optimal design results for Cooling Tower with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.33742 0.33688 0.33612 0.34202 0.32676 0.33282
2 0.2702 0.26562 0.28823 0.32097 0.31465 0.34823
3 0.29306 0.28943 0.28095 0.31782 0.27892 0.28108
4 0.27632 0.27001 0.27058 0.30344 0.26085 0.27296
5 0.32973 0.33358 0.30204 0.3077 0.2742 0.29914
6 0.32264 0.32705 0.30587 0.31144 0.34497 0.32055
7 0.25114 0.25375 0.2746 0.26305 0.26624 0.29247
8 0.30594 0.31358 0.32201 0.25248 0.31324 0.26423
9 0.25114 0.25 0.27422 0.26438 0.3196 0.30321
10 0.25238 0.25322 0.32023 0.28449 0.2583 0.34176

Weight (kN) 5.16 × 103 5.18 × 103 5.43 × 103 5.28 × 103 5.36 × 103 5.57 × 103

Weight reduction
(percentage) 18.8092 18.5702 14.6017 16.9319 15.674 12.4084

Table 9. Optimal design results for Cooling Tower with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.3459 0.34619 0.34586 0.30839 0.31638 0.32904
2 0.33143 0.33243 0.3321 0.29527 0.33477 0.34493
3 0.33312 0.33098 0.33066 0.2964 0.27562 0.28275
4 0.34452 0.34429 0.34489 0.32947 0.2517 0.31712
5 0.27742 0.27807 0.2784 0.348 0.27984 0.29386
6 0.28809 0.2895 0.29123 0.29577 0.3173 0.33335
7 0.25415 0.25776 0.25804 0.33183 0.25603 0.32688
8 0.26287 0.26121 0.26145 0.34692 0.29207 0.26672
9 0.28618 0.28212 0.28212 0.34079 0.30397 0.33619
10 0.27722 0.27711 0.27741 0.33078 0.32918 0.34898
11 0.27621 0.27786 0.27854 0.25715 0.34789 0.30144
12 0.34381 0.34673 0.34718 0.25984 0.25573 0.33842
13 0.32408 0.32499 0.32521 0.28145 0.25559 0.3088
14 0.30331 0.30355 0.304 0.3264 0.3405 0.26547
15 0.29603 0.29459 0.2941 0.26143 0.27699 0.26998
16 0.3446 0.34786 0.3489 0.33107 0.28078 0.29069
17 0.343 0.34412 0.344 0.2536 0.27745 0.32487
18 0.32094 0.32502 0.32554 0.33921 0.30914 0.33255
19 0.27975 0.27827 0.27781 0.32665 0.25043 0.32899
20 0.26122 0.25572 0.25603 0.25729 0.25043 0.28185
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Table 9. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

21 0.26689 0.26755 0.26834 0.26037 0.33234 0.3034
22 0.2644 0.26331 0.26222 0.25246 0.25907 0.25899
23 0.2775 0.27809 0.27915 0.34578 0.34298 0.26117
24 0.25 0.25061 0.25003 0.25425 0.26278 0.26362
25 0.25827 0.25381 0.25396 0.26124 0.343 0.31786
26 0.25265 0.25273 0.25312 0.26699 0.28866 0.29951
27 0.25904 0.2615 0.26037 0.25202 0.33224 0.26897
28 0.27787 0.28072 0.28161 0.27124 0.34494 0.2995
29 0.25462 0.2533 0.25552 0.25193 0.29461 0.26476
30 0.27682 0.28003 0.28003 0.27306 0.33866 0.25549

Weight (kN) 5.20 × 103 5.206 × 103 5.210 × 103 5.23 × 103 5.47 × 103 5.38 × 103

Weight reduction
(percentage) 18.2321 18.1472 18.0718 17.729 14.0341 15.4067

Table 9 shows that the optimal weights obtained by GRO and CSS algorithms were al-
most similar. Under the first constraint, the structure’s weight is 5.2006 × 103 kN (18.2321%
weight reduction) using the GRO algorithm and 5.2060 × 103 kN (18.1472% weight reduc-
tion) by using the CSS algorithm, indicating their very close performances and a better
efficacy compared to the TLBO algorithms. Under the second constraint, the structure’s
weight is 5.2326 × 103 kN (17.7290% weight reduction) by using the GRO algorithm, indi-
cating the GRO algorithm’s very intimate performance, and a better efficacy compared with
the other two algorithms. Moreover, the calculated thicknesses obtained by all algorithms
are in a suitable range indicating the correct operation of the algorithms in finding the
optimal answers in the search space.

4. Checking the Frequencies and Mode Shapes

To ensure that the frequency constraints are satisfied, limited frequencies with optimal
results were considered and are presented in Table 10. In all examples, the constraints were
adequately satisfied, and the frequencies were approximately close to the limit values with
an average difference of 0.02%.

Table 10. Constrained natural frequencies of structures (Hz).

Structure Frequency
Limited
Frequencies

Ten
Variable

Thirty
Variable

GRO GRO

Disk
ω1 0.29 0.2900 0.2900
ω2 0.27 0.2700 0.2700

Silo
ω1 0.49 0.4900 0.4900
ω3 0.3 0.3000 0.3000

Cooling
Tower

ω1 0.3 0.3000 0.3000
ω3 0.28 0.2800 0.2800003

Mode shapes of the frequencies and the optimal schemes obtained by the GRO algo-
rithm in the first and third modes are shown in Figures 8–10. In structures, the first mode
showed a sway-type shape, and the third mode had a vertical displacement.

158



Symmetry 2022, 14, 725

Figure 8. The mode shapes of the Disk. (a) First mode shape. (b) Third mode shape.

Figure 9. The mode shapes of the Silo. (a) First mode shape. (b) Third mode shape.

Figure 10. The mode shapes of the Cooling Tower. (a) First mode shape. (b) Third mode shape.

5. Conclusions

Problems of optimizing structures with cyclic symmetry, considering the frequency
constraints and multiple displacements, including non-convex search spaces, are among
the most challenging issues in civil engineering. In this study, a design optimization
was performed using GRO meta-heuristic algorithms to deal with this problem. It is
practically impossible to use algorithms to optimize real-scale structures due to the large
volume and the calculations time. The concept of cyclic symmetry was used to reduce the
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volume and time of analyses. By decomposing the main structure into repetitive patterns
called substructures, the number of calculations was significantly reduced. To evaluate
the performance of the proposed method, Disk, Silo, and Cooling Tower were modeled at
real scale to confirm the ability of the concept of cyclic symmetry and the GRO algorithm.
To better evaluate the performance of this algorithm, two well-known and widely used
algorithms, CSS and TLBO, were used for comparison. According to the obtained results,
the GRO algorithm was stable and well performed in finding optimal answers. Results
show GRO reduces the structure’s weight by 14–20% with good accuracy in finding global
optimal designs. The algorithm correctly satisfies the constraints and shows that using the
concept of cyclic symmetry is an efficient and useful solution in reducing computation time
for analyzing symmetric structures. However, it does not apply to nonlinear analyses. As
a new application of the concept of cyclic symmetry, it can be used to ellipsoid symmetry
problems. The authors intend to implement the proposed scheme for optimizing ellipsoid
structures, considering the frequency constraints and multiple displacements.
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Abstract: Pavement maintenance prioritization considering both quality and cost is an important
decision-making problem. In this paper, the actual pavement condition index of city roads was
calculated using municipal patrol data. A linear optimization model that maximized maintenance
quality with limited maintenance costs and a multi-objective optimization model that maximized
maintenance quality while minimizing maintenance costs were developed based on the pavement
condition index. These models were subsequently employed in making decisions for actual pavement
maintenance using sequential quadratic programming and a genetic algorithm. The results showed
that the proposed decision-making models could effectively address actual pavement maintenance
issues. Additionally, the results of the single-objective linear optimization model verified that the
multiobjective optimization model was accurate. Thus, they could provide optimal pavement
maintenance schemes for roads according to actual pavement conditions. The reliability of the
models was investigated by analyzing their assumptions and validating their optimization results.
Furthermore, their applicability in pavement operation-related decision making and preventive
maintenance for roads of different grades was confirmed.

Keywords: pavement maintenance and rehabilitation; decision optimization; pavement condition
index; linear optimization; genetic algorithm

1. Introduction

Continuous urbanization in China has significantly increased the cumulative mileage
of roads, which are considered the arteries of economic and social activities at the national
and local levels. As an essential component of road infrastructure, a pavement is a type of
hard surface made from durable surface material, which is able to withstand traffic and
harmful environments. Because of increasing traffic volumes with heavy loads and the
impacts of adverse environments, regular pavement maintenance is necessary to repair
damage and mitigate degradation. A sufficient budget should be allocated to maintain
the pavement at an appropriate condition, but insufficient budget is the primary obstacle
of pavement maintenance [1]. When conducting large-scale pavement maintenance, it
is important to consider the maintenance costs while ensuring that maintenance quality
meets the requisite standards. The selection of a proper pavement maintenance scheme
is a multiobjective optimization task. Therefore, determining the optimal maintenance
scheme is crucial for decision making in pavement maintenance [2,3]. Decision making
in pavement maintenance is a complicated, nondeterministic polynomial time (NP)-hard
problem [4].

Maintenance personnel generally make judgments based on their personal experience
when facing pavement maintenance tasks. Typical considerations include determination
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of which roads need maintenance, measures to be adopted for pavement maintenance,
estimation of the maintenance cost, and the deadline for completing the maintenance. How-
ever, decision making based on human experience cannot control pavement maintenance
costs or evaluate whether the maintenance quality meets the relevant standards. This can
subsequently lead to deterioration of road structures or pose challenges in the assessment
of maintenance outcomes. Therefore, assessment and prediction of road deterioration [5] as
well as establishment of the relationship between maintenance schemes and corresponding
influencing factors [6] are crucial in decision making regarding pavement maintenance and
fund allocation.

Recently, various decision-making methods for pavement maintenance have been
proposed. These methods generally aim at improving quality and reducing costs under
diverse scenarios. The most common methods include the analytic hierarchy process
(AHP), decision making based on a clustering algorithm, and decision making based
on a genetic algorithm (GA). The AHP method was first used for decision making in
pavement maintenance by Saaty [7]. Farhan and Fwa proposed a pavement maintenance
prioritization method based on AHP and developed a three-level hierarchy model to
determine the priority ranking of different pavement maintenance schemes [8]. Li et al.
developed an AHP-based pavement maintenance priority model by assigning weights
to the factors influencing pavement conditions [9]. However, the selection of the indices
and the determination of the index weights in the AHP method remained subjective.
Thus, the method of selecting an optimal solution from all available plans determines the
effectiveness of the final decision.

In recent years, with the development of machine learning and corresponding al-
gorithms, some researchers began studying pavement maintenance decisions based on
machine learning. Han et al. proposed a decision-making framework for pavement main-
tenance that combined a clustering algorithm with the PageRank algorithm [10]. In this
framework, the pavements are first grouped into clusters by the clustering algorithm.
Then, the maintenance ranking of the clustered road samples is determined according to
the road conditions. Hafez et al. proposed a decision-making algorithm for pavement
maintenance based on pattern recognition [11]. This method helps determine the optimal
maintenance and repair plans for low-volume paved roads. GAs and traditional math-
ematical programming are often used to solve road M&R planning problems based on
multiobjective optimization (MOO), but they also have their limitations. Elhadidy et al. [12]
proposed a two-objective optimization model balancing minimum action costs and maxi-
mum conditions for used road networks and developed a GA-based procedure for solving
the MOO problem. Hadiwardoyo et al. [13] described the development of a genetic algo-
rithm based on multiobjective programming for pavement and investigated the optimal
maintenance strategy options applied as function of road surface distress conditions with
a lack of information related to monitoring data and evaluation. Sindi and Agbelie [14]
explored the expected accuracy rates of network treatment options through a multiobjec-
tive optimization methodology that utilized a GA and mixed-integer programming; their
method was capable of effectively assigning pavement maintenance tasks under certain
conditions. Hafez et al. [15] performed large-scale optimization to compare the existing
maintenance policy with an alternative strategy. Specifically, they incorporated a GA into
the optimization model to address the issues associated with specific optimization con-
straints and the limitations related to low-volume roads during the optimization process.
Alqaili et al. offered a new multiobjective stochastic algorithm called the integer search
algorithm (ISA) [1]. The ISA and GA were applied to improve the performance condition
rating (PCR) of pavement in developing countries and achieved this by maximizing the
condition of the pavement with minimum costs at specified constraints. Santos et al. [3]
proposed a novel adaptive hybrid GA that incorporated local search techniques to improve
the overall efficiency and effectiveness of the search. Hosseininasab et al. [16] proposed
two multiobjective evolutionary approaches to solve problems of road construction within
a reasonable time. These approaches were combinations of different techniques, such as
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GA, NSGA-II, the Frank–Wolfe algorithm, and the ordered logit model. The NSGA-II
and its improved algorithms are popular for solving MOO problems [17,18]. To address
the high computation complexity associated with pavement maintenance at the network
level, Hankach et al. [19] developed a model to reduce the search space and formulated
the original problem as a generalized assignment problem, which was a well-known prob-
lem in mathematical optimization. Ahmed et al. [20] proposed a chaotic particle swarm
optimization algorithm to find the optimal solution for pavement maintenance. This al-
gorithm could effectively resolve the maintenance and rehabilitation issues associated
with flexible pavements. Ameri and Jarrahi [21] used condition indicators in the form
of normalized values and developed technical constraints in a linear integer program-
ming model to improve network-level pavement maintenance and rehabilitation planning.
Chen et al. [22] proposed a network-level pavement maintenance and rehabilitation op-
timization model considering the costs of user travel time and vehicle fuel consumption.
The model optimized the asphalt pavement performance evaluation method, including 11
different combinations, which could be easily extended to the study of more complex road
networks considering other factors. Mataei et al. [23] proposed a model based on the cloud
decision tree (CDT) theory, which included a general decision-making model and various
decision trees for every province of the country.

As evident from the foregoing discussion, considerable research has been conducted
to improve GAs and to utilize them for decision making in pavement maintenance because
of their effectiveness in resolving multiobjective optimization problems. In this study,
the pavement maintenance problem was introduced and formulated as a multiobjective
decision-making problem. Subsequently, two optimization models were developed based
on actual road conditions and applied to a real-world case. Sequential quadratic pro-
gramming and the NSGA-II algorithm were used to solve the two models. Finally, the
characteristics and the optimization space of the proposed models were analyzed based
on the results obtained. Future plans for extending the proposed model were discussed
in depth.

2. Problem Formulation

Pavement maintenance usually involves decision making at the macro level for se-
lecting roads to be maintained under objective constraints and decision makers’ priorities.
In China, pavement maintenance is usually subject to territorial management within each
administrative region. For example, each district and county has its own department
responsible for decision making during pavement maintenance at the macro level. Typical
decision-making tasks involved in pavement maintenance include the formulation of an
annual pavement maintenance scheme, budget application, and quality control. When
making pavement maintenance decisions in real scenarios, the degree of deterioration of
the road network in a certain region is first evaluated based on daily patrol data. Pavement
deterioration can be quantified as the pavement condition index (PCI), which is a numerical
rating of pavement condition based on the type and severity of distresses observed on the
pavement surface. PCI is represented by a numerical value between 0–100, where 0 is the
worst condition and 100 is the best.

Subsequently, under the premise of considering the total maintenance cost and time,
the annual maintenance scheme is formulated to improve the condition of roads with low
PCIs. Thus, the maintenance of regional road networks must take multiple objectives into
account, such as minimum maintenance cost and optimum maintenance quality. Therefore,
determining a suitable approach to formulating an efficient maintenance scheme is a
decision-making challenge.

The multiobjective maintenance problem of a road network in a specific region can
be described mathematically as follows. Given the number of roads (N), the area of each
road (A) that requires maintenance, the PCI of each road, and the total budget available
for pavement maintenance (C) in a certain region, m roads (m ≤ N) are prioritized for
maintenance among the total N roads, such that (1) the total maintenance cost is less than
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or equal to C, (2) the total maintenance cost is minimized, and (3) the maintenance quality
is maximized. Selecting the appropriate roads based on human experience results in 2N

combination schemes, because the decision variable is a Boolean representing whether a
road is included in the maintenance schedule. Therefore, N cannot be excessively large,
for when N is large, it is infeasible to select the final roads manually. This problem is
NP-hard. To resolve it, heuristic algorithms were researched and developed aiming at an
approximate optimal solution that could be a particularly sensible choice. In this study,
a decision-making optimization model for pavement maintenance was solved by using
NSGA-II. Optimum maintenance schemes were obtained that could ensure the maximal
maintenance quality with minimal maintenance cost.

Figure 1 shows the overall procedure of decision-making optimization for pavement
maintenance. The foundation is to evaluate road condition by pavement condition index,
and the key is to establish optimization models of road maintenance. The models can be
applied to provide optimal schemes for multiobjective decision making in regional road
network maintenance. Many optimization models have been widely used, as found from
engineering management and research literature, but these models of optimizing pavement
maintenance have not been fully examined. In this paper, we examined how these models
could be extended for our research goals and demonstrated how they could be used in
pavement maintenance for an application area.

Figure 1. Overall flowchart of decision-making optimization for pavement maintenance.

3. Model Construction

The construction of the optimization models involved multiple steps, such as selecting
the variables for decision making, setting up the model parameters, determining the objec-
tive function, and establishing the constraint conditions. In this section, two optimization
models are established to resolve the road network maintenance problem.
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3.1. Maximum Maintenance Quality–Limited Budget Model

To achieve optimal maintenance quality under a limited maintenance budget, a maxi-
mum maintenance quality–limited budget (MMQLB) model is built. The MMQLB model
is a single-objective linear optimization model and is expressed as follows.

maxZ = ∑n
i=1

(
PCI′i − PCIi

)
xi (1)

s.t.
{

∑n
i=1 xi Areai·P ≤ Budget

xi = 1 ∀PCIi < D
(2)

In these equations, xi denotes the decision-making variable of the model, which
represents whether the ith road requires maintenance. For each road, there exist two states
in terms of whether maintenance is required. Setting xi to 1 or 0 indicates that the road
does or does not require maintenance at present, respectively.

Equation (1) represents the objective function of this model, where n is the total number
of roads and PCI′i − PCIi represents the level of improvement in PCI (i.e., the maintenance
quality) for a specific road. PCI′i indicates the PCI of the road after maintenance and is
set to 100 in this model; in other words, the road is assumed to be in perfect condition
after maintenance. In contrast, PCIi represents the original PCI of the ith road before
maintenance. Equation (2) represents the constraint condition of the model, where Areai
represents the area (m2) of the ith road that requires maintenance. P is a constant that
represents the maintenance cost per square meter of the road and is set as 200 CNY/m2.
Budget represents the total budget available for pavement maintenance, and D is a constant
that represents the maintenance threshold of the road. When the PCI of a specific road
drops below this threshold value, the road is judged to be of poor quality and require
maintenance. Here, the default value of D is set to 70.

PCI is selected as the parameter in the objective function because it is an important
index for evaluating whether the road is in a satisfactory condition according to the Chinese
“technical code of maintenance for urban road” [24]. In addition, PCI plays an important
role in finalizing the maintenance scheme [25]. In this study, asphalt pavement is selected
as the maintenance object. The equation for calculating the PCI of asphalt pavement is
as follows:

PCI = 100 − ∑n
i=1 ∑m

j=1 DPij ωij (3)

In this equation, PCI ranges from 0 to 100; n is the total number of main deterioration
types (here set as 4 for asphalt pavement exhibiting cracks, deformation, loosening, and
other forms of deterioration); m is the total number of deterioration subtypes included
in each main deterioration type; and DPij is the deduction caused by the jth subtype of
deterioration in the ith main type. ωij is the weight of the jth subtype of deterioration in
the ith main type, which can be calculated by Equations (4) and (5) as follows:

ωij = 3.0u3
ij − 5.5u2

ij + 3.5uij (4)

uij =
DPij

∑m
ij=1 DPij

(5)

When computing the DPij value, first, the actual deterioration density of a pavement,
the ratio of the total area of the subtype j deterioration to that of the pavement, is calculated.
The actual deterioration density is compared with the deterioration density of each deteri-
oration subtype in Table 1, and DPij is found to be proportional to two numbers in two
adjacent columns in Table 1. The uij is calculated by Equation (5) and wij by Equation (4)
based on the DPij in Table 2. For example, the PCI of AnQing Rd. in the research area is
calculated as shown in Table 2. The paved area of AnQing road is about 26,204.1 m2, with
1746.94 m of length and 4 lanes. The deterioration density is the ratio of the deteriorated
area of each subtype and the paved area of AnQing road. The final PCI of AnQing road is
68.63, subtracting the sum of multiple of DPij and ωij from 100.
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Table 1. Deductions from pavement condition index (PCI) associated with different subtypes of deterioration on
asphalt pavement.

Deterioration Type
Deterioration Density (%)

0.01 0.1 1 10 50 100

Crack
Slippage cracks 3 5 8 16 38 48
Alligator cracks 5 8 10 20 45 70

Spalling 8 10 15 30 55 80

Deformation
Subsidence 3 5 12 25 47 63

Rut 2 7 12 25 45 55
Upheaval 3 10 15 30 52 65

Loosening
Pit 10 15 25 40 65 72

Edge failure 2 4 8 15 30 40
Stripping 2 5 8 15 35 45

Others
Poor frame 3 8 12 12 12 12

Damage of repaired section 2 5 8 15 25 33

Table 2. An example of calculating PCI using AnQing Rd.

Deterioration Type
Deterioration

Area (m2)
Deterioration
Density (%)

DPij uij ωij
n
∑
i=1

m
∑
j=1

DPijωij

Crack

Slippage cracks 56 0.21 5.38 0.080 0.247 1.33

Alligator cracks 0 0 0.00 0.000 0.000 0.00

Spalling 300 1.14 15.24 0.228 0.547 8.34

Deformation

Subsidence 100 0.38 11.11 0.166 0.443 4.92

Rut 0 0 0.00 0.000 0.000 0.00

Upheaval 0 0 0.00 0.000 0.000 0.00

Loosening

Pit 60 0.23 16.43 0.245 0.572 9.40

Edge failure 0 0 0.00 0.000 0.000 0.00

Stripping 980 3.74 10.13 0.151 0.414 4.19

Others
Poor frame 0 0 0.00 0.000 0.000 0.00

Damage of
repaired section 488 1.86 8.67 0.129 0.367 3.19

Sum 1984 66.96 31.37

As mentioned previously, in this model, the road is assumed to be in perfect condition
after maintenance. Therefore, the maintenance quality can be represented by 100 − PCIi.
In other words, the larger the value of 100 − PCIi, the higher the maintenance quality.

3.2. Minimum Budget–Maximum Maintenance Quality Model

Optimal maintenance of multiple roads should seek to minimize the maintenance
cost while maximizing the maintenance quality. To this end, a multiobjective optimization
model named the minimum budget–maximum maintenance quality (MBMMQ) model is
constructed and expressed by the following equations:

maxZ1 = ∑n
i=1

(
PCI′i − PCIi

)
xi (6)

minZ2 = ∑n
i=1 xi Areai·P (7)

s.t. xi = 1 ∀PCIi < D (8)
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In Equations (6) and (7), the function Z1 represents the maintenance quality, which
equals the summation of improved PCI for all involved roads, whereas Z2 represents the
total maintenance cost. In this model, PCI′i is set as 100 to indicate that roads are assumed
to be in perfect condition after maintenance. PCIi denotes the original PCI of the ith road,
and xi is the state variable, which indicates whether the ith road requires maintenance.
The value of xi can be set only as 1 or 0, which signifies that the road does or does not
require maintenance, respectively. Finally, Areai and P have the same definitions as those
in Equation (2). In Equation (8), D is the maintenance threshold; when the PCI of a specific
road drops below threshold value, it is compulsory to maintain that road. Here, D is set
to 70.

4. Model Application

This section elaborates on the application of the proposed models in decision making
for a real-world pavement maintenance problem. Using actual data, the global optimal
results were obtained from the model.

4.1. Dataset

In total, 149 roads under the jurisdiction of the Shushan District, a county-level district
in Hefei, Anhui (China), were taken as the research objects. The deterioration data of these
roads in 2019 were collected, and the maintenance area and premaintenance PCI were
calculated by Equation (3). The roads were divided into three grades based on the National
Standard of Road Classification: 9 expressways, 39 main roads, and 101 branch roads. For
brevity, only a few roads in the three grades and their premaintenance PCI are listed in
Table 3. Among the 149 roads, the average, minimum, and maximum PCI were 88.43, 67.89,
and 100, respectively. There were 5 roads with PCI less than 70 and 26 roads with PCI
equaling 100. As can be observed from the data, some roads were in poor condition, while
others were in satisfactory condition. This reflects the level of diversity of the road dataset
chosen for the study.

Table 3. PCI and other attributes of roads in Shushan District.

FID Name Grade Maintenance Area (m2) PCIi

1 AnQing Rd. Main road 1984 68.63
2 BaiYanWan Rd. Branch road 87 98.75
3 BanDao Rd. Branch road 364 80.36
4 YanHe N. Rd. Branch road 298 86.08
5 North 1st Ring Exp. Expressway 1002 75.63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70 YanHe S. Rd. Branch road 236 88.98
71 South 1st Ring Exp. Expressway 320 78.69
72 NingXi Rd. Branch road 0 100.00
73 NongXin Rd. Branch road 125 92.52
74 PiHe Rd. Main road 695 71.31
75 QianShan Rd. Expressway 789 78.95

. . . . . . . . . . . . . . . .. . . . . . . . . . . . .

145 Changjiang Middle
Rd. Main road 302 86.36

146 ZhenXin Rd. Branch road 0 100.00
147 ZhiWuYuan E. Rd. Branch road 123 90.20
148 ZhiWuYuan S. Rd. Branch road 231 89.54
149 HaiTang Rd. Main road 33 99.15

4.2. Solving the Models

Prior to solving the models, the premaintenance PCI, maintenance area, maintenance
cost per unit area, and maintenance threshold for each road were first fed into the model
as input parameters. Subsequently, the optimization models were implemented, and the
values of the decision-making variables and the objective functions were calculated by
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using sequential quadratic programming and the NSGA-II algorithm. Finally, the optimal
pavement maintenance scheme was determined based on the results obtained from the
model. The first model was solved using the sequential quadratic programming method.

Because the multiobjective model could be solved by a GA, the second model was
solved by using the NSGA-II algorithm in our research. The calculation steps involved
in the NSGA-II algorithm are as follows. First, multiple sets of optimization solutions
for pavement maintenance are randomly generated and are referred to as the solution
population. Subsequently, these solution sets are ranked based on the maximum pave-
ment maintenance quality and the minimum pavement maintenance cost calculated for
each set of solutions. This process is also known as rapid nondominated sorting of the
solution population. Next, a new generation of solutions is obtained through selection,
crossover, and mutation of the solution population. The new solutions are the offspring of
the first-generation solutions. Starting from the second generation, the parent and offspring
populations are combined to perform rapid nondominated sorting. Simultaneously, the
crowding degrees are calculated for each individual in the nondominated layer. Suitable
individuals are then selected according to their crowdedness and the nondominated rela-
tionship to form a new parent population. Finally, a new offspring population is generated
through selection, crossover, and mutation of the new parent population.

The final solution set of the objective function can be obtained by repeating the
aforementioned process continuously until the maximum number of iterations is reached.
NSGA-II can select multiple nondominated individuals that form an optimal set of trade-off
solutions called the Pareto set. The pavement maintenance scheme can then be formulated
according to the solution results. Some researchers have proposed simpler coding meth-
ods to represent complex evolutionary phenomena. These methods can realize heuristic
searches in the complex search space and can determine the global optimal solution of the
objective function with high probability through a simplified genetic process.

4.3. Results of the Models

Table 4 shows the optimal solutions obtained by the MMQLB model with different
budgets. The best pavement maintenance quality provided by the model was 1724.29,
which equaled the sum of the improved PCI for all roads; meanwhile, the maintenance
cost was 10.199 million CNY. Because of actual budget limitations, some roads had to be
eliminated from the full maintenance scheme. The maintenance quality was 154.51 with
the cost = 1,567,200 CNY if only the worst roads under 70 PCI were to be maintained. The
optimal maintenance quality was 324.861 with a cos t = 1,999,600 CNY, and the maximum
maintenance was 1025.2 under a 5 million CNY budget. The maximum improvement to
PCI was 1479.52 under an 8 million CNY budget. The optimal maintenance was 1702.64,
and the cost was 9,991,800 CNY under a budget of 10 million CNY. Table 5 shows the PCI
improvements to 149 roads in the optimal scheme obtained by MMQLB model under the
5 million CNY budget limitation. According to the optimal scheme, the PCI improvements
of each road equaled the difference between 100 and the original PCI if a road was selected
to be maintained; otherwise, its PCI improvement was zero.

Table 4. Optimal solutions obtained by MMQLB model with different budgets.

Optimal Solutions
Maintenance Quality

(Sum of Improved PCI)
Maintenance Cost

(CNY)

Necessary maintenance (PCI < 70) 154.51 1,567,200
Optimal maintenance with 2 million CNY budget 324.861 1,999,600
Optimal maintenance with 5 million CNY budget 1025.2 4,967,400
Optimal maintenance with 8 million CNY budget 1479.52 7,998,600
Optimal maintenance with 10 million CNY budget 1702.64 9,991,800

Full maintenance without budget constraint 1724.29 10,199,000
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Table 5. PCI improvements of 149 roads according to the optimal scheme obtained by the MMQLB model with a 5 million
CNY budget limitation.

Road Number (from
Left to Right)

PCI Improvements of Each Road
(Difference between the Output PCI from the Model and Original PCI of Each Road)

No. 1–10 31.37 0.00 19.64 13.92 0.00 0.00 17.86 27.14 0.00 0.00
No. 11–20 2.31 18.65 0.00 0.00 30.45 0.00 0.00 2.13 0.00 18.68
No. 21–30 23.11 16.79 0.00 2.86 13.32 0.00 0.00 2.11 0.00 0.00
No. 31–40 30.47 0.00 26.32 0.00 0.00 2.63 18.19 0.00 0.00 0.00
No. 41–50 0.00 1.76 0.00 32.11 17.74 0.00 19.94 26.46 13.35 25.43
No. 51–60 0.00 0.00 0.00 0.00 10.35 7.78 0.00 0.00 0.00 25.46
No. 61–70 0.00 28.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No. 71–80 11.02 21.31 0.00 7.48 28.69 0.00 0.00 0.00 0.00 24.70
No. 81–90 25.46 0.00 0.00 30.11 0.00 0.00 19.91 21.84 19.40 0.00
No. 91–100 0.00 9.78 0.00 0.00 0.00 0.00 7.37 0.00 12.11 13.10

No. 101–110 21.37 0.00 0.00 0.00 10.13 0.00 9.61 10.32 7.68 14.32
No. 111–120 11.22 6.99 9.24 0.00 15.46 0.00 0.00 8.41 0.00 0.00
No. 121–130 0.00 23.90 0.00 10.61 0.00 0.00 0.00 0.00 0.00 0.00
No. 131–140 3.31 11.76 9.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No. 141–149 0.73 0.00 15.76 0.00 11.39 13.64 0.00 9.80 10.46 —

The optimal maintenance scheme of 1702.64 PCI improvement under a 10 million
CNY budget is shown in Figure 2 using a thematic map of 149 roads in the Shushan District.
All roads with a PCI smaller than 70 required maintenance according to the constraint set
in the MMQLB model. Each road was labelled by its FID and name in the map. For the
roads in red, the corresponding decision-making variables were calculated to be 1 under
the optimization model, implying that these roads had to be maintained. For the roads in
blue, the decision-making variable was calculated to be 0 under the optimization model,
signifying that these roads did not require maintenance.

Next, Figure 3 shows the resulting Pareto front obtained by the MBMMQ model.
The objective function was solved by the NSGA-II algorithm and converged to stable
values at approximately the 3000th generation. The first objective function was maximizing
maintenance quality in the x-axis direction, and the second was minimizing maintenance
cost in the y-axis direction. The solution set included many optimal solutions, represented
by star points, which made up the Pareto front. Three solutions are highlighted along with
their objective function values in Figure 3.

The two optimal models were applied to the integrated management system for
municipal facilities in Shushan Dist., Hefei, Anhui (China). Since 2018, the Municipal
Engineering Management Office in Shushan Dist. used the system for pavement decision
making. The total improved PCI of road maintenance increased by 15% in 2019, while the
budget for maintenance remained almost the same.
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Figure 2. Pavement maintenance scheme obtained using the MMQLB model.
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Figure 3. Pareto front of the MBMMQ model solved by genetic algorithms.

5. Discussion

In this section, we discuss the suitability of the developed models, the validation of
the obtained results, and extensions of the multiobjective model.

5.1. Analysis of Model Suitability

The theoretical suitability of the proposed models was analyzed as follows. A linear
optimization model must satisfy the following implicit assumptions.

(1) Assumption of linearization: a function is considered linear [26] when the following
equation is satisfied:

f (xi) = ∑n
i=1 cixi + K (9)

In the equation, K and ci are constants. The objective functions of the two proposed
models can be converted to the form shown in Equation (9). Therefore, these objective
functions can be considered as linear functions.

(2) Assumptions of proportionality: A change in the decision-making variable should
cause the objective function to change proportionally. Because the relationship between
the decision-making variable and objective function can be expressed in the form given
in Equation (13) for both models, the assumption of proportionality is satisfied for the
decision-making variable and the objective function.

(3) Assumption of additivity: The value of the objective function should equal the
sum of the individual contributions from each decision-making variable to the objective
function. This assumption is satisfied for all models, as is evident from their equations.

(4) Assumption of the fixed parameter: All the parameters are fixed constants, and no
random factor is introduced into the analysis. The PCI used in all models is also a fixed
parameter. Therefore, this assumption is also satisfied.
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5.2. Validation of Results Obtained from the Models

The proposed MMQLB model is a single-objective linear optimization model that can
provide an exact result. Its result is a maintenance scheme that maximizes the maintenance
quality under a limited maintenance budget, such as some key schemes shown in Table 4.
Meanwhile, the MBMMQ model, which is a biobjective optimization model, was solved by
NSGA-II, a heuristic algorithm. In Figure 3, each point represents an optimal maintenance
scheme solved by the biobjective optimization model for 149 roads. Among the optimal
maintenance schemes suggested by the MBMMQ model, three schemes were highlighted
along with their objective function values, and the costs exactly matched the results ob-
tained by the MMQLB model, satisfying the corresponding cost constraints. The best PCI
improvement was 1724.29, with a cost of 10,199,000 CNY; the maximum PCI improvement
was 1025.2, with a cost of 4,967,400 CNY; and the necessary PCI improvement was 154.51,
with a cost of 1,567,200 CNY. Some solutions of MMQLB were included in the solution
set of MBMMQ. This suggests that the results of the MMQLB model verified the part
results of the MBMMQ model in this case. For this reason, we believe that the solutions
found by the NSGA-II were indeed optimal and that they formed the Pareto front for our
biobjective maintenance decision-making problem. The overall shape of the Pareto front
indicated the same trend of increasing sum of minimal maintenance cost with the total
improved quality. The Pareto front for our problem was discrete, but more importantly, it
had a nonconvex shape. This was clearly shown when sum of PCI improvement reached
around 1000, where the front took an obvious turn. This suggests that it is often difficult
to use a heuristic algorithm to obtain an exact convex Pareto front for a multiobjective
decision-making problem.

5.3. Extension of the Multiobjective Model

This section focuses on extension of the multiobjective model. Considering different
road grades, expressways have a higher maintenance priority than main roads. Moreover,
main roads usually have a higher maintenance priority than branch roads. The MBMMQ
model was extended accordingly, as follows:

maxZ1 = ∑n
i=1

(
PCI′i − PCIi

)
wixi (10)

minZ2 = ∑n
i=1 wixi Areai·P (11)

Here, wi denotes the grade of road i, which is set to 1.5, 1, or 0.5 when road i is an
expressway, a main road, or a branch road, respectively. Based on this revised model, the
effects of the different road grades and maintenance schemes were further determined,
as shown in Figure 4. Compared with the original solution, the maintenance costs and
quality are slightly different, which was primarily due to different road PCI values and
maintenance areas between expressways and branch roads. These results indicated that
the revised model is suitable for multiple road grades.

Because of constraints on pavement maintenance, a road may be only partially main-
tained, and its PCI may be lower 100 after maintenance. PCI′i could replace xi as a
decision-making variable, which represents the PCI of the road after maintenance. Based
on the MBMMQ model, the third MOO model is proposed as follows.

maxZ1 = ∑n
i=1

(
PCI′i − PCIi

)
(12)

minZ2 = ∑n
i=1

Areai·P·PCI′i
PCIi

(13)

s.t. PCIi ≤ PCI′i ≤ 100 (14)

In this model, PCI′i is selected as the variable, which can vary from PCIi to 100.
The constants PCIi, Areai, and P are the same as those in Equation (2). Therefore, when
calculating the maintenance cost for a specific road, PCI′i /PCIi should be incorporated
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into Equation (13) to consider the effect of PCI improvement on the maintenance area.
This model is suitable to maintain quantitatively each selected road and can be solved
by NSGA-II.

Figure 4. Comparison between the pavement condition index (PCI) values of the roads before and
after maintenance calculated by the MBMMQ model.

6. Conclusions

In multiobjective decision making of pavement M&R, some main research fields have
emerged, such as sustainable pavement maintenance management, optimization of deci-
sion models with high-dimensional objectives, nonlinear planning, and high-dimensional
variables, which have received increasing attention [27]. Here, actual decision-making prob-
lems of pavement maintenance were investigated, and an overall procedure for decision-
making optimization was proposed. First, PCI was calculated based on the deterioration
type and area to evaluate road conditions using the AHP method. Then, two models,
named MMQLB and MBMMQ, were developed. The first model was a single-objective
linear optimization model, whereas the other was a MOO model. These models were
employed for a real-world case involving the maintenance of 149 roads in Shushan District,
Hefei, China. First, the pavement condition data of these roads were recorded and imported
into the models. The models were then solved using sequential quadratic programming
and a GA. Finally, appropriate pavement maintenance schemes were established based
on the solutions of the optimization models. Among the optimal maintenance schemes
of the MBMMQ model, some optimal values in the pair of maintenance quality and cost
exactly matched the results obtained by the MMQLB model with the corresponding cost
constraints. This indicated that the MMQLB model could achieve similar decision making
to the MBMMQ model by setting different maintenance constraints. According to one
nonlinear constraint of MMQLB, it could be improved to substitute the nonlinear formu-
lation and reduce the difficulty of solving the problem in future research. In practical
scenarios, the pavement maintenance cost is also dependent on the time taken and priority
levels of the road grades. Therefore, the parameters used in the proposed models will be
further extended in future studies to reflect real-world scenarios better and to broaden the
applicability of the models.
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Abstract: Design and manufacturing processes are entering into a new era as novel methods and
techniques are constantly introduced. Currently, 3D printing is already established in the production
processes of several industries while more are continuously being added. At the same time, topology
optimization has become part of the design procedure of various industries, such as automotive
and aeronautical. Parametric design has been gaining ground in the architectural design literature
in the past years. Generative design is introduced as the contemporary design process that relies
on the utilization of algorithms for creating several forms that respect structural and architectural
constraints imposed, among others, by the design codes and/or as defined by the designer. In this
study, a novel generative design framework labeled as MLGen is presented. MLGen integrates
machine learning into the generative design practice. MLGen is able to generate multiple optimized
solutions which vary in shape but are equivalent in terms of performance criteria. The output of
the proposed framework is exported in a format that can be handled by 3D printers. The ability
of MLGen to efficiently handle different problems is validated via testing on several benchmark
topology optimization problems frequently employed in the literature.

Keywords: generative design; machine learning; topology optimization; long short-term networks;
ant colony optimization

1. Introduction

Generally speaking, structural optimization can be distinguished into three categories:
topology, shape and sizing optimization [1,2]. Topology optimization refers to a mathemat-
ical procedure that aims to identify the optimal shape, in terms of structural performance,
of a structural system when subjected to specific load and support conditions. This is
achieved by optimizing the topological placement of a specific quantity of material into
the design domain. Apart from structural performance, topology optimization can be
used for optimization with respect to sizing and shape criteria as well. The application of
such approaches helps, among others, to create structural systems that are very close to
their optimal shape, and thus can be considered a supporting procedure in the conceptual
design phase [3,4].

With the term generative design, a design exploration process is defined. The basic
idea of this process is that engineers/designers in general introduce their design goals
and constraints imposed by design codes, etc., into the generative design framework,
along with other parameters, such as performance demands, material properties, etc. The
generative design framework should be able to examine all or most of the possible solutions
of the specific problem, and produce design alternatives of equivalent performance and
criteria values.

During the last decade, research on modern soft computing methods drew significant
attention [5], mainly due to the excessive amount of data generated. This led to the
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development of new methods, able to handle large amounts of data and extremely complex
problem definitions. The scope of this study is to examine and combine modern machine
learning methods with topology optimization procedures aiming to generate multiple
forms in the concept of generative design. Recently, there is growing interest for applying
deep learning techniques in topology optimization, mainly for accelerating its procedure [6].
MLGen, a generative design procedure based on machine learning integrated with topology
optimization, is presented herein. More specifically, MLGen is formulated by combining the
topology optimization solution approach of solid isotropic material with penalization [7–9],
long short-term memory networks [10], image filtering techniques and derivative-free
search algorithms [11].

The layout of this study begins with a short introduction on structural topology
optimization together with some notes on the solid isotropic material with penalization
(SIMP) approach in Section 2, followed by a description of long short-term memory (LSTM)
networks in Section 3. Subsequently, in Section 4 the proposed MLGen (machine learning-
based generative design) framework is described in detail. Section 5 presents the results
of the numerical tests performed in order to assess its efficiency to generate multiple
optimized solutions.

2. Topology Optimization

In this part of the study, a short introduction of structural topology optimization (STO)
is presented: the general mathematical concept used to formulate the STO problem, together
with theory and implementation issues of the solution process. STO is a mathematical
formulation of an optimization problem that aims to optimally distribute material within
a specific design domain, subjected to given series of loading, boundary conditions and
constraints. The goal of STO is to maximize the structural performance of the system. This
is achieved by optimizing the allocation of material within the finite element mesh of the
design domain.

2.1. Problem Formulation

The definition of the structural optimization problem requires introducing: a function
(known as objective function) that refers to the criterion to be optimized, design unknowns
(known as design variables), and state quantities. The criterion F that is to be optimized
represents an objective metric that could either be maximized or minimized. Such an
objective could be the material volume or the stiffness of the structural system. Moreover,
the structural design domain and the state quantities associated to the criterion need to be
defined. The design variable x represents unknown parameters that are required in order
to describe the design of the structure; it could represent, for example, the geometry. The
state quantity y represents the structural response quantities, which may represent strain,
stress or displacement.

min
x∈S

F(x, y(x))

subject to :

state constraints on y(x)

(1)

where the objective function F(x) (e.g., stiffness of the structure, and material volume) is to
be optimized, and S is the design space of the unknowns’ vector x. The state quantities
depend on the design variable y(x). The objective function is subjected to the design
variables and state quantities constraints to lead the optimization process to the desired
solution. A so-called state function g(y) that corresponds to a certain state quantity can
be devised, for example, as a deformation quantity along a certain degree of freedom
(DoF). This state function g(y) can be integrated as a constraint function to the structural
optimization problem, where it is commonly expressed such that g(y) ≤ 0, for example, the
case where g(y) is expressed by the displacement quantities vector g(U(x)) in a discrete
finite element problem. In STO problems, the design variable x represents the presence or
absence of material in a specific part of the design domain. It might involve features such
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as the size and/or the number of holes in the design domain. The general formulation of a
STO problem is summarized below:

min
x∈[0,1]

F(x)

subject to :

K(x) · U(x) = P

g(x) ≤ 0

(2)

where x refers the vector of unknowns, i.e., the density values of the finite elements, K
denotes the global stiffness matrix of the structural system, vectors P and U contain the
loads and displacements, respectively, and g(x) refers to the vector of constraint functions
(volume fraction, etc.).

2.2. The Solid Isotropic Material with Penalization (SIMP) Approach

In the past, several approaches have been proposed for solving the STO problem.
The main ones are as follows [12]: (i) level-set method, (ii) density method, (iii) phase
field method, (iv) topological derivative method, and (v) evolutionary method. SIMP,
proposed in 90 s [7–9], is the most well-known representative of the density method and is
commonly used for dealing with the STO problem. The structural system’s compliance C
is the most widely adopted performance indicator used in STO problem formulations. If
n finite elements are used to discretize the design domain Ω, the distribution of material
over Ω is denoted by xi that are the density values of each finite element, i ∈ [1, . . . , n] and
xi ∈ (0, 1]. When xi ≈ 0, it denotes no material to the ith finite element, while if xi = 1,
then the ith finite element is fully filled. Thus, Equation (2) becomes as follows:

min
x∈(0,1]

C(x) = U(x)T · P

subject to :

K(x) · U(x) = P

V(x)
V0

= Vt

(3)

where C(x) denotes the compliance of the structural systems for specific material distribu-
tion x, while V(x), V0 and Vt express the volume corresponding to density vector x, the
initial volume for x = x0 and the targeted volume of the optimized domain, respectively.
According to SIMP, Young’s modulus E is correlated based on a power law expression to
the density value xi of each element of the FE discretization as follows:

Ex(xi) = xp
i × E0 ⇐⇒ Kx(xi) = xp

i × Ki,0 (4)

where the penalization coefficient p is often set to p = 3, while Kx(xi) and Ki,0 denote
the local stiffness matrix of the ith element when its density is equal to xi and its original
stiffness matrix, respectively. In the literature, various search algorithms were combined
with SIMP for solving the problem of Equation (3); the method of moving asymptotes
(MMA) and the optimality criteria (OC) algorithm are the most commonly used ones.

3. Long Short-Term Memory Networks

Long short-term memory (LSTM) networks were created as a variant of recurrent
neural networks (RNNs) with a differentiated architecture. RNNs were firstly introduced
in 1990 [13,14]. They were inspired by typical feedforward networks, but were tweaked
in order to efficiently handle data that were in the form of time steps. In order to achieve
that, RNNs are equipped with recurrent (feedback) connections as well. RNNs are able
to operate not only on single data patterns (such as images), but also on sequences of
data, such as video or speech. Due to this new architecture, RNNs presented the ability
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to efficiently handle time-series problems. A representation of an RNN is depicted in
Figure 1 [15]. These networks were found to be difficult to train, as they were prone to
numerical instability problems such as the exploding and/or vanishing gradient. This led
to the development of the LSTM networks and the so-called bi-directional LSTMs [16] that
are used in this study. LSTMs include an extra memory value that is trained on a specific
number of time steps. This temporary memory acts as a hidden state that is cycled over the
time steps.

Figure 1. Recurrent neural network.

A typical LSTM architecture contains the input layer, a series of hidden layers (ac-
cording to the depth of the network) and finally, the output layer. The size of the input
layer depends on the problem and, specifically, the size of the input vector. The hidden
layers present the special architecture of LSTM networks, the memory cells. These cells are
characterized by three nodes, known as gates. The first gate, named input, is responsible
for introducing a new value to the cell. The second one, called the forget gate, decides
which previous state will be dropped by the network. The last one, known as the output
gate, decides on the cell’s output value. In a time series problem, whenever a new step
is introduced to the network, all gates are fed with the new input along with the output
value of the previous step that was stored in the networks’ memory. Finally, the size of the
output layer also depends on the problem. For example, in a classification problem with
two classes, the size of the output layer would be equal to two [17]. As LSTMs were gaining
more research attention, a new architecture of LSTMs was introduced, named bi-directional
LSTMs. The novelty in this approach was that they include two LSTMs functioning at
the same time but in reverse directions (forward and backward) and are connected by a
merging function. Due to this form, the hidden state repeatedly extracts knowledge from
both past and future information fed to the network [18]. Bi-directional LSTMs are very
efficient when dealing with problems of time series, as they can take advantage of past and
future input values simultaneously.

4. The MLGen Framework Description

This section presents the proposed methodology MLGen, together with its com-
ponents. The goal of MLGen is to support the designing engineer with a tool able to
automatically create a large number of equivalent designs that can act as an inspiration
trigger. The proposed shapes are created via algorithms and it is ensured that all respect the
goals and restrictions set by the user/designer. As a result, the combination of a number of
methods is necessary. The proposed framework incorporates topology optimization but it
is worth pointing out that the goal of MLGen is not to identify the optimal shape but to
be able to discover a large number of differentiated designs that present near-to-optimal
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behavior. The methods used and the workflow of MLGen are presented in the following
sections.

4.1. Framework Architecture

MLGen is a generative design framework that incorporates several methods in order
to deliver automatically generated shapes. The methods used are a topology optimization
algorithm (SIMP), neural networks (LSTM), image filtering, metaheuristics (ACO) and
3D printing support. The first three are used for generating a plethora of shapes, meta-
heuristics are used for visualizing the final result (not as optimizers) and 3D printing is for
experimentally producing the outputs of MLGen. The flowchart of MLGen is presented in
Figure 2.

Figure 2. MLGen flowchart.

The first step of executing MLGen is the initialization step. The user is called to
define the problem by choosing the original mesh dimensions, FE population, loading
and support conditions. Additionally the number m − 1 and the FE population of less
dense domains need to be decided as well. Once this step is completed, SIMP performs
20 iterations on all defined domains. Via this step, density data are exported for all FEs
in the m domains and these data are then transformed according to Equation (7). The
trained LSTM is then used for predicting the outcome of each FE of all domains used in the
application. The output of the LSTM is an estimation of the final density distribution in all
the m domains. Each of the m outputs is then filtered with the use of f number of image
filters, such as Gaussian, edge detection, etc. Following that, each filtered domain is then
extrapolated according to the FE center weight coordinates’ proximity to the FE population
of the desired output. Finally, the extrapolated domains are then passed into SIMP, which
performs a maximum of 20 iterations for fine-tuning of the output. Once this procedure
is finished, a population of m × f shapes is generated. Once all shapes are created and
the designer chooses the one that is most preferable, a metaheuristic algorithm is used
for visualizing the result design. Lastly, an algorithm is used for transforming the SIMP
output into a type of file that can be used as an input for 3D printing. This formulation can
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be applied in 2D and 3D problems as well. As the volume classification is performed per
finite element, it can be performed on both cases. What differentiates in the application in
2D and 3D models is the image filtering process. While for 2D cases, it is only performed
once, in 3D cases it is executed z times, where z is the dimension of the mesh on the 3rd
dimension. The z outputs of the filtering part are then joined to formulate the 3D shapes
that are fine-tuned by SIMP.

4.2. Design and Training of the LSTM Network

In this part of the work, a detailed description of the network architecture, the training
procedure and the database creation is presented. As previously stated, in the literature,
LSTM networks are used successfully in several time-series classification problems. In
this study, the scope for using the LSTM networks is to derive the density class of every
element of the FE discretization. This class is defined according to the final one that the
SIMP approach would have calculated, after multiple iterations, at convergence. It is worth
mentioning that the prediction does not use information regarding the support conditions,
the location of the element in the mesh of the design domain, the loading conditions or the
desired volume fraction. The only information used is the density value of each element in
the first 20 iterations of the SIMP approach in the original problem. This strategy is chosen
in order to assure that the same trained network can offer high quality results without
needing to be retrained regardless of the problem definition.

LSTMs present the ability to handle inputs that, apart from a single value per time-
step, also include additional values (features) per time step. Assuming that SIMP is applied
on a test example with a population of finite elements equal to nx × ny = m finite elements
and a number of k iterations are performed until convergence is achieved, then a matrix D
containing all densities di,j per FE is formulated as follows [19]:

D =

⎡⎢⎢⎢⎢⎢⎣
d1,1 d1,2 . . d1,k
d2,1 d2,2 . . d2,k

. . . . .

. . . . .
dm,1 dm,2 . . dm,k

⎤⎥⎥⎥⎥⎥⎦ (5)

It is noted that in the remaining part of this work, the density of an FE is defined as d
rather than x, which is used in Section 2. In an attempt to improve the performance of the
network, a decision is made to increase the features of the input instead of just using the
density of one FE. The additional features that are used as inputs are the density values of
neighboring finite elements of the element to be classified. In detail, apart from the density
of the FE whose final density is to be classified, the densities of extra 24 FEs that are the
closest to it in terms of center weights coordinates are also used as features of the networks’
inputs. For example, in case of an element e(i, j), the density recording input at the tth
iteration is presented in Equation (6).

Dt
i,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

di−2,j−2
di−2,j−1
.
.
di,j
.
.
di+2,j+1
di+2,j+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)
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The formulation of the database for m finite elements containing their density values
over the optimization process until convergence, where the first t iterations of the SIMP
approach out of the T are needed for convergence, is presented in Equation (7).⎡⎢⎢⎢⎢⎢⎢⎣

D1
1 D2

1 . . . Dt
1 Dt+1

1 . . . DT−1
1 dT

1
D1

2 D2
2 . . . Dt

2 Dt+1
2 . . . DT−1

2 dT
2

...
...

. . .
...

...
. . .

...
...

D1
m−1 D2

m−1 . . . Dt
m−1 D,t+1

m−1 . . . DT−1
m−1 dT

m−1
D1

m D2
m . . . Dt

m Dt+1
m . . . DT−1

m dm,T

⎤⎥⎥⎥⎥⎥⎥⎦
m InputVectors Output

(7)

A schematic representation of the features used can also be seen in Figure 3. It is worth
pointing out that in the case of finite elements located close to the boundaries of the design
domain in which there are no neighboring elements in one or more directions, padding of
the necessary rows and/or columns is performed. The volume fractions of the generated
FEs are set equal to the volume of their existing neighboring element.

Figure 3. Creating density input vector.

As previously stated, the LSTM network is used for classifying the time series of the
volume fluctuation of each finite element in the design domain. In order for the LSTM
to be to able to perform this classification, the network has to be trained on a number of
samples of finite elements. The training database is formulated by performing topology
optimization via the SIMP approach on a specific problem with varying the FE mesh
discretization in terms of its denseness. In detail, the test example chosen is the cantilever
beam shown in Figure 4.
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Figure 4. Creating density input vector.

The support condition can be described as fully fixed boundary conditions at the left
part of the design domain along the vertical y axis, covering the height of the domain,
while the loading conditions are a single concentrated load at the bottom right corner of
the domain, facing towards the negative part of the y axis. The desired volume fraction is
set equal to Vt = 40%.

A population of 20 different FE mesh discretizations varying drastically on the num-
ber of the finite elements is chosen equal to [100, 500, 1000, 3000, 6000, 10,000, 20,000,
40,000, 60,000, 100,000] elements, and each mesh is generated with ney/nex = 1/2 and
ney/nex = 1/3 height to length ratios. For each FE mesh discretization, a separate topology
optimization problem is defined. After all problems are optimized by the SIMP approach,
the density time series of all finite elements for all problems are saved and are divided into
classes according to their final density value. The population of finite elements time series
created is equal to 510,000 samples. The separation bounds of the classes are presented in
the following Equation (8).

di,k ∈
⎧⎨⎩

[0, 0.1] ⇒ di,k = 0
(0.1, 0.9] ⇒ di,k = 0.50
(0.9, 1] ⇒ di,k = 1

(8)

The populations of the time-series samples in each class are equal to [240,000, 132,000,
138,000], respectively. The database is divided into a training and testing sample with
an analogy of 80–20%. The first 20 steps of SIMP are used as the length of the network
input. The network used in this study is a bi-directional LSTM network. The complete
architecture is defined by five different layers: the input layer, the bi-directional LSTM, a
fully connected layer, a soft-max layer and the output class layer. The network is built in
Matlab and training is implemented both in CPU and GPU environments. In the training
process, 10 epochs are run with 2000 iterations per epoch. The CPU and the GPU that are
used for performing the training part are an Intel i9-9920x and an NVidia Titan RTX; in
both cases, RAM is equal to 64 GB. In the case of CPU usage, the training needs 5500 s to
complete, while in the case of GPU usage, the training time is reduced by a factor of more
than 10, as it only needs 460 s. The accuracy achieved by both training procedures is equal
to 97.3%.

4.2.1. Metaheuristics

In the past, metaheuristic algorithms were used as optimizers in several problems
presented in the literature or in real life. One group of these algorithms are mainly inspired
by nature mimicking procedures, such as ant colony optimization (ACO) [20], particle
swarm optimization (PSO) [21], river formation dynamics (RFD) [22], pity beetle algorithm
(PBA) [23], etc. In this work, the goal of using a metaheuristic algorithm is not to perform
the actual optimization part, as this is handled by the SIMP approach supported by either
OC [24] or MMA [25] algorithms. The goal of the metaheuristic algorithm is to assist in the
visualization of the shape proposed by MLGen. In detail, information of the density of each
finite element in the domain is used by the metaheuristic algorithm for deciding on which
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finite element to go to, moving from the current FE. For example, in the ACO algorithm, a
number of ants are randomly placed inside the search space. On each step of the algorithm,
each ant decides to move from a current node to another one according to the amount of
pheromones on the trail connecting the two nodes. The amount of pheromones on the trail
depends on the distance between the two nodes and the likelihood of this trail to be chosen
by other ants as well [20].

In the MLGen implementation, particles (ants) are not randomly placed inside the
search space (domain). They are placed on FEs that should definitely have the presence of
particles. Such FEs are the ones where the loads and supports are placed. Instead of using
pheromones, the attraction of a node depends on the density it presents according to SIMP
and the likelihood of a connection to be chosen depends on the density value of the end
node, divided by the normalized distance between the start and the end node. As a result,
ACO is transformed into a design visualization method.

4.2.2. 3D Printing of MLGen Output

In order to produce the output of MLGen methodology, connecting the result exported
by MLGen with a 3D printer is needed. For this reason, a bibliographic survey of methods
for translating topology optimization results into files used by 3D printers is performed. The
most common file types proposed are ∗.stl and ∗.obj files. Such methods were introduced
for use with SIMP, BESO and level-set [3,26–28]. In the current work, the algorithm
proposed by Liu [28] for exporting ∗.stl files out of the results of the SIMP approach,
named Top3DSTL, is selected, as it is found to be very efficient, while the methods used
are more similar to the ones implemented in the MLGEn framework. Top3DSTL uses cubic
representation and the export is in binary file format.

5. Numerical Tests

In order to validate the performance of the MLGen framework, five, known from the
literature, benchmark test examples of topology optimization problems are selected. The
selected test examples employ different loading and support conditions, while the volume
fraction is also differentiated in each of them. In all of the test examples, seven models are used
with the number of the FEs being equal to [1000, 5000, 7000, 10,000, 20,000, 25,000, 75,000]
respectively. The iterations of SIMP in the original models are set equal to 20, while
23 different image filters are used. As a result, a population of 161 different shapes are
generated for each test example with the population of the FEs being equal to 75,000. The
final (fine-tuning) iterations of SIMP implemented for every design proposed out of the
previous image filtering step is set equal to 20.

The definitions of dimensions along with the loading and support conditions of
the five selected test examples are presented below. In addition, out of the different
designs obtained 24 variants of the optimized designs are provided for each test exam-
ple. For all five test examples, a sensitivity filter with radius equal to 3 is used for the
SIMP implementation.

5.1. Test Example A

The design domain for the case of test example A can be seen in Figure 5 that is of
rectangular shape with dimensions L × L/2; it is supported by two fixed joints with the
first one located in the bottom left corner on the x axis and the second one also placed
on the bottom edge along the x axis at a distance of 0.6 × L from the other support. The
loading condition refers to a load distributed along the top edge of the x axis applied
toward the vertical axis y. For this test example, the desired volume fraction is set equal
to Vt = 40%, while the structured FE discretization ratio is equal to ney/nex = 1/2. Out
of the 161 optimized designs that are generated by means of the MLGen methodology
for this test example, a randomly chosen sample of 24 optimized designs can be seen in
Figure 6. As it can be observed, the MLGen methodology generates multiple different, but
equivalent in terms of performance, optimized designs.
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Figure 5. Definition of test example A.

Figure 6. Results for test example A.

5.2. Test Example B

In test example B—the design domain that can be seen in Figure 7 that is of lamda
shape with dimensions L × L/2—fully fixed boundary conditions at the top left edge along
the x axis are implemented, while a concentrated point load P at the right edge of the
design domain is applied along the vertical y axis, defining the loading conditions. With
respect to the structured FE discretization ratio, ney/nex = 1/2 while the target volume
percentage is set equal to Vt = 35%. A set of 24 randomly chosen images of the optimized
results of this example as produced by MLGen can be seen in Figure 8. Similar to the
previous test example, these are of equivalent value with respect to the design criteria
chosen during the optimization problem formulation.
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Figure 7. Definition of test example B.

Figure 8. Results for test example B.

5.3. Test Example C

In Figure 9, the design domain that is also of rectangular shape with dimensions
L × L/2 and the corresponding loading and support conditions for the third test example C
are presented. In detail, five fixed joints are located at the bottom edge of the design domain
and they are equally distributed along the x axis. A load distributed along the horizontal x
axis at the top edge of the design domain is applied toward the vertical y axis.The target
volume percentage is set equal to Vt = 25%, and the structured FE discretization ratio is
equal to ney/nex = 1/2. The randomly chosen set of 24 optimized solution for this test
example out of the 161 ones generated through the implementation of MLGen methodology
is presented in Figure 10.
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Figure 9. Definition of test example C.

Figure 10. Results for test example C.

5.4. Test Example D

The next example is labeled test example D, and the corresponding design domain
is presented in Figure 11 that is also of rectangular shape with dimensions L × L/2. The
support conditions correspond to two fixed points at the bottom edges located at the two
opposite corners of the design domain, while the loading conditions refer to a concentrated
load at the middle of the bottom edge applied along the vertical y axis. The desired
volume fraction is equal to Vt = 45%, and the structured FE discretization ratio is equal to
ney/nex = 1/2. The corresponding set of randomly chosen optimized shapes by means of
the MLGen methodology is presented in Figure 12.
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Figure 11. Definition of test example D.

Figure 12. Results for test example D.

5.5. Test Example E

The final test example presented in this work can be seen in Figure 13, where the design
domain is also of rectangular shape with dimensions L × L/2. The loading conditions refer
to two concentrated loads at the top and bottom right corners of the left edge of the design
domain facing upwards and downwards, respectively. The support conditions are defined
as fully fixed boundary conditions along the left vertical side of the domain. With respect
to the structured FE discretization ratio, ney/nex = 1/3 while the final volume fraction is
set equal to Vt = 50%. A randomly chosen sample of the optimized results produced by
means of the MLGen methodology is presented in Figure 14.
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Figure 13. Definition of test example E.

Figure 14. Results for test example E.

The parameters of all test examples previously described can be seen in Table 1.

Table 1. Test examples parameters.

Example Load Type Load Num. Support Type Support Num. Volume

A Distributed 1 Fixed joints 2 40%
B Concentrated 1 Fully fixed 1 35%
C Distributed 1 Fixed joints 5 25%
D Concentrated 1 Fixed joints 2 45%
E Concentrated 2 Fully fixed 1 50%

6. Discussion

In this work, the application of MLGen in several topology optimization problems
with varying parameters is presented in order to validate its performance against differently
defined problems in terms of loading and support condition, volume percentage, etc. As
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presented, MLGen is capable of creating a large number of different shapes regardless of
problem parameters. MLGen is successful in generating differentiated shapes, regardless
of the type and population of supports and loads used. It is also able to efficiently handle
problems, even in the case of a very low volume percentage equal to 25% as in test example
C or of a high volume percentage (50%) as presented in test example E. It is also worth
pointing out that the above results are acquired in less than 3 min per generated shape. It
is logical though that the time needed is analogous to the total number of finite elements
in the mesh discretization of the final sample. It must also be noted that no symmetry is
imposed in any of the test examples.

7. Conclusions

MLGen is proposed as a framework for performing automated shape generation under
specific design rules and constraints, acting as a support tool for engineers and designers.
To achieve that, the incorporation of several methods is needed. Topology optimization
supported by its solution approach (SIMP) is used for generating a shape that satisfies
all design goals and constraints set by the designer. Machine learning (LSTM) is used for
accelerating the solution procedure along with imposing a shape differentiation. Image
filtering is used for further increasing the number of shapes generated, while metaheuristics
(ACO) are used for shape visualization. As the LSTM is trained on classifying density
time-series of independent finite elements, the trained network can be applied to any
example, regardless of the type and population of the loading conditions, mesh sizes,
support conditions, SIMP filtering type and value, whether it is a 2D or 3D problem, the
density of the FE mesh discretization, etc. There are several points for future research. The
incorporation of different machine learning techniques could further increase the number
of proposed shapes for each test example. It is also very important to work on reducing the
necessary iterations of the SIMP approach both for the initial ones as well as the fine-tuning
ones, as those iterations represent the biggest work load of the procedure. Additionally,
the incorporation of other topology optimization approaches, such as level-set [29] and
BESO [30], is also worth examining. Finally, a web application where MLGen can be freely
used will be developed by the authors in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
FE Finite Element
SIMP Solid Isotropic Material with Penalization
STO Structural Topology Optimization
TO Topology Optimization
TOP Topology Optimization Problem
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Abstract: In order to deal with dynamic traffic flow, adaptive traffic signal controls using reinforce-
ment learning are being studied. However, most of the related studies are difficult to apply to the
real field considering only mathematical optimization. In this study, we propose a reinforcement
learning-based signal optimization model with constraints. The proposed model maintains the
sequence of typical signal phases and considers the minimum green time. The model was trained
using Simulation of Urban MObility (SUMO), a microscopic traffic simulator. The model was eval-
uated in the virtual environment similar to a real road with multiple intersections connected. The
performance of the proposed model was analyzed by comparing the delay and number of stops with
a reinforcement learning model that did not consider constraints and a fixed-time model. In a peak
hour, the proposed model reduced the delay from 3 min 15 s to 2 min 15 s and the number of stops
from 11 to 4.7 compared to the fixed-time model.

Keywords: traffic signal optimization; reinforcement learning; adaptive traffic signal control; multiple
intersections; Deep Q-network

1. Introduction

Traffic signal control plays an essential role in city management because traffic conges-
tion brings economic, environmental, and social disadvantages. Traffic signal control aims
to minimize congestion by determining the optimal values of parameters such as the cycle
length and phases duration [1,2]. In many areas, the traffic signal control systems based on
a fixed-time model are still in use [3–5]. While these systems are easy to implement, they
cannot respond flexibly to dynamic traffic flows [6,7].

To quickly respond to variety in the traffic environment, signal control systems should
be able to choose their own actions without waiting for instructions from a central com-
puter [8]. Therefore, reinforcement learning models are being studied that allow the traffic
signal controller to receive realtime data around the intersection, such as traffic volume
and vehicle speed, and change signal appropriately for the given traffic situation [9,10].
If the above sentence is expressed in reinforcement learning terms, the controller is the
agent, the data input to the controller is the state, the controller’s decision is the action,
and the benefit provided to the agent according to the action is called reward. The goal of
reinforcement learning is to maximize the future reward that an agent can obtain [11].

2. Literature Review

Reinforcement learning is the most recently used algorithm in the field of signal
control research. However, most studies have not considered the constraints applied to a
real-world intersection or tested in a local area such as a single intersection. Touhbi et al.
(2017) analyzed the possibility of using the Q-Learning algorithm for adaptive traffic
signal control [12]. The Q-Learning algorithm was helpful in resolving traffic congestion
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compared to the fixed-time model, but different results were obtained depending on the
definition of reward and various traffic volumes. Liang et al. (2019) proposed a DQN-based
signal control model [13]. The state was defined as a grid-type location and the speed of
vehicles around the intersection. The reward was the difference in accumulated waiting
time between learning cycles, and the action was to select one of phases. Wang et al. (2019)
proposed a model based on the assumption that data are collected by a loop detector [14].
Since the state used as input to the model is not a data format that can be obtained, a method
for converting the data acquired through the detector into data useful for the model was
presented. Gong et al. (2019) proposed a cooperative learning method in which signal
controllers at adjacent intersections share a state they can observe with each other [15].
Using this, a traffic signal optimization model for multiple intersections was proposed.

Chu et al. (2019) pointed out the limitations of the centralized reinforcement learning
model and suggested a way to optimize a large-scale road network by placing the model
at each intersection [16]. As the algorithm of the model, A2C (Advantage Actor Critic)
was proposed, and the state of different scales was delivered to the model with city-unit
traffic volume data and actual observable traffic flow data. Egea et al. (2020) pointed out
the limitations of the realtime response of the existing adaptive signal control method
and suggested a reinforcement learning-based signal control model as an alternative [17].
Efficiency was evaluated through various indices for the compensation that is judged to
have the greatest impact on the model’s performance. Rasheed et al. (2020) introduced a
multiagent-based reinforcement learning algorithm [10]. The model was designed to solve
high-level problems such as dynamic traffic volume through cooperation between agents.
As a result of the simulation, it was shown that the travel time was reduced through the
proposed model.

In general, traffic signal control has constraints such as the sequence of phases is
fixed, and the minimum green time is given. However, in related studies, the constraints
are ignored in consideration of only mathematical optimization such as delay minimiza-
tion [18–21]. If the phase sequence is random or does not give a minimum green time,
this can cause over-waiting for vehicles and confuse drivers [16,22]. In this study, we
propose a model that can compensate for the problems that arise when the reinforcement
learning-based signal control models proposed in related studies are applied to actual
road networks. The proposed model maintains the same signal order as the fixed-time
model and gives the minimum green time. Therefore, it can be applied to the actual signal
controller. The performance of the proposed model was evaluated in a simulation envi-
ronment depicting real roads connected with multiple intersections. In order to evaluate
the effect of constraints, a comparative simulation between the proposed model and the
reinforcement learning model that did not consider the constraints was performed.

3. Methods

3.1. Learning Process

Figure 1 shows the learning process of the reinforcement learning-based traffic sig-
nal optimization model. The microscopic simulation environment was implemented by
Simulation of Urban MObility (SUMO). The model received the realtime traffic flow of the
intersection as a state. Based on this, the action determined by the model was implemented
at the intersection by SUMO’s signal controller. Traffic flow changed due to signal control
was delivered to the model as a reward. By repeating this process, the model learned an
optimized signal pattern that minimized traffic congestion, such as the vehicles’ delay and
the number of vehicles stopped. The reinforcement learning model was designed based
on Deep Q-network (DQN). Since the given problem was a classification that selected an
action appropriate for the situation, the SoftMax Function was applied to the activation
function of the output layer.
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Figure 1. Learning process of the reinforcement learning-based traffic signal control model.

3.2. State

The state is defined as Equation (1). Qt represents the queue of each lane at time t.
At an intersection with k incoming lanes, qi

t represents the number of vehicles stopped in
the incoming lane i at time t. Pt indicates which phase is currently on. When there are n
phases, if the jth phase is active, pj = 1, otherwise pj = 0. dt means the elapsed time of the
currently turned-on phase.

St = [Qt, Pt, dt]

Qt =
[
q1

t , q2
t , . . . , qk

t

]
Pt = [p1, p2, . . . , pn]

(1)

Figure 2 shows an example of traffic control at a single intersection. There were 10 in-
coming lanes into the intersection, and phase 4 was in progress for 10 s. Stopped vehicles
are marked in red. Therefore, in the order of the lanes, Qt = [0, 1, 0, 0, 3, 1, 2, 0, 0, 0]
and with phase 4 on, Pt = [0, 0, 0, 1] and accordingly gave a green signal to the 3rd, 4th,
8th, and 9th lanes. Finally, the phase lasted for 10 s, dt = [10].

3.3. Action

The action was to select whether to keep the current phase (At = 0) or change to the
next phase (At = 1). Since the proposed model has a constraint that the sequence of the
phases is maintained, actions such as returning to the previous phase or skipping the next
phase were impossible. In addition, the proposed model included a minimum green time,
therefore, every phase must be active once per signal cycle. In Figure 2, the agent decided
whether to keep phase 4 or change to phase 1. If the minimum green time for phase 4 was
15 s, the agent could only select to keep phase 4 because dt is still 10 s.
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Figure 2. Example of traffic signal control at a single intersection.

3.4. Reward

The traffic flow changed during the time interval Δt by the action At was given as a
reward to the model. Reward Rt+Δt is defined as Equation (2). qi

t+Δt is defined the number
of vehicles stopped in the incoming lane i at time step t + Δt and f o

t,t+Δt is defined as the
number of vehicles located in the outgoing lane among the vehicles passing through the
intersection between time step t and time step t + Δt. Accordingly, the reward Rt+Δt was
defined as the number of passing vehicles compared to stopped vehicles. As the number
of stopped vehicles decreased and the number of passing vehicles increased, the reward
was increased.

Rt+Δt = ∑
l=1

(
f o
t,t+Δt

)
/ ∑

i=1

(
qi

t+Δt

)
(2)

4. Simulation

The performance of the proposed model, the reinforcement learning-based comparison
model excluding constraints, and the fixed-time model, PASSER II, were analyzed for two
scenarios. The training of the proposed model and the comparison model was carried
out by generating random traffic under the same conditions. When the accumulated
waiting time or reward no longer decreased and converged, it was judged that learning
was complete. Table 1 shows the number of repeated episodes until learning was complete.
The simulation time of scenario 2 was based on the period of the acquired traffic data. For
the proposed model to respond flexibly to realtime traffic flow, the time interval Δt was set
to 3 s. Agents meaning signal controllers are equal to the number of intersections. In this
simulation, it was assumed that the signal controller could obtain the traffic situation in
realtime using the vehicle detectors.

Table 1. Parameters used in the model.

Parameters Scenario 1 Scenario 2

Number of episodes 100 160
Simulation time T

of one episode (second) 3600 18,000

Time interval Δt (second) 3 3
Learning rate 0.0001 0.0001

Number of intersections 2 6
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4.1. Scenario 1

In Scenario 1, performance evaluation of the proposed model and the fixed-time
model was performed before comparison with the model without constraints. Figure 3
is a simple road structure used in the evaluation. Two intersections were connected, and
the traffic volume is indicated on each lane. The same phase sequence was applied to
both intersections. In the fixed-time model, the duration of each phase was calculated
sequentially as 14, 56, 13, and 27 s. Therefore, the cycle length was 110 s.

 

Figure 3. Simple network with two intersections.

Figure 4 shows the duration ratio for each phase of the proposed model and fixed-time
model. Since the proposed model dynamically responded to realtime traffic flow, the
duration of the phase changed with each signal cycle. The average phase duration ratio
appeared similar to the optimization result of the fixed-time model. Compared to the
fixed-time model, the proposed model reduced the average delay per vehicle from 40 s to
30 s and the average number of stops per vehicle from 2.5 to 2 times.

 
(a) (b) 

Figure 4. Phase duration ratio of scenario 1: (a) Left intersection; (b) Right intersection.

4.2. Scenario 2

In Scenario 2, a comparison model without constraints was added to analyze the
performance of the proposed model. Figure 5 show a road network with six continuous
intersections in the real world. The total length of the main road with 6 intersections is
2.5 km, and the distance between intersections is 650 m at the maximum and at least 70 m,
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with an average of 400 m. The model was evaluated by applying the collected traffic
data. From 4 to 6 pm, 8200 vehicles were created, from 6 to 7 pm, 6200 vehicles were
created, and from 7 to 9 pm, 6400 vehicles were created. The least traffic volume was at
intersection 3, with 2000 vehicles per hour. On the other hand, the highest traffic volume
was intersection 6, with 3800 vehicles per hour. The average speed was 70 km/h. As
measure of effectiveness, the cumulative delay, and the cumulative number of stops at
each intersection, and the average delay and the average number of stops per vehicle were
considered. In addition, the proposed model set the cycle length equal to the fixed model
to maintain the set offset at each intersection.

 

Figure 5. Complex network with six intersections.

Figure 6 is the same as Figure 4, it shows the phase duration ratio of the proposed
model and fixed-time model. The comparison model could not calculate the duration ratio,
because the phase sequence was not constant. The cycle length was set to 160 s. From
the 41st cycle to the 59th cycle, it was set to 180 s because there was heavy traffic. Unlike
Scenario 1, the average duration ratio of the proposed model was different from that of
fixed-time model. The proposed model showed a tendency to give longer green time to the
main road with a lot of traffic.

 

(a) (b) 

Figure 6. Cont.
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(c) (d) 

 
(e) (f) 

Figure 6. Phase duration ratio of scenario 2: (a) Intersection 1; (b) Intersection 2; (c) Intersection 3; (d) Intersection 4;
(e) Intersection 5; and (f) Intersection 6. The time point at which the cycle length changes is indicated by a dotted line. The
first cycle length is 160 s and changes to 180 s after the first dotted line, and then changes back to 160 s after the second
dotted line.

Figure 7 shows the cumulative delay and number of stops for each intersection
during the simulation. At all intersections except for intersection 5, the performance of the
comparison model without constraints was the best. However, the number of stops of the
proposed model and the comparison model was similar. The proposed model reduced
delay by up to 88% to at least 31%, and the number of stops by up to 95% to at least
46% compared to the fixed-time model. The fixed-time model had the worst congestion at
intersection 3, and the comparative model had the worst congestion at intersection 5. The
proposed model had the longest delay at intersection 3, and the highest number of stops at
intersection 5.

Figure 8 compares the average delay and the average number of stops per vehicle
of each model by time period. Compared with the fixed-time model, the reinforcement
learning-based models showed excellent performance. The delay decreased by 48% for
the proposed model and 55% for the comparison model compared to the fixed model. The
number of stops decreased by 67% for the proposed model and 73% for the comparison
model compared to the fixed model.
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(a) 

(b) 

Figure 7. Measure of effectiveness by intersections: (a) Cumulative delay; (b) Cumulative number of stops.

From 6–7 pm, the traffic volume increased by 33% compared to other time periods.
Accordingly, the delay and the number of stops also increased. In the peak hour, the fixed
model waited for an average of 3 min and 15 s and the number of stops was 11 times,
whereas in the proposed model, the delay was reduced to 2 min and 15 s, and the number
of stops was reduced by more than half to 4.7. In addition, the number of stops of the
proposed model was 0.7 times from 4 to 6 pm when the traffic volume was low. It was
an ideal result that the number of stops was less than 1 when passing 6 intersections on a
2.5 km road.

Figure 9 shows the signal pattern calculated for each model as a space-time diagram.
It shows the signal patterns of each intersection and the trajectories of vehicles accordingly.
In the case of the fixed-time model, the average travel time per vehicle was 250 s, while
the comparison model decreased by about 60 s to 190 s. The proposed model decreased by
about 30 s to 220 s. However, for the comparison model, the phase duration was irregular
and short.
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(a) 

(b) 

Figure 8. Measure of effectiveness: (a) Average delay per vehicle; (b) Average number of stops per vehicle.

Figure 10 shows the traffic situation when the proposed model and the comparison
model were applied to each intersection. The color of the road indicates the average speed
of the vehicles. In the comparison model, traffic congestion occurred at intersection 5.
On the other hand, the proposed model can be seen as a solution to the congestion at
intersection 5. However, some congested sections occurred between intersection 3 and
intersection 4.

During the entire simulation, the comparison model showed 13% shorter delay and
17% fewer stops than the proposed model. Although the comparison model had the
best performance, the proposed model also showed sufficiently ideal results. In addition,
the comparative model calculated an irregular signal pattern, while the proposed model
calculates a realistic signal pattern. Therefore, the proposed model would be the best in
terms of applying it to real-world intersections.
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(a) 

 
(b) 

 
(c) 

Figure 9. Time-space diagram: (a) Fixed-time model; (b) Comparison model; and (c) Proposed model.
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(a) (b) 

Figure 10. Traffic condition: (a) Comparison model; (b) Proposed model.

5. Conclusions

In this study, traffic signal control based on a reinforcement learning algorithm was
proposed to minimize traffic congestion. Early reinforcement learning-based signal control
research focused on mathematical optimization, and when the model was applied to the
road, excessively waiting vehicles and confused drivers could have occurred. Therefore,
this study proposed a reinforcement learning-based traffic signal control model by applying
the constraint that fixed the sequence of the pre-planned phases and provided a minimum
green time.

Simulations of the proposed model and the comparison model without constraints
and fixed-time model were performed in two scenarios. The scenarios included multiple
intersections, and the delay and the number of stops were compared. Compared with the
fixed-time model, the reinforcement learning-based models showed excellent performance.
Although the comparison model showed the best performance, the proposed model also
showed ideal results. Unlike the comparison model, the proposed model will show the
best performance when applied to real world intersections, because it calculates realistic
signal patterns.

Even if the simulation environment is based on reality, implementation will not be
exactly the same. Therefore, it is necessary to test the model on real-world roads in future
research. To this end, more constraints and data for safe road driving and simulations in
various types of road networks will be required.
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Abstract: In recent years, deep learning-based detection methods have been applied to pavement
crack detection. In practical applications, surface cracks are divided into inner and edge regions for
pavements with rough surfaces and complex environments. This creates difficulties in the image
detection task. This paper is inspired by the U-Net semantic segmentation network and holistically
nested edge detection network. A side-output part is added to the U-Net decoder that performs edge
extraction and deep supervision. A network model combining two tasks that can output the semantic
segmentation results of the crack image and the edge detection results of different scales is proposed.
The model can be used for other tasks that need both semantic segmentation and edge detection.
Finally, the segmentation and edge images are fused using different methods to improve the crack
detection accuracy. The experimental results show that mean intersection over union reaches 69.32 on
our dataset and 61.05 on another pavement dataset group that did not participate in training. Our
model is better than other detection methods based on deep learning. The proposed method can
increase the MIoU value by up to 5.55 and increase the MPA value by up to 10.41 when compared to
previous semantic segmentation models.
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1. Introduction

Highway pavements are affected by many factors such as the natural environment,
load conditions, structural combinations, materials, construction techniques, and technical
levels, which can produce various types of distress. With the construction of highways,
pavement maintenance has begun increasing sharply. Accurate pavement distress detection
results can provide reliable and effective technical support for pavement maintenance
management decision making, improve highway pavement service performance, and
reduce traffic accidents. However, traditional manual detection methods are often affected
by subjective judgment in detecting highway pavement distress. There were considerable
errors and low detection efficiencies. Therefore, automatic distress recognition and feature
measurement of collected pavement images are the mainstream means of pavement detection.

The adoption of information management technology is an inevitable way to improve
the level of highway maintenance management and realize efficient and orderly organiza-
tion and management. For example, for common cracks on the highway, the development
of an effective pavement crack identification algorithm can evaluate the pavement condition
in advance and provide the basic data for maintenance decision making for the highway
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maintenance management department. The commonly used equipment for collecting
pavement crack information include digital cameras, depth cameras, and lasers. Many
researchers have studied pavement performance by using the images taken by digital
cameras. At this stage, it has been applied to pavement crack detection [1], asphalt mixture
crack detection [2], and concrete elements deformation tests [3]. Many researchers have
recently begun to apply depth imaging technology to pavement detection engineering [4–6].
Unlike the traditional 2D camera, the depth camera can obtain depth information and
provide the color image details in the 2D camera [7]. In addition, laser scanning is often
used to detect pavement damage [8,9]. Laser scanning technology was used to extract
cracks in concrete [10]. Although the depth camera and laser scanner can extract the three-
dimensional information of the pavement and more accurately identify the distresses. The
use of these two devices is limited due to the high purchase cost of the equipment, the
complex post-processing process of 3D data, and inconvenient daily maintenance.

Pavement cracks usually appear as curved configurations with different widths in an
image. They can be characterized by the edge detection and image segmentation methods
in computer vision. In the ideal case, for such deep cracks with good continuity and no
other noise interference, the traditional method can efficiently segment the crack from
the image. Lu et al. [11]. proposed a new double-threshold algorithm to obtain detailed
information on the crack number and width. Peng et al. [12]. proposed a triple-threshold
pavement crack detection method using a random structured forest. However, in an actual
detection task, different types of pavement types, shadows, and foreign objects will lead to
a decline in the detection accuracy of the traditional methods. In addition to the automatic
threshold segmentation method, there are crack detection methods based on spatial filtering
and wavelet analysis; however, they have some disadvantages such as high requirements
for equipment, complex operation, and environmental impact [13–16].

In recent years, convolutional neural networks (CNNs) have been proposed and ap-
plied to computer vision tasks such as image classification [17–19], target detection [20–22],
and semantic segmentation [23–25]. Simultaneously, a CNN-based method has also been
applied to pavement distress detection. Hoanga et al. [26] demonstrated the performance
of the traditional and intelligent methods based on CNN in the pavement crack detection
task. The experimental results show that the CNN-based crack detection methods are
promising alternatives to regular methods. Majidifard et al. [27] developed a hybrid model
by integrating the Yolo and U-Net models to classify pavement distresses and simulta-
neously quantify their severity. Jia et al. [28]. proposed a method based on Deeplabv3+
and a pixel-level quantization algorithm for crack detection. Park et al. [29] The CNN
composed segmentation and classification modules to extract pavement cracks and remove
the elements interfering in the image. Flah et al. [30] proposed a nearly automated detec-
tion model based on image processing and deep learning to detect defects in areas where
concrete structures usually cannot enter. In summary, traditional methods based on digital
image processing have been widely used in pavement damage detection and have laid
a theoretical foundation for methods based on deep learning. Methods based on deep
learning have strong potential, are more accurate and convenient than traditional methods,
and will be the mainstream methods for detecting pavement distress in the future.

In the pavement crack detection task, the semantic segmentation model can be used to
calculate the area occupied by cracks. It predicts the cracks pixel-by-pixel and segments
the cracks from the image. The existing neural network models perform very well in
the defect detection task, similar to the pavement crack detection task. For example, the
U-Net semantic segmentation network was applied to the defect detection task in the
industry [31–34]. Inspired by the above methods and the U-Net network structure, we
herein improve the U-Net convolutional neural network and apply it to crack identification
in complex pavement conditions. When measuring the characteristics of cracks, calculating
the width is necessary. The width calculation is related to the edge line, and the edge
detection algorithm is used to extract it. Classical edge detection algorithms in computer
vision include the Roberts operator, Sobel operator, and Canny operator [35]. These classical
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algorithms have also been applied to crack detection tasks. Wang et al. [36] designed a
local adaptive algorithm for Otsu threshold segmentation and proposed an improved Sobel
operator to extract crack edge lines. Qiang et al. [37] proposed an adaptive Canny edge
detection algorithm that achieved good results in crack detection. In addition to these
modified traditional algorithms, some edge detection algorithms based on deep learning
are also present.

Holistically nested edge detection (HED) [38] and side-output residual networks
(SRN) [39] are two relatively new edge detection networks, and both adopt the method
of deep supervision to improve the training effect. Liu et al. [40] continued the idea of
deep supervision and proposed a Deepcrack for crack detection in multiple scenes. Similar
to Heider et al. [41], by combining the two networks of HED and U-Net, we proposed
an end-to-end method for coast and coastline detection. Traditional edge detection algo-
rithms are easily disturbed by environmental factors. Especially in the pavement surface
images, factors such as rough surfaces, vehicle shadows, water stains, and uneven lighting
brightness affect the edge detection accuracy. In addition, the edge detection algorithm
cannot recognize the meaning of objects inside and outside the edge line; however, the
combination of semantic segmentation and edge detection results can solve this problem.

Therefore, a fusion model is proposed to segment cracks and simultaneously identify
crack edge lines. The model uses a U-Net structure for image segmentation. It continues the
idea of deep supervision in the HED and SRN networks. As the model uses the side-output
method for edge line detection, it is called a side-output U-Net (SoUNet).

The remainder of this paper is organized as follows. The second section presents the
proposed network model and the evaluation indicators in detail. The third section describes
the collection and production of data and introduces the process and details of training.
Section four provides the numerical results and intuitive prediction results. Our model was
also compared with existing methods. The final section provides concluding statements.

2. Proposed Method

2.1. Model Architecture

Based on the U-Net semantic segmentation network model, we herein improve it and
add a side-output module. We call the network model SoUNet. The traditional U-Net has
a residual connected encoder–decoder architecture. The encoder part can obtain the low-
resolution feature map after downsampling the high-resolution input image many times.
This part is mainly used to extract the image features, and each layer is called the feature
extraction layer. The decoder part includes several operations of feature concatenation,
convolution, and deconvolution. It enlarges the low-resolution image outputted by the
encoder through deconvolution, concatenates the same resolution image outputted by each
feature extraction layer, and finally outputs the binary image through activation.

The structure of SoUNet is divided into two parts: the basic U-Net structure and the
side-output structure. The structure of the network is shown in Figure 1. The first part is
a semantic segmentation task. We removed the last 3 layers of VGG16 and used the first
13 layers as the encoder, which contained 13 convolution layers and 4 max-pooling layers.
The max-pooling layer can downsample high-resolution images into low-resolution images,
and there are five resolutions from high to low. The max-pooling layer enables the network
model to learn semantic features at different resolutions and improve the learning efficiency
of the model. The decoder includes nine convolution layers and four deconvolution layers.
The deconvolution layer can restore the low-resolution feature map to a high-resolution one,
and the feature map of the same resolution requires feature fusion in the decoder. In the
entire U-Net structure, the kernel size of each convolution layer and deconvolution layer
was set to 3 × 3. The rectified linear unit (Relu) was used as the activation function after
the convolution layer. Only the last convolution layer uses a 1 × 1 kernel size, followed
by the sigmoid activation function layer. The sigmoid function activates the input image
after passing through the encoder–decoder structure. The final output image is output 1,
and its size is the same as that of the input image. Output 1 is the result of the semantic
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segmentation task and is the probability map. The value of each pixel is between 0 and 1,
indicating the probability that the pixel belongs to a category. The area with a high pixel
value is a crack, and the area with a low pixel value is the background. We used 0.5 as the
global threshold to transform the obtained probability map into a binary image.

 

Figure 1. Illustration of our proposed Side-output U-Net architecture.

The second part of SoUNet is the side-output module, which performs the edge
detection task, as shown in Figure 2. We extract the feature maps of different resolutions
in the decoder and make them pass through two convolution layers of 3 × 3 kernel
size. After enlarging the size, the lower-resolution feature map was deconvoluted and
fused with the higher-resolution feature map. The feature maps of five resolutions were
obtained by convolution, and then they were processed by convolution with a 1 × 1 kernel
size. The feature map of each resolution was restored to the original image size after the
deconvolution operation. Therefore, the side-output module was divided into five stages,
corresponding to five feature maps of different scales. Five types of feature maps with the
original size are sent to the sigmoid function for activation, and five images are denoted as
Outputs 2–6. In addition, the feature maps of the five resolutions are fused into one size. It
is sent to the sigmoid activation function after it passes through the convolution layer with
a 1 × 1 kernel size. Finally, output the image called Output 7. The maximum ODS value
was taken as the segmentation threshold to generate a binary image.

Figure 2. Illustration of a side-output module.

In this paper, we introduce a batch normalization (BN) layer [42] into the network
architecture. When the depth of the network model gradually deepens, the model is more
sensitive to changes in hyperparameters, and the model becomes more challenging to train.
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However, the BN operation enables the model to be trained with a large learning rate.
It reduces the requirements of parameter initialization, decays the oscillation of the loss
function, and accelerates the training process. The ReLU function is used as the activation
function in each convolution block of the middle architecture. The network was constructed
in the order of convolution layer, BN layer, and ReLU layer.

By observing the pixel value distribution of the original crack image and the labeled
image, it was observed that most cracks were composed of internal and edge areas. The
inspectors captured photographs of pavement cracks with a monocular camera, which was
mounted at the rear of the detection vehicle and had a fixed shooting distance and angle.
Therefore, image quality is easily affected by the pavement environment. Identifying the
crack width and length for road sections with limited daylighting conditions and rough
surfaces is difficult. The crack gradually transits from the edge area to the internal area of
the image. This means that the crack is composed of the inside and the edge. As shown in
Figure 3, the cracks affected by environmental factors are divided into two distinct areas.

 

Figure 3. Cracks of rough pavement are divided into two parts: the edge and the interior.

SoUNet can output both segmentation results and edge line results for the input
image. The linear fusion of the two results can effectively improve image segmentation
accuracy. Output 1 is the crack segmentation image, and Outputs 2–7 are the crack edge line
images. The detection accuracy can be improved by linear fusion of Output 1 and Outputs
2–7, respectively. In addition, the refinement method of guided filtering can improve
the identification accuracy of the network [41,43]. Output 1 and Output 3 are the input
image and guide image, respectively, and it sets the parameters of the guide filter as the
kernel radius r = 5 and the penalty ε = 1 × 10−6. Therefore, the following three methods
must be considered. These are (1) adding a BN layer to the network, (2) linear fusion of
output results, and (3) processing the output results via guided filtering. We compared the
segmentation accuracy of these methods in Section 4.2.

2.2. Loss Function

The purpose of image segmentation is to segment the cracks from the background. In
the labeled image, the pixel value of the crack is 1, and the pixel value of the background is
0. It outputs the probability that each pixel is a crack after the input image passes through
the encoder and decoder. The network model is more likely to extract the background in
the training process because the area of the crack accounts for a small proportion of the
entire image, which is less than 10% in most images. The imbalance of categories leads
to a decline in the segmentation effect. We apply the loss function in HED [38] that can
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self-adaptively balance positive and negative samples. This cross-entropy loss function
with category balance is defined by Equation (1):

L(ŷ) = −β ∑
j∈Y−

log ŷj − (1 − β) ∑
j∈Y+

log
(
1 − ŷj

)
(1)

The predicted pixel is ŷ for a single-input image. There are β = |Y+|/|Y| and
1 − β = |Y−|/|Y| on the corresponding labeled image. |Y+| and |Y−| represent the pixels
of the crack and background areas, respectively, and |Y| represents the total number of
pixels. This loss function can be used for segmentation and edge detection tasks, which are
unbalanced categories.

2.3. Metrics

In the field of computer vision, MIoU and MPA have extensively used evaluation
indicators for semantic segmentation tasks. Many conventional image segmentation algo-
rithms use the mean intersection over union (MIoU) and the mean pixel accuracy (MPA) as
evaluation indicators [23–25,34,44–46].

Accuracy indicators adopted in the training process: The MIoU) can be used as the
evaluation metrics for the image segmentation task of unbalanced category samples. It is
also an accuracy indicator for monitoring the training process, as shown in Equation (2):

MIoU =
1

k + 1

k

∑
i=0

Nii

∑k
j=0 Nij + ∑k

j=0 Nji − Nii
(2)

The intersection union (IoU) is the ratio of the overlapping part to the merged part
of the two regions. This is a general measurement method for semantic segmentation
tasks. k + 1 is defined as the number of categories to be classified, where k + 1 is 2 (the
types include the fracture area and background area). Nii is the number of pixels that are
predicted correctly, Nij is the number of pixels that class i is predicted as class j, and N is
the total number of pixels. We use pixel error to monitor the training process for the edge
detection task, as shown in Equation (3):

Pixel Error = ∑k
i=0 ∑k

j=0

Nij

N
(i �= j) (3)

Other accuracy indicators: After the model was trained, the prediction accuracy was
evaluated on the test set. In addition to using the MIoU evaluation for crack segmentation
results, the MPA can also be used. It calculates the average value of the percentage of
correctly predicted pixels for each category, as shown in Equation (4):

MPA =
1

k + 1

k

∑
i=0

Nii

∑k
j=0 Nij

(4)

We use OIS-F and ODS-F to evaluate the boundary detection results. The training pro-
cess and training results will be evaluated and presented in Sections 3.4 and 4.2, respectively.

3. Experiment

3.1. Image Collection

The image data of pavement distresses used in this experimental study were provided
by the Yunnan Highway Science and Technology Research Institute. There are mainly net-
shaped cracks, longitudinal cracks, and transverse cracks in the image data. Fatigue failure
is the most common source of net-shaped cracks. The asphalt pavement structure eventually
loses its bearing capacity due to repeated vehicle loads, and fatigue failure occurs. Uneven
subgrade settlement and fatigue failure are the principal causes of longitudinal cracks. They
will eventually develop into net-shaped cracks if not maintained. The most typical causes
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of transverse cracks are temperature changes and reflection cracks. Transverse cracks grow
from top to bottom due to low-temperature shrinking. Reflection cracks develop from
the bottom up, penetrating the road structure. The information offer basis for subsequent
maintenance work.

We used the Teledyne Dalsa S3-24-02k40, which is a high-response, high-speed linear
array industrial digital camera with a 2048 × 2048 picture resolution. A Camera Link
is included within the camera. It can sustain a fast transmission speed while dealing
with enormous amounts of picture data and high bandwidth needs. At the same time,
the camera’s improved user interface makes data collecting personnel’s following image
processing job easier. After the images are gathered on-site, the cracks are manually
identified as mesh cracks, longitudinal cracks, and transverse cracks, and then images
including single cracks, multiple cracks, and mesh cracks are picked.

It contains 3000 pictures collected by the road detection vehicle, with a pixel reso-
lution of 2048 × 2048, and the format is a single-channel gray image. The images were
collected at the K1209 + 080 − K1210 + 096 Xiuhe section of the No. 326 State Road and
K1904 + 350 − K1902 + 300 Lanma section of the No. 248 State Road. Figure 4 shows the
information about the roads. The selected road section included both cement and asphalt
pavements. Owing to the influence of the driving load and natural environment, there
are different types of cracks on the pavement. These complex data contents cause some
difficulties in the crack identification task. We attempted to classify the degree of distress in
the original road image using a convolution neural network. However, owing to shadows,
water stains, and other foreign objects in the image, the identification accuracy can only
reach around 75%, which does not accomplish the desired impact. We plan to improve the
distress categorization method, as well as the accuracy and automation of pavement detec-
tion, in the future study. Water stains are caused by a portion of the road surface becoming
wet. Many provinces are connected by the No. 326 State Road, and the No. 248 State Road,
and trucks are frequently seen on the route. The sprinkler must constantly cool the heat
brake pads and tires to guarantee driving safety. Wet strip tire imprints are frequently
observed on the road. Some trucks will also be transporting wet goods, resulting in some
partial wetness on the road surface. These create certain challenges for the task of detecting
pavement cracks using digital images.

 

Figure 4. Selected detection part of the No. 326 State Road and the No. 248 State Road.

The convolutional neural network model we constructed can only train images with
a pixel resolution of 256 × 256 due to the computing capability of the computer. The
open-source computer vision software OpenCV is used to resize the image to match it
with the network model’s input. The original collected images were pretreated. The image
with a pixel resolution of 2048 × 2048 was cropped to the image with a pixel resolution of
512 × 512, which is one-sixteenth of the original image. The image needs to be resized to
256 × 256 pixels to match the input port of the network model. If we immediately compress
the image of 2048 × 2048 pixels to 256 × 256 pixels, the original image’s crack information
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is significantly lost, resulting in a decrease in identification accuracy. The original image
and the processing procedure are depicted in Figure 5.

 

Figure 5. The original images and the processed images.

3.2. Image Dataset

The open-source tool LabelMe [47] was downloaded for semantic annotation, obtained
from GitHub [48]. The annotated information is saved as a JSON file containing the marked
image name, labeled type, coordinate points, and others. Extracting the information in a file
can generate a binary image for training. The original image, manually labeled crack, and
crack edge images are shown in Figure 6. Six hundred images with cracks were selected
randomly from the dataset for the pixel-level annotation. The dataset included 420 images
as the training set, 120 as the validation set, and 60 as the test set. The ratio of the training
set, validation set, and test set was 7:2:1. Table 1 lists the percentages of the crack and
non-crack pixels in the dataset. The table shows that the crack images only account for
a small number, and the task is image segmentation with an unbalanced category. The
labeled dataset includes asphalt pavement and cement pavement, and some images contain
interference factors of water stains and shadow changes. Figure 7 shows labeled images
in different environments. Table 2 shows the proportion of asphalt pavement and cement
pavement images in the dataset and the proportion of images in different environments.

Figure 6. Annotation at pixel level using LabelMe tool: (a) original image; (b) labeled crack binary
image; (c) labeled crack edge binary image.
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Table 1. Proportion of crack and non-crack annotations in the dataset.

Quantity Crack Pixels (%) Non-Crack Pixels (%)

Training data 420 6.79 93.21
Validation data 120 4.14 95.86

Test data 60 6.52 93.48

 

Figure 7. Labeled images under different conditions: (a) asphalt pavement; (b) cement pavement;
(c) shadow interference; (d) water stain interference.

Table 2. Proportion of images in different pavement types and environmental conditions.

Pavement Environment

Types Concrete Asphalt
Normal

Brightness
Low

Brightness
High

Brightness
Shadow

Water
Stain

Percentage (%) 21.6 78.4 81.8 13.0 5.2 9.2 20.7

3.3. Training Details

The training platform was performed on a workstation with an Intel(R) Core i9-10900k
CPU and an NVIDIA 3090, 24G GPU. This study uses TensorFlow, which is Google’s
open source deep learning framework, to build and train the network. The software
configuration was as follows: Windows 10, CUDA 11.1, cuDNN-v8.0.4, TensorFlow-GPU-
2.4, and Python 3.8.

A total of 420 labeled images were taken as the training set, and the data of eight
images in each batch were input into the SoUNet network after shuffling the training set. In
the training process, the cross-entropy loss function with category balance in Equation (1)
is used as the loss function. The adaptive moment estimation (Adam) optimizer [49] was
selected for optimization. The optimizer adjusts the learning rate in the training process
and changes the weight parameters and bias values in the network. The initial learning
rates were set to 1 × 10−3, 1 × 10−4, and 1 × 10−5, respectively, and the training epochs
were set to 300. The accuracy indicators monitored during training are the MIoU value and
pixel error, respectively.

3.4. Training Process

The model was trained after setting the parameters, and the entire training process was
monitored. Figure 8 shows the training process of the model for different learning rates. It
includes the variation curves of four variables measured on the training set, which are seven
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loss values, overall loss values, MIoU, and pixel error. Figure 8a–c show that the seven
loss values continue to decline under different learning rates. We chose to stop training
at 300 rounds to prevent overfitting. As shown in Figure 8d–f. When the initial learning
rate was set to 1 × 10−4, the overall loss value of the network decreased the fastest in the
training process and reached the lowest value at the end of the training. Simultaneously,
the MIoU value and pixel error measured in the training set can reach the optimal value.
Therefore, the most effective model was selected in the training process when the learning
rate was set to 1 × 10−4.

Figure 8. Training process of network model: (a–c) are the variation curves of 7 loss values with the
epochs when the learning rate is equal to 1 × 10−3, 1 × 10−4, and 1 × 10−5, respectively; (d) Variation
curve of overall loss value with the epochs under different learning rates; (e) Variation curve of MIoU
value measured on the training set; (f) Variation curve of pixel error measured on the training set.

4. Training Result and Comparison

4.1. Training Result

TensorFlow 2 has the function of saving the optimal model. The best network model
for the validation set was extracted. This model was used to predict the test set. Figure 9
shows the crack segmentation results and edge extraction results of SoUNet for different
types of pavement images. The model has a good segmentation effect on a single crack of
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both asphalt pavement and cement pavement. The effect of edge detection is normal, but
the two edge lines tend to overlap for areas with narrow widths.

The model performs well for multiple cracks and net-shaped cracks, but there are
many problems such as noise points, incomplete segmentation, and blurred areas. The
recognition effect of the model on the cement pavement image is good, and there is more
noise and missed detections in the recognition results of asphalt pavement. Figure 10
shows the prediction results under the interference of water stains and shadows. There
are many cases of noise and missed detection in areas with water stains, and other missed
detections occur at the borders of the shadows. Water stains have a greater impact on the
prediction results. In general, the proposed model was effective. It shows a certain potential
in detecting images with interference, and the MIoU is greater than 50%. According to the
data statistics in Table 2, only 20.7% of the images contained water stains, and only 9.2% of
the images contained shadow interference in our dataset. In the future, we can increase the
number of such data and use more images with different interferences to participate in the
training process to enhance the accuracy and robustness of recognition.

Figure 9. Identification results of different pavement types: (a) single crack in asphalt pavement;
(b) single crack in cement pavement; (c) multiple cracks in asphalt pavement; (d) multiple cracks in
cement pavement; (e) net-shaped crack in asphalt pavement; (f) net-shaped crack in cement pavement.
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Figure 10. Identification results under the interference of different environmental conditions: (a–c) are
single crack, multiple cracks, and net-shaped crack in water interference, respectively; (d–f) are single
crack, multiple cracks, and net-shaped crack in shadow interference, respectively.

4.2. Evaluated Model

SoUNet can output both the crack segmentation image and the crack edge line image.
The optimal model was extracted to predict the test set, and the segmentation and edge
detection images were output. An input image corresponds to one segmentation image
and six edge line images. One segmented image was linearly fused with the other six
edge line images to optimize the segmentation results. The fusion images and fusion
results are presented in Figure 11. Table 3 lists the MIoU, mean pixel accuracy, ODS-F, and
OIS-F measured using different methods. SoUNet-Output-1 is the output of the semantic
segmentation network in SoUNet, which is the image of Output 1. SoUNet-Fusion-ij is
the linear fusion of outputs i and j. The numerical value shows that the linear fusion of
the semantic segmentation results and edge line detection results can effectively improve
the crack segmentation accuracy. The MIoU value increased by 2.47%, and the MPA value
increased by 9.58%. SoUNet-Fusion-13 has high MIoU and MPA values and is the most
stable under various accuracies from the result of the comprehensive comparison. The
results are compared with those of other semantic segmentation models in Section 4.3.

We selected 30 crack pictures from the test set and measured the width of the initial
position, middle position, and end position of the crack. The measurement direction is
perpendicular to the crack trend, as shown in Figure 12a. The same method is used to
measure the crack width in the label image, SoUNeT result image, and U-NET result image,
respectively. Taking the crack width measured in the label image as the actual width, the
width error statistical charts of SoUNet and U-NET are obtained. As shown in Figure 12b,
S1–3 in the figure shows the SoUNet initial position, middle position, and end position
of the crack, respectively. U1–3 indicates the U-Net initial position, middle position, and
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end position of the crack, respectively. It can be seen from Figure 12b that the width error
measured by SoUNet is about 2 pixels, and the measurement error is less than that of U-Net.

Figure 11. Fusion process and result of segmented image and edge image: (a) Linear fusion process
of output images for (b) single crack, (c) multiple cracks, (d) net-shaped crack.

Table 3. Evaluation results of the model.

Methods Metrics

MIoU MPA ODS-F OIS-F
SoUNet-Output-1 67.17 72.31 — —
SoUNet-Fusion-12 69.64 78.25 31.52 32.99
SoUNet-Fusion-13 69.32 80.33 33.14 34.11
SoUNet-Fusion-14 68.29 81.54 32.08 33.15
SoUNet-Fusion-15 65.92 81.89 29.46 30.63
SoUNet-Fusion-16 60.39 81.51 25.66 26.73
SoUNet-Fusion-17 69.42 80.14 33.08 34.08

Figure 12. Statistics of the crack’s width at different positions: (a) the width of the initial position,
middle position, and end position of the crack; (b) the width error statistical charts of SoUNet
and U-NET.

4.3. Comparative Study

To test the performance of SoUNet, we selected four methods based on deep learn-
ing for comparative study: (1) SegNet [24] is a fully convolutional network, which was
used for semantic segmentation. It has also been proposed for crack identification of
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concrete pavement, asphalt pavement, and bridge deck [44]; (2) HED [38], which is an
edge detection model with high performance that can also be used for crack detection;
(3) VGG16-U-Net [45]: U-Net is a high-performance semantic segmentation network [25].
Its improved structure, VGG16 U-Net, has been used to detect surface defects in con-
crete and asphalt [46]. Comparing the recognition performance of the following strategies
for the proposed SoUNet model is necessary: (1) SoUNet-Basic: The basic side-output
U-Net structure, the side-output part plays the role of deep supervision and improves
the model learning efficiency; (2) SoUNet-BN: Adding a batch normalization layer based
on SoUNet-Basic. The BN layer can accelerate the training process; (3) SoUNet-GF: A
and B are taken as the original image and guide image, respectively, from the outputs of
SoUNet-BN and then perform the guided filter operation; (4) SoUNet-Fusion: This is the
same as SoUNet-Fusion-13 in Table 3 of Section 4.2.

Deep-learning-based methods can be applied to image recognition tasks, but these
methods are only suitable for specific scenes and tasks in most cases. Poor generalization
performance is one of the main drawbacks of these methods. To further test the general-
ization performance of SoUNet in the crack detection task, the FISSURES dataset [50] was
downloaded. This dataset is similar to our dataset. The preprocessing method in Section 3.1
is used to process the dataset and make those sizes suitable for the network model. Finally,
they were sent to the trained model to view the results. Table 4 shows the evaluation results
of the seven methods on the two datasets. Our test set is divided in Section 3.2, accounting
for one-tenth of the original dataset. None of the images for the prediction evaluation in
this section participated in the training process. The linear fusion method performs better
than the other methods on its own test set and FISSURES dataset.

Figure 13 shows the prediction results of the seven methods on our dataset. In the
case of no interference, the segmentation integrity of SoUNet-fusion is better than that of
other methods, and the noise produced is less than other results. In addition, our method
performs well on rough asphalt pavement that is difficult to identify, and the segmentation
results are relatively complete, but there are some false positive areas and a small number of
noise points. Shadows and water stains are not misjudged as cracks, but the segmentation
accuracy decreases, and the results are incomplete. Figure 14 shows the test results for the
FISSURES dataset. The asphalt pavement in the FISSURES dataset was relatively flat, but
the crack depth was shallow, and the width was narrow, so the noise of the segmentation
result was relatively small. Segmentation integrity is investigated in this section. SoUNet-
fusion has good segmentation integrity in the images of single cracks, multiple cracks, and
net-shaped cracks. There were relatively few misjudged areas. When interference occurs,
the crack area can still be completely segmented.

Table 4. Evaluation and comparison results of different methods on two datasets.

Datasets Our Test Datasets FISSURES Datasets

Metrics MIoU MPA MioU MPA

SegNet 63.77 69.92 56.34 60.65
HED 64.56 70.70 58.30 65.86

VGG16-U-Net 66.99 74.57 59.12 67.66
SoUNet-Basic 67.46 75.59 59.15 68.45
SoUNet-BN 68.46 74.65 60.07 65.56
SoUNet-GF 68.41 77.28 61.04 67.81

SoUNet-Fusion 69.32 80.33 61.05 68.60
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Figure 13. Comparison of prediction results on our dataset.

Figure 14. Comparison of prediction results on the FISSURES dataset.
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5. Conclusions

In this paper, we introduce a model that can simultaneously perform semantic segmen-
tation and edge detection. The proposed convolutional neural network SoUNet was used
to output the crack segmentation images and crack edge images. Finally, the two output
results were linearly fused to improve detection accuracy. When compared to previous
semantic segmentation models, our method can increase the MioU value by up to 5.55 and
increase the MPA value by up to 10.41.

The semantic segmentation part of SoUNet is based on the U-Net structure of the vgg16.
The convolution feature map on each scale was fused in pairs, and the low-resolution fusion
feature map was further fused to a higher resolution after passing through the convolution
layer. The edge detection part extracts the feature map of each scale based on the U-Net.
The low-resolution feature maps were trained and fused to the high-resolution features,
and the crack edge image was outputted. The edge detection part is also the side-output
part of the entire network. In addition, the crack dataset contains the pavement surface of
cement and asphalt, and it also contains images of water stains and shadows. Therefore, the
dataset is closer to the actual situation. The experimental results demonstrate that the edge
detection part of the proposed method achieves ODS-F 33.14, OIS-F 34.11 on our dataset.
Its MioU, the semantic segmentation evaluation indicator, reaches a value of 69.32. Both
the intuitive and numerical results are better than those of other segmentation methods
based on deep learning. The experimental results also show that SoUNet performs well in
rough asphalt pavement images, is less affected by water stains and shadows, and has the
potential to deal with multi-interference pavement conditions.

In the future, we plan to develop a new pavement detection network that is more
accurate for identifying types of pavement cracks. We will enrich the pavement dataset
and add crack images of various scenes to make the dataset closer to the actual situation. In
addition, we will also use the model for other tasks that need both semantic segmentation
and edge detection, such as pit contour detection in pavement distress detecting task, road
edge line detection in an automatic driving task, and diseased organ contour recognition in
picture medicine.
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SegNet A deep convolutional encoder-decoder architecture for image segmentation
U-Net U-shaped Convolutional networks for image segmentation
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Abstract: In order to solve the problem of intelligent detection of damage of modern concrete
structures under complex constraints, an improved self-organizing mapping (SOM) neural network
model algorithm was proposed to construct an accurate identification model of concrete structure
damage. Based on the structure and algorithm of the SOM network model, the whole process of
the core construction of the concrete structure damage identification network model is summarized.
Combined with the damage texture characteristics of concrete structures, through the self-developed
3D laser scanning system, an improved method based on a small number of samples to effectively
improve the effectiveness of network input samples is proposed. Based on the principle of network
topology map analysis and its image characteristics, a SOM model improvement method that can
effectively improve the accuracy of the network identification model is studied. In addition, based
on the reactive powder concrete bending fatigue loading test, the feasibility and accuracy of the
improved method are verified. The results show that the improved SOM concrete structure damage
identification model can effectively identify unknown neuron categories in a limited sample space,
and the identification accuracy of the SOM network model is improved by 4.69%. The proposed
improved SOM model method fully combines the network topology and its unique image features
and can accurately identify structural damage. This research contributes to the realization of high-
precision intelligent health monitoring of damage to modern concrete structures. In addition, it
is of great significance for the timely detection, identification and localization of early damage
to structures.

Keywords: damage identification; neural network; concrete structure; improved SOM

1. Introduction

Structural damage detection research is one of the most critical research contents
in Structural Health Monitoring (SHM) [1–4]. As the relevant technology for structural
damage detection, pattern recognition processes various forms of structural damage infor-
mation to carry out structural damage analysis and is an important part of information
science and artificial intelligence. Selecting an intelligent detection method suitable for prac-
tical engineering, combining damage indicators with feature-level and decision-level data,
thereby simplifying calculation and inference time, and realizing efficient and automated
intelligent evaluation are key issues that need further research [5–8].

The neural network has the learning ability to deal with nonlinear problems, strong
fault tolerance and robustness [9,10]. Damage identification based on the neural network is
based on the physical parameters or dynamic parameters of the structure in different states
of health. The parameters sensitive to structural damage are selected as the input of the
neural network [11]. The neural network is trained with a large number of damage cases in
numerical simulations. Finally, the mature network is trained to realize automatic damage
recognition based on the real structural response [12,13]. Scholars choose various pattern
recognition techniques for in-depth research on structural damage recognition, such as
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Fuzzy Algorithms, Support Vector Machines, etc. [14–16]. Bowen et al. (2021) proposed an
integrated framework for data augmentation in a structural health monitoring system using
machine learning algorithms [17]. Antonio M et al. (2021) summarize the main methods
for detecting, localizing and characterizing damage through algorithms and metrics in
structural health monitoring, using electromechanical impedance spectroscopy [18]. Al-
berto et al. (2021) propose a global methodology for damage detection based on a recently
developed version of the Negative Selection Algorithm [19].

With the continuous development of intelligent technology, various network mod-
els have achieved good research results and are alternately used in research in various
fields [20–22]. Islam M et al. (2022), Roberto et al. (2021) and Hong et al. (2021) used a convo-
lutional neural network to build a network model for structural damage recognition [23–25].
Peng et al. (2021) proposed to construct a back-propagation neural network model in vibra-
tion signal analysis [26]. Wang et al. (2021) studied a probabilistic neural network model
for damage status assessment of steel truss bridge joints [27]. Barbosa et al. (2021) pro-
posed to carry out research on structural damage identification through a support-vector
machine neural network model [28]. Sadeghi et al. (2021) constructed general regression
neural network model for damage identification of steel–concrete composite beams [29].
Jersson X et al. (2021) proposed the use of a supervised self-organizing map in structural
health monitoring [30]. Fu et al. (2022) used SOM to develop damage pattern recognition
and crack propagation prediction [31]. In addition, Sofi, A et al. (2022) comprehensively
summarized the application of artificial neural network models in structural health moni-
toring [32]. At present, the research field of damage identification of concrete structures
is facing difficulties. The reason is that, compared with other industries, steel structure
and concrete engineering are the products of industrialization, and the degree of mecha-
nization, automation, intelligence and informatization of infrastructure is still relatively
backward [33]. The complex constraints faced by engineering structures make the number
of damage samples that can be extracted extremely limited, and the identification accuracy
cannot meet the needs of engineering [34,35].

A SOM neural network effectively preserves the network topology. It can obtain higher
identification accuracy based on the limited damage sample space, effectively reducing
the demand for the space sample size for the establishment of an intelligent damage
monitoring system [36]. However, the traditional SOM network model algorithm has
certain limitations. In the damage identification research, based on the traditional SOM
algorithm model, the selected data is normalized by manual measurement and then directly
input to the network model as an input sample [37]. However, the extraction process of
input samples is often affected by subjective factors, which seriously affects the efficiency
of network recognition. At the same time, the core of damage identification research,
based on the SOM algorithm model, is to analyze the spatial sample layout form after the
network model is learned [38]. This layout form is used as the topology structure of the
network model. By continuously reorganizing the arrangement of the topology structure,
each weight vector is located in the cluster center of the input vector [39]. When the SOM
neural network training is completed, cluster analysis will be performed according to
the spatial layout of the training data. Based on this spatial layout, both the topological
position of the winning neuron and the spatial distribution of each neuron can be obtained.
Therefore, the analysis of the topological spatial layout of neurons directly determines
the SOM neural network clustering results. The core purpose of the SOM neural network
for damage identification of concrete structures is to realize the classification of damage
types, that is, to perform cluster analysis on the spatial structure constructed by damage
indicators. However, in the process of damage clustering based on the traditional SOM
algorithm model, there are often problems such as unclear damage categories, low damage
identification efficiency and inaccurate identification caused by the difficulty in comparing
the depth of the topology map. Therefore, in this paper, the research on the improved
SOM model algorithm for damage identification of concrete structures is carried out. The
self-developed 3D laser scanning system is used to obtain structural damage images and
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an improved method for constructing input samples of SOM network model based on the
gray level co-occurrence matrix and digital feature screening is proposed. Based on the
principle of network topology map analysis and the characteristics of grayscale images
of topology maps, an improved SOM topology map analysis algorithm is proposed. The
improved SOM algorithm model was applied to the bending fatigue test of reactive powder
concrete. Based on the improvement of the recognition accuracy and the test effect, the
validity of the proposed improved algorithm model is verified.

2. Self-Organizing Map

In order to improve the SOM model, the network structure and network algorithm
are analyzed.

2.1. Network Structure

The self-organizing map is an unsupervised feed-forward neural network model,
in which neurons compete and cooperate with each other to identify pattern sets. The
structure of the SOM model is shown in Figure 1.

Figure 1. Model of SOM Network Structure.

The input layer consists of n self-organizing neurons (x1, x2, x3, . . . , xn−1, xn). The
competition layer consists of a 2D planar (s × p) array of n input vector maps. The network
model identifies pattern categories for a given data set by continuously adjusting the
connection weights of low-dimensional to high-dimensional network nodes.

2.2. Network Algorithm

As the core of model construction, the network algorithm is the key to the self-
organization and the mapping characteristics of the model. The SOM neural network
algorithm includes network initialization, input vector setting, etc.

I. Initialize. Generally, the weight vector will be given any value in the interval [0, 1],
represented by Wi. The learning rate is η.

II. Set input vector input. The input vector is the network model training sample:

Xn = [x1, x2, x3, · · · x(n−1), x(n)]
T (1)

III. Derive Euclidean Distance. Wij represents the weight between the input layer neuron
i, and the mapping layer neuron j. Derive the Euclidean distance between the input
vector and the weight vector to get the specific position of the neuron. The Euclidean
distance is calculated as:
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di(t) =
∥∥X − Wj

∥∥ =

√
n

∑
i=1

[xi(t)− wij(t)]
2 (2)

IV. Label the winning neuron. The winning neuron position is the position of the neuron
with the minimum Euclidean distance between the input vector and the weight vector.
The input vector is denoted by X , the winning neuron is denoted by c, Then its
calculation formula is:

‖X − Wc‖ = min
i
‖X − Wc‖, i = 1, 2, 3, · · · n − 1, n (3)

V. Adjust weights. Correct the input neuron and the neuron connection weights in the
neighborhood according to Equation (3):

Δwij = wij(t + 1)− wij(t) = η(t)[xi(t)− wij(t)] (4)

Among, η(t) is the learning rate at t, η(t) ∈ [0, 1], η(t) gradually decreases with time,
Inversely proportional to t, its expression is:

η(t) = 0.2 × (1 − t
1000

) (5)

VI. Calculate the output value Ok:

Ok = f (min‖X − Wc‖) (6)

Among, f represents the function that takes the smallest Euclidean distance.
Determine whether the output results meet the requirements. If the result meets the

classification requirements, output the category; if the result does not meet the category
requirements, return to step (2) to continue learning until the judgment result is met.
Output and end learning.

3. Improved SOM Damage Identification Method

Based on the core steps in the construction of the damage identification network model,
the research on the improvement method of the SOM network model is carried out.

3.1. Construction of Damage Identification Model

In order to establish the damage identification model of concrete structure, the struc-
ture and algorithm characteristics of the SOM neural network are analyzed according to
the performance requirements of the model. Its core steps include the selection of input
samples, the setting of network parameters, the judgment of winning neurons and the
analysis of topological graphs. Figure 2 is the overall process diagram of the construction
method of the damage identification algorithm model for concrete structures.

Figure 2. The whole process of model building.

Figure 2 shows the whole process of structural damage identification based on the
SOM neural network, which is the core framework system of the research. Analysis of
Figure 2 shows that the selection of input samples is the first step in the construction of
the network model, which directly determines the network structure and is an important
factor affecting the efficiency of network operation. As the last key step of the network
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model, the analysis of the topology structure directly determines the specific category of
each neuron and is a key factor affecting the accuracy of network recognition. Therefore, in
order to improve the recognition performance of the SOM network for concrete structure
damage, the research will mainly focus on these two parts to improve the SOM neural
network model.

3.2. SOM Improvement Method

a. Selection of input samples

In order to reduce the interference of complex factors such as environment and humans,
a method based on machine vision is proposed to obtain input samples. The damage
signal is collected based on the vision sensor, and the initial sample is extracted by the
feature extraction algorithm. In order to reduce the requirement for the number of input
samples, the input samples that can effectively characterize the damage characteristics are
automatically screened based on statistical theory. The improved SOM model and its input
sample selection process is shown in Figure 3.

 
Figure 3. Improved method for selecting input samples.

An input sample for constructing a damage identification network model based on
3D laser scanning technology is proposed, as shown in Figure 3. First, a 3D image of the
specimen under the loading system is acquired by adding 1D transmission equipment to
a 2D laser sensor. Then, the initial samples are extracted by constructing the gray level
co-occurrence matrix (GLCM) of structural damage. Finally, in order to further improve
the effectiveness of the damaged samples, based on the digital feature screening (DFS), the
feature parameters are selected as the input samples of the network model.

b. Analysis of topology map

In order to accurately identify the damage category information contained in the
topology map image, according to the characteristics of the topology map image, a net-
work model optimization method, the topology grayscale (TOP-G) algorithm, is proposed.
Figure 4 shows the flow of the TOP-G algorithm.

• The first step is to determine the grayscale of the topology map:

First, determine the number L of connection polygons between neurons. The gray
level of the topology map is determined according to the number of L, and the gray value
range of the pixels in the topology map should be [0, L]. Thus, it is judged that the gray
level of the image is g = L = 2n, and it is deduced that n = log2L, g = 2 [n], where [n] represents
the value of n is the smallest integer that exceeds the value of n. Then the obtained g = 2 [n]

is the gray level of the topology map.
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• The second step is to grayscale the topological distance map:

According to the gray level of the topological map, the topological distance color
image is converted into a grayscale image, which is called a topological grayscale map.

• The third step is to create a sliding window:

Suppose the number of neurons is m, create a sliding window, label L1–Lm and assign
grayscale values g1–gm to each neighborhood polygon in the topological grayscale map.

• The fourth step is to discriminate the category of neurons:

The gray values gi of all neighboring neurons of the unknown neuron i are extracted,
compared and sorted. Determine whether gi is the largest gray value in the neighborhood.
If so, the neuron connecting the neighborhood polygon is a class, and the output i belongs
to this class; If not, rejudge until the attribution category of all unknown neurons is
determined, and the result is output.

Number of polygons connecting 
neurons: L

Topological map gray value range [0, L]

Image grayscale g=L=2n

Grayscale g=2[n]

Topological Grayscale

Take any neuron i as the center

Sliding window

The gray value gi of the neighborhood 
neuron

Determine whether gi has 
the largest grayscale

Output i belongs to category

Sliding window to judge all neuron 
categories

START

END

NO

YES

Determining the gray level of the topology map

Convert the grayscale of a topological distance map

Create a sliding window

Discriminant neuron belongs to category

Determine

Judge

Calculate

Convert

Select

Establish

Extract

Judge

Output

STEP 1

STEP 2

STEP 3

STEP 4

Figure 4. The flow of the TOP-G algorithm.
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4. Experiments and Results Analysis

In order to verify that the improved SOM neural network model can effectively
improve the recognition accuracy of the network model, based on the self-developed 3D
laser scanning system, a network model for the recognition of bending fatigue damage of
reactive powder concrete was established.

4.1. Selection of Input Samples of RPC Bending Fatigue Damage Identification Model

There is no obvious change in the appearance of the specimen before loading in the
RPC bending fatigue test. When the loading force reaches 70% to 80% of the ultimate
bending strength, initial cracks appear in the mid-span accompanied by the sound of
steel fibers being pulled out, and damage images are obtained during this process. It
was observed that the flexural strength value did not decrease with the occurrence of
mid-span cracks in the specimen until the steel fibers in the crack section were completely
pulled out, and the specimen lost its bearing capacity and declared failure. With the
development of the experimental phenomenon, a three-dimensional model of the concrete
specimen was obtained. Figure 5 shows the entire process of acquiring images during
3D damaged specimen loading, and Figure 6 is the obtained three-dimensional model of
microcrack damage.

Figure 5. Damage 3D image acquisition system.

Figure 6. 3D model of the model of micro-crack damage.
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In order to reduce the amount of data and improve the recognition efficiency, redun-
dant information is removed based on a 3D point cloud projection algorithm and median
filtering. Based on the GLCM, the damage model input samples are extracted. The image
gray level g = 128 is constructed, the generation step size is d = 1, and the generation
direction θ takes the gray level co-occurrence matrix of 0◦, 45◦, 90◦ and 135◦. The 14 feature
parameters such as angular second moment and correlation are extracted. In order to
improve the quality of the input samples, the P1 (angular Second Moment), P2 (entropy),
P3 (inertia moment), P4 (correlation), P5 (inverse difference moment), and P6 (variance)
are screened out as standard samples based on the DFS method. Table 1 shows the damage
texture properties represented by the input sample.

Table 1. Damage texture properties represented by the input sample.

Input Sample Sample Name Characterized Properties

P1 ASM Uniformity
P2 ENT Complexity
P3 INM Stability
P4 COR Correlation
P5 IDM Volatility
P6 VAR Circularity

By analyzing Table 1, the damage texture features represented by each input sample
can be clearly grasped

4.2. Parameter Setting of RPC Bending Fatigue Damage SOM Network Model

Figure 7 shows the structure of the network model for the flexural fatigue damage
identification of RPC.

Figure 7. The structure of the network model.

As shown in Figure 7, the selected six feature parameters are used as the SOM network
input vector [P1, P2, P3, P4, P5, P6], the SOM network competition layer is set to 8 × 8 = 64
neurons and the network model output is four categories of damage.

In the parameter setting of the SOM network model for concrete structure damage,
the number of training steps directly affects the network clustering performance. In order
to improve the clustering efficiency, the optimal number of training steps is obtained. After
determining the structure of the network model, select different steps for training and
observe the performance changes of the network model. Using the step increment as a
variable, analyze the clustering results of the network model. The statistics are shown in
Table 2 for the clustering results under different training steps. Selecting the training steps
with the fewest steps can not only satisfy the sample classification, but also ensure the
clustering speed.
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Table 2. Clustering results for different training steps.

Training Steps
Clustering Results

Honeycomb Hole Sag Crack

10 55 37 37 55
50 43 37 37 55

100 43 1 37 37
200 49 1 16 64

500 49 1 16 64
1000 49 1 16 64

When the number of training steps is set to 10, 50, 100, 200, 500 and 1000, the classifica-
tion effect of the network model is shown in Table 1. When the number of training steps is
10, the damage diagnosis model is initially established, and the damage is divided into two
categories; as the number of training steps increases, when the number of training steps
is 50 and 100, the recognition accuracy is further improved, and the injuries are divided
into three categories; when the number of training steps reaches 200, the four injury types
are completely distinguished; continue to increase the number of training steps to 500 and
1000, and the damage classification results are the same, which is not practical. Therefore,
200 training steps were chosen as the optimal value for the damage identification model.

4.3. Determining the Winning Neurons of RPC Bending Fatigue Damage Model

In order to further verify the accuracy of acquiring neurons when the number of
training steps is 200, the topology map of the winning neuron positions of the damage type
is output, as shown in Figure 8.

Figure 8. Winning neuron topology.

Figure 8 shows the topological structure of the winning neurons under the optimal
number of steps. The gray–blue hexagons in the figure are the topological positions of
the winning neurons, which shows that the types of damage are clearly distinguished.
Combined with the topological location map information of the winning neurons in Table 1
and Figure 8, it is inferred that honeycombs, holes, sags and cracks correspond to winning
neurons numbered 49, 1, 16 and 64, respectively. From the obtained topological positions
and the number of winning neurons, the basis for the cluster analysis of the network model
is basically obtained. However, further analysis of the network model is required to obtain
the specific damage type for each neuron.
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4.4. Neuron Topology Analysis for RPC Bending Fatigue Damage SOM Network Model

In order to obtain the damage category information corresponding to each neuron, the
clustering results of the network model were analyzed. Obtain the topological structure
distance map of the structure damage identification network model, as shown in Figure 9.
The small gray squares in the figure represent neurons and the straight lines between them
represent straight-line connections between neurons. The distance between neurons is
obtained by the Euclidean distance formula. The hexagons connect the neurons, with the
color depth representing the distance between neurons. The colors are from dark to light,
indicating that the distance between neurons is from far to near. It can be inferred that the
neurons with a light color have high similarity, and the difference between them is low;
while the neurons with a dark color have low similarity, and the difference between them
is large.

Figure 9. Topological distance graph of neurons.

Based on the analysis of the traditional comparison method, among the 64 input
neurons of the damage identification network model, the damage types of 61 neurons
correspond to the damage types of the standard samples. For example, for neurons 36, 41,
42, 43, 44, 50, 51, 52, 57, 58 and 59, their damage types may correspond to the winning
neuron number 49, which corresponds to the honeycomb damage type. However, neuron
37 is between the hole and sag damage states, and is far away from neurons 53 and 60,
corresponding to other unknown damage types. In order to clearly present the damage
type corresponding to each neuron, a corresponding relationship table between the damage
types and sample classification numbers is constructed as shown in Table 3.

Table 3. Correspondence between damage types and samples.

Damage Type Sample Classification Number

Honeycomb 36, 41, 42, 43, 44, 49, 50, 51, 52, 57, 58, 59
Hole 1, 2, 3, 4, 9, 10, 11, 17, 18, 19, 20, 25, 26, 27, 33, 34, 35
Sag 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 29

Crack 30, 31, 32, 38, 39, 40, 45, 46, 47, 48, 54, 55, 56, 61, 62, 63, 64

Unknown type 37, 53, 60

By analyzing Table 2, it can be seen that the model can obtain the damage classification
of almost all neurons, and the recognition accuracy rate is as high as 95.31%. However,
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there are still cases where unknown neurons cannot be associated with their type of injury.
In order to further improve the recognition accuracy of the network model, the TOP-G
algorithm is used to determine the type of unknown neuron damage. The analysis process
is shown in Figure 10.

 

 

 
Figure 10. Determining unknown neuron category based on TOP-G algorithm.
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First, determine the gray level of the topology map, L = 161, and the gray value
range is [0, 161], then the gray level of the topology map image is g = 2 [8]; Then, at this
grayscale, the topological distance color map is converted to a grayscale image; Create
a sliding window, mark the polygon as L1–L161, assign the gray value g1–g161; Finally,
the gray values are sorted from large to small, and the judgment is made according to
the sorting result. Neurons 53 and 60 are connected by a neighborhood polygon number
147, with a grayscale value of 205, which can be seen as a class. The gray values of the
eight neighborhood polygons are sorted by gray value, and the neighborhood polygon
No.124 has the largest gray value, which connects the neuron number 45 and the neuron
number 53. Therefore, it is determined that neurons 53 and 60 correspond to crack damage.
Neuron 37 corresponds to six neighborhood polygons, and their gray levels are sorted.
The gray value of the polygon in the neighborhood of No. 80 is the largest, which is
connected to the neuron of No. 24, corresponding to sag damage. Therefore, it was
judged that neuron No. 37 corresponds to sag damage. Therefore, all unknown neuron
damage categories are determined based on the topology grayscale algorithm, which
further improves the network identification accuracy. Compared with the traditional SOM
model, the identification accuracy was improved by 4.69%.

4.5. Testing of Improved Algorithm Models

In order to further verify the detection effect of the improved SOM neural network
model, the classification results of the detection samples were obtained. The classification
labels and sample numbers of winning neurons corresponding to honeycombs, holes,
sags and cracks are shown in Table 4. Figure 11 shows the classification results of the
detected samples.

Table 4. Test sample.

Damage Type
Winning Neuron

Classification Label
Sample Serial Number

Cracks 38 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Holes 16 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Honeycombs 23 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Sags 7 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

Figure 11. Classification results of the detected samples.
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According to the analysis of Table 3 and Figure 11, the winning neuron corresponding
to the test sample is consistent with the actual damage category, and the test sample
corresponds to the actual sample type. The damage type corresponding to each sample can
be detected based on the improved SOM neural network model.

5. Discussion

The core content of this paper is the improved of SOM algorithm model in structural
damage identification. The ultimate goal of structural health monitoring research is to
detect damage as early as possible in order to provide appropriate measures to avoid
disaster. It is worth noting that the research object of this paper is micro-damage, and the
size of the damage is usually less than 1 mm, which mainly depends on the accuracy of the
image acquisition device (laser ranging sensor).

Therefore, the significance of this research is not limited to providing an improved
SOM neural network model with a higher recognition accuracy based on a small number
of samples. Research can help to effectively identify and even detect and locate damage
information in the budding stage of damage, which is of great significance for the timely
detection of early structural damage.

6. Conclusions

Taking the four core steps of constructing the SOM concrete structure damage identifi-
cation network model as the main line, the network SOM algorithm improvement research
is carried out and the following conclusions are obtained:

• Combined with the self-developed 3D laser scanning system and GLCM theory, the
input sample selection method of the SOM network is improved;

• Based on the principle of the network topology map analysis and its image character-
istics, the concept of the topology grayscale map and the TOP-G algorithm method,
and process for the SOM topology map analysis are proposed for the first time;

• Based on the active powder concrete bending fatigue loading test, the damage (cracks,
sags, honeycombs and holes) identification research of the improved SOM algorithm
model was carried out.
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Abstract: The performance of the passing train and the structural state of the track bed are the
concerns regarding the safe operation of subways. Monitoring the vibration response of the track
bed structure and identifying abnormal signals within it will help address both of these concerns.
Given that it is difficult to collect abnormal samples that are symmetric to those of the normal state of
the structure in actual engineering, this paper proposes an unsupervised learning-based methodology
for identifying the abnormal signals of the track beds detected by the ultra-weak fiber optic Bragg
grating sensing array. For an actual subway tunnel monitoring system, an unsupervised learning
network was trained by using a sufficient amount of vibration signals of the track bed collected
when trains passed under normal conditions, which was used to quantify the deviations caused
by anomalies. An experiment to validate the proposed procedures was designed and implemented
according to the obtained normal and abnormal samples. The abnormal vibration samples of the
track beds in the experiment came from two parts and were defined as three levels. One part of it
stemmed from the vibration responses under the worn wheels of a train detected during system
operation. The remaining abnormal samples were simulated by superimposing perturbations in the
normal samples. The experimental results demonstrated that the established unsupervised learning
network and the selected metric for quantifying error sequences can serve the threshold selection
well based on the receiver operating characteristic curve. Moreover, the discussion results of the
comparative tests also illustrated that the average results of accuracy and F1-score of the proposed
network were at least 11% and 13% higher than those of the comparison networks, respectively.

Keywords: signal anomaly detection; subway track bed; distributed vibration; unsupervised learning
network; attention mechanism; ultra-weak fiber optic Bragg grating

1. Introduction

Generally speaking, in-service engineering structures are always in two symmetrical
operating states, normal and abnormal. Although the probability of occurrence of the
structural abnormal state is relatively low, tracking and monitoring the service status of
subway track beds before catastrophic accidents is of great significance to ensure the safe
operation of trains. The traditional inspection regime is usually labor-intensive and can
be significantly expensive for rail operation management [1]. Although various types of
rail inspection vehicles integrated with ultrasonic methods [2], eddy current [3], infrared
thermography [4], laser scanning [5], and other non-destructive testing equipment have im-
proved the efficiency of inspection, they still have difficulty meeting the frequent inspection
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needs of the entire subway line. The non-contact monitoring method based on machine
vision combined with diverse deep learning models has improved the intelligence of the
detection of track bed issues to a certain extent [6,7]. However, this approach needs to rely
on sufficient samples to perform supervised learning-based training. The performance
usually only meets the local detection, which is susceptible to the interior environment of
the subway tunnel.

By deploying the ultra-weak fiber optic Bragg grating (FBG) array cable along the track
bed in a subway tunnel, the structural vibration response caused by passing trains through
the monitoring area can be gleaned. Given the relationship between the vibration response
and the structural state, Li et al. [8] reported that the similarity of the vibration responses
detected by the ultra-weak FBG array cable can be utilized to evaluate the structural state of
the subway track bed. Gan et al. [9] presented that ground intrusion events above subway
lines can be located and identified based on distributed vibration responses of ultra-weak
FBG sensing arrays. Moreover, the research on train tracking and personnel intrusion
identification based on distributed vibration response also illustrated that the ultra-weak
FBG sensing array can effectively collect the vibration of the subway track bed [10]. Thus,
despite the asymmetry existing in the data amount collected for the abnormal and normal
states, it is possible to discover the security risks of the track bed or the passing train
by analyzing the abnormal vibration signal of the track bed structure monitored by the
ultra-weak FBG sensing array.

In the research area of abnormal signal detection, Tao et al. [11] completed the fault
detection of the wind turbine by using the gray correlation algorithm combined with
the support vector regression model. Qiu et al. [12] proposed that abnormal patterns of
vibration response of a real long-span cable-stayed bridge can be distinguished based
on statistical feature dimensionality reduction, forward difference data augmentation,
and random forest. Li et al. [13] designed a deep convolutional neural network to classify
and identify simulated damage signals for a scaled-down bridge model. Tang et al. [14]
proposed a data anomaly detection method based on a convolutional neural network
combined with a computer vision technique. Li et al. [15] discussed the degradation failure
detection for the mechanical equipment in a data-driven manner through deep neural
networks. Abid et al. [16] proposed a deep-SincNet-based learning network that was
able to automatically learn fault features from the motor current. However, the above-
mentioned studies primarily focus on the field of supervised learning, whose performance
depends heavily on the support of adequate and balanced samples with labels. Given the
complexity of accumulating a certain scale of anomalous signals with labels in practical
engineering, current supervised learning-based methods are often difficult to transplant
and apply directly, especially when the types of training samples are extremely asymmetric.

In the study of anomaly detection based on unsupervised learning, Hautamaki et al. [17]
employed the idea of the K-neighbor algorithm and used the average distance of each sample
to its K nearest sample points as a reference to discriminate abnormal samples. He et al. [18]
performed cluster-based anomaly detection with predefined outliers. Li et al. [19] conducted
anomaly detection for multivariate time series based on clustering through complex hy-
perparameter setting. Saari et al. [20] adopted the one-class support vector machine (SVM)
to model the density distribution of samples to determine whether the data was abnor-
mal. Zong et al. [21] completed the anomaly data detection based on a deep autoencoding
Gaussian mixture model (DAGMM), which was verified by four public benchmark datasets.
Purohit et al. [22] further extended the DAGMM method to anomaly detection in acoustic
signals. Pei et al. [23] proposed a method for network traffic anomaly detection through
self-coding of long short-term memory (LSTM) networks. Malhotra et al. [24] revealed that
the LSTM-based encode–decode can detect the abnormal data of the sensor. Although these
unsupervised learning-based methods have demonstrated their respective effectiveness in
specific scenarios, there are few research cases involving high-dimensional time series. Hence,
the existing methods reviewed may not be suitable for capturing the time dependence of
high-dimensional vibration signals of subway track beds.
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To address the previous research deficiencies, the motivation of this paper is to propose
a method for identifying abnormal vibration signals of track beds that does not rely on the
idea of supervised learning. During the implementation of the method, an unsupervised
learning network used to learn the features of normal vibration signals of subway track bed
structures in terms of the time-series correlation of vibration sequences was established.
Based on the designed network, it is possible to quantify the results of the predicted error
sequences due to abnormal input signals. Then, the identification of abnormal vibration
responses of track bed structures can be performed based on the appropriate threshold
derived from the quantification results. The experimental results of identifying abnormal
signals based on the proposed procedure in an actual subway were reported. The procedure
for identifying anomalous vibration sequences detected by the ultra-weak FBG array
makes up the second part of this paper, followed by the experimental details of the design
and arrangement used to validate the proposed method. Finally, the effectiveness of
identifying the target signals is assessed based on the accuracy and F1-score. Furthermore,
the performance superiority of the selected indicator used for quantifying prediction
error sequences and the proposed unsupervised learning network are discussed through
comparative tests.

2. Procedure for Abnormal Signal Identification

As shown in Figure 1, the proposed procedure for abnormal signal identification
primarily includes three steps: unsupervised learning network establishment based on
a training dataset of the normal state of the track bed, calculation quantification for predic-
tion errors, and the selection of a threshold for identifying anomalies. The premise of the
proposed procedure is that a large number of track bed vibration signals can be collected
when passing trains under normal conditions. Under this premise, an unsupervised learn-
ing network with satisfactory accuracy can be established for subsequent error calculation
and quantification. As well as that, it is easy to retain enough normal samples to participate
in setting the threshold for identifying anomalies.

Figure 1. The proposed abnormal signal identification process.
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Once the unsupervised learning network is established, the identification procedure
first requires data preprocessing on the retained normal dataset A and dataset B to be
evaluated. Each vibration sample X from dataset A or B will in turn undergo data aug-
mentation and normalization before being put into the unsupervised learning network.
Data augmentation is performed by directly dividing the original input signal into equal
subsequences. To eliminate the amplitude differences in the subsequences, each input from
data augmentation is normalized to a range of −1–1. In the first step, the predicted frame
x̃i+1 of the frame xi is obtained through the established unsupervised learning network,
where xi is a certain frame subsequence preprocessed by data augmentation and normaliza-
tion. Then, the prediction errori+1 for each sampling frame subsequence can be generated
by Equation (1) from the result of each sampling point of the subsequence.

errori+1 =

√√√√ n

∑
j=1

(xj
i+1 − x̃j

i+1)
2

(1)

where n represents the sampling length of the frame subsequence. Specifically, the pro-
cessing details of the subway track bed vibration signal with time series characteristics are
shown in Figure 2. For any input sequence, the main vibration characteristics caused by the
action of the train axle in each sample are retained and the sampling length of the vibration
response is set to match the multiple of the frame_length. Then the input sequence is divided
into subsequences of length frame_length. The first frame_length is taken as the initial input
sequence input_seq1. Next, a length of frame_length slides to construct a new input sequence
input_seq2. Here, input_seq2 is also regarded as the prediction target out_seq1 of input_seq1.
Based on Equation (1), the divergence between the prediction result out_seq1 of input_seq1
and input_seq2 is the prediction error of the current frame. By repeating the above process,
the error of each frame in any input sequence can be obtained.

Figure 2. Processing details of vibration sequences used for generating prediction error.

To quantify the predicted error sequence is the idea of the second step. Here, moving
average processing is first used to reduce the unstable interferences in the predicted error
sequence. Then the maximum is taken in the moving average result to represent the error
sequence. In the last step, the quantitative results of datasets A and B derived from the
second step participate in setting the threshold and then the threshold is utilized to judge
whether the sample in dataset B is abnormal. To ensure the credibility of the threshold-
based judgment, the receiver operating characteristic (ROC) curve is adopted to search the
candidate threshold. That is, the candidate threshold should satisfy the conditions that
make false positive rate (FPR) zero and true positive rate (TPR) maximum. The rationale
for determining a reasonable threshold from the ROC curve can be found in [25].
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3. Design and Arrangement of the Experiment

3.1. Vibration Signal Acquisition of Subway Track Bed

During the subway operation, there are many opportunities to obtain the track bed
vibration signal of the normal state. Instead, it is hard to capture anomaly vibration samples
caused by structural deterioration of the track bed or the failure of the train wheel, if there
are no suitable tracking ways. As shown in Figure 3, an ultra-weak FBG sensing cable
was fixed along the track bed in an actual subway tunnel to collect the structural vibration
response caused by passing trains. Three underground stations were covered along the
monitoring area of the subway line, with a total length of nearly three kilometers. According
to the spatial resolution of the probes in the sensing optic fiber, more than 500 consecutive
regions monitored along the track bed can feedback the structural vibration response based
on the interrogated address of the light interference [26]. When a train passed, the structural
vibration response triggered in each monitoring area was collected at a 1 kHz sampling
rate. The collected data was transmitted to the remote monitoring center for processing by
the demodulator and server.

 
Figure 3. Field layout of ultra-weak FBG sensing array for acquiring vibration responses of track beds.

Based on the continuous running of the monitoring system described above, a train
with operation risk due to wheel wear was identified. Compared to the normal state, a set
of worn wheels in the first compartment resulted in changes in vibration signals of track
beds when the train passed. As shown in Figure 4, three monitoring regions are randomly
selected to depict the normal and abnormal vibration signals of the track beds. The left part
of Figure 4 shows the vibration responses of the track beds in the three selected monitoring
regions as the train without safety hazards passed through the subway line. The abnormal
vibration signals corresponding to the same three monitoring regions when subjected to
the action of the train with worn wheels are revealed in the right part of Figure 4. As can be
seen from Figure 4, there are similarities between the normal vibration signals in different
monitoring regions, which have been pointed out in [8]. As well as that, the abnormal
signals at different locations exhibit some common features. The occurrence position of
the abnormal signal in the overall response to the vibration of the track bed excited by the
train is closely related to the compartment where the worn wheels are located. In addition,
the duration of the abnormal disturbances is almost the same, accounting for about 20% of
the total length of the track bed vibration response sequence caused by the passing train
with worn wheels.
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(a) (b) 

Figure 4. Typical vibration responses of track beds caused by the (a) safety train and (b) train with
worn wheels.

In addition to the above-mentioned abnormal vibration signals of the track bed struc-
ture caused by worn wheels, to obtain more abnormal signal samples, this paper considers
adding perturbation to the actual normal vibration signals to simulate abnormal signal
samples. The track bed vibration signals at the time of the ground intrusion event de-
tected by the ultra-weak FBG sensing array were chosen as the source signal for adding
perturbation. Specifically, the vibration response of the track bed structure under excava-
tor ground intrusion was adopted to complement the anomaly dataset for the following
experiment. The details of the vibration response of the selected real cases can be found
in [9]. In the specific implementation, as shown in Figure 5, the sub-sequences of the
adding perturbation are randomly selected from the source signal caused by the ground
intrusion. The extracted sub-sequences are then randomly superimposed somewhere in the
normal vibration samples in a certain proportion. Here, in addition to taking the proportion
of anomalous perturbations observed in Figure 4 as a reference, the simulated anomaly
proportion also takes into account fluctuations of 10% above and below 20%.
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Figure 5. An example of the process of generating the simulated anomaly sample.

3.2. Composition and Division of the Experimental Dataset

Based on the above vibration signal acquisition strategy, the composition and division
of the raw experimental dataset are shown in Figure 6. The dataset was derived from the
operation monitoring system and the previous field test results, both measured by the
ultra-weak FBG sensing array. The vibration signal samples of the track bed in normal and
abnormal states are 260 and 147, respectively. For the abnormal signal samples, anomalies
consist of three levels according to the proportion of superimposed disturbances. Here,
taking 147 normal vibration signals as benchmarks that are different from the normal
samples in Figure 6, simulated anomalies of different levels were constructed. Moreover,
maintaining the data balance among the three-level abnormal samples to reduce the effect
of the asymmetry of the sample size on the training effect was considered.

The raw normal vibration signals were divided into two parts to perform training
and tests based on the commonly used ratio [27] of 8:2. Here, the training set was used to
train the proposed unsupervised learning network, and the split test set of normal samples
was used to participate in identifying whether the no-label signals are abnormal, that is,
to assess the recognition effect of the proposed method on abnormal vibration signals.
Considering the signal sampling rate and the current configuration of the experimental
hardware environment that was composed of a graphics processing unit (GPU) core (GTX
1080 Ti) with 12 2.20 GHz processors (Intel Xeon E5-2650 v4), the frame_length was set to
500 to generate sub-sequences and to perform the model error prediction. Although the
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frame_length remains equal, there were duration differences in the raw vibration response of
each track bed area due to the effects of train speed and weight. Therefore, the three-level
anomaly dataset with the same original sample size in Figure 6 had different enhanced
scales after being divided according to the consistent frame_length. After data augmenta-
tion [28] by dividing the original sample into equal sub-sequences, the detailed scales of
the training set and test set are given in Table 1.

 

Figure 6. Raw dataset composition and division for the experiment.

Table 1. The division results of the experimental dataset after data augmentation.

Dataset Size of Normal Sample
Size of Abnormal Sample

Level A Level B Level C

Training set 6741 - - -
Test set 2194 1971 1962 1968

3.3. Establishment of the Unsupervised Learning Network

Based on the study in [29] and the current experimental hardware environment,
as shown in Figure 7, an unsupervised network based on CNN and LSTM and considering
the attention mechanism (CNN-LSTM-AM) was constructed to obtain the error sequence
result under step two in Figure 1. Here, the training set of 6741 normal samples as de-
fined in Table 1 was used to train the CNN-LSTM-AM network. The dimension of the
network input is determined by the length of the subsequence of frame_length 500 after
data augmentation and the batch size was set as 64. The goal of network training was to
ensure that the prediction error exhibited a rather weak fluctuation, that is, to ensure that
the difference between the predicted sequence and the input normal sample was small.
After repeated testing and parameter tuning based on grid searching [30], the established
network consisted of two one-dimensional convolutional layers, two LSTM layers, and one
attention mechanism layer, in which each convolutional layer contained 128 convolution
kernels, and each LSTM layer contained 500 unit cells. The CNN and LSTM layers were
used to obtain the local spatial features and time-series correlations of the vibration signals
of the track bed under normal conditions, respectively. The kernel size of each CNN layer
was 1 and a dilated convolution operation with a dilation factor of 10 was used to make the
first convolutional layer have a stronger receptive field of the input sequence. The attention
mechanism layer automatically learned the importance of each hidden layer. To meet the
training objective, RMSprop [31] was selected as the optimization algorithm of the network.
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Figure 7. The proposed CNN-LSTM-AM network architecture with 5 hidden layers.

4. Results and Discussion

4.1. Result Analysis

The error sequence results of the three-level anomaly samples in Table 1, after being
processed by the unsupervised network described in Figure 7, revealed that for about 80%
of the test samples, the average of the main peak of the error sequence of the samples
exceeded 6, while the rest was about 2. Figure 8 depicts two randomly selected samples
with anomalies and their corresponding predicted error sequences, where the red dotted
line represents the anomalous part. Although the main peak of the error sequence can
indicate the anomaly to some extent, pseudo main peaks are also observed in the error
sequence as shown in Figure 8b.

 
(a) good performance (b) poor performance 

Figure 8. Randomly selected (a,b) anomaly signals and their corresponding prediction error sequences.

To reduce the interference of the pseudo peak, calculation quantification was per-
formed for the predicted error sequence and the results are shown in Figure 9. The quan-
titative results in each subplot in Figure 9 are composed of 49 anomaly signal samples
and 70 retained normal signal samples. Here, the aforementioned retained normal sig-
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nal samples were used to participate in the subsequent threshold settings based on the
ROC curve.

 
(a) Level A 

(b) Level B 

 
(c) Level C 

Figure 9. Quantitative results of error sequences of (a–c) three-level anomaly samples and retained
normal samples.
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The quantitative results in Figure 9 were set to the tentative threshold in the order
from small to large to calculate the corresponding FPR and TPR. The results of FPR and
TPR were represented by the ROC curve shown in Figure 10. Then, the candidate threshold
used to distinguish the anomaly in Figure 9 can be determined. Here, the purpose of
using the quantified result in the maximum TPR state corresponding to the FPR of zero as
the candidate threshold was primarily to reduce the likelihood of normal samples being
identified as abnormal.

 
Figure 10. ROC curve based on quantitative results of error sequences.

The accuracy and F1-score in Table 2 quantified the experimental results based on the
proposed method. The thresholds of the three levels set in Figure 10 can ensure that the
recognition accuracy of the three types of abnormal samples in the designed experiment
was no less than 0.84. With the increase in the proportion of anomalies, the accuracy of
identifying anomalies and the F1-score gradually increased, reaching the highest of 0.94
and 0.93, respectively. The result not only conforms to the understanding that the more
significant the anomaly is, the easier it is to identify, but also displays the capability for
identifying abnormal signals based on the proposed procedure. In terms of the efficiency,
under the hardware configuration and sample size described in this paper, the proposed
anomaly recognition algorithm took about 10 min and 0.24 s in stages of the training and
recognition, respectively.

Table 2. Quantitative evaluation of experimental results.

Anomaly Type Accuracy F1-Score

Level A 0.84 0.80
Level B 0.88 0.86
Level C 0.94 0.93
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4.2. Discussion Based on Comparative Testing

To further evaluate the effectiveness of the proposed method, both the quantification
metric of the error sequence and the established unsupervised learning network were in
turn compared with other approaches. Here, the allocation of datasets for the comparison
tests was consistent with that presented earlier in this paper. In addition to quantifying the
error sequence by choosing the maximum processed after the moving average, the effects
of identifying anomalous signals when representing the error sequence with the maximum,
mean, and root mean square (RMS) were also discussed. Figure 11 shows the ROC curves
derived from the four metrics of quantifying the error sequence. The results concerning the
area under the ROC curve (AUC) based on the different metrics in Figure 11 all display good
performance in terms of the aggregate measure represented by AUC. Although the method
of threshold selection based on comparative metrics was reasonable and competitive,
the proposed quantification indicator has the highest TPR when the FPR is zero. That is,
the results in Figure 11 mean that the threshold based on the quantitative processing
proposed in this paper can better identify abnormal samples, and the comparison results
based on the accuracy and F1-score shown in Figure 12 further confirm this inference.
For three levels of abnormal samples, the indicator adopted in this paper can guarantee
higher accuracy and F1-score than that of the other three metrics.

 
(a) Level A 

 
(b) Level B 

 
(c) Level C 

Figure 11. ROC curves derived from quantifying error sequences of (a–c) three-level anomaly samples
based on four different metrics.
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(a) (b) 

Figure 12. Comparison results of (a) accuracy and (b) F1-score from four metrics for quantifying
error sequences.

Three typical unsupervised networks (one-class SVM, DAGMM, and LSTM encoder-
decoder (LSTM-ED)) which have been reported [20,21,24] to be suitable for anomaly recog-
nition were selected for performance comparison with the CNN-LSTM-AM network pro-
posed in this paper. To fully compete with the proposed network, the most appropriate key
candidate hyperparameters sets [22,32] for one-class SVM, DAGMM, and LSTM-ED were
derived through trial and error based on random searching [33]. The comparison results
shown in Figure 13 revealed that one-class SVM was the least effective. This phenomenon
may be related to the relatively lower algorithm complexity of one-class SVM compared
with other methods. Although the detection performance of the three comparison methods
improved in terms of accuracy and F1-score as the degree of anomaly increased, the pro-
posed network still outperformed the effect of the best DAGMM among the comparison
methods. Specifically, for three-level anomaly samples, the average results of accuracy and
F1-score of the CNN-LSTM-AM network were 11% and 13% higher than that of DAGMM,
respectively. Especially for abnormal samples at level A with the shortest anomaly du-
ration, the network established in this paper led by 24% and 29% in the accuracy and
F1-score, respectively.

  
(a) (b) 

Figure 13. Comparison results of (a) accuracy and (b) F1-score from four unsupervised learning networks.
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5. Conclusions

The present work indicates that when sufficient normal vibration samples are guaran-
teed for training the network and auxiliary detection, anomalous vibration signals in the
track bed response of subway tunnels detected by ultra-weak FBG sensing array can be
identified based on the idea of unsupervised learning. Due to the difficulty of obtaining
adequate abnormal samples, the pattern diversity of different levels of abnormal samples
based on found and simulated cases in this paper is not rich enough. Thus, the recognition
effect of this method on unknown samples with significant type differences collected at
the same period needs to be further tested and improved. However, given that the source
and location of the superimposed sub-sequence in each simulated abnormal sample are
based on random selection, there is reason to believe that the proposed method has strong
robustness in the actual engineering. Moreover, some other limitations are worth noting.
Although the recognition effects were verified experimentally, the established unsupervised
learning network architecture in the proposed method still needs to be further improved by
more unknown types and degrees of abnormal events in the future. Moreover, the results
of comparison experiments demonstrate that both the current quantification indicator for
the error sequences and the established networks have better performance, but whether
there is a more appropriate solution to quantify error sequences and the influence of the
normal sample size on the identification effect require further investigation. For the above
concerns, it is necessary to further investigate the performance of the method proposed in
this paper in future work when more typical anomaly samples can be obtained. Addition-
ally, the feasibility and effectiveness of the procedures reported in this paper need to be
validated in other areas with similar needs.
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Abstract: The analysis of site seismic amplification characteristics is one of the important tasks
of seismic safety evaluation. Owing to the high computational cost and complex implementation
of numerical simulations, significant differences exist in the prediction of seismic ground motion
amplification in engineering problems. In this paper, a novel prediction method for the amplification
characteristics of local sites was proposed, using a state-of-the-art convolutional neural network
(CNN) combined with real-time seismic signals. The amplification factors were computed by the
standard spectral ratio method according to the observed records of seven stations in the Lower
Hutt Valley, New Zealand. Based on the geological exploration data from the seven stations and
the geological hazard information of the Lower Hutt Valley, eight parameters related to the seismic
information were presumed to influence the amplification characteristics of the local site. The CNN
method was used to establish the relationship between the amplification factors of local sites and
the eight parameters, and the training samples and testing samples were generated through the
observed and geological data other than the estimated values. To analyze the CNN prediction ability
for amplification factors on unrecorded domains, two CNN models were established for comparison.
One CNN model used about 80% of the data from 44 seismic events of the seven stations for training
and the remaining data for testing. The other CNN model used the data of six stations to train and
the remaining station’s data to test the CNN. The results showed that the CNN method based on the
observation data can provide a powerful tool for predicting the amplification factors of local sites
both for recorded positions and for unrecorded positions, while the traditional standard spectral
ratio method only predicts the amplification factors for recorded positions. The comparison of the
two CNN models showed that both can effectively predict the amplification factors of local ground
motion without records, and the accuracy and stability of predictions can meet the requirements.
With increasing seismic records, the CNN method becomes practical and effective for prediction
purposes in earthquake engineering.

Keywords: amplification factor; ground motion; 1-D convolutional neural network; site amplification

1. Introduction

The seismic amplification effects in earthquake-prone areas need to be considered
in building or structure designs. The relationship between the site condition and seismic
ground motion has been researched for over one hundred years [1]. Pioneer researchers
gathered a great deal of observational evidence to establish this relationship in the earlier
studies [2]. Subsequently, many researchers [3–10] attempted to evaluate the amplification
characteristics of strong ground motions at a given site according to the acceleration records.
For unrecorded locations, it is common to rely on the regression relationship obtained
from the recorded results. This approach is regarded as reliable because the earthquake
records [11] include all the influences of the earthquake source, transmission path and
site features. However, for many local site amplification zones with no ground motion
records, a simple regression relationship based on a large-sized site and inadequate data
seems unreasonable.
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To overcome the lack of strong motion data to estimate the amplification factors at
many local zones, an alternative to the seismic record method needs to be developed. The
microtremor-based method, which is an empirical method, was first used by Kanai [12] and
further developed by Nakamura [13] for the site amplification analysis of cases without seis-
mic records. By measuring the ambient noise or microtremors, the method can obtain the
experimental transfer functions and predict the amplification factors of the site. Although
the microtremor-based method can improve the surface amplification prediction for the
area without seismic records, the research shows that there are significant differences in the
predictions of the amplification characteristics under strong earthquakes. Signal processing
has also become a key to prediction. The existing methods of processing signal data include
wavelet transform methods [14–16], Fourier transform methods [17] and so on. As an
alternative to the seismic record method, some researchers [18,19] have used site response
simulations based on the wave propagation theory and numerical methods to estimate
the transfer functions and predict ground motions in particular regions. Compared with
the empirical methods, numerical simulations [20] based on the wave propagation theory
can establish an analytical model for the seismic response of a local site and adjust the
parameters to predict the amplification factor of the site. However, simulation models still
employ some major simplifications at present. Considering the heterogeneous structures
of a local site [21,22], seismologists [23–25] usually establish more realistic 2-D or 3-D wave
propagation models to predict the ground motion and site amplification factors. These
2-D or 3-D models can reflect the effect of more site geology information. However, it is
difficult to model seismic ground motions and predict site amplification in simulations
of engineering problems, due to the high computational cost and complex simulation
technology [26–28]. To improve prediction of the surface amplification characteristics in
local areas, including basin regions, more and more local site stations have been estab-
lished around the world for obtaining seismic observation records. Since the number of
earthquake observation records in local domains has been increasing over the years, many
researchers across the world prefer to develop amplification prediction models in a specific
local site.

Whether employing regression data from the observation records or computational
simulations with predefined functions to predict the ground motion amplification factors,
the aim is to develop reasonable prediction models or equations for the surface ground
motion amplification factors in complex local sites. Due to the complex local geologi-
cal conditions, unpredictable site conditions and other factors of seismic propagation it
is difficult for traditional regression methods to achieve predictions consistent with the
observations [25]. To establish a reasonable regression relationship for a local site, more
effort is needed to seek more accurate methods for predicting ground motion characteris-
tics. With the continuous rapid development of artificial intelligence methods, more and
more scholars are committed to applying various machine learning techniques to ground
motion prediction [29]. These methods are applied to the problems solved by traditional
regression methods. Recently, new algorithms, such as the Bayesian method, clustering
methods and neural network methods have been gradually developed for ground motion
predictions [30,31]. For example, a new method of seismic site classification was proposed
using HVSR [32] curves and a neural network [33]. For the aspect of attenuation prediction,
Kuok and Yuen [29] proposed an effective generalized learning network for nonparametric
spatial modeling to predict the ground motion attenuation law for Wenchuan earthquake in
China. The M5 tree method [6], heterogeneous Bayesian learning and the back-propagation
neural network (BPNN) were used by Mu and Yuen [34] and Kaveh and Kim [6,29], re-
spectively, to predict the ground motion, improving the previous learning algorithm and
providing a solid support for the automatic prediction of basin ground motion. As a new
machine learning algorithm, the convolutional neural network (CNN) with convolution
layers overcomes the disadvantages of traditional BPNNs. Compared with the typical
machine learning models such as BPNNs, the CNN has dimension reduction [35] and
strong feature extraction ability, fuses multiple inputs and converges fast. Furthermore,
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it can extract some important features more effectively. In the feature extraction stage,
the CNN can learn directly from the original input data and optimize the features in the
training stage, then grasp the feature information more accurately. As real seismic records
in a local domain contain many kinds of potential seismic characteristics, the combination
of multiple features when training a CNN is likely to result in a better method. It can be
seen that using the CNN method to predict the amplification characteristics of ground
motion offers a new direction in this research field.

In this paper, based on the growing number of ground motion data for the densely dis-
tributed local stations and the detailed geology data for Lower Hutt Valley, New Zealand,
the CNN method was applied to establish novel prediction models to predict the surface
seismic amplification factors in this local area. The seismic observation records of 44 earth-
quakes from seven stations were selected, and seven CNN models were created. The CNN
models were used to identify the surface amplification factors for the basin with strong
earthquake observation data.

2. Materials and Methods

2.1. Geological Condition

The Lower Hutt Valley is a middle-sized sedimentary basin located in the Wellington
Metropolitan area, New Zealand. The valley is about 10 km wide and 35 km long and is
surrounded by hills in the east and the north, while it is open to Wellington Bay in the west.
Figure 1a displays a location map of the valley, and a detailed map of a small zone 10 km
long and 5 km wide is shown in Figure 1b.

Figure 1. Location maps. (a) Locations of earthquake focuses; (b) station locations in Lower Hutt basin in New Zealand.

According to the geological exploration data provided by New Zealand’s Institute
of Geological and Nuclear Sciences (GNS), a local site in the Lower Hutt Valley with a
length of 8400 m and a width of 5600 m was selected. There were four irregular layers of
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sediments over the bedrock. The S-wave velocity varied from 175 m/s to 300 m/s in the
top layer, 300 m/s to 330 m/s in the second layer, 330 m/s to 500 m/s in the third layer
and 500 m/s to 1500 m/s in the bottom layer. The S-wave velocity of the bedrock layer was
1500 m/s. As shown in Figure 1b, 7 accelerometers were located in the selected zone: the
accelerometer stations BMTS, LHES, FAIS, TAIS, PGMS and SOCS were located in the soft
soil zone and the station LHRS in the hard rock zone. The details of the soil and bedrock
characteristics for the seven stations are listed in Table 1. The 1-D soil layer histogram
of the seven stations was extracted from the 3-D geological structure of the lower Hutt
gorge, as shown in Figure 2. As the soil properties are directly related to the amplification
characteristics of the surface, the first-order frequencies and the equivalent shear wave
velocities of the 1-D soil layer at each station were calculated. The results are shown in
Table 1.

Table 1. Station information.

Station Latitude (S) Longitude (E)
Thickness of

Soil Layer (m)
V30 (m/s)

LHRS 41◦12′17” 174◦53′35” 0.000 1500.000
BMTS 41◦11′29” 174◦55′34” 93.330 200.830
LHES 41◦12′42” 174◦54′12” 217.780 215.330
FAIS 41◦12′27” 174◦56′24” 62.220 206.000
TAIS 41◦10′35” 174◦58′12” 280.000 235.000

PGMS 41◦13′28” 174◦52′46” 130.670 236.000
SOCS 41◦12′15” 174◦54′57” 311.110 240.170

Figure 2. Borehole records. (a) LHRS; (b) BMTS; (c) LHES; (d) FAIS; (e) TAIS; (f) PGMS; (g) SOCS.

According to the geological hazard information network of New Zealand (https:
//www.geonet.org.nz, accessed on: 27 June 2021), the NS and EW components of the
earthquake records from the bedrock to the soil layers of the 7 stations were used, as shown
in Table 1. Since each station had two horizontal components in the seismic records, the
records first needed to be processed. Figure 3 shows the two horizontal components (SV
and SH) at each station.
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Figure 3. Seismic records from the Lower Hutt basin in New Zealand.

The original data of the horizontal observation records provided by the New Zealand
geological disaster information network were recorded in two horizontal directions, where
horizontal axis 1 was along the north direction (H1) and horizontal axis 2 along the west
direction (H2). The angle between the X-direction of the Lower Hutt basin model and the
geographical east-west direction was about 50◦. The horizontal observation records H1
and H2 for the basin can be decomposed into SV and SH directions. The acceleration time
history in the SH direction can be determined by Equation (1):

SH = H1COS40◦ − H2COS50◦ (1)

2.2. Preparation of the Data
2.2.1. Amplification Factor

To estimate the surface amplification of the soil response with respect to the bedrock
response, frequency-dependent seismic amplification factors were used to compute the
soil effect of this valley surface. The standard spectral ratio [35] was used to calculate
the amplification factors of the site location. This is defined as the spectral ratio of a
sedimentary site with respect to a nearby bedrock reference site. A high-pass filtering
program (JMTEST) method was used to smooth selected acceleration time histories, and
then a fast Fourier transform (FFT) computer program was employed to obtain Fourier
spectra of the acceleration time history at each soil station and bedrock station. For each
earthquake, the spectral ratio of the Fourier spectra at each soil station to the spectrum at
the bedrock station was used to estimate the frequency-dependent amplification factors,
AFF (amplification Fourier factors) [5], from Equation (2):

AFF =
FSH

sur f ace

FSH
bedrock (2)

where FSH is the Fourier amplitude spectrum in the SH (S-wave horizon) direction at the
soil surface or bedrock.

Then, for each group of acceleration time histories at soil stations, a mean frequency-
dependent amplification factor was computed from the average AFF at a given frequency
value [36], using Equation (3):

AFF =

n
∑

i=1
AFFi

n
(3)
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2.2.2. Surface Amplification Factors at Lower Hutt Valley

The seismic response records of 44 earthquakes in the Lower Hutt Valley were selected
to calculate the amplification factors for all 6 soil stations, according to Equations (1) and (2).

The amplified spectra were obtained by calculating the ratio of the acceleration records
of the six stations in the soft layer vs. the bedrock station (LHRS), and parts of the results
are shown in Figure 4. The amplification factors at the six stations were also obtained by
calculating the average of the amplified spectrum. Table 2 shows some of the average
amplification factors calculated using Equation (2).

 

 

Figure 4. Sediment-to-rock Fourier spectral ratios (FSRs) of stations.

Table 2. Amplification factors for earthquakes at 7 stations.

Station
Magnitude

LHRS BMTS LHES FAIS TAIS PGMS SOCS

M4.5 1.00 1.78 2.56 1.90 3.10 1.95 3.04
M5.8 1.00 2.01 2.81 1.91 3.65 2.06 3.24
M5.1 1.00 1.61 3.42 1.81 2.98 2.06 3.27
M4.0 1.00 1.26 2.09 1.42 2.72 1.50 2.38
M4.3 1.00 — 2.78 1.93 3.06 2.20 3.33
M4.8 1.00 2.96 2.45 — 2.70 2.21 3.85
M4.5 1.00 2.77 2.08 — 2.50 1.99 2.86
M4.0 1.00 2.49 2.36 — 2.45 2.48 2.93
M4.7 1.00 1.55 2.31 2.28 3.06 2.05 2.57
M4.6 1.00 3.10 2.39 2.13 2.71 2.27 3.16
M4.3 1.00 1.86 2.76 1.91 2.87 2.45 3.42
M4.8 1.00 1.71 2.38 1.89 — 1.98 —
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2.3. 1-D Convolutional Neural Network

As shown in Figure 5, a standard CNN model usually includes the input layers,
convolution layers, a fully connected layer and an output layer. The input data were
transferred through a series of layers (two convolution layers, activation function, loss
function). Finally, the mapping calculation obtained the amplification factors. Specifically,
the input of the 1-D CNN was either a 1 × N or an N × 1 array. As shown in Figure 5, an
N × 1 array was passed through a series of convolution layers and the fully connected
layer. Then, the amplification factors for the local ground motion were obtained in the
output layer.

Figure 5. One-dimensional CNN model for predicting site amplification factors.

As shown in Figure 6, the convolution process was to multiply each element in the
convolution kernel with the corresponding element in a sub-region (e.g., green box or blue
dotted box) of the input data of the convolution layer and to sum the products to obtain
an element in the feature map. Each time, the sub-region moved down by one step, and
the process was repeated until all elements of the input data were involved. Finally, the
convolution operation formed a new array (i.e., the feature map).

The activation function has a non-linear ability that gives the neural network better
learning capabilities. Commonly used activation functions include the sigmoid, tanh, ReLU
(rectified linear unit) and LeakyReLU functions, as shown in Figure 7. The LeakyReLU
activation function was used in this study, as it is much faster than the sigmoid function
and the tanh function.

265



Appl. Sci. 2021, 11, 11650

Figure 6. Based on comparisons of the three activation functions, the ReLU activation function was used in our model as it
was much faster than the sigmoid and tanh functions.

Figure 7. Activation function: (a) sigmoid; (b) tanh; (c) ReLU; (d) LeakyReLU.

Loss Function

The loss function was employed to evaluate the convergence of the trained CNN. It
was embedded in the output layers. In this paper, the convergence of the network training
process was evaluated by the validation samples. The loss function (RMSE, root mean
squared error) was as given in Equation (4).

RMSE =

√√√√ 1
N

N

∑
t=1

(predictedt − label)2 (4)
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where N is the number of validation samples.

2.4. Design of the Models

In this section, a novel method based on the CNN model was established to predict the
ground motion amplification. Compared with the traditional classical regression model that
can usually use only two variables for the regression task, the CNN can use multivariate
regression techniques to predict the results.

2.4.1. Parameters of the Models

In this section, the CNN method was established to predict the local site amplification
based on earthquake observation records. The sampling data used in the proposed CNN
models involved 44 seismic events. The input data of the samples were extracted from
40 seismic incidents recorded at 7 stations (Table 3). The geological exploration data of the
7 stations were provided by New Zealand’s Institute of Geological and Nuclear Sciences
(GNS) and the observation records were downloaded from the New Zealand’s geohazard
information network (GeoNet) (https://www.geonet.org.nz, accessed on: 27 June 2021).
The output data of the samples were directly computed using Equation (2) from the
downloaded observation records. A series of input variables of the proposed CNN model
were specified: the station latitude, longitude, magnitude, focal depth, epicentral distance,
soil layer thickness, V30 (equivalent shear wave velocity at a calculated depth of 30 m in
the overlying soil layer) and the observation records of the bedrock PGAr (peak ground
acceleration of rock). Based on a number of the input variables and output variables of the
samples, an effective and reasonable CNN model was trained, and a CNN-based prediction
method was obtained. With the trained CNN model, the ground motion amplification
factors of the Lower Hutt Valley could be predicted, and the amplification characteristics
of this engineering site could be investigated.

Table 3. Design of CNN-FSPA.

CNN-FSPA

Total 44 earthquakes (274)
Training 40 earthquakes (246)

Validation 40 earthquakes (246)
Testing 4 earthquakes (28)

A 1-D CNN structure was established using the ‘Deep Learning Toolbox’ of MATLAB
(MathWorks Inc., Natick, MA, USA), including convolution layers, activation layers (leaky
ReLU activation function) and one fully connected layer (FC). The convolution kernel size
and layer number were adjusted according to different situations. The CNN structure
was designed according to the ground motion situation considered in this study. The
weights of the CNN and the internal parameters were adjusted to achieve the best local site
amplification prediction effect. The data were preprocessed and then input into the CNN
for network training. Part of the dataset was used for network training, and the other part
was used for testing. Furthermore, padding was employed to preserve the information on
the edges.

2.4.2. Description of the Models

Figure 8 shows the location map of the 7 stations (blue points) and 5 selected un-
recorded location points (yellow points). The CNN models were based on the sample
datasets obtained from the nearest 44 earthquake records collected from the 7 stations.
Two kinds of CNN prediction models were trained, with sample parameters as shown in
Tables 3 and 4.
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Figure 8. Location map.

Table 4. Design of CNN-PSPA.

CNN-PSPA

Total
All Stations

(274)
All Stations

(274)
All Stations

(274)
All Stations

(274)
All Stations

(274)
All Stations

(274)

Training Non-SOCS
(237)

Non-PGMS
(233)

Non-TAIS
(235)

Non-FAIS
(242)

Non-LHES
(235)

Non-BMTS
(232)

Validation (237) (233) (235) (242) (235) (232)
Testing
(PSPA)

SOCS
(37)

PGMS
(41)

TAIS
(39)

FAIS
(32)

LHES
(39)

BMTS
(42)

(1) CNN-FSPA (full-station predicted amplification) model: in this model, 40 of the
44 earthquake records were used for training and the remaining 4 for testing the model.
The detailed information of CNN-FSPA is shown in Table 3.

(2) CNN-PSPA (part-station predicted amplification) models: in these models, data
from 6 of the 7 stations were used for training and the data from the other station were
used for testing. A total of 6 CNN sub-models were built, namely, non-SOCS, non-PGMS,
non-TAIS, non-FAIS, non-LHES and non-BMTS. The detailed information of CNN-PSPA is
shown in Table 4.

In the CNN-FSPA model, the comparisons between the observed value and the pre-
dicted value were used for testing the CNN’s prediction abilities. In the CNN-PSPA models,
the trained model was used to analyze the prediction error of the site amplification factors
of unrecorded locations. The station data that were not included in the training samples,
were used for testing the prediction abilities of the CNN-PSPA models for prediction of
unrecorded locations.

3. Results and Discussion

In the following, the amplification factors of the seven stations obtained using Equa-
tion (3) were used to conduct an error analysis between the real values and predicted values
of the amplification factors. The error of the amplification factor is defined in Equation (5).

error =
|predicted − observed|

observed
× 100% (5)

3.1. Comparisons with BPNN Models

The CNN models were trained for predicting the site amplification factors of the
Lower Hutt Valley. To demonstrate the advantages of the CNN models in predicting the
site amplification factors, traditional BPNN models were also trained on similar data for
comparison. These models were named BPNN-FSPA and BPNN-PSPA.
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3.1.1. Effect of Parameters on Different Models

First, the differences between the CNN and BPNN models were considered for study-
ing the effect of the parameters. The four groups of training parameters for the CNN and
BPNN models are listed in Table 5. In the BPNN models, the tests referred to different
hidden layers, as shown in Table 5. The errors of the prediction results are shown in
Figure 9 for the CNN models and Figure 10 for the BPNN models.

Table 5. Four tests with different parameters.

Models
CNN BPNN

Kernel Size Kernel Number Hidden Layer Size

Test 1 [2 1] [3 1] 190 310 5

Test 2 [2 1] [3 1] 190 320 6

Test 3 [2 1] [3 1] 198 320 7

Test 4 [2 1] [3 1] [4 1] 190 320 322 8

 

Figure 9. Errors of CNN predictions.

Figure 9 shows that with different model parameters, the prediction results for the
CNN models did not differ much, and the training effect was relatively stable. In contrast,
the BPNN training results appeared to be quite variable for all the tests and were extremely
unstable with respect to the different model parameters, as shown in Figure 10. Figure 10
also shows that Test 1 had the worst testing results and the highest error rate. Furthermore,
the variability of the red histogram was the largest, showing that Test 2 was the most
unstable. Test 3 was relatively stable and its error rate was the lowest. Furthermore, in the
non-FAIS model, the training effect was encouraging, except in Test 1. Among the four
tests, the most stable BPNN model was the non-SOCS model.
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Figure 10. Errors of BPNN predictions.

As shown from the analyses of the CNN models and BPNN models, the parameters
could be further optimized for the two kinds of models. Compared to the BPNN models,
the CNN models had better accuracy and stability with different model parameters. To
ensure the accuracy and stability of the prediction results, the BPNN should avoid the Test
1 parameters with a high error rate and the Test 2 parameters with poor stability.

3.1.2. Comparisons of Prediction Results

From Figures 9 and 10, the worst and the best CNN and BPNN models, respectively,
were selected for comparison. The best CNN model, except for CNN-FSPA, was the non-
FAIS model with Test 2 parameters and the best BPNN model, except for BPNN-FSPA, was
the non-LHES model with Test 3 parameters. The worst CNN model was the non-BMTS
model with Test 4 parameters and the worst BPNN model was the non-TAIS model with
Test 4 parameters. The prediction results and errors for four earthquakes (M4.5, M5.6, M5.1
and M4.0) at four stations (FAIS, LHES, BMTS and TAIS) are shown in Table 6.

Table 6. Comparisons of CNNs and BPNNs.

Model Magnitude

CNN-PSPA BPNN-PSPA

Observed
(FAIS)

Predicted
(FAIS)

Error
Observed

(LHES)
Predicted
(LHES)

Error

Best
testing

M4.5 2.86 2.48 13.2% 2.05 2.51 18.3%
M5.6 1.89 1.98 4.7% 2.55 2.69 5.2%
M5.1 1.90 1.93 1.7% 2.80 3.04 8.3%
M4.0 1.81 2.12 17.3% 3.42 2.53 26.0%

Model Magnitude
Observed
(BMTS)

Predicted
(BMTS)

Error
Observed

(TAIS)
Predicted

(TAIS)
Error

Worst
testing

M4.5 2.79 1.99 28.6% 2.34 3.85 64.4%
M5.6 2.45 2.30 6.1% 3.56 7.30 104.8%
M5.1 1.78 1.77 0.7% 3.10 4.61 48.6%
M4.0 2.01 1.81 9.9% 3.65 5.33 45.9%

As shown in Table 6, all the errors of the CNN models were lower than those of the
corresponding BPNN models for the same earthquakes. In addition, the worst testing
model (non-BMTS) of the CNNs had an error rate of 25.0% and the corresponding non-TAIS
model of the BPNNs had an error rate of 81.6%.
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It can also be seen from Table 6 that the error difference between the best and the worst
predictions of the CNNs was much lower than for the BPNNs. Comparisons between the
best and worst of the CNN-PSPA models showed that the errors of the results did not differ
much. Furthermore, the earthquakes with magnitude 5.1 gave the best results, with little
fluctuation in this CNN-PSPA. The CNNs showed better stability and less sensitivity to the
parameters. In contrast, the difference between the best and worst tests of the BPNNs was
significant. The worst of the BPNNs showed both a larger variance and the largest error of
104.8%, appearing in the M5.6 earthquakes. The BPNN-PSPA test for a magnitude of 5.6
showed the difference between the worst test with the largest error rate of 104.8% and the
best test with the smallest error rate of 5.2%. It can be seen that the BPNN models were
very unstable and were adversely affected by changing the parameters. The CNN models
outperformed the corresponding BPNN models in terms of test stability.

Both the stability and the accuracy analyses showed that the CNNs were significantly
better than the BPNNs.

3.2. Prediction Results of the CNN-FSPA Model

As the last section stated, the CNN models showed better prediction ability for the
site amplification factors than the traditional BPNN models. In the following two sections,
the CNN-FSPA and CNN-PSPA models are discussed in detail with regard to parameter
optimization and prediction results. Based on the optimized parameters, the comparatively
better prediction model was trained for predicting the site amplification factors of the
Lower Hutt Valley.

3.2.1. Testing of Different Parameters

The CNN-FSPA model was trained using 40 earthquakes for training and 4 earth-
quakes for testing. The average test errors of the CNN-FSPA model for different CNN
parameters are listed in Table 7.

Table 7. No padding and padding of the CNN models.

No Padding Padding

Kernel Size
Kernel

Number
Error Kernel Size

Kernel
Number

Error

[2 1] 192 18.3% [2 1] 192 19.7%

[2 1]
[3 1]

190
320 13.0% [2 1]

[3 1]
190
320 12.6%

[2 1]
[3 1]
[4 1]

190
320
330

13.3%
[2 1]
[3 1]
[4 1]

190
320
330

12.8%

Table 7 shows that by varying the models with and without padding, it was found that
the models with more than one convolutional layer showed lower error rates and better
predictions than their counterparts without padding. The prediction results of the CNNs
with different convolutional layers and convolutional kernels are also listed in Table 7. For
the CNNs with one convolutional layer, the errors of the test results were 18.3–19.7%. For
the CNNs with two convolutional layers, the error rate was 12.6–13.0%. For the CNNs
with three convolutional layers, the error rate was slightly higher at 12.8–13.3%. Overall,
the testing error could be reduced by about 1% using the padding function of the CNN
models with two or three convolutional layers.

The test with the lowest error was selected to give the training parameters for deter-
mining the CNN structure. The specific structural parameters of the CNNs are shown
in Table 8. There were five layers with two convolutional layers in this test. In the first
convolutional layer, 190 convolutional kernels with a size of 2 × 1 were used to process the
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input data. In the second convolutional layer, the number of convolutional kernels was 320
with a size of 3 × 1.

Table 8. Structural parameters of the 1-D CNNs.

Layer Type Kernel No.
Kernel

Size
Stride Padding Activation

1 Input None None None None None
2 Convolution (C1) 190 2 × 1 1 1 Leaky ReLU
3 Convolution (C2) 320 3 × 1 1 1 Leaky ReLU
4 FC None None None None None
5 Output None None None None None

Selection of the appropriate parameters according to the actual data had a significant
effect on the training of the CNN model.

3.2.2. Comparisons with Recorded Results

With the two convolutional layers shown in Table 8, the CNN-FSPA model gave better
prediction results than the other models with different parameters. Therefore, the selected
CNN-FSPA model was used to predict the amplification factors of the seven known station
locations. The prediction results for earthquakes with magnitudes of 4.0, 4.5, 5.1 and 5.6
are listed in Table 9. The comparisons of the predicted and observed results are also shown
in Table 9 and Figure 11.

Table 9. Prediction results for the CNN-FPSA.

Station Earthquakes Observed Predicted Error
Average

Error

LHRS

M4.5 1.00 1.02 2.0%

8.5%

M5.6 1.00 0.99 1.0%
M5.1 1.00 1.02 2.0%
M4.0 1.00 1.03 2.9%

BMTS

M4.5 2.45 1.79 26.9%
M5.6 1.78 1.89 5.8%
M5.1 2.01 1.76 12.4%
M4.0 1.61 1.55 3.7%

LHES

M4.5 2.05 2.23 8.1%
M5.6 2.56 2.69 5.1%
M5.1 2.81 2.93 4.1%
M4.0 3.42 2.66 22.2%

FAIS

M4.5 2.86 2.30 19.6%
M5.6 1.90 1.95 2.6%
M5.1 1.91 1.94 1.5%
M4.0 1.81 1.88 3.7%

TAIS

M4.5 3.56 3.08 13.5%
M5.6 3.10 3.15 1.6%
M5.1 3.65 3.23 11.5%
M4.0 2.98 2.37 20.5%

PGMS

M4.5 1.83 2.10 12.9%
M5.6 1.95 2.04 4.4%
M5.1 2.06 2.02 1.9%
M4.0 2.06 1.72 16.5%

SOCS

M4.5 2.50 2.61 4.2%
M5.6 3.04 3.00 1.3%
M5.1 3.24 3.16 2.5%
M4.0 3.27 2.57 21.4%
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Figure 11. Comparison of predicted and observed results.

Table 9 shows that the total average prediction error was 8.5%, which is relatively
low. In addition, it can clearly be seen from Table 9 that most of the prediction errors for
small earthquakes such as M4.0 and M4.5 were rather high, probably due to the effect of
anomalous amplification of seismic waves by the soil layer. In contrast, the predictions of
the middle-sized earthquakes such as M5.1 and M5.6 were better. Furthermore, it can be
observed that the stations FAIS, PGMS and SOCS (but not the bedrock station LHES) had
low prediction errors. This indicates that the CNN-FSPA model had good testing results
for those three stations.

As shown in the Figure 11, the scatter points were evenly and regularly distributed around
the black oblique line. This shows that this model was able to provide a good prediction.

3.3. Prediction Results of CNN-PSPA Models

The CNN-PSPA models were also trained for predicting the site amplification factors
of the Lower Hutt Valley. The CNN-PSPA models included six sub-models, described in
Section 2.4.2. Unlike the trained CNN-FSPA model, which included the information for
the testing samples, the trained CNN-PSPA models did not include the information for
the testing samples. Since there was no information for test location at all in the training
samples, the errors of the prediction results at test locations could be regarded as similar
to those for the other unrecorded locations used for the reliability analysis of this type of
model. In the following, the six CNN-PSPA models are used to discuss their prediction
ability via error analysis. The errors of the amplification factors were also computed using
Equation (4).

3.3.1. Optimal Parameters for CNN-PSPA Models

Since the accuracy and the stability in the training of the CNN models were mainly
dependent on the parameters of the convolutional layers and convolutional kernels, error
values computed with different parameters were used to optimize the CNN-PSPA models.
In order to construct a more optimal CNN-based model, four groups with different convo-
lutional kernel sizes and kernel numbers were selected for evaluating the prediction errors.
The average errors of the six CNN-PSPA models with different parameters are shown in
Table 10. The differences in the average error between the maximum and minimum for
each CNN-PSPA model are also listed in Table 10.
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Table 10. Results for CNN-PSPA with different parameters.

Models
Predicted

Station
Kernel Size

Kernel
Number

Ave. Error
Error

Fluctuation

non-SOCS SOCS

[2 1] [3 1] 190 310 16.5%

8.7%
[2 1] [3 1] 190 315 18.5%
[2 1] [3 1] 190 318 14.2%
[2 1] [3 1] 190 320 22.9%

non-PGMS PGMS

[2 1] [3 1] 190 320 23.1%

9.1%
[2 1] [3 1] 196 310 19.0%
[2 1] [3 1] 196 320 24.5%
[2 1] [3 1] 198 320 15.4%

non-TAIS TAIS

[2 1] [3 1] [4 1] 190 320 322 16.5%

4.3%
[2 1] [3 1] [4 1] 190 320 325 18.6%
[2 1] [3 1] [4 1] 190 320 330 17.9%
[2 1] [3 1] [4 1] 192 320 330 20.8%

non-FAIS FAIS

[2 1] [3 1] 190 315 22.4%

9.8%
[2 1] [3 1] 190 320 12.6%
[2 1] [3 1] 196 320 13.2%
[2 1] [3 1] 190 326 17.9%

non-LHES LHES

[2 1] [3 1] 188 320 22.1%

9.9%
[2 1] [3 1] 190 320 12.2%
[2 1] [3 1] 192 320 16.0%
[2 1] [3 1] 196 320 21.6%

non-BMTS BMTS

[2 1] [3 1] 190 320 21.1%

3.9%
[2 1] [3 1] 192 320 22.4%
[2 1] [3 1] 192 330 25.0%
[2 1] [3 1] 196 320 23.6%

Table 10 shows that the average error values varied with the different parameters for
all of the six CNN-PSPA models. The error differences of the six models ranged from 14.3%,
15.5%, 17.9%, 12.6%, 12.6%, and 21.2% to 23.0%, 24.5%, 23.9%, 22.5%, 22.1%, and 25.0%.
Regarding the errors of the six models, the maximum change was 9.9% in the non-LHES
model, and the minimum change was 3.9% in the non-BMTS model.

The non-BMTS model was the least sensitive to the CNN parameters, while the non-
LHES model was the most influenced by the parameters. From Table 10, the optimal
values of the six models were extracted from the four group parameters for subsequent
predictions. Among the six CNN-PSPA models, the best prediction model was the non-
LHES model, which had a relative error of 12.2%. The model with the biggest error of
all the six models was the non-BMTS model, which had an average error of 21.1%. The
accuracy and stability of the trained CNN-PSPA models remained at a reasonable level for
different network parameters.

Table 10 shows that the sensitivity of the test results was inversely proportional to the
error rate of the results. For example, the non-LHES model had the highest error fluctuation
among the six CNN-PSPA models when trained with different parameters, but it had the
lowest error value among the models. Compared to the five other models, it was more
sensitive to the parameters within the control range. However, the models with higher
errors did not fluctuate as much. This led to stable prediction results by the CNN-PSPA
model, even with different training parameters.

3.3.2. Comparisons with Observed Results

The non-LHES model, with the best test results among all the six CNN-PSPA models,
was selected for predicting all the site amplification factors of 39 earthquakes at the LHES
station location, where five earthquake records were not included. The prediction results
for the 39 earthquakes are listed in Table 11. The site amplification factors obtained from
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the observation records are listed in Table 11 for comparison. By comparing with the
corresponding observation results, the errors were also calculated for all the incidents, as
shown in Table 11.

Table 11. Prediction results for non-LHES.

Number Earthquake
Epicentral

Distance (km)
Depth
(km)

CNN-PSPA
Average

ErrorObserved
(LHES)

Predicted
(LHES)

Error

1 M4.0 104 40 3.42 2.51 26.5%

12.7%

12.2%

2 M4.0 86 31 2.18 2.41 10.6%
3 M4.1 113 11 3.03 2.38 21.5%
4 M4.1 84 10 2.78 2.50 10.1%
5 M4.1 57 12 3.04 2.45 19.4%
6 M4.1 42 12 2.36 2.49 5.5%
7 M4.2 113 6 3.83 2.70 29.5%
8 M4.2 15 26 2.32 2.60 12.1%
9 M4.3 72 11 2.73 2.45 10.3%
10 M4.3 79 16 2.09 2.23 6.7%
11 M4.3 85 32 2.39 2.28 4.6%
12 M4.4 98 10 2.60 2.51 3.5%
13 M4.4 76 5 2.71 2.50 7.7%
14 M4.4 87 28 2.47 2.28 7.7%
15 M4.5 16 24 2.67 2.30 13.9%
16 M4.5 106 36 2.05 2.39 16.5%
17 M4.5 85 30 2.45 2.30 6.1%
18 M4.5 79 7 3.20 2.55 20.3%
19 M4.5 86 30 2.55 2.31 9.4%

20 M4.6 116 32 2.31 2.42 4.8%

11.7%

21 M4.6 82 12 3.31 2.63 20.5%
22 M4.7 81 33 2.36 2.21 6.4%
23 M4.7 57 13 3.23 2.59 19.8%
24 M4.8 72 11 2.59 2.39 7.7%
25 M4.8 74 12 2.78 2.39 14.0%
26 M4.8 84 54 2.76 2.59 6.2%
27 M4.8 74 9 2.91 2.42 16.8%
28 M5.0 86 36 2.63 2.34 11.0%
29 M5.0 50 13 2.73 2.28 16.5%
30 M5.0 76 8 2.99 2.43 18.7%
31 M5.1 78 5 2.81 2.52 10.4%
32 M5.2 121 8 2.90 2.66 8.3%
33 M5.4 82 34 2.14 2.24 4.7%
34 M5.5 74 17 2.38 2.15 9.7%
35 M5.5 91 15 3.65 2.97 18.6%
36 M5.6 85 7 2.56 2.42 5.5%
37 M5.6 82 13 2.58 2.38 7.8%
38 M5.8 85 37 2.11 2.48 17.5%
39 M6.2 104 34 2.57 2.81 9.3%

Table 11 shows that the total average prediction error was 12.2%, which was relatively
low. In addition, it can clearly be seen from Table 11 that most of the prediction errors for
small earthquakes such as M4.0 and M4.5 were rather high, probably due to the effect of
anomalous amplification of seismic waves by the soil layer. In contrast, the predictions
for the medium-sized earthquakes such M5.1 and M5.6 were better. Furthermore, low
prediction errors for stations FAIS, PGMS and SOCS (but not the bedrock station LHES)
were observed. This indicates that the CNN-FSPA model showed good training for those
three stations. Compared with the CNN-FSPA model in Table 9, the average error of the
CNN-PSPA model was slightly higher by 3.7%.
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In addition, the errors for small earthquakes with large epicenter and source depths,
such as earthquakes with serial numbers 1, 3, 7 and 16, were significantly higher than those
for other earthquakes. However, for medium earthquakes with large epicentral distances
and focal depths, such as earthquakes with serial numbers 20, 32 and 39, errors were lower
and predictions were satisfactory.

3.3.3. Comparison with CNN-FSPA Model

To estimate the ability of CNN-PSPA prediction models, all the six trained models
(non-SOCS, non-PGMS, non-TAIS, non-FAIS, non-BMTS and non-LHES) were used to
predict the site amplification factors at the corresponding stations. For example, the trained
non-SOCS model predicted the site amplification factor at the SOCS station. The test-
sample data were selected using the four earthquakes that were also used to test the
CNN-FSPA model. All error values for the site amplification factors at the six soil stations
were calculated from the six trained CNN-PSPA models. The corresponding errors for the
same four earthquakes at the six station locations based on the trained CNN-FSPA models
were also predicted for comparisons. All the errors of the predicted values for these seven
CNN models are listed in Table 12.

Table 12. Errors for CNN-FSPA and CNN-PSPA.

Magnitude Predicted
CNN-PSPA CNN-FSPA

Models Error Error

M4.5

SOCS non-SOCS 21.7% 4.2%
PGMS non-PGMS 29.9% 12.9%
TAIS non-TAIS 37.9% 13.5%
FAIS non-FAIS 16.8% 19.6%

BMTS non-BMTS 12.1% 26.9%
LHES non-LHES 16.5% 8.1%

M5.6

SOCS non-SOCS 16.6% 1.3%
PGMS non-PGMS 21.7% 4.4%
TAIS non-TAIS 1.8% 1.6%
FAIS non-FAIS 4.7% 2.6%

BMTS non-BMTS 21.0% 5.8%
LHES non-LHES 5.5% 5.1%

M5.1

SOCS non-SOCS 10.2% 2.5%
PGMS non-PGMS 16.5% 1.9%
TAIS non-TAIS 13.5% 11.5%
FAIS non-FAIS 1.7% 1.5%

BMTS non-BMTS 20.8% 12.4%
LHES non-LHES 10.4% 4.1%

M4.0

SOCS non-SOCS 10.0% 21.4%
PGMS non-PGMS 21.3% 16.5%
TAIS non-TAIS 12.7% 20.5%
FAIS non-FAIS 17.3% 3.7%

BMTS non-BMTS 12.2% 3.7%
LHES non-LHES 26.5% 22.2%

Table 12 shows that since the prediction errors of the CNN-FSPA model were lower
than those of the CNN-PSPA model, the CNN-FSPA model was significantly better than the
CNN-PSPA model. This phenomenon shows that the more station data that are included
in the CNN training, the better the CNN model is trained. The included test information
could influence the accuracy and credibility of the prediction results. Table 12 also shows
that although the trained CNN-PSPA model had higher errors than the trained CNN-FSPA
model in any prediction, it had relatively smaller differences, demonstrating that reliable
amplification factors could be obtained even using the trained CNN-PSPA model.
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Table 12 also shows that, as for the predictive regularities of the CNN-FSPA models,
the CNN-PSPA predictions for the medium-sized earthquakes such as M5.1 and M5.6
were better than those for micro-earthquakes such as M4.0 and M4.5. The non-FAIS model
showed outstanding predictive power for medium earthquakes, even though it exhibited
a relatively high error for the micro-earthquakes such as M4.0 and M4.5. In contrast, for
the CNN-FSPA model, it should be noted that the non-FAIS and non-BMTS models for
M4.5 and the non-TAIS model for M4.0 unexpectedly exhibited higher error rates than the
CNN-PSPA model.

3.4. Comparisons of Unrecorded Locations

To predict the amplification characteristics of unrecorded locations, five randomly
selected site points, other than those shown in Figure 8, named A, B, C, D and E, were
used to predict their amplification factors. With the earthquakes with magnitude M5.0 as
an example, the seven trained CNN models with the best testing results, namely, CNN-
FSPA, non-SOCS, non-PGMS, non-TAIS, non-FAIS, non-BMTS and non-LHES, were used
to calculate the amplification factors of the five points. The prediction results of the
amplification factors at these five unrecorded points by the seven CNN-models are shown
in Figure 12.

 

Figure 12. Prediction of the amplification factors of unrecorded points by seven models.

Figure 12 shows that the amplification factors varied in the order E > D > C > A > B. As
shown in Figure 12, all the five points, A, B, C, D and E, exhibited a large amplification factor
when the CNN-FSPA model was used for prediction. If only the CNN-PSPA model (which
showed better training) was used for prediction, the prediction results of the non-FAIS and
non-LHES models for the five points were similar.

However, the predicted amplification factor using the CNN-PSPA model was still
rather small compared to that of the CNN-FSPA model. The reason for this was its
insufficient training quantity and incomplete learning. Therefore, the task of predicting the
amplification factor of unknown points should be performed in a series of steps. These
inspiring results could provide a reference for seismic intensity setting in practical projects.

For discussing the differences in the prediction results, the relative error of two types
of CNNs was used, as given by Equation (6):

ErrorPSPA =
|ValueCNN−PSPA − ValueCNN−FSPA|

|ValueCNN−FSPA| × 100% (6)

where ErrorPSPA denotes the difference rate between the CNN-PSPA and the CNN-PSPA,
and ValueCNN−PSPA and ValueCNN−FSPA are the predicted amplification factors of the
CNN-PSPA model and CNN-FSPA model, respectively. The error values of the predicted
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amplification factors of CNN-PSPA for the five points (A, B, C, D and E) for an earthquake
with M5.0 are shown in Table 13.

Table 13. Relative errors of CNN-PSPA.

Points

Models CNN-PSPA

Non-
SOCS

Non-
PGMS

Non-
TAIS

Non-
FAIS

Non-
LHES

Non-
BMTS

A 26.8% 8.6% 10.5% 24.9% 24.9% 20.6%

B 9.8% 24.8% 6.1% 15.8% 16.7% 19.3%

C 13.0% 18.5% 4.9% 16.7% 26.6% 14.5%

D 8.2% 12.6% 2.2% 5.2% 8.6% 8.6%

E 5.0% 3.9% 12.7% 14.4% 0.9% 6.2%

Compared with the CNN-FSPA model, the CNN-PSPA models clearly showed a
high error rate at point A, indicating that more attention is required. In addition, for the
predictions in Table 13, it can be seen that the amplification factors of points D and E
showed good predictions and small fluctuations in each model. Therefore, the CNN-FSPA
model could predict the amplification factor of an unrecorded location well.

4. Conclusions

In this paper, a 1-D CNN method was used to predict the ground motion amplification
of the Lower Hutt Valley. Based on a relatively small sample dataset, two kinds of CNN
models were established and applied, to predict the amplification factors of the local zone.
The prediction results were inspiring.

Based on the above results, the following conclusions were drawn.
Compared with BNPP models, the trained CNN models were influenced little by

different training parameters, leading to a more stable trained model.
The CNN-FSPA model could effectively predict the station amplification factors from

the existing data; the accuracy was 91.5%, which was 15.8% higher than that of the corre-
sponding BPNN-FSPA model.

Both CNN-FSPA and CNN-PSPA models could effectively predict the amplification
factors of local ground motion.

The comparisons of the CNN-FSPA and CNN-PSPA models showed that, by increasing
the number of earthquakes and the training samples, a prediction model of the ground
surface amplification could be established based on strong earthquake observations.

5. Discussion

(1) For the data processing, we used the Fourier transform method, and also tried other
data processing methods such as the wavelet transform method, to find more accurate data
processing methods for subsequent research.

(2) Since it is difficult for numerical simulations to contain all the seismic information,
in this study we used a combination of seismic records and CNN to predict the amplification
factors with an increased quantity of seismic data. In the future, we will also use a
combination of simulations and observed data to improve the prediction accuracy via
migration learning.

(3) The current trend is to use deep learning to solve some prediction problems. With
the construction of regional station networks and the increase in training samples, we will
continue to collect seismic information from other sites, such as Ashighara Valley and Ohba
Valley in Japan, the Volvi basin in Greece and so on. Therefore, using machine learning to
predict earthquakes has good prospects for development.
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Abstract: A measurement method of bridge vibration by unmanned aerial vehicles (UAVs) combined
with convolutional neural networks (CNNs) and Kanade–Lucas–Tomasi (KLT) optical-flow method is
proposed. In this method, the stationary reference points in the structural background are required, a
UAV is used to shoot the structure video, and the KLT optical-flow method is used to track the target
points on the structure and the background reference points in the video to obtain the coordinates of
these points on each frame. Then, the characteristic relationship between the reference points and
the target points can be learned by a CNN according to the coordinates of the reference points and
the target points, so as to correct the displacement time–history curves of target points containing
the false displacement caused by the UAV’s egomotion. Finally, operational modal analysis (OMA)
is used to extract the natural frequency of the structure from the displacement signal. In addition,
the reliability of UAV measurement combined with CNN is proved by comparing the measurement
results of the fixed camera and those of UAV combined with CNN, and the reliability of the KLT
optical-flow method is proved by comparing the tracking results of the digital image correlation
(DIC) and KLT optical-flow method in the experiment of this paper.

Keywords: bridge vibration; unmanned aerial vehicles; Kanade–Lucas–Tomasi optical-flow method;
operational modal analysis; convolutional neural networks

1. Introduction

The long-term use of bridges may lead to structural damages; hence, it is necessary to
detect damages regularly. Vibration measurement is an important step in structural damage
detections. In recent years, some noncontact-measurement methods have been proposed,
such as Global Positioning System (GPS) [1] and laser Doppler vibrometer (LDV) [2], to
replace the traditional contact-measurement methods (such as acceleration sensors [3]
and strain gauges [4]). However, the GPS is of low accuracy [5] and LDV is costly and
time-consuming [6]. With the development of computer-vision technology, digital image
correlation (DIC) is more and more widely used in bridge vibration measurement [7,8].
Compared with GPS and LDV, DIC technology has the advantages of low cost, high preci-
sion, and high efficiency. DIC is also used for deformation and displacement measurement
of other engineering structures [9]. However, the measurement accuracy of the DIC method
is limited due to the errors caused by pixel interpolation [10]. Also as a computer-vision
method, the optical-flow method is widely used in bridge vibration measurement, and its
accuracy has been confirmed [11,12].

The Kanade–Lucas–Tomasi (KLT) optical-flow method [13] is proposed on the basis of
the Lucas–Kanade optical-flow method [14]. The concept of optical flow was first proposed
by Gibson [15], and represents the velocity of a moving object in a time-varying image.
According to the idea of optical flow, the KLT optical-flow method matches and tracks the
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feature points of two adjacent frames to obtain the motion information of the feature points.
The KLT optical-flow method is widely used in tracking the feature points of different
scenes (buildings, grasslands, etc.) to validate its reliability [16] in measuring vibration of
bridge models [12].

In order to adapt to various measurement environments (such as cross-river bridges,
etc.), in recent years, UAVs have been used to replace fixed cameras for bridge measure-
ment [17,18]. UAVs are also gradually applied to structural crack detection, displacement
measurement, and damage inspection of bridges [19–21]. However, due to egomotion of
UAVs during their flights, the measured displacement includes not only the displacement
of the measured structure, but also the false displacement caused by UAV egomotion. The
common method to eliminate the false displacement is homography transformation [22,23],
but this requires that four or more static reference points are in the same plane of the target
points, which is difficult to achieve in actual measurement. The random components in
the signals collected by UAVs may be suppressed by a differential filtering method [24]
to obtain the structural modal parameters [25]. Although the bridge modal parameters
can be extracted by this method without using any reference point, it does not obtain the
real displacement time–history curves of the target points. The correction method of three-
dimensional reconstruction is proposed to obtain the intrinsic and extrinsic parameters of
the UAV cameras by using Zhang’s method [26], so as to recover the 3D world coordinates
of the structure to obtain its true displacement [27]. However, this method requires that the
plane of the reference points is parallel to that of the target points and the distance between
the two planes is known, which is difficult to achieve in practical measurement. The
correction of UAV images by neural networks has attracted much attention in recent years.
The method of correcting UAV images with a radial basis function (RBF) neural network is
proposed [28]. The selected control points are used by this method as the training samples
of the network. The corrected images can be obtained after the UAV images are inputted
into the network. The two-layer feedforward neural network (FNN) was used to learn
the characteristic relationship between the reference background and target points from
the video with no structural motion [29]. The target-point coordinates can be estimated
through the reference background when the structure is vibrating, which can be used to
determine the homography transformation matrix of each frame image, so as to obtain the
real coordinates of the target points.

A measurement method of bridge vibration by UAVs based on the KLT optical-flow
method and a CNN is proposed in this paper. In this method, the KLT optical-flow method
is used to accurately track the target points, and the multilayer CNN is used to effectively
learn the characteristic relationship between the reference points and the target points
to eliminate the false displacement of the UAV, so as to obtain the real displacement
time–history curves of the structure, and the natural frequency of the model is extracted
by OMA [30,31]. Finally, the measurement results of DIC and fixed camera are used as
references to validate the reliability of the method proposed by this paper.

2. Methods

Firstly, the video of a static structure taken by a UAV is converted into a set of continu-
ous digital image sequences stored in the frame form. The coordinates of reference points
and target points are obtained by DIC and KLT optical-flow method to train the CNN.
Then, the structure is excited and the image sequences are captured by a fixed camera and
UAV. The target points are tracked with DIC technology and KLT optical-flow method,
respectively, to obtain the displacement time–history curves (the one obtained by the UAV
needs to be corrected by a CNN). The natural frequency of the structure is then extracted
by OMA. The technical flowchart is shown in Figure 1.

282



Appl. Sci. 2022, 12, 5181

Figure 1. Technical flowchart.

2.1. KLT Optical-Flow Method
2.1.1. Assumptions of Optical-Flow Method

The optical-flow method is based on two assumptions: brightness constancy and small
motion; that is, the pixel value of the same points between frames are unchanged and the
motion of the points is small. Figure 2 shows three target points in two adjacent images.
The position of the target points in the second image can be determined by finding the
point whose pixel value is consistent with the target points in the first image.

(x1,y1)
(x3,y3)

(x2,y2)

(x1+u1,y1+v1)

(x3+u3,y3+v3)(x2+u2,y2+v2)

),( yxI ),( yxJ

Figure 2. Motion of points.

2.1.2. KLT Optical-Flow Method

In addition to the two assumptions, the KLT optical-flow method [13] also assumes
the spatial consistency; that is, the adjacent pixels in the previous frame are also adjacent in
the next frame.

Suppose I1(x, y) and I2(x, y) are two adjacent images; a fixed size window, W, centered
on the position of a target point is established in the first image. All pixels in W move(
dx, dy

)
between the two images, and (x, y) are the coordinates of pixels. Let d = [dx dx]T ,

X = [x y]T . The d closest to the actual value can be obtained by minimizing the following
expression:

ε =
�
W

[I2(X)− I1(X − d)]2ω(X)dX. (1)
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where ω(X) is a weighting function. In the simplest case, ω(X) = 1. Alternatively, ω could
be a Gaussian-like function to emphasize the central area of the window. Move the centers
of I1 and I2 by d/2 to obtain

ε =
�
W

[
I2

(
X +

d
2

)
− I1

(
X − d

2

)]2
ω(X)dX. (2)

Set the partial derivative of ε with respect to d as 0:

2
�
W

[
I2

(
X +

d
2

)
− I1

(
X − d

2

)]⎡⎣∂I2

(
X + d

2

)
∂d

−
∂I1

(
X − d

2

)
∂d

⎤⎦ω(X)dX = 0. (3)

The following formula can be obtained from Taylor’s expansion:

I2

(
X +

d
2

)
≈ I2(X) +

dx

2
∂I2

∂x
(X) +

dy

2
∂I2

∂y
(X). (4)

I1

(
X − d

2

)
≈ I1(X)− dx

2
∂I1

∂x
(X)− dy

2
∂I1

∂y
(X). (5)

Substitution of Equations (4) and (5) into Equation (3) leads to

�
W

[
I2(X)− I1(X) + pTd

]
p(X)ω(X)dX = 0. (6)

where

p =

[
∂

∂x

(
I1+I2

2

)
∂

∂y

(
I1 + I2

2

)]T
. (7)

The following equation can be obtained from Equation (6):

Zd = e. (8)

where Z =
�

W p(X)pT(X)ω(X)dX, e =
�

W [I1(X)− I2(X)]p(X)ω(X)dX.
Equation (8) can be solved by an iterative method to obtain the value of d. When the

value of e is less than the set threshold, the approximate solution of d can be obtained.
In this paper, the process of tracking the target point on the bridge model by the KLT

optical-flow method is as follows:

1. Select the target point in the initial image;
2. Based on the local template of each target point, the vector of the point between

adjacent frames can be found [13];
3. The tracking effect is judged in each image to optimize the result for each target point.

2.1.3. KLT Optical-Flow Method under Pyramid

It can be seen from Section 2.1.2 that if the assumption of small motion is not met, the
Taylor expansion of Equations (4) and (5) cannot be carried out. The image pyramid [32]
referred by the KLT optical-flow method is used in this paper, which can effectively solve
the above problem. Suppose there is an 800 × 800 image, the displacement range of
the target point in this image is 32 × 32. Now the image is reduced to 400 × 400, the
displacement range of the target point is reduced to 16 × 16, and the assumption of small
motion can be met again according to this principle.

The specific principle of KLT optical-flow method under the pyramid is as follows.
For each image, the original image is taken as layer 0, and the image reduced by 2L times
in length and width is taken as layer L. The obtained image is superimposed from bottom
to top to generate the Gaussian pyramid shown in Figure 3. The displacement value of the
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target point on the highest layer is calculated in the way of the previous section, which is
taken as the initial value of the optical-flow calculation of the next layer to calculate the
accurate displacement value of this layer. The calculated displacement value is transmitted
to the next layer again, so as to calculate to the lowest layer (level 0) to obtain the real
displacement value.

Figure 3. Image pyramid.

2.2. DIC Technology

The principle of DIC method is shown in Figure 4: I2(x, y) is the deformed image
of the image I1(x, y); S1 centered on (x, y) and S2 centered on (x′, y′) are two windows
with the same size, S, which are established at I1(x, y) and I2(x, y), respectively. Where
x′ = x + Δx, y′ = y + Δy. The correlation between two windows can be expressed as [33]:

C(Δx, Δy) =
�

S I1(x, y)I2(x + Δx, y + Δy)dxdy√�
S I2

1 (x, y)dxdy·
√�

S I2
2 (x + Δx, y + Δy)dxdy

. (9)

),( yxI ),( yxJ
’

’
Window

, ,
Figure 4. Principle of DIC method.

The real displacement of (x, y) between two images, (Δx, Δy), can be obtained when
the function value of C(Δx, Δy) is the maximum.

A fixed-size window is used by both DIC and KLT optical-flow methods to search
target points in the whole image range; however, the two methods are different in tracking
target points. As shown in Equation (1), the target tracking of KLT optical-flow method is
based on the residual error of a fixed-size window between two frames, while that of DIC is
based on the correlation of a fixed-size window between two frames, as shown in Equation
(9). Moreover, the implementation process of KLT optical-flow method is accompanied by
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the image-pyramid technology, which tracks the points at multiple levels of resolution of
an image to optimize tracking effect to improve the tracking accuracy.

2.3. Convolutional Neural Networks

The false displacement caused by UAV measurement can be removed by a CNN. As a
feedforward neural network, each neuron of the CNN only extracts the local information
of the input data, and the information are collected at a higher level of the network to
obtain the global information [34]. The complexity of the model is reduced by weight
sharing [35], which accelerates the computing speed and improves the calculation accuracy.
The following is an introduction to the function layer involved in this paper.

The convolution layer is the core of the whole CNN, and the convolution process is
shown in Figure 5. Suppose that there is a 2 × 2 convolution kernel, the sub area consistent
with the size of convolution kernel is found in the input data. An element of the new matrix
can be obtained by multiplying and summing each corresponding element in the sub area
and convolution kernel, and a new matrix can be generated by navigating all of the input
data in steps according to the above method.

A B

E F

C D

G H

I J

M N

K L

O P

W X

Y Z

AW+BX+
EY+FZ

CW+DX+
GY+HZ

IW+JX+
MY+NZ

KW+LX+
OY+PZ

Convolution kernel

Input data Convoluted data
Figure 5. Convolution process.

The feature-extraction ability of the network and the approximation ability of complex
functions can be enhanced by activation-function layer. The activation function used in this
paper is Leaky Relu, and its expression is as follows:

f (x) =
{

x, x ≥ 0
scale × x, x < 0

. (10)

The regression layer generally deals with regression problems, and its loss function is
expressed as follows:

J =
1
2

R

∑
i=1

(ti − yi)
2

R
. (11)

where R is the number of samples, ti is the target output, and yi is the prediction output.
The value of J will decrease with the training of the network until it converges to the target
value.

The network used in this paper is a deep-convolution neural network including input
layer, convolution layer, activation-function layer, full-connection layer, normalization
layer, and output layer. The architecture of the CNN is shown in Figure 6.
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Figure 6. Architecture of the CNN.

2.4. Operational Modal Analysis

In a multiple-degree-of-freedom system, the expression of the response transmissibility
Tio(ω) [36] is

Tio(ω) =
Xi(ω)

Xo(ω)
. (12)

where Xi(ω) and Xo(ω) are the Fourier transformations of xi(t) and xo(t) that are the
time–history response signals at degrees of freedom i and o. The expression of the power
spectral density (PSD) transmissibility [37] is

T̂io (ω) =
Si,o(ω)
So,o(ω)

=
Xi(ω)X∗

o (ω)

Xo(ω)X∗
o (ω)

= Tio(ω). (13)

where So,o(ω) is the self-power spectral density of xo(t), Si,o(ω) is the cross-power spectral
density of xi(t) and xo(t), and X∗

o (ω) is the conjugate complex number of Xo(ω). In this
paper, the displacement time–history curves are obtained by KLT optical-flow method and
DIC, which are used to obtain the PSD curves. The natural frequencies of the structure are
obtained from the peaks of the self PSD curve, while the modal shape can be obtained from
the ratios of the PSD transmissibility at corresponding degrees of freedom.

3. Experiment

3.1. Experimental Equipment

The bridge model used in the experiment is a spatial steel-frame structure with a total
length of 9.8 m and 29 nodes (Figure 7a,b). Figure 7c,d show the hollow round bar (Q235
steel), bolts, and connecting balls constituting the model, respectively, in which the lengths
of red and yellow hollow round members are 365 mm and 215 mm, respectively. The width
and height of each span of the model are 0.35 m.
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Figure 7. Experimental model: (a) bridge model; (b) model node; (c) hollow round bar; (d) bolt-
connecting balls.

The images of the vibrational model are collected by the fixed camera (D5300, Nikon
Corporation, Japan) in Figure 8a and the quad-rotor UAV (Mavic Air 2, Da-Jiang Inno-
vations, Shenzhen, China) in Figure 8b, which are placed 2 m away from the model [8].
The acquisition frequency of the UAV is 30 frames/s and the image resolution is 3840 ×
2160. In order to correct the measurement of the UAV, 5 reference points are selected on the
cardboard at 45◦ to the plane of the model; the other 5 reference points are selected on the
back wall. Hence, all reference points are not in the same plane. The experimental layout is
shown in Figure 9b.

Figure 8. Image-acquisition equipment: (a) fixed camera; (b) UAV.
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Figure 9. Reference points and experimental layout: (a) reference points; (b) experimental layout.

3.2. Experimental Scheme

To validate the reliability of vibration measurement of the bridge model by UAV
combined with CNN and KLT optical-flow method, the measurement results of the fixed
camera are taken as a reference. Moreover, the measurement results of DIC are taken as a
reference to validate whether KLT optical-flow method is feasible to replace DIC in bridge
vibration measurement.

Firstly, the fixed camera and UAV are placed about 2 m away from the bridge model,
and the UAV is used to shoot the static model (the shooting time is 8 min). The reference-
point coordinates tracked by DIC and KLT optical-flow method are used as the input of
CNN, and the target-point coordinates are used as the network output to train the network.
Secondly, the bridge model is excited to vibrate, the fixed camera and UAV are used to
shoot (the shooting time is 80 s for 5 times of excitation), and the points are tracked by
DIC and KLT optical-flow method again. The reference-point coordinates measured by
the UAV are still taken as the input of CNN, the false displacement of the target points
caused by the UAV will be outputted by the trained CNN according to the characteristic
relationship between the reference points and the target points, and the real displacements
of the target points measured by the UAV are obtained by subtracting the output value
from the uncorrected displacement of the target point. The natural frequency of the model
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is obtained by OMA from the time–history curves. The specific process is shown in Figure 1,
and the process of correcting displacement measured by a UAV through the CNN is shown
in Figure 10. Finally, the tracking effects of DIC and KLT optical-flow method are compared
under the fixed-camera and UAV measurements to validate the feasibility of KLT optical-
flow method replacing DIC, and the results of fixed camera and UAV are compared under
the KLT optical-flow method to validate the reliability of UAV data combined with CNN
and KLT optical-flow method. The DIC, KLT optical-flow method, and CNN are realized
using MATLAB (MathWorks Inc., Natick, MA, USA) software.

Figure 10. Process of displacement correction by CNN.

4. Experimental Results and Analysis

The bridge model used in this paper has the largest displacement at node 15 in the
middle of the span. Therefore, in order to better display the results, node 15 is selected as
the target point in this paper (See Appendix A for the measurement results of node 5 and
node 10).

4.1. Comparisons for DIC and KLT Method

The displacement results of the bridge model measured by fixed camera are showed
in Figure 11, which demonstrates that the displacement time–history curves obtained by
the DIC and KLT optical-flow method have very similar characteristics of free-vibration
attenuation, and the maximum amplitude is about 5.7 mm. The ideal displacement curve
x′(t) can be obtained by smoothing the displacement time–history curve x(t) through
locally weighted regression (LOWESS [38]). The difference between x(t) and x′(t) is the
error curve, and the average of the error curve reflects the smoothness of the displacement
time–history curve measured by the DIC or KLT optical-flow method, which is defined
as SDTH in this paper. The SDTHs of the DIC and KLT optical-flow method are 0.048
and 0.031, respectively. In addition, the displacement time–history curve obtained by
DIC has obvious burrs, which illustrates its low measurement accuracy. In contrast, the
displacement diagram obtained by the KLT optical-flow method is smoother, indicating
that DIC is not as accurate as the KLT optical-flow method.
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Figure 11. Measurement results of vibration model with fixed camera: (a) results of DIC; (b) results
of KLT optical-flow method.

As shown in Figure 12, it is the displacements of the static point on the model measured
by the fixed camera and obtained by the DIC and KLT optical-flow method. Theoretically,
the curve should be a straight line with displacement of 0, so that the standard deviation
(STD) of the curve can reflect the accuracy of the two methods. The STDs of the DIC and
KLT optical-flow method are 0.075 and 0.061, respectively, which indicate that the KLT
optical-flow method is more accurate than DIC.

Figure 12. Displacements of the static point obtained by the DIC and KLT optical-flow method.
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The displacement signals in Figure 11 are processed into PSD curves. The peak of the
PSD curve corresponds to the natural first frequency of the model, as shown in Figure 13.
It can be seen from the figure that the natural frequencies extracted by the two methods
are 3.281 Hz and 3.282 Hz, respectively, and the relative error is 0.03%. It shows that the
KLT optical-flow method is feasible to replace DIC to extract the natural frequency of the
structure under fixed camera.

Figure 13. PSD obtained by DIC and KLT optical-flow method: (a) results of DIC; (b) results of KLT
optical-flow method.

4.2. Comparisons of UAV Measurement

The uncorrected displacement measured by the UAV and the false displacement
predicted by the CNN are shown in Figure 14. The figure shows that the uncorrected
displacement curves measured by the UAV have serious drift.

The true displacements of the structure are shown in Figure 15, which are obtained
by subtracting the false displacement of the target points predicted by the CNN from the
uncorrected displacement of the target points. The corrected displacement curve obtained
by DIC has more drift than that by the KLT optical-flow method. In addition, it can be
seen from Figure 15 that each wave of displacement time–history curves fluctuates at
Displacement = 0. The greater the drift of the curve, the farther the mean line of each
wave is from Displacement = 0. The drift degree of the displacement time–history curves
can be represented by the root mean square (RMS [39]). The RMSs of the DIC and KLT
optical-flow methods are 0.063 and 0.025, respectively, which illustrates the low tracking
accuracy of DIC, and it proves the stability of the KLT optical-flow method.
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Figure 14. Uncorrected displacement measured by UAV and false displacement obtained by CNN:
(a) results of DIC; (b) results of KLT optical-flow method.

Figure 15. Cont.
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Figure 15. Comparisons of correction effect of CNN: (a) results of DIC; (b) results of KLT optical-flow
method; (c) comparisons.

The above displacement signals in Figure 15 are processed into PSD curves, as shown
in Figure 16. The natural frequencies extracted for the two displacement signals are 3.285
Hz and 3.286 Hz, respectively, the relative error is 0.04%. It shows that the KLT optical-flow
method is feasible to replace DIC to extract the natural frequency of the structure under
UAV.

Figure 16. PSD measured by UAV: (a) results obtained by DIC; (b) results obtained by KLT.

4.3. Comparisons between Fixed Camera and UAV

The comparisons of the measurement results of the fixed camera and UAV processed
by the KLT optical-flow method are shown in Figure 17, which demonstrates that the
corrected displacement curve measured by UAV and the displacement curve measured
by fixed camera have very similar free-vibration characteristics. By calculating the time
response assurance criterion (TRAC) between the corrected displacement measured by the
UAV and the displacement measured by the fixed camera, the correction effect of CNN can
be judged [10]. The higher the TRAC, the higher the degree of consistency, and the better
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the correction effect. The TRAC between displacement measured by the UAV and that
measured by the fixed camera is 0.996, which shows their high consistency. Combined with
the results of Section 4.2, it can be proved that the displacement of bridge model measured
by the UAV combined with the CNN and KLT optical-flow method is reliable.

Figure 17. Comparisons of results of fixed camera and UAV under KLT optical-flow method.

5. Discussion and Conclusions

5.1. Discussion
5.1.1. Discussion of the Proposed Method

The experimental results show that the displacement of the bridge model measured by
a UAV combined with the CNN and KLT optical-flow method is reliable. The displacement
signals obtained by the KLT optical-flow method under fixed camera and UAV are more
stable than those of DIC, and the extracted structural natural frequency of the KLT optical-
flow method is basically consistent with that extracted by DIC, which shows the feasibility
of replacing DIC with the KLT optical-flow method in bridge vibration measurement. The
difference of the tracking effect between the two methods is mainly caused by the image
pyramid of the KLT optical-flow method, which tracks target points at different levels of
resolutions of an image to improve tracking accuracy. Under the KLT optical-flow method,
the displacement curve measured by UAV combined with CNN is very close to that of the
fixed camera, and the natural frequencies obtained by the two methods are basically the
same, which shows the feasibility of the method of correcting displacements measured
by UAV with CNN proposed in this paper. In the experiment, the 10 reference points are
from two different planes (a cardboard and a wall), which shows that the reference points
from the same plane are not required for the correction method of this paper, unlike other
correction methods. That is one of the highlights of the method proposed in this paper.
Moreover, in order to ensure the assumption of constant brightness of the KLT optical-flow
method, the measurement can be carried out on cloudy days or when the light condition
is stable. Since the measurement duration of the proposed method is about 10 min, the
measurement time needs to be determined according to the actual situation.

5.1.2. Follow-Up Study

Although impressive results were obtained in this paper, there are still some problems
that need follow-up research:

1. The reference point is an important part of the correction method proposed in this
paper, so its influence on the correction effect will be studied in the follow-up.

2. There may be many influencing factors of accuracy of the proposed method in the
actual bridge measurement, such as the wind condition and the actual measurement
distance; therefore, the method in this paper will be verified in combination with the
actual bridge-measurement results in the follow-up.
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5.2. Conclusions

In this paper, a measurement method of bridge vibration by UAVs based on a CNN
and KLT optical-flow method is proposed. The effectiveness of the UAV measurement
results corrected by a CNN is validated by comparing them with the measurement results
of a fixed camera, and the measurement results of DIC are taken as a reference to prove that
the KLT optical-flow method is feasible to replace DIC in bridge vibration measurement.

As most of actual bridges cross rivers or valleys, which causes great inconvenience to
the measurement, the method introduced in this paper has great prospects in measuring
bridge vibration from the perspective of feasibility and accuracy.
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Appendix A

In order to verify that the conclusions of this paper are valid in the case of large,
medium and small displacement, the measurement results of node 5 and node 10 are
shown in the figures below.

Figure A1. Measurement results of node 5 with fixed camera: (a) results of DIC; (b) results of KLT
optical-flow method.

Figure A2. Measurement results of node 10 with fixed camera: (a) results of DIC; (b) results of KLT
optical-flow method.
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Figure A3. Measurement results of node 5 with UAV: (a) results of DIC; (b) results of KLT optical-flow
method.

Figure A4. Measurement results of node 10 with UAV: (a) results of DIC; (b) results of KLT optical-
flow method.
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Abstract: Based on the features of cracks, this research proposes the concept of a crack key point
as a method for crack characterization and establishes a model of image crack detection based on
the reference anchor points method, named KP-CraNet. Based on ResNet, the last three feature
layers are repurposed for the specific task of crack key point feature extraction, named a feature
filtration network. The accuracy of the model recognition is controllable and can meet both the
pixel-level requirements and the efficiency needs of engineering. In order to verify the rationality
and applicability of the image crack detection model in this study, we propose a distribution map of
distance. The results for factors of a classical evaluation such as accuracy, recall rate, F1 score, and
the distribution map of distance show that the method established in this research can improve crack
detection quality and has a strong generalization ability. Our model provides a new method of crack
detection based on computer vision technology.

Keywords: crack detection; deep convolutional neural network; object detection; crack key point;
fusion and filtration of features

1. Introduction

Cracks are critical flaws that affect the behavior and durability of structures, which
can have a negative effect on structural safety. Due to the inevitability and general of cracks
on the surface of concrete structures, the search for efficient and low-cost crack detection
of concrete has been important in structural damage identification. There are two main
directions for the research on crack detection methods: the one is through sensors to test a
static and dynamic response of the structure, based on which, the position and depth of a
crack are identified [1–3]; the other is through image processing techniques to provide the
position and other information about a crack [4,5].

Image-based methods are simple and effective, so they have gained extensive attention.
Computer image processing and vision technology, as well as the upgrading of computing
hardware and image-based crack detection methods, especially those based on deep
convolutional neural networks, have undergone unprecedented development.

Classical image crack detection methods, such as segmentation by a threshold [6], the
edge detection algorithm [7,8], and the morphological filtering method [9], not only identify
cracks effectively but also assess parameters such as crack length and width. However,
their main work is focused on image processing. Crack detection remains a manual process
with low efficiency.

To improve the efficiency of detection, researchers have introduced machine learning
to deal with crack features and have established a classifier to realize automatic crack
detection [10–12]. Crack detection methods of traditional machine learning algorithms
combined with image processing techniques have been applied in this area.

Machine learning has broadened the idea of applying computer vision methods
for defect detection and condition assessment in civil engineering [13] and has brought
about new research directions for all types of detection, including crack detection. Many
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researchers, using these latest machine learning algorithms, have continued to propose
novel image crack recognition models [14–17].

Relying on manual extraction of the characteristics of cracks to realize the crack
detection of an image cannot meet the needs of a project due to the complex information
contained in the actual crack images. In image- and video-based ML approaches for
structural health monitoring, differences in illumination, rotation, and the angle of the
camera can significantly affect the final results [18,19]. To meet the requirements for crack
detection in practical engineering, automatic learning algorithms based on crack features,
especially deep convolutional neural network algorithms, have become a research hotspot.
These methods eliminate the first image processing step of most traditional methods, and,
based on original crack images, can directly extract crack features and detect cracks through
automatic learning models.

Hinton [20] first proposed the concept of deep learning, which has gained exten-
sive attention in the machine learning area. Models based on deep learning began to
emerge [21–23]. Using the same dataset, Dorafshan [24] compared the concrete crack de-
tection results of classic edge detection with a deep convolutional neural network (DCNN).
The results showed that DCNN had advantages in terms of accuracy, detection speed,
and resolution.

Based on the image segmentation algorithm, many detection methods have been
proposed [25–28]. Those methods with high accuracy obtain a good detection effect, espe-
cially for crack width. However, the above methods are all based on image segmentation
algorithms, which require a huge amount of work of pixel-level marking on pictures yet
still do not reach the expected accuracy in some cases. A large number of diverse crack
training samples are also usually required to achieve better detection results [29].

In recent years, object detection methods based on points have been emerging. Zhou [30]
modeled an object as a single point. Hei [31] raised corner detection, while Duan [32]
established a method through center pooling and cascade corner pooling, three of which have
inspired the research on crack detection method based on key points. Although the method
Lee [33] established is still based on pixels, the detection result is more targeted at predicting
crack areas rather than pixels. This method has been an inspiration for further research on
crack detection based on crack key points that is effective and suitable for engineering.

Crack detection methods based on deep learning depend on the extensity of the
training set and the validity of their algorithm. In terms of obtaining crack image data, the
current information era ensures easy access to a huge number of surface crack images, so
the crack detection methods based on deep learning are reasonably trustworthy. There are
two main directions for crack detection algorithms. One regards crack detection as an object
segmentation task by image segmentation algorithms to classify and predict pixels and
finally output binary images [34]. This method can precisely predict the location and width
of cracks but requires detailed and accurate annotation of crack images. However, crack
detection in practical engineering works does not require pixel-level positioning. Another
strategy is to simplify the problem. This method partitions the crack image and detects
crack individually on each patch before stitching them together to locate the cracks [22].
This method simplifies the annotation and can use object sorting algorithms with high
convergence. Nonetheless, this method causes two problems: the lack of integrity of
cracks when partitioning and the loss of the global feature of the crack image, reducing the
generalizability and noise immunity of the model.

Compared with the usual visual computer tasks, crack detection poses three notable
challenges. Firstly, cracks are typical linear objects. Secondly, the commonly existing
environmental noise causes confusion, so the crack detection results are sensitive to global
features. This crack detection problem is relatively severe, influencing the detection results
and invalidating the traditional image processing algorithms. Third, the task is substantially
a binary classification problem with only two options, having a crack or not. Therefore,
only these specificities are considered when designing and modifying a conventional deep
convolutional neural network model. The accuracy and suitability of the crack detection
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method are therefore called into question. Some studies have also shown that the crack
feature information of different scales greatly influences the crack identification effect.

For this purpose, we established a crack detection model that considers the cracks’
linear characteristics and maximizes the use of their global characteristics. Based on the
cracks’ linear characteristics, this method can identify cracks as long as the key points on
the cracks are identified. Considering the network advantages of traditional computer
vision tasks, this research work uses the separation and fusion of the global and local
features of cracks to construct a KP-CraNet model for crack detection. Finally, evaluation
criteria are set to evaluate the effectiveness and suitability of the model. The numerical
experiment has proven that our crack detection model, KP-CraNet, showed a relatively
strong detection ability with great potential for further improvement.

2. Crack Characterization

2.1. Crack Key Point

Cracks are gaps with a certain width presented as melanic pixel point sets in a crack
image in physical space. We try to realize the second-level evaluation task proposed
in [35]—that is, to find the expression of the geometric position of crack damage. Most of
the current image-based crack detection methods predict cracks based on pixel points and
use the binary image to present cracks, such as the surface crack [36] shown in Figure 1a,
and its detection result binary image is Figure 1b. The crack binary image detection takes
full advantage of the image pixel information and precisely expresses the location, length,
width, and other information about a crack. However, most crack detection works do not
require pixel-level information about a crack in reality. Additionally, for deep learning
based on image pixels, the supervised training of the model requires a large number of
highly accurate cracks that are manually marked on the image to create a pixel-based crack
dataset. The amount of work required to mark every pixel of the image is enormous. The
representation of cracks based on crack key points, as shown in Figure 1c, requires the
ligature of the adjacent key points to represent the crack location information. Crack key
points do not have to be in the crack but can be just near it with a distance required by
the engineering detection accuracy. Therefore, there can be more than one crack key point
set. For example, the crack is shown in Figure 2a can define two types of key points set in
Figure 2b,c. The non-uniqueness of crack key points set may lead to some problems, which
will be discussed later in the article.

   
(a) Surface crack original image  (b) Binary image pixel marked  (c) Crack key point marked 

Figure 1. Two characterizations of cracks.

For a given image, the crack key point set can be defined through Equation (1) based
on the crack features:

P = {p1, p2, p3, · · · , pN}, (1)

where N is the number of key points; any element in the set is a subset as given by Equation (2):

pi =
{

sfront
i , sback

i , (pxi, pyi)
}

(2)

The subscript i is the sequence number of a crack key point; sfront
i is the sequence

number of its preceding key point, and sback
i is the latter; and (pxi, pyi) is the pixel coordi-

nate of the crack key point. The sequence numbers of the preceding and latter key points
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demonstrate the connection type of crack key points, the ligature of which provides the
location information of the crack.

   
(a) Surface crack original image  (b) Sparse crack key points (c) Dense crack key points 

Figure 2. Different crack key points can represent the same crack.

2.2. Reference Anchor Point Method

The non-uniqueness of crack key points means three problems need to be solved.
Firstly, the crack detection model clarifies the relevance of detected key points to predict
cracks correctly, regardless of their non-uniqueness. Secondly, whether sparse or dense,
the key points are distributed in the crack area; thirdly, we have to control the number
of detected crack key points, because it prejudices the model training when there are too
many or too few.

2.2.1. Set-Distance Scattering

When detecting cracks, the actual pixel distance of crack key points is hard to set to a
universal standard. For cracks with high sinuosity, their key points should be dense, while
for cracks with low sinuosity, such as linear types, several key points should be enough.

To avoid the crack detection results being influenced by the sparse key points, it is
important to scatter the key points evenly to keep the distances between adjacent key
points the same. If the distance between any two adjacent key points is smaller than a
certain threshold, no operation is needed; if it is longer, new key points need to be found
on their ligature at the same distance as the others to be part of the original crack key point
set, forming a new one, to make sure the distance between any two adjacent key points is
smaller than a threshold. This process is shown in Figure 3.

For adjacent key points, when their ligature is shorter than a pre-set threshold, no
operation needs to be done; when it is longer than the pre-set threshold, then the ligature
of the two points needs to be scattered to insert points at equal distance, as shown as
Equation (3):

M =

[
dis(pi, pj)

εs

]
, (3)

where dis(pi, pj) is the pixel distance between adjacent crack key points pi and pj, while
symbol [] means rounding up to an integer.

We detected the M − 1 inserted points to determine whether they were crack key
points, and traverse preceding and subsequent key point pairs to form a new crack key
point set, as in Equation (4):

Plabel = {(x1, y1), (x2, y2), · · · , (xNlabel , yNlabel)}, (4)

where Nlabel is the number of crack key points after set-number scattering in the current
image, while Plabel is the crack key point set in a single image of the model we proposed.

302



Appl. Sci. 2021, 11, 11321

Figure 3. The process and result of set-distance scattering.

2.2.2. Set Reference Anchor Point

Although the sparsity of crack key points can be controlled through set-distance
scattering, which reduces the error caused by the density of crack key points to an extent,
the number of crack key points is still a problem in real-life detection. If the number of
crack key points is too low, it may result in an inability to identify all cracks accurately;
if the number is too large, it is very computationally intensive. Therefore, this research
proposes a reference anchor point method for crack identification.

The reference anchor point method is derived from the anchor mechanism of the
prediction box in the faster R-CNN model [37]; in this research, the anchors were considered
the prediction points for crack detection. We laid out the anchor points on the image in
advance and detected whether each anchor point was near a crack key point to keep only
the nearest anchor points as the final detection results. This method can effectively solve
the latter two problems mentioned above.

We set the reference anchor point as in Equation (5):

Panchor = {(x1, y1), (x1, y1), · · · , (xNanchor , yNanchor)}, (5)

where Nanchor is the number of the anchor point of a single image, and Nanchor is related
to the anchor point layout. The distance between the adjacent two anchor points S is the
only parameter for determining the anchor point location, i.e., the anchor point stride.
The reference anchor point method is used to set anchor points in an image based on a
certain pixel distance in advance, as the red dots show in Figure 4. Thus, crack detection
has turned into a matter of calculating the probability value of reference anchor points as
crack key points, and when the probability value is higher than a certain threshold, the
anchor point will be regarded as a detected crack key point.

The number of anchor points varies according to the actual situation, enabling the
reference anchor point method to accurately detect cracks based on anchor points in
different densities. For example, the crack area is first determined using anchor points
with large step lengths, and then the local crack area obtained is refined to make a more
accurate prediction of the cracks using dense anchor points, thus establishing a multiscale
crack identification method.

The interval between the anchor step and the crack key determines the crack iden-
tification accuracy. If the anchor step is in pixel units, this crack-critical point method
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is almost equivalent to the pixel-based image crack identification method (conventional
image segmentation method). They differ only in terms of the labeling error in crack
labeling and whether the pixel width of the crack is considered. On the other hand, if
the entire cracked image has only one crack key, the method is equivalent to the image
classification task, which divides the whole image into areas with or without cracks. Thus,
the image segmentation and image classification methods are special cases of the crack key
point method.

Figure 4. Reference anchor layout.

2.3. The Determination of Positive and Negative Sample Point

During the model training for crack detection, the crack key points need to be marked
in the training set images as marking points. The training process involves the model
learning to detect whether a reference anchor point is a crack key point (also called a
marked point). Not all crack key points coincide with reference anchor points, so reference
anchor points can be classified into three types: positive sample points, negative sample
points, and general anchor points. A positive sample point is defined as the closest anchor
point to the crack key points. For each crack key point plabel

j (j = 1, 2, 3, · · · ), its positive
sample point is shown in Equation (6).

panchor
ji = min

i

(
dis

(
sij)

)
, (6)

where dis
(
sij) is the distance between the anchor point panchor

i and the crack key point plabel
j .

However, to maintain the convergence of the model training, all anchor points whose
distance to a crack key point is shorter than a certain threshold, εP, will be set as a positive
sample point. So, the positive sample point is set as in Equation (7):

ET =
{

panchor
i

∣∣∣disij < εP, i = 1, 2, · · · Nanchor; j = 1, 2, · · · Nlabel
}

(7)

So, the reference anchor points in an image belong to a positive sample point set, a
negative sample point set, and a general anchor point set. Figure 5 shows the crack key points
(green), positive sample point set (red), and negative sample point set (blue) when εN = εP.

Figure 5. Positive and negative sample points.
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3. Crack Detection Model KP-CraNet

To consider the influence on crack detection exerted by the linear and global features
of cracks, a crack detection model based on crack key point, KP-CraNet, has been built. The
model contains three hierarchical submodels. The bottom submodel is a feature extraction
model based on crack key points of deep convolutional neural networks, which is also
called a key point feature extraction network or basic network. The second submodel uses
feature pyramid fusion and a reinforce network [38] (FPN feature fusion and reinforce
network) to fuse and reinforce the features of extracted key points. The third submodel
is a feature filtration network, which filters the features of crack key points, the results of
which will lead to an area of a crack key point as an approximate location of a crack.

3.1. The Network Frame of KP-CraNet

Figure 6 shows the network frame of KP-CraNet. The bottom submodel for crack key
point feature extraction adopted the ResNet [39] network framework, choosing the last
three feature layers with different sizes, R1, R2, and R3, as the feature fusion input and
reinforce networks. In this network, the FPN reinforcement network is used for global and
local feature fusion. The output results are dominated by the current layer features, and the
upper layer feature layer is incorporated into the current layer using inverse convolution,
outputting a total of five layers. The first three layers have the same size as R1, R2, and R3,
while the last two layers are based on the R3 layer, again convolved and downsampled to
obtain a smaller layer to better express the global features. Finally, the five feature layers
are subjected to feature filtering. The features of feature layers 1, 3, and 5, which are in
decreasing size order, are inputted into the feature screening submodel, and the probability
of predicting the anchor point as a crack key point is used to screen the positive sample
points sequentially to detect cracked and noncracked areas for the final detection of cracks.

Figure 6. Model network structure.

3.2. Crack Key Point Feature Extraction Network

The key point feature extraction network uses deep convolutional neural networks,
usually adopting ResNet or VGG or other models commonly used in the computer vi-
sion field. Crack detection experiments show few differences between the ResNet and
VGG models, even when increasing the network depth. Therefore, ResNet18, which
requires lower depth, was chosen to decrease the training difficulty and improve the
prediction efficiency.

The input to the lowest layer is the image, and the information contained in each
pixel of it is the smallest unit of the feature, called the smallest local feature. The topmost
layer feature is the crack identification result, and all intermediate result layers from
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the bottommost to the topmost are called feature layers. For any current layer, whether
it is convolution or pooling, the feature points within the range of 3 × 3 convolution
kernels or 2 × 2 pooling kernels of the current layer are weighed and summed, and the
activation function is used to obtain new information about the feature points. Thus,
each feature point of the next layer contains multiple feature point information of the
corresponding position of the current layer. The feature information is continuously
downscaled and integrated, gradually transitioning from local feature information to
global feature information.

Figure 7a,b shows the convolution and pooling layers. The rear, lighter part is the
current layer feature map. The front, darker part is the next layer. The images demonstrate
how framed feature points in the current layer descend to the next layer, which means
the next layer contains information on points in the current layer, so the local feature
information is gradually integrated with the layers, adding up. As the feature layer
increases, the area of information contained in feature points becomes larger. The red dots
in Figure 8 are feature points, and the yellow-green background is the feature area. In a
higher-level feature map, the feature points reflect global features.

Figure 7. The extraction process of convolution and pooling layers.

Figure 8. Feature points and feature area.

3.3. FPN Feature Fusion and Reinforce Network

Three maps of features from the feature extraction network contain both global and
local feature information. Although the specific location of cracks should be precisely
positioned by a local feature map, we also need global features as a reference to avoid the
errors caused by tree branch shadows and stains that look similar to cracks in pictures.
Although, in the feature extraction of single-track networks, higher feature layers contain
some of the features of lower layers, the same layers may contain the feature information
of different layers in different images because of the varying crack rate. Therefore, it is
important to consider both global and local features. Feature information in different
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layers should be further fused and reinforced to obtain integrated feature information
that contains features through all layers. FPN feature fusion and reinforce network is
an effective method of feature fusion and reinforces various sizes that are extensively
applied in the object detection field. After the convolution and fusion of the three feature
maps extracted by the network, three new feature layers are generated, with convolution
and pooling operations repeated twice to form a higher global feature layer, so the FPN
feature fusion and reinforce network would generate five feature layers in total. Apart from
containing more information, it can also process images of different sizes, learn the feature
rules automatically, and finally, generate three reinforced feature maps and two with global
feature information. We selected the first, third, and fifth layers in sequence as the final
extracted feature layer with detailed local features, transition features, and global features.

3.4. Feature Filtration Network

The outputs of FPN feature fusion and reinforce network need another convolution
operation for feature processing and finally output an anchor point prediction result the
same size as the corresponding original feature layers. Different layers contain different
numbers of local or global features, so the prediction results of each layer can be regarded
as the prediction results for different features’ extent, i.e., whether the corresponding area
contains a crack.

Predictions that consider global features will have higher prediction accuracy, while
predictions considering local features will have higher localization accuracy. Thus, starting
with global features, the feature points that do not have cracks are gradually filtered out
based on the results of the current layer prediction. Finally, the identification results
are obtained, and the prediction accuracy and crack location accuracy are guaranteed.
The process of crack detection shown in Figure 9 exemplifies how a feature filtration
network works.

Figure 9. Feature filtration network.

Firstly, we input the prediction results of the bottom feature layer that contains the
most comprehensive global information, as shown in Figure 9b, into the feature filtration
network. Due to the relatively large distance between feature points, each feature point
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contains comprehensive global feature information. The prediction result of the current
layer helps to distinguish between the crack area and noncrack area, as shown in Figure 9b.
We removed the feature points in noncrack areas and kept those in the crack area, as shown
in Figure 9c.

Based on this filtering result, the feature points corresponding to the next feature
layer were retained. As shown in Figure 9d, the features and anchor points of this layer
were screened, and after the screening, only the anchor points of the current layer in
the crack-containing area were retained again; this process was repeated continuously.
According to the network structure, three times in sequence were filtered, and the points
finally retained were the anchor points of the positive sample of the lowest local features
at the maximum resolution set and the minimum step size. These were the key points of
the identified cracks.

It is important to note that the above method is completely different from directly
deciding whether an area contains cracks. The method depends totally on convolution or
pooling operations, whose weight is obtained via the model’s automatic learning.

3.5. Feature Filtration Network

In model training, the input for each layer level is the anchor point prediction result
of the previous layer of features and the eigenvalue of the current layer of features. The
output is the anchor point prediction result of the current layer, which is used to determine
whether each anchor point is a positive sample point of the current layer. Due to the
different sizes of the input images at different layers, or the different sizes of the feature
layers, the tolerance of the critical point determination for identifying cracks is also different.
So, the thresholds εP, εN, and loss function are determined by the size of feature maps.

For reticulated reference anchor points at equal intervals, if their anchor point stride
is S pixels, then the maximum distance between a crack key point and its nearest anchor
point is

√
2S/2 pixels. As shown in Figure 10, the yellow and green points are fracture

key points, and the furthest possible location from the nearest anchor point to that fracture
key point is the four red points around it. εP = 0.8S and εN = 1.5S can be extracted to
define positive and negative sample anchor points in every layer. When the possibility that
the reference anchor point is a positive sample point is higher than the set threshold, the
reference anchor points are regarded as positive sample points of the current layer.

Figure 10. Set the distant threshold of positive and negative sample points.

A loss function is introduced in each layer to speed up the algorithm convergence and
improve the judgment accuracy during training. For this classification problem, a binary
cross-entropy loss function can generally be used. However, for image crack detection
problems, because a crack occupies only a small part of the whole image, there are many
more negative sample points than positive ones, which will lead to error. Therefore, a loss
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function in RetinaNet [40] is applied to balance the positive and negative sample points,
using the Focal Loss function as in Equation (8):

floss =

{ −α(1 − y)γ log y, when ỹ = 1

−(1 − α)yγ log(1 − y), when ỹ = 0
(8)

In order to balance positive and negative samples, regulatory factors α and β were
introduced into the formula. y is the predicted value, i.e., the possibility that reference
anchor points are crack key points of the feature layer. ỹ is the actual value of the same
reference anchor points: the positive sample point is 1, while the negative one is 0.

4. Model Training and Evaluation

4.1. Data Collection

The dataset used in this research was derived from the surface crack images of various
wall surfaces on a university campus in Shanghai. First, we used a camera to take multiple
6720 × 4480 pixel images, divided them into 6 × 6 blocks, and used bilinear interpolation to
unify each block image to a size of 1024 × 768. From these images, 1349 images containing
cracks were selected; 90% of them were used as the training set and 10% as the test set
(https://github.com/csga11/craData, accessed on 24 November 2021).

4.2. Training Parameters

The crack detection model in this paper was based on the Pytorch 1.0 deep learning
framework. The GPU used for training and testing was NVIDIA GTX1080. The initial
parameter weights of the feature extraction network all used the weights of the Pytorch
official ResNet network pretraining model. During training, the batch size was 16, the
number of iterations was 100, and the learning rate was 0.0001. In order to improve the
training effect and robustness of the model, conventional online dataset expansion methods,
such as random inversion, filtering, and brightness enhancement, were used during the
model training.

4.3. Assessment Criteria

The model assessment criteria need to be determined to evaluate whether a crack
detection model is effective. For each anchor point, the distance threshold method was
applied to determine whether a sample point was positive or negative. As the possibility
of positive sample points was calculated as the output, a possibility threshold εb had to be
set for determining the sample points, i.e., the positive and negative sample point set were
as in Equation (9):

EP =
{

panchor
i |yi > εb

}
, EN =

{
panchor

i |yi < εb

}
, (9)

where yi is the predicted possibility value of the anchor point i.
The commonly used accuracy rate in the object detection area was also adopted to rep-

resent the correct prediction rate among all the image detection results as in Equation (10):

P =
num

{
pi
∣∣pi ∈ ET , pi ∈ EP}
num{EP} (10)

In Equation (11), num{} represents the number of elements in the set.
Meanwhile, the introduction of another conventional indicator-recall rate, the propor-

tion of all actual crack points that are correctly identified, describes whether all the key
points of the crack are correctly identified. For any key point of a crack, as long as there is
an anchor point identified as a positive sample point in the circle whose radius is step S,
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the key point of the crack is considered to be correctly detected. Therefore, the recall rate
was defined as in Equation (11):

R =
num

{
pj
∣∣ pi ∈ Panchor, pj ∈ Plabel, dis(pi, pj) < S

}
num

{
Plabel

} (11)

It can be seen that, in order to ensure accuracy, forecasts should be as few and precise
as possible. However, in order to ensure the recall rate, the prediction should be as complete
as possible, so the two indicators are contradictory to a certain extent. According to actual
engineering needs, these two parameters can usually be adjusted. Here, the weighted
balance F1 score of the two is adopted as the final identification evaluation index. The
recall rate is defined as in Equation (12):

F1 − score =
2PR

P + R
(12)

This research proposes the concept of a distance distribution map to reveal the distance
distribution of the identification point from the nearest crack key point. The abscissa is the
distance between the anchor point and the key point of the nearest crack, and the ordinate
is the number of anchor points at the above distance. The results of all the images in the test
set were plotted in one graph. The quality of crack detection was evaluated by analyzing
the number of anchor points within a certain distance.

4.4. Analysis of Detection

The correctness of the model design needs to be tested first to demonstrate the ef-
fectiveness and applicability of the method. We tested three models without a feature
filtration subnetwork, then output three layers, P5, P4, and P3. P5 represents the highest
layer for global features. After testing the two characteristic screening subnetwork models,
P5 is the screening output of P4, and P5 and P4 are the screening output of P3. We set the
threshold rate using the experimental results of the above five models, as shown in Table 1.

Table 1. The assessment result of each output layer when the threshold rate set as 0.5.

Output Layer Distance Threshold Accuracy Rate Recall Rate F1 Score

P5 128 0.869 0.992 0.895
P4 64 0.814 0.894 0.853
P3 32 0.786 0.882 0.831

P5 + P4 64 0.819 0.909 0.862
P5 + P4 + P3 32 0.881 0.833 0.856

When the output layer is a single feature layer, and the sizes of feature layers increase
(from P5 to P3), the correctness of prediction gradually drops. The F1 score decreased from
0.895 to 0.831, which showed that the global feature exerted a notable influence on crack
detection. So, the global feature should be adequately considered.

However, after adding the feature screening subnetwork, comparing the results of P4
with P5 + P4 and P3 with P5 + P4 + P3 shows that the model has better detection results
after adding the feature screening subnetwork. The F1 score increased from 0.853 to 0.862
and from 0.831 to 0.856.

Figure 11 presents a distance distribution map of the detection results of the single-
track output layer model. The intensive blue strips are a histogram of the distance between
anchor points and the nearest crack key point. This shows that, as the distance between
anchor points and the nearest crack key point increases, the number of anchor points
reduces. For the orange anchor point segmenting vertical lines in the image, its vertical
coordinates are the threshold of positive/negative sample determination for the current
feature layer: positive to the left, negative to the right. The curves in different colors are
anchor point segmenting lines under different possibility thresholds, and any line divides
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all the anchor points (blue strips) within the distance into two parts: the upper parts
represent the positive prediction points, and the lower represent the negative prediction
points. Any point in the curve represents the number of positive points in the corresponding
distance, which can be called a positive detection curve.

Figure 11. The histogram of the shortest distance between anchor points and marked points of single-track output layer.

Any one of the identifying positive case curves and vertical dividing lines divides the
blue area into four regions. In the upper left region, the points that are actually positive
case anchors are identified as negative case anchors; in the lower left region, the points that
are actually positive case anchors are identified as positive case anchors; in the upper right
region, the points that are actually negative case anchors are identified as negative case
anchors; and in the lower right region, the points that are actually negative case anchors
are identified as positive case anchors. The percentage of points in the lower left and upper
right areas should be as high as possible.

Therefore, for the P5 output layer shown in Figure 11a, the positive prediction curves
under each possibility threshold almost coincide; the threshold selection has little influence
on the result, which means that the global feature exerts a relatively significant influence
on model detection and the detection of the crack key point is accurate. The prediction
rate of anchor points marked as positive is close to 1, while the prediction rate of anchor
points marked as negative is close to 0, which is an ideal prediction result. Figure 11b,c
demonstrate that, with the decrease in stride, the detection result of the positive/negative
sample point becomes more sensitive to the possibility threshold, and more detection errors
appear, because images with high resolution emphasize the local features, leading to the
misjudgment of anchor points in areas such as cracks. This illustrates that global features
are more helpful for effective crack detection, yet the relatively long stride complicated the
accurate location of cracks. The introduction of a filtration subnetwork requires a correction
of the distance distribution map, because the number of anchor points is influenced by the
feature filtration subnetwork and the size of its output. Changing the vertical ordinate from
the number of anchor points to the anchor point frequency would reduce the influence of
the model anchor point to an extent.
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Figure 12 presents the distance distribution map of a single-track output layer and
introduces the feature filtration layer under a different possibility threshold. It shows
that the curves become steep near the possibility threshold after introducing the feature
filtration network, especially the output of P3; more points are detected near the crack
key points, and fewer are detected away from the crack key points. The figure illustrates
that the feature filtration network has a significant effect, verifying the suitability of the
networks we presented.

Figure 12. Frequency histogram of distance between single output layer and filtration layer anchor point.

Finally, we chose P5 and P3 as feature filtration layers, while P1 was an output layer.
The final results of different crack detection were as shown in Figure 13. This figure proves
that the application of our detection model can lead to satisfactory crack detection results.
Moreover, the detection experiments discovered that the model had good generalizability,
enabling the model to detect manual marking errors. Figure 14a was used to identify
cracks. Figure 14a contains much interference, such as cracks, shadows, and numerical
values. The model detection result is shown in Figure 14b. The comparison of the two
figures shows that the model can detect cracks in a complex environment and meets the
basic requirements of crack identification in a practical engineering environment. The
suitability of the model design proposed in this research has been verified again. It is
worth mentioning that the method proposed in this paper utilizes points but not crack
characteristics in the marking stage. Therefore, width recognition of cracks is not accurate
enough. We should consider modifying and optimizing this method in future research.

Figure 13. Cont.
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Figure 13. Detection results of different cracks.

Figure 14. Detection of cracks on wall with interference factors.

5. Conclusions

Based on the characteristics of cracks, this paper defines the concept of crack key
points, combined with the anchor mechanism in computer vision technology, and proposes
a new crack identification method—the reference anchor point method. This research
established a new model of image crack detection based on deep learning. Through the
analysis of the detection network model and the crack detection experimental results, the
following conclusions were obtained:

• This research proposed a crack characterization method, combined with the features
of image cracks based on key points of cracks. Its detection accuracy is controllable,
which can lead to pixel-level recognition effects and can greatly improve detection
efficiency based on meeting the accuracy requirements of engineering. When the
computer is configured with NVIDIA GeForce GTX 1080, the recognition time of a
single photo is 30 ms.

• The advantages of characterizing image cracks based on the key points of cracks are
explained. By designing algorithms such as fixed-distance decentralization and a
reference anchor point method, the judgment conditions of positive and negative
examples are clarified so that the crack image mark data based on the key points of
the crack are suitable for model training.
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• The image crack detection model KP-CraNet is established. From the perspective
of global and local features, the principle of model detection is discussed, and the
network structure of the model is introduced. The results show that crack key points
greatly improve the crack detection effect.

A new model evaluation method is proposed. The distance distribution map is used
to evaluate the model detection effect based on the key points of the fracture. This research
evaluated the model’s detection effect through a distance distribution map and the accuracy
rate, recall rate, and F1 score. It is shown that the identification model has strong crack
identification and robustness.
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Abstract: Cracks are pathologies whose appearance in ceramic tiles can cause various damages due
to the coating system losing water tightness and impermeability functions. Besides, the detachment
of a ceramic plate, exposing the building structure, can still reach people who move around the
building. Manual inspection is the most common method for addressing this problem. However, it
depends on the knowledge and experience of those who perform the analysis and demands a long
time and a high cost to map the entire area. This work focuses on automated optical inspection to find
faults in ceramic tiles performing the segmentation of cracks in ceramic images using deep learning
to segment these defects. We propose an architecture for segmenting cracks in facades with Deep
Learning that includes an image pre-processing step. We also propose the Ceramic Crack Database, a
set of images to segment defects in ceramic tiles. The proposed model can adequately identify the
crack even when it is close to or within the grout.

Keywords: deep learning; segmentation; ceramics; cracks; image

1. Introduction

In civil construction, buildings must be able to withstand the action of degradation
agents for a predetermined or predicted time [1]. The building’s facades include the
cladding system that serves to protect the building from external degradation agents,
in addition to providing functional and aesthetic comfort to its users [2]. Pathological
manifestations are common at these points, and they occur more frequently in ceramic
materials, which are used on a large scale in buildings. Besides, these manifestations arise
in other types of materials, such as mortar and stone. They can be related to several factors
such as excessive load, humidity variation, thermal variation, biological agents, material
incompatibility, and atmospheric agents [3]. These manifestations compromise the essential
function of protection, which aims to protect the coated surfaces against the agents that
cause deterioration that can present themselves in different ways. Thus, the consequences
can range from aesthetic problems or performance of coating to risks of accidents with
people, substantially aggravated by the height of the buildings [4].

The main types of pathological manifestations associated with ceramic facade cover-
ings are cracks, efflorescence, detachment, and those resulting from biological processes.
Among these, the fissure is the most found in the literature since it compromises the build-
ing safety, puts at risk the people that travel around it, and presents a more critical aesthetic
aspect [3,5–7].

A fissure’s main characteristic is the rupture appearance on the ceramic plate surface
or body, causing the loss of the facade’s integrity and uncovers some of its components,
the plates, or joints. When the fissure happens, a detachment of the substrate plate is
generated [4].

Image processing techniques (IPTs) are currently applied in civil engineering for
images collected from inspections. These techniques emerged to detect cracks in the civil
infrastructure, partially reducing the work done by human beings, and used several image
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processing techniques to extract characteristics of cracks in the surfaces of the images [8].
However, many structure analyses and inspections are carried out manually, and this
requires a lot of knowledge, experience, and time from those who will perform this activity,
thus making the activity long and time-consuming.

Automatic crack detection is essential in places that are difficult to access due to height
or scale, to avoid exposing people to dangerous situations, and to speed up the inspection
process [9]. On the other hand, applying procedures takes time due to the complexity of
the work performed, including the installation of scaffolding, observation of a large area,
and even the use of elevators or Bosun’s chair.

Therefore, to create an automatic crack detection solution in ceramics, we focus on
an image segmentation methodology. Such methodology includes a pre-processing step
because many ceramics have textures in opposition to concrete that has linearity in its
texture. The proposed methodology also includes a deep learning model to solve the
problem of crack detection in ceramics, which in the future may be coupled to drones to
carry out these inspections in a less manual, faster, and less dependent on human action
with specific knowledge for the area. This solution also allows the location of the crack to
be identified by means of the segmented image, since the crack is segmented, showing its
exact location, because in facade inspections, in addition to identifying that there is a crack,
which other works do through classification, it is important to know where it is located. We
can generate an overlay of the images, highlighting where the crack is for future analysis
through segmentation. We created a database to implement the segmentation models that
contain images of defective ceramic plates and the basic crack truth in each image.

In summary, this work has as a novelty the detection of cracks through segmentation.
The proposed methodology identifies the exact location of the crack in the image. A
pre-processing step in the input enables such identification to increase the prominence
of the cracks in the raw images. Thus, it facilitates the model’s learning process. As a
novelty, the work also brings a database of cracks in ceramics that can be used to improve
future research.

This paper is organized as follows. We present related works in Section 2 and the
proposed approach to address the segmentation problem in Section 3. In Section 4, the
metrics, the loss function, and the experimental configuration are described, and we also
present our set of images for segmentation of ceramic cracks. In Section 5, the results are
described, and the experiments are discussed. Finally, in Section 6, we present our main
conclusions and describe future research.

2. Theoretical Foundation

Image segmentation is a process that aims to divide images into regions or objects
of interest that are homogeneous. This activity is the initial step in image processing
applications, such as pattern recognition and image analysis. Image analysis includes
characterization and representation of objects and measurement of resources. This process
is mainly used to find objects and shapes [10]. There are currently several types of segmen-
tation, usually based on formats, pixel characteristics, histograms, and movement. Each
type supports common features in pixels or a group of pixels. [10,11]. The evolution of
deep learning to various kinds of computer vision problems in the literature encourages
this work to build a crack segmentation model based on deep learning.

IPTs had a significant advance in the last years. However, other problems have no
solution found by IPTs yet, such as the real world’s perception (lack of context of images,
images with shadow, textures, variation in lighting), shading, and lighting variation. In
parallel to this, there has been an exponential growth in the use of convolutional neural
networks (CNN), and they have obtained better results for these problems. CNNs, too,
have been used to classify cracks and fissures [8,9,12–15]. However, none of the proposed
CNNs deals specifically with coating ceramics.

There are several studies in the literature on crack detection [8,9,11,12,16–18], but
regarding cracking in ceramics there are few works and each surface has its specificity.
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Young-Jin Cha in [8] applied a vision-based method using a deep architecture of convo-
lutional neural networks (CNNs) to detect concrete cracks without calculations as defect
characteristics. He aimed to create a model that could solve the problem without the use
of processing image techniques. Moreover, Young-Jin Cha compared the obtained results
with traditional methods based on edge detection. CNNs obtained the best performance,
but the work is not related to identifying the location of the crack in the image, but in
an evaluation of an intact or cracked part, which for a facade inspection is not ideal, and
it is necessary to identify where the crack is located. In this work, it was resolved using
segmentation, managing to extract the exact location of the fissure

In another study, Silva W.R.L [12] aimed to increase the level of automation in the
inspection of concrete infrastructure when combined with unmanned aerial vehicles. The
crack detection model developed is based on an image classification algorithm of the deep
learning convolutional neural network (CNN). A relatively heterogeneous dataset has been
provided. The authors claimed that deep learning allows the development of a concrete
crack detection system responsible for several conditions, such as different light, surface
finish, and humidity that a concrete surface can display. In this work, the model VGG16 [19]
was used as a backend to the transference-learning technique. Silva’s best experiment
produced a model with an accuracy of 92.27%. However, Silva’s work deals with image
classification, stating whether or not there are cracks in concrete structures. Moreover, it
does not make clear where the crack is located, which is essential for automated inspection
of structures.

In Ahmed Mahgoub Ahmed Talab [18], the authors presented a new approach in
image processing to detect cracks in the images of concrete structures. The method involves
three steps. Firstly, changing the image to grayscale to use the Sobel method to detected
edges and find the cracks. Second, determining an appropriate threshold in a binary image
and classifying all pixels into two categories: background and foreground, and obtaining
the region’s area. Finally, using the filter area and changing the area if it is smaller than
the specified number. Third, after applying the Sobel filter to eliminate residual noise,
performing the Otsu method to detect large cracks. The article describes a method for
detecting crack patterns in cement using image processing techniques. According to the
author, this method’s advantage is the precise and accurate detection of cracks in the
images. The experimental work shows that the method is better than other widely used
techniques. However, it does not use deep learning, and it is limited only to the use of
image processing, which has the advantage of the low computational cost. Moreover, the
work from Talab does not present the same generalization capacity as CNNs. In opposition,
the methodology proposed in this work includes the combination of deep learning with
image processing, improving the generalization in crack detection.

3. Crack Segmentation of Ceramic Surface

This work presents an architecture for segmenting cracks in facades with Deep Learn-
ing that was named the CCS model (Segmentation Model for cracks in ceramics) that
includes a pre-processing step and a deep neural network for segmentation proposal fol-
lowed by a threshold operation, as shown in Figure 1. The output is a binary image that
brings white lines where the cracks were located, and, through overlapping images, it is
possible to highlight the cracks in the original image. At CCS, pre-processing is done in the
database before using the segmentation model. The pre-processed image with its label is
adopted as input to perform the model’s training. After training, only the original image is
needed to run this network.
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Figure 1. Architecture for crack segmentation in CCS model.

3.1. Data Pre-Processing

Pre-processing became necessary due to differences in context in the images, as just a
grayscale image binarization is not enough, as much of the area of interest in the image is
lost, and in some cases, the cracks present in the image disappearedm as shown in Figure 2.
With that, it is necessary to apply some techniques in addition to binarization. Several
experiments were carried out regarding the detection of lines, edges, and objects through
computer vision to find a generic pre-processing for this problem.

Figure 2. Example of a pre-procesing: (up) Original image, (middle) simple binarization, and (down) performed pre-
processing on the original image.

The techniques used are listed below:

1. Histogram equalization;
2. Gaussian filter (with kernel 3 × 3);
3. Light and contrast adjust;
4. Inversion;
5. Erode and dilate functions (with kernel 5 × 5);
6. Finally, Otsu thresholding.
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As seen in Figure 2, the pre-processing result highlights the area of interest, becoming
much more in evidence, thus facilitating the neural network’s performance in the extraction
of characteristics.

This configuration was obtained through several attempts to highlight the images’
cracks, using digital image processing techniques until reaching an acceptable result, where
it obtained a better learning result by the model. The histogram equalization was used
to change the image values’ distribution, allowing the sharp differences to be reduced
and accentuating details not previously visible. The Gaussian filter was used to soften
the image, blurring it to remove noise, using a 3 × 3 kernel to make a smaller effect since
the kernel’s size influences the blurring power. Light and contrast adjustment was used
to correct images with excessive lighting problems, not impacting those with standard
lighting. The pixel inversion used in the images was necessary to comply with the standard
established in the labeling of the images, where it was decided that everything white would
be cracked surfaces and what was black would be parts of the ceramic, so the inversion
made what was black turn white, and whatever was white turned black, since the grayscale
highlighted the cracks in black. The erosion and dilation process was applied to solve the
discontinuity of some cracks that broke during the blurring process, using a 5 × 5 kernel to
continue the cracks, and lastly, a threshold was used. Some other techniques were tested
but, in analysis, no significant change was seen for the objective that wanted to be achieved
(highlighted in the fissures) and did not significantly influence the learning of the model.

3.2. Segmentation Model

The segmentation model uses the U-Net, proposed by Ronneberger et al. [20], which
stands out in the segmentation problems due to the better performance, even with few
images for training. The peculiar name of U-Net is due to the “U” shape of its architecture.
The network input is the image that needs to be segmented. The output is the image label,
a label that represents the model’s expected output.

The network has a typical convolutional network architecture; however, it has two
complementary paths, the contracting path (left side) and the expansive path (right side).
The contracting path handles executing controls to extract characteristics from the image.
This process reduces the dimensionality and increases the filters applied to extract features,
generating a map for each level. On the other hand, the expansive path handles reducing
the filters and increasing the dimensionality. A concatenation process is performed with
the correspondingly cropped feature map from the contracting path to reach the segmented
image’s formation.

The contraction path is a typical convolutional network architecture. It contains
nine learning convolutional layers and four max pooling operations after every three
convolutions [20]. We applied two 3 × 3 convolutions in our implementations, each
followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling operation with stride 2
for downsampling. The number of feature channels is doubled for each downsampling step.
A cropping process is made during the expansive path to avoid the loss of border pixels
in every convolutional operation [20]. In our implementations, the feature map is halved
by a 2 × 2 up-convolution [20] in an up-sampling process, followed by concatenation
with the correspondingly cropped feature map from the contracting path, and two 3 × 3
convolutions. A ReLU operation follows each convolution. Cropping is necessary due to
the loss of edge pixels in every convolution. A 1 × 1 convolution is used in the final layer
to map each feature vector of the component to the desired number of classes.

3.3. Threshold

As a final step, it is necessary to apply a simple threshold to perform a binarization of
the image and ensure that the end of the image values is of 0 (zero) or 1 (one), with 0 points
for no cracks and 1 point for cracks in the semantic segmentation of pixel by pixel. For each
pixel, the limit value used was 0.5, where, if the pixel value is less than the limit, it will be
set to 0. Otherwise, it will be defined with the maximum value defined, in this case, 1.
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4. Methodology

This section describes the methodology followed in this article. First, we describe the
loss function used in the segmentation models. Next, we describe the database, metrics,
and the experimental setup to obtain the results.

4.1. Loss Function

In this work, we used the Jaccard distance as our loss function. The Jaccard distance
measures dissimilarity between sample sets. This function is complementary to the Jaccard
coefficient or intersection over union. The loss function is calculated as:

L(A, B) = 1 − |A ∩ B|
|A ∪ B| ,

where A and B, in the CCS model, are binary images of the same size.

4.2. Ceramic Cracks Database

We propose a ceramic crack database with 167 ceramic crack images. The images were
collected by students of the University of Pernambuco from the civil engineering depart-
ment. The database consists of images of a fixed resolution of 256 × 256 in RGB format
without any pre-processing. Each element is labeled with a binary image of segmented
cracks. The data has various characteristics, like different sizes, angles, illumination, dis-
tances, or even materials and textures. The database has images of building facades with
ceramics with cracks of different shapes, both superficial and more profound. Besides,
the database has images of ceramics with different colors and textures, which enrich its
diversity and give more information to the model used. Figure 3 shows examples of the
database images, the first line (up) shows the original images resize by 256 × 256, and the
second line (down) shows the respective segmented label.

Figure 3. Examples of images collected to assemble the database and their respective ground truth
(black and white).

A label corresponding to the images is required to perform the training of the segmen-
tation networks. Those labels are the expected results of the network. They were manually
generated for all the collected data and featured white for the original image regions
characterized by a crack and black for all other regions. The database will be available for
public use in future works related to the ceramic crack segmentation problem at the link
https://github.com/gerivansantos/ceramic-cracks-dataset (accessed on 2 June 2021).
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4.3. Metrics

The described metrics compare the previously mentioned approaches and evaluate
which provided the best solution. For this purpose, the metrics selected are the Intersection
over Union (IoU), Precision, Recall, the Kappa Coefficient, and Specificity.

4.3.1. Intersection over Union

IoU or Jaccard coefficient is a measurement commonly used to validate semantic
segmentation, and it is direct and effective. It is the intersection between predicted seg-
mentation and ground truth divided by the union between the two, as demonstrated in
Figure 4. This metric oscillates between 0 and 1, or 0 and 100%, wherein 0 indicates no
intersection and 1 indicates an intersection equal to the union.

Figure 4. Representation of the Intersection over Union.

4.3.2. Precision and Recall

Precision demonstrates the percentage of the relevance of the results. Conversely, recall
illustrates the percentage of relevant results that are correctly classified by the algorithm. It
relates the number of correct positive predictions to all positive predictions. The following
equations calculate precision and recall:

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

4.3.3. Kappa Coefficient

The Kappa Coefficient is a statistic that evaluates the relation between two sets of data,
calculated as follows:

k =
P0 − Pe

1 − Pe
,

where P0 is the relative acceptance rate and Pe is the hypothetical acceptance rate. Thus,
the closer k is to 1.0, the more the two data sets are related.

4.3.4. Specificity

Specificity was also measured, and it is defined as the proportion of real negatives
predicted to be negatives (True Negatives), as illustrated in the following equation. It im-
plies another portion of real negatives that were predicted to be positives (False Positives),
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which must equal 1 when summed with specificity. Another existing metric is sensitivity,
which measures the proportion of correctly classified real negatives.

Speci f icity =
TrueNegatives

TrueNegatives + FalsePositives

4.3.5. Confusion Matrix

The Confusion Matrix contains information on the real data and a classifying system’s
predictions, and it is commonly used to evaluate such a system. It is a table with four
different relations between real and predicted values: True Positives (TP), correctly pre-
dicted positives; True Negative (TN), correctly predicted negatives; False Positives (FP),
type 1 error, incorrectly predicted positives; False Negatives (FN), type 2 error, incorrectly
predicted negatives. Thus, it is useful in measuring Precision, Recall, and Specificity.

4.4. Experimental Setup

This paper sets a benchmark over the proposed database, using state-of-the-art models.
The 70% of the data is randomly allocated for training and 30% towards testing in the
several experiments performed, which were used as comparative parameters for the
database. The models selected to make a comparison with the proposed model were
variations of implementations of U-Net [20] and LinkNet [21]. The criteria for its selection
are the relevance in the image segmentation literature and the good accuracy in solving the
proposed problem. Data augmentation was also applied to improve the generalization of
the model.

The used architecture, backbone, and weight initialization method are illustrated in
Figure 5. The backbone is the network architecture implemented in each model. In this
work, we use the different architectures like resnet34 [22], resnet50 [22] and vgg16 [19],
which are 34 layers deep, 50 layers deep and 16 layers of deep, respectively. The initializa-
tion of the weights is carried out randomly and using the weights of the pre-trained neural
network with the ImageNet database [23].

Input images are set with size 224 × 224 to U-Net and LinkNet models. We apply the
Adam algorithm, a stochastic gradient descent method based on the adaptive estimation of
first-order and second-order moments [24]. In our experiments, we set the hyperparameters
to the Adam algorithm with β1 = 0.9, β2 = 0.999, and ε = 10−07, with a learning rate of
α = 0.001.

A total of 20 experiments are performed 30 times to ensure that the results were
statistically significant, and from them were extracted the metrics used to compare the
results. Additionally, since fine-tuning presents good results in deep learning applications,
we analyzed its efficiency in this work approach.

Figure 5. Conducted experiments, where (A) are models, (B) are backbones, and (C) are weight
initialization, where “None” is the initialization of the weights carried out randomly.
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5. Results and Discussions

The models were selected according to their success in the segmentation of images, as
previously presented. After that, 20 fine-tuning experiments were performed, altering the
models’ backbone and the weight initialization. Table 1 outlines each model’s three best
results, utilizing the IoU metric.

Table 1. Result of the metrics for the U-Net and LinkNet models, and the different network architectures. The weights of a
pre-trained network with ImageNet are used to initialize each of the models.

Metrics

Models

U-Net LinkNet

CCS † resnet50 † resnet50 resnet34 resnet34 resnet34 † vgg16

IoU 0.865 0.685 0.681 0.675 0.697 0.684 0.672
Precision 0.999 0.713 0.727 0.720 0.727 0.711 0.704

Recall 0787 0.946 0.933 0.929 0.946 0.922 0.897
Kappa 0.724 0.805 0.808 0.803 0.814 0.794 0.775

Specificity 0.999 0.988 0.988 0.988 0.988 0.987 0.988

† For these models, weights were randomly initialized.

In terms of average IoU, our model CCS overcame the IoU value from the other
models. We obtain an index of 86.5% in CCS model, and in the U-Net and LinkNet models,
the value is around 68%. The obtained average precision in our approach in the U-Net
model reaches a value of 99.9%. The U-Net and LinkNet models demonstrate that the
resnet50 and resnet34 models, when initialized with the ImageNet weights, present an
average precision of 72.7%. Regarding the average recall, to U-Net with resnet50 backbone,
without weight initialization, and LinkNet with restnet34, initialized with the ImageNet
weights, obtained percentages were equal to 94.6%. This value overcomes the average
recall of our approach, with a value of 78.7%. Our approach shows a high value of accuracy
and a low recall. However, most of our predicted labels are correct.

The best average kappa coefficient is obtained by a LinkNet model with a resnet34
backbone, using the ImageNet weights, with 81.4%. All the models to U-Net and LinkNet
achieve a value of kappa coefficient around 80%. The lower value is from our approach,
with 72.4%, followed by the LinkNet model with vgg16 and ImageNet initialization.
We observe that the models with vgg16 architecture reach the low values of the kappa
coefficient. The average value of specificity for the U-Net and LinkNet models reached a
value of around 98%. Our approach obtains a value of 99.9%, overcoming the other values;
nonetheless, it does not seem to show a significant difference.

Regarding the confusion matrix, our approach correctly classified 99% of the pixels
that belong to the crack (Figure 6a). However, 27% of the pixels that are not from the crack
are classified as part of it. Using the U-Net model, resnet50 with the random initialization,
95% of the pixels are correctly classified as cracks (Figure 6b). For all other implementations
(Figure 6c,d), 93% of the crack is correctly classified. The Linknet model, with resnet34
and initialization with ImageNet, correctly classify 95% of the crack pixels (Figure 6e),
surpassing the other implementations (Figure 6f,g) with values of 90% and 84%.
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(a) CCS † (b) U-Net resnet50 † (c) U-Net resnet50

(d) U-Net resnet34 (e) LinkNet resnet34 (f) LinkNet resnet34 †

(g) Linknet vgg16

Figure 6. Confusion matrix from the prediction to (a–d) U-Net model, where (a) is CCS model, (e–g) LinkNet model. The
weights of a pre-trained network with ImageNet are used to initialize each of the models (For the models †, weights were
randomly initialized).

Qualitative analysis can be illustrated with the results presented in Figure 7. The
Figure shows an example image (Figure 7a) and its ground truth (Figure 7b). The original
image is inputted to the network, having the expected output (Figure 7c–i). It is possible
to observe mistakes in segmentation labeling in some regions. Figure 7c,h shows a thick
segmentation in comparison with the other predictions, overestimating the region where
the crack is. A fine segmentation can lose crack representation. In Figure 7e, some parts
of the crack are not identified. It should be noted that the models above can segment the
cracks that are above or near the grouts. In some IPTs, such as fissures, they are easily
confused with grouts. During the training, some analyses were made, and it was observed
that by increasing the number of epochs in the training, the model was able to learn more,
including understanding when the cracks were overlapping in the grout reducing the
problem of not identifying cracks near or overlapping the grout.
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(a) Original image (b) Ground truth

(c) CCS † (d) U-Net resnet50 † (e) U-Net resnet50

(f) U-Net resnet34 (g) LinkNet resnet34 (h) LinkNet resnet34 †

(i) LinkNet vgg16

Figure 7. Example of (a) an original image and (b) the ground truth used for testing. Prediction of the (c–f) U-Net, where (c)
is CCS, and (g,h) LinkNet models. The weights of a pre-trained network with ImageNet are used to initialize each of the
models (For the models †, and weights were randomly initialized).
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6. Conclusions

In this work, we analyze deep learning models’ capabilities in the segmentation of
cracks in ceramics tiles. We propose a pre-processing methodology to improve the perfor-
mance of models to ceramic crack segmentation. Besides, we present the Ceramic Cracks
database, a set of images with ceramic tiles with cracks destined for crack segmentation.
Our results show that it is possible to identify cracks in ceramic images, although there
are a few minor errors. The crack is identified with a high precision value in the model
using a pre-processing methodology. The U-Net and LinkNet models achieve good results,
using the resnet50 and resnet34 as backbones, respectively, and the weights of a pre-trained
network with ImageNet to initialize. By increasing the number of epochs during training,
the models manage to segment cracks even when they are in the tiles’ grout.

Thus, other researchers can use the proposed study and database to improve their
segmentation issues using computer vision. This paper then contributes to a new seg-
mentation problem and a new database for crack segmentation in ceramic tiles. Future
works are expected to compare the proposed solution’s efficiency to other deep learning
segmentation models and update the database, increasing the number of instances. We
also intend to study the computational cost of the proposed solution and other solutions in
the literature. On the other hand, we expect to implement this work in drones for optical
facade inspection, which allows a more efficient inspection at a low cost.
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Abstract: Blockage of culverts by transported debris materials is reported as the salient contributor
in originating urban flash floods. Conventional hydraulic modeling approaches had no success
in addressing the problem primarily because of the unavailability of peak floods hydraulic data
and the highly non-linear behavior of debris at the culvert. This article explores a new dimension
to investigate the issue by proposing the use of intelligent video analytics (IVA) algorithms for
extracting blockage related information. The presented research aims to automate the process
of manual visual blockage classification of culverts from a maintenance perspective by remotely
applying deep learning models. The potential of using existing convolutional neural network (CNN)
algorithms (i.e., DarkNet53, DenseNet121, InceptionResNetV2, InceptionV3, MobileNet, ResNet50,
VGG16, EfficientNetB3, NASNet) is investigated over a dataset from three different sources (i.e.,
images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD), synthetic
images of culverts (SIC)) to predict the blockage in a given image. Models were evaluated based on
their performance on the test dataset (i.e., accuracy, loss, precision, recall, F1 score, Jaccard Index,
region of convergence (ROC) curve), floating point operations per second (FLOPs) and response
times to process a single test instance. Furthermore, the performance of deep learning models
was benchmarked against conventional machine learning algorithms (i.e., SVM, RF, xgboost). In
addition, the idea of classifying deep visual features extracted by CNN models (i.e., ResNet50,
MobileNet) using conventional machine learning approaches was also implemented in this article.
From the results, NASNet was reported most efficient in classifying the blockage images with the
5-fold accuracy of 85%; however, MobileNet was recommended for the hardware implementation
because of its improved response time with 5-fold accuracy comparable to NASNet (i.e., 78%).
Comparable performance to standard CNN models was achieved for the case where deep visual
features were classified using conventional machine learning approaches. False negative (FN)
instances, false positive (FP) instances and CNN layers activation suggested that background noise
and oversimplified labelling criteria were two contributing factors in the degraded performance of
existing CNN algorithms. A framework for partial automation of the visual blockage classification
process was proposed, given that none of the existing models was able to achieve high enough
accuracy to completely automate the manual process. In addition, a detection-classification pipeline
with higher blockage classification accuracy (i.e., 94%) has been proposed as a potential future
direction for practical implementation.

Keywords: convolutional neural networks; visual blockage of culverts; intelligent video analytic;
image classification

1. Introduction

Cross-drainage structures (e.g., culverts, bridges) are prone to blockage by debris
and are reported as one of the leading causes of flash floods in urban areas [1–7]. The
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1998 and 2011 floods in Wollongong, Australia [1,8–11] and the 2007 floods in Newcastle,
Australia [1,12] are typical examples where blockage of cross drainage hydraulic structures
contributed to triggering the flash flooding. Project 11: blockage of hydraulic structures [4]
was initiated under the Australian rainfall and run-off (ARR) [13] framework to study
the blockage behaviour and design considerations of hydraulic structures. Under this
project, Wollongong City Council (WCC) proposed the guidelines to consider the hydraulic
blockage in the hydraulic structures design process [2,4,14–17]. However, because of the
unavailability of relevant supporting data from peak flooding events, proposed guidelines
were not adaptive and were based on the post flood visual assessments, which many
researchers believe is not the correct representation of blockage during the peak flooding
events [1,2,14]. The guidelines suggested that any culvert with an opening diagonal of 6 m
or more is not prone to blockage. However, this claim was only supported by post flood
visual assessments and was not considered economically efficient to implement.

Initially, the blockage was defined as the percentage occlusion of hydraulic structure
opening; however, many argued that hydraulic blockage and visual blockage are two sepa-
rate concepts. The hydraulic blockage is more complex and has no established relationship
with visual blockage. The hydraulic blockage is associated with the interaction of debris
with the culvert and its corresponding effect on fluid dynamics around the culvert; however,
due to the highly non-linear and uncertain behavior of debris, it is difficult to model and
predict the hydraulic blockage using conventional means. Culvert blockage management
is categorized under the broader “The Smart Stormwater Management” project [18] which
aims to make use of data analytic and Internet of Things (IoT) for efficient stormwater man-
agement. Detection of blockage (i.e., StopBlock) to avoid flash floods is one of the critical
components of this project. From a management and maintenance perspective, making
use of multi-dimensional information (i.e., visual blockage status, type of debris material,
percentage of blocked openings) extracted using computer vision algorithms may prove
helpful in making timely decisions, as suggested in literature [7,19]. As of now, to assess
the visual blockage at culverts, manual visual inspections by flood management teams are
performed to decide if a culvert needs maintenance towards avoiding the overtopping of
flow and flash flooding. However, this process is inefficient in terms of required human
resources and unsafe during peak flood events. This paper attempts to address the problem
from a different perspective and proposes the use of visual information extracted using au-
tomated analysis in better management of blockage at cross drainage hydraulic structures
and automating the process of manual culvert visual blockage status classification.

This paper investigated the potential of convolutional neural network (CNN) al-
gorithms towards classifying culvert images as “clear” or “blocked” as an automated
solution for visual blockage inspections of culverts. Existing CNN models (i.e., Dark-
Net53 [20], DenseNet121 [21], InceptionResNetV2 [22], InceptionV3 [23], MobileNet [24],
ResNet50 [25], VGG16 [26], EfficientNetB3 [27], NASNet [28]) pre-trained over ImageNet,
and conventional machine learning approaches (i.e., SVM, RF, xgboost) were implemented
for the culvert blockage classification task using data from three different sources (i.e.,
Images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD),
synthetic images of culverts (SIC)), and performance was compared based on the stan-
dard evaluation measures. As a summary, the followings are the main contributions of
this research:

1. Developed a culvert blockage visual dataset using multiple sources, including real
culvert images from WCC records, simulated lab-scale hydrology experiments and
computer-generated synthetic images;

2. Explored the potential of existing deep learning CNN and conventional machine
learning models for classifying blocked culvert images as a potential solution towards
automating the manual visual classification process of culverts for making blockage
maintenance-related decisions;

3. Highlighted the challenges of culvert blockage visual dataset and inferred important
insights to help improving the classification performance in future;
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4. Proposed a detection-classification pipeline to achieve higher blockage classification
accuracy for practical implementation. Furthermore, a partial automation framework
based on the class prediction probability is introduced using a single deep learning
model to assist the visual inspection process.

The rest of the paper is organized as follows: Section 2 presents the theoretical back-
ground of the implemented CNN models in this investigation. Section 3 provides infor-
mation about the dataset used in this study for culvert blockage classification. Section 4
outlines the experimental protocols adopted to perform the experiments. Furthermore,
this section provides information about the evaluation measures used to assess the clas-
sification performance of the implemented models. Section 5 presents the results of the
experiments and also reports the critical insights from the investigation. Section 6 presents
a brief introduction to the detection-classification pipeline towards improving the blockage
classification performance. Section 7 concludes the study and reports the highlighted
outcomes from the experiments. Furthermore, the section lists potential future applications
of the presented research.

2. Deep Learning Models

This section presents the theoretical background of the implemented deep learning
models for culvert visual blockage classification. For the presented investigation, one
model from each common and state of the art category of deep learning models was
selected to demonstrate the diversity of applied approaches. A brief introduction, model
concept, model architecture, and the fundamental mathematics is outlined for each model.

2.1. DarkNet53

Redmon and Farhadi [20] proposed you only look once (YOLOV3) in the year 2018,
where they used DarkNet53 CNN architecture as the feature extractor. DarkNet53 is
the variant of DarkNet19 (i.e., feature extractor CNN in YOLOV2) but with an increased
number of convolutional layers and residual connections in between. The structure of the
DarkNet53 model consists of successive (3 × 3) and (1 × 1) convolutional layers. Dark-
Net53 is much deeper than DarkNet19 and achieved better performance than DarkNet19,
ResNet50, and ResNet102 for the ImageNet challenge. Model structure best utilizes the
graphical processing unit (GPU), which makes it faster.

2.2. ResNet

He et al. [25] proposed a novel residual learning framework to facilitate the training of
extremely deep networks. Rather than learning unreferenced functions, authors proposed
the reformulation of layers as residual learning functions with reference to inputs of the
layer. The residual learning concept helped in optimizing the deep networks and made
it possible to achieve higher accuracy from deep models. Mathematically, let us say H(x)
denotes the desired mapping function, in residual learning, stacked non-linear layers fit
another mapping function F(x) := H(x)− x. x denotes the inputs to the layer.

2.3. MobileNet

Howard et al. [24] proposed a category of CNN called MobileNets for cutting edge
hardware applications with the idea of using depthwise separable convolutions towards
building the deep networks. Two global hyperparameters were introduced to develop
problem-specific models with accuracy and latency adjustments. Depthwise separable con-
volution is the type of factorized convolution that splits the standard convolution process
of convolving and combining into two layers. At the first layer, depthwise convolution
is performed, while at the second layer, a 1 × 1 pointwise convolution is performed to
combine the outputs from the depthwise convolution layer. All layers in the network are
followed by a BatchNormalization and ReLu non-linearity. A depthwise convolution for a
single filter per input channel can be expressed mathematically as in Equation (1).
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Ĝk,l,m = ∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m (1)

where K̂ denotes the depthwise convolutional kernel, F denotes the feature map and Ĝ

denotes the filtered output feature map.

2.4. InceptionV3 and InceptionResNet

Szegedy et al. [22,23] introduced the idea of inception module towards reducing
the computational cost of the network without significantly affecting the generalized
performance. InceptionV3 [23] and InceptionResNet [22] are improved versions of the
proposed inception module. In InceptionV3, the idea of replacing large filters with small
asymmetric filters was introduced and a 1 × 1 convolution was used as a bottleneck before
the large filters. Concurrent placement of 1 × 1 filter resulted in cross-channel correlation.
On the other hand, in the InceptionResNet model, Szegedy et al. [22] integrated both
inception and residual concepts where concatenated filters were replaced by the residual
connections. InceptionResNet was able to more quickly converge and achieved accelerated
training performance.

2.5. VGG16

Simonyan and Zisserman [26] investigated the performance of deep convolutional
networks by making architectural changes. The main idea was to replace the higher
dimension filters with 3 × 3 filters and increase the depth of the network. This resulted in
improving the computational cost with a significantly smaller trade-off in accuracy. From
experimental investigations, authors reported that smaller filters were able to induce similar
features as larger dimension filters. Padding was used to maintain the spatial resolution.
The idea of increasing the depth of the network with smaller resolution filters demonstrated
significant success for large scale classification and localization tasks. However, an increase
in depth to a large scale resulted in an increased number of trainable parameters.

2.6. DensNet121

Huang et al. [21] proposed densely connected convolutional networks called DenseNet
by extending the concept of residual connections in the traditional networks. The authors
proposed the idea of connecting each layer in the network to every other layer in the
feedforward direction. This way, each layer will have the feature maps of all preceding
layers at its input. In terms of the number of layer connections, a traditional network
with L layers have L connections, while a densely connected convolutional network will
have L(L + 1)/2 connections. Densely connected networks have advantages including
better feature propagation, feature reuse, a significant reduction in the number of network
parameters, and improving the vanishing-gradient problem. A key difference between
residual networks and densely connected networks is that in a densely connected network,
feature maps from preceding layers are combined by concatenation rather than summation
before feeding it to the next layer.

Mathematically, if a network consists of L number of layers each with a non-linear
transformation through a composite function Fl , the output xl for the densely connected
layer can be represented as in Equation (2).

xl = Fl([x0, x1, . . . , xl−1]) (2)

where [x0, x1, . . . , xl−1] denotes the concatenation of the feature maps from the previous layers.

2.7. NASNet

Zoph et al. [28] proposed a new category of convolutional networks called NASNet
based on the idea of directly training the architecture over the desired dataset. In order to
overcome the issue of computational cost for relatively larger datasets, authors proposed to
search for an architectural building for a smaller dataset, often called proxy dataset and then
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transferring it to a larger dataset. The search space which enables the transfer from a smaller
dataset to a larger dataset is referred to as NASNet search space inspired from neural
architecture search (NAS) [29]. Furthermore, to improve the generalization of the NASNet
model, the authors proposed a novel normalization approach called ScheduledDropPath.
In NAS, a recurrent neural network (RNN) controller samples the child architectures, which
are trained over proxy datasets and based on the training accuracy, the controller improves
the architecture. The main contribution of this approach is the decoupling of architecture
complexity from depth.

2.8. EfficientNet

Tan and Le [27] proposed a novel compound coefficient based scaling of deep neural
networks. Based on this idea, a new category of networks called EfficientNet is introduced,
which is built on NAS. The idea of uniformly scaling the model in all dimensions, including
width, depth, and resolution, is implemented. Balanced scaling up of models resulted
in higher accuracy. Mathematically, if the intention is to extend the computation power
to 2n times, a model can be scaled up in depth, width, and resolution as αn, βn, and γn,
respectively.

3. Dataset

The dataset used in this research consisted of images of culverts (i.e., blocked, clear)
from three different sources (i.e., ICOB, VHD, SIC). Overall, the dataset consisted of
3848 images. Details about each subset of the dataset are presented as follows.

3.1. Images of Culvert Openings and Blockage (ICOB)

This dataset consisted of real images of culverts and referred to as “Images of Culvert
Openings and Blockage (ICOB)”. Primary sources of images included WCC historical
records, online records, and custom captured local culvert images. WCC records were
scrutinized using a Microsoft ACCESS based application for filtering the culvert images
with visible openings. The dataset contained images with a high level of variation from
each other (intra-class variation) in terms of culvert types, blockage accumulation, presence
of debris materials, illumination conditions, culvert viewpoint variations, scale variations,
resolution, and backgrounds. This high level of diversity within a relatively small dataset
makes it a challenging dataset for visual analysis, even for a binary classification problem.
In total, there were 929 images in ICOB with 487 images in the “clear” class and 442 images
in the “blocked” class. Figure 1 shows the sample instances from each class of ICOB.

Figure 1. Sample instances of clear (First row) and blocked (Second row) culverts from ICOB.
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3.2. Visual Hydrology-Lab Dataset (VHD)

This dataset consisted of simulated images of culverts captured from a controlled
hydrology lab experiment. A comprehensive in-lab investigation of blockage of carried
out by performing series of experiments using scaled physical models of culverts under
multiple flooding conditions. Experiments were recorded using two high definition (HD)
cameras with a different view of the culvert and images of culverts in blockage and clear
condition were extracted, referred to as “Visual Hydrology-Lab Dataset (VHD)”. VHD
consisted of a diversity of images including four different culvert configurations (i.e., single
circular, double circular, single box, double box), different blockage types (i.e., urban,
vegetative, mixed), different simulated lighting conditions, different camera viewpoints,
and different flood levels controlled by inlet water discharge. Limitations of the dataset
included reflections from the water surface and flume walls, identical background and
scaling, and clear water. For this investigation, in total, 1630 images were used with
1526 images from the “blocked” class while 104 images from the “clear” class. Figure 2
shows the sample images of each class from VHD.

Figure 2. Sample instances of clear (First row) and blocked (Second row) culverts from VHD.

3.3. Synthetic Images of Culverts (SIC)

This dataset consisted of synthetic images of culverts generated using a three-dimensional
(3D) computer application based on a gaming engine (i.e., Unity3D) specifically designed to
simulate multiple culvert blockage scenarios. Application has the capability to generate virtually
countless blockage scenarios by dragging different debris materials into the scene and placing
them in desired orientation/location. Images of different simulated blockage scenarios were
captured using batch capture functionality and are referred to as “Synthetic Images of Culvert
(SIC)”. Dataset offered the diversity in terms of debris type (i.e., urban, vegetative, mixed),
culvert types (i.e., pipe, single circular, double circular, single box, double box, triple box),
camera viewpoints, time of day, and water levels. Limitations of the dataset include single
natural background and non-realistic effects/animations. For this investigation, 1289 images
were used with 1140 images from the “blocked” class while 149 images from the “clear” class.
Figure 3 shows the sample images of each class from SIC.

3.4. Labeling Criteria

Dataset was manually labeled for binary classification of a given image with culvert
as “clear” or “blocked”. A culvert being visually blocked or clear is not as simple and may
require defining detailed criteria in collaboration with flood management officers; however,
for this article, simple occlusion based criteria was used. Following subjective annotation
criteria was used for labeling.
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• If all of the culvert openings are visible, classify it as “clear”;
• If any of the culvert openings is visually occluded by debris material or foreground

object (e.g., debris control structure, vegetation, tree), classify it as “blocked”.

Figure 3. Sample instances of clear (First row) and blocked (Second row) culverts from SIC.

4. Experimental Setup and Evaluation Measures

Experiments were planned to investigate the performance of existing CNN models for
binary classification of culvert images as blocked or clear. Pre-trained CNN models with
ImageNet weights were used for this investigation and implemented using Keras with
Tensorflow at the backend. Images of dimension 224× 224× 3 were used as input to model
except for NASNet where 331 × 331 × 3 and InceptionResNetV2 where 229 × 229 × 3
was used. Data augmentations techniques including samplewise standard deviation
normalization, horizontal flip, vertical flip, rotation, width shift, and height shift were used
in the simulations for improved performance. All the models were tuned with a dropout of
0.2, ReLU activation, and batch normalization. Stochastic gradient descent (SGD) optimizer
with a constant learning rate of 0.01 and categorical entropy loss was used. Each model
was trained for 30 epochs. For this investigation, the test dataset consisted of selected real
images from ICOB (i.e., 91 from blocked, 98 from clear). The rest of the dataset was divided
using conventional train:val split with an 80:20 ratio. In addition to the conventional
train:val:test dataset split, the 5-fold cross-validation approach has also been implemented
and compared towards providing better insight into the performance of deep learning
models. The idea of classifying deep visual features extracted from CNN models using
conventional machine learning approaches was also implemented. The simulations were
performed using Nvidia GeForce RTX 2060 GPU with 6 GB memory and 14 Gbps memory
speed. Models were trained at full precision using floating point (FP-32) optimization.

The performance of the models was measured in terms of their test accuracy, test loss,
precision score, recall score, F1 score, Jaccard Index, ROC curves, and processing times.
Each of the evaluation metrics is defined briefly as follows.

• Loss: Loss is the simplest of the measure to evaluate model training and testing
performance. It is the measure of how much instances are classified incorrectly and is
the ratio of number of incorrect predictions over total predictions. Minimum value of
loss indicated better performance;

• Accuracy: In contrast to loss, accuracy is the measure that how much percentage of
data instances are classified correctly. It is the ratio of number of correct predictions
over total predictions. High value of accuracy represents better performance;

• Precision Score: Precision measures the ability of a model to not to classify a negative
instance as positive. It answers the question that from all the positive predicted
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instances by model, how many were actually positive. The equation below presents
the expression for the precision score:

Precision Score =
True Positive (TP)

True Positive (TP) + False Positive (FP)

• Recall Score: Recall answers the question that from all the positive instances, how
many were correctly classified by the model. Expression for recall score is given
as follows:

Recall Score =
True Positive (TP)

True Positive (TP) + False Negative (FN)

• F1 Score: F1 score is the single measure which combines both precision and recall
by harmonic mean and range between 0 and 1. Higher F1 score indicates the better
performance of model. Expression for F1 score is given as follows:

F1 Score = 2 × Precision × Recall
Precision + Recall

• Jaccard Index: In context of classification, Jaccard similarity index score measures the
similarity between predicted labels and actual labels. Mathematically, let ŷ denotes
the predicted label and y denotes the actual label, then J index can be expressed as
follows. Higher J index indicates better performance of model.

Jaccard Index =
|ŷ ∩ y|
|ŷ ∪ y| =

|ŷ ∩ y|
|ŷ|+ |y| − |ŷ ∩ y|

In addition, confusion matrices were plotted to assess the Type I and Type II errors.
Type I (False positive (FP)) and Type II (False negative (FN)) errors [30] are commonly used
terms in machine learning and the main goal of the model is to minimize one of these two
errors, depending on the context that which error is more critical in the given task. By
definition, a Type I error is concluding the existence of a relationship, while in fact it does
not exist (e.g., classifying an image as “blocked” while there is no blockage). Similarly,
a Type II error is the rejection of the existence of relationship while, in fact, it exists (e.g.,
classifying an image as “clear” while there is a blockage). For the given culvert blockage
context, Type II error is more critical to be minimized in comparison to Type I error because
having notified as blocked while there is no blockage is tolerable in comparison to having
notified as clear while there is a blockage. Type II error will result in damages because it
may be very late for the response team to clear the blockage before the diversion of flow.
Finally, the performance of implemented deep learning models was benchmarked against
the conventional machine learning models (i.e., SVM, RF, xgboost) to demonstrate the
effectiveness of CNN’s for images (i.e., matrix) type dataset.

5. Results and Discussion

Implemented CNN models were evaluated as per defined measures in Section 4 and
results were compared. Figure 4 shows the training performance of implemented models
in terms of training loss for conventional dataset split and the training times. From the
figure, it can be observed that other than the DarkNet53 and VGG16, all models training
behaviour was similar with loss following the negative exponential curve and converging
to a minimum value. However, unusual training behavior was observed for DarkNet53
and VGG16 where models failed to learn the training examples and loss did not decrease
significantly over the training epochs. In terms of training times, as expected NASNet was
the slowest to train (i.e., 414 s per epoch), while MobileNet was the fastest to train (i.e., 22 s
per epoch) based on their respective complexity.
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(a) Training loss

(b) Training time per epoch

Figure 4. Training performance of implemented CNN models for culvert visual blockage classification.

Table 1 presents the empirical results of all implemented models using conventional
dataset split and 5-fold cross-validation when evaluated for test dataset in terms of accuracy,
loss, precision, recall, F1 score, and Jaccard Index. Furthermore, the table benchmarks
the results of deep learning models against conventional machine learning algorithms.
From the results, NASNet was reported as the best among all others with an F1 score of
0.84 and 0.85 for conventional and 5-fold, respectively. MobileNet was reported as the
second-best for conventional dataset split with an F1 score of 0.81, while InceptionV3 was
reported second best for 5-fold with an F1 score of 0.80. DarkNet and VGG performed
worst with the F1 scores of 0.61 and 0.48 for 5-fold cross-validation. When benchmarked
against the conventional machine learning algorithms, it can be clearly observed that deep
learning models performed significantly better. However, for the case where the idea of
classifying deep visual features using conventional machine learning models, comparable
performance to standard CNN models was achieved. 5-fold accuracy of 77% was achieved
as best for the case where MobileNet extracted visual features were classified using an
SVM conventional machine learning classifier.

Performance of deep learning models was also assessed using ROC curves as given
in Figure 5. ROC plot confirmed that NASNet outperformed other models with an area
under the curve (auc) of 0.92. Figures 6 and 7 show the confusion matrices for both
conventional and 5-fold cross-validation experiments, respectively, to observe the Type
I and Type II errors. For the conventional case presented in Figure 6, it can be observed
that NASNet performed best in terms of the lowest Type II error of the only 10%; however,
Type I error was reported 21%. On the other hand, MobileNet was reported with balanced
Type I and Type II errors (19% and 18%). A similar trend was observed for the 5-fold
cross-validation experiment where NASNet was reported with the lowest Type II error (i.e.,
12%) and EfficientNetB3 was reported balanced Type I and Type II errors (19% and 22%).
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Overall, comparatively similar performance was reported for both conventional and 5-fold
experiments except for the case of VGG where 5-fold cross-validation performance was
degraded significantly (see Figure 8a).

Table 1. Classification performance of implemented artificial intelligence models for visual blockage detection.

Test Accuracy Test Loss/Log Loss Precision Score Recall Score F1 Score Jaccard Index FLOPs

Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold Conventional 5-Fold

Deep Learning Models

DarkNet53 0.61 0.63 1.20 1.21 0.63 0.65 0.62 0.61 0.61 0.61 0.44 0.46 14.2 G
DenseNet121 0.77 0.79 0.47 0.57 0.77 0.80 0.77 0.79 0.77 0.79 0.62 0.66 5.7 G

InceptionResNetV2 0.79 0.77 0.58 0.65 0.79 0.78 0.80 0.78 0.80 0.77 0.66 0.64 13.3 G
InceptionV3 0.76 0.80 0.74 0.64 0.76 0.80 0.76 0.80 0.76 0.80 0.62 0.66 5.69 G
MobileNet 0.81 0.78 0.51 0.59 0.81 0.79 0.81 0.79 0.81 0.78 0.69 0.65 1.15 G
ResNet50 0.78 0.79 0.70 0.62 0.78 0.76 0.78 0.76 0.78 0.79 0.64 0.65 7.75 G
VGG16 0.71 0.57 0.58 0.79 0.72 0.43 0.70 0.58 0.70 0.48 0.55 0.41 30.7 G

EfficientNetB3 0.78 0.79 0.46 0.57 0.78 0.80 0.78 0.79 0.78 0.79 0.64 0.66 1.97 G
NASNet 0.84 0.85 0.58 0.55 0.85 0.85 0.84 0.85 0.84 0.85 0.73 0.73 47.8 G

Conventional Machine Learning Algorithms

SVM 0.55 0.63 15.53 12.61 0.70 0.64 0.57 0.63 0.46 0.63 0.38 0.47 NA
RF 0.47 0.57 18.27 14.80 0.47 0.57 0.48 0.57 0.40 0.56 0.31 0.40 NA

xgboost 0.50 0.58 17.18 14.62 0.58 0.58 0.52 0.57 0.40 0.57 0.34 0.41 NA

Deep CNN Visual Features Classification using Conventional Machine Learning Approaches

ResNet50 Features + SVM 0.82 0.74 6.31 9.11 0.82 0.74 0.82 0.74 0.82 0.74 0.69 0.58 NA
ResNet50 Features + RF 0.76 0.73 8.24 9.29 0.78 0.73 0.76 0.73 0.76 0.73 0.61 0.58 NA

ResNet50 Features + xgboost 0.78 0.72 7.36 9.64 0.79 0.72 0.79 0.72 0.79 0.72 0.65 0.56 NA
MobileNet Feature + SVM 0.84 0.77 5.25 7.88 0.85 0.77 0.85 0.77 0.85 0.77 0.74 0.63 NA
MobileNet Feature + RF 0.76 0.75 8.06 8.41 0.77 0.78 0.77 0.76 0.77 0.75 0.62 0.61 NA

MobileNet Feature + xgboost 0.72 0.66 9.64 11.74 0.73 0.66 0.72 0.66 0.72 0.66 0.56 0.49 NA

From the FP instances in Figure 9, it was observed that for the cases where there are
more than two openings and only one opening was blocked, the algorithm classified it as
clear. This insight led to a suggestion in the change of labeling criteria. A better approach
could be to label the image as blocked if half or more than half of the openings are blocked;
otherwise, label it as clear. Furthermore, if there is no debris material present in the image
and occlusion is due to some foreground object not similar to debris in visual appearance,
the image should be labeled as clear. From the FN instances in Figure 9, it was observed
that for the cases where the image contained contents with a visual appearance similar
to blockage material, the image was classified as blocked. This indicated the existence of
background clutter/noise problems for this investigation. Background clutter hypothesis
was also verified by the intermediate CNN layers activation and heatmaps as given in
Figures 10 and 11, respectively. From the layers intermediate activation, it can be observed
that at the initial layer, the model retained almost all the visual information as in the input
image. However, as the layers go deeper, the model tends to encode higher-level features,
such as borders, lines, and edges. Going further deeper results in activation which are
not visually interpretable and possess more information related to the class of the input
image. Heatmaps for selected FN cases presented in Figure 11 confirmed the hypothesis
of background clutter. It can be observed that in most cases, the focus was more on the
background contents rather than the culvert opening. Interestingly, in the case of the box
culvert, the reflection of light through the culvert was considered by the model as the
background which resulted in false classification.
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Figure 5. ROC curves for implemented deep learning models.

(a) DarkNet53 (b) DenseNet121 (c) InceptionResNetV2

(d) InceptionV3 (e) MobileNet (f) ResNet50

(g) VGG16 (h) EfficientNetB3 (i) NASNet

Figure 6. Confusion matrices of implemented CNN models for blockage detection (Conventional
Train:Val:Test split).
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(a) DarkNet53 (b) DenseNet121 (c) InceptionResNetV2

(d) InceptionV3 (e) MobileNet (f) ResNet50

(g) VGG16 (h) EfficientNetB3 (i) NASNet

Figure 7. Confusion matrices of implemented CNN models for blockage detection (5-fold cross validation).

(a) Test Accuracy (b) Model Processing Time

Figure 8. Graphical comparison of implemented CNN models for test performance.
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Figure 9. Selected false positive (First row) and false negative (Second row) instances.

Figure 10. Selected intermediate ResNet50 CNN layer activation.
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Figure 11. Selected ResNet50 CNN layers heatmaps.

Given that, existing CNN models, conventional machine learning approaches, and
classification of deep CNN visual features using conventional machine learning approaches
did not achieve high enough accuracy (i.e., maximum 5-fold accuracy of 85% achieved
for NASNet model) that they can be deployed to replace the manual visual inspection
of culverts. However, they can potentially be used to partially automate the process of
manual visual inspection of culverts. Along with the predicted blockage class of a given
culvert (i.e., blocked, clear), the value of class prediction probability can help in estimating
the model confidence of the prediction. Partial automation can be achieved by setting
a threshold on prediction probability (i.e., 80%) to filter only those images for manual
inspection for which prediction probability is less than a set threshold. Figure 12 shows the
conceptual block diagram of the proposed framework for partial automation of the culvert
visual blockage inspection process.

Implemented CNN models were also compared for their processing times to inves-
tigate the relative response times. The purpose of these analyses was to investigate the
hardware implementability of proposed models for real-world applications. Model in-
ference time and image processing time were calculated as two measures to compare
the models. Three different size images were used; image 1 of 2048 × 1536, image 2 of
3264 × 2448, and image 3 of 4032 × 3024. From Table 2 and Figure 8, it can be observed
that MobileNet and DarkNet53 were fastest among others while the NASNet model was
the slowest. In terms of accuracy, NASNet was the most accurate; however, MobileNet
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also exhibited comparatively good accuracy (i.e., 78% in comparison to 85% for NASNet)
and was recommended as a suitable choice to implement for on-board processing. Figure 8
shows the graphical comparison of implemented models in terms of test accuracy and
processing times. It is important to mention that reported processing times are for relative
comparison between models and not the actual measure of cutting edge hardware perfor-
mance. However, given the availability of efficient computing hardware, such as Nvidia
Jetson TX2 [31] and Nvidia Jetson Nano [32], it is highly probable to implement any of the
implemented models for real-world applications (e.g., pedestrian detection [33], wildlife
tracking [34]).

Deep Learning Blockage 
Classification Model 

(e.g., ResNet50)

Blockage Status: Clear
Classification Probability: 86%

Flag the image for 
manual inspection by 

expertIf classification probability <80%

Figure 12. Conceptual block diagram of framework for partial automation of visual blockage classification.

Table 2. CNN model processing times for three different size images.

Model Processing Time (s)
Total Execution Time (s)

Image 1 Image 2 Image 3

DarkNet53 0.05 0.12 0.2 0.35
DenseNet121 0.09 0.17 0.24 0.39

InceptionResNetV2 0.14 0.21 0.29 0.44
InceptionV3 0.09 0.17 0.24 0.39
MobileNet 0.06 0.13 0.21 0.36
ResNet152 0.13 0.20 0.28 0.43
ResNet50 0.08 0.15 0.23 0.38
VGG16 0.08 0.15 0.23 0.38

EfficientNetB3 0.09 0.16 0.24 0.39
NASNet 0.15 0.22 0.30 0.45

6. Detection-Classification Pipeline for Visual Blockage Detection

In light of the reported insights from the presented experiments in Section 5, a
detection-classification pipeline is a potential future work in the development process
to address the background clutter issue. The idea is to detect the culvert openings from
the image using the object detection model (i.e., Faster R-CNN [35]) at the first stage
and classify the detected culvert openings as “blocked” or “clear” using a deep learning
classification model (i.e., ResNet50). Figure 13 shows the conceptual block diagram of
the detection-classification pipeline. A preliminary system with such a pipeline has al-
ready been deployed on a cutting edge hardware for testing purposes [18]. For culvert
opening detection, m@AP50 of 0.95 has been achieved using the Faster R-CNN model
while an improved 94% blockage classification accuracy has been achieved using the
ResNet50 model.
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ResNet50
Classifier

Input Image Faster R-CNN
Opening Detector

Clear

Clear

Figure 13. Conceptual block diagram of detection-classification pipeline for visual blockage detection.

7. Conclusions and Future Directions

The idea of using visual analytic for the culvert blockage analysis has been successfully
pitched by implementing existing CNN models for culvert blockage classification. Dataset
from three different sources (i.e., ICOB, VHD, SIC) has been developed with a diversity of
clear and blocked culvert instances for training the convolutional neural network (CNN)
models. From the analysis, it has been observed that the NASNet model performed
best among all in terms of classification performance; however, it was the slowest in
relative comparison of processing times. Based on the classification performance and
processing times, MobileNet was recommended model to be deployed for real-world
applications. Deep learning models were benchmarked against conventional machine
learning algorithms and reported significantly improved performance. From the false
positive (FP) and false negative (FN) instances, background noise and oversimplified
labeling criteria were found potential factors for degraded performance. A detection-
classification pipeline was proposed with higher blockage classification accuracy (i.e., 94%)
as a potential solution for real-world implementation. Furthermore, a partial automation
framework based on the model class prediction probability was introduced to facilitate
the manual visual inspections of culverts. A visual attention based approach and problem-
specific CNN design are potential future directions of this research. Furthermore, study
the impact of high-resolution images on the accuracy and developing a hybrid model
taking into account information from multiple sensors are the potential concepts that can
be investigated in future.
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Abstract: Coastal hazard events such as hurricanes pose a significant threat to coastal communities.
Disaster relief is essential to mitigating damage from these catastrophes; therefore, accurate and
efficient damage assessment is key to evaluating the extent of damage inflicted on coastal cities and
structures. Historically, this process has been carried out by human task forces that manually take
post-disaster images and identify the damaged areas. While this method has been well established,
current digital tools used for computer vision tasks such as artificial intelligence and machine
learning put forth a more efficient and reliable method for assessing post-disaster damage. Using
transfer learning on three advanced neural networks, ResNet, MobileNet, and EfficientNet, we
applied techniques for damage classification and damaged object detection to our post-hurricane
image dataset comprised of damaged buildings from the coastal region of the southeastern United
States. Our dataset included 1000 images for the classification model with a binary classification
structure containing classes of floods and non-floods and 800 images for the object detection model
with four damaged object classes damaged roof, damaged wall, flood damage, and structural damage. Our
damage classification model achieved 76% overall accuracy for ResNet and 87% overall accuracy
for MobileNet. The F1 score for MobileNet was also 9% higher than the F1 score of ResNet at 0.88.
Our damaged object detection model achieved predominant predictions of the four damaged object
classes, with MobileNet attaining the highest overall confidence score of 97.58% in its predictions.
The object detection results highlight the model’s ability to successfully identify damaged areas of
buildings and structures from images in a time span of seconds, which is necessary for more efficient
damage assessment. Thus, we show that this level of accuracy for our damage assessment using
artificial intelligence is akin to the accuracy of manual damage assessments while also completing the
assessment in a drastically shorter time span.

Keywords: hurricane; building damage; damage classification; damage detection; artificial
intelligence; transfer learning

1. Introduction

Coastal storms and hazard events are often analyzed to address dangers faced by
coastal communities around the world. Many potential threats to communities resid-
ing in coastal areas are captured with a comprehensive plan for risk analysis. In 2018,
a preliminary risk analysis estimated almost $17 billion in damages across the state of
North Carolina in the wake of Hurricane Florence [1]. As a result, accurate and efficient
evaluations of damage from coastal hazards such as hurricanes are necessary to provide
data for addressing post-disaster relief efforts. Damage assessment is a primary tool for
understanding the levels of damage to coastal populations in the aftermath of a hazard
event. Knowledge of damage is further applied to models for risk assessment to mitigate
damage from future hazards [2].
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Efficient relief plans and proper allocation of relief funding to the affected areas are
impractical without accurate data. Traditionally, post-disaster data have been collected
through methods involving individuals or teams making initial observations and assess-
ments of damage. These people capture photographs of the damage in door-to-door
assessments or windshield surveys (e.g., [3,4]). Remote validations are a supplemental
tool used during the damage assessment process which increases the swiftness of the
manual evaluations. These desktop assessments replace onsite validations when the risk
for preliminary damage assessment staff is high and images of the damaged area are
readily available [4]. However, these validations still rely on humans to identify dam-
aged structures and verify damage assessments making them prone to a significant level
of inaccuracy.

In a myriad of classification tasks, artificial neural network technology has proven to
be significantly more efficient in performing the same work as a human to a higher level
of accuracy. Machine learning techniques possess particular advantages over humans in
tasks that incorporate a large data set from multiple events of highly similar situations [2].
Hurricanes provide a multitude of events for data collection that can be used by artificial
neural network models to perform damage assessment. There are usually two types of
data capturing hurricane damage to buildings. The first type is satellite imagery (e.g., [5,6]),
and the other type is ground-level images/photos (e.g., [7]) taken by drones or other
similar ways. Both data types have been used for damage assessment. For example, Weber
and Kané [8] used the Mask R-CNN [9] to predict both building locations and damage
level based on pre-disaster and post-disaster images of xBD database [6]. Furthermore,
Hao et al. [10] developed a multi-class deep learning model with an attention mechanism
to assess damage levels of buildings given a pair of satellite images depicting a scene
before and after a disaster using the xView2 dataset [11]. Cheng et al. [12] developed a
stacked convolutional neural network architecture to train on an in-house visual dataset
from Hurricane Dorian that was collected using an unmanned aerial vehicle. An effective
hurricane damage assessment model should train on both aerial and ground-level image
data to increase adaptability for emergency damage assessment of a future coastal hazard.

Social media has been explored as a primary source of data for hurricane damage
assessment because of the swift integrability these platforms provide to automated damage
assessments (e.g., [13–15]). Hao and Wang [16] used five machine learning classifiers that
take social networking platform images and output the damage types and severity levels
presented in images. Leveraging social media platforms to train damage assessment models
has shown success with rapid operation capabilities.

The transfer learning approach to developing artificial neural network models for
hurricane damage assessment has also been recently explored. Most of these studies
focus on using transfer learning on pre-trained convolutional neural network (CNN)
models with aerial images of hurricane damage to buildings (e.g., [17–20]). Liao et al. [21]
uses transfer learning on two well-established CNNs, AlexNet and VGGNet, to create
classification models for the two-dimensional orthomosaic images gathered from unpiloted
aerial systems. These and other similar studies limit the source of the training dataset,
making the classification models useful only for functional datasets comprised of aerial
images taken by satellite or drone. Our work incorporates both aerial and ground-level
images for hurricane damage classification and detection of damaged buildings to create a
more operational damage assessment framework to apply to future coastal hazards.

Incorporating transfer learning for building damage assessment is affected by the
transferability of the learned features and information from the source domain to the target
domain used for testing the model. Domain adaption when using transfer learning arises
when there are discrepancies among images in the source domain and between the source
and target domains (e.g., [22,23]). These discrepancies are a result of how remote sensing
captures images with varying sensors, locations, times, and perspectives. This issue with
domain invariance extends to the transferability of information derived from different
coastal hazards. A CNN-based model was shown to reach high classification performance
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when training on the same damage type for different disasters [24]. The source and
target domains in our study do not present any major discrepancies. Rather, our damage
classification and damage detection models focus on a single coastal hazard that causes
multiple types of damage to enhance the efficacy of damage assessment.

There are several challenges in the area of building damage assessment using artificial
neural network models. First, machine learning training requires a considerable amount
of input data in order to sufficiently assess the damage or classify the damage levels from
images (e.g., [5,6]). Second, in-house machine learning model development requires a
significant amount of effort to achieve high accuracy. This study focuses on the building
damages due to hurricanes in the U.S. southeast area, and we improve the efficiency of
assessing hurricane damage to buildings by applying neural network models for damage
classification and object detection. We address the first challenge by developing our in-
house building damage dataset using internet search engines, and we address the second
challenge by utilizing the advanced artificial intelligence models for computer vision,
MobileNet [25], ResNet [26], and EfficientNet [27], through transfer learning.

This paper is organized as follows: Section 2 presents the development of our in-house
building damage images including data collection, data statistics, and data pre-processing.
Section 3 reviews the background of three artificial intelligence models that were used as
the base of transfer learning for building damage assessment and explains the transfer
learning workflow for both damage classification and damage detection. Section 4 presents
the training metrics, the damage classification results, and the damage detection results,
further discussing the transfer learning results among three models. Finally, the conclusion
and significance of this study are stated in Section 5.

2. Building Damage Dataset

This section first presents the development of our in-house building damage image
dataset. Then, we explain the data statistics for damage classification and damage detection.

2.1. Data Collection and Preparation

This study primarily focuses on the hurricane damage to buildings in the U.S. south-
east region. We sourced the data from an internet search specifying criteria for photos
related to hurricane damage, and a few thousand images taken from hurricane damage in
Florida, Georgia, North Carolina, and South Carolina were prepared for a preliminary data
cleanup. Each image in our in-house dataset was further examined for types of buildings
and structures contained in the images to ensure they were characteristic of the U.S. east
coast region.

The raw dataset was further processed for two tasks: damage classification and
damaged object detection. For the first task, we examined the data to be used in the
classification model and identified potential classes for image categorization. This step
involved the additional cleanup and removal of remaining images that were duplicates
or would not be a candidate for one of the image classes. For the second task, we also
examined individual images to be used in the object detection model and removed those
that did not capture a damaged structure. After final examination of both versions of
the data, the images were ready for pre-processing before inputting them into the neural
network models using transfer learning.

2.2. Data Statistics

The next step required dividing the dataset into a set for the classification model and a
second set for the object detection model. The main difference among the two datasets was
that the set applied to object detection required images only containing buildings, and the
set applied to classification was independent from only using images containing buildings.
Images contained in both sets of data are of varying pixel resolution and unaltered from
the original source.

351



Appl. Sci. 2022, 12, 1466

Historical hurricanes usually brought about significant flood damage due to storm
surges and heavy precipitation. Thus, the damage classification research in this work aims
to determine if there are floods in the image. To this purpose, we selected 1000 images
from our dataset and divided them into two categories, floods and non-floods, as indicated
in Table 1. The motivation is to examine if neural network models can perform binary
classification on our dataset. Flood damage is characterized by flood waters in the images,
and it can occur in various ways. Typical floods damages in our dataset include (1) flooded
buildings, houses, and communities, (2) flooded streets, (3) flooded vehicles, and (4) flooded
coastal areas. The non-floods images are related to hurricane damage, but they do not include
floods in them; these images needed to be characteristic of areas and buildings damaged
from hurricanes because the purpose of our classification models is to exemplify their
success learning from data that would be used for traditional hurricane damage assessment.
Finally, the binary classification task does not require additional data processing other than
sorting the images into two categories.

Unlike the data preparation for damage classification, machine learning object detec-
tion requires the preparation of labeled data, which guides the model to learn common
features in a specific type of object. The pre-processing image labeling in this work was
accomplished by using the open-source annotation tool, LabelImg [28]. This tool allowed
us to take an input image in our dataset and create bounding boxes around the areas of in-
terest in the image corresponding to an annotation label. The position of the bounding box
and the label were then exported for neural network model training. The object detection
dataset consisted of 800 images that were annotated, and annotation labels are the damaged
objects as listed in Table 2. Four categories of objects were identified from our hurricane
damage dataset, and the features associated with each of them are briefly explained below.

• Damaged roof. The bounding box label highlights a roof that has the whole roof, some
shingles, or parts of the roof damaged. The bounding box label typically encompasses
the entire roof in the image; however, if the entire roof is not visible then the damaged
area and any additional parts of the roof that are visible were included.

• Damaged wall. The labeling bounding box highlights a damaged building wall or
windows within a wall. Damage to walls/windows could range from areas with
minor disintegration of brick or glass structure to entire loss of the wall or window
structure.

• Flood damage. The bounding box label highlights flood waters in an image. The flood
water can occur in various places as explained in the binary classification dataset. Due
to this sporadic nature, in some images, multiple bounding box labels were used to
encapsulate the entirety of the flood water.

• Structural damage. The bounding box label highlights a building suffering from struc-
tural damage, e.g., the disintegration of the roof and/or any floor(s) within the build-
ing, complete loss of multiple walls/structures, or the collapse of the whole building.

It should be pointed out that the total number of samples in Table 2 is 958, which is
greater than the total number of annotated images, i.e., 800. The difference is due to the
fact that multiple objects were annotated/observed in a single image, resulting in a larger
number of objects than the number of images.

Table 1. Summary of images for the flood damage classification task. The selected 1000 images were
divided into two categories for binary classification.

Damage Classification Types # of Samples Percentage

floods 463 46.3%
non-floods 537 53.7%
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Table 2. Summary of images for the building damage detection task. The selected 800 images
were divided into four categories to characterize damage inflicted upon different kinds of objects or
structures by historical hurricanes. The total number of object samples of 958 is larger than the number
of images (i.e., 800) due to the fact that an individual image can include multiple damaged objects.

Damage Detection Types # of Samples Percentage

damaged roof 365 45.625%
damaged wall 281 35.125%
flood damage 167 20.875%

structural damage 145 18.125%

3. Transfer Learning

The previous section showed that our in-house hurricane damage dataset only has
about 800–1000 images. To be able to develop effective hurricane damage assessment ma-
chine learning models using such a small dataset, we utilize a machine learning technique,
transfer learning, in this work. This section first presents the background information about
transfer learning. Then, we review the existing neural network models that were used in
this study, and we focus on the typical model architecture. Next, we present the transfer
learning workflows used in this study.

3.1. The Fundamentals of Transfer Learning

Transfer learning is a machine learning technique that leverages feature representations
from a pre-trained artificial neural network model to train a new target model on a different,
usually smaller size dataset. The crucial step for implementing transfer learning is to use
learned weights/parameters from a pre-trained neural network model, which is a saved
model that was previously trained on a large dataset, e.g., the ImageNet [29] and Coco [30]
datasets. This choice is justified by the fact that if the original dataset is large enough and
general enough, then the spatial hierarchy of features learned by the pre-trained models can
effectively act as a generic model of the visual world; thus, its features are useful for many
different computer vision problems, even though these new topics involve completely
different classes than those of the original task [31].

3.2. Artificial Neural Network Models

This study utilizes three well-established neural network models in computer vision,
namely, ResNet [26], MobileNet [25], and EfficientNet [32]. These networks were selected
for several reasons. First of all, we aim to explore the efficiency of varying neural network
architectures for hurricane damage assessment. To that end, collating results from multiple
models would provide deeper insight than results obtained from one model trained on a
single neural framework. Second, these models have been pre-trained using large image
datasets, and their pre-trained weights are freely available. The following sub-sections
provide a brief review of the selected three neural network models with a focus on their
typical model architecture.

3.2.1. ResNet

The ResNet architecture was developed with a deep residual learning framework
to directly address the issue of degradation of training accuracy in deeper networks that
begin to converge [26]. Identity shortcut connections within the ResNet architecture do
not rely on parameters and allow a continuous flow of information between layers as well
as additional learning of residual functions. Thus, the residual net framework allows for
easier optimization of the residual mapping and increased accuracy from enhanced depth
of the residual nets [26]. The 50-layer ResNet contains a 3-layer bottleneck design that
results in a more efficient model when paired with the identity shortcuts. We incorporated
the 50-layer ResNet architecture into our model to match the target input resolution and
simplistic model structure.
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3.2.2. MobileNet

The MobileNet architecture focuses on streamlining the convolution layers through
depthwise separable convolutions to build an attenuated deep neural network [25]. The sep-
aration of the convolution into two layers, one for filtering the inputs and one for combining
the outputs with the depthwise convolution, significantly decreases the magnitude of com-
putation and model scale. This in turn generally leads to low latency for incorporating the
MobileNet model into classification and object detection.

Additionally, the MobileNet architecture makes use of two global hyper-parameters: a
width multiplier and a resolution multiplier. The width multiplier aims to shrink each layer
of the network in a uniform fashion, while the resolution multiplier is applied to the input
image which results in reducing each subsequent layer by the same parameter [25]. We
incorporated MobileNet V1 to match the target input resolution and maintain consistency
with the choice of primitive model architectures.

3.2.3. EfficientNet

The EfficientNet architecture was created through a focus on prioritizing efficiency
while maintaining state-of-the-art accuracy. Traditionally, convolutional neural networks
are scaled up from a baseline model to improve the accuracy of detections/classifications;
more training data and model layers generally produce more accurate predictions. Efficient-
Net uses compound scaling of the network’s dimensions (width, depth, and resolution) to
achieve high accuracy while striving to be the most efficient CNN [32].

The EfficientDet network is an extension of the EfficientNet architecture that was
created specifically for object detection applications; it uses the EfficientNet model architec-
ture as a base network. This variant of EfficientNet focuses on compound scaling paired
with a weighted bi-directional feature pyramid network (BiFPN) to connect subsequent
layers of the model together for the most successful optimizations of model efficiency and
accuracy [27].

3.3. Transfer Learning Workflow for Flood Damage Classification

Figure 1 shows the workflow to train ResNet and MobileNet for flood damage clas-
sification. Both ResNet and MobileNet were trained using the ImageNet dataset, which
includes more than 1 million images and 1000+ target classes or labels. Our transfer learn-
ing work utilizes the pre-trained knowledge in these two models, i.e., model weights that
characterize typical features in images in the real world. Specifically, our hurricane damage
classification transfer learning work consists of the following steps.

• Obtain the pre-trained neural network model and its weights;
• Remove the top layer which is used to predict the original 1000 classes;
• Freeze other layers in the pre-trained model to avoid destroying any of the extracted

feature information;
• Add new and trainable layers on top of the frozen layers. These layers learn to turn

the old features into the target predictions (i.e., floods and non-floods images) using a
new dataset;

• Train the new layers on our in-house hurricane damage dataset related to flood damage.

It should be pointed out that there are no floods nor non-floods classes in the ImageNet
dataset. As a result, the primary goal to use these pre-trained models is feature extraction.
Our flood damage dataset was configured with a 60/20/20 split for training, validation,
and testing purposes. Furthermore, data augmentation was used to increase our training
samples to reduce model overfitting. The data augmentation technique randomly trans-
forms training samples to yield believable-looking images, and it helps expose the model
to more aspects of the data for better generalization [31].
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Figure 1. The transfer learning workflow for binary classification into floods and non-floods by using
pre-trained ResNet and MobileNet.

3.4. Transfer Learning Workflow for Hurricane Damage Detection

Figure 2 shows the object detection workflow for training ResNet, MobileNet, and Effi-
cientNet. All three networks were pre-trained on the same image resolutions (640 × 640 pixels)
and the COCO 2017 dataset [30] which contains 330,000 images and 80 object categories. Each
of the three models were also configurable to begin with the same training parameters. There-
fore, the batch size was set to four images, and each model training instance was terminated
after the twenty-thousandth epoch. Our damage detection dataset was configured with a
50/50 split for training and testing purposes when pre-processed into each of our models.
This left 400 images and their corresponding annotations for model training and the other
400 images and their corresponding annotations for testing each of the models’ predictions.
Our transfer learning work leverages the pre-trained model weights for features extracted
from the typical objects contained within the COCO 2017 dataset. More specifically, our
hurricane damage detection transfer learning work consists of the following steps.

Figure 2. The transfer learning workflow for object detection of four object categories by using
pre-trained ResNet, MobileNet, and EfficientNet.

• Initialize training with pre-trained neural network model and extracted feature weights;
• Configure a new pipeline with specified training parameters for our model;
• Use the pre-trained model checkpoint as the starting point for adding new, trainable

layers that contain predictions of the four distinct object categories in our dataset;
• Train the new layers on our in-house hurricane damage dataset related to building damage.

Because the four object categories from Table 2 do not appear in the COCO 2017
dataset, the primary objective for using the pre-trained models is feature extraction.

3.5. Computing Environment

This machine learning research was conducted using Google Colab, a free Jupyter
notebook environment that runs entirely in the cloud. The computing environment was
configured as follows.
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• The CPU model name is Intel(R) Xeon(R) CPU @ 2.00 GHz;
• The clock speed of the CPU is 2 K MHz, and the CPU cache size is 39,424 KB;
• The Graphics Processing Units (GPU) card is NVIDIA Tesla P100. It is based on the

NVIDIA Pascal GPU architecture, and it has 3584 NVIDIA CUDA cores. The GPU
memory is 16 GB. A single GPU card was used in this study.

4. Results and Discussion

4.1. Metrics and Prediction Skills

The metrics utilized in tracking the training behavior of the classification models and
object detection models differ and are presented in the following sections. Additionally,
there are specific prediction skills primarily used in determining the success in evaluating
the classification models.

4.1.1. Classification Metrics

The metrics used to track the progress of classification models during training are
loss and accuracy. Cross-entropy loss is the particular formulation in Equation (1) where
the index i is the i-th training example in a dataset, yi is the ground-truth label for the i-th
training example, and ŷi is the prediction for the i-th training example [33]. Cross-entropy
loss is much larger for false predictions with a high level of confidence, resulting in those
predictions being more denounced. Cross-entropy loss is used in many classifier models
such as MobileNet and ResNet.

Cross-Entropy Loss = − 1
N

N

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)). (1)

Accuracy is defined by Equation (2) for binary classification models in terms of the four
possible predictions: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). This metric simply measures the percentage of correct predictions made
during the validation step of training when considering the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

In addition to the training metrics, the metrics used for evaluating the classification models
include precision, recall, and the F1 score. Precision is defined by Equation (3) and measures
the percentage of correct positive predictions when considering the total number of positive
predictions made.

Precision =
TP

TP + FP
(3)

Recall is defined by Equation (4) and measures the percentage of positive predictions made
when considering the total amount of positive samples.

Recall =
TP

TP + FN
(4)

The F1 score is an equally weighted combination of both precision and recall. Equation (5)
describes the formulation of the F1 score which implies that both FP and FN predictions
are considered in determining the value. This characteristic of the F1 score makes it a
well-balanced measure of model performance.

F1 score =
2

1
Precision + 1

Recall

=
2 ∗ (Precision*Recall)

Precision+Recall
. (5)

4.1.2. Object Detection Metrics

The training metrics used to track the progress of the object detection models deal with
the associated loss parameters for distinct training operations—the three major operations
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being classification, localization, and regularization. Classification loss is associated with
the determination of the target object class [34]. Classification loss is represented as a
combination of the cross-entropy loss from Equation (1) and the SoftMax activation function
in Equation (6)

σ(z)j =
ezj

∑K
k=1 ezk

(6)

where z is a vector input containing K elements corresponding to the possible object classes,
j is the index variable for the input vector z, and zj is the j-th element of z. The denominator
of Equation (6) contains the normalization term that ensures σ(z)j is a valid probability
distribution where all j elements sum to 1, allowing the predicted object classes to be
converted to probabilities before computing the cross-entropy loss [33]. The localization
loss is associated with bounding box regression to pinpoint the target object through
training another head with an independent loss function [34]. This loss function must
account for given samples/instances of bounding box coordinates represented as yi and
the target coordinates of the ground-truth bounding box represented as ŷi in Equation (7).
This localization loss is characterized as a Mean Square Error (MSE).

MSE =
∑n

i=1(yi − ŷi)
2

n
. (7)

The third type of loss, regularization loss, aims to reduce overfitting in the neural
network by penalizing certain values of the weights in each layer. The result is a constrained
range of values for these weights that purportedly reduces the memory capacity of the
model without sacrificing model performance. Regularization is formulated in two distinct
fashions (and usually implemented as a combination of both) with L1 and L2 regularization.
L1 and L2 are shown in Equation (8) with the weight value w, total number of weights in a
given layer n, and the regularization hyperparameter λ

L1 = MSE + λ
n

∑
i=1

|wi|,

L2 = MSE + λ
n

∑
i=1

w2
i . (8)

It is clear from Equation (8) that L1 is a function of a scaled sum of the magnitude of each
weight value, and L2 is a function of a scaled sum of each weight value squared.

Finally, the total loss function is used as a generalized metric for evaluating the
training performance. It is a weighted sum of the classification loss, the localization loss,
and the regularization loss parameters that are calculated by the model. The model weights
for classification loss and localization loss were kept equal at a value of 1.0 while the
regularization loss weight was set to a much smaller fraction of the previous weights. This
was standard for configuring the training of all three damage detection models. It should
be added that there are two opposed structures for the heads being trained to evaluate
the loss parameters mentioned above: the convolution head and fully connected head.
The former is more appropriate and has better results for the classification task, while the
latter is more advantageous at conducting bounding box regression [35].

4.2. Model Training

We present the transfer learning model training and validation metrics in this section.
Validation occurs in the training process to evaluate the model’s predictions on the valida-
tion dataset which contains images the model has not encountered during training. This
gives an objective estimate of the model’s accuracy and loss to compare to the training accu-
racy and training loss. Figure 3 shows the training metrics for flood damage classification
using the cross-entropy loss and the accuracy defined in Equations (1) and (2), respectively.
Figure 3a shows that the training loss and the validation loss using the ResNet model both
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converge to a value of approximately 0.5, indicating that the model does not experience
overfitting or underfitting issues. On the other hand, training loss for the MobileNet model
is around 0.05, while its validation loss is similar to that of ResNet, 0.5. Figure 3b shows
training accuracy and validation accuracy for the two base models. Accuracy measures
the ratio of correct prediction (including true floods damage prediction and true non-floods
damage prediction) to the total number of predictions. The accuracy for the ResNet model
converges to a value between 0.7 and 0.75. The accuracy using MobileNet is slightly dif-
ferent between training and validation. The training accuracy is close to 0.975, while the
validation accuracy is about 0.9. Overall, the training metrics comparison shows that flood
damage classification using the MobileNet model has a similar validation loss compared to
that of ResNet, but it has a better accuracy.

Figure 3. The training and validation cross-entropy loss and accuracy for the flood damage classifica-
tion using ResNet and MobileNet.

Figure 4 shows the training metrics for hurricane damage detection which utilize
the cross-entropy, MSE, L1, and L2 loss functions in Equations (1), (7) and (8). Figure 4a
shows that EfficientNet converges to an approximate value of 0.3, ResNet converges to
an approximate value of 0.18, and MobileNet converge to the lowest value of training
classification loss at approximately 0.05. All three models achieve values for classification
loss ≤ 0.3, which is generally accepted for concluding model training. However, ResNet
experiences a sharp spike in classification loss between 0 and 500 epochs. This can be
attributed to the early point in the training process where there has not been a significant
relation of extracted features within the model’s network to image features for the four
classes in our model.

Figure 4b shows that ResNet converges to a training localization loss of approximately
0.8, while MobileNet and EfficientNet both converge to an approximate value of 0.01
for training localization loss. EfficientNet also has a unique path of convergence for this
parameter, as it begins the training process with a localization loss value of approximately
0.05 and finishes with a value of 0.01 which characterizes its loss curve to be constant
relative to the loss curves for ResNet and MobileNet. This result can be attributed to the
BiFPN structure of the EfficientDet model [27] which optimizes the accuracy of predictions,
specifically bounding box regression in this case.

Figure 4c shows that EfficientNet converges to an approximate value of 0.08, ResNet
converges to an approximate value of 0.2, and MobileNet converges to the largest value of
approximately 0.56 for regularization loss. The relatively high value for MobileNet can be
attributed to less effective modeling of the regularization loss with the second term in both
L1 and L2 of Equation (8). This term likely contributes a larger value for the MobileNet layer
weights than the layer weights for EfficientNet and ResNet. Additionally, the MobileNet
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layer architecture lacks multiple two dimensional convolutions as implemented in the
ResNet and EfficientNet layer architectures. The addition of supplemental convolution
layers would likely further reduce overfitting in each model. Thus, the regularization loss
would naturally decrease in accordance.

Figure 4d shows that ResNet and EfficientNet both converge to an approximate
value of 0.4 while MobileNet converges to an approximate value of 0.6 for the total loss.
The increased value of total loss for MobileNet can be attributed to the regularization loss
which converges to a relatively large value in comparison to the localization loss and the
classification loss for MobileNet. Thus, the significantly higher value of regularization loss
for MobileNet skews the value of total loss, despite the model’s significantly lower values
for classification loss and localization loss.

Figure 4. The training metrics for damage detection using classification loss, localization loss,
regularization loss, and total loss up to the twenty-thousandth (20 k) epoch.

4.3. Damage Classification

After the completion of the transfer learning model training using the base models of
ResNet and MobileNet on our in-house flood damage dataset, the newly trained models
are tested with images they did not see during the training stage. Among the test dataset,
the number of floods images is 92, and the number of non-floods images is 107. It is noted
that the floods and non-floods images are slightly imbalance. The same set of floods images
and non-floods images was tested by the newly trained models using ResNet and MobileNet.
In this study, the floods class was the positive class, and the non-floods class was the negative
class, resulting in the following four possible predictions:

• TN / True negative: an image was non-floods and predicted as non-floods;
• TP / True positive: an image was floods and predicted as floods;
• FN / False negative: an image was floods and predicted as non-floods;
• FP / False positive: an image was non-floods and predicted as floods.
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Figure 5 shows the confusion matrix for both ResNet and MobileNet. Each row in
a confusion matrix represents a true label (i.e., an actual class), while each column in a
confusion matrix represents a predicted label. In this study, the first row and the first
column have the label of non-floods, while the second row and the second column have the
label of floods. The diagonal elements of the confusion matrix represent that the predicted
label is equal to the true label, while off-diagonal elements are those that are mislabeled
by the classifier. The values in each of the elements are normalized by the total number of
images for each class. It is expected that a perfect classifier would have only true positives
(lower right) and true negatives (top left). Figure 5 shows both ResNet and MobileNet are
able to classify non-floods and floods images with the larger percentages along the diagonal
elements. An accurate prediction means that a non-floods image was predicted as non-
floods, and a floods image was predicted as floods. The prediction accuracy of ResNet is
about 76%, and the accuracy of MobileNet is about 87%. Both classifiers show that true
positive predictions (85% by ResNet and 89% by MobileNet) are higher than true negative
predictions (66% by ResNet and 85% by MobileNet). A further comparison shows that the
transfer learning model using MobileNet outperforms the one trained using ResNet for
both true positive and true negative predictions. Specifically, the true positive prediction
percentage of MobileNet is about 89%, while the true positive prediction percentage of
ResNet is about 85%. Similarly, the true negative prediction percentage of MobileNet is
about 85%, while the true negative prediction percentage of ResNet is about 66%.

(a) ResNet (b) MobileNet

Figure 5. The confusion matrix for flood damage classification using (a) ResNet and (b) MobileNet.
The locations of four possible predictions are: TN (top left), FP (top right), FN (lower left), and TP
(lower right).

Model classification performance is further evaluated by using precision, recall, and F1
score, as defined in Equations (3)–(5), respectively. The result is summarized in Table 3.
The precision metric measures the accuracy of the true positive predictions (i.e., floods label)
by dividing the true positive predictions over the sum of true positive and false positive
predictions. The precision values for ResNet and MobileNet are 0.75 and 0.87, respectively.
This indicates that MobileNet shows a higher accuracy (about 12%) than ResNet in terms
of floods image classification. The second metric recall measures the true positive rate (i.e.,
the ratio of floods images that are correctly detected by the classifiers. The result shows that
the recall of MobileNet is about 4% higher than that of ResNet. The last metric examined in
this study is the F1 score, which is the harmonic mean of precision and recall, as defined
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in Equation (5). As a result, the classifier only obtains a high F1 score if both precision
and recall are high. The F1 score result shows that MobileNet obtains a F1 score that
is about 9% higher than that obtained by the ResNet-based classifier. In short, both the
confusion matrix comparison in Figure 5 and metric comparison in Table 3 show that
the flood damage classification models developed through transfer learning are accurate.
Furthermore, the classifier using MobileNet as the base model performs better than a
transfer learning model developed on the basis of ResNet.

Table 3. Summary of flood damage classification using transfer learning on the basics of ResNet
and MobileNet.

ResNet MobileNet

Precision Recall F1-score Precision Recall F1-score

0.75 0.85 0.79 0.87 0.89 0.88

4.4. Damage Detection

In the following sections, we compare the predictions from each model on a set of
four test images that the model has not seen previously with each image containing one
of the four specific classes of damage. The scores in Tables 4–7 are confidence/probability
scores associated with each predicted type of damage. Each confidence score is assigned by
the model to a different bounding box prediction as a measure of how likely the detected
object in the image belongs to the predicted class. In other words, the confidence score is
a measure of the model’s ability to isolate a damaged area within an image and correctly
identify that damage using the model’s trained classifiers. Higher confidence scores are
associated with the most accurate predictions of damaged areas in the image. The top
three confidence scores were taken from each inference run on the corresponding image,
and the top confidence score is associated with the bounding box prediction displayed on
the images in Figures 6–9.

4.4.1. Damaged Roof Comparison

In Table 4, the top predictions for MobileNet and EfficientNet correctly classify the
object as a damaged roof, and MobileNet achieves the higher confidence score of 90.93% for
that predicted class. The bounding box location in Figure 6c predicted by EfficientNet more
accurately encompasses the entire damaged roof structure in comparison to the bounding box
location in Figure 6b predicted by MobileNet. On the other hand, the top two predictions
made by ResNet are inaccurately classified as structural damage, and the bounding box
location in Figure 6a is also inaccurate due to the different image features associated with
the structural damage class. The same applies to the third prediction made by ResNet
of the flood damage class and the third prediction made by EfficientNet of the structural
damage class.

Table 4. Summary of confidence scores and associated object categories for the top three predictions
made on the image of a damaged roof for each of the three models.

ResNet MobileNet EfficientNet

Score Type Score Type Score Type

#1 28.12% structural damage 90.93% damaged roof 62.85% damaged roof
#2 21.99% structural damage 32.73% damaged roof 47.72% damaged roof
#3 12.47% flood damage 21.75% damaged roof 15.97% structural damage
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(a) ResNet (b) MobileNet

(c) EfficientNet

Figure 6. Inference carried out on the image of a damaged roof for each of the three models. The green
bounding boxes correspond to the correct predictions of a damaged roof, and the grey bounding box
corresponds to the incorrect prediction of structural damage from the first row of Table 4.

4.4.2. Damage Wall Comparison

In Table 5, the top predictions for ResNet, MobileNet, and EfficientNet correctly
classify the object as a damaged wall, and MobileNet again achieves the highest confidence
score of 97.58% for that predicted class. The bounding box location in Figure 7b predicted
by MobileNet more accurately encompasses the entire damaged wall structure in comparison
to the bounding box location in Figure 7a predicted by MobileNet and Figure 7c predicted
by EfficientNet. However, the second and third predictions made by ResNet and MobileNet
are inaccurately classified as either structural damage or a damaged roof, likely due to similar
features of a damaged wall in this image that the model has learned to extract in predicting
the structural damage and damaged roof classes as well.

Table 5. Summary of confidence scores and associated object categories for the top three predictions
made on the image of a damaged wall for each of the three models.

ResNet MobileNet EfficientNet

Score Type Score Type Score Type

#1 75.00% damaged wall 97.58% damaged wall 55.22% damaged wall
#2 23.44% structural damage 15.07% structural damage 18.41% damaged wall
#3 20.54% damaged roof 11.56% structural damage 13.46% damaged wall
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(a) ResNet (b) MobileNet

(c) EfficientNet

Figure 7. Inference carried out on the image of a damaged wall for each of the three models. The blue
bounding boxes correspond to the correct prediction of a damaged wall from the first row of Table 5.

4.4.3. Flood Damage Comparison

In Table 6, the top predictions for ResNet, MobileNet, and EfficientNet correctly
classify the object as flood damage, and MobileNet again achieves the highest confidence
score of 97.45% for that predicted class. The bounding box location in Figure 8b predicted
by MobileNet more accurately encompasses the entire flood damage area in comparison to
the bounding box location in Figure 8a predicted by ResNet and Figure 8c predicted by
EfficientNet. However, the second and third predictions made by ResNet and MobileNet
are inaccurately classified as either a damaged wall or a damaged roof, likely due to some
features of the building in the background of the image that would be extracted to predict
those classes. The same applies to the second prediction made by EfficientNet of the
structural damage class.

Table 6. Summary of confidence scores and associated object categories for the top three predictions
made on the image of flood damage for each of the three models.

ResNet MobileNet EfficientNet

Score Type Score Type Score Type

#1 52.46% flood damage 97.45% flood damage 48.79% flood damage
#2 18.73% damaged wall 24.39% damaged wall 10.45% structural damage
#3 12.63% damaged roof 6.14% damaged roof 10.30% flood damage

363



Appl. Sci. 2022, 12, 1466

(a) ResNet (b) MobileNet

(c) EfficientNet

Figure 8. Inference carried out on the image of flood damage for each of the three models. The white
bounding boxes correspond to the correct predictions of flood damage from the first row of Table 6.

4.4.4. Structural Damage Comparison

In Table 7, the top predictions for ResNet, MobileNet, and EfficientNet correctly classify
the object as structural damage, and MobileNet actually achieves the lowest confidence score
of 42.85% for that predicted class. ResNet and EfficientNet achieve similar confidence
scores of 68.11% and 67.96%, respectively, for their top prediction. Although the bounding
box location in Figure 9b predicted by MobileNet more accurately encompasses the entire
structural damage area in comparison to the bounding box location in Figure 9a predicted by
ResNet and Figure 9c predicted by EfficientNet, the second and third predictions made by
ResNet and MobileNet are inaccurately classified as either a damaged wall or a damaged roof,
very likely due to the similar features of structural damage in this image that the model has
learned to extract in predicting the damaged roof and damaged wall classes as well. The same
applies to the third prediction made by EfficientNet of the flood damage class.

Table 7. Summary of confidence scores and associated object categories for the top three predictions
made on the image of structural damage for each of the three models.

ResNet MobileNet EfficientNet

Score Type Score Type Score Type

#1 68.11% structural damage 42.85% structural damage 67.96% structural damage
#2 13.43% damaged wall 11.74% damaged roof 25.56% structural damage
#3 12.26% structural damage 6.30% damaged roof 18.86% flood damage
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(a) ResNet (b) MobileNet

(c) EfficientNet

Figure 9. Inference carried out on the image of structural damage for each of the three models. The tan
colored bounding boxes correspond to the correct predictions of structural damage from the first row
of Table 7.

4.4.5. Overall Performance of the Damage Detection Models

It can be seen from the results of the inference for each type of damage that the most ac-
curate damage detector is the model trained on the MobileNet architecture. The MobileNet
model most consistently achieved the highest confidence scores when predicting each
type of damage with the highest overall confidence score of 97.58% when predicting the
damaged roof in Figure 6b. This is likely a result of the unique structure of the MobileNet
architecture; the depthwise separable convolutions allow for these detections to have an im-
proved computation and overall model scale in comparison to the EfficientNet and ResNet
models. Additionally, the width and resolution multipliers that are incorporated into the
model architecture likely give the MobileNet model a significant advantage in scaling the
layers for a more-tailored fit to each object class. Thus, each classifier corresponding to
the four object classes predicts the type of damage after it is located in the image with
high accuracy.

However, the damage detection model with the most consistent classifier was actually
EfficientNet. As can be seen in Tables 4–7, EfficientNet was the most consistent model
with classifying the predicted damage as the correct object/label. Out of the top three
predictions among each of the four types of damage, EfficientNet incorrectly classified
the damage a total of three times, while MobileNet and ResNet incorrectly classified the
damage six times and eight times, respectively. This result is likely due to the primary
advantage of the EfficientNet architecture being its efficiency of predictions due to the
use of compound scaling. In turn, this efficiency is optimized by the BiFPN mentioned
previously; increased efficiency of accurate predictions leads to the EfficientNet model
producing more consistently accurate classifications of the damage—but at the cost of
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losing a certain degree of accuracy in predicting the precise location of the damage, thus
leading to a lower confidence score for EfficientNet in general.

Since our in-house dataset for damage detection was not included in the original
dataset used to develop all three AI models (ResNet, MobileNet, and EfficientNet), then
our models are subject to developing a certain level of negative transfer [36,37]. The effect
of negative transfer on model performance leads to less accurate predictions made by
each model. Lower confidence scores can be attributed to the negative impact each model
endured from transferring learned features of each pre-trained model to the target domain
of our dataset.

5. Conclusions

This study has developed transfer-learning-based artificial intelligence models to
assess building damages due to hurricanes in the U.S. southeast region. We developed our
in-house building damage image dataset and subset it into (i) damage classification (i.e.,
floods vs. non-floods) and (ii) damaged object detection including damaged roof, damaged wall,
flood damage, and structural damage. We developed transfer learning workflows that take
advantage of feature extraction from three advanced neural network models in computer vi-
sion (i.e., EfficientNet, ResNet, and MobileNet) and successfully retrained these models for
building damage assessment. Finally, we evaluated the classification and object detection
performance among the different models. Our major findings and contributions include

• The transfer learning based flood damage classification models were developed using
ResNet and MobileNet. A binary classification was carried out to detect floods and
non-floods images. Several methods were used to evaluate the performance of the
transfer learning models. The confusion matrix comparison showed both ResNet and
MobileNet are able to correctly classify floods and non-floods with a relatively high
accuracy. Specifically, the overall accuracy is about 76% using ResNet and 87% using
MobileNet. Three metrics (precision, recall, and F1 score) were further calculated
and compared between two models. The result obtained using MobileNet as the
base model is consistently better than that using ResNet. For example, the F1 score,
a harmonic mean of precision and recall, is about 0.88 using MobileNet. It is about 9%
higher than the F1 score using ResNet (0.79). Overall, this study showed that hurricane
flood damage to buildings can be correctly classified using artificial intelligence models
developed using transfer learning techniques on the basis of advancing machine
learning models in computer vision.

• The transfer-learning-based damage detection models were developed using ResNet,
MobileNet, and EfficientNet. Four damage types were captured in four object classes:
damaged roof, damaged wall, flood damage, and structural damage. Two methods were
primarily used to evaluate the performance of the transfer learning models for damage
detection. The top three confidence scores and associated object class were tabulated
for each model, showing that each model was capable of predicting the correct object
class in the image; the MobileNet model consistently achieved the highest confidence
score and proved to be the more accurate model in detecting hurricane damage.
Then, the images of each type of damage were displayed with the top bounding
box prediction for each model. Likewise, MobileNet consistently achieved the most
accurate localizations of the detected damage in each image. Therefore, this study
showed that various types of damage from hurricanes can be accurately detected
using artificial intelligence models developed through transfer learning to further
advance machine learning applications in computer vision.

From creating our in-house damage assessment framework, we were able to show
that a significant level of accuracy for damage classification can be achieved using transfer
learning techniques on a pre-trained neural network. Given the relatively small and broad
range of images used for the input data set, our classification model displayed a high
degree of versatility that could be used during a spectrum of hurricane and other coastal
hazard events. The object detection results highlight the model’s ability to successfully
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identify damaged areas of buildings and structures from test data in a time span of seconds,
which is necessary for more efficient damage assessment.

Our work can be improved with further research into applying transfer learning
techniques to create classification and object detection models trained on post-disaster
imagery. Using these machine learning models would significantly reduce the time required
for damage assessment. Therefore, relief plans created in the wake of a future coastal
hazard would save hours to days of time required to determine the total damage incurred.
As a result, impacted coastal communities would be able to receive more reliable and
prompt relief from direct implementation of artificial intelligence technology such as our
classification and object detection models.
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Abstract: Studies have demonstrated that changes in the climate affect wind power forecasting
under different weather conditions. Theoretically, accurate prediction of both wind power output
and weather changes using statistics-based prediction models is difficult. In practice, traditional
machine learning models can perform long-term wind power forecasting with a mean absolute
percentage error (MAPE) of 10% to 17%, which does not meet the engineering requirements for
our renewable energy project. Deep learning networks (DLNs) have been employed to obtain
the correlations between meteorological features and power generation using a multilayer neural
convolutional architecture with gradient descent algorithms to minimize estimation errors. This
has wide applicability to the field of wind power forecasting. Therefore, this study aimed at the
long-term (24–72-h ahead) prediction of wind power with an MAPE of less than 10% by using the
Temporal Convolutional Network (TCN) algorithm of DLNs. In our experiment, we performed TCN
model pretraining using historical weather data and the power generation outputs of a wind turbine
from a Scada wind power plant in Turkey. The experimental results indicated an MAPE of 5.13%
for 72-h wind power prediction, which is adequate within the constraints of our project. Finally, we
compared the performance of four DLN-based prediction models for power forecasting, namely,
the TCN, long short-term memory (LSTM), recurrent neural network (RNN), and gated recurrence
unit (GRU) models. We validated that the TCN outperforms the other three models for wind power
prediction in terms of data input volume, stability of error reduction, and forecast accuracy.

Keywords: renewable energy; wind power forecasting; deep learning network; temporal convolu-
tional network; long short-term memory

1. Introduction

With the increasingly serious global warming crisis and the burning of fossil fuels
inducing air pollution and climate change, concerned parties have begun to invest in the
development and application of renewable energy. European countries such as Denmark,
Germany, and Sweden have invested in renewable energy through smart power grids, in
which power suppliers and regional suppliers provide two-way complementary power
supply and demand. The key technology of a smart power grid is power forecasting in
relation to renewable energy, which is a clean power supply.

Many techniques have been applied to wind power forecasting to solve various
problems, such as the fluctuations in power from wind farms for very short-term, short-
term (from 30 min to day-ahead), medium-term (from day-ahead to month-ahead), and
long-term (more than month-ahead) [1].
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Wind power forecasting prediction models can be classified using the following three
approaches: (1) the physical approach, in which weather changes are considered as deter-
ministic events [1], (2) the statistical approach, in which weather changes are considered
as a random process [2,3], and (3) the hybrid approach, which constitutes a weighted
aggregation of the other two prediction models [4–9]. Compared with these three methods
for wind power prediction problems, deep learning network (DLN) approaches, such as
Boltzmann machines (RBM), long short-term memory (LSTM), temporal convolutional
networks (TCN), and convolutional neural networks (CNN) have exhibited superior results
and are generally considered as an alternative solution for wind power prediction [10,11].
These wind power forecasting schemes are summarised as Table 1.

Table 1. Four Major Approaches for Wind Power Forecasting.

Features Limitations

Physical methods
[1]

• Physical methods for wind forecasting use
numerical weather prediction (NWP) to
predict weather, considering the effects of
atmosphere, local terrain, and wind farm
layout factors.

• Needs a lot of weather experts to handle
numerical weather data prediction.

• In case that accuracy of NWP is poor, the
wind power generation forecasting
becomes inaccurate.

Statistical methods
[2,3]

• Applies statistical methods to find the
relationships between weather features and
the predicted power.

• Statistical methods include Bayesian,
regression, and auto regression integrated
moving average (ARIMA) models.

• A specific statistical method cannot handle
complex weather conditions affected by
atmosphere and environment factors.

• Thus, enhanced learning schemes such as
random trees and GDBT are proposed in
order to increase the accuracy for wind
power prediction.

Hybrid methods
[4–9]

• Aggregate different weights of models to
improve model performance by preserving
advantages of each approach, such as
combination of fuzzy logic approach,
artificial neural network (ANN) and
support vector machine (SVM), where SVM
and fuzzy logic approach can complement
each other and ensure superior results.

• These hybrid models have problems with
stable prediction as their complex learning
architecture may cause low efficiency, long
training times and even under-fitting.

Deep learning methods
[10,11]

• Use convolution operation to extract the
features of time series data and predict the
output using classification results.

• Multilayer neural networks for multiclass
classification exhibited superior results in
wind power forecasting applications.

• Compared with the traditional ANNs, deep
learning neural networks do not need extra
unsupervised networks or data
preprocessing (e.g., decomposition).

• The performance of the DLN model is
constrained by the quality of data input and
neural architecture design.

• To avoid constraints from data inputs,
researchers have begun to study and
propose new (NWP + DLN)
models recently.

These developed models can perform long-term day-ahead wind power forecasting;
however, forecasting schemes with a mean absolute percentage error (MAPE) between 12%
and 17% [12,13] do not meet the engineering requirements. Thus, the development of an
accurate and robust approach for wind power forecasting under varying climate conditions
is still a challenge. Considering the increasing role of wind power in the renewable energy
system, the research gaps and opportunities for wind power predicting are summarised as:

1. Practically, most existing approaches to forecasting do not model the uncertainty of
wind well. Thus, a high-accuracy wind power model needs high resolution weather
data inputs generated by an NWP model, which is not a trivial task.

2. Typically, deep learning-based neural networks for day ahead wind power fore-
casting outperform traditional neural networks such as ANN in renewable power
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forecasting problems, as these deep learning networks (DLNs) do not need extra data
pre-processing, i.e., decomposition, in order to retrieve features from datasets.

Typically, wind power forecasting is subject to a power level output classification
problem related to different spatial temporal weather data. Four major types of DLNs
for time series data have been applied to wind power forecasting from the time-series
sequence data input, namely the recurrent neural network (RNN), long short-term memory
(LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN).

RNNs were the first neural networks to assist in analyzing and learning sequences of
data. However, some problems with RNNs were raised during model training, including
slow computation times on account of their recurrent nature. Particularly when using
Relu or Tanh as the activation function, long sequence inputs (i.e., gradient exploding and
vanishing problems) become difficult to process [14]. LSTM was later proposed to solve the
gradient exploding and vanishing problems. Typically, LSTM is capable of learning lengthy
time dependencies by using the forget, input, and output gates in the module. Similarly,
LSTMs have some weaknesses, for example difficulty in applying the dropout algorithm.
Dropout is a regularization method in which input and recurrent connections to the LSTM
units are probabilistically excluded from activation and weight updates when training a
network [15,16]. GRU is a type of RNN that, in certain cases, has advantages over LSTM.
GRU uses less memory and is faster than LSTM, although LSTM is more accurate when
using datasets with longer sequences [17–19].

In this study, we intend to answer the question of which deep machine learning
methods for time series data input can predict day-ahead wind power generation with
the smallest error. To investigate the forecast accuracy of day-ahead for wind turbines
measured with a performance evaluation index (i.e., MAPE), we developed a feature-
based learning model for wind power forecasting and trained TCNs [20–23] to learn
meteorological features and identify the output class of power generation. We applied a
multilayer neural convolutional architecture with gradient descent algorithms to minimize
the estimation model error.

Four major types of sequence-to-sequence DLN models for wind power forecasting
were compared to assess model performance. The experimental results demonstrated that
the TCN outperforms canonical recurrent networks, LSTMs, RNNs, and GRUs across a
diverse range of experiments and datasets. Thus, the TCN provides an effective means of
accurately predicting power generation under varying climate conditions.

In summary, the primary contributions of this study are as follows:

The optimal parameters of the models were investigated using evolutionary algo-
rithms (EAs) in order to minimize convergence loss in the learning process.
Four crucial architecture parameters for developed wind power prediction models
were analysed, incorporating the differential evolution (DE) algorithm [16–18] in
the learning process of the TCN model, namely, (i) number of filters, (ii) activation
function, (iii) optimizer, and (iv) dilatation coefficient, in order to determine the initial
model architecture for model training, according to the natural feature of TCN.
In our experiment, the prediction error of the TCN model for wind power prediction
decreased most steadily among the four models, followed by LSTM, GRU, and RNN.
With an increasing amount of historical data, the prediction error (MAPE) of the TCN-
based model decreased significantly; the 72 h forecast error of the 1-week, 1-month,
and 1-year training datasets was 66.43%, 10.93%, and 5.13%, respectively.
Compared with LSTM, GRU, and RNN models, the TCN model created long effective
memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable for
sequence modeling based on sequence-to-sequence applications.

The remainder of this article is organized as follows. Section 2 provides a review
of other relevant studies in this field, and Section 3 introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented in
Section 4. Finally, Section 5 provides the concluding remarks.
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2. Literature Review

This section provides an overview of deep neural networks (DNNs) in relation to
their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data

To address the issues involved in wind power forecasting, researchers have developed
DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to address
complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for sequence-to-
sequence learning because their internal memory gates obtain outstanding results in natural
language processing and other applications. However, RNNs have limited testing with
wind time-series data, as well as long memory requirements. LSTMs were later designed
to avoid the vanishing gradient that occurs with long sequences. A simplified version
of the LSTM, the GRU was applied to resolve simple problems using shorter sequences.
In 2016, Lea et al. [20] first proposed temporal convolutional networks (TCNs) for video-
based action segmentation. In practice, TCNs have all the advantages of LSTMs as well as
extended memory processing input based on dilated convolution architecture and residual
connections, with higher classification accuracy than LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponentially
large receptive field. This is more suitable for sequence modeling based on sequence-to-
sequence applications that require long effective memory, such as long- or medium-term
wind power forecasting [14]. Dilated convolution is a means of increasing the receptive
view of the network exponentially, as well as linear parameter accretion [21]. Thus, TCNs
are considered a better-adapted architectures thanks to their simplicity, autoregressive
prediction, and flexibility for sequence modeling, with a large long memory.

Many researchers have demonstrated that TCNs effectively perform sequence-to-
sequence tasks, such as machine translation or speech synthesis in text-to-speech systems.
Bai [21] conducted a systematic evaluation of generic convolutional and recurrent networks
for sequence modeling and reported that the TCN outperformed canonical recurrent
networks across a broad range of standard tasks. Four deep learning network schemes for
wind power forecasting are summarised in Table 2.

Table 2. Deep Learning Approaches for Wind Power Forecasting.

Features Limitations

RNN
[14]

• Used for mapping inputs to outputs of varying
types and lengths, and are fairly generalized in
their applications such as text translation and
voice recognition.

• RNNs have a major setback called the
exploding/vanishing gradient, which causes
difficulties in learning
long-range dependencies.

• RNNs become severely difficult to train as the
number of parameters becomes extremely large.

LSTM
[15,16]

• LSTMs are a novel, efficient, gradient-based
method for handling complex, artificial
long-time-lag tasks.

• Essentially, LSTMs are a special kind of RNN
capable of learning long-term dependencies.

• LSTMs require a lot of memories and time in
order to be trained for real-world applications.

• LSTMs can solve the problem of vanishing
gradients; however, they fail to remove
it completely.

GRU
[17–19]

• GRUs reduce the number of gating units on the
LSTM model and optimize the network
structure, which is now widely used in
industrial practice.

• GRU models have problems with slow
convergence rate and low learning efficiency,
resulting in too long a training time, and even
under-fitting.

TCN
[20–23]

• TCNs consist of dilated, causal 1D
convolutional layers with the same input and
output lengths to create a powerful forecasting
model in distinct domains.

• Many studies show that TCNs exhibit better
performance than RNNs in domain
applications, while avoiding the drawback of
the exploding/vanishing gradient problem in
RNN models.
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TCNs exhibit outstanding behavior with sequences of undetermined length, and the
TCN architecture can assist engineers in managing information flows in incredibly long
sequences. Consequently, TCNs have stronger learning capabilities and exhibit equal or
better results compared to those of the RNN, LSTM, and GRU.

To meet the large memory requirements for DLNs, TCNs use one-dimensional (1D)
separable convolutions to factorize a standard convolution into a depth-wise and pointwise
convolution. Typically, the TCN consists of three parts: dilated causal convolutions,
nonlinear activation, and residual connections. A causal convolutional network is used
with 1-dimensional fully convolutional network architecture. A key characteristic is that
the output at time t is only convolved with the elements that occurred before t. In 2020,
Yan et al. [23] used a TCN for weather state predictions in a comparative experiment
conducted with an LSTM. Notably, the results demonstrated that the TCN outperformed
other models, including the RNN, LSTN, and GRU, in prediction tasks with time-series
data. As shown in Figure 1, the TCN used the 1-dimensional convolutional neural network
for short-term wind power prediction, showing that it not only retained the powerful
ability of feature learning from both the weather data and electric power output, but was
also suitable for processing large volumes of time series data.

Figure 1. Basic architecture of a temporal convolutional network for wind power prediction.

2.2. Differential Evolution Algorithm

In the design of DNNs for processing time-series data, the optimal parameters of
the developed model are identified from training data in order to achieve high predictive
precision in the model output.

In supervised machine learning algorithms, in order to minimize the convergence loss
of the model in the learning process the optimal parameters of the model can be investigated
using evolutionary algorithms (EAs). Practically, the EA algorithm is an effective and
efficient approach for solving global numerical optimization problems, avoiding overfitting,
and preventing the gradient descent algorithms from converging prematurely on a local
suboptimal solution. EAs constitute a smart approach to solving constrained multiobjective
optimization problems. In practice, EAs are a family of nature-inspired algorithms widely
used for solving complex optimization problems which can be used for assisting developers
in determining the optimal parameters of the training model. The differential evolution
(DE) algorithm [24–28] is a branch of EA that follows the general procedures of EAs.

In detail, DE is a metaheuristic method that optimizes a problem by iteratively attempt-
ing to provide an improved candidate solution with regard to a set measure of quality. DE
was introduced by Storn and Price in the 1990s [16], and is applied to solve multiobjective
optimization with constraints. Typically, metaheuristic methods can search large spaces
for candidate solutions. DE is particularly used for multidimensional real-valued func-
tions; however, it does not use the gradient of the problem being optimized and therefore
does not require the optimization problem to be differentiable. Thus, DE can be used on
optimization problems that are not continuous, noisy, or changeable over time.
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The three basic operators of the DE algorithm are the mutation, crossover, and selection
operators. The fundamental idea behind DE is a scheme for producing trial vectors
according to the manipulation of target vector and difference vector. If the trail vector yields
a lower objective function than a predetermined population member, the newly generated
trail vector will replace the vector and be compared in the following generation [28].

After the initialization process, DE forms a loop of the mutation, crossover, and
selection processes until the termination condition is satisfied [24]. The processes of these
operators are described as follows:

(i) Initialization

Suppose that each individual of the population is denoted as Xi = [xij] = (xi,1, . . . ,
xi,j, . . . , xi,D), where i = 1, . . . , N, N is the number of the solution as well as j = 1, . . . , D,
and D represents the number of the dimension. Xi is limited by Xmin = (xG

min, . . . , xG
min,

. . . , xG
min) and Xmax = (xG

max, . . . , xG
max, . . . , xG

max), which is specified by the user. G is the
generation number.

An individual of the population can be defined as follows:

Xi = (xi,1, . . . , xi,j, . . . , xi,D), i = 1, . . . , N. j = 1, . . . , D (1)

First, the initialization population randomly selects the initial parameter values uni-
formly based on the intervals [Xmin, Xmax]. The commonly used initialization method for
individuals is

XG
i = rand(0, 1)·(Xmax − Xmin) + Xmin (2)

where rand(0, 1) represents the generation of a uniformly distribution random number
located in [0, 1].

(ii) Mutation

The DE algorithm adopts the mutation strategy, in which a mutant vector is created
for each individual VG

i (also called the trial vector) in each generation G. For a given
parameter vector VG

i , three vectors are selected randomly: XG
r1, XG

r2, and XG
r3, such that the

indices i, r1, r2, and r3 are distinct. First, the weighted difference of two of the vectors is
added to formVG

i

VG
i = XG

r1 + F·
(

XG
r2 − XG

r3

)
, (3)

where F is the scaling factor that controls the amplification of the differential evolution, i.e.,
mutation scale; its value is located in [0, 2]. Small values of F will lead to smaller mutation
step sizes. Consequently, it will take longer for the algorithm to converge. Conversely,
large values of F enable exploration, but can lead to the algorithm overshooting good
optima. Thus, the value has to be small enough to enhance local exploration but also large
enough to maintain diversity [25]. A well-known DE mutation operation is described as
follows [26,27]:

VG
i = VG

best + F·
(

VG
r1 − VG

r2

)
(4)

VG
i = VG

r1 + F·
(

VG
r2 − VG

r3

)
+ F·

(
VG

r4 − VG
r5

)
(5)

VG
i = VG

i + F·
(

VG
r1 − VG

ri

)
+ F·

(
VG

r2 − VG
r3

)
, (6)

where r1, r2, r3, r4, and r5 are the distinct integers randomly generated from the range of
[1, N] and are not equal to i, i.e., (r1 �= r2 �= r3 �= r4 �= r5 �= i). VG

best is the best individual
with the highest fitness value (objective value) at generation G.

(iii) Crossover
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After mutation, a trial vector XG
i = (XG

i,1, XG
i,2, . . . , XG

i,D) is generated for each individual
according to a binomial crossover operator on XG

i and VG
i , as follows:

UG
i,j =

{
VG

i,j i f
(
randi,j(0, 1) ≤ CR or j == jrand

)
XG

i,j otherwise
(7)

In this equation, rand is a uniformly distributed random integer in the range of [1, D],
which is generated for each individual. CR is the crossover rate, which is restricted in the
range of [0, 1]. CR controls the number of elements that will adjust. Larger values of CR
will lead to deriving more variation in the new population, therefore increasing it also
increases exploration [25].

If the j-th variable UG
i,j of the trial vector UG

i violates the boundary constraints, it is
reset as follows:

UG
i,j = Xmin

j + rand(0, 1)·
(

Xmax
j − Xmin

j

)
. (8)

(iv) Selection

The selection operator determines whether the target or trial vector survives and
enters the next generation based on their fitness values. For a minimization problem, the
decision vector with the lower fitness value (objective value) can enter the next generation,
which can be expressed as follows:

XG+1
i =

{
VG

i i f ( f it
(
UG

i
) ≤ f it

(
XG

i
)

XG
i otherwise

(9)

The process is repeated with the expectation, though it is not guaranteed, that a
satisfactory solution will eventually be discovered.

3. Wind Power Forecasting Model with Temporal Convolutional Networks

In this section, a TCN-based approach for a long-term wind power forecasting model
is presented. A detailed workflow of the TCN model design for 24–72 h wind power
forecasting is described herein. The following three subphases comprise the TCN model
development process with DE for determining the optimal parameters of the proposed
model: (i) architecture design, (ii) determination of the architecture parameters of the
model, and (iii) the overall process for model development.

3.1. Architectural Design for TCN

Inspired by [20], we incorporated the convolutional network architecture involved in
casual convolution with residual connections to construct a stable TCN-based prediction
model for 24–72 h wind power forecasting. Dilated convolution is used to select which
values of the neurons from the previous layer contribute to those in the next layer. Thus,
the dilated convolution operation captures both local and temporal information.

The dilated convolution function, F(s), is provided by [21]

F(s) = (x ∗d f )(s) = ∑k−1
i=0 f (i)·xs−d.i, (10)

where xs is the current input sequence data at time t, d is the dilation factor parameter, and
f is a filter of size k.

The TCN model can be defined as follows [23]:

xl
t = σ(Wl

x·Fd

(
xl−1

t

)
+ bl

x + xl−1
t ), (11)

where Fd(.) is the dilated convolution function of d factor, xl
t is the value of the neuron of

the l-th layer at time t, Wl
x and bl

x are the weights and bias corresponding to the l-th layer,
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and σ is the activation function. The dilated residual block in our project is detailed in
Figure 2.

 

Figure 2. TCN-based architecture for wind power forecasting.

The system must use the residual block to the convolutional layers when deep and
large TCNs are employed in order to achieve further stabilization. As presented in Figure 3,
the residual connections constituted the addition of the data input to the output before
applying the activation function; the residual block (d = 16) is used between each layer in
the TCN to accelerate convergence and enable the training of deeper models.

Figure 3. Detailed diagram of the dilated residual block.

3.2. Parameter Selection for TCN Model Using Evolutionary Algorithm

The architecture design for TCN and optimal parameters for the developed wind
power prediction model with the DE search mechanism are analyzed in this section.
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3.2.1. Preliminary Architecture Design

In this step, four crucial architecture parameters were selected by transferring learning
cases in the TCN predictor [20–23]; the original parameters of TCN models developed
for wind power prediction models were obtained from P. Rémy at GitHub [29], namely,
(i) number of filters, (ii) activation function, (iii) optimizer, and iv) dilatation coefficient, in
order to decide the initial model architecture for model training.

(i) Filter size

In practice, the cost function is a measure of the inaccuracy of the model in terms of
the difference between predicted values and real measured values. Following the analysis
of three filter sizes (8, 16, and 32), as described in Figure 4, the filter size of 32 exhibited the
smallest convergence error of the cost function after 100 iterations of simulation and was
the optimal choice for the designed TCN-based prediction model.

 

Figure 4. Convergence error of cost function with three different filter sizes.

(ii) Activation function

In artificial neural networks, the activation function of a node defines the output of
that node based on the input or set of inputs. Generally, nonlinear activation functions
allow such networks to compute complex problems using a few nodes. In the experiment,
we analyzed two types of nonlinear activation function, the norm_relu and Tanh*Sigmoid
activation function used in WaveNet. The corresponding convergence error of the cost
function for these activation functions is presented in Figure 5; norm_relu was selected as
the activation function of the model.

 

Figure 5. Convergence error of cost function for two nonlinear activation functions.
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(iii) Optimizer

To minimize loss during model training, an optimizer was adopted to improve the
accuracy of the model through adjustment of the filter weights. We assessed three popular
optimizers in the TCN model, Adam, SGD, and RMSprop; the corresponding convergence
error of cost function is detailed in Figure 6. The Adam optimizer was chosen as the ideal
optimizer for model training.

 

Figure 6. Convergence error of cost function for three types of optimizer.

(iv) Dilatation coefficient

Following the analysis of three combinations of dilatation coefficients (1, 2, 4; 1, 2, 4,
8; 1, 2, 4, 8, 16) in the model input architecture, the third set (1, 2, 4, 8,16) achieved the
most optimal results in relation to the error convergence of the cost function, as depicted in
Figure 7.

 

Figure 7. Convergence error of cost function with three sets of dilatation coefficients.

The architectural components of the proposed TCN model for transferring learning
from model training are listed in Table 3.
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Table 3. Architecture of the proposed TCN model.

Number of
Filter

Kernel_Size Dilatations
Number of

Stack
Optimizer

Parameter
Value 32 10 [1, 2, 4, 8, 16] 2 Adam

To confirm the appropriate architecture of the model design, different model architecture
parameters were experimentally investigated. In this experiment, 83.3% (500,000 records) of
the data from the open dataset of wind farm in Turkey (2018) [30] was randomly selected to
serve as the training dataset, and the remaining 17.7% (100,000 records) was used for testing.
The average accuracy of the results of experimental training and testing is summarized in
Table 4. Model accuracy was above 96.4% based on different parameter combinations, with
a low convergence loss result for the cost function. Thus, the architectural parameters of
Table 3 for the TCN model were validated.

Table 4. Accuracy analysis of the TCN model architecture.

Maximum Minimum Average

Training accuracy 98.2% 97.1% 97.8%

Test accuracy 96.7% 92.9% 95.1%

Average 97.45% 95.0% 96.4%

3.2.2. Analysis of Architecture Design

Following the architecture analysis step of detailed model design, experiments were
conducted with model training in order to validate the optimal parameters of the developed
TCN model based on training samples. In the experiment, differential evolution (DE)
methods [24–28] explored these solutions to handle the hyper-parameter tuning of the
TCN model for predicting wind power output in order to reach the satisfactory prediction
accuracy for different weather conditions. Essentially, the DE method is a population-
based stochastic search process using the distance and direction information from the
current population to conduct its search. Inspired by [25], we selected the DE method to
solve our problem because the historical data for wind power generation are generally
not continuous, noisy, or changeable over time; thus, the gradient of the problem being
optimized is not used.

For all experiments, 50 independent runs were conducted for each test function. The
parameter settings for the DE algorithm are listed in Table 5. As shown in Table 5, the
following parameters were chosen for the application of DE: population size NP = 10;
scaling_rate F = 0.5, crossover_rate CR = 0.3, generation number G = 30, and maximum
iteration = 500. Optimization was terminated at the pre-specified number of generations.

Table 5. The parameter settings for the architectural analysis.

Algorithm Parameter Setting

DE NP = 10, F = 0.5, CR = 0.3, G = 30

Then, nine trial vectors VG
i and difference vectors (Table 6) were generated for

each generation G according to the mutation, crossover and selection operations using
Equations (1)–(9). If the trail vector yielded a lower error value of objective function than a
predetermined population member, the newly generated trail vector replaced the target
vector and was compared in the following generation.
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Table 6. The parameter settings for the nine trial vectors.

Target Vector Filter_Size Dilatation
Number of

Stacks
Activation
Function

Optimizer

#1 8 [1, 2, 4, 8] 2 norm_relu RMSporp

#2 32 [1, 2, 4, 8, 16] 2 wavenet RMSporp

#3 16 [1, 2, 4, 8] 4 norm_relu Adam

#4 8 [1, 2, 4, 8] 3 norm_relu SGD

#5 32 [1, 2, 4, 8] 3 wavenet RMSporp

#6 8 [1, 2, 4, 8] 2 wavenet SGD

#7 16 [1, 2, 4, 8, 16] 3 norm_relu SGD

#8 16 [1, 2, 4, 8] 2 wavenet SGD

#9 32 [1, 2, 4] 4 norm_relu Adam

For analysis of the optimal parameters of the TCN model, DE allows for the process
of mutation, crossover, and selection until the termination condition is satisfied, using
Equations (1)–(9); the analysis process is shown in Figure 8.

 

Figure 8. Differential evolution used to decide the optimal parameters of TCN model training.

In our experiment, the error value and error reduction speed of the loss function
were adopted to evaluate whether the appropriate model parameters had been selected. If
the convergence error decrease was not smooth (i.e., a bouncing phenomenon), the cost
function or model parameters required adjustment. The convergence error of cost function
in the training process for TCN model is illustrated in Figure 9.
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Figure 9. Convergence error training of the TCN model.

As shown in Figure 9, a stable convergence was reached after a stable error descent
was exhibited in the experiments. Overall, the experimental results for the selected optimal
parameters of the TCN model are listed in Table 7.

Table 7. Selected optimal parameters of the TCN model.

Algorithm Layers
Total
Params/Kernels

AF/LF Optimizer Dilations
Number of
Stack

TCN model for
wind power
prediction

TCN 45,761/16 norm_Relu Adam [1, 2, 4, 8] 4

Input Layer 0 -

Initial_Conv (11,16)

Dilated
ConvLayer (16,161,16) norm_Relu/MSE

Dropout layer 0

Conv Layer (16,17,16) norm_Relu/MSE

OutputDense
Layer (17,1) linear

AF = activation function, LF = loss function, MSE = mean squared error.

3.3. Overall Process of the Model Operations

Four experimental DNN models for wind power forecasting incorporating RNN,
LSTM, GRU, and TCN were employed to verify the performance of model training. The
execution process of model development is illustrated in Figure 10. The proposed TCN
model comprised the following three subphases in the model operation process: (i) data
preprocessing, (ii) model training, and (iii) model validation.

Step 1. Data preprocessing
Before performing model pretraining, engineers must perform data processing for

wind farm datasets that contain real weather observations and wind turbine power outputs
with anomaly data. Each record in the wind power dataset includes items such as wind
speed, wind direction, temperature, humidity, height of wind turbine for model pretraining,
and some null fields where linear proportions of the neighbouring observation data are
noted in advance.

Following the study of patterns in high-dimension data using principal component
analysis, the prediction experiment employed two key model parameters, wind speed and
wind direction, which were applied to model training.
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Figure 10. Experiment execution process.

Step 2. Model training
Step 2.1 Model pretraining
In the pretraining phase, the proposed model incorporated the gradient descent

optimization algorithm in order to fine-tune the model parameters for transfer learning
using error derivatives of back-propagation with the optimizer for all layers. Then, a series
of experiments were pretrained to investigate the performance of the TCN-based classifier
using the Scada dataset, where the learning results were regarded as a basis of the optimal
model parameters, including number of filters, dilatation coefficient, activation function,
epochs, and prediction accuracy (Table 2).

Step 2.2 Model fine-tuning
During the fine-tuning of the model, we adopted a cross-validation scheme to evaluate

the predicted accuracy of the model and overcome the problem of over-training using
various n-folds of the cross-validation scheme. For example, k = 5 indicates that 80% of the
dataset collected was used in the training experiment, with the remaining 20% used for
alternative testing that was repeated five times. In the model validation phase, the system
provided a quick response for wind power forecasting using the weights of the neural nets
employed in the trained TCN model learning.

Step 3. Model validation
To test the robustness of the proposed model, the trained TCN model associated with

the test dataset was adopted to examine the model performance. Finally, the MAPE was
selected to evaluate the power prediction performance of the proposed model as follows:

MAPE =
1
n ∑n

i=1

∣∣∣∣∣Oi − Ôi
Wi

∣∣∣∣∣, (12)

where Wi represents the installed capacity of the wind turbine, Oi is the real value, and Ôi
is estimated output.

In the experiment, an open historical dataset from the Scada wind farm in Turkey,
including real weather observations and wind turbine power outputs, was used in model
pretraining. Each record of the Scada dataset can be found in [30].

The detailed algorithm for wind power prediction with the TCN-based model is
described by PDL as follows (Algorithm 1).
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Algorithm 1 Pseudocode of the TCN-based model for wind power prediction.

Input: 1. Historical weather data and wind turbine power outputs from Scada wind farm in
Turkey, containing five parameters sampled every 10 min, with a total of 52,560 samples listed. 2.
Model parameters of the proposed TCN model including the batch set, kernel, and epochs.
Output: predicted accuracy of wind power generation
1: Initialize the model parameters of the model
2: Set the value of the epochs to 50
3: Assign the stop condition value (ε) as 0.0001
4: Training loop
5: While (the number of epochs) do
6: Determine the optimal parameters of TCN model, as given in Equations (1)–(9)
7: Perform the wind power prediction, as given in Equations (10) and (11)
8: Return (model_file)
9: The training results of the model_file include: (1) filter size, (2) activation function, (3)
optimizer, (4) dilatation coefficient, (5) final loss of the cost function, and (6) output result of the

training process (
∼
Oi)

10: Return train (output_file)
11: End loop
12: Test phase
13: Accuracy prediction with loss of cost function by using specific parameters from the model
14: return predict (accuracy)
15: End

4. Results

In this section, the performance of the proposed TCN-based model for wind power
prediction is demonstrated by means of an example. The experiments were conducted
using the Python programming language and TensorFlow, which is an open source software
library for numerical computation. Moreover, TensorFlow incorporates numerical libraries
such as Pandas, NumPy, and Matplotlib for computation. The parallelisation of the
multicore architecture increased the computation speed of the TCN model. The multicore
architecture included an AMD Ryzen Threadripper processor (3.4 GHz) with 32 GB RAM,
a 64-bit Ubuntu 14.04 operating system, an Nvidia GeForce GTX 1080 graphics card (GPU),
graphics core computing, and the MongoDB 2.2.6 database. The experimental environment
is described in Table 8.

Table 8. Experimental environment for TCN-based prediction model.

IP
Programming

Language
Operating System Numerical Library

192.168.1.10 (AMD
Ryzen Threadripper,

1920X, 3.4G)
Python 3.5 Ubuntu 14.04 LTS 64

Tensorflow-gpu 1.1.3

Pandas 0.23.4

Numpy 1.1.8

Matplotlib 3.3.2

4.1. Case Study: Performance Analysis for TCN-Based Model (Scada Wind Farm, Turkey)

Step 1. Data preprocessing phase
In the experiment, an open historical dataset from Scada wind farm in Turkey, in-

cluding real weather observations and wind turbine power outputs, was used in model
pretraining. Each record in the Scada dataset contained five parameters sampled every
10 min, with a total of 52,560 samples listed [31]. Notably, some null fields contained
linear proportions of the neighbouring observation data in advance. Our training dataset
comprised samples from 1 January 2018, to 26 December 2018, and the test dataset used
samples from three days, namely December 27 to 29, 2018.
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Scada Systems measured and saved data including wind speed, wind direction,
generated power, etc. This file was taken from a Scada Systems wind turbine working and
generating power in Turkey. The data in the file are listed as follows: [30]

1. Date/Time: 10 min intervals
2. LV ActivePower (kW): The power generated by the turbine for that moment.
3. Wind Speed (m/s): The wind speed at the hub height of the turbine.
4. Theoretical Power Curve (KWh): The theoretical power values that the turbine gener-

ates with that wind speed, which is given by the turbine manufacturer.
5. Wind Direction (◦): The wind direction at the hub height of the turbine

Step 2. Model training phase
To examine model efficiency, four deep neural models were incorporated for series

data processing, namely, RNN, LSTM, GRU, and TCN, in order to conduct wind power
forecasting 72 h ahead of time. We set the initial values of TCN model parameters as in
Algorithm 1, and the experiment parameters for the RNN, LSTM and GRU models as in
Table 9.

Table 9. Experimental parameters for RNN, LSTM and GRU prediction models.

Model

Parameter
Output Unit Optimizers Learning Rate (lr) Layers

RNN 64 RMSporp 0.002 3

LSTM 64 RMSporp 0.002 2

GRU 32 RMSporp 0.01 2

Step 3. Model validation phase
Two experiments with training datasets of different sizes (i.e., one month and one

year) were conducted to verify the effectiveness of the four DNN-based models for wind
power forecasting.

In the first experiment, the one-month dataset was used to train four DNNs. The
LSTM model had the lowest prediction error (MAPE = 3.8%), followed by the GRU (9.09%)
and the TCN (10.93%) models, with the RNN model exhibiting the poorest performance
(11.21%), as detailed in Figure 11.

 

Figure 11. 72-h wind power prediction (Experiment I).
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In the second experiment, the one-year historical data were used to pretrain the four
DNNs; the prediction results for 24, 48, and 72 h are presented in Figures 12–14. For
72 h ahead of time, the prediction error of the TCN model indicated the highest accuracy
(MAPE = 5.13%), followed by the GRU (6.25%), LSTM (9.12%), and RNN (173.87%) models.

 

Figure 12. 24-h wind power forecasting (Experiment II).

 

Figure 13. 48-h wind power forecasting (Experiment II).
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Figure 14. 72-h wind power forecasting (Experiment II).

4.2. Method Comparisons

Theoretically, the convergence error of the cost function decreased in each iteration
of model training, as detailed in Figure 15. As presented in Figure 15, the convergence
error gradually converged and decreased with the increasing number of iterations (epochs)
when three of the prediction models (TCN, LSTM, and GRU) were applied; the RNN model
convergence error did not converge, and the prediction error did not decrease. RNNs are
thus not suitable for wind power forecasting from large amounts of temporal–spatial data
series inputs. The convergence error of the TCN model decreased more than that of the
LSTM close to the twentieth epoch, and continued to decrease steadily with the increasing
number of iterations. The prediction error of the TCN model decreased most steadily
among the four models, followed by LSTM and then GRU.

 

Figure 15. Convergence error of the cost function.

The performance of the four prediction models was affected by the varying amounts
of input training data. Therefore, performance analysis must be assessed with different
amounts of historical data for long-term prediction. In our experiment, different amounts
of historical data were used for model pretraining and the output results of the modules
were sorted; the stability comparison of the convergence errors is detailed in Table 10.
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With increasing amounts of historical data, the prediction error (MAPE) of the TCN-based
model decreased significantly, and the 72-h forecast error of the one-week, one-month, and
one-year training datasets was 66.43%, 10.93%, and 5.13%, respectively. In the experiment,
the TCN model exhibited consistent, stable and good prediction results by using selected
parameters from the DE algorithm.

Table 10. Performance comparison of four DNN models for wind power forecasting.

Period

Performance
Excellent Good Medium Bad

Week RNN GRU LSTM TCN

Month LSTM GRU TCN RNN

Year TCN LSTM GRU RNN

In summary, the wind power forecast error (MRE) of the proposed TCN-based model
was near 5.13% based on one-year historical data in different climatic scenarios. Compared
to the accuracy of other projects in wind power forecasting, the European team’s SafeWind
project in 2011 achieved a forecasting error of 17%. In 2017, the predicted error improved
to 11%; a project of the BSI electric power company reached within 10% in 2019. As
shown in Table 11, the proposed TCN-based approach provides a lower prediction error
with higher prediction accuracy than those of real projects in studies of wind power
forecasting [12,13,31].

Table 11. Performance comparison of other real projects for wind power forecasting.

Research Team Prediction Cycle Prediction Intervals
Prediction Error

(MAPE)

ANEMOS,
ANEMOS.plus &

SafeWind, 2011 [31]
Short-term within 36 h 17–35%

ANEMOS.plus &
SafeWind, 2017 [12] Short-term within 48 h 11–14%

UK Power Networks
2016 [13] Medium-term within 120 h 10%

Proposed model Medium-term within 72 h Near 5%

5. Conclusions

This study presented a TCN-based model for day-ahead wind power prediction
based on a casual convolution architecture with residual connections, in order to learn
correlations between meteorological features and wind power generation. The proposed
scheme effectively solves the long-distance dependency problem, as demonstrated by
the input of large amounts of temporal–spatial series data such as one-year wind power
data. The experimental results indicate that TCN models have the capability for feature
extraction of long-term sequence data, and exhibit the same or higher prediction accuracy
compared to LSTM and GRU models. Overall, the proposed TCN-based approach provides
a lower convergence error with higher prediction accuracy than those of other models
employed in other studies of wind power forecasting [12,13,31].
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Abstract: Accident investigation reports are text documents that systematically review and analyze
the cause and process of accidents after accidents have occurred and have been widely used in the
fields such as transportation, construction and aerospace. With the aid of accident investigation
reports, the cause of the accident can be clearly identified, which provides an important basis for
accident prevention and reliability assessment. However, since accident record reports are mostly
composed of unstructured data such as text, the analysis of accident causes inevitably relies on a lot
of expert experience and statistical analyses also require a lot of manual classification. Although, in
recent years, with the development of natural language processing technology, there have been many
efforts to automatically analyze and classify text. However, the existing methods either rely on large
corpus and data preprocessing methods, which are cumbersome, or extract text information based
on bidirectional encoder representation from transformers (BERT), but the computational cost is
extremely high. These shortcomings make it still a great challenge to automatically analyze accident
investigation reports and extract the information therein. To address the aforementioned problems,
this study proposes a text-mining-based accident causal classification method based on a relational
graph convolutional network (R-GCN) and pre-trained BERT. On the one hand, the proposed method
avoids preprocessing such as stop word removal and word segmentation, which not only preserves
the information of accident investigation reports to the greatest extent, but also avoids tedious
operations. On the other hand, with the help of R-GCN to process the semantic features obtained by
BERT representation, the dependence of BERT retraining on computing resources can be avoided.

Keywords: accident causal classification; accident investigation reports; text mining; R-GCN; BERT

1. Introduction

Accident investigation reports are usually text documents formed by professional
investigators or teams through visits, conversations, viewing video surveillance and an-
alyzing recorded data after accidents occur [1] and have been widely used in aviation,
construction, transportation and other fields [2]. The process and consequences of the
accident recorded in the reports can be leveraged by experts to analyze the cause of the acci-
dent, which is of great significance for preventing the recurrence of the accident or forming
the accident response plan [3]. However, the current analysis of accident investigation
reports mainly relies on expert experience to manually determine the cause of the accident,
which requires a lot of work, and the accuracy is affected by the subjective experience of
experts [4]. On 29 October 2018, an Indonesian Lion Air Boeing 737 MAX8 plane carrying
189 passengers and crew was flying from Jakarta’s Soekarno Hatta International Airport
to Penang Port, Bangka Belitung Province. The plane lost contact 13 min after takeoff and
was later confirmed to have crashed in the waters off Karawang, West Java province [5].
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Although experts have been investigating the cause of the accident as soon as possible after
the accident, unfortunately, on 10 March 2019, another Ethiopian Boeing 737 MAX8 with
157 passengers and crew on board suffered the same accident [6]. If the causes of some
accidents can be identified as early as possible, for example, the cause of the accident can
be preliminary determined based on the records of the accident and it is possible to take
appropriate measures in advance to avoid the occurrence of the accident [7].

Although the possible causes of the accident are hidden in the accident investigation
report, analyzing the possible accident causes from textual records is extremely challenging
and usually requires an analysis performed by an expert team composed of scholars, engi-
neers, designers, etc., which, to a certain extent, leads to the long process of accident cause
analysis [8]. Therefore, a naive idea is to build an expert system to automatically analyze
textual records in accident investigation reports, which is essentially a text classification
problem, that is, by constructing suitable models to mine the information in the text and
classify the text into different categories [9]. Text mining is the process of extracting effec-
tive, novel, useful, understandable, valuable knowledge scattered in text documents and
using this knowledge to better organize information [10].

The rapid development of artificial intelligence technology [11–13], especially natural
language processing (NLP) and text mining technology, makes it possible to analyze
accident investigation reports on a large scale and automatically [14]. With the help of these
emerging technologies, time consumption and human error in determining the accident
causes would be minimized [15] and the efficiency of analyzing would be significantly
improved. A great deal of work has been conducted in existing studies to apply different
models to the accident causal classification. According to the different ways of constructing
models, existing research can be divided into the methods based on statistics and machine
learning [16–19] and the methods based on deep neural networks [20–23]. The methods
based on statistics and machine learning are mainly utilized to manually determine a
series of text features, such as the term frequency, keyword search, N-grams [24], etc.
These methods transform the original unstructured text data into structured feature vectors
by artificially determining some features that can represent the key information of the
document and, at the same time, create new features based on the existing data. The authors
of [25] adopted a variety of machine learning and text mining methods, such as support
vector machine (SVM) and Naive Bayes (NB). By combining them into a more powerful
learning algorithm through ensemble learning methods, results showing an accuracy of
1.0, a recall rate of 0.96 and a F1-score of 0.96 were obtained. Zhang et al. [26] utilized five
baseline models to classify the cause of the accident, including SVM, linear regression (LR),
K-nearest neighbor (KNN), decision tree (DT) and NB, and the weight of each classifier
in the integrated model was optimized by the sequential quadratic programming (SQP)
algorithm. In general, the classification results of simple statistical and machine learning
methods, such as keyword search or SVM, largely depend on the quality of feature selection
and have a high misidentification rate in the analysis of accident causes [27].

The methods based on deep neural networks usually map the terms in the text to the
word vector space, process the word vector and classify it with the help of the structure
of the neural network, which has gradually become the mainstream of sequential data
processing in recent years. Zhang et al. [20] exploited Word2Vec to skip the gram model to
learn the word embedding from the corpus of a specific domain and embedded the learned
words into the mixed structured deep neural network for accident report classification.
Zhong et al. [22] proposed a latent Dirichlet assignment (LDA) algorithm model to identify
risk topics and utilized convolutional neural networks (CNNs) to automatically classify
hazards. Meanwhile, a word co-occurrence network (WCN) was generated to determine
the relationship between hazards and word cloud (WC) technology was used for the
quantitative analysis of keywords to provide a visual overview of hazard accident records.
Heidarysafa et al. [28] employed deep learning methods and powerful word embedding
(such as Word2Vec and GloVe) to classify accident cause values in the main cause field
using text in the narrative. The results show that these methods not only can accurately
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classify the causes of accidents according to the report description, but can also find the
important inconsistencies in the accident report. A deep neural network is essentially a
polynomial regression model, which is better characterized by the stacking of multi-layer
neural units than a shallow classifier such as SVM [29]. This superb characteristic also
enables the model to have the ability of processing text data and implement accident causal
classification.

However, the existing methods either rely on large corpus and data preprocessing
methods, which are cumbersome, or extract text information based on bidirectional encoder
representation from transformers (BERT) [30], but the computational cost is extremely
high. These shortcomings make it still a great challenge to automatically analyze accident
investigation reports and extract the information therein. To address the aforementioned
problems, this study proposes a text-mining-based accident causal classification method
based on a relational graph convolutional network (R-GCN) and pre-trained BERT. On
the one hand, the proposed method avoids preprocessing such as stop word removal and
tokenization, which not only preserves the information of accident investigation reports to
the greatest extent, but also avoids tedious operations. On the other hand, with the help of a
R-GCN to process the semantic features obtained by BERT representation, the dependence
of BERT retraining on computing resources can be avoided. The main contributions can be
summarized as follows:

• A text-mining-based accident causal classification method based on a R-GCN and
pre-trained BERT is proposed.

• The pre-trained BERT was adopted to avoid preprocessing in traditional text mining
and ensure efficient text feature extraction.

• The R-GCN was utilized to avoid the expensive retraining of BERT and enable classifi-
cation of accident investigation reports.

• To eliminate prediction errors that may be caused by domain GAP when embedding text
features based on BERT, a gate mechanism was introduced into the R-GCN architecture.

• The proposed method gets rid of preprocessing such as tokenization and stop word
removal and can quickly classify accident causes without relying on expert experience.

2. Methodology

2.1. Overall Scheme of the Proposed Method

The overall scheme of the proposed text-mining-based accident causal classification
method is shown in Figure 1, which mainly includes two stages, the text feature extraction
stage and the text classification stage. The text feature extraction stage is mainly based on
the pre-trained BERT to map the text into a high-dimensional space to obtain a series of
embedded text features. In the text classification stage, on the basis of the extracted text
features, the R-GCN is utilized to obtain the corresponding category of accident causes.

Figure 1. Overall scheme of the proposed method.
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2.2. Pre-Trained BERT

Text data usually contain a lot of symbols and numbers to make it easier for readers
to understand the meaning of the text, but it is difficult for computers to process and
understand them [31]. In traditional methods [32–34], data cleaning is usually performed
through a series of preprocessing methods, such as text cleaning, stop word removal,
tokenization, data division and word embedding, in order to extract key information
in the text. These preprocessing methods not only rely on pre-built corpora, but also
lead to the loss of contextual semantic information in the original sentence during the
preprocessing. With the excellent performance of the transformer model [35] in NLP,
text information is mapped into a high-dimensional space to achieve the quantitative
representation of text features. On this basis, BERT is proposed as a pre-trained language
representation model. It emphasizes that the traditional one-way language model or the
method of shallow splicing of two one-way language models for pre-training is no longer
used as before, but a new masked language model (MLM) is exploited to generate deep
bidirectional linguistic representation, as shown in Figure 2. BERT aims to pre-train deep
bidirectional representations by jointly conditioning the context in all layers. Therefore,
the pre-trained BERT representation can be fine-tuned with an additional output layer,
suitable for the construction of state-of-the-art models for a wide range of tasks, such as
question answering and language inference, without requiring significant architectural
modifications for specific tasks.

Figure 2. Architecture of BERT in [30].

Although BERT can adaptively learn word-to-word association information in texts in
an unsupervised manner, retraining BERT on new datasets is expensive and computation-
ally intensive [36]. While considering the number of accident investigation reports, it is
unrealistic to repeatedly retrain BERT, but a pre-trained BERT on large datasets can cover
common accident investigation report texts. All that remains to be conducted is to use an
appropriate method to mine the text features output by BERT and obtain the accident cause
category from the accident investigation reports.

2.3. R-GCN

A graph convolutional network (GCN) [37,38] is a topological network model based
on graph theory, which was originally proposed to deal with non-Euclidean data. On the
basis of a graph neural network (GNN), the convolution operation in GCNs is performed
to realize the differentiable information transfer process of adjacent graph nodes. The
transmitted information is usually the hidden state of the node itself, which is essentially
high-dimensional feature vectors. GCNs naturally have the advantage of processing text
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data [39]. Every word, symbol and datum in the text can be regarded as a node of the
network. Based on the word co-occurrence relationship and the relationship between
document words, a text graph can be built for a specific corpus and then a text graph
convolutional network (text-GCN) model can be built. Let us suppose that a directed
graph G = (V , E) has nodes vi ∈ V and edges

(
vi, vj

) ∈ E . According to the definition by
Kipf et al. [37], each node vi contains a self-loop edge, namely, (vi, vi) ∈ E . Let X ∈ Rn×m

be a matrix containing the eigenvectors of n nodes, where m is the dimension of the
eigenvectors and each row of xv ∈ Rm is the eigenvector of node v. Let A be the adjacency
matrix of graph G and D be the degree matrix of G, where Dii = ∑j Aij. The diagonal
element of A is 1 due to the presence of self-loops. One convolutional layer of the GCN
can only capture near-domain information. When multiple GCN layers are stacked, larger
domain information is aggregated. For a single-layer GCN, the k-dimensional node feature
matrix L(1) ∈ Rn×k is calculated as follows:

L(1) = ρ
(

ÃXW0
)
, (1)

where Ã = D− 1
2 AD− 1

2 is the normalized symmetric adjacency matrix and W0 ∈ Rm×k is
the weight matrix. As mentioned earlier, higher-order neighborhood information can be
incorporated by stacking multiple GCN layers.

Lj+1 = ρ
(

ÃLjWj

)
, (2)

where j represents the number of layers and L0 = X.
Therefore, the forward propagation process in the R-GCN can be defined as

h(l+1)
i = ReLU

⎛⎝ ∑
u∈N (vi)

1
ci

W(l)h(l)u

⎞⎠, (3)

where Nr(vi) represents the set of neighbor nodes whose relationship is r for node i, l
denotes the layer number and ci is a normalization constant. It should also be noted that
the bias term is ignored in the formula and the bias is added to the calculation to promote
the convergence of the model during training.

By constructing a large heterogeneous text graph containing word nodes and docu-
ment nodes, global word co-occurrences can be explicitly modeled and graph convolutions
can be easily applied. The number of text graph nodes |v| is equal to the number of doc-
uments (corpus size) plus the number of distinct words in the corpus (vocabulary size).
The text-GCN simply lets the feature matrix X = I be the identity matrix, meaning that
each word or document is represented as a one-hot vector as input to the text-GCN. Edges
are established between nodes based on word occurrences in the document (document
node–word node edges) and word co-occurrences in the entire corpus (word node–word
node edges). The weight of an edge between a document node and a word node is the term
frequency–inverse document frequency (TF–IDF) of that word in the document. However,
due to the prior information of the syntactic structure between sentences, the traditional
GCN can only represent text as an isomorphic graph and the relationship between different
words may be different, which also means that the topological structure of the text is essen-
tially heterogeneous graph [40]. Schlichtkrull et al. [41] proposed an R-GCN structure to
address this heterogeneous graph problem, where different edges have different definitions
of relations. Based on the above method, the update method of node vi in the graph is
as follows:

h(l+1)
i = ReLU

⎛⎝∑
r∈R

∑
u∈Nr(vi)

1
ci,r

W(l)
r h(l)u

⎞⎠, (4)
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where ci,r is a regularization constant, where the value of ci,r is
∣∣Nr

i

∣∣; W(l)
r is a linear trans-

formation function, which transforms the neighbor nodes of the same type of edge using
a parameter matrix W(l)

r . Following the definition of text syntactic structure relationship
in Reference [42], the relationship between texts in accident investigation reports can be
divided into three types, including related, irrelevant and self-loop. Figure 3 gives an ex-
ample of an analytic syntactic structure. When constructing a syntactic graph, information
is also allowed to flow in the opposite direction of the syntactic dependency arc, i.e., from
the dependency arc to the head.

Figure 3. Example of an analytic syntactic structure. It should be noted that the syntactic structure in
the figure is only an illustration and the relationships between words are not all listed. Moreover, in
practical use, the input of the R-GCN is not the original text itself, but the text features embedded in
the text after pre-training BERT.

Considering that the predicted grammatical information may be wrong due to the
domain gap when embedding text features based on the pre-trained BERT, some mech-
anisms are needed to reduce the influence of false dependent edges. To this end, the
gate mechanism [43,44] was introduced into the R-GCN architecture. The gate mechanism
dynamically assigns a weight between 0 and 1 to the dissemination of information from
different nodes. By multiplying this weight into the forward pass, the impact of incorrectly
embedded features on the final result is reduced. The weight of the gate mechanism can be
calculated as follows:

g(l)u,v = Sigmoid
(

h(l)u · Wr,g

)
. (5)

Updating these weights by backpropagation, the R-GCN with a gate mechanism can
be computed by

h(l+1)
i = ReLU

⎛⎝∑
r∈R

∑
u∈Nr(vi)

g(l)u,vi

1
ci,r

W(l)
r h(l)u

⎞⎠. (6)

2.4. Pre-Trained BERT Combined with R-GCN

The pre-trained BERT and the R-GCN with the gate mechanism were introduced in
the previous article. How to combine the two has become the only unsolved problem.
Marcheggiani and Titov [45] utilized a GCN to integrate syntactic information into sequen-
tial neural networks and transformed the syntactic prior into a syntactic dependency graph,
which was digested using the GCN. This architecture combines syntactic structure with
BERT embeddings for text classification tasks. Following this idea, by concatenating the
text features and syntactic structure information of the pre-trained BERT embedding, it
can be regarded as containing all the information of the text. As shown in Figure 4, on the
basis of the original BERT structure, by placing the R-GCN with gate mechanism in paral-
lel, the embedded text features and syntactic structures can be extracted simultaneously,
concatenating these two together to form features that can be used for text classification.
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Figure 4. Structure of pre-trained BERT combined with R-GCN.

The text input to BERT adds a classification mark, such as ‘CLS’ in Figure 4, before
the first sentence, so that the corresponding vector of this bit in the last layer of BERT
can be used as the semantic representation of the whole sentence, which can be used for
downstream classification tasks. Compared with other words in the text, this symbol
without obvious semantic information more “fairly” fuses the semantic information of each
word in the text, so as to better represent the semantics of the whole sentence. In addition,
the text feature vectors embedded by the pre-trained BERT are coupled through a fully
connected network, so that the vectors of all th words are weighted and fused to obtain
features that can represent text word information. The reason for concatenating the output
of the R-GCN with the embedded text features is that the graph convolution of the GCN
model is actually a special form of Laplacian smoothing [46], which may mix features of
vertices and make them indistinguishable.

3. Experimental Details

This section gives details of the experiment in this study, including the datasets and
pre-trained models used, training settings, evaluation metrics and experimental platforms.

3.1. Dataset and Pre-Trained Model

The primary accident investigation report data used in this study were construc-
tion site accident data collected from the Occupational Safety and Health Administration
(OSHA) open source database [47]. It contains the textual records of 16,323 construction site
accidents that occurred from 1983 to 2016. However, the document only provides a detailed
description of the event, including the causal factors and events that led to the incident.
Therefore, this study adopts the labeled dataset provided by Goh and Ubeynarayana [9].
Goh and Ubeynarayana manually annotated parts of the original OSHA dataset. A new
construction site accident was created with 1000 accident causal categories annotated and a
total of 11 construction accident causes were derived. This dataset has been widely used in
accident cause analysis [48]. The 11 accident causes were assigned different indexes and
the number of various accident causes in the 1000 data were also counted; they are shown
in Table 1.
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Table 1. Labeled cause distribution of dataset provided by Goh and Ubeynarayana [9].

Index Cause Labeled Number

1 Traffic 63
2 Collapse of object 212
3 Falls 236
4 Caught in/between objects 68
5 Struck by moving objects 134
6 Others 43
7 Exposure to chemical substance 29
8 Fires and explosion 47
9 Electrocution 108

10 Struck by falling object 43
11 Exposure to extreme temperatures 17

When building the pre-trained BERT model, a large-scale general language under-
standing evaluation (GLUE) benchmark [49] is adopted, which is an ensemble of multiple
natural language understanding tasks. Based on the work by Devlin et al. [30], a pre-trained
BERT model was directly used for the text representation of accident investigation reports
in this study.

3.2. Training Settings

During the training, Adam [50] was exploited as the optimizer with a β1 = 0.9 and
β2 = 0.999 and we applied a high weight decay of 0.1. The initial learning rate was set
to 10−4 and the batch size for the training was set to 512. It should be noted that the BERT
used in the model was not fine-tuned and retrained, but directly adopted with its network
parameters fixed—the ’bert-large-uncased’ version [30] of BERT to generate raw embedded
text features. Besides, batch normalization and drop out were also leveraged in all fully
connected layers. Following the setting of [42], a layer of the R-GCN with a gate mechanism
was utilized to capture immediate syntactic neighbor information. In addition, given that
the data were still very limited, five-fold cross-validation was utilized to achieve better
generalization performance and more accurate model performance estimates.

3.3. Evaluation Metrics

In the training stage of the model, the performance evaluation criteria used were
the precision of accident report classification, recall rate, F1-score and average weighted
F1-score. Precision is the ultimate criterium of the predicted result. It can be calculated by
using Equation (7) and is obtained by dividing the true result by the sum of the true and
false positive values.

Precision =
TP

TP + FP
(7)

Recall is a measure of how well each unique label fits into the predicted results. It can
be seen, from Equation (8), that the recall rate is the sum of the real result divided by the
real value and the false negative value.

Recall =
TP

TP + FN
(8)

The F1-score is the harmonic mean of precision and recall rate, in which the F1-score
reaches the best value when 1 and the worst value when 0. Formula for obtaining F1-score
is shown in Equation (9).

F1-score =
2(Precision ∗ Recall)
(Precision + Recall)

(9)
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When unbalanced classes appear in the dataset, an average weighted F1-score is
required. Count the number of cases and the total number of case classes that involve
support for a particular tag. The average weighted F1-score can be computed by

avg F1weighted =
N

∑
i=1

(
Si
T

∗ F1i

)
, (10)

where Si is the number of cases supported by label i and T is the total number of the dataset.
When constructing the model, in order to balance the precision and recall of the model,

the training objective of the model is selected to maximize the average weighted F1 score.

3.4. Experimental Platforms

All the experiments were conducted on an Intel i7-6700 CPU at 4.0 GHz with a 16 GB
RAM and a Nvidia P100 GPU with a 16 GB memory. The programming language was
Python 3.6 and the integrated development environment was Anaconda 3. Several open
source libraries, including SpaCy, Jieba and Deep Graph Library (DGL), were also used.
Among them, DGL was used to convert each dependency graph into a DGL graph object.
The R-GCN model was also implemented based on the DGL.

4. Experimental Results

Through five-fold cross-validation, the original labeled dataset was equally divided
into the same quintiles, i.e., each part contained 200 accident records. For each training, four
of them were used as the training set and the remaining one was regarded as the test set,
ensuring that each part was treated as the test set throughout the validation process. The
results of each cross-validation were measured through the average F1-score to evaluate
the performance of the whole model and the model with the highest average F1-score was
adopted as the final built model combining the pre-trained BERT and a R-GCN. The results
of the five-fold cross-validation are illustrated in Table 2.

Table 2. Results of the five-fold cross-validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

AvgF1-score 0.69 0.64 0.72 0.77 0.75

As shown in Table 2, the accident causal classification model combining the pre-trained
BERT and the R-GCN could achieve an average F1-score of up to 0.77. In order to more
intuitively show the performance of the constructed model on each type of accident, we
show the confusion matrix of the adopted model in Table 3. The corresponding procedure
for calculating the average F1-score of Fold 4 is shown in Table 4.

It can be seen, from the confusion matrix in Table 3, that the model used can achieve
accurate classification of most texts, but there is still a certain error for types that also
contain fall or object. This shows that the proposed text-mining-based accident cause
analysis could be roughly classified, but the specific accident cause analysis results still
need to be further improved. To further demonstrate the advantages of the proposed model,
comparative experiments were performed to numerically evaluate the improvement of
the proposed method over previous methods. Traditional text mining methods, including
decision tree, k-nearest neighbors (KNN), Naive Bayes and logistic regression, were also
adopted to classify text in the OSHA dataset. Deep-learning-based networks, including
long short-term memory (LSTM), gate recurrent unit (GRU) and symbiotic organisms
search–gate recurrent unit (SGRU) [48], were also compared. Furthermore, to explore the
role of the gate mechanism in the proposed method, the results of an ablation experiment
were also analyzed. It should be noted that all experiments were performed on Fold 4. Due
to space constraints, only the final average results, not class-by-class results, are shown
in Table 5.
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Table 3. Confusion matrix of the adopted model.

Prediction

1 2 3 4 5 6 7 8 9 10 11 Total TP FN Recall
1 9 1 0 1 0 0 0 0 0 1 0 12 9 3 0.75
2 0 34 0 1 4 0 1 0 0 0 0 40 34 6 0.85
3 1 0 39 0 0 0 1 0 0 8 1 50 39 11 0.78
4 0 0 1 12 1 0 0 1 0 0 0 15 12 3 0.80
5 0 2 0 0 19 0 0 0 0 2 0 23 19 4 0.83
6 0 1 0 2 0 3 0 1 1 1 0 9 3 6 0.33
7 0 1 0 0 0 0 5 0 0 0 0 6 5 1 0.83
8 0 0 1 0 0 0 0 7 0 0 2 10 7 3 0.70
9 0 0 0 0 2 2 2 0 15 0 0 21 15 6 0.71

10 0 0 4 0 0 0 0 0 0 6 0 10 6 4 0.60

Ground truth

11 0 0 0 0 1 0 0 0 0 0 3 4 3 1 0.75

Total 10 39 45 16 27 5 9 9 16 18 6 200
TP 9 34 39 12 19 3 5 7 15 6 3
FP 1 5 6 4 8 2 4 2 1 12 3

Precision 0.90 0.87 0.87 0.75 0.70 0.60 0.56 0.78 0.94 0.33 0.50

Table 4. Corresponding procedure for calculating the average F1-score of Fold 4.

Precision Recall F1-Score Number of Cases AvgF1-Score

1 0.90 0.75 0.82 12

0.77

2 0.87 0.85 0.86 40
3 0.87 0.78 0.82 50
4 0.75 0.80 0.77 15
5 0.70 0.83 0.76 23
6 0.60 0.33 0.43 9
7 0.56 0.83 0.67 6
8 0.78 0.70 0.74 10
9 0.94 0.71 0.81 21
10 0.33 0.60 0.43 10
11 0.50 0.75 0.60 4

Table 5. Results of the comparison experiment and the ablation experiment.

Average Precision Average Recall AvgF1-Score

Decision trees 0.48 0.55 0.51
KNN 0.49 0.52 0.50
Naive Bayes 0.57 0.54 0.55
Logistic regression 0.47 0.87 0.61
LSTM 0.58 0.64 0.61
GRU 0.70 0.61 0.65
SGRU 0.73 0.69 0.71

Ours w/o gate mechanism 0.74 0.72 0.73
Ours 0.79 0.76 0.77

From the results in Table 5, it can be seen that, although the proposed method still
has some limitations, it achieved a 6% improvement of the average F1-score compared to
existing research. At the same time, it can also be found from the results of the ablation
experiments that the gate mechanism played a key role in the entire model. By eliminating
the possible errors of the pre-trained BERT, the model achieved a 4% improvement.

5. Conclusions and Future Works

This study proposes a text mining method combining the pre-trained BERT and a
R-GCN to automatically explore accident causal information in accident investigation
reports. The proposed method avoids the tedious preprocessing steps of previous text
mining methods and extracts text features by employing a pre-trained BERT to embed
words from text reports into a high-dimensional vector space. Then, by using a R-GCN with
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a gate mechanism, the syntactic structure in the text is also processed into high-dimensional
vectors. By concatenating these two features and with the help of the classifier, it is possible
to understand both the word and syntax of the accident investigation reports. Compared
with methods such as text frequency alone, it is more accurate and concise. Compared with
retraining BERT to extract text and syntax features at the same time, it is very cheap and fast.
The experimental results show that the proposed method could achieve an average F1-score
as high as 0.77, which exceeds existing methods and has important practical significance
for accident causal classification.

However, it is undeniable that, although the existing methods have made certain
breakthroughs compared with previous studies, the classification accuracy still needs
to be improved. The methods proposed at present can only assist in the analysis of
accident causes from accident investigation reports to a certain extent and cannot completely
replace experienced experts. Especially in accident cause analyses, once the accident causal
classification is wrong, it may bring unnecessary investment or mislead accident prevention.
This is a key breakthrough in future work. In the future, the accuracy of accident causal
classification can be improved by enriching the accident causal dataset and adding relevant
labels. At the same time, on the basis of this study, we can further explore the BERT-based
text information encoding method to build a more efficient expert system.
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Abstract: Estimating the bearing capacity of piles is an essential point when seeking for safe and
economic geotechnical structures. However, the traditional methods employed in this estimation
are time-consuming and costly. The current study aims at elaborating a new alternative model for
predicting the pile-bearing capacity based on eleven new advanced machine-learning methods in
order to overcome these limitations. The modeling phase used a database of 100 samples collected
from different countries. Additionally, eight relevant factors were selected in the input layer based
on the literature recommendations. The optimal inputs were modeled using the machine-learning
methods and their performance was assessed through six performance measures using a K-fold
cross-validation approach. The comparative study proved the effectiveness of the DNN model,
which displayed a higher performance in predicting the pile-bearing capacity. This elaborated model
provided the optimal prediction, i.e., the closest to the experimental values, compared to the other
models and formulae proposed by previous studies. Finally, a reliable and easy-to-use graphical
interface was generated, namely “BeaCa2021”. This will be very helpful for researchers and civil
engineers when estimating the pile-bearing capacity, with the advantage of saving time and money.

Keywords: pile-bearing capacity; machine learning; deep neural network; K-fold cross-validation
approach; sensitivity analysis

1. Introduction

Pile foundations are used to transmit construction loads deep into the ground in
order to ensure structure stability [1,2]. Furthermore, computing the bearing capacity of
piles is essential when designing economic and safe geotechnical structures [3]. To date,
numerous approaches have been conceived for the sake of creating alternative methods
and techniques that contain numerical, experimental, and analytical approaches aiming at
predicting the bearing capacity of piles [4–6]. Among the most frequently used methods
is the Cone Penetration Test (CPT), known for producing accurate results in a variety
of situations [7,8]. This is probably due to the fact that CPT-based methods have been
modeled in harmony with the CPT results, which were proven to estimate more effective
different geotechnical properties, and make more precise pile capacity predictions [6].
Other semi-empirical methods have been widely utilized, such as Meyerhof’s formula,
which could yield an acceptable pile-bearing capacity [4]. On the other hand, the High-
Strain Dynamic Load Test (HSDLT) and the Static Load Test (SLT) have been employed
considerably for predicting the pile-bearing capacity [9]. The HSDT is preferable to the
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SLT, because it operates with a faster, more advanced, and economic technology [2]. This
quality supports its paramount importance addressed by the American Standards Test
Methods to standardize the HSDT method [1]. The literature on bearing capacity values
revealed a relatively close accuracy in both the HSDT and the SLT [1]. Momeni et al. [10]
added that HSDT is faster and more economic compared to SLT, but it generally requires
several HSDT tests for each project to obtain a reliable result [11]. Hence, increasing the
number of HSDT tests is extremely undesirable since it may increase the total project
budget. Moreover, other empirical researchers have proposed traditional methods for
estimating the bearing capacity [12–15]. The quality of easiness and common usage has
made these methods very important. However, determining the bearing capacity of bored
and driven piles by means of the aforementioned methods is found to be time-consuming
and costly [16]. This is probably due to the complex behavior of piles, heterogeneity of
the soil around piles, material and shape of piles, and their installation. Accordingly, all
the proposed methods/models in the literature yielded ineffective predictions [17]. On
the other hand, currently, due to emerging new easy-to-use performance software such as
PLAXIS, utilizing finite element analysis for which the system is discretized into a number
of meshes to obtain axial capacity is of interest [18]. For this reason, numerical methods
based on the finite element approach have recently become well-known for the evaluation
of bearing capacity, yielding effective results [19,20]. Recently, the application of some new
advanced techniques, namely “artificial intelligence (AI)” or “machine learning (ML)”, has
witnessed a spectrum of interest, and they provided exceptional results in solving several
issues by learning from the available data [21,22].

Subsequently, the use of machine-learning methods to predict pile-bearing capacity
has witnessed considerable development since the early 1990s [21–24]. Several studies
are now able to estimate the pile-bearing capacity with a higher degree of precision in
comparison to traditional methods. Among the fundamental research dealing with the
pile-bearing capacity, Nawari et al. have used one hidden layer of the ANN model by
investigating a database consisting of 25 test data. The chosen input parameters included
the SPT-N values and geometrical properties. The ANN model efficiently predicted the
pile-bearing capacity compared to traditional methods [25]. Furthermore, Mahnesh has
predicted the pile-bearing capacity by using Support Vector Machines and Generalized
Regression Neural Network with an input layer containing dynamic stress-wave data [26].
He concluded that the Generalized Regression Neural Network was the best model with a
high correlation coefficient (0.977). In addition, Milad et al. have developed an effective
model based on Artificial Neural Network, genetic programming, and linear regression
methods to predict the bearing capacity of piles by learning from 100 samples. They
utilized the Flap number, basic properties of the surrounding soil, pile geometry, and
pile-soil friction angle as an input layer. The suggested ANN model has better stability
compared to the other methods [27]. Jahed et al. used hybrid PSO–ANN to predict the
bearing capacity of rock-socketed piles, by taking into consideration soil length to socket
length ratio, total length to diameter ratio, uniaxial compressive strength, and standard
penetration test. The proposed PSO–ANN model has demonstrated its efficiency since it
produced a high correlation coefficient (R = 0.9685) [1]. Moayedi et al. have used ANFIS, GP,
and SA–GP for modeling a database consisting of 50 tests. The chosen input parameters
included the pile length, pile cross-sectional area, hammer weight, pile set, and drop
height. The SA–GP model efficiently predicted the pile-bearing capacity compared to other
methods [28]. Shaik et al. have predicted the pile-bearing capacity by using ANFIS and
ANFIS–GMDH–PSO with an input layer containing CPT and pile loading test results [29].
They have proven that the metaheuristic hybrid ANFIS–GMDH–PSO model is the best
one, with a high correlation coefficient (0.998) [29]. Harandizadeh et al. have used hybrid
MLP–GWO and ANFIS–GWO to predict the bearing capacity of piles from the input layer,
including pile area, pile length, flap number, average cohesion, and friction angle, average
soil-specific weight, and average pile-soil friction angle. The proposed MLP–GWO model
has demonstrated that its efficiency yielded a high correlation coefficient (R = 0.991) [30].
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Table 1 summarizes more than ten studies that have used machine-learning models to
predict the pile-bearing capacity.

Table 1. Proposed machine-learning models in the literature to estimate the pile-bearing capacity.

Authors Inputs Methods Database References

Nawari et al. (1999) SPT-N values and geometrical
properties Neural Network 25 [25]

Mahnesh (2011) Dynamic stress-wave data
Support Vector Machines and
Generalized Regression Neural
Network

105 [26]

Milad et al. (2015)

Flap number, basic properties of
the surrounding soil, pile
geometry, and pile-soil friction
angle

Artificial Neural Network, Genetic
Programming and Linear
Regression

100 [27]

Jahed et al. (2017)

Soil length to socket length ratio,
total length to diameter ratio,
uniaxial compressive strength, and
standard penetration test

hybrid PSO–ANN 132 [1]

Moayedi and Jahed (2018)

Internal friction angle of soil
located in shaft and tip, pile length,
effective vertical stress at pile toe
and pile area

ICA-ANN 59 [31]

Yong et al. (2021)
Pile length, pile cross-sectional
area, hammer weight, pile set, and
drop height

ANFIS, GP, and SA–GP 50 [2]

Shaik et al. (2019)

Internal friction angle of soil
located in shaft and tip, effective
vertical stress at pile toe, pile area,
and pile length

ICA-ANN and ANFIS 59 [29]

Kardani et al. (2020)

Shear resistance angle at the shaft
of the pile, soil shear resistance
angle at the tip of the pile, length
of pile, cross-sectional area of the
pile, and effective stress at the tip
of the pile

Decision tree, k-nearest neighbor,
Multilayer Perceptron Artificial
Neural Network, Random Forest,
Support Vector Regressor, and
Extreme Gradient Boosting

59 [32]

Harandizadeh et al. (2021) CPT and pile loading test results ANFIS and ANFIS–GMDH–PSO 72 [30]

Moayedi et al. (2020)

Pile diameter, pile length, relative
density, embedment ratio, and
both the pile end resistance and
base resistance

GA-ANFIS and PSO-ANFIS 20 [28]

Liu et al. (2020) Laboratory and in situ testing
results ANFIS, ANN, and GA-ANN 43 [33]

Dehghanbanadaki et al.
(2021)

Pile area, pile length, flap number,
average cohesion and friction
angle, average soil-specific weight,
and average pile-soil friction angle

MLP–GWO and ANFIS–GWO 100 [34]

According to the authors’ knowledge, previous studies have been limited mostly to the
use of ANN, ANFIS, and SVM methods for predicting the pile-bearing capacity, although
recent studies have shown that other techniques could have yielded more effective and
accurate results [35–37]. Furthermore, they assessed the predictive capability of suggested
models depending on only one split to check the data learning validity. Consequently, the
ability of their proposed model to overcome over-fitting and under-fitting problems cannot
be assured. Moreover, the majority of published papers have proposed machine-learning
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models in the form of mathematical equations, which are hard to duplicate in future studies.
Admittedly, this practice has very little value for other researchers and civil engineers in
the field. Conveniently, to overcome these limitations, investigators have presented their
optimal models in the form of a programmed interface or a simple script by a well-known
programming language such as Python or Matlab for generating the proposed model. This
will make it available to anyone interested in the problem of modeling regardless of their
proficiency level.

The current study contributes to providing a new alternative model for predicting the
pile-bearing capacity based on 12 advanced machine-learning methods, which are applied
for the first time for this aim. Furthermore, a high-performance method to estimate the
generalization capability of the learning model, and to check the validity of the model for
other cases, has been used, namely “K-fold cross-validation analysis”. Finally, in order to
treat the hard usage problem of machine-learning models in future studies, the proposed
optimal model was used afterwards to develop a GUI public interface. Consequently,
the suggested “BeaCa2021” interface is very handy and easy-to-use by civil engineers
and researchers, by offering plenty of benefits such as reliability, easiness, and lowering
the budget used to predict the pile-bearing capacity from relevant and easily obtained
parameters without the need to operate expensive in situ tests.

2. Materials and Methods

2.1. Overview of the Methodology

Several advanced machine learning methods, such as Extreme Deep Neural Network
(DNN), Extreme Learning Machine (ELM), Support Vector Regression (SVR), LASSO re-
gression (LASSO), Random Forest (RF), Ridge Regression (Ridge), Partial Least Square
Regression (PLSR), Stepwise Regression (Stepwise), Kernel Ridge (KRidge), Genetic Program-
ming (GP), and Least Square Regression (LSR), have been used to learn from 100 samples
collected from previous studies [27]. Multiple input parameters, including the pile material,
average cohesion (kN/m2), average friction angle (◦), average soil-specific weight (kN/m3),
average pile-soil friction angle (◦), flap number, pile area (m2), and pile length (m), have
been used. Firstly, the aforementioned advanced machine-learning methods have been
utilized for modeling the input parameters, and their effectiveness was assessed through
various statistical indicators. To evaluate the predictive ability of the optimal model, the
k-fold cross-validation approach, which is based on five splits, has been employed. After-
ward, in order to know which input variables have the biggest effect on the pile-bearing
capacity through the proposed model, a sensitivity analysis has been performed via the
step-by-step method. Finally, a reliable, easy-to-use, and the graphical interface was de-
signed based on our optimal model in order to help civil engineers and researchers to easily
predict the pile-bearing capacity in future studies.

2.2. Database

Choosing the Neural Network inputs is deemed to be the most significant phase for
achieving accurate predictions. The selected relevant inputs should cover various aspects
of the understudied problem. Besides, several factors have been selected, such as soil
characteristics, pile-soil contact characteristics, and geometry and pile characteristics, which
can affect the pile-bearing capacity. This study used data from 100 static load-bearing tests
on the ultimate bearing capacity (UBC) of both the steel- and the concrete-driven piles from
various countries, such as Iran, Mexico, and India [38–42]. The input parameters, including
pile material, average cohesion (kN/m2), average friction angle (◦), average soil unit weight
(kN/m3), average pile-soil friction angle (◦), flap number, pile area (m2), and pile length
(m), were selected as optimal input parameters. We have supposed that the cohesion, angle
of shearing resistance, and soil unit weight were the parameters characterizing the soil
condition, whereas the pile area and pile length are the parameters characterizing the pile
geometric size. In addition, the pile-soil friction angle is the parameter describing the pile
material. Finally, the flap number was assumed to symbolize all other hidden effective
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factors in measuring the pile-bearing capacity [27]. The considered output was obtained
from the static bearing capacity, which used static testing in the fully drained condition
(long term). Two types of materials (concrete and steel piles, see Table S1) were used in this
study. The data samples in both the training and validation phase have been randomly
selected and completely detached. Table 2 shows the input and output parameters used in
our study.

Table 2. Input and output parameters of the proposed model.

Code Parameter Type
Type of
Variable

Subdivision Variable

X1 Input Qualitative
X1 = 1 (Steel)

Pile materialX1 = 2
(Concrete)

X2 Input Quantitative Average cohesion
(kN/m2)

X3 Input Quantitative Average friction angle (◦)

X4 Input Quantitative Average soil-specific
weight (kN/m3)

X5 Input Quantitative Average pile-soil friction
angle (◦)

X6 Input Quantitative Flap number

X7 Input Quantitative Pile area (m2)

X8 Input Quantitative Pile length (m)

Y Output Quantitative Pile capacity (kN)

2.3. Machine-Learning Methods

In the present paper, numerous machine-learning approaches have been utilized in
order to perform a consistent study and to suggest an effective model. Many studies have
revealed the effectiveness of the machine-learning methods, which have shown impres-
sive results in the abroad fields. Hence, only the utilized methods are mentioned below,
followed by some relevant references, which could be observed by the concerned readers
to perfectly understand each method. The methods used were Deep Neural Network
(DNN) [43,44], Extreme Learning Machine (ELM) [45], Random Forest (RF) [46], Support
Vector Regression (SVR) [47], Partial Least Square Regression (PLSR) [48], LASSO regres-
sion (LASSO) [49], Kernel Ridge Regression (KRidge) [50], Ridge Regression (Ridge) [51],
Genetic Programming (GP) [43], and Stepwise Regression (Stepwise) [52]. Matlab has been
applied for modeling the algorithms corresponding to each method, except for GP, where
the HeuristicLab Interface has been utilized [53]. The controlling parameters of the ELM,
DNN, SVR, RF, LASSO, PLS, Ridge, KRidge, Stepwise, and GP algorithms used in this study
are listed in Table 3. It is worth mentioning that the trial-and-error method has been applied
in most ML approaches used in our study. This method is based on changing the controlling
parameters of each technique and computing the mean square error in order to find the
best parameters. Nevertheless, the controlling parameters of other methods, such as ELM,
PLS, Ridge, and KRidge, are based on the aforementioned literature recommendations.
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Table 3. Initial parameter settings for the algorithms.

Algorithms Algorithm Parameters Value

ELM

Hidden layers H = 1
Hidden neurons N = 12

Activation function ‘linear’
Regulation parameter C = 0.02

DNN

Hidden layers H = 2
Hidden neurons in the first layer N1 = [1–20]

Hidden neurons in the second layer N2 = [1–20]
Activation function in the first layer ‘Tansig’

Activation function in the second layer ‘Tansig’

SVR
Regulation parameter C Series of C

Regulation parameter lambda Series of lambda
Kernel function ‘rbf’

RF
nTrees nTrees = 100
mTrees mTrees = 26

LASSO Lambda series of lambda

PLS PLS components NumComp = 3 for PSO
NumComp = 4 for GT and FS

Ridge Regularization parameter lambda lambda = 1

KRidge
Regularization parameter lambda lambda = 1

Kernel function ‘linear’
Parameter for kernel sigma = 2 × 10−7

GP

Function set +, −, ×, ÷, power, ln, sqrt, sin, cos, tan
Population size 100 up to 500

Number of generations 1000
Genetic operators Reproduction, crossover, mutation

2.4. Statistical Performance Indicators

The estimation precision of the suggested models was assessed through several sta-
tistical performance indicators and by utilizing graphical presentation. The statistical
performance indicators are mean absolute error (MAE), root mean square error (RMSE),
index of scattering (IOS), coefficient of determination (R2), Pearson correlation coefficient
(R), and index of agreement (IOA). They are expressed as follows [54,55]:

1. Mean absolute error (MAE):

MEA =
1
N

N

∑
i=1

|Ytar,i − Yout,i| (0 < MAE < ∞) (1)

2. Root mean square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(Ytar,i − Yout,i)
2 (0 < RMSE < ∞) (2)

3. Index of scattering (IOS):

IOS =

√
1
N ∑N

i=1(Ytar,i − Yout,i)
2

Ytar
(0 < RMSE < ∞) (3)

4. Coefficient of determination (R2):
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R2 = 1 − ∑N
i=1(Ytar,i − Yout,i)

2

∑N
i=1

(
Ytar,i − Ytar

)2 (−∞ < NSE < 1) (4)

5. Pearson correlation coefficient (R):

R =
∑N

i=1(
(
Ytar,i − Ytar

)(
Yout,i − Yout

)
)√

∑N
i=1(

(
Ytar,i − Ytar

)2(Yout,i − Yout
)2
)

(−1 < R < 1) (5)

6. Index of agreement (IOA):

IOA = 1 − ∑N
i=1(Ytar,i − Yout,i)

2

∑N
i=1

(
∑N

i=1
∣∣Yout,i − Ytar

∣∣+ ∑N
i=1

∣∣Ytar,i − Ytar
∣∣)2 (0 < IOA < 1) (6)

where Ytar,i, Yout,i, Ytar, and Yout characterize the target, output, mean of the target, and
mean of output pile-bearing capacity values for N data samples, respectively. Moreover,
the suggested machine-learning model possessed the minimum value of RMSE, IOS, and
MAE, and the peak value of IOA, R2, and R presents the optimal one and the closest to the
experimental values.

Therefore, after choosing the optimal model based on statistical performance indi-
cators, its predictive capability was evaluated by utilizing the K-fold cross-validation ap-
proach. The latter is an advanced approach, which revealed more accuracy and robustness
when assessing the ability of the optimal model to overcome over-fitting and under-fitting
problems in data learning [56,57]. The approach relies on dividing the database into k equal
splits. Hence, for each split, K−1-folds are utilized for the training phase and the last one
for validation. This procedure is reiterated successively until the use of all splits for the
validation step [58,59]. The key benefit of this approach is that all the data are modeled
in both the training and the validation steps [57]. Breiman and Spector have confirmed
that K = 10- or K = 5-fold cross-validation is the best choice for assessing the model [56]. In
our study, we selected K-fold cross-validation with K = 5 for assessing the predictive ability
of the best model.

2.5. Methodology

In order to select the optimal model to predict the pile-bearing capacity using the
aforementioned parameters as an input, the methodology followed the following phases:

1. Creating a geotechnical database, collected from different countries such as Iran,
Mexico, and India. In this step, 100 static load-bearing tests on the UBC of steel- and
concrete-driven piles were collected as datasets.

2. Modeling the chosen inputs by means of numerous machine-learning methods. The
ELM, DNN, SVR, RF, LASSO, PLS, Ridge, K Ridge, Stepwise, and GP methods have
been employed in this step for suggesting 11 models.

3. Defining the optimal model for estimating the pile-bearing capacity value using
important statistical performance indicators such as MAE, RMSE, IOS, R2, R, and IOA.

4. Evaluating the predictive capability of the optimal model to overcome under-fitting
and over-fitting problems by utilizing the K-fold cross-validation approach with K = 5.

5. Performing a sensitivity analysis by using the step-by-step method to define the most
or least influential input on the bearing capacity via the proposed model.

6. Designing a reliable, easy-to-use, and graphical interface based on our optimal model.

The research methodology for defining the optimal model to predict the pile-bearing
capacity is systematically illustrated in Figure 1.
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Figure 1. Flowchart describing the key steps for the methodology of research to estimate the pile-bearing capacity.

3. Results

3.1. Database Compilation

In the present paper, a database of 100 samples has been collected from previous
studies, resulting in a dataset containing diverse data, considered as satisfactory for an
efficient study. For the purpose of a precise modeling step, we have tried to make the
dataset balanced for both concrete and steel material samples in both the training and
validation phase. Furthermore, the data samples in both phases have been randomly
chosen and completely detached. Table 4 shows the descriptive statistics of the user
database, computed by using SPSS, including the range, minimum, maximum, mean,
standard deviation (SD), variance, skewness, and kurtosis. The skewness values prove
that all the parameters were equally distributed. Furthermore, the findings indicated that
the dataset comprises a wide range of data. Consequently, the gathered database could be
very handy when seeking to develop new empirical equations and models, as well as in
evaluating the predictive capability of published formulae.

3.2. Correlation between Bearing Capacity and Input Parameters

To statistically estimate the relationship between the pile-bearing capacity and input
parameters, SPSS software has been utilized. The correlation matrix between them is
displayed in Figure 2, which shows a descriptive summary of the data distribution. The
findings show a positive correlation between the pile-bearing capacity and other inputs,
except for X2, X4, and X5, which appear to have a negative correlation (see Figure 2). This
highlights that the decrease in these parameters tends to proportionally decrease the pile-
bearing capacity. Moreover, Pearson correlation coefficient (R) and its significance between
the pile-bearing capacity and other inputs is presented in Table 5. The findings prove that
the significance is less than 0.05, except for X3, X4, and X5, showing that most correlations
are statistically significant. Hence, according to Smith’s classification (1986) [43], the pile-
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bearing capacity is significantly correlated with the input parameters, excluding X3, X4,
and X5, which are poorly correlated. The results point out that these factors can have a
complex nonlinear relationship with the pile-bearing capacity. Besides, in order to precisely
model this complex phenomenon, new sophisticated machine-learning approaches should
be developed.

Table 4. Descriptive statistics of the collected samples (Std. Error = standard error, SD = standard deviation).

Range Minimum Maximum Mean SD Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic
Std.

Error
Statistic Statistic Statistic

Std.
Error

Statistic
Std.

Error

X2 148.00 0.00 148.00 32.3741 3.28447 32.84 1078.77 2.011 0.241 4.570 0.478

X3 36.62 0.00 36.62 25.5803 0.96535 9.653 93.191 −1.310 0.241 0.855 0.478

X4 8.11 5.38 13.49 10.2029 0.18409 1.840 3.389 −0.406 0.241 0.262 0.478

X5 6.86 10.14 17.00 13.6823 0.16987 1.698 2.885 0.073 0.241 −0.076 0.478

X6 2277.00 14.00 2291.00 494.99 60.23 602.32 362,794.16 1.502 0.241 1.286 0.478

X7 1.52 0.07 1.59 0.4327 0.04656 0.46562 0.217 1.128 0.241 −0.233 0.478

X8 83.80 14.20 98.00 27.1120 1.86024 18.60 346.048 2.761 0.241 6.962 0.478

Y 51,560.00 540.00 52,100.00 5133.12 929.01 9290.14 86,306,843.19 4.043 0.241 16.258 0.478

Figure 2. The correlation matrix between the pile-bearing capacity and soil parameters (green points: concrete material;
blue points: steel material).
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On the other hand, we were generally interested in the correlation between inputs if
the multicollinearity phenomenon existed. This could appear between certain independent
variables with a high R, causing problems when fitting the model and interpreting the
results, and reducing the statistical power of the regression model. However, the correla-
tion coefficient presented in Table 5 indicates a moderate R between inputs, indicating a
moderate multicollinearity, but it is not severe enough to require corrective measures. For
this reason, there was no interest in the correlation coefficient between input variables.

3.3. Bearing Capacity Prediction through AI Models

To define the optimal machine-learning model, the first step consists of selecting
the optimal input parameters that have a high influence on the target value, and the
second step is to determine the best machine-learning methods. To begin with, in order to
define the suitable input parameters, eight factors have been used following the literature
recommendations. Afterward, we attempted to determine the optimal ANN model for
predicting the pile-bearing capacity depending on six statistical measures. The performance
of each model for the selected optimal input in both concrete and steel piles is presented
in Table 6. Six performance measures have been used to compare the proposed models
in order to select the best one, in terms of the mean absolute error (MAE), root mean
square error (RMSE), index of scattering (IOS), coefficient of determination (R2), Pearson
correlation coefficient (R), and index of agreement (IOA). The data were divided into two
parts, i.e., 80% for the training and 20% for the validation. As Table 6 demonstrates, the
target values were modeled via the machine-learning methods, where the parameters
of the methods have been fixed (as presented in Table 4) and compared using the six
performance measures in order to find the best model. The different models produced
the values: MAE (0.1650 × 103 to 3.0424 × 103), RMSE (0.2140 × 103 to 4.2390 × 103), IOS
(0.0755 to 0.7737), R (0.9315 to 0.9977), R2 (0.8676 to 0.9954), and IOA (0.9360 to 0.9988) in
concrete piles. Similarly, in the steel piles, we obtained MAE (0.1870 × 103 to 3.1064 × 103),
RMSE (0.3100 × 103 to 4.3966 × 103), IOS (0.0448 to 0.9081), R (0.8478 to 0.9997), R2 (0.7187
to 0.9994), and IOA (0.9118 to 0.9998). The results indicate that the best performance
was obtained from the DNN model trained by the Tan-Sigmoid function. This model is
said to be the most appropriate one because it displays the highest accuracy in terms of
MAE (0.1650 × 103/0.1870 × 103), RMSE (0.214 × 103/0.31 × 103), IOS (0.0755/0.0448), R
(0.9977/0.9997), R2 (0.9954/0.9994), and IOA (0.9988/0.9998) in both concrete/steel piles.
Finally, the most appropriate DNN model displayed the higher values of performance
measures criteria in both the training and validation phase. Furthermore, this model is
closely followed by the GP model, which shows an acceptable accuracy as it ranked second.
Moreover, the results showed the poor performance of the ELM model in predicting the
pile-bearing capacity. With respect to the performance of machine-learning models during
the training phase, the performance hierarchy follows the following order: DNN, GP, RF,
Kridge, SVR, LS, Ridge, Step, PLS, Lasso, and ELM. Finally, the scatter plots between the
target and the output bearing capacity value of each model are presented in Appendix A
(Figures A1–A11).

3.4. Evaluating the Best Fitted Model Using the K-Fold Cross-Validation Approach

The 5-fold cross-validation approach was effectively utilized to evaluate the predictive
capability of the optimal model. It is worthy to note that the aforementioned studies
interested in predicting the pile-bearing capacity have assessed the predictive capability
of their optimal models based on one single split. Consequently, the ability of the models
to overcome the over-fitting and under-fitting problems could not be verified. Figure 3
displays the performance measures of the optimal DNN models utilizing 5-fold cross-
validation based on the validation data for each split. The results clearly indicate the
fulfillment of the DNN model. Additionally, the fact that the correlation coefficient ranged
between 0.9777 and 0.9998 for data validation in the 5 splits proved the predictive capability
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of the optimal DNN model to learn existing data, generate novel validation data, and
overcome over-fitting and under-fitting problems.

Table 6. Performance indicators values of the AI models for predicting the pile-bearing capacity in both concrete and steel
piles (bold: the optimal model).

MAE × 103 RMSE × 103 IOS R R2 IOA

Concrete piles

DNN 0.1650 0.2140 0.0755 0.9977 0.9954 0.9988

ELM 3.0424 4.2390 0.7737 0.9320 0.8686 0.9610

Lasso 2.4324 3.5390 0.6637 0.9620 0.9254 0.9700

PLS 2.5524 3.6390 0.6837 0.9688 0.9386 0.9700

RF 1.1024 2.1690 0.3837 0.9880 0.9761 0.9912

Kridge 2.2930 3.5917 0.6816 0.9433 0.8899 0.9641

Ridge 2.4268 3.6145 0.6876 0.9409 0.8853 0.9636

LS 2.3093 3.5867 0.6824 0.9414 0.8863 0.9656

Step 2.4738 3.6421 0.6970 0.9352 0.8746 0.9626

SVR 1.9787 4.0984 0.7734 0.9315 0.8676 0.9360

GP 0.5966 0.9612 0.1731 0.9975 0.9951 0.9961

Steel piles

DNN 0.1870 0.3100 0.0448 0.9997 0.9994 0.9998

ELM 3.1064 4.3966 0.9081 0.8478 0.7187 0.9118

Lasso 2.7149 3.6962 0.7527 0.8990 0.8082 0.9437

PLS 2.6329 3.6973 0.7763 0.8966 0.8038 0.9398

RF 1.1213 2.3475 0.4893 0.9875 0.9751 0.9712

Kridge 2.2482 3.6937 0.7342 0.8993 0.8088 0.9441

Ridge 2.3820 3.7165 0.7402 0.8969 0.8044 0.9436

LS 2.2646 3.6887 0.7350 0.8974 0.8054 0.9456

Step 2.4291 3.7441 0.7496 0.8912 0.7943 0.9426

SVR 1.9340 4.2004 0.8260 0.8875 0.7876 0.9160

GP 0.5518 1.0632 0.2257 0.9975 0.9951 0.9965

3.5. Comparison between the Proposed Models and Empirical Formulae

To test the effectiveness of the suggested DNN model, a comparative study was per-
formed using 12 empirical models proposed in the literature of predicting the bearing
capacity, as presented in Table 7. It should be noted that no author has shared the mathe-
matical equations of the proposed ML model to compare results with the same database.
Published research was limited in presenting modeling results. Therefore, we cannot
validate the proposed models using the current collected dataset. Consequently, the current
study was limited to compare the proposed models based on the correlation coefficient. It is
needless to say that the correlation coefficient is an important indicator when assessing the
prediction precision, as the best model is represented by a prediction value close to 1. The
results of the comparative study indicated that the proposed DNN model in our study is
the best-performing model, with maximum accuracy (0.9996 for all data). Furthermore, our
model is closely followed by the ANN model which was proposed by Milad et al. [27], and
it showed an acceptable accuracy as it ranked secondly. Moreover, the results revealed the
poor performance of the ANN model proposed by Nawari et al. [25] in the bearing capacity.
With respect to the performance of machine-learning models, the hierarchy follows the
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following order: Milad et al. [27], Liu et al. [32], Yong et al. [28], Moayedi et al. [34], De-
hghanbanadaki et al. [30], Mahnesh [26], Kardani et al. [2], Jahed et al. [1], Shaik et al. [33],
Moayedi and Jahed [31], Harandizadeh et al. [29], and Nawari et al. [25]. We believe that
the reasonable ground standing behind the high accuracy found in our suggested model is
due to deep learning (more than one hidden layer). The latter could offer the necessary
flexibility for modeling complex functions in many cases.

Figure 3. Performance measures of the DNN model using the K-fold cross-validation, with K = 5.

Table 7. Comparison between the proposed DNN model and some of the empirical models found in the literature.

Authors Sample Size Best Methods Correlation Coefficient References

Nawari et al. (1999) 25 ANN 0.91 [25]

Mahnesh (2011) 105 Generalized Regression
Neural Network 0.977 [26]

Milad et al. (2015) 100 Neural Network 0.9995 [27]

Jahed et al. (2017) 132 PSO–ANN 0.9685 [1]

Moayedi and Jahed (2018) 59 ICA-ANN 0.96369 [31]

Yong et al. (2021) 50 GP 0.997 [28]

Shaik et al. (2019) 59 ANFIS 0.967 [33]

Kardani et al. (2020) 59 Extreme Gradient
Boosting 0.975 [2]

Harandizadeh et al. (2021) 72 ANFIS–GMDH–PSO 0.94 [29]

Moayedi et al. (2020) 20 GA–ANFIS 0.9935 [34]

Liu et al. (2020) 43 GA-ANN 0.998 [32]

Dehghanbanadaki et al. (2021) 100 MLP–GWO 0.991 [30]

Our study 100 Deep Neural Network 0.9996
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3.6. Sensitivity Analysis

In order to know what input variables have a significant effect on the pile-bearing
capacity, with the assistance of the DNN model, a sensitivity analysis was performed by
utilizing the step-by-step technique [60]. In this method, each normalized input parameter
varies at a constant rate, one at a time, while the other variables are held constant. Diverse
constant rates (0.3, 0.6, and 0.9) were chosen in this study. For every input, the percentage
of variation in the output, as a result of the variation in the input, was computed. The
sensitivity of each input was computed based on Equation (7):

Sensitivity level of Xj(%) =
1
K

K

∑
i=1

(
% change in output
% change in input

)
i

(7)

where K refers to the number of the datasets used in the study (K = 100). The outcomes of
the sensitivity analysis of the proposed DNN model are illustrated in Figure 4. It can be
noticed that the pile-bearing capacity was significantly influenced by the pile area, and its
sensibility ratio ranged between 26.3% and 38.06%. This parameter is closely followed by
the pile length, which showed a moderate sensitivity level that ranged between 15% and
19%. In addition, the cohesion and friction angle had a moderate effect on the pile-bearing
capacity, with a sensibility ratio ranging between 9% and 15%. Finally, other parameters
had little effect on the target values.

Figure 4. Results of the sensitivity analysis of the proposed model.

3.7. Graphical User Interface (GUI) Design “BeaCa2021”

It is a common practice in the majority of published papers using machine-learning
modeling to present models in the form of mathematical equations, which suffer from
their hard fitting in future studies. Seemingly, this practice has very little value for other
researchers and civil engineers in the field. In order to make it useful, the proposed machine-
learning architecture should be presented either in the form of a programmed interface
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such as Matlab or in a simple script employing a known programming language such as
Python for generating the proposed model [55]. In such a case, the machine-learning model
can be readily used and is thus available to anyone interested in the problem of modeling.
In this study, a reliable, graphical, and easy-to-use interface was designed based on our
optimal DNN model, as presented in Figure 5. The proposed optimal model was afterward
used to develop a GUI public interface. The designed interface, called “BeaCa2021”, was
programmed by Matlab software. The reason for choosing this name is due to “Bea” relative
to “Bearing”, “Ca” relative to Capacity, and 2021, the year this interface was designed. In
addition, BeaCa2021 includes the most relevant input parameters on the bearing capacity.
Initially, the user must define the pile material type (either steel or concrete). Secondly, the
user is required to introduce the other input parameters: average cohesion, average friction
angle, average soil-specific weight, average pile-soil friction angle, flap number, pile area,
and pile length. Finally, by clicking Run, the prediction result appears in the outputs. The
suggested BeaCa2021 interface will be very useful to civil engineers and researchers, by
helping them to predict the bearing capacity, which is deemed as one of the most complex
parameters to determine.

Figure 5. BeaCa2021 interface.

4. Discussion

In the current study, a very important contribution in the geotechnical community has
been introduced for the sake of enhancing the performance of the pile-bearing capacity
model. It is worth mentioning here that the model quality is influenced by the method
utilized. Hence, other unused advanced machine-learning methods demonstrated efficient
results in other areas. Consequently, in the current study, we examined the usage of twelve
advanced machine-learning methods, such as Deep Neural Network (DNN), Extreme
Learning Machine (ELM), Support Vector Regression (SVR), LASSO regression (LASSO),
Random Forest (RF), Ridge Regression (Ridge), Partial Least Square Regression (PLS),
Stepwise Regression (Stepwise), Kernel Ridge (KRidge), Genetic Programming (GP), and
Least Square Regression (LSR), to predict the pile-bearing capacity. According to the
authors’ knowledge, the use of the aforementioned machine-learning methods in predicting
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the pile-bearing capacity is very rare. Therefore, this study began with collecting a wide
range of data consisting of 100 static load-bearing tests on the UBC of both steel- and
concrete-driven piles from different countries, such as Iran, Mexico, and India. Afterward,
we selected eight relevant factors based on the literature recommendations, such as average
cohesion (kN/m2), average friction angle (◦), average soil-specific weight (kN/m3), average
pile-soil friction angle (◦), flap number, pile area (m2), and pile length (m). Based on that,
eleven advanced machine-learning methods (DNN, ELM, SVR, LASSO, RF, Ridge, PLS,
Stepwise, KRidge, GP, and LS) were applied for modeling the selected optimal input set
for the first time. The findings clearly indicate that the Deep Neural Network (DNN)
presents the most appropriate model, which yielded the minimum values of error metrics
(MEA, RMSE, and IOS) and the higher values of R2, R, and IOA compared to other
models. Furthermore, the newly developed model was assessed by the K-fold cross-
validation method and compared to other proposed models from the literature based
on the correlation coefficient. The conclusion drawn is that the optimal DNN model
could produce new data without causing over-fitting or under-fitting, plus being much
more precise than the other proposed empirical models. Moreover, the last part in the
current study consisted of the sensitivity analysis, which provided an overview of the
most influential parameters on the pile-bearing capacity according to the proposed model.
The findings indicate that the pile area was the most influential factor on the pile-bearing
capacity. Pile length also had a considerable effect. In addition, the cohesion and friction
angle demonstrated a moderate effect on the pile-bearing capacity, with a sensibility ratio
ranging between 9% and 15%. Finally, the proposed optimal model was then used to
develop a GUI public interface in order to facilitate its usage in the future. A reliable,
easy-to-use, and graphical interface, named “BeaCa2021, presented in the current study,
was programmed via Matlab software. The essential advantage of “BeaCa2021” is to help
researchers and civil engineers interested in the problem of modeling regardless of their
proficiency, by offering them plenty of benefits, such as reliability, easiness, and lowering
the budget used for predicting the pile-bearing capacity from relevant and easily obtained
parameters without the need to operate expensive in situ tests.

The results obtained in the current study also proved that the performance of the
pile-bearing capacity model was considerably enhanced by using new machine-learning
methods. The model prediction by the DNN was improved by 8.91% with the ANN
method proposed by Nawari et al. [25], 3.58% with the PSO–ANN method proposed by
Jahed et al. [1], and 0.86% with the MLP–GWO method proposed by Dehghanbanadaki
et al. [30]. The obtained results are logical because deep learning is generally employed
either in the prediction or in the problematic classification, which can reduce the bias
and variance plus avoiding over-fitting and under-fitting problems, as opposed to the
traditional ANN methods, to improve their predictive capability. According to these data,
we can infer that the DNN method, which was employed in this study for the first time for
the purpose of modeling the pile-bearing capacity, could yield more effective and accurate
results than the other machine-learning methods.

Despite the multiple extraordinary findings of this study, a number of important
limitations need to be addressed. The fundamental limitation would be the fact that the
sample size was relatively small, which may affect the precision of the pile-bearing capac-
ity. This may lead to the proposed model’s inability to generalize the new conditions or
circumstances that were not used in the training data stage. Besides, researchers generally
utilize large and diverse data collected by transferring knowledge between them. This is
an important issue to build on in future research, i.e., to rely on the data gathered from
multiple countries to enhance its learning and, therefore, produce a better model. Addi-
tionally, further studies using meta-heuristic algorithms for the prediction of pile-bearing
capacity are strongly recommended. We mention, for example, the Particle Swarm Opti-
mization (PSO) and Gravitational Search Algorithm (GSA), Bee Colony Algorithm (BCA),
Bio-geography-Based Optimization (BBO), Whale Optimization Algorithm (WOA), Ant
Colony Optimization (ACO), and Grey Wolf Optimizer (GWO). These algorithms have
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shown high-performance results when combined with machine-learning techniques, lead-
ing to improving their learning, and therefore rapidly converging to the best solution. The
application of these meta-heuristic algorithms combined with machine-learning methods
has shown impressive results in the abroad fields [55,61].

5. Conclusions

This study relied on a considerable number of steel- and concrete-driven pile data
collected from different countries, such as Iran, Mexico, and India. The comparison of the
results’ assessment between the different proposed models revealed the superiority of the
DNN model proposed in our study, which yielded the highest accuracy in terms of MAE,
RMSE, IOS, R, R2, and IOA in both the training/validation phases. The findings indicate
that this model has a high correlation coefficient, ranging between 0.9777 and 0.9998
for the validation data in the 5 splits of the k-fold cross-validation approach, meaning
that there was no over-fitting or under-fitting. Furthermore, the results indicated that
the aforementioned DNN model is more effective compared to other empirical models
proposed in the literature. The sensitivity analysis results proved that pile area had the
most significant effect on the prediction of the pile-bearing capacity. Pile lengths had a
moderate influence and were ranked second. In addition, cohesion and friction angle had
little effect on the pile-bearing capacity. Finally, the proposed optimal model was then
used to develop a GUI public interface with Matlab software, named “BeaCa2021”. The
fundamental benefit of “BeaCa2021” is to help researchers and practicing civil engineers,
regardless of their proficiency, interested in the problem of modeling, to estimate the
pile-bearing capacity with the benefits of gaining time and money.

This work has opened up several questions that need further investigations to over-
come certain limitations. Firstly, there is a need to use more data from other countries to
enhance the learning phase, which is needed to develop the BeaCa2021 in the future. Sec-
ondly, we propose the usage of meta-heuristic algorithms combined with machine-learning
methods for predicting the pile-bearing capacity in future studies. These algorithms have
demonstrated high-performance results when used with machine-learning techniques,
leading to improved learning.
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Appendix A

The scatter plots between target and output pile-bearing capacity values by the ad-
vanced machine-learning models.
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Figure A1. Scatter plots between target and output values by the SVR model.

Figure A2. Scatter plots between target and output values by the DNN model.

Figure A3. Scatter plots between target and output values by the ELM model.

Figure A4. Scatter plots between target and output values by the GP model.
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Figure A5. Scatter plots between target and output values by the KRidge model.

Figure A6. Scatter plots between target and output values by the LASSO model.

Figure A7. Scatter plots between target and output values by the PLS model.

Figure A8. Scatter plots between target and output values by the RF model.
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Figure A9. Scatter plots between target and output values by the Ridge model.

Figure A10. Scatter plots between target and output values by the STEP model.

Figure A11. Scatter plots between target and output values by the LS model.

References

1. Jahed Armaghani, D.; Shoib, R.S.N.S.B.R.; Faizi, K.; Rashid, A.S.A. Developing a hybrid PSO–ANN model for estimating the
ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 2017, 28, 391–405. [CrossRef]

2. Yong, W.; Zhou, J.; Jahed Armaghani, D.; Tahir, M.M.; Tarinejad, R.; Pham, B.T.; Van Huynh, V. A new hybrid simulated
annealing-based genetic programming technique to predict the ultimate bearing capacity of piles. Eng. Comput. 2021, 37,
2111–2127. [CrossRef]

3. Niazi, F.S.; Mayne, P.W. CPTu-based enhanced UniCone method for pile capacity. Eng. Geol. 2016, 212, 21–34. [CrossRef]
4. Meyerhof, G.G. Bearing Capacity and Settlement of Pile Foundations. J. Geotech. Eng. Div. 1976, 102, 197–228. [CrossRef]
5. Coyle, H.M.; Castello, R.R. New Design Correlations for Piles in Sand. J. Geotech. Eng. Div. 1981, 107, 965–986. [CrossRef]
6. Shahin, M.A. Intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 2010, 47, 230–243. [CrossRef]
7. Cai, G.; Liu, S.; Puppala, A.J. Reliability assessment of CPTU-based pile capacity predictions in soft clay deposits. Eng. Geol. 2012,

141–142, 84–91. [CrossRef]
8. Cai, G.; Liu, S.; Tong, L.; Du, G. Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of

single piles. Eng. Geol. 2009, 104, 211–222. [CrossRef]
9. Eslami, A.; Heidarie Golafzani, S. Relevant data-based approach upon reliable safety factor for pile axial capacity. Mar. Georesour.

Geotechnol. 2020, 39, 1373–1386. [CrossRef]

424



Appl. Sci. 2021, 11, 10908

10. Momeni, E.; Nazir, R.; Jahed Armaghani, D.; Maizir, H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based
ANN. Measurement 2014, 57, 122–131. [CrossRef]

11. D18 Committee. Test Method for High-Strain Dynamic Testing of Deep Foundations; ASTM International: West Conshohocken, PA,
USA, 2008.

12. Berezantzev, V.G. Design of deep foundations. In Proceedings of the Proc. 5th ICSMFE, Montreal, QC, Canada,
11–13 September 1965.

13. Hansen, J.B. Simple statical computation of permissible pileloads. Christ. Nielsen Post 1951, 12, 14–17.
14. De Beer, E.E. Etude des fondations sur pilotis et des fondations directes. Ann. Trav. Publics Belqique 1945, 46, 1–78.
15. Vesic, A.S. Design of pile foundations. In NCHRP Synthesis of Highway Practice; Transportation Research Board: Washington, DC,

USA, 1977.
16. Abu-Farsakh, M.Y.; Titi, H.H. Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of

Friction Driven Piles. J. Geotech. Geoenvironmental Eng. 2004, 130, 935–944. [CrossRef]
17. Kordjazi, A.; Pooya Nejad, F.; Jaksa, M.B. Prediction of ultimate axial load-carrying capacity of piles using a support vector

machine based on CPT data. Comput. Geotech. 2014, 55, 91–102. [CrossRef]
18. Maizir, H.; Suryanita, R.; Jingga, H. Estimation of pile bearing capacity of single driven pile in sandy soil using finite element and

artificial neural network methods. In Proceedings of the International Conference on Engineering and Technology, Computer,
Basic and Applied Sciences ECBA, Osaka, Japan, 28–29 November 2016.

19. Graine, N.; Hjiaj, M.; Krabbenhoft, K. 3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit
analysis. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 265–290. [CrossRef]

20. Conte, E.; Pugliese, L.; Troncone, A.; Vena, M. A Simple Approach for Evaluating the Bearing Capacity of Piles Subjected to
Inclined Loads. Int. J. Geomech. 2021, 21, 04021224. [CrossRef]

21. Debiche, F.; Kettab, R.M.; Benbouras, M.A.; Benbellil, B.; Djerbal, L.; Petrisor, A.-I. Use of GIS systems to analyze soil compress-
ibility, swelling and bearing capacity under superficial foundations inalgiers region, ALGERIA. Urban. Arhit. Constr. 2018, 9,
357–370.

22. Ikeagwuani, C.C. Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and
gradient boosting machine. Innov. Infrastruct. Solut. 2021, 6, 199. [CrossRef]

23. Shahin, M.A.; Jaksa, M.B.; Maier, H.R. State of the art of artificial neural networks in geotechnical engineering. Electron. J. Geotech.
Eng. 2008, 8, 1–26.

24. Benbouras, M.A.; Kettab, R.M.; Zedira, H.; Petrisor, A.-I.; Debiche, F. Dry density in relation to other geotechnical proprieties of
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Abstract: An accurate dam deformation prediction model is vital to a dam safety monitoring system,
as it helps assess and manage dam risks. Most traditional dam deformation prediction algorithms
ignore the interpretation and evaluation of variables and lack qualitative measures. This paper
proposes a data processing framework that uses a long short-term memory (LSTM) model coupled
with an attention mechanism to predict the deformation response of a dam structure. First, the
random forest (RF) model is introduced to assess the relative importance of impact factors and screen
input variables. Secondly, the density-based spatial clustering of applications with noise (DBSCAN)
method is used to identify and filter the equipment based abnormal values to reduce the random
error in the measurements. Finally, the coupled model is used to focus on important factors in the
time dimension in order to obtain more accurate nonlinear prediction results. The results of the case
study show that, of all tested methods, the proposed coupled method performed best. In addition, it
was found that temperature and water level both have significant impacts on dam deformation and
can serve as reliable metrics for dam management.

Keywords: dam deformation; attention mechanism; long short-term memory; dam safety monitor-
ing; prediction

1. Introduction

As a crucial social engineering infrastructure, dams must be operated safely to guar-
antee the needs of a steadily growing national economy are met. Unfortunately, due to
the inherent physical limitations of dam materials, dams often have unhealthy structural
responses such as dam body cracking and abnormal deformation [1]. In order to reduce the
probability of engineering failures, most dams are equipped with precise health monitoring
systems to evaluate their operational behavior and health through real-time measurements
of multiple structural and environmental indicators. Among the many monitoring indi-
cators, dam deformation is easy to measure and intuitively reflects the overall structural
response state [2]. In order to improve the effectiveness of management strategies, research
focused on accurately predicting dam deformation has increased in recent years. This area
of research commonly uses simulations, and the most commonly used forecasting models
can be categorized as mathematical statistical models or artificial intelligence models.

Hydrostatic-seasonal-time (HST) can be considered a representative flagship statis-
tical regression model, it quantitatively interprets the influencing factors behind dam
deformation based on the assumptions of mechanical theory and, then, performs a lin-
ear approximation fitting using the observed data. It was originally proposed by Willm
et al. [3] to forecast deformation of concrete dams and has since been widely implemented.
However, there is a strong correlation between dam water level and ambient temperature,
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which directly influences environmental loads and dam integrity, but the HST model does
not consider local air temperature, which will be detrimental to the prediction accuracy
under extreme weather conditions. To make up for these shortcomings, Penot et al. [4]
proposed the hydrostatic-seasonal-time-temperature (HSTT) model by correcting the ther-
mal component based on the actual air temperature. Another common approach has
been to replace the thermal component with the actual temperature inside dams, which
prompted the advent of the hydrostatic-thermal-time (HTT) model. Mata et al. [5] used a
combined principal component analysis (PCA) method to include dam temperature in the
model construction and applied the HTT model to explain the observed displacement of a
concrete dam more accurately and with a lower residual standard deviation. In addition,
there is a certain delay before a dam responds to changes in load, this can be observed in
the influence of water level on pore water pressure and temperature on the thermal field
of dams. The most popular solution is to add moving averages or gradients of original
variables to the model to supplement the delayed information. For example, Popovici
et al. [6] added the moving averages of air temperature for the previous 3, 10, and 30 days
and the water level for the previous 3 days as variables to improve the performance of the
dam deformation prediction model.

Mathematical statistical models generally output linear relationships between impact
factors and target variables. The coefficients are determined by the least squares method
using a building process that is simple and easy to understand. However, in practice,
the relationship between dam deformation and impact factors is rarely linear and the
capacity of the above models to capture nonlinear features and generalize is insufficient.
To address this deficit, artificial intelligence algorithms based on machine learning have
gradually attracted more attention in dam deformation prediction. The application of
artificial intelligence models in dam safety monitoring systems has since become another
important research subject, using approaches such as support vector machine (SVM),
random forest (RF), and gaussian process (GP). The machine learning algorithm captures
the characteristics of observed data through specific algorithm steps and uses the extracted
characteristic information to continuously update the model to achieve the best fit. Through
various complex processing operations, machine learning algorithms can obtain highly
accurate predictive models that meet the management needs of safety monitoring. Mata [7]
introduced a prediction algorithm based on artificial neural networks (ANN) to map the
relationship between the load and concrete dam deformation and compared it with the
multiple linear regression (MLR) model. The results showed that the ANN model provided
a better fit than the traditional statistical model under extreme temperatures. In addition,
Kao et al. [8] showed that the information provided by small static deformations can
be enhanced by ANN-based methods. Furthermore, they developed a threshold level
method for diagnosing the health of dams, and the impact of different factors on the
health of dams was analyzed in detail. Recently, Ranković et al. [9] constructed an SVM
nonlinear autoregressive model with exogenous inputs to predict the nonlinear behavior
of a dam’s structure. The safety measures protecting dams can be improved by being
able to accurately predict the displacements of dams. Kang et al. [10] demonstrated the
accuracy of a dam deformation prediction model based on the GP method, which added
the average air temperature and temperature lag information as input variables to predict
the radial displacement of a concrete dam. In subsequent prediction comparisons, their
GP model had the smallest error value. More recently, combinations of multiple machine
learning algorithms have received increasing attention. Ren et al. [11] used a fruit fly
optimization algorithm to upgrade the SVM and applied it to the hysteresis correction
of dam deformation impact factors. Subsequently, Su [12] proposed an SVM model with
a wavelet based kernel function that made full use of the discrete transformation of the
wavelet function. Li et al. [13] used the PCA method to extract the effective information
from the dam temperature data as the input for the SVM model, effectively filtering
redundant information from the input variables. However, the high-dimensional nonlinear
tasks and the characteristic representation of time-varying dam deformation undoubtedly
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present a huge challenge for traditional shallow learning, meaning that the prediction
accuracy of traditional machine learning algorithms is becoming increasingly unable
to meet the needs of many engineering management tasks. In recent years, another
branch of artificial intelligence technology, deep learning, has been vigorously developed
in various industries, these approaches include convolutional neural networks (CNN),
which are applied in image processing [14–16] and speech recognition [17–19], and long
short-term memory (LSTM) models, which are applied in time series processing [20–22].
Liu et al. [23] proposed an approach coupling PCA with LSTM to make short-term and
long-term predictions of dam observation data. Qu et al. [24] compared LSTM and SVM
prediction algorithms for dam deformation monitoring. Xu et al. [25] decomposed dam
deformation time series into linear and nonlinear parts, then used traditional statistical
models to fit the linear part, while LSTM was used to capture the sequence features of
the nonlinear part. Deep learning uses a layered structure to embody abstract non-linear
relationships and superimposes this structure to improve the expressive ability to map
complex relationships. Each layer transfers information to another, with the output of the
current layer being used as the input of the next layer, until the final output is obtained.
After multiple layers of feature extraction and complex information representation, a
sequence feature representation model can be obtained. This layered architecture makes
deep learning highly customizable, allowing it to achieve a better prediction accuracy than
traditional shallow learning. Furthermore, most studies focus on improving the accuracy
of predictive models, but ignore the interpretation and evaluation of input variables, which
can be considered using deep learning models.

To better consider the influence of time dimension, this paper coupled an attention
mechanism with an LSTM network to develop a dam deformation prediction algorithm.
The attention mechanism in the time dimension can preferentially allocate the limited
information processing resources in the short term to key data, while the LSTM network
can extract long-term change trends from dam deformation time series. This coupled
model is able to obtain more accurate dam deformation prediction results while also
enriching variable interpretation in the time dimension of the prediction model. During
actual monitoring, the physical deformation sensor can be affected by environmental
(external) factors or internal factors, which can produce abnormal data due to equipment
error. Therefore, the density-based spatial clustering of applications with noise (DBSCAN)
density-based clustering algorithm is introduced to eliminate equipment-based abnormal
values in real time to ensure that the observed data meet the subsequent modeling accuracy
requirements. Then, the relative importance of each input variable is obtained through
the variable importance measure data processing method, which not only enriches the
information interpretation of the model, but also screens redundant information to reduce
the difficulty of modeling. The performance of the proposed model was verified by the
real-world concrete gravity dam deformation data. The main contributions of this paper
can be summarized as follows:

1. This paper proposed and tested a DBSCAN method to filter the dam deformation
time series data. The method effectively removed the equipment based abnormal
values caused by environmental factors or equipment failures, thereby smoothing
the random measurement errors in the observed data, which improved prediction
accuracy.

2. The importance of input variables to the dam deformation prediction model was
analyzed to interpret and evaluate the model. This resulted in a useful and efficient
qualitative measure of dam deformation, which improved prevention and control of
abnormal structural responses.

3. A coupled model was developed to better address the needs of dam deformation pre-
diction. An attention mechanism focuses on the important variables in the short-term
time dimension, while the LSTM model captures long-term change characteristics.
This algorithm is very suitable for the prediction of dam deformation by accounting
for time lag.
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The remainder of this paper is organized as follows: Section 2 describes the detailed
process of the established mathematical model of dam deformation and the preprocessing
method. Section 3 introduces the selection of input variables, and the design and operation
of the comparative experimental model. Section 4 elaborates on a case study from which
actual monitoring data was collected. Section 5 explains and analyzes the input variables
and evaluates the performance of the proposed coupled method. Finally, conclusions and
future research directions are provided in Section 6.

2. Methods

2.1. Modeling Dam Deformation

Dam deformation is a key indicator reflecting the structural health of the dam. During
project operation, polynomial functions are often used to approximate the dam deforma-
tion as:

δ = δH + δT + δθ (1)

where δ denotes the dam deformation, and the subscripts H, T, and θ in the formula
respectively represent the components of the dam deformation caused by hydrostatic
pressure, temperature, and aging effect over time.

2.1.1. Hydrostatic Pressure Component

A simplified two-dimensional model of a homogeneous gravity dam is taken as an
analysis example, as shown in Figure 1, we obtain the following explanation through the
mechanical relationship between water level and deformation. Under hydraulic load, the
horizontal displacement δH generated at any measuring point of the dam is composed
of four parts, as shown in Figure 1: the displacement δ1H caused by the deformation of
foundation due to internal forces on foundation surface and the displacement δ2H caused
by rotation of foundation surface due to the gravity of the reservoir water, the displacement
δ3H caused by the rotation of reservoir water pressure acting on dam body, and the shear
horizontal displacement δ4H caused by the internal force of reservoir water pressure acting
on dam body. Therefore, the dam deformation is expressed by:

δ = δ1H + δ2H + δ3H + δ4H (2)

(a) (b)

C H

O

3H+ 4H

a a

C H

O

1H
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Figure 1. Cont.
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Figure 1. Schematic of the influence of hydraulic load on horizontal dam displacement: (a) horizontal displacement of dam
foundation; (b) horizontal displacement caused by rotation of the dam foundation; and (c) horizontal displacement caused
by dam rotation and shear horizontal movement. (unit: m).

According to F.Vogt theory [26], the water pressure to the bottom of a dam causes the
horizontal displacement δ1H and rotation angel θ1 of dam foundation as:

δ1H= (γK1/6Ef a)H3 + (γK2/2Ef )H2. (3)

θ1= (γK3/6Ef a2)H3 + (γK1/2Ef a)H2. (4)

where Ef denotes the elastic modulus of bedrock; γ is unit weight of water; the width
of dam bottom is a; H presents the upstream water depth; and K1, K2, and K3 are the
coefficients that depend on the Poisson’s ratio of the bedrock and the length-to-width ratio
of the equivalent rectangle at the bottom of the dam [27].

If the length of the reservoir L is very large, the weight of water acting on reservoir in
front of dam will deform reservoir bank and cause rotation θ2 at the bottom of dam as:

θ2= −H(1+μ f ) ln(n +
√

n2 + 1)/πEf (5)

where μ f is the Poisson ratio of bedrock and n is half the ratio of the width of water in front
of dam to the distance a0 from the center of gravity of the dam to the heel of the dam.

Therefore, the horizontal displacement δ2H of crest caused by rotation of dam founda-
tion θ as:

δ2H = cθ= (θ1 + θ2)c (6)

The horizontal displacement δ3H of dam crest caused by the rotation θ3 of dam body as:

δ3H =
∫ c

0

∫ c

0
Mdydy/Ed I (7)

where M = γH3/6 is the bending moment caused by water pressure, which is proportional
to the third power of water depth; Ed is the elastic modulus of dam concrete material; I is
the moment of inertia of the horizontal section of dam and c is dam height.

The dam shear horizontal displacement δ4H as:

δ4H =
∫ c

0
2k(1 + μd)Qdy/AEd (8)

where Q = γh2/2 is shear force caused by water pressure, which is proportional to the
third power of the water depth; A is the horizontal area section of dam; k is the shear force
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distribution coefficient on the section, about 1.2; and μd is the Poisson’s ratio of the concrete
material of dam.

From the above analysis, it can be found that the horizontal displacement of dam crest
caused by the water depth H in front of the dam is a function of H, H2, and H3. Among
them, the deflection displacement caused by the bending moment M is mainly related to
H3, the tangential displacement caused by the shearing force Q is mainly related to H2, and
the slope-deflection at the tilt of reservoir bottom caused by the weight of water is related
to H. Therefore, the hydrostatic pressure component in the horizontal displacement of a
concrete gravity dam can be established as a mathematical model as follows:

δH = a0 +
3

∑
i=1

ai Hi (9)

where a0 and ai are regression coefficients.
In addition, if the downstream water level changes greatly and the upstream and

downstream water level difference is not obvious, the impact of downstream water level
on monitoring should be considered, as:

δH = a0 +
3

∑
i=1

a1i Hi
1 +

3

∑
i=1

a2i Hi
2 (10)

where H1 is the water level of upstream and H2 is the water level of downstream.

2.1.2. Temperature Component

Dam deformation is also affected by temperature, which is the displacement caused by
temperature changes in the concrete of dam and rock foundation. When the dam has been
in service for many years, the hydration heat of the concrete material has been dissipated,
and the internal temperature of the dam body reaches a quasi-stable temperature field. At
this time, it only depends on the boundary temperature variation, and the temperature
component presents a simple harmonic periodic change. In order to qualitatively analyze
the temperature component, multi-cycle harmonics can be selected as a factor to simplify
and simulate it as:

δT =
2

∑
i=1

[b1i sin(2πit/365)+b2i cos(2πit/365)] (11)

2.1.3. Time Component

The time component is an irreversible component that developed in a certain direction
with the passage of time. Under the influence of a variety of factors, the dam body and rock
foundation undergo plastic deformation, which leads to the rapid change of the time-effect
displacement at the initial stage and gradually stabilizes in the later stage. According to
existing research, linear functions and logarithmic functions can be used to model with
time effects as:

δθ = c1t + c2 ln t (12)

where c1 and c2 are regression coefficients.

2.2. Density-Based Spatial Clustering of Applications with Noise

In practical engineering, sensor monitoring is usually subject to harmful factors such
as harsh environments or network transmission errors, resulting in abnormal values of
equipment in data information. The density-based spatial clustering of applications with
the noise (DBSCAN) method is introduced to reduce these random errors and eliminate
device outliers, which has been proven to be capable of handling large database [28–30].
The DBSCAN is a density-based clustering algorithm. It assigns any point to a specified
radius area and calculates the total number of points in the area to obtain the density of the
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specified point. When the density is higher than the preset maximum point set threshold,
these points will be constructed into clusters. Based on this concept, a huge feature space is
grouped into multiple regions with high density, so as to achieve the purpose of screening
out random outliers of the monitoring equipment. We choose the DBSCAN method because
it has the ability to divide clusters of arbitrary shapes in the noise spatial database, such as
linear, elliptical shapes, etc. The detailed process of DBSCAN is described in Algorithm
1, where n and m are the number of samples and clusters, respectively. k represents any
observed data in the original data set. ki represents the i-th observed data in the original
dataset. x represents the number of observed data existing in the radius of ki. N represents
the set of all observed points in each cluster. y represents the number of observed data
existing in the radius of ki’.

Algorithm 1 Equipment outlier filtering

Inputs: Dataset D(n×1), radius ε, domain density threshold MinPts
Outputs: Density-based cluster set DC

(m×1)

Marking k in D(n×1) as UNVISITED, k ∈ [1, n]
For kiin D(n×1):

If ki is UNVISITED
Marking ki as VISITED
If x>= MinPts

Create a new cluster C and add ki to C to form a list set N
For each point ki’ in N

If ki’ is UNVISITED
Marking ki’ is VISITED
If y>= MinPts and each one in y /∈ any cluster

Adding them into C
End if

End if

End for

Else

Marking ki as outlier
End if

End if

End for

2.3. Variable Importance Measures

The artificial intelligence learning model is a training model similar to a black box,
and there is usually a problem that it is difficult to understand the training meta-model.
Therefore, we introduce the random forest (RF) algorithm to calculate the relative impor-
tance of any combination of variables. The RF can reduce the average impurity of input
variables, which is a very important part to improve the accuracy and interpretability
of model. The main idea of RF is to ensure that the weight of the corresponding input
variable is output under the condition of all input variables after receiving a given input. In
theory, this method can be applied to any kind of dam deformation monitoring tasks. The
detailed steps of RF model to calculate the relative importance of variables are described
in Algorithm 2, where x and y represent the number of impact factors and observed data,
respectively. ξ is the number of combinations containing different numbers of variables,
and each combination must contain at least one variable. Xα is the α-th input variable set.
ŷ(α) represents the dam deformation prediction result obtained by Xα. N is the number
of decision trees in the set random forest. ŷ(α)i is the dam deformation prediction result
obtained by the i-th decision tree using Xα. y is the average value of the observed data for
dam deformation.
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Algorithm 2 Variable importance measure for predictive model interpretation

Inputs: Observed dataset X(x×y), Y(y×1)

Outputs: Variable relative importance VI
Divide X into α sets of tensors, α ∈ [1, ξ]
For α = 1, . . . , ξ:

ŷ(α) = f (Xα)

σα = ∑n
i=1

∣∣∣ŷ(α)i − y
∣∣∣/n

End for

For α = 1, . . . , ξ:

VIα = σα/∑ξ
α=1 σα × 100%

End for

2.4. Long Short-Term Memory Networks Couple with Attention

Long short-term memory (LSTM) networks can effectively capture the nonlinear
characteristics of time series through storing historical data streams. However, due to the
diversified complexity of dam deformation monitoring, the time lag of influencing factors
is particularly prominent. For example, an increase in temperature or water level does not
immediately lead to dam deformation, but a gradual process, which manifests as a delayed
deformation response. This factor increases the complexity of dam deformation prediction
in the time dimension, so this paper develops a dam deformation prediction method based
on the attention mechanism coupled with LSTM model.

LSTM model is essentially a device that superimposes and stores information. It
adjusts the destination of information in the model unit through the special structure called
gate. LSTM model has three gate structures: the forget gate determines the information that
needs to be removed in the current cell unit; the input gate determines which information
in the newly input information fragment is updated to the current cell unit and the output
gate collects the information memorized by the cell unit to obtain the final output result.
The calculation process expression of each LSTM cell unit is as follows:

ft = σ(Wf · [ht−1, xt] + b f ) (13)

it = σ(Wi · [ht−1, xt] + bi) (14)

c̃t = tanh(Wc · [ht−1, xt] + bc) (15)

ct = ft ∗ ct−1 + it ∗ c̃t (16)

ot = σ(Wo · [ht−1, xt] + bo) (17)

ht = ot ∗ tanh(ct) (18)

where ft is the operating threshold of the forget gate at time t; ht is the output value of the
network at time t; ht−1 is the output value of the network at time t−1; it is the operating
threshold of the input gate at time t; c̃t is the candidate value that needs to be updated at
time t; ct is the new cell unit state at time t; ot is the operating threshold of the output gate
at time t; Wf, Wi, Wc, and Wo are the weight matrix of the forget gate, input gate, cell state,
and output gate, respectively; bf, bi, bc, and bo are the bias of the forget gate, input gate, cell
state, and output gate, respectively; and σ and tanh are the activation functions.

However, the conventional LSTM networks are unable to perform quantitative impact
analysis on the input data. Thanks to the concept of attention mechanism, it can achieve the
focus on key information. It imitates the way humans process information and enable the
algorithm to focus on core variables by means of activation functions. Therefore, a novel
LSTM algorithm structure is proposed, coupled with an attention mechanism to predict
dam deformation. The attention mechanism adds a matrix with the same dimension as
the input tensor, weights the hidden state in the time dimension, and then outputs the
attention vector value of each time step. The attention mechanism can be added in two
positions, in front of the LSTM layer and behind the LSTM layer, as shown in Figure 2. In
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actual application, the target series has a complex amount of information, so the position
added by the attention mechanism should be selected according to the actual effect. The
attention mechanism calculates the weight ei

t in each time dimension, and outputs the
attention weight ai

t between zero and one through the activation function, as shown below:

ei
t = VTtanh(WsSt−1 + Whht) (19)

ai
t = softmax(ei

t) = exp(ei
t)/

T

∑
k=1

exp(ek
t )(t = 1, 2, . . . , T) (20)

where St−1 is the attention layer input at the time t−1, and VT and Ws are the weight
matrices that can be trained.

(a) (b)

Figure 2. Schematic of the LSTM coupled with the attention mechanism: (a) attention mechanism preceding the LSTM layer
and (b) attention mechanism following the LSTM layer.

Then, we use this matrix vector to multiply the value in the time dimension to get the
input of hidden layer ci

t and, then, we update the hidden layer state of the LSTM model
together with the previous unit cell state. The calculation formula is as follows:

ct =
T

∑
k=1

ak
t hk (21)

St = LSTM(Yt−1, ct, St−1) (22)

where Yt−1 is the attention layer output at the time t−1.

3. Model Implementation

This section mainly introduces the specific realization of the coupled algorithm for dam
deformation prediction requirements, as shown in Figure 3. Since it uses a large number of
historical data samples to test its validity, it can provide guidance and suggestions for the
use of actual projects. Meanwhile, the evaluation metrics of the model are introduced.
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Figure 3. Flowchart of dam deformation prediction based on the coupled algorithm.

3.1. Selection of Input Variables

As discussed in Section 2.1. dam deformation is composed of water level component,
temperature component and time component, so we consider these three components as
input variables of the coupled model. Since the heat of hydration of the concrete material
has been dissipated and the dam has a stable temperature field, the annual harmonic and
half-year harmonic are used to express the temperature component. Finally, we generate a
set of variables like Equation (23).

x =
{

H, H2, H3, sin(2π/365), cos(2π/365), sin(4π/365), cos(4π/365), θ, ln θ
}

= {H1, H2, H3, T1, T2, T3, T4, t1, t2} (23)

In order to ensure the convergence of the coupled model or speed up its convergence,
all input variables of Equation (23) need to be normalized as in Equation (24). Where μ is
mean of sample data and σ is standard deviation of sample data.

xi =
xi − μ

σ
(24)

3.2. Design of Comparison Schemes and Tuning Parameters

Design of a comparison scheme using eight algorithm models, these eight algorithm
models are HST model, support vector machine using poly kernel (SVM-poly), support
vector machine using radial basis function kernel (SVM-rbf), RF model, multilayer percep-
tron (MLP) model, standard LSTM, the attention mechanism is coupled to the model before
LSTM layer, and the attention mechanism is coupled to the model after the LSTM layer. All
of the algorithms are implemented in the Python 3.6 environment. The data processing is
conducted with the Numpy and Pandas packages of Python. The modelling process using
MLR, SVM, and RF is carried out using the package of Scikit-Learn in Python. Our MLP
and LSTM networks are developed with Keras on top of Google TensorFlow.

For the HST model, it is essentially linear regression, and its regression coefficients
are calculated by the least square method. For artificial intelligence models, each model
has its own unique hyperparameters that need to be set. We introduce the method of grid
search (GS) [31] to tune the hyperparameters on the data of training set. It arranges and
combines the possible values of each hyperparameter from the pre-declared parameter
interval, and lists all possible combinations to generate a grid. Then, use each combination
for training and use ten-fold cross-validation to evaluate performance. After the fitting
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function has tried all the parameter combinations, a best hyperparameter combination is
returned. SVM-poly model has two important parameters: the penalty coefficient C and
the specified degree d. SVM-rbf model has two important parameters: penalty coefficient C
and influence radius γ. RF model has three important parameters: the total number of trees
n_estimators, the maximum number of features a single tree can have max_features and the
minimum number of sample data owned by leaves min_sample_leaf. In order to suppress the
overfitting phenomenon of LSTM and MLP models, it is necessary to add a dropout layer.
Therefore, both the MLP and LSTM models have two important parameters: the number of
hidden layer units u and the dropout rate. However, different from MLP, LSTM also needs
to declare the size of the sliding time window w, which is how long the previous data needs
to be considered when predicting the dam deformation in the next time period. Therefore,
the partial autocorrelation function (PACF) of original dam deformation is calculated, as
shown in Figure 4. It can be found that when the deformation lag is greater than eight,
the values of PACF stabilize within the 95% confidence interval. Meanwhile, tuning the
sliding time window size of the LSTM. When the optimal range of w is determined, testing
the performance of the LSTM model with different values of w on the training set, and
the results are shown in Figure 5. At first, due to insufficient effective information, the
performance of model changes greatly. As the value of w increases, the model receives more
information, which makes the performance of model gradually improve and eventually
stabilize. Through Figures 4 and 5, when the LSTM model uses a larger w, the performance
of LSTM will not be affected by redundant information. In order to simplify the process of
determining specific hysteresis of the impact factor, we can choose a larger w. The final
experimental results are listed in Table 1.

Figure 4. The PACF results of the original observed data.

Figure 5. MAE values of the LSTM model with different sliding time window size. The solid lines
represent the average value from ten repeated simulations and the upper and lower boundaries of
the band represent the maximum and minimum from the ten simulations.
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Table 1. Basic information of model parameter tuning.

Models Hyperparameters Search Range Optimal Value Training: MAE Test: MAE

SVM-poly C (15, 30) 21
1.5504 1.3880d [1,2,3,4,5] 1

SVM-rbf
C (15, 25) 20

0.5598 1.2799
γ (0.1, 0.5) 0.2

RF
n_estimators (25, 40) 29

0.3987 1.2282max_features (0,1) 0.5
min_sample_leaf [1,2,3,4,5] 3

MLP
u [64, 512] 128

0.6561 1.3364Dropout rate [0.4–0.8] 0.5

LSTM
u (64, 521) 256

0.1752 0.2037Dropout rate [0.4–0.8] 0.5
w [3, 15] 9

3.3. Evaluation Criteria

To evaluate the performance of each model, the mean absolute error (MAE), root mean
square error (RMSE), and maximum absolute error (AEmax) are selected as the evaluation
indicators of models. The relevant calculation formulas are shown in Equations (25)–(27).
For these three indicators, the smaller the value, the better the performance of the prediction
model.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (25)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (26)

AEmax = max|yi − ŷi|, i = 1, 2, . . . , n (27)

where n is the number of sample data, yi is the original dam deformation data, and ŷi is
the predicted dam deformation data.

4. Case Study

4.1. Case Description

This study uses an integral roller compacted concrete gravity dam located in China as
a case to verify the performance of the proposed coupled model. The dam axis is arranged
in a broken line, the dam crest elevation is 145 m, the maximum dam height is 63 m, and
the dam crest length is 196.62 m. The length of dam sections on the left and right banks
are respectively 58.92 and 62.70 m, and there is a longitudinal drainage and grouting
gallery in the dam body. The dam began to be closed for water storage in 1993 and passed
the completion acceptance in 1995. In order to ensure the safe operation of the project,
automatic monitoring equipment is used to continuously monitor the response of the dam
structure. Meanwhile, for the realization of the horizontal displacement monitoring, nine
measuring points are set on the top of the dam, numbered E01 to E09, as shown in Figure 6.
The main distribution of measuring points is one on the left and right sections of the dam,
two on the left and right abutments of the dam, five on the overflow section.

438



Appl. Sci. 2021, 11, 6625

Figure 6. The layout of horizontal displacement measuring points on the dam.

The environmental monitoring of water level is divided into upstream water level
and downstream water level. The upstream water level measuring station is located in
front of the upstream dam, and the downstream water level measuring station is located
near the tail water outlet of the powerhouse. The upstream and downstream water levels
are monitored in real time by self-registering water level gauges, supplemented by manual
observation of water gauges.

Monitoring equipment collects data on dam deformation and related environmental
variables once a day. In this study, since the E06 measuring point has the most obvious vari-
ation for the impact factor, it was chosen as an example for analysis. The DBSCAN method
is used to preprocess the monitoring data from 1998 to 2021, and the dam deformation
prediction performance of the proposed coupled model is studied.

4.2. Data Analysis

For the problem of dam deformation, it was first necessary to assess whether the
influence of downstream water level should be considered. The data of the upstream and
downstream water levels are presented in Figure 7. The downstream water level was
generally stable compared to the upstream water level and the two water levels were quite
different, so the influence of changes in the downstream water level were not included in
the dam deformation model.

Figure 7. Water level data collected from automated monitoring equipment: (a) upstream water level
and (b) downstream water level.
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In addition to the standard dam related variables, there are many influencing factors
that are difficult to remove, such as lightning strikes and interference by magnetic fields
during monitoring. However, using the DBSCAN method to preprocess the observed data
can effectively prevent equipment based abnormal values caused by such factors from
contaminating the data set. The original observation data collected from the automated
monitoring equipment are shown in Figure 8a, from which we can clearly find several
equipment based abnormal values. The DBSCAN method uses clustering to identify
equipment based outliers of the same level into a single category and then eliminate them.
The results after removing the outliers can be seen in Figure 8b. The data processed through
the DBSCAN method were smoother than the original observation data, and most of the
abnormal values due to equipment error were eliminated.

Figure 8. Dam horizontal displacement data collected from automated monitoring equipment: (a)
the original data and (b) the data processed through DBSCAN.

The basic stats of the original data and the data processed using the DBSCAN method
are listed in Table 2. The average values of the processed data were similar to the average
values of the original data, but the standard deviation was reduced. This result showed
that the DBSCAN method can effectively filter device caused outliers and help suppress
any interference by such data on the prediction.

Table 2. Summary statistics of the original data and the data processed through DBSCAN.

Attribute The Original Data The Data Processed through DBSCAN

Max 19.0791 13.2493
Min −6.2839 −0.8423

Mean 5.9806 6.0159
Median 5.7828 5.7860

Standard 3.0866 2.8342

5. Results and Discussions

5.1. Importance of Input Variables and Model Interpretation

For a prediction model, the choice of input variables will directly affect the accuracy
of the prediction results, so it needs to be determined if the input variables can fully
represent the nonlinear relationship of dam deformation and whether the input variables
are redundant. To do this we adopted the RF model to conduct a deep analysis of the input
variables and determine the relative importance of each.
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Figure 9 shows the relative importance of the nine input variables as calculated by the
RF model using the GS method to optimize parameters. It can be seen that the temperature
and water level factors were most relevant to dam deformation, with a relative importance
of 60.97% and 21.29%, respectively. While the time component has the lowest bearing
on the prediction results. From the perspective of hydraulic structural engineering, these
calculated importance values demonstrated that temperature plays a central role in the
deformation responses of dam structures, followed by water level, which is in line with the
actual situation of the project and is reasonable. Although the time component had little
influence on the model, the aging effect of the dam material and its inherent rheological
characteristics may need to be analyzed as input variables to improve the nonlinear model.

Figure 9. The relative importance of input variables determined by the RF model.

Using the sequential backward selection method, the input variables are sorted from
top to bottom according to importance. As can be seen from Figure 9, the order of im-
portance of the input variables was T3, T4, t2, H3, H2, T1, t1, H1, and T2. In this order,
the number of input variables fed to the RF model for training and testing is gradually
increased. In order to meet the test requirements, 70% of the original data set is used as the
training set and the remaining 30% data is used as the test set. Since the input sequence of
the data set will also affect the test results, a ten-fold cross-validation is used to ensure the
stability and reliability of the test results. The MAE values of the test results are provided in
Table 3, and shown in Figure 10 to better visualize the different combinations. There were
obvious fluctuations in the MAE values of the test and training sets at the beginning, and
has not yet converged. This was because the model weighs the input variables and MAE
values, and the effective information provided by the few input variables may not have
been enough to represent the original time series. When the process continued and more
variables were input, the MAE value significantly declined and the test set and training set
began to stabilize. When using four, five, and six input variables, the MAE values of the test
sets were basically stable at around 0.95, while those of the training set started to stabilize
around 0.35. However, as the input variables continued to increase, the MAE values of the
test and training sets increased again, and the increasing trend continued with additional
variables. This was because the additional input variables contained redundant data that
were not conducive to the prediction results, resulting in new features being captured by
the model that contradicted those of the earlier data. Therefore, to ensure that the amount
of information contained in the input variables is sufficient, while ensuring that MAE is as
small as possible, a sixth plan should be selected to characterize dam deformation.
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Table 3. Evaluation of simulation results for different input factors.

Serial
Number

Search Range MAE

T3 T4 t2 H3 H2 T1 t1 H1 T2 Training Test

1
√

1.2022 1.0520
2

√ √
1.1023 1.1563

3
√ √ √

0.8505 1.0482
4

√ √ √ √
0.3405 0.9541

5
√ √ √ √ √

0.3802 0.9581
6

√ √ √ √ √ √
0.3453 0.9550

7
√ √ √ √ √ √ √

0.3990 1.0633
8

√ √ √ √ √ √ √ √
0.4280 1.0584

9
√ √ √ √ √ √ √ √ √

0.4392 1.0821

Figure 10. The MAE values of each group under ten-fold cross-validation.

5.2. Performance of Prediction Accuracy and Interpretation in Time Dimension

The LSTM model coupled with the attention mechanism was compared to a variety
of advanced algorithms. As was done for the proposed model, all models were trained
with 70% of the original data set and tested with the remaining 30%. The evaluation index
value of each model is listed in Table 4, where the best performing model is marked in
bold. The evaluation indexes showed that, except for SVM-poly model which had too low
a fitting accuracy for the high-dimensional data of the training set, all of the models fit
the observation data well. The LSTM models exhibited the best fitting performances, and
the model in which the LSTM layer was preceded by an attention mechanism performed
better than all other models. The RMSE, MAE, and AEmax values of this model were all
significantly lower than the other models, indicating its prediction results were the best.
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Table 4. Performance comparison of different models.

Model
Training Test

RMSE MAE AEmax RMSE MAE AEmax

Attention before LSTM 0.1337 0.1248 3.0304 0.0498 0.1535 2.6235
Attention after LSTM 0.0758 0.1801 3.0295 0.0646 0.1846 2.7444

LSTM 0.0498 0.1752 3.1269 0.0798 0.2037 3.1708
RF 0.2662 0.3987 2.3540 2.2030 1.2282 4.1766

SVM-rbf 0.5777 0.5598 2.7555 2.3969 1.2799 4.4931
SVM-poly 3.3283 1.5504 4.0004 2.6943 1.3880 3.7492

MLP 0.6858 0.6561 3.5570 2.5970 1.3364 4.5004
HST 0.8714 0.7424 3.5900 3.6562 1.7142 4.7921

To further compare the stabilities of the prediction results, the prediction residuals of
all models were plotted, shown in Figure 11. The plot showed that the residual distribution
of the HST model was right-skewed, and the prediction result gradually tended towards
the average level of the training model over time. This was because linear fitting is more
inclined towards the training data and does not consider non-linear effects of influencing
factors, making linear fitting unable to accurately predict displacement caused by extreme
weather. Although the distribution of the SVM-poly model was not skewed, its accuracy
was not sufficient to meet the needs of dam deformation prediction through the median
and quartiles. The SVR-rbf and MLP models showed improved prediction accuracy, but
there were still problems with overfitting. The RF model did not exhibit overfitting, due to
its own architecture, but it did exhibit generalization errors [32]. Therefore, the RF model
had obvious right skewness, and would eventually tend to predict the average level like
the HST model. Due to the introduction of time-dependent storage, the resulting LSTM has
greatly improved the prediction accuracy and has a strong ability to represent nonlinear
features, but it is still unable to predict peaks, as shown in Figure 12.

Figure 11. Comparison of the inherent stability and predictive performance of different models.
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Figure 12. Predictive fitting curve of the LSTM and coupled models.

Meanwhile, in order to verify the reliability of the proposed model, drawing residuals
plot of the better model, as shown in Figure 13. The results show that the proposed model
has weaker residual autocorrelation than LSTM model, and its residual value distribution
is more uniform. Although there are a few residual points of the proposed model on the
residual graph with irregular distribution, most of residual points are evenly spread on
both sides of 0. The residual distribution demonstrates unpredictability and randomness.
Therefore, the LSTM model coupled with attention mechanism can fully capture the
available information in the dam deformation influence factor.

(a)

(b)

(c)

Figure 13. Residuals distribution plot of different models: (a) attention mechanism is coupled before
LSTM; (b) attention mechanism is coupled after LSTM; and (c) LSTM.
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The attention mechanism helps to automatically focus on important factors in the time
dimension. This addition significantly improved the ability of the LSTM model to predict
the peaks in the observed data. Furthermore, with the attention mechanism, the outliers in
the forecasting data were relatively minor and the distribution of the residuals was also
relatively concentrated. However, the attention mechanism performance depended on its
coupling position, preceding or following the LSTM, and the results showed that when it
is coupled before the LSTM layer it had better prediction accuracy. For dam deformation
predictions, recent data has a stronger reference value and, as shown in Figure 14, attention
disorder occurs when the attention mechanism is coupled after the LSTM layer. This is
because after the data is processed by the LSTM layer it will be mapped into a complex
high-dimensional tensor which makes it difficult for the attention mechanism to accurately
focus on important factors. These observations demonstrated that the attention mechanism
should be placed before the LSTM layer to better predict the structural response of dams
using complex nonlinear factors and time delay information.

(a) (b)

Figure 14. Heat map of attention weight: (a) the attention mechanism is coupled before LSTM and (b) the attention
mechanism is coupled after LSTM.

6. Conclusions

The accuracy of the dam deformation prediction algorithm is vital to dam safety
monitoring. This paper proposed a coupled LSTM/attention mechanism model that used
GS and cross-validation methods to adaptively identify the most important parameters.
Real world monitoring data of deformations of a concrete gravity dam were used as the
research object to test the model and its performance was compared with several other
advanced methods. The RF model was used to calculate the importance of input variables
and any extraneous influencing factors were screened out while maintaining a sufficiently
reasonable description of the dam deformation response. In addition, abnormal data points
caused by various factors interfering with the monitoring equipment were eliminated using
the DBSCAN method. According to this comprehensive study, the following conclusions
were drawn:

1. The results showed that the DBSCAN method is suitable for the detection of equip-
ment based abnormal values. The processed data had an average value that was
similar to that of the original data, but the variance and random errors were greatly
reduced.

2. The RF model identified the most important variables needed to provide a reasonable
explanation for dam deformation to be input into the model. The results revealed
that the temperature was a particularly important factor in dam deformation, the
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importance of which was more than 50%, followed by water level, while the time
component had the weakest influence.

3. The time-lag effect in dam monitoring plays an important role in predicting dam
de-formation. When the model contained a time sliding window, the accuracy of the
results was significantly improved, the residual distribution was relatively concen-
trated, and the outliers were greatly reduced.

4. The addition of the attention mechanism enabled the model to focus on important
factors in the time dimension and improved the prediction of extreme values. The
attention mechanism should be added before the LSTM layer to prevent the high-
dimensional mapping of data processed by the LSTM layer from causing attention
disorder.

In the future, the effects of different normalization methods for input variables on
the robustness of attention mechanism need to be discussed. Meanwhile, we will explore
the dynamic effects of time lag and spatial characteristics of dam deformation to achieve
coordinated dynamic predictions of dam deformation using multiple measurement points,
which will analyze the dam safety as a whole and realize data reduction.
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Abstract: Due to the disturbance effect of excavation, the original stress is redistributed, resulting
in an excavation damaged zone around the roadway. It is significant to predict the thickness of
an excavation damaged zone because it directly affects the stability of roadways. This study used
a sparrow search algorithm to improve a backpropagation neural network, and an Elman neural
network and support vector regression models to predict the thickness of an excavation damaged
zone. Firstly, 209 cases with four indicators were collected from 34 mines. Then, the sparrow search
algorithm was used to optimize the parameters of the backpropagation neural network, Elman neural
network, and support vector regression models. According to the optimal parameters, these three
predictive models were established based on the training set (80% of the data). Finally, the test set
(20% of the data) was used to verify the reliability of each model. The mean absolute error, coefficient
of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U
value, root-mean-square error, and the sum of squares error were used to evaluate the predictive
performance. The results showed that the sparrow search algorithm improved the predictive per-
formance of the traditional backpropagation neural network, Elman neural network, and support
vector regression models, and the sparrow search algorithm–backpropagation neural network model
had the best comprehensive prediction performance. The mean absolute error, coefficient of de-
termination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value,
root-mean-square error, and sum of squares error of the sparrow search algorithm–backpropagation
neural network model were 0.1246, 0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively.
The proposed model could provide a reliable reference for the thickness prediction of an excavation
damaged zone, and was helpful in the risk management of roadway stability.

Keywords: excavation damaged zone; prediction; sparrow search algorithm; BP neural network;
Elman neural network; support vector regression

MSC: 86-10

1. Introduction

After the excavation of roadway, the initial stress in the surrounding rock mass is
redistributed. When the stress is greater than the strength of the surrounding rock, the rock
mass will be damaged. Then, a ringlike broken zone can be formed around the excavated
space; this is called the excavation damaged zone (EDZ) [1,2]. The thickness of the EDZ
can not only be used to judge the stability of the roadway, but can also be adopted in the
support design [3–5]. In addition, due to the weakening in the rock strength, an EDZ can
also be utilized for nonexplosive continuous mining in deep hard-rock mines [6]. Therefore,
predicting the thickness of the EDZ around a roadway is significant.

Since the concept of the EDZ was proposed, many scholars have conducted plenty of
research to determine its size or thickness. These methods can be mainly summarized as the
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onsite measurement technique, the numerical simulation method, the empirical formula,
and the machine-learning (ML) algorithm. Among them, the onsite measurement tech-
nique is the most direct method to determine the thickness of an EDZ, and includes digital
panoramic drilling camera technology [7], ground-penetrating radar [8], ultrasonic detec-
tion technology [9], the borehole imaging method [10], the complex resistivity method [11],
and microseismic monitoring [12,13]. Although the results of these measurements are
accurate, the operation is complicated and vulnerable to the site conditions. With the rapid
development of rock mechanics and computers, numerical-simulation methods became
popular to determine the thickness of an EDZ. Liu et al. [14] used the ANSYS software to an-
alyze the influencing factors and distribution law of an EDZ around a rectangular roadway.
Sun et al. [15] studied the formation mechanism of a butterfly-shaped EDZ by combining
the force and elastic wave theory, and then used Midas/GTS-FLAC3D simulation technol-
ogy to determine the range of the EDZ. Perras et al. [16] used the finite element method
in the Phase2 software to determine the thickness of an EDZ. Wan et al. [17] used 3DEC
to determine the thickness of an EDZ, and the simulation results were consistent with the
measured values. Although a numerical simulation is low-cost and convenient to operate,
many assumptions exist in the simulation process that lead to idealized results and affect
the accuracy. According to field-engineering experience and theoretical analysis, some
empirical formulas were proposed to calculate the thickness of an EDZ. Yan [18] proposed
an empirical formula for the thickness prediction of an EDZ based on the wave velocity
of the rock and rock mass. Wang [19] combined the elastoplastic theory and measured
data to determine the range of the EDZ in the Chazhen Tunnel. Chen et al. [20] deduced
the radius of an EDZ based on the Hoek–Brown criterion and elastoplastic solution of a
circular hole. Based on similar simulation tests and field experience, Dong [4] proposed
a relationship between the stress and the rock strength to calculate the thickness of an
EDZ. Zhao [21] derived the quantitative relationship between the thickness of an EDZ
and its influencing factors based on a dimensional-analysis method. In addition, the zonal
disintegration phenomenon, which indicates the alternation of fractured and intact zones,
appears in deep roadways. Shemyakin [22] proposed the concept of zonal disintegration
and deduced the empirical formula for the thickness of the discontinuous zone. After
Myasnikov [23] proposed a non-Euclidean continuum model to describe the stress-field
distribution, some scholars [24–26] used that non-Euclidean model to investigate the zonal
disintegration phenomenon in a surrounding rock mass, and obtained the corresponding
formulas. Although an empirical formula is easy to understand, it ignores the effects
of joints and mining. Currently, there is no universally accepted empirical formula for
predicting the thickness of an EDZ.

Considering ML can well deal with nonlinear and complex problems [27,28], it shows
great potential to predict the thickness of an EDZ. Asadi et al. [29] used artificial neural
networks in the thickness prediction of an EDZ. Zhou [30] verified that the support vector
machine (SVM) could reliably estimate the range of an EDZ. In addition, some scholars
adopted intelligent optimization techniques to improve traditional ML algorithms for the
determination of an EDZ’s thickness. For example, Hu [31] used a layered fish school to
improve the SVM; Ma [32] combined the particle-swarm algorithm (PSO) and the least-
squares support vector machine; Yu [33] integrated PSO and a Gaussian process model;
and Liu [34] employed the wavelet-relevance vector machine. In addition, ML is being
increasingly used in other civil engineering fields, and achieves an excellent prediction
performance [35–37]. For example, Mangalathu et al. [38] used ML to classify the building
damage caused by earthquakes; Ruggieri et al. [39] adopted ML to analyze the vulnerability
of existing buildings. ML can not only obtain reliable prediction results, but can also
save time and economic costs. However, numerous EDZ cases are needed to improve
its credibility.

After comparing it with other types of approaches, the ML method was preferentially
chosen to predict the thickness of an EDZ. An important reason is that it has strong self-
learning and adaptive capabilities based on big data and can find implicit relationships
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between indicators. Nevertheless, it is essential to determine the favorable parameters of
ML, because they directly affect its predictive performance [40]. The sparrow search algo-
rithm (SSA) proposed by Xue [41] in 2020 is an efficient swarm-intelligence optimization
algorithm. Compared with other optimization algorithms, the SSA has a higher search
efficiency and a simpler operation. SSA considers all possible situations of a sparrow
population, so that the sparrows in the population are close to the global optimal value,
and converge [42]. At the same time, SSA has a high convergence speed, a good stability,
a strong global search ability, and few parameters. In addition, backpropagation neural
network (BPNN), Elman neural network (ENN), and support vector regression (SVR) mod-
els have shown extraordinary capabilities in solving prediction problems, and have been
widely used in various engineering fields [43–45]. Therefore, using SSA to optimize the
parameters of BPNN, ENN, and SVR models is more competitive.

The goal of this study was to use SSA-BPNN, SSA-ENN, and SSA-SVR models to pre-
dict the thickness of an EDZ. Firstly, an EDZ database including 209 cases was established.
Secondly, SSA-BPNN, SSA-ENN, and SSA-SVR models were proposed for the thickness
prediction of an EDZ. Thirdly, seven indexes were used to evaluate the performance of
each model. Finally, all models were compared and analyzed, and the best model was
determined.

2. Data Collection

To establish a reliable predictive model, a total of 209 cases from 34 mines were
collected [46–50]. The locations of these mines are shown in Figure 1. It can be seen that the
types of these mines were different, and included coal mines, gold mines, phosphate mines,
and lead–zinc mines. In addition, these mines were in different regions, which indicated
that the collected dataset was complex to some extent.

Figure 1. Locations of the selected mines.

The dataset statistics of each indicator are shown in Table 1, where A1 indicates the
embedding depth, A2 indicates the drift span, A3 indicates the surrounding rock strength,
A4 indicates the joint index, and A5 indicates the EDZ thickness. The complete data can
be found in Appendix A Table A1. It should be noted that EDZ indicates the ruptured
zone around the roadway, but not the zonal disintegration. For a better understanding, the
structure of an EDZ and some indicators are illustrated in Figure 2. The meaning of these
indicators is indicated in Table 2.
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Table 1. Statistics for each indicator.

Indicator Max Min Mean Standard Deviation

A1 (m) 1159.00 97.00 499.20 242.94
A2 (m) 10.00 2.40 3.71 1.13

A3 (MPa) 158.83 7.50 30.80 31.12
A4 5.00 1.00 2.89 1.15

A5 (m) 3.45 0.30 1.56 0.61

Figure 2. Excavation damaged zone around the roadway.

Table 2. Meanings of these indicators.

Indicator Meaning

A1 (m) Indicates the depth of the roadway from the ground.
A2 (m) Indicates the width of the roadway.

A3 (MPa) Indicates the uniaxial compressive strength of the surrounding rock.
A4 Indicates the development degree of joints in the surrounding rock.

Each sample contained four indicators and the thickness of the EDZ. The thickness
of an EDZ is affected by many factors, such as the strength of surrounding rock mass,
in situ stress, size and shape of the roadway, excavation method, time effect, and other
environmental factors. First of all, the strength of the surrounding rock mass reflects the
ability of the rock mass to resist damage, and is inversely proportional to the thickness
of EDZ. Therefore, the indicators A3 and A4 were selected. Second, considering that the
thickness of an EDZ is proportional to the in situ stress around the roadway, the indicator
A1 was chosen. Third, because different roadway sizes have diverse influences on an EDZ,
A2 was used as an indicator. Fourth, since the thickness of the EDZ used in this study was
a stable value, the time effect could be ignored. When considering the influence of other
factors, such as temperature, groundwater, and excavation method, they were deemed too
complicated to quantify, and were not considered in this study.

To quantitatively describe the correlation between indicators and the thickness of
an EDZ, the Pearson correlation coefficient was calculated, as shown in Figure 3. In this
figure, red represents a positive correlation, blue represents a negative correlation, and the
depth of color indicates the strength of correlation. It can be seen that the thickness of an
EDZ and these four indicators had different correlation degrees, which showed that these
indicators were relatively independent. Therefore, these four indicators were used as the
input variables.
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Figure 3. The correlation heat map of each indicator.

The advantages of these selected indicators can be summarized as: (1) they could
reflect the main factors affecting the formation of an EDZ; (2) their values were easy to
obtain; and (3) the information described by these indicators was independent.

3. Methodology

The structure of the proposed methodology is shown in Figure 4. Firstly, the original
data were randomly divided into a training set (80%) and test set (20%). Secondly, the SSA
was used to optimize the parameters of the BPNN, ENN and SVR models. Thirdly, the
training set was adopted to train the optimized model. Fourthly, the test set was employed
to analyze the accuracy of each model, and seven indexes, including the mean absolute
error (MAE), coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSC),
mean absolute percentage error (MAPE), Theil’s U value, root-mean-square error (RMSE),
and the sum of squares error (SSE), were used to evaluate each model’s performance.
Finally, the optimal model was determined based on their comprehensive performance.
The whole process was implemented in the MATLAB software. This section introduces the
principles of the different models and the performance-evaluation indexes in detail.

Figure 4. Structure of the proposed methodology.
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3.1. Sparrow Search Algorithm (SSA)

Xue [41] proposed the SSA, which was inspired by the behavior strategy of a sparrow
population. It solves the global optimization problems by simulating the behavior char-
acteristics of sparrows, and provides a new approach to solving practical problems with
a large number of local optimal values. SSA has a faster solution speed, a better stability,
and convergence accuracy. In addition, because randomness is introduced in the search
process, it can avoid falling into local solutions, and solve global optimization problems
more effectively [51–53].

According to the original foraging principle of sparrow populations, a discoverer–
scrounger model was established [54]. The interrelationships between individuals in the
sparrow population are shown in Figure 5. Generally, the discoverer S1 is responsible for
finding food and safe areas, while the scrounger S2 tracks the location of S1 to obtain food,
and their roles are constantly changing [55,56]. S3 represents the sparrow at the edge of
feeding area. It may leave the location and find another place because it is in the most
dangerous position. S4 is responsible for detecting the safety of surrounding environment,
and other sparrows also pay attention to S4 while eating.

Figure 5. Interrelationships between individuals in the sparrow population.

During the foraging and eating process of sparrow groups, individuals monitor each
other while constantly observing changes in the surrounding environment [57,58]. If S4
sends a hazard signal to the population, the entire group will scatter away immediately.
In addition, sparrows at the edge of community are more likely to be attacked by natural
enemies than those at the center, so they will spontaneously and constantly adjust their
positions to ensure safety.

According to the above idea, the SSA model can be established. Assuming that the
sparrow population is in the space of N × D, it can be defined by:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
...

Xn
...

XN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,d · · · x1,D
x2,1 x2,2 . . . x2,d . . . x2,D

...
...

...
...

...
...

xn,1 xn,2 . . . xn,d . . . xn,D
...

...
...

...
. . .

...
xN,1 xN,2 . . . xN,d . . . xN,D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n = 1, 2, 3, . . . .., N (1)

where x is the position of sparrows, D indicates the spatial dimension, and N represents the
number of total sparrows.
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The fitness value indicates the energy reserve, which is defined as:

FX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...
fn
...

fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f [x1,1 x1,2 · · · x1,d · · · x1,D]
f [x2,1 x2,2 · · · x2,d · · · x2,D]

...
...

...
...

...
...

f [xn,1 xn,2 · · · xn,d · · · xn,D]
...

...
...

...
. . .

...
f [xN,1 xN,2 · · · xN,d · · · xN,D]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n = 1, 2, 3, . . . .., N (2)

Generally, the discoverer S1 has a larger foraging range than the scrounger S2, and
updates its position constantly. The update process can be calculated as:

Xt+1
nd =

{
Xt

nd · exp
(−n

α·P
)
, R2 < ST

Xt
nd + Q · L, R2 ≥ ST

(3)

where t denotes the current number of iterations; P refers to the maximum number of
iterations; α is a random number of [0, 1]; R2 is the warning threshold, and R2 ∈ [0, 1]; ST
indicates the safety value, and ST ∈ [0.5, 1]; Q represents a random number that follows the
normal distribution; L shows a 1 × d matrix in which each element is 1; and Xnd signifies
the position of a sparrow.

When R2 < ST, it indicates the current foraging area is safe, and the sparrows can
continue to eat, so the foraging range can be expanded. When R2 ≥ ST, the spectators find
the predator and immediately issue an alarm signal, then all sparrows will scatter away
immediately.

The location of scroungers S2 is also updated accordingly because the central location
is more secure. The update equation is indicated as:

Xt+1
n,d =

⎧⎪⎨⎪⎩ Q · exp
(

Xt
worst−Xt

n,d
n2

)
, n > N

2

Xt+1
best +

∣∣∣Xt
n,d − Xt+1

best

∣∣∣ · A+ · L, n ≤ N
2

(4)

where Xt
worst represents the global worst position; Xt

n,d is the best position occupied by the
discoverer; and A represents a 1 × d matrix in which the elements are randomly assigned
to be 1 or −1, and A+ = AT(AAT)−1.

When n > N
2 , it means that the nth scrounger with a poor fitness value is hungry, and

should fly in other directions to find food.
The spectators S4 generally account for 10% to 20% of the population. When danger

approaches, they will scatter away and move to a new location. The position-update
equation is:

Xt+1
n,d =

⎧⎪⎨⎪⎩
Xt

best + β
(

Xt
n,d − Xt

best

)
, fn �= fg

Xt
n,d + K ·

(
Xt

n,d−Xt
worst

| fn− fw |+e

)
, fn = fg

(5)

where Xt
best represents the global safest position; β and K ∈ [−1, 1] are both control param-

eters of step length, while β is a random number that follows the normal distribution with
a mean value of 0 and variance of 1, and K ∈ [−1, 1] represents the direction of sparrow
movement; fn, fg, and fw respectively represent the current fitness value of a sparrow,
the global optimal value, and the global worst value; and e is a constant to prevent the
denominator from being 0.

When fn > fg, it means the sparrow is at the edge of the population and is vulnerable
to predators. When fn = fg, it indicates the sparrow in the middle of the population is
aware of the danger and needs to be close to other sparrows to reduce the probability of
being preyed upon.
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3.2. Sparrow Search Algorithm–Back Propagation Neural Network (SSA-BPNN) Model

The calculation process of a BPNN is similar to nonlinear mapping, which uses
multiple neurons to form a multilayer feedback model. The characteristics of the data are
obtained through the continuous iteration of the algorithm. BPNN has a high learning
adaptability, and can predict unknown data based on a previously learned pattern [59–63].

However, a BPNN has the defect of being easy to converge to a local minimum
when fitting nonlinear functions. The SSA provides a new method to solve the parameter-
optimization problem of a BPNN. In the SSA-BPNN model, the SSA reduces the error
by continuously adjusting the weight and threshold of each layer, and improves the
convergence speed.

The steps for an SSA to optimize a BPNN are as follows:
Step 1: The relevant parameters of the BPNN are initialized;
Step 2: The relevant parameters of the sparrow population are initialized, and the

maximum number of iterations P is defined;
Step 3: Based on the fitness values, the sparrows are sorted to generate initial popula-

tion positions. The mean-square error (MSE) is selected as the fitness function;
Step 4: According to Equations (3)–(5), the positions of discoverer S1, scrounger S2,

and spectator S4 are updated;
Step 5: The current updated position is obtained. If the new position is better than

the old position from a previous iteration, the update operation is performed; otherwise,
the iterative process continues until the condition is met. Finally, the best individual and
fitness values are obtained;

Step 6: The global optimal individual is used as the weight of the BPNN, and the
global optimal solution is adopted as the threshold of the BPNN;

Step 7: When the number of iterations is reached or the error is met, the calculation
process stops; otherwise, the program re-executes beginning at step 3.

3.3. Sparrow Search Algorithm–Elman Neural Network (SSA-ENN) Model

An ENN is a dynamic recurrent neural network that adds local memory units on the
basis of a traditional feedforward network [64,65]. In addition to the hidden layer, it inserts
an undertaking layer to the original grid that is used as a one-step delay operator to record
dynamic information. Therefore, it obtains the ability to adapt to time-varying characteris-
tics. Compared with traditional neural networks, it has better learning capabilities and can
be used to solve problems including optimization, fitting, and regression.

However, an ENN has the randomness problem with initial weights and thresholds,
which affects the accuracy of its predictions. In this study, an SSA was used to optimize the
initial weights and thresholds of an ENN to improve the overall predictive performance.

The stages of SSA optimization of an ENN are as follows:
Stage 1: Initialize the relevant parameters of ENN and SSA;
Stage 2: Calculate the fitness of initial population and sort the results. The best and

worst individuals can be determined. MSE is selected as the fitness function;
Stage 3: According to Equations (3)–(5), the positions of sparrows S1, S2, and S4 are

updated based on fitness ranking;
Stage 4: Calculate the fitness value. The position of each sparrow is updated constantly.

If the stop condition is met, the iterative process stops. Otherwise, the above process should
be repeated;

Stage 5: Obtain the optimal weights and thresholds of the ENN.

3.4. Sparrow Search Algorithm–Support Vector Regression (SSA-SVR) Model

An SVR model mainly includes two steps. First, the nonlinear data is mapped into a
high-dimensional space through the kernel function to make the data linearly separable.
Then, the data is processed based on the principle of structural risk minimization.

Two important parameters in the SVR model include the penalty parameter c and the
kernel function parameter g. Among them, c represents the error tolerance and g indicates
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the learning ability. The higher the value of c, the smaller the tolerance to error, and the
more likely to overfit. In addition, g affects the prediction accuracy directly. Therefore, it is
necessary to determine the optimal c and g during the training process.

The stages of SSA optimization of an SVR are as follows:
Stage 1: Build and initialize the SVR model;
Stage 2: Initialize the parameters of SSA, and determine the range of c and g;
Stage 3: Calculate the fitness of the initial population and determine the best and worst

individuals. MSE is selected as the fitness function;
Stage 4: Update the positions of sparrows S1, S2, and S4 based on Equations (3)–(5);
Stage 5: Calculate the fitness value and update the position of the sparrows. The

iterative process will break when the stop condition is met. Otherwise, the above steps will
be repeated;

Stage 6: Obtain the optimal c and g, which are then used for model training.

3.5. Model Evaluation Indexes

In order to evaluate model performance, seven indexes, including MAE, R2, NSC,
MAPE, Theil’s U value, RMSE, and SSE, were adopted.

MAE represents the average error between predicted value and actual value. The
calculation equation is [66]:

MAE =
1
n

n

∑
i=1

| fi − yi| (6)

where n is the number of samples; fi and yi are the predicted value and actual value of the
ith sample, respectively; and y denotes the average of the actual values.

R2 is used to indicate the correlation between two variables. The calculation equation
is [33]:

R2 =

(n
n
∑

i=1
fiyi −

n
∑

i=1
fi

n
∑

i=1
yi)

2

(n
n
∑

i=1
( fi)

2 − (
n
∑

i=1
fi)2)(n

n
∑

i=1
(yi)

2−(
n
∑

i=1
yi)2)

(7)

NSC is used to describe the predictive efficiency. The calculation equation is [67]:

NSC = 1 −

n
∑

i=1
(yi − fi)

2

n
∑

i=1
(yi − y)2

(8)

Theil’s U value is used to indicate the prediction accuracy. The calculation equation
is [68]:

Theil′s U =

√
1
n ∑n

i=1(yi − fi)
2√

1
n ∑n

i=1 yi
2 +

√
1
n ∑n

i=1 fi
2

(9)

MAPE denotes the average value of the relative error. The calculation equation is [69]:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ fi − yi
yi

∣∣∣∣× 100% (10)

RMSE is used to describe the deviation between the predicted value and actual value.
The calculation equation is [70]:

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (11)
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SSE is used to calculate the sum of the squared error. The calculation equation is [71]:

SSE =
n

∑
i=1

(yi − fi)
2 (12)

4. Results and Analysis

4.1. Results of SSA-BPNN Model

A three-layer grid was used to establish the SSA-BPNN model. Based on the input and
output of the model, the number of nodes in the input and output layers were determined
as 5 and 1. In addition, the number of nodes in the hidden layer was obtained based on the
MSE of the training set. By setting the number of nodes from 3 to 15, the MSE of the training
set was obtained, as shown in Figure 6. It can be seen that the MSE was the smallest when
the number of nodes was 5. Therefore, the grid structure of the SSA-BPNN model was
chosen as 4 − 5 − 1, as shown in Figure 7.

Figure 6. MSE of different number of hidden layer nodes for SSA-BPNN model.

Figure 7. Grid structure of SSA-BPNN model.

In order to obtain a better predictive performance, other grid parameters, such as
the number of trainings, minimum error of training target, initial population size of the
SSA, and maximum evolutionary generation, were optimized by trial and error and set to
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1000, 0.0001, 30, and 100, respectively. Then, the SSA was used to optimize the weights
and thresholds of the BPNN model, and the optimized weight matrices w1 and w2 were
obtained as follows:

w1 =

⎡⎢⎢⎢⎢⎣
0.1089 −0.2795 0.2414 −0.7100
0.0890 −11.3880 7.6001 1.5449
0.3197 0.4036 −0.0070 −0.4563
−6.0878 0.7283 0.1796 1.3281
−0.6581 −2.0707 11.9725 10.5624

⎤⎥⎥⎥⎥⎦ (13)

w2 =
[ −2.6242 −0.2653 −4.0481 −0.2858 −0.4481

]
(14)

After the model was trained based on the training set, the test set was used to eval-
uate the predictive performance of the SSA-BPNN model. The relationship between the
actual and predicted values is shown in Figure 8. It can be seen that their values had a
good correlation.

Figure 8. Predictive performance of SSA-BPNN model.

In addition, the predictive performance of the BPNN model before and after the
SSA optimization was compared. Seven performance evaluation indexes, including MAE,
R2, NSC, MAPE, Theil’s U value, RMSE, and SSE, were calculated, as shown in Table 3.
According to these index values, the SSA-BPNN model performed better than the BPNN
model. The absolute error of the different samples was determined, as demonstrated in
Figure 9. Overall, the absolute error of the SSA-BPNN model was smaller and more stable
than that of the BPNN model. At the same time, the maximum error of the BPNN model
was larger. Therefore, SSA improved the predictive performance of the BPNN model to
some extent.

Table 3. Evaluation index values of BPNN and SSA-BPNN models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

BPNN 0.2169 0.7425 −3.8026 15.4075% 0.0144 0.2873 3.4665
SSA-BPNN 0.1246 0.9277 −1.2331 8.4127% 0.0084 0.1636 1.1241
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Figure 9. Absolute errors of BPNN and SSA-BPNN models.

4.2. Results of SSA-ENN Model

To establish the optimal grid structure, SSA-ENN models with different numbers of
hidden layer nodes were built. The training error was determined when the number of
nodes was selected from 3 to 12, as shown in Figure 10. When the number of hidden layer
nodes was 10, the error was the smallest. Therefore, the grid structure of the SSA-ENN
model was selected as 4 − 10 − 10 − 1, as shown in Figure 11.

Figure 10. MSE of different number of hidden layer nodes for SSA-ENN model.
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Figure 11. Grid structure of SSA-ENN model.

For training the model, other grid parameters, such as the learning rate, minimum
error of training target, and initial population size of SSA, were optimized by trial and error
and set to 0.01, 0.0001, and 30, respectively. Then, the weights and thresholds of the ENN
were optimized by the SSA based on the training set, and the optimized weight matrices
w3, w4, and w5 were obtained as follows:

w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.0388 −1.5616 −0.1513 1.3243
1.0527 −0.0656 −0.7647 −2.0608
−2.6026 −0.0921 −1.1416 −3.2409
0.2770 0.4636 −1.1443 −1.8673
−0.4656 −1.4285 −0.0750 −0.7841
−1.9833 0.1517 −0.6582 −0.5568
−0.5375 −1.6703 0.1149 0.6181
−0.3918 0.7763 −2.5244 −1.8498
0.0175 −2.2129 −1.1439 −1.3245
−2.1403 −0.4759 −0.2951 −2.0509

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

w4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6309 −0.5862 −0.636 −0.6344 −0.71 −0.6323 −0.665 −0.7285 −0.6339 −0.6346
−0.6356 −0.6129 −0.632 −0.7323 −0.6546 −0.6458 −0.627 −0.7207 −0.759 −0.6144
−0.582 −0.7272 −0.683 −0.7091 −0.6001 −0.6132 −0.654 −0.6353 −0.6318 −0.5988
−0.708 −0.613 −0.635 −0.6603 −0.6202 −0.6294 −0.636 −0.6121 −0.6181 −0.597
−0.5904 −0.633 −0.644 −0.668 −0.6803 −0.6779 −0.635 −0.6116 −0.6568 −0.6448
−0.6247 −0.6524 −0.631 −0.6138 −0.6359 −0.7771 −0.667 −0.6259 −0.634 −0.6419
−0.6149 −0.6013 −0.691 −0.6621 −0.6069 −0.7022 −0.678 −0.633 −0.5831 −0.691
−0.6466 −0.6066 −0.643 −0.6517 −0.7294 −0.7349 −0.668 −0.6627 −0.6243 −0.6588
−0.6707 −0.5838 −0.645 −0.6155 −0.6464 −0.6233 −0.64 −0.5822 −0.6532 −0.6794
−0.6237 −0.631 −0.602 −0.644 −0.658 −0.6256 −0.63 −0.638 −0.6506 −0.702

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

w5 = [0.9634 1.5589 1.4220 −1.5235 −1.1393 0.7611 −1.3683 0.3639 1.3427 −1.8511] (17)
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The test set was used to evaluate the predictive performance of the SSA-ENN model.
The relationship between the actual and predicted values is shown in Figure 12. It can be
observed that the predicted value was very close to the actual value.

Figure 12. Predictive performance of SSA-ENN model.

In order to compare the predictive performance of the ENN and SSA-ENN models,
their performance evaluation indexes were calculated, as shown in Table 4. All index values
indicated that the SSA-ENN performed better than the ENN. In particular, the R2 increased
from 0.6824 to 0.9204, and the MAPE decreased from 15.5604% to 8.6297%. The absolute
error of each sample in the test set was obtained, as shown in Figure 13. It can be seen
that the error of the SSA-ENN was around zero, but the error of the ENN was larger and
relatively unstable. Therefore, the ENN model optimized by the SSA had a better accuracy.

Figure 13. Absolute errors of ENN and SSA-ENN models.
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Table 4. Evaluation index values of ENN and SSA-ENN models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

ENN 0.2210 0.6824 −5.4164 15.5604% 0.0175 0.3429 4.9377
SSA-ENN 0.1215 0.9204 −1.3872 8.6297% 0.0088 0.1735 1.2646

4.3. Results of SSA-SVR Model

The SSA was used to optimize the parameters c and g of the SVR model. The popu-
lation size of the SSA, the maximum number of iterations, and the cross-validation fold
were set to 20, 100, and 5, respectively. Then, the best values of c and g were determined as
58.0379 and 2.2764, and the corresponding MAE of the cross-validation was 0.0569. The
structure of the SSA-SVR model is shown in Figure 14 Then, the test set was adopted to
assess the predictive performance of the SSA-SVR model. The fitting relation of the actual
and predicted values is shown in Figure 15.

Figure 14. Structure of SSA-SVR model.

Figure 15. Predictive performance of SSA-SVR model.
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The variation of fitness (MSE) with the number of iterations is shown in Figure 16. It
can be seen that as the number of iterations increased, the fitness decreased. Especially in
the first five generations, the fitness decreased rapidly. At the 12th iteration, the optimal
fitness value was obtained as 0.0569.

Figure 16. Fitness value of the SSA-SVR model.

The traditional SVR model was also used for a comparison. Based on the cross-
validation results, the values of c and g were determined to be 1024 and 0.0078, respectively,
and the MAE was 0.2647. Seven performance evaluation indexes for the SVR and SSA-SVR
models were calculated, as shown in Table 5. Based on these index values, the SSA-SVR
model had a better predictive performance. The absolute error corresponding to each
sample is displayed in Figure 17. It can be seen that the prediction results of the SSA-SVR
model were closer to the actual value. Therefore, the predictive performance of the SVR
model was improved by the SSA.

Figure 17. Absolute errors of SVR and SSA-SVR models.
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Table 5. Evaluation index values of SVR and SSA-SVR models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

SVR 0.3978 0.3699 −2.7614 28.3285% 0.0225 0.4568 8.7640
SSA-SVR 0.1856 0.8261 −4.6656 12.8829% 0.0122 0.2386 2.3907

5. Discussion

The main purpose of this study was to select an appropriate model to predict the
thickness of an EDZ. Although these models were comprehensively evaluated based on
seven evaluation indexes, as shown in Tables 3–5, it was necessary to determine their rank-
ing results. In order to obtain the predictive performance of each model more intuitively,
a score method was proposed. The specific scoring principle was that the best model in
each index was given 5 points, the second-ranked model was given 4.5 points, and the
lower-ranked models’ scores were sequentially reduced by 0.5 points. The radar chart of
the model score corresponding to each index is shown in Figure 18. It can be seen that
most of the scores for each model index were basically at the same level. According to the
area of the radar chart, it can clearly be seen that the SSA-BPNN and SSA-ENN models
performed better. Based on the scores of various indexes, a stacked chart was obtained,
as shown in Figure 19. It can be seen that the scores of the models optimized by SSA
increased significantly, which illustrated the importance of parameter optimization with
the SSA. According to the total scores, the ranking results were determined as SSA-BPNN >
SSA-ENN > SSA-SVR > BPNN > ENN >SVR. The SSA-BPNN model was more suitable for
predicting the thickness of an EDZ.

Figure 18. Radar chart of model scores corresponding to each index.
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Figure 19. Stacked chart of index scores for all models.

In addition, the predicted and actual values of each model were compared, as shown
in Figure 20. In the figure, it can be seen that the predicted results of the SSA-BPNN model
were closer to the actual value. Combined with the scoring principle, we determined that
the SSA-BPNN model had the highest accuracy.

Figure 20. Predicted and actual values of each model.

In order to further verify the reliability of the proposed model, it was necessary to
compare it with the empirical-formula method. Zhao et al. [21] proposed an empirical
formula to determine the thickness of an EDZ as follows:

A5 = 0.0145A1 A4
0.9324(

γA1

A3
)

0.4459
(

σHmax

A3
)
−0.4308

(
A2

A1
)

0.5334
(18)

where γ is the unit weight of rock and σHmax is the maximum horizontal principal stress.
This empirical formula adopts six indicators, such as A1, A2, A3, A4, γ, and σHmax .

Because some of its indicators are the same as those in this study, this empirical formula
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could be adopted to compare with the proposed model. The data in reference [21] were
used to evaluate the predictive performance, and the predicted results are shown in Table 6.
It can be seen that the overall prediction performance of the SSA-BPNN model was better
than that of the empirical formula.

Table 6. Predictive performance of SSA-BPNN model and empirical formula.

Mine A1/m A2/m A3/MPa A4 γ/(KN/m3) σHmax /MPa A5/m
MAPE of
Empirical
Formula

MAPE of
SSA-BPNN

Model

Maluping Phosphate Mine 660 4.5 34.37 4 27.2 34.49 1.65 9.34% 9.10%
Maluping Phosphate Mine 660 4.0 147.89 5 32.2 34.49 2.34 5.13% 6.27%

Sanshandao Gold Mine 600 3.8 71.26 3 27.1 32.45 1.10 7.27% 2.35%
Jinchuan Nickel Mine 1000 4.60 39.19 3 28.6 50.80 1.93 7.77% 4.68%

Although the proposed models could obtain satisfactory results, there were still
some limitations:

(1) The dataset of EDZ cases was relatively small. The accuracy of a regression model
heavily relies on the quantity and quality of the dataset. If the dataset is small, the
model may overfit, which will affect its generalization and reliability. Although this
study integrated most of the cases in the existing literature, the dataset was still rela-
tively small. Therefore, establishing a more comprehensive EDZ database would be
helpful to predict the thickness of an EDZ more efficiently using the proposed models.

(2) Only four indicators were selected for the thickness prediction of an EDZ. Due to the
complexity of EDZ formation, the thickness of an EDZ is affected by various factors.
Other indicators, such as the roadway shape, the presence of underground water, and
the excavation method, may also have influences on the prediction results. Therefore,
it is necessary to investigate the influences of more indicators in the future.

6. Conclusions

Determining the thickness of an EDZ is a crucial issue in the design of roadway sup-
port. This study proposed SSA-BPNN, SSA-ENN, and SSA-SVR models for the thickness
prediction of EDZ. A dataset including 209 cases from 34 mines was collected to establish
the predictive models. An SSA was used to optimize the parameters of the BPNN, ENN,
and SVR models. MAE, R2, NSC, MAPE, Theil’s U value, RMSE, and SSE were used to
evaluate model performance. According to these index values, the ranking result of each
model was determined to be: SSA-BPNN > SSA-ENN > SSA-SVR > BPNN > ENN > SVR.
Overall, the SSA improved the predictive performance of the traditional BPNN, ENN, and
SVR models. The proposed models obtained satisfactory results and were more suitable for
the thickness prediction of an EDZ. The SSA-BPNN model had the best comprehensive
performance. The MAE, R2, NSC, MAPE, Theil’s U value, RMSE, and SSE were 0.1246,
0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively. The prediction results
provided an important reference for the determination of EDZ thickness.

In the future, a more comprehensive and higher-quality EDZ database should be de-
veloped. In addition, it is necessary to analyze the influences of other indicators, especially
the excavation method, on the prediction results. Considering the complexity of an EDZ,
other swarm-intelligence or ML algorithms can be used for comparison.
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Abbreviations

Full Name Abbreviation

Excavation damaged zone EDZ
Sparrow search algorithm SSA
Backpropagation neural network BPNN
Elman neural network ENN
Support vector regression SVR
Mean absolute error MAE
Coefficient of determination R2
Nash–Sutcliffe efficiency coefficient NSC
Mean absolute percentage error MAPE
Root-mean-square error RMSE
Sum of squares error SSE
Particle swarm algorithm PSO
Support vector machine SVM
Machine learning ML

Appendix A

The complete database of the EDZ cases is shown in Table A1.

Table A1. Database of EDZ cases.

Samples A1/m A2/m A3/MPa A4 A5/m

1 800.00 4.00 48.00 3.00 1.62
2 800.00 3.60 67.00 4.00 2.14
3 650.00 6.00 16.80 5.00 3.45
4 220.00 3.40 21.30 4.00 1.31
5 876.40 3.40 13.80 3.00 1.41
6 321.00 3.00 13.30 1.00 2.41
7 420.00 3.20 9.10 4.00 1.40
8 800.00 3.60 70.60 3.00 1.84
9 340.00 3.40 18.80 1.00 1.52
10 315.00 2.80 11.20 1.00 1.77
11 740.00 3.30 32.42 3.00 2.00
12 1154.00 4.20 15.94 2.00 1.53
13 720.00 4.80 102.40 2.00 1.10
14 125.00 2.80 13.30 2.00 0.70
15 680.00 3.30 30.49 3.00 2.10
16 199.00 3.60 10.73 3.00 1.30
17 252.00 5.20 15.08 4.00 2.65
18 660.00 3.60 21.96 5.00 2.20
19 140.00 3.60 13.40 2.00 0.50
20 342.50 3.20 15.94 2.00 0.39
21 280.00 2.80 12.70 2.00 0.80
22 665.00 3.60 10.90 2.00 2.94
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Table A1. Cont.

Samples A1/m A2/m A3/MPa A4 A5/m

23 510.00 8.00 54.87 3.00 1.40
24 350.00 3.20 10.50 1.00 1.93
25 689.00 3.00 15.10 4.00 1.80
26 321.00 2.60 13.30 3.00 1.10
27 615.00 3.60 25.64 3.00 1.50
28 510.00 4.00 64.54 2.00 1.10
29 740.00 4.00 22.70 5.00 2.25
30 249.00 3.20 16.80 1.00 2.46
31 961.00 4.00 12.76 3.00 1.57
32 362.00 2.60 62.40 2.00 0.60
33 680.00 3.80 25.64 5.00 2.35
34 180.00 2.80 110.20 1.00 0.89
35 342.50 3.20 13.80 3.00 0.55
36 403.00 2.90 12.60 1.00 1.90
37 150.00 3.60 14.60 2.00 0.60
38 510.00 3.70 12.60 4.00 1.40
39 470.00 3.60 9.10 2.00 3.26
40 876.40 3.60 12.76 3.00 1.48
41 660.00 4.40 12.50 5.00 2.20
42 610.00 3.00 34.00 3.00 1.35
43 869.00 4.00 67.00 4.00 1.78
44 340.00 3.40 18.80 3.00 1.30
45 450.00 3.00 11.20 1.00 2.11
46 350.00 3.20 10.50 3.00 1.20
47 680.00 4.20 47.00 3.00 1.40
48 400.00 5.32 21.71 3.00 1.62
49 740.00 2.60 32.42 2.00 1.50
50 520.00 3.80 11.90 2.00 2.59
51 480.00 3.00 10.35 3.00 1.20
52 470.00 4.00 10.10 2.00 2.97
53 300.00 4.50 20.00 3.00 1.50
54 300.00 4.50 20.00 4.00 1.60
55 340.00 3.00 73.60 1.00 0.99
56 961.00 3.60 15.94 2.00 1.35
57 850.00 3.80 48.00 1.00 1.04
58 690.00 4.60 47.00 3.00 1.50
59 1154.00 4.20 13.80 3.00 1.69
60 178.00 2.60 23.80 3.00 1.20
61 710.00 6.00 16.80 4.00 3.20
62 125.00 2.80 13.30 1.00 1.91
63 630.00 4.80 52.45 2.00 1.20
64 310.00 3.20 28.00 1.00 1.33
65 800.00 5.10 28.22 4.00 2.43
66 218.00 3.89 38.11 3.00 0.70
67 837.00 3.80 70.00 1.00 0.67
68 525.00 3.20 15.80 4.00 1.60
69 220.00 3.40 7.80 4.00 1.50
70 97.00 2.60 11.20 3.00 1.20
71 97.00 2.60 11.20 1.00 1.70
72 125.00 2.80 13.30 3.00 1.30
73 700.00 3.60 16.80 5.00 2.55
74 450.00 3.40 9.10 2.00 2.36
75 685.00 3.60 25.64 3.00 1.78
76 1154.00 4.20 12.76 3.00 1.77
77 961.00 4.00 10.00 5.00 2.46
78 700.00 3.80 25.64 3.00 1.78
79 460.00 3.20 101.60 1.00 0.99
80 410.00 3.00 26.78 3.00 1.00
81 665.00 3.60 10.90 4.00 1.70
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82 400.00 5.32 15.30 3.00 1.90
83 876.40 3.60 10.00 5.00 2.34
84 700.00 3.60 48.00 3.00 1.40
85 125.00 3.40 13.30 3.00 1.00
86 705.00 3.80 16.80 5.00 2.85
87 316.00 8.00 78.43 4.00 1.90
88 392.00 2.80 14.50 2.00 0.80
89 340.00 3.20 32.20 2.00 0.70
90 357.00 3.20 10.50 3.00 1.10
91 665.00 4.40 10.90 4.00 1.70
92 293.00 3.50 11.90 1.00 1.93
93 329.67 2.40 44.72 3.00 0.70
94 362.00 2.60 58.00 2.00 0.80
95 869.00 3.80 70.00 3.00 1.21
96 480.00 3.00 15.00 3.00 1.00
97 620.00 3.60 21.96 5.00 2.12
98 410.00 3.20 13.30 1.00 2.32
99 244.00 3.40 11.20 3.00 1.00

100 690.00 4.80 9.20 4.00 2.10
101 420.00 3.20 9.10 1.00 2.85
102 293.00 3.50 11.90 3.00 1.10
103 660.00 3.60 21.96 4.00 2.20
104 675.00 3.80 25.64 4.00 2.10
105 296.00 3.40 22.40 3.00 1.20
106 296.00 3.40 22.40 1.00 1.67
107 236.00 3.00 14.30 1.00 2.00
108 410.00 3.60 13.30 4.00 1.40
109 313.00 10.00 38.00 3.00 1.76
110 340.00 3.20 32.20 1.00 1.31
111 252.00 5.20 17.23 4.00 2.41
112 450.00 3.60 13.30 2.00 2.58
113 520.00 3.80 11.90 4.00 1.70
114 296.00 3.40 22.40 4.00 1.40
115 720.00 4.80 86.30 2.00 1.20
116 268.00 3.40 11.96 4.00 1.40
117 490.00 3.70 12.50 4.00 1.50
118 321.00 3.00 13.30 3.00 1.10
119 450.00 3.60 13.30 4.00 1.60
120 410.00 3.20 13.30 4.00 1.40
121 720.00 10.00 102.40 2.00 1.20
122 192.70 2.40 35.83 4.00 0.85
123 400.00 5.32 10.61 3.00 2.10
124 868.00 3.80 60.00 1.00 0.98
125 872.00 4.00 48.00 2.00 1.49
126 610.00 3.60 22.40 4.00 1.75
127 420.00 3.20 9.10 4.00 1.70
128 510.00 8.00 54.87 3.00 1.50
129 345.00 3.00 65.00 2.00 0.70
130 200.00 3.00 15.12 4.00 0.90
131 510.00 4.00 64.54 2.00 1.20
132 342.50 3.40 12.76 3.00 0.62
133 470.00 3.60 9.10 5.00 2.10
134 1056.00 4.00 15.94 2.00 1.44
135 403.00 2.90 12.60 3.00 1.30
136 876.40 3.40 15.94 2.00 1.26
137 467.00 3.40 10.10 4.00 1.80
138 322.00 4.40 14.30 4.00 1.50
139 208.00 3.40 42.41 2.00 0.38
140 268.00 3.40 11.96 1.00 2.05
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141 249.00 3.40 16.80 3.00 1.00
142 178.00 2.60 23.80 1.00 1.12
143 520.00 4.20 25.43 3.00 1.30
144 690.00 4.80 32.00 2.00 1.70
145 1159.00 4.50 13.80 4.00 2.21
146 460.00 3.20 101.60 1.00 0.40
147 310.00 3.20 28.00 3.00 0.80
148 780.00 3.00 70.60 1.00 0.65
149 450.00 3.40 9.10 5.00 2.00
150 180.00 2.80 110.20 1.00 0.30
151 550.00 3.40 12.50 5.00 2.10
152 467.00 3.40 10.10 2.00 2.31
153 231.00 3.00 18.30 2.00 0.70
154 340.00 3.20 19.80 3.00 1.30
155 685.00 3.20 52.00 2.00 1.20
156 305.00 3.20 10.10 4.00 1.30
157 321.00 2.60 9.20 3.00 1.20
158 420.00 3.60 14.30 1.00 1.98
159 670.00 3.60 16.80 5.00 2.35
160 370.00 3.50 10.50 1.00 2.00
161 236.00 3.00 14.30 3.00 1.20
162 510.00 3.20 12.60 4.00 1.60
163 1154.00 4.50 10.00 5.00 2.73
164 630.00 4.80 48.97 3.00 1.42
165 520.00 4.20 63.54 3.00 1.10
166 373.00 2.50 14.60 2.00 0.90
167 305.00 3.20 10.10 1.00 1.98
168 384.00 3.50 8.50 3.00 1.20
169 500.00 3.00 38.50 4.00 1.77
170 640.00 3.60 25.64 4.00 1.98
171 420.00 3.60 14.30 3.00 1.10
172 480.00 2.80 10.00 3.00 1.10
173 343.00 3.20 32.20 2.00 0.70
174 325.07 2.40 17.15 5.00 2.20
175 213.00 10.00 48.00 2.00 1.40
176 480.00 3.80 64.50 3.00 1.00
177 1056.00 4.00 10.00 5.00 2.60
178 348.00 3.20 7.50 3.00 1.20
179 600.00 3.60 16.80 5.00 2.25
180 362.00 2.60 62.40 1.00 0.94
181 510.00 3.70 12.60 1.00 2.47
182 310.00 2.80 13.80 3.00 1.20
183 465.00 4.00 9.50 4.00 1.60
184 961.00 3.60 13.80 3.00 1.50
185 322.00 4.40 14.30 2.00 2.88
186 315.00 2.80 11.20 3.00 1.10
187 370.00 3.50 10.50 3.00 1.00
188 630.00 4.00 21.96 5.00 2.60
189 410.00 3.20 13.30 3.00 1.10
190 1056.00 4.00 12.76 3.00 1.67
191 246.00 3.20 38.20 3.00 0.80
192 435.00 2.80 15.20 3.00 1.20
193 690.00 4.20 32.00 2.00 1.58
194 276.00 2.60 15.90 2.00 0.80
195 428.00 3.60 16.50 3.00 1.20
196 680.00 2.60 22.70 5.00 2.20
197 420.00 3.70 9.10 4.00 1.40
198 400.00 5.32 66.31 4.00 1.32
199 740.00 3.80 38.00 4.00 2.00
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200 680.00 3.30 22.70 5.00 2.35
201 450.00 3.00 11.20 3.00 1.20
202 292.00 3.40 12.50 4.00 1.40
203 1056.00 4.00 13.80 3.00 1.60
204 676.00 4.00 35.00 3.00 1.60
205 680.00 2.60 36.14 3.00 1.90
206 470.00 4.00 10.10 5.00 2.20
207 264.00 3.20 11.20 3.00 1.10
208 249.00 3.20 16.80 3.00 1.00
209 340.00 3.00 73.60 2.00 0.80

References

1. Jing, H.; Meng, Q.; Zhu, J.; Meng, B.; Wei, L. Advances in theories and technologies for stability control of the loose zone of
surrounding rock in deep roadways. J. Min. Safety Eng. 2020, 37, 429–442.

2. Dong, F.; Guo, Z.; Lan, B. The theory of supporting broken zone in surrounding rock. J. Univ. Sci. Technol. 1991, 2, 64–71.
3. Chen, J.; Hu, H.; Zhang, Y. Dynamic and static analysis of mechanism of loosen zone in surrounding rock of tunnels. J. Geotech.

Eng. 2011, 33, 1964–1968.
4. Dong, F.; Song, H.; Guo, Z. Tunnel wall rock loose circle support theories. J. China Coal Soc. 1994, 19, 21–23.
5. Zhao, G.; Wu, H. Support vector machine model of loose ring thickness prediction. J. Guangxi Univ. 2013, 38, 444–450.
6. Wang, S.F.; Sun, L.C.; Huang, L.Q.; Li, X.B.; Shi, Y.; Yao, J.R.; Du, S.L. Non-explosive mining and waste utilization for achieving

green mining in underground hard rock mine in china. Trans. Nonferrous Met. Soc. China 2019, 29, 1914–1928. [CrossRef]
7. Jing, H.; Li, Y.; Liang, J. The mechanism and practice of borehole camera test surrounding rock loose zone. J. Univ. Sci. Technol.

2009, 38, 645–649.
8. Song, H.; Wang, C.; Jia, Y. The principle and practice of using ground penetrating radar to test the loose zone of surrounding rock.

J. Univ. Sci. Technol. 2002, 4, 43–46.
9. Shen, F.; Zhong, W.; Liu, G.; Guo, W. Test and analysis on loose circle of surrounding rock to large distortion region of tong sheng

tunnel. J. Eng. Geophys. 2011, 8, 366–369.
10. Shin, S.W.; Martin, C.D.; Park, E.S.; Christianson, R. Methodology for estimation of excavation damaged zone around tunnels in

hard rock. In Proceedings of the 1st Canada/United States Rock Mechanics Symposium, Vancouver, BC, Canada, 27–31 May
2007.

11. Kruschwitz, S.; Yaramanci, U. Detection and characterization of the disturbed rock zone in claystone with the complex resistivity
method. J. Appl. Geophys. 2004, 57, 63–79. [CrossRef]

12. Zou, H.; Xiao, M. Research on evaluation method of underground cavern excavation loose zone. J. Rock Mech. Geotech. 2010, 29,
513–519.

13. Ma, J.; Zhao, G.; Dong, L.; Chen, G.; Zhang, C. A comparison of mine seismic discriminators based on features of source
parameters to waveform characteristics. Shock Vib. 2015, 2015, 919143. [CrossRef]

14. Liu, G.; Song, H. Numerical simulation of influencing factors of surrounding rock loose zone. Min. Metall. Eng. 2003, 23, 1–3.
15. Sun, X.; Chang, Q.; Shi, X.; Li, X. Thickness measurement and distribution law of surrounding rock loose zone in large section

semicircular arch coal road. Coal Sci. Technol. 2016, 44, 1–6.
16. Perras, M.A.; Diederichs, M.S. Predicting excavation damage zone depths in brittle rocks. J. Rock Mech. Geotech. 2016, 8, 60–74.

[CrossRef]
17. Wan, C.; Li, X.; Ma, C. Optimization of support technology for deep soft rock roadway based on field measurement of excavation

damage zone. Min. Metall. Eng. 2012, 32, 12–16.
18. Yan, I. Derivation of excavation damaged zone’s thickness and plastic zone’s scope of tunnel. Jpn. Railw. Tech. Res. Rep. 1974, 900,

1–38.
19. Wang, R.; Liang, Y.; Qin, W. Measurement and research on broken zone of surrounding rock in Cha Zhen tunnel. In Proceedings

of the 4th International Conference on Civil Engineering, Architecture and Building Materials (CEABM), Haikou, China, 24–25
May 2014; pp. 1321–1326.

20. Chen, Q.; Huang, X.; Xie, X. Derivation and improvement of the radius of the loose circle of surrounding rock based on
Hoek-Brown criterion. J. Appl. Mech. 2015, 32, 304–310.

21. Zhao, G.Y.; Liang, W.Z.; Wang, S.F.; Hong, C.S. Prediction model for extent of excavation damaged zone around roadway based
on dimensional analysis. Rock Soil Mech. 2016, 37, 273–278.

22. Shemyakin, I.; Fisenko, G.L.; Kurlenya, M.V. Zonal disintegration of rocks around underground workings. III. Theoretical notions.
Sov. Min. Sci. 1987, 23, 1–6. [CrossRef]

23. Myasnikov, V.P.; Guzev, M.A. Thermomechanical model of elastic-plastic materials with defect structures. Theor. Appl. Fract. Mec.
2000, 33, 165–171. [CrossRef]

472



Mathematics 2022, 10, 1351

24. Zhou, X.P.; Song, H.F.; Qian, Q.H. Zonal disintegration of deep crack-weakened rock masses: A non-Euclidean model. Theor.
Appl. Fract. Mec. 2011, 55, 227–236. [CrossRef]

25. Bao, Y.; Jiang, B.; Ni, T. Theory and numerical simulation of deep rock mass based on a non-euclidean model. Sci. Program.-Neth.
2022, 2022, 4492406. [CrossRef]

26. Guzev, M.A.; Odintsev, V.N.; Makarov, V.V. Principals of geomechanics of highly stressed rock and rock massifs. Tunn. Undergr.
Sp. Tech. 2018, 81, 506–511. [CrossRef]

27. Liang, W.; Sari, A.; Zhao, G.; McKinnon, S.D.; Wu, H. Short-term rockburst risk prediction using ensemble learning methods. Nat.
Hazards 2020, 104, 1923–1946. [CrossRef]

28. Liang, W.; Sari, A.; Zhao, G.; McKinnon, S.D.; Wu, H. Probability estimates of short-term rock burst risk with ensemble classifiers.
Rock Mech. Rock Eng. 2021, 54, 1799–1814. [CrossRef]

29. Asadi, A.; Abbasi, A.; Asadi, E. Prediction of excavation damaged zone in underground blasts using artificial neural networks. In
Proceedings of the International European Rock Mechanics Symposium (EUROCK), Saint Petersburg, Russia, 22–26 May 2018;
pp. 461–464.

30. Zhou, J.; Li, X.B. Evaluating the thickness of broken rock zone for deep roadways using nonlinear SVMs and multiple linear
regression model. In Proceedings of the ISMSSE 2011, 1st International Symposium on Mine Safety Science and Engineering
(ISMSSE), Beijing, China, 26–29 October 2011; pp. 972–981.

31. Hu, J.; Wang, K.; Xia, Z. Layered fish school optimization support vector machine to predict the thickness of the loose zone of
roadway surrounding rock. Metal. Mine 2014, 11, 31–34.

32. Ma, W. Research on prediction of loose zone of roadway surrounding rock based on parameter optimization LSSVM. In
Proceedings of the 9th National Symposium on Numerical Analysis and Analytical Methods of Geotechnical Mechanics, Wuhan,
China, 28 October 2007; pp. 470–474.

33. Yu, Z.; Shi, X.; Zhou, J.; Huang, R.; Gou, Y. Advanced prediction of roadway broken rock zone based on a novel hybrid soft
computing model using gaussian process and particle swarm optimization. Appl. Sci. 2020, 10, 6031. [CrossRef]

34. Liu, Y.; Ye, Y.; Wang, Q.; Liu, X.; Wang, W. Predicting the loose zone of roadway surrounding rock using wavelet relevance vector
machine. Appl. Sci. 2019, 9, 6024. [CrossRef]

35. Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms.
Mathematics 2020, 8, 765. [CrossRef]

36. Cardellicchio, A.; Ruggieri, S.; Leggieri, V.; Uva, G. View VULMA: Data set for training a machine-learning tool for a fast
vulnerability analysis of existing buildings. Data 2022, 7, 4. [CrossRef]

37. Harirchian, E.; Jadhav, K.; Kumari, V.; Lahmer, T. ML-EHSAPP: A prototype for machine learning-based earthquake hazard safety
assessment of structures by using a smartphone app. Eur. J. Environ. Civ. Eng. 2021, 1–21. [CrossRef]

38. Mangalathu, S.; Sun, H.; Nweke, C.C.; Yi, Z.X.; Burton, H.V. Classifying earthquake damage to buildings using machine learning.
Earthq. Spectra 2020, 36, 183–208. [CrossRef]

39. Ruggieri, S.; Cardellicchio, A.; Leggieri, V.; Uva, G. Machine-learning based vulnerability analysis of existing buildings. Automat.
Constr. 2021, 132, 103936. [CrossRef]

40. Dong, L.; Shu, W.; Sun, D.; Li, X.; Zhang, L. Pre-alarm system based on real-time monitoring and numerical simulation using
internet of things and cloud computing for tailings dam in mines. IEEE Access 2017, 5, 21080–21089. [CrossRef]

41. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,
22–34. [CrossRef]

42. Tang, C. Research on Forecast of Tourist Volume Based on Web Search Index and SSA-BP Model. Master’s Thesis, Jiangxi
University of Finance and Economics, Nanchang, China, 2021.

43. Hoang, N.; Choi, Y.; Xuan-Nam, B.; Trung, N.-T. Predicting blast-induced ground vibration in open-pit mines using vibration
sensors and support vector regression-based optimization algorithms. Sensors 2020, 20, 132.

44. Cleophas, T.J.; Cleophas, T.F. Artificial intelligence for diagnostic purposes: Principles, procedures and limitations. Clin. Chem.
Lab. Med. 2010, 48, 159–165. [CrossRef]

45. Salah, L.B.; Fourati, F. Systems modeling using deep ELMAN neural network. Eng. Technol. Appl. Sci. 2019, 9, 3881–3886.
[CrossRef]

46. Jing, Y.; Wang, S.; Lu, J. Thickness prediction of loose zone in rock excavation and criterion of non-explosive mechanized mining.
Gold Sci. Technol. 2021, 29, 525–534.

47. Xu, G.; Jing, H. Research on intelligent prediction of loose zone of surrounding rock in coal mine roadway. J. Univ. Sci. Technol.
2005, 2, 23–26.

48. Pang, J.; Guo, L. Comprehensive classification of coal roadway surrounding rock stability and reasonable selection of bolt support
forms. J. Univ. Sci. Technol. 1998, 18, 9–15.

49. Zhu, Z.; Zhang, H.; Chen, Y. Prediction model of loosening zones around roadway based on MPSO-SVM. Comput. Eng. Appl.
2014, 50, 1–5.

50. Jing, H. Study on the Intelligence Prediction of Thickness of Broken Rock Zone for Coal Mine Roadways and Its Application.
Master’s Thesis, Tongji University, Shanghai, China, 2004.

51. Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. Int. J. Hydrogen
Energ. 2021, 46, 9541–9552. [CrossRef]

473



Mathematics 2022, 10, 1351

52. Morgan, N.B.; Baco, A.R. Recent fishing footprint of the high-seas bottom trawl fisheries on the northwestern hawaiian ridge and
emperor seamount chain: A finer-scale approach to a large-scale issue. Ecol. Indic. 2021, 121, 107051. [CrossRef]

53. Yuan, J.; Zhao, Z.; Liu, Y.; He, B.; Wang, L.; Xie, B.; Gao, Y. DMPPT Control of photovoltaic microgrid based on improved sparrow
search algorithm. IEEE Access 2021, 9, 16623–16629. [CrossRef]

54. Tuerxun, W.; Chang, X.; Hongyu, G.; Zhijie, J.; Huajian, Z. Fault diagnosis of wind turbines based on a support vector machine
optimized by the sparrow search algorithm. IEEE Access 2021, 9, 69307–69315. [CrossRef]

55. Johnson, C.A.; Giraldeau, L.A.; Grant, J.W.A. The effect of handling time on interference among house sparrows foraging at
different seed densities. Behaviour 2001, 138, 597–614. [CrossRef]

56. Liker, A.; Barta, Z. The effects of dominance on social foraging tactic use in house sparrows. Behaviour 2002, 139, 1061–1076.
[CrossRef]

57. Bautista Sopelana, L.; Alonso, J.C.; Alonso, J. Foraging site displacement in common crane flocks. Anim. Behav. 1998, 56, 1237–1243.
[CrossRef]

58. Lendvai, A.Z.; Barta, Z.; Liker, A.; Bokony, V. The effect of energy reserves on social foraging: Hungry sparrows scrounge more.
Proc. Biol. Sci. 2004, 271, 2467–2472. [CrossRef] [PubMed]

59. Mohamad, E.T.; Jahed Armaghani, D.; Momeni, E.; Alavi Nezhad Khalil Abad, S.V. Prediction of the unconfined compressive
strength of soft rocks: A PSO-based ANN approach. Bull. Eng. Geol. Environ. 2014, 74, 745–757. [CrossRef]

60. Hasanipanah, M.; Noorian-Bidgoli, M.; Jahed Armaghani, D.; Khamesi, H. Feasibility of PSO-ANN model for predicting surface
settlement caused by tunneling. Eng. Comput.-Ger. 2016, 32, 705–715. [CrossRef]

61. Ersoy, O.K.; Deng, S.W. Parallel, self-organizing, hierarchical neural networks with continuous inputs and outputs. IEEE Trans.
Neural. Netwo. 1995, 6, 1037–1044. [CrossRef]

62. Gudise, V.G.; Venayagamoorthy, G.K. Comparison of particle swarm optimization and backpropagation as training algorithms
for neural networks. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS 03), Indianapolis, IN, USA, 24–26 April
2003; pp. 110–117.

63. Burks, T.F.; Shearer, S.A.; Gates, R.S.; Donohue, K.D. Backpropagation neural network design and evaluation for classifying weed
species using color image texture. Trans. Asabe 2000, 43, 1029–1037. [CrossRef]

64. Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural
network. Appl. Soft Comput. 2014, 23, 452–459. [CrossRef]

65. Elman, J. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
66. Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011,

399, 132–140. [CrossRef]
67. Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality

prediction: A case study in Aji-Chay River, Iran. Stoch. Env. Res. Risk Access. 2016, 30, 1797–1819. [CrossRef]
68. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models’ part I—A discussion of principles. J. Hydrol. 1970, 10,

282–290. [CrossRef]
69. De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing

2016, 192, 38–48. [CrossRef]
70. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the

literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]
71. Roslan, N.; Yahya, Z.R. Reconstruction of font with cubic bezier using differential evolution. Sains Malays. 2015, 44, 1203–1208.

[CrossRef]

474



Citation: Ma, T.; Wu, L.; Zhu, S.; Zhu,

H. Multiclassification Prediction of

Clay Sensitivity Using Extreme

Gradient Boosting Based on

Imbalanced Dataset. Appl. Sci. 2022,

12, 1143. https://doi.org/10.3390/

app12031143

Academic Editor: Daniel Dias

Received: 4 December 2021

Accepted: 19 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multiclassification Prediction of Clay Sensitivity Using Extreme
Gradient Boosting Based on Imbalanced Dataset

Tao Ma 1, Lizhou Wu 2,*, Shuairun Zhu 1 and Hongzhou Zhu 2

1 College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China;
opmatao@163.com (T.M.); zhushuairun@163.com (S.Z.)

2 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University,
Chongqing 400074, China; zhuhongzhouchina@cqjtu.edu.cn

* Correspondence: lzwu@cqjtu.edu.cn

Abstract: Predicting clay sensitivity is important to geotechnical engineering design related to
clay. Classification charts and field tests have been used to predict clay sensitivity. However, the
imbalanced distribution of clay sensitivity is often neglected, and the predictive performance could
be more accurate. The purpose of this study was to investigate the performance that extreme gradient
boosting (XGboost) method had in predicting multiclass of clay sensitivity, and the ability that
synthetic minority over-sampling technique (SMOTE) had in addressing imbalanced categories of
clay sensitivity. Six clay parameters were used as the input parameters of XGBoost, and SMOTE
was used to deal with imbalanced classes. Then, the dataset was divided using the cross-validation
(CV) method. Finally, XGBoost, artificial neural network (ANN), and Naive Bayes (NB) were used
to classify clay sensitivity. The F1 score, receiver operating characteristic (ROC), and area under the
ROC curve (AUC) were considered as the performance indicators. The results revealed that XGBoost
showed the best performance in the multiclassification prediction of clay sensitivity. The F1 score and
mean AUC of XGBoost were 0.72 and 0.89, respectively. SMOTE was useful in addressing imbalanced
issues, and XGBoost was an effective and reliable method of classifying clay sensitivity.

Keywords: clay sensitivity; imbalanced categories; SMOTE; XGBoost

1. Introduction

Soft clays are widely distributed near lakes, rivers, and coastal areas in countries
such as Sweden, Norway, Canada, Thailand, and China [1–3]. For grain size, clay is a
fine-grained mineral (<2 μm in size), which is the main component of soil [4]. Clay minerals
belong to the family of phyllosilicates and provide information on formation conditions
and diagenesis [4]. Additionally, clay can be used as an additive for green processing tech-
nology and sustainable development, such as medical materials and treatment, agriculture,
building materials, adsorbents of organic pollutants in soil, water, and air, etc. [5–10]. For
engineers, clays are characterized by high compressibility, low shear strength, and high
sensitivity. The sensitivity is defined as the ratio of the unconfined compressive strength of
the undisturbed samples to the strength of the remolded samples [11–13].

Nowadays, in situ and laboratory testing and classification charts are often used to
predict clay sensitivity. Cone Penetration Tests (CPTu) and Field Vane Tests (FVT) are
commonly carried out to obtain the shear strength and classify clay sensitivity [14–18].
Yafrate et al. [19] employed full-flow penetrometers to evaluate the remolded soil strength
and clay sensitivity. Abbaszadeh Shahri et al. [20] proposed a Unified Soil Classification
System (USCS) to assess soils classification and used high-resolution files to detect poten-
tial sensitive clays. Different soil classification charts are widely used to determine clay
sensitivity or types [13,21]. For example, Robertson [22] proposed a few updated charts
to predict soil type based on CPTu data. Gylland et al. [23] used pore pressure ratio and
modified cone resistance to build a set of diagrams identifying sensitive and quick clays.

Appl. Sci. 2022, 12, 1143. https://doi.org/10.3390/app12031143 https://www.mdpi.com/journal/applsci475



Appl. Sci. 2022, 12, 1143

However, in situ tests are costly and time consuming [14], and the construction
conditions are complicated. It is difficult to accurately measure the sensitivity of highly
sensitive and quick clays. It is a great challenge if the site clays are not textbook soils in
classification charts, which makes clays sensitivity difficult to determine [13]. Therefore,
advanced methods are required to resolve this issue.

Artificial Intelligence (AI) approaches, such as machine learning (ML) and deep learn-
ing, are being rapidly developed. Machine learning methods are data-driven tools that
learn from the relationships of existing data [24]. Hence, ML does not assume a statistical
model [25–27]. Additionally, these techniques have been widely applied in engineer-
ing [28–33]. For example, Zhang et al. [34] used XGBoost and Bayesian optimization to
predict the shear strength of soft clays. Machine learning methods outperform traditional
methods [27,28]. Moreover, XGBoost is an excellent ensemble method, better than conven-
tional ML, and shows great potential in geotechnical engineering [34].

The high sensitivity of clays is one of the main properties in soft clay engineering, and
considerably influences the safety of such structures [35]. For example, the shear strength
decreases due to the excavation disturbance of soft clays, which is related to the sensi-
tivity [3]. Landslides are also related to the sensitivity parameter of geomaterials [36,37].
Therefore, clay sensitivity must be predicted to ensure the safety of geotechnical engineer-
ing. There are a few different methods for clay sensitivity classification [11,38,39], as shown
in Figure 1. The Canadian Foundation Engineering Manual [38] is used to simplify the
classification issue.

Figure 1. Different methods for clay sensitivity classification.

Few studies have focused on sensitivity classification for soft clay using machine
learning methods. Shahri et al. [37] used an optimized ANN to predict clay sensitivity. It
is the first time that machine learning methods have been used to predict clay sensitivity.
However, it would be more convenient and direct if the result were a category value
because clay sensitivity is a category value in Figure 1. Godoy et al. [13] used different
machine learning methods to identify quick and highly sensitive clays, and they found that
classification accuracy was improved significantly despite limited training data. However,
these approaches have a few shortcomings. First, there are more than two sensitivity
categories in different classification charts (Figure 1), but few studies have investigated
the multiclassification prediction of sensitivity. One previous study [13] only considered
two different sensitivity categories, including quick and highly sensitive clays. Therefore,
the multiclassification of clay sensitivity should be further investigated. Second, the
distribution of different sensitivity categories influencing machine learning methods is
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imbalanced, which reduces the prediction accuracy [40]. Therefore, SMOTE has been used
to address the imbalanced classes of the dataset and improve the accuracy of the results [40].
Furthermore, SMOTE has been successfully applied in geotechnical engineering [41].

The objective of this study was to investigate the potential of XGBoost and SMOTE
with regard to predicting the categories of clay sensitivity based on imbalanced datasets.
First, the considered dataset, XGBoost, and SMOTE are introduced. Next, SMOTE is used
to address the imbalanced categories, and the input parameters include the vertical pre-
consolidation pressure (VPP), liquid limit (LL), plastic limit (PL), effective vertical pressure
(EVP), depth (Dep), and moisture content (W). Then, the F1 score and the area under
the receiver operating characteristic (ROC) curve (AUC) are considered as performance
indicators to evaluate the proposed model. Finally, the predictive accuracy of XGBoost is
compared with that of other methods.

2. Materials and Methods

2.1. XGBoost

The XGBoost method provides an advanced boosted tree model [42] and is a common
machine learning method with high accuracy. This method implements a new regularized
learning objective, which is simpler than the regularized greedy forest model. The predicted
function of XGBoost is defined as follows:

ŷ =
K

∑
k=1

fk(xi), fk ∈ Γ (1)

where ŷi is the predicted output value of the ith instance; K is the number of regression
trees; fk is the tree structure; xi is the feature vector of the ith sample; and Γ is the space of
regression trees.

To overcome overfitting problems, a penalty function is used to smooth the learning
weights as follows:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (2)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (3)

where Obj is the regularized objective function;
n
∑

i=1
l(yi, ŷi) is the loss function, which

measures the model accuracy; Ω( fk) is a penalty function handling overfitting; yi is the real
value of the ith sample; γ is the complexity cost of introducing additional leaves; T is the
number of leaves; λ is a regular item parameter; and w2

j is the weight of the jth leaf node.
The additive method is used to train the model as follows [42]:

Obj(t) =
n

∑
i=1

l
(

yi, ŷ(t−1) + ft(xi)
)
+ Ω( ft) (4)

where ŷi
(t) is the prediction of the ith sample at the ith iteration, and ft is applied to

minimize the objective. To rapidly optimize the loss function of the first term in Equation (4),
a second-order Taylor expansion can be written as

Obj(t) =
[

l
(

yi − ŷi
(t−1)

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (5)

where gi = ∂ŷ(t − 1)l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi − ŷ(k−1)

)
are the first and second

order gradient statistics of the loss function, respectively. The constant term is removed to
obtain the objective function of the ith step as follows:
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Obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (6)

The parameters in Equation (6) can be continuously updated until the conditions are
satisfied. More details on XGBoost can be found in ref. [42]. XGBoost has been used to
predict shear strength of clay, and the results demonstrate that XGBoost is a promising
tool for predicting geotechnical parameters [34]. The potential of XGBoost for predicting
multicategory of clay sensitivity will be investigated.

2.2. SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE) was first proposed by
Chawla et al. [40] and is used to solve the classification problems of imbalanced datasets.
A dataset is imbalanced if the distribution of categories is unequal, which results in low
classification accuracy. A few methods have been proposed to address the imbalance issue,
such as re-sampling the original dataset, over-sampling the minority categories, and under-
sampling the majority class [43]. However, these methods do not considerably enhance
the accuracy of minority class recognition [20]. The SMOTE creates synthetic examples
instead of performing typical over-sampling. First, for each sample xl in the minority class,
the Euclidean Distance between xl and other samples of the minority class is calculated,
and the k neighbors of xl are obtained. Then, a random sample xm from the k neighbors is
selected. Finally, the new sample xn can be expressed as follows:

xn = xl + λ(xl − xm) (7)

where λ is a random number in the range of 0–1.
SMOTE has been utilized to solve imbalanced rock mass classification in tunneling en-

gineering [41]. The categories of clay sensitivity comprise more than two classes (Figure 1),
which may cause imbalanced problems. Therefore, SMOTE could be used to address
imbalanced classes.

3. Preprocessing Data

3.1. Description of Data

The clay dataset was obtained from F-CLAY/7/216 and S-CLAY/7/168 [14,44]. F-
CLAY/7/216 consists of 216 samples and was compiled through field vane tests (FVT)
in Finland; S-CLAY/7/168 was compiled through 168 FVT tests in Sweden and Norway.
Therefore, there are 384 samples in total. Each sample contains six attributes, namely, LL,
PL, W, EVS, Dep, and VPP. The sensitivity (St) is the predicted value. The distribution of
the six attributes is shown in Figure 2, and the statistical information of the input attributes
is listed in Table 1. Python 3.6 and the scikit-learn 0.23.2 library [45] were used to prepare
the data and train the model.

Table 1. Statistical information of clay parameters.

Depth
(m)

LL (%) PL (%) W (%)
EVS
(kPa)

VPP
(kPa)

St

mean 6.97 68.37 28.49 76.47 48.72 79.82 16.27
std 3.95 23.86 7.97 23.32 27.33 48.54 13.26
min 0.50 22.00 2.73 17.27 6.86 15.2 2.00
50% 6.00 68.72 27.02 75.00 43.08 64.88 11.00
max 24.00 201.81 73.92 180.11 212.87 315.64 64.00

478



Appl. Sci. 2022, 12, 1143

Figure 2. Distribution of input parameters.

3.2. Data Preparation and Performance
3.2.1. Analysis of Clay Dataset

This study referred to the Canadian Foundation Engineering Manual [38] for the
classification of clay sensitivity. The category distribution is shown in Figure 3, where it
can be seen that the proportion of low sensitivity is close to the proportion of medium
sensitivity. However, the proportion of high sensitivity is particularly smaller compared
with other categories and only accounts for 9.54%. Hence, it is difficult to classify the
minority class [41]. To deal with the imbalanced classes, SMOTE is used to over-sample the
high sensitivity category.

 

Figure 3. Distribution of sensitivity categories.

A heat map is used to show the correlation coefficient among the attributes [34]. The
correlation coefficient is calculated using the Pearson coefficient [24]. The heat map of clay
attributes is shown in Figure 4, where there is no strong linear relationship between the clay
attributes and the sensitivity. However, machine learning methods can effectively solve the
above-mentioned nonlinear issues [26].

479



Appl. Sci. 2022, 12, 1143

Figure 4. Heat map of clay parameters.

3.2.2. Cross-Validation

The processed data used in machine learning are commonly separated into training
and validation datasets [46]. The machine learning method is trained on the training dataset,
and then the accuracy is tested on the test dataset. However, small datasets may potentially
cause bias. Therefore, k-fold cross-validation (CV) is used to divide the datasets [47,48].
CV does not only increase the training times but also improves the robustness of the
model. The CV method divides the datasets into k mutually exclusive subsets, that is,
D = D1 ∪ D2 ∪ · · ·Dk, Di ∩ Dj = ∅(i �= j). Next, the set of k − 1 subsets is used as the
training set, the remaining subset is acted as the validation dataset, and training and
validation can be conducted for k times. Then, k results are obtained, and the validation
results are the mean value of the k results. Figure 5 shows the 5-fold CV.

Figure 5. Schematic diagram of 5-fold CV.

3.3. Performances

The confusion matrix, F1 score, ROC, and AUC are considered as the evaluation indicators.

3.3.1. Confusion Matrix

The confusion matrix consists of the True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) [49], as shown in Figure 6. In the confusion matrix,
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TP and TN are a correct classification, while FP and FN are an erroneous one. A value
closer to 1 indicates higher accuracy.

Figure 6. Confusion matrix.

3.3.2. F1 Score

The F1 score is the harmonic mean of Precision (P) and Recall (R). Precision and Recall
are shown in Figure 7. Precision, Recall, and F1 score are defined as follows [50]:

Fscore =
2 × P × R

P + R
(8)

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

Figure 7. Precision and recall (adapted from [50]).
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3.3.3. AUC and ROC

The ROC graph helps visualize the classification algorithms [51]. The y-axis of the
ROC graphs is the true positive rate (TPR), while the x-axis is the false positive rate (FPR)
(Figure 8). The TPR and FPR are defined as follows:

TPR =
TP

TP + FN
(11)

FPR =
FP

TN + FP
(12)

Figure 8. AUC and ROC diagram.

Because the ROC curve is two-dimensional, a single scalar value, such as AUC, can
evaluate the algorithms [51,52]. The AUC value is in the range of 0–1. An AUC value closer
to 1 indicates a better fit for the model.

3.3.4. Evaluation Methods

In this study, the XGBoost method was compared with ANN and NB. To further
investigate SMOTE, the data without SMOTE were also used as the training data of XG-
Boost, which is referred to as XGBoost_NoSmote. The dataset is divided into 260 training–
validation sets (70%) and 112 test sets (30%). Gridsearch is a custom method used to
optimize parameters [45]. To ensure that models could achieve their own best performance,
CV and gridsearch are used to optimize the hyperparameters on a training–validation set,
and the final performance of a given model is evaluated on a test set. These methods are
different from previous studies [13,37] that did not incorporate parameter optimization.
The flow chart of the method is shown in Figure 9. Table 2 lists the optimal parameters
of models.
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Figure 9. Flow chart of proposed method.

Table 2. Optimal parameters of models.

Model Parameters Value

XGBoost n_estimators 360
learning_rate 0.002
max_depth 6

min_child_weight 1
gamma 0.2

colsample_bytree 0.5
subsample 0.8

ANN learning_rate_init 0.0001
activation tanh

hidden_layer_sizes (100, 100, 100)
max_iter 260

NB priors 3
var_smoothing 10−9

XGBoost_NoSmote n_estimators 360
learning_rate 0.005
max_depth 5

min_child_weight 1
gamma 0.3

colsample_bytree 0.7
subsample 0.8

4. Results

4.1. Confusion Matrix and F1 Score Results

Figure 10 shows the confusion matrix of different machine learning methods, and
labels 0–2 represent high sensitivity, low sensitivity, and medium sensitivity, respectively.
When the number in the matrix is closer to 1, the model fits better. The XGBoost matrix
is larger than that of the other models, which indicates that XGBoost outperforms ANN
and NB. Furthermore, the matrix value of XGBoost without SMOTE is smaller than that of
XGBoost with SMOTE.
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(a) (b) 

  
(c) (d) 

Figure 10. Confusion matrix of different machine learning methods: (a) ANN; (b) NB; (c) XGBoost;
(d) XGBoost_NoSmote.

Figure 11 presents the F1 score of different machine learning methods. An F1 score
closer to 1 indicates that the model has better performance. Figure 11 shows that XGBoost
achieved the best F1 score, Recall, and Precision (0.72, 0.72, and 0.73, respectively), followed
by NB (0.68, 0.69, and 0.70, respectively), and XGBoost_NoSmote (0.68, 0.66, and 0.71,
respectively). ANN had the worst performance in terms of the F1 score, Recall, and
Precision (0.61, 0.62, and 0.63, respectively). Using SMOTE, the performance of XGBoost
on the F1 score, Recall, and Precision improved by 6.9%, 9.1%, and 2.8%, respectively.

 
Figure 11. F1 score of different machine learning methods.

4.2. ROC and AUC Results

Figure 12 shows ROC and AUC of different machine learning methods. The XGBoost
method achieved the best AUC score for all classes, but it achieved the worst AUC score
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on the data without SMOTE. All indices of the models are listed in Table 3. The XGBoost
method achieved the highest F1 score, followed by NB, ANN, and XGBoost_NoSmote. For
all AUC evaluations, XGBoost achieved the best effect. Compared with XGBoost_NoSmote,
the AUC score of XGBoost improved by 5.43%, 14.47%, and 10.81%, respectively. For
medium and low sensitivity classification, XGBoost performed the best, but the perfor-
mance of ANN and NB was slightly inferior compared with XGBoost. Finally, the perfor-
mance of XGBoost_NoSmote was poor.

  

(a) (b) 

  

(c) (d) 

Figure 12. ROC and AUC of different machine learning methods: (a) ANN; (b) NB; (c) XGBoost;
(d) XGBoost_NoSmote.

Table 3. Evaluation measures of different models.

Evaluation
Measures

Models

XGBoost ANN NB XGBoost_NoSmote

Precision 0.73 0.63 0.70 0.71
Recall 0.72 0.62 0.69 0.66

F1 score 0.72 0.61 0.68 0.68
AUC of high sensitivity 0.97 0.95 0.93 0.92

AUC of medium sensitivity 0.82 0.72 0.72 0.74
AUC of low sensitivity 0.87 0.78 0.84 0.76

Mean AUC of classification 0.89 0.82 0.83 0.81

4.3. Compared with Previous Studies

The results of Sections 4.1 and 4.2 indicate that XGBoost performs best on all evaluation
indices, and the performance is identical to refs. [33,53], which proves that XGBoost is a
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powerful tool to classify the properties of engineering materials. This study also produces
some valid and new results that are different from other studies. The results in this study
are category values and are consistent with the clay sensitivity standards [37], as shown in
Figure 1. Second, the results of XGBoost are better than those of XGBoost_NoSmote, which
indicates that SMOTE is good at solving imbalanced problems, and it is the first time that
SMTOE has been adopted to address imbalanced clay sensitivity problems. Moreover, the
results of Godoy et al. [13] are a binary classification, i.e., the clays are divided into quick
and highly sensitive groups. In this study, multiclass of clay sensitivity is predicted using
XGBoost, and the results are more satisfactory.

5. Discussion

Clay sensitivity is not only important to the safety of geotechnical engineering, but
it also influences the feasibility of such projects. However, it is difficult to classify clay
sensitivity, which is greatly influenced by disturbance. There are more than two sensitivity
categories under different classification charts. Moreover, the distribution of clay sensitivity
categories is often imbalanced. Therefore, new methods are needed. However, XGBoost is
rarely used for multiclassification problems, such as predicting the sensitivity categories of
soft clays. Additionally, it is necessary to deal with imbalanced problems.

In this study, NB, ANN, and XGBoost were used to predict the multiple classes of clay
sensitivity. SMOTE was applied to address the imbalanced classes of data. Additionally, a
set of performance indices were developed to evaluate accuracy.

The evaluation indices of XGBoost incorporating SMOTE were better compared with
those of other machine learning methods, based on the classification results. Compared
with XGBoost_NoSmote, the mean AUC of classification for XGBoost improved by 9.9%,
which indicates that SMOTE improves the model performance of imbalanced datasets.
The best classification performance was achieved for high sensitivity, followed by low
sensitivity and medium sensitivity. This study did not only investigate multiclassification
with regard to clay sensitivity, but it also employed SMOTE to handle imbalanced issues.
The results prove that the combination of XGBoost and SMOTE is a simple and quick way
to classify imbalanced clay datasets. Furthermore, more accurate indices for evaluating the
model performance, such as the AUC and F1 score, were applied to assess the models.

However, this study has a few limitations. For the AUC of medium sensitivity (Table 3),
all models performed slightly worse compared with other categories. The possible reason
is that the medium sensitivity is between the low sensitivity and high sensitivity cate-
gories, which results in a particularly unclear boundary and affects the model performance.
Other studies have also proven that the overlap between different classes can influence
classification performance [54,55]. Therefore, new methods should be developed to solve
these issues.

6. Conclusions

In this study, NB, ANN, and XGBoost were employed to predict the multiple classes
of clay sensitivity and evaluate their performance, respectively. SMOTE was first applied to
address the imbalanced classes of clay sensitivity. The conclusions demonstrated that the
XGBoost achieved the best performance, according to all performance indices. The results
obtained by XGBoost were better than those of XGBoost_NoSmote, which means that
SMOTE can improve model performance. Therefore, the proposed XGBoost is an effective
and low-cost method for the multiclassification prediction of clay sensitivity, and the
proposed SMOTE is useful for addressing the imbalanced classes of clay datasets. However,
models may perform better on the AUC of medium sensitivity. It is recommended that
SMOTE could be improved according to the distribution of clay sensitivity. Additionally,
XGBoost predicts more than three clay sensitivity categories, which makes the classification
results more delicate.
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Abstract: With the continuous process of urbanization, regional integration has become an inevitable
trend of future social development. Accurate prediction of passenger volume is an essential prereq-
uisite for understanding the extent of regional integration, which is one of the most fundamental
elements for the enhancement of intercity transportation systems. This study proposes a two-phase
approach in an effort to predict highway passenger volume. The datasets subsume highway pas-
senger volume and impact factors of urban attributes. In Phase I, correlation analysis is conducted
to remove highly correlated impact factors, and a random forest algorithm is employed to extract
significant impact factors based on the degree of impact on highway passenger volume. In Phase II, a
deep feedforward neural network is developed to predict highway passenger volume, which proved
to be more accurate than both the support vector machine and multiple regression methods. The
findings can provide useful information for guiding highway planning and optimizing the allocation
of transportation resources.

Keywords: intercity transportation; highway passenger volume; urban attributes; two-phase approach

1. Introduction

Recently, with the continuous process of urbanization, regional integration has become
an inevitable trend of future social development in many developing countries [1,2]. In
this situation, establishing a convenient and efficient intercity transportation system is a
prerequisite for supporting regional integration, in which accurate prediction of passenger
volume is one of the most fundamental elements required for the enhancement of intercity
transportation systems [3–6].

The primary concern of passenger volume prediction is to extract relevant impact
factors and build appropriate models. Firstly, multiple impact factors related to urban
attributes, such as gross domestic product (GDP) and population, determine the absolute
value and spatial distribution of passenger volume [7,8]. Consequently, extracting signif-
icant impact factors and further analyzing their relationship with passenger volume is
recognized as a prerequisite for accurately predicting the passenger volume. Secondly, the
prediction models attracted wide attention and the performance of different models was
evaluated in past research. Some typical models, including multiple logit models, machine
learning models, and deep learning models have been developed based on the historical
passenger volume [9,10]. Nevertheless, the predicted accuracy of the existing models was
largely affected by the dataset size of historical passenger volume [11]. Hence, the models
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with historical data cannot perform an accurate prediction if lacking sufficient data, which
is quite common for intercity transportation.

There are two key steps in the prediction of intercity passenger volume: (1) extracting
the significant impact factors, (2) developing a deep learning model to achieve the predic-
tion. Thus, it is practical to develop a two-phase approach to predicting intercity passenger
volume based on impact factors reflecting urban attributes and deep learning models. As
the highway is always an important intercity mode of transport with a high mode share,
this study took the highway as the research object. Phase I made a correlation analysis to
remove the highly correlated impact factors and developed a random forest (RF) algorithm
to extract the significant impact factors of highway passenger volume; Then, Phase II
developed a deep feedforward neural network (DFNN) to predict highway passenger
volume. To overcome the existing limitations on predicting intercity passenger volume, the
primary contributions of this study are as follows:

(1) A total of 69 impact factors of urban attributes were collected from 280 administrative
districts in China, which provides a macroscopic dataset for the prediction of highway
passenger volume and overcomes the limitations of traditional travel surveys and
questionnaires that only focus on a single city or single transportation corridor;

(2) Multiple urban attributes, including urban economy, population, industry, income and
consumption, and resource and environment, were modeled together. Furthermore,
A total of 30 significant impact factors of highway passenger volume were extracted
by the RF algorithm, which improves the traditional process based on subjective
experience and avoids the omission of significant factors;

(3) A deep learning method, DFNN, was developed to predict highway passenger vol-
ume, which proved to be more accurate than the SVM and multiple regression
methods and can provide more reliable information for optimizing traffic structure
and reducing waste of traffic resources.

The remainder of this study is organized as follows. Section 2 gives as overview of the
related literature. In Section 3, the data source is introduced, and the impact factors of urban
attributes are collected and presented. Section 4 presents the underlying principle of the
RF and DFNN algorithm. Section 5 presents the process of extracting the significant impact
factors. In Section 6, the DFNN is developed to predict highway passenger volume, which
is further compared with two benchmark methods. Finally, Section 7 draws conclusions
and gives an outlook on future research.

2. Literature Review

This section concludes the existing research on the above two phases: (1) extracting the
significant impact factors of intercity passenger volume, (2) developing models to achieve
an accurate prediction. Furthermore, the limitations of existing research are itemized at
the end.

The first phase is to extract the significant impact factors. Multiple impact factors
related to urban attributes, including urban economic level, urban industrial structure,
population, etc., were widely studied to understand their relationship with intercity pas-
senger volume. Firstly, the urban economic level proved to be one of the necessary impact
factors of intercity passenger volume [12–14]. Traffic demand for business and tourism in
intercity transportation increases with the development of the urban economy. The impact
factors reflecting the urban economic level were found to be per-capita gross domestic
product (GDP), per-capita income, industrial structure, etc., and it was verified that they
had a strong correlation with intercity passenger volume [15,16]. Moreover, both popu-
lation structure and population size affect the intercity passenger volume significantly.
Limtanakool et al. [17] took population density and land use as variables and found that a
higher population density and mixed degree of land use have a positive impact on pas-
senger volume of public modes in medium- and long-distance trips. A similar conclusion
was also reached by related research [18]. Although the impact factors related to economic
level and population have been widely studied in the existing research, those related to

492



Appl. Sci. 2021, 11, 6248

the quality of residents’ lives, resources, and the environment were rarely studied because
they are hard to be quantified with one or several indicators and the corresponding dataset
is difficult to obtain [19–21]. This problem indicates that the relative research on extracting
significant impact factors of intercity passenger volume is incomplete and causes the inac-
curate prediction of intercity passenger volume, especially for some tourism-driven cities
and resource-driven cities.

The second phase is to develop a model to achieve an accurate prediction of intercity
passenger volume. In the existing studies, multiple logit models, such as the multino-
mial logit model [22,23], Box–Cox logit model [24], and nested logit model [25], were
developed to study the mode choice of intercity trips and deduce the intercity passenger
volume of various modes by calculating the intercity travel rate of surveyed samples [26,27].
Moreover, intercity passenger volume was predicted by introducing the impact factors.
Harker et al. [28] proposed a network equilibrium model with considerations of market
price and economic mechanism to predict the intercity freight volume. Li et al. [29] pre-
dicted the passenger volume of intercity railway with multiple indicators of passenger
demand, regional economy, and regional traffic infrastructure, with an average predicted
error of 3.37%. Another practical approach to predicting intercity passenger volume is
based on the historical passenger volume. Xie et al. [30] analyzed the spatiotemporal
characteristics of intercity passenger volume and predicted intercity passenger volume on
holiday, with a predicted error of 6.43%. Recently, deep learning and machine learning
algorithms, represented by various neural networks, have become remarkable at pre-
dicting intercity passenger volume by using cellular signaling data and location-based
data [4,22–32]. Numerous studies have shown that predicted accuracy can be significantly
improved by deep learning algorithms [33].

It is noted that the difficulties in obtaining the dataset of intercity passenger volume
have been widely emphasized in past studies, especially for some intercity passenger
modes of transportation that have additional requirements for an urban population, geo-
graphical location, or urban scale, such as airways, railways, and waterways. This means
that the prediction of intercity passenger volume can be only conducted in a few cities [34].
In contrast, the highway has better accessibility and connects to all kinds of cities, expand-
ing the study scope of predicting intercity passenger volume [35]. As previously stated,
intercity passenger volume is largely determined by impact factors. Thus, the process of
extracting significant impact factors at first, and then analyzing the interaction between in-
tercity passenger volume and impact factors with deep learning algorithms, is practical for
predicting intercity passenger volume but has rarely been studied in the existing research.

From the above analysis, the relationship between intercity passenger volume and
urban attributes has been widely studied, and some typical models have been developed
to predict passenger volume. Nevertheless, some limitations still exist in previous research
and need further improvement, which are listed as follows:

(1) Due to the restrictions of the research data, most existing research predicted intercity
passenger volume from a single city or transportation corridor. As a result, the current
achievements are difficult to apply to intercity transportation between all kinds of
cities.

(2) Existing research only focuses on common urban attributes such as the population
or the economy. However, more urban attributes related to the quality of residents’
lives, resources, and environment were neglected for lacking the available data and
quantitative indicators, causing the inaccurate prediction of intercity passenger vol-
ume, especially in some tourism-driven cities and resource-driven cities. Moreover,
the selection process of significant attributes also received less attention.

(3) Microcosmic datasets collected from traffic surveys have been widely used for study-
ing the choice of transportation mode in intercity trips but is not practical to predict
intercity passenger volume. In contrast, the macroscopic datasets of urban attributes
provided a novel approach to predict the intercity passenger volume, but have rarely
been used in the existing literature.
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3. Data Source

In this study, the dataset, including highway passenger volume and impact factors
of urban attributes, was obtained from China’s urban statistical yearbook. In China, the
urban statistical yearbook is regularly published online to evaluate the social and economic
levels. The statistical yearbook covers multiple aspects of urban attributes, including
society, economy, etc. People can download the statistical yearbook for academic research,
providing a novel macroscopic dataset with the prediction of highway passenger volume.

Considering the possible complex-relevance between impact factors of urban at-
tributes, it is necessary to select appropriate impact factors for the convenience of data
processing. The selection principles in this study are summarized as follows: (1) The
selected impact factors can well reflect the urban attributes and have a significant impact
on intercity passenger volume. (2) The selected impact factors can be quantifiable and com-
parable. (3) The selected impact factors can be provided by the urban statistical yearbook
and easily accessible. It is noteworthy that some non-quantifiable factors can be compa-
rable by converting into different levels. Yet in this study, most non-quantifiable factors
have a high correlation with the existing quantifiable factors. Furthermore, subjective
judgment and personal preference are often included in the non-quantifiable level division,
which inevitably brings errors into the process. Accordingly, this study only focuses on the
prediction of highway passenger volume with the quantifiable impact factors.

Based on the above principles, a total of 69 impact factors of urban attributes were
selected from China’s urban statistical yearbook. To facilitate data processing, the selected
impact factors of urban attributes were divided into five categories, namely, urban economic
level, urban population size and structure, per-capita income and consumption, resource
and environment, and urban industrial structure. The selected impact factors of urban
attributes and their information are summarized in Table A1 in Appendix A.

As the data in the statistical yearbook is aggregated from the whole district or city,
the authors took the administrative district as the basic unit of data collection. As a result,
3444 samples, including the selected 69 impact factors and highway passenger volume,
from 280 administrative districts, were collected. The recorded date is from 2003 to 2014,
covering 12 years, because there is a unified statistical standard during this period and
the statistical data changed smoothly without a sharp increase or decrease. In which. The
highway passenger volume was set as the unique dependent variable, and impact factors
were set as the alternative independent variables for predicting highway passenger volume.

4. Methodology

The flow diagram of the proposed two-phase approach and associated designed
framework is shown in Figure 1. Firstly, the raw dataset, including highway passenger
volume and impact factors, was collected. Then, the two-phase approach was proposed.
Phase I extracted the significant impact factors with the RF algorithm and Phase II predicted
highway passenger volume with the DFNN. Finally, the typical machine learning algorithm,
support vector machine (SVM), was also developed for predicting highway passenger
volume and compared with the DFNN, because it has a better ability to solve machine
learning problems with a small sample size. Moreover, the traditional multiple regression,
which is widely used for discerning the relationship between dependent variables and
multiple independent variables, served as the benchmark for the prediction of highway
passenger volume. All predicted models were evaluated by calculating errors, including
mean absolute error (MAE) and root mean squared error (RMSE).
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Figure 1. The flow diagram of the designed framework.

The fundamentals of the two primary methods used in this study are briefly discussed
as follows, including the RF algorithm and the DFNN. Moreover, the evaluating indicators,
MAE and RMSE, are introduced as well.

4.1. Random Forest Algorithm

In this study, the RF algorithm was used in Phase I to extract significant impact factors.
The RF algorithm is a classifier established with multiple decision trees randomly, which
has better robustness to noise and an excellent ability to maintain accuracy even if partial
features are missing compared to other tree-based models [36,37]. Moreover, existing
research has proved that the RF algorithm can efficiently analyze the complex interaction
among features and pick out the significant features. As a result, it is widely used for
removing the variables with a high correlation or low importance degree [38].

For any impact factor in Table 1, its importance degree can be calculated with the
RF algorithm. After that, the selection of significant impact factors follows two processes:
(1) Remove the impact factors that are highly correlated with others. (2) Determine the
removed proportion and remove impact factors with a low importance degree.

The above processes of the RF algorithm, including calculating importance degree
and selecting significant impact factors, were repeatedly conducted until the number of
selected significant factors is less than the set value. Finally, the selected impact factors
were set as the independent variables for predicting highway passenger volume.

4.2. Deep Feedforward Neural Network

Recently, the neural network is widely used in the prediction of traffic volume and
proposes the development of deep learning [39–41]. The DFNN is a deep learning model
comprised of an input layer, several hidden layers, and an output layer [42–44]. The
quantity of hidden layers defines the depth of the architecture [45]. The topological
structure of the DFNN is shown in Figure 2.
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Figure 2. The topological structure of the DFNN algorithm.

The theory of the DFNN is available in past research [44–46]. In this section, we
introduce the activation function and objective function used in the DFNN algorithm.

Firstly, the rectified linear unit (ReLU) function was selected as the activation function
of hidden layers and the output layer, considering that the ReLU function has a higher
computing efficiency because it only activates a fraction of the neurons in each epoch.
The ReLU function has been proven to be effective at avoiding gradient vanishing and
overfitting, and serves as the preferred choice when developing a neural network to solve
multiple problems except for the binary classification [46,47]. The ReLU function is shown
in Equation (1).

f (x) =
{

0 x < 0
x x ≥ 0

(1)

Then, the objective function was built by minimizing the loss function of mean square
error, as in Equation (2).

min
1
N

N

∑
i=1

(yi − ŷi)
2 + λ · R(θ) (2)

where yi represents the actual highway passenger volume and ŷi represents the predicted
highway volume. N is the number of predicted samples. R(·) is a regularized constraint,
represented by the L2 norm of the parameter θ, which is solved by the gradient descent
method. λ is the coefficient of regularized constraint R(·).
4.3. Evaluating Indicators

To better evaluate the deviation of predicted results and assess the predicted method’s
performance, two indicators, MAE and RMSE, were calculated in this study. They are
defined by Equations (3) and (4), respectively.

MAE =
1
N

N

∑
i=1

|yi − ŷi| (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where yi and ŷi represent the actual highway passenger volume and the predicted high-
way passenger volume, respectively. N is the number of predicted samples. Both MAE
and RMSE represent the degree of deviation between the actual and predicted highway
passenger volume. The smaller the value of MAPE and RMSE, the more accurate the
predicted result.
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5. Phase I: Extraction of Significant Factors

In Phase I, the RF algorithm was used for removing the highly correlated impact
factors and extracting the significant impact factors. Specifically, impact factors with a high
importance degree were retained and those with a low importance degree were removed.
The RF algorithm has the advantage of showing the extraction of significant factors step by
step and the extracted significant impact factors are interpretable, compared with some
auto-encoder methods like neural networks. Finally, a dataset of significant impact factors
was built for predicting highway passenger volume.

Firstly, the correlation coefficients between impact factors were calculated by correla-
tion analysis, and fifteen groups of highly correlated impact factors were found based on
the calculated correlation coefficients, which are shown in Table 1.

Table 1. Groups of highly correlated impact factors.

Group Highly Correlated Impact Factors Group Highly Correlated Impact Factors

1 NSS, NSP, NSSP, TP 8 DLB, HD

2 RT, SC, DRSC, TSP
9 GIO, DGIO
10 IFA, DIFA, IRE, DIRE

3 DLA, DCAB 11 WS, WCS
4 FC, PFI, PFE, DPFI, DPFE 12 AEC, ECI, HEC
5 DB, DDB 13 NOB, PB, NT
6 HD, DHD 14 AGL, APGL, GCA
7 LB, DLB 15 NH, NBH, DNBH

Then, the importance degree of highly correlated impact factors in each group was
calculated with the RF algorithm, as shown in Figure 3. The horizontal axis represents
impact factors in each group, and the vertical axis represents the corresponding importance
degree. Only the impact factor with the largest importance degree in each group was re-
tained, and other impact factors were removed. Consequently, 28 impact factors, including
NSS, NSSP, NSP, SC, DRSC, TSP, DCAB, DPFI, DPFE, PFI, FC, DDB, DHD, DLB, LB, DGIO,
IFA, DIFA, DIRE, WS, ECI, AEC, PB, NT, GCA, AGL, DNBH, and NH, were removed and
the other 41 impact factors were retained. Then, the importance degree of the remaining
impact factors was calculated again and sorted in order, as shown in Figure 4.

In this study, the removed proportion was set at 10%. Therefore, impact factors with
importance degree rankings in the bottom 10% were removed. According to Figure 4a, the
removed impact factors included RP, CPR, VISR, and DNH, and the remaining 37 impact
factors were retained for the subsequent data processing.

Similarly, the importance degree of impact factors was calculated repeatedly and
sorted in order, and impact factors whose importance degree ranked in the bottom 10%
were removed until the importance degree of the remaining impact factors reached 0.01.
The above process was repeated twice. PCGRP, IRE, LA, and PFE, and DPD, PTPT, and
CLPGR were removed during these two processes, respectively, as seen in Figure 4b,c.
Finally, a total of 30 impact factors were retained, and are shown in Table 2. The category
of resource and environment had more retained factors than any other, indicating that this
category has a significant impact on highway passenger volume. Moreover, the importance
degrees of HD, GDP, WCS, NOB, RT, HEC, TP, and TI rank in the top 25%, meaning that
these eight factors significantly impact highway passenger volume.
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(a) Group 1 (b) Group 2 (c) Group 3 

   
(d) Group 4 (e) Group 5 (f) Group 6 

   
(g) Group 7 (h) Group 8 (i) Group 9 

   
(j) Group 10 (k) Group 11 (l) Group 12 

   
(m) Group 13 (n) Group 14 (o) Group 15 

Figure 3. The importance degrees of significantly correlated variables in each group.
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(a) 

(b) 

(c) 

Figure 4. Importance degrees of impact factors. (a) The first iteration. (b) The second iteration.
(c) The third iteration.
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Table 2. The extraction result of significant impact factors.

Category Included Impact Factors

Urban economic level GDP, RSC, RT, GIO
Urban population size and structure TP, NSC, WPI, WSI, WTI, PD, PLPG
Per-capita income and consumption AWW, DB, HD, WCS, HEC

Urban industrial structure PI, SI, TI

Resource and environment DLA, LC, NOB, APR, APGL, GCAP, NBH,
NTM, CPL, VDWW, VSDE

6. Phase II: Model Prediction and Evaluation

6.1. Model Prediction

With the significant impact factors selected by Phase I as input variables, Phase II
developed the DFNN to predict highway passenger volume. The primary concern of
developing DFNN is to determine the appropriate quantity of hidden layers and neurons
in each hidden layer. In this study, the grid search method was adopted, whose initial
range for the number of hidden layers was set from 1 to 10 and that for the number of
neurons was set from 1 to 140. Taking MAE as an evaluating index, the result of the grid
search method is shown in Figure 5.

 

Figure 5. The result of grid search method for determining hidden layers and neurons.

The quantity of hidden layers and neurons with the minimum MAE is selected. Finally,
the quantity of hidden layers is set to 9, and the quantity of neurons in each hidden layer
is set to 120 in the DFNN of this study. Moreover, the quantity of neurons in the input
layer and the output layer is set to 30 and 1, respectively, because there are 30 independent
variables and 1 dependent variable.

Additionally, multiple epochs are needed for improving the predicted accuracy of
the DFNN. Consequently, we continuously increased the epoch and calculated the loss of
training set and verification set. When the loss of four consecutive epochs is less than 0.0001,
it is considered that the training process has reached convergence and can be stopped. The
loss of the training process is shown in Figure 6. Finally, the epoch of the DFNN in this
study was set to 12.
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(a) the training set (b) the verification set 

Figure 6. The result of loss for determining epoch.

Afterward, the significant impact factors were input in the developed DFNN, and the
highway passenger volume was predicted. Then, evaluating indicators were calculated,
showing that the MAE and RMSE of predicted highway volume from the DFNN are
2066.31 persons per day and 4176.37 persons per day, respectively.

6.2. Model Evaluation

To further evaluate the performance of the DFNN, the traditional SVM and multiple
regression were used for comparison. For the SVM, the RBF kernel function whose penalty
coefficient is set as 1000, and the Gamma coefficient is set as 0.001, was selected by adopt-
ing the grid search method based on the alternative sets of the kernel function, penalty
coefficient, and gamma coefficient, as shown in Table 3.

Table 3. The alternative sets of parameters in the SVM.

Kernel Function Set of Penalty Coefficients

RBF [0.001, 0.01, 0.1, 1, 10, 100, 1000]
Linear Function [0.001, 0.01, 0.1, 1, 10, 100, 1000]

Kernel Function Set of Gamma Coefficients

RBF [0.0001, 0.001, 0.1, 1, 10, 100, 1000]
Linear Function –

The final predicted result is shown in Table 4, both MAE and RMSE of the DFNN are
less than those of the SVM and multiple regression. The DNFF reduces the MAE and RMSE
by 8.49% and 2.20%, respectively, compared with the multiple regression. The DFNN
reduces MAE and RMSE by 2.90% and 1.15%, respectively, compared with the SVM. The
result indicates that the DFNN is more accurate in predicting highway volume than the
SVM and multiple regression.

Table 4. Model comparison between MAE and RMSE.

Model MAE RMSE

Multiple regression 2258.05 4270.29
SVM algorithm 2128.03 4225.06

DFNN 2066.31 4176.37
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7. Conclusions

This study overcomes the limitations of existing research on predicting highway
passenger volume. The main work and results of this study are as follows:

(1) A two-phase approach, in which Phase I extracts the significant impact factors and
Phase II develops a deep learning model to achieve the prediction, was proposed to
predict the highway passenger volume with the dataset of multiple urban attributes;

(2) Phase I extracted a dataset with 30 significant factors reflecting urban economic level,
urban population size and structure, per-capita income and consumption, urban
industrial structure, and resource and environments with the RF algorithm and
proved that they have a significant impact on highway passenger volume.

(3) Phase II developed the deep learning method, DFNN, to predict the highway pas-
senger volume with a mean absolute error of 2066.31 persons per day, improving
the predicted accuracy by 8.49% compared to the multiple regression and 2.20%
compared to the SVM algorithm.

This study contributes to proposing a novel approach for predicting highway passen-
ger volume, but limitations still exist and are worth further study. Recently, deep learning
algorithms have been proposed and are expected to be utilized for further improving the
predicted accuracy of highway passenger volume as well as increasing the interpretability.
As the statistical yearbook only publishes the annual statistics, it is difficult to make a
detailed analysis of highway passenger volume in quarters or months. Moreover, it is
possible to find data mutation caused by the change of statistical caliber in the statistical
yearbook, which affects the predicted accuracy. Therefore, other new datasets can be
considered to introduce into future research for more accurate analysis.
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Appendix A

Table A1. The selected impact factors of urban attributes.

Category Impact Factors Symbol Units

Urban Economic Level

Regional Gross Domestic Product GDP yuan
Per-capita Regional Gross Domestic Product PCGDP yuan
Total Sales of Retail Commodities SC yuan
Total Retail Sales of Consumer Goods of the City RSC yuan
Total Retail Sales of Consumer Goods of the Districts DRSC yuan
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Table A1. Cont.

Category Impact Factors Symbol Units

Public Financial Income of the City PFI yuan
Public Financial Expenditure of the City PFE yuan
Public Financial Income of the Districts DPFI yuan
Public Financial Expenditure of the Districts DPFE yuan
Foreign Capital Used in the Year FC dollar
Investment in Fixed Assets of the City IFA yuan
Investment in Fixed Assets of the Districts DIFA yuan
Investment in Real Estate of the City IRE yuan
Investment in Real Estate of the Districts DIRE yuan
Revenue of Postal Business RP yuan
Revenue of Telecommunication Business RT yuan
Gross Industrial Output Value of the City GIO yuan
Gross Industrial Output Value of the Districts DGIO yuan
Electricity Consumption of Industry ECI KW·h

Urban Population Size and Structure

Total Population of the City TP –
Number of Students in the Colleges or Universities NSC –
Number of Students in the Secondary School NSS –
Number of Students in the Primary School NSP –
Number of Students in the Primary–Secondary School NSSP –
Number of Workers in the Primary Industry WPI –
Number of Workers in the Secondary Industry WSI –
Number of Workers in the Third Industry WTI –
Number of Workers in the Transportation, Storage and
Postal Services TSP –

Population Density of the City PD /Km2

Population Density of the Districts DPD /Km2

Population Using Liquefied Petroleum Gas PLPG –

Per-capita income and Consumption

Average Wage of Workers AWW yuan
Deposit Balance of Financial Institutions of the City DB yuan
Deposit Balance of Financial Institutions of
the Districts DDB yuan

Deposit Balance of Household of the City HD yuan
Deposit Balance of Household of the Districts DHD yuan
Loan Balance of Financial Institutions of the City LB yuan
Loan Balance of Financial Institutions of the Districts DLB yuan
Water Consumption of Society WCS ton
Electricity Consumption of Household HEC KWh
Consumption of Liquefied Petroleum Gas for Resident CLPGR ton
Total Water Supply WS ton
All the Electricity Consumption of the Society AEC KWh

Urban Industrial Structure
The proportion of Primary Industry PI %
The proportion of Secondary Industry SI %
The proportion of Third Industry TI %

Resource and Environment

Administrative Land Area of the City LA Km2

Administrative Land Area of the Districts DLA Km2

Construction Area of Buildings of the Districts DCAB Km2

Land Area for Construction LC Km2

Actual Urban Road Area CPR m2

Number of Operating Public Buses NOB veh
Total Passenger Volume of Public Buses in the Year PB –
Number of Operating Taxis NT veh
Number of Buses for Ten Thousand People PTPT veh
Average Per-capita Road APR m2

503



Appl. Sci. 2021, 11, 6248

Table A1. Cont.

Category Impact Factors Symbol Units

All the Green Land Area AGL Km2

All the Green Land Area of Parks APGL Km2

Green Land Area of Construction Area GCA Km2

The Proportion of Green Land of Construction Area GCAP %
Number of Hospitals of the City NH –
Number of Hospitals of the Districts DNH –
Number of Hospital Beds of the City NBH –
Number of Hospital Beds of the Districts DNBH –
Number of Theatres and Movie Theatres NTM –
Total Collection of Books in Public Libraries CPL –
Industrial Discharge of Waste Water VDWW ton
Industrial Sulfur Dioxide Emission VSDE ton
Removal Amount of Industrial Smoke and Dust VISR ton
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Abstract: Public transportation systems are an effective way to reduce traffic congestion, air pollution,
and energy consumption. Today, smartcard technology is used to shorten the time spent board-
ing/exiting buses and other types of public transportation; however, this does not alleviate all traffic
congestion problems. Accurate forecasting of passenger flow can prevent serious bus congestion
and improve the service quality of the transportation system. To the best of the current authors’
knowledge, fewer studies have used smartcard data to forecast bus passenger flow than on other
types of public transportation, and few studies have used time-series lag periods as forecast variables.
Therefore, this study used smartcard data from the bus system to identify important variables that
affect passenger flow. These data were combined with other influential variables to establish an
integrated-weight time-series forecast model. For different time data, we applied four intelligent
forecast methods and different lag periods to analyze the forecasting ability of different daily data
series. To enhance the forecast ability, we used the forecast data from the top three of the 80 combined
forecast models and adapted their weights to improve the forecast results. After experiments and
comparisons, the results show that the proposed model can improve passenger flow forecasting based
on three bus routes with three different series of time data in terms of root-mean-square error (RMSE)
and mean absolute percentage error (MAPE). In addition, the lag period was found to significantly
affect the forecast results, and our results show that the proposed model is more effective than other
individual intelligent forecast models.

Keywords: passenger flow; integrated-weight time-series model; public transportation systems; long
short-term memory network

1. Introduction

Public transportation is considered to be an effective solution to traffic congestion
and environmental pollution. The Federal Transit Administration (FTA) also believes that
public transportation is an effective way to reduce traffic congestion, air pollution, energy
consumption, and private vehicle use [1]. The use rate of buses accounted for 46% of all
public transportation use in 2016 by people aged over 15 years according to the Taiwan
Ministry of Transportation survey [2].

Taiwan’s EasyCard Company promoted the smartcard system in 2002 based on the
idea of “one card in hand, unimpeded travel”. It was the first card to be issued for
Taipei mass rapid transit and was then expanded to the Taiwan railway, Taiwan high-
speed railway, and various other types of public transportation. Smartcards can collect
information about vehicle routes, schedules, and real-time driving conditions through
the automatic fare collection (AFC) system for vehicle monitoring, which can greatly
improve public transportation efficiency and safety. The AFC system, when referring to
the transportation system [3], is also called the smartcard system. The smartcard system is
regarded as a dynamic and real-time data source for the public transportation system. It
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has attracted a significant amount of attention from researchers, and many studies have
used smartcard data [3,4].

Although the smartcard system helps passengers greatly reduce their transaction time
and shortens the time taken to board/exit buses, it also helps the bus industry collect large
amounts of data to improve their service quality. Despite the utilization of the bus system,
serious traffic congestion still occurs. Traffic flow describes the number of vehicles passing
through a specific road section within a predetermined time interval [5]. It is different
from traffic congestion, which is caused by excessive travel demand by people, resulting
in abnormal traffic flow. There have been many studies on passenger flow predictions. In
addition, smartcard systems can increase the convenience of users and help bus operators
formulate practical route planning and reform timetables and related policies; however, this
all depends on the use of smartcard system data to accurately forecast bus passenger flow.
Accurately forecasting passenger flow can help cities implement transportation policies,
strengthen local construction, reduce excessive energy consumption and carbon emissions,
and improve urban ecosystems to achieve sustainable development.

The accessibility of the urban bus system is greater than for other modes of public
transport, as this system utilizes the road network; however, passenger demands are
affected by a number of factors such as crowding and different weather conditions. Tang
et al. [6] confirmed prediction models would be better if the weather conditions were
considered. The number of bus rides varies depending on the time of day, but there are still
expected peak periods. For example, there will be many passengers during peak hours on
weekdays and working days and at times when leisure activities are taking place during
the holidays. We must consider passengers’ needs, but external factors are also important.

In the past ten years, many successful traffic flow forecast methods have been proposed,
especially deep learning methods. Li et al. [7] proposed a dynamic radial basis function
neural network to predict short-term passenger flow through the Beijing subway. Ke
et al. [8] proposed a fusion convolution long-term short-term memory network to forecast
short-term passenger demand for ride services. Xu et al. [9] used a combined seasonal
autoregressive integrated moving average with a support vector regression model to
forecast the demand for the aviation industry. Deep learning methods have led to great
progress in transportation research, but there have been few studies on forecasting buses’
passenger flow compared with other types of public transportation. In our study, we
collected data from the smartcard system for the bus industry and considered other external
factors that affected the ride. In this article, we propose an integrated-weight time-series
model to forecast passenger flow and detail our comparison with the listing methods. In
summary, the goals of this study are as follows:

(1) To identify the important attributes that affect passenger flow from a total of 42
attributes in the smartcard system;

(2) To add other variables that affect passenger flow, such as climate, time, space, and lag
period, to establish a prediction model;

(3) To apply multilayer perceptron (MLP), support vector regression (SVR), radial ba-
sis function (RBF) neural network, and long short-term memory network (LSTM)
methods to forecast passenger flow with different types of time data series (weeks,
weekdays, and holidays);

(4) To propose an integrated-weight time-series forecast model that uses forecast data
from the top three of the 80 intelligent forecast models as the adaptive factors;

(5) To provide results that can be used as a reference by the government, industry, and
related personnel.

The remaining sections are organized as follows: Section 2 is a literature review. In
Section 3, we describe the research model and discuss the research design and methodology.
Section 4 shows the results and findings. Finally, Section 5 presents the implications,
limitations, and future work.
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2. Literature Review

This section introduces related work on forecasting passenger flow using smartcard
data, time series forecasting, and intelligent forecast methods.

2.1. Forecasting Passenger Flow by Smartcard Data

The smartcard is popular and convenient and can store a large amount of transaction
data. Therefore, in the past decade, researchers have paid more and more attention to
smartcard data. Ma et al. [10] used one-month data from smart bus cards to analyze the
patterns of commuters in the area and the spatial distribution of movement. Eom et al. [11]
applied the smartcard data from a five-day working week to learn about various social
roles, such as the distribution of students and office workers in Seoul. Tao et al. [12] used
smartcard data to visually compare the spatial-temporal trajectories of bus rapid transit
trips and other bus trips.

To investigate factors relevant to forecasting passenger flow, Briand et al. [13] applied
a Gaussian mixture model based on weather, time, and space to regroup passengers
according to their public transportation habits in terms of time. Arana et al. [14] analyzed
the impact of weather conditions on the number of public bus trips taken for shopping
and personal business. Tang and Thakuriah [15] used the unemployment rate, gasoline
prices, weather conditions, transportation services, and socioeconomic factors to implement
a quasi-experimental design to examine changes in the monthly average number of bus
passengers on weekdays.

The literature on passenger flow forecasting in bus services can be divided into long-
term and short-term forecasts. Traditional long-term passenger flow forecasting usually
involves the use of regression techniques to estimate future travel demand [16]. The re-
gression model is used to establish the relationship between the number of passengers
and influencing factors, which includes demographic, economic, and land use informa-
tion [17,18]. For short-term passenger flow forecasting, models based on statistics and
computational intelligence have been studied extensively [19,20].

There has been much research on passenger flow forecasting, but most has not included
bus passenger flow forecasting. We present some of the research techniques and methods
that have been used in previous studies. Sun et al. [21] proposed a hybrid model based
on wavelet analysis and the support vector machine to evaluate the historical passenger
flow through the Beijing subway. Xie et al. [22] applied seasonal decomposition and a least
squares support vector to find the best hybrid method for the short-term prediction of
airline passengers. Liu and Chen [23] proposed a passenger flow prediction model using
deep learning where an autoencoder deeply and abstractly extracts the nonlinear features
in many hidden layers and a back-propagation algorithm is applied to train the model.

2.2. Time Series Forecasting

Forecasting passenger flow is a time-series research field because bus data points
(including smartcard and meteorology data) are indexed in time order and are therefore
time-series data. A time series is a sequence of discrete time data, and the use of a time series
model can help organizations understand the underlying causes of trends and systemic
patterns over time. As such, the following section briefly introduces relevant knowledge
about time series. Time series are data arranged in time order, and the first time series model
to be developed was the linear autoregressive moving average model (ARIMA), which was
proposed by Box and Jenkins in 1970. The ARIMA model [24] consists of three components,
and each component helps model different types of patterns. The autoregressive (AR)
component attempts to explain the patterns between any time period and previous lag
periods; the moving average (MA) component can adapt the new forecasts to previous
forecast errors (error feedback term); and the integrated (I) component indicates trends or
other integrative processes in the data.

Traffic flow data are time series of periodic and irregular fluctuations, and many
studies have used time-series methods to predict traffic flow. Hou et al. [25] combined
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ARIMA with a wavelet neural network to overcome the limitations of using ARIMA for
short-term forecasting of traffic flow. Xu et al. [9] used seasonal differences to eliminate
nonstationary seasonal ARIMA and combined these data with support vector regression to
predict the demand of the aviation industry. Wang et al. [26] used wavelet analysis to detect
abnormal passenger flow to estimate the sudden traffic peak and then used a multiple
regression model to estimate the peak time. Finally, they used seasonal ARIMA to estimate
passenger flow.

In terms of an intelligent time-series model, AR neural network (ARNN) is a classic in-
telligent time-series model that uses a neural network to learn AR coefficients [27]. Further,
we can collect many influential variables and lag periods of the dependent variable, and
then we use MLP, SVR, RBF neural network, and LSTM network to train their parameters
for building intelligent time series models. From the practical viewpoint, it is critical to
properly handle weights in time series, and weighted time-series models include weight-
ing on recent observations, important variables, and the better forecasting methods. For
example, Hajirahimi and Khashei [28] proposed a weighted sequential hybrid model to
calculate each model weight to construct a final hybrid output for time series forecasting;
Tsai et al. [29] proposed a multifactor fuzzy time-series fitting model to weight the three
significant variables; Jiang et al. [30] presented a weighted time-series forecasting model to
weight recent observations.

2.3. Intelligent Forecast Methods

This section introduces four intelligent forecast methods, and they are applied to
forecast the collected data in this study: multilayer perceptron, support vector regression,
radial basis function neural network, and long short-term memory network.

(1) Support vector regression (SVR)

The support vector machine (SVM) is a supervised learning algorithm for data classifi-
cation and regression analysis that was developed by Vapnik and colleagues [31]. The SVM
is used for classification problems, known as support vector classification (SVC) problems,
and regression problems, known as support vector regression (SVR) problems. The main
purpose of SVR is to find the best separation hyperplane to separate clustered data to solve
nonlinear problems. SVR is quite good when dealing with small samples and can handle
high-dimensional attributes without relying on all available data for classification, but
its disadvantage is that its efficiency is very low for a large number of forecast samples.
In addition, the SVM needs to find a suitable kernel function, such as linear, polynomial,
sigmoid, or radial basis functions, and it is sensitive to missing data. The SVM can be
used to solve problems in many fields, such as text classification, image classification, and
time-series prediction.

In forecasting traffic passenger flow, SVR is suitable for nonlinear and complex models.
Castro-Neto et al. [32] considered that SVR cannot be fully trained with real-time data. To
address this, they developed online SVR models. To reduce the computational complexity
of the SVM, Xie et al. [22] proposed the combined seasonal decomposition and least
squares support vector to get the best hybrid method for short-term forecasting of airline
passengers.

(2) Multilayer perceptron neural network (MLP)

Perceptron is a type of artificial neural network invented by Rosenblatt [33]. It can
be regarded as the simplest form of feedforward neural network, and it is a binary linear
classifier. An MLP consists of at least three layers of nodes (input layer, hidden layer, and
output layer). Except for the input nodes, each node is a neuron that uses a nonlinear
activation function. The MLP uses supervised backpropagation learning, and its multilayer
structure and nonlinear activation function distinguish it from linear perception. The MLP
is a nonlinear learning model that can be processed in parallel and has good fault tolerance.
It can be used as a real-time online learning model with associative memory, adaptivity,
and self-learning ability. To make the output of the MLP as close to the actual target value
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as possible, a set of optimal weight values must be found in the training model, and one
would need to determine the number of neurons used in each hidden layer.

Past studies have used MLP models to forecast multifactor problems. Ma et al. [34]
used the MLP to forecast the network-wide co-movement patterns of all traffic flows, and
they used ARIMA to postprocess the residual of the MLP. Tsai et al. [35] proposed a multiple
temporal unit MLP to forecast short-term passenger demand.

(3) Radial basis function (RBF) network

The radial basis function (RBF) network proposed by Broomhead and Lowe has an
input layer, a hidden layer, and an output layer [36]. In an RBF network, the nonlinear
transformation is from the input layer to the hidden layer, and then the linear transfor-
mation is from the hidden layer to the output layer. This can achieve mapping from the
input layer space to the output layer space, approximate any nonlinear function, and deal
with difficult problems. The RBF network is conceptually similar to the k-nearest neighbor
(k-NN) algorithm. In the self-organizing learning stage, basis function centers can be
obtained; in the supervised learning stage, the weight between the hidden layer and the
output layer is obtained, and each parameter can be learned quickly, thus overcoming the
local minima problem.

To solve the central problem of the RBF function and the number of neurons in the
hidden layer, Li et al. [7] proposed a new dynamic radial basis function (RBF) network to
predict outbound passenger traffic. Li et al. [37] proposed a multiscale radial basis function
(MSRBF) network to address the issue of when the number of input vectors is large, there
may be a large number of candidates in the initial model. The MSRBF network can be
applied to forecast irregular fluctuations in subway passenger flow.

(4) Long Short-Term Memory (LSTM)

LSTM is a time recurrent neural network (RNN) that was first proposed by Hochreiter
and Schmidhuber [38]. Due to its unique design structure, an LSTM is suitable for process-
ing and predicting important events with exceedingly long intervals and delays in time
series. An LSTM network is a special type of regression neural network that uses a forget
gate, an input gate, and an output gate to control the storage units. LSTM overcomes the
problems of a RNN through gradient disappearance and gradient explosion. LSTM ap-
plications include time-series forecasting, language modeling, machine translation, image
captions, and handwriting recognition.

In forecasting passenger flow, Ke et al. [8] proposed a fusion convolutional long
short-term memory network (FCL-Net) for forecasting short-term passenger demand. Xu
et al. [39] developed a long short-term memory network to forecast bike-sharing trip
production and attractions at different time intervals.

3. Proposed Model

Passenger flow forecasting is a nonlinear, nonstationary time series problem, and a
good forecast result mainly depends on having a large amount of high-quality data and
a large number of methods. Nowadays, there are many passenger flow forecast models;
however, some issues can be improved to enhance performance, such as:

1. Passenger flow forecasting is a periodic pattern, and many forecast models have been
proposed to address this pattern. Previous studies have shown that datasets of no
more than one month can be used to predict passenger flow at intervals of 5 or 15 min,
and some studies use longer time datasets to predict passenger flow, such as daily or
weekly intervals. To avoid the impact of extreme passenger flow, some studies do not
consider the data collected on national holidays or weekends, and some studies treat
special data as another forecast model for separate training. There is some room for
improvement to obtain satisfactory results.

2. To solve the shortcomings of the model, more and more studies are taking advantage
of different methods that complement each other and proposing hybrid models to
forecast passenger flow. These hybrid models mainly combine traditional algorithms
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and neural networks, but their nature still has limitations. Hence, hybrid models can
be further strengthened to obtain the dynamics and forecasts of passenger flow.

3. Most research in this area has focused on passenger flow forecasting for railways, high-
speed railways, and subways. Compared with other public transportation systems,
there have been fewer studies forecasting bus passenger flow based on smartcard
data, and few studies have considered time-series lag periods as forecast variables.

4. Previous research on the spatio–temporal nature of smartcard data has been widely
conducted, and different attributes have been used in these studies; however, these
studies have rarely discussed why these attributes have been selected and which
attributes should be used in these methods. The selection and combination of input
attributes is an important bridge between methods and forecast results.

Based on the discussion above, current forecast models of bus passenger flow still have
limitations in terms of attribute selection, methods, and public transportation models. To
process these limitations, we propose an integrated-weight time-series model for forecasting
bus passengers using smartcards. First, the proposed model considers the attributes of time,
space, and the lag period and uses four intelligent forecast models (multilayer perceptron,
support vector regression, RBF network, and LSTM network) to forecast passenger flow for
different time series (weeks, weekdays, and holidays). Second, the forecast data from the
top three of the 80 combined forecast models (8 lag periods × 10 algorithms) were used as
adaptive factors in the proposed model to enhance the forecast results.

The proposed time series forecasting model was revised from adaptive expectations
theory [40,41]. Adaptive expectations theory is an economic theory that gives importance
to past events when predicting future outcomes—a hypothetical process through which
people can form expectations of what will happen in the future based on what has happened
in the past. In a more complex and adaptive expectation model, different weights can be
assigned to past values, and we can look at how different the fluctuations are from the
predicted fluctuations.

To quickly understand the proposed model, Figure 1 shows a detailed explanation
of the procedure to clarify the research process and computational steps involved. The
proposed procedure, from top to bottom, includes data collection, data preprocessing, lag
period testing, building a time-series forecast model, and evaluation and comparison.

Computational steps

The proposed procedure has five steps (see Figure 1). A detailed breakdown of the
five steps is provided in the following sections.

Step 1: Data collection

In this step, two types of data were collected:

(1) One type was smartcard data from a bus industry in Kaohsiung City, Taiwan; the data
were collected over a total of 669 days, including 2,865,763 records from January 2018
to October 2019, 17 bus lines (routes), and 137 bus stations. There were 42 attributes
in the collected data (see Table 1), covering 15 administrative districts of Kaohsiung
City in Taiwan. Regarding data location, the longitude range is 22.58706 to 22.792377,
and the latitude range is 120.32016 to 120.29944.

(2) The other data type was meteorological data because the number of passengers
boarding is often affected by many external factors, especially weather, which has
always affected the travel behavior of passengers. Many researchers have presented
the impact of weather conditions on passenger flow [13–15]. We collected weather
data from the Kaohsiung Meteorological Bureau.
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Figure 1. Proposed procedure.

Table 1. Original 42 data attributes.

Bus schedule number Trading time for boarding Card payment amount for exiting
Station number Types of trading Benefit points discount for exiting
Station name Voice code for boarding Free
Driver number Boarding station code Cash
Driver name Boarding station name Penalty fine
Bus number Transferring discount amount Making up the fare difference
Route number Onboard card payment amount Company subsidy amount
Route name Boarding by benefit points discount Transaction file name for boarding
Card number Trading date for exiting Transaction file name for exiting
Service type Trading time for exiting Outbound/return
Trade tickets Types of trading for exiting Counting status
Fare Voice code for exiting Counting date
Smartcard payment amount Station code for exiting Transferring group code
Trading date for boarding Station name for exiting Smartcard company

Step 2: Data preprocessing

We calculated the total number of bus passengers (22 months) for each route based on
smartcard data. Figure 2 shows the total number of passengers for each route. Among the
17 routes, Route 1, Route 7, and Route 52 had the top three numbers of passengers: 508,997,
545,915, and 272,968, respectively.
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Figure 2. The number of passengers for each route.

Step 2.1: Extraction of attributes from smartcard data

This step involved the extraction of different time attributes from smartcard data as
follows:

From the selected top three routes, the data from the three popular routes were divided
into seven days (weeks), weekdays, and holidays. Weekdays were Monday to Friday
(455 days), and holidays were Saturdays and Sundays (214 days). The total number of
days was 669 (455 weekdays + 214 holidays), and a different day was used as an additional
attribute. We extracted seven attributes from the smartcard data, including months, days,
weeks, bus lines, bus stations, station passengers, and the number of passengers. Table 2
lists all the attributes used in this study in detail.

To check whether the number of rides was periodic, we plotted three figures to show
the changes in the number of passengers for the top three routes based on the number of
passengers per day on different days, as shown in Figures 3–5.

Figure 3 shows the number of passengers on three routes per day by week, which
shows that the number of rides was periodic. Only Route 1 showed peak ride times, January
1 (New Year Day) and December 31 (New Year Eve), which are both national holidays.
These long holidays are suitable times for going home or traveling, and as such, there is
large-scale passenger flow. Route 7 has many bus stations, and the first half of the route
is the same as Route 1; therefore, the number of passengers was found to have a similar
periodicity to Route 1. For Route 52, because the bus station is different from the other two
routes, the number of rides was found to be less similar to the other two routes, but it still
showed periodicity.

Figure 4 shows the changes in the number of passengers per day for the three routes on
weekdays. For a few days in the weekday period, peak passenger numbers occur, such as
after 1 January (New Year’s Day) and before the national holiday on 28 February, as people
go home early before the holidays. In addition, 25 December (Christmas) is a religious
holiday and a time when various industries launch marketing activities. As a result, people
celebrating the festive season go out to purchase discounted goods.

Figure 5 shows the changes in the number of passengers on the three routes during the
holidays. Compared with Figure 3, the weekly data show that 1 January (New Year’s Day)
and 31 December (New Year’s Eve) are days with many passengers, and those two days
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are also holidays; therefore, the trend for the numbers of passengers on the three routes
showed a similar periodicity for holiday data.

Figure 3. The number of passengers per day for the top three routes by week.

Figure 4. The number of passengers per day for the top three routes on weekdays.
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Figure 5. The number of passengers per day for the top three routes on holidays.

Step 2.2: Addition of external meteorological attributes

Previous studies [13–15] presented the impacts of weather factors on passenger flow.
This study collected six types of meteorological data, including temperature, humidity,
wind speed, rainfall, sunshine, and ultraviolet radiation. From the practical application of
bus passenger flow forecasting, we collected data on 15 meteorological attributes, described
in the meteorological type of Table 2.

Step 3: Test lag periods

In a time series, the autoregressive model is the output variable that is linearly depen-
dent on its own previous value and random term. In order to test whether passenger flow
has a time lag, this study used a partial autocorrelation function (PACF) to test how many
passenger flows are significant at the 0.05 significance level, as the PACF is most useful
for identifying the amount of lag in an autoregressive model. Further, lag-n is defined as
follows: from the original data, the series values are moved forward n periods [42]. For
example, lag 1 is moved forward 1 period; lag 10 is moved forward 10 periods. The test
results are listed in Table 3 to show the lag periods for the number of passengers travelling
on the top three routes based on the number of passengers per day for different daily data
series (seven days, weekdays, and holidays). Table 3 shows that the largest lag period was
seven for seven-day data; the largest lag period for the weekend data was six, and the
holiday data had two lag periods.
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Table 2. Attributes used in this study.

Type Attribute Description

Smartcard

Month “1” denotes Jan, “2” means Feb, . . . , “12” represents Dec

Day “1” denotes the first day for each month, “2” means the second day for
each month, . . . , “31” denotes the last day for each month.

Week “1” denotes Monday, “2” means Tuesday, . . . , “7” represents Sunday.

Bus line The attribute was applied to visualize the heat map.

Bus station The attribute was applied to visualize the heat map.

Station passengers
The attribute represents the passengers boarding at each bus station,
which was applied to calculate the number of passengers at all stations
for each day

Passengers Number of passengers on the bus line for each day

Meteorology

Temp Average temperature, degrees Celsius, ◦C

Tmax Maximum temperature, degrees Celsius, ◦C

Tmin Minimum temperature, degrees Celsius, ◦C

RH Relative humidity, percent %

RH_min Minimum relative humidity, percent %

WS The wind speed was taken as the average value 10 min before the
observation point, meters per second (m/s).

WS_max
The maximum wind speed was taken as the maximum instantaneous
wind speed within 1 h before the observation point, meters per second
(m/s).

Precp The precipitation was taken as the total rainfall in a day, milliliters per
day.

Precp_hr Total number of rainy hours in a day, number of hours

Precp_10max Maximum precipitation within ten minutes of the day, milliliters per
ten minutes.

Precp_hrmax Maximum precipitation within an hour of the day, milliliters per hour.

SunS Sunshine hours, number of hours

SunS_rate The sunshine rate is a percentage ratio of the recorded bright sunshine
duration and daylight duration in a day, percent %.

GloblRad
Global radiation refers to a value used to measure the solar radiation
energy for a given time and area, megajoules per square meter and per
day, MJ/m2.

UVImax

The maximum ultraviolet index refers to the international
measurement standard for the solar ultraviolet (UV) radiation intensity
at a certain place on a certain day; the index value from 0 to 11+ is
divided into five levels.

Lag period

Lag 1 A Lag 1 autocorrelation is the correlation between values that are one
time period apart.

Lag 2

a Lag k autocorrelation is a correlation between values that are k time
periods apart, where k = 2, 3, 4, 5, 6, 7.

Lag 3
Lag 4
Lag 5
Lag 6
Lag 7
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Table 3. Number of lag periods for each route in different time data.

Week (Seven Days) Weekday Holiday

Route 1 Lag: 1, 2, 4, 6, 7 Lag:1, 2, 4, 5 Lag:1
Route 7 Lag: 1, 2, 3, 4, 7 Lag:1, 3, 4, 5, 6 Lag:1, 2
Route 52 Lag: 1, 2, 3, 4, 6, 7 Lag:1, 2, 3, 4, 5 Lag:1, 2

Step 4: Establishment of an integrated-weight time-series forecasting model

After extracting/adding the attributes of Steps 2 and 3, all attributes are listed in
Table 2. This study proposed an integrated-weight time-series forecasting model to improve
forecasting performance. That is, this step applied the four intelligent forecast methods to
train these parameters of multi-variables and lag periods based on different data series and
forecast passenger numbers. Further, we input the collected data with time order to train
their parameters by SVR, MLP, RBF network, and LSTM; hence, these models are called
intelligent time-series models. In addition, the four intelligent forecast methods (MLP, SVR,
RBF network, and LSTM) were separated into 10 models according to the hidden layer,
activation function, and kernel functions, as shown in Table 4.

Table 4. Abbreviation of ten intelligent forecast models.

Model Abbreviation Full Name

MLP_1_ lin MLP with 1 hidden layer and linear activation function
MLP_1_ log MLP with 1 hidden layer and logistic activation function
MLP_2_ lin MLP with 2 hidden layer and linear activation function
MLP_2_log MLP with 2 hidden layer and logistic activation function
SVM_lin SVR with linear kernel function
SVM_pol SVR with polynomial kernel function
SVM_rbf SVR with RBF kernel function
SVM_sig SVR with sigmoid kernel function
RBF net Radial basis function network
LSTM Long short-term memory

The proposed model is based on the concept of adaptive expectation theory [40,41] to
adapt the forecast data of the top three of the 80 combined forecast models (10 intelligent
forecast models with 8 different lag periods, as shown in Table 5). The equation used in the
proposed model is as follows.

F(t) = α × first(t) + β × second(t) + γ × third(t) + T(t − 1) (1)

where

F(t) is the forecast of the number of passengers at time t,
T(t − 1) denotes the actual number of passengers at time (t − 1),
first(t) represents the forecast of the best model for the number of passengers at time t,
second(t) is the forecast of the second-best model for the number of passengers at time t,
third(t) denotes the forecast of the third-best model for the number of passengers at time t,
α is the parameter of first(t),
β represents the parameter of second(t),
γ denotes the parameter of third(t), and the range of α, β, and γ is from −1 to 1 (−1 means
a negative correlation, and 1 represents a positive correlation).
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Table 5. Results of 80 combined models for Route 1 on week data.

Algorithm No lag Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

LSTM
RMSE 346.983 323.136 314.640 313.599 311.582 270.137 246.327 235.838
MAPE 55.297 51.271 54.108 53.805 46.663 42.201 30.713 29.091

MLP_1_lin
RMSE 419.087 457.096 440.914 464.523 487.629 465.230 444.713 441.920
MAPE 50.414 40.028 42.689 39.118 38.048 39.447 42.019 42.427

MLP_1_log RMSE 413.770 422.451 437.535 442.538 454.443 413.121 425.137 473.599
MAPE 53.621 48.826 43.573 42.355 40.548 54.963 46.756 38.588

MLP_2_lin
RMSE 417.011 436.597 606.395 496.521 520.526 451.678 455.457 481.922
MAPE 51.544 43.844 58.925 38.235 39.951 41.111 40.371 38.435

MLP_2_log RMSE 423.232 456.767 463.386 427.124 433.571 448.466 435.913 466.868
MAPE 48.477 40.148 39.307 46.883 44.817 41.475 43.736 38.926

RBF net
RMSE 407.477 406.968 436.204 416.700 413.988 406.394 405.928 400.344
MAPE 67.738 65.773 44.045 51.765 54.012 65.769 64.782 65.439

SVR_lin
RMSE 415.328 438.604 444.973 460.935 440.719 434.932 435.827 435.218
MAPE 52.564 43.338 41.875 39.496 43.074 45.093 43.985 43.888

SVR_pol RMSE 428.524 413.265 424.142 434.607 419.408 417.863 422.436 423.037
MAPE 46.397 54.061 41.223 44.322 50.989 52.713 49.107 48.805

SVR_rbf
RMSE 437.040 414.256 422.609 415.376 419.644 421.224 420.811 423.770
MAPE 43.773 53.330 48.703 52.607 50.366 50.886 50.222 48.335

SVR_sig RMSE 416.775 445.232 448.546 446.987 500.864 441.484 406.373 410.386
MAPE 51.681 41.895 41.223 41.478 38.510 43.311 62.067 54.371

Model abbreviations are shown in Table 4, and the bold print denotes the top three of the 80 combined models in
terms of the RMSE and MAPE.

To optimize the parameters for α, β, and γ, the top three forecasted data points were
used to adapt these parameters based on the minimum root mean square error (RMSE) and
average absolute percentage error (MAPE) by using Equation (1). First, we set a feasible
step iteration (step = 0.001) to produce the best parameters for α, β, and γ. Because the
right-hand side of equation (1) has the actual number of passengers at the previous time
t − 1, the parameters of the first three forecast data points would fall between plus and
minus one.

Step 5: Evaluation and comparison

In order to evaluate the proposed model and compare it with the listed models, in this
step, the minimum RMSE and MAPE criteria were used for the evaluation and comparison.
In terms of data, the data from three routes with three different types of days were compared
experimentally based on an 8:2 ratio of training and testing data with time order. The
data collected for each route were as follows: weekly data 669 = 535 training data + 134
testing data; weekday data 455 = 364 training data + 91 testing data; weekend data 214 =
171 training data + 23 testing data. The performance indicators used were the root mean
square error (RMSE) and average absolute percentage error (MAPE). The equations are
shown as Equations (2) and (3).

RMSE =

√
∑n

t=1|F( t )− T( t )|2
n

(2)

MAPE =
100%

n

n

∑
t=1

∣∣∣∣ F( t )− T( t )
T( t )

∣∣∣∣ (3)

where T(t) is the actual number of passengers at time t, F(t) is the forecasted number of
passengers at time t, and n is the number of data points.

4. Experimental Comparison

From the procedure proposed in Section 3, the initial data analysis and acquisition of
necessary attributes were selected. This section describes the experiments implemented to
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compare the proposed model with the listed models based on the minimum RMSE and
MAPE criteria and then gives some findings.

4.1. Experimental Results

The experiments involved nine data series based on three routes with three different
day types; each data series was partitioned into 80% training data and 20% testing data
by time sequence. Based on Steps 4 and 5, which were presented in Section 3, this section
presents the experimental results.

(1) Route 1

The results of 80 combined models for Route 1 for weekly data are shown in Table 5.
In terms of RMSE, the top three best results were LSTM with lag 7, LSTM with lag 6, and
LSTM with lag 5. For MAPE, the top three best results were LSTM with lag 7, LSTM with
lag 6, and MLP_1_lin with lag 4 for the MAPE. We used Equation (1) to adapt the forecast
data of the top three best forecast models to the minimal RMSE and MAPE. Similarly, the
other two data series for Route 1 were experimented with based on Steps 4 and 5. Finally,
the forecast data for the top three forecast models under the minimal RMSE were collected,
and the results for Route 1 are shown in Table 6. The results show that the proposed model
performed better than the listed models for Route 1, and the top three models were LSTM
intelligent forecast methods.

(2) Route 7

As with the Route 1 experiment, we applied the proposed model to adapt the forecast
data from the top three best forecast models for three data series of Route 7 using the
minimal RMSE. The results are shown in Table 7. Table 7 shows that the proposed model
was better than the listed models for Route 7 in terms of RMSE and MAPE.

Table 6. Results of proposed model for Route 1 based on minimal RMSE.

Week Weekday Holiday

LSTM
lag 7

RMSE 235.838 LSTM
lag 4

RMSE 175.697 LSTM
lag 4

RMSE 255.503
MAPE 29.091 MAPE 34.973 MAPE 21.913

LSTM
lag 6

RMSE 246.327 LSTM
lag 1

RMSE 177.303 LSTM
lag 5

RMSE 255.907
MAPE 30.713 MAPE 34.003 MAPE 21.469

LSTM
lag 5

RMSE 270.137 LSTM
lag 2

RMSE 177.751 LSTM
lag 7

RMSE 259.302
MAPE 42.201 MAPE 36.563 MAPE 21.085

Proposed RMSE 199.882 Proposed
method

RMSE 115.963 Proposed
method

RMSE 171.627
MAPE 54.534 MAPE 33.068 MAPE 20.426

Model abbreviations are shown in Table 4, and the bold digits denote the optimal results among the four models
for RMSE and MAPE.

Table 7. Results of proposed model for Route 7 based on minimal RMSE.

Week Weekday Holiday

LSTM
(no lag)

RMSE 142.964 RBF net
lag 4

RMSE 131.499 LSTM
(no lag)

RMSE 148.165
MAPE 27.182 MAPE 15.400 MAPE 36.102

LSTM
lag 5

RMSE 143.360 MLP_2_log
lag 1

RMSE 131.794 LSTM
lag 2

RMSE 157.255
MAPE 27.397 MAPE 15.607 MAPE 37.800

LSTM
lag 4

RMSE 144.51 MLP_2_log
lag 5

RMSE 133.274 LSTM
lag 1

RMSE 164.564
MAPE 27.964 MAPE 15.657 MAPE 40.155

Proposed RMSE 93.682 Proposed
method

RMSE 82.124 Proposed
method

RMSE 110.650
MAPE 26.728 MAPE 15.295 MAPE 35.097

Model abbreviation is shown in Table 4, and the bold digits denote the optimal results among the four models for
RMSE and MAPE.
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(3) Route 52

Similarly, we only list the results for three data series of Route 52 in terms of the
minimal RMSE, as shown in Table 8. The results show that the proposed model performs
better than the listed models for Route 7 in terms of RMSE and MAPE.

Table 8. Results of proposed model for Route 52 based on minimal RMSE.

Week Weekday Holiday

LSTM
lag 7

RMSE 117.833 LSTM
lag 1

RMSE 107.196 LSTM
lag 4

RMSE 121.741
MAPE 37.901 MAPE 29.631 MAPE 52.935

LSTM
lag 6

RMSE 119.873 LSTM
lag 7

RMSE 109.904 LSTM
lag 6

RMSE 121.767
MAPE 38.999 MAPE 28.371 MAPE 53.773

LSTM
lag 5

RMSE 131.381 LSTM
lag 2

RMSE 110.222 LSTM
lag 5

RMSE 121.943
MAPE 48.909 MAPE 29.768 MAPE 52.555

Proposed RMSE 79.963 Proposed RMSE 78.179 Proposed RMSE 60.968
MAPE 38.126 MAPE 26.025 MAPE 41.958

Model abbreviation is shown in Table 4, and the bold digits denote the optimal results among the four models for
RMSE and MAPE.

4.2. Findings and Discussion

The experimental results show that the proposed model is better than the listed models
based on the minimum RMSE and MAPE criteria. However, there are some other findings
to be discussed, as follows.

(1) Key attributes

In the forecast experiments, this study used the forecast data from the top three forecast
models to adapt the optimal forecast. Simultaneously, we obtained the attributes of the
top three forecast models. Additionally, we used the top three forecast models to rank the
smartcard, lag periods, and meteorological attributes based on their impacts on passenger
numbers. Then, we took the common attributes (at least two of the same attributes of the
top three models) as the key attributes. The ordering of the key attributes of bus routes
for different time series are shown in Table 9. Based on the ordering of key attributes, we
identified the following features:

Routes 1 and 7: The three different time series for Route 1 have the same top three
key attributes: Precp_10max, Precp, and Precp_hrmax. The top three key attributes in the
weekly data for Route 7 are the same as for Route 1. This means that rainfall is an important
factor for passenger flow on Route 1 and in the weekly data for Route 7. The top two key
attributes in the weekday and holiday data for Route 7 are lag 1 and week, which shows
that the passenger flow through Route 7 on weekdays and holidays is dependent on the
week (Monday, Tuesday, . . . , Sunday) and the passenger flow in the previous period.

Because the bus stations on Routes 1 and 7 are close to the university, high-speed rail,
theme park, and tourist attractions, the collected data reveal that most passengers on these
routes are students and tourists. Passengers want to go to schools and theme parks, and
most of them will take the two routes. In addition, Route 7 has a highway transit station
and Buddha memorial station. These two stations are important transportation and tourist
attractions; hence, climate attributes (such as SunS, SunS_rate, and Tmin) influence the
activity of tourists on Route 7 for the holiday data series.

Route 52: The bus stations on Route 52 are close to the university, high-speed rail, hos-
pital, and detention center. These bus stations are used by students, patients, government
employees, and their families, and the students, patients, and government employees are
off duty on holiday; hence, the passenger flow is influenced by climate attributes (such as
Precp_10max, Precp_hrmax, and Precp_hr) on the weekdays.

Three Routes: From Table 9, it can be seen that the three attributes (smartcard, meteo-
rology, and lag period) affect the passenger flow, but, in different data series, the different
attributes have different degrees of influence. Overall, the passenger flow through Route 1
and the weekly data for Route 7 have more attributes in common than other data.
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Table 9. Key attributes of bus routes for different time data.

Route Dataset Ordering of Attribute Importance

Route 1 week Precp_10max > Precp > Precp_hrmax > lag 7 > lag 1 > Precp_hr > week > lag 5 > lag 2 > RH >
month > lag 6 > Tmax > UVImax

weekday Precp_10max > Precp > Precp_hrmax > Precp_hr > lag 1 > week > Temp > WS > Tmax
holiday Precp_hrmax > Precp > Precp_10max > lag 1 > Precp_hr > week > month > SunS_rate > Tmax

Route 7 week Precp > Precp_hrmax > Precp_10max > Precp_hr > lag 1 > GloblRad > WS > RH_min > Temp >
Tmin > RH > SunS_rate > UVImax

weekday lag 1 > week > month > Temp > Tmin > GloblRad > Precp_hr > RH_min > Precp > Precp_10max
holiday lag 1 > week > SunS > SunS_rate > Tmin > month > GloblRad > Precp_hr > RH_min > WS > lag 2

Route 52 week lag 1 > week > lag 2 > SunS_rate > Tmax > GloblRad > WS_max > UVImax > Month > Precp
> SunS

weekday Precp > lag 1 > Precp_10max > Precp_hrmax > Precp_hr > RH > Tmin > WS_max > Day > lag 5
holiday lag 1 > SunS_rate > lag 2 > SunS > Precp > Precp_10max > GloblRad > Tmax > Precp_hr

(2) Lag period

From the lag period test results shown in Table 3, it can be seen that the number of
lag periods is consistent with the different time-series data. We can see that the lag period
is seven for the weekly data (a week has seven days); the holiday data are organized by
Saturdays and Sundays and have a lag period of two; the lag period for the weekday
data is five. We checked whether the lag period is consistent with the number of lags for
the top three models; if the same lag periods exist, then the data have seasonal variation
(seasonality). Seasonality means that the time series data have periodic, repetitive, and
predictable patterns [43]. We summarized the data from Tables 6–8, and the lag period
results for the top three models for each route for different time series are shown in Table 10.

Based on Table 10, it can be seen that the weekly data for Routes 1 and 52 are consistent
with the number of days in a week, as the number of lags is seven. This means that the
weekly time-series data for Routes 1 and 52 have a weekly seasonal variation (seasonality),
as shown in 6. Thus, it is necessary to add the passenger flow lag periods to forecast the
number of passengers.

Table 10. Lag period of top three models for each route in different time data.

Week (Seven Days) Weekday Holiday

Criteria RMSE RMSE RMSE

Route 1
LSTM lag 7 LSTM lag 4 LSTM lag 4
LSTM lag 6 LSTM lag 1 LSTM lag 5
LSTM lag 5 LSTM lag 2 LSTM lag 7

Route 7
LSTM (no lag) RBF net lag 4 LSTM (no lag)
LSTM lag 5 MLP_2_log lag 1 LSTM lag 2
LSTM lag 4 MLP_2_log lag 5 LSTM lag 1

Route 52
LSTM lag 7 LSTM lag 1 LSTM lag 4
LSTM lag 6 LSTM lag 7 LSTM lag 6
LSTM lag 5 LSTM lag 2 LSTM lag 5

Bold text denotes that the lag period of the top three models is consistent with the number of days in a week.

(3) Model performance

From Table 10, we can see that most of the top three models used LSTM, because LSTM
is suitable for processing and predicting important events with very long intervals and
delays in the time series [44]. Furthermore, the proposed model was found to be better than
the listed models for each route for different time series, as shown in Tables 6–8. Therefore,
the proposed model has some advantages: (1) The proposed model incorporates the
smartcard, meteorology, and lag period attributes; (2) To enhance the forecast performance,
this study proposed an integrated-weight time-series model to adapt the data from the
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top three of the 80 combined forecast models; (3) Bus data (including smartcard and
meteorology data) are time series data, and the time series model helps organizations to
understand the underlying causes of trends and systemic patterns over time. Therefore, we
propose the use of an intelligent time series model to forecast passenger numbers.

(4) Sensitivity analysis

A sensitivity analysis can determine the associations between attributes. It facilitates
more accurate forecasting and is the process of adjusting only one input and studying how
it affects the overall model [45]. Based on sensitivity analysis involving the removal of
attributes, we removed the meteorology attributes, the first key attribute, and the second
key attribute to show the forecasting ability and robustness of the proposed model. This
study was based on the ordering of key attributes for the three routes, as shown in Table 9,
and we used the weekly datasets of the three routes to conduct the sensitivity analysis.
The results show that the proposed model without meteorological data has a larger RMSE
than the model with data from all attributes for the three routes, as shown in Table 11.
Further, removing the first key attribute generates a larger error, and removing the second
key attribute also increases the error. Based on the sensitivity analysis, we can confirm that
the meteorological data are important when building the proposed model, and the first and
second key attributes affect the proposed model.

Table 11. Results of sensitivity analysis based on RMSE.

Route 1 Route 7 Route 52

Full attributes 199.882 93.682 79.963
Removal of meteorology attributes 231.714 144.949 113.959
Removal of first key attribute 228.594 136.121 121.006
Removal of second key attribute 228.066 140.402 116.717

5. Conclusions

Since 2000, Taiwan has been implementing the AFC system, also called the smartcard
system, in the transportation system. The widespread use of smartcards helps passengers
greatly reduce their transaction time and helps companies collect a large amount of infor-
mation. Although there is a smartcard system, serious traffic jams still occur. Therefore, a
good passenger flow forecast could be used to reduce traffic congestion, increase passenger
convenience, and assist enterprises with formulating route planning, resetting timetables,
and constructing other policies. In addition, a good passenger flow forecast can help cities
reduce excessive energy consumption and carbon emissions and improve urban ecosystems
to achieve sustainable development.

In order to achieve better prediction performance, we carried out the following steps:

(1) We proposed an integrated-weight time-series forecast model to forecast passenger
flow. We used real smartcard data to verify that the proposed model has good
predictive capabilities, rather than using simulated data to show the research results.
The experiments showed that the proposed model performed better than the listed
models for each route for different time series, as shown in Tables 6–8.

(2) In terms of the verification data, we focused on the top three routes with the most
passengers out of the 17 routes—Route 1, which showed the largest fluctuations;
Route 7, which has the largest number of passengers; and Route 52, which has the
least number of passengers of the top three routes—as shown in Figure 2.

(3) In terms of attribute screening, this study used smartcard data and time attributes as
well as 15 external weather attributes. In addition, as the number of passengers varies
with time, this is a time-series forecasting problem; hence, seasonal trends had to be
considered. Therefore, we added the number of lags to the forecast of passenger flow.

(4) As shown in Tables 6–8, we found that the data for each route could be partitioned by
time (weeks, weekdays, and holidays) to improve the forecast result. Based on the
key attributes shown in Table 9 and the lag periods of the top three models shown in
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Table 10, the number of lags affected forecast results. Furthermore, most of the top
three models are in the LSTM family, which presents a better forecast.

In terms of future work, we have two suggestions to further enhance this topic by
making the results less conservative and improving the forecasting performance: (1) other
attributes could be used in these forecast models, and (2) other methods (such as deep
learning algorithms) could be applied to this topic.
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Abstract: Digital innovations have changed the way many industries operate, but the construction
industry has been slow to adopt these technologies. However, challenges such as low productiv-
ity, project overruns, labor shortages, and inefficient performance management have motivated
Thailand’s Department of Highways to adopt digital innovations to build a competitive advantage.
Because this industry requires a large work force, obstacles to collaboration can result in ineffective
project management. We aimed to improve collaboration on bridge inspections that typically requires
the involvement of many people, personal judgement, and extensive travel to survey bridges across
the country. One major challenge is to standardize human judgement. To address these challenges,
we developed a user-centric bridge visual defect quality control mobile application to improve
collaboration and assist field technicians to conduct visual defect inspection. Our results can be
used as a case study for other construction firms to embrace digital transformation technologies.
This research also demonstrates the new-product development process using the new technology
in known markets innovation development and technology acceptance model. We offer several
recommendations for future research, including other infrastructure applications.

Keywords: construction; collaborative platform; bridge defect inspection; project management;
structural health monitoring; mobile application; new-product development

1. Introduction

Recently, many industries in Thailand have begun to adopt digital transformation
to stay competitive. For example, traditional car rental is transitioning into a car sharing
business using Internet of Things (IoT) and mobile phone application technology [1]. The
construction industry is also undergoing digital transformation to improve its ability
to address challenges such as low productivity, project overruns, labor shortages, and
inefficient performance management [2] Suboptimal collaboration among project managers,
administrative staff, and on-site laborers is a common problem in large construction firms.
Ineffective collaboration leads to inefficient project management, delays, and increased
costs. Miscommunication, human error, poorly standardized work processes, and data
loss, also contribute to inefficient project management. Bridge inspection requires many
staff operating in different locations to perform visual inspection, and to update bridge
information. This routine process involves inspection planning, problem identification,
and considerable human judgment that is difficult to standardize [3]. The analysis of
large digital data sets may improve project management, safety, energy management,
decision-making design, resource management, and control costs [4].
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Bridge substructure defect inspection is ideally suited for automated or semi-automated
digital applications due to frequent human errors and a chronic shortage of skilled in-
spectors as shown by the study of V. Gattulli and L. Chiaramote [5]. A 2021 study by P.
Kruachottikul et al. described the use of mobile phone applications to improve quality
control, reduce miscommunication, increase transparency, and improve collaboration in
Thailand’s major construction organizations. Such applications enable users to remotely
monitor their projects in real-time, support multimedia attachments, and reduce commu-
nication time [6]. In addition, our previous study described how artificial intelligence
(AI) can assist users with bridge substructure defect inspection and severity prediction [7].
Recently, more study on the various bridge defect detection with AI have been performed
in the laboratory, but not in real environment [8]. Here, we continue this work with the
development of a mobile phone application with a built-in AI tool to improve quality
control (QC) for bridge defect inspection quality control assessment. This tool can also be
used to assist QC field technicians to build bridge information databases, detect defects,
perform severity ranking, communicate with team members, and assign new tasks. In
addition to technical development, we also describe the product development process from
concept to implementation and propose factors that influence intention to use under the
framework of the technology acceptance model.

The overarching objective is to create value to Thailand’s construction industry
through digital transformation technology. In doing so, in collaboration with Thailand’s
Department of Highways, our study can improve project management, reduce workload
for its limited experts, and improve collaboration among team members. Importantly, by
helping to improve road and bridge infrastructure, these technologies may also reduce
accidents, a serious problem in Thailand which ranked second in deaths from traffic acci-
dents in a 2018 World Health Organization report [9]. Therefore, we investigated the use
of digital technology to conduct nondestructive bridge defect inspection to evaluate the
condition of reinforced concrete [10].

Improving project management through better collaboration and quality control can
increase productivity and efficiency, leading to cost savings and competitive advantages.
Collaboration is about teamwork and communication. Teamwork is individuals working
together to achieve a common goal and is developed through continuous communication
among team members. Each team member seeks to clarify their roles and responsibilities
and reduce ambiguity. Team members then concentrate on their individual tasks and coor-
dinate in sub-groups where mutual expectations are developed. Therefore, the published
literature on teamwork, project management, and visual inspection were reviewed and
summarized.

First, teamwork is achieved through cooperation and coordination facilitated by
effective communication. When team members understand each other and are able to
synchronize their activities on a given schedule, the team can avoid delays, budget over-
runs, and reduce worksite accidents. Together, communication, coordination, cooperation,
and synchronicity are key elements of team performance [11]. Communication is also
an essential part of project management. The balance of frequent informal and formal
communication affects the performance on the project, by influencing the degree of col-
laboration and the level of trust within the team [12]. Consequently, communication is
a major determinant for project success or failure [13]. Instant messaging is a form of
computer-mediated communication (CMC) that involves sending digital messages through
computer networks [14].

Second, project management has become an important topic for an improvement
in construction industry, where communication as information exchange in the broader
organization is key [15]. As project teams face challenges from increasing competition and
higher productivity targets, it is essential that team members are capable of utilizing CMC
effectively. General forms of CMC are, for example, email, instant messaging, collaboration
tools, and social networking. Instant messaging, or chat, is the application for sending
and receiving short text messages, images, or files between people through a smart phone
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or computer. Instant messaging, through time, has evolved from teen sensation to an
important modern communication tool in daily business. Although email can technically
do the same function, instant messaging has some advantages that are team members can
send and receive information instantaneously. Moreover, cloud services can be applied
as a central repository for construction data as an end-to-end solution for timely decision-
making, [16] because construction projects usually involve several project teams, handling
different project locations, and dealing with various business report models.

Finally, automated optical inspection offers significant advantages over human eyes
in terms of fatigue, completeness, speed, and accuracy. Technological advances in sensors,
hardware, software, and data transfer speeds have improved automated visual inspection
and enabled high standard quality control product inspection and certification. These
digital technologies also generate data that can be used for statistical analysis. These tools
can be adopted by the construction industry to automate visual inspection processes to
improve competitiveness in road pavement, bridge construction, and other infrastructure
projects. Pavement maintenance requires the updated information on road conditions.
Because humans are subjective, have different levels of expertise and experience, and can
suffer from eye fatigue, problems with inter-rater variability are common. Semi-automated
pavement inspection systems have been used since 2000, but still rely heavily on human
inspection [17,18]. Additionally, pavement inspections are not only concerned with acquir-
ing images and designing image processing algorithms, [19] but also require integrating
data related to the surface stages of structures from sensors to analyze the visual quality of
the pavement. For example, a mobile phone to provide information of the location and
way to communicate between involved parties. Large concrete structures such as bridges
differ in age, performance, and condition. Various infrastructure monitoring programs and
systems have been integrated to monitor the structural safety and serviceability to provide
information for decision making and the allocation of resources [20].

This study explores the use of a mobile application for bridge substructure inspection,
a task that requires visual inspection as an initial step that is usually performed manually
according to the inspector’s judgment and an evaluation manual. However, this process is
subjective, time consuming, and involves safety risks; limitations that can be addressed by
the application of digital technology [21].

2. Materials and Methods

2.1. New Product Development Process

The next-generation stage-gate development system involves the conception, devel-
opment, and launch of new products [22]. It comes with the “Triple A” system concept
that promotes an innovation-driven product development process to be adaptive, agile,
and accelerated according to each development phase. This is also similar to that of the
lean startup concept that encourages development of a minimal viable product (MVP)
that is sufficient to generate user feedback to confirm the concept or prompt a pivot [23].
This study combines the stage-gate development system with a human-centered design
innovation [24] for a new technology-known market (NT-KM) to discover unmet needs
useful for restructuring product processes and to help inform the direction of the late design
process. NT-KM starts with identifying the design scope and direction of an innovative
product and/or its functionality in existing markets. Moreover, the research method tends
to be semi-structured with many open-ended questions and sometimes through direct
observation or physical models. The design direction is developed through a detailed
understanding of the existing processes to clearly define the desired outcome or capability.

2.2. Technology Acceptance Model

The unified theory of acceptance and use of technology (UTAUT) [25] is applicable
for identifying the key factors that influence behavioral intention to use. The objective
of the UTAUT is to support management by providing a useful tool to assess the success
of new technology introductions and understand the drivers of user acceptance, thereby
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enabling them to design interventions targeted at populations of users that may be less
inclined to adopt and use new systems. The UTAUT framework was modified, as shown in
Figure 1, by adding a bridge visual defect quality inspection (VIS) factor that was designed
though group interviews with ten lead users from Thailand’s Department of Highways.
VIS influences the performance expectancy (PER), effort expectancy (EFF), and social
influence (SOC) of UTAUT, and leads to a behavioral intention to use (BEH). Additionally,
VIS consists of an image acquisition to capture the bridge and identify defects (VIS1),
environment setup (VIS2), bridge defect information assistance (VIS3), and bridge history
information (VIS4). After the user acceptance framework was developed, a correlation
analysis based on a quantitative analysis involving 400 questionnaires was performed to
confirm the validity of previously identified factors, and to gather information to build a
user-driven mobile application. This analysis identified only VIS-PER-BEH and VIS-EFF-
BEH to be significant (Table 1). VIS-SOC-BEH was not significant, suggesting that a user’s
behavioral intention relies on personal factors and not from social influence. The analysis
also determined that VIS affects PER the most and that PER has the biggest impact on
BEH. In other words, user intention occurs once users try the product themselves, and not
when other people in an organization convince them to use it. This suggests that allowing
the user to test the product in a free trial could be an effective strategy. Additionally, user
intention to trial the product is more likely to occur if they recognize that the product
helps them improve their work performance. This also suggests that product features that
include image acquisition to capture the bridge and identify defects (VIS1), environment
setup assistance (VIS2), bridge defect information assistance (VIS3), and bridge history
information (VIS4), can assist user collaboration and inspection issues explicitly. After all
factors are confirmed, they are taken into account to design the user experience and user
interface (UXUI) of the mobile application.

Figure 1. Technology acceptance model using modified UTAUT with VIS factor.

Table 1. Technology acceptance model framework results.

Factor Hypothesis df
Mean

Square
SD F Sig.

VIS > PER H1 39 0.473 0.464 2.529 0.000*
VIS > EFF H2 39 0.337 0.462 1.688 0.008*
VIS > SOC H3 39 0.416 0.525 1.598 0.016*
PER > BEH H4 8 0.593 0.520 5.036 0.000*
EFF > BEH H5 10 0.466 0.520 3.960 0.000*
SOC > BEH H6 11 0.113 0.520 0.962 0.482
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2.3. Functional and Non-Functional Requirements

This section explains user requirements and key findings for functional and non-
functional requirements. The initial requirements were derived from our previous study [3]
as described in items 1 to 6 in Table 2, and then combined with the key findings (items 7
and 8) from our present study of the technology acceptance model.

Table 2. User requirements and key findings for bridge inspection mobile application.

User Requirements and Key Findings

1. The application can communicate in the same way as instant messaging.
2. The application can report to project managers in real-time.
3. The application can upload multimedia files, such as images or videos.
4. The application contains a progress status for each subtask.
5. The application is able to identify the responsible person for each task.
6. The application can send the report via email.
7. The application can be trialed for free before committing to use.
8. The application trial convinces the user that it has the potential to improve the user’s work
performance. This suggests that product features such as image acquisition to capture the bridge
(VIS1), identify defects (VIS2), environment setup assistance (VIS3), and bridge defect information
and bridge history information (VIS4), will support user collaboration and inspection issues.

In addition, Thailand’s Department of Highways’ inspection procedure flow chart for
bridge substructure was modified by adding a mobile application with assisted technology
for the visual inspection process. (Figure 2) [25].

Figure 2. Modified inspection process of reinforced concrete bridge substructure by using mobile
application with visual defect inspection assisted technology.

Next, the system is designed to automatically synchronize data with the cloud server
system via a mobile phone network (Figure 3).
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Figure 3. A system design for bridge inspection mobile application.

2.4. Use Case Diagram

After in-depth interviews, document analysis, and on-site monitoring, a use case dia-
gram was created (Figure 4). Users were divided into project managers (expert engineers)
and users (bridge inspectors). Each group can access different functions according to their
roles. Project managers can manage all functions in the application, including adding
projects and bridges that need to be inspected, and assign users specific tasks during the
inspection processes. Project managers have authority to confirm or reject the AI-assisted
inspection result. All data from each inspection is stored on a cloud server and can be used
to make maintenance plans and to improve AI accuracy. Users are limited to task functions.
They can add and edit the bridge and its damage information and upload an image for AI
analysis. A comment system for each task facilitates communication between users and
project managers.

Figure 4. A user case diagram.
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2.5. Hierarchy of Application Screen

The application starts with the default log-in page, where a user can either log in
or create a new account. After logging in, three screens can be selected as All Project,
Notification, and Setting screen. Then, under the All Project screen, the user can add or
edit a project, view all bridge details, and view assigned task lists from the Task Screen.
Finally, under Task Screen, the user can add task, assign, or edit accordingly. Hierarchy of
application screen is shown in Figure 5.

 
Figure 5. Hierarchy of application screen.

2.6. Backend Design

This mobile application backend design is based on microservice architecture because
it is a collection of small services, making the service management straightforward and
easier to add services in the future. (Figure 6) A variety of Amazon web services (AWS) are
employed to develop the application (API Gateway, Cognito, Cloudwatch, AWS Lambda,
DynamoDB, S3, and AWS IAM) [25]. The user interface (UI) of the application was devel-
oped using the react native framework [26]. The UI communicates with backend software
using AWS Amplify via Amazon API Gateway, involving API method data management
such as GET, POST, PUT, and DELETE that read, write, update, and delete data via APIs.
There are four functions (user, project, task, and notification) with their corresponding APIs,
created on AWS Lambda for managing project collaboration information. The Expo [27]
backend server was chosen to handle the notification part on account of multi-platform
message transmission via Firebase Cloud Messaging for Android and Apple push noti-
fication service for iOS [28]. The developed image processing software, CNN and ANN,
are also executed on AWS Lambdas. For data storage, Amazon DynamoDB, which is the
NoSQL database, creates five tables to store the text data and Amazon S3 Public Bucket
stores images. Any procedures related to the authentication system, such as log-in, register,
credential request, and status checking, are required to connect with Amazon Cognito.
Lambda Trigger function is used as post-confirmation for creating the user DynamoDB
database.

2.7. Microservice Development

The development of a collection of small services in the microservice architecture can
best be explained with a sequence diagram. The sequence diagram of the AI assisted bridge
visual defect inspection microservice collection was derived from our prior study [7], which
starts from the user uploading an image and defect information through the system. This
original image is stored in Amazon S3 bucket whereas the defect information is recorded on
the image table. Image processing function processes the original image by enhancing and
filtering to increase contrast and remove noise. The processed image is stored in Amazon
S3 bucket. The defect inspection function analyzes a processed image to identify the defect
section and send these to defect classification function to categorize the types of defects.
The severity prediction function evaluates the seriousness of the defect to help the project
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manager make decisions. This study proposes an alternative sequence diagram of the user
collaboration as shown in Figure 7b. It indicates that when users upload or modify the task
information, the application credentials, paths, and parameters are sent to the API gateway.
The system will call a task function with the task path to store the task info in the task table
and return these parameters back to the application UI.

Figure 6. Backend design.

 
(a) (b) 

Figure 7. (a) Sequence diagram of AI assisted bridge visual defect inspection. (b) Sequence diagram of user collaboration.

3. Results

3.1. Mobile Application

First, a user communication requirement was analyzed, the web board feature was
chosen, and then implemented at the task detail page. This feature allows the user and
project manager to communicate based on each task topic, so it is easy to track the progress
and see the historical conversation. After the new project is created, the user can add a new
task in a web board function. When creating a new task, the user must add an image and
task detail, and can insert a new comment or reply to the existing topic. When a real-time
report is required, a notification feature can be added to inform the project manager via
multiple channels such as in-app notification or email. At the task summary and detail
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page, the user can open, read, or edit issues including progress status, detail, and web
board. A person in-charge of a specific task can be assigned by the user. Furthermore, a
task status shown in the task detail page is used to indicate whether the task is on-going
or finished. Visual inspection assistance was implemented to support users to make more
accurate decisions, reduce inspection time, and provide an improved inspection experience.
Thus, the image acquisition tool supports users to acquire the bridge images easily in
different environments and the vision AI assisted feature automatically identifies defects
and predicts the severity result (severe or non-severe). The result is sent to users to verify
and confirm the results, saving time and enabling prescreening of results. Users trialed the
product and suggested the addition of self-learning tutorial tools, a more intuitive UXUI,
and using the mobile application as a core platform. Next, the mobile application wireframe
(Figure 8) and the application page schematic as a visual blueprint were developed using
the earlier UXUI to improve visual understanding of the application during the research
development phase. Its advantages are to optimize the layout and content placement easily,
and solve navigation and functionality problems in an adjustable format.

 
Figure 8. Wireframe of the mobile application.

3.2. Application Employment

The system is designed as a communication tool with AI embedded to assist the
project managers and bridge inspectors. Following systematic instruction of the application
as shown in Figure 9 was demonstrated to inspection crews. Project managers creates
new projects and assign bridges to be inspected according to the inspection plan from the
headquarter responding to their local divisions. Bridge inspectors are assigned. People
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involved in the process are notified by the application. Bridge defects are examined by
taking defect images and recording the defect details. These data are sent through Cloud
via 4G mobile network to be stored and analyzed by the assist AI. Project managers review
the defect information and can communicate with bridge inspectors to discuss in-depth
details on each defect with application web board system. With these organized and AI
assisted data, maintenance plan can be created efficiently and optimally.

Figure 9. System overview of the application.

3.3. User Satisfaction Results

After development was completed, a prototype was delivered for a hands-on trial in a
controlled environment by 14 project managers and bridge inspectors from the Thailand
Department of Highways. After the trial, satisfaction surveys and in-depth interviews
were conducted to elicit and measure feedback. Four domains were assessed: functionality,
user interface design, user experience, and overall performance. User satisfaction in each
domain was scored from 0 (unsatisfactory) to 5, indicating highly satisfied.

The average satisfaction result of each domain was 4.00, 3.714, 4.00, and 4.142, respec-
tively, and the total score was 4.024 (80.48%). (Table 3) This means that the implemented
features in this application that are required for behavioral intention to use, were built and
tested by another group of users who were highly satisfied. However, the lowest score of
user interface design (Table 4) can be improved in the future. According to the concept of
stage-gate process, the improvement will be performed after collecting and analyzing more
user validation feedback.

Table 3. User satisfaction for bridge inspection mobile application with 14 trial users.

Score (Max. 5.00) Percentage

Functionality 4.00 80%
User interface design 3.714 74.28%

User Experience 4.00 80%
Overall Performance 4.142 82.84%
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Table 4. User Interface.

Log in Project Overview
List of Bridge under

Project
Notification

    

Add/Edit Project Add/Edit Bridge
Add New Task with

Image
Add Task Detail

   

Task Detail for
Inspector with

comment
Assigned Person Edit Task User Setting

  

4. Discussion

This study was conducted in collaboration with the Thailand Department of High-
ways and is an example of high-impact digital transformation that can improve public
service and safety. We developed a prototype mobile application to assist field techni-
cians to conduct visual bridge defect inspection and improved collaboration among team
members. To develop a successful user driven application, we applied the unified theory
of acceptance and use of technology (UTAUT) to identify the key factors that influence
behavioral intention to use of the mobile application. The fundamental specifications were
derived from our previous research on mobile applications for construction process quality
control [6], AI for visual bridge defect-inspection system [7], and related literature reviews
in the area of teamwork, project management, and visual inspection. Building on this body
of work, the current study proposes a modified technology acceptance model UTAUT
research framework, which identifies parameters that influence user intention to use the
product by adding a new VIS factor that leads to either performance expectancy or effort
efficacy.

As a result, two valuable insights were obtained. First, the user expects the technology
to improve their routine task performance. Second, the intention to use will occur when
prospective users trial the product and see the potential benefit of the technology. This
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suggests that allowing the user to test the product in a free trial could be an effective
strategy. Next, the product concept was developed including the system architecture,
use case diagram, user interface, and backend design. This process was repeated several
times according to the stage-gate process “Triple A” concept. After the prototype was
constructed, it was used for a field trial in a controlled environment and a user satisfaction
survey was conducted. The overall satisfaction score of 14 users was 4.024 of 5.00, reflecting
the high satisfaction for user behavioral intention to use the product. However, satisfaction
scores were lowest (3.714 of 5.00) with the user interface design section and so the UXUI
will be improved with fine-tuning after the analyses of additional user feedback.

Although, few aspects of the new system need to be improved before replacing
traditional methods, there is an agreement that this new system can significantly enhance
the performance of the overall inspection processes. It might be slowly replaced or parallelly
implemented with the traditional methods but eventually will be a main tool for bridge
inspection as a government digital transformation policy.

5. Conclusions

In summary, trial users were highly satisfied with the first version of the Bridge Visual
Defect Quality Control Assisted Mobile Application. Although there are details that need to
be improved, engineers at Thailand’s Department of Highways expressed a strong interest
in using this application to reduce workload and improve quality. There are more than
10,000 bridges in Thailand and their maintenance is a priority. This mobile application
could be the first in a series of steps transforming bridge maintenance systems to full
digitalization, uniting multiple operations into a single system for better project manage-
ment. There are many other potential opportunities for research using a collaborative
platform and visual inspection assisted technology in the construction industry. With the
continued cooperation of the Thailand Department of Highways, future applications may
be applied in areas such as road pavement, highway infrastructure inspection, or even
overall transportation maintenance system.
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Abstract: In the field of civil engineering and architecture, the concept of symmetry has been widely
accepted. The bridge can be treated as a typical symmetrical structure of civil engineering buildings.
Among them, the Subgrade can be identified as an important part to bear the vehicle loads. Severe
pavement problems and bridge service capabilities will be caused by problems of the bridge–subgrade
transition section. Therefore, setting the rigid–flexible transition is an important method to solve this
problem. The bridge–subgrade transition section has been set at both ends of the bridge, which can be
regarded as a typical symmetrical structure. Based on nonlinear finite element numerical simulation
and synergistic theory, the cooperative control problems of the bridge–subgrade transition section
were studied in this work. The change rule of the stiffness of the transition section was discussed and
the influence of stiffness variation of the bridge–subgrade transition section on the stress state of the
structure was also analyzed. Furthermore, the influence of subgrade stiffness change on the stress
and strain field was analyzed. A permanent strain prediction model was established and stiffness or
subsidence difference coordination control was also discussed.

Keywords: bridge–subgrade transition section; rigidity–flexibility transition; permanent deformation;
stiffness difference; settlement difference

1. Introduction

The bridge–subgrade transition section is the connection between bridge and pave-
ment. The transition section is set at the bridge head and tail, so it can be regarded as a
typical symmetrical structure. This section can balance the stiffness difference and settle-
ment difference of the two structures and increase the pavement’s integral continuity. Due
to the lack of processing bridge–subgrade transition sections during the engineering design
process, construction control is not effective, and the problems of operation or maintenance
technology are unreasonable. It will lead to the following two kinds of problems in tran-
sition section, widely. First, the pavement structure of the transition section produces a
settlement or fracture in retailing backwall. Second, the vehicles have obvious bumps when
they pass the transition section, which is the so-called “bump at bridge-head”. Because the
bridge–subgrade transition section is set symmetrically, the “bump at bridge-head” occurs
when the driver drives into and out of the bridge.

Wahls thought the step height of 1.2 cm would produce the bump effect [1]. Strak et al.
found the step height of 2.5 cm would produce the bump effect [2,3]. This problem
would bring many undesirable results such as affecting driving comfort, forcing vehicle
deceleration, influencing pavement service performance and transportation efficiency,
affecting service life of the vehicle, and leading to traffic accidents [4]. The problems of
the bridge–subgrade transition section have become one of the important factors that
affect pavement service ability seriously. Therefore, it is necessary to put forward a more
reasonable design method to solve the problem of the bridge–subgrade transition section.
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There are many factors that can cause the vehicle dumping effect. Researchers
have paid a lot of effort to solve the “bump at bridge-head”, and foundation treatment,
subgrade treatment, and surface treatment are common preventive measures [5]. How-
ever, many practical projects showed that a simple “rigid–flexible transition” design of
bridge–subgrade transition section cannot fundamentally solve the transitional problem.
In this work, the change of stress and strain caused by loads in subgrade and base was
explored to solve the vehicle dumping problem. The difference between the stiffness and
the settlement was analyzed [6,7], and the effect of the stiffness variation of the subgrade on
the stress state of the transition section was discussed by using finite element analysis [8,9].

2. Numerical Model and Parameters

2.1. Geometric Parameter

The numerical model of bridge–subgrade transition section was established. The
length of the model was 26 m and the width was 4 m. Also, the pavement type of this
model was semi-rigid asphalt, of which the thick of upper layer, middle layer, lower layer,
and base were 4 cm, 6 cm, 8 cm, and 40 cm, respectively, as shown in Figure 1. In order to
achieve a continuous change of subgrade stiffness longitudinally along the pavements in
the transition section, the subgrade structure was divided into 22 parts in this paper. The
length of both ends was 3 m, and the rest of the parts were all 1 m, as shown in Figure 2.
When conducting parametric analysis, each part was endowed with the material parameters
of continuous change to describe the nature of the transition section stiffness change.

 

Figure 1. Numerical model of bridge–subgrade transition section.

 

Figure 2. Numerical model grid of subgrade structure.

The large difference in stiffness between abutment and backfill at the junction of
pavement and bridge, and the stress response generated by vehicle load is transmitted to
the junction. However, most of the energy is reflected back on the surface of the abutment,
and only a small part is transmitted to the inside abutment. The stress response of the
abutment was not considered in this work of establishing numerical model. It is assumed
that all the loads transmitted to the junction can be reflected back to the subgrade. Therefore,
horizontal constraint conditions are adopted at the junction of pavement and bridge in
the model.
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2.2. Simplified Model of Load

Using the existing theory to analyze pavement stress state, the vehicle load was
simplified to a circular uniform distributed load. A large number of investigations and
experimental research results showed that the shape of the wheel contacting with the pave-
ment was closer to a rectangle and indicated a non-uniform characteristic phenomenon [10].
Based on the comprehensive research results, Figure 3 can be selected as the simplified
model of wheel load, the double-type load was simplified into distributed pressure of
two rectangular loads. The dimensions were 0.22 m × 0.16 m. The distance between two
rectangular centers was 0.32 m, and load intensity was 0.7 MPa.

Figure 3. Simplified model of wheel load.

2.3. Material Parameters

Assuming that each of the layer structures was line elastomer, the elastic modulus and
Poisson’s ratio were control parameters. This paper focused on the influence of subgrade
stiffness on the pavement structure, and a combination structure of semi-rigid pavement,
structural grouping, and material parameters were shown in Table 1.

The subgrade material was used as the analytical parameter of the material in this
paper. It was assumed that the variation of subgrade stiffness is from 30,000 MPa to 40 MPa
and corresponding Poisson’s ratio ranges from 0.2 to 0.35, as shown in Table 1.

Table 1. Material parameters in the calculation model.

Structural Layer Material and Thickness Elastic Modulus E Poisson’s Ratio μ

Upper layer Asphalt concrete ac-10/4 cm E = 1500 MPa μ = 0.3
Middle surface Asphalt concrete ac-16/6 cm E = 1200 MPa μ = 0.3
Bottom layer Asphalt concrete ac-20/8 cm E = 1000 MPa μ = 0.3

Semi-rigid base Cement stabilized crushed stone/40 cm E = 1500 MPa μ = 0.3

Subgrade /

E = 30,000~10,000 MPa μ = 0.2
E = 10,000~5000 MPa μ = 0.25
E = 5000~1000 MPa μ = 0.3

E = 1000~40 MPa μ = 0.35
Abutment Cement concrete E = 30,000 MPa μ = 0.2

3. The Influence of Changes in the Way the Stiffness of Bridge–Subgrade Transition
Section on Structural Stress State

3.1. Selecting the Calculation Index

When ignoring the stiffness difference between the abutments and bridge–subgrade
transition section, the stiffness of the internal bridge–subgrade transition section varies
continuously. Although there is no stress concentration phenomenon, stiffness changes
within a certain range and it can also cause stress redistribution in the transition section of
the pavement structure. Considering that the pavement structure has different stiffness
sensitivities, the stress state of pavement may exceed the strength of pavement structure
when the stiffness has decreased to a certain value. Based on the results, according to the
stress characteristics, the stress magnitude, and variation range of each structural pavement
layers, four indicators can be selected as the pavement surface deflection value. Tensile
strain at the bottom of the middle layer, tensile stress at the bottom of the base layer, and
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subgrade top surface compressive strain were selected to describe the stress state change
in the pavement structure of the transition section when the subgrade stiffness decreases
along the pavement by the longitudinal.

3.2. The Influence of Stiffness Linear Change on Structural Stress State

At present, the backfilling scheme was mainly in the form of an inverted trapezoid
and a positive trapezoid, which was based on stiffness with the backfill material thickness
in order to achieve uniform continuous reduction. However, the ratio of stiffness difference
and the bridge–subgrade transition section will affect the stress state of pavement and the
filling cost directly. It is necessary to explore the transition form and proportion of the
transition section. In this paper, the minimum value of the subgrade stiffness near abutment
and the bridge–subgrade transition section were 500 MPa and 40 MPa, respectively. In
addition, using a linear proportional transition, the filling length of the bridge–subgrade
transition sections were analyzed by 20, 15, 10 and 5-m, as shown in Figure 4a–e.

 

Figure 4. (a) Surfacing deflection under the linear change of stiffness, (b) Tension strain of the middle
plane under the linear change of stiffness, (c) Transverse tensile stress of the bottom of semi-rigid
base under the linear change of stiffness, (d) Longitudinal tensile stress of subgrade under linear
change of stiffness, (e) The compressive strain of subgrade under the linear change of stiffness.
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In addition to the different variations of tensile strain of the middle layer, the stress
state of each layer structure in the transition section has a similar variation rule. First,
pavement surface deflection, the tensile stress of the base layer, and the compressive strain
of the top of subgrade were all increased with the distance from the abutment. Second,
with the length of the transition section decrease, the stiffness transition ratio and the
variation rate of the pavement structure stress state increase. However, the stress state of
the pavement structure under different stiffness transition ratios has little difference when
compared to the pavement stiffness. Therefore, the stress state of the pavement structure
is mainly affected by the stiffness of the subgrade and less by the variation rate subgrade
stiffness which directly affected the variation rate of stress state of the pavement structure.
Third, the variation rate of the stress and strain were increased with the distance from the
abutment. As the stiffness was large, the sensitivity of the stress state was weak and as the
stiffness of the pavement gradually decreases, the sensitivity was strong.

In a word, tension stress on the bottom of the middle surface course was affected
largely by the boundary condition. The oversize length–width ratio of the numerical model
was the main reason for this result.

3.3. The Influence of the Nonlinear Stiffness Ratio to the Structural Stress State

Simulation results showed that the variation of pavement stress state and stiffness
change have a good correlation with the form of the denary logarithm. Although the
homogeneous continuous change of stiffness can occur, the stress state of the pavement
doesn’t achieve a homogeneous continuous change. In actual pavement construction, the
ideal pavement stress state should change continuously and homogeneously along the
pavement longitudinal line. Therefore, this study attempts to realize a pavement structure
stress state that varies linearly when the stiffness of the pavement bridge transition section
changes nonlinearly in the same change interval along the longitudinal direction. When
the subgrade stiffness along the longitudinal pavements are in the range of 500~40 MPa,
continuous transition was realized in the 20 m and 10 m length range and in the form of
the denary logarithm, as shown in Figure 5a–d.

 

Figure 5. (a) The deflection value under the nonlinear change of stiffness, (b) Transverse tensile stress
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at the bottom of base under the nonlinear change of stiffness, (c) Longitudinal tensile stress of
subgrade bottom under the nonlinear change of stiffness, (d) Compressive strain on the top of
subgrade under the nonlinear change of stiffness.

4. The Influence of the Stiffness Variation Mode of the Transition Section on the Stress
and Strain Field

Permanent deformation of aggregates and soil was affected by internal factors and
environmental factors, it was also affected by load factors and major load size and load
times were considered as primary load factors. For foundation settlement, its additional
load contains vehicle loads and superstructure gravity loads, and because of the limited
influence depth of vehicle load, the vehicle load can be simplified as the equivalent height
of the soil. The additional load on the subgrade was a uniformly distributed strip load and
vehicle load imposed on the pavement, vehicle load exists in a limited subgrade depth, the
load stress values at different layers varied greatly. In addition, the vehicle load in subgrade
often exists in the form of dynamic loads and impact loads, which cause the complicated
subgrade settlement problems. The boundary conditions of the bridge transition section
were complex. The subgrade modulus changes are orderly along the longitudinal line
of pavement, which make the stress field and strain field of the subgrade in the bridge
transition section different from other general sections.

4.1. The Influence of Variation of Subgrade Stiffness on Stress and Strain Field

When the resilient modulus of the subgrade is in the range of 40~2000 MPa and the
length of transition section is within 20-m, the distribution of stress field is in the base and
subgrade. Note that the abscissa “depth” was not the true depth value, it was defined that
the top surface of the base was the starting point-zero. Then the depth of boundary of the
bottom of subgrade and surface of basement layer was 0.4 m. For the need of drawing and
reading, the abscissa was only an approximate coordinate in Figure 6a. The stress field
distribution of base and subgrade in a real depth coordinate is shown in Figure 6b,c.

It can be seen from Figure 7a–c that resilience modulus of subgrade in the bridge
transition section decreases linearly as the distance increases. However, the variation in the
stiffness of subgrade has little influence on vertical stress in the top surface of the basement
layer. With the distance from the top surface to the base layer increasing (i.e., the depth
increasing), the impact of changes in subgrade stiffness on the stress field in the base layer
and subgrade increases. As the depth increases, the base layer and subgrade stress field
decline rapidly. At the same time, the concept of “subgrade work area” can verify that the
impact of stress on the subgrade vehicle load occurs within a limited depth, typically 0.8
m [11]. When this model subgrade depth is 2 m, vehicle load and subgrade stiffness’ effect
on the stress field was very small and can be ignored.

Variation of strain and stress field were significantly different from each other, and
the performance was more complex. There was a big difference in the distribution of the
base layer and the subgrade strain field. With the increase of the distance that the abutment
or subgrade stiffness decreases, the stress field in the substratum and subgrade decreases.
The strain field in the substratum also showed the same trend, but the strain field in the
subgrade increased. Second, with the increase of depth, the stress field was gradually
reduced. When the subgrade stiffness was small, the strain field meet this rule. When the
subgrade stiffness decreases to a certain value, the strain field on the top of the subgrade
will break the rule. At the same time of the emergence of a maximum strain, the strain
field in the subgrade will be stronger than the stress field in the substratum. Moreover,
the maximum value of medium pressure stress exists on the surface of the base and the
maximum value of the compressive strain appears in a certain depth under the substratum.
This model appeared at 10 cm. Finally, with the reduction of stiffness, the difference of
compressive stress in different depths decreases and the compressive strain increases.
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Figure 6. (a) Stress field of base and subgrade when the resilient modulus of subgrade is changed,
(b) Distribution of stress field in base, (c) Distribution of stress field in subgrade.

Figure 7. (a) Strain field of base and subgrade when the subgrade modulus is changed, (b) Strain
field in base, (c) Strain field in subgrade.
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4.2. Effect of Subgrade Stiffness Variation on Stress and Strain Field

In chapter 4.2, the rule of stress and strain field in the base and subgrade was in-
troduced. During the structural designs of the bridge–subgrade transition section, the
subgrade stiffness or the resilient modulus of subgrade may be changed. For this rea-
son, compared with the maximum subgrade resilient modulus, respectively, as 2000 MPa,
1000 Mpa, and 500 MPa, the corresponding stress and strain field were changed with the
linear variation in 20 m, 15 m, and 10 m.

Figure 8a is a “stiffness equivalent” approach (i.e., the corresponding stress value was
drawn by the subgrade stiffness value, the equivalent stress field was obtained). Ignoring
the boundary conditions of the numerical model itself, different horizons of the transition
section and the vertical stress field at different locations were only related to the subgrade
stiffness (modulus of resilience) and had little relation with the rate of change of stiffness.

Figure 8. (a) Distribution of stress field when the subgrade modulus is changed, (b) Distribution of
strain field in base when the subgrade modulus is changed, (c) Distribution of strain field in subgrade
when the subgrade modulus is changed.

Figure 8b,c corresponds to the base and the distribution rule of the strain field in the
subgrade. It can be concluded that the strain field also satisfies the same rule and the
compressive strain values at different positions and locations on the transition section were
related to the stiffness (modulus) of subgrade at its location and had little relation with the
change of stiffness (modulus of resilience).

The rule of the stress and strain field along with the change of the subgrade stiffness
in the bridge–subgrade transitional section was shown once again. Stiffness difference and
settlement difference can be solved by collaborative design of structures and materials.
However, stiffness needs continuous change. Too much difference can result in stress
redistribution, especially a stress concentration phenomenon. The functional relationship
between the compressive stress value and the subgrade stiffness value, the compressive
strain value, and the subgrade stiffness value need to be further determined and modified.

548



Symmetry 2022, 14, 950

When the subgrade stiffness (modulus of resilience) of bridge–subgrade transition
section was a linear or nonlinear variation, the stress and strain field were also related to
the size of stiffness. However, stiffness variation was relative (i.e., stiffness variation within
a certain distance or between two adjacent points). The variation of the stress and strain
field can only be judged by the change of the adjacent two points or a certain distance.
Analysis of the rule of the reaction from Figure 9a, the relationship between strain and
stiffness was an exponential function, which also fit the reasoning above. The subgrade
stiffness was nonlinear variation, and the change of stress state on pavement structure was
more balanced. Figure 9b,c once again verifies this inference.

 

Figure 9. (a) The state of stress field when subgrade stiffness varies in different ways, (b) The state of
strain field in base when subgrade stiffness varies in different ways, (c) The state of strain field in
subgrade when subgrade stiffness varies in different ways.

From the above three figures, we can conclude that when the subgrade stiffness
(modulus of resilience) forms a nonlinear function change, the stress and strain field in
base and subgrade approximate linear variation along with the increase of the longitudinal
distance of the pavement; and the change was balanced and continuous.

In a further comparison, the results of non-linear changes in the stress field are slightly
smaller than the linear variation in the stress field, and the strain field in the base also fits
this rule. In the subgrade strain field, the results of nonlinear changes are slightly larger
than the result of a linear change. This phenomenon was determined by the subgrade
stiffness value and the sensitivity of stress and strain to the change of stiffness.

4.3. Effect of Load Size on the Stress and Strain Field

The distribution of stress and strain in a bridge–subgrade transition section was
influenced by its structure and boundary conditions and the size of the load. The result
of the previous paper was based on the vehicle load size of 0.7 MPa. Considering the
real traffic load, the load was selected as 0.7 MPa, 0.8 MPa, and 0.9 MPa. The condition
to analyze the effect of the load size on the stress and strain field was also provided in
this paper.
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As can be seen from Figure 10a–c, the change of the load size does not change the rule
of the stress field and the strain field in base and subgrade. When the load increases, the
stress and strain in base and subgrade were obviously increased. As the depth increases,
the influence of the load size on the stress and strain field was weakened. The influence of
load size on the stress and strain field in the subgrade was very limited. In addition, the
data shown in this paper is within 2 m depth.

Figure 10. (a) The influence of load on stress field, (b) The influence of load on base strain field,
(c) The influence of load on subgrade strain field.

4.4. The Relation between Stress and Strain Field

In the previous paper, it has been revealed that the change of the stress and strain field
in the base and subgrade was affected by the change of the stiffness and the load in the
subgrade. Further comprehensive explanation of the rule was shown as follows.

As can be seen from Figure 11a–c, the stress and strain field of the base have similar
variation, which is compressive stress and strain increasing with the distance increased
from the abutment and reducing with the subgrade stiffness decreases. The stress and
strain field of subgrade have the opposite variation, which is the stress field decreasing
with the subgrade stiffness decreases and the opposite situation with the strain field. The
strain field in base and the strain field in the subgrade have the opposite variation, but the
rule of the stress field variation is the same. When the subgrade stiffness changed by a
nonlinear rule along the longitudinal pavement, the stress and strain field were changed
more evenly and continuously.
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Figure 11. (a) Stress and strain in subgrade and base, (b) Stress and strain field in base, (c) Stress and
strain field in subgrade.

In general, the stress and strain field of base were relatively stable and the sensitivity
to the subgrade stiffness was weak. If the change of stress field caused by the stiffness of
subgrade was less than 50 kPa at a certain depth, and the strain field changes less than
50 micro-strain, the stress and strain field at a certain depth in the subgrade were much
higher than this standard. When the resilient modulus of subgrade was lower than 500 MPa,
the resilient modulus of subgrade near the abutment should be higher than 500 MPa. In
addition, when the resilient modulus of subgrade of transition section was lower than
500 MPa, the modulus change rate should be reduced appropriately to ensure that the
stress and strain field were changed continuously and evenly.

5. The Coordinated Control of the Stiffness and Permanent Deformation in
Bridge–Subgrade Transition Section

5.1. The Main Factors Influencing Permanent Deformation of Aggregate and Soil

The filling materials of the subgrade and the base in the bridge–subgrade transition
section are granular materials, and nonlinear elastic plastic materials. The strain under
the load was composed of two parts (i.e., resilience strain and permanent strain) [12,13].
Although the permanent stress of aggregate and soil variables by each load was very
small, it gradually accumulated in many repeated traffic loads, resulting in over large
post-construction settlement in the bridge–subgrade transition section.

The repeated stress level and loading times are the most important factors affecting
the permanent deformation and accumulation of aggregates and soil. Many repeated
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loading tests of three axes have proved that the axial permanent stress variable and sum
of accumulation increased with the increase of the partial stress. In addition, with the
repeated action of the load, the permanent strain of aggregate and soil can produce tiny
increments. The permanent strain tends to be stable or destroyed when it reaches a certain
amount of accumulation. Under the expected service life or the traffic loads, a point in
the spatial structure of transition section of the stress level and loading times is constant.
Therefore, we can make the permanent stress change in the controllable range by choosing
reasonable materials or predicting the permanent deformation of the bridge–subgrade
transition section.

5.2. The Prediction Model of Permanent Strain

By studying the permanent strain long-term character of aggregate and soil, many
scholars have established the constitutive model which can predict permanent strain
accumulation. These models mainly consider the permanent strain in different natures and
states of aggregate and soil, the rule of gradual accumulation along with the increase of
the number of loads, and the important role of different stress conditions and levels in the
accumulation of permanent strain [14]. The following contents were mainly introduced in
the model in the same load action times and stress conditions.

By relating the accumulation of permanent strain with the number of loads and the
corresponding stress levels (partial stress q and confining stress σ3), Kim used 13 kinds of
stress combinations on an aggregate of base to conduct a constant confining pressure stress
three axis test and established the following model [15]:

ε1p = aqbσc
3 Nd

(
R2 = 0.843

)
(1)

ε1p = a(
q
σ3

)
b
Nd

(
R2 = 0.167

)
(2)

where: a, b, c, d are the model parameters obtained by regression analysis.
By using the experimental methods of staged repeated loading, Gidel concluded that

the permanent strain increased with the increase of the average principal stress, ratio of the
partial stress, and the average principal stress, correlating with the stress path length and
height of stress ratio. A permanent strain model was established which was composed of
the number of role functions and the role stress functions [16].
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100
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]
ε0(
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(3)

where: ε0, m, n, s—test parameters;
pa—reference stress (1000 kPa);
Lmax—stress path length. L2

max = p2
max + q2

max.
The COST337 project of the European Commission considers that establishing a

relationship between the permanent strain and the resilient modulus can easily calculate
the cumulative amount of permanent deformation by incremental damage mode [17].

εp = aεb
r Nc (4)

or εp = aεb
r(

σr

pa
)Nd (5)

where: σr—rebound stress;
pa—reference stress, taken as the atmospheric pressure (100 kPa); a, b, c, d—coefficient

of restitution.
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According to Uzan, a function can be used between the number of times and the ratio
of permanent strain and rebound strain in cohesive soil subgrade [18].

lg
εp

εr
= a0 + b0lgN (6)

where: εp, εr—permanent strain and rebound strain;
N—action times;
a0, b0—constant.
The permanent deformation model used by Tseng is shown as follows [19].

εp

εr
= (

ε0

εr
)e−(

ρ
N )

β

(7)

where: ε0, ρ, β—the parameters relating to properties of materials.
The Mechanics-Empirical method of pavement design experience guide uses the

summation of stratified strain method to estimate permanent deformation of granular
layer and subgrade based on the permanent strain model established by Tseng. The
correction model was put forward to predict the permanent deformation of granular layer
and subgrade layer [20].
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where: δp(N)—permanent deformation of the layer after loading N times;
ε0, ρ, β—property parameters in the layer material;
εr—the resilience strain in the laboratory tests for obtain the material properties;
εV—the average vertical rebound strain in the layer was obtained from the basic

response model;
h—thickness of the layer;
βC—calibration coefficients in the model;
ωc—water content;
Er—resilient modulus of the layer;
dW—deep underground water level;
a1, b1, a2 and b2—coefficient, corresponding to 1.0942 × 10−18, 3.520049, 0.03162278

and 0.5.

5.3. Cooperative Control the Difference of Stiffness and Settlement

The post-construction settlement of bridge–subgrade transition period is mainly com-
posed of three parts: foundation settlement, consolidation settlement of subgrade and
compression deformation of subgrade. However, there was a great difference in actual en-
gineering that the contribution ratio of the three parts hadn’t been given a reasonable range.
Therefore, the common method is to enable the three parts to achieve “zero settlement”.
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The permanent strain accumulation rule of aggregate and soil was connected with
repeated load levels and action times. The present experimental studies have shown that
a critical stress level can make a granular layer and a subgrade tend to be stable under
the action of repeated loads, called the “stability limit”. When the maximum stress in
the granular layer and the subgrade soil do not exceed this stability limit, the granular
layer or substrate show resilience after repeated loading. Meanwhile, the accumulation of
permanent deformation can be controlled within a limited range.

At present, in the main method of pavement design, the Shell and AI method [21],
the permanent deformation of the subgrade was effectively controlled by controlling the
compressive strain and the compressive stress on the top of the subgrade. Compressive
strain on the top of the subgrade method was mainly based on the direct ratio of material
plastic and elastic strain. The elastic strain was controlled within the effective range, and
the plastic strain can be effectively controlled [22]. If the elastic strain level of the subgrade
was limited, the plastic strain and the permanent deformation of subgrade and pavement
can be limited.

The analysis in the previous work shown that there was a good correlation between
the variation of subgrade stiffness and the stress [23]. The strain field of subgrade and the
size of stress and strain field at a certain depth in subgrade was only related to the stiffness
of the subgrade. The strain field in subgrade increases with the decrease of the subgrade
stiffness. The function characteristic of bridge–subgrade transition section requires that the
transition section to achieve the settlement transition by longitudinal along the pavement,
therefore, the permanent deformation of the subgrade can be realized by controlling the
change rule of subgrade stiffness.

6. Conclusions

Pavement surface deflection value, tensile strain at the bottom of the middle plane,
tensile stress at the bottom of the base layer, and subgrade top surface compressive strain
were chosen as the indices of stress state analysis on the transition section. The influence
of the subgrade stiffness variation on stress state was discussed in this paper. Based on
the analysis, the following conclusions can be made: first, when the subgrade stiffness of
bridge–subgrade transition section linear decreased longitudinally along the pavement,
the four indicators had a better correlation. In addition, when the stiffness value was low,
the rate of change of each index increased, which is caused by the sensitivity of stress state
increasing with the decrease of the stiffness value. Second, the stress and strain level in the
stress state of the pavement structure were mainly related to the subgrade stiffness and the
rate of stiffness change was mainly related to the rate of subgrade stiffness change. Third,
when the subgrade stiffness has nonlinear variation in the form of an exponential function,
the stress state change within the pavement structure is more uniform and continuous than
a stiffness linear variation. It can better ensure the continuity of the overall structure on
the pavement.

On the other hand, the variation rule of the vertical compressive stress and vertical
compressive strain in the base and subgrade under wheel load was described when the
subgrade stiffness changed in the bridge–subgrade transition section. The stress field in
subgrade and base was only related to the subgrade stiffness. The rate of stress and strain
field in subgrade and base was related to the rate of stiffness variation. When the stiffness
was small, the rate of change was large. The variation rule of the stress field was similar to
the strain field in base layer, both decrease with the decrease of the subgrade stiffness. The
rule of change of the stress and strain field in the subgrade was the opposite, the stress field
in the subgrade decreases with the decrease of the stiffness. The strain field increases with
the decrease of the stiffness. The stress field and strain field were limited in the propagation
depth of the subgrade. The depth of the model was 2 m.

By mastering the variation rule of the strain field in the subgrade, the accumulation
of permanent deformation can be predicted scientifically. Theoretical analysis shows that
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coordination design of the stiffness difference and settlement difference can be realized in
the bridge–subgrade transition section by regulating the change rule of subgrade stiffness.
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Abstract: Automation of bucket-filling is of crucial significance to the fully automated systems for
wheel loaders. Most previous works are based on a physical model, which cannot adapt to the
changeable and complicated working environment. Thus, in this paper, a data-driven reinforcement-
learning (RL)-based approach is proposed to achieve automatic bucket-filling. An automatic bucket-
filling algorithm based on Q-learning is developed to enhance the adaptability of the autonomous
scooping system. A nonlinear, non-parametric statistical model is also built to approximate the real
working environment using the actual data obtained from tests. The statistical model is used for
predicting the state of wheel loaders in the bucket-filling process. Then, the proposed algorithm
is trained on the prediction model. Finally, the results of the training confirm that the proposed
algorithm has good performance in adaptability, convergence, and fuel consumption in the absence
of a physical model. The results also demonstrate the transfer learning capability of the proposed
approach. The proposed method can be applied to different machine-pile environments.

Keywords: data-driven model; reinforcement learning; wheel loaders; automatic bucket-filling

1. Introduction

Construction machinery has a pivotal role in the building and mining industry, which
makes a great contribution to the world economy [1]. The wheel loader is one of the most
common mobile construction machinery and is often used to transport different materials
at production sites [2].

The automation of wheel loaders, which has received great attention over the past
three decades, can improve safety and reduce costs. Dadhich et al. [3] proposed five
steps to full automation of wheel loaders: manual operation, in-sight tele-operation, tele-
remote operation, assisted tele-remote operation, and fully autonomous operation. Despite
extensive research in this field, fully automated systems for wheel loaders have never been
demonstrated. Remote operation is considered a step towards fully automated equipment,
but it has led to a reduction in productivity and fuel efficiency [4].

In the working process of wheel loaders, bucket-filling is a crucial part, as it determines
the weight of the loaded materials. Bucket-filling is a relatively repetitive task for the
operators of wheel-loaders and is suitable for automation. Automatic bucket-filling is
also required for efficient remote operation and the development of fully autonomous
solutions [5]. The interaction condition between the bucket and the pile strongly affects the
bucket-filling. However, due to the complexity of the working environment, the interaction
condition is unknown and constantly changing. The difference in working materials also
influences the bucket-filling. A general automatic bucket-filling solution is still a challenge
for different piles.

In this paper, a data-driven RL-based approach is proposed for automatic bucket-filling
of wheel loaders to achieve low costs and adapt to changing conditions. The Q-learning
algorithm can learn from different conditions and is used to learn the optimal action in
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different states by maximizing the expected sum of rewards. Aiming to achieve low costs,
an indirect RL is employed. Indirect RL requires a virtual environment constructed from
data or the known knowledge, and the agent learns from interacting with the virtual
environment instead of the real environment. Direct RL needs to interact with the real
environment, and the agent of direct RL learns from interacting with the real environ-
ment. Compared to direct RL, indirect RL can more efficiently take advantage of samples
by planning [6]. In addition, the parameters of Q-learning in source tasks are partially
transferred to the Q-learning of target tasks to demonstrate the transfer learning capability
of the proposed approach. Considering the nonlinearity and complexity of interactions
between the bucket and pile [7], the data obtained from field tests are utilized to build a
nonlinear, non-parametric statistical model for predicting the state of the loader bucket in
the bucket-filling process. The prediction model is used to train the Q-learning algorithm
to validate the proposed algorithm.

The main contributions of this paper are summarized as follows:

(1) A data-based prediction model for the wheel loader is developed.
(2) A general automatic bucket-filling algorithm based on Q-learning is presented and

the transfer ability of the algorithm is demonstrated. The proposed automatic bucket-
filling algorithm does not require a dynamic model and can adapt for different chang-
ing conditions with low costs.

(3) The performance of the automatic bucket-filling algorithm and expert operators on
loading two different materials is compared.

The rest of this paper is summarized below. Section 2 presents the related existing
research. Section 3 states the problem and develops the prediction model. Section 4 details
the experimental setup and data processing. Section 5 explains the automatic bucket-filling
algorithm based on Q-learning and presents the state and reward. Section 6 discusses the
experimental results and evaluates the performance of our model by comparing it with
real operators. Lastly, the conclusions are drawn in Section 7.

2. Related Works

Numerous researchers have attempted to use different methods to achieve automatic
bucket-filling. These studies can be summarized into the following three categories, which
are: (1) physical model-based, (2) neural networks-based, and (3) reinforcement learning
(RL)-based. This section will review related works in these three aspects, respectively.

Most relevant research attempted to realize automatic bucket-filling via physical-
model-based control [8]. Meng et al. [9] applied Coulomb’s passive earth pressure theory
to establish a model of bucket force during the scooping process for load-haul-dump
machines. The purpose of developing the model was to calculate energy consumption,
and the trajectory was determined through optimizing the minimum energy consumption
in theory. Shen and Frank [10,11] used the dynamic programming algorithm to solve the
optimal control of variable trajectories based on the model of construction machinery. The
control results are compared to an extensive empirical measurement done on a wheel
loader. The results show that the fuel efficiency is higher compared to the fuel efficiency
measured among real operators. These works require accurate machine models, so they
are prone to collapse under conditions of modeling errors, wear, and change. An accurate
model of the bucket-pile interaction is difficult to build because the working condition is
unpredictable, and the interaction forces between the bucket and material are uncertain
and changing. When the machine and materials change, the model needs to be rebuilt.
Therefore, the model-based approach is not a generic automatic bucket-filling solution for
various the bucket-pile environments.

In recent years, non-physical-model-based approaches [12] have been employed in
the autonomous excavation of loaders and excavators. With the development of artificial
intelligence, neural networks have been used in non-model-based approaches. A time-
delayed neural network trained on expert operator data has been applied to execute the
bucket-filling task automatically [13]. The results show that time-delayed neural network
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(TDNN) architecture with input data obtained from the wheel loader successfully performs
the bucket-filling operation after an initial period (100 examples) of imitation learning from
an expert operator. The TDNN algorithm is used to compare with the expert operator
and performs slightly worse than the expert operator with 26% longer bucket-filling time.
Park et al. [14] utilized an Echo-State Networks-based online learning technique to control
the position of hydraulic excavators and compensate for the dynamics changes of the
excavators over time. Neural network-based approaches do not require any machine
and material models. However, these approaches require a large amount of labeled data
obtained from expert operators for training, which is too costly.

Reinforcement learning (RL) is capable of learning effectively through interaction
with complex environments without labeled data. The learning procedure of RL includes
perceiving the environmental state, taking related actions to influence the environment, and
evaluating an action by the reward from the environment [15]. Reinforcement learning not
only achieved surprising performance in GO [16] and Atari games [17], but has also been
widely used for autonomous driving [18] and energy management [19]. The application of
RL in construction machinery automation is mainly based on real-time interaction with the
real or simulation environment. Hodel et al. [20] applied RL-based simulation methods to
control the excavator to perform the bucket-leveling task. Kurinov et al. [21] investigated
the application of an RL algorithm for excavator automation. In the proposed system, the
agent of the excavator can learn a policy by interacting with the simulated model. Because
simulation models are not derived from the real world, RL-based simulation cannot learn
features of the real world well. Dadhich et al. [5] used RL to achieve the automatic
bucket-filling of wheel loaders through real-time interaction with the real environment.
However, interacting with the real environment to train the RL algorithm is costly and
time-consuming.

3. Background and Modeling

3.1. Working Cycle

Wheel loaders are used to remove material (sand, gravel, etc.) from one site to another
or an adjacent load receiver (dump truck, conveyor belt, etc.). Although there are many
repetitive operation modes in the working process of wheel loaders, the different working
cycles increase the complexity of data analysis. For wheel loaders, the representative
short loading cycle, sometimes also dubbed the V-cycle, is adopted in this experiment, as
illustrated in Figure 1. The single V-cycle is divided into six phases, namely, V1 forward
with no load (start and approach the pile), V2 bucket-filling (penetrates the pile and load),
V3 backward with full load (Retract from the pile), V4 forward and hoisting (approach to
the dumper), V5 dumping, and V6 backward with no load (Retract from the dumper), as
shown in Table 1. This article only focuses on the automation of the bucket-filling process
(V2), which highly affected the overall energy efficiency and productivity of a complete
V-cycle. The bucket-filling process (V2) accounts for 35–40% of the total fuel consumption
per cycle [22]. In the bucket-filling process, the operator needs to modulate three actions
simultaneously: a forward action (throttle), an upward action (lift), and a rotating action of
the bucket (tilt) to obtain a large bucket weight.

Table 1. Basic parameters of the experimental wheel loader.

Parameters Value Units

Length 6600 mm
width 2750 mm
Height 3470 mm

Maximum traction 175 kN
rated power 162 kW
Rated load 5 t
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Figure 1. V-cycle of wheel loaders.

3.2. Problem Statement

The working process of scooping can be split into three stages: approach, fill, and exit
the pile, as shown in Figure 2. In the first stage, wheel loaders move towards the pile of
earth and the bucket penetrates the soil. In the second stage, the operator simultaneously
adjusts the lift, tilt, and throttle to navigate the bucket tip through the earth pile and load
as much material as possible within a short period. The throttle controls the engine speed,
while the lift and tilt levers command valves in the hydraulics system that ultimately
control the motion of the linkage’s lift and tilt cylinder, respectively. In the third phase, the
bucket is tilted until the breakout is involved and the bucket exits the pile. The scoop phase
is treated as a stochastic process where the input is the wheel loader state, and the output is
the action. The goal is to find a policy using RL that maps the wheel loader state to action.

Figure 2. The three phases in the scooping process.

3.3. Prediction Model

The Markov property is a prerequisite for reinforcement learning. In the actual
operation process, the operator mainly executes the next actions according to the current
state of the loader. Thus, the wheel loader state of the scooping process at the next moment
is considered not to be related to the past, but to the current state, which satisfies the
Markov property. Therefore, the interaction between the wheel loader bucket and the
continuously changing pile can be modeled as a Finite Markov decision process (FMDP)
which is expressed by a quadruple F(S, A, P, R), consisting of the set of possible states S,
the set of available actions A, the transition probability P, and the reward R. The state
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s ∈ S includes the velocity, the tilt cylinder pressure, and the lift cylinder pressure. The
actions consist of lift, tilt, and throttle commands which are all discrete. The ranges of lift,
tilt, and throttle commands are from 0 to 160, 0 to 230, and 0 to 100, respectively. Besides,
as the pile’s shape and loaded material vary randomly, the change of the pile is considered
as a stochastic process, which also satisfies the Markov property. Therefore, the problem
of automatic bucket-filling for wheel loaders is considered as a finite Markov decision
process (FMDP).

To achieve indirect RL, a prediction model needs to be constructed to predict the
wheel loader state at the next moment according to the current state and action during the
scooping phase. In this paper, changes in the wheel loader state are regarded as a series
of discrete dynamic stochastic events and described with a Markov chain. The transition
probability can be expressed as:

P
(
Sj|Si

)
=

Ni,j

Ni
, (1)

where Nij is the number of times the wheel loader state transits from Si to Sj, and Ni is the
total number of times the wheel loader state transits from Si to all possible states.

The prediction model of the wheel loader state can be expressed as:

P
(
Sj, r|Si, a

)
=

Na,r
i,j

Na
i

, (2)

where P
(
Sj, r|Si, a

)
denotes the probability of state transits from Si to Sj and to get a reward

r when action a is taken in state Si, Na
i is the total number of times the wheel loader state

transits from Si to all possible states when action a is taken, and Na,r
i,j is the total number

of times the wheel loader state transits from Si to Sj when action a is taken and gets the
reward r.

Python is used to construct the prediction model. We read the experimental data in
sequence. The current state St and action a are stored as a key of the Python dictionary, and
the value corresponding to the key is another dictionary whose keys are the next state St+1
and reward r, and values are P(St+1, r|St, a). According to the current state St and action a,
the next state St+1 and reward r are selected randomly with probability.

The prediction model can approximate the real working environment, as it is built
using the real data obtained from tests. Besides, the prediction model not only covers
the working information of wheel loaders, but also reflects the environmental effect. The
sampling frequency is important because the complexity of the model can be controlled
by adjusting the sampling frequency. The high sampling frequency will increase the
complexity of the model and the computation load, while the low sampling frequency
might cause model distortion.

4. Experiment and Sampling

4.1. Experimental Setup

The experimental wheel loader is shown in Figure 3. it is equipped with pressure
sensors, displacement sensors, and GPS. The Liugong ZL50CN wheel loader is taken as
the experiment machine. The basic parameters of the wheel loader are listed in Table 1. In
order to verify whether the proposed automatic bucket-filling algorithm can converge to
the optimal strategy on the data model based on different piles, we collected data from
two types of piles, which are shown in Figure 4. It has been proven that the Q-learning
algorithm with lookup tables are guaranteed to converge to the optimal solution. Small
coarse gravel (SCG) mainly contains particles up to 25 mm, while medium coarse gravel
(MCG) mainly contains particles up to 100 mm.
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Figure 3. Experimental wheel loader.

Figure 4. Two types of piles. (a) Small coarse gravel. (b) Medium coarse gravel.

4.2. Data Acquisition and Processing

According to the working characteristics of wheel loaders in a working cycle, the
V-cycle is divided by extracting the working condition features of the actuator and walking
device, including suspension, axle housing, tires, and rims. The mapping between the
collected data and the working state is realized by dividing the V-cycle, as shown in
Figure 5. The data in the scooping phase were selected to develop the prediction model.
There was no benchmark dataset. For different piles, we collected 51 sets of data to build
prediction models. The sampling frequency was 200 HZ. Due to the high dimension of the
state vector, it is difficult to present the complete prediction model in a figure. Therefore,
transition probability maps for the individual elements of the state vector are drawn and
transition probability maps of different materials are similar, as shown in Figures 6 and 7.
Figures 6 and 7 based on Equation (1) reflect the virtual environment built from real data
and the changing trend of states corresponding to different piles at the next moment.

Figure 5. Schematic diagram of working condition division. (a) Velocity of wheel loader. (b) Lift
cylinder pressure. (c) Tilt cylinder pressure.
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Figure 6. Transition probability for small coarse gravel. (a) Velocity of wheel loader. (b) Lift cylinder
pressure. (c) Tilt cylinder pressure.
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Figure 7. Transition probability for medium coarse gravel. (a) Velocity of wheel loader. (b) Lift
cylinder pressure. (c) Tilt cylinder pressure.

5. Automatic Bucket-Filling Algorithm

5.1. Automatic Bucket-Filling Algorithm Based on Q-Learning

Reinforcement learning is learning what to do—how to map situations to actions—so
as to maximize the expected discounted long-term reward. The two most important
distinguishing features of reinforcement learning are trial-and-error search and delayed
reward. The learner and decision-maker are called the agent. At each time-step, the agent
takes action a according to the current environmental state St and the policy π which is
a mapping from perceived states to actions. Therefore, as a consequence of action, the
environmental state transits from St to St+1 and the agent gets a reward r. The agent and
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environment generate the trajectories (S1; A1; R1), (S2; A2; R2), ..., (ST ; AT ; RT) [23], until
an episode is over. The basic architecture of RL is shown in Figure 8.

Q-learning is a widely used RL algorithm. Similar to other classical RL methods, the
goal of Q-learning is to obtain an optimal policy that maximizes the long-term reward.
In the Q-learning algorithm, the agent receives the reward and updates the Q-function
corresponding to the action-state. The Q-function represents the expected estimated
accumulated reward for the action-state pair under a policy. For example, Q(St, At) is
denoted as the expected long-term reward starting from state St, taking action At. By
continuous exploitation and exploration, the agent will eventually obtain the optimal
Q-function (Q∗) which determines the action selection policy. The optimal policy π∗(St)
can be calculated by the following equation:

π∗(St) = arg max
a∈A

Q∗(St, A), (3)

where Q∗(St, A) is the maximum Q-function over all policies. The optimal policy π∗(St) is
to select the action that maximizes the Q∗(St, A).

The Bellman equation of the optimal Q-function (Q∗) is:

Q∗(St, At) = ∑
St+1,r

P(St+1, r|St, At)

[
r + γ max

At+1
Q∗(St+1, At+1)

]
, (4)

where γ ∈ [0, 1] is the discount factor that determines the present value of future rewards.
The Q-learning algorithm is designed by the Bellman equation and contraction map-

ping theorem. Q-learning is defined by

Q(St, At) ← Q(St, At) + α
[

Rt+1 + γ max
a

Q(St+1, a)− Q(St+1, At)
]
, (5)

where α ∈ [0, 1] is the learning rate which reflects the influence of the new experience on
the current estimation Q(St, A).

Q-learning starts with an initial Q(S1, A1) for each state-action pair. At each time-step,
the agent performs an action based on a commonly used exploration method ε greedy
strategy that selects the greedy action with probability 1 − ε, but every once in a while, it
selects randomly from all the actions with equal probability ε independently of the action-
value estimates. Each time an action a is taken in state s, then the reward r is fed back
from the environment and the next state s, is observed, thus the Q-value is updated with a
combination of its current value and the Temporal-Difference Error (TDE)(date-drive). The
pseudo-code of the Q-learning algorithm is shown in Figure 9. The code can be found in
supplementary materials.

In this study, Q-learning based on a prediction model was used to optimize the
choice of actions. The Q-learning architecture in automatic bucket-filling is illustrated in
Figure 10. By using the real data, the environmental characteristics can be abstracted into
the prediction model. Q-learning is trained on the prediction model until the algorithm
converges. By interacting with the prediction model built from the collected real data, the
agent is able to learn the working characteristics of wheel loaders and the optimal strategy.
Based on the prediction model, the Q-function can be updated via the learning process
of the agent. To investigate the transfer ability of the proposed algorithm, the automatic
bucket-filling algorithm is first trained on a bucket-pile interaction model and then the
Q-function learned from the previous model is transferred to the target task to enhance
the learning efficiency and the learning rate on the bucket-pile interaction model of the
target task.
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Figure 8. Basic architecture of RL.

Figure 9. Pseudo-code of the Q-learning algorithm.

Figure 10. Prediction model-based Q-learning architecture in automatic bucket-filling.
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5.2. State and Reward Representation

The appropriate state and reward function should be set to optimize action selection.
The state needs to be able to reflect the characteristics of the environment when the agent
interacts with the environment and the dimensionality should not be too high to avoid the
curse of dimensionality. Lift force is the most important feature affecting the lift and tilt
commands [13] and lift force is related to the lift cylinder pressure. Besides, the velocity
of wheel loaders is of significance to the choice of throttle command. The tilt cylinder
pressure can be used as a redundant feature. Thus, in this study, we defined the state using
a three-dimensional vector consisting of velocity, tilt cylinder pressure, and lift cylinder
pressure, which are expressed as:

S =
{

s =
[
Vloader, Pli f t, Ptilt

]}
, (6)

where Vloader is the velocity of wheel loaders, Pli f t is the lift cylinder pressure, and Ptilt is
the tilt cylinder pressure.

It can be seen from Figure 11 that the bucket-soil interaction force mainly depends on
the amount of loaded soil. Therefore, the bucket-soil interaction force can directly translate
into the amount of loaded soil and is important for the bucket-filling of wheel loaders. In
order to encourage the loader to improve the bucket digging force and fuel economy during
the training process, the reward function should be composed of the negative value of fuel
consumption and the bucket-pile interaction force. Because the bucket-soil interaction force
is difficult to measure directly and has a positive correlation with lift cylinder pressure, we
use the lift cylinder pressure as a part of the reward function to represent digging force. The
bigger bucket digging force demands increased fuel consumption. Therefore, a trade-off is
necessary between the fuel consumption and bucket digging force. The reward function is
expressed as follows:

R(s, a) = −0.1 ∗ J(s, a) + kPli f t(s, a), (7)

where J(s, a) is the fuel consumption from the current state s to the next state s′ when the
agent takes action a, Pli f t(s, a) is the lift cylinder pressure of next state s′, and k is a constant
to control the priority of the fuel economy and bucket weight and k = 0.2.

Figure 11. Schematic picture of the forces of the bucket.

6. Results and Discussions

In this section, the proposed automatic bucket-filling algorithm is utilized to learn the
policy on prediction models and present the results. We choose 0.15 as the learning rate of
Q-learning, ε in the ε greedy policy is 0.1, and the discount factor γ = 0.15.

Wheel loaders have a complicated working environment and are used to transport
different materials. In order to verify the convergence of the algorithm on the diverse
environment, the reward curves based on different prediction models are depicted in
Figure 12. It can be observed that the proposed automatic bucket-filling algorithm can
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converge to the optimal policy that maximizes reward, indicating that the agent was
learning the policy correctly under different prediction models. This shows that the
proposed algorithm can be adapted to different bucket-pile models, thus dealing with the
complex and changing working environment of wheel loaders in the absence of a complex
dynamic model.

The digging force reward per episode is obtained by accumulating the lift cylinder
pressure of each step and is used to approximate the change of digging force. As can be
seen from Figure 13, compared with the algorithm interacting with the small coarse gravel
model, the algorithm interacting with the medium coarse gravel model can converge to a
smaller value of digging force reward. A larger digging force usually leads to higher fuel
consumption. Thus, loading small coarse gravel has higher fuel consumption compared to
medium coarse gravel on this data-based prediction model, as shown in Figure 14. This
finding suggests that the prediction model can truly reflect the interaction between the
bucket and the material to a certain extent.

Figure 12. Reward per episode on different prediction models. (a) Medium coarse gravel. (b) Small
coarse gravel.

The results of fuel consumption of the agent in different models are shown in Figure 14.
The data used to build the model come from the real environment. The wheel loader
operated by a human operator is the same as the wheel loader used to obtain the data.
In addition, the working environment of the wheel loader is also the same. Therefore,
the agent we trained has the same operating object and operating environment as the
human operator. A comparison with humans is used as a generally accepted method
of machine learning algorithm testing [11,13]. Physical-model-based methods require
a physical model. However, the diversity between the physical model and the wheel
loader used to obtain the data is great. In addition, the environment constructed for
the physical model is also very different from the environment constructed in the article.
Therefore, physical-model-based methods and the method proposed in this article have
different operating objects and environments. In addition, deep learning-based methods
mainly predict actions based on previous actions and states. As deep learning-based
methods mainly solve the prediction problem, root mean square error (RMSE) is used as
the evaluation indicator, which is different from our paper. Therefore, the fuel consumption
measured by the human operator is used to compare with the fuel consumption of the
agent. Table 2 shows the average fuel consumption of loading different piles and the
variance of fuel consumption in the recorded bucket-filling phase. In Figure 14b, there is a
relatively stable convergence, while in Figure 14a, the curve fluctuates violently. A possible
explanation for this is that the prediction model built by data with higher variance is more
complex and variable. Therefore, the agent will encounter more situations in each episode,
resulting in the oscillation of the convergence curve. In addition to this, the convergence
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values of fuel consumption of agents on medium coarse gravel model and small coarse
gravel model are around 33.3 mL and 45.6 mL, respectively, and improve by 8.0% and
10.6% compared to the average fuel consumption measured by real operators because
Q-learning can learn the optimal action in different states.

Figure 13. Digging force reward of agent on different prediction models. (a) Medium coarse gravel.
(b) Small coarse gravel.

Table 2. The comparison of fuel consumption.

Pile
Average Fuel Consumption of

Recorded Bucket-Filling Phase (mL)
Variance

Convergence
Value (mL)

Improvement (%)

medium coarse gravel 36.2 61.6 33.3 8.0
small coarse grave 51.0 42.8 45.6 10.6

The transfer learning ability can help the algorithm to improve the learning perfor-
mance on new bucket-filling tasks, thereby saving training costs. In this paper, transfer
Q-learning refers to the Q-learning that has been trained in other tasks and learned rele-
vant knowledge.

Figure 15 shows the convergence curve of rewards for Q-learning and transfer Q-
learning in the different bucket-pile interaction models. In Figure 15a, Q-learning is only
trained on the MCG-pile model, and transfer Q-learning is first trained on the SCG-pile
model and then trained on the MCG-pile model. In Figure 15b, Q-learning is only trained
on the SCG-pile model, and transfer Q-learning is first trained on the MCG-pile model
and then trained on the SCG-pile model. The convergence rate (learning rate efficient) of
Q-learning and transfer Q-learning in two bucket-pile interaction models are compared, as
presented in Table 3. Using Q-learning as the benchmark, the convergence speed of transfer
Q-learning in the medium coarse gravel and small coarse gravel model is improved by
30.3% and 34.1%, respectively. This means that the proposed algorithm has a good transfer
learning capability. This improvement can be ascribed to the fact that Q-learning stores the
learned knowledge in the Q-function and the transfer Q-learning transfers the Q-function
learned from the source task to the Q-function of the target task. Therefore, the agent no
longer needs to learn the basic action characteristics in the bucket-filling phase.
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Figure 14. Fuel consumption of agent on different interaction prediction models. (a) Medium coarse
gravel. (b) Small coarse grave.

When the two piles have similar characteristics, such as in category and shape, trans-
fer Q-learning might have better performance in the new bucket-filling task due to the
similarity of the optimal Q-function in two tasks [24]. Finally, the amount of data used to
build the interaction model also has an impact on the performance of transfer Q-learning
on the prediction model. The more data there is, the more states and actions the developed
prediction model contains. Therefore, different prediction models have more identical
states and actions, and the Q-function of the target task can learn more knowledge from the
Q-function of the source task. However, the transfer learning method potentially does not
work or even harm the new tasks [25] when the piles or environment are greatly different.

Figure 15. Comparison between Q-learning and transfer Q-learning. (a) Q-learning is only trained
on the MCG-pile interaction prediction model, and transfer Q-learning is first trained on the SCG-
pile interaction prediction model and then trained on the MCG-pile interaction prediction model.
(b) Q-learning is only trained on the SCG-pile model, and transfer Q-learning is first trained on the
MCG-pile model and then trained on the SCG-pile interaction prediction model.

Table 3. The comparison of Q-learning and transfer Q-learning on convergence speed.

Pile
Convergence Episode of

Q-Learning
Convergence Episode of

Transfer Q-Learning
Improvement (%)

medium coarse gravel 825 575 30.3
small coarse grave 1025 675 34.1
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7. Conclusions

This paper investigated the automatic bucket-filling algorithm based on RL for wheel
loaders, and the algorithm was tested. The data-driven prediction model was established
using previously obtained excavation data of two piles. The transfer Q-learning-based
automatic bucket-filling algorithm was proposed, and the algorithm was trained on the
prediction model. The results of training show that the proposed algorithm has good
performance of adaptability and convergence even without parameters of wheel loaders.
Moreover, the proposed algorithm has good performance in fuel consumption, with 8.0%
and 10.6% reduction compared to the average fuel consumption measured by real operators
on two piles. Transfer learning is used to transfer the parameter of Q-learning in the source
task to the target task. The results show the promising performance of the proposed method
on an automatic bucket-filling task. The proposed data-driven RL-based approach in this
paper has generality, which means that this approach can be applied to different machine-
pile environments. Furthermore, compared to most previous solutions for the automation
of bucket-filling, the approach proposed in this paper does not require a dynamic model
and has the advantages of no direct interaction with the real environment and transfer
ability. In future research, the method proposed in this paper will be applied to the real
wheel loaders and compared with other methods to further enhance the performance of
the reinforcement-learning-based automatic bucket-filling algorithm.
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Abstract: This paper summarizes the main factors affecting the large deformation of soft rock tunnels,
including the lithology combination, weathering effect, and underground water status, by reviewing
the typical cases of largely-deformed soft rock tunnels. The engineering geological properties of
the rock mass were quantified using the rock mass block index (RBI) and the absolute weathering
index (AWI) to calculate the geological strength index (GSI). Then, the long-term strength σr and the
elastic modulus E0 of the rock mass were calculated according to the Hoek–Brown failure criterion
and substituted into the creep constitutive model based on the Nashihara model. Finally, the creep
parameters of the surrounding rock mass of the Ganbao tunnel were inverted and validated by
integrating the on-site monitoring and BP neural network. The inversion results were consistent
with the measured convergence during monitoring and satisfied the engineering requirements of
accuracy. The method proposed in this paper can be used to invert the geological parameters of the
surrounding rock mass for a certain point, which can provide important mechanical parameters for
the design and construction of tunnels, and ensure the stability of the surrounding rock mass during
the period of construction and the safety of the lining structure during operation.

Keywords: tunnel engineering; soft rock; creep parameter; parameter inversion; BP neural network

1. Introduction

Tunnel projects in western China often encounter soft rocks with well-developed
bedding, such as carbonaceous phyllite, sericite phyllite, schist, carbonaceous slate, sandy
slate, and carbonaceous shale. Under high in situ stress, the laminated soft surrounding
rock masses are vulnerable to large and rapid deformation and local destruction [1–3]. In
these conditions, tunnels frequently suffer from large deformation hazards.

Laminated rock mass, frequently seen in engineering practice and presenting oriented
grouped bedding, has more heterogeneous mechanical properties than normal rock mass.
Many researchers have developed constitutive models for laminated surrounding rock
masses. For instance, Jia et al. [4] applied the microscopic element method with the
constitutive model based on damage mechanics and statistical theory to the simulation
of rock tunnel stability using the finite element method (FEM). Li et al. [5] developed a
three-dimensional creep constitutive model for transversely isotropic rock mass, based
on the Burgers viscoelastic model. Li et al. [6] proposed three basic creep patterns of
shale and a general methodology for developing the anisotropic creep model. These
constitutive models have been used to probe the deformation and failure characteristics
of laminated rock masses with varied dip angles. However, research on the constitutive
theory of laminated surrounding rock masses in tunnels is fairly limited and cannot
provide the theoretical guidance for the engineering design of actual tunnels. In terms
of the mechanisms of laminated rock mass deformation, previous studies have mainly
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investigated patterns of stability [7], deformation [8–10], mechanical behavior [11], and
mechanical properties [12]. The main triggers for large tunnel deformation through highly-
dipped laminated soft rock under high in situ stress are high structural stress, unfavorable
rock occurrences, and low rock strength [13]. On-site tunnel monitoring has shown that the
deformation–failure zone of the surrounding rock mass of laminated soft rock tunnels is
concentrated along the direction perpendicular to the rock bedding, instead of the direction
of the maximum principal stress; the local deformation of laminated soft rock tunnels is
affected by the topography, rock mass structure, and in situ stress [14]. Four mechanisms
have been proposed to explain large tunnel deformation, namely, along-bedding sliding,
flexural deformation, toppling deformation, and plastic extrusion. For each mechanism,
a specific anchoring support plan should be developed [15]. Numerical simulation has
been performed to comprehensively analyze the stress environment, the deviator stress
distribution [16–19], and the plastic zone distribution [20,21] of the surrounding rock
mass during tunnel excavation. Such simulations, incorporating the rock characteristics
of deterioration, stabilization, and accelerated creep [22], reveal the characteristics of
the surrounding rock mass failure with varied surrounding rock mass strengths, buried
depths, and roof strengths [23], which provide guiding values to support the design of the
analogous tunnels.

Due to the complexity of geology, geotechnical materials are typically characterized by
discontinuity and heterogeneity, and the rheological parameters of the actual surrounding
rock mass of the tunnel are often hard to measure. There are two main methods to obtain
creep parameters: one is to calculate creep parameters through laboratory testing of rock
combined with a creep constitutive model, but there is a large deviation between the labo-
ratory results for rock and on-site rock mass parameters. Second, to obtain the mechanical
parameters of the surrounding rock mass through displacement back analysis based on
monitoring data [24]. Wenzheng Cao [25] proposed a novel back analysis program based
on a BP neural network, which can realize automatic correction and the adjustment of pa-
rameters and adapt to most tunnel projects. Qingdong Wu [26] introduced a support vector
machine (SVM) and an artificial neural network (ANN) to predict tunnel surrounding rock
mass displacement, and compared and analyzed the results of the two methods. Xianghui
Deng [27] established a tunnel risk assessment model by combining a fuzzy method with
a BP neural network based on historical data from 50 tunnels. Numerical simulation has
been widely combined with back-propagation (BP) neural network analysis to calculate
the physical and mechanical parameters of surrounding rock mass, which has achieved
good application performance [28–30].

This paper proposed a solution for obtaining the creep parameters of the surround-
ing rock mass in highway tunnels after excavation. First, the long-term strength of the
engineering rock mass was obtained using the Hoek–Brown failure criterion, and a creep
constitutive model for the rock mass was developed. Then, back-propagation analysis
was performed using the on-site monitoring data to obtain the initial values of the creep
parameters of the tunnel’s surrounding rock mass. Subsequently, training samples were
generated via orthogonal experiments. Then, a BP neural network and numerical sim-
ulation were integrated to inversely calculate the tunnel’s surrounding rock mass creep
parameters that matched the reality.

2. Factors Affecting the Deformation of Soft Rock Tunnels under High In Situ Stresses

The engineering data from some typical largely-deformed soft rock tunnels in China
are summarized in Table 1, including the buried depth, formation lithology, in-situ stress,
deformation magnitude, and characteristics of deformation and failure.
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Surrounding rock masses that are found with large deformations are mostly soft
rock with a highly developed bedding texture, such as shale, slate, and phyllite (Table 1).
The bedding plane profoundly affects the strength and deformation characteristics of
tunnel-surrounding rock mass and is considered the key factor determining the mechanical
behavior and deformation-failure characteristics of anisotropic rock mass. In general, the
compressional deformation of the surrounding rock mass of tunnels in laminated soft rock
occurs mainly at the two sides along the normal direction of the weakest bedding plane.
Moreover, the smaller the bedding spacing is, the worse the integrity and self-stabilizing
ability of the surrounding rock mass are, which leads to increased proneness to local large
deformation and thus a relatively large compressional load on the support structure and
highly-deformed lining and surrounding rock mass in local areas. The factors affecting the
large deformation of the surrounding rock mass can be summarized as follows:

Based on lithology, the surrounding rock mass can be grouped into two types, namely,
plastic and brittle rock. The former consists of soft rock and is typically characterized by
low mechanical strength, softening and swelling on wetting, and low slaking resistance,
which are all unfavorable for the load-bearing and stability of the tunnel’s surrounding
rock mass. On the contrary, the latter is of hard rock and generally has a high load-bearing
capacity, low softening and swelling tendencies on wetting, and high slaking resistance,
which are favorable for the load-bearing and stability of the tunnel’s surrounding rock
mass. The lithology combination can be generally summarized into four cases, namely,
the consistent lithology, hard interbeds (in much softer surrounding rock mass), soft
interbeds (in much harder surrounding rock mass), and soft–hard alternating lithology.
Different lithology combinations are associated with varied deformation strengths. A soft
interbed in the surrounding rock mass is equivalent to a weak part in the surrounding
rock mass. In most cases, deformation-failure occurs first in the soft interbed during
tunnel excavation. If a hard interbed exists in the surrounding rock mass, it will often
suppress the rock deformation, due to its more rigid mechanical properties than those of
the surrounding rock mass. Therefore, the deformation magnitude is often relatively small
at the hard interbed.

The weathering effect is a common geological phenomenon in nature, which can
weaken the cementation between rock particles, form damage cracks, reduce surface
roughness, and worsen the physical and mechanical properties of rock. Rapid weathering
of soft rock in tunnels will reduce the stability of the surrounding rock mass and affect the
safety of the tunnel construction. After the tunnel excavation, the weak layered surrounding
rock mass will form internal cracks due to the unloading effect; then, an effective seepage
channels are formed, groundwater seeps through these channels, reducing the effective
stresses and thus the shear strength along discontinuities and therefore the strength of the
rock mass. Therefore, the presence of underground water makes the rock mass more prone
to large deformation. The varied underground water seepage pathways or inconsistent
thickness of the broken rock zone in the surrounding rock mass after excavation may result
in local large deformation of the surrounding rock mass.

Due to the complex geological conditions outlined above, obvious asymmetry is
observed for the deformation occurring at the two sides of the central axis, crown, and
inverted arch, and local deformation is a common phenomenon for the practice of tunnel
engineering. Therefore, it is necessary to quantitatively analyze the engineering geology of
each part of the tunnel’s surrounding rock mass and accurately invert the creep parameters
at each local point from the on-site deformation monitoring data, so as to guide the design
and construction of tunnels.

3. Rock Strength and Creep Constitutive Model Based on the Hoek–Brown
Failure Criterion

The classic rock mass failure criterion considers rock as a continuous homogeneous
medium, which greatly simplifies the reality. A constitutive model for the rock mass
with multiple structural planes was developed via superimposition of the constitutive
equations of the rock mass with a single joint, which cannot accurately capture the complex
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mechanical characteristics of the tiny fissures and multiple groups of structural planes in
the rock mass [31,32]. Hence, the semi-empirical semi-theoretical approach was used to
characterize the laminated rock mass in engineering practice.

In 1980, E. Hoek and E. T. Brown derived the correlation expression among the limiting
principal stresses for the failure of rock (mass) (namely, the Hoek–Brown failure criterion)
via a trial-and-error process, based on the statistical analysis of massive data from rock
triaxial tests and field testing of rock mass, and the Griffith theory. Then, E. Hoek further
proposed the generalized Hoek–Brown empirical failure criterion. The Hoek–Brown
empirical failure criterion can reflect the effects of various factors of the rock mass—such
as the rock strength, the number of structural planes, and the in situ stress—on the rock
mass strength, and overcome the disadvantages of the conventional theoretical equation.
The generalized Hoek–Brown failure criterion can be expressed as below:

σr = σ3 + σc

(
mb

σ3

σc
+ s

)a
(1)

where σr is the maximum principal stress when the rock fails, namely, the rock strength; σ3
is the minimum principal stress when the rock fails; σc is the uniaxial compressive strength
of the intact rock; mb, s, and a are all empirical parameters; mb represents the hardness of
the rock, with a value of 0.0000001–25 (0.0000001 for severely-disturbed rock and 25 for
intact hard rock); s represents the broken degree of the rock mass, with a value of 0–1 (zero
for completely broken rock and one for intact rock); a is related to the rock mass quality.

For rock mass with good quality, its strength characteristics are mainly controlled
by the rock particle strength, due to the tight packing of rock particles. The restricted
Hoek–Brown empirical failure criterion is more applicable to this case and a = 0.5. On the
contrary, for rock mass with poor quality, the packing of fragments in the rock mass is
loosened by shearing or weathering, which results in loss of the tensile strength of the rock
mass (zero cohesion). Under such circumstances, if there is no confinement, the rock mass
will collapse and a should be assigned to other values. The expressions of the parameters
in Equation (1) are listed below:

mb = mi exp
(

GSI − 100
28 − 14D

)
(2)

s = exp
(

GSI − 100
9 − 3D

)
(3)

a =
1
2
+

1
6

(
e−GSI/15 − e−20/3

)
(4)

0 < σ3 <
σc

4
(5)

where D is the disturbance factor (zero for the undisturbed rock mass, and one for
completely disturbed rock mass). mi indicates the values of constants for intact rock,
which can be determined by laboratory testing (uniaxial compression test and conven-
tional triaxial compression test). Based on laboratory data and engineering experience,
E. Hoek et al. [33,34] developed a comprehensive and detailed mi value table that was able
to cover a variety of rocks; the mi index of intact phyllite in this paper refers to this mi
value table.

Afterwards, E. Hoek and E. J. Brown further derived the estimations of the relevant
mechanical parameters of the rock mass [35], based on Equation (1):

σcr =
√

sσc (6)

σtr =
1
2

σc

(
mb −

√
m2

b + 4s
)

(7)
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Erm = 105 1 − D/2
1 + exp[(75 + 25D − GSI)/11]

(8)

Equation (1) shows that the GSI value is the key to determining the mechanical
parameters of the Hoek–Brown failure criterion for the rock mass. However, E. Hoek
proposed only a general range for the texture type and weathering conditions of the rock
mass and offered no quantitative calculation method.

Rock quality designation (RQD) is the most commonly used index to describe the
structural characteristics of rock mass, which is defined as the percentage of the sum
of the lengths of intact core pieces longer than 0.1 m relative to the chosen length of an
evaluated drill core (RQD = ( the lengths of intact core pieces ≥ 10 cm per footage

the length of an evaluated drill core (%)); however,
the definition of RQD requires that the quality of core pieces must be “hard and sound”,
meaning it can only calculate the percentage of the core with a length beyond 10 cm in the
total cored length, which is not suitable for integrity evaluations when characterizing the
multi-joint rock mass.

This paper introduces the rock mass block index (RBI) and the absolute weathering
index (AWI) to quantify the GSI. The RBI, proposed by Hu et al. [36], can thoroughly
characterize the block dimension, texture type, and structural packing of blocks for the
rock mass. The RBI defines the percentages of drilling cores with the measured lengths of
3–10 cm, 10–30 cm, 30–50 cm, 50–100 cm, and >100 cm as the weights, and the value of the
RBI is the sum of the weights multiplied by the corresponding coefficients.

Although the rock mass has the same RQD value, the RBI values can be different.
For example, the rock mass of RQD = 90% can be 10~30 cm with a mosaic structure, or
30~50 cm with a block structure, or 50~100 cm with a block structure, or even more than
100 cm with intact structure. Under the same RQD, the larger the RBI is (from a mosaic
structure to an intact structure), the more intact the rock mass is, and the RBI can be
regarded as an extension of RQD. The calculation formula of RBI is shown below:

RBI = 3Cr3 + 10Cr10 + 30Cr30 + 50Cr50 + 100Cr100 (9)

where Cr3, Cr10, Cr30, Cr50, and Cr100 are the acquisition rates (weights in percentages)
of the cores with the lengths of 3–10 cm, 10–30 cm, 30–50 cm, 50–100 cm, and >100 cm,
respectively. The details of the rock mass texture representation by RBI, associated with the
field description, are shown in Table 2.

Table 2. Representation of rock mass textures by RBI.

Texture Type RBI Rock Mass Characteristics

Laminated mosaic texture 30–10
Relatively intact, barely, or partially disturbed,
often developing 3 groups of structural planes

with the spacing of 30–50 cm

Mosaic texture 10–3

Less intact, mostly disturbed, broken yet with
tightly packed fragments, generally developing

3–4 groups of structural planes with the spacing of
10–30 cm

Broken texture 3–1

Broken rock mass, sufficiently disturbed,
composed of fragments or thin layers, with

extensive structural planes presenting spacing
generally smaller than 10 cm

Loose texture 1–0
Extremely crushed rock mass, extremely disturbed,

composed of loose rock blocks, and angular
fragments with crushed debris

The mechanical properties of rock are also related to the weathering level. Chemical
weathering can alter the mineral composition of rock and thus alter its physical and
mechanical performance.
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Parker [37] proposed an index of weathering for silicate rocks, based on the propor-
tions of the alkali and alkaline earth metals present. The bond strengths of the most mobile
of the major elements with oxygen are used as weighting factors in the index; the proposed
index is defined by the following expression:

WI =
[

a(Na)
0.35

+
a(Mg)

0.9
+

a(K)

0.25
+

a(Ca)
0.7

]
× 100 (10)

where a(X) (X = Na, Mg, K, Ca) indicates the atomic proportion of element X, defined as the
atomic percentage divided by the atomic weight, and the denominator is the bond strength
of element X with oxygen, which represents the stability of the element in the weathering
process. From fresh rock to weathered rock, the index WI is gradually reduced.

The weathering index of rock mass AWI0 [38] can be expressed as below:

AWI0 = WI/WI′ (11)

where WI stands for the weathering index of the weathered rock, whereas WI′ represents
that of the fresh rock. Thus, a higher value of AWI indicates fresher rock with a lower
level of chemical weathering and correspondingly better mechanical properties. On the
contrary, a higher AWI value denotes a high level of chemical weathering. Obviously, AWI
quantitatively characterizes the weathering conditions of the engineering rock mass. Based
on the research on the relationship between the weathering index and the weathering level
of the rock [39], the weathering level of rock based on AWI is shown in Table 3/Figure 1. In
order to conveniently determine the absolute weathering index AWI0 of the rock mass, can
use the ratio of uniaxial compressive strength of fresh rock to weathered rock.

Table 3. Representation of the rock mass weathering characteristics by AWI.

Weathering Condition AWI0 Weathering Characteristics

Non-weathered >0.90 Very good fracture surface: very coarse, fresh, indicating well-sealed fresh rock matrix and
no weathering

Slightly weathered 0.90–0.75 Good fracture surface: coarse, relatively fresh, with the presence of rush and the slight alteration of
minerals with low weathering resistance, indicating slight weathering

Weakly weathered 0.75–0.55 Ordinary fracture surface: smooth with no filling, partial alteration of minerals with low
weathering resistance, indicating weak weathering

Intensively weathered 0.55–0.35
Poor fracture surface: the presence of slickensides, covering of tight films or filling of angular
debris on the surface, high alteration of minerals with low weathering resistance, indicating

intensive weathering

Extremely weathered ≤0.35 Very poor fracture surface: the presence of slickensides, and soft clay films or clay filling; the vast
majority of minerals with low weathering resistance are altered; indicating extreme weathering

Figure 1. Schematic diagram of rock weathering.
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A correction factor λ is introduced to describe the effects of underground water
on the weathering conditions of the jointed rock mass (Table 4). Accordingly, the rock
mass weathering index, considering the effects of underground water, can be expressed
as AWI = λAWI0.

Table 4. Recommended values for the correction factor λ to capture the effects of underground water on the weathering
conditions of rock mass.

Production Status of Underground Water
RBI Values of Jointed Rock Mass

30–10 10–3 3–1 1–0

Humid or dripping 0.95 0.95–0.89 0.89–0.83 0.83–0.76

Rain-like or spring-like production with water pressure < 0.1
MPa; or unit water production rate < 10 L/min·m 0.95–0.89 0.89–0.83 0.83–0.76 0.76–0.71

Rain-like or spring-like production with water pressure > 0.1
MPa; or unit water production rate > 10 L/min·m 0.89–0.83 0.83–0.76 0.76–0.71 0.71–0.67

By integrating the quantitative indexes in Tables 2–4 for the texture and weathering
conditions of the rock mass, the geological strength index (GSI) quantification method
(Figure 2) can be obtained.

Figure 2. GSI quantification of rock mass [31]. Note: The following example is used to demonstrate how to use the above
table. In the case of AWI = 0.52 and RBI = 9.7, two vertical and horizontal lines are drawn according to the index values (the
dashed lines in the table); the intersection point is found between 40 and 45; the GSI value at the point is calculated via
linear interpolation (the result is 41).

The widely applied Nishihara model can characterize the decelerating, steady-state,
and accelerating creep phases of rock. Extensive experiments have shown that notable
damage of the rock occurs only in the accelerating creep phase. The rock strength σr,
presented upon the failure of the rock, is the long-term strength for rock creep. The creep
elements of the rock mass model are shown in Figure 3.
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Figure 3. Combination of the creep elements for rock mass.

The creep equation can be expressed as below:

ε =

⎧⎨⎩
σ
E0

+ σ
E1

[
1 − exp

(
− E1

η1
t
)]

(σ ≤ σr)

σ
E0

+ σ
E1

[
1 − exp

(
− E1

η1
t
)]

+ σ−σr
η2

t (σ > σr)
(12)

where E0 is the elastic modulus; E1 is the viscoelastic modulus; η1 and η2 are the viscosity
coefficients; σ is the load stress; ε is the total strain; σr is the long-term strength calculated
using Equation (1) (the Hoek–Brown failure criterion); and t is the creep time.

The strength parameters of the laminated jointed rock mass at each position (Figure 4)
can be obtained according to the Hoek–Brown failure criterion. Then, they are input into
the numerical simulator via the creep constitutive model (Equation (12)) to calculate the
deformation of the surrounding rock mass (Figure 5).

 
Figure 4. Surrounding rock mass strength parameters based on the Hoek–Brown failure criterion.

 

Figure 5. Schematic diagram of the surrounding rock mass deformation.
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4. Field Application

The stress state of the surrounding rock mass changes after starting the excavation
of the tunnel. Hence, the support design based on the surrounding rock mass parameters
obtained in the previous investigation is inappropriate, in particular for a tunnel engineer-
ing design with a high buried depth, large span, and highly-developed structural planes.
To provide a basis for theoretical reference and design, this paper inverts and validates
the surrounding rock mass parameters by integrating the on-site monitoring with a BP
neural network.

The BP neural network is a typical nonlinear algorithm, composed of the input, output,
and several (one or more) hidden layers (Figure 6), and each layer has several nodes. The
connection of nodes between layers is represented by the weight. The BP neural network
with one hidden layer is the traditional shallow neural network, whereas that containing
multiple hidden layers is the deep learning neural network (Figure 7).

Figure 6. Schematic diagram of the BP neural network structure. Note: The weight w represents the
connection strength; the bias b indicates whether or not the node is easy to activate (threshold).

Figure 7. Deep BP neural network structure.

The core steps for training the BP neural network are illustrated below (Figure 8), in
which the solid line represents forward propagation and the dashed line represents back
propagation. The forward propagation means that the data (information or signal) are first
imported into the input end, delivered along the network direction, and multiplied by the
corresponding weight. The products of the input data and the corresponding weights are
then summed, and the results are input into the activation function for calculation. Then
calculation results are delivered to the next node as the input. The calculation is performed
successively until the final output is obtained.
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Figure 8. Steps for training the BP neural network.

Here we summarize the inversion workflow of the creep parameters of the surround-
ing rock mass, as shown below (Figure 9).

Figure 9. Inversion workflow for the creep parameters of the surrounding rock mass.

The Ganbao tunnel project of the Wenchuan–Maerkang expressway was taken as an
engineering case study. It is an ultra-long left-right separated tunnel project (the left tunnel
is 4777 m long and the right one is 4796 m long). The longitudinal profile of the tunnel
is illustrated in Figure 10, in which the red surrounding rock mass mainly represents the
sericite phyllite; the yellow part represents the sericite phyllite interbedded by carbona-
ceous phyllite and metasandstone; the blue part shows the carbonaceous phyllite and
sericite phyllite interbedded by metasandstone; the green part represents the sericite phyl-
lite and carbonaceous phyllite; and the black part indicates the carbonaceous phyllite. The
tunnel was excavated using the drilling and blasting method. A large deformation occurs
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at the mile sections K141 + 540~K141 + 860 and K143 + 485~K143 + 650, which results in
the circumferential cracking of multiple points along the initially supported arch and local
cracking and spalling of the sidewall and tunnel crown (Figure 11). The monitoring section
is located at K143 + 621 and starts monitoring after 12 h of excavation. The overburden
near the monitoring section consists of collapsed debris deposits, sericite phyllite and
carbonaceous phyllite (from top to bottom, Figure 12),the lithology presented on the face of
the surrounding rock mass of the largely-deformed tunnel section (Figure 13) is dominated
by the carbonaceous phyllite and sericite phyllite, mainly the Grade-V surrounding rock
mass. The rock mass is found with a laminated texture and has a buried depth of 646 m,
with a vertical stress of 21.7 MPa and a horizontal stress of 8.3 MPa. Field observations
indicate minimal effects of underground water, and thus the correction factor λ for the
effects of underground water on the weathering conditions of the rock mass is set as one.

 
Figure 10. Longitudinal profile of the tunnel.

 
Figure 11. The twisted steel arch and back haunch fillet of the arch, and rockfall of the initial support.
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Figure 12. The overburden near monitoring section K143 + 621.

 
 

(a) (b) 

Figure 13. Tunnel face (unexcavated) at K143 + 630. (a) Geological sketch picture. (b) Photo of the tunnel face.

The pre-excavation boreholes are arranged on the tunnel face (Figure 14), the rock cores
are collected via pre-excavation boreholes for investigation, and the RBI value of rock mass
(Table 5) for each borehole is calculated using Equation (9) and the core length measured
on site. For the monitoring of surrounding rock mass deformation after excavation, the
on-site monitoring point placement is illustrated in Figure 14.
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Figure 14. Monitoring point and pre-excavation borehole placement in the tunnel (K143 + 621).

Table 5. Cores collected via pre-excavation boring at each monitoring point and the RBI values.

Monitoring
Point

Cores RBI Values

1

 
6.763

2

 
5.626

3

 
3.748

4

 
2.8

5

 
4.331

Taking Point 4 as an example, the field investigation shows that the RBI of the sur-
rounding rock mass cores at Point 4 is about 2.8; the AWI is about 0.65. According
to Table 4, the GSI value is 33. For the intact phyllite rock, the Hoek–Brown constant
mi = 10 and the uniaxial compressive strength σc = 35 MPa. From Equation (5), we have
σ3max = σc

4 = 8.75 MPa and from Equations (2)–(4), we have mb = 0.916, s = 0.000587,
and a = 0.518.

Finally, according to Equation (1), the uniaxial comprehensive strength of the rock
mass σr = 16.33 MPa and the elastic modulus E0 = 1.11 GPa. The basic parameters at the
other points are summarized in Table 6.
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Table 6. Basic parameters of the surrounding rock mass at each monitoring position.

Monitoring
Point

RBI AWI GSI mb s a σr
(MPa)

σ3= σc
4

(MPa)
E0

(GPa)

1 6.763 1.570 79.708 2.212 0.001418 0.27 36.8 45.29 2.69

2 5.626 1.306 66.305 1.840 0.001179 0.22 32.28 37.67 2.24

3 3.748 0.870 44.169 1.226 0.000786 0.15 21.57 25.10 1.49

4 2.8 0.65 33 0.916 0.000587 0.11 16.33 18.75 1.11

5 4.331 1.006 51.050 1.417 0.000908 0.17 22.8 29.01 1.73

The fitting of the creep constitutive model (Equation (11)) to the surrounding rock
mass monitoring data (Figure 15) was performed using the least square method to calculate
the creep parameters of the rock mass at each monitoring point. The calculation results are
shown in Table 7.

 
Figure 15. Measured displacement vs. time at each monitoring point.

Table 7. Creep parameters of the rock mass at each monitoring point.

Point No. E0/GPa σr (MPa) E1/GPa η1/(GPa·d) η2/(GPa·d)

1 2.69 36.8 0.8 16.38 93.71

2 2.24 32.28 0.71 11.22 88.63

3 1.49 21.57 0.5 8.78 6.55

4 1.11 16.33 0.4 7.87 5.62

5 1.73 22.8 0.6 10.11 78.52
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Since the factors affecting the deformation of the surrounding rock mass are varied in
the different positions of the tunnel, a neural network was constructed and trained for each
point to improve the inversion accuracy. The single-variable method was used for training,
which means when the neural network of one point is being trained, the parameters of
the other points are constant. Here, Point 4 was taken as an example to demonstrate the
training of the neural network. As stated above, the parameters of the other points were
fixed, and the learning sample dataset of the surrounding rock mass mechanical properties
was built based on the orthogonal test design (Figure 16). The sample parameters in the
training dataset were substituted into the numerical simulation model developed using
Midas (Figure 17), and the forward calculation was performed to obtain the surrounding
rock mass deformation magnitude at each point (Table 8). We used 80% of the data in
Table 8 as the training dataset, whereas we used the other 20% as the testing dataset.

Figure 16. Training the dataset at a certain point in a single-variable approach.

Figure 17. Numerical simulation model of the tunnel.
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Table 8. The orthogonal test design plan and calculation results for Point 4.

No.
E0

/GPa
σr

/MPa
E1

/GPa
η1

/(GPa·d)
η2

/(GPa·d)

Displacement
at Point 1

/mm

Displacement
at Point 2

/mm

Displacement
at Point 3

/mm

Displacement
at Point 4

/mm

Displacement
at Point 5

/mm

1 2.69 36.80 0.80 16.38 93.71 7.31 9.11 13.11 27.94 11.50

2 2.69 41.80 1.30 21.38 98.71 12.51 15.59 22.43 47.80 19.67

3 2.69 46.80 1.80 26.38 103.71 11.02 13.74 19.76 42.11 17.33

4 2.69 51.80 2.30 31.38 108.71 9.84 12.27 17.64 37.60 15.47

5 2.69 56.80 2.80 37.38 113.71 8.90 11.09 15.95 34.00 13.99

6 2.24 36.80 1.30 26.38 108.71 15.83 19.73 25.85 33.66 22.41

7 2.24 41.80 1.80 31.38 113.71 14.31 17.84 23.37 30.43 20.26

8 2.24 46.80 2.30 37.38 93.71 11.76 14.66 19.21 25.01 16.65

9 2.24 51.80 2.80 16.38 98.71 17.73 22.10 28.95 37.70 25.10

10 2.24 56.80 0.80 21.38 103.71 10.91 13.60 17.82 23.20 15.45

11 1.49 36.80 1.80 37.38 98.71 10.60 13.21 18.74 30.89 16.44

12 1.49 41.80 2.30 16.38 103.71 8.71 10.85 15.40 25.38 13.51

13 1.49 46.80 2.80 21.38 108.71 14.90 18.57 26.35 43.43 23.11

14 1.49 51.80 0.80 26.38 113.71 13.13 16.36 23.22 38.26 20.36

15 1.49 56.80 1.30 31.38 93.71 11.72 14.61 20.73 34.16 18.18

16 1.11 36.80 2.30 21.38 113.71 23.73 28.05 40.76 51.49 34.56

17 1.11 41.80 2.80 26.38 93.71 20.91 24.71 35.91 45.37 30.45

18 1.11 46.80 0.80 31.38 98.71 18.67 22.07 32.06 40.51 27.19

19 1.11 51.80 1.30 37.38 103.71 16.88 19.95 28.99 36.62 24.58

20 1.11 56.80 1.80 16.38 108.71 13.87 16.39 23.82 30.09 20.20

21 1.73 36.80 2.80 31.38 103.71 18.26 21.85 25.08 31.69 21.27

22 1.73 41.80 0.80 37.38 108.71 16.31 19.51 18.12 22.89 15.37

23 1.73 46.80 1.30 16.38 113.71 14.74 17.64 16.39 20.70 13.89

24 1.73 51.80 1.80 21.38 93.71 12.12 14.49 13.46 17.01 11.42

25 1.73 56.80 2.30 26.38 98.71 20.73 24.80 33.23 41.46 28.48

Section K143 + 621 was chosen for numerical simulation. Its buried depth was 646 m,
we set the size of the model as long × wide = 360 m × 150 m, the fixed end restraint
was set at the bottom, the overlying pressure (γH = 33.6 KN/m3 × (646 − 150) m = 16.67
MPa) was added above the model, the horizontal stress (8.3 MPa) was added on both sides
of the model, and the surrounding rock masses all adopted the M-C failure criterion, as
shown in Figure 17. The physical parameters of the surrounding rock mass, dominated by
sericite and carbonaceous phyllite, were: average density ρ = 3.42 g/cm3, average elastic
modulus E = 5.52 GPa, Poisson ratio ν = 0.38, internal cohesion c = 175 kPa, internal friction
angle ϕ = 27◦.

Using the BP neural network toolkit in MATLAB, the forward training of the rock
mass parameters and deformation at Point 4 (Table 7) was performed, which produced the
neural network model of Point 4, referred to as net4. Similarly, the training samples for the
other point were generated and so were their neural network models, namely net1, net2,
net3, and net5, respectively. Finally, the deformation measured at each point was input
into the corresponding neural network model and the surrounding rock mass parameters
were inverted. For the purpose of validation, the inverted mechanical parameters of the
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surrounding rock mass were substituted into the Midas numerical model to determine the
deformation at each point of the surrounding rock mass (Table 9).

Table 9. Parameter inversion of surrounding rock mass and error analysis.

Monitoring
Point

Measured
Deformation

/mm

Output: Inverted Mechanical Parameters of
the Surrounding Rock Mass Simulated

Deformation
/mm

Relative Error
/%E0

/GPa
σr

/MPa
E1

/GPa
η1

/(GPa·d)
η2

/(GPa·d)

1 23.73 3.44 35.35 0.92 16.85 104.49 26.67 12.37

2 28.05 2.91 31.89 0.81 12.39 97.20 30.69 9.41

3 40.76 2.12 21.67 0.59 10.01 9.13 45.57 11.81

4 51.50 1.71 16.91 0.48 9.19 8.11 58.54 13.67

5 34.56 2.39 22.63 0.71 11.15 88.00 37.51 8.53

The relative error between the measured displacement and the numerically simulated
displacement obtained through inversion was within 15%, indicating the good consistency
and high applicability of the proposed method. Therefore, one can build a monitoring
system for the largely-deformed surrounding rock mass section, according to the on-
site information (such as the lithology combination, underground water status, bedding
thickness, rock mass texture, surrounding rock mass integrity, maximum principal stress,
and on-site measured rock deformation) for the purposes of gaining real-time information
of the tunnel’s surrounding rock mass parameter, adjusting the support plan in a timely
manner, and providing references for design and construction.

5. Conclusions

Due to the concealment of tunnel engineering, it is difficult to obtain the parameters
of the surrounding rock mass after excavation. In this study, we combined the traditional
Nashihara model with the Hoek–Brown failure criterion and developed the creep consti-
tutive model for the jointed rock mass. Then, the creep parameters of the surrounding
rock mass of the Ganbao tunnel were inverted and validated by integrating the on-site
monitoring and the BP neural network. The following conclusions were drawn:

(1) By reviewing the typical cases of large deformation in soft rock tunnels, the main
influential factors can be summarized as the lithology combination, weathering effect,
and underground water status. With the classical rock mass failure criterion, it is
hard to thoroughly incorporate the geological characteristics of the actual rock mass
and therefore the semi-empirical semi-theoretical Hoek–Brown approach is more
fit-for-purpose.

(2) The geological characteristics of the engineering rock mass were quantitatively char-
acterized using two indexes, namely, the rock mass block index (RBI) and the absolute
weathering index (AWI). Following the Hoek–Brown criterion, the long-term strength
σr and elastic modulus E0 of the rock were obtained and then substituted into the rock
mass creep constitutive model based on the Nashihara model and the Hoek–Brown
failure criterion. By doing so, the original five creep parameters that needed to be
determined in the creep equation were reduced to three, which simplifies the calcula-
tion of the constitutive model, while well reflecting the engineering, geological, and
creep characteristics of the rock mass on site.

(3) Considering the fact that the actual engineering geology varies at different positions
of the tunnel’s surrounding rock mass, a specific BP neural network model was
built for each monitoring point. Then, the rock mass parameters at each point were
inverted from the on-site measured deformation. At last, the inverted parameters
were input into the numerical model to calculate the deformation at each point, which
was compared with the corresponding measured deformation. The resultant errors
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were all within 15%, satisfying the engineering requirements and demonstrating the
reliability of the proposed method.

(4) The values of the rock mass GSI (Figure 2) were all determined according to the
engineering geology handbook, relevant standards, and existing literature. Therefore,
these values can be adjusted as per the field condition. The inversion of the surround-
ing rock mass parameters is highly affected by the basic parameters of the engineering
geological characteristics and the in-situ stress field of the tunnel’s surrounding rock
mass. Hence, during applications of the proposed method, the basic parameters need
to be accurately measured to improve the accuracy of the inversion.

(5) This method is suitable for tunneling in unsupported rock mass or plainly supported
tunnels after excavation.
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Abstract: Due to extreme weather, researchers are constantly putting their focus on prevention and
mitigation for the impact of disasters in order to reduce the loss of life and property. The disaster
associated with slope failures is among the most challenging ones due to the multiple driving
factors and complicated mechanisms between them. In this study, a modern space remote sensing
technology, InSAR, was introduced as a direct observable for the slope dynamics. The InSAR-derived
displacement fields and other in situ geological and topographical factors were integrated, and their
correlations with the landslide susceptibility were analyzed. Moreover, multiple machine learning
approaches were applied with a goal to construct an optimal model between these complicated factors
and landslide susceptibility. Two case studies were performed in the mountainous areas of Taiwan
Island and the model performance was evaluated by a confusion matrix. The numerical results
revealed that among different machine learning approaches, the Random Forest model outperformed
others, with an average accuracy higher than 80%. More importantly, the inclusion of the InSAR data
resulted in an improved model accuracy in all training approaches, which is the first to be reported
in all of the scientific literature. In other words, the proposed approach provides a novel integrated
technique that enables a highly reliable analysis of the landslide susceptibility so that subsequent
management or reinforcement can be better planned.

Keywords: landslide potential; InSAR; spatial factors; machine learning; slope unite

1. Introduction

In Asian subtropical monsoon regions, July to September is a season of strong ty-
phoons. High rainfall intensity usually causes serious landslide events in mountainous
areas [1]. It is necessary to predict landslide occurrence and behavior and adopt appropriate
prevention policies and methods to improve disaster relief effectiveness and reduce casual-
ties and property loss during and after disasters. Landslide prediction aims to predict the
possibility of the occurrence of landslides in a specific area; available data are commonly
used, including conditional factors and historical landslides. These data are collected
from landslide inventories and static instruments, and their values are shown in spatial
analysis [2]. However, traditional landslide prediction, such as mathematical evaluation
models, lacks information about the temporal probability of landslides, i.e., time-series
landslide behavior. Landslide displacement time-series data can directly reflect ground
surface deformation and stability characteristics. Therefore, they have been recently used
to develop landslide prediction models. Generally, these time-series data are collected from
one-point survey equipment, such as surface extensometers and GPS devices [3]. However,
field GPS surveying projects, which depend on only one or two temporarily installed
reference stations, have many disadvantages [4]. In practice, steadily obtaining survey
data using these single reference stations is often difficult because of poor performance or
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failure. Therefore, the use of only the single-point method in landslide surveys would limit
the cost-effectiveness.

In recent years, remote sensing technology has effectively detected large-scale landslide-
sensitive areas and generated landslide inventories, which are crucial for predicting land-
slides before they occur or recur, especially in far or barely accessible areas [5]. In daytime
satellite images without shadows and clouds, landslide positions can be identified through
noticeable radiometric contrasts between land cover types [6]. Optical sensors cover the
electromagnetic spectrum from 390 nm to 1 mm, including the visible and infrared bands.
Such devices can measure the visual properties in the spectral characteristics of the land
surface, which can then be used to detect and map landslides. Researchers can also combine
time-series satellite images with digital elevation models (DEMs) to acquire 3D terrain,
which can be used to visually detect and predict potential landslides.

However, affected by monsoons, typhoons, and thunderstorms, mountainous areas are
usually shrouded in clouds at times; thus, the use of satellite images to monitor landslide
disasters could be limited by weather conditions. Compared with optical sensors, synthetic
aperture radar (SAR) sensors use a longer wavelength—microwaves; having all-weather
and all-day operational capability, SAR sensors can penetrate cloud cover and reduce the
limitation imposed by the atmosphere to remotely evaluate the accurate range and severity
of landslide disasters in almost real-time [7]. Although some particular meteorological
situations, such as thick rain cells, may disturb the backscattering coefficient, SAR remains
more powerful than optical sensors for long-term landslide observation [8]. Spaceborne
SAR, such as Envisat, ALOS PALSAR, RADARSAT, TerraSAR-X, and Sentinel-1, provide
high spatial resolutions and can clearly observe target objects in full-time and in almost
all-weather conditions.

Numerous applications of SAR data to ground displacement detection have demon-
strated their usefulness for landslide characterization and mapping [9]. Differential SAR
interferometry (DInSAR) is a commonly used method of ground deformation measure-
ment, and it can efficiently generate or update landslide inventory [10], which is critical
information about landslide behavior for landslide susceptibility assessment. DInSAR
calculates the phase variation of two SAR images acquired in the same region at different
times. Long-term InSAR observations are calculated as the deformation-induced phase
shift through the backscattered microwave signal between several coherent acquisitions.
The landslide behavior of time-series information, which depends on the millimetric mea-
surement accuracy and the metric spatial resolution, is obtained under most atmospheric
conditions [11].

Landslide prediction methods can be classified into three types: image analysis,
mathematical evaluation models, and machine learning methods [12]. Image analysis
uses geographic information systems, which can collect, store, manage, and analyze
geographical data. The risk of landslides can be predicted by analyzing disaster data,
such as history of landslides and land. The probability of landslides varies because it is
based on the number of data layers used for analysis. Mathematical evaluation models use
a single evaluation equation that is combined with the physical concepts of mechanics and
hydrographic data, such as rainfall, runoff, and infiltration data, for landslide susceptibility
assessment [13]. The use of such models is easy for simulation and fits a wide range of
environments. However, mathematical evaluation models require detailed data of the
geotechnical engineering and geological aspects of slope failure at sites [14], which makes
these models costly and impractical for large-scale areas.

In recent years, machine learning and data mining techniques, such as support vector
machine, artificial neural network, and decision tree (DT) models, have been applied
for landslide susceptibility modeling [15]. These methods incorporate different factors
that might cause landslides to evaluate the probability of landslide occurrence. Machine
learning algorithms enrich the quality and accuracy of generated susceptibility maps.
Researchers use and compare various machine learning models on the basis of different
data [16–19], integrate different machine learning models to improve accuracy [20–23],
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or develop new algorithms that are based on traditional machine learning models to
strengthen landslide prediction results [24–26]. These techniques perform better than do
classical methods. Most machine learning techniques achieve overall success rates of 75%
to 95% [27]. Although many applications have demonstrated the feasibility of data-driven
models for capturing nonlinear relationships and modeling the dynamic processes of
landslides on the basis of historical model data, certain limitations remain [28]. As shown,
landslide behavior involves temporal dependencies. However, common machine learning
models ignore this intrinsic temporal dependency, which involves the effect of preceding
actions on present actions in the model [29,30]. The solution proposed by this study is to
combine spatial-temporal data, including InSAR observables, as a landslide susceptibility
factor with other traditional geological and land cover factors into a model that can improve
the prediction accuracy of potential landslides. To our knowledge, integrating InSAR
observables and multiple geological factors for landslide susceptibility analysis is an
effective and pioneered contribution for landslide potential prediction research.

2. Methods

This research method effectively estimates the landslide potential of slopes through
four steps: (1) segmentation of slope units, (2) numerical indexing of related spatial factors,
(3) correlation between spatial factors and slope landslides, and (4) use of machine learning
methods. A displacement prediction analysis model was constructed following the above
process. Finally, a confusion matrix was used to verify the results of the displacement
prediction analysis. The overall research method and procedure are shown in Figure 1.

Figure 1. Flowchart of landslide susceptibility analysis based on the spatial factors with machine
learning approach.
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2.1. Segmentation of Slope Units

This study used the slope unit as the basis of analysis to show the topographic
characteristics of each slope. These slope units serve as a framework for the subsequent
geographical interpretation of environmental spatial factors. The method of slope unit
segmentation refers to the catchment overlap concept proposed by Xie et al. [31], as shown
in Figure 2. First, the water catchment area in a DEM is identified through the hydrology
module in the software ArcGIS, and the water line is turned into a ridge line by flipping the
DEM, which is divided into two slope units (left and right). When the hydrology module
identifies small catchment areas, the default flow accumulation value is set to 500 as the
threshold value for dividing the river area. Then, the slope units are cut out, and each area
becomes less than 30 ha. With the aid of a shadow map, aspect map, slope map, river map,
and satellite orthophoto overlay, the overlap between each slope unit is confirmed.

Figure 2. Schematic of dividing the slope units with the overlap method of catchment areas (modified
from [31]).

2.2. Numerical Indexing of Related Spatial Factors

In this study, the spatial factors were divided into four categories: terrain, location,
geological, and driving. The terrain category represents the geometric changes in surface
elevation and coverage distribution, including elevation, slope, aspect, terrain roughness,
profile curvature, vegetation index, and the displacement velocity gradient of InSAR. The
location category shows the distance of influencing factors, including roads, rivers, and
geo-faults. The geological category reflects the strength, folds, and dip slopes of rock
formations. The driving category is the rainfall factor. The index calculations of these
factors are described below. It should be mentioned that these spatial factors were first
selected based on suggestions reported in the relevant studies in the literature [16–20].
A significance test was then performed to identify the most influential factors that have the
high correlation with the landslides in the study areas. The results and discussion on the
significance test of spatial factors are presented in Section 3.2.
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2.2.1. Terrain Category

• Elevation, slope, and aspect

On the basis of the framework of the slope unit, the highest elevation in each unit
was extracted and represented as the elevation factor, as shown in Equation (1). According
to the height change caused by the horizontal movement distance, the slope factor is
expressed by a tangent function on average, as indicated in Equation (2). The aspect factor
refers to the direction of the maximum elevation change in the slope unit. It is calculated
by the angle with the true north direction, as shown in Equation (3), where the true north
direction is 0◦, and the angle increases to 360◦ in the clockwise direction.

Ielevation = max(Zi) (1)

Islope = tan θs =
ΔZ
ΔL

(2)

Iaspect =
180◦

π
tan−1[max(θs)] (3)

where Zi is elevation, ΔZ is the mean elevation difference, ΔL is the mean horizontal
distance, and θs is the main slope angle.

• Terrain roughness

Terrain roughness represents the degree of height change. When the undulating
terrain faces the effect of large gravity, the smaller resistance force makes the slope have a
higher possibility of landslide. The elevation standard deviation σ is used to describe the
degree of elevation change in the slope unit (Equation (4)).

σ =

√
∑ i(Zi − Z)2

ns − 1
(4)

where Z is the average elevation in a slope unit, and ns is the number of grids in the
slope unit.

• Profile curvature

The profile curvature is expressed as the slope steepness. This study used the spatial
analysis module of the software ArcMap to calculate the profile curvature of each slope unit
on the basis of a 3 × 3 moving grid, which is the default grid size in ArcMap. A negative
(positive) value of the curvature represents a convex (concave) slope.

• Vegetation index

Plants can effectively stabilize the rock and soil on slopes, but the exposed soil area may
suffer from repeated landslide and displacement problems. Hence, the vegetation index is
defined as the proportion of vegetation area in the slope unit, as shown in (Equation (5)).

Iveg. =
Aveg.

As
(5)

where Aveg. is the area of the vegetation and As is the area of the slope unit.

• Annual displacement velocity gradient of InSAR

InSAR technology calculates the phase difference to estimate the displacement of the
ground through more than two periods of SAR observations. The InSAR-derived ground
displacement can be regarded as a direct observation of ground stability and was thus
proposed as an essential index for landslide susceptibility analysis in this study. However,
the original displacements from InSAR observations suffer from various influencing factors,
such as vegetation changes and orbital variations of SAR satellites. In order to reduce
the periodical or systematic noises due to those uncontrollable factors and to extract a
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meaningful index for evaluating the ground stability, the annual velocity gradients derived
from InSAR displacement fields were used in this study. First, the annual displacement
information of InSAR is placed in the range from −1 to 1 by mean normalization, which is
shown in Equation (6), to unify the scale and reduce the systematic error of InSAR data.

Zsi =
ZSi − μ

max(Zsi)− min(Zsi)
(6)

where Zsi is the normalized InSAR displacement value, ZSi is the annual displacement of
InSAR, and μ is the average annual displacement.

The annual displacement velocity of InSAR is obtained as the slope value in first-
order linear fitting (Equation (7)). These discrete observation points are interpolated
with a regular grid size of 20 m to present the field of annual displacement velocity. For
highlighting the displacement positions, the field gradient is calculated with a 3 × 3
moving window, the same as for computing the profile curvatures. The index calculation
is expressed as Equation (8).

Zsi = VΔt + ΔZ (7)

IInSAR = ∇Vf(V) (8)

where V is the annual displacement speed of InSAR, Δt is annual observation time, and ΔZ
is the difference in annual displacement.

2.2.2. Location Category

Potential displacements are affected by the distances between slope units and location
factors. In this study, three location factors were selected for analysis, namely, the river
distance, road distance, and fault distance. Through each shortest distance from the
centroid of the slope units to the three location factors, the formula of the location factors
Ilocation is expressed by Equation (9).

Ilocation(rivers, roads, f aults) = min
(√

(Xc − Xl)
2 + (Yc − Yl)

2
)

(9)

where (Xc, Yc) is the centroid coordinates of slope units, and (Xl, Yl) is the coordinates of
location factors (including rivers, roads, and faults).

2.2.3. Geological Category

• Rock Mass Strength

Rock masses with weaker strength are prone to landslides due to their difficulty in
resisting the disturbance of external forces. Franklin used the degree of rock structure
fracture and single compressive strength to classify the rock mass strength into seven
levels [32]. In this study, the slope unit was superimposed on the environmental geological
map produced by the Central Geological Survey of Taiwan, and the corresponding rock
mass strength information was used as the rock mass strength index.

• Folds

When a rock is squeezed into curved folds, the fold layer becomes prone to landslides.
In this study, the fold factor is defined as the number of folds in the slope unit, as shown in
Equation (10).

I f old = ∑ n f (10)

where nf is the number of folds in a slope unit.

598



Appl. Sci. 2021, 11, 7289

• Dip Slopes

Dip slopes mean that a stratum has the same inclination as that of the slope; a slope
landslide may be formed by sliding along the layer. In this study, the dip slope index is
defined as the ratio of the dip slope area to the slope unit area, as shown in Equation (11).

Idip slope =
Ad
As

(11)

where Ad is the area of the dip slope and As is the area of the slope unit.

2.2.4. Driving Category (Rainfall)

The density of rainfall data collected by rainfall stations is much lower in mountainous
areas than that in urban areas. Relevant studies have mostly used distance as an interpola-
tion reference to obtain the rainfall in a whole area through grid interpolation. This study
considered the distance and elevation factors of rainfall stations and added the aspect
factor to construct a rainfall interpolation model, as shown in Equation (12). In this model,
the elevation parameter α, distance parameter β, and aspect parameter γ are obtained
through the least squares adjustment, and the parameter weight is shown in Equation (13).

Irain = α

(
∑
iH

WiH · Ri

)
+ β

(
∑
iL

WiL · Ri

)
+ γ

(
∑
iθ

Wiθ · Ri

)
(12)

WiH ∝
1

ΔH2 ; WiL ∝
1

ΔL2 ; Wiθ ∝
1

Δθ2 (13)

where Irain is the rainfall index, WiH is the elevation weight, WiL is the distance weight, Wiθ
is the aspect weight, Ri is the rainfall observation at Station i, α is the elevation parameter,
β is the distance parameter, γ is the aspect parameter, ΔH is the elevation difference, ΔL is
the distance difference, and Δθ is the aspect difference.

2.3. Correlation between Spatial Factors and Slope Landslides

Significant factors were detected through the spatial factors and the displacement
correlation score. The Spearman method was adopted to arrange the data in order of
numerical value, thereby improving the limitation of the normal distribution assumption
in the correlation analysis. The correlation coefficient γs is distributed between 1 and
−1; a positive (negative) value indicates a positive (negative) correlation. The closer the
coefficient value to 0, the more unlikely it is to affect the displacement. Its sequential linear
relationship is described in Equation (14).

γs = 1 − 6∑ Δ2
i

n(n2 − 1)
(14)

where γs is the correlation coefficient, Δ is the difference between the spatial factor and
displacement, and n is the number of samples.

Finally, a significance test was conducted through the correlation coefficient to check
the significance of each factor. This test is shown in Equation (15).

t = 1 − γs − ρ0√
1−γ2

s
n−2

(15)

where ρ0 is 0, and it is the null hypothesis (indicating no correlation). If the significance
level t is greater than 0.99, the null hypothesis will be rejected; that is, the factor is correlated
with the displacement.
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2.4. Use of Machine Learning Methods

Machine learning is applied to establish prediction models, which are used in landslide
potential and displacement prediction, by inputting the spatial factors and displacement
observations. Widely used machine learning algorithms for classification prediction include
naive Bayes, DT, random forest, adaptive boosting (AdaBoost), and extreme gradient
boosting (XGBoost).

• Naive Bayes

As the probability model of naive Bayes assumes that the factors are independent
of each other and conform to a Gaussian distribution, naive Bayes classification helps
clarify a large number of complex classification problems. The early-stage spatial factors
correspond to the landslide and nonlandslide slope units, and they are regarded as training
samples to establish a prediction model. The later-observed spatial factors are inputted
into the model to determine the landslide probability of each slope unit. The naive Bayes
prediction model is based on the probability density function of the Bayesian classification
method [33], as shown in Equation (16).

P(wi |x ) = P(x|wi )P(wi)

P(x)
,
{

j �= i
j = 1, 2

(16)

where P(wi |x ) is the probability of the classifying wi occurring in the slope unit x, P(x|wi )
is the probability of the slope unit x occurring in the classifying wi, P(wi) is the probability
of classifying wi, and P(x) is the probability of the slope unit x.

• DT

A DT assumes that the factors are independent of each other, and the category proba-
bility of the DT path is defined by the factor characteristics [34]. This algorithm adopts a
dichotomy method, which is similar to a double-forked tree branch, to calculate the Gini
coefficient value at the node. Finally, the gain value in each path is summed, and the largest
accumulator will be predicted to belong to a category, as shown in Equation (17).

gain = ∑ pi

(
1 − ∑ p2

i

)
(17)

where pi is the probability. If the node has only one category, pi will be 0. If the numbers of
two categories are the same, pi is 0.5.

• Random forest

Random forest is a collection of multiple DTs and adds the use of bagging. The
observation data are taken out of the number of samples and trained as n types of classifiers.
According to the sample difference in each DT, the random uncertainty of the data is
considered. Under the same weight, the classifier uses the summed majority as the best
classification tree to predict the classification [35]. Equation (18) represents the probability
of the c-th factor in the t-th DT, and the average probability value gc of the category is
obtained according to the sum of multiple DTs. Finally, the category of the slope unit x is
determined according to the maximum gc value (Equation (19)).

P(c|vi(x) ) =
P(c|vi(x) )

∑n=1
l P(cl|vi(x) )

(18)

gc(x) =
1
t

t

∑
i=1

P̂(c|vi (x)) (19)

where P is the probability, c-th is the category, v is the node, l is the number of categories,
t is the number of DTs, and gc is the average probability of the c-th category.
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• AdaBoost

Boosting increases the weight of wrong data in a classification model, and the wrong
information is trained to strengthen the identification. The derived new classifier will
reduce the chance of early error [36]. The iterative process of the AdaBoost calculation is
extremely sensitive to noise and abnormal data; therefore, these should be reduced so that
the process can focus on difficult-to-classify feature factors. AdaBoost analysis initially
assumes that the sample weights are equal. After the k-th iteration, samples are selected
on the basis of the weight Wk to train the classifier Ck, as expressed by Equation (20).{

D =
{

x1, y1, · · · , xn, yn
}

Wk(i) = 1
n , i = 1 · · · , n

(20)

where D is the sample category, (xi, yi) is the sample information, n is the number of
samples, and Wk is the weight distribution of all samples in the k-th iteration.

The classification error Ek confirms the correctness of the classification and updates
the weight Wk + 1, as shown in Equation (21). The iterative calculation of classification is
completed when the error Ek is less than the preset threshold.

Wk+1(i) ← Wk(i)
Zk

×
⎧⎨⎩ e−

1
2 ln 1−Ek

Ek , if yk(x
i) = yi

e
1
2 ln 1−Ek

Ek , if yk(x
i) �= yi

(21)

where Wk + 1 is the updated weight, Zk is the normalization coefficient, Ek is the error, and
yk is the prediction category.

• XGBoost

The XGBoost function is composed of two components: the prediction error of boost-
ing and the complexity of DT. The feature factors are combined and branched into a
DT, and a new boost function is learned from the previous calculation residuals [37].
In Equation (22), the first component calculates the error between the prediction and actual
observation, and the other component indicates the complexity of the regularized DT,
which covers the number of nodes and the node probability value.

f =
n

∑
i=1

E(yi, yki) +
K

∑
k=1

Ω(fk) (22)

where E is the error between the prediction and actual observation and Ω(fk) is the
complexity of the DT.

3. Results

The experiment based on the slope unit was conducted for the following two parts of
test analysis. In the first part, the correlation analysis of the spatial factor and the landslide
unit was adopted to detect the significant spatial factor. In the second part, the spatial factor
indicators and landslide units observed from 2007 to 2009 were applied to run the machine
learning models. Then, the 2010 spatial factors were inputted into those models, and the
landslide slope units were estimated. The prediction was compared with the landslide
location announced by the Central Geological Survey of Taiwan’s Ministry of Economic
Affairs (MOEA) through a confusion matrix to verify the feasibility of this study.

3.1. Study Areas

Experimental cases in Siaolin Village and the Putunpunas River area (Kaohsiung,
Taiwan) were selected to verify this study method. Both areas continued to experience
a large number of landslides after the typhoon Morakot in 2009. In the Siaolin Village
area, there were 128 slope units (covering 15.81 km2), and Provincial Highway 29 is the
main external traffic road. In the Putunpunas River area, there were 349 slope units
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(covering 61.21 km2), and the Southern Cross-Island Highway presents a north–south
vertical, as shown in Figure 3.

Figure 3. Geographical locations of experimental areas—(1) Siaolin village; (2) Putunpunas River.

The observation time of the spatial factors ranged from hours to years. For establishing
a common timescale, a year was deemed the basis of unit time, and the observed data
time was a total of four years (from 2007 to 2010). The 14 spatial factors used were the
elevation, slope, aspect, terrain roughness, profile curvature, vegetation index, annual
displacement velocity gradient of InSAR, water distance, road distance, fault distance, rock
mass strength, folds, dip slopes, and an annual rainfall, as shown in Figure 4.

Figure 4. Cont.
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Figure 4. Fourteen spatial factors used in this study. These observations in 2017 are for Siaolin Village
(left) and Putunpunas River (right).

3.2. Significance Test of Spatial Factors

The factor scales were unified from 1 to −1 through numerical standardization to
solve the inconsistency of the factor value distribution. Then, the correlation between the
spatial factors and landslides based on the slope units was examined. The correlation
coefficient values were expressed as positive or negative. As seen in Figure 5, the correlation
coefficients of Siaolin Village (yellow bar) were between −0.47 and 0.43, and those of
Putunpunas River (dark-blue bar) were between −0.42 and 0.36. Hypothesis significance
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testing was performed, and the probability of obtaining the test resulted in the p-value,
as shown in Table 1. Then, the significant spatial factors were screened on the basis of
a 99% reliability as the test threshold. There were five significant spatial factors in the
Siaolin Village area (rock mass strength, aspect, terrain roughness, slope, and dip slopes)
and six significant spatial factors in the Putunpunas River area (rock mass strength, aspect,
vegetation index, water distance, terrain roughness, and dip slopes).

Figure 5. Histogram of correlation coefficient between landslides and the 14 spatial factors in the slope units.

Table 1. Correlation coefficients and p-values, quantified according to the relationship between
landslides and the 14 spatial factors in the slope units.

Spatial Factor

Siaolin Village Putunpunas River

Correlation
Coefficient

p-Value
Correlation
Coefficient

p-Value

Rock mass strength −0.47 1.00 −0.30 1.00
Aspect −0.25 1.00 −0.22 1.00

Vegetation index −0.06 0.49 −0.42 1.00
Water distance −0.04 0.37 −0.21 1.00
Annual rainfall 0.13 0.85 −0.13 0.98

Terrain roughness 0.31 1.00 0.17 1.00
Slope 0.27 1.00 0.05 0.66
Folds 0.07 0.57 −0.11 0.95

Dip slopes 0.24 0.99 0.36 1.00
Elevation 0.16 0.93 0.03 0.37

Profile curvature 0.11 0.81 0.07 0.78
Annual displacement velocity gradient

of InSAR 0.08 0.62 0.02 0.29

Road distance 0.07 0.59 0.13 0.98
Fault distance 0.02 0.28 0.01 0.23
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3.3. ML Prediction and Verification

According to the five machine learning methods used in this research, the relevant
parameters were set as shown in Table 2. In these machine learning calculations, three years
of spatial factor data (from 2007 to 2009) were used as input for learning, and the landslide
prediction of the slope units was based on the 2010 spatial factors. Finally, the landslide
location announced by the Central Geological Survey (MOEA, Taiwan) in 2010 was used to
verify the accuracy of slope unit prediction.

Table 2. Parameters and settings required for the machine learning methods.

ML Parameters Values

Naive Bayes Smoothing 10−9

DT

Criterion Gini
The maximum of depth 20

The minimum of samples split 10
The minimum of samples leaf 5

Random Forest

Criterion Gini
The maximum of depth 20

The minimum of samples split 2
The minimum of samples leaf 5

The number of estimators 100

AdaBoost

Criterion Gini
The maximum of depth 20

The minimum of samples split 2
The minimum of samples leaf 5

The number of estimators 10
Algorithm SAMME

Learning rate 0.1

XGBoost

The maximum of depth 5
The number of estimators 1000

Learning rate 0.1
The minimum of child weight 1

Gamma number 0
Subsample number 0.8
Colsample bytree 0.8
Objective binary Logistic

nthread 4

The prediction accuracy of machine learning prediction is shown in Table 3. From the
correct rate, the addition of the InSAR factor increased the accuracy of prediction by 0% to
6%. For Siaolin Village, the random forest method had the highest prediction accuracy rate
(82.95%), followed by XGBoost (79.31%), AdaBoost (78.49%), naive Bayes (70.93%), and DT
(68.02%). Putunpunas River showed a similar trend; the best prediction was observed from
the random forest method (80.51%), followed by XGBoost (78.80%), AdaBoost (75.64%), DT
(68.19%), and naive Bayes (68.19%).

The prediction results of the best learning method (random forest) were used to com-
pare and evaluate the predicted classification through confusion matrixes. In Figure 6,
the correctly predicted landslide slope units are colored red, and the correctly predicted
noncollapsed slope units are colored cyan. In addition, the erroneously predicted land-
slide slope units are marked with green diagonal stripes, and the erroneously predicted
nonlandslide slope units are marked with red diagonal stripes.
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Table 3. Average prediction accuracies before and after including InSAR data in different ML meth-
ods.

ML

Siaolin Village Putunpunas River

With InSAR
(%)

Without InSAR
(%)

With InSAR
(%)

Without InSAR
(%)

Naive Bayes 70.93 70.85 68.19 68.19
DT 68.02 62.02 75.45 75.07

Random Forest 82.95 79.84 80.52 78.79
AdaBoost 78.49 77.52 75.64 75.64
XGBoost 79.31 75.97 78.80 75.80

Figure 6. Visual illustration of the landslide prediction results—(left) Siaolin Village; (right) Putun-
punas River area.

The confusion matrixes of Siaolin Village and Putunpunas River are shown in
Tables 4 and 5. In Siaolin Village, the correct prediction rates of landslide and noncol-
lapsed slope units were 78.72% and 94.30%, respectively; the average accuracy rate of
the overall prediction was 82.95%. In Putunpunas River, the correct prediction rates of
landslide and noncollapsed slope units were 89.67% and 66.18%, respectively; the average
accuracy rate of the overall prediction was 80.52%.

Table 4. Confusion matrix for the case of the Siaolin Village analysis.

Actual

Predictied
Lanslide Nonlanslide Average

Lanslide 74 (TP) 2 (FN) -

Nonlanslide 20 (FP) 33 (TN) -

Correct rate (%) 78.72 94.30 82.95
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Table 5. Confusion matrix for the case of the Putunpunas River analysis.

Actual

Predictied
Lanslide Nonlanslide Average

Actual

Lanslide 191 (TP) 46 (FN) -

Nonlanslide 22 (FP) 90 (TN) -

Correct rate (%) 89.67 66.18 80.52

4. Discussion

Throughout the time series, the relevant spatial observation data showed changes
in slopes. This study used these environmental observation data to construct the spatial
factor indicators on the basis of the slope unit conditions. Significant spatial factors were
then determined from the correlation analysis. According to the spatial characteristics of
the slope units, the machine learning methods were applied to construct the calculation
models, and the landslide potential of the slope units was evaluated.

This study was implemented with two experimental cases: Siaolin Village and Putun-
punas River (Kaohsiung, Taiwan). The experiment collected four-year spatial data (topog-
raphy, locations, geology, driving categories, and landslide locations) from 2007 to 2010.
Then, these data were used to construct the 14 spatial factors through indexed analysis.
A common timescale (year) was established for the analysis to resolve the differences in
timescales of the various spatial factors. The spatial factor datasets from 2007 to 2009 served
as the input for the correlation analysis and machine learning, and the 2010 spatial factor
data were used to calculate the output of potential evaluation. In the Siaolin Village area,
the significant spatial factors were the rock mass strength, aspect, terrain roughness, slope,
and dip slopes; the significant spatial factors in the Putunpunas River area were the rock
mass strength, aspect, vegetation index, water distance, terrain roughness, and dip slopes.
These significant factors in both study areas were all in the geological category, including
rock mass strength, terrain roughness, and dip slopes. Obviously, the geological conditions
in these areas highly influence the landslide trend.

The machine learning algorithms used in this research achieved accuracies of 60–80%
in landslide classification. Among them, the random forest method exhibited the best calcu-
lation in Siaolin Village, where it yielded a prediction accuracy rate of 82.95%; its prediction
accuracy rate in Putunpunas River was 80.50%. The random forest method effectively
performed independent training for high-dimensional, multi-feature factors. In addition,
the random forest algorithm exhibited strong anti-interference capabilities, such as an
imbalance in the number of classifications and missing parts of the feature data, so it could
avoid excessive parameter setting and reduce overfitting problems. Moreover, the addition
of the InSAR factor increased the accuracy of prediction up to 6%.

To further verify the proposed approach, the model established based on the training
data from the two study areas was applied to another area in northern Taiwan. In Decem-
ber 2020, a landslide covering a slope area of around 4000 m2 and 10,000 m3 in earth volume
occurred in this region. By feeding the local spatial factors into the model, the landslide
susceptibility of each slope unit was obtained. Figure 7a,b illustrate the validation results
from using 13 spatial factors (excluding InSAR data) and 14 spatial factors (including In-
SAR data), respectively. It shows that a medium (50–75%) landslide potential was obtained
for the landslide area if only the geological factors were considered. However, when the
InSAR data were included, the model gave a high (>75%) landslide potential for that slope
unit. In other words, the InSAR data provided an essential contribution for improving
the prediction accuracy, as also revealed in the two study areas previously mentioned.
Furthermore, it should be stressed that the model used here was established based on the
training data in the two study areas in southern Taiwan, but it can still perform well in this
validation case in northern Taiwan. This gives an encouraging indication that the model
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established based on the proposed methodology is valid not only in the study areas but
could be also applicable elsewhere.

Figure 7. Landslide susceptibility analysis for the 2020 landslide case in northern Taiwan: (a) with
InSAR data; (b) without InSAR data.

Overall, this research reveals that InSAR observables and multiple geological factors
should be integrated for landslide susceptibility analysis with machine learning technology.
Future studies can refine the current timescale of annual observations into months or
days to enhance the calculation accuracy. Furthermore, mechanical factors, such as fluid
shearing forces and soil slippage, can be considered to improve the prediction model.

5. Conclusions

Slope instability is affected by the topography and geological conditions, and artificial
construction, such as tree cutting for planting cash crops and building roads, increases
the vulnerability of the landform. The prevailing extreme climate now promotes the
possibility of landslide disasters in the event of short-term heavy rainfall. This study
introduced the modern InSAR technology, terrain, geological, and rainfall observation
data to construct spatial factors based on slope units. Through Spearman correlation
analysis and verification, significant impact factors in the experimental areas were detected.
More importantly, machine learning was applied for the first time to construct prediction
models combining spatial factors and landslide issues. Finally, two field experiments
confirmed the feasibility of the landslide susceptibility prediction analysis proposed in this
study. The results prove that a better-than-80% model accuracy can be achieved by the
Random Forest algorithm, and the InSAR observable is able to increase the accuracy of
prediction for all training models. Relevant management will be able to follow the potential
landslide slope unit to provide vegetation restoration and slope reinforcement. Eventually,
this novel strategy will provide the benefits of prevention and rescue for slope landslide
disasters in a forward-looking manner. Finally, it should be noted that this study only
used the landslide cases in Taiwan as examples. Further studies can be conducted using
the proposed methodology for the cases with various geological and climatic conditions
around the world using the training data in that region.
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Abstract: The current article introduces the thermoelastic coupled response of an unbounded solid
with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined
dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled
solution is developed by using Laplace’s transforms technique. Field quantities are graphically
displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular
frequency of thermal vibration on the field quantities. Some comparisons are made with and without
the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag
thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.

Keywords: G–N; L–S and CTE theories; cylindrical hole; dual-phase-lag; moving velocity

1. Introduction

The thermoelasticity theory is adopted in various applications to obtain interesting
formulations due to a variety of microphysical processes. The starting point of the clas-
sical coupled thermoelasticity (CTE) model was founded by Duhamel [1]. While Biot [2]
formulated the CTE theory by considering the second law of thermodynamics. One of
the first generalized theories is established by Lord and Shulman (L–S) [3] by including a
thermal relaxation parameter. While Green and Lindsay [4] developed another generalized
model by including two thermal relaxation parameters. Such generalized theories with
one or more thermal relaxation parameters are also stated as hyperbolic thermoelasticity
theories [5]. Green and Nagdhi (G–N) [6–8] formulated three various theories of thermoe-
lasticity in an unusual way. In addition, Tzou [9,10] presented a modern generalized one
which is called a dual-phase-lag (DPL) theory. A lot of research is presented to include and
modify Tzou’s model (see, e.g., [11–15]).

Many problems found in the literature are concerned with the thermoelastic response
of unbounded bodies with cylindrical cavities. Chandrasekharaiah and Srinath [16] applied
the G–N II model to analyze axisymmetric thermoelastic communications in an unbounded
solid including a cylindrical hole. Allam et al. [17] discussed thermal distribution field
quantities of a half-space containing a circular cylindrical cavity in the framework of a G–N
model. Ezzat and El-Bary [18,19] used a fractional-order of both thermo-viscoelasticity
and magneto-thermoelasticity theories to deal with an unbounded perfect conducting
media having a cylindrical hole in the existence of an axial uniform magnetic field. Sharma
et al. [20] tried to solve the dynamic formulation of an elasto-thermo-diffusion infinite cylin-
drical hole under various boundary conditions. Kumar and Mukhopadhyay [21] presented
the impacts of three-phase-lags (TPLs) on thermoelastic communications under step input
in temperature on a cylindrical hole in an infinite body. Mukhopadhyay and Kumar [22]
dealt with the thermoelastic communications in an infinite solid with a cylindrical hole
based on a two-temperature L–S model. Kumar et al. [23] described the thermoelastic
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communications based on a hyperbolic two-temperature L–S model in an unbounded body
including a cylindrical hole. Sarkar and Mondal [24] examined transient behavior in a
two-temperature model in an infinite body with a cylindrical hole under a time-dependent
moving heat source.

A lot of infinite bodies having cylindrical cavities may be exposed to either continuous
heat source, ramp-type heating effect, or thermal shock. Sharma et al. [25] considered
one-dimensional elasto-thermo-diffusive communications in an infinite solid containing
a cylindrical hole under the action of a continuous heat source utilizing the L–S the-
ory. Mukhopadhyay and Kumar [26] analyzed the thermoelastic communications in a
medium having a cylindrical hole under a ramp-type heating effect using various models.
Xia et al. [27] used the L–S model to develop a generalized thermoelastic diffusion theory
for the dynamic response of an unbounded body having a cylindrical hole and its surface
undergoing a thermal shock. In addition, Xiong and Tian [28] discussed the thermoelas-
tic analysis of an unbounded medium with a cylindrical hole whose surface undergoes
time-dependent thermal shock due to G–N II and III theories.

Some interesting problems are concerned with thermoelastic communications in elastic
infinite media with cylindrical holes and subjected to moving heat sources. Abouelregal [29]
obtained the induced fields in such an unbounded body having a cylindrical hole under a
traveling heat source and harmonically varying heat based on the dual-phase-lag theory.
Youssef [30] presented the analysis of thermoelastic communications in an elastic infinite
body with a cylindrical cavity a moving heat source with a uniform velocity that thermally
shocked at the bounding surface. Youssef [31] used the G–N II theory to develop a two-
temperature model for an infinite medium having constant elastic parameters. Shaw and
Mukhopadhyay [32] presented thermoelastic communications in a micro-stretched body in
the existence of a traveling heat source. Sarkar and Lahiri [33] solved a 1D problem for a
thermoelastic infinite medium under a moving plane of heat source. Youssef [34] presented
a two-temperature fractional-order theory for an infinite medium. Xia et al. [35] studied a
semi-infinite medium under a traveling heat source by utilizing the finite element method
in the time domain in the context of the L–S model. Abbas [36] solved the problem of
thermoelastic communication in a clamped microscale beam under a moving heat source
based on G–N III theory. Youssef [37] discussed the thermoelastic communications in an
unbounded solid having a cylindrical hole in the existence of moving heat sources utilizing
the L–S model.

In this paper, the problem of an unbounded solid containing a cylindrical cavity
is studied. The governing equations are carried out based on the refined dual-phase-
lag (RDPL) thermoelasticity theory. The general solution gained is utilized to a certain
problem once the bounding plane of the cavity is exposed to a traveling heat source. The
inverse Laplace transforms is calculated numerically to obtain the field quantities. Some
comparisons will be tabulated and shown graphically to study the benefit of different
theories and estimate the effect of different parameters.

2. Fundamental Equations

Let us discuss a thermoelastic coupling response of an unbounded solid containing a
cylindrical hole due to a traveling heat source using a unified dual-phase-lag theory. The
cylindrical coordinates system (r, ϕ, z) is selected to deal with such a problem in which
z-axis is sitting alongside the axis of the cylindrical cavity.

The displacement vector
⇀
u of the present, an axially symmetric cylindrical cavity is

summarized as
ur = u(r, t), uϕ = uz = 0. (1)

The strains can be expressed as

err =
∂u
∂r

, eϕϕ =
u
r

, e = err + eϕϕ =
1
r

∂

∂r
(ru). (2)
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The dynamic equation in the non-existence of body force is stated as

(2μ + λ)
(
∇2u − u

r2

)
− γ

∂θ

∂r
= ρ

∂2u
∂t2 , (3)

where ∇2 is the Laplacian operator. It satisfies the formula

∇2(∗) = 1
r

∂

∂r

(
r

∂(∗)
∂r

)
. (4)

The constitutive equations for the coupled thermoelastic solid with omitting the
volume forces can be stated as

σrr = 2μ ∂u
∂r + σzz,

σϕϕ = 2μ u
r + σzz,

σzz = λe − γθ,
σzr = σrϕ = σϕz = 0.

(5)

The heat conduction equation in the refined form is represented by

kLθ∇2θ = Lq

(
ρCe

∂θ

∂t
+ γT0

∂e
∂t

− Q
)

, (6)

where Lθ and Lq are higher-order time derivative operators given by

Lθ = 1 +
N

∑
n=1

τn
θ

n!
∂n

∂tn , Lq = � +
N

∑
n=1

τn
q

n!
∂n

∂tn , (7)

which represents one of the modified coupled forms of the heat transport equation pre-
sented in [38–41]. The above equation represents the more general when N has some
+ve integers larger than zero. Different particular cases can be considered along with
Equation (6) as follows:

(i) Coupled dynamical thermoelasticity (CTE theory) [2]: τθ = τq = 0 and � = 1

k∇2θ = ρCe
∂θ

∂t
+ γT0

∂e
∂t

− Q. (8)

(ii) Lord and Shulman generalized thermoelasticity theory (L–S theory) [3]: τθ = 0,
τq = τ0 and � = 1

k∇2θ =

(
1 + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t

− Q
)

. (9)

(iii) Green and Naghdi generalized thermoelasticity theory (G–N theory) without energy
dissipation [6–8]: τθ = 0, τq = 1, N = 1, � = 0, and k → k∗

k∗∇2θ =
∂

∂t

(
ρCe

∂θ

∂t
+ γT0

∂e
∂t

− Q
)

. (10)

(iv) Simple generalized thermoelasticity theory with dual-phase-lag (SDPL theory) [12–15]:
τq ≥ τθ > 0, N = 1 and � = 1

k
(

1 + τθ
∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t

− Q
)

. (11)

(v) Refined generalized thermoelasticity theory with dual-phase-lag (RDPL theory) [12–15]:
τq ≥ τθ > 0, N > 1 and � = 1,
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k

(
1 +

N

∑
n=1

τn
θ

n!
∂n

∂tn

)
∇2θ =

(
1 +

N

∑
n=1

τn
q

n!
∂n

∂tn

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t

− Q
)

. (12)

3. Problem Construction

It is appropriate to introduce the following non-dimensional variables in the next
sections:

{r′, u′} = c0η{r, u},
{

t′, τ′
θ , τ′

q

}
= ηc2

0
{

t, τθ , τq
}

,

σ′
ii =

σii
γT0

, θ′ = θ
T0

, c2
0 = λ+2μ

ρ , η = ρCe
k ,

(13)

and setting Q′ = Q/
(
kT0c2

0η2). All governing equations, with the directions above dimen-
sionless variables, are lowered to (dropping the dashed for suitability)

σrr = c1
∂u
∂r

+ σzz, (14)

σϕϕ = c1
u
r
+ σzz, (15)

σzz = c2e − θ, (16)

∇2u − u
r2 − 1

c3

∂θ

∂r
=

∂2u
∂t2 , (17)(

∇2Lθ − Lq
∂

∂t

)
θ − εLq

(
∂e
∂t

)
= −LqQ, (18)

where
c1 =

2μ

γT0
, c2 =

λ

γT0
, c3 =

λ + 2μ

γT0
= c1 + c2, ε =

γ

ρCe
. (19)

The heat source is shifting along the radial direction with a uniform velocity ϑ, which
be able to be defined by the formula

Q = Q0δ(r − ϑt). (20)

4. Closed-Form Solution

The complete solutions will be given by solving Equations (17) and (18) to get firstly
the temperature θ and the dilatation e. Then, the corresponding displacement and stresses
can be given in terms of temperature and dilatation. For this purpose, we utilize the
following initial conditions:

u(r, 0) =
∂u
∂t

∣∣∣∣
t=0

= 0, θ(r, 0) =
∂θ

∂t

∣∣∣∣
t=0

= 0, R ≤ r < ∞. (21)

We supply the above homogenous initial conditions by additional boundary condi-
tions. The present medium will be considered as inactive and the surface of the cylindrical
cavity under harmonically varying heat and traction free. These conditions are defined as

• The surface of the cylindrical cavity is exposed to a harmonically varying heat

(R, t) = θ0H(t) cos(ωt), t > 0. (22)

• The mechanical boundary condition is considered as the surface of the cylindrical
cavity is traction free

σrr(R, t) = 0. (23)
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It is to be noted that when the angular frequency of thermal vibration ω → 0 , the
problem tends to be a thermal shock one. In addition to the above initial and boundary
conditions, we take into account the following regularity conditions

u(r, t) = 0, θ(r, t) = 0, r → ∞. (24)

Laplace transform is taken for Equations (20)–(23), under the homogeneous initial
conditions that appeared in Equation (28), one gets:

σrr = c1
du
dr

+ σzz, (25)

σϕϕ = c1
u
r
+ σzz, (26)

σzz = c2e − θ. (27)

Taking the discrepancy of both sides of Equation (24) then one gets

c3

(
∇2 − s2

)
e −∇2θ = 0, (28)

while the other governing equation of heat conduction became(
∇2 − s�0

)
θ − εs�0e = −�1e−( s

ϑ )r, (29)

where

�0 =
Lq

Lθ

, �1 =
Q0

|ϑ|�0, Lθ = 1 +
N

∑
n=1

τn
θ

n!
sn, Lq = � +

N

∑
n=1

τn
q

n!
sn. (30)

The equations occurred in Equations (36)–(38) be able to be identified in a fourth-order
ordinary non-homogenous differential equation in the dilatation e as in the form(

∇4 − β1∇2 + β0

)
e(r) = g(r), (31)

where

g(r) = −�2

(
s − ϑ

r

)
e−( s

ϑ )r, (32)

and the coefficients βi are given by

β0 = s3�0, β1 = s(s + �3), �2 =
�1s

C3ϑ2 , �3 = �0

(
1 +

ε

c3

)
. (33)

Equation (31) is extremely complicated since it is done in a polar coordinate system. It
can be re-considered as (

∇2 − ζ2
1

)(
∇2 − ζ2

2

)
e(r) = g(r), (34)

where ζ2
j are the roots of the equation

ζ4 − β1ζ2 + β0 = 0. (35)

These roots ζ j are given respectively by

ζ2
1,2 =

1
2

(
β1 ±

√
β2

1 − 4β0

)
. (36)
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Equation (34) represents the next modified Bessel’s equation of zero-order[
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

1

][
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

2

]
e(r) = g(r), (37)

which gets a solution underneath the regularity conditions: u, θ → 0 as r → ∞ . So, the
general solution of e is represented by

e(r) =
2

∑
j=1

BjK0
(
ζ jr

)
+ ep, (38)

where Bj are integration parameters, K0
(
ζ jr

)
is modified Bessel’s function of the first kind,

and ep is a particular solution. It is provided by

ep = K0(ζ2r)
∫ g(r)K0(ζ1r)

W(r)
dr − K0(ζ1r)

∫ g(r)K0(ζ2r)
W(r)

dr, (39)

in which W(r) is the Wronskian

W(r) = ζ1K0(ζ2r)K1(ζ1r)− ζ2K0(ζ1r)K1(ζ2r). (40)

Using the solution of e in Equation (39), one gets the solution of θ as

θ = c3

[
2

∑
j=1

ζ̌ jBjK0
(
ζ jr

)
+ θp

]
, (41)

where

ζ̌ j = 1 − s2

ζ2
j

, θp = ep − s2
∫

updr, up =
1
r

∫
repdr. (42)

The radial displacement be able to be stated for the regularity condition u → 0 as
r → ∞ from the formula

e(r) = Du(r), D =
d
dr

+
1
r

, (43)

in the form

u(r) = −
2

∑
j=1

1
ζ j

BjK1
(
ζ jr

)
+ up, (44)

where up is already given in Equation (42).
At this point, the solution is finished. It is sufficient to decide the two parameters

Bj from the boundary conditions offered in Equations (22) and (23). Then, it is simple
to carry out the stresses in terms of radial displacement and temperature. According to
Equations (25)–(27), the stresses may be given in Laplace state as

σ1 =
2

∑
j=1

[
c3
(
1 − ζ̌ j

)
K0

(
ζ jr

)
+

c1

ζ jr
K1

(
ζ jr

)]
Bj + c1

dup

dr
+ c2ep − c3θp, (45)

σ2 =
2

∑
j=1

[(
c2 − c3ζ̌ j

)
K0

(
ζ jr

)− c1

ζ jr
K1

(
ζ jr

)]
Bj + c1

up

r
+ c2ep − c3θp, (46)

σ3 =
2

∑
j=1

(
c2 − c3ζ̌ j

)
K0

(
ζ jr

)
Bj + c2ep − c3θp. (47)
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So, the current analytical solution is previously given for the RDPL theory in the
Laplace domain. To complete the solution in the physical domain we should consider the
function f (t) as an inversion of the Laplace transform f (s) as

f (t) =
eqt

t

[
1
2

f (q) + Re

{
L

∑
l=1

(−1)l f
(

q +
ilπ

t

)} ]
, (48)

where q is a random constant, Re denotes the real part, i implies the imaginary quantity
unit and L implies a suitably huge integer. For quicker combination, numerous numerical
analyses have shown that the evaluation of q satisfies the connection qt ≈ 4.7 [35]. Utilizing
the numerical technique mentioned, to reverse the statements of temperature θ, radial
displacement u, dilatation e, radial stress σ1, hoop stress σ2, and axial stress σ3.

5. Validation of Results

Several presentations will be offered to put into recommendation the impact of nu-
merous models on the variable quantities. The material properties of the unbounded body
having a cylindrical hole due to a traveling heat source are identified according to the
following values of parameters:

λ = 7.76 × 1010 N m−2, μ = 3.86 × 1010 N m−2, k = 386 W m−1 K−1,

ρ = 8954 kg m−3, αt = 1.78 × 10−5 K−1

Ce = 383.1 J kg−1 K−1, T0 = 293 K, k∗ = 1.2 W m−1 K−1.

Numerical results are obtained (except otherwise stated) for θ0 = 10, Q0 = 1, ϑ = 17,
ω = 20, τq = 0.02, τθ = 0.018, t = 0.03, and the inner radius R = 1.

5.1. First Validation Example

Results of the field quantities due to different thermoelasticity theories with dual-
phase-lag are reported in Tables 1 and 2 at the position r = 1.2. The impact of the velocity of
heat source ϑ on all field variables of different thermoelasticity theories with are presented
at dimensionless time t = 0.03, and for two values of the angular frequency of thermal
vibration ω = 0 (Table 1) and ω = 20 (Table 2). Additional outcomes of variable quantities
are outlined in Figures 1–24 across the radial direction of an unbounded body with a
cylindrical hole.

Table 1. Effect of the velocity of heat source ϑ on the field variables of different thermoelasticity
theories with t = 0.03, r = 1.2, ω = 0.

ϑ Variable CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

17

θ 3.5206798 0.0074277 4.5558651 3.4642684 3.6460648 3.9083885 4.2446350
e∗ −6.4643864 −0.7652114 −10.4814114 −6.5686154 −6.8240864 −7.0147188 −7.2539067
u∗ −50.6571091 0.0540479 0.0234225 −37.4998105 −4.5146261 5.7141745 11.3103719
σ1 16.5744843 −0.0362606 −4.6655407 11.3944541 −1.9149801 −6.2492888 −8.8146180
σ2 −23.7087643 0.0104058 −4.5968524 −18.4174099 −5.4752409 −1.6683198 0.2210782
σ3 −3.5517066 −0.0111005 −4.6061725 −3.4957955 −3.6788182 −3.9420569 −4.2794514

20

θ 4.1072506 −0.0029614 4.4306514 4.0800238 4.3206529 4.6090319 4.9665501
e∗ −6.5105278 0.3051538 −10.1923716 −6.6189071 −6.8807134 −7.0727326 −7.3110451
u∗ −0.2306539 0.0382336 0.0231236 2.4286536 2.5890897 1.9194700 1.3751839
σ1 −4.0778064 −0.0093305 −4.5374406 −5.1097870 −5.4167623 −5.4405303 −5.5837524
σ2 −4.2302789 0.0196396 −4.4703704 −3.1454027 −3.3234490 −3.8791992 −4.4544390
σ3 −4.1384990 0.0044260 −4.4795715 −4.1117924 −4.3536781 −4.6429788 −5.0016408

e∗ = 104e, u∗ = 102u.
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Table 2. Effect of the velocity of heat source ϑ on the field variables of different thermoelasticity
theories with t = 0.03, r = 1.2, ω = 20.

ϑ Variable CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

17

θ 3.2835398 0.0074277 4.5528182 3.2447447 3.4508927 3.7188299 4.0555735
e∗ −6.2860288 −0.7652114 −10.4740672 −6.3932523 −6.6542973 −6.8464693 −7.0855337
u∗ −50.6572509 0.0540479 0.0234210 −37.4999432 −4.5147434 5.7140628 11.3102642
σ1 16.8133885 −0.0362606 −4.6624229 11.6157097 −1.7181357 −6.0580749 −8.6239015
σ2 −23.4708247 0.0104058 −4.5937709 −18.1970973 −5.2793005 −1.4779982 0.4109050
σ3 −3.3137105 −0.0111005 −4.6030904 −3.2754301 −3.4828312 −3.7516908 −4.0895818

20

θ 3.8701106 −0.0029614 4.4276045 3.8605001 4.1254808 4.4194734 4.7774886
e∗ −6.3321702 0.3051538 −10.1850275 −6.4435440 −6.7109243 −6.9044831 −7.1426721
u∗ −0.2307957 0.0382336 0.0231221 2.4285209 2.5889724 1.9193583 1.3750762
σ1 −3.8389023 −0.0093305 −4.5343228 −4.8885315 −5.2199179 −5.2493164 −5.3930359
σ2 −3.9923393 0.0196396 −4.4672888 −2.9250901 −3.1275086 −3.6888775 −4.2646122
σ3 −3.9005030 0.0044260 −4.4764894 −3.8914270 −4.1576911 −4.4526127 −4.8117711

e∗ = 104e, u∗ = 102u.

Figure 1. The temperature θ across the radial direction of the cylindrical cavity conferring to all
theories.
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Figure 2. The dilatation e across the radial direction of the cylindrical cavity conferring to all theories.

Figure 3. The radial displacement u across the radial direction of the cylindrical cavity conferring to
all theories.
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Figure 4. The radial stress σ1 across the radial direction of the cylindrical cavity conferring to all
theories.

Figure 5. The hoop stress σ2 across the radial direction of the cylindrical cavity conferring to all
theories.
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Figure 6. The axial stress σ3 across the radial direction of the cylindrical cavity conferring to all
theories.

Figure 7. Effect of ω on temperature θ across the radial direction of the cylindrical cavity utilizing the
RDPL model.
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Figure 8. Effect of ω on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 9. Effect of ω on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 10. Effect of ω on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 11. Effect of ω on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 12. Effect of ω on radial stress σ3 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 13. Effect of ϑ on temperature θ across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 14. Effect of ϑ on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 15. Effect of ϑ on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 16. Effect of ϑ on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 17. Effect of ϑ on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 18. Effect of ϑ on radial stress σ3 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 19. Effect of t on temperature θ across the radial direction of the cylindrical cavity utilizing
the RDPL model.

631



Mathematics 2022, 10, 9

Figure 20. Effect of t on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 21. Effect of t on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 22. Effect of t on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 23. Effect of t on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 24. This is a figure. Schemes follow the same formatting Effect of t on radial stress σ3 across
the radial direction of the cylindrical cavity utilizing the RDPL model.

The outcomes described in Tables 1 and 2 will be provided as benchmarks for other
researchers. It is established from these tables that:

• The G–N theory gives the smallest absolute field of all field quantities.
• The other theories CTE and L–S give suitable results for the field quantities.
• Three values N = 3, 4, and 5 have been used for the RDPL theory while the simple

dual-phase-lag (SDPL) theory is described with N = 1.
• The most accurate results are given by using the RDPL theory.
• For the RDPL theory the temperature, displacement, and hoop stress are slightly

increasing with the increase in many terms N, while the dilatation, radial stress, and
axial stress are slightly decreasing. The increasing and decreasing amounts may be
un-sensitive when N ≥ 5.

5.2. Second Validation Example

Now, Figures 1–6 show the impact of all theories on the field quantities with fixed time
t = 0.03, velocity of heat source ϑ = 17, and angular frequency of thermal vibration ω = 20.
The rest of the figures are presented based on the refined dual-phase-lag (RDPL) theory
with N = 5 to investigate the influence of different parameters on the field quantities.

The variation of the temperature θ across the radial direction of the cylindrical cavity
according to all theories is presented in Figure 1. Similar graphs of the rest of the field
quantities are produced in Figures 2–6. Figure 1 shows that the temperature CTE, L–S, and
the SDPL theories vibrate around the path of the RDPL theory. In addition, the G–N theory
vibrates around the path of the RDPL theory, but in a small range. The temperature of the
G–N theory may early vanish than the other theories. Figure 2 shows that the dilatation e
of CTE, L–S, G–N, and SDPL theories vibrate around the path of the RDPL theory. Figure 3
shows that the radial displacements u of the L–S and G–N theories may vanish during
the radial direction. The radial displacements of the CTE theory are the lowest ones while
those of the RDPL theory are the biggest ones. The displacement of all theories may vanish
as r increases. Figure 4 shows that the radial stress σ1 of the L–S and G–N theories may
vanish during the radial direction when r > 1.2. The radial stresses of the RDPL theory are
the lowest ones while those of the CTE theory are the greatest ones. The radial stresses of

634



Mathematics 2022, 10, 9

all theories may vanish as r increases. Figure 5 shows that the hoop stress σ2 of the L–S and
G–N theories may vanish during the radial direction when r > 1.3. The hoop stresses of
the CTE theory are the smallest ones while those of the RDPL theory are the greatest ones.
The hoop stresses of all theories may vanish as r increases. Finally, Figure 6 shows that the
axial stress σ3 of CTE, L–S, and the SDPL theories vibrate around the path of the RDPL
theory. In addition, the G–N theory vibrates around the path of the RDPL theory, but in a
small range. The axial stress of the G–N theory may early vanish than the other theories. It
is concluded from Figures 1–6 that the outcomes of the RDPL theory are the most truthful.

5.3. Additional Applications
5.3.1. Effect of Angular Frequency of Thermal Vibration

Now, we discuss the impact of the angular frequency of thermal vibration ω on the
field quantities using the RDPL theory. Figure 7 shows the impact of ω on the temperature
θ along the radial direction of the cylindrical cavity. Similar graphs of the rest of the field
quantities are presented in Figures 8–12. It is clear in Figure 7 that the temperature increases
as ω decreases. The temperature vanishes as r increases irrespective of the value of ω.
Figure 8 shows that the dilatation e vibrates across the radial direction of the cylindrical
cavity. The wave magnitude increases as ω decreases. The radial displacement u directly
decreases along the radial directional of the cylindrical cavity in Figure 9. It is clear that at
a fixed position u increases as ω decreases.

The radial stress σ1 across the radial direction of the cylindrical cavity due to the
RDPL theory is drawn in Figure 10. The radial stress σ1 is rabidly vibrating across the
radial direction in a small range 1 ≤ r < 1.035. The radial stress σ1 is increasing with the
increase in ω when 1.035 ≤ r < 1.3. After that the values of σ1 are coincident to vanish
as r increases. Once again, the hoop σ2 and axial σ3 stresses along the radial direction of
the cylindrical using the RDPL theory are plotted in similar graphs of the radial stress σ1
in Figures 11 and 12. Both hoop and axial stresses are rabidly vibrating along the radial
direction in a small range 1 ≤ r < 1.03. The hoop and axial stresses increase as ω increases
when 1.03 ≤ r < 1.45. After that the values of σ2 and σ3 are coincident to vanish as
r increases.

5.3.2. Effect of Velocity of Heat Source

The effects of the velocity of heat source ϑ on all field variables based upon the RDPL
theory are presented in Figures 13–18. Figure 13 shows the effect of ϑ on the temperature θ
across the radial direction of the cylindrical cavity. Similar graphs of the rest of the field
quantities are presented in Figures 14–18. It is clear in Figure 13 that the temperature θ
vibrates across the radial direction for different values of the velocity of heat source ϑ. The
temperature vanishes as r increases and this irrespective of the value of ϑ. Figure 14 shows
that the dilatation e vibrates across the radial direction of the cylindrical cavity. The wave
magnitude increases as ϑ decreases. The radial displacement u directly decreases along the
radial directional of the cylindrical cavity in Figure 15. It is clear that at a fixed position u
increases as ϑ decreases.

The radial stress σ1 across the radial direction of the cylindrical cavity using the RDPL
theory is drawn in Figure 16 for distinct values of ϑ. The radial stress σ1 is rabidly vibrating
increases the radial direction in a small range 1 ≤ r < 1.05. The radial stress σ1 increases as
ϑ increases when r ≥ 1.05. The values of σ1 are coincident to vanish as r increases. Once
again, the hoop σ2 and axial σ3 stresses along the radial direction of the cylindrical using
the RDPL theory are plotted in similar graphs of the radial stress σ1 in Figures 11 and 12.
Both hoop and axial stresses are rabidly vibrating along the radial direction in a small range
1 ≤ r < 1.03. The hoop and radial stresses increase as ω increases when 1.03 ≤ r < 1.45.
After that the values of σ2 and σ3 are coincident to vanish as r increases. In addition, the
hoop stress σ3 across the radial direction of the cylindrical using the RDPL theory is plotted
for different ϑ in similar graphs of the radial stress σ1 in Figure 17. The hoop stress is
rabidly vibrating along the radial direction in a small range 1 ≤ r < 1.05. It increases as
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ϑ decreases when r ≥ 1.05. For large values of r the values of σ2 will be coincident and
maybe vanished. However, the axial stresses σ3 is drawn across the radial direction of the
cylindrical using the RDPL theory for distinct values of ϑ in Figure 18. The axial stress is
rabidly vibrating along the radial direction in a small range 1 ≤ r < 1.032 while it slowly
vibrating after that in a large range 1.032 ≤ r < 1.4. For large values of r the values of σ3
will be coincident and maybe vanished.

5.3.3. Effect of Dimensionless Time

The effects of dimensionless time t on all field variables based upon the RDPL theory
are presented in Figures 19–24. Figure 19 shows the effect of t on the temperature θ across
the radial direction of the cylindrical cavity. Similar graphs of the rest of field quantities are
presented in Figures 20–24. It is clear in Figure 19 that the temperature θ vibrates across
the radial direction for different values of t. The temperature θ is no longer increasing and
has its maximum values at r = 1.04. The temperature vanishes as r increases and this is
irrespective of the value of the dimensionless time. Figure 20 shows that the dilatation e
vibrates across the radial direction of the cylindrical cavity nicely. The wave magnitude
increases as t increases. In Figure 21, the radial displacement u is rapidly increasing along
the radial directional of the cylindrical cavity when t = 0.02 while u is slowly increasing
when t = 0.025. In addition, u is slowly decreasing when t = 0.03 It is clear that at a fixed
position u increases as t increases.

The radial stress σ1 across the radial direction of the cylindrical utilizing the RDPL
theory is plotted in Figure 22 for different values of t. The radial stress σ1 vibrates in a very
small range, then it increases for t = 0.025 and 0.03 while it decreases when t = 0.02. At
any fixed position, the radial stress σ1 increases as t decreases. The hoop stress σ2 is plotted
across the radial direction of the cylindrical using the RDPL theory in Figure 23 for distinct
values of t. It vibrates in a very small range, then it increases for t = 0.02 while it decreases
when t = 0.025 and 0.03. At any fixed position, the hoop stress σ2 increases as t increases.

Finally, the axial stress σ3 is plotted across the radial direction of the cylindrical using
the RDPL theory in Figure 24 for distinct values of t. It rabidly vibrates in a very small
range 1 ≤ r < 1.035, then it slowly vibrates and increases to vanish at large values of r.

6. Conclusions

The refined dual-phase-lag theory is presented to get novel and accurate outcomes
of the variable quantities such as temperature, dilatation, displacement, and stresses. The
multi-time derivatives heat equation is illustrated in the present formulation. The con-
stitutive equations for the stresses in cylindrical coordinates are added to discuss the
thermoelastic coupling response of an unbounded body with a cylindrical hole due to a
traveling heat source. From the unified model, one can construct other theories concerning
coupled dynamical thermoelasticity (CTE theory), Lord and Shulman generalized thermoe-
lasticity theory (L–S theory), Green and Naghdi generalized thermoelasticity theory (G–N
theory) without energy dissipation as well as a simple generalized thermoelasticity theory
with dual-phase-lag (SDPL theory). The system of two highly-time-derivatives differential
coupled equations is solved, and all field variables are gained for the thermoelastic coupling
response of an unbounded medium with a cylindrical cavity. Different validation examples
and applications are presented to compare all theories with the refined one. A sample set
of plots are illustrated along the radial direction of the cylindrical cavity. Two tables are
reported for a validation example to serve as benchmark results for future comparisons
with other investigators. The reported and illustrated results show various behaviors of all
field quantities and the effects of the velocity of heat source, angular frequency of thermal
vibration, and dimensionless time parameters. The G–N theory gives suitable results in a
small range. However, the RDPL theory yields modified and accurate results.
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Nomenclature

αt thermal expansion coefficient
(

K−1
)

Ce specific heat at uniform strain
(

J kg−1 K−1
)

δij Kronecker delta function
eϕϕ hoop strain
err radial strain
e dilatation
eij linear strain tensor
ϑ the velocity of heat source

(
m s−1)

γ ≡ (3λ + 2μ)αt thermal modulus
(

N m−2 K−1
)

H(t) Heaviside unit step function

k coefficient of heat conductivity
(

W m−1 K−1
)

k∗ rate of thermal conductivity of an isotropic material
(

W m−1 K−1
)

λ, μ Lame’s constants
(

N m−2
)

ρ material density
(

kg m−3
)

R The radius of the cylindrical cavity (m)

(r, ϕ, z) cylindrical coordinates system

σij stress tensor components
(

N m−2
)

σϕz, σzr, σrϕ shear stresses
(

N m−2
)

σϕϕ hoop stress
(

N m−2
)

σrr radial stress
(

N m−2
)

σzz axial stress
(

N m−2
)

s Laplace parameter
θ = T − T0 temperature change (K)
θ0 thermal constant (K)
T0 environment temperature (K)
τq phase-lag of heat flux (s)
τθ phase-lag of temperature gradient (s)
τ0 first relaxation time (s)
ω angular frequency of thermal vibration

(
rad s−1

)
Q0 strength of heat source

(
W m−3

)
δ delta function
⇀
q heat flux vector

(
W m−2

)
ur radial displacement (m)
uφ hoop displacement (m)
uz axial displacement (m)
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Abstract: The paper examines that many human resources are needed on the research and develop-
ment (R&D) process of artificial intelligence (AI) and discusses factors to consider on the current
method of development. Labor division of a few managers and numerous ordinary workers as a form
of light industry appears to be a plausible method of enhancing the efficiency of AI R&D projects.
Thus, the research team regards the development process of AI, which maximizes production effi-
ciency by handling digital resources named ‘data’ with mechanical equipment called ‘computers’, as
the digital light industry of the fourth industrial era. As experienced during the previous Industrial
Revolution, if human resources are efficiently distributed and utilized, no less progress than that
observed in the second Industrial Revolution can be expected in the digital light industry, and human
resource development for this is considered urgent. Based on current AI R&D projects, this study
conducted a detailed analysis of necessary tasks for each AI learning step and investigated the
urgency of R&D human resource training. If human resources are educated and trained, this could
lead to specialized development, and new value creation in the AI era can be expected.

Keywords: digital light industry; fourth Industrial Revolution; artificial intelligence; human resource
development; work index; architecture; engineering and construction industry

1. Introduction

For half a century, entrepreneurs of South Korea have transformed the originally
agriculture-focused country into one with a focus on light and heavy industries, and fol-
lowing the third Industrial Revolution era, South Korea gained a state-of-the-art electronic
industry. Furthermore, some South Korean corporate companies that emerged after the
2000s are now top ranking on the global scale. Not only have they established artificial
intelligence (AI) research and development (R&D) centers, but they have also aggressively
developed professional human resources in order to become global leading companies in
the fourth Industrial Revolution era. Notably, amongst construction and transportation
industries, the AI-based indoor mapping and positioning technologies developed by Naver
Labs are acknowledged as top-tier technologies [1], and KAKAO BRAIN has developed
a technology that allows world-class performance of learning of images without the im-
age labeling process [2,3]. According to King et al. [4], AI will soon be applied to all the
industrial sectors around the globe at a fast pace.

The South Korean government-initiated Data Dam project focused on digital infras-
tructure investment since the mid-2020s [5]. The South Korean government announced
that the Data Dam project would have a total budget of KRW 292.5 billion (equivalent to
approximately USD 252 million) for the first half of 2021 and is planning to collect the
training data from 84 areas, including vision, geographic information, healthcare, and
construction. The aim of this project is to enable research institutes and private companies
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to focus on AI-related tasks, and the government will develop and establish AI learning
datasets, which will take approximately 80% of the total development process time and
lead to a delay in AI R&D projects. Consequently, it is expected that this project will have a
positive effect on the creation of mass employment as well as on innovations in AI research.

Figure 1 depicts a schematic diagram of data acquisition, refinement, and verification
during the execution of AI R&D projects. The set of data in the AI R&D project could
be divided into one using image-based data and another using time series data. The
overall process of constructing a dataset goes through the process of raw data acquisition,
segmentation, and labeling. In general, after collecting the raw data, the refinement
process to adjust the size and shape and the labeling process, including annotation and
segmentation, are carried out to create the learning dataset based on the two types of data.
Additionally, the refined data are re-classified into the weighted model referred to as the
brain of AI. The final process of AI dataset construction is quality control to determine
what to use in order to ensure the production of optimum results [6–19]. While most
previous studies divided the construction of the dataset process into the acquisition of
raw data, pre-conditioning, data refinement, data labeling, and the composition of the
dataset, the process can be simplified into data acquisition, refinement, and labeling steps,
excluding the pre-conditioning and composition of the dataset. This is because AI R&D is
conducted not by academia but by industrial processes once the data are acquired, and
labeling work is carried out to refine the procedure for cost and time reduction. Moreover,
subdivided processes performed at research institutes are not followed, as pre-developed
models are chosen rather than the development of models for learning on their own, and
they swiftly undergo refinement and verification after acquiring data, such as suitable
images or videos [20,21]. Verification stated here refers to a process that confirms whether
refinement was appropriately carried out by utilizing manpower or automation tools, not
forming a validation set generally cited in AI research.

Figure 1. The current AI R&D process in academia and in the industrial field, and manpower status required for development
(if 10 personnel are needed for total input, 50% of them are for data acquisition, processing, refinement, and labeling).

It seems that AI R&D could be carried out easily and fast if the above procedures are
followed, but there remain two factors to consider in AI research. Firstly, a great deal of
high-quality research manpower and equipment are needed at the learning level. In order
to verify the performance of training models, numerous variable studies need to be carried
out, and researchers who can understand the model structure and change equipment to
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reduce the training time, as well as manpower to revise labeling, are required. Moreover, a
number of studies compared the performance of various AI algorithms in order to verify
the optimal model for the construction projects [22–24] For example, Chakraborty et al. [23]
tested six different types of machine learning algorithm for predicting the construction
costs. Currently, South Korea lacks high-quality manpower that would facilitate a proper
understanding and establishment of AI structures, and available personnel are concen-
trated only in some specific fields. Notably, in minor fields, such as construction and civil
engineering, the demand for R&D continues to emerge, but their progress is slow due to a
lack of human resources. Problems with development equipment also exist. Hardware,
particularly the number of GPUs, is important in the development of the latest AI mod-
els [25]. AI calculation techniques using many GPUs in parallel exist, and, hence, the higher
the quantity, the easier the variable research. However, arithmetic disciplines researching
minor fields such as construction and civil engineering seem to conduct research with
equipment with a budget of USD 4000~10,000 as of 2020 (as shown in Table 1), and they
also use services provided by Google or Amazon without equipment [26,27]. As discussed
above, AI research may be delayed due to the low performance of computing equipment
in non-mainstream sectors.

Table 1. Status and cost of AI research equipment for architectural and civil engineering studies at
universities in South Korea (2020).

University Major
Amount of
Manpower

Hardware Cost

D
Civil

Engineering 3 RTX3080 × 4 USD 12,000

Environmental
Engineering 3 RTX2090 × 3 USD 6000

S Environmental
Engineering 5 RTX2060 × 4 USD 4000

H Construction 2 Google API USD 10/month

Secondly, more manpower would be required upon data acquisition and refinement
than in the training level. There are limits to searching on the web or reusing existing
resources for the acquisition of data, and for special fields, procuring training data itself may
be difficult. For instance, in order to acquire data on structure damage due to disasters such
as earthquakes and typhoons, research teams must use their time and financial resources
at appropriate times and acquire data directly on site. If they are lucky enough to acquire
training data after this, refinement is necessary to study the latest AI models, and this
requires revision of each data item with human interference. Notably, data refinement that
requires expertise may be delayed due to limited manpower.

Although companies carry out AI research by focusing on learning rather than data
acquisition and refinement for cost reduction, the outcome is imperfect, as they are unable to
procure satisfactory training data. Luckily, South Korea is investing a considerable amount
not only in AI model development research but also data acquisition and refinement. In
February 2021, the National Information Society Agency (NIA) attempted to standardize
the development method by publishing a manual on building data and refinement [28,29].
However, the types of data to be acquired consisted of images and video, and simply
increasing the quality without considering the development purpose was prioritized; as
a result, it is difficult to utilize this model in methods other than the original acquisition
purpose. If these data are meaningfully used later, the problem of re-refining the source
data by using manpower and financial resources again occurs. Therefore, the aim of
this study is to discuss the manpower-dependent problem of the current image-based AI
research, its improvement, and its future.
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2. Current Research on Data Acquisition, Refinement, and Quality Evaluation

2.1. AI Research Imitating Human Visual Information

In general, an ordinary image or a cut-frame image from a video clip is a good material
for AI to learn. As shown in Figure 2, until 2008, during which the early stage of data
acquisition development occurred, AI R&D was conducted in terms of simple image
classification. During this period, data acquisition did not require many human resources
to create training data since labeling consisted of simply adding text labels to images. Later,
object detection was developed, which made it possible to enhance the accuracy of AI. In
object detection, it is an essential task to annotate images, indicating the parts needed to
learn from the images [7]. During the early stage of annotation, the data used round boxes
for image classification, but efficiency was enhanced following the development of the
ability to identify several objects on one image, as shown in Figure 3. Nonetheless, if the
image classification data are used without considering annotation, as shown in Figure 3,
the advantages of annotation cannot be exploited, which leads to no significant changes in
the accuracy of AI. Consequently, researchers developing object detection had to acquire
new image data corresponding to the method shown in Figure 3b, and they had difficulties
in reconducting atypical refinement accordingly with the AI model to be applied.

Figure 2. Milestones of object detection techniques and the evolution of hardware (GPU).

Figure 3. Difference between (a) an example of learning data collected in the era when image classification techniques were
dominant and (b) learning data collected after object detection was developed. (a) Data can also be used for object detection,
but they are less efficient and may lead to inaccurate results.
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In 2012, researchers who attempted to enhance the accuracy of an AI model developed
instance segmentation, a type of object detection that categorizes classes per pixel. Most
researchers nowadays apply this method, and it shows excellent performance [6–19,30–34].
Since instance segmentation specifies parts on the image needed for learning by pixel,
labeling is mostly performed in polygonal form, as shown in Figure 4d. This case requires
more workload than required by the existing round boxing. To make up for this, the
so-called auto-labeling methods started to be developed, ultimately reaching the level
where labeling is carried out on parts without the need to click on certain features, such
as trees and cars [35]. Nevertheless, many errors occurred, so revision by personnel
was needed, and this required additional acquisition and learning on images in order to
perfectly recognize the target. An additional amount of acquisition differs in terms of
target accuracy, and figures may vary depending on the engineer. Acquisition methods are
ramified as online collection through web surfing and offline collection by shooting [29].
Online collection is carried out by conducting searches on the image server of the web
established by people or by conducting automatic web searches through surfing. Due to
problems regarding copyrights, the industry prefers offline acquisition, and R&D institutes
combine on- and off-line methods to reduce the development schedule and costs.

Figure 4. (a) Classification (0 click); (b) Classification + Localization (0 click); (c) Object Detection (8 clicks); (d) Instance
Segmentation (58 clicks). A typical artificial intelligence method to perceive images. The number in the parentheses
represents the number of mouse clicks. License plates and human faces were mosaicked or blurred for privacy. Following
the development of the ability to perceive various objects on one image, the number of mouse clicks as well as the refinement
time increased, whereas the volume of the training dataset decreased, leading to quickened learning speed and, thus, the
need for comparative studies on this topic.

The acquired data are called source data and are in an incompatible state for AI training
at the current status quo. After conducting data cleansing on the source data needed for
training, the data must be revised to correspond with the model to be developed, and the
task incurred here is called data refinement. In brief, refinement includes various steps,
from creating a category folder and classifying images to adjusting the image size, changing
the resolution, blurring for privacy, and binarizing to simplify color, and the images go
through labeling processes such as image boxing to indicate the target object on the image,
and segmentation. All tasks have a proper program tool that is not yet automatized,
because the tasks cannot be immediately completed. The most frequently used tasks
during refinement are changing the image size, adjusting the resolution, and changing
the name of the file; labeling can be carried out again after these tasks are completed.
During these procedures, manpower is constantly deployed. Furthermore, some cases may
require expert knowledge on refinement and labeling depending on the research field, such
as construction, civil engineering, and medical care. However, research results of AI in
specific fields show low performance or are delayed because highly educated personnel
are costly and limited.
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2.2. Research on Quality Assurance of Acquired Data and AI Models

Quality assurance can be categorized into the tasks of extracting appropriate data for
training to enhance the accuracy of AI models and conducting a performance evaluation of
the developed AI models. [28] First, performance evaluation indicators on the classified
model, such as accuracy, confusion matrix, precision, recall, F1 Score, ROC AUC, and
mAP, are developed based on a method of judging the similarity between the actual and
estimated data. In 2012, during which the so-called embryonic stage of AI occurred, quality
assurance of training data was considered unimportant since the focus was only on the
mechanical training model, but the necessity of quality evaluation rose as the amount of
data continued to increase, and the importance of refinement and labeling was ascertained.
If quality evaluation is included as a general business process, quality evaluation could be
carried out by at least those who have knowledge on AI development, which infers that AI
engineers would additionally have to bear the quality evaluation task of data before the
training period. According to recent research, there are tendencies that prove the accuracy
enhancement of the model only with a quality training data set, which would solve if
research on training data evaluation indicators are done and the related manpower are
educated from now on, but lack of AI development personnel would rise as a problem in
the short term.

3. What Is the Digital Light Industry?

3.1. Manpower-Dependent Source Data Acquisition Method

AI studies are currently being actively carried out in many fields, but the interest
in acquiring training data is relatively small. Acquisition is mostly divided in collection
via direct photography or video-shooting and collection via web surfing. Many research
engineers are mistaken on the notion that the data acquisition process is not difficult and
unimportant due to the incorrect assumptions that infinite data on the Internet can be used
and that all objects in the surrounding environment are usable references. In fact, in the
case of specialized fields, in order to acquire a datum, bachelor’s degree knowledge and
verification in accordance with it are needed. Even if one is fortunate enough to acquire the
data, the specialist limit must be considered. In the medical field, for example, where there
are numerous clinical cases, effort must be made to prevent leakage of personal information
when acquiring image data of wounds, conditions, etc. In the case of the construction field,
attention should be paid to not intrude on private property, and all other fields should
give attention to copyrights, personal information leakage, and security on the image and
acquired data. Thus, although acquisition can be smoothly carried out, blurring parts
containing personal information or deleting data violating copyrights from the collected
source data in order to abide by R&D ethics regulations should be conducted, which can
only be done manually by professionals. If the data are to be used for commercial purposes,
much more detailed work is needed.

The digital surfing technique using search engines may appear easy and simple
compared to the direct acquisition method, but its usage is being reduced by professional
engineers due to its many downsides. In order to transform data into source data after
acquisition, inspection of each datum is needed due to overlapping or irrelevant data,
format variation, resolution quality, and copyright issues, and research on this subject
is required just as much as it is on direct acquisition. Many current beginners who are
acquiring AI data believe that numerous training data exist on the web and prefer web-
based data acquisition, but when a certain quantity of data is acquired, they become
aware of this method’s limit and eventually turn their research toward direct acquisition.
However, both methods are means of data acquisition that cannot be overlooked, and a
considerable amount of manpower and financial resources are needed in this process due
to its trial-and-error nature.
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3.2. Necessity for Professional Manpower in Data Processing/Refinement/Labeling

As stated in the previous section, processing and refinement of image data are gener-
ally conducted manually using manpower as shown in Table 2. If categorizing the acquired
data is considered processing and refining, those in charge of the database should classify
images one by one at this step. The next steps, namely, cleansing, size transformation,
binarizing, and naming, can be solved with a simple program code of the programmer, but
the database manager can individually implement the procedures if program personnel
are not present. Round boxing and segmentation, which are conducted to utilize the latest
AI method, may require professional knowledge depending on the data type, and they
may be inefficient in terms of cost if all manpower is gentrified. This issue can be solved
by using a method in which a manager with professional knowledge has many ordinary
workers, followed by processing and refinement.

Table 2. Parts to be considered for verification in data acquisition and cleansing.

Parts to Verify Processing Method

Copyright infringement Data deletion
Personal information infringement Blur image, delete personal information

Security facilities and public facilities Acquire data upon prior permission
Discrimination against a particular region, society, or race Set up procedure to avoid inequality

Possibility for safety-related accident outbreak Prior check on accident risks and provide safety education

During this step, a special program for labeling may be needed. Non-profit research
institutes mostly use refinement programs based on open-source software, such as ‘La-
belme’ [36] or ‘VGG annotator’ [37], whereas business entities utilize self-developed pro-
grams and require manpower to manage these. Lastly, in order to manage refined data
and utilize them for learning purposes, manpower for professionally developing AI is
needed, and specialists with knowledge of at least five knowledge standards in data pro-
cessing, refinement, and labeling are required, as in Table 3. It can be clearly observed
that programs that automatically assist labeling are released as technology development
progresses [35], and their usages are expected to continue to increase in diversity. However,
at this point, human interference must not occur in any of the steps from data acquisition
and processing to refinement, and it could be inferred that the AI R&D industry is highly
human dependent.

Table 3. Research process, human resources, and level of academic knowledge required for AI
research and development prior to learning.

Step Occupational Group
Level of Academic

Knowledge

Data
acquisition

DB manager Low level of computer
programming major

Worker Major not required

Data
refinement Programmer General level of programming

major

Data
labeling

(annotation)

Labeling Manager High level of special field
major

Worker Major not required

Refinement/labeling
program development Programmer High level of programming

major

Training data transformation AI Engineer High level of AI major
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3.3. Acquisition/Process Methods for Low Versatility Data

In general, AI development is not carried out with one-time data refinement. To reach
the level of commercialization, training data inevitably have to go through several passes
of re-processing, refinement, and labeling, and uneven data management may occur due
to the participation of numerous workers. There are three main reasons for re-processing
and refinement: the first reason is labeling being carried out in a manner that is not in
accordance with the engineer and data managers’ instructions, even if it is performed by
professionals. Here, a series of refinements should be conducted again in accordance with
the development purpose. The second reason is low accuracy during the training period or
when the classified model categorizes unwanted objects. Unlike the problem occurring
during model training, the cause cannot be determined in this case, and re-processing and
refinement of overall data may be required, which greatly affects the project schedule. This
could be due to low precision in the refinement and labeling process (labeling unnecessary
data and inserting different data from the development intention) or lack of training data
figures. The third reason is the development of a new AI network. Since the training
data are composed of a bundle of categories, it is not difficult to add or delete additional
categories, but it is difficult to use the bundled data, as they are for the development of
AI with a new purpose. For instance, construction material could be a product on-site or
rubbish in a dumpsite depending on its usage. Although AI perceiving materials has been
successfully developed, it should be able to differentiate between new and used products
for resource management, and, in this case, the existing category should be revised. That is,
as human beings see and judge, data refinement should be carried out accordingly so as to
discern other categories depending on the situation, even if the product is the same. The
results of the research team’s trial suggest that the workload lessened considerably when
newly labeling from the source data rather than editing the existing labeled data. Research
and projects on AI that are currently being developed do not consider subcategories such
as the issues above, and as they collect and refine training data, such data are not expected
to be used in further developments and would ultimately be considered waste.

3.4. Necessity of Acquisition/Refinement/Labeling Manager

The acquisition/refinement/labeling manager could be defined as the individual
who possesses professional knowledge on the specialized field and is capable of making
decisions regarding the use of data in training. The advantages gained from hiring such per-
sonnel are a shortened development schedule and increased accuracy. If the performance
of the model trained with refined data in the absence of a manager is low, it is difficult to
find where the cause lies among the training material and AI network. In this case, the AI
engineers have to perform the task to identify errors within training data and to improve
the network simultaneously, thus leading to the research development schedule being
prolonged by twice the amount of time. On the other hand, if the data refinement manager
has knowledge of data quality and provides refined data, the AI engineer can concentrate
solely on developing the AI network, which may allow for a reduction in R&D time.

4. Solutions

As discussed in Section 3, many human resources are required for AI R&D. For AIs
in specialized fields, the accuracy of the model can only be ensured by highly educated
personnel, but such manpower is usually lacking. Moreover, the acquisition and refinement
of data, which correspond to the immediate development process but with no consideration
in expansion, are used only once in a manner similar to disposable products. In order to
avoid such losses, it is necessary to train human resources to consider and manage the
expansion from the beginning of the development.

4.1. Solution to the Manpower-Dependent R&D Method

The majority of people in South Korea attend university, and their computer skills are
the world’s best. Hence, general human resources required for AI R&D can be considered
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abundant. However, AI R&D is currently being carried out in an inefficient manner due to
notable manpower shortage, and this issue will only be resolved when AI is popularized,
which represents the beginning step of the fourth Industrial Revolution. Moreover, Korea
is expected to be able to quickly become a powerhouse in this field, as the most efficient
R&D is currently being conducted in this country.

Manpower-related issues can be solved by an AI expert selecting a detailed learning
method, data acquisition, refinement, and labeling. Although it is ideal to plan for the
consideration of further extendibility, an expert cannot do this alone and, thus, requires
AI personnel and an additional general manager. In order to solve this problem, a new
type of manpower distribution for the AI development process is suggested, as shown
in Figure 5. The structure and figures of manpower distribution are empirical values
obtained by the research team. Aside from their own expertise, general managers play
a supporting role, ensuring that R&D is successfully processed by performing tasks in
relation to their understanding of the scheme of AI professionals and managing manpower.
Should there be insufficient supporting human resources, acquisition, refinement, and
labeling managers need to be chosen through professional training and administering
manpower, and AI engineers should provide assistance in focusing on enhancement in the
capacity of the model. Ultimately, no differences in terms of division could be observed
during the Industrial Revolution, and because productivity has dramatically risen as a
consequence, AI R&D is expected to produce the same results. For this, large scale learning
programs and support are needed for ordinary researchers to become advanced ones
through proper education.

Figure 5. The current R&D method for the human resource structure used in the AI development
process and the improved manpower distribution method proposed by the researchers.
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4.2. Solution to Concerns Regarding Data Waste

The number of images per project acquired by the Korean government’s Data Dam
establishment project is about 200 k~500 k. The cost of this is around KRW 1.8 billion.
The likelihood of using these data for other development purposes should be up for
reconsideration.

According to a case study of the research team, the same amount of effort required for
the existing refined quantity was also required even when adding one simple classification
category. Regardless of the selected AI development methods, new category classification
and labeling methods should be applied to the model to be developed, and even datasets
developed after the consideration of extendibility require half the amount of the pre-existing
manpower. Therefore, data should be acquired and refined so as to possess generality
by establishing detailed categories, organizing data with extendibility reflected, adopting
labeling techniques, starting with a broad development range from the beginning, and
reducing cost and time losses.

5. Case Study and Suggestion Regarding Work Index

Three case studies were carried out to support the research team’s argument that AI
R&D is similar to a type of light industry. The case studies were carried out in a similar
manner to that of the development method performed by general researchers, and the
manpower and hours consumed per development step can be observed in Table 4. Equation
(1) presented below is suggested with image quantity, input manpower, and work hours.

Work index =
Total amount of data

Degree of input manpower × Work hours
(1)

Table 4. ‘Work index’ on the basis of required manpower and hours depending on the AI R&D method.

Case Method
Amount of

Data
Step

Manpower
/Hour

Working
Time

Metrics per
Data

Avg.

A. Crack Classification 20,000 Acquisition/labeling 1 200 1.4 1.4

B. Construction
waste Instant seg-

mentation

866

Acquisition 3 48 6.0
3.3Labeling 4 180 1.2

Relabeling 4 60 3.6

C. Rebar 726
Acquisition 3 48 5.0

4.1Labeling 4 110 1.65

Through this equation, the degree of resource consumption in comparison with the
data can be quantitatively calculated as a value from 1 to 10 depending on the development
method of AI. If a high amount of manpower and hours are input, the index shows a low
value; if data generated from other further R&D processes are analyzed, the adequacy of the
resource input for data acquisition, refinement, and labeling development can be verified.

5.1. Development on Concrete Surface Crack Recognition

In order to use the object detection method, a total of 20,000 photos showing concrete
cracks in 224 × 224 pixels were collected. Concrete cracks were acquired by photographing
actual architecture, and the cracks on the image were cropped and saved. It took 200 h
under one worker/hour to complete data acquisition and cropping. Special labeling was
not required; thus, the work index was 1.4 when compared to a considerable amount of
learning data. As a result of learning, the AI models could perceive cracks. While acquiring
learning data, the images were amassed around horizontal or vertical cracks, so diagonal
cracks were identified, but those intersecting in X were unrecognizable.
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5.2. Development in Perceiving Constructional Waste

In order to develop an AI model that differentiates 5 out of 18 constructional wastes
being generated from construction sites, namely, concrete, brick, lumber, board, and
mixed waste, data were acquired and refined through instant segmentation. A total of
866 images were acquired, and those taken on-site were cropped, collected online at a
resolution of 512 × 512 pixels, and refined to 100 kb per photo. Moreover, pixels around
the object boundaries were extracted using the polygonal method so as to differentiate
the classes for wastes on the images. It took 48 h under three workers/hour to conduct
data acquisition, and this time includes all aspects from planning the data acquisition
process to taking pictures on-site as well as moving and saving the pictures on a data
server. Refinement and labeling were simultaneously carried out, which took 180 h under
four workers/hour. The work index for each development step was different, as shown
in Table 4, and it could be observed that many resources were used for data acquisition
in this research. Since inaccuracy was observed in some parts after learning, around 60 h
under four workers/hour were additionally required for relabeling (segmentation) based
on the acquired source data. Relabeling required only one-third of the resources needed to
complete the previous work, and it was possible to differentiate five types of wastes after
learning with the relabeled data, but it was ultimately decided to increase the amount of
learning data due to cases in which board and lumber were being confused for each other.

5.3. Development of Model Identifying the Quantity of Rebar

A model to identify individual bundles of rebar was developed to manage automa-
tized materials on a construction site. Within images of 512 × 512 pixels, 50–250 bundles of
rebar were photographed, and the cross-section of rebar was extracted using the polyg-
onal method so as to perceive each bundle of rebar separately. It took 48 h under three
manpower/hour to acquire 726 images, and it took 100 h under four manpower/hour to
separately segment around 120 k rebars. As a result of learning, the extraction of rebar
quantity from the photo, which was achieved by identifying each rebar cross-section indi-
vidually, was confirmed. However, if more than 300 bundles of rebar were included in one
image, some were difficult to differentiate on 512 × 512 pixels, even with the naked eye;
thus, a notable decrease in accuracy was observed in some parts with low resolution. This
case study had the tendency to a show high work index compared to that of others, and
this is considered to be due to no additional labeling being conducted and the development
being efficiently carried out by a skilled research team.

6. Conclusions

The fourth Industrial Revolution refers to an intellectualized society with various
technologies, such as AI, big data, block chains, and robotics. This study focused on AI
among technologies in the fourth Industrial Revolution and examined the development
process’s similarities to that of light industry. Compared with the heavy industry, the
production efficiency of the light industry is dependent upon manpower and production
stages. All processes for AI R&D, from data acquisition to refinement, learning, and
quality evaluation, need to be carried out by personnel, an observation that is also highly
applicable to the light industry. However, since previous business entities/institutes
processed development by only focusing on the AI learning step, manpower supply was
not prioritized, which led to low assessment of the importance of human resources in
national R&D projects, thus leading to a reality with improper AI R&D. Therefore, this
study conducted a detailed analysis of necessary tasks for each AI learning step and
examined the urgency of R&D personnel training.

6.1. Data Acquisition Step

Previously, images or time series data were simply copied into the digital form for
data acquisition. However, for R&D with commercialization purposes or being conducted
in specific professional fields, it is difficult to indiscriminately use existing data due to
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copyrights and personal information protection, and a process to check the data individu-
ally after acquisition is mandatory. A tool to automatize this process exists but cannot be
considers as completed; thus, human interference is necessary throughout all processes.

6.2. Data Refinement/Labeling Step

It was verified through a case study that the accuracy of the AI model and reduction in
the research period were expectable only with the enhancement of refinement technology. It
was observed that a refinement manager and developing personnel who possess academic
knowledge of development field were necessary, and it was important that the data were
refined by the personnel who received professional education on development rather
than by the public recruited through the existing cloud sourcing method. In addition, a
refinement manager should be hired to manage R&D projects, and AI engineers should be
able to focus on their own tasks, thereby leading to maximized efficiency of labor division.

6.3. Quality Evaluation Step

According to the research results, it appears that managers could carry out quality
evaluation for each step. This could lead to quality evaluation focused only on the research
purpose, and reutilization of learning data would be impossible. Although it is inessential at
this point, reutilization of learning data could serve as a shortcut to reduce the development
period for researching and developing similar AI when the golden age of AI research is
reached. Hereupon, the necessity of professional manpower to predict development in
other fields and manage data would become important.

If a sufficient number of personnel are educated and trained to lead specialized
development projects, as per the results above, new value creation in the AI era can be
expected. Such an AI industry would increase job opportunities in the short term, and job
opportunities in general are not considered to decrease due to AI until a particular point
is reached. Labor division and development of mechanisms that emerged during second
Industrial Revolution period brought explosive productivity enhancement. The fourth
and second Industrial Revolutions show similarities in terms of natural resources (data)
and mechanisms (computer). A considerable number of examples verified the increased
productivity achieved by using AI, and if human resources are efficiently distributed and
utilized, advancement in mankind similar to that observed during the second Industrial
Revolution is expected.
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Abstract: Nowadays, we use social networks such as Twitter, Facebook, WeChat and Weibo as
means to communicate with each other. Social networks have become so indispensable in our
everyday life that we cannot imagine what daily life would be like without social networks. Through
social networks, we can access friends’ opinions and behaviors easily and are influenced by them
in turn. Thus, an effective algorithm to find the top-K influential nodes (the problem of influence
maximization) in the social network is critical for various downstream tasks such as viral marketing,
anticipating natural hazards, reducing gang violence, public opinion supervision, etc. Solving the
problem of influence maximization in real-world propagation scenarios often involves estimating
influence strength (influence probability between two nodes), which cannot be observed directly.
To estimate influence strength, conventional approaches propose various humanly devised rules to
extract features of user interactions, the effectiveness of which heavily depends on domain expert
knowledge. Besides, they are often applicable for special scenarios or specific diffusion models.
Consequently, they are difficult to generalize into different scenarios and diffusion models. Inspired
by the powerful ability of neural networks in the field of representation learning, we designed a
hierarchical generative embedding model (HGE) to map nodes into latent space automatically. Then,
with the learned latent representation of each node, we proposed a HGE-GA algorithm to predict
influence strength and compute the top-K influential nodes. Extensive experiments on real-world
attributed networks demonstrate the outstanding superiority of the proposed HGE model and HGE-
GA algorithm compared with the state-of-the-art methods, verifying the effectiveness of the proposed
model and algorithm.

Keywords: influence maximization; influence strength; network embedding; social networks

1. Introduction

Fueled by the spectacular growth of the internet and Internet of Things, plenty of
social networks such as Facebook, Twitter and WeChat have sprung up, changed the
mode of interaction between people, and accelerated the development of viral marketing.
Originally from the idea of word-of-mouth advertising, viral marketing takes advantage of
trust among close social circles of friends, colleagues or families to promote a new product,
i.e., when a friend relationship affects a user making decisions on item selection [1,2].
Motivated by applications to early viral marketing, a new study area of influence diffusion
has thrived. Therein, the problem of influence maximization is to select a fixed size set of
seed nodes in a network to maximize the influence spread according to a specially designed
influence diffusion model. Figure 1 gives a toy example of social influence. The nodes
v1,v2,v3 in black are the seed nodes which are initially active, and the nodes in gray color
are newly activated by the seed nodes. In terms of viral marketing, for example, if user
v1,v2,v3 bought a product, their friends in a given social network will likely buy this product
because of the friend-to-friend influence.
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Figure 1. A toy example of social influence. The seed nodes are v1,v2,v3, represented in black, and the
nodes influenced by the seed nodes are in gray.

The applications of influence maximization are prevalent in the real world and include
such purposes as viral marketing, anticipating natural hazards, reducing gang violence,
public opinion supervision etc., whereas the time complexity of solving the problem of
influence maximization is NP hard [3]. This inspires a lot of studies on influence diffusion
and influence maximization algorithms. In early time, most studies have focused on the
influence maximization algorithms themselves under a general independent cascade (IC)
diffusion model or a general linear threshold (LT) diffusion model [4,5], including greedy-
based algorithms [3,6–10] and heuristic-based algorithms [11–13]. In terms of running
time, heuristic-based algorithms are generally more efficient than various greedy-based
algorithms, but they do not have any theoretical guarantee.

As in the real world, influence propagation often involves latent variables that are
directly unobservable, including influence strength. Estimating influence strength is a fun-
damental problem for influence diffusion. Some models to estimate influence strength have
been proposed, including the topic model [14,15], probabilistic methods [16,17] and models
based on deep learning [18,19]. Although existing models and methods have achieved a
lot, they demonstrate a number of major drawbacks: (1) conventional approaches propose
various humanly devised rules to extract features of user interactions, the effectiveness
of which heavily depends on domain expert knowledge. (2) They only consider general
network structure and node attributes as factors underlying social network influence, but in
the real world, the structure of a large-scale network is more complex and often involves
communities, community tensility and node depth in a clustering tree. (3) They are often
applicable for special scenarios or specific diffusion models, not for generalized conditions.

Like most scenarios in real-world propagation [16], influence strength, in this paper, is
assumed to be directly unobservable. To predict influence strength, we need to compute
the similarity of node pairs, with the motivation originating from previous studies that
showed that the more equivalent the network structure and node attributes of two nodes
are, the more likely they make similar judgments, even if they have no direct connec-
tion reciprocally [20]. Inspired by the powerful ability of neural networks in the field of
representation learning, we design a deep hierarchical network embedding model, HGE,
to map nodes into latent space automatically, preserving network structures and node
attributes as much as possible. The correspondence between the general attributed network
and the hierarchical latent space is illustrated in Figure 2. Then, with the learned latent
representation of each node, we measure the similarity of node pairs and regard it as
the influence probability between two nodes, since the underlying factors of influence
probability are network structures and node attributes [20]. Next, the top-K influential
nodes can be computed through a greedy-based maximization algorithm. The overview of
the proposed method is illustrated in Figure 3.
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Figure 2. The correspondence between the general attributed network and the hierarchical la-
tent space.

Figure 3. Overview of the system architecture.

Social networks usually have millions of users, with a large amount of user-related
information, community structures, and complex hierarchical network structures. When
embedding nodes into a low-dimensional vector space, in order to preserve network struc-
tures as much as possible, hierarchical structures should be taken into account. Furthermore,
a community is formed of nodes which have similar attributes while repelling each other
due to attribute differences measured by the tensility of the community. In other words,
a community is a node set with tensility, and in order to capture this tensility, we embed a
community as a Gaussian distribution. Specifically, we propose a hierarchical generative
embedding model which integrates hierarchical community structure, node attributes and
general network structure into a unified generative framework.

To summarize, we make the following contributions:
(1) We study the problem of incorporating hierarchical generative embedding into

influence strength prediction for the first time;
(2) In order to predict influence strength, we propose a novel model, the HGE model,

which automatically maps nodes into latent space, avoiding humanly devising rules to
extract features of user interactions. The proposed HGE model integrates hierarchical
community structure, node attributes and general network structure into a unified gen-
erative framework that ensures the preservation of node characteristics and captures the
granularity of hierarchical characteristics as well as community tensility in an attributed
network effectively. Furthermore, we propose a new algorithm, HGE-GA, to predict influ-
ence strength and compute the top-K influential nodes effectively. The proposed HGE-GA
algorithm can be generalized to different scenarios or diffusion models;

(3) We evaluate our method on various datasets and tasks, and experimental results
show that the proposed model and algorithm significantly outperform the state-of-the-
art approaches.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
presents notations and problem formulation. Section 4 details the proposed method.
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Section 5 lists the experiment setup. Section 6 presents the experimental results & analysis.
Section 7 concludes the paper.

2. Related Work

Influence Diffusion. The studies of influence diffusion focus on the key factors for
influence diffusion, such as diffusion models of a single entity or multiple entities, as well
as the influence probability between two nodes, which is more relevant to our work. Esti-
mating influence probability between two nodes (or influence strength) is a fundamental
problem for influence diffusion, since in real-world propagation scenarios, the variables
such as influence strength and infection time may be not directly observed. Some models
to estimate influence strength have been proposed. One line of research is based on topic
extraction and lays emphasis on incorporating the topic model into influence diffusion.
Ref. [15] proposes a latent variable model, which captures community-level topic interest,
item-topic relevance and community membership distribution of each user and further
infers user-to-user influence strength. Ref. [14] proposes a novel model, COLD, to model
community-level influence diffusion. Another line of studies utilize various probabilis-
tic methods such as Bayesian inference [16] and EM (Expectation maximization) [17] to
stimulate influence diffusion and learn the parameters in the generative model. Recently,
researchers have endeavored to build models of influence prediction using deep learning,
which can predict social influence automatically and are no longer limited to expert knowl-
edge when extracting user features or network features. Ref. [18] proposes a recurrent
neural variational model (RNV) to dynamically track entity correlations and cascade cor-
relations. Ref. [19] proposes the DeepInf model to predict social influence, which detects
the dynamics of social influence and integrates network embedding and graph attention
mechanisms into the model. Ref. [21] proposes a reinforcement learning framework to
discover effective network sampling heuristics by leveraging automatically learned node
and graph representations.

To the best of our knowledge, the existing models to predict the influence probability
between two nodes usually extracts features of user interactions with various humanly
devised rules, which heavily depends on expert knowledge of this domain. Besides,
the underlying factors that affect social network influence, such as communities, community
tensility and node depth in a clustering tree, have not been taken into account in the existing
models when computing the influence probability of node pairs. Moreover, the existing
models are often applicable for special scenarios or specific diffusion models, not for
generalized conditions.

Network Embedding. Network embedding techniques aim at inferring represen-
tations, also called embeddings, of entities in the networks. The basic idea of network
embedding is to embed the nodes into a low-dimensional vector space in which the similar-
ity between nodes can be measured and network structures can be preserved as much as
possible. Many downstream learning tasks can benefit from this form of representation,
such as link prediction, node classification, node clustering and network visualization.

Existing models of network embedding are concerned about the technology of map-
ping or dimension reduction. In order to obtain effective low-dimensional embeddings,
numerous algorithms have been proposed. Inspired by Word2Vec [22], deep learning has
been migrated to network embedding. DeepWalk [23], Node2Vec [24] and Line [25] extract
a number of sequential nodes in the network by random walk. Nodes in a sequence are
metaphorically equivalent to words in language models. Skip-Gram [22] is then employed
to obtain the embeddings of nodes. After obtaining the embeddings of nodes, the similarity
of nodes can be calculated by the inner-product of their embeddings. LINE [25] uses first-
order and second-order proximities and trains the model via negative sampling. SDNE [26]
adopts a deep auto-encoder to preserve both the first-order and second-order proximities.

As one of the most important features of social networks, community structure is
usually integrated into network embedding as auxiliary information [27–30]. M-NMF [27]
incorporates the community structure into network embedding and exploits the consensus
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relationship between the representations of nodes and community structure. M-NME
then jointly optimize NMF (Network Matrix Factorization)-based representation learn-
ing model and modularity-based community detection model in a unified framework.
GraphAGM [28] combines AGM [31] and GAN [30] in a unified framework which can gen-
erate the most likely motifs with graph structure awareness in a computationally efficient
way. NECS [29] preserves the high-order vertex proximity and incorporates the community
structure of networks in vertex representation learning.

Hierarchical Network Embedding. The community structures in complex networks
are often hierarchical [32–36]. Inspired by the natural hierarchical structure of a galaxy
with its stars, planets, and satellites, ref. [33] proposes the galaxy network embedding
(GEM) model. GEM captures hierarchical structures by forming an optimization problem,
including pairwise proximity, horizontal relationships and vertical relationships. In order
to solve various defects caused by the exponential decay of the radius in the GEM model,
Long et al. [36] first apply subspace to hierarchical network embedding and propose
the SpaceNE model, which preserves proximity between pairwise nodes and between
communities. Ref. [35] proposes NetHiex, a network embedding algorithm which can
capture the different levels of granularity and alleviate data scarcity. Ma et al. [37] propose
the MINES framework, which can embed multi-dimensional networks with a hierarchical
structure to low-dimensional vector spaces, with the learned representations for each
dimension containing the hierarchical information. Nickel et al. [38] use hyperbolic space
instead of Euclidean space to capture hierarchical structures in networks. The learned
embeddings are difficult to convert into Euclidean space, which is inappropriate for some
downstream tasks of machine learning.

However, these hierarchical embedding algorithms suffer from some defects: (1) They
embed each node or community as a vector in the latent space, which ignores the tensility
of the community. Essentially, a community is a set of nodes or smaller communities with
similar attributes and tensility, and a simple vector can not represent this relationship of
affiliation. The tensility of a community has been defined in Definition 2. (2) They do
not consider node depth in a clustering tree when dealing with vertical relationships in a
hierarchical network. Thus, it is inappropriate to use the traditional method of measuring
vertical relationships in a hierarchical network to compute vector distance in latent space.
The granularity of hierarchical structures should be taken into account, and a personalized
method to measure vector distance in latent space should be designed. The granularity of
hierarchical structures has been defined in Definition 3.

3. Notations and Problem Formulation

In this section, we first introduce the definitions and notations, and then formulate the
problem studied in this paper.

Definition 1 (attributed network). An attributed network is an undirected graph G = (V , E ,A),
where V is the set of network nodes, E is the set of edges and A ∈ {0, 1}|V|×F is a binary-valued
attribute matrix recording node-attribute associations, with F being the number of attributes. The el-
ement Ai,a ∈ A is a binary-valued attribute weight, indicating that attribute a associates with node
i if Ai,a = 1.

Definition 2 (the tensility of community). A community is a set composed of nodes with
similar attributes. These nodes form a community due to similar attributes and repel each other in
the community due to differences in attributes. The tensility of the community is used to measure
the difference of node attributes in the community.

Definition 3 (the granularity of hierarchical characteristics). In hierarchical networks, ver-
texes at different levels have different granularities of characteristics. As shown in Figure 4,
the university in the top level has the characteristics of name, address etc., and the colleges in the
second level have the characteristics of majors, number of students etc. The characteristics of nodes
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at different levels have different granularities, while the granularity of the characteristics is the same
for the nodes at the same level. It is the granularity of hierarchical characteristics that causes the
vertical constraint of hierarchical structure properties (see Section 4.1.1).

students

Figure 4. Illustration of vertexes at different levels having different granularity features.

The hierarchical clustering tree of G is denoted as T with a depth of L. V l is the vertex
set at the l-th level of T, and vl

i ∈ V l is the i-th vertex at the l-th level. Ch(v) denotes the
child vertex set of the vertex v, f a(v) denotes the father vertex of v and Φ(v) denotes the
embedding of vertex v. In our paper, we use ’vertex’ to represent a user or community in
the hierarchical network, while using ’node’ to represent a user in the general network,
especially when l = L, vl

i represents a leaf vertex (user) at the bottom of the clustering tree.
For ease of reference, we summarize the basic notations in Table 1.

Table 1. Main notation used across the whole paper.

Notation Description

G An undirected graph
V Set of nodes
E Set of edges
T A hierarchical clustering tree
L The depth of the clustering tree
Ch(v) The child vertex set of vertex v
f a(v) The father vertex of v
vl

i The i-th vertex at the l-th level
Φv The embedding of vertex v

With the definitions and notations described above, we formulate the problem studied.

Problem 1 (Node Embedding). Given an undirected graph G = (V , E ,A), the goal is to learn
the latent representation of nodes with the mapping function Ξ:

G Ξ−→ ΦV (1)

such that the information of hierarchical network structure, general network and node attributes can
be preserved as much as possible by ΦV ∈ RN×D, where ΦV is the latent embedding matrix for all
nodes and D is the dimension size of the embeddings.

Problem 2 (Influence Maximization in Attributed Social Networks). Given an IC diffusion
model, an undirected graph G = (V , E ,A) and the latent embedding matrix for all nodes ΦV ,
the goal is to find the node set S with an algorithm F :
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G, ΦV
F−→ S (2)

such that the expected spread of node set S , i.e., σ(S), is maximized and |S| = K. The expected
spread of node set S is defined as the total number of active nodes after the influence spread ends,
including the newly activated nodes and the initially active nodes.

4. The Proposed Method

Like most scenarios in real-world propagation [16], the influence probability of node
pairs, in this paper, is assumed to be directly unobservable. To predict the influence
probability of node pairs, we first embed the nodes into a low-dimensional vector space
by jointly modeling the horizontal constraint, vertical constraint, affiliation constraint and
node attributes. After obtaining the embedding of each node, we use the two-normal
form to measure the similarity of the node pair. Then we predict the influence probability
of the node pair with the measured similarity of the node pair. We now describe the
proposed method in the following subsections: the hierarchical generative embedding
model is described in Section 4.1, the learning procedure is described in Section 4.2, and
the HGE-GA algorithm is described in Section 4.3.

4.1. Hierarchical Generative Embedding Model

The proposed HGE model focuses on preserving the following characteristics of the
network: (1) Horizontal structure characteristics. Nodes belonging to the same community
are more similar than nodes belonging to different communities (in terms of blood relations,
blood brothers are closer than cousins). (2) Vertical structure characteristics. The more
children a node has, the more genes it inherits from its father; that is, the more similar it
is to its father. (3) Affiliation relationship characteristics. Users in the same community
often have both similarities and differences between them. Differences between nodes are
defined as the tensility of node and should be preserved. (4) General network structure
characteristics. In a general network, the more similar the nodes are, the closer they
are in the embedding space. (5) Node attribute characteristics. Node attributes provide
rich information regarding node characteristics, which should be taken advantage of for
preserving node characteristics in latent space.

We will detail the HGE model from three aspects. The first one is how to preserve the
hierarchical network structure, the second one is how to capture general network structure
properties, and the third one is how to acquire node attribute features.

4.1.1. Hierarchical Structure Properties

Similar to most embedding methods [23–25], we preserve the network structure
through the distance of the vertex in the hidden space. A community is a node set with
tensility, and in order to capture this tensility, we embed a community as a Gaussian
distribution. The greater the variance, the greater tensility of the community, that is,
the difference between nodes contained in the community will be greater. Therefore, we
use the KL distance to measure the similarity between communities. More specifically,
suppose Φv1 = N (μ1, Σ1), Φv2 = N (μ2, Σ2). Then, the distance between v1 and v2 can be
calculated in two ways, as follows:

δ(v1, v2) = DKL(N1‖N2) =
1
2
[tr(Σ−1

2 Σ1) (3)

+ (μ2 − μ1)
TΣ−1

2 (μ2 − μ1)− L − log
Σ2

Σ1
].

where tr(Σ−1
2 Σ1) is the trace of matrix Σ−1

2 Σ1, v1 and v2 are communities, and L is a
constant.

δ(v1, v2) = ‖μ1 − μ2‖2 (4)
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where v1 and v2 are nodes.
Unlike normal networks, hierarchical networks contain a large number of hierarchical

relationships. To capture this complex hierarchical relationship, we force the embedding of
a vertex to submit to two constraints, the horizontal and the vertical:

Horizontal constraint: Generally, community-based embedding methods [27,28] con-
sider that the nodes belonging to the same community are more similar than those belong-
ing to different communities. Thus, we intend to extend this constraint to hierarchical
networks and name such a constraint as the horizontal constraint. The horizontal constraint
can be defined as follows: For each layer l in clustering tree T, for all vertex-pairs vl

i , vl
j at

layer l with f a(vl
i) = f a(vl

j), for all vl
k at layer l with f a(vl

i) �= f a(vl
k) and f a(vl

j) �= f a(vl
k),

we have

δ(vl
i , vl

j) < δ(vl
i , vl

k) (5)

δ(vl
i , vl

j) < δ(vl
j, vl

k) (6)

Vertical constraint: From the biological point of view, a clustering tree can be likened
to a gene tree, in which the lower vertexes propagate from the upper vertexes. The more
children a vertex has, the more genes it inherits from its father, that is, the more similar it is
to its father. We use a personalized distance rank method to describe the vertical constraint:
for all vertices m,

δ(v1, vm) < δ(v2, vm) < · · · < δ(vn, vm) (7)

if n(v1) > n(v2) · · · > n(vn), where v1, v2, · · · , vn are children of vm, i.e., v1, v2, · · · , vn ∈
Ch(vm), and n(v1), n(v2), · · · , n(vn), respectively, denote the number of the children of
vertices v1, v2 · · · vn.

Affiliation constraint: In hierarchical networks, bottom-node clustering forms small
communities, while small-community clustering forms large communities. Therefore,
the parent node can be regarded as the feature set of all child nodes. Our HGE model
describes the formation process of hierarchical networks from the perspective of generation:
as the attribute set of the entire hierarchical network, the root node generates the child
node of the next layer according to the attribute classification and repeats this top-down
generation process to obtain the entire hierarchical network. In order to capture this
hierarchical affiliation (generation) relationship, in the HGE model, nodes are embedded as
Gaussian distributions. The mean value represents the position in the embedding space
and is generated by the distribution of the parent node, and the variance represents the
tensility of the node, which can also represent the differences among all child nodes. In
particular, the leaf node has no tensility; that is, the variance of the embedding is 0.

A community is a small group of users who have the same hobbies, occupations, social
relations and so on. Users in the same community often have similar attributes. Traditional
community-based embedding methods always focus on how to capture the similarity
between nodes in the same community [27], which ignores the differences between nodes.
The affiliation constraint can be defined as follows: for vertex vl

i and his father vertex vl−1
j ,

Φl
i = N (μi, Σi), Φl−1

j = N (μj, Σj), where the μi is sampled from the hyper-distribution

Φl−1
j , i.e., μi ∼ N (μj, Σj). In particular, when i = T (vertex i is at the bottom layer),

Φl
i = N (μi, 0).

4.1.2. General Network Structure Properties

In order to preserve the structure of the general network, we keep the embedding
of nodes to satisfy the first-order proximity and the second-order proximity. The first-
order proximity posits that, for each pair of nodes v1 and v2 linked by an edge(v1, v2),
the similarity between v1 and v2 should be greater than that of two nodes without an edge
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connection, and the second-order proximity keeps each node pair(v1, v2) that share the
same neighborhood similar.

4.1.3. Node Attribute Properties

Given a node i with an attribute a, the logistic model is used with a mean value of the
multidimensional Gaussian distribution of node i, i.e., μi, as input features to predict the
probability of node i associating with attribute a:

Ri,a = σ(WT
a μi + b), (8)

where Wa is the logistic weight factor, b is the bias and σ(.) is a logistic function defined as
σ(x) = (1 + e−x)−1.

4.2. Learning Procedure

In this subsection, we will introduce the learning procedure of the HGE model. Like
most unsupervised embedding models, we formulate network structure preservation as an
optimization problem. By optimizing the lower bound of the corresponding loss function,
the HGE model converges. Our loss function can be divided into three independent parts,
corresponding to the capture of the structure of the hierarchical network, general network
and node attributes.

4.2.1. Hierarchical Network Optimization

First, the similarity of the same community node is captured by optimizing the lower
bound of the loss function. Nodes in the same community can be closer in the hidden space,
while nodes in different communities will be pushed farther apart. This can be defined as
follows:

Lhor =
T

∑
l=3

∑
i,j,k∈Sl ,

f a(vl
i)= f a(vl

j) �= f a(vl
k)

δ(vl
i , vl

j)
2 + exp−δ(vl

i ,v
l
k), (9)

where Sl is the vertex set of layer l, and T is the depth of the clustering tree.
In order to capture the hierarchical vertical relationship, we use the following loss

function to achieve the personalized distance ranking in Equation (7), as shown below:

Lver =
T−1

∑
l=1

∑
i,j∈Sl ,

f a(vl
i)= f a(vl

j)

δ(vl
i , f a(vl

i))
2 − expδ(vl

j , f a(vl
i)), (10)

when n(vl
i) < n(vl

j).
To capture hierarchical affiliation, the HGE model assumes that the mean of the

node embedding is subordinated to the Gaussian distribution corresponding to its father
vertex. We use maximum likelihood to approximate the embedding of the father node.
For an arbitrary vertex i, suppose that vertices v1, v2, . . . , vm are children of vertex i with
Φv1 = N (μ1, Σ1), Φvi = N (μi, Σi), . . . , Φvm = N (μm, Σm). Then, the maximum likelihood
function can be defined as follows:

L(μ, Σ) =
m

∏
i=1

f (μi; μ, Σ)

=
m

∏
i=1

(2π)−
n
2 |Σ|− 1

2 exp(−1
2
(μi − μ)TΣ−1(μi − μ))

= (2π)−
mn
2 |Σ|− m

2 exp(−1
2

m

∑
i=1

(μi − μ)TΣ−1(μi − μ)) (11)
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where n is the dimension of μ.
The logarithmic likelihood function is:

ln L(μ, Σ) = ln(2π)−
mn
2 + ln|Σ|− m

2

+ ln exp(−1
2

m

∑
i=1

(μi − μ)TΣ−1(μi − μ))

= C − m
2

ln|Σ| − 1
2

m

∑
i=1

(μi − μ)TΣ−1(μi − μ)), (12)

where C is a constant.
We use the negative logarithmic maximum likelihood as the loss function to capture

hierarchical affiliation:

La f f = − ln L(μ, Σ) (13)

To sum up, the objective function to capture the hierarchical network structure can be
defined as follows:

Lhie = Lhor + Lver + λ1La f f , (14)

where λ1 is a trade-off parameter to balance the three parts of the loss function Lhierarchical .
We can optimize the parameters such that the loss Lhierarchical is minimized; thus, the three
constraints we proposed can be satisfied.

4.2.2. General Network Optimization

Following the LINE model [25], we construct our unsupervised training loss based on
the first-order and second-order proximities, which is an efficient unsupervised learning
objective for graph data and can capture both the direct and indirect similarities between
nodes in a general network.

L1 = − ∑
(vi ,vj)∈E

wi,j log p1(vi, vj) (15)

L2 = − ∑
(vi ,vj)∈E

wi,j log p2(vj|vi) (16)

Lns = L1 + L2 (17)

where the L1 and L2 are the first-order and second-order objectives, and Ons is the node
similarity objectives of our model. The probability p1 and p2 are computed as:

p1(vi, vj) =
1

1 + exp(−(μi)T · μj)
, (18)

p2(vj|vi) =
exp((μj)

T · μi)

∑V
k=1 exp((μk)T · μi)

, (19)

The L2 can further be optimized by the negative sampling.

4.2.3. Node Attribute Optimization

Incorporating Equation (8), the loss function of this part is defined as follows:

LA = DKL(R̂||R) = − ∑
i∈V

∑
Ai,a∈A

Ai,a log Ri,a, (20)
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where Ai,a ∈ A is a binary-valued attribute weight indicating that attribute a associates
with node i if Ai,a = 1, R̂ is the empirical distribution of the attribute weight with the
empirical distribution of node i associating with attribute a, i.e., R̂i,a, being simply set as
Ai,a. Note that all the attributes in this paper are binary-valued. Although R̂i,a is applicable
for not only binary-valued attributes but also real-valued attributes, we focus primarily on
binary-valued attributes in this paper.

To summarize, the final objective L f inal of our model can be written by the sum of the
Lhie, Lns and LA:

L f inal = Lhie + Lns + LA, (21)

in which the L f inal can be optimized by the Adam method.
To ensure that embedding can preserve both vertical and horizontal features after

training, the whole embedding process is executed from the bottom up. For each node vl
i at

layer l, the learned representation can be obtained after optimizing the horizontal loss of
layer l and the vertical loss at layer i + 1 with Adam.

4.3. HGE-GA Algorithm

It has been proposed by previous work on social network influence [20] that the
more equivalent the network structure of two nodes is, the more likely they make similar
judgments, even without an edge between them, because these two nodes connect to
other nodes more identically. It has also been revealed by previous studies on social
networks that the opinions and behaviors of nodes are affected by node attributes [20],
i.e., similar attributes of nodes cause similar behaviors. Therefore, the similarity of network
structures and node attributes are the two factors underlying the influence probability
between two nodes. We measure the similarity of node pairs and predict the influence
probability of node pairs with the embedding of nodes inferred from the proposed HGE
model. With the predicted influence probability of node pairs, we utilize a general greedy
strategy to compute the top-K influential nodes in the network. The proposed HGE-GA
algorithm is outlined in Algorithm 1, and will be detailed in this subsection.

Algorithm 1 HGE-GA Algorithm

Input: social network G = (V , E ,A), the embeddings of all nodes Φ, seed set size K.
Output: Seed node set S .

1: predicts influence probability of arbitrary pairwise nodes, pu,v;
2: for j = 1 . . . K do
3: u∗ ← arg maxu∗∈U σ(S ∪ u∗)− σ(S);
4: S = S ∪ u∗;
5: end for
6: return S ;

Traditional network representation methods embed nodes into a low-dimensional
vector space, and they always use the inner product to measure the similarities of node
pairs. Then the relationships between node pairs can be captured. However, this method
cannot capture the relationships among neighborhoods of nodes in some cases. As shown
in Figure 5, for a node v1 and its two neighborhoods u1 and u2, two relationships are
represented, as follows:

v1 · u1 = v1 · u2,

u1 · u2 = 0 (22)

As neighbors of node v1, nodes u1 and u2 are similar in attributes, but the method
based on the inner product cannot capture the relationship between u1 and u2 in the latent
space. Similarly, the relationship between node v1 and v2 can not be captured by using the
inner product.
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1

ν 1

ν 2

Figure 5. A case for which methods based on the inner product cannot capture the relationship
between nodes. As we can see, the relationship between u1 and u2 and the relationship between node
v1 and v2 can not be captured.

To avoid the case shown in Equation (26), we use the two-normal form, which satisfies
the critical triangle inequality. The norm of a vector can simply be understood as its length
or the corresponding distance between two points. The two-normal form is a common
way to measure distance between vectors. Using the two-normal form, we define the
relationship between node i and node j as follows:

g(Φi, Φj) =
∥∥Φi − Φj

∥∥
2 (23)

The above relationship with the two-normal form adequately captures the similarity of
two nodes. We regard the similarity of two nodes as the influence probability between two
nodes, since the similarity of the network structure and node attributes are the two factors
underlying the influence probability between two nodes. Thus, the influence probability
between node i and j, i.e., pi,j can be predicted as follows.

pi,j = g(Φi, Φj) =
∥∥Φi − Φj

∥∥
2 (24)

After obtaining the influence probability of arbitrary pairwise nodes, under a general
independent cascade (IC) diffusion model, we utilize a general greedy strategy to compute
the top-K influential nodes, as Algorithm 1 shows.

5. Experiment Setup

We quantitatively evaluate the performance of the proposed HGE model in down-
stream learning tasks (vertex classification, link prediction, network visualization) and
compare the proposed algorithm, HGE-GA, with the state-of-art influence maximiza-
tion algorithms using the metric of expected spread on several large-scale real-world
datasets. In this section, we will detail the experimental setup, including research ques-
tions (Section 5.1), datasets (Section 5.2), baselines (Section 5.3), evaluation metrics and
experimental settings (Section 5.4).

5.1. Research Questions

We aim at answering the following research questions to evaluate the performance of
the proposed HGE model and HGE-GA algorithm.
(RQ1) How does the proposed HGE model perform in terms of traditional graph-mining
tasks, e.g., vertex classification, link prediction and network visualization, compared with
baselines?
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(RQ2) Can the proposed influence maximization algorithm, HGE-GA, outperform the
state-of-art influence maximization algorithms with respect to the expected spread?
(RQ3) Does the two-normal form to measure distance contribute to the improvement of the
performance of the proposed algorithm?

5.2. Datasets

We use four datasets, the detailed properties of which are shown in Table 2.

• Cora [39]: The Cora dataset is a citation networks which is composed of a large number
of academic articles. Nodes are publications and edges are citation links;

• DBLP: The DBLP dataset consists of bibliography data in computer science. Each
paper may cite or be cited by other papers, which naturally forms a citation network;

• BlogCatalog: This dataset is a social relationship network which is crawled from the
BlogCatalog website. BlogCatalog is composed of bloggers and their social relation-
ships. The labels of nodes indicate the interests of the bloggers;

• Flickr: Flickr is a social network where users can share pictures and videos. In this
dataset, each node is a user, and each side is a friend relationship between users.
In addition, each node has a label that identifies the user’s interest group;

• Pubmed: Pubmed is a public search database that provides biomedical paper and
abstract search services. In this dataset, nodes are publications and edges are cita-
tion links;

Table 2. Statistics of the datasets used in the experiments.

#Nodes #Edges #Attributes #Labels

Cora 2708 5429 1433 7
DBLP 17,716 105,734 1639 4
BlogCatalog 5196 171,743 8189 6
Flickr 7575 239,738 12,047 9
Pubmed 19,717 44,338 500 3

5.3. Baselines

We evaluated the performance of the proposed HGE model compared with the follow-
ing baselines:

• GraphSAGE [40]: an attributed network embedding model which leverages node
attributes and generates embeddings by sampling and aggregating features from a
node’s local neighborhood;

• AANE [41]: a model which learns attributed network embedding efficiently by de-
composing complex modeling and optimization into sub-problems;

• M-NMF [27]: a single-layer community structure preserving baseline, which integrates
the community information through a matrix factorization;

• GNE [33]: a multi-layer community structure preserving baseline, which embeds
communities onto surfaces of spheres;

• SpaceNE [36]: a method which applies subspace to the hierarchical network em-
bedding model and preserves the proximity between pairwise nodes and between
communities;

Moreover, we evaluate the performance of the proposed HGE-GA algorithm compared
with the following baselines:

• PMIA [12]: This is a heuristic algorithm that defines the maximum influence in-
arborescence (MIIA) and leverages sequence submodularity to compute the influence
spread;

• IMM [9]: This utilizes a classical statistical tool, martingale, as well as RR sets (reverse
reachable sets), and can provide higher efficiency in practice;

• TSH-GA : Zhou et al. [20] propose a method to compute the influence probability of
node pairs, which considers social ties, general network structure, and node attributes
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as factors underlying influence but executes feature extraction of these three factors by
typically hand-crafted rules. TSH-GA is an influence maximization algorithm jointing
the method to compute the influence probability of node pairs proposed in [20] and
the general greedy algorithm;

• HGE-1N-GA: This is a variant of our HGE-GA which uses the one-normal form to
compute the similarity of two nodes.

5.4. Evaluation Metrics and Experimental Settings

Evaluation metrics for the proposed HGE model. We evaluate the performance of link
prediction of HGE in terms of the area under the curve (AUC) and average precision (AP).
We evaluate the performance of vertex classification in terms of the F1-measure (F1), which
is defined as F1 = 2·Precision·Recall

Precision+Recall .
Evaluation metric for the proposed HGE-GA algorithm. We evaluate the overall

performance of our HGE-GA algorithm by adopting the expected spread as the evaluation
metric. This is an extensively used metric for the influence maximization problem. The
expected spread is defined as the expected number of active nodes in the network, including
the newly activated nodes and the set of seed nodes that were initially active (seed node
set) after the influence spread is over (there are no more nodes being activated), given the
seed set size K, which is an integer.

Experimental settings. All embedding sizes are 64, and the number of training epochs
is 1000. The initial learning rate of Adam is set as 0.001. All results are obtained by
averaging 10 experiments. We implement all the baselines by the codes released by the
authors. The parameters of the baselines are tuned to be optimal or set according to the
corresponding literature. All algorithms are run under the IC diffusion model. Furthermore,
for the two algorithms PMIA and IMM, which do not have the step of predicting influence
probability of node pairs, we set the propagation probability from node u to node v,
i.e., p(u, v), as 1/i, where i denotes the number of incoming edges of node v. This method
of setting influence probability is extensively adopted in previous literature [12].

6. Results and Analysis

6.1. Performance of Vertex Classification of HGE Model

Vertex classification is one of the most important tasks to detect the performance of
embedding models. In this section, we perform vertex classification task to evaluate the
performance of the learned embeddings and compare with the baseline methods. We
choose three datasets (DBLP, BlogCatalog and Flickr) which have ground-truth classes.
To be specific, we first sample a small number of nodes as training data, and the rest is used
as test data. Similar to [23], we use one-vs-rest logistic regression for node classification,
and the training data size is 10%; the results are reported in Table 3. As can be seen
in Table 3, the proposed HGE model performs the best in the DBLP and BlogCatalog
datasets, and shows competitive performance on the Flickr dataset compared with other
network embedding baselines. This proves that the proposed model can better capture the
network structures.

Table 3. Node classification performance.

Method DBLP BlogCatalog Flickr

F1 F1 F1

AANE 0.702 0.515 0.517
GraphSAGE 0.731 0.625 0.649

M-NMF 0.524 0.604 0.587
GNE 0.741 0.623 0.631

SpaceNE 0.767 0.654 0.651
HGE 0.807 0.669 0.635
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6.2. Performance of Link Prediction of the HGE Model

Link prediction aims to predict the future interactions of nodes in a network. In this
subsection, we compare the proposed HGE model with the baselines on the link prediction
task. As in [26], we create a validation/test set that contains 5%/10% randomly selected
edges, respectively, and an equal number of randomly selected non-edges. To measure the
performance of the link prediction task, we report the area under the ROC curve (AUC)
and the average precision (AP) scores for each method.

Table 4 shows the link prediction performance of the proposed HGE model and the
baselines on the five datasets mentioned in Section 5.2. Our HGE model significantly
outperforms the baselines across all datasets, which demonstrates that modelling the
hierarchical network structure, general network structure as well as node attributes in
latent space is effective to learn better node embeddings.

Table 4. Link prediction performance with embedding size L = 64.

Method Cora DBLP BlogCatalog Flickr Pubmed

AUC AP AUC AP AUC AP AUC AP AUC AP

AANE 0.834 0.812 0.761 0.789 0.771 0.776 0.678 0.639 0.842 0.837
GraphSAGE 0.869 0.892 0.803 0.811 0.807 0.819 0.802 0.817 0.812 0.825

M-NMF 0.867 0.861 0.841 0.837 0.716 0.710 0.728 0.736 0.816 0.825
GNE 0.944 0.941 0.935 0.944 0.805 0.802 0.828 0.837 0.945 0.942

SpaceNE 0.927 0.914 0.927 0.933 0.815 0.827 0.908 0.917 0.936 0.958
HGE 0.979 0.974 0.986 0.989 0.836 0.845 0.929 0.913 0.977 0.972

6.3. Performance of Network Visualization of the HGE Model

Network visualization is also one of the most important means to detect the quality
of the learned embedding. Network visualization maps a network into two-dimensional
space. In this section, for better visualization, we visualize a sub-network which is selected
from the BlogCatalog dataset with 175 nodes and 150 edges.

From Figure 6, we find that our HGE model preserves the default hierarchical structure,
and distributes the nodes of each layer more uniformly in a fan-shaped area.

(a) HG ( )

( )( )( ) M-NMF

( ) GNE

Figure 6. The experimental results of network visualization in two-dimensional space.

6.4. Overall Performance of HGE-GA Algorithm

We adopt the metric of expected spread to evaluate the overall performance of all
influence maximization algorithms. To compare the proposed HGE-GA algorithm with the
baselines, we change the size of the seed node set K to be 1, 20, 30, 40, and 50. The experi-
mental results are reported in Figure 7a–e. It can be observed from Figure 7a–e that:

(1) The expected spread increases for all algorithms when enlarging the size of the seed
node set. The proposed HGE-GA algorithm outperforms all the baselines significantly for
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all seed sizes on the five datasets. For instance, on the Pubmed dataset, when the seed set
size K = 50, the value of the expected spread of the proposed HGE-GA algorithm is 1445,
compared with 721 for PMIA, 819 for IMM, 1052 for TSH-GA, and 1384 for HGE-1N-GA;

(2) On all five datasets, all of the attribute-related algorithms, TSH-GA, HGE-1N-GA
and HGE-GA, outperform the non-attribute-related algorithms, PMIA and IMM, in terms
of the performance of the expected spread. This is because the PMIA and IMM algorithms
do not have the step of predicting the influence probability of node pairs, with influence
probability being set uniformly. Moreover, this demonstrates that homophily is a cause
of similar behaviors and is useful for predicting future behaviors of users. Consequently,
the expected spread can be increased obviously when node attributes are taken into account
in modeling;

(3) HGE-1N-GA and HGE-GA outperform TSH-GA on the five datasets for the metric
of expected spread. The reason is that HGE-1N-GA and HGE-GA consider the general
network structure, hierarchical network structure as well as node attributes to learn users’
latent feature representations for predicting the influence probability of node pairs, but TSH-
GA uses hand-crafted rules to extract the features of users’ interactions, network structure
and node homophily, heavily depending on the domain expert’s knowledge and without
considering hierarchical network structure;

(4) The expected spread of HGE-GA is superior than HGE-1N-GA. The reason is
obvious: HGE-1N-GA uses the one-normal form to compute the similarity of two nodes,
while HGE-GA leverages the two-normal form to compute similarity, which can capture
the relationships between nodes better.

Figure 7. Expected spread and running time with different sizes of seed node set K.

The running times of all algorithms are reported in Figure 7f. This figure only presents
the experimental results on the DBLP dataset due to space constraints. Please note that
the DBLP dataset is the biggest dataset in the five datasets considering both the number
of nodes and the number of edges. Similar trends of performance of the algorithms are
found for the other four datasets. From Figure 7b,f, it can be observed that, for the DBLP
dataset, compared with the baseline algorithms, the proposed algorithm, HGE-GA, obtains
a better performance of the expected spread by spending more time. However, in general,
the proposed algorithm HGE-GA spends an acceptable running time to obtain 54.5%, 45.5%,
24.2% more expected spread, respectively, than the PMIA, IMM and TSH-GA algorithms
when the seed set size K is set to 50.
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7. Conclusions

In this paper, we study the problem of influence maximization in attributed social
networks, assuming the influence strength is directly unobservable. From the deep learning
perspective, we formulate the problem and propose a hierarchical generative embedding
model, HGE, to map nodes into latent space automatically, incorporating hierarchical
community structure, node attributes and general network structure into a unified deep
generative framework. Then, with the learned latent representation of each node, we
propose a HGE-GA algorithm to predict influence strength and find the seed node set.
The experimental results show that the proposed HGE model is able to learn representations
of nodes in attributed networks far more effectively than state-of-the-art models in terms
of several downstream applications, such as vertex classification, link prediction and
network visualization. It is also verified by the experimental results that the proposed
HGE-GA algorithm significantly outperforms the state-of-the-art algorithms for influence
maximization in attributed social networks.

As to future work, we intend to extend our HGE model to temporal attributed net-
works, which is more challenging because this kind of attributed network evolves over
time and vertexes need to be embedded dynamically.
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Abstract: Knowledge graph (KG) embedding has been widely studied to obtain low-dimensional
representations for entities and relations. It serves as the basis for downstream tasks, such as
KG completion and relation extraction. Traditional KG embedding techniques usually represent
entities/relations as vectors or tensors, mapping them in different semantic spaces and ignoring
the uncertainties. The affinities between entities and relations are ambiguous when they are not
embedded in the same latent spaces. In this paper, we incorporate a co-embedding model for KG
embedding, which learns low-dimensional representations of both entities and relations in the same
semantic space. To address the issue of neglecting uncertainty for KG components, we propose
a variational auto-encoder that represents KG components as Gaussian distributions. In addition,
compared with previous methods, our method has the advantages of high quality and interpretability.
Our experimental results on several benchmark datasets demonstrate our model’s superiority over
the state-of-the-art baselines.

Keywords: knowledge graph; embedding; variational auto-encoder

1. Introduction

Knowledge graph (KG) embeddings are low-dimensional representations for entites
and relations. This approach can benefit a range of downstream tasks, such as seman-
tic parsing [1,2], knowledge reasoning [3], and question answering [4,5]. Embeddings
are supposed to contain semantic information and should be able to deal with multiple
linguistic relations.

At present, research on knowledge graph embedding occurs mainly along three main
lines. One of these lines of research includes studies based on translation. TransE [6] was
the first model to introduce translation-based embedding, which represents entities and
relationships in the same space, and regards the relationship vector r as the translation
between the head entity vector h and the tail entity vector t, that is, h + r ≈ t. Since transE
cannot handle one-to-many, many-to-one, and many-to-many relationships (1-to-N, N-to-1,
N-to-N), TransH [7] is proposed to enable an entity to have different representations when
involved in various relations. In the TransR model [8], an entity is a complex of multiple
attributes, and different relationships focus on different attributes of the entity. Another
line of research includes studies based on semantic matching. RESCAL [9] obtains its
latent semantics by using a vector to represent each entity. Each relationship is represented
as a matrix that is used to model the interaction of potential relationships. It defines
the scoring function of the triple (h, r, t) as a bilinear function. DistMult [10] simplifies
RESCAL by restricting the relationship matrix to a diagonal matrix, which greatly improves
training efficiency. ComplEx [11] extends DistMult by introducing complex number domain
embedding to better model asymmetric relationships. In ComplEx, the embedding of
entities and relationships no longer exists in real space, but in complex space. The third line
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of research includes studies based on graph convolutional neural networks. ConvE [12]
employs a multi-layer convolutional network, which enables expressive feature learning,
while remaining highly parameter-efficient. Unlike previous works, which focused on
shallow, fast models that can scale to large knowledge graphs, ConvE uses 2D convolution
over embeddings and multiple layers of nonlinear features to model KGs. Subsequently,
the ConvKB [13] model has been used to explore the global relationships among same-
dimensional entries of the entity and relation embeddings. However, neither of them
models the interactions between various positions of entities and relations. R-GCN [14]
is another convolutional network designed for KBs, generalized from GCN [15] for uni-
relational data.

A typical KG embedding technique has two necessary elements: (i) an encoder to
generate KG embeddings and (ii) a scoring function to measure plausibility for each fact.
Entities are usually represented as vectors in low-dimensional space, whereas relations
are represented as an operation between entities, resulting in vectors for translational
operations [6] or matrices for linear transformation [16]. By doing so, the embedding of KG
components can be used to enhance the performance in many downstream tasks. Despite
the success those previous algorithms have achieved, we note that those methods have
the following defects(1) the n-dimensional representation of the KG component can be
regarded as a single point, neglecting the uncertainties for entities and relations; (2) they
represent entities as vectors located in low-dimensional space and relations as an operation
between entities [6,16], thus ignoring the affinities between entities and relations as they
are embedded in different semantic spaces.

To address the issues mentioned above, we propose a co-embedding model for KG,
learning low-dimensional representations for entities and relations in the same semantic
space so that the affinities between them can be effectively captured. Moreover, we intro-
duce a variational auto-encoder to infer the representations of KG components as Gaussian
distributions. The mean of the distributions indicatesthe position in semantic space, and
the variance of the distributions indicates the uncertainty for each KG components.

Compared with previous works that regard relations as an operation between enti-
ties, co-embedding of entities and relations in the same semantic space can improve the
performance of KG representation. For example, in Freebase, the relation ’Perfession’ is
used in (El Lissitzky, Perfession, Architect) and (Vlad. Gardin, Perfession, Screen Writer)
uses two distinct semantic information categories, corresponding to a scientist and a writer,
resulting in the finding that the resulting representations calculated using the two triples
are not the same. The co-embedding model embeds entities and relations at the same
semantic space, thus providing high-quality embeddings for both of them.

In summary, our contributions in this work are as follows:

1. We propose a co-embedding model for knowledge graphs, which learns low-dimensional
representations for KG components, including entities and relations in the same
semantic space, as a result of measuring their affinities effectively.

2. To address the issue of neglecting uncertainty, we introduce a variational auto-encoder
into our model, which represents KG components as Gaussian distributions. The
variational auto-encoder consists of two parts: (1) an inference model to encode KG
components into latent vector spaces, (2) a generative model to reconstruct random
variables from latent embeddings.

3. We conduct experiments on real-world datasets to evaluate the performance of our
model in link prediction. The experimental result demonstrates that our model out-
performs the state-of-the-art baselines.

2. Related Work

2.1. Knowledge Graph Representation

Knowledge representation is a technique that aims at learning low-dimensional repre-
sentations for KG entities and relations, consisting of two critical steps: (1) constructing a
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scoring function measuring plausibility for triples, and (2) embedding KG components in
continuous vector spaces.

TransE [6], the most representative method in KG embedding, represents entities
as vectors and relations as an operations between entities, i.e., h + r ≈ t. The scoring
function is defined as the distance between entities and relations in latent space, written as
fr(h, t) = − ‖ h+ r− t ‖1/2. However, TransE fails to deal with one-to-many, many-to-one,
and many-to-many relations [7,8]. For example, given a relation holding two facts (h, r, t1)
and (h, r, t2), we can infer t1 = t2 even though they are totally different entities. To
overcome the above defects, Z. Wang, J. Zhang, J. Feng, and Z. Chen proposed TransH [7]
to obtain distinct representations for entities when dealing with different relations, by
projecting entity representations onto a hyperplane, resulting in a normal vector. e.g.,
h⊥ = h − w�

r · h · wr, with wr as the normal vector.
TransE and its extensions represent both entities and relations as deterministic points

in vector spaces, ignoring the uncertainty for KG components. To resolve this problem,
some recent works have introduced uncertainty into KG embedding by representing
KG components as distributions, e.g., KG2E [17], proposed by Shizhu He, Kang Liu,
and Guoliang Ji and Jun Zhao, represents both entities and relations as distributions via
Gaussian embedding. Inspired by the previous works, we tackle the embedding problem
for KG by modeling both entities and relations as Gaussian distributions and representing
them in the semantic space to effectively measure the affinities between them.

2.2. Gaussian Embedding

Gaussian embedding [18] is a method to embed word types into the space of Gaussian
distributions, and learn the embeddings directly in that space, which represents words
not as low-dimensional vectors, but as densities over a latent space, directly representing
notions of uncertainty and enabling a richer geometry in the embedded space.

In word representation, embedding an object as a single point can not naturally express
uncertainty about the target concepts with which the input may be associated, and the
relationships between points are normally measured by distances required to obey the
triangle inequality. Point vectors are typically compared via their dot products, cosine-
distance, or Euclean distance, none of which provide asymmetric comparisons between
objects. To overcome the limitations in representing objects as points, Gaussian embedding
is proposed to learn representations in the space of Gaussian distributions, advocating for
density-based distributed embeddings.

In Gaussian embedding, we learn both means and variances from data, representing
them as densities over a latent space instead of low-dimensional vectors. As Gaussians
innately represent uncertainty and have a geometric interpretation as an inclusion between
families of ellipses, our method adopts KL divergence between Gaussian distributions to
measure the relationship between objects, which is straightforward to calculate.

Mapping to a density provides many advantages, including better capturing uncer-
tainty about a representation and its relationships, providing asymmetric comparisons
between objects, which is more effective than dot product or cosine similarity, and which
enables more expressive parameterization of decision boundaries.

2.3. Variational Auto-Encoder

Variational Auto-encoders [19], abbreviated as VAEs, are proposed to learn probability
distributions of data. A typical VAE model is made up of two computational neural
networks, an inference model to encode observations into latent variables and a generative
model to decode from latent deterministic representations to random variables. Given
a dataset X = {xi}N

i=1, the VAE regards data as random numbers generated via two
steps: (1) the latent variable zi is sampled from prior distribution pθ(zi), and (2) the
random variable xi is generated by the conditional distribution pθ(x|z), where θ is the prior
distribution parameter. Using the stochastic gradient variational Bayes (SGVB) estimator
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and reparameterization, we can learn approximate distributions for each data point via
the VAE.

In the VAE, we treat the encoder and decoder as a whole and train them at the same
time. The goal of training is to maximize the evidence lower bound of the likelihood func-
tion. Specifically, we first input random variables (randomly initialized node embedding)
to the encoder, obtain the output, and calculate the encoder error, then we use the output
of the encoder as the input of the decoder and calculate the reconstruction error of the
decoder. The two parts of the errors are added together as the overall error of the network
and propagated backward, thus realizing the simultaneous training of the encoder and
the decoder.

In recent years, the VAE algorithm and its variations have been studied and applied in
many downstream tasks such as semi-supervised classification [20], clustering [21,22], and
image generation [23].

3. Notations and Problems

In this section, we introduce the notation used and define our studied problem.

3.1. Notations

In this paper, we define scalars as normal alphabets (e.g., the output dimension of
latent variables: D), sets as typeface alphabets (e.g., the set of entities: E ), and vectors as
lowercase alphabets (e.g., the representation of head entities: h). A triple in KG is denoted
by τ, whereas it can be written as τ = (h, r, t). Our main notations are shown in Table 1.

Table 1. Main notations in our paper.

Symbol Description

G a knowledge graph
E set of entities
R set of relations
O set of triples

M = |E | size of entities
N = |R| size of relations
W = |O| size of triples

D dimension of latent variables
O ∈ RW×3 observed data for triples

ZE ∈ RM×D latent representation matrix for entities
ZR ∈ RN×D latent representation matrix for relations

Given a knowledge graph G , We represent the set of entities as E and the set of relations
as R, whereas G can be defined as G = (E ,R,O), where O is the set of triples denoted as
τ = (h, r, t), h, t ∈ E and r ∈ R.

3.2. Problem Definition

Using the notation mentioned above, we define the problem of co-embedding in KG
as follows.

Problem 1. The Co-embedding Model for KG Embedding. Given a knowledge graph G = (E ,R,O),
our goal is to learn the representations of KG components, including entities and relations, in the
same semantic space as that of a transformation Ξ.

G Ξ−→ ZE , ZR, (1)

where ZE ∈ RM×D and ZR ∈ RN×D, respectively. The i-th row vector in ZE , written as zEi , is
denoted as the resulting embedding of the i-th entity, and the j-th row vector in ZR written as zRj is
denoted as the resulting embedding of the j-th relation.
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4. Model

To address the issues we mentioned above, we propose the co-embedding model,
learning representations for both entities and relations as Gaussian distributions in the
same semantic space, as Gaussians innately represent uncertainty. To obtain high-quality
Gaussian embeddings for both entities and relations, we introduce VAE into our model,
learning the distributions from training triples in KG via a stochastic gradient variational
Bayes [19] estimator. We introduce the details in the following subsections.

4.1. Variational Lower Bound

For a KG represented as G = (E ,R,O), the embeddings of KG components can be
represented as ZE , ZR in latent spaces. To embed both entities and relations in the same
semantic space, we first define the log-likelihood of O, notated as the set of triples in KG, as:

log p(O) = log p(H, R, T)

= log p(H) + log p(R) + log p(T)
(2)

where O ∈ RW×3 and H, R, and T are components in O. The log-likelihood of KG
components, represented as log p(H), log p(R), and log p(T), can be derived using the
Bayesian algorithm:

log p(H) = log
D

∑
i=0

{
pθ(H | ZE

i ) · pθ(Z
E
i )
}

= log
D

∑
i=0

{
pθ(Z

E
i | H) · pθ(H)

}
= log

D

∑
i=0

{
pθ(Z

E
i | H) · pθ(Z

E
i , H) · qφ(ZE

i | H)

qφ(ZE
i | H) · pθ(Z

E
i | H)

}

= qφ(Z
E | H) · log

qφ(ZE | H)

pθ(ZE | H)

+ qφ(Z
E | H) · log

pθ(Z
E, H)

qφ(ZE | H)

= DKL(qφ(Z
E | H) ‖ pθ(Z

E | H)) + L(θ, φ; E)
≥ L(θ, φ; H)

(3)

The conditional probability qφ(ZE | H) is the variational posterior to approximate the
true posterior p(ZE | H), where the parameter φ is estimated in the inference model. In
Equation (3), the second RHS term L(θ, φ; E) is called the evidence lower bound (ELBO) on
the marginal likelihood of the variables E :

L(θ, φ; H) = Eqφ(ZE |H)

[
− log qφ(Z

E | H) + log pθ(H, ZE )
]

= −DKL(qφ(Z
E | H) ‖ pθ(Z

E ))

+Eqφ(ZE |H)

[
log pθ(H | ZE )

] (4)

where the DKL term denotes the Kullback–Leibler divergence, a measure of how one
probability distribution is different from a second. Respectively, we have:

679



Appl. Sci. 2022, 12, 715

L(θ, φ; R) = −DKL(qφ(Z
R | R) ‖ pθ(Z

R))

+Eqφ(ZR |R)

[
log pθ(R | ZR)

]
L(θ, φ; T) = −DKL(qφ(Z

E | T) ‖ pθ(Z
E))

+Eqφ(ZE |T)
[
log pθ(T | ZE)

] (5)

Substituting Equations (3)–(5) into Equation (2), the variational lower bound of logO
can be represented with the parameters θ and φ:

log p(O) = log pθ(H) + log pθ(R) + log pθ(T)

≥ L(θ, φ; H) + L(θ, φ;R) + L(θ, φ; T)

= L(θ, φ; O)

(6)

where
L(θ, φ; O) =− DKL(qφ(Z

E | H) ‖ pθ(Z
E ))

+Eqφ(ZE |H)

[
log pθ(H | ZE )

]
− DKL(qφ(Z

R | R) ‖ pθ(Z
R))

+Eqφ(ZR|R)

[
log pθ(R | ZR)

]
− DKL(qφ(Z

E | T) ‖ pθ(Z
E ))

+Eqφ(ZE |T)
[
log pθ(T | ZE )

]
(7)

In Equation (7), the conditional probabilities q(ZE | H), q(ZR | R) and q(ZE | T) can
be regarded as probabilistic encoders to embed real data into latent space. Similarly, the con-
ditional probabilities p(H | ZE ), p(R | ZR) and p(T | ZE ) can be regarded as probabilistic
decoders, producing corresponding data from latent vector representations. To approxi-
mate the real distributions of KG components, we assume that the prior distributions and
the variational posterior distributions are Gaussian distributions.

p(Zi
E ) = N (0, I)

p(Zj
R) = N (0, I)

qφ(Zh
E | H) = N (E, σ2

E · I)

qφ(Zr
R | R) = N (R, σ2

R · I)

qφ(Zt
E | T) = N (E, σ2

E · I)

(8)

Assuming priors and variational posteriors to be Gaussian distributions, the DKL
terms in Equation (7) can be formed computationally. In addition, we adopt the Monte
Carlo gradient estimator to deal with the Eqφ terms:

L(θ, φ; O) =
1
L

L

∑
i=0

W

∑
(hi ,ri ,ti)∈O

(log pθ(ti | ZE
ti
)

+ log pθ(hi | ZE
hi
) + log pθ(ri | ZR

ri
))

+
1
M

M

∑
ei∈E

D

∑
d=0

(μ2
ei ,d + σ2

ei ,d − log σ2
ei ,d − 1)

+
1
N

N

∑
ri∈R

D

∑
d=0

(μ2
ri ,d + σ2

ri ,d − log σ2
ri ,d − 1),

(9)
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where D is the output dimension of latent variables, L is the sampling number in the Monte
Carlo estimator, and M, N, and W are the number of entities, relations, and triples. We also
adopt the reparameterization trick mentioned in the VAE section to generate samples.

zEhi
= hi + σ2

hi
� ε, with hi ∈ H, ε ∼ N (0, I)

zRri
= ri + σ2

ri
� ε, with ri ∈ R, ε ∼ N (0, I)

zEti
= ti + σ2

ti
� ε, with ti ∈ T, ε ∼ N (0, I)

(10)

4.2. Learning

To optimize the parameters in Equation (9), we apply two neural networks in VAE:
(1) An inference model fφ with parameter φ to map observation data into latent vector
spaces. (2) A generative model gθ with parameter θ to produce random variables from
latent embeddings.

Inference model fφ. To encode KG components to Gaussian embeddings, we apply
two fully-connected layers to map the entities and relations to the means and log-variances
in their resulting Gaussian embeddings. One of the benefits of encoding log-variance
instead of variance is that it enables us to avoiding using activation functions, since the
variance σ2 must be a positive number.

(hi, log σ2
hi
) = fφ1(hi)

(ri, log σ2
ri
) = fφ2(ri)

(ti, log σ2
ti
) = fφ3(ti)

(11)

where φ = [φ1, φ2, φ3] and μ and log σ2 are the means and log-variances of learned Gaussian
embeddings of KG components:

qφ(z
E
hi

| hi) = N (hi, σ2
hi
· I)

qφ(z
R
ri
| ri) = N (ri, σ2

ri
· I)

qφ(z
E
ti
| ti) = N (ti, σ2

ti
· I)

(12)

We apply the reparameterization trick mentioned in Equation (10) to obtain the deter-
ministic variables ZE

h , ZR
r , and ZE

t , transformed from latent random variables, with a noise
term ε from N (0, I), which benefit from gradient propagation between the inference model
and the generative model. We compute the loss of the inference model by measuring the
KL divergence between those conditional probabilities and N (0, I).

Generative model gθ . The generative model decodes from deterministic values to
random variables. For example, given resulting embeddings ZE and ZR from a KG
represented as G = (E ,R,O), our goal is to reconstruct random variables for each triple
(hi, ri, ti) ∈ O, where:

pθ(hi, ri, ti | zEhi
, zRri

, zEti
) = gθ(z

E
hi

, zRri
, zEti

) (13)

The random distributions of those components can be defined as:

pθ1(hi | zEhi
) = N (zhi

, σ2
zhi

· I)

pθ2(ri | zRri
) = N (zri

, σ2
zhi

· I)

pθ3(ti | zEti
) = N (zti

, σ2
zhi

· I)

(14)

where θ = [θ1, θ2, θ3], and the reconstruction loss of the generative model can be measured
based on the binary cross entropy (BCE) between the generative variables and the real data.
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5. Experiment

5.1. Data Sets

In this work, we conducted experiments and evaluated the related methods using
real-world databases of KG, commonly used in previous works: WordNet [24] and Free-
base [25]. WordNet is an extensive lexical database of English. Nouns, verbs, adjectives,
and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a
distinct concept, and with interlinked sysnets employing conceptual-semantic and lexical
relations. Freebase is a large collaborative knowledge base consisting of data compiled
mainly by its community members. It is an online collection of structured data harvested
from many sources, including individual wiki contributions. The most representative
dataset in WorldNet is WN18, and FB15k in Freebase.

In those datasets, WN18 contains 18 relations and 40,943 entities, whereas FB15k
contains 1345 relations and 14,951 entities. However, both of them suffer from test leakage
through inverse relations: a large number of test triples can be obtained simply by inverting
triples in the training set. Therefore, we introduced FB15k-237, a subset of FB15k, in which
reversible relations were removed. Similarly, WN18 was corrected by WN18RR. Therefore,
we selected WN18RR and FB15k-237 as datasets in our experiments.

5.2. Experimental Setup

We compared our models with serveral KG embedding algorithms in our experiments:

1. TransE [6]. TransE was the first model to introduce translation-based embedding,
which interprets relations as the translations operating on entities.

2. DistMult [10]. DistMult is based on the bilinear model, where each relation is rep-
resented by a diagonal rather than a full matrix. DistMult enjoys the same scalable
properties as TransE and it achieves superior performance over TransE.

3. ComplEx [11]. ComplEx extends DistMult by introducing complex-valued embed-
dings so as to better model asymmetric relations. It has been proven that HolE is
subsumed by ComplEx as a special case.

4. ConvE [12]. ConvE is a multi-layer convolutional network model for link prediction
[24] of KGs, and it reports state-of-the-art results for several established datasets.
Unlike previous work which has focused on shallow, fast models that can scale to
large knowledge graphs, ConvE uses 2D convolution over embeddings and multiple
layers of nonlinear features to model KGs.

5. ConvKB [13]. ConvKB applies the global relationships among same-dimensional en-
tries of the entity and relation embeddings, so that ConvKB generalizes the transitional
characteristics in the transition-based embedding models.

6. R-GCN [14]. R-GCN applies graph convolutional networks to relational knowledge
bases, creating a new encoder for link prediction and entity classification tasks.

The experimental results from those baselines were obtained from the codes provided
by the authors. In our method, we made configurations by selecting a learning rate α
among [0.01, 0.05, 0.10] and an output dimension D among [100, 200, 400]. For WN18RR,
the configuration was as follows. The learning rate α was 0.01 and the output dimension D
was 400, with 3000 training iterations using the Adam [27] optimizer. For FB15k-237, the
configuration was as fallows. The learning rate α was 0.10, and the output dimension D
was 200, with 1000 training iterations using the SGD optimizer. We trained the model until
it converged.

5.3. Link Prediction

Link prediction, aiming at predicting the missing KG components for incomplete
triples, is a typical task in KG embedding. e.g., predicting the head entity for a given triple
(∗, r, t) or predicting the tail entity for a given triple (h, r, ∗). Following the protocols in [6],
we evaluated the performance of our model. Given a test triple, we replaced the head or
tail with all available entities and ranked them by measuring the scoring function defined
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in the methods section. Based on the ranking lists, we report the proportion of correct
entities in the top N ranked entities, where N = 1, 3, and 10, denoted as Hits@1, Hits@3,
and Hits@10.

MRR =
1

|M|
M

∑
i=0

1
rank(ei)

MR =
1

|M|
M

∑
i=0

rank(ei)

(15)

We also record the average reciprocal rank of correct entities (denoted as MRR) and
the average rank of correct entities (denoted as MR) for link prediction, where the func-
tion rank(ei) transforms to the rank of ei. A good embedding algorithm should obtain a
relatively low mean rank and a relatively high mean reciprocal rank.

5.4. Results and Analysis

In this subsection, we report the ability of our model to represent uncertainty, and the
experimental results regarding link prediction.

Qualitative Analysis Before evaluating the performance in specific task compared
with other methods, we need to discuss the ability of our model to represent uncertainty in
KG embedding.

In our method, we measure the uncertainty of KG components by the variances
of their embeddings, where an entity/relation with a higher level of uncertainty has a
large covariance. We discuss the relations in FB15k-237 with ‘/education’ as the domain,
providing a (log) determinant and trace of their covariances as shown in Table 2, from
which we have made the following observations:

1. Our method has the ability to measure the uncertainty in KG embedding. The covari-
ance of Gaussian embedding can effectively describe the uncertainties by calculating
the determinants and traces of the covariances.

2. The relations with more semantic information (the number of associated heads and
tails, type of relation) have larger uncertainty. For example, the ’major_field_of_study’
relation has the largest uncertainty, and the ’educational_insitution’ relation has the
smallest uncertainty in those relations.

Table 2. The relations with /education/ as the domain and their determinants and traces of the
corresponding covariances, sorted by descending order of traces.

Relation #Head #Tail Type log (det) Trace

major_field_of_study 225 77 m-n −338.8 38.1
student 183 292 1-n −340.6 34.8

institution 22 222 m-n −376.2 32.8
colors 85 19 m-n −400.9 26.9

fraternities_sororities 20 3 m-1 −406.9 24.9
campuses 13 13 1-1 −411.9 21.3
currency 5 3 m-1 −423.4 19.8

educational_institution 13 13 1-1 −430.6 18.7

6. Results

We compared our method with the state-of-the-art baselines mentioned above, includ-
ing TransE, DisMult, ComplEx, ConvKB, and R-GCN. First of all, the codes in the baseline
we used are provided by other authors. All models were fully trained, and the data sets
used were public. Our models, in both the Hits@3 and Hits@10 metrics for this dataset,
achieved superior results, which proves that the embedding obtained using our proposed
method is of high quality. The experimental results regarding link prediction are shown in
Table 3. We observe that:
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1. The experimental results on FB15k-237 and WN18RR indicate that our method can
learn high-quality representations in KG.

2. Our method outperformed other baselines in terms of the Hits@3 and Hits@10 metrics,
but its performance was poor in terms of mean reciprocal rank and the Hits@1 metric
on WN18RR. This may be because WN18RR contains a large number of entities and
several relations, so most methods can only judge the correctness of a triple but cannot
rank it in the top position.

3. On FB15k-237, our method outperformed other baselines in terms of the Hits@3,
Hits@10, and mean reciprocal rank metrics, and came second in terms of the Hits@1
and mean rank metrics. The improvements observed in FB15k-237 were greater than
those in WN18RR, showing that FB15k-237 contains more relations and thus the
uncertainties in its components are larger than those in WN18RR, which indicates
that our method can learn valid representations with uncertainties in KG.

Table 3. Experimental results for WN18RR and FB15k-237 test sets. Hits@N values are presented as
percentages. The best score is in bold and the second best score is underlined.

WN18 FB15k-237

MR MRR
HITS@N

MR MRR
HITS@N

1 3 10 1 3 10

TransE (Bordes et al., 2013) [6] 2300 0.243 4.27 44.1 53.2 323 0.279 19.8 37.6 44.1
DistMult (Yang et al., 2015) [10] 7000 0.444 41.2 47 50.4 512 0.281 19.9 30.1 44.6

ComplEx (Trouillon et al., 2016) [11] 7882 0.449 40.9 46.9 53 546 0.278 19.4 29.7 45
ConvE (Dettmers et al., 2018) [12] 4464 0.456 41.9 47 53.1 245 0.312 22.5 34.1 49.7
ConvKB (Nguyen et al., 2018) [13] 1295 0.265 5.82 44.5 55.8 216 0.289 19.8 32.4 47.1

R-GCN (Schlichtkrull et al., 2018) [14] 6700 0.123 8 13.7 20.7 600 0.164 10 18.1 30
Our work 1963 0.236 11.4 48.0 57.6 240 0.518 21.8 42.0 52.1

7. Conclusions

In this paper, we propose the co-embedding model to learn the latent representations
of both entities and relations in the same semantic space, embedding them as Gaussian
distributions. To obtain high-quality embeddings, we introduced the variational auto-
encoder, an auto-encoder model consisting of a probabilistic encoder and a probabilistic
decoder, into our model. One of the assets of the technique is that the affinities between
entities and relations can be measured effectively since they are embedded in the same
semantic space, and we also explain the transformation from observation values to latent
representations via the two models using the variational auto-encoder. In our experiments,
we evaluated the performance of the co-embedding model and other baselines on several
benchmark datasets. From these experimental results, we can conclude that our method
can learn high-quality representations of KG components.

In the future, we plan to extend our method by assuming the priors with other distributions
and optimizing the variational lower bounds in an effective way.

Author Contributions: Conceptualization, H.H.; data curation, L.X. and Q.D.; formal analysis,
L.X.; methodology, L.X. and H.H.; project administration, H.H.; software, Q.D.; supervision, H.H.;
validation, H.H.; visualization, L.X. and Q.D.; writing—original draft, L.X.; writing—review and
editing, H.H.; funding acquisition, H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Wenzhou Science and Technology Planning Project #2021R0082.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

684



Appl. Sci. 2022, 12, 715

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, of
in the decision to publish the results.

References

1. Berant, J.; Chou, A.; Frostig, R.; Liang, P. Semantic Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 1533–1544.

2. Heck, L.; Hakkani-Tür, D.; Tur, G. Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing. In Proceedings
of the International Speech Communication Association, Lyon, France, 25–29 August 2013.

3. Wang, W.Y.; Mazaitis, K.; Lao, N.; Mitchell, T.; Cohen, W.W. Efficient Inference and Learning in a Large Knowledge Base: Reason-
ing with Extracted Information using a Locally Groundable First-Order Probabilistic Logic. arXiv 2014, arXiv:cs.AI/1404.3301.

4. Bordes, A.; Weston, J.; Usunier, N. Open Question Answering with Weakly Supervised Embedding Models. arXiv 2014,
arXiv:cs.CL/1404.4326.

5. Bordes, A.; Chopra, S.; Weston, J. Question Answering with Subgraph Embeddings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 615–620. [CrossRef]

6. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems 26; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; pp. 2787–2795.

7. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Quebec, QC, Canada, 27–31 July 2014; Volume 28.

8. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2181–2187.

9. Nickel, M.; Tresp, V.; Kriegel, H.P. A three-way model for collective learning on multi-relational data. In Proceedings of the
ICML, Bellevue, WA, USA, 28 June–2 July 2011.

10. Yang, B.; tau Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
arXiv 2014, arXiv:cs.CL/1412.6575.

11. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction. arXiv 2016,
arXiv:cs.AI/1606.06357.

12. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. arXiv 2017,
arXiv:cs.LG/1707.01476.

13. Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D. A Novel Embedding Model for Knowledge Base Completion Based on
Convolutional Neural Network. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 2, pp. 327–333. [CrossRef]

14. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional
Networks. arXiv 2017, arXiv:stat.ML/1703.06103.

15. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
16. Paccanaro, A.; Hinton, G.E. Learning distributed representations of concepts using linear relational embedding. IEEE Trans.

Knowl. Data Eng. 2001, 13, 232–244. [CrossRef]
17. He, S.; Liu, K.; Ji, G.; Zhao, J. Learning to Represent Knowledge Graphs with Gaussian Embedding. In Proceedings of

the 24th ACM International on Conference on Information and Knowledge Management, CIKM’15, New York, NY, USA,
19–30 October 2015; pp. 623–632. [CrossRef]

18. Vilnis, L.; McCallum, A. Word Representations via Gaussian Embedding. arXiv 2014, arXiv:cs.CL/1412.6623.
19. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:stat.ML/1312.6114.
20. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-Supervised Learning with Deep Generative Models. arXiv 2014,

arXiv:cs.LG/1406.5298.
21. Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; Zhou, H. Variational Deep Embedding: An Unsupervised and Generative Approach to

Clustering. arXiv 2016, arXiv:cs.CV/1611.05148.
22. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2015, arXiv:cs.LG/1511.05644.
23. Dosovitskiy, A.; Brox, T. Generating Images with Perceptual Similarity Metrics based on Deep Networks. arXiv 2016,

arXiv:cs.LG/1602.02644.
24. Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
25. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A Collaboratively Created Graph Database for Structuring

Human Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD’08,
Vancouver, BC, Canada, 9–12 June 2008; pp. 1247–1250. [CrossRef]

685





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

MDPI Books Editorial Office
E-mail: books@mdpi.com
www.mdpi.com/books





ISBN 978-3-0365-5084-8 

MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	A9R30ybo4_v1ru2r_8fs.pdf
	Artificial Intelligence (AI) Applied in Civil Engineering.pdf
	A9R30ybo4_v1ru2r_8fs

