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Preface to ”Mining Safety and Sustainability I”

The mining industry provides energy and raw material guarantees for global economic

development and social progress. Especially in recent years, with the increasing improvement

of infrastructure facilities and people’s living standards, the demand for mineral resources

has gradually increased. However, with the increasing depth of mining, the difficulty of

mining also necessitates higher requirements for mining equipment and safety. Detecting

the mineral exploration environment, improving the safety of mining operations, developing

intelligent tunneling equipment, and ensuring the coordination of the human–machine–environment

relationship in the mining production system have become necessary conditions for promoting the

transformation of mining methods and achieving the goal of ”double carbon”. It is urgent to explore

safe, efficient, and sustainable mining methods of mineral resources. In the past, scholars around

the world have carried out a lot of research work on safe and sustainable mining, but because

mining operations are resource-consuming and involve productive production behaviors, applying

the principles of safety and sustainability to mining itself is challenging.

It is of great significance to reduce the disaster risk of mining accidents, enhance the safety

of mining operations, and improve the efficiency and sustainability of the development of mineral

resources. Therefore, it is necessary to extract useful knowledge from the process of mineral

resource development and resource integration by means of experimental techniques, simulation

methods, data mining, theoretical innovation, technological development, and other methods. It

will further provide theoretical support and technical support for guiding the normative, green, safe,

and sustainable development of the mining industry. This Reprint aims to present new research and

recent advances in the safety and sustainability of mining.

Last but not least, thanks to all the authors for the excellent and meaningful contributions to

this topic. Additionally, more experts and scholars are welcome to present your new ideas in safety

mining, sustainable mining, mineral resource management, technology of intelligent mining, research

and development of intelligent mining equipment, sustainable development, new mining methods,

etc.

Longjun Dong , Yanlin Zhao, and Wenxue Chen

Editors
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1. Introduction

The mining industry provides energy and raw material for global economic develop-
ment and social progress. Especially in recent years, with the increasing improvement in
infrastructure facilities and people’s living standards, the demand for mineral resources has
shown gradual growth; however, the ensuing issues of mining safety and sustainable de-
velopment are causing increasingly widespread concern and worries. For a more long-term
development, a large amount of scientific research has been invested on these issues in the
context of long-term development. By making full use of model building [1–4], experimen-
tal studies [5–8], field practice [9–12], theoretical innovation [13–16], data analysis [17–19],
and technology development [20–23], the possibilities of safety and sustainability in the
development of mineral resources have been explored. Useful knowledge is also obtained
by reviewing existing studies and integrating resources [24–27], aiming to identify the
future direction of the mining industry. This Special Issue aims to focus on the most recent
theoretical, experimental, and technological advances in mining safety and sustainability.
A brief summary of the articles published in this Special Issue and related recent works are
presented in this editorial.

2. Guarantee for Mining Production Safety

Tailings dam failure is a great threat to life and property, and the diagnosis of the health
of tailings dams is a complex nonlinear problem. Dong et al. [28] proposed a comprehensive,
quantitative method for the diagnosis of tailings dam health based on dynamic weights and
constructed a diagnosis index system for tailings dams with slope stability, deformation
stability and, seepage stability as project layers. The proposed method was successfully
applied to an actual engineering project. This study provides a new method for evaluating
the safety of tailings dams.

Ma et al. [29] conducted a model experimental study of the surface settlement charac-
teristics caused by coal seam mining using a special three-dimensional experimental setup.
The surface settlement characteristics during mining were also studied in combination with
field measurements. The results showed that the subsidence caused by mining disturbances
below the coal seam was 79. These findings fully reflect that the three-dimensional test
device provides a new experimental research tool that can be used to further study the
surface subsidence characteristics and control caused by coal mining.

Combined with the movement principle of rock and soil layers in the respective
study area and considering the influence of slope stability and additional mining slip
on mining subsidence, Zhao et al. [30] proposed a probabilistic integral model-based
surface subsidence prediction method for-coal seam mining in loess donga and verified its
feasibility by field cases. A new, effective, and valuable tool is provided for the prediction
of damage caused by underground coal seam mining.

Sustainability 2022, 14, 6570. https://doi.org/10.3390/su14116570 https://www.mdpi.com/journal/sustainability1
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Considering the difficulty of effectively identifying signals with low signal-to-noise
ratios (SNRs) using microseismic monitoring, Fan et al. [31] proposed a wavelet scattering
decomposition (WSD) transform and a support vector machine (SVM) algorithm. The
artificial intelligence recognition model developed based on SVM and WSD not only
provides a fast method with high classification accuracy, but is also suitable for online
feature extraction of microseismic monitoring signals to achieve improved efficiency and
accuracy of microseismic signal processing used to monitor rock instability and seismicity.

To better understand the mining characteristics during mining of shallow buried
thick coal seams (SBTCS) under thick aeolian sand (TAS), Liu et al. [32] explored the
ground damage characteristics and fracture development during mining under special
geological conditions of TAS through theoretical derivation, numerical simulation, and
field monitoring. The results revealed the essence of the development and the distribution
of surface cracks caused by mining SBTCS, and depth-to-thickness ratio (DTR) was shown
to be 13.43.

Considering that chemical corrosion and axial compression affect rocks' internal mi-
crostructure and mineral composition, which in turn affects their physical and mechanical
properties, Xue et al. [33] used a combined dynamic and static load test apparatus to con-
duct cyclic impact tests on white sandstone immersed in chemical solution and studied the
dynamic strength characteristics of white sandstone under the coupling effect of axial load
and chemical corrosion. The results of the study provide a theoretical basis for safe and ef-
fective construction management of blasting projects under complex geological conditions.

To study the fracture patterns during rock fracture, Li et al. [34] investigated the
acoustic emission characteristics and crack types of red sandstone during fracture by
Brazilian indirect tensile tests (BITT), direct shear tests (DST), and uniaxial compression
tests (UCT). They also discussed a relatively objective dividing line for tensile and shear
crack classification and applied the dividing line to the analysis of the fracture source
evolution and the damage precursor. The results of the study will provide a theoretical
basis for rock stability judgment and prediction during mining.

Liu et al. [35] conducted a series of conventional triaxial unloading tests to analyze
the mechanical properties, strain energy evolution characteristics, and failure modes of
saturated rock masses, and their findings are of great significance for strength calculation,
safety assessment, and disaster prevention and control.

3. Achievement of Sustainable Development

Considering the serious ecological pollution problems caused by acid mine drainage
(AMD), Wu et al. [36] investigated the phytoremediation techniques and mechanisms of
AMD through hydroponic experiments with six wetland plants. The results showed that
the dominant plants for treating AMD were Juncus effusus, Iris wilsonii, and Phragmites
australis; some of the pollutants in AMD were absorbed by plants and rest were removed
by hydrolysis and sedimentation processes. These findings provide a theoretical reference
for phytoremediation techniques for AMD.

Reinforced TSFs are beneficial for saving land resources, reducing environmental
damage caused by mineral extraction, and achieving sustainable production in the mineral
extraction process. Ding et al. [37] investigated the effects of freeze–thaw cycles on the
mechanical properties and microstructural changes of cementitious material-reinforced
tailings by performing unconfined compressive strength (UCS) tests, scanning electron
microscope imagery, X-ray diffraction tests, and thermogravimetric tests. The results
demonstrated that freeze–thaw cycles eventually reduce the UCS of all tested samples,
and the higher the number of freeze–thaw cycles, the greater the damage to the surface
morphology and matrix of the tailings.

Wang et al. [38] worked on the integrated management of coalbed methane and
hydrogen sulfide at the working face in the coal seam distribution of abandoned oil wells
in coal-mine resource areas. The study was conducted through parameter testing, gas
composition analysis, source distribution site investigation, and determination of the

2
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influence range of gas and hydrogen sulfide in the coal seam within the influence area
of the abandoned wells. The results of this work provide a theoretical basis for further
understanding of gas- and hydrogen-sulfide-enrichment patterns at the mining face and
the design of treatment measures within the influence of abandoned oil wells.

To address the low productivity, inconsistent management, administrative organiza-
tion, high raw material waste, and negative social and environmental impacts faced by
the Mexican marble industry, Alarcón-Ruíz et al. [39] systematically reviewed strategies
and solutions used to address these problems between 2014 and 2021. They collected
these surveys as well as industry experiences to propose a triple-helix intervention ap-
proach. The results of the study provide guidance for the sustainable development of the
marble industry.

4. Optimization Design of Technology and Equipment

Yi et al. [40] investigated the effects of time, track shoe number, and grounding
pressure, as well as other influencing factors, on the traction force of deep-sea crawler
miner through a direct shear-creep experiment and the direct shear rheological constitutive
model. They proved its effectiveness through the traction force experiment of a single-track
shoe. The research results provide a scientific basis for the design and optimization of the
deep-sea tracked miner.

Under the background that the cemented paste backfill (CPB) technology has been
applied to solve the problems of stope instability and surface subsidence for so many years,
Chen et al. [41] worked on the factors affecting the strength of CPB. They considered the
coupled effects of curing conditions, which have received little attention, and used uniaxial
compressive strength (UCS) as an important evaluation index of CPB. They successively
performed mathematical modeling and laboratory verification of concrete strength. The
findings suggest that the relationship between the UCS of CPB and curing stress develops
the function of quadratic polynomial to develop with one variable, while the UCS of the
CPB indicates a power function as the curing temperature increases. The conclusions
obtained in this study have important implications for the safe design of CPB.

Rivera-Lavado et al. [42] proposed the use of RF split-ring resonators (SRRs) as down-
hole passive sensors for real-time crude oil monitoring through the estimation of the
dielectric constant. The use of a low-cost SRR passive sensor for the real-time permittivity
characterization of hydrocarbon fluids will contribute to solving the problem of performing
difficult monitoring under harsh conditions such as high temperature and pressure.

5. Trends in Intelligent Mines

Considering the influence of the process parameters of fully mechanized caving on the
recovery rate and gangue content of top coal, Liang et al. [43] used numerical simulation
and a BP neural network to achieve the optimization of top-coal caving parameters for the
actual situation of a working face. They demonstrated the effectiveness of this method
using an in-lab similarity simulation test of the particle material. The findings of this paper
effectively improve the decision-making efficiency of fully mechanized caving-process
parameters and provide a basis for achieving intelligent, fully mechanized cave mining.

To solve the airflow reconstruction problem, Liu et al. [44] proposed a new algorithm
of an independent cut set depending on the underlying graph structure and evaluated its
effectiveness in practical applications. The results indicated that fewer than 30% of tunnels
needed to have wind speed sensors set up to reconstruct the well-posed airflow of all the
tunnels (>200 in some mines). The findings of this work provide some theoretical support
for the implementation of intelligent ventilation.

Wang et al. [45] combined artificial intelligence techniques to analyze and model exper-
imental data from circulating pipelines, using random forest machine learning algorithms
to predict the pressure loss of slurry transport. The results of the study showed an accuracy
of 0.9747, which met the design accuracy requirement. This finding will help to realize the
optimal arrangement of deep-well-filling slurry-delivery pipelines.

3
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To remedy the deficiencies of the previous studies, Wu et al. [46] proposed a neural
network model consisting of one deep neural network (DNN) and four long short-term
memory (LSTM) networks based on single-sensor and multi-sensor prediction results. They
solved the amplitude-concentrated, expanded region-identification problem. The high-
precision model for the automatic identification of amplitude-concentration-expansion
zone provides the basis for the automatic identification of borehole depth.

In order to explore the explosion mechanism of coal and the factors that cause coal
explosions, Khan et al. [47] used explosivity tests at different particle sizes and dust
concentrations to construct a random forest algorithm, which was used to model the
relationship between inputs (coal dust particle size, coal concentration, and gross calorific
value (GCV)). To further understand the impact of each feature causing explosibility, the
random forest AI model was further analyzed for sensitivity analysis using SHAP (Shapley
Additive exPlanations). This work provides a reference for control factors to prevent coal
dust explosions and improve safety conditions.

We sincerely thank all the above-mentioned authors for the excellent and meaningful
contributions to this topic. Additionally, we hope that more relevant research will be
conducted in the future to handle the issues about safety and sustainability in the min-
ing industry. It will be helpful for providing further theoretical support and technical
support in order to guide the normative, green, safe, and sustainable development of the
mining industry.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The method of fully mechanized top-coal caving mining has become the main method of
mining thick-seam coal. The process parameters of fully mechanized caving will affect the recovery
rate and gangue content of top coal. Through numerical simulation software, the top-coal recovery
rate and gangue content, under different fully mechanized caving process parameters, were simulated,
and the influence law of different fully mechanized caving process parameters on top-coal recovery
rate and gangue content was obtained. A decision model for top-coal caving process parameters was
established with a BP neural network, and the optimal top-coal caving parameters were obtained for
the actual situation of a working face. On this basis, a in-lab similarity simulation test of the particle
material was carried out. The results show that the top-coal recovery rate and gangue content were
86.56% and 3.45%, respectively, and the coal caving effect was good. A BP neural network was used
to study the decisions optimizing fully mechanized caving process parameters, which effectively
improved the decision-making efficiency thereabout and provided a basis for realizing intelligent,
fully mechanized caving mining.

Keywords: top-coal caving mining; process parameters; decision model; BP neural network; similarity
simulation test

1. Introduction

The ‘World Energy Statistics Review’, released in 2020, shows that although global
coal consumption has decreased, coal still accounts for about 27% of primary energy, which
is still the main source of energy [1]. Especially for China, with its characteristic ‘rich coal,
lack of oil and less gas’, the status of coal is unshakable. According to statistics, thick-seam
coal accounts for 44% of the proven workable coal reserves in China, and nearly half of the
coal consumption in China is provided by thick-seam coal mining [2,3].

Although the loads of hydraulic supports should be monitored in the process of
fully mechanized top-coal caving mining to ensure continued safe production [4], this
method has become the main strategy for thick-seam coal mining because of its low energy
consumption, high output, strong geological adaptability and economic benefits [5–7].
It has gradually become the main method of thick-seam coal mining in China, Vietnam,
Australia, Turkey and other countries [8–14]. Improving the recovery rates for top coal
and reducing the gangue content of top coal are two key points in the study of fully
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mechanized caving mining techniques. Zhang NB et al. studied the influence of the arch
formed by top coal and gangue on top-coal recovery rates and put forward the method
of eliminating these arches to improve recovery rates [15]. Yasitli, NE and Unver B used
the FLAC 3D software to simulate the top-coal caving process and granular, fine-sand
materials in simulations thereof, and proposed that presplitting blasting technology could
improve top-coal recovery rates [9,16]. Ghosh AK et al. believed that compressive strength,
advance abutment pressure and top-coal seam thickness are important factors affecting
top-coal recovery rates and proposed using the combination of blasting and vibration to
destroy coal arches and thereby improve recovery rates [17], while Klishin VI and Klishin
SV explored the relationship between the support opening sequence and the subsequent
top-coal recovery rate [18,19].

However, there are few quantitative studies on the process parameters of fully mech-
anized caving mining. In recent years, thanks to rapid developments in science and
technology, advanced artificial intelligence and machine learning algorithms have been
increasingly applied to coal production [20–22]. Fan YJ et al. used a BP neural network to
establish a safety evaluation model for coal mines and put forth an effective safety evalua-
tion method for them [23]. Meng XZ et al. proposed an early warning method for coal mine
safety, based on a BP neural network, that could effectively extract the characteristics of a
coal mine’s fault state and issue early warnings thereabout for coal mine safety [24]. The
application of artificial neural networks provides a new scientific method for conducting
research in the field of coal mining.

Therefore, this paper took the No. 12309 working face of the Wangjialing mine
in Yuncheng City, Shanxi Province, China as its engineering background, adopting the
research methods of numerical simulation, similarity simulation and BP neural networks
to establish an optimization decision model of the process parameters for fully mechanized
caving mining of thick-seam coal. So as to realize optimized decisions concerning the
parameters for the fully mechanized caving mining technique in thick-seam coal mining,
we obtained the optimal process parameters for such mining. Finally, we used them to
improve mining and caving efficiency and the efficacy of coal caving.

2. Engineering Background

At the No. 12309 working face of the Wangjialing coal mine, which has adopted the
fully mechanized, low-caving method of coal mining, its advancing length and width are
1320 m and 260 m, respectively. The buried depth of the main coal seam is about 400 m,
its average thickness is 6.1 m, its dip angle is 2◦ and the hardness coefficient of its top coal
is 1.8 (f < 2). There, the interlayer thickness is 0.2 m, the mining height is 3.1 m and the
top-coal caving height is 3 m. Thus, the ratio of mining height to top-coal caving height
is 1.03:1. The coal caving step is 0.865 m for one cutting with one caving. In the normal
operation cycle, after each coal cutting, the tail beam is recovered and the coal opening is
opened for coal caving operations. When the immediate top rock is discharged from the
coal caving opening, the opening is closed, to stop coal caving. The first pressure step is
35 m, and the natural caving method is used to control the roof of the goaf. The properties
of the roof and floor rock in the working face of the coal seam are shown in Figure 1, and
the layout of the working face is shown in Figure 2.

The top coal falls from the working face in a relatively timely manner, generally, just
after the top beam of the support. At the Wangjialing mine, the size of the lumpiness of top
coal, mostly, is approximately 40 cm × 30 cm × 30 cm. Occasionally there are larger pieces,
but they can all be released smoothly. Field observations of the top-coal caving process are
shown in Figure 3.
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Figure 1. Comprehensive drilling histogram.

 

Figure 2. Layout of the roadway to and the fully mechanized top-coal caving face. (A-A) Maximum
top control distance, (B-B) minimum top control distance.
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(a) (b) 

(c) 

Figure 3. Top-coal caving condition of working face. (a) Broken top coal between supports; (b) coal
caving at the top of the working face; (c) top-coal caving behind the conveyor at the front and rear of
coal caving.

3. Methodology

3.1. Numerical Simulation Design

The two core indicators of the fully mechanized caving process are top-coal recovery
rates and gangue content. Reasonable fully mechanized mining process parameters can
effectively improve the top-coal recovery rates and reduce the gangue content. In order to
study the influence of different fully mechanized caving process parameters on top-coal
recovery rates and gangue content, the numerical simulation software PFC was used to
conduct numerical simulation experiment schemes of different fully mechanized caving
process parameters, with varying coal caving methods and procedures. The numerical
simulation experiments of different fully mechanized top-coal caving process parameters
were carried out by using the orthogonal experimental design method. By combining the
principle of probability and statistics with computer technology, not only can the number of
tests and calculation workload can be reduced, but the distribution of various influencing
factors of fully mechanized top-coal caving mining is also more uniform within the test
range, so as to achieve ideal results.
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This numerical simulation study mainly focused on the top-coal releasing law without
considering its crushing process. The top coal and immediate roof were assumed to be in
a loose state. Therefore, both top coal and immediate roof adopted a linear constitutive
model for ‘Ball–Ball’ and ‘Ball–Facet’ connections in numerical simulations. The elastic
model was adopted for the bottom coal and main roof, and the linear contact model was
adopted for each part and its internal contact model. The buried depth of the main coal
seam was 400 m and the height of the numerical model was 18.84 m. Therefore, in the
process of initial balance simulation, the weight of the 381.16 m-thick rock stratum should
be applied to the upper surface of the model, and the average unit weight of the rock
stratum was 25 KN/m3, such that a boundary stress of σz = 9.529 MP was applied to the
upper boundary of the model. Rigid walls slightly larger than the model were set up at the
front, rear, left, right and bottom of the model, and its velocity was fixed at 0 m/s to server
as a displacement boundary. The contact parameters are shown in Table 1, and the unit
parameters are shown in Table 2.

Table 1. Contact parameters.

Contact Type Constitutive Model Firc dp_Nratio dp_Sratio kn ks

Immediate roof

Liner

0.5 0.3 0.3 4 × 108 4 × 108

Top coal 0.4 0.3 0.3 3 × 108 3 × 108

Ball–Ball 0.4 0.3 0.3 3 × 108 3 × 108

Ball–Facets 0.3 0.3 0.3 5 × 108 5 × 108

Table 2. Unit parameters.

Rock Stratum Unit Type
Elastic

Modulus/GPa
Bulk

Density/kg·m−3
Poisson’s

Ratio
Local

Damping

Main roof Zone 15.0 2660 0.34 /
Immediate roof Ball 13.6 2660 / 0.7

Top coal Ball 2.3 1400 / 0.7
Bottom coal Zone 2.3 1400 0.26 /

The numerical simulation schemes of different fully mechanized caving process pa-
rameters with varying coal caving methods have considered various factors, such as coal
seam thickness, mining and caving ratio, number of coal caving rounds, coal caving se-
quence, number of coal caving openings and top-coal particle size. Each factor was divided
into three levels, as shown in Table 3. According to the orthogonal test method, a total of
18 models were established, and the numerical simulation schemes are shown in Table 4.
The numbers 1, 2 and 3 in Table 4 refer to the corresponding factor level in Table 3.

The factors considered in the numerical simulation schemes of different fully mecha-
nized top-coal caving process parameters with varying coal caving procedures include coal
seam thickness, mining and caving ratio, coal caving procedure and top-coal particle size.
Each factor was divided into three levels, as shown in Table 5. According to the orthogonal
test method, a total of 9 models were established, and the numerical simulation schemes
are shown in Table 6. The numbers 1, 2 and 3 in Table 6 correspond to the corresponding
factor level in Table 5.

Table 3. Factor levels for the coal caving method.

Level
Coal Seam

Thickness (m)
Caving Ratio

Number of Coal
Caving Rounds

Coal Caving
Sequence

Number of Coal Discharge
Openings at the Same Time

Top-Coal Particle
Size (m)

1 6 1:1 Single round Sequential Single opening 0.15–0.3
2 8 1:1.5 Two rounds Group interval Two openings 0.25–0.4
3 10 1:2 Three rounds Interval return Three openings 0.35–0.5
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Table 4. Orthogonal simulation schemes for coal caving method.

Scheme No
Coal Seam
Thickness

Caving Ratio
Number of Coal
Caving Rounds

Coal Caving
Sequence

Number of Coal
Discharge Openings

Top-Coal Particle
Size

1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 2 1 1 2 2 3
5 2 2 2 3 3 1
6 2 3 3 1 1 2
7 3 1 2 1 3 2
8 3 2 3 2 1 3
9 3 3 1 3 2 1

10 1 1 3 3 2 2
11 1 2 1 1 3 3
12 1 3 2 2 1 1
13 2 1 2 3 1 3
14 2 2 3 1 2 1
15 2 3 1 2 3 2
16 3 1 3 2 3 1
17 3 2 1 3 1 2
18 3 3 2 1 2 3

Table 5. Factor levels for the coal caving procedure.

Level
Coal Seam

Thickness (m)
Caving Ratio

Coal Caving
Procedure

Top-Coal Particle
Size (m)

1 6 1:1 One cutting with
one caving 0.15–0.3

2 8 1:1.5 Two cutting with
one caving 0.25–0.4

3 10 1:2 Three cutting with
one caving 0.35–0.5

Table 6. Orthogonal simulation schemes for coal caving procedure.

Scheme No
Coal Seam
Thickness

Caving Ratio
Coal Caving

Procedure
Top-Coal Particle

Size

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

3.2. Numerical Simulation Calculation
3.2.1. BP Neural Network

The artificial neural network is a nonlinear and adaptive information processing
system composed of a large number of standardized neurons, which is capable of simulating
a biological neural network, and it has been deeply studied and widely used all over the
world [25]. At the same time, due to the different connections of artificial neurons, a
variety of artificial neural network models have been developed. Among them, the BP
neural network is the most widely used model in artificial neural networks, which is a
multi-layer feedforward neural network trained according to the algorithm of error back
propagation [26]. The BP neural network is composed of an input layer, hidden layer and
output layer and based on Sigmod function for operation and application, and has a strong
nonlinear mapping ability and flexible network results [27]. Therefore, we can establish
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a nonlinear evaluation model by using this technology to better solve the randomness
of weight definition, and ensure the accuracy and scientificity of evaluation results and
activities [28,29].

The neural network program was developed using Matlab platform; the program flow
is as follows:

• Loading initialized training sample parameters, input array P and output array A, and
randomly selecting 80% of the samples as the training group (P1, A1) and 20% of the
samples as the test group (P2, A2).

• Defining a series of neuron parameters such as the number of neural network layers, the
number of neurons per layer, the maximum number of trainings (net.trainParam.epochs)
and the training target error (net.trainParam.goal).

• Using the feedforwardnet function in Matlab to establish the neuron model, and using
the train function to train the input and output array of the samples, such that a
corresponding network is obtained.

• Using the Sim function to calculate the error between the input data P2 of the verifica-
tion group and the output A2 of the verification group in the network. According to the
error condition, returning to the second step to adjust the neural network parameters
and continuing to train until the error requirements are met.

• Taking the target parameters into the Sim function, calculating the output of the neural
network net, the predicted results of the target parameters are obtained.

3.2.2. Cross-Validation

Cross-validation can obtain as much effective information as possible from limited
learning data, so as to obtain more appropriate two-layer weights. Additionally, this
method learns samples from multiple directions, which can effectively avoid falling into
local minima. Dong L et al. [30] established a microseismic event and blasting event
identification model based on a convolutional neural network by using cross-validation.
The collected microseismic and blasting event waveforms were composed of a training set,
test set and verification set, respectively. Compared with other machine learning methods,
this method has high identification accuracy. In addition, Dong L et al. [31] proposed the
LM-CAG-CDR method and recommended 16 combined methods to evaluate the level of
clean and safe production of phosphate rock, which improved the development level of the
clean and safe mining of phosphate rock.

In order to verify the effectiveness of the BP neural network, the parameter design
and simulation results of 18 orthogonal experimental models described above were used as
samples to train the BP neural network and obtain a neural network model (14 models as
training set and 4 models as test set). The objective laws hidden beneath the orthogonal
test samples can be discovered, the coal caving rates and gangue content of all mining
conditions and fully mechanized top-coal caving process combinations can be predicted
without numerical simulation (a total of 729 combinations were used as the verification
set), and the effectiveness of the neural network program can be verified with reference to
the analysis of the numerical simulation results.

3.2.3. Optimized Decision

Based on the function and characteristics of the BP neural network, an optimized
decision-making model for top-coal caving mining process parameters based on the BP
neural network was established. The model could make decisions on top-coal caving
mining process parameters according to the actual mining conditions of the coal mine, and
obtain the optimal mining process parameters.

According to the actual situation of the mine, the input vector P was the natural factors
affecting the mining and recovery rates of top coal, mainly including the average thickness
of coal seam X1 (m), firmness coefficient of top coal X2, development degree of interlayer
joint fracture X3, buried depth X4 (m), lithology and thickness of coal seam roof X5, and
dip angle of coal seam X6 (◦). The output process parameters of top-coal caving mainly
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included coal caving sequence Y1, mining to caving ratio Y2, and coal caving step Y3 (m).
In order to make the decisions on top-coal caving process parameters more universal,
the conceptual description in input and output was numerically processed based on the
geological and process parameters of working faces in multiple coal mines. The processing
results are shown in Table 7.

Table 7. Learning samples.

Sample Parameter Concept Description
Neural Network

Assignment Range

Interlayer and
joint fracture

development degree

Interlayer thickness > 0.5 m,
Joint fissure less developed 0–0.33

Interlayer thickness 0.2–0.5 m
Joint fracture development general 0.34–0.66

Interlayer thickness < 0.2 m
Joint fracture development 0.67–1.0

Roof lithology
and thickness

Pressure step < 25 m
Immediate roof thickness > 10 m 0.75–1.0

Pressure step 25–50 m
Immediate roof thickness 5–10 m 0.5–0.75

Pressure step 25–50 m
Immediate roof thickness < 5 m 0.25–0.49

pressure step > 50 m
Immediate roof thickness < 3 m 0–0.24

Coal caving sequence

Multi-round sequential coal caving 0.76–1.0

Interval caving coal among
multi-cutting 0.51–0.75

Single-round sequential coal caving 0.26–0.50

Single round interval coal caving 0–0.25

A 6-layer neural network was established, with 10 neurons, 6 input parameters and
3 output parameters in each layer, as shown in Figure 4. The three output parameters were
the optimized process parameters.

 

Figure 4. Parameters prediction neural network diagram.

3.3. Similarity Simulation Test

According to the geological conditions of the No. 12309 working face of the Wangjial-
ing coal mine and the determined optimal fully mechanized top-coal caving process pa-
rameters, the similarity simulation test system for top-coal caving was designed and tested
in the laboratory. The model frame was 2000 mm in length, 200 mm in width and 2500 mm
in height, and the simulated material was composed of sand, lime and Bali stone. The
height of the laid simulation material was 130.5 cm, and the geometric similarity ratio of
the simulation experiment was C = 30/318 = 1: 10.6. According to the field observation,
the top coal is easy to release, and there are few cases of large coal blocking. Therefore,
the top coal, immediate roof and main roof in the experiment were laid into loose bodies,
the coal seam was simulated by black particles, and the immediate roof was simulated
by white particles. The similar material simulation test bench is shown in Figure 5, and
the particle arrangement position is shown in Figure 6. The top coal was divided into
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upper, middle and lower layers by using marker particles. A 10 MPa uniformly distributed
load was applied on the top layer of the model to simulate the load on the actual rock
stratum (calculated according to the buried depth of 400 m). The opening and closing of
the coal discharge opening were simulated by pulling out and pushing in the separator
plate interposed between the supports, and the coal discharging was started and stopped
under the action of the load.

Figure 5. Similar material simulation test bench.

Figure 6. Diagram of particle position arrangement.

4. Results and Discussion

4.1. Numerical Simulation Experiment
4.1.1. Coal Caving Mode

The coal caving method mainly included three methods: sequential coal caving, group-
ing interval and interval return coal caving. The description with respect to Figures 7–9
is as follows: the coal–gangue boundary refers to the boundary between the top coal
and the immediate roof; that is, the green particles represent the immediate roof and
the blue particles represent the top coal. Residual coal refers to the part of coal left after
top-coal caving.

(1) Sequential coal caving

In order to study the flow characteristics of top coal under different simulation schemes,
the representative scheme of the six numerical simulation schemes was selected for analysis,
namely Scheme 1 in Table 4. The simulation process is shown in Figure 7.
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Figure 7. Simulation scheme 1 top-coal flow process diagram. (a) The 1# support coal caving end;
(b) 7# support coal caving end; (c) 10# support coal caving end; (d) all supports finished.

The geological conditions and process parameters for simulation scheme 1 are as
follows: the thickness of the coal seam is 6 m, the mining to caving ratio is 1:1 (mining
height is 3 m, caving height is 3 m), single-round sequential coal caving, the number of
caving openings is 1, and the particle size of top coal is 0.15~0.3 m. After the upper coal
above 1# support is released, there is an obvious funnel-shaped caving space above the
support (Figure 7a). When the support top coal was released in sequence, the boundary
of the coal gangue dropped gently. After discharging all of the coal, the top-coal recovery
rate and gangue content were 90.72% and 2.72%, respectively. Therefore, a single round of
sequential caving could achieve a better caving effect for a short top-coal caving height.

(2) Group interval coal caving

Six representative numerical simulation schemes with coal caving sequence 2 were
selected for analysis, namely Scheme 8 in Table 4. The simulation process is shown in Figure 8.

Figure 8. Simulation scheme 8 top-coal flow process diagram. (a) The 1# support coal caving end;
(b) 10# support coal caving end; (c) end of the first round of coal caving; (d) 1# support end of second
coal caving; (e) 10# support end of second coal caving; (f) end of the second round of coal caving.
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Geological conditions and process parameters of simulation program 8: coal seam
thickness 10 m, mining to caving ratio 1:1.5 (mining height 4 m, caving height 6 m), multi-
round interval caving, the number of caving openings is 1, and the particle size of top coal
is 0.35~0.5 m. Due to the use of multiple rounds of coal caving, the boundary between coal
and gangue in the first round of coal caving decreased evenly (Figure 8a–c), preventing
gangue from mixing into adjacent coal caving openings in advance. When the remaining
top coal above the support continued to cave out, the flow characteristics of top coal were
similar to those of simulation scheme 1 (caving height 3 m) due to the thin thickness of the
remaining top coal. After all the supports were placed, there was less top coal missing in
the goaf (Figure 8d–f). The top-coal recovery rate and gangue content were 91.88% and
4.05%, respectively. The coal caving effect was good. Thus, when the top-coal caving height
is large (6 m), multiple rounds of coal caving should be adopted to ensure the uniform
descent of the coal-gangue boundary and to prevent the gangue above the coal caving
support from entering the adjacent coal caving opening too early.

(3) Interval return coal caving

Six representative numerical simulation schemes with coal caving sequence 3 were
selected for analysis, namely scheme 13 in Table 4. The simulation process is shown in Figure 9.

Figure 9. Simulation scheme 8 top-coal flow process diagram. (a) The 2# support end of first coal
caving; (b) end of the first round of coal caving; (c) 2# support end of second coal caving; (d) end of
the second round of coal caving.

The geological conditions and process parameters of simulation scheme 13 are as
follows: coal seam thickness is 8 m, mining to caving ratio is 1:1 (mining height is 4 m,
caving height is 4 m), the number of caving openings is 1, and the top-coal particle size
is 0.35~0.5 m. Due to using group interval caving, the boundary line of coal and gangue
descends unevenly after the first round of caving (Figure 9a,b), and the remaining top coal
thickness is obviously different. There is more top coal left in the goaf after the second round
of coal caving with all supports (Figure 9c,d). The top-coal caving rate and gangue content
were 85.77% and 2.72%, respectively. In addition, compared with scheme 5 with the same
coal thickness, the caving ratio (1:1) of scheme 13 was greater than that of scheme 5 (1:1.5),
and the top-coal recovery rate of scheme 13 was better than that of scheme 5. Consequently,
choosing a smaller caving ratio is conducive to top-coal caving under the condition of the
same coal thickness.

The top-coal recovery rate and gangue content of different simulation schemes with
varying coal caving methods were counted, as shown in Figure 10. Through the analysis
of the 18 coal caving schemes, the top-coal recovery rate ranges from 73.43% to 95.41%,
and the gangue content ranges from 1.09 to 10.21%. The difference for top-coal recovery
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rate and gangue content is obvious when adopting different coal caving sequences and
different process parameters. Therefore, in order to obtain the ideal top-coal caving effect,
the top-coal caving sequence and process under specific geological production conditions
need to be analyzed. In addition, if schemes 7 and 11 are ignored, there is a positive
correlation between the top-coal recovery rate and the gangue content. That is, with the
increase in gangue content, the top coal release rate will also increase accordingly. On the
other hand, as the gangue content decreases, the top-coal recovery rate will also decrease.
Hence, properly increasing the gangue content could improve the top-coal recovery rate,
and the critical point for gangue content needs to be determined according to the specific
coal caving process parameters and actual production situation.

Figure 10. Top-coal recovery rate and gangue content curves.

4.1.2. Coal Caving Procedure

According to Tables 3 and 4, different simulation schemes with varying coal caving
procedures were simulated. The top-coal recovery rate and gangue content of different
simulation schemes were counted, as shown in Figure 11. The top-coal recovery rate ranged
from 71.52% to 92.59% and gangue content ranged from 1.79% to 8.08%, respectively. There
are great differences in top-coal recovery rate and gangue content when adopting different
coal caving procedures and different process parameters. Consequently, in view of specific
geological production conditions, in order to obtain an ideal coal caving effect, the coal
caving step and coal caving procedure should be considered in detail. In addition, if scheme
4 is neglected, there is also a positive correlation between the top-coal recovery rate and
the gangue content. That is, with the increase in gangue content, the top-coal recovery rate
will also increase accordingly. On the other hand, as the gangue content decreases, the
top-coal recovery rate will also decrease. When the coal caving step was taken as a single
variable, it was found that with the increase in coal caving step, the top-coal recovery rate
decreased and the gangue content increased; as the coal caving step decreased, the top-coal
recovery rate increased and the gangue content decreased. Therefore, selecting a small
caving step and appropriately increasing the gangue content could improve the top-coal
recovery rate, and the critical point for gangue content needs to be determined according
to specific caving process parameters and actual production conditions.
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Figure 11. Top-coal recovery rate and gangue content curves.

4.2. Cross-Validation Results

All 729 possible model parameter combinations were input into the trained neural
network model, and the optimized coal caving process parameters under different coal
caving modes were obtained after ranking according to the comprehensive evaluation
indexes, as shown in Table 8. The effectiveness of the BP neural network was verified.

Table 8. Optimized top-coal caving process parameters under different top-coal caving modes.

Parameters
Coal Seam
Thickness

Caving
Ratio

Number of
Coal Caving

Rounds

Coal Caving
Order

Number of Coal
Caving Openings

Top-Coal
Particle Size

Top-Coal
Recovery Rate

Gangue
Content

Input parameters 1 1 0.5 0.5 0.5 0.25 92.48% 2.16%

Actual parameters 10 m 1:1 Three rounds Three ports Interval return
coal caving 0.15–0.3 m / /

4.3. Optimized Process Parameters

According to the occurrence conditions of the coal seam in the Wangjialing coal mine,
the main parameters of the Wangjialing coal mine were brought into the decision-making
model (Figure 4) to obtain the decision-making process parameters thereof, as shown
in Table 9. The optimized technological parameters for fully mechanized mining in the
Wangjialing coal mine were single-round sequential coal caving, mining and caving ratio
1.09:1, and coal caving step distance 0.78 m.

Table 9. Determination of fully mechanized caving process parameters.

Coal Seam Occurrence Conditions (X) Optimized Process Parameter (Y)

Coal seam thickness (X1) 6.1 m Coal caving sequence Single-round sequential
Top-coal firmness coefficient (X2) 1.8

Interlayer and joint fissure (X3) 0.4 Caving ratio 1.09
Depth of embedment (X4) 400 m

Roof lithology and thickness (X5) 0.4 Coal caving step 0.78 m
Top-coal dip angle (X6) 2◦

4.4. Coal Caving Effectiveness

Figure 12 shows the experimental process of single-round sequential coal caving.
Additionally, Table 10 shows the top-coal recovery rate and gangue content for each coal
caving opening in single-round sequential coal caving.
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 12. Single-round sequential coal caving process. (a) Initial state; (b) No. 3 coal caving end;
(c) No. 5~7 coal caving end; (d) end of coal caving; (e) weighing the released coal.

Table 10. Single-round sequential coal caving results.

Coal Caving Opening Number 3 4 5 6 7 8 9 10 11 12 13 Sum

Coal quantity (kg) 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 31.02
Coal output (kg) 2.83 2.45 2.43 2.44 2.37 2.38 2.32 2.45 2.32 2.44 2.42 26.85

Gangue output (kg) 0.11 0.2 0.21 0.05 0.12 0.1 0.03 0.02 0.03 0.08 0.12 1.07
Top-coal recovery rate (%) 100.35 86.88 86.17 86.52 84.04 84.40 82.27 86.88 82.27 86.52 85.82 86.56

Gangue content (%) 3.90 7.09 7.45 1.77 4.98 4.26 1.06 0.71 1.06 2.84 4.26 3.45

Analysis of Figure 12 and Table 9 shows that the similarity simulation results of single-
round sequential caving in the No. 12309 working face of the Wangjialing coal mine are
consistent with the results of numerical simulations. When the top-coal caving height was
small, the single-round sequential coal caving could achieve a better coal caving effect. When
the first support (3# support) carried out coal caving, there was an obvious funnel-shaped
coal caving space above the support (Figure 12b). When the top coal of the caving support
was caved out sequentially, the coal gangue boundary descended gently; only a small part
of top coal was left after caving all of the coal (Figure 12d). The top-coal recovery rate was
86.56% and the gangue content was 3.45%, with good caving effect. Thus, compared with the
analysis and decision making of process parameters through industrial experiments, which
takes a lot of time and consumes a certain amount of manpower and material resources,
using the BP neural network to optimize the decision-making process of fully mechanized
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caving process parameters can effectively improve the decision-making efficiency and
provide a basis for the realization of intelligent, fully mechanized caving mining.

5. Conclusions

In this study, the effects of different fully mechanized top-coal caving process parame-
ters with different caving methods and different caving procedures on top-coal recovery
rates and gangue content were studied. According to the occurrence conditions and actual
production situation of the Wangjialing coal mine, the decision-making model for fully
mechanized top-coal caving mining process parameters was established by using the BP
neural network, and the optimized fully mechanized top-coal caving process parameters
of Wangjialing coal mine were obtained. The in-lab similarity simulation experiment was
carried out to verify the coal caving effect of the optimized fully mechanized top-coal
caving process parameters. The following conclusions were drawn from the whole process:

(1) For different coal caving process parameters, the top-coal recovery rates and gangue
content are obviously differen, the top-coal recovery rate could be improved by
appropriately increasing the gangue content, and the critical point for the gangue
content should be determined according to the specific coal caving process parameters
and the actual production situation.

(2) In top-coal caving mining, the selection of a small caving step distance was conducive
to top-coal caving.When the top-coal caving height was small, a better coal caving
effect could be achieved by single-round sequential coal caving.When the top-coal
caving height was large (6 m), using multiple rounds of coal caving was conducive to
ensuring that the boundary between coal and gangue dropped evenly, and preventing
the gangue above the coal caving support from entering the adjacent coal caving
opening prematurely.

(3) Through the in-lab similar simulation experiment, it was indicated that the BP neural
network can be used to study the optimized decision making of mining process
parameters and can obtain good results, improving the benefit of process parameter
decision making, and provide the basis for realizing the intelligent mining of fully
mechanized top-coal caving.

(4) There are many factors affecting the top-coal recovery rate and gangue content in
addition to the fully mechanized caving process parameters studied in this paper. The
calculation of a relaxed ellipsoid can also be considered in future research.
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Abstract: Based on our direct shear creep experiment and the direct shear rheological constitutive
model, a semi-empirical time-dependent parameter of the shear strength is obtained by Mohr–
Coulomb shear strength theory, and different time-dependent traction force calculations between
deep-sea sediment and a tracked miner are conducted by the work-energy principle. The time-
dependent traction force calculation under its influencing factors, including the time, track shoe
number, and grounding pressure, are analyzed and proved to be valid by the traction force experiment
of a single-track shoe. The results show that the time-dependent cohesion force obtained by a
semi-empirical way can be easily used to deduce the time-dependent traction force models under
the different grounding pressure distributions and applied into deep-sea engineering application
conveniently; the verified traction force models by the traction force experiment of a single-track shoe
illustrate that traction force under the decrement grounding pressure distribution is the worst among
the four kinds of grounding pressure distributions and suggested for evaluating the most unfavorable
traction force and calculating the trafficability and stability of the deep-sea tracked miner.

Keywords: time-dependent cohesion; traction force; deep-sea sediment; tracked miner; rheology

1. Introduction

Many countries shift their attention from the land to the deep sea, which is abundant
with mineral resources, due to the gradual lack of non-renewable land resources with
the development of social economy. In the deep sea, there are nearly 1500 billion tons of
mineral resources, including poly-metallic nodules, cobalt-rich shells, and poly-metallic
sulfides [1–3]. Therefore, these countries target ocean exploitation as their strategic devel-
opment direction. At present, there are three types of commonly used deep-sea mining
systems: drag bucket mining system, continuous rope bucket mining system, and mining
system with a tracked miner and pipeline lifting device (i.e., hydraulic lifting pipeline
mining system). The tracked miner is one of the most critical pieces of equipment of the
hydraulic lifting pipeline mining system, adopted mainly by China because of its low
cost and high mining efficiency [4–6]. The tracked miner encounters extremely special
deep-sea environments, such as more obvious rheological performance of sediment than
land soil [7] and complex deep-sea topography (e.g., gullies, ditches, and slopes). The
special environments inevitably result in the change of grounding pressure distribution and
the lack of traction force for the tracked miner, and the tracked miner eventually fails the
normal walk. It will cause severe turnover of the tracked miner due to the deep sinkage and
breakdown of the whole mining system [8]. Therefore, it is significant for the safety and
stability of the deep-sea mining system to study time-dependent characteristics of deep-sea
sediment and the traction force of the tracked miner under different grounding pressure.

Currently, the research on time-dependent characteristics of the deep-sea sediment
is mainly carried out from two aspects, i.e., the creep experiment and the rheological con-
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stitutive model. The research on the traction force mainly includes three methods, i.e., the
traction force theory, the traction experiment, and the related simulation. In terms of the
time-dependent characteristics of the deep-sea sediment, a direct shear creep experiment
was conducted for analyzing the deep-sea simulant sediment with Burgers creep model
and obtaining related rheological parameters of the direct shear rheological model [9]. A
tri-axial compression creep experiment was studied for getting the creep curves of the
deep-sea simulant sediment under the same confining pressure and different vertical com-
pression, and then the creep curves were employed to identify the parameters by the
different rheological models for determining the most proper compression rheological
model of deep-sea sediment [10]. Xu et al. [7] discovered the compression-shear cou-
pling effect between compression creep displacement and shear creep displacement by the
compression-shear coupling creep experiment, and then a compression-shear coupling
rheological model was deduced and proved to be reliable. In regard to the traction force of
the tracked vehicle, the track-terrain interaction theory is often adopted mostly involving
the Bekker’s theory (for brittle soil) [11], Janosi–Hanamoto’s theory (for plastic soil) [12]
and Wong’s theory (for both brittle and plastic soil) [13], and a little involvement of rheo-
logical constitutive model (for cohesive soil) [14]. For example, Zhao et al. [15] categorized
the compression model of soil based on the soil theory and offroad vehicle-terrain theory
and introduced an improved sinkage model of the brittle soil by analyzing the Bekker’s
model and ultimate balance theory. Wu et al. [16] established a traction force model of
a tracked miner on the deep-sea soft sediment by studying the cohesive action between
a grouser and the sediment, which revealed the influence of parameters of the sediment
and sizes of the tracked miner structure on the traction force. Wang et al. [17] tested the
applicability of two kinds of empirical models of shear stress-displacement to the deep
seabed and promoted a new empirical model for saturated and plastic soil; Xu et al. [18]
initially employed a compression-shear coupling rheological model into the analyses of the
sinkage and thrusting force of a tracked miner and deduced a new turning traction force.
Li et al. [19] obtains a relationship between the grouser height and the water jet based on
elastic-plastic traction force model aiming at the cause of sticky soil shaped on the track.
Experimentally, Xu et al. [20] discussed the relationship between the slippage and traction
force and determined the optimal grouser height by analyzing the motion of simplified
track shoes and the track shoe experiment of different grouser heights. Shin et al. [21]
discussed the loss mechanism of the lateral thrusting force by a traction force experiment
with different shape ratios. Baek et al. [22] evaluated the traction performance by testing
the slipping sinkage of the track shoes. Furthermore, in terms of the simulation of traction
force, Rubinstein et al. [23] studied a transporting tracked vehicle with dynamics software
LMS-DADS and established a multi-body dynamic simulation model for calculating the
traction force on different locations of the track shoes. Yang et al. [24] studied the influence
of the shearing ratio and grouser size on the traction force based on the simulation model of
track shoe and soil. Li et al. [25] built a 3-D simulation model with McKyes–Ali software to
analyze the interaction between interval track shoes and the soil and verify the interaction
laws. Summarily, the existing study on the track force is mainly about the elastic-plastic and
rheological performance of the deep-sea sediment, seldom involving the time-dependent
performance of the shear strength in deducing the time-dependent traction force under
different grounding pressure distributions, which brings the inconvenience of applying the
temporal traction force model into the deep-sea mining engineering.

In this paper, the direct shear creep experiment is conducted for obtaining the semi-
empirical time-dependent parameters in the shear strength based on the analyses of direct
shear rheological model and Mohr–Coulomb shear strength theory. The time-dependent
shear strength parameter will be employed into deducing the models of traction force based
on the work-energy principle under different grounding pressure distributions (uniform,
linear, and sine) and analyzing the influence of parameters such as the time, number of
the track shoe, and grounding pressure distribution on the traction force. The research
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results could provide scientific basis for designing and optimizing the crawler as well as
evaluating the trafficability of the tracked miner.

2. Time-Dependent Transformation of Shear Strength Parameter

2.1. Direct Shear Creep Experiment of Simulant Deep-Sea Sediment

The deep-sea soft sediment burdens a vertical pressure (e.g., grounding pressure)
and a horizontal force (e.g., traction force) when the tracked miner walks. Therefore, it
is necessary to study the direct shear creep effect of deep-sea soft sediment (provided
that grounding pressure is not varying over time). The simulant sediment with the most
similar physical and mechanical properties to deep-sea sediment (undisturbed sediment)
is prepared to satisfy a large number of tests by mixing different betonies with water
in various ratios. The main parameters measured by our research team are shown in
Table 1 [9]. It can be seen that the main physical and mechanical parameters of simulant
sediment and undisturbed sediment are close to each other and satisfied the requirement
of the experiment [9].

Table 1. Main physical and mechanical parameters of sediment.

Physical and Mechanical Parameters Simulant Sediment Undisturbed Sediment

Wet density, ρ/(t·m−3) 1.315 1.250
Water content, w/% 165.6 246.5
Liquid limit, wL/% 190.2 145.2

Cohesion force, c/(kPa) 6.2 6.0
Friction angle, ϕ/(◦) 1.72 3.1

Penetration resistance, Ps/(kPa) 87 50–90

The deep-sea simulant sediment is sampled into a standard cylinder shape of
60 mm × 30 mm (Figure 1) [10] by a ring knife, considering that its water content
(w = 165.6%) is between the plastic limit and the liquid limit. The sheer creep test of
simulant sediment (with constant compressive stress) is conducted on a self-developed
pressure-shear creep test device (Figure 2) [20] by our research team. The simulant sediment
sample is placed in a shear box and burdens the effect of vertical weights (compressive
stress σ) and horizontal weights (shear stress τ), i.e., the pressure-shear loading. Since
the average grounding pressure σ0 (σ0 = 5 kPa) is the minimum standard for determining
compressive stress and the average shear strength (τb = 6 kPa) is the maximum standard
for determining shear stress, six different groups of constant compressive stress (σ = 5 kPa,
10 kPa, 15 kPa, 20 kPa, 25 kPa, 30 kPa) and six different groups of shear stress (τ = 1 kPa,
2 kPa, 3 kPa,4 kPa, 5 kPa, 6 kPa) are arranged and combined into 36 groups in total for
direct shear creep experiment.

Figure 1. Standard cylinder sample of deep-sea simulant sediment.

27



Sensors 2022, 22, 1119

Figure 2. Direct shear creep apparatus of deep-sea simulant sediment.

For every group, the shear creep curves in the horizontal direction are obtained from a
displacement test system comprising a NS-WY02 high-precision displacement sensor, a
signal amplifier, and a display (computer). Noticeably, NS-YB data acquisition software is
adopted for data storage due to the shortcoming of real-time data display [7].

2.2. Direct Shear Rheological Constitutive Model

Figures 3a and 4a show the typical shear creep curves of the simulant sediment
under different constant compressive stresses σ (σ = 5 kPa [20] and 10 kPa) as examples,
which are obtained under different constant shear stresses τ. Based on the characteristics
analyses of the curves, Burgers rheological model, i.e., shear stress (τ)-displacement (s)-time
(t) equation (Equation (1)) is adopted to fit these experimental creep curves (s-t) and the four
rheological parameters (K1, K2, β1 and β2) in the model can be auto-fitted and determined
by Sigma-plot software with fitted curved 3D surface consisting of experimental creep
curves and are relevant with different constant compressive stresses (σ).

s(τ, t) = τ

[
1

K1
+

t
β1

+
1

K2

(
1 − e−tK2/β2

)]
(1)

Figure 3. Shear creep curves and fitted 3D surface at σ = 5 kPa. (a) Shear creep curves under τ;
(b) Fitted curved 3D surface.

As an example, Figures 3b and 4b show the curved 3D surface in τ-s-t space fitted by
Equation (1) for the specific constant σ (σ = 5 kPa [20] and 10 kPa), where solid points are
experimental data. By resorting to “Dynamic Fit Wizard” in the Sigma-plot software and
inputting Equation (1) with user-defined function, the fitted Burgers rheological model
parameters can be obtained (such as for the σ = 5 kPa, K1 = 7.36 MPa, K2 = 1.82 MPa,
β1 = 7380 MPa·s, β2 = 22,900 MPa·s, coefficient of determination R-Square is 0.987). Table 2
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lists all of the fitted shear creep parameters under different σ as well as R-Square and
illustrates that the fitted shear creep parameters are the functions of σ and increase with σ.
Therefore, the shear rheological Equation (1) can express the relationships between shear
stress τ, shear displacement s, compressive stress σ, and time t, i.e., τ = τ(s, σ, t) and can
be rewritten as Equation (2), i.e., direct shear rheological constitutive model, where the
expressions of K1(σ), K2(σ), β1(σ), and β2(σ) are obtained by fitting data in Table 2 [20] and
described by Equation (3).

s(τ, σ, t) = τ

[
1

K1(σ)
+

t
β1(σ)

+
1

K2(σ)

(
1 − e−tK2(σ)/β2(σ)

)]
(2)

⎧⎪⎪⎨
⎪⎪⎩

K1(σ) = 0.002873σ3 − 0.1312σ2 + 2.373σ + 3.363
K2(σ) = 0.02327σ2.14 + 3.882
β1(σ) = 0.008σ3 + 0.5629σ2 − 4.483σ + 47.89
β2(σ) = 0.0011σ2 − 0.00672σ + 0.0316

(3)

Figure 4. Shear creep curves and fitted 3D surface at σ = 10 kPa. (a) Shear creep curves under τ;
(b) Fitted curved 3D surface.

Table 2. Fitted direct shear creep parameters.

σ/kPa K1(σ)/MPa K2(σ)/MPa β1(σ)/(MPa·s) × 103 β2(σ)/(MPa·s) × 103 R-Square

5 7.36 1.82 7.38 22.90 0.987
10 10.27 2.25 10.24 27.50 0.992
15 11.20 2.95 11.26 24.73 0.984
20 11.22 5.51 11.41 304.04 0.995
25 13.29 8.09 13.90 421.70 0.984
30 19.24 9.87 19.15 466.84 0.983

2.3. Time-Dependent Parameters of Shear Strength

The shear stress (τ)-shear displacement (s) relationships (Equation (4)) are deduced by
Janosi–Hanamoto based on Mohr–Coulomb shear strength theory and is often applied into
deducing traction force of kinds of tracked vehicles [13]. For better deduction and analyses
of traction force of different grounding pressure distributions under the deep-sea tracked
miner, the direct shear rheological model is adopted to obtain the time-dependent parame-
ters of Mohr–Coulomb shear strength and easily used to deduce traction force equation.

τ = [c + σ tan ϕ](1 − e−s/κ) (4)

where c is cohesion force, ϕ is friction angle and κ is shearing deformation module of the
deep-sea simulant sediment. Since ϕ and κ are too small (ϕ is 1.72◦ and κ is 0.00424 mm),
the two parameters can be regarded to be constants and not relevant with time.
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Generally, the parameters in Equation (4) are determined based on the Figure 5, where
the black dots represent the peak shear resistance and the straight line is fitted to the black
dots. Obviously, the coordinate (σ, τ) of the intersection point between the straight line and
τ-axial is (0, c), i.e., τ(0) = c. In order to obtain a time-dependent cohesion force c, let the σ in
the Equation (2) be zero and shear stress τ will be the function of the shear displacement s
and time t without the compressive stress σ, i.e., c(s, t) = τ(s, 0, t). Since shear displacement
s = vt and shear velocity v is constant, c is only the function of time t, i.e., c = c(t).

Figure 5. Determination of the cohesion force c and friction angle ϕ.

Hence, the parameters K1(σ), K2(σ), β1(σ) and β2(σ) become constant and the value of
the parameters are as follows [20].

⎧⎪⎪⎨
⎪⎪⎩

K1(0) = 3.363
K2(0) = 3.882
β1(0) = 47.89
β2(0) = 0.0316

(5)

Accordingly, Equation (2) can be rewritten into Equation (6) given by

s = vt = c(t)·
[

0.297 +
t

47.89
+

1
3.882

(
1 − e−122.85t

)]
(6)

By means of modifying Equation (6) into a function of time t, the time-dependent
cohesion force c is given by

c(t) = vt/
[

0.297 +
t

47.89
+

1
3.882

(
1 − e−122.85t

)]
(7)

3. Time-Dependent Traction Force of Deep-Sea Miner Crawler

3.1. Traction Force Model

Figure 6 plots the simplified model of the miner’s motion on the deep-sea sediment [26].
It can be seen that the whole crawler comprises several hinged track shoes with uniformed
distribution. To simplify calculation of the traction force, it is assumed that every track
shoe I (i = 1, 2, . . . , n) is a “T” type with a grouser thrusting and shearing the sediment
and moves at the same horizontal displacement. When the tracked miner moves forwards
straightly at a constant velocity v, every vertical grouser of the track shoe i develops a
horizontal shear displacement s (i.e., slippage iΔ). Choosing the whole crawler as an
analysis object, as shown in Figure 7, the contacting force (i.e., grounding pressure σ(x)) on
the track shoe is affected by the complex deep-sea topographies such as deep-sea mountains
and ditches because of different contact conditions between track shoe surface and an idler.
If every track shoe i moves under the action of traction force Ti and grounding pressure
σ(x), it is also assumed that the track shoes have the same horizontal displacement s but
different sinkage zi.
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Figure 6. Simplified model of tracked miner’s motion.

Figure 7. Simplified mechanic model of the crawler.

The traction force T of the whole crawler equals to the sum of the traction force Ti
caused by the horizontal compression and shear of the grouser of every track shoe i and
expressed by

T =
n

∑
i=1

Ti (8)

In order to calculate the traction force Ti of the grouser, it is assumed that every track
shoe i has a length L, width B, grouser height h, and a location x = Il-L/2 in analyzing
the kinetic process of a single-track shoe, as shown in Figure 8. When a single-track shoe
moves from location I to location II under the action of the horizontal traction force Ti
and vertical force 2BLσ(x), there is a horizontal shear displacement s and vertical sinkage
zi. Meanwhile, the horizontal shear stress τi changes from τi0 to τi1, corresponding to
disturbed sediment area Ai1 and the vertical compressive stress ranges σi from σi0 to σi1
corresponding to disturbed sediment area Ai2. It can be known that the compressive stress
σi equals to grounding pressure σ(x) according to balance of the vertical forces. Hence, the
work Wi1 done by the shear stress τi and the work Wi2 done by the compressive stress σi
can be described by the following two equations, respectively:

Wi1 = Bh
∫ s

0
τids (9)

Wi2 = BL
∫ z

0
σidz (10)

Based on the word-energy principle and Wong’s suggestion [27], it can be known that
when a rigid track shoe, width B and contact length h, moves through a distance s, the work
Wi1

′ to make the rut of area Ai1
′ can be assumed to be equal to the work Wi2 necessary to

compact the sediment of the area of Ai2 corresponding to the contact part of track to the
sinkage zi. Therefore, the relationships between the two works can be given as follows:

Wi2 = Wi1
′ (11)

Hence, there are two kinds of works in the horizontal direction after the analysis above,
and the sum work Wi (Wi = Tis) of them equals to Wi1 + Wi1

′ or Wi1 + Wi2. Eventually,
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the expression of traction force Ti under the consideration of vertical compressive stress is
written as follows:

Ti =
Wi1 + Wi2

s
=

Bh
∫ s

0 τids + BL
∫ z

0 σidz
s

(12)

Figure 8. Kinetic process of single-track shoe.

3.2. Time-Dependent Traction Force T under Different Grounding Pressure Distributions

When the tracked miner walks on complex deep-sea topographies such as deep-sea
mountains and sea ditches, different grounding pressure distributions develop under the
crawler of the tracked miner. If the grounding pressure σi under every track shoe just
changes with the horizontal location x but not with the time t, it is assumed that the types
of grounding pressure distribution, relevant with the weight G of the tracked miner, can
be simplified into four types: (a) uniform distribution with amplitude σi(x) = G/BL,
(b) linear decrement distribution with amplitude σi(x) = 2Gx/BL2, (c) linear increment
distribution with amplitude σi(x) = −2Gx/BL2, and (d) sine distribution with amplitude
σi(x) = (πG/2BL) sin(πx/L), as shown in Figure 9.

Figure 9. Four kinds of grounding pressure distribution under the crawler with length L [13].

Taking into account the time-dependent parameter c(t) of shear strength and grounding
pressure distribution σi (x) to Equations (4) and (12), the sum of time-dependent traction
force Ti can be obtained as follows:

(a) Uniform distribution, σi(x) = G/BL

Tuni f ormed =
n
∑

i=1
Ti =

n
∑

i=1

Bh
∫ s

0 τids+BL
∫ z

0 σidz
s

=
{

Bh
[
c(t) + G

BL tan ϕ
](

s + κe−s/κ
)
+ Gz

s

}
n2+n

2

(13)

(b) Linear decrement distribution, σi(x) = 2Gx/BL2

Tdecrement =
n
∑

i=1
Ti =

n
∑

i=1

Bh
∫ s

0 τids+BL
∫ z

0 σidz
s

=
{

Bh
[
c(t) + Gn2

BL tan ϕ
](

s + κe−s/κ
)
+ n2Gz

s

} (14)
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(c) Linear increment distribution, σi(x) = −2Gx/BL2

Tincrement =
n
∑

i=1
Ti =

n
∑

i=1

Bh
∫ s

0 τids+BL
∫ z

0 σidz
s

=
{

Bh
[
c(t)− Gn2

BL tan ϕ
](

s + κe−s/κ
)
− n2Gz

s

} (15)

(d) Sine distribution, σi(x) = (πG/2BL) sin(πx/L)

Tsine =
n
∑

i=1
Ti =

n
∑

i=1

Bh
∫ s

0 τids+BL
∫ z

0 σidz
s

=
{

Bh
[
c(t) + πG

2BL sin πn2

2 tan ϕ
](

s + κe−s/κ
)
+ πn2LGz

4s sin πn2

2

} (16)

4. Verification and Analysis of the Traction Force

4.1. Verification of the Traction Force Model

In order to verify the traction force model, the traction force experiment of a grouser
is conducted on the apparatus designed by our research team as shown in Figure 10 [28].
It can be seen that simulant soil is prepared in the glass tank with a steel frame, and a
grouser with width (4 cm) and height (4 cm) is fixed on a truck connecting with a tension
sensor. Then, the constant compressive stress (5 kPa) is applied on the grouser (because
there cannot be a distributed grounding pressure for only one grouser) with a constant
velocity (v = 2 cm/s) from the motor controlled by a motor speed controller. When the
truck with four pulleys moves along a rail, the traction force varying with time data from
the tension sensor can be collected by the data collector and stored in the computer for
analyses. Figure 11 shows a rut shaped by the grouser after the experiment [28].

Figure 10. Traction force experiment apparatus of track shoe grouser. 1, Pulley; 2, Truck; 3, Grouser;
4, Computer; 5, NS-WL1 tension sensor; 6, Data collector; 7, Motor speed controller; 8, Motor; 9,
Screw rod; 10, Rail.

Figure 11. A rut shaped by the grouser (the grouser is removed).
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Figure 12 illustrates the two curves of an experimental way [27] and theoretical way
for comparison by adopting the parameters listed in Table 3 (not mentioned parameters
above). Since the curve from the experimental way is from one track shoe grouser by
interacting with the deep-sea simulant sediment, letting n = 1 (only one track shoe grouser)
in the Equation (13) under the uniformed grounding pressure, the theoretical traction force
curve under the same condition as the experimental way is obtained, and it can be seen
that the two curves are close and have basically the same trend of change, which proves
that the theoretical values of traction force are reliable. The two curves have the close peak
values, and it is important for evaluating the traction force varying with time and proves
the reliability of the traction force model.

Figure 12. Comparison of the theoretical data and experimental data.

Table 3. Main size of crawler in time-dependent traction force model.

Length L (m) Width B (m) Weight G (kN)

6 1.7 110

4.2. Influence of Time and Track Shoe Number on the Traction Force under Different Grounding
Pressure Distributions
4.2.1. Traction Force (T)- Time (t) Relationships

Figure 13 shows the relationships between traction force T and time t of the track
shoes (n = 10). It can be seen that at the beginning of moving (i.e., t = 0 s), the instant
traction forces are positive under uniformed distribution and linear decrement distribu-
tion conditions, but negative under linear increment distribution conditions. After the
tracked miner moves (i.e., t > 0 s), the traction force changes greatly with different trends.
It illustrates that the traction force is greatly influenced by the time. Moreover, during
the period between 0 and 4 s, the traction forces decrease with time under uniformed
distribution and linear decrement distribution conditions, but basically keep constant
under sine distribution and increase with time under linear increment distribution. All
the traction forces arrive at zero at about t = 4 s. It can be seen that when t > 4 s, the
Tincrement > Tsine > Tuniformed > Tdecrement during the same period. This is because the track
shoes near the front of the crawler head are subject to the largest magnitude of the ground-
ing pressure under the linear increment distribution condition, which leads to c(t) getting
the largest in a short time and helps increase the Tincrement. For the sine distribution condi-
tion, the traction force under the different periodic grounding pressure is basically elimi-
nated, but the sum of the traction force is not zero because of the effect of time on different
track shoes with different locations. Under the uniformed and linear decrement distribution
conditions, the Tuniformed and Tdecrement are always negative between and 4 s and 10 s and
signify that the Tuniformed and Tdecrement becomes the resistance for the moving tracker miner,
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which is due to the smaller effect of temporal summation on the time-dependent parameter
of the shear strength.

Figure 13. Curves of traction force vs. time.

Under the same grounding pressure distribution, the curve of the traction force under
the linear increment and sine distribution conditions are increasing during the main analysis
period and beneficial for the moving tracked miner. For other conditions, the corresponding
curves become negative and resistance for the tracked miner.

4.2.2. Traction Force (T)- Number of Track Shoe (n) Relationships

Figure 14 illustrates the relationships between the traction force T and the number
of track shoe n under the different grounding pressure distributions. It can be seen that
within the 10 s, the magnitudes of T are increasing or decreasing obviously with n, except
the uniformed condition. The cause is that the increase of n leads to more grounding
pressure applied on the track shoes and develops more work or negative work to overcome
the corresponding sinkage; for the uniformed increment condition, less contact time with
sediment of larger grounding pressure weakens the magnitude and change of T and leads
to slight traction force change.

Figure 14. Curves of number of track shoe vs. traction force.
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Moreover, under the same number of track shoe n and during the same period of
time t, the absolute value relationships of T are Tsine > Tincrement > Tdecrement > Tuniform. For
the sine condition, the curve of T is close to sine and gradually increases, but with an
abrupt decrease as the number of track shoe becomes 10. This is because the increasing n
in the traction force model may narrow the sine characteristics based on the fact that the
maximum value of sine is one.

5. Conclusions

(1) A semi-empirical time-dependent shear strength (cohesion force) of describing the
shear strength can be obtained by letting the compressive stress be zero in direct shear
rheological constitutive model based on the analysis of Mohr–Coulomb shear strength
theory and direct shear rheological experiment. Several time-dependent traction force
models under the different grounding pressure distributions are deduced with the
time-dependent cohesion force based on the work-energy principle. The models take
the time, grounding pressure, and track shoe number into account and is used for
conveniently analyzing the influence of kinds of key parameters on traction force of
the deep-sea tracked miner.

(2) The traction force model is verified by a comparison between an experimental
curve and a theoretical curve of a single-track shoe. By analyzing the influence
of time and track shoe number on time-dependent traction force, it is found that
Tincrement > Tsine > Tuniformed > Tdecrement when t > 4 s under different grounding pres-
sure distributions. The linear increment grounding pressure distribution is suggested
for evaluating the most favorable traction force and the linear decrement grounding
pressure distribution for calculating the worst traction force. Both grounding pressure
distributions can better help the crawler design and optimization for better trafficabil-
ity and stability of the deeps-sea tracked miner when adopting the time-dependent
cohesion force.

(3) The traction force calculation is proved to be valid by the traction force experiment of a
single-track shoe, and the influence of time, number of the track shoe, and grounding
pressure distribution on the traction force can provide scientific basis for designing
the crawler and evaluating the trafficability of tracked miner.
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Abstract: As lots of underground mines have been exploited in the past decades, many stope
instability and surface subsidence problems are appeared in the underground mines, while the
cemented paste backfill (CPB) technology has been applied for more than 40 years, and it can solve
these problems. As it is shown that the effect of backfilling is mainly affected by the mechanical
properties of the CPB, and there are lots of factors which can influence the strength of the CPB,
but the coupled effects of curing conditions has not been reported. In this research, the coupled
effects of curing conditions are importantly considered, and the uniaxial compressive strength (UCS)
is adopted as the important evaluation index of CPB, then the evolution law of the UCS for CPB
are analyzed, also the mathematical strength model of CPB is established. The findings suggest
that the relationship between the UCS of CPB and curing stress develops the function of quadratic
polynomial with one variable, while the UCS of the CPB shows the power function as the curing
temperature increases. Moreover, the established mathematical strength model is verified on the
basis of laboratory experiments, the error between the measured UCS and the prediction UCS is
less than 15%. It shows that the established strength model of the CPB by considering the curing
conditions can predict the UCS very well, it has great significance for the safety design of CPB.

Keywords: cemented paste backfill; curing conditions; mechanical properties; mathematical strength model

1. Introduction

As more and more mines have been excavated, many voids are produced in the
underground mines, also a lot of tailings are disposed in the tailing dam, therefore, there
are huge challenges we are facing, such as the surface subsidence, stope instability and
safety of the tailing dams [1,2]. For the voids, they may cause the surface subsidence, stope
collapse and other geological risks [3]. According to the statistics by the researchers, there
are about 14.6 billion tons of tailings in China, most of them are disposed in the tailings or
on the surface, it may cause the environment pollution or dam-failure accidents [4,5]. As
the society has been rapidly developed, the environment protection is getting more and
more attention, while the filling mining methods can dispose the surface tailings, which
has been widely applied in many mines at home and abroad [6]. On the one hand, the CPB
technology has the advantages of safety, economy and high efficiency; on the other hand, it
also has the advantages of environmental protection [7]. Moreover, the total tailings are
used in the CPB technology, so it can reduce the surface tailings deposit for 50~60% [8].

For the CPB technology, the safety of the backfilling stope is the main areas of concern,
while the mechanical property is one of the main indexes to reflect the backfilling effect,
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also the study shows that the UCS is the main index to show the mechanical properties
of CPB [9,10]. In terms of the UCS for CPB, many studies had been done by the scholars,
Andrew and Fall’s [11,12] study indicated that the UCS was significantly influenced by the
curing temperature, because the hydration reaction rate of the cement was firstly affected.
The correlation of the electrical properties, microstructure properties and mechanical prop-
erties of the CPB was investigated. Secondly, the laboratory tests aere done considering
the curing time, sulphur contents and mineral admixtures by Jiang and Liu [13–15]. Some
studies had revealed that the UCS was significantly influenced by the water type, water
content and mixing time, also the microstructure of the CPB was affected by the mixing
time [16,17]. Libos, Wang and Yilmaz [18–20] had studied the relationship between the
cement types, cement content and mechanical properties of CPB, indicating that the hy-
dration reaction rate and UCS of the CPB were mostly affect by them. Moreover, it was
found that the specimen size, curing stress and tailings fineness can also influence the
mechanical properties of the CPB [21–24]. In a short word, the majority of the above studies
are concentrated on one influencing factor, while there are few studies about the coupled
effects of curing conditions on the mechanical properties of CPB.

However, most of the studies were based on the laboratory tests, the costs of the
laboratory experiments are high, many researchers had established the UCS prediction
model to forecast the UCS of CPB when designing the mix proportion of CPB [25,26].
Ehsan et al. used the particle swarm optimization algorithm to optimize the multi-objective
mixture design of CPB. Li and Zhao et al. [27–29]. optimized the admixture of CPB on
the basis of the response -surface method, and it can provide technical references for the
engineering design in the mines, while the fitting formula was complex and the cross
term had no specific physical meaning. Moreover. the BP neural network and intelligent
modelling framework were adopted to show the UCS with different conditions, but the
model was based on the laboratory experiment, and the data should be large, it was difficult
to applied in the engineering design [30–32]. Based on the laboratory experiments, Mitchell
and Fu et al. [33–35] established the mathematical model to forecast the UCS, also the model
was applied to the engineering design. According to the above studies, there were many
prediction models which can predict the strength of CPB, but the prediction model can be
established better [36–38], the influencing factors were incomplete, the studies showed that
the UCS is affected by curing conditions, therefore, it is needed to establish the prediction
model considering the curing conditions.

In this paper, the strength characteristics of CPB considering curing conditions is
studied, and the UCS of the CPB is tested in the laboratory, then evolution role of the UCS
for CPB considering curing conditions is analyzed, based on the results, the mathematical
strength model of CPB considering different curing conditions is established, also the
established mathematical strength model is verified based on the experiment results.

2. Experimental Materials and Methods

2.1. Materials
2.1.1. Tailings

As the tailings is one of the main components of CPB, therefore, the total tailings can
be disposed, and it is selected from one copper mine. Firstly, the laser particle scanning
analyzeris used to analyze the particle size distribution (PSD) of the total tailings, then
the X-ray diffractometry (XRD)is adopted to obtain the chemical component of the tail-
ings [39,40], therefore, the physical and chemical properties of the tailings are obtained, and
the chemical characteristics of the tailings is shown in Table 1, it indicates that the chemical
components of the total tailings mainly include MgO, Al2O3, SiO2 and CaO.
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Table 1. Chemical characteristics of the tailings.

Parameter
Al2O3

(%)
CaO
(%)

FeO3

(%)
MgO
(%)

P2O5

(%)
SiO2

(%)
TiO2

(%)
Na2O

(%)
K2O
(%)

Tailings 1.04 44.05 2.89 5.02 0.18 43.55 0.35 0.10 2.82
OPC 5.37 66.18 3.36 3.01 0.11 21.12 0.20 0.2 0.45

As it is known that the compactness of the CPB is affected by the gradation of the total
tailings [41]. Based on the experimental results, the PSD of the CPB is shown in Figure 1.
The statistics shows that the diameter of cumulative volume with 20 μm, 37 μm and 74 μm
are 29.60%, 47.33% and 77.52%, respectively. Based on the theoretical calculation formula,
then the non-uniformity coefficient and curvature coefficient can be obtained, which are
8.05 and 1.31, respectively. In contrast to the standard values, the distribution of the total
tailing is good. According to the tailings which have been studied before, the tailings
studied in the copper mine have similar properties to the tailings which have been reported
in the literature by other scholars.

Figure 1. The curves of the cement and tailings between cumulative volume and particle size.

2.1.2. Binders

As the binder is also one of the important components of CPB, the Portland cement,
fly ash, fiber and waste glass are included [42,43]. The type of Ordinary Portland cement
(OPC) is adopted in this study, based on the tests by the laser particle scanning analyzer,
the PSD of the cement is also obtained, which is shown in Figure 1, in contrast to the PSD of
the tailings, the cement is finer. Moreover, the chemical properties of the cement is obtained
based on the X-ray diffraction (XRD) tests, which is shown in Table 1, it also indicates that
the SiO2, CaO and other elements are included.

2.1.3. Water

As the CPB consists of cement, tailing and water, therefore, the water is the essential
part of the CPB, for it can provide the hydration reaction medium for the CPB. The water is
selected from the laboratory tap water, because it can reduce the experimental error. The
acid and alkali stability experiment results show that the tap water in the laboratory is
weakly alkaline, and the PH value of it is 7.5. Moreover, the Fe, Na, Ca, Si and SO4

2− are
included for the chemical properties of the water.

2.2. Preparation and Mix Proportion of CPB

In this study, the mixer is adopted to make the cement, tailing and water at the same
time, and the curing conditions is mainly considered, therefore, the cement-tailing ratio
is controlled to be 1:6, also the mass concentration of it is controlled to be 76%. As for the
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curing conditions, all of the specimens are controlled to be 20 ◦C for the initial temperature,
and the relative humidity is 90 ± 2% RH, therefore, the curing temperature and curing
stress are mainly considered for the curing conditions.

According to the studies before, the temperature of 20 ◦C, 35 ◦C and 50 ◦C are selected
as the curing temperature schemes. The stress condition of the CPB under different stope
heights is shown in Figure 2, as there are seven points ranging from the top to the bottom,
the height of them is 0 m, 5 m, 10 m, 15 m, 20 m, 25 m and 30 m between each point to the
bottom of the stope for point A, B, C, D, E, F and G. Moreover, the density of the CPB is
selected as 2700 kg/m3. Based on the CPB density and backfilling technology, the curing
stress of 0 kPa, 90 kPa, 180 kPa, 270 kPa, 360 kPa, 450 kPa and 540 kPa are selected as the
curing stress conditions. Firstly, the curing stress is applied to be a quarter of the total
required curing stress as the curing time is 12 h; Secondly, the curing stress is applied to
be a half of the total required curing stress as the curing time is 1 day; Finally, the curing
stress is applied to be the total required curing stress as the curing time is 2 days. Previous
studies showed that the curing stress had the appreciable impact on the consolidation of
CPB in the first 48 h [44,45], therefore, the stress is applied within 2 days for each schemes.
Moreover, as the specimens have been cured for 3 days, the demoulding is required for all
the specimens, then all the specimens are in the standard curing conditions, the schemes of
the curing stress application is shown in Figure 2.

Figure 2. Schemes of the curing stress application.

2.3. UCS Tests

As it is known that the UCS is one of the main influencing indexes to reflect the
mechanical properties of CPB, therefore, after all the specimens are cured for the required
curing times, then all the specimens are tested to obtain the UCS of the CPB. Before the tests,
it is needed to dispose all the specimens. the top and bottom of the specimen should be the
plain surface to be parallel, also the standard size of the specimen is 50 mm and 100 mm for
its diameter and height. In this study, the WDW-50 servo control uniaxial pressure testing
machine is adopted to obtain the UCS of CPB, the control accuracy of it is ±0.2%.

3. Results and Discussion

3.1. Influence of Curing Stress on UCS

The experiment results are shown in the Figure 3, it can reflect the correlation between
the curing stress and UCS of CPB, it has made clear that the UCS is significantly increased
with the increase of the curing stress while other curing conditions are unchanged. The
reason for the above phenomenon can be explained as follow: as the curing stress increases,
resulting the faster hydration reaction rate, then more hydration products are produced,
also pores between the tailing and cement are compressed by the CPB particles, then the
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space between the particles are decreased, and the pores are filling into the hydration
products, therefore, the UCS of CPB is improved.

 
(a) (b) 

 
(c) 

Figure 3. Relationship between the UCS and curing stress with different curing temperatures:
(a) 20 ◦C; (b) 35 ◦C; (c) 50 ◦C.

In another aspect, the Table 2 shows the correlation between the curing stress and
growth rate of UCS, it can reflect the evolution of the UCS growth rate under different
curing conditions, the UCS growth rate is significantly decreased when the curing stress
is increased. From Figure 3 and Table 2, it also shows that the UCS is increased when the
curing time is increased regardless of other curing conditions, but the growth rate of UCS
is trending downward. The reason for the above phenomenon is that the cementitious
behavior of CPB is improved as the curing time is longer. In a word, the curing time can
improve the UCS of CPB, but the growth property of it is certain.
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Table 2. The distribution of the UCS growth rate for CPB.

Curing Time
(d)

Curing Temperature
(◦C)

UCS Growth Rate (%)

0 kPa 90 kPa 180 kPa 270 kPa 360 kPa 450 kPa 540 kPa

7
20 0 49.53 25.63 18.91 10.88 5.66 6.79
35 0 53.37 19.78 11.01 7.44 5.90 5.81
50 0 25.85 11.74 7.88 8.72 5.60 5.65

14
20 0 45.27 22.33 11.41 9.90 5.59 4.41
35 0 44.64 16.91 8.88 7.69 3.68 5.43
50 0 24.13 9.42 6.23 6.21 5.36 2.93

28
20 0 38.58 16.48 7.55 7.60 4.35 4.17
35 0 35.96 10.08 7.09 5.56 3.24 3.14
50 0 19.91 8.11 4.54 4.51 3.99 3.38

By studying the correlation between the curing stress and UCS quantitatively, the
linear, power, exponential, logarithm, and quadratic function of one variable are selected
to fit them, the most appropriate function and its correlation coefficient (R2) are shown in
Figure 3, the p value of all the fitting equations is less than 0.05 [46], therefore, the function
of quadratic polynomial with one variable can reflect the correlation between UCS and
curing stress, which can be expressed by the Formula (1):

σc = a + bp + cp2 (1)

where σc is the UCS, p is the curing stress, a, b, and c are the fitting of constant.
For the Formula (1), as the correlation coefficient, all of the correlation coefficient are

more than 0.95, which shows that the correlationship among the curing stress and UCS
are high. Therefore, the function of quadratic polynomial with one variable is suitable to
express the relationship between them.

3.2. Influence of Curing Temperature on UCS

The correlation between the curing temperature and UCS is clearly shown in Figure 4,
the UCS of CPB is increased with the increase of curing temperature regardless of other
curing conditions. Moreover, it indicates that curing temperature has greater effect on the
UCS for the smaller curing stress than the larger curing stress. This phenomenon is caused
by the following reasons: when the curing temperature becomes higher, more hydration
products are produced, then most of them are filled into the pores between the tailing
particles. Therefore, the pore spacing is decreased, and the compactness of the CPB is more
dense, which resulting in the increase of UCS.

The Table 3 shows the evolution rule of the UCS growth rate for the CPB, as the curing
stress is 0 kPa, the growth rate of UCS are 66.36% and 82.58% for the curing temperature of
35 ◦C and 50 ◦C under the curing time of 7 days; while the growth rate of UCS are 46.15%
and 36.84% for the same curing temperature under the curing time of 28 days. Therefore, it
shows the decline trend for the growth rate of UCS as the curing temperature is increased,
and it also shows similar rule for other conditions. Moreover, the results indicate that
the growth rate of UCS decreases with the longer curing time regardless of other curing
conditions, and the curing temperature shows greater influence on the early UCS than the
later UCS.
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(a) (b) 

(c) 

Figure 4. Relationship between UCS and curing temperature with different curing stress: (a) 7 d;
(b) 14 d; (c) 28 d.

Table 3. The evolution rule of the UCS growth rate for the CPB.

Curing Time
(d)

Curing Temperature
(◦C)

UCS Growth Rate (%)

0 kPa 90 kPa 180 kPa 270 kPa 360 kPa 450 kPa 540 kPa

7
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 66.36 70.63 62.69 51.88 47.17 47.50 46.15
50 82.58 49.82 39.76 35.81 37.44 37.05 36.84

14
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 57.43 56.74 49.81 46.42 43.48 40.88 42.25
50 72.53 48.07 38.58 35.20 33.33 35.49 32.28

28
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 48.22 45.42 37.42 36.84 34.24 32.81 31.50
50 51.37 33.50 31.12 27.99 26.72 27.65 27.95

By studying the evolution law of the correlation between the UCS and curing temper-
ature quantitatively, the linear, power, exponential, logarithm, and quadratic function are
adopted to fitting the relation between them. It can be seen that the power function showed
the highest accuracy, that is to say the power function is fitted to show the correlation
between the UCS and curing temperature, all of the correlation coefficient (R2) are larger
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than 0.95, the p value of all the fitting equations is less than 0.05, therefore, the formula for
the relationship between them can be shown bellow:

σc = dTe (2)

where σc is the UCS, T is the curing temperature, d and e are the fitting coefficient.

3.3. Coupled Effects of Curing Conditions on UCS

In order to find out the correlation between the coupled effects of curing conditions
and UCS of CPB, based on the laboratory results, the correlation between them is given
in Figure 5, it indicates that the UCS is significantly influenced by the coupled effects of
curing conditions. As the curing stress decreases from 540 kPa to 360 kPa, also the curing
temperature is increased from 20 ◦C to 50 ◦C, the UCS is increased sharply. While the
curing temperature decreases from 50 ◦C to 20 ◦C, and the curing stress decreases from
360 kPa to 180 kPa, the UCS is decreased sharply. Therefore, it indicates that there may exist
a complicated relation between them. Not only that, the trend of the three curves under
different curing ages for the UCS are similar, indicating that there should be a regular rule
for the UCS. According to the results, the formula considering the curing condition can
be obtained.

Figure 5. Correlation between the UCS and coupled effects of curing conditions.

4. Mathematical Strength Model

4.1. Establish of the Mathematical Strength Model

According to the results of the previous analysis, the curves for the coupled effects
of curing conditions on the UCS develops a similar trend. Based on the above results,
the mathematical strength model of CPB is established when considering different curing
conditions, therefore the formula of it is as follows:

σc = fc f1(p) f2(T) (3)

σc = fc

(
a + bp + cp2

)
dTe (4)

where σc is the UCS, fc represents the UCS of CPB relation to the cement, f1(p) and f2(T)
represent the UCS relation to the curing stress and curing temperature.

Assume that η = ad fc, ξ = bd fc, λ = cd fc, then the Formula (4) can be transformed to
the Formula (5):

σc = (η + ξ p + λp2)Te (5)

where the η, ξ and λ are the fitting coefficients for the strength model.
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Assume that the curing temperature of T is constant, and a′ = ηTe, b′ = ξTe, c′ = λTe,
then the Formula (5) can be simplified as the Formula (6):

σc = a′ + b′p + c′p2 (6)

According to the relationship between the curing stress and UCS, the Formula (6) is
exactly the same to the Formula (1).

Assume that the curing stress of p is constant, and the d′ = η + ξ p + λp2, then the
correlation between the UCS and curing temperature is shown below:

σc = d′Te (7)

According to the Formula (2), it indicates that the Formula (7) is exactly the same to it.
Based on the above analysis, it is evident that the mathematical strength model of

CPB can be obtained by the Formula (5), and it contains the influencing factors of curing
conditions, the parameters relation to the formula are clear. In the fact, in order to apply the
established mathematical strength model, the parameters of η, ξ and λ can be determined
by the laboratory results.

In order to verify the mathematical strength model considering the curing conditions,
the experimental results of Figure 3 are adopted to analyze it. The parameters of the
strength model relation to the UCS are obtained by the R programming language [47],
also the fitting coefficients are obtained as shown in Table 4. It is evident that all of the
fitting coefficient R2 of the mathematical strength model under different curing ages are
more than 0.95, also the p value of all the fitting equations is less than 0.05, indicating that
the significance of the established mathematical strength model is good, it can verify the
mathematical strength model.

Table 4. Parameters of the mathematical strength model.

Curing Time (d)
Parameters

R2

η ξ λ e

7 0.108 3.446 × 10−4 −2.663 × 10−7 0.847 0.977
14 0.175 4.854 × 10−4 −7.603 × 10−7 0.782 0.972
28 0.345 7.009 × 10−4 −7.009 × 10−7 0.637 0.970

Notice: The best fit parameters above can only be applied in the conditions of this experiment: (1) Curing stress of
0~540 kPa, (2) Curing temperature of 20~50 ◦C.

Based on the established mathematical strength model for CPB, the contours of CPB
under different curing ages are shown in Figure 6, and they can reflect the correlation
between the influencing factors and UCS. In the engineering design, if the curing conditions
are given, then the UCS of CPB can be predicted based on the data in Figure 6. Moreover,
if the design requirement is certain, in the actual engineering design, when the UCS is at
a certain range with the curing time of 28 days, the contour plots of UCS considering the
curing conditions can be applied to optimize the mix proportion.
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(a) (b) 
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Figure 6. The theoretical model of the UCS contours for CPB: (a) 7 d; (b) 14 d; (c) 28 d.

4.2. Comparison of Experimental Results and Theoretical Model for UCS

As the mathematical strength model of CPB has been established above, the relation-
ship between the model theoretical UCS and the measured UCS in the laboratory is shown
in Figure 7, also the ideal fitting line and the prediction error within the 15% are listed in
the Figure 7, and it indicates that the established mathematical strength model can predict
the UCS of CPB very well. As shown in Figure 7a, most of the prediction error are less
than 15%, only two specimen points are beyond the prediction error of 15%, moreover, all
specimen points are in the range of prediction bands for 95%, indicating that the established
mathematical strength model shows an important impact for predicting the UCS at early
ages. The correlation between the model theoretical UCS and measured UCS under the
curing time of 14 and 28 days are shown in Figure 7b,c, there are two specimen points
which beyond the prediction error of 15% under the curing time of 14 and 28 days, but
these two specimen points are near the ±15% prediction error line, respectively. Moreover,
all of the specimen points are in the range of prediction bands for 95% under the curing
time of 14 and 28 days, indicating that the prediction results are in consistent with the
experiment results, and the established mathematical strength model is rational.

According to the above analysis, also the histogram of UCSmeasured/UCSpredicted based
on the mathematical strength model are shown in Figure 8, it shows that the means and the
median are all close to 1, which indicates that the predicted UCS of CPB is consistent with
the experiment UCS. On the other hand, the skewness of the dataset under different curing
ages are 0.0545, 0.0513 and 0.0958, respectively, it means that the frequency distribution of
the UCSmeasured/UCSpredicted is positive partial, so the established mathematical strength
model shows a slightly lower UCS than the experimental UCS under different curing ages,
but this is good for the safety of the CPB when designing the mixture ratio of CPB.
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Figure 7. Relationship between the model theoretical UCS and measured UCS: (a) 7 d; (b) 14 d;
(c) 28 d.

  
(a) (b) 

 
(c) 

Figure 8. Histogram of UCSmeasured/UCSpredicted based on the mathematical strength model at:
(a) 7 d; (b) 14 d; (c) 28 d.
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4.3. Verification of the Mathematical Strength Model

The predicted UCS and experimental UCS have been analyzed above, in order to verify
the rationality of the established mathematical strength model, the curing temperature
is 35 ◦C, the curing temperature is 0 kPa, 90 kPa, 180 kPa, 270 kPa, 360 kPa, 450 kPa
and 540 kPa, respectively, while other conditions and parameters are the same as the
schemes before. Based on the studies above, the predicted UCS of CPB is computed by
the established mathematical strength model which is shown in the Formula (5), then the
relationship between the predicted UCS and the measured UCS is obtained, and it is shown
in Figure 9. It can be observed that all the specimen points are in the range of the 15%
prediction error, also all of the prediction UCS is slightly smaller than the measured UCS,
indicating that the application of the established mathematical strength model to predict
the UCS of CPB is good.

 
Figure 9. Correlation between the predicted UCS and measured UCS.

5. Conclusions

As the mechanical properties of the CPB considering curing conditions has been
discussed, the strength testes are done in the laboratory, also the mathematical strength
model is also established, and then the model is verified by the engineering example.
According to the studies, some opinions can be concluded as follow:

(1) The results show that the function of quadratic polynomial with one variable can
represent the correlation between the UCS and the curing stress well. Moreover, the
correlation between the UCS and curing temperature shows the power function.

(2) It is found that the trend of the three curves under different curing ages for the UCS
are extremely similar, indicating that there exists a regular rule for the UCS with
different curing conditions. The established mathematical strength model for CPB
considering the curing conditions is developed.

(3) The established mathematical strength model is verified by the engineering data, the
prediction error between the measured UCS and the prediction UCS is less than 15%,
all of the specimen points are in the range of prediction bands for 95%, indicating that
the prediction results are in agreement with the experiment results under different
curing ages, therefore, the established mathematical strength model is rational, which
can provide some technical support for the mix proportion design of CPB.
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Abstract: Acid Mine Drainage (AMD) has become an important issue due to its significant ecological
pollution. In this paper, phytoremediation technology and mechanism for AMD were investigated
by hydroponic experiments, using six wetland plants (Phragmites australis, Typha orientalis, Cype-
rus glomeratus, Scirpus validus, Iris wilsonii, Juncus effusus) as research objects. The results showed
that (1) the removal of sulfate from AMD was highest for Juncus effusus (66.78%) and Iris wilsonii
(40.74%) and the removal of Mn from AMD was highest for Typha orientalis (>99%) and
Phragmites australis (>99%). In addition, considering the growth condition of the plants,
Juncus effusus, Iris wilsonii, and Phragmites australis were finally selected as the dominant plants
for the treatment of AMD. (2) The removal pathway of pollutants in AMD included two aspects: one
part was absorbed by plants, and the other part was removed through hydrolysis and precipitation
processes. Our findings provide a theoretical reference for phytoremediation technology for AMD.

Keywords: AMD; phytoremediation; sulfate; hydroponic experiment; wetland plants; ecological pollution

1. Introduction

Acid mine drainage (AMD) is formed when sulfide minerals are exposed to oxidizing
conditions after mining and other excavation processes [1,2]. As AMD is highly acidic and
contains a large number of heavy metals, sulfates, and other pollutants [3,4], when it is
discharged to the ground, it will cause great pollution to the surrounding water bodies and
soil, lower the pH value of surface water, inhibit the growth and reproduction of aquatic
organisms, destroy the granular structure of the soil, make the soil caked, salinized, barren,
which will lead to the withering and death of crops [5]. In addition, the contaminants
in AMD can pose a risk to human health through the food chain [6,7]. Previous studies
have shown that AMD has become a long-term source of pollution, as it can continue to be
generated for hundreds of years even after mining activities have ceased [8,9]. Therefore,
there is an urgent need to investigate economical and efficient treatment technologies to
minimize the negative impacts of AMD in response to its serious pollution problem.

Various techniques which cut across physical, chemical, and biological processes have
been used to remediate water, air, and soil contaminated by AMD. Traditionally, AMD has
been treated by adding calcium carbonate, lime, hydrated lime, caustic soda, and soda ash
to AMD to neutralize the acidity [10]. However, it was found that 107–640 g of limestone is
required to neutralize 1 L of AMD, making the application of neutralization quite expen-
sive and unsafe when treating large amounts of AMD produced in coal mines [11]. The
use of constructed wetlands (CWs) for AMD treatment is a rapidly developing passive
treatment technology that focuses mainly on metal and sulfate removal [12,13]. CW is
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a substrate-microbial-plant composite ecosystem with physical, chemical, and biologi-
cal triple synergy [14], which is an economic, efficient, and environment-friendly AMD
remediation technology.

Wetland plants are an important part of CWs, which can not only remove pollutants
from water bodies, accelerate the recycling and reuse of nutrients, but also maintain and
beautify the wetland environment, improve the regional climate and promote a virtuous
cycle of the ecological environment [15,16]. Since the selection of wetland plants has a
significant impact on pollutant removal efficiency, the ability to release oxygen, and the
species and number of microorganisms in the wetland substrate [17], cultivating or selecting
plants that meet the treatment requirements can enhance the purification capacity of CWs
and achieve long-term stable operation of CWs.

Currently, phytoremediation technology for the treatment of heavy metals has been
studied more extensively, including studies on the removal effect and removal mechanism
of heavy metals by plants and the tolerance mechanism of plants to heavy metals. For
example, Oyuela Leguizamo, et al. [18] studied the behavior of 41 native or endemic
species towards heavy metal pollution and screened the plants of the dominant family
in the process of heavy metal enrichment. Muthusaravanan, et al. [19] reviewed the
methods, mechanisms, and enhancement processes of phytoremediation of heavy metals.
Han, et al. [20] investigated the Pb tolerant mechanisms, plant physiological response, and
Pb sub-cellular localization in the root cells of Iris halophila. Although relatively mature
research results have been achieved in the phytoremediation technology of heavy metals,
however, little research has been done on the phytoremediation technology of sulfate. Thus,
the study of the mechanism of sulfate removal from AMD by wetland plants in this paper
is necessary.

In this study, six acid-tolerant wetland plants commonly found in China were used
as research objects. Using hydroponic experiments, the growth status of six plants under
different concentrations of AMD stress, the removal effects of six plants on pollutants
in AMD and the accumulation of pollutants in plants were studied, and the removal
mechanism of pollutants in AMD was analyzed, while the optimal wetland plants suitable
for treating AMD were screened, which provided a reference basis for the construction of
CWs at a later stage.

2. Materials and Methods

2.1. Synthetic AMD Composition

The chemical composition of AMD varies from site to site. In this study, the AMD
was formulated manually based on the types and concentrations of the main pollutant ions
in the AMD outflow from the Shandi River basin (38◦1′32” N, 113◦31′37” E) in Yangquan
City, Shanxi Province, China. Since the constructed wetland investigated in this study
was, actually, the final step of the AMD treatment technology, and the first stage was via
permeable reaction barriers (PRB) when Fe was well removed, while Mn, Zn, and Cd
were not [21], Fe was not considered in this study. Measured amounts of Na2SO4, MnCl2,
Zn(NO3)2, and Cd(NO3)2 powders were added in distillate water to produce three sulfate
concentrations of AMD shown in Table 1. Under acidic conditions, metals exist mainly in
dissolved forms.

2.2. Wetland Plants

Phragmites australis (P. australis), Typha orientalis (T. orientalis), Cyperus glomeratus
(C. glomeratus), Scirpus validus (S. validus), Iris wilsonii (I. wilsonii), Juncus effusus
(J. effusus) were purchased from Anxin County, Baoding City, Hebei Province, China.
As shown in Table 2, these six plants are all common acid-tolerant perennial wetland plants
in China, which have some economic value and can therefore reduce the maintenance costs
of CW systems.
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Table 1. Chemical composition and target pollutant concentrations in AMD.

Theoretical Concentration (mg/L) Reagent Used Amount (mg) Per L Water

SO4
2−

500 (C1)
Na2SO4

739.5833
2000 (C2) 2958.3333
4000 (C3) 5916.6667

Mn 18 MnCl2 41.1853
Zn 10 Zn (NO3)2·6H2O 45.7677
Cd 0.5 Cd (NO3)2·4H2O 1.3721
pH 4 HCl

Table 2. Ecological habits and economic value of tested plants [22].

The Plant Ecological Habits Economic Value

P. australis

The perennial aquatic herb that grows along
irrigation ditches, riverbank marshes, etc. It is
found throughout the world and often forms

contiguous reed colonies due to its rapidly
expanding reproductive capacity.

It can be used for making medicine, paper,
weaving, and construction, and has

ornamental value.

T. orientalis

Perennial aquatic or marsh herb grows in lakes,
ponds, ditches, rivers in slow-flowing shallow
water, also seen in wetlands and swamps, can

withstand low temperatures of −30 ◦C.

It is a weaving material, can be used for making
medicine, paper, food, and has

ornamental value

C. glomeratus A perennial herb of the Cyperaceae family,
growing mostly in wet places or swamps. It can be used for weaving and making medicinal

S. validus

Perennial emergent aquatic herb, produced in
many provinces in China, growing in lakesides

or shallow ponds, and can tolerate low
temperatures.

It can be used for weaving and has
ornamental value.

I. wilsonii

Perennial herb, with fibers of old leaves
remaining at the base of the plant, born on

mountain slopes, forest margins, and wetlands
along riverside ditches, light-loving, also more

shade-tolerant, cold-hardy.

It has great ornamental value and can also be used
to make medicine.

J. effusus
Perennial herbaceous aquatic plants, suitable for

growing by rivers, ponds, ditches, rice fields,
grasslands, marshes.

It can be used to weave utensils and make
medicines, and the pith of the stem can be used to

make lamp wicks and pillow wicks, etc.

2.3. Experimental Operation

Each of the six weighed plants was put into a measuring cup (150 g of each plant in
each cup) with a capacity of 2 L, and then 1 L of experimental water was added to each
measuring cup. There were four groups of experimental water (Table 3), including the
control group with no contaminants and the AMD treatment group with three sulfate
concentrations (low, medium, and high). The water level at this point was marked as the
initial water level. Then, 5 mL of 1/5 strength Hoagland solution [23] was added to the
measuring cup each day, and then distilled water was added to bring the water level to
the initial level (water was consumed due to evaporation and plant transpiration). The
experiment was carried out for 60 days.

2.4. Water Sample Analysis

The water samples were measured and analyzed for each indicator every 10 days. The
pH value was measured using a pH meter (PHS-3C, Rex, Shanghai, China), while Ec was
measured using a digital conductivity meter (DDS-307A, Rex). Concentrations of metals
were determined by flame (acetylene) ionization using an atomic absorption spectropho-
tometer (TAS-990, Persee, Beijing, China) after sample filtration with 0.45 μm filter, and
the concentration of SO4

2– in the water samples was determined by ion chromatography
(883 Basic IC plus, Metrohm, Shanghai, China). All represented data are the average of
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three replicate values. The removal efficiency of pollutants (SO4
2−, Mn, Zn, Cd) was

calculated (Equation (1)):

Removal rate (%) =
Ci − Ce

Ci
× 100 (1)

where Ci and Ce represent the initial water and effluent pollutants concentrations, respectively.

Table 3. Schemes for hydroponic experiments.

Code Experimental Water pH
SO4

2− Mn Zn Cd

mg/L

CK Control group
(distillate water)

4

0 0 0 0

C1 Low sulfate
concentration AMD 500 18 10 0.5

C2 Medium sulfate
concentration AMD 2000 18 10 0.5

C3 High sulfate
concentration AMD 4000 18 10 0.5

2.5. Plant and Water Sediment Analysis

After the experiment, the plants were rinsed repeatedly with tap water and then with
distilled water to remove surface impurities. The plants were dried in an oven at 8 ◦C for
24 h and weighed for dry biomass. The dried plants were ground to fine powder with a
grinder and then one gram of the powder was digested using a tri-acid mixture (HNO3,
HClO4, and H2SO4; 5:1:1) at 80 ◦C until the solution became clear. The obtained solution
was filtered and its contaminant content was determined using the method of water sample
analysis in the previous section.

The bioconcentration factor (BCF) is defined as the ratio of total metal content in plant
tissues (Cp, mg·kg–1) to total metal content in the surrounding environment (Cw, mg·L–1).
It is given by Equation (2) [24]:

BCF =
Cp

Cw
(2)

The experimental water was filtered at the end of the experiment and the precipitates
were collected from the filter paper. The mineral composition of the precipitates was
determined by X-ray diffraction (XRD) (Bruker D8-Advance X-ray polycrystalline powder
diffractometer, Germany). XRD spectra were recorded over an angular range of 10–90◦
with Cu Kα anode (wavelength = 0.154 nm, 40 mA, 40 kV) with a step size of 0.01◦.

2.6. Statistical Analysis

A one-way ANOVA was performed to identify significant differences among treat-
ments, and, when detected, a post hoc Duncan’s Multiple Range Test was performed using
the SPSS 26.0 statistical software. Differences between the two treatments were analyzed
using a t-test (SPSS 26.0). The differences were considered significant when p < 0.05.

3. Results and Discussion

3.1. The Growth State of Plants

Figure 1 shows the comparison of the growth status of the six plants before and
after the experiment. It could be seen that the plants grew well at the beginning of the
experiment, however, the growth status of the six plants showed a large difference after
60 days. which was partly due to the impact of AMD and partly due to the addition of
sodium in the configuration of AMD, and the high concentration of sodium would cause a
series of osmotic and metabolic problems to the plants thus inhibiting their growth [25,26].
In this paper, the growth status of six plants at the end of the experiment was evaluated
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based on four indicators (Table 4): the number of new shoots, the state of old branches, the
phenomenon of roots rotted, and pest infestation.

Figure 1. Comparison of the growth status of each plant before and after the experiment.

Table 4. The growth state of each plant at the end of the experiment.

The Plant
Large Number of

New Shoots
Old Branches in
Good Condition

No Root Rotted No Pest Infestation Aggregate

P. australis × √ √ √
3
√

1×
T. orientalis × × × × 0

√
4×

C. glomeratus
√ × × √

2
√

2×
S. validus × √ × × 1

√
3×

I. wilsonii × √ × √
2
√

2×
J. effusus

√ × √ √
3
√

1×
The “

√
” indicates that the plant meets the growth status described in the table header, while the “×” does

the opposite.

The growth of J. effusus and P. australis was in good condition due to the high number
of new shoots of J. effusus and the good condition of old shoots of P. australis, and both
were free from the phenomenon of roots rotted and pest infestation. I. wilsonii and C. glom-
eratus both passed two indicators; however, observation of Figure 1 shows that although
C. glomeratus had more new shoots, its overall growth status was not as good as I. wilsonii
due to its thinner branches and poor condition of old branches. The growth status of
T. orientalis and S. validus was poor and both were infected with pests during the ex-
periment, which were found to be difficult to eradicate after many repellent measures.
Therefore, based on the overall growth of the plants under AMD stress, the plants with
better growth were selected as J. effusus, P. australis and I. wilsonii.

3.2. Removal of Contaminants in AMD

Figure 2 shows the variation of metals removal rates in AMD with different sulfate
concentrations over time. As shown in Figure 2a, the removal rate of Mn from AMD was
the highest for both P. australis and T. orientalis, with the removal rate reaching more than
99% at 20 days of the experiment and remaining stable afterward. In addition, the removal
rate of Mn by J. effusus was basically above 90%. However, the removal rates of Mn from
AMD by C. glomeratus, S. validus and I. wilsonii were relatively low and decreased in the
later stages of the experiment. This was mainly since some of the roots of these three plants
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had decayed in the later stages of the experiment, leading to the release of the Mn absorbed
by the plants. Moreover, the release of Mn in C3 water samples was stronger than that
in C1 and C2 water samples, which may be due to the saline stress on plants in C3 water
samples. Studies have shown that high concentrations of soluble salts in the environment
can cause damage to plant cells and affect the normal nutrient uptake of plants, which may
eventually cause the stomata of plants to close and plants to wilt or even die [27], so the
wilting and root rot of plants in C3 water samples were more serious.

  

Figure 2. The removal rates of (a) Mn; (b) Zn; (c) Cd in AMD with three sulfate concentrations vs.
time. C1, C2 and C3 represent AMD with different sulfate concentrations (Table 3).

As shown in Figure 2b,c, the trends of Zn and Cd removal rates in AMD by the
six plants were all rising first and then stable, and the Zn and Cd removal rates reached
more than 97% and 90%, respectively, at 60 days of the experiment. From the figure, it could
be seen that the differences in the removal rates of Mn from AMD were greater among the
different plants, while there were no significant differences in the removal rates of Zn and
Cd, indicating that Zn and Cd in the water samples were more stable than Mn and not easily
released by dissolution. Many earlier pieces of literature also reported the difficult removal
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of Mn [28,29], because, under anoxic conditions, Mn is often present in the form of Mn2+,
which is more soluble. Therefore, before treating AMD through CW systems, it needs to be
pretreated to oxidize manganese to insoluble manganese dioxide or manganese hydroxide.

Figure 3 shows that sulfate concentrations in AMD decreased continuously with time.
Among the six plants, the highest SO4

2− removal was achieved by J. effusus. The removal
of SO4

2− from all three concentrations of AMD by J. effusus reached more than 50% after
60 days of the experiment with the highest removal rate of 66.78% (C1). The plant with
the next highest SO4

2− removal was I. wilsonii, which removed more than 35% of SO4
2–

from all three concentrations of AMD after 60 days of the experiment, with the highest
removal rate of 40.74% (C2). This result is closely related to the growth status of the six
plants because sulfur is an indispensable element for the growth and development of all
plants, as well as a structural component element of plants, which is involved in many
important biochemical reactions in plants [30]. Among the six plants, J. effusus had the
highest number of new shoots and I. wilsonii had the best state of old branches, so they
needed more water and nutrients, which explains the higher removal of SO4

2− from AMD
by J. effusus and I. wilsonii.

 

Figure 3. Sulfate concentrations in three concentrations of AMD vs. time. C1, C2 and C3 represent
AMD with different sulfate concentrations (Table 3).

Studies have shown that water quality changes, plant growth, and microbial reproduc-
tion are all affected by the pH of the water [31], so continuous monitoring of pH in water
is necessary. Figure 4 shows the variation profiles of pH of the experimental water over
the operation time. It can be seen that the pH of the experimental water increased from 4
to more than 7 after 20 days of planting the plants in water, which means that the water
changed from acidic to weakly alkaline, and the pH of the water was stabilized at 7–8 in
the later stages of the experiment. This may be partly due to the ability of plants to regulate
the pH of the water during growth, and partly due to the presence of microorganisms, such
as sulfate-reducing bacteria, which can use organic matter in the water as electron donors
to produce bicarbonate while reducing sulfate, leading to an increase in pH [32], which
is important for the removal of metals from the water because the acidity of the solution
allows the metals to be transported in the most soluble form.

The electrical conductivity (Ec) of the solution is an important indicator of its salt
content, ionic content, impurity content, etc. Figure 5 shows the variation profiles of Ec
of the experimental water over the operation time. In CK (control group), the Ec of the
water samples of J. effusus decreased more and the Ec of the water samples of P. australis
changed very little, while the Ec of the water samples of the remaining four plants increased
to different degrees, which was mainly due to some root rot of these four plants in the
late stage of the experiment, resulting in the dissolution and release of internal plant
components. In C1 (low sulfate concentration AMD), the Ec of the water samples of P.
australis, T. orientalis and J. effusus decreased, the Ec of the water samples of S. validus
and I. wilsonii decreased and then increased slightly, while the Ec of the water samples of
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C. glomeratus increased more, which was caused by the combination of its growth status and
weaker purification effect on AMD. In C2 and C3 (medium and high sulfate concentration
AMD), the Ec of the water samples of all six plants decreased, because the removal of
pollutants from the water samples had a more significant effect on the Ec than the release
of the internal plant components, with the largest decrease in the Ec of water samples of
J. effusus, indicating that J. effusus had a greater effect on the removal of pollutants from the
water samples, which was consistent with the previous experimental findings.

  

Figure 4. Variation profiles of pH of the experimental water over the operation time. CK represents
distilled water, and C1, C2 and C3 represent AMD with different sulfate concentrations (Table 3).

3.3. Removal Mechanism of Pollutants in AMD

Table 5 shows the metal concentrations and bioconcentration factors (BCFs) of
six plants in C3 water samples. The BCF indicates the ability of plants to enrich heavy
metals from their surroundings [33], and it could be seen that the BCFs of six plants for each
metal were greater than one, indicating that the accumulation of metals in plant tissues was
greater than that in the growth medium, so all six plants could be used for phytoextraction
of Mn, Zn, and Cd [34]. The order of BCF for most of the plants (except P. australis) was
Mn > Cd > Zn, which indicated that Mn was more readily absorbed by plants, thus ex-
plaining the decrease in Mn removal in AMD due to the poor growth state of plants at the
later stages of the experiment. In addition, the BCFs of plants for Mn followed the order: I.
wilsonii > S. validus > C. glomeratus > J. effusus > T. orientalis > P. australis, the BCFs of plants
for Zn followed the order: I. wilsonii > J. effusus > S. validus> T. orientalis > C. glomeratus >
P. australis, the BCFs of plants for Cd followed the order: I. wilsonii > J. effusus > S. validus>
C. glomeratus > P. australis> T. orientalis. This showed that I. wilsonii had the highest metal
enrichment capacity, followed by J. effusus and S. validus.
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Figure 5. Variation profiles of electrical conductivity (Ec) of the experimental water over the
operation time.

In this paper, the removal mechanism of pollutants in AMD was analyzed by taking
the C3 treatment group as an example. The sulfur, Mn, Zn, and Cd contents of six plants in
CK and C3 water samples at the end of the experiment were detected, the difference was
taken as the sulfur, Mn, Zn, and Cd contents absorbed by each plant in C3 water samples,
and the ratio of the difference to the initial content of pollutants in C3 water samples was
taken as the proportion of sulfur, Mn, Zn, and Cd absorbed by plants in C3 water samples,
as shown in Figure 6.

Table 5. Metal concentrations and bioconcentration factors (BCFs) of six plants in C3 water samples.

Parameters The Plant Mn Zn Cd

Concentration(mg/kg)

P. australis 171.75 ± 11.24 71.01 ± 5.68 5.67 ± 0.96
T. orientalis 210.55 ± 16.69 101.76 ± 10.57 5.54 ± 0.57

C. glomeratus 406.12 ± 20.25 86.32 ± 8.98 6.03 ± 0.84
S. validus 450.23 ± 15.55 111.83 ± 13.54 7.12 ± 1.11
I. wilsonii 503.89 ± 23.57 171.00 ± 15.14 11.48 ± 1.21
J. effusus 393.27 ± 8.89 121.38 ± 9.63 9.11 ± 0.98

BCF

P. australis 9.54 7.10 11.35
T. orientalis 11.70 10.18 11.08

C. glomeratus 22.56 8.63 12.06
S. validus 25.01 11.18 14.24
I. wilsonii 27.99 17.10 22.96
J. effusus 21.85 12.14 18.23
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Figure 6. The content and proportion of (a) sulfur; (b) Mn; (c) Zn; (d) Cd absorbed by the plant in C3
water samples.

Bars and error bars represent the mean ± SD of three replicates. The same letter
in the histogram of a certain plant represents no significant difference at the level of
0.05 (Duncan’s Multiple Range Test). From Figure 6a, it can be seen that J. effusus absorbed
the highest amount of sulfur, which accounted for 18.23% of sulfur in AMD, while the other
five species absorbed a small percentage of sulfur, ranging from 6% to 8%. This is also the
reason for the highest SO4

2– removal rate in AMD by J. effusus. However, compared with
Figure 3, it can be found that the proportion of sulfur absorbed by plants is smaller than
the sulfur removal rate in AMD, indicating that only a part of sulfur in AMD is absorbed
by plants. In addition, white crystals were observed to precipitate from the plant surface
during the experiment, and the higher the sulfate concentration in AMD and the longer
the experiment, the more white crystals were precipitated from the plant. Examination
of the composition of the white crystals using X-ray diffraction (XRD) revealed that the
main component was sodium sulfate (Figure 7), suggesting that the plant first absorbed the
sodium sulfate into its body and then excreted the portion that could not be absorbed and
used by its own tissues, thus allowing the removal of sulfate by harvesting.
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Figure 7. Images and XRD patterns of precipitates on the plant surface.

As seen in Figure 6b–d, among the six plants, the metal uptake by J. effusus and
I. wilsonii was higher than the other four plants. J. effusus absorbed 52.44%, 32.37%, and
41.02% of the Mn, Zn, and Cd contents in AMD, respectively, and I. wilsonii absorbed
38.89%, 43.47%, and 49.27% of the Mn, Zn, and Cd contents in AMD, respectively. However,
compared with Figure 2a–c, it can be found that the proportion of metals absorbed by
plants is smaller than the metal removal rate in AMD, which means that only part of the
metals in AMD are absorbed by plants. Therefore, the precipitates in the water samples
were examined for composition using an X-ray diffractometer (XRD) (Figure 8), and it was
found that the precipitates could be Mn(OH)2, Zn(OH)2, Cd(OH)2, CdSO4, etc., indicating
the existence of other ways (hydrolysis, precipitation, etc.) for the removal of heavy metals
from AMD, which could be related to the change of pH in AMD.

 
Figure 8. XRD patterns of precipitates in water samples.

4. Conclusions

In this paper, six wetland plants (Phragmites australis, Typha orientalis, Cyperus glomer-
atus, Scirpus validus, Iris wilsonii, Juncus effusus) were used as research objects to conduct
an experimental hydroponic study of phytoremediation of AMD, and the following main
conclusions were obtained:

(1) There was no significant difference in the removal rates of Zn and Cd in AMD among
the six plants, while the removal rates of SO4

2– and Mn in AMD varied greatly.
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Therefore, the six wetland plants were screened in terms of their growth status and
the removal effects of the plants on pollutants in AMD, and Juncus effusus, Iris wilsonii
and Phragmites australis were preferably finally selected as the dominant plants for the
treatment of AMD.

(2) The analysis of the uptake of pollutants in plants and the precipitates in AMD showed
that the removal pathway of pollutants in AMD consisted of two aspects: one part
was absorbed by the plants, and the other part was removed by means of hydrolysis,
precipitation, etc. It was noteworthy that the plants first absorbed sodium sulfate into
their bodies and then excreted the part that could not be absorbed and utilized by
their own tissues, which precipitated as white crystals on the plant surface; hence,
sulfate could be removed by harvesting.
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Abstract: As a dangerous source of man-made debris flow with high potential energy, tailings dams
can cause huge losses to people’s lives and property downstream once they break, and their safety
control problem is particularly prominent. The health diagnosis of tailings dams is a complex and
nonlinear problem full of uncertainty. At present, the health diagnosis of tailings dams is mostly
qualitative evaluation or quantitative analysis aiming at a single index, so this study puts forward a
comprehensive quantitative diagnosis method of tailings dam health based on dynamic weight. Slope
stability, deformation stability and seepage stability are taken as project layers, and the diagnosis index
system of the tailings dam is constructed. The quantitative methods of diagnosis indexes of project
layers are proposed. For the dam slope stability project, the safety factor and the reliability index of
tailings dams are determined based on the Monte Carlo method, which can consider the uncertainty
of tailings material parameters. For the deformation stability project, the normal operation values of
deformation rate and deformation amount are determined by analyzing the in situ observation data
and combining them with the numerical simulation results. For the seepage stability project, through
the analysis of seepage and stability, the relationship curve between the depth of saturation line and
the safety factor of anti-sliding stability is established. The norms method is used to determine the
quantitative standards for the diagnosis indexes of the basic layer. Based on the analytical hierarchy
process method and the penalty variable weight method, the method of dynamic weight of the project
layer index is proposed. The proposed methods are applied to a practical engineering project. The
results show that the methods can accurately reflect the health status of tailings dams. This study
provides a new method for evaluating the safety of tailings dams.

Keywords: tailings dam; safety factor; quantitative evaluation; dynamic weight; comprehensive
diagnosis of health

1. Introduction

The tailings pond is a place for storing tailings, and the tailings dam is a dam structure
around the tailings pond, which is a key project to ensure the normal operation of the
tailings pond. At present, there are about 8869 non-coal mine tailings ponds in China,
among which there are about 1112 “overhead tailings ponds”, accounting for 14.3%. Tailings
pond accidents rank 18th in the ranking of hidden dangers in the world, and their hazards
are second only to nuclear radiation and nuclear explosions. [1,2]. On 8 September 2008,
the tailings dam of Xinta Mining in Xiangfen, Shanxi Province, China collapsed, resulting
in the deaths of at least 277 people and having an extremely bad social impact [3]. On
4 August 2014, the Mount Polley tailings dam in Canada broke due to design reasons,
flooded large forests and lakes, and seriously damaged the ecological environment [4]. On
5 November 2015, the Samarco tailings dam in Brazil was liquefied and collapsed due to a
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small earthquake, which killed at least 19 people and polluted 600 km of rivers, causing the
most serious environmental disaster in Brazilian history [5]. In order to ensure the safety of
people’s lives and properties, the Chinese government has paid more and more attention to
the safe operation of tailings dams in recent years and has put forward higher requirements
for the safe operation and risk control of tailings dams. Therefore, the health diagnosis
method of tailings dams is put forward in order to assess its operating health state.

The health diagnosis of tailings dams refers to the evaluation of key performance
indicators based on the design, operation and monitoring data of the tailings dam during
the operation period, and the diagnosis of its health status and defects [6]. At present,
very rich research results [7–10] have been obtained in the health diagnosis of tailings
dams, which are mainly divided into qualitative diagnosis and quantitative diagnosis.
Most studies [11–15] focus on qualitative diagnosis, represented by the safety checklist
method, which lists inspection items according to the relevant laws and regulations, and
then scores and summarizes the overall health status of tailings dams by experts. This
method is convenient to operate and intuitive in its evaluation results, but it has strong
subjective randomness, and its accuracy and credibility are insufficient. In recent years,
scholars have gradually introduced new mathematical methods and theories, such as
fuzzy theory [16–18] and uncertainty measurement theory [19], which have improved
the accuracy of safety evaluation. However, the methods are mostly used to deal with
the relationship between indexes in the diagnosis system, and the diagnosis of the basic
indexes is still mainly qualitative. In terms of the quantitative diagnosis of tailings dam
health, because the tailings dams are mostly constructed in stages and the tailings materials
have obvious anisotropy, heterogeneity and temporal and spatial variability, it is extremely
difficult to quantitatively diagnose their health status. Scholars mainly evaluate the health
status of tailings dams by numerical simulation and mathematical models. For example,
Wang [20] and Xu [21] used the limit equilibrium method to analyze the stability of tailings
dams and diagnose whether the stability of tailings dams meets the requirements; Wang [22]
and Li [23] calculated and analyzed the seepage field through numerical simulation and a
theoretical model, respectively, and evaluated the seepage safety of tailings dams. Dong
established the pre-alarm system based on monitoring data and numerical simulation for
tailings dams, and verified the applicability and accuracy of the system [24]. Li applied
the strength reduction method to analyze the overall stability of the tailings dam [25].
Dong summarized and compared three common tailings dam stability analysis methods:
limit equilibrium method, numerical simulation method and uncertainty method, and
analyzed their applicability [26]. These analytical methods are based on monitoring data
and test data to diagnose the health status of tailings dams, which is more convincing and
scientific than qualitative diagnosis methods. The research is mostly concentrated on a
single working condition and a single index. However, there are many factors that affect the
health status of tailings dams, and the multi-index and multi-factor evaluation method is
more suitable for its safety evaluation. At present, there is little research on comprehensive
quantitative diagnosis of tailings dam health. In the comprehensive diagnosis of tailings
dam health, the index weights have an important influence on the accuracy of the diagnosis
result. Generally, the deterministic weight is used, that is, the weight will not change as the
indicator’s health status deteriorates. The method will lead to a state of imbalance. When a
certain index deteriorates while other indexes are still in a healthy state, the influence of
the deterioration index may be ignored in the traditional diagnosis based on deterministic
weight. Aiming at the existing problems in the comprehensive diagnosis of tailings dam
health, a comprehensive quantitative diagnosis method of tailings dam health based on
dynamic weight is proposed in this study, which provides a new method for reference to
the health diagnosis of tailings dams.

The main contents of this paper are as follows: (a) The diagnosis index system is
constructed and the health grade is determined. (b) Based on the analytic hierarchy process
and the penalty variable weight method, the dynamic weight method of the diagnosis
index is proposed. (c) The quantified methods and standards for the basic-layer diagnosis
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index such as the slope stability, the deformation stability and the seepage stability are
proposed. (d) The method was applied to tailings dam I in Brazil, and its applicability and
accuracy were verified.

2. Materials and Methods

2.1. Construction of Diagnosis Index System for Tailings Dam Health
2.1.1. Diagnosis Index

As the basis of comprehensive diagnosis, whether the diagnosis index is appropriate or
not will directly affect whether the diagnosis result is reasonable and accurate. In this paper,
the diagnosis index system is divided into a project layer, an effect-quantity layer and a basic
layer. With reference to related literatures [27,28] and norms [29,30], combined with the
tailings dam failure modes and hazard factors, the health diagnosis index system of tailings
dam was established. As shown in Figure 1, the project layer of the index system includes
three aspects: slope stability, deformation stability and seepage stability, and the effect
quantity layer is obtained by further concretization of the project layer. The slope stability
project includes the deterministic safety factor and the reliability index, and the reliability
index is added to consider the randomness of physical and mechanical characteristics of
tailings. As a non-linear material, tailings will deform significantly during the life cycle
of the tailings dam. Normal consolidation deformation is beneficial to the stability of
the tailings dam, but for tailings with strong cementation characteristics and structural
properties, excessive deformation will cause its strength to be lost. The deformation stability
project is divided into two indexes: the deformation rate and the total deformation. The
tailings dam is a permeable structure, and the saturation line is the lifeline. Therefore, the
depth of the saturation line is taken as an index of the seepage project. The basic layer is the
bottom layer diagnosis index in the index system, including the in situ monitoring data of
the tailings dam and the corresponding calculation results obtained by numerical analysis
based on the structure of the tailings dam and the physical and mechanical properties of
the tailings.

 

Figure 1. Diagnosis index system of tailings dam health.

2.1.2. Classification of Health Levels

Comprehensive health diagnosis needs to classify the diagnosis results and refer to
relevant literatures and norms [29], and the classification is mainly based on the fourth and
third levels. For example, the Chinese standard Tailing facilities design code [30] is divided
into four levels according to the degree of safety: normal pond, disease pond, risk pond,
and dangerous pond. Guidelines on the safe design and operating standards for tailings
storage [31] issued by Australia is divided into three levels: high, significant and low.
Because the definition of safety degree in the four levels is mainly qualitative description,
the boundary between risk pond and dangerous pond is relatively fuzzy. Therefore, the
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study divides the health levels of tailings dams into three levels. Referring to medical
comments on human health, the levels are determined as healthy, diseased, and dangerous.

2.1.3. Standardization Method of Health Value

The effect quantity of each diagnosis index is different, and it is not commensurable.
Therefore, the index diagnosis result is processed to make it dimensionless, that is, it is
converted into the form of health value, and the influence of index unit and numerical
magnitude is excluded. The health value interval is set to [0, 1], in which the health value
of 1 is the most ideal health state. The specific classification criteria are shown in Table 1.

Table 1. Classification criteria for health values.

Health Level Healthy Diseased Dangerous

Health value [1.0, 0.67) [0.67, 0.33) [0.33, 0]

The health value of the basic index is calculated by standardized Equation (1):

X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 U ∈ (−∞, u∗
1
)

0.67 + 0.33 u1−U
u1−u∗

1
U ∈ [u∗

1, u1
)

0.33 + 0.34 u2−U
u2−u1

U ∈ [u1, u2)

0.33 u∗
2−U

u∗
2−u2

U ∈ [u2, u∗
2)

0 U ∈ [u∗
2,+∞)

(1)

where X is the index health value; U is the diagnosis parameter of the basic index; u1
is the threshold value of the healthy and diseased level; u2 is the threshold value of the
diseased and dangerous level;.u∗

1. and u∗
2. are the upper and lower limits of the diagnosis

parameters, respectively, and the health values exceeding the limits are 1 and 0.

2.2. Determination of Dynamic Weight of Diagnosis Indexes
2.2.1. The Analytical Hierarchy Process

The analytic hierarchy process is a comprehensive evaluation method that combines
qualitative and quantitative analysis by objectively describing subjective judgments [32]. It
has a wide range of applications in comprehensive evaluation [33]. The steps of the analytic
hierarchy process to determine the weight of index are as follows:

(1) Hierarchical structure reflects the relationship between indexes, and the proportion
of each index in the same target layer is quantitatively analyzed by the judgment
matrix A = (aij)n×n . The judgment matrix is positive and the reciprocal matrix is
constructed by comparing the factors in pairs, and is generally represented by the
scale of 1–9.

(2) The constructed judgment matrix has a certain degree of inconsistency, so its rational-
ity is checked for consistency. When the consistency index CR < 0.1, the consistency of
the judgment matrix is considered acceptable, and the weight coefficients are allocated
reasonably.

(3) The maximum eigenvalue λmax and the corresponding eigenvector x are obtained by
solving the judgment matrix A = (aij)n×n, and the weights of indexes are obtained
by normalizing eigenvector x.

2.2.2. The Penalty Variable Weight Method

The deterioration of each index in the project layer will have a significant impact
on the health of the tailings dam. When a certain index deteriorates while other indexes
are still in healthy state, the traditional fixed-weight diagnosis ignores the impact of the
deterioration index. The penalty variable weight method can adjust the weight of the index
according to the change of health value, thereby highlighting the diagnosis index that has
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deteriorated. The method increases the influence of the index with the lower health value
in the comprehensive diagnosis, so as to diagnose the overall health status of the tailings
dam more reasonably and accurately.

According to the definition of the penalty variable weight function [34], the three
axioms of normalization, continuity and monotonicity need to be satisfied, and, combined
with the characteristics of the tailings dam, the variable weight function is constructed
as follows:

S(x) =

⎧⎪⎨
⎪⎩

1 x > 0.67
ln (0.67/x)10 + 1 0.33 < x ≤ 0.67
ln (0.67/x)20 − 7.08 x ≤ 0.33

(2)

where S(x) is the value of variable weight; x is the health value of the index. The vari-
able weight function is composed of three sections: non-penalty function, penalty func-
tion and heavy penalty function, which respectively correspond to three health states:
healthy, diseased, and dangerous. The variable weight value of each index is calculated by
Equation (3):

wi(xi) = w(0)
i Si(x)/

n

∑
j=1

w(0)
j Sj(x) (3)

where xi is the health value of the ith index; n is the number of index; wi(xi) is the variable
weight of the ith index; w(0)

i is the fixed weight of the ith index.

2.3. Diagnosis Method of the Index of Effect Quantity Layer

The data dimensions of each index of the basic layer are different, and the reflections
on the health status of the tailings dam are also different. Therefore, according to the
characteristics of diagnosis indexes, the reasonable quantitative methods are selected to
analyze the indexes, such as numerical simulation, statistical analysis and so on. Then, the
norms method and the confidence interval method are used to determine the quantitative
standard of the index, to complete the quantitative diagnosis of the indexes.

2.3.1. Slope Stability Project

The typical profile of the tailings dam is selected, and the stability of the tailings dam is
calculated by the limit equilibrium method to obtain the slope safety factor corresponding
to deterministic parameters. Considering the variability of tailings material and taking
the mean and standard deviation of its physical and mechanical parameters as random
variables, the reliability analysis is carried out by the Monte Carlo method. A large number
of tailings parameter combinations are extracted and their anti-sliding stability safety
factors are calculated respectively to determine the probability of the tailings dam break
and the reliability index. Quantitative diagnosis is performed by combining the calculation
results of the deterministic safety factor and reliability index. The quantitative standard
adopts the norms method, and the specific quantitative standard is:

(1) Regarding the deterministic safety factor index, the minimum safety factor stipulated
in the code is regarded as u1, which is the threshold value of the healthy and diseased
level. u1*u1 is taken as u∗

1 that is the upper limit value. The norm [35] describes that
the tailings dams with a minimum safety factor of less than 0.95 times the stipulated
value belong to the dangerous reservoir, so this value is taken as u2, which is the
threshold value of the diseased and dangerous level, and the safety factor of 1 is taken
as u∗

2, which is the lower limit value.
(2) Regarding the reliability index, referring to the value in the norm [35], the specific

values are shown in Table 2.
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Table 2. Reliability index of hydraulic structure.

Structural Safety Level 1 2 3

Category of
destruction

The first 3.7 3.2 2.7
The second 4.2 3.7 3.2

The second category of destruction is suitable for sudden brittle destruction, and is
mostly applied to concrete structures with higher requirements. Therefore, the reliability
index of the tailings dam refers to the first category of destruction. According to the
corresponding relationship between reliability index and failure probability, the hierarchical
corresponding relationship between the structural safety level and the probability of tailings
dam failure is shown in Table 3.

Table 3. Safety level and dam-break probability of the tailings dam.

Structural Safety Levels Tailings Dam Reliability Index Dam Break Probability

1 1 3.7 1.08 × 10−4

2 2,3 3.2 6.87 × 10−4

3 4,5 2.7 3.47 × 10−3

In the norms [29], the magnitude of the probability of dam failure is taken as the
basis for the classification of risk significance, and the significance difference of different
health levels is reflected by enlarging or reducing the failure probability by one magnitude.
According to the reference manual, the value in Table 2 is taken as u1, and the value is
reduced by two orders of magnitude as u∗

1. The value in Table 2 is enlarged by one order of
magnitude as u2, and the u2 is enlarged by one order of magnitude as u∗

2.

2.3.2. Deformation Stability Project
Deformation Rate

The normal operating value of deformation rate is determined by statistical analysis of
historical monitoring data, such as curve fitting and statistical regression. The quantitative
standard adopts the norms method, which stipulates that the yellow warning value is 1.3
times the normal operating value, the orange warning value is 2 times the normal operating
value, and the red warning value is 3 times the normal operating value. Therefore, u∗

1,u1,u2,
and u∗

2 are 1, 1.3, 2 and 3 times of the normal operating value respectively.

Total Deformation

After the tailings dam stops filling sub-dam, there is no new load on the upper part,
and the deformation of the dam body is mainly the secondary consolidation deformation
of tailings. For tailings with cementing properties, creep deformation may lead to loss
of strength and eventually instability failure. The quantification of the total deformation
index adopts the numerical analysis. Through forward and inverse analysis of the creep
deformation of the tailings dam, the total deformation of the dam body can be calculated
more accurately. Deformation failure is defined as a penetrating failure area formed by
excessive deformation.

Taking the safety factor of deformation as the quantitative index, the greater the safety
factor, the greater the safety margin of the total deformation index. When the safety factor
is 1, the monitored deformation of the dam body reaches the destruction deformation, that
is, the tailings dam is on the verge of instability. Therefore, u∗

2 and u2 take 1 and Fs, which
is the slope safety factor specified in the norm. Referring to relevant norms and study, u1
and u∗

1 take 2 and 2 * Fs.
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2.3.3. Seepage Stability Project

The depth of saturation line of the tailings dam has an important influence on the
stability of the slope, so the quantitative basis of the saturation line index is the coupling
relationship between the depth of saturation line and the stability of the slope.

The distribution of the saturation line under different dry beach lengths is obtained by
seepage calculation. Then, the stability safety factors of the dam slope corresponding to
different saturation lines are calculated, so as to establish the coupling relationship between
the depth of saturation line and the stability safety factor. According to the relationship
curve, u1 takes the depth of saturation line corresponding to Fs. u∗

1 is twice of u1, and u2 is
0.95 times of Fs. u∗

2 is the minimum depth of saturation line specified in the norm.
Finally, the flow chart of this paper can be shown in Figure 2.

 

Figure 2. The flow chart of diagnosis process.

3. Case Study

The tailings dam B-I at Córrego do Feijão Iron Ore Mine (dam I) located in Brumadinho,
Brazil, was constructed in 1976. The tailings discharge was stopped in July 2016. Before the
dam break, the height of the tailings dam was 86 m and the storage capacity was 12.7 Mm3.
On 25 January 2019, the tailings dam broke, and about 9.7 Mm3 tailings flowed out of the
pond, killing 235 people and flooding an area of about 40 km2 downstream [36]. Figure 3 is
the satellite image taken before the dam break, in which � is the monitoring point of the
saturation line and • is the monitoring point of the deformation.

 

Figure 3. Satellite image of tailings dam I.

3.1. Diagnosis of the Slope Stability Project

Tailings dam I is a Class 3 dam, and the minimum safety factor specified in the
norm [30] is 1.3. According to the quantitative method of the effect quantity index, the
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quantitative standards of deterministic safety factor index and reliability index are deter-
mined. Specific diagnostic criteria are shown in Table 4.

Table 4. Diagnosis criteria of the effect quantity indexes (tailings dam I).

Project Layer Effect Quantity Layer Healthy Diseased Dangerous

Dam slope
stability

Safety fator Normal operating
conditions [1.690, 1.300] (1.300, 1.235] (1.235, 1.000]

Reliability Reliability index [4.348, 3.200] (3.200, 2.464] (2.464, 1.485]
Probability of failure [6.87 × 10−6, 6.87 × 10−4] (6.87 × 10−4, 6.87 × 10−3] (6.87 × 10−3,6.87 × 10−2]

Deformationstability
Deformation
rate(mm/d)

1 [0.244, 0.317) [0.317, 0.488) [0.488, 0.732]
2 [0.203, 0.264) [0.264, 0.406) [0.406, 0.609]
3 [0.222, 0.288) [0.288, 0.443) [0.443, 0.666]
4 [0.240, 0.312) [0.312, 0.480) [0.480, 0.720]

Total deformation Deformation safety
factor [2.6, 2) [2, 1.3) [1.3, 1]

Seepagestability Depth of the
saturation line

PZ-4C [13.60, 6.80) [6.80, 4.40] [4.40, 2.47]
PZ-5C [22.60, 11.30) [11.30, 7.50) [7.50, 2.87]
PZ-24C [28.92, 14.46) [14.46, 9.21) [9.21, 3.20]
PZ-23C [36.50, 18.25) [18.25, 11.46) [11.46, 3.53]

The typical section of the tailings dam is selected to establish a two-dimensional model,
as shown in Figure 4. The iron content of the tailings is more than 50%, which makes the
bulk density of the tailings very high, about 26 kN/m3. The material parameters required
in the stability calculation refer to the test data [37], as shown in Table 5.

 

Figure 4. Typical profile of tailings dam I.

Table 5. Mechanical parameters of the materials.

Parameters γ (KN/m3) c (kPa) ϕ (◦) kh (m/s) kv/kh

Coarse tailings 26.5 0 33 5.00 × 10−6 0.2
Fine tailings 26.0 0 32 1.00 × 10−7 0.2

Compacted tailings 27.5 0 36 5.00 × 10−7 0.2
Ultra-fine iron ore 25 0 35 1.20 × 10−6 1

Compacted soil (laterite) 20 12 29 1.20 × 10−9 1
Slimes 23 0 25 1.00 × 10−7 0.2

Foundation soil 23 15 30 9.30 × 10−7 1

The calculation results of stability and reliability are shown in Figure 5. The most
dangerous sliding surface of the tailings dam is located between the downstream toe and
the fourth sub-dam, and its deterministic safety factor is 1.307, which is basically consistent
with the results of the accident investigation report. The failure probability is 1.45 × 10−3,
and the reliability index is 2.704. The diagnostic results determined by the quantified
standard and the Equation (1) show that the health value of the safety factor index is 0.6759,
and the health value of the reliability index is 0.4376.
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Figure 5. Calculation results of stability and reliability of tailings dam I.

3.2. Diagnosis of the Deformation Stability Project
3.2.1. Deformation Rate Index

The deformation monitoring data is derived from the radar monitoring data, including
the vertical component and a small amount of the horizontal component. Because the
horizontal component is close to the noise level, the vertical deformation is used for
diagnosis of the deformation rate index. Figure 6 shows the vertical deformation curve of
the points, with No.1, No.2 and No.3 measuring points located at the bottom of the dam
and No.4 measuring point located at the top of the dam.

 
Figure 6. Vertical deformation curve of the measuring points.

Based on the monitoring data from 6 January 2018 to 20 December 2018, it can seen that
the deformation in the historical period has no obvious acceleration stage, and the overall
deformation is uniform. Therefore, the average deformation rate in the period is taken
as the normal operation value. According to the determination method of quantification
standard, the quantification standard of each point is obtained, which is shown in Table 4.
The standard is used to diagnose the average deformation rate of each point within one
month before the dam break, and the healthy value of the deformation rate index before
the dam break is obtained. The specific results are shown in Table 6.

Table 6. Diagnostic results of the deformation rate indicator.

Measuring Points 1 2 3 4

Deformation rate (mm/d) 0.82 0.33 0.28 0.42
Health value 0.000 0.5066 0.7100 0.4479

3.2.2. Total Deformation Index

Because of the high iron content in the tailings, the oxidation of iron will lead to
cementation between particles. The test results [37] also show that under the constant load,
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the continuous creep of the tailings may lead to obvious and rapid strength loss, so the
strain-softening model is adopted in the simulation calculation.

The initial stress state is obtained by simulating the accumulation process of the
tailings dam. Then the creep deformation is added to the calculation, and the deformation
is increased step by step, and the stability of the tailings dam after creep is calculated step
by step until the tailings dam is destroyed. The investigation report shows that when
the added creep is consistent with the deformation indicated by the monitoring data, the
strength loss of tailings will be caused and dam failure will occur. Combined with the
diagnostic standard shown in Table 4, the safety factor of the total deformation is 1, and the
total deformation index of the tailings dam is determined to be in a dangerous state and
the health value is 0.

3.3. Diagnosis of the Seepage Stability Project

The seepage field of the dry beach with lengths of 50 m, 100 m, 125 m, 150 m and 200 m
is calculated. The results show that the saturation lines all overflow from the drainage body
between the fifth and sixth sub-dams, and then flow into the downstream channel through
the drainage channel on the dam surface, which is consistent with the actual situation. By
calculating the stability safety factor of the dam slope corresponding to the seepage field
under various working conditions, the relationship curves between the depth of saturation
line at PZ-4C, PZ-5C, PZ-24C and PZ-23C points and the stability safety factor of the dam
slope are established, as shown in Figure 7.

 
Figure 7. The relation curve between the depth of saturation line and the safety factor.

According to the curve, the quantification standard of each point is determined, as
shown in Table 4. The diagnosis data adopts the average value of the depth of the saturation
line within one month before the dam break, and the diagnosis results are shown in Table 7.

Table 7. Diagnosis results of the saturation line index.

Measuring Points PZ-4C PZ-5C PZ-24C PZ-23C

Depth of the saturation line (m) 14.29 21.48 15.55 10.47
Health value 1.000 0.9673 0.6949 0.2888

3.4. Comprehensive Health Diagnosis

The health value of the project-layer index is obtained by summarizing the health
value of the effect quantity index, and the health values of the slope stability project, the
deformation stability project and the seepage stability project are 0.5568, 0.2080 and 0.7377,
respectively, as shown in Table 8. The slope stability project is in a diseased state, and the
deformation stability project is in a dangerous state. Before the dam break, the seepage field
of the tailings dam is in good condition, and the depth of saturation line has a downward
trend year by year, and the seepage stability project is in healthy state.
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Table 8. Health values of each layer index.

Project Layer Effect Quantity Layer Basic Layer

Dam slope stability 0.5568
Safety fator 0.6759 Safety fator of dam slope 0.6759
Reliability 0.4376 Reliability index 0.4376

Deformation
stability 0.2080 Deformation rate 0.4161

1 0.0000
2 0.5066
3 0.7100
4 0.4479

Total deformation 0.0000 Deformation safety factor 0.0000

Seepage
stability 0.7378 Depth of the

saturation line
0.7378

PZ-4C 1.0000
PZ-5C 0.9673
PZ-24C 0.6949
PZ-23C 0.2888

The analytical hierarchy process method was used to weight the project-layer indexes,
and eight experts were invited to give judgment matrix considering the importance of each
index to the overall health status of the tailings dam and the operation characteristics of the
tailings dam.

The consistency indexes of the judgment matrices are all less than 0.1, and the con-
sistency test meets the requirements. The weight of the project-layer index is obtained by
solving the eigenvalue of the judgment matrices. As can be seen from Table 9, the opinions
of experts are relatively unified, and they all think that the slope stability project is more
important. Combining the opinions of eight experts by the arithmetic average method, the
fixed weights of the project-layer index are w = (0.4483, 0.2612, 0.2905). The health value of
the slope stability project falls within the diseased state. Therefore, the penalty function
should be adopted in Equation (2), and its value of variable weights should be determined
to be 2.5813. Similarly, the values of variable weights of the project layer indexes obtained
by Equation (2) are S = (2.8513, 16.3090, 1.000), and the final variable weights calculated
by Equation (3) are w0 = (0.2193, 0.7309, 0.0498). The health value of the tailings dam
based on dynamic weight is 0.3109 calculated by the weighted average method, that is,
the tailings dam before the dam break was in a dangerous state, which is consistent with
the actual situation of the tailings dam. The result proves the accuracy and applicability
of this method. The health value of the tailings dam based on fixed weight is 0.5283. The
traditional diagnosis method based on fixed weight will lead to the distortion of diagnosis
results, while the dynamic weight can effectively solve the problem of state imbalance and
improve the reliability of diagnosis results.

Table 9. Weighting results of the project-layer indexes.

Experts A1 A2 A3 A4 A5 A6 A7 A8 Results

project-layer
Slope stability 0.4934 0.5396 0.2402 0.6250 0.3874 0.1740 0.6337 0.4934 0.4483
Deformation 0.3108 0.1634 0.5499 0.1365 0.1692 0.3715 0.1919 0.1958 0.2612

Seepage 0.1958 0.2970 0.2098 0.2385 0.4434 0.4545 0.1744 0.3108 0.2905
Consistency index 0.0517 0.0088 0.0176 0.0157 0.0176 0.0166 0.0089 0.0516 -

4. Conclusions

(1) The index system of comprehensive diagnosis of tailings dam health is established,
and the dynamic change of index weight is realized based on the analytical hierarchy
process and the penalty variable weight method, which increases the importance of
the deterioration index in comprehensive diagnosis and makes the diagnosis result
more accurate and reasonable.

(2) Based on numerical simulation and the statistical analysis method, the diagnosis
method of the indexes of effect quantity layer is put forward, and the quantitative
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standard of each index is determined. The comprehensive diagnosis method of
tailings dam health based on monitoring data is put forward, and the quantitative
diagnosis of tailings dam health status is realized.

(3) This method was applied to tailing dam I, and the health value of 0.3109 indicates that
the tailings dam is in a dangerous state before the dam failure, which is consistent
with the actual situation and verifies the accuracy and applicability of the method.

The comprehensive diagnosis based on the dynamic weight of tailings dam is very
valuable. This method overcomes the influence of artificial subjective judgment and
provides a new method for evaluating the safety of tailings dams.
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Abstract: The main functions of a three-dimensional test device for simulating rock formations and
surface movement affected by underground coal mining were described in detail, and a series of
similar related tests were carried out. The device consisted of an outer frame, a pressurization unit, a
pulling unit, and a coal seam simulation portion. Using this test device, supported by monitoring
methods such as the three-dimensional laser scanner method, a model test study on the surface
subsidence characteristics caused by coal seam mining was carried out. Combined with the field
measurements, the transfer law of surface subsidence caused by coal seam mining was revealed, and
the whole surface subsidence response process was analyzed. The experimental results show that
the subsidence caused by mining disturbances below the coal seam accounts for 79.3% of the total
subsidence, which is the dominant factor of the total surface subsidence. After long-term surface
observations, surface subsidence can be divided into four stages after coal mining, and the settlement
value of the obvious settlement stage accounts for more than 60% of the total settlement value. The
above test results fully reflect the feasibility and practicality of the three-dimensional test device to
simulate rock strata and surface movement and provide a new experimental research tool that can be
used to further study the surface subsidence characteristics and control caused by coal mining.

Keywords: rock formations; surface subsidence law; surface subsidence process; 3D test device; 3D
laser scanning

1. Introduction

With the transformation and upgrade of coal development and people’s increased
awareness of environmental protection issues, the vast majority of coal mines in China
will encounter problems related to coal pressing to protect buildings, structures, water
bodies and other protected bodies during the construction and production process, as well
as mining problems that are influenced by protective bodies, that is, problems related to
subsidence control and coal mining activities under special conditions, seriously restricting
the production of coal mining enterprises [1–3]. Fundamentally, technical measures that
reduce subsidence and control loss mainly include filling mining, partial mining, coordi-
nated mining, etc. [4–7]. Filling mining is a method that has been proven to solve pressed
coal problems. The use of this method supports the rock mass over the mined-out area,
thereby alleviating surface subsidence, reducing damage to surface buildings, achieving
the goals of efficiently mining coal mine resources and of controlling surface damage [8–13].
Controlling the deformation and destruction of structures, such as villages, railways and
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other structures is one of the problems that the mining industry urgently needs to solve.
After mining, stress in the overlying rock mass is redistributed, causing local stress con-
centration in the surrounding rock, causing the top of the mined-out area to sink, become
crushed, or fall [14–16]. As the stress in the support body changes, surface deformation
will be induced within a certain range [17–20]. Therefore, studying the influence of strata
movement and surface subsidence on the villages and buildings on the surface during and
after coal mining is of great significance [21–23].

There are many theoretical methods and monitoring methods related to surface sub-
sidence, and many achievements have been made [24,25]. For example, Sun proposed a
theoretical method to predict surface subsidence caused by inclined coal seam mining [26].
Dong studied the influence of different factors on tomography [27]. Existing test devices
for similar coal mining material simulations are mostly two-dimensional test benches
that simulate the roof and rock formation movement in coal mines and represent mature
technology, but there are certain surface movement limitations that must be accounted for
during simulation [28–30]. The control process of the coal seam simulation components in
three-dimensional test equipment is complex, and successful trial production is difficult or
is limited by the bearing capacity, function and size, making it difficult to effectively com-
bine these simulations with engineering practices to carry out model test research [31–33].
Therefore, in order to better study the strata and surface movement characteristics caused
by coal mining, this paper adopts a method combining field measurements and the de-
velopment of a test device to conduct simulation tests. Through the “three-dimensional
test device to simulate the influence of underground coal mining on strata and surface
movement”, developed by the authors of this paper, combined with three-dimensional laser
scanning technology, simulation tests determining surface subsidence after coal mining are
carried out. Combined with long-term surface observations, the laws of strata and surface
movement caused by coal mining are revealed.

2. Testing Device

2.1. The Overall Structure of the Test Device

This paper introduces a three-dimensional test device that simulates the impact of
underground coal mining on rock formations and surface movement, as shown in Figure 1.
This device belongs to independent research and development, and has obtained the
Chinese utility model patent authorization. And entrust Qingdao local testing machine
manufacturers to cooperate in manufacturing. It includes an outer frame, pressurization
unit, pulling unit, and coal seam simulation portion. The coal seam simulation portion
is located inside the outer frame, the upper surface of which is filled with similar m coal
seam materials, and the coal seam simulation portion consists of multiple mining blocks
and multiple reserved coal pillar assemblies. The pressurization unit is located on the
top of the outer frame, and the pressurization unit is connected to the outer frame by the
pressurizing position adjustment unit. The pulling unit is located at the bottom of the
outer frame, and the pulling unit is connected to the outer frame by the pulling position
adjustment unit. This device can be combined with the coal mining site to simulate the
mining process and can simulate the variable mining height, controlled mining speed and
ease of pressurization, and laying of similar materials.
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(a) (b) 

Figure 1. Schematic diagram of the device structure: (a) the top structure and components of the
device; (b) bottom structure and components of the device.

2.2. Introduction of Function and Test Method

Using a “three-dimensional test device for simulating surface movement in underground
coal mining” that was developed by the authors independently to carry out the test, a certain
degree of model simplification was carried out during the physical processing process of the
test device. The specific size of the model is as follows: x × y × z = 0.60 m × 0.60 m × 0.80 m.
A detailed image of the model and its size parameters is shown in Figure 2.

Figure 2. The three-dimensional test device for simulating surface movement in underground
coal mining.

This device mainly addresses the technical problems that are present in the existing
technology, thus providing a three-dimensional simulation test device and test method that
can simulate different coal seam mining schemes and that can facilitate the observation
of surface deformation characteristics, as shown in Figure 3. In order to achieve the
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design purpose of the device, it was determined that the overall structure of the device
should mainly consist of the outer frame, pressurization unit, pulling unit, and coal seam
simulation portion:

Figure 3. Structure diagram of the test device. The numbers in the diagrams can be described as
follows: 1—outer frame, 11—column, 12—the first pressure plate, 13—the second pressure plate,
14—the first baffle, 15—second baffle, 16—threaded hole, 17—the first threaded hole, 18—bearing,
19—transparent acrylic plate, 2—pressurization unit, 21—the first ball slide, 22—hydraulic jack, 23—
loading plate, 3—pulling unit, 31—third ball slide, 32—drawing instrument, 33—pull rod, 4—coal
seam simulation part, 41—mining coal block, 42—reserved coal pillar assembly, 5—similar materials
for coal rock formations, 6—pressurizing position adjustment unit, 61—central rail beam, 62—second
ball slide, 63—upper track column, 64—upper rail beam, 65—upper slide, 66—lower slide, 67—first
slide, 7—pulling position adjustment unit, 71—fourth ball slide, 72—lower track post, 73—lower
track beam, 74—second slide. (a) direction view 1 (b) left view (c) direction view 2 (d) 3D schematic.

(1) The outer frame includes columns located in the four corners. Multiple threaded
holes are spaced throughout the column. Four pressure plates are installed in four columns
on all sides with bolts.

(2) The coal seam simulation portion is composed of mining coal blocks and reserved
coal column components that are staggered and connected on the horizontal plane. The
coal seam simulation portion is connected with four pressure plates, which are all around
this part of the model.

(3) The pressurization unit is set at the top of the outer frame and is connected to the
outer frame by the pressurizing position adjustment unit. The pressurization unit is used
to pressurize the surface of coal rock formations that are composed of similar material; if
surface deformation observations are required, then the test geometric similarity ratio can
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be adjusted to make the whole range of the model correspond to the whole stratum. Then,
there is no need to apply the surface pressure to the model.

(4) The pulling unit is located at the bottom of the outer frame and is connected by the
pulling position adjustment unit to the outer frame. The pulling unit is used to pull down
the mining coal block in order to simulate coal mining.

In order to coordinate the operation of the unit and to work closely with the various
parts of the system, the detailed features of each component were designed so that the
functions could be achieved without affecting the overall structure of the equipment: The
reserved coal pillar assembly and the mining block comprise a rectangular steel body with
a bottom opening, a waist through-hole is located on the inner four walls of the rectangular
steel body, and the top also has a welded nut that extends inward and that is connected
to the pulling unit. The coal seam simulation portion is bolted through the threaded hole
to connect it to the four pressure plates; the surface is also filled with a similar coal seam
material surrounded by baffles that are set on all sides, and the front baffle is fitted with
a transparent acrylic plate to observe the overall deformation of the specimen during the
experimental process. The pressurization unit consists of the first ball slide, hydraulic jack
and load plate; the first ball slide is connected to the pressurizing position adjustment unit,
the position of the loading plate corresponds to the surface position of the similar coal
rock formation material, and the pressurization unit is connected to the outer frame by the
pressurizing position adjustment unit. The pressurizing position adjustment unit consists
of a central rail beam, a second ball slide, an upper rail column, and an upper rail beam.

By combining the overall structure and the other components, the device can effectively
simulate the surface subsidence characteristics of coal seam mining. During the test,
the HandyScan700 three-dimensional laser scanner was used to scan the surface of the
model multiple times in order to obtain the deformation characteristics of the model. The
HandyScan700 three-dimensional laser scanner includes a handheld scanner as well as the
control host and control software VXelements, as shown in Figure 4. During operation, the
scanner is able to calculate the shape of the object accurately based on the triangulation
principle combined with the positioning spots on the object by projecting the laser mesh
onto the object being tested, and the camera is used to capture the laser mesh shape. The
following are the positive characteristics of this method: fast, non-contacting, high-density,
high-precision, digital, automatic, etc.

 
Figure 4. HandyScan700 three-dimensional scanner and support equipment.
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2.3. Test Steps

When using this device to simulate underground coal mining processes and to observe
its surface movement features, the following steps should be followed:

(1) According to the actual situation of the project site, develop pre-simulation mining
conditions (mining area, number of working faces, mining methods, etc.), assemble the
test device;

(2) Obtain the on-site coal seam and rock formations parameters, and formulated
similar materials indoors;

(3) Test to determine the parameters of the formulated similar materials;
(4) Place similar materials in the test device, arrange the sensors, and compact the layers;
(5) Place the three-dimensional scanners in the surface deformation observation po-

sitions of the test device and scan and store the surface and building deformation and
movement in real-time;

(6) Conduct similar simulation tests according to the established mining simulation
scheme: the non-slip fastening screws between the mining coal blocks will be loosened, and
the pulling mechanism will be pulled down one by one to simulate coal mining. After the
test is completed, according to the corresponding data and the processing steps, conduct
the analysis.

3. Characteristics Analysis of Surface Subsidence in Coal Seam Mining

3.1. Test Scheme

During the field engineering measurement process, due to the influence of building
surfaces and other factors, irregular monitoring points will be laid down according to the
actual situation on the surface to obtain the subsidence law of the monitoring polyline on
the surface. Two-dimensional planar or the three-dimensional spatial features of surface
subsidence can only be studied by means of indoor experiments. In order to better analyze
the dynamic spatial characteristics of surface subsidence caused by coal seam mining, a test
device for simulating rock formations and surface movement can be used, and supplemen-
tary research and analysis of the temporal and spatial surface subsidence characteristics are
conducted through the test results.

3.1.1. Formulation Ratio of Similar Materials

The test scheme is designed based on a similar material test design principle, combined
with the characteristics of the overlying strata of Tangshan ore. To highlight the geological
features of the thick, loose layers on the surface, the thickness of the loose layer on the
surface is set to 300 m, and the parameters of the remaining rock formations are listed in
Table 1.

Table 1. Formulation ratio of the test.

Layer
No.

Lithology Thickness/m Model
Thickness/cm

Unit
Weight
g/cm3

Formulation
Ratio

Amount of Material/kg
Total

Weight
Sand

Calcium
Carbonate

Gypsum Water

R4 Loose Layer 300 33 0.95 673 182.40 156.34 18.24 7.82 20.27

R3 Bedrock
Layer 300 33 1.60 537 230.40 192.00 11.52 26.88 25.60

R2 Basic Roof 100 11 1.70 755 73.44 64.26 4.59 4.59 8.16

R1 Immediate
Roof 30 3 1.80 773 34.56 30.24 1.30 3.02 3.84

Total 730 80 520.80 442.84 35.65 42.31 57.87

3.1.2. Test Steps

(1) Design the similarity ratio of the test according to the purpose, calculate the material
formulation ratio based on the similarity ratio and rock formations, and determine the
formulation scheme;
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(2) Adjust the mining block according to the test scheme and raise the expected mined
coal seam range, as shown in Figure 5a;

(a) (b)  

(c) (d) 

Figure 5. Operating steps of the test process: (a) adjusted mining blocks; (b) layered laying model;
(c) placement location punctuation; (d) three-dimensional scanning monitoring.

(3) Formulate the similar material of each rock formation according to the test scheme,
lay the model out, and compact each layer, as shown in Figure 5b;

(4) Lay out the three-dimensional scanning positions of the surface on the model, as
shown in Figure 5c;

(5) Mine the model step-by-step and lower the pre-raised mining blocks to their
original position while using a three-dimensional laser scanner to monitor the vertical
deformation of the surface on the model, as shown in Figure 5d.

3.2. Analysis of Test Results
3.2.1. Surface Subsidence Characteristics of Coal Seam Mining

In order to compare the surface subsidence morphology after coal seam mining,
a cloud map of the vertical displacement on the surface of the model and a schematic
of the measuring line of the model are calculated by Geomagic Control X, as shown in
Figures 6 and 7, respectively. After coal seam mining, the surface subsidence pattern is
symmetrically distributed along the working surface. The sediment volume gradually
decreases from the center to the edges of the mined-out area: With coal seam mining, the
surface subsidence gradually radiates in the direction of the work surface, and the peak
settlement position gradually shifts from the center to the back of the mined-out area.
The early stage of mining has a greater impact on surface subsidence. During coal seam
mining, partial positive vertical displacement occurs. At the beginning of coal seam mining,
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positive vertical displacement is concentrated at the edges of the mining area and at the
edges of the model. In the mid to late stages of mining, positive vertical displacement
is more distributed at the edges of the surface subsidence, which is because the stress
is redistributed during the surface subsidence, resulting in the formation particles being
squeezed and the upward vertical displacement occurring.

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. Cloud map of cumulative settlement of the model: (a) first mining; (b) second mining;
(c) third mining; (d) fourth mining; (e) fifth mining.
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Figure 7. Schematic diagram of the model measuring line.

The statistical average and maximum sedimentation curves of the surface after coal
seam mining are shown in Figure 8. As seen from the figure, the average and maximum
surface settlement volume gradually increase with the work surface, and after the coal
seam is mined out, the average surface settlement volume is about 0.837 mm, and the
maximum settlement volume is about 1.841 mm.

Figure 8. Statistical curve of surface settlement.

The sediment characteristics of the surface measuring line are shown in Figure 9,
and the corresponding settlement monitoring curve is shown in Figure 10. According to
Figure 9, after coal seam mining, the surface subsidence parallel to the mined-out area is
presented as asymmetrical distribution, the settling pattern is similar to the spoon type,
the central settlement of the mined-out area is larger, the edge settlement is smaller, the
sedimentation slope is larger, the slope is steeper on the open-off cut side, the sedimentation
slope is smaller, and the slope is relatively slower on the working face side.
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Figure 9. Three-dimensional strip diagram of surface measuring line settlement.

Figure 10. Monitoring curves of surface measuring line settlement.

3.2.2. Transfer Law of Surface Subsidence in Coal Seam Mining

In order to compare the impact of coal seam mining on the sediment at different areas
of the surface, the surface range right above the five mining stages is divided into five areas
to analyze the changes in the measuring line sediment in the five regions, as shown in
Figure 11. The analysis shows that:
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Figure 11. Region division for surface analysis.

(1) The changes in average sedimentation in different surface regions are shown in
Figure 12. As seen from the figure, all the surface regions saw an increase in the amount
of sedimentation, and the increase gradually decreased. After the stability of the strata,
the total settlement is the largest in area II, with an average of 1.323 mm, and the smallest
overall settlement is observed in area V, with an average of 0.334 mm. Therefore, the early
middle stage of the surface in the mined-out area is the area with the largest amount of
settlement, and measures need to be taken to focus on prevention and control.

Figure 12. Histogram of average sediment volume change in different regions of the surface.

(2) The radar map of the average sedimentation for the different surface regions
is shown in Figure 13. With the exception of area I, each area settles when the coal
seam corresponds to the previously mined area, and the amount of advanced settlement
caused by coal seam mining in areas II to V is 0.309 mm, 0.118 mm, 0.105 mm, 0.091 mm,
respectively, with an overall decreasing trend being observed. At the same time, during
the third mining operation, area V shows a mild response, indicating that as the range of
the mined-out area increases, the degree of surface subsidence advance that is caused by
the continuously advancing working surface is gradually reduced, but the advance impact
range gradually increases.
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Figure 13. Radar map of average sediment volume change in different regions of the surface.

(3) Different coal seam mining stages have different degrees of influence on the
corresponding surface. The settlement increments caused by coal seam mining right
under the five areas are 0.464 mm, 0.424 mm, 0.441 mm, 0.249 mm, and 0.253 mm, and
exceed the settlement increments caused by coal seam mining in other areas. Taking
area III as an example for analysis, the surface subsidence caused by the first two, the
third and fourth, and the fifth mining simulations accounted for 11.6%, 79.3%, 9.1% of
the total subsidence, respectively. The analysis shows that the surface subsidence is the
superposition of advanced settlement caused by coal seam mining, disturbance settlement
caused by subsurface coal seam mining, and prolonged post-mining subsidence. The
settlement caused by the disturbance of subsurface coal seam mining is the dominant factor
in total surface subsidence.

4. Field Engineering Validation

In order to analyze the surface subsidence characteristics of coal seam filling mining
in the Tangshan mine, a regional surface subsidence observatory was established in the
corresponding surface area. The station layout is shown in Figure 14 and has a total of
87 observation points, the average observation point spacing is 30 m, the total length of
the measuring line is 2700 m, and both ends of the measuring point distance from the
T3292 working surface boundary are located about 750 m or so away [34].

 

Figure 14. Measuring line layout.
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Surface subsidence observation line B was established in the main section and was
located on both sides of the main section of the working surface and had a total length of
470 m as well as a total of 19 observation stations from B1 to B19. The average distance
between the observation positions was 26 m, and the surface subsidence caused by mining
on the T3292 working surface was observed.

By studying the influence range of the surface subsidence of the working surface and
analyzing the long-term observation results of each measuring point of measuring line B,
the settlement vs. time curve of some observation positions could be obtained, as shown
in Figure 15.

Figure 15. Settlement vs. time curve of measuring line B.

In order to study the surface subsidence response process, we take observation posi-
tions B11, B14s, and B16 as examples. The advanced influence surface subsidence process
can be divided into four stages, as shown in Figure 16.

Figure 16. Advanced impact stage division.
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Combined with field engineering tests, the field engineering situation and the analysis
of the device test results are consistent. The study reveals the following:

(1) Stage A—No settlement stage. Before the working surface advances to 240 m, each
measuring point settlement value is small, fluctuating around the threshold value, and
the average value is lower than the surface subsidence threshold value (10 mm). Multiple
observations on the surface lasting more than a dozen months showed small changes in
the settlement, indicating that the observation area is far away from the mining area and
that it is only slightly affected by the advance.

(2) Stage B—Slight settlement stage. When the working surface advances to the
position of 240-60 m ahead of the measuring point, the curve slope increases, the settle-
ment increased to 30 mm, exceeding the threshold of surface subsidence (10 mm), the
surface of the observation area begins to be affected by the advance, and displacement
settlement occurs.

(3) Stage C—Significant settlement stage. After the working surface advances to the
position of 60 m ahead of the measuring point, the settlement exhibits a major increase as
the working surface advances. After mining, the settlement continues to increase over time,
with the final settlement of each measuring point increasing to more than 70 mm.

(4) Stage D—Residual settlement stage. After experiencing significant growth, the
settlement of each observation point and the ground surface gradually reach a stable state;
the stabilized subsidence value is affected by the location of the measuring point and the
surface situation, which has a larger stabilized subsidence value near the strike of the
working surface inclination and is close to the middle position.

5. Conclusions

(1) A “three-dimensional test device for simulating surface movement in underground
coal mining” was self-designed and developed. The overall structure of the device consisted
of an outer frame, pressurization unit, pulling unit, and coal seam simulation portion
that can effectively simulate the law of surface subsidence caused by underground coal
seam mining.

(2) The final surface subsidence state is the superposition of advance settlement caused
by coal seam mining, disturbance settlement caused by subsurface coal seam mining, and
prolonged post-mining subsidence. The surface subsidence caused by the three mining
stages accounted for 11.6%, 79.3%, and 9.1% of the total surface subsidence, respectively.
The settlement caused by the disturbance of subsurface coal seam mining is the dominant
factor in the total surface subsidence.

(3) The device model test was effectively combined with actual engineering practices.
The field engineering tests and model test results analysis are consistent, and a conclusion
can be drawn: after coal seam mining, the surface subsidence comprised four stages,
including a no settlement stage (ahead of 240 m), a slight settlement stage (ahead of
240~60 m), a significant settlement stage (ahead of 60 m ~ the end of mining), and a
residual settlement stage (after the end of mining), with the settlement from the significant
settlement stage accounting for more than 60% of the total settlement.
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Abstract: The accurate and reliable monitoring of ventilation parameters is key to intelligent ven-
tilation systems. In order to realize the visualization of airflow, it is essential to solve the airflow
reconstruction problem using few sensors. In this study, a new concept called independent cut set that
depends on the structure of the underlying graph is presented to determine the minimum number
and location of sensors. We evaluated its effectiveness in a coal mine owned by Jinmei Corporation
Limited (Jinmei Co., Ltd., Shanghai, China). Our results indicated that fewer than 30% of tunnels
needed to have wind speed sensors set up to reconstruct the well-posed airflow of all the tunnels
(>200 in some mines). The results showed that the algorithm was feasible. The reconstructed air
volume of the ventilation network using this algorithm was the same as the actual air volume. The
algorithm provides theoretical support for flow reconstruction.

Keywords: mine ventilation network; wind speed sensors distribution; air volume reconstruction;
independent cut set

1. Introduction

Coal is a primary energy source and plays a key role in economic development in many
countries. In China, coal accounts for 40–45% of total carbon emissions [1]. Meanwhile,
due to the unique working environment in coal mines, the requirements for safe operations
are very high. The working environment affects the safety of those working in coal mines.
Mining accidents could cause significant loss of life, as well as economic losses to a country.
In 2020 alone, 573 Chinese miners died in 434 mining accidents such as leaks of poisonous
gases, explosions of natural gases, and the collapsing of mine stopes, especially from
underground coal mining [2]. An efficient and reliable ventilation system is essential for
safe and efficient production of coal [3].

Intelligent ventilation is a development trend for coal mines and other types of mines.
The Chinese National Development and Reform Commission and eight other ministries
jointly issued Guiding Opinions on Accelerating the Intelligent Development of Coal Mines to
improve the intelligence level of coal mines. A set of systems, including development
design, geological guarantee, mining, transportation, and ventilation, are needed to achieve
the goal of intelligent decision-making and automation systems operating collaboratively
by 2025 [4,5]. Intelligent coal mining is to be fully realized by 2035 [6]. The reliable
operation of mine ventilation systems is the basis for safe production in intelligent coal
and noncoal mines. Intelligent mine ventilation is a new ventilation system that can be
adjusted automatically on demand, which is the development trend of mine ventilation
technology in China [7]. Proper monitoring of airflows for all tunnels plays a key role in
the development of intelligent mine ventilation systems [8,9]. Airflow monitoring depends
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on sensors. Hu [10] studied the influence of wall roughness on wind speed distribution
to improve the accuracy of monitoring. However, mine ventilation is a very complex
network system involving hundreds or even thousands of tunnels. As shown in Figure 1,
the Changcun coal mine in Shanxi province, China has 2061 tunnels. It may be impossible
to install wind speed sensors in every tunnel due to the high installation and maintenance
costs. Air monitoring was highlighted in the assessment of mine ventilation systems
and air pollution to improve health and safety for miners [11]. Therefore, it is of great
importance to economically determine the minimum number of wind speed sensors that
can sample sufficient information to accurately reconstruct the whole network. Airflow
reconstruction consists of well-posed reconstruction and underdetermined reconstruction.
The so-called well-posed reconstruction is to reconstruct the airflows of the whole network
with the minimum number of sensors when the number of sensors is sufficient. The
underdetermined reconstruction is realized when the number of sensors is insufficient. The
independent cut set algorithm is a well-posed airflow reconstruction algorithm.

 

Figure 1. The number of tunnels in mines in China.

A fully visual environment of ventilation parameters is very important to realize intelli-
gent ventilation of mines. In order to visualize the air volume, an air volume reconstruction
algorithm is proposed in this paper. In past studies, optimization and reconstruction tech-
nologies of sensor networks were widely used in flow monitoring [12], for the development
of intelligent systems [13], and for leak location diagnosis for water [14–16], oil [17,18],
and gas [19–21] pipeline networks. Singh et al. [22] proposed a method to identify ideal
monitoring sites for water quality. Huang et al. [23] established a PSO-LSTM model to
realize the identification of sources with abnormal radon exhalation rates. Castillo et al. [24]
proposed a method of flow reconstruction by constructing a matrix of constraints to give
bounds on the number of sensors required. In this method, the construction of a constraint
matrix depends on all possible paths of the network. For complex networks, the measure-
ment process in this method will also be very complex. The method was optimized to
reduce the impact of network complexity [25]. However, the construction of a constraint
matrix depends on the network path; although it has been optimized, the construction
process is still very complex. Rinaudo et al. [26] proposed a minimum number of sensors
arrangement method to determine the temperature. Although this method reduces the
cost of monitoring, the measurement process is too complex. Balaji et al. [27] proposed a
method to maximize sensor lifetime by activating sensor covers one at a time to monitor the
whole network. This method mainly depends on the effective usage of available resources.
Li et al. [28] put forward a novel method based on deep learning techniques and transfer
learning to deal with large-scale missing data problems. Ng [29] proposed a method to
calculate the number of sensors without depending on the path. He [30] developed an
efficient algorithm to determine the smallest subset of links in a traffic network for sensor
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installation. Muduli et al. [31] proposed a novel wireless sensor network deployment
scheme for environmental monitoring in longwall coal mines, which provided the best area
coverage and was very cost-effective. Automated ventilation system adjustment software
has been developed by monitoring the air volume of the minimum remainder branch
in the network, and all air volumes of the branches in the network can be obtained by
inverse calculation of associated branches [32]. Song et al. [33] proposed a method for
determining the changing trend of gas concentration in the goaf. Lyu et al. [34] proposed
a gas concentration prediction method based on the ARMA model, the CHAOS model,
and the encoder–decoder model (single-sensor and multisensor). Foorginezhad et al. [35]
proposed advanced sensing systems utilized for relevant monitoring and recommendations
for improving sensing accuracy.

Mine ventilation networks are similar to traffic networks on topology. Mine ventilation
networks are high-order nonlinear systems [36]. In the literature, different approaches have
been used for determining the minimum number of sensors needed to identify the location
of a ventilation system’s faults [37], such as the coverage of node flowrate method [38],
the least full-coverage distribution method [39], minimum tree principle [40], tabu search
(TS), Pareto ant colony algorithm (HPACA) [41], and the GA-DBPSO algorithm [42,43].
Changing the airflow in any one of the tunnels leads to changes in other associated tunnels.
The sensitivity is used for measuring the airflow relationship between all the tunnels [44].

However, a mine ventilation system is a complex network, with different complexity
levels in different areas. There are some problems with considering the accuracy to deter-
mine the minimum sensors’ location and reconstruct the air volume of all tunnels in the
mines. In this study, we aimed to solve the problems of sensor optimization and air flow re-
construction, and realize the air volume monitoring of the whole air network economically
and effectively. In this paper, we propose an algorithm for the well-posed reconstruction of
the airflow in a mine ventilation network. The algorithm is based on the structure of the
underlying graph, and makes it possible to have a unique, optimized solution to the air
volume of tunnels. Compared with other methods, this algorithm involves lower costs and
a simpler process.

The rest of this paper is organized as follows. We state the problems we aimed to
study, provide a theoretical analysis of our research, and explain some concepts that need to
be used in Section 2. In Section 3, we introduce the methods of sensor location optimization
and flow reconstruction. The above-mentioned methods are transformed into algorithms,
and the specific calculation process is expressed by matrices and formulas, which are
verified by taking a single-source and single-sink network as an example in Sections 4 and 5.
In Section 6, we verify the algorithm by taking multisource and multisink network by the
ventilation data of a coal mine. The main conclusions of this paper are given in Section 7.

2. Problem Statement

Our goal was to locate wind speed sensors so that the airflow of a ventilation network
could be inferred from the measurements while minimizing the number of sensors used.
We propose a well-posed flow reconstruction algorithm, which uses the flow conservation
equations and breadth-first search algorithm to search the whole ventilation network,
establish the equations, and then solve the airflow reconstruction problem.

2.1. Possibility Analysis on Well-Posed Flow Reconstruction

The correlation between the junction number and tunnel number was obtained, as
shown in Figure 2. The junction number increases linearly with the tunnel number. This
means that there is more mass conservation at the junctions as the tunnel number increases.
For a mine ventilation network with a single sink and a single source, m − 1 mass conser-
vation equations can be established for m junctions with a connecting sink and source as a
virtual junction. There are n tunnels in the mine, and n unknown parameters, so n − m + 1
wind speed sensors are needed for the well-posed flow reconstruction if the sensors are
set up accurately. Similarly, n − m + k − 1 wind speed sensors are used for multisinks and
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a multisource network (k denotes the total number of the sinks and sources). The above
analysis indicates that the minimum number of sensors needed for a well-posed solution
may be under 100 when the tunnel number is less than 380, while more than 300 sensors
need to be installed when the tunnel number is over 1500; 100–300 sensors are needed if the
range of tunnel numbers is 380–1500, as shown in Figure 3. This shows that the calculation
complexity is also affected by the network structure.

 

Figure 2. Correlation between the junction number and tunnel number.

 
Figure 3. The number of sensors required for well-posed reconstruction.

Figure 4 shows that the ratio of sensor to tunnel number (RST) for well-posed recon-
struction is over 30% and even up to 63% when there are fewer than 150 tunnels in the
mine, while the RST is below 30% when the tunnels number more than 150. The above data
demonstrated that sensors in some mines can be set up for well-posed flow reconstruction
where the RST is less than 30% or there are few tunnels. However, there will be no solu-
tion or multiple solutions for the reconstruction if the locations of sensors are inaccurate.
Therefore, the installation locations of sensors are critical for flow reconstruction.
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Figure 4. Ratio of sensor to tunnel number.

2.2. Flow Conservation Equation

Ventilation networks are represented by means of a directed graph:

G = (V, E), (1)

where
V = {v1, v2, · · · , vm} corresponds to the set of junctions,
m is the junction number,
E = {e1, e2, · · · , en} represents the set of tunnels, and
n is the tunnel number.
The out branches set is denoted as E+(vi),

(
vi, vj

) ∈ E+(vi). The in branches set is
denoted as E−(vi), (vk, vi) ∈ E−(vi). {s}, {t} are the set of the source junctions and the
sink junctions, respectively. For any junction v /∈ {s, t}, inflow equals outflow:

∑ ρijqij = ∑ ρkiqki. (2)

A generalized equation of mass can be derived from Equation (2) and the algebraic
sum of the tunnels’ flow mass is Qt in any directed cut set of the network with sinks
and sources:

SQT =
(
∑n

j=1 sijqj

)
s×1

= Qt, (3)

where
S =

(
sij
)

s×n represents the directed cut set;
s is the cut set number;
Qt is the total mass of the network.

2.3. Improved Breadth-First Search

An exact mathematical model (i.e., a direct solution) may not be found for some
problems. In this case, search methods are generally used to solve the issues, among which
a breadth-first search (BFS) is the simplest method.

A BFS is one of the graph algorithms. The process is to search for every possible edge
by traditional BFS; each junction can only be visited once. The basic idea is to start from a
junction v in the graph. In turn, the graph is traversed in breadth first from the unreachable
adjacent junctions of v until the junctions in the graph are connected with the paths of v
visited. If any junctions in the graph are not visited at this time, the breadth-first traversal
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is performed again from a junction that has not been visited until all the junctions in the
graph have been accessed.

Figure 5 is a ventilation network diagram of single source and single sink. It shows
a schematic diagram of an independent cut set. If we launch a BFS from junction v2 (the
following access order is not unique, and the second point can be either v3 or v4), we may
get an access process as follows: v2 − v3 − v7 − v8. We then go back to v3. We can get the
access process as follows: v2 − v3 − v5 − v6 − v7 − v8. For the same reason, we can go back
to v2. We can then continue to search v2 − v4 − v6 − v7 − v8. The search is finished when all
junctions are visited. The result of each BFS must be a connected component of the graph.
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Figure 5. Schematic diagram of independent cut set. (Red line A represents cut line, and I and O
represent source junction and sink junction respectively).

According to the analysis in Section 2.1, the spanning tree structure meets the require-
ments of well-posed reconstruction. Therefore, an improved breadth-first search (IBFS)
method is proposed, based on the spanning tree structure instead of the whole network.

An IBFS is a search algorithm based on the spanning tree structure. The first step
of an IBFS is to determine the spanning tree and sort the junctions and tunnels of the
spanning tree. Then, all source and sink junctions of the spanning tree must be determined.
The source junction is taken as the starting junction to start the search, and the incidence
branches of the junction are searched. After searching all incidence branches, the search
must be continued according to the previous step with the end junction of the incidence
branch as the starting junction until the sink junction is searched. The previous junction
must then be considered as the starting junction, and other branches are searched for. If
there are no other branches, the retreat is continued until the starting junction with other
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branches is found and the search is maintained. When all branches of the spanning tree are
searched, the search ends.

Take Figure 5 as an example; e1, e2, e3, e4, e6, e9, e10 form a spanning tree. If we launch
an IBFS from junction v1, we may get an access process as follows: v1 − v2 − v3 − v4.
Because v4 is a sink of the spanning tree, we need to go back to v2. The adjacent junction v3
of junction v2 has an incidence branch. The next search starts from v3. The process is as
follows: v3 − v5 − v6 − v7 − v8. When all branches of the spanning tree have been searched,
the search ends. The IBFS is the basis of our research on sensor optimization and air volume
reconstruction. The following algorithms need to use IBFS.

2.4. Definition of Single Junction Cut Sets

In the directed graph G = (V, E), vi ∈ v, after deleting junction vi, all tunnels
associated with vi from the graph cannot be connected. This is called a single junction cut
set (S = Dvi ).

In Figure 5, V = {v1, v2, v3, v4, v5, v6, v7, v8} and m = 8. In other words, there are eight
single junction cut sets in the directed graph:

G = (V, E),
D = {Dv1 , Dv2,Dv3 , Dv4 , Dv5 , Dv6 , Dv7 , Dv8},
Dv1 = {e1},
Dv2 = {e1, e2, e3},
Dv3 = {e2, e4, e7},
Dv4 = {e3, e5, e8},
Dv5 = {e4, e5,e6},
Dv6 = {e6, e8, e9},
Dv7 = {e7, e9, e10},
Dv8 = {e10}.

2.5. Definition of Independent Cut Set

A new concept called independent cut set is proposed. The source–sink matrix de-
scribes the ventilation flow in the mine. The source junction set is I, and the sink junction
set is O. In the mine ventilation network G = (V, E), I ⊂ V, O ⊂ V, a cut C = (S, T)
partitions V into two subsets, S and T. The cut set A of a cut C = (S, T) is the set
{(u, v)εE|uεS, vεT, I ⊂ S, O ⊂ T}, which is called the independent cut set. The indepen-
dent cut set can divide the input and output junctions into two disjointed parts, which
means that the removal of all edges disconnects all paths from the input to output junctions,
as shown in Figure 5.

2.6. Algorithm of Independent Cut Set

An independent cut set search algorithm for a single-source, single-sink ventilation
network was studied. The graph is described as:

G = (V, E),
E = {e1, e2, . . . . . . , en},
n = |E|,
V= {v1, v2, . . . . . . , vm}, and m = |V|.
The sources set is denoted by I ⊂ V, I = {vi|E−(vi) = 0}, where O represents the

sink set, O = {vi|E+(vi) = 0} ⊂ V. First, single-junction cut sets Dv2 , i = 1, 2, . . . , m,
were obtained, such as Dv2 = {e1, e2, e3} for the junction v2. A spanning tree that connects
all junctions in the mine network without forming a cycle was created, including some
tunnels on demand. The spanning tree was then changed to an undirected graph. The
breadth-first search starts from the source junction S = Dv1 . When it comes to junction vb
in the spanning tree, the independent cut set is calculated by S =

(
S ∪ Dvb

)− (S ∩ Dvb

)
. It

was followed until the searching of all the junctions of the spanning tree was completed
(see Figure 6).

103



Sensors 2022, 22, 2096

Figure 6. Flow diagram for the independent cut set.

Take the network shown in Figure 5, for example; the network graph is:
G = (V, E),
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}, n = 10,
V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 8,
I = {e1},
O = {e10}.
The spanning tree is:
T = {e1 , e2, e3, e4, e6, e9, e10}.

The single junction cut sets for every junction are:
Dv1 = {e1},
Dv2 = {e1, e2, e3},
Dv3 = {e2, e4, e7},
Dv4 = {e3, e5, e8},
Dv5 = {e4, e5, e6},
Dv6 = {e6, e8, e9},
Dv7 = {e7, e9, e10},
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Dv8 = {e10}.
According to the flow diagram, the process of obtaining the independent cut set is as

shown in Table 1.

Table 1. The independent cut set of the graph in Figure 5.

No. va ek∈〈va,vb〉∈T S E
′

Search |Dvb|

1 S1 = Dv1 = {e1} 0
2 v1 e1 ∈ 〈v1, v2〉 ∈ T S2 = {e2, e3} e1 v1

e1→ v2 0
3 v2 e2 ∈ 〈v2, v3〉 ∈ T S3 = {e3, e4, e7} e1, e2 v2

e2→ v3 1
4 v2 e3 ∈ 〈v2, v4〉 ∈ T S4 = {e4, e7, e5, e8} e1, e2, e3 v2

e3→ v4 0
5 v3 e4 ∈ 〈v3, v5〉 ∈ T S5 = {e7, e6, e8} e1, e2, e3, e4 v3

e4→ v5 0
6 v5 e6 ∈ 〈v5, v6〉 ∈ T S6 = {e7, e9} e1, e2, e3, e4, e6 v5

e6→ v6 0
7 v6 e9 ∈ 〈v6, v7〉 ∈ T S7 = {e10} e1, e2, e3, e4, e6, e9 v6

e9→ v7 0
8 v7 e10 ∈ 〈v7, v8〉 ∈ T 0

3. Methods of Location Optimization and Flow Reconstruction

3.1. Location Optimization of Wind Speed Sensors

In order to study the minimum number and location of sensors that can completely
recover the airflow in a mine network, an algorithm based on the topological structure of
the network and the information was developed. The algorithm creates spanning trees
and uses the IBFS, a well-known graph traversal algorithm, to search. The inputs of the
algorithm on the location of wind speed sensors are the directed graph G = (V, E) and
single junction cut set, while the output is the independent cut set. The procedures of the
algorithm are as follows:

1. Change all junctions in V with a single junction and find the single-junction cut set of
all junctions.

2. Initialize Va = Vf rom.
3. Use IBFS over spanning tree starting at va. Denote ek and vb as the visited edges and

junctions, respectively.
4. Obtain the independent cut set S while ekεT: end if Tεθ; otherwise, search the next

spanning tree. To avoid repeated searches, the edges and junctions passing by should
be recorded for every independent cut set obtained.

5. If any junctions in the graph are not visited at this time, the breadth-first traversal must
be performed again from a junction that has not been visited until all the junctions in
the graph have been accessed.

6. Put the known air volume into Equation (3) to solve for the unknown air volume.

3.2. Flow Reconstruction Method by the Wind Speed Sensors

According to the Chinese industry standards GB/T51272-2018 and AQ2031-2011, it
is compulsory to install wind speed sensors in main return tunnels, the return tunnels
of all mining areas, and the return tunnels of all sublevels. These tunnels are seen as
cotrees for the spanning tree, which can be generated according to the cotrees by the
Kruskal algorithm.

As shown in Figure 6, the independent cut sets can be searched by the spanning tree.
There is a flow equation, Equation (3), for every independent cut set. Taking Table 1 as an
example, seven flow equations can be set. Qt is the air volume of the main fan that must be
monitored. It is assumed that Qt = 15, Q5 = 4, Q7 = 5, and Q8 = 2.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = Qt
Q2 + Q3 = Qt
Q3 + Q4 + Q7 = Qt
Q4 + Q7 + Q5 + Q8 = Qt
Q6 + Q7 + Q8 = Qt
Q7 + Q9 = Qt
Q10 = Qt

(4)

Equation (4) is solved by the Gaussian elimination method. The air volume of the
tunnels in the spanning tree is Q1 = 15, Q2 = 9, Q3 = 6, Q4 = 4, Q6 = 8, Q9 = 10, and
Q10 = 15.

4. Algorithm Optimization of Sensor Location Problem

In this paper, we propose an independent cut set algorithm for well-posed recon-
struction of the airflow in a mine ventilation network; however, its process is too complex.
For a large-scale ventilation network, the calculation amount and complexity are very
large. In order to simplify the calculation process, the independent cut set algorithm can
be optimized by matrixing the calculation process, i.e., all equations in the calculation
process can be expressed by matrix. With the help of matrix characteristics, the sensor
location problem can be calculated more quickly and intuitively. In addition, there is a
mature calculation program for the matrix problem. It is more convenient to solve the
matrix problem by computer than to directly solve the newly defined algorithm. Especially
for large-scale network problems, faster and more accurate calculations can be made.

4.1. Optimization of Single Junction Cut Set

In order to more clearly represent the single junction cut sets, we can use the complete
incidence matrix to express the single junction cut sets of each junction. The complete
incidence matrix is a 0-1-(−1) matrix that describes the mine ventilation network structure
through the spatial relationships between the tunnels and junctions of the network. Each
column element of the matrix represents each tunnel of the mine ventilation network. Each
row element denotes the junction. The matrix can be expressed as follows:

Lm×n =

⎛
⎜⎜⎜⎜⎜⎜⎝

l11 . . . l1k . . . l1n
...

. . .
...

...
lj1 · · · ljk · · · ljn
...

...
. . .

...
lm1 · · · lmk · · · lmn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where Lm×n is the complete incidence matrix of the network of dimension (m × n)
and lij is 0, 1, or −1. lij = 1 indicates that ej and junction vi are associated, and ej is the
out branch of vi. lij = −1 indicates that ej is the in branch of vi. Through the definition of
single junction cut sets, if branch ej and junction vi are associated, then ej belongs to Dvi .
Therefore, ej is an element of Dvi when

∣∣lij∣∣ = 1. On the contrary, lij = 0 indicates that ej
and junction vi are not related.

The matrix can be represented through a set of column vectors. Lm×n denotes the
complete incidence matrix with m junctions and n tunnels, and can be expressed as follows:

Lm×n =
[
L1L2 · · · Lj · · · Lm

]T , (6)

where Lj is the jth row vector of dimension (1 × n). Dvj =
{

ek
∣∣ek = E

(
vj
)}

, i.e.,

Dvj =
{

ek

∣∣∣ljk �= 0
}

(j = 1, 2, · · · , m; k = 1, 2, · · · , n). ek, corresponding to all nonzero
entries ljk in Lj, is the single-junction cut set corresponding to junction vj; that is, ek is all
the elements of Dvj .
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4.2. Optimization of Independent Cut Set Algorithm

In Section 2.6, it is revealed that the independent cut set is calculated by
S =

(
S ∪ Dvb

)− (S ∩ Dvb

)
, which is a equation related to the single junction cut set and

independent cut set. From Section 4.1, we know the matrix form of the single junction
cut sets Dvj , i.e., complete incidence matrix (see Equations (5) and (6)). Therefore, we can
convert the solution process of the independent cut set into matrix form. An independent
cut set–branch incidence matrix can be established to obtain the independent cut set of the
ventilation network. The matrix can be expressed as follows:

Sm×n =

⎛
⎜⎜⎜⎜⎜⎜⎝

s11 . . . s1k . . . s1n
...

. . .
...

...
sj1 · · · sjk · · · sjn
...

...
. . .

...
sm1 · · · smk · · · smn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where Sm×n is the independent cut set–branch incidence matrix of the network of dimension
(m × n) and sij is 0 or 1. sij = 1 indicates that ej is a subset of the independent cut set
Si at junction vi. sij = 0 denotes that ej does not belong to the independent cut set Si at
junction vi. Compared with the complete incidence matrix, each column element of the
new matrix still represents each branch of the ventilation network. However, row elements
are expressed by independent cut sets S. In Section 4.1, the complete incidence matrix (see
Equation (6)) is expressed as follows:

Lm×n =
[
L1L2 · · · Lj · · · Lm

]T .

Through the calculation formula of independent cut sets S =
(
S ∪ Dvb

)− (S ∩ Dvb

)
,

we can obtain the matrix expression:

{
Sj+1 = Sj + Lj+1
S1 = L1

(j = 1, 2, · · · , m − 1), (8)

where ek corresponds to all nonzero entries and sjk in Sj is the independent cut sets.
According to Equation (8), we can obtain the matrix form of the independent cut set.

5. Sensor Location and Flow Reconstruction Based on Algorithm Optimization

5.1. Sensor Location Based on Algorithm Optimization

Take the network shown in Figure 5 as an example; according to Equation (1), the
network graph is:

G = (V, E);
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}, n = 10;

V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 8.

The junctions and tunnels have been sorted in Figure 5. The whole calculation process
is carried out according to the IBFS. According to Equations (5) and (6), we can obtain the
single junction cut set expressed by the matrix, that is, the complete incidence matrix of
ventilation network G = (V, E). In order to facilitate the presentation of the row vector and
column vector corresponding to each element of the complete incidence matrix, we show
the complete incidence matrix corresponding to Figure 5 in the form of Table 2.
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Table 2. The complete incidence matrix (corresponding to Figure 5).

Link e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
Junction

v1 1 0 0 0 0 0 0 0 0 0
v2 −1 1 1 0 0 0 0 0 0 0
v3 0 −1 0 1 0 0 1 0 0 0
v4 0 0 −1 0 1 0 0 1 0 0
v5 0 0 0 −1 −1 1 0 0 0 0
v6 0 0 0 0 0 −1 0 −1 1 0
v7 0 0 0 0 0 0 −1 0 −1 1
v8 0 0 0 0 0 0 0 0 0 −1

The matrix can be expressed as L8×10. According to Equation (6), the form of its
column vector is L8×10 =

[
L1 L2 · · · Lj · · · L8

]T . All nonzero entries in L1 are the result
of Dv1 , that is, L1 = {1 0 0 0 0 0 0 0 0 0}; the first single junction cut set is Dv1 = {e1}.
Similarly, all nonzero entries in L2 are the result of Dv2 , that is, L2 = {−1 1 1 0 0 0 0 0 0 0},
and the second single junction cut set is Dv2 = {e1, e2, e3}, etc. Through the matrix, we can
easily obtain the single-junction cut sets of each junction, and the result conforms to the
definition of single-junction cut sets.

In order to obtain the independent cut set, L8×10 is substituted into Equation (8). The
results are shown in Table 3.

Table 3. Independent cut set–branch incidence matrix (corresponding to Figure 5).

ej e1 e2 e3 e4 e5 e6 e7 e8 e9 e10si

s1 1 0 0 0 0 0 0 0 0 0
s2 0 1 1 0 0 0 0 0 0 0
s3 0 0 1 1 0 0 1 0 0 0
s4 0 0 0 1 1 0 1 1 0 0
s5 0 0 0 0 0 1 1 1 0 0
s6 0 0 0 0 0 0 1 0 1 0
s7 0 0 0 0 0 0 0 0 0 1
s8 0 0 0 0 0 0 0 0 0 0

The matrix can be expressed as S8×10. The form of its column vector is
S8×10 =

[
s1 s2 · · · sj · · · s8

]T . All nonzero entries in sj are the results of the indepen-
dent cut set. For example, s1 = {1 0 0 0 0 0 0 0 0 0} and the first independent cut set is
S1 = {e1}; s2 = {0 1 1 0 0 0 0 0 0 0} and the second independent cut set is S2 = {e2, e3};
s3 = {0 0 1 1 0 0 1 0 0 0} and the first independent cut set is S1 = {e3, e4, e7}, etc.

Through comparison, it can be seen that the results obtained through the matrix in
Table 3 are consistent with those in Table 1.

5.2. Flow Reconstruction Based on Algorithm Optimization

In order to simplify the calculation process, the solution of the independent cut set
is obtained by a matrix. Therefore, we can also express the calculation of Equation (3) by
a matrix. According to Equation (3), the air volume in each tunnel can be denoted by air
volume set Q, and its expression is as follows:

QT = {Q1 Q2 · · · Qn}, (9)

where n denotes the tunnel number and Qn represents the air volume of the nth tunnel.
According to Equation (3), the following equation can be obtained:

SQ = Qtm×1 , (10)
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where Qtm×1 is the column vector of dimension (m × 1), Qtm×1 = {Qt Qt · · · Qt}T

.
In Figure 5, S = S8×10 = [s1s2 · · · s8]

T and Q = {Q1 Q2 · · · Q8}T . It is assumed that
Qt = 15, Q5 = 4, Q7 = 5, and Q8 = 2. From Equation (10),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 1

0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 1
0 0 0
0 0 0

1 0 0
1 1 0
0 0 1

1 0 0 0
1 1 0 0
1 1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 1 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qt
Qt
Qt
Qt
Qt
Qt
Qt
Qt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

After simplifying the above formula, the following equation can be obtained:

Q1 = Qt
Q2 + Q3 = Qt
Q3 + Q4 + Q7 = Qt
Q4 + Q7 + Q5 + Q8 = Qt
Q6 + Q7 + Q8 = Qt
Q7 + Q9 = Qt
Q10 = Qt

.

The air volume of the tunnels in the spanning tree is Q1 = 15, Q2 = 9, Q3 = 6, Q4 = 4,
Q6 = 8, Q9 = 10, and Q10 = 15.

6. Case Study

According to the standards AQ1028-2006 and GB/T 10178, the ventilation network
is a fluid network formed by conveying air flow pipelines; various regulating facilities,
power facilities, and air flow pipelines are connected. Figure 7 is the ventilation network
of a coal mine run by Jinmei Co., Ltd. G = (V, E), where the tunnel number is |E| = 100,
and the junction number is |V| = 71. Table 4 shows the whole tunnel’s reconstructed
air volume and simulated air volume. The test air volume [45] is obtained by a mine
ventilation simulation system (MVSS) [46]. The principle of solving the network by MVSS
is to establish the mathematical equations for the ventilation resistance law, the air volume
balance law, the air pressure balance law, the known total air volume of the fans, and the
ventilation resistance coefficient, and then solve them. The main fans are installed in e9, e39,
and e78, and their characteristic equations are shown in Equation (11). For a multisource
and multisink ventilation network, all sources and sinks should be connected to become
a single-source and single-sink network. In a ventilation network, if the spanning tree is
removed, the remaining part is called the cotree. As shown in Figure 8, 33 wind speed
sensors are used for the network, including 30 cotrees and 3 wind shafts with fans. The
tunnels that must be set up with wind speed sensors are e3, e9, e22, e28, e33, e39, e55, e68,
e72, e76, e78, e84, e92, and e94. A spanning tree is generated that does not include the above
tunnels (the magenta in Figure 8). Considering the difficulty of testing the lower wind
speed, most of the cotrees should not contain the tunnels with structures such as throttles
and confined walls. Based on the flow diagram in Figure 5, the air volume of the spanning
trees can be calculated by the linear flow equation system of the independent cut sets.

⎧⎨
⎩

H(q9) = 1932.25 + 44.84q9 − 0.64q2
9

H(q39) = 1932.25 + 44.84q39 − 0.64q2
39

H(q78) = 1932.25 + 44.84q78 − 0.64q2
78

(11)
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Figure 7. A coal mine ventilation system used by Jinmei Co., Ltd. (Red indicates the position of air
doors or wind windows, and black arrows indicate the exhaust air flow. Green is the incoming air
flow as well as the fresh air flow. Each number indicates the junction number and tunnel number).

Table 4. Ventilation system of Jinmei coal mine.

Edge
Test

(m3/s)
Reconstruction

(m3/s)
Edge

Test
(m3/s)

Reconstruction
(m3/s)

Edge
Test

(m3/s)
Reconstruction

(m3/s)

e1 285.85 285.85 e2 188.83 188.83 e3 49.42 49.42
e4 181.97 181.97 e5 103.88 103.88 e6 157.3 157.3
e7 15.69 15.69 e8 24.67 24.67 e9 65.11 65.11
e10 61.53 61.53 e11 95.77 95.77 e12 7.25 7.25
e13 68.78 68.78 e14 292.71 292.71 e15 252.27 252.27
e16 40.44 40.44 e17 117.50 117.50 e18 134.77 134.77
e19 56.09 56.09 e20 71.42 71.42 e21 56.09 56.09
e22 56.09 56.09 e23 57.69 57.69 e24 1.59 1.59
e25 90.89 90.89 e26 4.89 4.89 e27 4.78 4.78
e28 9.67 9.67 e29 67.35 67.35 e30 71.03 71.03
e31 −3.84 −3.84 e32 71.03 71.03 e33 71.03 71.03
e34 31.78 31.78 e35 39.64 39.64 e36 102.80 102.80
e37 170.15 170.15 e38 35.80 35.80 e39 205.96 205.96
e40 86.11 86.11 e41 200.46 200.46 e42 3.14 3.14
e43 154.60 154.60 e44 45.87 45.87 e45 72.78 72.78
e46 81.82 81.82 e47 72.78 72.78 e48 −1.89 −1.89
e49 18.69 18.69 e50 52.20 52.20 e51 83.71 83.71
e52 17.29 17.29 e53 1.41 1.41 e54 17.29 17.29
e55 17.29 17.29 e56 18.69 18.69 e57 49.01 49.01

The reconstructed air volume in Table 4 was obtained by the independent cut set
algorithm. Similarly, the results obtained by the independent cut set algorithm followed
the three basic laws of air volume distribution. Their basic principles are similar. We also
used part of the test air volume as a known quantity for the calculation. Therefore, their
calculation results should be the same; otherwise, they will prove that the independent cut
set algorithm is incorrect. It can be seen from Table 4 that their results were exactly the same.
It is feasible to use the independent cut set algorithm to determine the minimum number
and location of sensors through the case study. By placing sensors on the cotrees, the air
volume of the spanning trees can be obtained. Due to the uniqueness of the well-posed
solution, the error of flow reconstruction is zero (see Table 4). There will be no errors or
other solutions.
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Figure 8. Coal mine ventilation used by Jinmei Co., Ltd. The magenta represents spanning trees and
the blue represents cotrees.

Figure 5 is an example of a simple network with a single source and single sink, and
Figure 8 is an example of a complex ventilation network with multiple sources and multiple
sinks. Through the calculation of these two examples, it was found that the independent
cut-set algorithm was suitable for both of the examples. Therefore, the independent cut
set algorithm can be used to solve the sensor optimization and air volume reconstruction
problems of all types of ventilation networks. In line with previous research, the calculation
complexity was also affected by the network structure. Due to the uniqueness of the well-
posed solution, the error of the result can only come from the measurement accuracy of the
sensor and will not be affected by other factors. Moreover, the existing solution is unique
and has no errors.

7. Conclusions

In this research, the wind speed sensor location problem of the mine ventilation
network was solved by using the independent cut set algorithm, which is a new concept
based on the structure of the underlying graph. Firstly, we found the problems: the sensor
number was n − m + k − 1, and we located flow sensors in the cotrees that must be set
up with sensors according to the Chinese standards. The calculation complexity was
affected by the network structure. Secondly, we discussed the possibility of well-posed
reconstruction based on the mine ventilation networks. Fewer than 30% of tunnels need to
be set up with wind speed sensors to achieve a well-posed reconstruction of the airflow in
all the tunnels if the mines have over 200 tunnels. For mines with fewer than 200 tunnels,
more than 30% of tunnels should be installed with sensors. Due to the uniqueness of the
well-posed solution, there is no error in the results unless the sensor accuracy does not
meet the standard. Lastly, the algorithm of independent cut sets was presented for the
well-posed reconstructions. The flow reconstructions were shown to be computationally
efficient for the coal mine ventilation system used by Jinmei Co., Ltd. This algorithm
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works on velocity sensor distribution rather than sensors of hazardous and combustible gas.
This algorithm is a well-posed reconstruction algorithm. It can only be used to determine
the minimum number and location of sensors and cannot solve the underdetermined
reconstruction of a given number of sensors. Therefore, the premise of using this algorithm
is that the number of sensors will be sufficient. This study provides researchers with a
sensor optimization scheme when the number of sensors is insufficient and provides the
possibility for air volume reconstruction. At the same time, it reduces the cost for the air
volume monitoring of the whole air network and provides some theoretical support for the
realization of intelligent ventilation. In the following research, we will discuss the sensor
location under the condition of underdetermined reconstruction.
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Abstract: The accurate prediction of surface subsidence is a significant foundation for the damage
assessment of coal seam mining and ecological environment reclamation in loess donga. However,
conventional models are very problematic, and the reliability of prediction is usually low. Therefore,
we propose a method for predicting surface subsidence of coal seam mining in loess donga that is
based on the probability integration model, combined with the movement principle of rock and soil
layers in the respective study area, and considering the influence of slope stability and additional
mining slip on mining subsidence. The feasibility of our new method was verified by a case study in
the N1114 working face of the Ningtiaota coal mine (China) that is situated in an area with abundant
loess dongas. The results show that slope slippage is the source of error in the prediction of subsidence
in loess donga. The prediction idea of “dividing the surface of loess donga into horizontal strata area
and slope sub-area, and predicting the subsidence value of the two areas, respectively” is put forward.
A method for predicting the subsidence value of two regions is established. First, based on the theory
of probability integral and rock formation movement, the probability integral parameters of the
horizontal stratum area are determined, and the subsidence basins in the area are superimposed and
calculated. Secondly, according to the slope stability and slip principle, the additional displacement
of subsidence in the slope area with mining instability coefficient Gcs > 0.87 is calculated. Finally,
combined with the subsidence prediction results of the strata area and the slope sub-area, and the
position of the slope, the accurate prediction of the surface subsidence in loess donga is realized. Our
results show that the agreement between the curves predicted from our calculations and from the
measured data are between 88.7–97.8%. The calculated error of the additional displacement of slope
mining slip is between 1.0–9.8%. The excellent correlation between the modelled and measured data
documents that our method provides, demonstrated a new efficient and valuable tool for the precise
prediction of damages induced by mining of underground coal seams in loess donga.

Keywords: surface subsidence; probability integration; loess donga; superimposed calculation;
additional displacement of slope mining slip

1. Introduction

The Yushenfu coalfield [1] is the largest coalfield in China and one of the seven largest
coalfields in the world. Loess dongas are widely distributed in this area. Major coal mining
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activity in this area has caused an increasing amount of subsidence areas. The subsidence
has generated major damages to the cultivated land, water bodies, and buildings to varying
degrees within the area affected by the mining, and also caused serious environmental
problems [2], such as land desertification and soil erosion. An accurate prediction of surface
subsidence is a prerequisite to reduce or even avoid such environmental problems. At
present, among many surface subsidence prediction models, the probability integration
model [3] is one of the most widely used methods for surface subsidence prediction in
mining areas.

Although the model is sufficient several limitations exist: on the one hand, the pa-
rameter selection is the key to the probability integration method. However, the specific
geological structure of loess donga may lead to large errors [4] in the predicted parameters,
influencing the effective constraints of predicted parameters. On the other hand, the stabil-
ity of the slope and the additional displacement [5] will deviate from the predicted results.
We propose a prediction method of surface coal seam mining subsidence in loess donga by
considering the essential causes of surface subsidence, i.e., the movement of underground
rock layers and the stability of the slope [6], as important factors affecting the prediction
accuracy, and combining the probability integral method model, the movement principles
of rock and soil layers, and the influence of slope stability on mining subsidence.

The probability integration model [7] is a mining subsidence prediction method based
on the random medium theory, with the predicted parameters as the key. Litwiniszyn [8]
proposed the model in the 1950s and it has been further developed into a mature application
model since then. The effective predicted parameters of the horizontal surface can be
obtained in various ways. Therefore, the accuracy and reliability of the predicted results
of the probability integral model are assured. However, concerning the prediction of
the surface subsidence in donga areas, the model is affected by the probability integral
parameters and the slope sliding effect [9], which leads to a decline of the application effect.
Several studies have been conducted to solve this problem.

Field measurements [10] are a common method to obtain detailed and reliable pre-
dicted surface parameters. However, an accurate measurement is very time-consuming
and requires a long period (at least 1 or 2 years), which squanders a lot of manpower and
material resources. Moreover, the obtained parameters are only applicable to working faces
under similar geological conditions, and the scope of application is limited [11]. Similarity
simulation [12] is an effective method to acquire predicted parameters. A formation model,
resembling the actual project, is constructed in the laboratory, according to the similarity
principle, and the predicted parameters are inferred by monitoring the changes of the
model. This method has major advantages, such as intuition, simplicity, and short experi-
mental period. However, the complexity of mining geological conditions, material strength,
and human factors have a significant influence on the experimental results [13]. Currently,
predicted parameters can be acquired at low cost through numerical simulation [14,15] due
to the rapid progress of the computer technology. However, the results are more random
because of the influence of the simulation unit and value parameters of rock formation [16].
In addition, based on a large amount of measured field data, several further methods have
been proposed to determine predicted parameters, including neural network method [17],
support vector machine [18], and genetic algorithm [19]. These methods provide additional
ideas for determining predicted parameters, but none of them consider the essential causes
of mining subsidence, i.e., the movement of the subterranean strata, and the influence
of the strata distribution on the predicted parameters in the donga areas. The stratum
control theory [20] predicts that the surface subsidence will change periodically with the
periodic breaking of the main key stratum in the overlying rocks. As the complex stratum
distribution conditions, such as burial depth and soil layer thickness on the surface, vary in
the donga area, a significant change of the parameters is expected [21]. Thus, studying the
influence of the rock formation movement and formation distribution on the predicted pa-
rameters is of major significance for determining reasonable probability integral parameters
in loess donga.
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Mining operations below loess donga areas can easily induce geological disasters,
such as loess slope slippage and collapse, which not only aggravates the destruction of the
ecological environment, but also increases the difficulty of mining subsidence prediction
and environmental disaster assessment. According to the topographic features in the special
areas, Guo et al. [22] subdivided mining subsidence disasters into three types: collapse
disasters, slump disasters, and landslide disasters. Stead, D et al. [23] used the theory of
fracture mechanics and plastic mechanics to study the mechanical mechanism of landslides
caused by mining. Wang et al. [24] applied numerical simulations to study the stability
evaluation model of the mining slope body and to refine the influence principles of the
slope stability. Luo et al. [25] established a mathematical model of slope stability under the
influence of longwall mining subsidence and constrained a value of 1.5 as the critical value
of slope stability. Instead of studying the influence of the slope stability in the loess donga
on the prediction of mining subsidence, the previous studies mainly focused on the stability
of the mining slope. However, the additional mining slip caused by slope instability in the
loess donga is the main source for uncertainties in the subsidence prediction.

Considering findings from previous studies, we propose a method for predicting
surface subsidence in loess donga based on a probability integration model, which resolves
the deficiencies of the conventional probability integration model in predicting subsidence.
The method combines the probability integral model with the influence of rock movement
and stratum distribution on estimated parameters and considers the slope stability and the
influence of the slip additional displacement on the subsidence results. The plausibility of
the method is evaluated by a field test.

2. Prediction Method for Surface Subsidence of Coal Seam Mining in Loess Donga

Various subsidence prediction models have been proposed to predict surface subsi-
dence, including the probability integration model [8], the Weibull distribution model [21],
and the influence function model [7]. With the rapid development of computer technology,
numerical simulation technology [14–16] became progressively used in mining subsidence
prediction. The probability integration model is the numerical simulation with the longest
application time and the widest application range. Moreover, the probability integration
method is numerical simulation of the subsidence prediction models with the longest
application time and the broadest scope of reasonable application. Unfortunately, it is not
suitable for the application in loess donga and unsatisfactory results are expected due to the
influence of strata distribution and topography. Considering these problems, we therefore
improved the application of the traditional probability integral model in the donga area.
Our study will expand the application range of the probability integral model and also has
important significance for solving the limitations of the model.

2.1. The Probability Integration Model

The basic principle of the probability integration model is to superimpose the sub-
sidence probability of countless mining units (ds) to form the surface subsidence curve
w(x) and the horizontal movement curve u(x). The integration model of the coal seam unit
mining is shown in Figure 1 [21].

Once the coal seam inclination attains full mining, the values of the subsidence and of
the horizontal movement of any point on the main section in the strike direction can be
calculated by Equation (1) [7].

w(x) = mη
2

[
erf
(√

πx
r0

)
− erf

(√
πx−l+2d

r0

)]

u(x) = bmη

⎡
⎣e

−π x2

r2
0 − e

−π
(x−l+2d)2

r2
0

⎤
⎦ (1)

m is the mining height, η the subsidence coefficient, erf the error integral function, r0
the mining influence radius, r0 = h/tanβ, h the buried depth of the coal seam, β the
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comprehensive moving angle, l the mining size, d the deviation of inflection point, and b is
the horizontal movement coefficient.

Figure 1. Coal seam unit mining integral model.

Figure 1 and Equation (1) show that the subsidence coefficient, the horizontal move-
ment coefficient, the comprehensive movement angle, and the deviation of inflection point
are the four predicted parameters of the probability integration model. According to the
calculation principle of Figure 1, the one-dimensional mining parameters are subjected to
two-dimensional normalization processing. In order to simplify the calculation, based on
the principle of two-dimensional lattice calculation, two-dimensional lattice calculation
software of probability integration has been independently developed [26]. By inputting
the predicted parameters and mining parameters into the calculation software, the pre-
dicted results of the subsidence basins of the traditional horizontal surface can be obtained.
However, in loess donga, influenced by stratum structural factors, including burial depth,
soil layer thickness, slope angle, and slope height, the predicted parameters of different
areas of the surface are not only different, but also difficult to obtain. Furthermore, the
predicted results often have large deviations, as they are affected by slope slippage.

2.2. Prediction Process of Surface Subsidence in Loess Donga

Considering the characteristics of the probability integration model and the limita-
tions of prediction process of surface subsidence in loess donga, we propose a prediction
method of surface mining subsidence based on the probability integration model. Figure 2
illustrates the application of the method. At first, the loess donga is subdivided into several
horizontal stratigraphic regions with the same characteristics, in light of the stratigraphic
distribution, according to the stratigraphic histogram and the surface contour map. Among
the horizontal stratigraphic area, slope sub-areas were separated according to the features
of the slope (angle and height). The parameters of the stratigraphic structure determine the
values of the predicted parameters. The movement of the subterranean strata is the critical
cause for the movement of the surface. According to the stratum distribution and the move-
ment principle of rock-soil layers, we calculated the probability integration parameters
of different horizontal stratum regions. Based on the superposition calculation principle
of the probability integration model, we subsequently calculated the subsidence basins
formed by different horizontal strata regions. Finally, the subsidence basin formed by the
superposition of the horizontal area is corrected according to additional displacement of
slope sub-region mining slip.
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Figure 2. LDS application process.

3. Determination of Probability Integration Parameters in LDS

Various strata distribution and rock-soil movement principles lead to variations in
the estimated subsidence parameters in differing regions. The subsidence coefficient is the
key parameter of the probability integration model. The comprehensive movement angles,
deviation of inflection points, and the horizontal movement coefficient control the influence
range of the sinking basin and the horizontal movement value of the basin. The determina-
tion of the predicted parameters of the different regions is the main challenge of the coal
seam mining in loess donga (LDS) prediction method. Previous studies have shown that
the distribution and movement principles of rock-soil layers are closely related to the prob-
ability integration parameters [6]. Therefore, we studied the influences of the distribution
and movement principles of the rock-soil layers on the probability integration parameters.

3.1. Calculation of Subsidence Coefficient

The key stratum theory in rock formation control implies that the movement of the
underground rock formation is the critical cause of mining subsidence, and the mechanical
state of the main key formation in the formation directly determines the migration principles
of the overlying rock [20]. The main key stratum is located in the caving zone, the fracture
zone or the bending subsidence zone of the mining overburden. The main stratum can
be determined from the formation borehole histogram and the key stratum identification
method [27]. The height of the caving zone (hc) and the height of the fracture zone (hf) of the
mining overburden can be determined by various methods, including on-site measurement,
empirical formula, engineering analogy, and theoretical calculations [28]. Based on the rock
movement theory, we therefore propose a method for calculating the subsidence coefficient,
according to the position of the main key stratum in the mining overburden.
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Continuous deformation characteristics of the surface movement are the premise of
predicting subsidence basins. If the height of the caving zone hc is larger than the height
of the main key stratum Σh (hc ≥ Σh), the main key stratum is located in the caving zone.
Figure 3 shows the discontinuous deformation characteristics of the surface when the main
key layer is located in the caving zone. Under the influence of underground mining, the
main key is completely broken, resulting in the loss of the support of the main key layer to
the overlying rock and soil layer. Upward cracks formed by the rupture of rock and soil
strata develop through the main key layers to the surface. Multiple vertical cracks cut the
continuously deformed surface, showing the feature of stepped subsidence.

Figure 3. The main key stratum is located in the caving zone.

Therefore, we focus on the calculation method of the surface subsidence coefficient of
continuous deformation for the condition that the main key layer is located in the curved
subsidence zone or the fracture zone. Figure 4 illustrates the overlying strata movement
principles of the continuous land surface deformation. In either of those cases, the main
key stratum did not break, or was broken to form a stable masonry beam structure, which
continued to undertake the supporting role of the overlying rock and soil strata. The
upward cracks formed by the rupture of the rock and soil strata did not develop on the
surface, and the surface curved and subsided to form a continuous subsidence basin. If
the fracture zone height is smaller than h (hf ≤ Σh), the main key stratum is in the bending
subsidence zone (Figure 4a). In this case, the development height of the overburden mining
fracture zone is below the main key stratum, not affecting the soil layer, and the overlying
soil layer has no effect on the crack development. Based on the data of field measurements,
Geweltzmann established Equation (2), which describes the link between the height of the
fracture zone and the subsidence coefficient for mining a single horizontal coal seam by
fallen method [29].

h2
f =

7.25mη

(cot βr + cot ψ)2Kr
(2)

ψ is the full mining angle, which is related to the full mining degree (usually 55–59◦) and Kr
is the limit curvature of the top rock formation. The value of Kr is related to the ratio A of
the clay rock (mudstone and argillaceous sandstone) in the rock formation [30]. According
to the ratio of the thickness of the bedrock constituted by the two rock types, Kr is calculated
by Equation (3).

Kr = 0.002 + 0.04A (3)
If hc < Σh< hf ≤ h, the main key stratum is located in the fracture zone. Figure 4b

shows that the fracture zone is well developed through the bedrock and continues upward.
The development height of the fracture zone is influenced by the thickness and properties
of the soil layer. Since the clay layer thickness is not considered in Equation (2), the ultimate
curvature K0 (K0 = Kr + ΔKr) of the clay layer is introduced into Equation (4) to replace Kr
in Equation (2), and the soil layer movement angle is used to calculate the height of crack
development [31].

h2
f =

7.25mη

(cot βs + cot ψ)2(Kr + ΔKr)
(4)

In Equation (4), ΔKr is the ultimate curvature increment of the soil layer, ΔKr = 0.1 hs.
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Figure 4. Migration principles of overlying rock under continuous deformation: (a) the main key
stratum is located in the curved subsidence zone; and (b) the main key stratum is located in the
bending zone.

The calculation method of the subsidence coefficient, derived from Equation (2) and
Equation (4), is shown in Equation (5) in Table 1 for the scenario when the main key stratum
is located at different positions.

Table 1. The subsidence coefficient of the main key stratum at different positions.

Analyzing
Conditions

Main Key
Stratum Location

Subsidence Coefficient
Calculation Formula

hc ≥ Σh curved subsidence zone η =
h2

f (cot βr + cot ψ)2Kr

7.25m (5)
hc < Σh < hf ≤ h Fracture zone η =

(hf − hr)
2(cot βs + cot ψ)2(Kr + ΔKr)

7.25m
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3.2. Comprehensive Movement Angle, Horizontal Movement Coefficient, and Deviation of
Inflection Point

The size of the comprehensive movement angle is mainly related to the thickness of
the rock (soil) layer and the rock movement parameters (Figure 1). The comprehensive
moving angle is calculated from Equation (6):

β= arctan
(

h tan βs tan βr

hs tan βr + hr tan βs

)
(6)

with hs as the thickness of the soil layer, hr as the thickness of the rock layer, βs as the
displacement angle of the soil layer, and βr as the displacement angle of the rock layer. βs
and βr can be selected according to Tables 2 and 3 [21].

Table 2. Displacement angle (βs) of loose layer.

Loose Layer
Thickness (m)

Loose Layer Features

Dry, Water-Free
Strong Water

Content
Quick-Curing

Ground Content

<40 50◦ 45◦ 30◦
40–60 55◦ 50◦ 35◦
>60 60◦ 55◦ 40◦

Table 3. Displacement angle (βr) of strata.

Average Rock Firmness Coefficient f

f < 3 3 ≤ f < 6 6 ≤ f

Rock displacement
angle 65◦ 70◦ 75◦

For the horizontal movement, coefficient b values of 0.2–0.3 are usually applied for
China’s coal mining fields. By relating the ratio of the thickness of the clay layer to the
mining depth, b is calculated from Equation (7) [21].

b= 0.3 − 0.1
hs

h
(7)

The deviation of inflection point d is related to f, l, and h, d of the near-horizontal ore
seam is calculated by Equation (8) in Table 4 [21].

Table 4. Displacement angle (βs) of loose layer.

f d

f > 6 d =
(

0.29 − 0.36lg l
h

)
h if l/h > 2.2, l/h = 2.2

(8)3 < f < 6 d =
(

0.19 − 0.35lg l
h

)
h if l/h > 1.4, l/h = 1.4

f < 3 d =
(

0.14 − 0.40lg l
h

)
h if l/h > 0.9, l/h = 0.9

Combined with the regional strata occurrence characteristics and mining rock move-
ment principles (development height of caving zone and fracture zone) in loess donga,
probabilistic integration parameters can be calculated from Equations (5)–(8) for each
horizontal stratigraphic region. Subsequently, input of the constrained block parameters
and predicted parameters of the subdivided horizontal stratigraphic areas into a self-
development probability integration calculation software [26] enables the recognition of
subsidence basins in the horizontal stratigraphic area after calculation.
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4. Slope Stability and Slip Principles in Loess Donga

The subsidence basin calculated according to the superposition of the regional proba-
bility integration parameters of different horizontal strata only considers the influence of
the horizontal strata in dongas, but excludes the effect of the mining-slip of the slope body.
The main characteristics of the Yushenfu mining field (China): a plenitude of nearly hori-
zontal coal seams, thick loose layers, high mining height, thin rock layers, and widespread
distribution on the land surface of loess dongas. In the loess donga, the height of the slope
body is usually 10–20 m, and the angle 10–30◦ [1]. Under specific circumstances, coal seam
mining can easily lead to mining slip and instability of slopes, resulting in the different
principles between mining subsidence and horizontal surface [6]. We studied the stability
of the slope body and the additional displacement of mining slip to decipher the principles
of the influence of the slope body on the subsidence in the loess gully area.

4.1. Analysis of Slope Stability in Loess Donga

Currently, the limit equilibrium method, the basic method for stability analysis of soil
slope, is realized by calculating the safety factor of the slope to analyze the stability of
the slope. Based on the Swedish strip method of Fellenius, we extended a series of other
methods, including the Bishop method, the Janbu method, the Morgenster-Price method,
and the Spencer method for the calculations [22,23,32].

We combined the analysis of the stability of the slope in the loess donga with the
characteristics of the strip method. The slope is regarded as a uniform soil slope and its shear
strength follows the Mohr-Coulomb failure criterion. The influence of the force between
the soil strips on the stability of the soil slope is excluded. To simplify the calculation, we
assume that the slip line of the soil slope is an arc. Figure 5 shows the mechanical model of
the loess donga slope.

Figure 5. Mechanical model of slope body in loess dongas.

Figure 5 shows that the sliding slope oAB is approximately divided into parallelogram
abcd vertical soil strips with number n. The safety factor of the slope in loess donga is
set as KS, which is the ratio of the sliding moment MS to the anti-sliding moment MT.
The sliding moment is caused by the shear component induced by the gravity of the soil
strip. The anti-slip strength of the soil strip generates anti-slip moments. According to the
Mohr-Coulomb strength theory, KS can be calculated from Equation (9) [32].
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KS = ∑n
i=1

MSi

MTi
= ∑n

i=1

r
(
γsixihpi tan φsi cos αi + csili

)
rγsixihpi sin αi

= ∑n
i=1

γsixihi tan φsi cos αi + csili
γsixihpi sin αi

(9)

with n as the number of soil strips, r as the radius of the slip line, γsi as the bulk density
of the soil strip, xi as the width of the soil strip, hpi as the height of the soil strip, αi as the
angle between the direction of the gravity of the soil strip and the normal force FNi, φsi as
the internal friction angle of the soil strip, csi as the cohesive force of the soil strip, and li as
the arc length of the soil strip slip line. Since the soil strip element is xi ≈ li and the soil
slope is a homogeneous soil mass, the soil strip parameters γsi, hpi, αi, φsi, and csi can be
converted into the bulk density γs of the loess slope, the height of the loess slope hp, the
angle of the loess slope δp, the internal friction angle φs, and soil cohesion cs. Therefore,
Equation (9) is further simplified, and Equation (10) is obtained:

KS =
2
(
γshp cos2 δp tan φs + cs

)
γshp sin 2δp

(10)

Equation (10) documents for a height of the slope, a bulk density of the slope or an
angle of the slope of 0, the denominator becomes 0 and the equation meaningless. To
analyze the relationship between slope stability and influencing factors in the loess donga,
the slope instability coefficient Gs was constrained in the experiment [6]. An increase in Gs
reduces the stability of the slope, and the risk of slippage caused by the instability of the
slope increases. Gs is calculated from Equation (11).

GS =
1

KS
=

γshp sin 2δp

2
(
γshp cos2 δp tan φp + cp

) (11)

Equation (11) shows that the slope height, slope angle, soil bulk density, soil cohesion
and soil internal friction angle are the main influencing factors of slope stability. To analyze
the extent of the influence of every factor on the slope stability, the five factors are assumed
to be independent of each other. Previous studies have shown that for hp > 30 m or δp > 50◦,
the slope will show collapse-type failure [32]. Therefore, we studied a range of the slope
height from 0–30 m and a range of slope angle from 0–50◦. The test results show that the
bulk density of the loess layer ranges from 16,300–18,600 N/m3, the cohesive force from
38,000–101,000 Pa, and the internal friction angle from 27.9–33.8◦ [29]. We studied the
relationship between those factors and the stability of the slope by controlling the variable
range of a single factor.

Figure 6a–c shows fitting degrees of 0.9860 for the G-hp power index function curve,
of 0.9988 for the G-δp proportional curve, and of 0.9992 for the G-γs linear curve. G is
positively correlated with hp, δp, and γs. With the increase in slope height, the slope
angle, and the bulk density, the increasing speed of the slope sliding component force
exceeds that of the anti-sliding component force, and the degree of the slope instability
increases continuously. Figure 6d,e shows a fitting degree of 0.9998 for the G-cs linear
curve, of 0.9994 for the G-φs linear, and negative correlation of G with cs and φs. With the
increase in soil cohesion and internal friction angle, the shear strength of the soil slope,
the anti-sliding component, and the stability of the slope increase. The results of grey
correlation degree and orthogonal test analysis show that the sensitivity of the parameters
affecting the slope stability in the loess donga is ranked from large to small, and the order
is δp > hp > γs > φs > cs [1]. The main reason is that the slope angle and slope height in
this area have a large variation range, while the fluctuation range of the soil physical and
mechanical parameters is small, which has little influence on the slope stability [22].

In conclusion, the slope instability coefficient in loess donga is positively correlated
with slope height, slope angle, and soil bulk density, but is negatively correlated with soil
cohesion and internal friction angle. According to Equation (11), the extent of instability of
the slope body in donga areas can be determined prior to the impact of the mining activity.
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Figure 6. Relationship between different influencing factors and slope instability coefficient: (a) Slope
height (hp), (b) Slope angle (δp), (c) Soil bulk density (γs), (d) Soil cohesion (cs), and (e) Internal
friction angle of soil (φs).
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4.2. Additional Displacement of Slope Mining Slip

The reliable understanding of striking differences in the movement principles of the
surface and the horizontal surface is critical for mining in donga areas. The main movement
and deformation characteristics of surface mining subsidence are subsidence, horizontal
movement, and the influence range of the mining activity. The model of the movement and
deformation of the inclined surface in the horizontal mining seam is shown in Figure 7 [6].

Figure 7. Deformation model of inclined surface in horizontal seam mining.

Figure 7 indicates an asymmetry of the inclined surface subsidence curve w (x, z) and
the horizontal movement curve u (x, z) for a horizontal mine with the size l. The surface
movement deformation curve is related to the stability of the slope, but also to the mining
direction of the coal seam [21]. Therefore, the research progress should be combined with
the influence of the stability of the mining slope in loess donga on the surface movement
and deformation. Assuming that the slope slip is R(x), the additional subsidence slip
Δw(x) and the additional horizontal displacement slip Δu(x) caused by the slope slip can be
expressed in Equation (12).

Δw(x) = R(x) sin δp
Δu(x) = R(x) cos δp

(12)

The slippage of the slope is related to the mining instability degree of the slope. If
the slope is unstable, it tends to slide. The higher the degree of instability, the higher the
affinity for sliding. The slope can be subdivided into a first-class slope, a second-class
slope, and a third-class slope according to the hazard degree of the slope body after sliding
damage. The normative standards for the safety factor of slope stability are summarized in
Table 5 [32].

Table 5. Slope stability safety factor.

Security Level
First-Class

Slope
Second-Class

Slope
Third-Class

Slope

General condition safety factor 1.35 1.30 1.25
Temporary condition safety factor 1.25 1.20 1.15
Earthquake condition safety factor 1.15 1.10 1.05

The loess donga is a highly fragile ecological environment, which is attributed to
the first-class slope, and mining in this area is regarded as an earthquake condition. Ac-
cording to Table 5, the safety factor KS in this area is 1.15, and GS = 0.87 as calculated
by Equation (11).
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The results of the numerical simulation and the field test show that, apart from
the stability of the slope itself, mining has a larger impact on the stability of the slope.
Compared with mining along the slope, the slope body is more prone to instability if
mining occurs on the reverse slope. Taking KC as the influence coefficient of the slope
mining direction on the slope instability coefficient for mining along the slope KC is 1.5,
but for mining against the slope KC becomes 2.0 [24]. The mining instability coefficient GCS
of the slope is expressed by Equation (13).

GCS = KCGS (13)

To sum up, a value of 0.87 is constrained as the critical coefficient that defines the
slip instability in loess donga. At GCS ≤ 0.87 the slope is stable, and no slip occurs. At
0.87 < GCS, the slope is slippery and unstable, and the slip displacement R(x) is calculated
from Equation (14).

R(x) = GCS
[
w(x0) sin δp + u(x0) cos δp

]
(14)

with w(x0) and u(x0) as the initial subsidence and initial horizontal movement, respectively.
From Equations (12) and (14), Equation (15) for the additional displacement of slope slip
is derived.

w(x) = w(x0) + GCS
[
w(x0) sin δp + u(x0) cos δp

]
sin δp

u(x) = u(x0) + GCS
[
w(x0) sin δp + u(x0) cos δp

]
cos δp

(15)

To summarize, the mining instability coefficient of the slope is calculated according
to the slope parameters and the mining direction of the coal seam in loess donga. For
conditions with 0.87 < GCS the slope is slippery and unstable, and additional mining slip
will be generated as the slope subsides. First, the predicted basin of horizontal formation
subsidence is obtained according to the superposition calculation of the software, and
the initial subsidence curve and initial horizontal movement curve of the surface are
extracted from it. Secondly, combined with the initial subsidence value and horizontal
movement value of the slope area that will generate slip, as well as δp and GCS, the
additional displacement of slope mining slip is calculated by Equation (14). Finally, the
movement and deformation curve of the initial horizontal stratum area is corrected by the
additional displacement mining slip, and the prediction of the surface subsidence in the
loess donga is finally realized.

5. Case Study

We selected the N1114 working face as a case study to verify the predicted effect of
LDS on surface mining subsidence in loess donga. The methods of LDS and the field test
were used to predict the subsidence basin.

5.1. Engineering Case

The Ningtiaota Coal Mine is a typical mine in the loess donga of the Yushenfu mining
field in China. The N1114 working face mines 1–2 near-horizontal coal seams with an
average thickness of 1.85 m. The working face has a width of 245 m and a recoverable
length of 1922 m. The working face is limited to north and south by the unmined N1116
working face and the N1112 working face, respectively, and to the west by the 135 m stop-
line coal pillar and to the east by the 60 m mine field boundary coal pillar. An overview of
the strata occurrence of N1114 working face is summarized in Table 6, that is constrained
by combining drilling data with physical and mechanical parameters [33]. The key layers
of the overlying rock are determined from the key layer theory and the data in Table 6.
A 13.70 m thick horizon of fine sandstone is the main key layer and an 8 m horizon of
fine sandstone is the sub-key layer. A 16.10 m layer of fine sandstone is a thick hard rock
stratum, which is broken along with the breaking of the main key layer.

To fulfill the complete mining demand, the actual measurement and LDS subsidence
comparison area is the section of N1114 working face from west to east, 300 m distant from
the mining stop line. Full extraction has been achieved prior to the mining of the target
area. Therefore, we added an additional 150 m computing area for the LDS to simulate
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actual mining on site. According to the contour distribution of the N1114 working face in
Figure 8a, the trend direction with obvious slope distribution in the study area is selected
for research. The profile A–A is constructed along the direction of the center of the working
face, as shown in Figure 8b.

Table 6. Stratigraphy of the N1114 working face with physical and mechanical parameters.

Strata Thickness (m)

Physical and Mechanical Parameters

σc

(MPa)
σt

(Mpa)
c

(Mpa)
E

(Mpa)
γ

(N/m3)
μ

ϕ
(◦)

Loess 30.00–60.00 0.29 0.03 0.059 33.42 18,600 0.32 28.2
Fine sandstone 16.10 29.6 0.50 1.50 1258 22,700 0.29 42.0

Sandy mudstone 7.40 34.7 0.54 0.26 2400 25,600 0.24 38.5
Fine sandstone 13.70 45.6 0.708 2.20 2113 23,000 0.27 41.5

Sandy mudstone 4.70 35.3 0.56 0.27 2415 26,180 0.24 38.8
Medium mudstone 3.40 40.6 0.56 1.50 1949 23,300 0.28 44.0

Silty sandstone 2.20 36 0.234 0.90 995 24,200 0.30 40.0
Fine sandstone 8.00 29.8 0.60 1.57 2024 23,050 0.27 39.2

Sandy mudstone 5.20 36.2 0.56 0.30 2423 25,780 0.24 38.5
Silty sandstone 2.00 32.9 0.27 0.94 979 22,700 0.27 39.3

1−2 Coal 1.85 15.7 0.29 1.10 845 12,900 0.28 37.5
Silty sandstone 4.90 36.4 0.28 1.01 977 23,030 0.27 40.2
Fine sandstone 12.70 34.1 0.52 1.55 1320 23,160 0.27 40.4

Figure 8. Overview of the N1114 working face: (a) work surface layout; and (b) A–A stratigraphic profile.
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5.2. LDS Prediction

We modelled the surface of loess donga according to the LDS application process that
is subdivided into following steps:

Step 1: Figure 8b shows that the coal seam mining area and overlying strata are
subdivided into four horizontal areas (A, B, C, and D), according to the distribution
characteristics of geotechnical layers. According to the slope characteristics of dongas, the
slope is further divided into six slope sub-areas: A1, B1, B2, C1, C2, and D1.

Step 2: The probability integration parameters of the A, B, C, and D horizontal forma-
tion regions are calculated, respectively.

Field measurement shows that hc is 7.5 m, hf is 24.5 m, and 24.5 m = hf < Δh = 25.5 m [33].
The main key layer is in the curved subsidence zone and the surface forms a continuously
deformed subsidence basin. From Figure 8 and the data of Table 6 it follows that the
ratio of clay rock to the rock layer is 0.236 and the average firmness coefficient of the rock
layer is 3.56. The mining height m of the working face is 1.85 m, the width is 245 m, and
the calculated length is 450 m. The calculated length of the working face is larger than
1.4 h and the full extraction angle is taken is 55◦. The results of the probability integral
parameters of the individual horizontal formation areas, calculated from Equations (5)–(8),
are summarized in Table 7.

Table 7. Calculated probability integration parameters of the individual areas.

Calculation Areas

A B C D

Parameters

hs (m) 50.0 30.0 40.0 30.0
hr (m) 62.7 62.7 62.7 62.7
βs (◦) 50.0 45.0 50.0 45.0
βr (◦) 70.0 70.0 70.0 70.0

Calculated results

η 0.58 0.58 0.58 0.58
δ (◦) 60.1 64.9 63.4 64.9

b 0.256 0.273 0.265 0.273
d (m) 15.65 15.65 15.65 15.65

Step 3: Based on the probability integration model, we insert the parameters of the
different regions and the coordinates of the inflection point of the block in the self-developed
two-dimensional lattice probability integration calculation software [26] and calculated
the value of the subsidence basin according to the mining order. The initial subsidence
isoline cloud and horizontal movement cloud chart for the N1114 working face is shown
in Figure 9.

Step 4: Subsequently, we calculated the slope instability coefficients of the six slope
sub-regions (A1, B1, B2, C1, C2, and D1). According to Table 6 and Figure 8, the soil
cohesion is 59 kPa, the friction angle in the soil is 28.2◦, and the bulk density of the soil is
18,600 N/m3. The results of the calculations are shown in Table 8.

Table 8. Slope instability coefficient of slope sub-regions.

Calculation Areas

A1 B1 B2 C1 C2 D1

Parameters
hp (m) 10.0 30.0 20.0 10.0 20.0 30.0
δp (◦) 10.1 17.6 21.8 8.5 12.9 10.3

mining direction downward slope reverse slope downward slope reverse slope downward slope reverse slope

Calculated
results GCS 0.31 0.97 0.83 0.35 0.49 0.56
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Figure 9. Probability integration calculation result: (a) subsidence isoline cloud; and (b) horizontal
movement isoline cloud.

The GCS-B1 relationship of the B1 slope is 0.87 < GCS-B1 = 0.97 (Table 8) indicating
that the B1 slope will generate instability and slip during the coal seam mining process.
Therefore, we constructed a cross section along the strike direction in the center of the
working face (Figure 9) and the surface curve of dongas is obtained in combination with
Figure 9 Subsequently, we refined the sinking and horizontal movement curves according
to the calculated data in Table 8, using Equation (15). Figure 10 shows the predicted surface
movement curve in the strike direction of the N1114 working face.

Figure 10 shows that the trend of the surface subsidence and horizontal movement
curve in loess donga essentially conforms to the principles of surface mining movement
and deformation. The maximum subsidence value reaches 1096.23 mm, close to the middle
of the goaf. The minimum value of the horizontal movement of the surface is in the center
of the goaf. The surface subsidence values on both sides of the goaf are 505.86 mm and
566.81 mm, respectively, hence almost half the maximum subsidence. The maximum values
of the horizontal movement of the ground surface are 270.25 mm and 274.09 mm, which
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are located above both sides of the goaf. Affected by loess dongas, the surface subsidence
value in the center of the goaf ranges between 1039.62 mm to 1096.23 mm. The horizontal
movement in the center of the goaf fluctuates around 0, and the floating range is 14.45 mm
to 20.51 mm. The subsidence and horizontal movement correction curves of the dongas
area show that the slope at B1 induces different degrees of additional slip. The additional
displacement of subsidence and horizontal movement slip generated by the B1 slope are
16.97 mm to 33.88 mm and 0.64 mm to 5.97 mm, respectively.

Figure 10. Surface movement prediction curve in dongas: (a) sinking curve; and (b) horizontal
displacement curve.

5.3. The Field Test

A high-precision total station was used in the target research area for the field test to
evaluate the application effect of LDS and refine the method. At first, two measurement
control points were installed, and subsequently, the survey line A was arranged along
the direction of the research area. From the west side, it was arranged 100 m away from

131



Energies 2022, 15, 2282

the mining stop line of N1114 working face, including the 300 m research area. A total
of 41 measuring points were arranged in the area. The distance between the measuring
points was 10 m and the monitoring distance was 400 m. Since the mining speed of the
working face was 20 m/d [33], until the mining of the working face was completed, the
monitoring was performed five times once a week. After the mining stop of the working
face, according to the change rate of the subsidence value, the monitoring time was 1 to
3 months and the monitoring time was five times until the surface movement stopped.
The overall monitoring time was 1a, with a total of 10 monitoring times [21]. Figure 11
summarizes the measured curve of line A and the predicted curve of LDS in the target area.

Figure 11. Surface movement deformation curve of mining under loess donga: (a) sinking curve,
(b) horizontal movement curve, and (c) legend.

Figure 11a shows that the interval between the 8th and 10th monitoring is more than
6 months. The fluctuation range of the subsidence value between the measuring points
is 0.96–28.56 mm. The surface mobile basin is considered to be stable if the subsidence
increment is less than 30 mm for six consecutive months [21]. The 10 monitoring results ba-
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sically conform to the principles of surface movement and deformation, indicating that the
monitoring is reasonable and effective. Comparing the measurement point data A11–A41
(Figure 11a) shows that the theoretically predicted subsidence value in the study area
deviates from the actual subsidence value by 0.74–77.07 mm, with an average of 7.11 mm.
The relative deviation is 0.1–12.9%, with an average of 1.6%. The deviation between the
theoretical predicted horizontal movement value and the actual horizontal movement
value is 0.14–17.07 mm (Figure 11b), with an average of 2.96 mm. The relative deviation
ranged from 0.8% to 22.6%, with an average of 11.3%. Excluding the measurement errors of
individual discrete points shows a high extent of agreement between the predicted curve
and the actual subsidence curve. Hence, the requirements of the engineering are fulfilled.

The theoretically predicted additional subsidence slip in the study area A17–A25
is 16.97–33.88 mm and the theoretically predicted additional displacement of horizontal
movement slip is 0.64–5.97 mm. Figure 11a shows that, based on the average maximum
subsidence of 1075.26 mm in the center of the goaf, the actual subsidence value at A17–A25
increases between 3.51–71.16 mm, with an average of 30.59 mm, which is in line with the
expected range. The relative deviation between the theoretically predicted subsidence
curve and the actual subsidence curve is 0.2–4.4%, with an average of 1.0%. The actual
sinking horizontal movement slip increment cannot be calculated since a benchmark for the
horizontal movement is lacking, Figure 11b shows that the relative deviation between the
theoretical predicted horizontal shift curve and the actual horizontal shift curve is 2.7–22.6%
at A17–A25, with an average of 9.8%. The data document that LDS can effectively predict
the subsidence and horizontal movement of the slope due to slip in loess donga.

6. Discussion

The study of surface subsidence in loess donga of coal mines is of significance for
ecological reclamation and mining damage assessment. However, the probability integral
model, which is widely used in the prediction of horizontal surface subsidence, is unsuitable
because of the influence of the surface of the donga area. To acquire probability integration
parameters with a high reliability is the main challenge. However, additional displacement
of slip, caused by the instability in loess donga, reduces the prediction accuracy of the
probability integration model. Therefore, previous studies have focused on the probability
integral parameters of the horizontal surface and on the mining stability of the slope in
the donga area. Implementing findings from previous studies, we here propose a new
method for predicting coal seam mining subsidence in loess donga from the probability
integration model that is based on the distribution and movement principles of rock-soil
layers and considers the mining-slip effect of the slope. This predicting method is suitable
for subsidence forecasting for mining of surface-level ore seams in most donga areas.
Due to the thickness of the sloping ore seam, the mining depth, and the offset caused by
the sloping ore seam, the surface mining movement deformation basin is asymmetrical.
Under the superposition of the surface in the donga area, the LDS prediction method is no
longer applicable. In the future, we will study the impact of sloping seam mining on LDS
prediction that will further refine the LDS subsidence prediction method.

7. Conclusions

We improved the subsidence prediction process of the probability integration model
in loess donga areas to solve the problem that surface mining subsidence in such areas is
difficult to predict. The following main conclusions are drawn from our new data:

(1) Slope slip can easily lead to large deviations in the prediction of subsidence in loess
donga. In order to solve this long-standing problem, a solution of “regional subsidence
prediction in loess donga” is put forward, and the subsidence prediction method for
horizontal strata and slope area in loess donga is established.

(2) Determine the probability integration parameters of the horizontal stratigraphic region
based on the position of the main key stratum and the stratigraphic distribution. With
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the help of the probability integration software, the subsidence basin formed by the
superposition of multiple horizontal stratigraphic regions can easily be obtained.

(3) When the mining instability coefficient of the slope Gcs > 0.87, the slope produces slip
instability. The additional displacement of subsidence generated in the landslide area
is calculated by the mining instability coefficient.

(4) Combined with the subsidence prediction results of the two regions in loess donga, the
accuracy of the prediction of surface subsidence in the area is improved. Correlation
of the calculated data with results of the field test document a 98.4% fit for the
LDS subsidence curve and an 88.7% fit for the horizontal movement curve. In case
of mining-slip instability of the slope, the estimated error of the subsidence curve
is 0.96%, and the estimated error of the horizontal movement curve is 9.8%, thus
fulfilling the requirements of engineering.
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Abstract: The technology of microseismic monitoring, the first step of which is event recognition,
provides an effective method for giving early warning of dynamic disasters in coal mines, espe-
cially mining water hazards, while signals with a low signal-to-noise ratio (SNR) usually cannot
be recognized effectively by systematic methods. This paper proposes a wavelet scattering decom-
position (WSD) transform and support vector machine (SVM) algorithm for discriminating events
of microseismic signals with a low SNR. Firstly, a method of signal feature extraction based on
WSD transform is presented by studying the matrix constructed by the scattering decomposition
coefficients. Secondly, the microseismic events intelligent recognition model built by operating a
WSD coefficients calculation for the acquired raw vibration signals, shaping a feature vector matrix of
them, is outlined. Finally, a comparative analysis of the microseismic events and noise signals in the
experiment verifies that the discriminative features of the two can accurately be expressed by using
wavelet scattering coefficients. The artificial intelligence recognition model developed based on both
SVM and WSD not only provides a fast method with a high classification accuracy rate, but it also
fits the online feature extraction of microseismic monitoring signals. We establish that the proposed
method improves the efficiency and the accuracy of microseismic signals processing for monitoring
rock instability and seismicity.

Keywords: mining water hazard; microseismic monitoring; intelligent recognition; feature extraction;
support vector machine; classification model

1. Introduction

Intelligent mining is the only way to achieve the safe and efficient production of coal
in mines [1]. With the depth of mining, multifactorial compound disasters, such as the
mining water hazards and others, become more frequent under high ground stress and
some other conditions. At the same time, the rapid development of intelligent mining
technology has put forward a new development opportunity for coal geological guarantee
technology to be used to avoid more hazards. Coal geological guarantee technology runs
through the whole cycle of coal mine production [2,3] and plays an important role in water
disaster prevention and intelligent mining, especially the exploration and treatment of
hidden disaster-causing geological factors in coal mines [4].

Generally, microseismic monitoring technology is one of the important technologies
adopted for the dynamic monitoring of mine geological information, which can monitor
the rock rupture phenomenon in real time and has a large monitoring range. To detect and
explain the interior of the working surface by using microseismic monitoring technology,
the online monitoring of the top and bottom plate damage of the working surface and the
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description of the whole process of the water guide channel from gestation and develop-
ment to the final instability can be realized. We use the theory of the interference stress
distribution of the surrounding rock to reveal the construction change law of the stress
field, playing a key factor in water prevention and control, decreasing water and many
other coal mining hazards [5,6].

A single microseismic event with a very short duration lasts tens of milliseconds.
The highly accurate recognition of such an event requires careful discrimination between
the microseismic and noise events [7]. However, because of the influence of extractive
perturbation and the increased amount of monitoring data, the traditional methods of
microseismic monitoring data collection and processing are slow and have a low level of
accuracy. It is acknowledged that microseismic events and noise can be discriminated easily
by the human senses, however, it is extremely difficult to do using automatic recognition
methods [8]. Usually, the monitoring station is terribly disturbed by the surrounding noise,
and sometimes microseismic events are even be submerged into noise. Along with the
properties of microseismic signals, different researchers have proposed some discrimination
methods in previous studies.

Mainly, methods based on both the sliding window and the threshold value are
considered to be traditional events recognition algorithms. Some commonly used methods
are the STA/LTA (the short-term average to long-term average ratio) algorithm [9–11], as
well as multi-window techniques [12] and the modified energy ratio method [13]. This
method, with an operation speed that is extremely fast, is an ordinary discrimination
process for the detection of the first arrival of a seismic phase [7]. However, the obstruction
signal is considered active, that is, the noise resistance characteristics of the process are
invalid. The AR-AIC algorithm is another method used to calculate an autoregressive
model of two signals combined in different time windows that use the Akaike Information
Criterion (AIC). When the AIC value reaches its minimum, a pick of one microseismic
event can be declared [14–16].

In these algorithms, because of an increased sensitivity to amplitude mutation, it
is a common shortcoming that noise and its energy are portrayed as much larger than
microseismic events. This is even more likely when the noise has a frequency content
similar to that of a microseismic event. Recently, within the workings of the proposed
calculation methods, some intelligent algorithms have been principally applied to the
recognition of microseismic events, resulting in a lower efficiency of the processing of
collected data, the discordance of recognition standards, and misjudgment.

Otherwise, spectral analyses of the different types of seismic waveforms, such as
reflection and refraction tomography, have been adopted to provide more information
concerning the source [17,18]. Almost all of these methods are achieved through the Fourier
transform theory [19], a theory using orthogonal basis functions having perfect localization
in frequency but infinite extent in time. The antileakage least-squares spectral analysis
method, a method regularizing irregularly spaced data series, is an iterative one that
estimates the statistically significant spectral peaks in the spectrum [20,21]. Because the
frequency content is quite time-dependent, this may not be an appropriate way to process
seismic signals. To address this issue, an approach called time–frequency transforms,
such as wavelet transform, has been widely used in geophysical data processing and
interpretations [22–24]. Features in the time–frequency domain are also applied for the
automatic processing of microseismic signals [25]. However, it is easily changed by the time
changing and can miss signal features, so it is not suitable for the analysis of time-varying
non-stationary signals and the construction of a feature matrix.

The wavelet scattering decomposition (WSD) transform theory is mainly used to
perform an analysis of the complexity of a signal sequence, achieving a nonlinearity anal-
ysis because of its high robustness as a rapid and common algorithm, which makes the
analysis of time sequences more functional. For example, Mallat and Bruna [26] enabled
the identification of audio signals, handwritten text, and image textures by constructing
a wavelet scattering decomposition transformation network. Anden and Mallat [27,28]
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extracted the effective feature information through the wavelet scattering decomposition
transformation network from the classical music data set GTZAN and the voice call data
set TIMIT, achieving good classification results and applying the same method to the
analysis of arrhythmia data in the same year. Based on the properties of wavelet scat-
tering, Wiatowski et al. [29] demonstrated the superiority of this method by a process of
rigorous mathematical derivation and generalization, achieving good results in different
wavelet frameworks. Wang et al. [30] used a wavelet scattering transformation network
to extract the features of synthetic aperture radar images, effectively identifying mobile
and fixed targets. Li et al. [31] proposed an algorithm for cardiac tone signal classification,
using the wavelet scattering transformation network to obtain cardiac tone signal char-
acteristics, which were able to effectively express the feature information corresponding
to the signal, and then obtained the feature matrix of the signal used for support vector
machine classification. Recently, artificial intelligence algorithms have been widely used
in the research involving the recognition of microseismic events in order to improve the
efficiency and accuracy of microseismic signal processing for the monitoring of rock insta-
bility and seismicity [32,33]. The powerful artificial intelligence classification algorithm of
the support vector machine (SVM) constructs the hyperplane with the largest margin in
multi-dimensional space, separating different cases of each category label [34,35]. The SVM
algorithm is explicitly designed to perform binary (two cluster) classifications and is an
influential supervised machine learning algorithm that is widely used in image recognition,
text detection, and protein classification. Here, we have successfully adapted the SVM
algorithm to intelligently discriminate microseismic signals into microseismic events and
noise ones with a higher degree of accuracy.

In this study, not only was an intelligent recognition method for microseismic events
based on the support vector machine classification algorithm proposed, but wavelet scatter-
ing decomposition transform theory was also introduced into the field, used in performing
a study of the influence of quality factors based on the characteristics of the collected
data. The feature extraction method was performed based on the microseismic signals’
features of the wavelet scattering decomposition transform. Combined with the SVM
algorithm, we built the recognition model fitting low signal-to-noise ratio signals. The
historical monitoring sample signals applied to experimental verification were determined
in order to confirm the effectiveness and instantaneity of this model. Our results suggest
that WSD is able to explain the different characteristics of the two classes of signals; that
the established WSD-SVM model is able to discriminate microseismic events from noise
has been identified. Overall, these studies taken together have revealed the significant
discovery that the speed of the calculation process of this model is faster and more useful
for real-time online recognition.

The rest of this paper is organized as follows. In Section 2, the effective microseismic
signals classification model we proposed is presented. Then, the results of both testing and
genuine signals are presented in Section 3. In Section 4, a comparison with other existing
methods is presented and analyzed. Finally, our conclusions are given in Section 5.

2. Methods and Model Training

2.1. Methods
2.1.1. Wavelet Scattering Decomposition Theory

Wavelet transformation is an effective tool for time-varying non-stationary signal
analysis [36]. Because of its scale variability and multi-resolution, it can describe both
the time and frequency domain characteristics of the signal, so the local analysis of the
signal has good results [37]. For signals in continuous finite time, the wavelet transform
is defined as:

W(a, t) =
1√
a

∫ ∞

−∞
y(t)ψ ∗

(
t − b

a

)
dt (1)
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where a is a scale factor or frequency factor, and b is a translation factor or time factor,
and the movement of the main wave is along t. Judging from the above formula, wavelet
transformation does not have translation invariance.

The actual collected microseismic signals are usually much disturbed; even if overall
there is no qualitative change, local changes will disturb the extracted signal features, thus
affecting the analysis and recognition of the signal. Therefore, a signal analysis and feature
extraction method with both translation invariance and local deformation stability is exactly
what is needed.

With a module operation included, the operator |Wm|, which removes the complex
phase of all wavelet coefficients, can be obtained. Convolution with the input signal yields
a non-linear wavelet modulus:

|W|x = (x ∗ φ,
∣∣x ∗ ψj

∣∣) (2)

where φ refers to the low pass filter, so Sm(x) = x ∗ φ refers to a local translation invariant
descriptor of the signal x, the scattering coefficients, and the input signal with translation
invariance, extracting the low-frequency information of the input signal and removing
all high-frequency information. ψj represents a high-frequency wavelet. High-frequency
information is recovered by the modulus transformation Uj(x) =

∣∣x ∗ ψj(x)
∣∣, which rep-

resents the high-frequency information on scale j and obtains deformation stability by
module operation on the nonlinear wavelet transform. Therefore, the low-frequency infor-
mation (scattering coefficients) and high-frequency information of the wavelet scattering
transformation of order 0 are as follows:

S0(x) = x ∗ φ
U1(x) =

∣∣x ∗ ψj1

∣∣ (3)

The 0-order high-frequency information section U1(x) is used as input for the first
order scattering transformation; this can be denoted as follows:

|W1|
∣∣x ∗ ψj1

∣∣ = (
∣∣x ∗ ψj1

∣∣ ∗ φ,
∣∣∣∣x ∗ ψj1

∣∣ ∗ ψj2

∣∣). (4)

Then, the first order scattering coefficients are indicated as follows:

S1(x) =
∣∣x ∗ ψj1

∣∣ ∗ φ (5)

and so on; repeating the iterative procedure above can be done to obtain a scattering
coefficient of an arbitrary order.

For arbitrary j ≥ 1, the wavelet module transformation convolution of the signal can
be expressed as follows:

Ujx =
∣∣∣∣∣∣x ∗ ψj1

∣∣ ∗ . . .
∣∣ ∗ ψjn

∣∣. (6)

As the next order input, Ujx is low pass filtered to obtain the order m scattering coefficient:

Smx =
∣∣∣∣∣∣x ∗ ψj1

∣∣ ∗ . . .
∣∣ ∗ ψjn

∣∣ ∗ φ = Ujx ∗ φ (7)

Applying |Wm+1| to Ujx, both Smx and Uj+1x can be computed simultaneously. This
can be expressed as:

|Wm+1|Ujx = (Smx, Uj+1x). (8)

The highest-order l of the scattering decomposition can be defined by initializing
U0x = x, when 0 ≤ m ≤ l and 1 ≤ j ≤ n, with the iteration of Equations (1)–(8).

Eventually, a feature vector is formed by the scattering coefficients on 0 ≤ m ≤ l:
Sx = {S0x, S1x, . . . , Smx}, known as Sx = {S0x, S1x, . . . , Smx}.

In conclusion, the process of wavelet scattering transformation can be described as a
scattering transform iteration on the wavelet module operator |Wm|; convolution calculates
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the wavelet model transform Ujx a value of m times and outputs the scattering coefficients
Smx after low-pass filtering (Figure 1).

ϕ= ∗

ψ ϕ= ∗ ∗

ψ ψ ϕ= ∗ ∗ ∗

ψ∗

ψ ψ∗ ∗

ψ ψ ψ∗ ∗ ∗

 

Figure 1. Wavelet Scattering Decomposition Structure.

2.1.2. Support Vector Machine Theory

In recent years, as one of the small sample algorithms based on supervised machine
learning theory mainly adopted in image identification, text detection, and other fields,
support vector machine theory (SVM) and possesses great advantages in the solving
of nonlinear, high dimensional and small sample pattern discrimination problems and
is becoming an effective classification algorithm. Usually, SVM employs an iterative
training algorithm, where an optimal hyperplane with the maximum margin in multi-
dimensional space can be constructed and applied to minimize an error function, as seen
in Figure 2 [32,33]. In our case, we define the feature extraction of microseismic signals
as a binary and nonlinear classification problem, which is an extremely significant step in
the proposed algorithm for judging whether a vibration signal is a microseismic event or
not. In this study, the given training vectors xj ∈ R, j = 1, . . . , N in two classes and a label
vector including Microseismic events (defined as M) and Noise (defined as N) are used and a
quadratic optimization problem is solved by this model:

min
β,b,ξ

(
1
2

β′β + C
N

∑
j=1

ξ j

)
(9)

which is subject to the constraints:

yj
(

β′φ
(
xj
)
+ b
) ≥ 1 − ξ j

ξ j ≥ 0, j = 1, . . . , N
(10)

where β is the normal vector to the hyperplane, b represents a constant. To avoid over-
fitting, the penalty parameter C is defined on the training error. Note that ξ j is the smallest
non-negative number satisfying yj

(
β′φ
(
xj
)
+ b
) ≥ 1 − ξ j. With the kernel φ adapted to

convert the input data into the feature space, the kernel function G(x1, x2) = φ(x1) · φ(x2)
is supposed to be a dot product of the input data, mapping into the higher dimensional
feature space by the process of transformation φ.
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Figure 2. Schematic diagram of SVM. “d” means the largest diatance between the support vector
and hyperplane.

2.2. Data Preparation and Model Training

Firstly, we selected equal numbers of microseismic events and noise sequences, oper-
ating the calculation of the wavelet scattering coefficients on the two signals and extracting
the feature vectors of each one to form the feature matrix called the training set. Making
use of the software package for SVM, the classifier, which assists in the classification of
the testing signal samples, was built by training the set of selected sample signals. The
workflow framework for the best performance and the establishing of our intelligent recog-
nition model, as well as the iterative training and optimization of the predictive model was
designed and is shown in Figure 3.

 
Figure 3. Workflow of the training and optimization of the SVM classification model.

To ensure that the classification model is able to differentiate microseismic events
from noise in a low SNR environment, appropriate historical samples were selected to
compose a strong data set. Because of the complexity of the microseismic monitoring
environment in coal mines, the selected historical samples for training needed to meet the
following criteria:
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1. Samples selected for training the model should be a series of microseismic vibration
signals, achieving clear waveform and obvious jumping.

2. An equal number of noise samples easily expressed as microseismic events should be
selected in order to describe the noise features precisely.

The intelligent recognition algorithm based on the WSD and SVM of microseismic
signals is as follows:

Input: the data set S, time invariance scale, transform times and quality factor
Output: the classification results.

1. Step 1: Sample selection. Because of the above-mentioned criteria, the input data set S
for training can be made up of n (n ≥ 50) samples. The data set S is composed of the
same percent (50%) of the two types of signals.

2. Step 2: Feature extraction. The feature matrix of S is obtained by the calculation of
scattering coefficients taking into account the certain number of the time invariance
scale, the transform times and the quality factor.

3. Step 3: Cross validation. The k-fold cross validation method can be used to avoid
over-fitting, evaluate classifier performance, and estimate the error rate or loss. Taking
the level of computational efficiency into consideration, k in this study is 5.

4. Step 4: SVM classification. In this step, we fit a one-vs-one SVM to the training data
only and then use the trained model to make predictions concerning the 30% of the
data withheld for testing.

Large amounts of continuous microseismic signals were collected by stations and
geophones working in environments with a high level of noise. It is a formidable task
to discriminate the microseismic events contained in those signals with precision using
previous methods. Many events submerged in the noise cannot help with source location
and other processes. The purpose for the construction of the WSD-SVM model used for
the processing of monitoring vibration signals obtained from certain stations is to improve
the recognition accuracy of microseismic events through processes so that the data can be
identified precisely.

3. Results

3.1. Testing Results

The data samples designed to fit the experiment were obtained from the KJ959 mi-
croseismic monitoring system, which has a sampling frequency designated as 1 kHz, a
standard widely adopted in coal mine inrush water hazards prediction and prevention.
These samples provided an effective series of microseismic vibration signals. In addition,
we chose single component detection sensors with a frequency response range from 10 Hz
to 1 kHz as the geophones. A total number of 108 raw signals regarded as data set S
were collected using automatic pick-up technology. For ease of analysis, 108 signals were
interpreted as segments of equal length, with each segment consisting of 7000 sampling
points. The data set S was split into S1, containing 54 microseismic events with an obvious
jump, and S2, comprising 54 noise signals. After that, they were categorized into M (for
microseismic events)and N (for noise). For convenience, one segment from S1 and another
from S2 were picked for analysis; they are shown is Figure 4.

The time invariance scale i = 6, transform times t = 3, the quality factor q = 3, 2, 1 and
the calculation of scattering coefficients for the two signals are shown in Figure 5, showing
the distinctive differences between events and noise. The features of all the signal segments
in data set S can be expressed by the feature matrix consisting of the scattering coefficients
using the proposed method.
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(a) (c) 

  

(b) (d) 

Figure 4. (a) microseismic signal, (b) scattergram time-frequency analysis of (a). (c) noise signal,
(d) scattergram time-frequency analysis of (c).

Figure 5. The distinctive scattering coefficients of microseismic events and noise.

To achieve better performance in the defined WSD-SVM model, 70 percent of the data
in each class were randomly devoted to the formation of the training set STr which was
trained in order to obtain the SVM classifier. Meanwhile, the remaining 30 percent was
withheld for testing and assigned to the test set STe. As is known, the performance of a
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supervised machine learning algorithm is largely dependent on the training percent of
the data set. The above process was repeated with different training percents, and the
corresponding classification accuracy rates were calculated as shown in Figure 6.

Figure 6. Recognition accuracy rates for different training percents.

Microseismic events and noise can be classified by the WSD-SVM algorithm effectively,
as shown in Figure 6. As the following ten experiments illustrate, the recognition accuracy
rates increased as the training percent became larger, reaching 99.6% in five experiments.

3.2. Application in Genuine Signals

We sought to verify the validity of the above algorithm, so a continuous microseismic
signal with a duration of 56 s was selected for the experiment. Data were obtained using the
monitoring equipment installed in a coal mine in northwestern China; results are shown in
Figure 7.

Because the monitoring station is disturbed by ambient noise, the signal segment in
Figure 7 shows a low SNR. There are 8 microseismic events in total in the sequence. Judging
by the software, 3 (E2, E5, E7) of these have a clear waveform and can be verified directly,
and another 5 (E1, E3, E4, E6, E8) events are covered by the noise. All 8 events are designed
to be detected by the theory of STA/LTA and our trained model. Both the results of the
detected event numbers and the corresponding time consumptions of the two methods are
recorded in Table 1.

Only four microseismic events (E1, E4, E5, E7) were able to be recognized by the
STA/LTA method with a lower threshold, while our proposed algorithm could recognize
all eight events effectively. Taking the time consumption of the two algorithms into consid-
eration, it took 2.488 s for the WSD-SVM model to recognize all eight events, irrespective
of the training time, which is a little slow for calculation. In contrast, the method we
proposed was able to recognize low SNR microseismic events accurately with little sacrifice
in calculation time.

Table 1. Comparison of the method performance.

Method Number of Detected Events Time Consumption/s

STA/LTA 4 1.358
Algorithm in this paper 8 2.488
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Figure 7. Microseismic signal for experiments and its scattergram of time-frequency analysis.

4. Discussion

4.1. The Recognition Ability of WSD-SVM

In order to further confirm the universality of our proposed method, ten microseismic
signals were achieved from four unique monitoring stations as experimental sample data
and were analyzed using the STA/LTA method and the method employed in this paper.
Using professional software, the time–frequency analysis of the ten signals was observed
and 28 events were concluded. The number of microseismic events successfully recognized
is presented in Table 2, which shows that 28 microseismic events were detected from
the selected samples for experiments, the recognition accuracy rate was 92.86%, and the
recognition accuracy was better than that of the STA/LTA method.

4.2. The Influence of the Transform Times on the Classification Results

Whenever the WSD-SVM algorithm is used to recognize microseismic events, the
selection of the appropriate transform times is a critical step, determining the level of
classification accuracy. To work out the influence of the transform times on the classification
results, 54 event samples and 54 noise samples from Section 3.1 were selected, as well as
the WSD-SVM algorithm when i = 6 and q = 1, 2, 3, 4, 5.
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Table 2. Comparison of the two methods.

No. Duration of Signals/s
Number of

Microseismic Events
Number of Events Recognized

by the STA/LTA Method

Number of Events
Recognized by the
Proposed Method

1 15 2 0 2
2 23 3 1 3
3 10 1 1 1
4 26 2 1 2
5 36 5 3 4
6 20 3 2 3
7 12 1 0 1
8 29 4 2 3
9 32 4 3 4

10 30 3 1 3
Total 233 28 14 26

As we can see from Table 3, when the transform time is l or 2, it takes less time to
complete the process of classification with a lower accuracy. However, when the transform
time is greater than 4, it results in a higher level of accuracy with an extremely high level of
time consumption because of the complexity of calsulation. A small number of transform
times is not adequate to express the complexity of the samples, though it takes less time,
but an excessive number introduces large time consumption. Therefore, according to these
results, the best, most acceptable number of transform times is 3.

Table 3. Relationship between transform times and classification accuracy.

Transform Times Classification Accuracy Time Consumption/s

1 58.50 0.95
2 58.71 1.57
3 99.21 3.1
4 99.21 19.968
5 99.80 476.206

5. Conclusions

To conquer the noise problems in the microseismic monitoring data, a novel intelligent
recognition method for microseismic signals with a low SNR was proposed in detail,
consisting of the use of a support vector machine classifier in combination with the feature
extraction method of wavelet scattering decomposition transform. Though the selected
signals are expected to be further processed by the algorithm in this paper, the validity of
and the favorable results for the WSD-SVM model have already been demonstrated by
the accurate discrimination of genuine microseismic events from noise events. In addition,
the scattering coefficients for each signal are shown to be useful as features for training
the distinctive model. The recognition accuracy rate of the samples for experiments using
the model reached 92.86%, showing that the model could be applied to recognize the
microseismic events in the monitoring area. The increased utilization of a smaller feature
matrix and an effective feature extraction method is the future direction of microseismic
event classification.

Author Contributions: Writing—original draft, X.F. and S.L.; writing—review and editing, X.F., J.C.
and S.L.; supervision, J.C. and B.Y.; funding acquisition, J.C. and Y.W.; data curation, B.Y. and Q.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 42074175).

Institutional Review Board Statement: Not applicable.

147



Energies 2022, 15, 2326

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the experiment platform of CCTEG Xi’an Research
Institute and Xi’an University of Science and Technology as well as our families for their patience
and support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, G.F. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry. China
Coal 2021, 47, 2–10.

2. Wang, X.Z. Review and prospect of China coal mine safety production in the past fifty years. Saf. Coal Mines 2020, 51, 1–4.
3. Wu, J.W.; Zhao, Z.G. Development stages of coalmine mining geological works in China. Coal Geol. China 2010, 22, 26–28.
4. Wang, T.; Shao, L.; Xia, Y.; Fu, X.; Sun, Y.; Sun, Y.; Ju, Y.; Bi, Y.; Yu, J.; Xie, Z.; et al. Major achievements and future research

directions of the coal geology in China. Geol. China 2017, 44, 242–262.
5. Jiang, Y.D.; Pan, Y.S.; Jiang, F.X.; Dou, L.M.; Ju, Y. State of the art review on mechanism and prevention of coal bumps in China. J.

China Coal Soc. 2014, 39, 205–213.
6. Lu, C.P.; Liu, G.J.; Liu, Y. Micro-seismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high

stress concentration. Int. J. Rock Mech. Min. Sci. 2015, 76, 18–32. [CrossRef]
7. Jia, R.S.; Sun, H.M.; Peng, Y.J.; Liang, Y.Q.; Lu, X.M. Automatic event detection in low SNR micro-seismic signals based on

multi-scale permutation entropy and a support vector machine. J. Seismol. 2017, 21, 735–748. [CrossRef]
8. Zhao, Z.; Gross, L. Using supervised machine learning to distinguish micro-seismic from noise events. In SEG Technical Program

Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2017; pp. 2918–2923.
9. Allen, R. Automatic earthquake recognition and timing from single trace. Bull. Seism. Soc. Am. 1978, 68, 1521–1532. [CrossRef]
10. Baer, M.; Kradolfer, U. An automatic phase picker for local and teleseismic events. Bull. Seism. Soc. Am. 1987, 77, 1437–1445.

[CrossRef]
11. Earle, P.S.; Shearer, P.M. Characterization of global seismograms using an automatic-picking algorithm. Bull. Seism. Soc. Am.

1994, 84, 366–376. [CrossRef]
12. Chen, Z.; Stewart, R.R. A multi-window algorithm for real-time automatic detection and picking of P-phases of microseismic

events. CREWES Res. Rep. 2006, 18, 1–9.
13. Akram, J. Automatic P-wave arrival time picking method for seismic and micro-seismic data. In CSPG CSEG CWLS Convention;

CSEG: Calgary, AB, Canada, 2011.
14. Sleeman, R.; van Eck, T. Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram

recordings. Phys. Earth Planet. Inter. 1999, 113, 265–275. [CrossRef]
15. Leonard, M. Comparison of manual and automatic onset time picking. Bull. Seismol. Soc. Am. 2000, 90, 1384–1390. [CrossRef]
16. St-Onge, A. Akaike information criterion applied to detecting first arrival times on micro-seismic data. In Proceedings of the 81th

Annual International Meeting, Yokohama, Japan, 14–17 April 2022; pp. 1658–1662.
17. Karaman, A.; Karadayilar, T. Identification of karst features using seismic P-wave tomography and resistivity anisotropy

measurements. Environ. Geol. 2004, 45, 957. [CrossRef]
18. Hiltunen, D.R.; Cramer, B.J. Application of Seismic Refraction Tomography in Karst Terrane. J. Geotech. Geoenviron. Eng. 2008,

134, 938–948. [CrossRef]
19. Yang, Y.-S.; Li, Y.-Y.; Cui, D.-H. Identification of karst features with spectral analysis on the seismic reflection data. Environ. Earth

Sci. 2014, 71, 753–761. [CrossRef]
20. Ghaderpour, E.; Liao, W.; Lamoureux, M.P. Antileakage least-squares spectral analysis for seismic data regularization and random

noise attenuation. Geophysics 2018, 83, V157–V170. [CrossRef]
21. Ghaderpour, E. Multichannel antileakage least-squares spectral analysis for seismic data regularization beyond aliasing. Acta

Geophys. 2019, 67, 1349–1363. [CrossRef]
22. Pinnegar, C.R.; Eaton, D.W. Application of the S transform to prestack noise attenuation filtering. J. Geophys. Res. Earth Surf. 2003,

108, 2422. [CrossRef]
23. Vallée, M.A.; Keating, P.; Smith, R.S.; St-Hilaire, C. Estimating depth and model type using the continuous wavelet transform of

magnetic data. Geophysics 2004, 69, 191–199. [CrossRef]
24. Sinha, S.; Routh, P.S.; Anno, P.D.; Castagna, J.P. Spectral decomposition of seismic data with continuous-wavelet transform.

Geophysics 2005, 70, P19–P25. [CrossRef]
25. Zhang, H.; Ma, C.; Pazzi, V.; Zou, Y.; Casagli, N. Microseismic Signal Denoising and Separation Based on Fully Convolutional

Encoder–Decoder Network. Appl. Sci. 2020, 10, 6621. [CrossRef]
26. Bruna, J.; Mallat, S. Audio texture synthesis with scattering moments. arXiv 2013, arXiv:1311.0407.
27. Anden, J.; Mallat, S. Deep Scattering Spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [CrossRef]

148



Energies 2022, 15, 2326
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Abstract: In China, more than 10,000 Tailings storage facilities (TSF) have been created on the ground
surface through mineral mining processes, these TSF occupy a large amount of land. The strength
of the tailings is too low to be able to stand on its own without strengthening. In order to save land
resources and alleviate the damage to the environment caused by mineral mining, it is necessary
to reinforce the TSF so that they can store more tailings. China is one of the countries with the
largest area of permafrost and seasonal frozen regions, accounting for about 75% of the country’s
total land area. The problem can be exacerbated in these regions where the freeze–thaw effect
can further degrade the strength of tailings. A review of the literature suggests that there is little
research on the mechanical and microstructural properties of tailings reinforced with cement-based
materials under freeze–thaw conditions, especially when the tailings are to be discharged to land for
sustainable development. This study investigates the effect of freeze–thaw cycles on the mechanical
properties and microstructural changes of tailings reinforced with cement-based materials to mitigate
environmental hazards. Unconfined compressive strength (UCS) tests, scanning electron microscopic
images, X-Ray Diffraction tests, thermogravimetry tests and mercury intrusion porosimetry tests were
conducted on samples of tailings. The results from this study show that freeze–thaw cycles reduce
the UCS of all the tested samples eventually, but the frozen temperature does not significantly affect
the UCS. The larger number of freeze–thaw cycles, the more damage is to the surface morphology
and the matrix of the tailings. The results presented in the paper can help engineers and managers
to effectively transport the TSF to other locations to minimize environmental hazards to achieve
sustainable production of mineral mining processes.

Keywords: freeze–thaw cycles; tailings; mechanical behavior; SEM; MIP

1. Introduction

The excavation and removal of ore mass from the ground create a large volume of
surface voids or ground subsidence, which poses environmental hazards [1,2]. Run-of-
mine ores are initially processed through standard mineral processing operations, such as
crushing, magnetic separation, gravity separation, dense medium separation and flotation
to increase their grade for subsequent extraction of metals, the waste generated is called
tailings. In China, more than 10,000 tailing storage facilities (TSF) have been generated on
the ground due to mining [3], by the end of 2020, the reserves of tailings reservoirs reached
22.26 billion tons [4]. The type of tailings accumulated on the surface needs to be disposed
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of at a proper location to mitigate the environmental impact of the mineral process. If not
handled well, the TSF most likely leads to serious geotechnical dangers (e.g., tailings dam
failure) and land contamination (e.g., heavy metal leaching) [5,6]. Tailings generated from
metal-sulfide mines usually contain non-valuable sulfide minerals, such as pyrite (FeS2),
pyrrhotite (Fe1−xS, where 0 < x < 0.2), and arsenopyrite (FeAsS) that generate acid mine
drainage when exposed in the environment to oxygen (O2) and water [7]. In addition,
tailings can turn into mud in wet weather, e.g., rain, and into dust in dry weather, e.g., by
wind. This creates severe pollution of the environment.

To solve these problems, some researchers [8–11] suggested that the tailings be used
to backfill mined-out areas, which has a good effect on the control of geological subsidence.
Backfilling is a good idea, but if the tailings used are rich in sulfide minerals, it can cause
other problems, especially the enhanced generation of acid mine drainage. Another promis-
ing approach is to simultaneously repurpose and treat tailings via alkali activation in a
process called geopolymerization. Some mine tailings are ideal geopolymer materials be-
cause they contain high clay and aluminosilicate minerals, which are essential components
for the geopolymer matrix to form. In this process, aluminosilicates are dissolved in highly-
concentrated alkali hydroxide or silicate solution to form a structurally stable material
composed of amorphous, interconnected Si-O-Al polymeric matrices via a combination of
diffusion, coagulation and polycondensation. They are potentially suitable raw materials
for geopolymeric products with considerably high compressive strength and long-term
durability [12]. Other researchers [13] proposed to add some cement-based material to
the tailings to form a consolidated body with certain mechanical strength and discharge
them into valleys or ground subsidence areas through transport by pipes or belts. Either
way, the tailings should be strengthened before they can be transported to another location.
In this way, it provides a method to support mining in its transition into an economically
sustainable, socially responsible, and environmentally sensitive industry. This approach
can simultaneously reduce waste generation, provide additional economic benefits to stake-
holders, empower host communities, and improve rehabilitation programs [14]. In fact, a
leaching test, such as TCLP showing that the slag and tailing samples are non-hazardous
should also be provided as the greatest challenge in the repurposing of mining wastes is
their potential to release hazardous elements to the environment. Alkali-activated cemen-
titious materials can store harmful elements in the consolidated body, making them less
prone to leaching [15].

The area of permafrost and seasonal frozen regions accounts for about 23% of the
world’s total land area [16]. It is, therefore, of significant importance to consider the influ-
ences of the cold weather on the strength of tailings reinforced with cement-based materials.
In the past decades, researchers focused their attention on the internal microstructure in
their studies of cement-based materials [17]. This is because the microstructure determines
the strength and durability of the tailings. However, freeze–thaw cycles can destroy the
reinforced body of tailings since frozen water, i.e., ice, generates crystallization pressure on
the capillary and pore walls in the tailings, and the expanded volume leads to an increase
in stress [18]. The ice then melts to water, causing a collapse of some pores and extensions
into larger pore structures. As a result, the porosity of the tailings is increased. Clearly
continuous cycles of freeze–thaw will degrade the mechanical properties of cement-based
materials [19].

A number of researchers [20–23] investigated the degradation of compressive strength
of concrete due to freeze–thaw cycles. Tang [24] applied the artificial freezing method
in subway tunnel construction and found that the value of freezing temperature had a
slight influence on the dynamic elastic modulus of soil, but freeze–thaw action can reduce
the dynamic elastic modulus. Xie [25] studied the interaction between desertification
and permafrost and found that both the cohesion values and the compressive strength of
the permafrost samples that experienced freeze–thaw cycles were decreased compared
to the unfrozen samples. Some researchers [26] observed that crystallization pressure by
ice was the most important source of stress during freeze–thaw cycles for cement-based
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composites. The interfacial energy between the porous media played a vital role in the
crystallization pressure, which is the stress that acted on the walls of pores due to the
growing ice crystal [27–30]. Therefore, it is imperative to accurately measure the pore size
distribution and micromorphology of the tailings reinforced with cement-based materials
before and after freeze–thaw cycles.

Further review of the literature suggests that current research focused more on the
mechanical and microstructural properties of concrete or soil only [31–34]. There is little
or no research on tailings reinforced with cement-based materials under freeze–thaw
conditions, especially when the tailings are to be discharged to land. Clearly knowledge on
the degradation of mechanical and microstructural properties of tailings reinforced with
cement-based materials under freeze–thaw cycles can help prevent failures of tailing dams
and mitigate their environmental hazards. This can achieve not only sustainable production
in the mining process but also bring about significant social, economic and environmental
benefits. Therefore, there is a well-justified need to study the degradation of mechanical
strength of tailings reinforced with cement-based materials under freeze–thaw cycles.

The main objective of this paper is to experimentally study the mechanical and mi-
crostructural properties of tailings reinforced with cement-based materials before and after
freeze–thaw cycles and to identify the causes of changes in mechanical and microstructural
properties. To achieve this objective, samples of tailings are prepared with different curing
periods, namely 3, 7 and 28-days and frozen at different temperatures, namely −5 ◦C,
−10 ◦C, and −15 ◦C for different numbers of cycles, namely 0, 3, 5, 7, 10, 12, 15, 20. Then,
uniaxial compressive (UCS) tests are conducted on these samples. This w followed by
the X-Ray Diffraction (XRD) and thermogravimetry (TG) tests to identify and assessment
of the hydration products of cement-based materials before and after freeze–thaw cycles.
Scanning electron microscopy (SEM) is performed on these samples to analyze the composi-
tion and microcosmic morphology of the hydration products. Finally, the microscope pore
structures of the samples are studied through the mercury intrusion porosimetry (MIP)
experiment. The paper focuses on the effects of freeze–thaw cycles on the mechanical and
microscopic properties of the tailings to provide a theoretical and experimental basis for
their wider application in cold regions to achieve environmental sustainability and cleaner
production in the mining process.

2. Design of Experiment

2.1. Geology of the Mine and Test Materials

Lilou Iron Mine is located in Huoqiu County, western Anhui Province. The ore body
has an elevation of −520∼−862 m, an average thickness of 48.2 m, and an inclination
angle of 65∼85◦. The roof of the deposit and its surrounding rocks are gneiss and dolomite
marble. The hardness coefficient of specular hematite in the ore-bearing belt is 8 to 12, but
the local extrusion and crushing have a broken structure. The lithology of the ore body
floor is mainly dolomite marble, with no fissures and karst caves developed. The shape of
the ore body within the ore deposit is layered, the ore body tends to be nearly north-south,
and the ore body is inclined to the west. At present, the mining capacity of the mine is
7.5 million tons/year, which is the largest iron ore underground mining in China.

The tailings (from the Anhui Lilou Iron Mine, the main mineralogical composition
is specular hematite) mixed with a new type of cement-based material were used as
the test material. Although Ordinary Portland Cement is one of the most commonly
used binders in backfilling and discharging [35], its costs account for almost 75% of the
discharge expenditure [36]. Thus, a cheaper new type of cement-based material (denoted
NCM) is developed to replace Ordinary Portland Cement. The composition of the NCM
is clinker, lime, gypsum, blast furnace slag with a proportion of 14:6:10:70 (the main
mineralogical compositions of lime, gypsum, blast furnace slag is calcium hydroxide,
calcium sulfate and melilite, the main mineralogical compositions of clinker are tricalcium
silicate, dicalcium silicate, tricalcium aluminate and tetracalcium ferroaluminate) [37]. The
grain size distribution of NCM is given in Table 1 where d10, d30, d50, d60, d90 represent the
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cumulative content on the particle composition curve, with corresponding particle sizes of
10%, 30%, 50%, 60%, 90% of the volume, respectively. The main chemical compositions of
NCM are given in Table 2; 0.4% of admixture was added to NCM. The admixture consists
of sodium sulfate, alum, sodium fluorosilicate with a proportion of 2:1:1. Previous test
results have proved [37] that the UCS of the tailings with NCM at the ages of 3, 7 and
28-days are 2.4, 2.4 and 1.7 times higher than that with OPC, respectively.

Table 1. Grain size distribution of NCM and tailings.

Element
Unit

d10/μm d30/μm d50/μm d60/μm d90/μm Cu Cc

slag 9.32 18.07 31.23 50.68 226.28 2.80 5.44
clinker 7.48 12.26 20.39 25.31 29.62 2.06 4.59

gypsum 2.47 9.19 18.73 24.86 74.81 2.71 3.09
lime 3.13 5.91 10.82 21.74 33.32 6.95 1.42

Tailings 14.55 26.61 38.32 54.27 82.33 3.73 0.89

Table 2. Main chemical compositions of NCM and tailings.

Element
Unit

MgO
(wt.%)

Al2O3

(wt.%)
SiO2

(wt.%)
CaO

(wt.%)
SO3

(wt.%)
Fe2O3

(wt.%)
Total

slag 8.38 14.79 33.81 36.95 0.28 0.89 95.09
clinker 2.45 4.47 22.01 64.31 2.45 3.45 99.14

gypsum 2.14 0.12 0.98 45.85 42.45 0.11 91.66
lime 0.56 0.23 0.38 72.29 0.13 0.26 73.84

Tailings 2.41 3.85 82.05 2.46 0.18 8.01 98.96

Note: The experimental data are provided by the Key Laboratory of Orogenic Belt and Crustal Evolution of the
Ministry of Education, Peking University.

Tap water was used to mix the binders, i.e., NCM with tailings. The grain size
distribution of tailings is shown in Table 1. The main mineralogical compositions of the
tailings are listed in Table 2. The grain size distribution of the tailings is shown in Figure 1.

Figure 1. Grain size distribution of tailings.

2.2. Test Specimens

The water to binder (w/NCM) ratio of the mix proportion adopted in this study is
5.6. The binder (NCM) content of the tailings is 4.5% by weight. The preparation of the
specimens basically follows the standard ASTMC39 [38] and includes the following steps:
Firstly, the required amount of tailings, NCM and water were determined according to
the experimental scheme, and the tailings mixtures were produced by mixing the required
quantity of tailings, NCM and water for 7 min until a homogeneous paste was obtained.
The prepared mortar was then poured into plastic cylinders, whose diameter and height
are 50 mm and 100 mm, respectively. Then, the prepared samples of tailings mixtures were
sealed with a plastic cover to prevent moisture loss. They were cured in an environmental
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chamber with a controlled temperature of 20 ± 1 ◦C and a minimum of 95% relative
humidity for different curing times, i.e., 3, 7 and 28-days. To assure comparable results in
the current measurements, identical experimental conditions are maintained for all the tests.
After curing, tailings samples were frozen at three temperatures namely −5 ◦C, −10 ◦C and
−15 ◦C, and then thawed in the environmental chamber with different numbers of cycles,
namely, 0, 3, 5, 7, 10, 12, 15, 20 for each freezing temperature. The freezing and thawing
time are both 12 h, according to the period of a natural cycle. To cover a range of designated
values for different test variables of curing time, freezing temperature and number of
freezing-thawing cycles, 230 samples of tailings mixture were prepared in this study.

A detailed test plan for this study is shown in Table 3. It should be noted that only
water and binder are added to the XRD and TG tests, other operations are the same
as above.

Table 3. Test plan for experiment.

Tests
Cured

Time/Days
Cured

Temperature/◦C
Freeze–Thaw

Times
Number of

Samples

UCS 3, 7, 28 −5, −10, −15 0, 3, 5, 7, 10, 12,
15, 20 198

XRD 7, 28 −10 0, 20 4
TG 7, 28 −5, −10, −15 0, 20 8

SEM 3, 7, 28 −10 0, 5, 10, 20 12
MIP 7, 28 −5, −10, −15 0, 20 8

2.3. Tests on Specimens

Tests undertaken on tailings samples included mechanical tests, XRD, TG, SEM and
MIP measurement. In accordance with ASTMC39 [38], the mechanical strength of tailings
samples is represented by the UCS [39], which is one of the most important indicators to
measure the macroscopic mechanical damage characteristics on samples. It is relatively
intuitive to find the relationship between the damage and the number of freeze–thaw cycles.
The UCS tests are performed on the tailings samples after they are cured for 3-days, 7-days,
28-days (referred to as 3-, 7-, 28-day samples hereafter), and experienced 0, 3, 5, 7, 10, 12, 15,
20 freeze–thaw cycles.

XRD is a common measurement for crystal phase structure identification in cement-
based materials [40]. The tests were performed on NCM samples that are cured for 7-days
and 28-days and experienced 20 freeze–thaw cycles at a freezing temperature of −10 ◦C.

TG test is to assess the amount of hydration products on the microstructural devel-
opment of the cement-based materials. The tests were performed on NCM samples that
were cured for 7-days and 28 days and undergone different freeze–thaw cycles at different
freezing temperatures.

SEM images are used to evaluate the influence of hydration products on tailings
samples [41]. The tests were conducted on tailings samples that were cured for 3-days,
7-days, 28-days and had undergone freeze–thaw cycles of 0, 5, 10, 20 times at the freezing
temperature of −10 ◦C.

MIP is a high-precision method to analyze the micropore structure of materials [42,43].
Non-immersion liquid cannot penetrate the porous area unless external pressure is intro-
duced. The tests were conducted on tailings samples cured for 7 and 28-days, after the 20th
freeze–thaw cycle at the temperatures of −5 ◦C, −10 ◦C, −15 ◦C and 20 ◦C.

The relationship between the pore diameter d (m) and the pressure P (MPa) can be
described by the well-known Ishburn equation [44]:

d =
−4σ cos θ

P
(1)
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where the applied pressure P is inversely proportional to pore diameter d, σ is the surface
tension (N/m) and θ is the contact angle between mercury and the pore wall. The contact
angle is believed in the range of 120◦ to 140◦ [45].

3. Results and Analysis

3.1. Effects of Freeze–Thaw Cycles on Strength of Tailings Samples

Figure 2 shows the UCS variation under different freeze–thaw cycles (0, 3, 5, 7, 10, 12,
15 and 20) and freezing temperatures (−5 ◦C, −10 ◦C, −15 ◦C). It can be clearly observed
that the number of freeze–thaw cycles and freezing temperature has a significant effect on
the strength variation of the tailing samples.

 
(a) 

 
(b) 

 
(c) 

Figure 2. Effect of freeze–thaw cycles on UCS of tailings samples for different curing time and
temperature. (a) After 3-day curing; (b) After 7-day curing; (c) After 28-day curing.

Figure 2a,b shows that the UCS of the 3- and 7-day samples increases in the first
3 cycles, and then decreases until the 12th cycle. It becomes flat during the 12–20 cycles.
However, the UCS of the 28-day samples decreases in the first three cycles, and becomes
stable during the 10–20 cycles, as can be seen in Figure 2c.
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The hydration reaction of the samples with a short curing time (e.g., 3-days and 7-days)
did not proceed completely since the free water converted to ice during freezing. Therefore,
there were few hydration products but many internal pores in the samples. Although
the volume expanded by about 9% due to water becoming ice, the pores in the samples
provided sufficient space to accommodate the expansion. Thus, the swelling effect of the
ice crystals on the samples is not significant. When the temperature rises, the ice melts, and
the hydration reaction continues. The hydrated products, such as calcium silicate hydrate
(C-S-H) gels and ettringite crystals, continue to fill the internal pores, reducing the porosity
of the samples, and as such increasing the strength. This is why in the first three cycles of
freeze and thaw, the UCS of the samples increased. At this stage, the effect of hydration
reaction on the strength is greater than the damage of freeze–thaw cycles.

However, with the accumulation of damage by the freeze–thaw cycles, the UCS of
the samples started to decrease when it reached a peak value. This can also be because
more hydration reactions were completed. When the samples were cured for a longer time,
e.g., 28-days, sufficient hydration products were produced which filled up the internal
pores and overlapped on each other. Such samples had a relatively dense matrix with little
room to accommodate the expansion of the ice crystal when the samples were frozen. Thus,
any expansion of the ice crystal could destroy the dense matrix of the samples and hence
reduced the UCS of the samples. This can be seen in Figure 2 where the curves flattened
after 12 cycles of 3 day samples, after 10 cycles of 7- and 28-day samples, the UCS stabilized
upon reaching a certain value. The main reason for such variations is that the internal
structure of the samples was destroyed by the freeze–thaw cycles in the initial stage. Thus,
as the number of freeze–thaw cycles increased, a new stable state was reached.

Figure 2 indicates that the temperature affects the UCS of the samples differently for
different curing times. The UCS values of the samples frozen at −10 ◦C were higher than
that at −15 ◦C but lower than that at −5 ◦C for all curing time and freeze–thaw cycles. This
phenomenon indicates that during the freeze–thaw cycles, the lower the temperature, the
more destructive to the samples. Figure 2 also shows that the degree of temperature effect
on samples was different with longer cured samples (i.e., 28-days). The reason for this is
that when the samples were transferred from the curing box to the freezer, the freezing
temperature was higher and the exchange rate between the samples was lower, and the the
time required for the temperature to fall below the freezing point was higher. A hydration
reaction is an exothermic process, a longer curing time means more hydration products
during one freeze–thaw cycle and hence, less of an effect from temperature. Figure 2 further
shows that, for the same curing time, the higher the freezing temperature, the greater the
value of the UCS under the same freeze–thaw cycles. This is because when the temperature
is below the freezing point, some of the crystal water is not converted to ice completely [46].
Being closer to the freezing point, means there is more free water in the hydration reaction
which offsets the damage conducted by the freeze–thaw cycle to some extent. However,
since the hydration reaction of the sample in 28-days almost consumed the raw materials,
the influence of freezing temperature on the hydration reaction was reduced.

Figure 2 suggests that the UCS reduced less for higher freezing temperature, e.g.,
−5 ◦C, than that for lower ones, this can be explained as follows. In general, there are
two kinds of pore structures, which are closed and connected pores. When the freezing
temperature is low, the water in the closed pores with rigid constraints of pore walls freezes
rapidly, and the ice crystal pressure increases. When the ice crystal pressure exceeds the
strength of the pore wall, the freeze–thaw damage occurs in the samples. For connected
pores, the capillary force in the smaller pores will reduce the freezing point of water so that
the water in the non-capillary pores freezes first. The small pores connected to it will be
isolated after freezing since the water between the pores has no time to seep. As a result,
the closed pore is formed with the same damage mechanism as described above. When the
freezing temperature is high, the water freezing process is a quasi-static process. For closed
pores, the ice crystal pressure increases simultaneously with the elastic deformation of the
pore wall. The ice crystal pressure is converted into elastic deformation energy and stored
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in the pore wall. Therefore, the freeze–thaw damage generated in the closed pores is small.
For the connected pores, an unfrozen water film is formed between the water and the pore
wall during the freezing process. While freezing, the water in the pores penetrates through
the unfrozen water film to other pores, which reduces the ice crystal pressure. Therefore,
the freeze–thaw damage generated in the connected pores is small.

Compared with the UCS of the unfrozen samples in Figure 2, the UCS of samples with
3-, 7- and 28-day curing reduced by about 9–40%, 14–32%, and 19–26%, respectively, under
the same testing conditions. This is because a short curing time results in fewer internal
hydration products in the samples. In general, an increase in curing time can produce more
hydration products in the samples with less water in the pores. However, more water in
the pores of the samples promotes the destructive effect of ice crystals during the freezing
and thawing. The damage by freeze–thaw cycles is irreversible and will eventually damage
the samples with shorter curing time than those with longer curing time.

3.2. Crystalline Phases and Amount of Hydration Products of NCM

In the past, the research on freeze–thaw cycles mostly focused on rock and soil.
These materials have no internal reactions, such as hydration reaction, during the freeze–
thaw cycles, and their properties are relatively stable. However, for tailings samples, the
hydration product is an important factor affecting the mechanical properties after freeze–
thaw cycles. Therefore, it is important to analyze the change of the type and amount of
hydration products in the samples before and after freeze–thaw cycles. The XRD test was
used to identify the types of hydration products that were cured for 7 and 28-days after
experiencing 20 freeze–thaw cycles at −10 ◦C, with results shown in Figures 3 and 4.

Figure 3. XRD image of 7-day samples.
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Figure 4. XRD image of 28-day samples.

Figures 3 and 4 show the products of calcium carbonate, ettringite, calcium hydrox-
ide, hydrated calcium sulfoaluminate, calcium silicate hydrate, calcium sulfate and silica.
Though the diffraction intensities of the substances are not the same at the same angle, the
species phase does not change in general. The reason is that the hydration reaction still
occurs during the freeze–thaw cycles, but it does not generate other substances due to the
intermittent progress of the hydration reaction.

The TG analysis test was also used to determine the amount of hydration products
of the samples cured for 7 and 28-days with 0 and 20 freeze–thaw cycles at the freezing
temperature of −5 ◦C, −10 ◦C and −15 ◦C. The test data are plotted in Figures 5 and 6.
The solid line in the figures indicates the weight loss of the cementitious material with the
increase of temperature, and the corresponding dotted line indicates its first differential,
that is, the rate of mass loss, which corresponds to different types of materials at different
heating temperatures. The value of the heating temperature valley is different for the
amount of substance.

 
Figure 5. Hydration product of samples at different freezing temperatures after 7-day curing.
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Figure 6. Hydration product of samples at different freezing temperatures after 28-day curing.

As can be seen from Figures 5 and 6, the troughs of the dotted lines in the temperature
range of 50 ◦C to 800 ◦C represent the reduction of combined water, C-S-H gel, ettringite,
calcium hydroxide and calcium carbonate. It can be seen from Figure 5, when the 7-
day samples are subjected to unfrozen and 20 cycles of freeze–thaw at different freezing
temperatures between 50 ◦C and 105 ◦C, the mass loss of the sample without freeze–thaw
(i.e., 0 cycle) is large, while the samples experiencing 20 freeze–thaw cycles are relatively
small. This shows that unfrozen samples contain more water, while the samples that
experienced freeze–thaw cycles have less water due to the progress of the hydration
reaction. It can also be seen that the sample with the freezing temperature of −5 ◦C has the
most mass loss, indicating that the hydration reaction is more adequate at this temperature
than that at the freezing temperature of −10 ◦C and −15 ◦C. The mass loss between 450 ◦C
and 500 ◦C indicates the presence of calcium hydroxide. Though it is not clearly indicated,
the curve of the unfrozen sample is relatively high. This proves the existence of hydration
reactions during the freeze–thaw process again. The mass loss between 650–750 ◦C is due
to the decomposition of calcium carbonate. The sample with 20 freeze–thaw cycles at
the freezing temperature of −5 ◦C has the most mass loss, indicating that the hydration
products produced after freezing and thawing at this temperature are the greatest. The
reason is that the hydration reaction was still continuing during the freeze–thaw cycles,
and the higher the freezing temperature is, the greater the degree of hydration reaction is.

Figure 6 shows that, at temperatures between 50 ◦C and 105 ◦C, the mass loss of
the unfrozen sample is still the largest. However, compared with the 7-days sample, the
difference in quality loss is not obvious. The reason is that the 7-day samples are rich in raw
materials for hydration reaction, and the hydration reaction continues during the freezing
and thawing process; while the raw material for hydration reaction in the 28-day samples
has basically been consumed, and there is no difference before and after freeze–thaw cycles.
Even between 450 ◦C and 500 ◦C, the decomposition of calcium hydroxide in the sample
has not been seen. It can also be seen that the mass loss caused by the decomposition of
calcium carbonate in the unfrozen samples between 650–750 ◦C is the smallest; while at
the freezing temperature of −5 ◦C, the 20th freeze–thawed sample has the largest mass
loss, but the difference is very small. In addition, the difference in the quality of the 28-day
samples from the final remaining material is not as great as that of 7-day samples.

3.3. Surface Morphology Destroyed by Freeze–Thaw Cycles of the Samples

From SEM images presented in Figures 7–9, ettringite crystal, C-S-H gels, capillary
pores and freeze–thaw cycles damaged pores can be studied. Only the samples frozen at
−10 ◦C are presented in this section.
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(a) (b) 

  
(c) (d) 

Figure 7. SEM images of 3-day samples under different freeze–thaw cycles. (a) Unfrozen; (b) After
5 freeze–thaw cycles; (c) After 10 freeze–thaw cycles; (d) After 20 freeze–thaw cycles.

  
(a) (b) 

  
(c) (d) 

Figure 8. SEM images of 7-day samples under different freeze–thaw cycles. (a) Unfrozen; (b) After
5 freeze–thaw cycles; (c) After 10 freeze–thaw cycles; (d) After 20 freeze–thaw cycles.
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(a) (b) 

  
(c) (d) 

Figure 9. SEM images of 28-day samples under different freeze–thaw cycles. (a) Unfrozen; (b) After
5 freeze–thaw cycles; (c) After 10 freeze–thaw cycles; (d) After 20 freeze–thaw cycles.

Note: Aft (Ettringite crystal); C-S-H (calcium silicate hydrate); FDP: freeze–thaw cycles
damaged pores.

The XRD test (Figures 3 and 4) shows the hydration products of the cementitious mate-
rial elements, such as Ca, Al, O, Si, S, etc. According to the knowledge of mineralogy crystal
morphology analysis [47], ettringite is needle-like and calcium silicate hydrate is gel-like.
These morphological features are very obvious in the SEM test images. These topographic
features are very obvious in the SEM test images of Figures 7–9. Figures 7a, 8a and 9a show
SEM images of the 3-, 7- and 28-day samples, respectively. It can be seen that as the curing
time increases, more and more C-S-H gels are produced and ettringites are surrounded by
C-S-H gels. Obviously, only C-S-H gels can be seen on the surface for the 28-day samples.
The dense internal structure of the hydration products makes the UCS values of the 28-day
samples higher than those 3- and 7-day samples.

Figure 7 shows the SEM images of the samples cured for three days and then subjected
to 0, 5, 10, 20 freeze–thaw cycles. Plenty of needle-like ettringites are observed in the
matrix of the cement-based material in Figure 7a. Broken short columnar ettringite crystals
due to the freeze–thaw damage can be observed in the pores in Figure 7b. In Figure 7c,d,
needle-like crystals and C-S-H gels can be seen around the pores. However, it is obvious
that there are a lot of pores on the surface of the gels, which are caused by the expansion of
water converting to ice during the freeze–thaw cycles. Voids in the sample in Figure 7d
increase compared with those in Figure 7b,c, indicating that the deterioration extent of the
samples increases as the number of freeze–thaw cycles increases. It can also be seen from
Figure 7b–d that, as the freeze–thaw cycles increased, proper and clear C–S–H gels in the
samples still exist, even though they are damaged by the freeze–thaw cycles.

Figures 8 and 9 show the SEM images of the samples subjected to 0, 5, 10, 20 freeze–
thaw cycles after cured for 7-days and 28-days. These images demonstrate that the hardened
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samples are perhaps more able to withstand freeze–thaw cycles. Highly saturated fresh
samples may be severely damaged by a few cycles. The saturated water in the pores can
freeze during cooling process. This difference will become clearer when comparing Figure 7
with Figure 9. There are more pores damaged by freeze–thaw cycles in the 3-day samples.

Figures 7d, 8d and 9d show that the defects are mostly micro-voids after experiencing
20 freeze–thaw cycles. However, in most cases, the degradation by freeze–thaw cycles
is characterized by the gradual formation of microcracks in the samples. In the freezing
process, water is redistributed throughout the mix by moving to the colder areas. If freezing
is rapid, water has little chance to move towards the colder areas, thus creating a nearly
uniform distribution of ice crystals. However, these crystals can still damage the immature
cement-based material and weaken the bonds between the cement-based materials.

From the analysis above, the samples with short curing time continues to hydrate
in the freeze–thaw cycles. As the number of freeze–thaw cycles increase, the amount of
hydration products increases. There are many pores inside the samples, which slows
down the damage caused by the expansion of the ice crystal. Thus, the influence of the
hydration reaction on the samples at this stage is dominant. However, since the amount of
final hydration product is only related to the cementitious material, slurry concentration
and lime-sand ratio (although affected by temperature), the degree of hydration reaction
is gradually smaller but maintained as the freeze–thaw cycle progresses. At a certain
curing time, the effect of the freeze–thaw cycles on the samples plays a major role, which
is manifested microscopically as the degree of deterioration increases with the number of
freeze–thaw cycles. Macroscopically, the UCS of the samples is lower when the degree of
microscopical damage is high.

3.4. Pore Size Distribution of the Samples

The MIP tests were carried out to study the effect of the freeze–thaw cycles on the pore
size distribution of the tailings. In this study, the samples with 20 freeze–thaw cycles after
cured for 7- and 28-days are chosen. The normalized volume from the MIP tests versus the
pore diameter of the samples is plotted in Figures 10 and 11. The normalized volume curves
show the variations of the mercury volume with the different pore sizes. From Equation (1),
the intrusion pressure is inversely related to the pore diameter. In the intrusion process, the
total mercury intrusion volume increases with the increase of intrusion pressure.

 
Figure 10. Intrusion and extrusion curves of 7-day samples at different cooling temperature.
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Figure 11. Intrusion and extrusion curves of 28-day samples at different cooling temperature.

It can be seen from Figures 10 and 11 that during the initial increase of external
pressure, whether the samples were cured for 7-days or 28-days, the curves show similar
trends. The intrusive volume of mercury increases slowly with the decrease of pore size,
and the mercury mainly fills the gaps with larger diameters at this stage. For 7-day samples,
the mercury mainly fills pores larger than 8.6 μm, but 2.8 μm for 28-day samples. It appears
that tailing particles are redistributed to adapt to external pressure change during this
process. The cumulative intrusive volume of mercury in the 7-day samples increases
rapidly when the pore size is less than 2.5 μm. The cumulative intrusive volume of mercury
in the 28-day samples increases rapidly when the pore size is less than 1.9 μm. This
phenomenon indicates that there is a bottleneck effect during the invasion phase, and the
external pressure forces the tailing particles to redistribute. After the mercury intrusion
volume passes the bottleneck period, it will increase to a large value under a small pressure.
This bottleneck period is the pressure required for the mercury liquid to destroy the pore
wall. It can be seen that the starting point of the rapid increase in the volume of invaded
mercury at different curing ages is different, and the starting points of the samples that
were unfrozen and experienced 20 freeze–thaw cycles in the same curing time are similar.
This shows that the curing time has a great impact on the development of pores, and
the damage of freeze–thaw cycles to the pores may have a great impact at the micropore
stage. However, even when the external pressure reaches the maximum value set by the
instrument, it is still difficult for mercury to enter the smallest pores and closed pores. Thus,
the mercury intrusion curve eventually tends to be moderate. The exit curve of mercury
cannot return to the starting point because some mercury remains in the narrow pores,
resulting in the exit of mercury less than the intrusion.

Comparing Figure 11 with Figure 10, the volume of mercury intrusion is reduced by
17.5%, 13.8%, 13.6%, 11.1% for samples after 20 freeze–thaw cycles at −5 ◦C, −10 ◦C, and
−15 ◦C, respectively. The main reason for the decrease of mercury intrusion volume is
that, as the curing time increases, the hydration products gradually accumulate and fill in
the pores between the solid particles to make the internal structure more compact, which
is supported from the UCS tests and the SEM tests. The hydration reaction of the 28-day
samples has been completed, but the 7-day samples still have hydration reactions in the
process of freeze–thaw cycles. The higher the freezing temperature are, the shorter the time
needed to rise above zero, leading to longer hydration reaction time, and more hydration
products in one freeze–thaw cycle. Likewise, the higher the freezing temperature is, the
higher the reduction is in mercury intrusion volume. In Figure 10, for 7-day samples, the
pore volume after 20 freeze–thaw cycles at freezing temperatures of −5 ◦C, −10 ◦C, and
−15 ◦C is 3.1%, 7.6%, and 12.3% higher than that of unfrozen samples, respectively. In
Figure 11, for 28-day samples, the pore volume after 20 freeze–thaw cycles at freezing
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temperatures of −5 ◦C, −10 ◦C, and −15 ◦C is 8.1%, 12.5%, and 21.1% higher than that
of unfrozen samples, respectively. This observation is consistent with the UCS results
of Figure 2c and it indicates that the porosity has a significant influence on the UCS of
samples. It proves that the freeze–thaw cycles assist the pore development of the samples.
The lower the temperature is, the more pore development there is. The increase in the pore
volume of the 28-day samples is larger than that of the 7-day samples. This is because
the hydration reaction of the 28-day samples is completed, while for the 7-day samples
hydration continues, which slows down the development of pore volume to some extent.

Figures 12 and 13 present the log-differential mercury volume curves of samples
at different cooling temperatures after 20 freeze–thaw cycles for both 7-day and 28-day
curing times.

 
Figure 12. Log-differential pore volume curves of 7-day samples at different cooling temperature.

 
Figure 13. Log-differential pore volume curves of 28-day samples at different cooling temperature.

The variation of the log-differential mercury volume is the pore size distribution of
the samples, where the abscissa values of the peak points are called the most probable pore
sizes. It shows that the pores with the same sizes appear most within the samples. For
these samples, the log-differential pore volume curves are mainly in the pore diameter
ranging from 0.8 μm to 3.8 μm. In Figure 12, the most probable pore diameters of the 7-day
samples frozen at −5 ◦C, −10 ◦C, −15 ◦C are 1.93 μm, 2.47 μm and 2.48 μm, respectively,
after 20 freeze–thaw cycles, and increase by 0.7%, 21.9%, 29.1%, respectively, compared to
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the unfrozen samples. Figure 13 shows the most probable pore diameters of the 28-day
samples frozen at −5 ◦C, −10 ◦C, −15oC are 1.62 μm, 1.91 μm and 2.47 μm, respectively,
after 20 freeze–thaw cycles, increasing by 3.3%, 28.8% and 39.2%, respectively, compared
to the unfrozen samples. The results show that whether the samples are cured for 7-days
or 28-days, after freezing and thawing cycles, the most probable pore size is increasing,
and the lower the freezing temperature is, the more probable the pore size increases, which
indicates that the freezing temperature has a greater effect on samples. It also suggests that
the freezing temperature has a significant effect on the micropores of the samples, which in
turn affects the UCS of the samples.

4. Conclusions

In this paper, a comprehensive experiment was developed to investigate the impact of
freeze–thaw cycles on the mechanical strength of the tailings reinforced with cement-based
materials to mitigate environmental hazards and achieve sustainable production. Based on
the test results and their analysis, the following conclusions can be reached:

(1) Freeze–thaw has a positive effect on UCS of tailings samples in the first three cycles
for short curing times of 3- and 7-days but has a negative effect on the UCS for a
normal curing time of 28-days under all freeze–thaw cycles. The frozen temperature
has slight effect on UCS reduction for short curing time but has little effect for normal
curing time.

(2) The larger the number of freeze–thaw cycles are, the more damage there is to the
surface morphology and the matrix of the tailings, and the more severe the surface
morphology damage is, the lower the UCS of the samples is.

(3) The freeze–thaw cycles have no effect on phases of the hydration products. The higher
the freezing temperature is, the greater the amount of hydration products. Fuller
hydration would result in a higher UCS of the samples.

(4) The mercury intrusion pressure is inversely related to the pore diameter of the samples.
The lower the freezing temperature is the more mercury ingresses, and the most
probable pore sizes increase after the freeze–thaw cycles, which in turn reduces the
UCS of the samples.

From the results, we know freeze–thaw cycles have a significant impact on cemented
tailings. In the application of real TSF embankment, when the ambient temperature drops
to a certain value, we can consider taking thermal insulation measures for the TSF or
increasing the amount of cementitious material to promote its hydration reaction. The
freeze–thaw cycle creates cracks in the cemented tailings, and the TSF embankment is in
danger of failure, we can reinforce the TSF embankment to make it stable and durable.

Temperature may not be the only factor for the change in strength. Next, we are going
to study the amount of cementitious material and confining pressure on the stability of the
cemented tailings in a low temperature environment, to find out the correlation among
them; to determine under what conditions the amount of cementitious material should be
increased, and under which circumstances the tailings dam should be strengthened, or if
both should be carried out at the same time.

Author Contributions: P.D. and Y.H. conceived and designed the experiments; P.D., X.Z. and D.H.
performed the experiments; S.C. and D.H. collected and analyzed the data; Y.H. contributed materi-
als/analysis tools; P.D. and Y.H. wrote the paper. C.L. Writing-review & editing. Conceptualization:
P.D. and Y.H.; Data curation, D.H.; Formal analysis, X.Z.; Funding acquisition, Y.H.; Investigation, X.Z.
and S.C.; Methodology, P.D. and Y.H.; Resources, Y.H.; Software, D.H.; Supervision, Y.H.; Validation,
D.H.; Visualization, S.C.; Writing—original draft, P.D.; Writing—review & editing, P.D. and C.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (no.51674263)
and the Fundamental Research Funds for the Central Universities (2011YZ02).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

166



Minerals 2022, 12, 413

Conflicts of Interest: The authors declare no conflict of interest.

References

1. David, J.W. Lessons from Tailings Dam Failures—Where to Go from Here? Minerals 2021, 11, 853. [CrossRef]
2. Liu, R.; Huang, F.; Du, R.; Zhao, C.; Li, Y.; Yu, H. Recycling and utilisation of industrial solid waste: An explorative study on gold

deposit tailings of ductile shear zone type in China. Waste Manag. Res. 2015, 33, 570–577. [CrossRef]
3. Zhang, J.; Liu, J. The Statistics and Causes of Dam Break and Leakage in Chinese Tailings Pond. Chin. Molybdenum Ind. 2019, 4,

10–14. [CrossRef]
4. Yu, M.; Kong, X.; Huang, J.; Liu, J.; Li, J. Status of disposal of tailings as a solid waste and suggestions in China. Ind. Miner.

Processing 2022, 1, 34–38, (In Chinese with English Abstract). [CrossRef]
5. Bolaños-Benítez, V.; Van Hullebusch, E.; Lens, P.L.; Quantin, C.; Van De Vossenberg, J.; Subramanian, S.; Sivry, Y. (Bio)leaching

Behavior of Chromite Tailings. Minerals 2018, 8, 261. [CrossRef]
6. Anning, C.; Wang, J.; Chen, P.; Batmunkh, I.; Lyu, X. Determination and detoxification of cyanide in gold mine tailings: A review.

Waste Manag. Res. 2019, 37, 1117–1126. [CrossRef] [PubMed]
7. Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage

prevention and mine tailings recycling. Chemosphere 2019, 5, 588–600. [CrossRef] [PubMed]
8. Sun, Q.; Wei, X.; Li, T.; Zhang, L. Strengthening Behavior of Cemented Paste Backfill Using Alkali-Activated Slag Binders and

Bottom Ash Based on the Response Surface Method. Materials 2020, 13, 855. [CrossRef] [PubMed]
9. Qin, X.B.; Liu, L.; Wang, P.; Wang, M.; Xin, J. Microscopic Parameter Extraction and Corresponding Strength Prediction of

Cemented Paste Backfill at Different Curing Times. Adv. Civ. Eng. 2018, 4, 2837571. [CrossRef]
10. Nasir, O.; Fall, M. Shear behavior of cemented pastefill–rock interfaces. Eng. Geol. 2008, 101, 146–153. [CrossRef]
11. Zhang, Q.L.; Chen, Q.S.; Wang, X.M. Cemented Backfilling Technology of Paste-Like Based on Aeolian Sand and Tailings. Minerals

2016, 6, 132. [CrossRef]
12. Opiso, E.M.; Tabelin, C.B.; Maestre, C.V.; Aseniero, J.P.J.; Park, I.; Villacorte-Tabelin, M. Synthesis and characterization of coal fly

ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime
sludge as Ca-based activator. Heliyon 2021, 7, e06654. [CrossRef] [PubMed]

13. Hou, Y.B.; Tang, J.; Wei, S.X. Study on Tailings Consolidation Emissions Technology. Chin. J. Met. Mine 2011, 40, 59–62, (In Chinese
with English Abstract).

14. Michael, P.; Arnel, B.; Aileen, O.; Bernardo-Arugay, I.; Resabal, V.J.; Villacorte-Tabelin, M.; Dalona, I.M.; Opiso, E.; Alloro, R.;
Alonzo, D.; et al. Systems Approach toward a Greener Eco-efficient Mineral Extraction and Sustainable Land Use Management in
the Philippines. Chem. Eng. Trans. 2021, 88, 1171–1176. [CrossRef]

15. Silwamba, M.; Ito, M.; Hiroyoshi, N.; Tabelin, C.B.; Fukushima, T.; Park, I.; Jeon, S.; Igarashi, T.; Sato, T.; Nyambe, I.; et al.
Detoxification of lead-bearing zinc plant leach residues from Kabwe, Zambia by coupled extraction-cementation method. J.
Environ. Chem. Eng. 2020, 8, 104197. [CrossRef]

16. Zhou, Z.; Ma, W.; Zhang, S.; Mu, Y.; Li, G. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg. Sci.
Technol. 2018, 146, 9–18. [CrossRef]

17. Qiao, Y.F.; Sun, W.; Jiang, J. Damage process of concrete subjected to coupling fatigue load and freeze/thaw cycles. Constr. Build.
Mater. 2015, 93, 806–811. [CrossRef]

18. Polat, R. The effect of antifreeze additives on fresh concrete subjected to freezing and thawing cycles. Cold Reg. Sci. Technol. 2016,
127, 10–17. [CrossRef]

19. Polat, R.; Demirboga, R.; Karakoc, M.B.; Türkmen, I. The influence of light weight aggregate on the physical-mechanical properties
of concrete exposed to freeze–thaw cycles. Cold Reg. Sci. Technol. 2010, 60, 51–56. [CrossRef]

20. Cao, D.F.; Fu, L.Z.; Yang, Z.W. Experimental study on tensile properties of concrete after freeze-thaw cycles. J. Build. Mater. 2012,
15, 42–52. [CrossRef]

21. Qureshi, A.; Bussière, B.; Benzaazoua, M.; Lessard, F.; Boulanger-Martel, V. Geochemical Assessment of Desulphurized Tailings
as Cover Material in Cold Climates. Minerals 2021, 11, 280. [CrossRef]

22. Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. Experimental study of the material and bond properties of frost-damaged concrete.
Cem. Concr. Res. 2011, 41, 244–254. [CrossRef]

23. Hanjari, K.; PerKettil, K.L. Modelling the structural behaviour of frost-damaged reinforced concrete structures. Struct. Infrastruct.
Eng. 2013, 9, 416–431. [CrossRef]

24. Tang, Y.Q.; Li, J.; Wan, P.; Yang, P. Resilient and plastic strain behavior of freezing-thawing mucky clay under subway loading in
Shanghai. Nat. Hazards 2014, 72, 771–787. [CrossRef]

25. Xie, S.B.; Qu, J.J.; Xu, X.T.; Pang, Y. Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the
Qinghai–Tibet Plateau. Nat. Hazards 2017, 85, 829–850. [CrossRef]

26. Liu, L.; Ye, G.; Schlangen, E.; Chen, H.; Qian, Z.; Sun, W.; van Breugel, K. Modeling of the internal damage of saturated cement
paste due to ice crystallization pressure during freezing. Cem. Concr. Comp. 2011, 33, 562–571. [CrossRef]

27. Liu, L.; Shen, D.; Chen, H.; Sun, W.; Qian, Z.; Zhao, H.; Jiang, J. Analysis of damage development in cement paste due to ice
nucleation at different temperatures. Cem. Concr. Comp. 2014, 53, 1–9. [CrossRef]

167



Minerals 2022, 12, 413

28. Liu, L.; Wu, S.; Chen, H.; Haitao, Z. Numerical investigation of the effects of freezing on micro-internal damage and macro-
mechanical properties of cement pastes. Cold Reg. Sci. Technol. 2014, 106, 141–152. [CrossRef]

29. Tang, S.; Yao, Y.; Andrade, C.; Li, Z. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78, 143–154. [CrossRef]
30. Wang, Z.; Zeng, Q.; Wang, L.; Li, K.; Xu, S.; Yao, Y. Characterizing frost damages of concrete with flatbed scanner. Constr. Build.

Mater. 2016, 102, 872–883. [CrossRef]
31. Ma, Q.; Ma, D.; Yao, Z. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock

specimen. Cold Reg. Sci. Technol. 2018, 153, 10–17. [CrossRef]
32. Liu, B.; Jiang, J.; Shen, S. Effects of curing methods of concrete after steam curing on mechanical strength and permeability. Constr.

Build. Mater. 2020, 256, 119441. [CrossRef]
33. Shin, M.; Park, D.; Seo, Y. Response of subsea pipelines to anchor impacts considering pipe–soil–rock interactions. Int. J. Impact

Eng. 2020, 143, 103590. [CrossRef]
34. Kalonji-Kabambi, A.; Bussière, B.; Demers, I. Hydrogeochemical Behavior of Reclaimed Highly Reactive Tailings, Part 2:

Laboratory and Field Results of Covers Made with Mine Waste Materials. Minerals 2020, 10, 589. [CrossRef]
35. Pokharel, M.; Fall, M. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened

cemented paste backfill. Cem. Concr. Comp. 2013, 38, 21–28. [CrossRef]
36. Fall, M.; Benzaazoua, M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimiza-

tion. Cem. Concr. Res. 2005, 35, 301–314. [CrossRef]
37. Hou, Y.; Ding, P.; Han, D.; Zhang, X.; Cao, S. Study on the Preparation and Hydration Properties of a New Cementitious Material

for Tailings Discharge. Processes 2019, 7, 47. [CrossRef]
38. Li, W.; Fall, M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Constr. Build. Mater. 2016,

106, 296–304. [CrossRef]
39. Luo, T.; Zhang, C.; Sun, C.; Zheng, X.; Ji, Y.; Yuan, X. Experimental Investigation on the Freeze–Thaw Resistance of Steel Fibers

Reinforced Rubber Concrete. Materials 2020, 13, 1260. [CrossRef]
40. Qiu, J.P.; Yang, L.; Sun, X.G.; Xing, J.; Li, S. Strength Characteristics and Failure Mechanism of Cemented Super-Fine Unclassified

Tailings Backfill. Minerals 2017, 7, 58. [CrossRef]
41. You, Z.M.; Lai, Y.M.; Zhang, M.Y.; Liu, E. Quantitative analysis for the effect of microstructure on the mechanical strength of

frozen silty clay with different contents of sodium sulfate. Environ. Earth Sci. 2017, 4, 143. [CrossRef]
42. Wu, S.Y.; Yang, J.; Yang, R.C.; Zhu, J.; Liu, S.; Wang, C. Investigation of microscopic air void structure of anti-freezing asphalt

pavement with X-ray CT and MIP. Constr. Build. Mater. 2018, 178, 473–483. [CrossRef]
43. Lee, J.K.; Shang, J.Q. Micropore Structure of Cement-Stabilized Gold Mine Tailings. Minerals 2018, 8, 96. [CrossRef]
44. Zhang, Z.l; Cui, Z.D. Effects of freezing-thawing and cyclic loading on pore size distribution of silty clay by mercury intrusion

porosimetry. Cold Reg. Sci. Technol. 2018, 145, 185–196. [CrossRef]
45. Cui, Z.D.; Tang, Y.Q. Microstructures of different soil layers caused by the high-rise building group in Shanghai. Environ. Earth

Sci. 2011, 63, 109–119. [CrossRef]
46. Guo, B.; Zhou, Y.; Zhu, J.F.; Liu, W.; Wang, F.; Wang, L.; Jiang, L. An estimation method of soil freeze-thaw erosion in the

Qinghai-Tibet Plateau. Nat. Hazards. 2015, 78, 1843–1857. [CrossRef]
47. Zhang, Y.; Zhang, S.; Ni, W.; Yan, Q.; Gao, W.; Li, Y. Immobilisation of high-arsenic-containing tailings by using metallurgical

slag-cementing materials. Chemosphere 2019, 223, 117–123. [CrossRef] [PubMed]

168



Citation: Liu, G.; Zou, Y.; Zhang, W.;

Chen, J. Characteristics of

Overburden and Ground Failure in

Mining of Shallow Buried Thick Coal

Seams under Thick Aeolian Sand.

Sustainability 2022, 14, 4028. https://

doi.org/10.3390/su14074028

Academic Editors: Longjun Dong,

Yanlin Zhao and Wenxue Chen

Received: 12 February 2022

Accepted: 23 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Characteristics of Overburden and Ground Failure in Mining of
Shallow Buried Thick Coal Seams under Thick Aeolian Sand

Guangchun Liu 1,2, Youfeng Zou 1, Wenzhi Zhang 1,* and Junjie Chen 1

1 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
liugch168@home.hpu.edu.cn (G.L.); zouyf@hpu.edu.cn (Y.Z.); chenjj@hpu.edu.cn (J.C.)

2 School of Resources and Civil Engineering, Liaoning Institue of Science and Technoloy, Benxi 117004, China
* Correspondence: zhangwenzhi@hpu.edu.cn

Abstract: Mining can lead to overburden failure and ground damage, which are more severe in
mining shallow buried thick coal seams (SBTCS) under thick aeolian sand (TAS). We attempted to
discover characteristics of mining in this particular geological condition through theoretical derivation
and numerical simulation, and field monitoring. Theoretical methods, combined with numerical
simulation and field monitoring methods, reveal the essence of the development and distribution of
surface cracks caused by mining SBTCS and depth to thickness ratio (DTR) to be 13.43, less than 15.
The findings show that, when mining SBTCS, the overburden breaks down periodically, the initial
collapse distance is greater than the collapse step, approximately 55 m on average, and the collapse
step is approximately 45 m, on average, in the Daliuta Coal Mine. The collapsed blocks are stacked
into goaf and form “masonry beams”, and many cracks and pores are generated between the blocks.
The weak stress of the aeolian sand layer causes the movement angle in the aeolian sand layer to be
smaller than that in the bedrock, and leads to much sheer, tension and compression failure on the
ground, and the main forms of cracks are compression uplift, tensile cracking, shear step.

Keywords: thick aeolian sand; shallow buried thick seam; overburden failure; ground damage;
numerical simulation

1. Introduction

After a coal seam is mined out from underground, the rock stratum above the goaf
is affected by mining, resulting in collapses, cracks, and surface subsidence, water level
decline, ecological environment deterioration, and so on [1–3]. When mining shallow
buried thick coal seams (SBTCS), these phenomena and the damage are more serious and
faster [4]. The main areas of coal exploitation in China have been transferred from east to
west. Northwest China is enriched in coal with shallow buried, thick coal seams and simple
overburden geological conditions [5]. The Daliuta Coalfield, in northern Shanxi Province,
China [6], is located under a thick aeolian sand (TAS) layer of Quaternary sediment, mainly
aeolian sand [7]. This is a typical coal seam occurrence condition with SBTCS. There are
numerous problems associated with mining SBTCS, especially under TAS layers. After
the coal seam is mined, a roof of coal collapse can cause grave damage to the overburden
and ground covered by the aeolian sand [8–10]. Ground subsidence and cracks are another
critical issue [11–13]. Many experts and scholars have conducted research on this problem of
mining SBTCS and have achieved rich results. FAN De-yuan and others integrated physical
and mechanical tests, theoretical analysis, similar material tests, numerical calculations, on-
site industrial tests and other methods [14,15]. They systematically studied the deformation
mechanism of the surrounding rock in mining under TAS and thick coal seam (TCS). They
established a mechanical analysis model for the surrounding rock. The change in the regular
pattern of displacement, stress, energy and other parameters were analyzed [16,17]. These
studies did not consider thin, overburden and shallow burials. A numerical simulation
method has be used to study the design of a retaining coal pillar width in mining SBTCS
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to ensure mining safety and improve coal yield [18–21]. Behrooz Ghabraie and others
established a stress model and calculated and analyzed the stress related problems of
mining TAS and TCS. According to the data of surface settlement monitoring and the
geomechanical parameters of geological boreholes, the relevant parameters of the numerical
model are corrected and adjusted. Numerical simulation and engineering analysis have
established a mechanical theoretical basis for SBTCS [22–24]. Through theoretical derivation
and numerical simulation analysis, Booth and others studied the surface deformation
caused by overburden failure in mining SBTCS under TAS and established a prediction
model for subsidence [25,26]. The existing prediction methods for mining subsidence
cannot correctly explain deforming ground undulations. The research focuses on surface
subsidence. Li Meng and others aimed at the complex conditions of ground undulations.
Through similar material tests and numerical simulation analysis, a new prediction method
for overburden movement was proposed based on key stratum theory and the rock Mohr–
Coulomb failure criterion [15,27,28]. According to the occurrence characteristics of SBTCS,
Park and others systematically studied the development and evolution regulations of
overburden failure in shallow buried coal seams by using a similar 3D material physical
test method. Ground subsidence of the SBTCS is mainly caused by aeolian sand layer
settlement and bedrock breakage. The length and advancing distance of the workface
directly affect the displacement of the surface and overburden [10].

However, most of the above research is mainly aimed at SBTCS with burial depths
greater than 150 m, and depth (burial depth of coal seam) to thickness (thickness of coal
seam) ratios (DTR) are more than 15 (H/h > 15). Some of them focus on TCS or TAC
separately. Some scholars have used similar methods of test analysis, a small error can
be amplified dozens or even hundreds of times because of the similarity ratio. Others
have established corresponding mechanics based on the movement characteristics of the
overburden. This method is based on theoretical calculation, and the essence of overburden
failure can be obtained. Using the numerical simulation method based on theoretical calcu-
lations, the characteristics and regular pattern of overburden failure can be obtained [29].
In this study, the buried depth of SBTCS is approximately H = 90 m, and thickness of
coal is h = 6.7 m (DTR = 13.43, less than 15) [30]. The thickness of aeolian sand is 38.5 m,
accounting for approximately 42.6% of the buried depth, which is located in the Daliuta
mine. According to the theory of the key stratum, the mechanical model of a key stratum
collapse was established, and the initial failure distance and periodic failure distance of
the key stratum were calculated. The model was verified by numerical simulation. This
paper discusses the characteristics of overburden failure with mining SBTCS under TAS. It
explains the ground damage characteristics and cracks development.

2. Materials and Methods

Academician Qian Minggao and others proposed the key stratum theory [31,32]. Due
to the difference in thickness and properties of each rock layer in the overburden, its control
and support of various overburdened rock strata are significantly different. The thickness
and elastic modulus of the key stratum are large, and the strength is stronger than that
of the other strata. The subsidence of key stratum is synchronous and coordinated in all
or part of the upper overburden. Before the key stratum breaks, a slab or beam is formed
to bear the weight of the upper rock. When it fails, it can continue to support the upper
overburden with a “cantilever beam” as shown in Figure 1.
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Figure 1. Schematic diagram of ground damage and of key stratum in overburden failure.

The overburden is simplified into a calculation model to analyze the failure principle
of the key stratum. Assuming the bedrock layer of the overburden has n (n > 2) layers, the
upper part of the bedrock is an aeolian sand layer with weak bearing capacity, and its load
is q. According to the key stratum theory, the first key stratum controls and bears all the
overburden and key stratum above, and it simultaneously coordinates deformation [33].

The following formula holds:

M1

E1 I1
=

M2

E2 I2
=

M3

E3 I3
= · · · = Mi

Ei Ii
(1)

In the formula:
Mi is the bending moment of the i-th rock layer;
Ei is the elastic modulus of the i-th rock layer;
Ii is the inertia moment of the i-th rock layer.
According to the initial in situ stress conditions and the theory of key stratum, the first

key stratum of overburden 1~m (m < n) layers can be regarded as a composite rock beam
structure, and its bending moments are:

Ma = M1 + M2 + M3 + · · ·+ Mm =
m

∑
i=1

Mi (2)

Similarly, the second key stratum of the overburden m + 1 ~ n (m < n) layers can be
regarded as a composite rock beam structure, and its bending moments are:

Mb = Mm+1 + Mm+2 + Mm+3 + · · ·+ Mn =
n

∑
i=m+1

Mi (3)

After transforming Formula (1), the relationship between the first key stratum and
others is established, and then brought into Formula (2):

M1 =
E1 I1Ma

∑m
i=1 Ei Ii

(4)

Similarly, the second key stratum of the overburden m + 1 ~ n layers can be expressed as:

Mm+1 =
Em+1 Im+1Mb

∑n
i=m+1 Ei Ii

(5)
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When the mining distance is small, the stress of the first and second key stratum
does not reached the destruction level, and the key stratum does not collapse. When
the workface continues to advance and reaches the limit collapse distance, the first and
second key stratum collapse simultaneously. With the workface advancing, the key stratum
will collapse periodically. The key stratum block stacks into the collapse zone to form a
“masonry beam”. There are numerous large pores and crevices between the blocks.

Calculating the bearing capacity of the key stratum is usually carried out by using the
recursive method. First, suppose that, when the first key stratum only controls itself, the
load it bears is q1; then, it can be calculated by Formula (6):

q1 = γ1h1 (6)

In the formula, h1 represents the gravity density and thickness of the rock layer.
Second, when the first key stratum can bear the first and second layers, the load to be

borne is q2, and then it can be calculated by the Formula (7):

q2 =
E1h3

1(γ1h1 + γ2h2)

E1h3
1 + E2h3

2
(7)

Next, recursively, the bearing capacity qm of the m-th stratum can be obtained [34],
which can be calculated by Formula (8):

qm =
Emh3

m(∑
n
i=m γihi + q)

∑n
i=m Eih3

i
(8)

In the formula:
hm represents the thickness of the combined key stratum m;
Em represents the elastic modulus of the combined key stratum m;
hi is the i-th rock layer thickness.
According to the characteristics of the rock beam in the key layer theory, the coordi-

nates are established as shown in Figure 2. To simplify the calculation, the broken distance
of the key stratum is calculated using the fixed bracket mechanism model. The center of
the rock beam and the left boundary of the rock beam are the origin, the positive direction
of the X axis is horizontal to the right, and the positive direction of the Y axis is vertically
upward. The length of the rock beam is L, the thickness is h, and the uniform load q of the
loose layer is applied to the upper part of the rock beam.

x
L

q

X
o

Y

h

Figure 2. Schematic diagram of the key stratum fixed beam model.

The bending moment of any cross-section inside the rock beam of the key stratum can
be expressed as [35]:

Mx =
q

12
(6Lx − 6x2 − L2) (9)
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In the formula:
Mx is the bending moment of any cross-section x in rock beam, Pa·m2;
L is the span of the rock beam, m;
q is the rock beam load of the key stratum, Pa;
h is the thickness of the rock beam, m.
Therefore, the maximum bending moment at both ends of the beam is:

Mmax =
qL2

12
(10)

The central bending moment of the beam is:

Mmax =
qL2

24
(11)

According to mechanics, the failure of this rock beam is tensile failure. Assuming
that the thickness of the rock beam is h, the normal stress σ of the beam upper and lower
boundary y (y = ± 1

2 h) is:

σ =
12My

h3 = ± q
2h2 (6Lx − 6x2 − L2) (12)

The maximum stress at both ends of the beam is:

σmax =
qL2

2h2 (13)

From Formula (13), the initial limit breaking distance of the i-th key stratum is:

Li = hi

√
2σi
qi

(14)

In the formula:
Li is the initial limit breaking distance of the i-th key stratum;
σi is the maximum tensile strength stress of the i-th key stratum;
hi is the thickness of the i-th key stratum;
qi is the load of the i-th key stratum above.
As the workface continues to advance, the overburden roof breaks and falls for the

first time. The workface will break and collapse periodically. The period collapse step
distance Lp is calculated by the Formula (15):

Lp = 2hi

√
σi
3qi

(15)

3. Results

3.1. Engineering Background

The study area selected is the Daliuta coal mine, which belongs to the mining area
under the jurisdiction of Shendong Coal Industry Group. It is located on the Ulan Mulun
River in the town of Daliuta, Shenmu County, Yulin City, Shanxi Province, China, which
borders Ordos City in the Inner Mongolia Autonomous Region. This mine is one of China’s
most supersized and high yield mines, with an annual output of more than 21 million tons.
Figure 3 shows its geographic location. A northwesterly wind prevails in spring and winter
in the study area, with a speed of approximately 3.3 m/s. The annual average precipitation
is less than 400 mm, and the annual variation is considerable. Sixty percent of the annual
precipitation is mainly concentrated in July–September. This study area is located in a
temperate semiarid desert plateau continental monsoon climate [36]. In the study area,
there is a TAS layer covering the ground.
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Figure 3. Geographical location of the study area.

During the advancement of the workface, there were many dense cracks on the surface
of the Daliuta mining area, showing discontinuity and some regularity. Various types of
surface cracks appear on the surface, which appear in the range of 10–100 m on the surface
in front of the working face. These cracks can be subdivided into tensile cracks, compression
cracks and stepped cracks. Different directions of stress can be analyzed through the crack
shape on the surface. According to the data, the surface damage characteristics of the
Daliuta mining area are as follows: tensile cracks appear on the surface in front of the
workface, with a width of 0.3–0.5 m. The step crack drop is approximately 0.4–0.9 m,
the maximum depth is approximately 3.5 m, and the crack spacing is only 2–3 m. The
distribution density and width of compression cracks are slightly smaller than those of
tensile cracks. Compression cracks with a length of 30–50 m appear at intervals of 2–3 m,
and the uplift height is approximately 0.6 m.

Workface 1203 in the Daliuta mine was taken as the research object. The ground
elevation of this workface is from 1083.4 m to 1229.3 m, and the coal seam floor elevation is
from 981.3 m to 1032.8 m. The burial depth of the coal seam is 82–247 m, with an inclination
angle of 1–3◦, and the average burial depth of the coal seam is 90.3 m. The mining average
thickness of the coal seam is designed to be 6.7 m. The surface above the workface is mostly
covered by Quaternary loose sediment and mainly includes aeolian sand, with a thickness
of 38.5 m. A bedrock layer with a thickness of approximately 51.8 m is mainly composed of
siltstone mixed with sandy mudstone, coarse grained sandstone and fine grained sandstone.
The coal floor is a fine grained sandstone layer with thickness of more than 3.0 m. The
mining size of the workface is designed to be 301.3 m wide, and the advancing distance
is 4268.8 m long. It adopts a fully mechanized and fully caving mining method with a
large mining height and long working face. This high intensity mining method will lead to
severe ground damage, such as subsidence, cracks, and even collapse pits.

3.2. Numerical Simulation Model Establishment

To more clearly study the principle of surface damage and rock stratum failure, a
numerical simulation method was used to simulate and analyze the study area. The
actual cause of surface cracks and damage is the surface subsidence caused by the mining
process. However, the surface subsidence is caused by the settlement and damage of
bedrock. The failure essence of the overburden lies in the failure of key stratum. The
mechanical nature of the key stratum failure is the direct expression and essence of the
surface and overburden failure. The numerical simulation method is a mechanical analysis
method that can reflect the essential regular pattern of things, which is well recognized and
practiced. Therefore, we use the numerical simulation method to analyze the overburden
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and surface damage caused by the mining of SBTCS and find the essential regular pattern
of overburden damage.

FLAC3D software was selected to calculate the numerical model based on the geologi-
cal conditions of the 1203 workface in the Daliuta Coal Mine. Tecplot software was used
for drawing processing in the later stage. With the Mohr–Coulomb mechanics constitu-
tive model, a numerical calculation 3D model was established for mining SBTCS under
TAS [37,38]. The models in the X, Y and Z directions are 1000 m, 500 m and 100 m, respec-
tively, with a total of 5,000,000 zones and six groups, as shown in Figure 4. Ensuring the
mining size is as close to the real size as possible and reducing the influence of edge effects,
100 m coal pillars are reserved around the workface without mining. Due to a large number
of nodes in the model, a high performance calculation is needed. The data solution takes a
long time to reach the final mechanical equilibrium state.

Figure 4. Schematic diagram of the 3D model of the numerical simulation based on FLAC3D.

To simulate the original stress of the underground rock stratum well, the model’s
boundary conditions must be limited to ensure that the model more truly reflects the actual
geological conditions. The periphery of the model was fixed in the X and Y directions, to
ensure that the boundary of the simulated stratum was not deformed in the horizontal
direction. The bottom was completely fixed in the vertical Z direction, and the top was
a free boundary, as shown in Figure 5. Mechanical parameters are the most important
in the process of numerical simulation [39]. For the simulation of initial in situ stress, in
FLAC, the initial stress is usually solved by setting the mechanical parameters and then
solving to equilibrium. The original parameters are assigned according to the mechanical
properties of the strata of the borehole. Under the action of gravity only, the initial in
situ stress is solved to equilibrium (unbalance rate 10−6). The selection and adjustment
of the constitutive model and parameters is an essential link in numerical simulation.
The selection of the constitutive model is related to the mechanical properties of the rock
stratum, and the number and value of the corresponding parameters need to be selected
for different constitutive models. The main mechanical parameters in the model came
from the geological conditions of the Daliuta 1203 workface for calculating the stress in the
numerical simulation. The physical and mechanical parameters of the rock stratum in the
numerical simulation are shown in Table 1.
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Figure 5. Boundary conditions of the 3D model for numerical simulation.

Table 1. Rock mechanics parameters in numerical simulation.

Lithology h/m E/Gpa ρ γ/KN/m3 Rm/Mpa c/Mpa ϕ/◦

Aeolian Sand 38.5 12 0.3 15.8 0.0048 0.0016 27
Coarse Grained Sandstone 9.0 35 0.25 21 2.3 3.2 54

Siltstone 8.0 35 0.25 25 2.1 2.74 39
Fine Grained Sandstone 7.2 32 0.25 24.6 2.8 5.72 49

Sandy Mudstone 9.7 23 0.28 24.6 3.5 2.8 29
Siltstone 8.1 35 0.25 25 2.3 2.74 39

Sandy Mudstone 9.8 23 0.28 24.6 3.5 2.8 29
Coal 6.7 15 0.35 22.5 0.6 0.8 38

Fine Grained Sandstone 3.0 32 0.28 24.6 2.8 5.72 49

According to the key stratum theory, determining the key stratum position requires
multiple and cyclic calculations. In the calculation process, if the collapse distance of the
i − 1 th stratum is smaller than the i th stratum, the load of the emphi − 1 th stratum
should be added to the i th stratum. Recalculate until the fracture distance of the i + 1 th
stratum is smaller than that of the i th stratum. The i th stratum is the key stratum. Using
Formulas (14) and (15), the initial breaking and periodic fracture distances are calculated.
According to the rock mechanics parameters in Table 1, we can calculate that the first
key stratum is sandy mudstone, the immediate roof of coal. The initial failure distance is
52.85 m, and the periodic fracture distance is 43.12 m. Similarly, we can obtain that the
second key stratum is sandy mudstone, which is between fine grained sandstone strata
and siltstone strata. In the second key stratum, the initial failure distance is 56.37 m, and
the periodic fracture distance is 46.03 m.

3.3. Analysis of Ground Damage and Field Measured Results

The simulation of the workface propulsion distance at 100 m, 200 m, 300 m, 400 m,
500 m, 600 m, 700 m and 800 m is extracted. According to different advancing distances, the
settlement and stress changes in the surface and overburden are recorded as cloud maps.
The cloud maps of the numerical simulation, such as the form of and change in ground
damage, the settlement and stress distribution of the overburden, and the shape and field
of plastic failure, are analyzed to obtain the failure characteristics of the overburden and
surface movement and deformation.

For calibration and validation of the model, to obtain surface subsidence change data
of SBTCS, the 46 monitoring points, where the distance between monitoring points is set
to 20–25 m, with 21.7 m on average, were set up on the surface above the ground and
monitored the settlement. Surface monitoring was carried out using traditional leveling
methods. Two vertical observation lines were arranged along the ground to obtain the
surface subsidence under the condition of different working face advancing distances,
and then the subsidence caused by mining of SBTCS was analyzed. When the workface
advanced by approximately 600 m, we selected 21 points for trend analysis between
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measured points and simulated calculated points. The maximum settlement of the surface
was −3.898 m. The ground settlement, which was calculated by FLAC 3D, reached the
maximum value of −3.78544 m (the data measured in the field and calculated by FLAC3D
are shown in Figure 6). The resulting error ratio is about 2.89%. Through a comparison, it
was found that the surface settlement value of the numerical simulation was very close to
the field measured. The surface subsidence trend line is also in good agreement. This shows
that the numerical simulation method is an effective method to calculate and predict the
surface settlement caused by coal mining by establishing a reasonable 3D model, selecting
an appropriate constitutive model and adjusting the corresponding mechanical parameters.

Figure 6. Comparison of calculated and measured values of ground subsidence.

Through numerical simulation, the shape of the surface subsidence basin is very close
to the actual field. The subsidence at the edge of the basin is small, and there is more
subsidence in the middle, which has a flat bottom. According to Figure 7, the settlement
of the bedrock is large, and the settlement of the aeolian sand layer is small. There are
large pores and cracks in the aeolian sand layer and the bedrock layer. The main reason is
that aeolian sand has weak mechanical properties and good dispersion, and easily forms
pores. The mechanical properties of the overburden are hard, brittle and easily broken,
and collapsed. The settlement cloud map of the bedrock above the goaf shows that the
settlement in the center is large and that along the edge it is smaller. The simulation
calculation of the overburden settlement shows that the overburden failure caused by
mining SBTCS under TAS has distinctive characteristics. The bedrock in the overburden
generally has large settlements and has a large scale overall movement phenomenon, and
the maximum subsidence is more than 6.5 m. The aeolian sand layer presents uniform
settlement, the maximum subsidence is 3.5–4.0 m in the central basin. The movement and
deformation in the central subsidence basin show uniform settlement and little change.
With increasing mining distance, the surface subsidence gradually increases. When the
working advance is approximately 300 m, it is close to full-mining under these geological
conditions. Then, with the advance of mining distance, the ground subsidence basin
appears to a flat bottom [40].
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Figure 7. Cloud map of Deformation characteristics of overburden settlement.

As shown in Figure 8, many cracks are generated on the ground surface before and on
both sides of the workface affected by mining. The surface has distinct damage. The cracks
in front of the workface probably range from 20 m to 240 m, and the distance of crack is
approximately 10–80 m.

Figure 8. Deformation characteristics of ground.

3.4. Overburden Failure Analysis

With the continuous advancement of the working face, the roof of the coal seam
collapses, and the collapsed rock fragments are superimposed on the goaf to form a
masonry beam structure, the surface begins to subside, and the overburden under the
aeolian sand begins to crack or even fracture. Finally, the original stress balance of the
overburden, which is affected by mining, is broken.

A stress concentration phenomenon occurs in the overburden above the edge of the
goaf that are affected by mining, as shown in Figure 9. After the collapse of the first key
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stratum, the second key stratum plays a major supporting role. The maximum vertical
stress is more than 9.0 MPa and the direction is downward, and its support point moves
upward, and such disasters caused by high stress often cause great damage to mining
engineering activities [3,41,42]. An interlayer with weak stress appears between the aeolian
sand layer and the bedrock layer. The reason for this is maybe that, after the mechanical
state of bedrock layers and aeolian sand layer changes caused by mining, cracks and
separation layers are generated between them.

Figure 9. Cloud map of the overburden stresses.

As shown in Figure 10, shear failure and tensile failure show a layered structure in the
horizontal direction and alternately appear in the vertical direction. The upper aeolian sand
is mainly sheared, and the lower of aeolian sand is mainly tensile failure. The movement
angle is different in the aeolian sand layer and the bedrock layer. The movement angle
of the aeolian sand layer is smaller, while the movement angle of the bedrock layer is
larger [43]. The movement angle in the TAS layer is smaller than that in the bedrock, which
enlarges the range of the subsidence basin and expands the scope of ground damage.

Figure 10. Plastic deformation of overburden at different schedule.
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Overburden collapse can be divided into two stages, initial collapse and periodic
collapse, as show in Figure 11. The initial fracture distance is usually larger than the
periodic fracture distance. After the initial collapse, with the advance of the working
face, the overburden forms a cantilever structure. When the maximum bearing capacity is
reached, periodic collapse occurs. Then, the overburden directly collapses to the goaf, the
height of the collapse zone is approximately 24 m. The collapse block is 40–50 m long, and
it is consistent with the theoretical calculation. the collapse block is gradually crushed and
compacted. The block provides a bearing capacity to support the upper broken key stratum.

Figure 11. Local enlarged schematic diagram of key stratum collapse and cantilever beam forma-
tion process.

According to the cloud map of the numerical simulation, under this geological condi-
tion. The key stratum exists in the form of “cantilever beam” before collapse and “masonry
beam” after collapse. There are a large number of fractures and fissures between blocks.
With the continuous advancement of the working face, cracks in the overburden stratum
continue to develop, and run through the whole bedrock layer, and there is no “bending
zone” in the overburden. The cracks directly connect to the surface and form conduction
with the surface.

4. Discussion

In this paper, we show that the overburden failure caused by the mining SBTCS, when
the ratio of depth to thickness is less than 15(H/h = 13.43), can be divided into two stages:
initial collapse and periodic collapse. According to the theoretical calculation, the initial
collapse distance is greater than the collapse step, approximately 55 m on average, and the
collapse step is approximately 45 m on average in the Daliuta Coal Mine.

The results of theoretical calculations are within the range of numerical simulation
results. The movement angle in the loose thick aeolian sand layer is small, which expands
the range of surface damage. A weak stress interlayer is generated between the overburden
and the aeolian sand layer. This may be the cause of much sheer, tension and compression
failure on the ground, as shown in Figure 12. This study provides a mechanical analysis
basis for the surface damage caused by mining shallow and thick coal seams, and provides
a basis for surface environmental treatment and ecological restoration.
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Figure 12. Comparison between overburden failure and surface failure.

The study of coal mine surface damage can improve our understanding of mine
management and land reclamation, and be conducive to ecological mine restoration. The
research on mining SBTCS has strong regional characteristics. In different geological
conditions and rock stratum conditions, resulting overburden and surface damage also
have different status [43–45]. Hou [34] and Huang [33] adopt the same calculation method
as our study. Huang studies the failure mechanism of mining shallow coal seams and
uses the result to control the ground pressure. Hou adopts the key stratum theory, puts
forward the method of composite rock beams, and calculates the relevant parameters of
rock beams. Although the stratigraphic conditions are quite different, the methods and
ideas of theoretical analysis are correct. The study area and environment in Zou [4] is very
close to our study. They obtained the conclusion that overburden failure presents periodic
collapse and initial collapse, which is consistent with this study. However, we further
analyzed the stress distribution characteristics of overburden and the variation regular
pattern of movement angle in loose layers and bedrock layers.

The study area is located in an arid desert area in China. The influence of groundwater
on overburden is not considered in this study. The study of the interaction between
overburden and groundwater is a complex and long term process. Through the monitoring
of surface water level, overburden pore water pressure and overburden stress change,
the interaction relationship between overburden and water can be obtained, the coupling
model of overburden failure and groundwater can be established, and the interaction
relationship between overlying rock and groundwater can be obtained. The occurrence
conditions and geological structure of coal seams in the study area are simple, belonging
to horizontal coal seams with few faults. For complex geological conditions, such as coal
seam dip angle and faults, further research will be carried out later in the research process.
When there are dip angles and faults in overburden and coal seams, a variety of numerical
simulation models with different dip angles and different fault forms can be constructed by
simulation to study the characteristics of overburden and surface failure under complex
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conditions from the perspective of numerical simulation. According to mining subsidence
theory and mechanical theory [44–46], the surface damage range can be calculated more
accurately rather than qualitative analysis. When mining SBTCS, the DTR and aeolian sand
thickness to bedrock thickness ratio (ASBR) should be considered. It reflects the relationship
between coal seam thickness and buried depth, and the structural composition of bedrock.
The change in DTR and ASTR have a key impact on the overburden and surface damage
caused by mining SBTCS, which is also a subject worthy of in depth study in the future.

5. Conclusions

Based on the theory of key stratum and elastic mechanics, a mechanics model of key
stratum failure was established in mining SBTCS under TAS. We calculated the breaking
distance and periodic step distance of overlying strata. The key stratum were simplified
as a fixed supporting beam structure to simplify the calculation formula. By calculation,
we found that the initial failure distance is 52.81 m and the periodic breaking step distance
is 43.12 m in the first key stratum. The initial failure distance is 56.37 m, and the periodic
breaking step distance is 46.03 m in the second key stratum in Daliuta Coal Mine.

(1) According to the geological engineering conditions of the 1203 workface in the Daliuta
Coal Mine, a numerical model was established by FLAC3D software. Compared
with the field monitoring data of the surface, the numerical simulation results are
very close to the measured values (the difference between the measured maximum
settlement value and the simulated maximum settlement value is 0.11256 m (error
accounts for 2.89%)). By correctly selecting the constitutive model and adjusting
the appropriate parameters, the numerical simulation method is a method based on
theoretical calculation, which can calculate and predict surface dependency caused by
coal mining.

(2) The results show many cracks on the surface in front of the workface, which probably
range from 240 m to 20 m. The distance between cracks is approximately from 10–80 m.
The reason for the cracks on the ground is that the settlement of bedrock entirely
exceeds that of the aeolian sand layer, and the shear stress of the aeolian sand layer by
mining SBTCS.

(3) Although our research has achieved some results, we will further study and discuss
the coupling effect of overburden and water, complex geological conditions and the
influence of DTR on SBTCS.
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Abstract: Both chemical corrosion and axial compression impose critical influences on the internal
microstructure of rock. Meanwhile, chemical corrosion can change a rock’s mineral composition,
which in turn affects the physical and mechanical properties of the rock. To investigate the dynamic
strength characteristics of white sandstone under the coupling effect of axial load and chemical
corrosion, a dynamic and static combined loading test device was adopted for performing cyclic
impact tests on white sandstone immersed in chemical solution. The results show that with the
increasing number of cycles under the same load, the peak strength of the rock presented a trend of
‘strengthening first and then weakening’. The strength of rock resistance to impact failure reached its
maximum when the solution of pH was 7 and axial pressure was 12.6 MPa. Under the same axial
pressure, the effect of solution pH on the initial dynamic strength of white sandstone is a normal
distribution. Acidic and alkaline environments are harmful to rocks during the initial impact, while
neutral environments exert little effect and the pH of the solution influences the particle size of impact
crushing particles. In addition, the chemical solution has a significant effect on the deterioration of
rock strength during the process of initial impact, and the effect is inconspicuous in the later period.

Keywords: rock mechanics; cyclic impact; chemical corrosion; axial compression; strength degradation

1. Introduction

Certain large-scale infrastructure construction and mining projects are inseparable
from geotechnical engineering. These include projects such as large-section tunnel ex-
cavation [1], resource exploitation [2,3], subgrade blasting [4], directional damming and
interception projects [5,6]. The rock not only bears the static stress of structure during con-
struction but also experiences the erosion of the chemical environment for a long time. In
the process of blasting excavation, the stability of rock is inevitably influenced by frequent
drilling and blasting vibrations [7]. The coupling of force and chemical corrosion has a
critical influence on the stability of engineering rock mass in the long term [8].

Over the last decades, many scholars have performed a lot of research on investigating
rock dynamic mechanical properties under various conditions. Li et al. [9] conducted a
uniaxial cyclic impact compression test on granite through an improved split Hopkinson
pressure bar (SHPB). The results show that the damage accumulation of the rock increased
with the number of cyclic impacts. Gong et al. [10] carried out a one-dimensional ex-
perimental study on the dynamic characteristics of rock under combined dynamic and
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static loading, revealing that the impact strength is maximally strengthened with an axial
compression ratio of 0.6~0.7. Zhou et al. [11] studied the dynamic mechanical behav-
ior and failure characteristics of mudstone using the split Hopkinson pressure bar test
device, and proposed a criterion for the dynamic strength of mudstone. Jin et al. [12]
discussed the effects of different static loads on the failure pattern of rock subjected to
cyclic impact and concluded that rock with an axial static load had extremity effects in the
process of destruction. Ding et al. [13] investigated the failure process and the mechanical
properties of limestone under different chemical solutions, finding that the strength of
limestone decreased due to the chemical solutions. Xie et al. [14] conducted in situ stress
restoration tests on cores of different burial depths and obtained rock behaviors under
the action of in-situ stress, temperature, and pore pressure. Siddiqua et al. [15] explored
the saturated mechanical behavior of light backfill and dense backfill, which clarified the
strengthening effect of pore fluid chemistry on shear strength, stiffness, and yield behavior.
Han et al. [16] compared microstructure, deformation characteristics, and the mechanical
behavior of rock by chemical solutions with different pH, different concentrations, and
different compositions, revealing that rock had a conversion trend of brittle to ductile after
chemical corrosion. Xia et al. [17] conducted the whole process of compression failure
of multi-crack limestone and limestone under different chemical solutions by adopting a
self-developed micro loading instrument, which obtained the deformation characteristics
of rock specimens, the mode of crack initiation, propagation and penetration as well as
the different overlapping modes of rock bridges when they were damaged. Li et al. [18]
studied the main components of calcareous cemented feldspar rock under different pH, and
a rock damage model that could be applied to acidic solutions was put forward. Through
scanning electron microscope (SEM) and X-ray diffraction (XRD) technology, Cui et al. [19]
analyzed the mechanical and corrosion damage of the surface and mineral components of
rock after the action of 0.01 mol/L NaOH solution with a pH of 12 and revealed internal
changes in the rock under that solution.

Scholars both at home and abroad have conducted in-depth studies on the mechanical
properties of rocks in static or quasi-static conditions [20–24]. Currently, studies on the
mechanical properties of rock have mainly focused on a single factor, such as axial static
load [25], impact load [26], and chemical corrosion [27]. However, there is less investigation
on the rock cyclic impact failure and damage accumulation under the coupling of axial
pressure and chemical corrosion. Based on split Hopkinson pressure bar (SHPB) test
technology combined with one-dimensional stress wave theory, cyclic impact experiments
were carried out on white sandstone immersed in chemical solutions with different pH
and axial pressures, which explored fatigue damage mechanism and the characteristics
of strength weakening of white sandstone under multi-factor coupling. The mechanism
of strength and fatigue failure also provides a theoretical basis for the safe and effective
construction management of blasting engineering under complex geological conditions.

2. Experimental Method

2.1. Rock Preparation

The rock material used in the present study was white sandstone that was taken
from Kunming, Yunnan, China. These rock blocks are off-white, with good integrity and
homogeneity as the research objects. Sandstone samples were subjected to professional
elemental analysis and mineral identification, as shown in Figure 1. They were composed
primarily of quartz, feldspar (e.g., potassium feldspar, sodium feldspar, and calcium
feldspar), clay, calcite and a small number of hematite, quick lime and other minerals.
The sandstone’s quartz was identified as SiO2. Feldspar was identified as a collection of
KAlSi3O8, NaAlSi3O8 and CaAl2Si3O8. Clay was identified as xAl3O2·ySiO2. The main
component of calcite is calcium carbonate. Furthermore, hematite and quick lime are Fe2O3
and CaO, respectively.
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Figure 1. EDS analysis results. (a) EDS sampling point; (b) Element at point 1; (c) Element at point 2.

According to the size and accuracy requirements of the relevant guidelines of ISRM [28],
the size of cylindrical white sandstone specimens is Φ50 mm × 50 mm, and that of un-
evenness and verticality are less than 0.05 mm by means of carefully grinding both ends
of the rock specimens. The processed rock specimens are displayed in Figure 2. The
rock specimens were dried and evacuated for 8 h, divided into eight groups, and sealed
immersed in the chemical solutions presented in Table 1 for 240 days.

   
Figure 2. White sandstone specimens (a–c).

Table 1. Chemical solution.

Composition Concentration (mol/L) pH

NaCl 0.1 2, 7, 9, 12
Na2SO4 0.1 2, 7, 9, 12

2.2. Experimental Apparatus

In this study, based on the split Hopkinson pressure bar (SHPB) system established
previously [29], an experiment system of SHPB is shown in Figure 3, using the laboratory
dynamic cyclic impact compression experiment that was performed. The experiment
facilities are mainly composed of a dynamic loading system (gas gun, launch cavity and
shaped puncher), a test system (CS-1D strain instrument, DL-750 oscilloscope, and laser
speedometer), a delivery system and an axial compression system. The delivery system
mainly includes an incident bar, transmission bar, and buffer bar, the lengths of which
are 2000 mm, 1500 mm, and 500 mm, respectively. All of the elastic bars were made of
high-strength 40 Cr alloy steel, a wave velocity of 5400 m/s, a density of 7.81 g/cm3, and a
wave impedance of 4.2 × 107 MPa. The special-shaped punch is applied to eliminate PC
oscillation and realize half-sine wave loading with constant strain rate loading [30–32].

Figure 3. Split Hopkinson pressure bar (SHPB).
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2.3. Experimental Method

Before conducting the cyclic impact test, a physico-mechanical parameters test was
carried out on the white sandstone specimens by adopting the RMT-150 electro-hydraulic
servo control material testing machine. The results of this test are shown in Table 2.

Table 2. Physico-mechanical parameters of white sandstone specimens.

Specimens
Density

(kg·m−3)
Loading Rate

(MPa·s−1)
Strain Rate

(s−1)

Uniaxial
Compression

Strength (MPa)

Secant
Modulus (GPa)

Poisson
Coefficient

White sandstone 2321 0.23 1.00 × 10−5 31.5 17.65 0.25

In order to ensure that cyclic impact test on the white sandstone with the chemical
corrosion and axial pressure could be carried out successfully, the experimental method
was designed as follows. Four solutions of pH at 2, 7, 9, and 12 were designed. According
to the research conducted by Sun et al. [33], in the process of cyclic impact, rock specimens
did not show the palpable end effect failure mode when there was no static load. Combined
with the value of uniaxial compressive strength test, axial compression was set to four
levels of uniaxial compressive strength of 20%, 40%, 65%, 85%, which were respectively
6.3 MPa, 12. 6 MPa, 20.5 MPa and 26.8 MPa. In addition, due to the existence of a threshold
value in the cyclic impact load experiment [34], multiple pre-impact tests were required to
determine the fixed air pressure in the high-pressure gas chamber of 0.8 MPa. The impact
speed of the punch was 4.5 m/s.

The following conditions must be satisfied during the test process:

(1) The incident bar, transmission bar and buffer bar should be kept level.
(2) The magnitude of the axial load should be equal to the axial load value set in advance.
(3) To fix the impact load, it is necessary to strictly ensure that the pressure in the high-

pressure air chamber is equal to the value set before each impact, and that the position
of the punch in the launching chamber remains unchanged.

(4) The white sandstone specimens were sandwiched between the incident bar and the
transmission bar, with petroleum jelly coated on both ends of the specimen to ensure
good contact.

3. Typical Stress–Strain Curve during Cyclic Impact

Using a split Hopkinson pressure bar (SHPB), Jin et al. [35]. conducted a series of
cyclic impact loading tests on sandstone under different static loading conditions, obtaining
a typical dynamic stress–strain curve of sandstone during cyclic impact. The results of
the experiments reveal that the sandstone’s dynamic strength and the characteristics of
deformation were affected by axial compression and the number of cycles. In this study,
the cyclic impact test of white sandstone soaked in NaCl with pH of 9 and axial pressure
of 6.3 MPa was taken as an example for analyzing the different stages of the test. Figure 4
presents an overlay chart of the typical waveform recorded during the cycle impact test. It
can be observed from the figure that the amplitude of the incident wave has not changed
significantly and that the superposition of waveform basically coincides, achieving the
requirements of the constant-amplitude cyclic impact test. The reflected wave amplitude of
the specimen increases and the transmitted wave amplitude decreases gradually with the
increasing number of impacts, and the change of cyclic impact is obvious in the middle
and later periods. This phenomenon occurs regardless of axial compression and pH. Since
the size of the white sandstone specimen tested is small, the homogeneity hypothesis is
introduced, satisfying the expression εl(t) + εr(t) = εt(t) [36]. According to one-dimensional
stress wave theory, the collected voltage signal is processed. Stress, strain, and average
strain rate can be calculated using the following formula.

σs =
AeEe

2As
(ε l + εR + εT) (1)
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εS = −Ce

Ls

∫ l

0
(ε l − εR − εT)dt (2)

.
εs =

Ce

Ls
(ε l − εR − εT) (3)

In these Equations, As and Ls are the cross-sectional area and length of the specimen,
respectively; Ae, Ee and Ce represent elastic rod cross-sectional area, elastic modulus and
longitudinal wave velocity, respectively; ε l , εR and εT denote the incident, reflection and
transmission wave signals, respectively.

Figure 4. Typical stress waves during cyclic impact.

The typical stress–strain curves of the white sandstone under cyclic impact loading
tests are shown in Figure 5. It can be observed from the figure that the stress–strain curve of
the whole cyclic impact test can be divided into three types. The initial stress–strain curve
(one to five impacts) is a semi-elliptic high flat curve. In addition, the elastic modulus, peak
stress, and maximum strain have not changed significantly. The stress in the loading stage
increases sharply with the increase of strain. The slope is steep, and the elastic modulus
value is large. The maximum stress at this stage represents the maximum impact stress
value that the specimen can withstand during the entire impact process, which is called
the peak strength. However, the stress in the unloading stage drops sharply with the
increasing strain.

Figure 5. Typical stress-strain curve during cyclic impact.
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In the mid-term (sixth to eighth impacts), there exists a gradient parabola. The changes
in elastic modulus, peak stress, and maximum strain are more prominent than those in
the initial stage. Besides, the change of stress with strain is larger than that of the initial
stage in the loading section and unloading section. It shows that the micro-cracks in white
sandstone are compacted and closed, resulting in small changes in modulus. Owing to the
medium-term impact load, pore cracks begin to gradually expand and penetrate, and the
bearing capacity suddenly decreases.

The later stage (the ninth impact) is a low flat parabolic curve, the peak stress is
small, and the strain at the tail of the curve tends to decrease, which is consistent with
the research results of the rock impact failure test under the one-dimensional dynamic
and static combination determined by the literature [22]. This demonstrates that the white
sandstone has not been completely destroyed and still possesses a certain load-bearing
capacity, though it’s capacity is weak. Therefore, it cannot be loaded under the same axial
compression conditions.

4. Experimental Results and Discussion

This study lists the physical parameters and test data of a representative set of speci-
mens, as listed in Table 3.

Table 3. Parameters of some specimens and the number of cyclic impacts.

σas
(MPa)

Numbering L (mm) D (mm)
ρ

(kg·cm−3)
pH

σfd
(MPa)

σmd
(MPa)

σcs
(MPa)

The Number of
Cycle Impact

6.3

w-062 47.03 49.08 2315 2 39.64 43.51 49.81 7

w-052 47.05 49.09 2329 7 43.12 43.20 49.50 9

w-033 47.06 49.11 2312 9 42.68 42.68 48.98 8

w-042 47.06 49.09 2322 12 42.03 49.43 55.73 7

12.6

w-063 47.05 49.12 2327 2 37.16 41.42 54.02 5

w-053 47.06 49.09 2312 7 51.56 51.56 64.16 8

w-034 47.05 49.09 2322 9 49.61 49.61 62.21 6

w-043 47.07 49.10 2328 12 39.87 50.10 62.70 5

20.5

w-064 47.06 49.14 2312 2 38.46 38.46 58.96 4

w-054 47.08 49.13 2329 7 43.11 43.11 63.61 5

w-037 47.05 49.10 2329 9 40.72 40.72 61.22 5

w-044 47.05 49.04 2320 12 40.75 42.83 63.33 2

26.8

w-065 47.06 49.12 2308 2 27.26 31.92 58.72 2

w-055 47.06 49.05 2329 7 32.01 32.01 58.81 3

w-036 47.06 49.06 2318 9 28.82 30.51 57.31 3

w-045 47.07 49.02 2317 12 25.71 29.98 56.78 2

Note: σas is the axial pressure, ρ is density, σfd is initial impact stress peak, σmd is the maximum stress peak of the
cyclic impact, and σcs is the combined static–dynamic strength.

4.1. The Trend of Cyclic Impact Number

Figure 6 shows the relationship between the pH of the solution, the axial pressure, and
the number of cyclic shocks. The number of cyclic impacts decreases with the increase of
the axial pressure, and the number of impacts that can be endured under the axial pressure
of 6.3 MPa is the most. As shown in the analysis, when the axial pressure is within a certain
lower limit range, with the same load repeatedly repeating the impact, the original void
inside the specimens will be closed first, and the ability and frequency of the sample to
resist impact will be accordingly enhanced [37]. However, when the axial pressure is within
a certain higher limit range, the secondary microcracks grow into pore cracks that penetrate
the entire cross-section. During this process, the damage expands and the ability of the
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sample to resist external damage decreases sharply. In the middle and later stages of the
impact stages, the whole rock specimen is finally damaged by tensile shear. Furthermore,
this is similar to the dynamic characteristics of the cumulative damage evolution during
excavation of underground jointed rock under repeated seismic load that is mentioned
in Ref. [38]. With the pH of the solution, the number of shocks is normally distributed. The
pH of the solution deviates from neutral, which indicates that the lower the number of
shocks, the more obvious the corrosion effect of the solution.

Figure 6. The trend of cyclic impact number.

4.2. Relationship between Initial Peak Stress and Axial Pressure

The peak strength of the rock represents the maximum stress caused by the impact
resistance of the white sandstone specimens during impact. The strength of the specimen
gradually weakens when the number of cyclic impacts increases. Although the overall peak
deterioration law is similar, there also exist noticeable differences. As shown in Figure 7,
with the increasing number of cycles under the axial pressure of 6.3 MPa and 12.6 MPa, the
peak strength of the rock shows a trend of ‘strengthening first and then weakening’, which
was different from the axial pressure of 20.5 MPa and 26.8 MPa. There exists no strength
reinforcement at high pre-axial pressure.

The peak stresses of the initial impact under the axial pressure of 12.6 MPa are
42.03 MPa, 51.56 MPa, 49.61 MPa and 47.01 MPa, which are greater than the other three
axial pressure conditions. When the number of impacts increases, the magnitude of peak
stress degradation in the middle and later stages of this axial compression is more rapid
than that of the other three axial compressions. This phenomenon occurs under any pH.
This indicates that the dynamic strength of white sandstone at the initial stage is strength-
ened by 40% axial compression during cyclic impact. However, the axial compression at
the middle and later stages will also aggravate the accumulation of internal damage of
white sandstone specimens during impact.
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Figure 7. Relationship between peak stress and number of impacts. (a) pH = 2; (b) pH = 7; (c) pH = 9;
(d) pH = 12.

4.3. Relationship between Peak Stress and Chemical Corrosion

The macroscopic manifestation of the water–rock reaction is the deterioration of the
physical and mechanical properties of rock [39]. Figure 8 shows the relationship between
the peak stress of the specimen and the chemical solution. Followed by the pH = 12 alkaline
solution immersion test piece, the initial impact strength of the specimen is the lowest
pH = 2 acid solution immersion. The maximum initial strength of the test piece is in a
neutral solution at pH = 7. Complex physical and chemical reactions occur when rocks
are immersed in a chemical solution. The physical interaction between water and rock
mainly causes sandstone minerals to be dissolved in water. Changes in rock composition
and structure are mainly due to the corrosion of minerals in chemical solutions. With the
increase of acidity and alkalinity, the damage of rock in solution is mainly determined
by chemical reactions. Mineral particles and the ion exchange reaction in the solution
generate a new secondary mineral, changing the original mineral chemical composition,
the generated secondary mineral composition and molecular weight. Density is very
different from the original mineral. Inherent internal cementation way and structure
characteristics change accordingly, eventually degrading sandstone in terms of its macro
mechanical performance.

In acidic solution, alkaline cations on the surface of feldspar exchange with hydrogen
ion in the solution, forming a weak acidic silicon-rich complex. Potassium, sodium, and
calcium in feldspar detach from the rock mass skeleton and enter the solution [40].

KAlSi3O8 + 4H+ + 4H2O→K+ + Al3+ + 3H4SiO4 (4)

NaAlSi3O8 + 4H+ + 4H2O→Na+ + Al3+ + 3H4SiO4 (5)

CaAl2Si2O8 + 2H+ + H2O→Ca2+ + Al2Si2O5(OH)4 (6)
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(a) (b) 

Figure 8. The trend of peak stress. (a) initial peak stress; (b) the maximum of peak stress.

In addition to the chemical reactions listed earlier, small amounts of hematite, and
calcite in the mineral composition of sandstone also react with hydrogen ions in solution.

Fe2O3 + 6H+→2Fe3+ + 3H2O (7)

CaCO3 + 2H+→Ca2+ + H2O + CO2↑ (8)

In the neutral solution, the solubility of sandstone components is low. Besides, it is
difficult to react violently with the aqueous solution. Only a small amount of feldspar and
quicklime participate in the chemical reaction and are stable.

In alkaline solution, hematite, calcite, quicklime, and other minerals in sandstone
remain relatively stable. However, quartz and feldspar in sandstone are easy to react with
hydroxide ion in alkaline solution.

SiO2 + 2OH− → SiO2−
3 + H2O (9)

KAlSi3O8 + 6OH− + 2H2O → K+ + Al(OH)−4 + 3H2SiO2−
4 (10)

NaAlSi3O8 + 6OH− + 2H2O → Na+ + Al(OH)−4 + 3H2SiO2−
4 (11)

The failure mode of white sandstone is shown in Figure 9a–p under cyclic impact.
White sandstone specimens mainly experience conjugate hyperbolic tensile shear failure,
which was characterized by destructive body flaking around the hyperbola due to interfacial
friction. Corrosion by acid and alkaline solutions of sandstone fragments’ impact degree is
more than with the neutral solution, with a smaller average size of fragments. In an acidic
solution, the sandstone is completely disintegrated with a high proportion of fine particle
size. Feldspar, clay, hematite, calcite and other minerals in sandstone are captured by
solution, resulting in an increase in small particle size fragments. Structural cavities make
rock structures become looser and more fragile. In an alkaline solution, the quartz particles
on the surface of the specimen will be exfoliated by the solution, thereby increasing the
number of fine particles. In neutral solutions, the solubility of mineral components is low,
and the degree of fragmentation is mainly dependent on the cyclic shock load.

By testing the broken samples, it has been found that the solution corroded the sand-
stone and caused the internal cavity of the sandstone to produce structural defects. During
cyclic impact, the rock exhibits a low-cycle fatigue damage and strength degradation.
Repeated impact causes the rock particles to loosen and fall off. As the number of cy-
cles increases, this phenomenon gradually penetrates into the interior of the sandstone.
Meanwhile, the porosity of the internal structure allows the chemical solution to further
penetrate into the interior of the sandstone. This interaction improves exposure between
chemical solutions and mineral particles, thus allowing for a more thorough chemical
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reaction between water and rock. Therefore, the hydration solution and the cyclic shock
influence the rate and degree of rock metamorphism while promoting each other in the
process of rock metamorphism.

    
σas = 6.3 MPa σas = 12.6 MPa σas = 20.5 MPa σas = 26.8 MPa 

pH = 2 (Acid corrosion solution) 

    
σas = 6.3 MPa σas = 12.6 MPa σas = 20.5 MPa σas = 26.8 MPa 

pH = 7 (Neutral corrosion solution) 

    
σas = 6.3 MPa σas = 12.6 MPa σas = 20.5 MPa σas = 26.8 MPa 

pH = 9 (Weak alkaline corrosion solution) 

    
σas = 6.3 MPa σas = 12.6 MPa σas = 20.5 MPa σas = 26.8 MPa 

pH = 12(Alkaline corrosion solution) 

Figure 9. The destructed forms of white sandstone (a–p).

5. Conclusions

To conclude, this study introduces the cyclic impact test of white sandstone specimens
under chemical corrosion and axial compression, as well as stress–strain and dynamic
strength variation characteristics. Several vital conclusions are presented as follows:

(1) The stress–strain curve during the cyclic impact test of white sandstone can be divided
into three types: an early semi-elliptic high flat curve, a mid-gradient parabola, and
low flat parabolic curve.

(2) With the increase of the number of cycles under the same load, the peak strength of
the rock shows a trend of ‘strengthening first and then weakening’. The strength of
stone resistance to impact failure reached its maximum at pH of 7 and axial pressure
of 12.6 MPa.

(3) Under the same axial pressure, the effect of solution pH on the initial dynamic strength
of white sandstone is a normal distribution. The acidic and alkaline environment
damage is harmful to rocks, while neutral environment generates little effect. The
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influence of solution pH on the dynamic strength of white sandstone is not apparent
during the middle and late periods.

(4) Through carrying out a series of studies, the proper proportion of loading will make
the micro-fractures in the white sandstone tend to be tight, and the impact strength
of the white sandstone will be strengthened in the early stage. Overloading will
aggravate the deterioration of the strength of the white sandstone under the impact
and further intensify the damage in the middle and later stages. When the loading
ratio exceeds a certain limit, the micro-cracks of the white sandstone will increase due
to the increasing loading ratio. Furthermore, the structure of rock will be destroyed.
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Abstract: A reasonable arrangement of filling pipelines can solve the problems of low line magni-
fication, a high flow rate, large pipe pressure, etc., in deep well filling slurry transportation. The
transportation pressure loss value of filling slurry is the main parameter for the layout design of
filling pipelines. At present, pressure loss data are mainly obtained through the loop pipe experiment,
which has problems such as a large amount of labor, high cost, low efficiency, and a limited amount of
experimental data. In this paper, combined with a new generation of artificial intelligence technology,
the random forest machine learning algorithm is used to analyze and model the experimental data
of a loop pipe to predict the pressure loss of slurry transportation. The degree of precision reaches
0.9747, which meets the design accuracy requirements, and it can replace the loop pipe experiment to
assist with the filling design.

Keywords: pipe transportation system test; pressure loss; random forest algorithm; filling-aided design

1. Introduction

The filling mining method is one of the most effective methods to ensure the safety
of deep mining [1,2]. In the design of a deep well filling system, designing a reasonable
arrangement of the underground filling pipeline is the main difficulty. The properties of
tailings, the transportation conditions, and the pressure loss value of slurry transportation
are different in different mines. At present, the theoretical calculation of the pressure
loss of a high-concentration filling slurry is generally based on the Bingham rheological
model, but there is a certain difference between the pressure loss value obtained when
using slurry yield stress and plastic viscosity and the experimental value of the loop [3].
The main reasons for this are that the cross-sectional flow velocity is different during the
transportation of high-concentration filling slurry, the flow velocity near the pipe wall is
close to zero, the shear stress decreases with the increase in the shear rate, It is thixotropic
and the flow curve is hysteretic [4,5]. For this reason, most designers need to master the
pressure loss data of filling slurry while using the loop pipe experiment method. However,
there are problems such as a large amount of labor and a long experimental period, and
experimental variable parameters cannot fully simulate industrial filling pipelines.

In the filling and conveying theory, it is difficult to establish a transport model that
can be used to calculate the pressure drop of the slurry by theoretical methods. With
the development of artificial intelligence technology, methods to build predictive models
based on existing data have gradually emerged. Abroad, Kumar et al. used the integral
flow model to predict the pressure drop of multi-scale solid–liquid flow [4], but there is a
problem in that the reverse analysis of the input limit parameters of numerical modeling
and the generalization ability of curve fitting are poor. In China, Qi Chongchong of Central
South University and others took the lead in proposing a “machine learning-assisted
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filling design” [6,7], And a variety of backfill system design prediction models have been
established to promote the development of the traditional backfill field towards intelligence.

In this paper, the artificial intelligence random forest algorithm is used to analyze the
experimental data of a loop pipe, establish the pressure loss prediction model of the filling
slurry, and verify the feasibility of the proposed random forest model in the pressure loss
prediction. This model can replace the traditional loop pipe experiment-aided filling piping
system design.

2. Acquisition of Experimental Data of Loop Pipe

2.1. Construction of Loop Pipe Experiment System

The backfill engineering laboratory has an indoor loop test system. The test pipeline
system is shown in Figure 1. P1–P2 is the pressure drop of the straight pipe section, P3–P4 is
the pressure drop of the vertical section plus 90◦ elbow, and P5–P6 is the pipeline pressure
drop of the inclined pipe section.

Figure 1. Schematic of the pipe transportation system.

The displacement of the loop pipe experiment system was 76 m3/h, the outlet pressure
was 1.5 Mpa, the inner diameter of the test pipe was 80 mm, and the pressure sensor adopted
a flat model pressure transmitter with a range of 0–2 Mpa and an accuracy of ±0.25%.
Pressure data were displayed and recorded using Wincc host computer software [8,9].

2.2. Relevant Parameter Experimental Data Acquisition

This loop pipe experiment was carried out with the tailings of Sanshandao Gold Mine;
the mixing water was tap water, and the cementing material was the cementing material in
use in the mine.

The particle size distribution of tailings was measured by a Malvern laser particle
sizer, as shown in Table 1. When using XRD phase test analyzer, it was found that the
main components of tailings were quartz and mica, non-toxic minerals, insoluble in water.
The fluidity of the tailings backfill slurry and the strength of the backfill had little effect.
The content of cementitious material + 80 microns was 9.5%, the initial setting time was
45 min, the final setting time was 8 h, and the specific surface area was 750 m2/kg; thus,
the material met the GB175-2007 “General Portland Cement” standard and could be used
as a cementing material [10].

Table 1. Tailings grain composition.

Screen/Mesh +100 −100~+200 −200~+320 −320~+400 −400

Full tailings
proportion/% 30.07 14.36 12.06 1.06 42.5
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The viscosity and yield stress of the slurry were tested with a BROOKFIELD RST
rheometer in the United States. The test results are shown in Table 2. With an increase
in slurry concentration, the plastic viscosity and yield stress also increase accordingly, so
viscosity, yield stress, and slurry concentration are dependent variables and independent
variables [11,12].

Table 2. Slurry rheological parameters.

Concentration Lime–Sand Ratio Plastic Viscosity (Pa·s) Initial Yield Stress (Pa)

68% 0.25 0.159 40.549
70% 0.25 0.216 59.865
72% 0.25 0.322 95.158
74% 0.25 0.486 135.684

According to the above analysis, five independent variables, namely, tailings mass
concentration, −400 mesh ratio, lime–sand ratio, flow rate, and pipeline structure, were
selected for data modeling analysis. Under the premise of ensuring fluidity, the density test
was configured with tailing concentrations of 68%, 70%, 72%, and 74%, with a lime–sand
ratio of 1:4, 1:10, and 1:20, and the test trailer pump displacement was set to 7%, 13%, 18%,
and 25% to record the pressure data of the horizontal section, the vertical section, and the
slope section. This experiment obtained 144 sets of experimental data.

After the filling slurry was fully agitated, the loop conveying experiment was carried
out. In this experiment, the filling pump is left in its preset speed and then enters the
horizontal pipeline (P1–P2), passes through the vertical pipeline (P2–P3), passes through
the horizontal pipeline (P3–P4), flows into the mixing tank through the inclined 5◦ slope
pipeline (P5–P8), etc.

In order to eliminate the influence of the shear thinning of the slurry on the rheological
behavior [13,14], each group of experiments lasted for half an hour. The stable pressure
value was recorded when the conveying flow was stable, the pressure difference between
the pressure monitoring points was calculated, and the pressure difference was divided by
distance and converted to a pressure loss value over a distance of 1 km in Mpa/km. First,
the loop transport experiment was carried out using the minimum concentration ratio;
then, tailings and cementing materials were added to the stirring system; the ratio was
changed; the concentration was increased; and the pump delivery flow was changed so as
to change the independent variable parameters of the test slurry concentration, the ratio
of tailings to cementitious material, the −400 mesh proportion, and the flow velocity [15].
The pressure loss values under different variable conditions were recorded.

3. Establishment and Analysis of Pressure Drop Prediction Model

The random forest algorithm was used to establish the relationship between the
pressure drop in the slurry pipeline and its related variables. Random forest is an extended
variant of bagging [16]. Classification tree is the theoretical basis of random forest. Random
forest adopts the Bootstrap resampling method to build a decision tree model for each
sample set, which can be used to solve classification and regression problems. It has a
strong generalization ability and good noise immunity, and it has been successfully applied
in many fields [17,18].

The random forest algorithm is not sensitive to multicollinearity and can reduce the
impact of missing data and unbalanced data on the prediction results. The random forest
algorithm is currently considered to be one of the optimal algorithms for nonlinear model
prediction [19].

Building the Original Training Set

The random forest regression algorithm realizes the pressure loss prediction of the
filling slurry pipeline. The random forest regression process is shown in Figure 2. The main
steps are as follows:
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(1) Use the sigmoid function to normalize the original data, re-extract b training sets
from the data samples with Bootstrap, build a regression decision tree, and use the
remaining samples as the test sample set.

(2) In the branching process, the variable smaller than the number of characteristic vari-
ables is randomly selected from all feature variables as an alternative branch, and the
optimal branch is determined according to the principle of minimum node impurity.

(3) The regression decision tree uses top-down recursive branches, and the number of
decision trees is the ntree value [20–22] as the growth termination condition.

(4) The decision trees produced by sampling are combined to form a regression model of
random forest, and the mean of the predicted values of all decision trees is output as
the prediction result.

Figure 2. Random forest pressure drop prediction flowchart.

The slurry pressure drop data were obtained through the loop pipe experiment, and
some data are shown in Table 3.

Table 3. Test sample data.

Influencing Factors
Evaluation

Index

Serial Number
Pipeline
Angle◦

Quality Con-
centration%

Lime–Sand
Ratio

Flow Rate m/s 400 Mesh%
Pressure Loss

Mpa/km

1 0 68% 0.25 1.32 42 1.177
2 0 70% 0.25 1.68 35 2.688
3 0 72% 0.25 2.2 38 4.111
4 0 74% 0.25 1.28 29 3.584
5 0 68% 0.1 1.36 37 0.987
...

...
...

...
...

...
...

For cross-validation, the main parameters of the random forest prediction model
were the number of trees ntree = 400 and the number of variables of the random forest
classification model mtry = 4. The program segment is shown in Figure 3.
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Figure 3. Random forest program diagram (random classification of sample data).

4. Results and Discussion

4.1. Importance and Relevance Calculations

Random forest can calculate the importance of a single variable [23,24]. The number
of data classifications for the classifier is M, and the results were compared with the correct
classification and the random forest classifier. The number of errors of the statistical
classifier is N, and the size of the data error can be expressed by Equation (1):

erroOB =
N
M

(1)

According to the variable, x (importance score) can be expressed as:

scorei = ∑(erroOB2 − erroOB1)/ntree (2)

where erroOB1 is the out-of-bag data error of the decision tree for each lesson; erroOB2 is
the out-of-bag data error of feature x after adding noise interference [25–27]; and ntree is
the number of decision trees. According to Formula (2), the importance of pressure drop
influencing factors is scored; the sum of all importance scores is scaled to 1; and a stacked
bar chart is drawn, which clearly reflects the importance scores of each factor as shown in
Figure 4.

 

0.234

0.081

0.087

0.375
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0.075

0.022

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

vertical segment
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5°Slope

concentration

flow rate

lime-sand ratio

particle size

Figure 4. Test variable correlation score map. The abscissa is the weight, and the ordinate is
the variable.

Through the analysis, it can be seen that the pipeline structure is the most important
variable affecting the pressure drop, and the importance score was 0.402. The pressure drop
predicted here is the total pressure drop, which includes the pressure loss pressure drop
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and the slurry static pressure drop. The importance scores of particle size, cementitious
material-to-tailings mass ratio, flow rate, and concentration scores were 0.022, 0.075, 0.126,
and 0.375, respectively. Slurry concentration is a secondary pressure drop factor to the
pipeline structure, and relatively speaking, the proportion of −400 mesh particle size is the
smallest factor.

Through the 5060 multi-function measuring instrument and the self-patented design of
the filling pipeline pressure monitoring device, the long-term pressure data of the pipeline
pressure during the full tailings filling of the Sanshandao Gold Mine were measured and
analyzed. When calculating the pressure distribution of the filling pipeline, the pressure
loss of the slurry in the complex area of the pipeline increased by 15% due to bending and
joint wear, and the pressure loss of the vertical pipe section of the pipeline increased by 5%.

The correlation between two continuous variables was analyzed by the Pearson corre-
lation coefficient [28,29], and the value range was [−1, 1]. The closer the absolute value of
the sample correlation coefficient to 1, the higher the degree of correlation and the closer
the relationship, and the correlation of the linear relationship between variables can be
reflected by the correlation coefficient. The correlation function is presented as Formula (3):

ρ =
δXY
δXδY

(3)

where δX and δY are the standard deviation of random variables X and Y, respectively, and
δXY is the covariance of X and Y.

The correlation table is used to express the correlation between different influencing
factors and the pipeline pressure drop. The calculated correlation results are shown in
Figure 5. Blue represents a positive correlation, red represents a negative correlation, and
the area of the circle represents the strength of the correlation. It can be seen from the figure
that the correlation between the concentration and the pipeline structure and pressure drop
is the largest, and the importance score is the highest. The data come from the loop pipe
experiment, and the test tailings are taken from the mine, which has guiding significance
for the regulation of the mine filling slurry transportation. It is necessary to strengthen
the management and control of these key factors during filling. When monitoring and
regulating the abnormal state of the filling pipeline, strengthening the control weight of the
factors provides a greater correlation [30].

Figure 5. Correlation graph.
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4.2. Pressure Drop Prediction Results

First, the original data were de-statically processed; the measured data were subtracted
from the pressure change in the slurry due to the action of gravity; and the pressure Pi of
the new data set was obtained by Formula (4), where the density of the test slurry was
obtained by Formula (5) [31–33]:

Pi = ΔP − ρgh (4)

ρ = ρ0 × 1/(
ρ0Cw · (nγs + γc)

γc · γs(1 + n)
+ 1−Cw) (5)

where ΔP is the test pressure difference, Pa; ρ is the density of the test slurry, kg/m3; g is
the acceleration of gravity, m/s2; is the vertical height difference, m; ρ0 is the density of the
water, and the industrial value is 1.02 × 103 kg/m3; CW is the slurry mass concentration,
%; n is the lime–sand ratio; and γc is the true density of cementitious materials and the true
density of tailings, kg/m3.

A new data set was constructed, 121 sets of data were extracted from it to construct
training samples of the random forest model, and the remaining 23 sets of data were test
samples. Five eigenvalues were selected, and the Anaconda3 development environment
was used to complete the model establishment using Python language [34,35]. First, the
model was run using the samples during training, and the trained random forest model
was used to perform regression fitting on the test sample set. The prediction result of the
regression fitting on the test sample set is shown in Figure 6.

It can be seen in Figure 6 that the prediction accuracy of the pressure drop prediction
model based on the random forest algorithm is high. The goodness of fit between the
prediction and the actual value in the test set is 0.9747, and the mean square error is 0.0011;
the value goodness of fit is 0.983. The value range of goodness of fit is [0, 1]. The larger
the value, the higher the degree of fit [36,37], and the closer the mean square error MSE is
to 0, indicating that the error between the predicted data and the original data is smaller.
The predicted value of the model is very close to the measured value, which verifies the
feasibility of the random forest model to predict the slurry pressure drop in the loop
experiment [38,39].

4.3. Comprehensive Evaluation of Forecast Results

In order to further verify the accuracy of the random forest model algorithm in the
application of slurry pressure drop loss prediction [40–42], the BP artificial neural network
and the polynomial linear fitting method were used for comparison [43], and the goodness
of fit R2 and the mean square error MSE were used to determine the prediction accuracy of
the model. The obtained error comparison results are shown in Table 4.

Table 4. Prediction model error comparison table.

Model
Performance

R2 MSE

Random forest algorithm 0.9747 0.0011
BP artificial neural network 0.9538 0.0512

Linear fit 0.9326 0.1862
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(a)

(b)

Figure 6. Model prediction: (a) results of fitting between the predicted values of the test set and
the actual values; (b) results of fitting between the predicted values of the training set and the
measured values.

5. Results

The following conclusions can be drawn from the analysis of the experimental data of
the tailings loop and the established random forest prediction model at this stage:

(1) The biggest factor affecting the change in slurry pressure is the vertical pipeline
structure, followed by the slurry concentration. The proportion of the tailings −400
mesh particle size has little effect on the slurry pressure drop.

(2) The correlation analysis of the data shows that the slurry pressure loss is positively
correlated with the slurry concentration, ratio, and flow rate. The fluidity of the
slurry is negatively correlated with the pressure drop, concentration, and the ratio of
the slurry.
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(3) The random forest pressure loss model established based on the experimental data
of the loop pipe has a high prediction accuracy. The goodness of fit between the
experimental value and the predicted value on the test set and training set is 0.9747
and 0.983, The prediction accuracy is higher than BP neural network. Based on
polynomial linear fitting, it can replace the complex loop experiment to carry out the
intelligent aided design of filling systems.

(4) The algorithm model can be used to predict the pressure of the filling pipeline by
learning the pressure distribution data of the mine filling pipeline. To provide ideas
for follow-up research, the algorithm can be used in combination with the automatic
system to realize the judgment and early warning of the abnormal state of the filling
pipeline by predicting the pipeline pressure, and the development of “smart back-
filling” technology can be promoted.
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Abstract: An innovative monitoring-while-drilling method of pressure relief drilling was proposed
in a previous study, and the periodic appearance of amplitude concentrated enlargement zone in
vibration signals can represent the drilling depth. However, there is a lack of a high accuracy model
to automatically identify the amplitude concentrated enlargement zone. So, in this study, a neural
network model is put forward based on single-sensor and multi-sensor prediction results. The neural
network model consists of one Deep Neural Network (DNN) and four Long Short-Term Memory
(LSTM) networks. The accuracy is only 92.72% when only using single-sensor data for identification,
while the proposed multiple neural network model could improve the accuracy to being greater than
97.00%. In addition, an optimization method was supplemented to eliminate some misjudgment due
to data anomalies, which improved the final accuracy to the level of manual recognition. Finally, the
research results solved the difficult problem of identifying the amplitude concentrated enlargement
zone and provided the foundation for automatically identifying the drilling depth.

Keywords: vibration signals; neural network; drilling state identification algorithm; drilling depth;
monitoring-while-drilling method

1. Introduction

Vibration signals are often used in sensor monitoring [1–3], defect diagnosis [4–7]
and engineering applications, such as gearboxes [8–10], aero-engines [11,12] and wind
turbines [13]. Vibration signals in underground coal mining are often used to help the
analysis of mining dynamic disasters, stress environments, drilling process and the state of
surrounding rocks [14–19]. Microseismic (MS) monitoring, aimed at monitoring vibration
signals, can detect the dynamic event of the surrounding rock and predict the rock burst
disaster. Acoustic emission (AE) technology is widely used in the field of geotechnical engi-
neering [20–22]. The AE signal contains spatial information about the complex structural
distribution inside the material [23,24] and vast key information about the rock fracture
evolution process [25]. The AE tomography can detect early internal damages, faults and
abnormal regions with the distribution of velocity field in the drilling process [26,27]. A
monitoring-while-drilling (MWD) system can employ the drilling signals to monitor the
quality of borehole constructions, obtain the information of surrounding rocks and other
useful information during the drilling process [28,29].

MS monitoring has gradually become the most conventional means of coal mine vi-
bration signal analysis and is now widely used in China’s underground coal mines [30–33].
The mature technology of MS monitoring has solved a series of problems for actual under-
ground coal mining. Similarly, drilling construction is an indispensable process for coal
mine production, such as providing support, pressure relief and other required drilling
engineering. Pressure relief drilling (PRD) is often used to reduce stress concentrations and
avoid dynamic hazard events, such as rock bursts [34,35]; signal analysis during the drilling
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process can provide guidance for the drilling quality analysis and construction process. In
the previous studies, Zhou et al. [36] proposed a hybrid rock recognition approach that
combined Gaussian process regression with clustering, and employed MWD data and the
adjusted penetration rate to achieve automated rock recognition. Liu et al. [37] analyzed
the relationship between the transverse, longitudinal and torsional vibration of the drill rod
and the properties of the rock being drilled. Zhang et al. [38] studied the drilling amplitude
signals collected by the MS equipment, which can determine the drilling difficulty areas,
sticking drilling and vibration events. Pu et al. [39] investigated the performance of ten
frequently used machine learning models for MS/blasting event recognition. Faradon-
beh et al. [40] discussed the applicability of three data mining techniques along with five
conventional criteria to predict the occurrence of rock bursts in a binary condition.

The study results of [38] (Figure 1) pointed out that the periodic appearance of am-
plitude clusters can represent the drilling depth, which was of great significance to the
automatic statistics of drilling depth and the supervision of workload. However, there is
a lack of a method that can automatically and accurately identify amplitude clusters in
the entire process of borehole construction. There are misjudgments caused by human
subjective consciousness as only relying on the manual identification of amplitude clusters,
which is inefficient and cannot meet the requirements of the efficient and safe operation of
the mine.

Figure 1. Amplitude clusters and intervals in amplitude data during drilling.

In this study, a deep learning method is used to analyze the drilling amplitude signals
collected by MS monitoring equipment. A fusion neural network is obtained based on
Deep Neural Network (DNN) [41–44] and Long Short-Term Memory (LSTM) [45–48]
algorithms, which can automatically distinguish and determine drilling information, such
as the amplitude clusters, drilling start point, termination point and drilling duration of
each section in an efficient and accurate manner.

The proposed rig drilling status identification algorithm can efficiently and accurately
identify and analyze drilling operations, such as pressure relief drilling, support drilling
in the underground coal mine, and obtain the actual construction length, construction se-
quence, time spent on each process and other details of the construction operations, as well
as additional information, such as drilling difficulty and abnormal vibration information.
It has far-reaching significance to ensure the quality and safe operation of underground
construction and obtaining the properties of the roadway surrounding rocks.

The main contributions are as follows:
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(1) Divide all data into the training set, validation set and test set. The test set is not
involved in the training and tuning of the neural network and is only used as the data
for the final model effect evaluation to avoid the problem of information leakage that
leads to the fake high identification accuracy of the neural network. The training and
validation sets are divided by the stratified K-fold cross-validation method to find
the optimal hyperparameters in the model training and tuning, which eliminates the
influence of the imbalanced amount of data between the two categories on the model.

(2) An efficient, automatic and precise neural network model is proposed to identify
the drilling status of drilling rigs by drilling amplitude signals, which can fuse the
data from single and multiple sensors, and the identification results from different
neural networks.

(3) An optimization method is presented, which is similar to “submerge” for two types
of recognition anomalies caused by data in drilling state recognition by the neural
network identification algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe where
and how we collected the drilling signal data and introduce basic concepts related to the
neural network algorithm that is used in this paper. In Section 3, we demonstrate the
composition and division of the dataset of the neural network in this paper, the preprocess-
ing of the data and the structure of the proposed neural network recognition algorithm.
In Section 4, we present and analyze the recognition results of the proposed algorithm,
perform recognition error analysis, propose an error handling method and show the final
recognition results. Finally, conclusions and future works are provided in Section 5.

2. Research Methods

2.1. Data Collection Method

MS monitoring equipment was selected to monitor the drilling process of PRD bore-
holes, which were located in three different underground coal mines in the Shandong
Province, China. The PRD boreholes were drilled by a CMS1-6500/75 drill rig (shown in
Figure 2a) with a length of 1 m per drill rod, and a new drill rod was added after each rod
was drilled. The PRD boreholes were located at the side of the roadway, 1.5 m away from
the roadway floor, with a drilling diameter of 150 mm and a design drilling depth of 30 m.

 
 

(a) (b) 

Figure 2. Drill rig and MS equipment layout. (a) CMS1-6500/75 drill rig; (b) Drill hole and MS
equipment layout at roadway side.

The MS monitoring system was arranged on one side of the PRD borehole, and
contained three sensors, which are arranged as shown in Figure 2b. The three sensors are
at different distances with the same PRD drilling hole, and the amplitudes of the drilling
signals collected for the same drilling hole are different. When the drilling position changes,
it cannot be guaranteed that a certain sensor always collects the maximum, minimum or
middle amplitudes. In order to eliminate the influence of the distance from the borehole,
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the average value of the vibration amplitude signals collected by the three sensors was
calculated, so that the amplitude signals of Sensor #1, Sensor #2 and Sensor #3 would be
arranged from the smallest to the largest.

2.2. Neural Network Algorithm

For the problem of identifying the drilling status of the drilling rig, the collected
drilling signals were learned and trained with the help of the excellent judgment accuracy
of the deep neural network. For the identification of the drilling state of the drilling rig,
it can be simplified as a binary classification [49]: the signal points in the drilling state as
1 (positive sample) and the signal points in extension of the drill rod, the non-drilling state,
as 0 (negative sample). The middle layers of the neural network use a Rectified Linear Unit
(ReLU) as the activation function, and the last layer uses a sigmoid activation function to
output a probability value in the range of 0 to 1. The ReLU function resets all negative
values to zero, while the sigmoid function “compresses” any value to the interval [0, 1],
and its output value can be regarded as a probability value; the expressions of the two
activation functions are given in Equations (1) and (2). Therefore, the network uses a binary
cross-entropy loss function to calculate the loss, as in Equation (3).

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(1)

S(x) =
1

1 + e−x (2)

loss = − 1
N

[
N

∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi))

]
(3)

where N represents the number of samples; yi represents the label value of sample i; and
p(yi) represents the predicted probability value of the label value of sample i.

The practice of training and testing the model on all datasets is problematic, which
can lead to the rapid over-fitting of the model on that dataset. Therefore, we divided the
dataset into training set, verification set and test set in order to obtain a generalized model.
The model was trained and learned on the training set, and the hyperparameters of the
model were adjusted using the performance of the model on the validation set as a feedback
signal. However, this causes information leakage when the model parameters are tuned
multiple times on the validation set, and the model quickly over-fits on the validation set.
So, we created a completely unused dataset, a test set, to evaluate the model, and the best
parameters were determined by grid search [50] techniques. Then, the optimal parameters
were used to re-train the model on all the training sets, and the effect of the model was
finally evaluated on the test set.

Depending on the number of data points and the way the validation set is divided, it
may result in a large variance in the validation scores, which makes it impossible to evaluate
the model reliably. In this case, the best practice is to use the K-fold cross-validation [51]
shown in Figure 3. This method divides the available data into K folds, instantiates K
identical models, trains each model on K-1 folds and evaluates it on the remaining one.
The validation score of the model is equal to the average of the K validation scores.

However, some classification problems may also show a large imbalance in the distri-
bution of target classes, for example, there may be several times more negative samples
than positive ones. In such cases, stratified sampling is used to ensure that the relative
class frequencies are approximately the same in each training and validation fold. Stratified
K-fold cross-validation [52] (Figure 4) is a variant of K-fold cross-validation, which returns
stratified folds, with each fold containing roughly the same percentage of samples for each
target category as the entire collection.
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Figure 3. Schematic diagram of the K-fold cross-validation.

Figure 4. Schematic diagram of stratified K-fold cross-validation.

3. Design of Experiment

3.1. Composition of Experimental Data

We carried out drilling signal data acquisition in three coal mines (marked as mine A,
B and C) in the Shandong Province, China. For mines A and B, the drilling signal data of
one borehole was collected in each mine, marked as A1, B1. Additionally, the drilling signal
data of five boreholes were collected in mine C, marked as C1~C5, with seven boreholes
drilling rig amplitude data in total. In order to train and obtain a generalized neural
network model, the amplitude data of one borehole A1 in mine A and two boreholes (C1,
C3) in mine C were used as training data. The designed neural network was trained and
verified by stratified K-fold cross-validation, and the data of one borehole B1 in B mine and
three other holes (C2, C4, C5) in C mine are used as the test dataset to test the identification
accuracy of the final model.

3.2. Pre-Processing of Experimental Data

The PRD drilling amplitude data from the training and validation sets were sorted, and
the vibration signals within the drilling time were filtered according to the actual drilling
time. The data points were manually labelled as 0 or 1 according to the time corresponding
to the drilling state of the rig recorded during the field construction and the size of the
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drilling signal amplitude value (1 is the drilling state, 0 is the state of connecting the drill
rod). The collected raw vibration signal data are used as raw data, as shown in Figure 5.

 

 

 
Figure 5. Original data of all 3 sensors.

It can be easily seen from the Figure 5 that the collected vibration signal data contain
some points with abnormally large amplitude values, which seriously deviate from the
range of other amplitude value distributions; these outliers are randomly present in two
different drilling states and the locations of outliers collected by different sensors may be
different from each other. If these outliers are retained as inputs to the model, they have a
great disturbance and impact on the subsequent training of the model and the accuracy of
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the final model; thus, it is necessary to remove the outliers from the input data before the
model training process to avoid the model learning the wrong information and to ensure
that the training and accuracy of the model are not affected by the outliers. Therefore,
the 3σ principle [53,54] was used to filter the raw data in order to eliminate the influence
of outliers on the model, that is, the (μ − 3σ, μ + 3σ) in each set of datasets is taken as
the screening criterion for the outlier data. For the vibration signal data collected by each
sensor, the abnormal value points exceeding 3σ are removed, which is shown in Figure 6.

 

 

 
Figure 6. Amplitude signal data after removing the outliers.
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The distribution of amplitude cluster and intervals can be seen clearly after removing
the outliers, and the purpose of removing outliers and revealing the characteristics of the
data was preliminarily achieved. To determine whether the two types of labels of the data
are distinguishable in terms of the vibration amplitude index, the vibration signals data
were represented according to the label classification as shown in Figure 7. For Sensor
#1, the average amplitude of the drilling state is 1.85 and the average amplitude of the
connecting state is 0.38. For Sensor #2, the average amplitude of the drilling state is 3.04
and the average amplitude of the connecting state is 0.47. For Sensor #3, the average
amplitude of the drilling state is 9.87 and the average amplitude of the connecting state is
3.63. The vibration signals of the two states are well differentiated in terms of amplitude
mean and maximum amplitude, and the difference features can be trained and learned by
the designed neural network. Since the raw data are a combination of drilling amplitude
values from three different boreholes in two different mines, there are some differences
between the magnitude of amplitude values in different boreholes. In each individual
borehole drilling data, the amplitude values of the two drilling states are still well separable.
Therefore, the vibration amplitude can be used as a classification indicator to distinguish
between the two drilling states.

Since the experimental data were divided into two categories and the number of data
contained within the two categories was not equal, to make the model fully learn the
characteristics of different types of data and improve its prediction accuracy, the stratified
K-fold cross-validation method was used to avoid the model learning the characteristics
only from one type of data, while the features of the other type are not sufficient learned.
This study used stratified 10-fold stratified cross-validation. The training data were divided
into training sets and validation sets in order to avoid information leakage caused by the
model being adjusted directly on the test set during the learning process, which means that
the entire training data were divided into 10 folds and the proportion of the two categories
in each fold was approximately the same as the proportion in the total data set. The training
was performed on 9 folds of the data each time, and the remaining 1 fold was used as the
validation set to verify the model; the model effect was tested on a separate unused test set
after the final model was trained.

3.3. Drilling State Identification Neural Network

The data, after the outlier removal and normalization process conducted in the pre-
vious section, were used as the input data of the neural network, and the neural network
model was established using the LSTM and DNN methods. Three independent LSTM
networks were built using single data from each of the three sensors as input data; one
LSTM network and one DNN network were built using all the amplitude data collected by
all three sensors as the input data. A total of five neural networks were established, and the
architecture of the neural network is shown in Figure 8. Each neural network model was
trained and validated separately, and the five neural networks jointly judged the drilling
status of the rig using the respective vibration amplitudes and all vibration amplitudes
collected by different sensors at the same moment. The entire process was constructed
so that the amplitude data collected by the three sensors as a whole were input to the
LSTM network and DNN network as input data, and the three different single sensor data
were input to the LSTM networks #1, #2 and #3. The five sub-neural networks reveal the
discrimination results of drilling state of drilling rig. For a certain moment, three drilling
amplitude signals of the rig and five judgment results are obtained. Then, the three or more
than three same drilling states were taken as the final drilling state result according to the
majority rule.
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Figure 7. Separability of the two states.

The five sub-neural network models were trained and evaluated separately using the
data in the training set as input data, and the feedback data (accuracy, Receiver Operating
Characteristic and Area Under ROC Curve) obtained on the validation set were used to
adjust and optimize the structure and parameters of the neural network (such as epochs,
number of layers of deep neural network and number of neurons per layer). The training
and adjustment were continued until the judgment performance of each neural network
reached a good judgment accuracy rate. The final neural network model structure and
parameters were determined after the comparison of the accuracy of model prediction
results with different parameters.
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Figure 8. The architecture of the proposed identification neural network model.

After determining the final parameters, the training and validation sets were integrated
into one training set. A new neural network was re-established according to the optimal
neural network structure parameters and the training was restarted to ensure that each
model could learn from the entire training set. That is, all the data were initially divided
into training sets and verification sets to obtain the final neural network model, which was
then applied to the data in the test set to finally evaluate the effect of the model.

4. Analysis and Discussion of the Experimental Results

4.1. Analysis of the Experimental Results

The four unused borehole data used as the test data were input into the final trained
neural network model; the accuracy of the model is shown in Table 1 and the accuracy of
each neural network in the model is shown in Table 2. The trained neural network models
have a good identification accuracy, which are all over 97.00% and the average is 97.65%;
their accuracy can effectively recognize the drilling state of the drilling signals collected
in the field. The accuracy of the identification may not be satisfactory when only using
single-sensor data for the identification, which is only about 92.72%, and the accuracy may
become worse when encountering a more complex situation. Fusing the information of the
recognition results of multiple sensors can effectively improve the identification accuracy of
the final model and make the identification accuracy of the recognition model more robust.

Table 1. The accuracy of the neural network on the test data.

Test Data #1 Test Data #2 Test Data #3 Test Data #4

Recognition accuracy 97.00% 98.47% 97.99% 97.15%

Table 2. The accuracy of each sub-neural network on the test data.

Network Type Test Data #1 Test Data #2 Test Data #3 Test Data #4

LSTM #1 93.72% 92.72% 95.61% 97.72%
LSTM #2 95.15% 96.17% 97.37% 96.96%
LSTM #3 93.44% 92.15% 94.49% 96.20%
LSTM all 96.72% 93.10% 98.25% 96.96%

DNN 96.86% 98.47% 98.62% 97.15%
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4.2. Error Analysis

Comparing the identification results of the final model with the ground true, it was
found that there are some discriminative abnormal points in the result. Taking part of the
data in the Test #1 borehole as an example, and the partial discriminant abnormal point
data shown in Table 3, we can observe that the data collected by the sensors corresponding
to these distinguishing abnormal points are usually very different from the data of the
surrounding points, which can also be seen in other datasets. Therefore, it can be assumed
that the appearance of these discriminative anomalies has little to do with the discriminative
neural network, but there are anomalies in the collected data.

Table 3. Part of the outlier data points in the Test #1 dataset.

Data
Sequence Number

Sensor #1
Amplitude

Sensor #2
Amplitude

Sensor #3
Amplitude

Drilling State
Ground True

Drilling State Judged by
the Network

· · · · · · · · · · · · · · · · · ·
17 2.707553 2.619514 6.796628 1 1
18 1.930003 2.793286 5.172647 1 1
19 1.963386 2.451638 5.28292 1 1
20 0.502925 0.59154 1.494293 1 0
21 1.324366 2.157405 4.256246 1 1
22 3.292366 3.701357 7.12655 1 1
23 3.088607 3.210542 7.949529 1 1
· · · · · · · · · · · · · · · · · ·
94 0.391242 0.756341 0.875585 0 0
95 0.225544 0.427893 0.178449 0 0
96 0.334536 0.450832 0.215356 0 0
97 1.083765 1.435536 2.665392 0 1
98 0.483574 0.586286 0.426804 0 0
99 0.425458 0.389063 0.18947 0 0
100 0.204848 0.269115 0.353566 0 0
· · · · · · · · · · · · · · · · · ·

The misjudgment of the identification results can be roughly divided into two cate-
gories. The first one is the “1110111” type of signals, that is, continuously or discontinuously
sporadic signals in the continuous drilling state (1 state) are judged to be in the connect-
ing state (0 state). In fact, the amplitude values of these points are usually very smaller,
always one-half or one-third, than other points around them in a time series, so they can be
regarded as anomalies. Combined with the actual situation on site, these points may be the
sticking drill on-site. The other is the “0001000” type of signals, that is, sporadic signals
mixed in the continuous connecting state (0 state) are judged as drilling state (1 state).
Similarly, these points are abnormally different from other nearby points, usually 3 times or
more higher than nearby points, and have a very short duration of 1 point with occasional
cases lasting 2 points (8 s), so they can also be considered as anomalies. In the actual
situation, these points may be the percussion made by the rig operator in order to lengthen
the drill rod or faraway blasting, rock burst events or other strong vibration events that are
collected by the sensor.

In order to eliminate the influence of the two types of anomalies mentioned above
on the identification of drilling state, we propose an optimization method similar to “sub-
merge”. The idea is that, when the state of a point is different from the state of the two points
around it and the state of those two points is the same, the state of the point is modified
to be the same as theirs. In addition, sometimes there are two consecutive points that are
abnormal points (00011000, 11100111), but, in the actual drilling construction, the drilling
state cannot only last for 8 s and the extension of the drill rod only takes 8 s. So, there is
also a need for a separate “submerge” process for such consecutive abnormal points.

Based on this fact, we wrote a program to perform the “submerge” process of the 0 state
abnormal points for each group of identification results, perform the “submerge” process of
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the 1 state abnormal points for the obtained results and process the points with consecutive
outliers. In this way, we optimized the identification results and further improved the
final accuracy of the discriminant. The final identification results after the “submerge”
smoothing process are, respectively, shown in Figures 9–12. The final identification case
results of Test #1 are shown in detail, while the results of the other test groups are shown
in abbreviated form. The final identification accuracy is almost the same as that of the
manually labeled drilling state.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cont.
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(d) 

Figure 9. Test#1 drilling state final identification results. (a) Drilling state final identification result
and vibration signal of Sensor #1. (b) Drilling state final identification result and vibration signal of
Sensor #2. (c) Drilling state final identification result and vibration signal of Sensor #3. (d) Drilling
state final identification result and vibration signal of all sensors.

As shown in Figure 9, the blue and green rectangles in each graph are the identification
results of the drilling status judged by the neural network algorithm. The length of each
rectangle on the time axis is the time consumed by that section of the construction. The
length of each drilling state is the length of one drill rod. Therefore, the length of each
blue rectangle in the graph shows the time consumed by each drill rod, and thus indirectly
indicates the drilling difficulty at that depth. The green rectangle between two adjacent
blue rectangles is the non-drilling state, such as drill rod connection.

Test #1 is the borehole drilling amplitude data collected in mine C. Figure 9a–c shows
the amplitude of the vibration signals collected by each sensor, while Figure 9d shows
the amplitude signals of the three sensors fused into one graph. Since the three sensors
were installed at different distances from the borehole, from Figure 9, we can see that the
amplitude of the vibration signals collected by each sensor at the same time are different,
but the overall trend is the same. It can be clearly seen that the drilling state identified
by the neural network algorithm matches the area with high amplitude values due to the
borehole construction, and accordingly, the connecting state matches the area with low
amplitude values.
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Figure 10. Test#2 drilling state final identification results.

 
Figure 11. Test#3 drilling state final identification results.
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Figure 12. Test#4 drilling state final identification results.

Test #2 is the borehole drilling amplitude data collected in mine B. Unlike Test #1,
the source of this dataset, mine B, was not trained in the model. The model only learned
the vibration amplitude data collected in mines A and C, which means that the model is
completely unaware about the information related to mine B. As the four datasets used as
the test set were not used in the model training and tuning process, there is no information
leakage problem. This set of vibration signal data, from a completely new mine, has greater
significance for the evaluation of model performance. This dataset eliminates the problem
of the model having better identification accuracy in other boreholes in the same mine due
to the knowledge of the mine’s geological conditions. The performance of the model on
this dataset can better reflect the generalization ability of the model. As can be seen in
Figure 10, the model has very good identification accuracy on this dataset, which comes
from a brand new condition.

Test #3 and Test #4 are the other two borehole drilling amplitude data collected in
mine C. It is also evident from Figures 11 and 12 that the model still has a good recognition
accuracy on these two test sets.

By using the above method, the state of the drilled hole, the amplitude clusters,
intervals and the starting and ending points of drilling or drill rod connecting can be
automatically and efficiently recognized with a high recognition accuracy. The vibration
signals of downhole drilling can be identified and monitored continuously and efficiently.
It can obtain, in a timely and accurate manner, the information of the whole process of
the drilling construction, such as the construction depth of borehole drilling construction,
construction time of each section of drill rod and the difficulty of construction at different
depths. It can also ensure that the underground PRD boreholes are constructed according
to the designed depth and the construction quality is effectively monitored, which is of
great significance to ensure mine safety and obtain rock mass information.

5. Conclusions and Future Work

5.1. Conclusions

A neural network model for drilling rig drilling status identification that fuses single-
sensor and multi-sensor prediction results was proposed in this study. The vibration
signals of the drilling status of a same borehole were collected using multiple sensors,
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and the information of the identification results of single and multiple sensors were fused.
The method was tested and verified; the identification accuracy of all four test datasets
were over 97.00%, and the final identification accuracy was almost the same as that of
the manually labeled drilling state after using the “submerge” optimization method. The
results show that this method makes up for the deficiency of large errors (up to 6.32%)
in the identification results due to the use of a single-sensor data source, and effectively
improves the identification accuracy. The study is of great engineering significance to
effectively identify and judge the construction length of underground borehole drilling and
monitor the drilling information in the entire process of construction.

We innovatively proposed a drilling rig with a drilling status identification neural
network algorithm that uses single-sensor and multi-sensor data and fuses multiple sub-
neural network identification results. Several LSTM and DNN sub-neural networks were
constructed using different drilling amplitude signal data sources. A new optimization
method was proposed for the misjudgment caused by data anomalies in the identification
results. It is a drilling state identification results optimization method that considers both
the amplitude data of the time point and its neighboring points in the time dimension.

The main conclusions are as follows:

(1) A high-accuracy neural network algorithm for the automatic identification of the
drilling status of drilling rigs was proposed. The method uses single-sensor and
multi-sensor data from the same borehole as input data and fuses the identification
results from different types of sub-neural networks using different inputs, effectively
improving the final identification accuracy. The identification accuracy of four test
datasets of borehole amplitude data from two different mines were all above 97.00%.

(2) An optimization method was proposed to deal with two types of misjudgment in the
identification results due to data anomalies, and the optimized identification results
are almost the same as the drilling status marked manually according to the actual
construction status on-site.

5.2. Future Work

The underground environment is complex and there are a large number of noise
sources, such as coal cutting by shearer loaders, blasting of heading face and overlying rock
breaking. The noise signals are inevitably collected by the amplitude sensors, and are not
only meaningless for the judgment of the drilling state of the drilling rig, but also affect the
accuracy of model judgment. In addition, dynamic events, such as rock burst and coal and
gas outburst, are completely eliminated in this study, which is very meaningful for research.
Therefore, the next step of this study is to achieve the accuracy of noise elimination and the
discriminative analysis of other dynamic events signals.
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Abstract: The acoustic emission (AE) characteristics of rock during loading can reflect the law of
crack propagation and evolution in the rock. In order to study the fracture mode in the process of rock
fracture, the AE characteristics and crack types of red sandstone during fracture were investigated by
conducting Brazilian indirect tensile tests (BITT), direct shear tests (DST), and uniaxial compression
tests (UCT). The evolution law of AE event rate, RA and AF values, and the distribution law of
RA–AF data of red sandstone samples in three test types were analyzed. Based on the kernel density
estimation (KDE) function and the coupling AE parameters (RA–AF values) in DST and BITT, the
relatively objective dividing line for classifying tensile and shear cracks was discussed, and the
dividing line was applied to the analysis of fracture source evolution and the failure precursor of
red sandstone. The results show that the dividing line for classifying tensile and shear cracks of
red sandstone is AF = 93RA + 75. Under uniaxial compression loading, the fracture source of red
sandstone is primarily shear source in the initial phase of loading and tensile source in the critical
failure phase, and the number is far greater than shear source. K = AF/(93RA + 75) can be defined as
the AE parameter index, and its coefficient of variation CV (k) can be used as the failure judgment
index of red sandstone. When CV (k) < 1, it can be considered that red sandstone enters the instability
failure phase.

Keywords: acoustic emission; sensor; parameter analysis; RA and AF; crack classification criterion

1. Introduction

Brittle rock is a complex geological medium, in which microcracks will occur under
loading, and with the propagation and connection of microcracks on different scales, the
rock will be damaged [1–4]. Furthermore, in a variety of rock engineering applications, red
sandstone, as sedimentary rock, has been used widely [5–7]. Hence, studying the failure
characteristics of red sandstone is of great significance for stability monitoring and disaster
early warning in engineering projects [8–10]. When the rock is damaged, it will produce an
acoustic emission (AE), which is essentially the elastic wave released in the process of crack
generation and propagation [11–14]. In fact, the AE characteristics of rock during loading
can reflect the law of crack propagation and evolution in the rock [15–19].

AE parameters can be divided into time domain parameters and frequency domain
parameters, which are all extracted from the AE time domain waveform [20–23]. The time
domain parameters of AE signals most widely used to reveal the rock failure mechanism
are: rise time, duration, AE count, maximum amplitude, energy, and average frequency
(AF) [24–28], as shown in Figure 1a. The frequency domain parameters of AE signal most
widely used are peak frequency, frequency centroid, and partial power; peak frequency
is the point corresponding to the maximum amplitude in the frequency spectrum, the
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frequency centroid, representing the center of mass of the AE signal, is calculated from a
sum of magnitude time frequencies divided by a sum of magnitude, and partial power is
calculated from the sum of the frequency spectrum within a specified range divided by
the total power of all frequencies [29,30]. In addition, in AE field monitoring, in order to
improve the accuracy of monitoring and disaster early warning, the location of the fracture
source has gradually become an important development direction [31].

  

Figure 1. Typical AE waveform and micro fracture (crack) classification. (a) AE parameter in a hit;
(b) crack classification based on RA/AF value.

As regards the cracking type of brittle materials, AE signals from tensile cracking and
shear cracking have different characteristics. The source type can be classified by tracking
the characteristics of an AE signal to improve the understanding of the rock cracking mode.
The time domain parameters commonly used to classified cracking type are the rise angle
(RA) and average frequency (AF) [32–34]. The RA value is defined as the ratio of rise time
to amplitude, in ms/V; the AF value, the number of threshold crossings (i.e., counts) over
the duration of the AE signal, is the ratio of counts to duration, in kHz [35–38]. Generally,
tensile fracture corresponds to an AE signal with low RA value and high AF value, while
shear fracture corresponds to an AE signal with high RA value and low AF value [13,39],
as shown in Figure 1b. Based on the above conclusions, the damage mechanism and failure
mode classification of brittle materials can be analyzed by the RA and AF values of the AE
signals in previous studies. Based on the analysis of RA and AF values, some scholars have
investigated the damage mechanism and failure mode of different materials, such as hollow
slab specimens of calcite and marble, ice structures, rubber powder concrete, and other
rock types, in several basic lab tests [40–43]. Meanwhile, many scholars have investigated
the effects of strain rate, brittleness, bedding, microwave radiation, and crack on rock
failure mode by analyzing RA and AF values [44–50]. In addition, Muñoz-Ibáñez et al.
compared the advantages and disadvantages of semicircular bending (SCB) and pseudo
compact stretching (PCT) by analyzing the RA and AF values [51]. In addition, frequency
domain parameters are often used to classified rock fracture types. For example, in order
to effectively classify source types, based on peak frequency or partial power, Zhang et al.
proposed a new source classification criterion [30]. Li et al. studied the dominant frequency
characteristics of the AE signal of marble based on direct tensile tests, and showed that the
low-frequency waveform represents tensile cracking and the high-frequency waveform
represents shear cracking [52].

However, when focusing on the cracking type classification of brittle materials based
on RA and AF values, there is no clear standard for the boundary between RA and AF
values. Niu et al. determined that the proportional relationship between RA and AF values
is 2:1 in their evaluation for the classification of fracture modes of flawed red sandstone
under uniaxial compression [53]. Wang et al. proposed that the proportional relationship
between RA and AF values is 1:3.75 when investigating the influence of multi-stage cyclic
loading on the classification of marble fracture mode [54,55]. Yao et al. proposed that the
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proportional relationship between RA and AF values is 1:2 when investigating the effect
of moisture on the failure mode in coal [56]. Fan et al. proposed that the proportional
relationship between RA and AF values is 50:1 when investigating the fracture behavior
of fully graded concrete under three-point bending loading at different loading rates [57].
Moreover, the intercept was introduced when some scholars investigated crack classification
criteria based on RA and AF values. Das et al. proposed that the optimal dividing line for
classifying the fracture type of strain hardening cementitious composite (SHCC) specimens
is AF = 26.9841RA − 268.6918 [58]. Du et al. proposed that the optimal dividing line
for classifying the fracture type of marble is AF = 400RA + 50, when studying the AE
characteristics of marble [26]. In addition, when analyzing the precursory characteristics of
rock instability, Dong et al. proposed that the ratio of RA to AF is 1:200, and found that the
anisotropic characteristics of AE event rate can effectively reveal the failure precursors of
rock mass, and determine the direction of principal stress [59].

It can be seen from the above analysis that the rock cracking type classification based
on RA and AF values is mainly derived from the empirical relationship between RA and
AF values, which is uncertain and empirical; that is, the boundary between shear cracking
and tensile cracking has not been determined. Therefore, it is particularly important to
determine the relatively objective boundary between tensile and shear cracking. Nowa-
days, many scholars use the cluster analysis method to determine the optimal dividing
line [58,60,61], and many scholars use the kernel density estimation (KDE) function, a
non-parametric density estimation method [53–55]. In addition, some scholars investigated
the RA–AF characteristics of rock under direct tensile failure modes by conducting a direct
tensile test, to determine the optimal dividing line [25,52]. However, most of the above
research methods focused on a single loading condition, and the single application of a
mathematical analysis method could not fully reflect the fracture type of rock. In addition,
the reliability of the dividing line verified in the above research is still low. In this paper,
the AE characteristics of red sandstone during the fracture process were investigated by
conducting BITT, DST, and UCT. At the same time, based on the KDE function, the AE
data collected in BITT and DST are coupled to discuss the dividing line for classifying red
sandstone cracking type, and the reliability of the dividing line is verified. In addition, the
corresponding precursory characteristic parameters of rock failure are proposed based on
the determined dividing line.

2. Materials and Experimental Methods

2.1. Specimen Preparation

The origin of the light brown sandstone blocks used in the experimental testing is
the northwestern Sichuan Basin, China. The P-wave and average density of sandstone
blocks are measured as 3270 m/s and 2390 kg/m3, respectively. All specimens used in
the lab tests came from the same rock block and were cut in the same direction to avoid
specimen dispersion. In this testing, nine specimens were prepared in three sizes. The
side of the cube specimen used in DST was 100 mm, the size of disc specimen used in
BITT was Φ50 × H25 mm, and the size of the cylindrical specimens used in UCT was
Φ50 × H100 mm. The geometry and dimensions of the specimens in the three test types are
shown in Figure 2. The accuracy of each specimen is within the range specified by ISRM.
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Figure 2. The geometry and dimensions of the specimens in the three types. (a) DST; (b) BITT; (c) UCT.

2.2. Experimental Equipment and Setup

(1) Loading equipment

The designed DST was conducted on the WDAJ-600 rock shear testing machine. The
maximum loading value of the WDAJ-600 test machine in the vertical and horizontal
directions is 600 kN, and its loading accuracy is ±0.5%. In addition, the designed BITT
and UCT were conducted in the DSZ-1000 stress–strain controlled testing system. The
maximum loading value of the DSZ-1000 test machine is 1000 kN, and its loading accuracy
is also ±0.5%.

In this study, in order to ensure that the shape of the specimen will not be damaged
by the indenter of the testing machine when specimen failure occurs, the displacement
control mode was selected as the loading mode. In DST and UCT, the loading rate was
0.1 mm/min. In BITT, since the length of the specimen along the loading direction was
half of those in the DST and UCT, the displacement rate was 0.05 mm/min. The normal
stress of DST was 1 MPa. Before the formal loading, the force of 0.5 kN was applied to the
specimens in DST and BITT, and the force of 1 kN was applied to the specimens in UCT,
which ensured that the specimens were in full contact with the loading device, so as to
further eliminate the noise generated during the contact between the specimens and the
loading device in the formal test.

(2) AE monitoring system

The PCI-2 AE monitoring system was used to collect the AE signals during the defor-
mation and damage of the specimen, and its manufacturer was the American Acoustics
Company. The preamplifier gain of the AE monitoring system was set to 40 dB, which was
used to increase the anti-interference ability of weak signals. The threshold was also set to
40 dB; that is, AE signals whose amplitude exceeded 40 dB were recorded. The sampling
length of the single waveform and sampling rate was set to 2 k and 5 MSPS, respectively.
The sensor used was a PICO sensor with a resonant frequency of 150 kHz. The operating
frequency range was set to 20–400 kHz.

When installing the sensor on the surface of the sample, firstly, a layer of coupling
agent was applied on the sensor, to ensure that there was no gap between the sensor and
the rock surface; secondly, four sensors coated with coupling agent were placed on the
surface of the rock sample using black insulating tape. Black insulating tape has good
elasticity, so it can stabilize the sensor and also protect it from being crushed. The above
measures ensured that the collected acoustic emission signal was not distorted.

Before the formal loading, a “pencil lead breaking test” was conducted to check
whether all channels were connected normally, so as to further ensure that the AE signals
can be collected effectively. The pencil lead fracture is a practical pulse simulation source.
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Pencil lead fractures are used to simulate the acoustic emission signal generated by concrete
deformation and fracture.

All testing systems used are shown in Figure 3. The types of tests, the distribution of
AE sensors and damaged rock specimens are shown in Figure 4.

 

Figure 3. Testing systems used in this study: (a) DSZ-1000 stress–strain controlled testing system;
(b) WDAJ-600 rock shear testing machine; (c) PCI-2 AE monitoring.

 

Figure 4. Types of test, the distribution of AE sensors and damaged rock specimens. (a) BITT; (b) DST;
(c) UCT.
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Three identical rock samples were set up in each test type to eliminate the effect of
discreteness on the test results. The stress–displacement curve or stress–strain curve of
the specimens in each of the three test types is shown in Figure 5. The strain data were
collected by an extensometer, so the stress–strain curve could be drawn in UCT, while in
DST and BITT, only stress displacement curves could be drawn. In addition, the number
and strength of all specimens are shown in Table 1, in which σt, σs and σc denote the
tensile strength (Mpa), the shear strength (Mpa), and the uniaxial compressive strength
(Mpa), respectively.

  

 

Figure 5. The stress–displacement curve or stress–strain curve of the specimen in three test types.
(a) DST; (b) BITT; (c) UCT.

Table 1. Basic physical and mechanical parameters of red sandstone.

Number Type of Test Loading Rate (mm/min) σt/σs/σc (MPa)

B-1
BITT 0.05

7.06
B-2 8.50
B-3 8.80

D-1
DST 0.1

12.48
D-2 11.79
D-3 13.68

U-1
UCT 0.1

115.27
U-2 108.79
U-3 118.10
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3. AE Data Processing Methods

The AE event rate is represented by event interval function F(τ), which can reveal
the crack propagation of rock specimens, from microcracking to macrocracking. Based on
the RA and AF values, the fracture mode of the red sandstone in the loading process was
analyzed, and the classification method of the red sandstone fracture mode was determined.
In addition, the KDE function was adopted to visualize the RA–AF data density maps. In
this chapter, we focus on the three adopted AE data processing methods.

3.1. Inter-Event Time Function F(τ) Theory

The basic connotation of the inter-event time function F(τ) is the average occurrence
frequency of N AE events that move continuously, and τ represents the time interval of N
AE events [62]. The derivation process is as follows [16]:

Δti = ti − ti−1, i = 2, 3, . . . (1)

where ti is the time of the i-th AE event, and ti−1 is the time of the previous AE event.

τi =
tN+i−1 − ti−1

N
, i = 2, 3, . . . (2)

τ1 =
tN − t1

N
(3)

F(τi) = τ−1
i , i = 1, 2, . . . (4)

When calculating F(τ) in this paper, the N-value of all samples is taken as 50. Further-
more, it is worth noting that F(τ) for N − 1 acoustic emission events cannot be defined, but
this does not affect the accuracy of the overall test results.

3.2. RA and AF Values Method

Since the unit of amplitude is dB, it is necessary to convert the unit dB into voltage
unit V, and the conversion formula is shown in Formula (5) [37]. RA and AF values are
calculated according to the basic parameters of the AE signal, and the calculation method
is shown in Formulas (6) and (7) [32].

B(mV) = 10
A(dB)

20 – 1 (5)

RA value =
Rise time

Maximum amplitude
(6)

AF value =
Count

Duration time
(7)

3.3. Kernel Density Estimation (KDE) Method

The KDE method is widely used in data analysis. In this study, the KDE method was
utilized to identify and visualize high-density regions of RA and AF values. The basic
principles of the KDE approach are as follows [63].

The basic idea of the KDE method is that each point in the estimated data contributes
an “atom” of probability density to the estimate, and p(z) is used to represent the true
density estimate of multivariate data. The formula is as follows:

p̂(z) =
1

nh

n

∑
i=1

K
( z − Zi

h

)
(8)

where n is the total number of estimated samples, h is the smoothing parameter controlling
the atomic width, and Zi represents the i-th data point. K(x) is a kernel function. In this
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paper, the multivariate Gaussian function is taken as the kernel function, and its formula is
as follows:

K(x) =
1

(2π)
d
2

exp
(
−1

2
‖x‖2

)
(9)

where d denotes the dimension of data space.
The probability density function values for all sample points can be simply obtained

by establishing an estimate p(z).
The accuracy of the estimate is affected by the value of h and the size of the sample,

so the value of h must be reasonably determined. Since the least squares cross-validation
method has a large advantage in reducing the squared error between the density estimate
and the actual density, this method has been selected to determine the value of h in this
paper. The calculation formula of square error is as follows:

J[ p̂] =
∫

[p(x)− p̂(x)]2dx (10)

When the real density is Gaussian, the optimal smoothing parameters can be deter-
mined by the following formula:

h∗ = Bn1/(d+4) (11)

where parameter B is related to parameter d, and its expression of multivariate distribution
is shown as:

B =

{
1 when d = 2

( 4
d+2 )

1
d+4 otherwise

(12)

4. Experimental Results

The AE data of different samples have good consistency in the BITT, DST, and UCT.
Therefore, the data of the specimen with the greatest strength were selected for analysis,
such as B-3, D-3, and U-3. Simultaneously, the characteristic of the AE event rate in the
whole process of the test was analyzed to reveal the AE activity in the process of sample
damage and fracture by the time function f between events F(τ). In this section, the
evolution law of the AE event rate, the RA and AF values, and the distribution law of
RA–AF data in three test types were analyzed.

4.1. AE Event Rate Monitoring

Figure 6 shows the evolution characteristics of the AE event rate and stress with time
for the red sandstone samples in the three types of tests. In Figure 6, the vertical coordinate
includes stress (black), the number of accumulative AE events (blue), and its corresponding
AE event rate (F(τ), pink); the horizontal coordinate is the time of each test type. The whole
process of rock damage and fracture is divided into phase-1 and phase-2, according to
the evolution law of the AE event rate with time. In phase-1, the AE event rate showed a
relatively steady state, and the cumulative AE events grew slowly, which indicates that the
crack initiation and expansion activities in rock are moderate. Therefore, phase-1 is called
the gentle growth period of AE events (microcrack generation phase). Further, phase-2 is
called the sharp growth period of AE events (macrocrack generation phase). In phase-2,
the AE event rate increases gradually with a state of high and low fluctuation, and the
cumulative AE events increase sharply, which indicates that the crack propagation activity
in the critical failure stage in the rock is intense, and macroscopic cracks gradually form,
showing a failure trend. The critical time point between adjacent phases is considered to be
Tt, and Ft is the corresponding load at Tt. Ft is expressed as Ft = kFp, where Fp is the peak
load and k is the ratio of Ft to Fp. In addition, the proportion of AE events in phase-1 and
phase-2 to the total number of events in each test type is shown in Figure 7.
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Figure 6. Variations of stress, cumulative AE events and corresponding AE event rate with time.
(a) BITT; (b) DST; (c) UCT.

   

Figure 7. The proportion of AE events in phase-1 and phase-2 to the total number of events. (a) BITT;
(b) DST; (c) UCT.

In BITT, the number of AE events in phase-1 and phase-2 accounts for 46.48% and
53.52% of the total events, respectively. In DST, the number of AE events in phase-1 and
phase-2 accounts for 18.57% and 81.43% of the total events, respectively. In UCT, the number
of AE events in phase-1 and phase-2 accounts for 17.33% and 82.67% of the total events,
respectively. On the whole, nearly half of the AE events in BITT occurred before loading Ft,
indicating that the rock has been damaged to a certain extent in the microcrack generation
phase. However, in DST and UCT, the number of AE events is less before loading Ft,
which indicates that the rock damage mainly occurs in the macrocrack generation phase. In
addition, the Ft in BITT, DST, and UCT are 94.16% Fp, 69.02% Fp and 71.81% Fp, respectively.
It can be seen that the macrocrack generation phase in BITT is significantly shorter than
that in DST and UCT. The above results are due to the different fracture modes of rocks
under different loading conditions. In BITT, tensile fracture mainly occurs; in DST, shear
fracture mainly occurs; and in UCT, tensile and shear fracture always occur together.
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4.2. Evolution of RA and AF Values

In this section, only the data collected by one channel were analyzed to avoid the
overlapping of signals collected by different channels. The data collected by sensor-1 were
selected to analyze, and the moving average of these parameters was calculated from
50 AE events.

The evolution law of the RA and AF values of red sandstone in the three test types with
time is shown in Figure 8. The RA and AF values show ups and downs before Tt; however,
they show obvious trends after Tt. When the loading time is in the interval between Tt
and the final failure time (Tf), there is an obvious downward trend in RA value and an
obvious upward trend in AF value. In addition, when rock failure occurs, the RA value
will suddenly decrease, and the AF value will suddenly increase in the three test types.

  

 
Figure 8. Temporal change of RA and AF values in different test types. (a) BITT; (b) DST; (c) UCT.

4.3. The Kernel Density Distribution of RA–AF Values

The RA–AF distribution can qualitatively describe the variation trend of shear and
tensile fracture in the tested specimens. The density maps of RA–AF data in the three types
of tests are shown in Figures 9–11, in which the density of data is lower in the red region
and higher in the purple and blue regions. A change in color from red to purple indicates
that the data distribution has changed from sparse to dense. With the color changing from
red to purple, the distribution of data changes from sparse to dense. The purple and blue
areas are called the main data distribution areas, which are marked with the black dot–dash
square frame. Furthermore, a manual straight line of 45, passing through two points (0, 0)
and (30, 1100) with a slope of 36.67, is drawn as the reference line to distinguish the RA–AF
distribution. It can be seen from Section 4.2 that RA and AF values vary greatly in different
time periods. Therefore, Tt is selected as the dividing point to divide the loading process of
each test into two phases, in which the RA–AF distribution is compared. Here, t represents
the actual time, and Tf represents the moment when the sample failure occurs.
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Figure 9. RA–AF data density maps in BITT. (a) t < Tt; (b) Tt < t < Tf.

Figure 10. RA–AF data density maps in DST. (a) t < Tt; (b) Tt < t < Tf.

Figure 11. RA–AF data density maps in UCT. (a) t < Tt; (b) Tt < t < Tf.

Figure 9 shows that the data are mainly distributed above the reference line in BITT,
and the RA–AF distribution in phase-1 and phase-2 is similar. From the main data, we can
see that the main distribution range of AF values is 0–240 KHz, while the distribution of
RA values is in a smaller range (0–1 ms/v). Only a small amount of data is distributed
below the reference line, indicating that the shear characteristic signal is dominant in BITT.
Figure 10 shows that the main data above the reference line are still dominant in DST, while
the main data below the reference line also increases significantly. There are differences
in RA–AF distribution between phase-1 and phase-2. From the main data, we can see
that the range in AF values in the two phases is 0–150 kHz, and the range in RA value in
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phase-1 is 0–3 ms/V, while the range in RA values in phase-2 is significantly increased,
to 0–5 ms/V. This suggests that the shear characteristic signals increase clearly with the
increase in loading in DST. Figure 11 shows that the distribution of RA–AF data in the two
phases of UCT is different. In phase-1, the main data are evenly distributed on the upper
and lower sides of the reference line, and their distribution range is the rectangular area
bounded by the RA value range of 0–8 ms/V and the AF value range of 0–180 kHz. In
phase-2, the data are mainly distributed above the reference line. The range of AF values
is 0–2.5 ms/V, and the range of RA values is 30–340 kHz. This suggests that shear and
tensile characteristic signals are generated simultaneously in the microcrack generation
phase in UCT, while tensile characteristic signals are mainly generated in the macrocrack
generation phase.

4.4. Classification of Tensile and Shear Cracks

It can be seen from Section 4.3 that the RA–AF distribution in BITT and DST mainly
presents obvious tensile characteristic signals and shear characteristic signals, respectively.
Therefore, the RA–AF data in BITT and DST were selected for analysis to determine the
dividing line of RA–AF distribution between tensile and shear cracks in red sandstone
samples. The method used to determine the dividing line as to plot the RA–AF data in
BITT and DST on the same scatter diagram, and then find a straight line so that the data
proportion under the straight line in BITT is basically the same as that on the straight line
in DST [26]. An enlargement of the main data in Figures 10b and 11b is shown in Figure 12,
in which it can be seen that the straight line (AF = 75 kHz) is a reference line. There are
obvious differences between the RA–AF distributions above and below the reference line,
regardless of whether we are using BITT or DST. Hence, the value of 75 kHz has been
selected as the intercept of the dividing line. Next, the dividing line was determined by
constantly changing the slope. When the slope of the dividing line reached the value of 93,
both the data proportion in BITT below the line and that in DST above the line were 39.9%.
Therefore, the straight line, AF = 93RA + 75, was determined as the dividing line between
the tensile crack and shear crack in the RA–AF scatter plots, as shown in Figure 13.

Figure 12. Enlarged figure of the main data in BITT and DST. (a) BITT; (b) DST.

As shown in Figure 13, we have determined that the dividing line between tensile
fracture and shear fracture in the RA–AF scatter plots of red sandstone is AF = 93RA + 75.
The RA–AF data distributed above the dividing line represent the data generated by
tensile fracture, and the RA–AF data distributed below the dividing line represent the data
generated by shear fracture. Therefore, the AE monitoring technology can classify between
tensile fracture and shear fracture in the whole process of rock loading. When a fracture
occurs, the RA–AF value of the collected AE signal is distributed above the dividing line
(AF > 93RA + 75), which can be considered as a tensile fracture. On the contrary, if the
RA–AF value is distributed below the division line (AF < 93RA + 75), the fracture can be
considered as a shear fracture.
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Figure 13. Determinations of the dividing line between tensile and shear cracks. (a) BITT; (b) DST.

4.5. Statistics of Tension and Shear Fracture, and Analysis of Failure Mechanism

According to the dividing line determined above, the microcracks of red sandstone
under uniaxial compression test loading are statistically analyzed. The statistics of the
tensile and shear cracks of the U-1, U-2 and U-3 specimens are shown in Figure 14. The
total numbers of AE events in the U-1, U-2 and U-3 specimens are 38,783, 51,200 and 45,264,
respectively. It can be seen in Figure 14 that tensile cracks account for a large proportion
(more than 67%) in the U-1 specimen, while shear cracks account for a large proportion
(about 60%) in the U-2 and U-3 specimens, which indicates that the fracture mode of rock
under uniaxial compression loading is complex. In addition, by observing the failure modes
of the U-1, U-2 and U-3 specimens (Figure 15), it can be found that the U-1 specimen with
more tensile cracks is broken, while the U-2 and U-3 specimens with more shear cracks are
more complete. The macroscopic cracks on the surface of each specimen are mainly shear
cracks, accompanied by a certain number of tensile cracks. These results correspond to
the results reflected by AE parameters, but they still need to be further analyzed from the
perspective of the rock failure mechanism.

Griffith crack exists in rock material at the initial state. Griffith cracks in rocks can be
formed by pores, voids, soft or hard nodules or particles, particle boundaries, etc. [64–66].
When the shear stress on the fracture surface exceeds the shear strength, shear fracture will
occur in the rock, which is the main fracture mode.

When the extension direction of the crack in the rock is approximately parallel to the
direction of the compressive stress, the tensile stress will concentrate at the tip of the crack
under the compressive stress [67]. If the tensile stress concentration is large and reaches the
tensile strength of the material, the crack will begin to expand. In this case, the pressure
will continue to increase, and the crack will expand rapidly, which may eventually lead to
a macrofracture.

If the crack extension direction in the rock intersects with the compressive stress
direction at a small angle, we take out an “isolator” containing an inclined crack AB from
the rock sample along the axis, as shown in Figure 16. With the gradual increase in axial
pressure, shear slip will occur along the crack’s surface in the rock specimen. In the above
case, normal stress N and friction force F occur on the shear slip surface, and the combined
stress along the axial direction is less than the axial stress in the rock specimen; otherwise
there will be no slip (shear) fracture. Therefore, there must be shear stress on the BG surface
to balance the axial stress. In addition, the shear slip action will also produce a tensile
stress perpendicular to the axial direction, which increases with the increase in the slip
surface. Obviously, in the compression process, without confining pressure or with very
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small confining pressure, a tensile fracture along the axial direction will occur with the
increase in the shear slip surface. After a tensile fracture surface appears, the axial shear
and the tensile stress of the rock specimens below it (along the slip surface) will be reduced
to zero. Then, with the continuous expansion of the shear surface, tensile fractures will
occur one by one [68,69]. Therefore, when there are many Griffith cracks in the rock that are
approximately parallel to the direction of the compressive stress, or within a small angle,
shear fracture and tensile fracture occur simultaneously in the rock.

  

 

Figure 14. The statistics of tensile and shear cracks of the U-1, U-2 and U-3 specimens. (a) U-1; (b) U-2;
(c) U-3.

Figure 15. The failure modes of the U-1, U-2 and U-3 specimens. (a) U-1; (b) U-2; (c) U-3.
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Figure 16. Shear and tensile failure mechanism of rock specimen. (a) Isolator; (b) stress diagram.

Obviously, the above rock failure mechanism corresponds to the rock failure charac-
teristics reflected by the AE parameters. Therefore, the proposed dividing line of RA–AF
scatter plots can be used for classifying tensile and shear fractures to determine the fracture
mode of red sandstone.

5. Discussion

Having determined the dividing line (AF = 93RA + 75) between shear and tensile
cracks, we focus on the evolution law of tension and the shear sources of sandstone in
UCT on the basis of RA and AF values. In addition, combined with the statistical index
analysis of the b-value, the failure precursor index of red sandstone is here discussed based
on the dividing line. In this section, the analysis is based on the data of U-1, U-2 and
U-3 specimens.

5.1. Evolution Characteristics of Tensile and Shear Sources in UCT

When the signal generated by a fracture is received by multiple sensors (greater than
or equal to four) at the same time, a positioning signal, the fracture source, will be formed.
Because it is difficult for a fracture signal to be collected by multiple sensors at the same
time, the location source data in this section are much fewer than the number of acoustic
emission events in the above section.

The two-dimensional spatial distribution of tensile and shear AE sources in each
sample is shown in Figure 17, in which the distribution of the AE source of red sandstone
is relatively scattered under the condition of uniaxial compression, which is generally
consistent with the position of the macro failure surface of the specimen. The total numbers
of sources of U-1, U-2, and U-3 specimens are 1062, 1001, and 1388, respectively, most
of which are tensile sources. The percentages of tensile sources of the U-1, U-2, and U-3
specimens in the total number of sources are 84.7%, 77.4%, and 71.4%, respectively, as
shown in Figure 18. Compared with Figure 14, it is found that although shear cracks account
for a large proportion of microcracks in U-2 and U-3, the fracture sources are mainly tensile
sources, indicating that tensile fracture more easily forms a positioning signal.

Figure 19 shows the cumulative number of tensile and shear AE sources corresponding
to axial strain throughout the whole process for three specimens, including the total stress–
strain curve. According to the deformation characteristics of specimens, the approximate
straight line section of the stress–strain curve can be defined as the phase from the elastic
deformation to the stable development of microcracks (II), and the phase before elastic
deformation to the stable development of microcracks (II) can be defined as the micropore
compaction phase (I). In addition, after the elastic deformation reaches the stable develop-
ment phase of microcracks (II), before peak stress occurs, the unstable development phase
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of microcracks emerges (III). The slopes of the approximate straight lines of the stress–strain
curves for the U-1, U-2, and U-3 specimens are 210.89, 188.31, and 214.78, respectively.

  
(a) (b) 

 
(c) 

Figure 17. Spatial distribution of AE sources: (a) U-1; (b) U-2; (c) U-3. Note: The size of the scatter
diagram indicates the source amplitude.

   
(a) (b) (c) 

Figure 18. Percentage of different types of AE sources: (a) U-1; (b) U-2; (c) U-3.

A fascinating phenomenon was found, whereby shear sources always grow prior to
tensile sources in the initial phase I. This phenomenon depends on the initial micro pore and
microcrack state of each specimen, to a certain extent. With the increase in loading stress,
there is a rapid growth point in the number of tensile sources. The stress corresponding to
the rapid growth point of the tensile source of the U-1, U-2, and U-3 specimens is 83.09%σt,
57.22%σt and 70.25%σt, respectively (σt is the peak stress). The rapid growth point of the
tensile source of the U-1 specimen is at the critical point of phase II and phase III, and
the rapid growth points of the tensile sources of the U-2 and U-3 samples are all at phase
II. However, in phase I, the shear source increases rapidly; in phase II, the growth of the
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shear source is slow, and its cumulative curve is roughly “horizontal”. The rapid growth
point of the shear source appears in phase III, which is close to rock failure. The stress
corresponding to the rapid growth points of the shear sources of the U-1, U-2, and U-3
specimens is 99.49%σt, 95.46%σt, and 95.93%σt, respectively. Owing to the strength of the
U-2 specimen being lower than that of the U-1 and U-3 specimens, the rapid growth point of
the U-2 specimen occurs earlier, and especially the rapid growth point of the tensile source.

  

 
Figure 19. Curves of AE source numbers with axial strain: (a) U-1; (b) U-2; (c) U-3.

It can be seen from the above analysis that under uniaxial compression loading, the
fracture source of red sandstone is primarily the shear source in the initial phase of loading
and the tensile source in the critical failure phase, and the number is far greater than that of
the shear source.

5.2. Failure Precursor Index of Rock Based on k Value

There will be certain contingencies in the parameters obtained in AE monitoring. The
instantaneous growth of a certain index may be unable to objectively reflect the intensifica-
tion of fracture in the rock. Therefore, in the AE monitoring based on parameter analysis,
the AE parameters are usually statistically processed to further obtain the corresponding
statistical indicators.

Among the statistical indicators based on amplitude, the most commonly used is the
b-value statistic. The b-value originates from the Gutenberg Richter (G-R) relationship in
seismology; that is, the logarithm of cumulative times (N), greater than magnitude (M), is
linear with magnitude (M) [70], as shown in Formula (13).

logN = a − bM (13)

where a and b are constants. In the analysis of AE parameters, the amplitude can usually
be divided by 20 to represent the AE magnitude M, i.e., M = A/20. In the calculation of the
b-value, the unit of A is dB.

241



Sustainability 2022, 14, 5143

The B-value is mainly used to measure the relative number of small-magnitude frac-
ture events and large-magnitude fracture events in rocks under compression, which can
represent the scale of magnitude distribution of AE events. Therefore, it is widely used
to analyze and forecast the precursors of rock fracture [71]. When the b-value is larger,
it indicates that small- and medium-scale fracture events account for a large proportion;
otherwise, it indicates that large-scale fracture events are dominant. In laboratory test, the
corresponding b-value is about 1 (±0.5), when the rock mass fails.

In addition, in previous studies, the dividing line between shear and tensile crack was
in the form of y = kx. In the analysis of the fracture mechanism, the slope of the dividing
line, k = AF/RA, was used as an index to classify the shear fracture and tensile fracture.
However, the intercept of the dividing line proposed in this paper is not zero, so the k-value,
k = AF/(93RA + 75), is selected as the AE parameter index to estimate the damage degree
of the red sandstone specimens. When the number of signals with large k-value increases,
it indicates that the proportion of tensile fracture in the specimen increases, and the damage
intensifies. For k-value, the instantaneous accidental value is also not enough to explain
the intensification of fracture. Therefore, it is difficult to estimate the severity of specimen
failure when only using the absolute k-value of one or several AE signals. In this study,
the coefficient of variation (CV) is selected as the statistical index, and the dispersion of
k-value distribution is used to describe the fracture of specimens. As a normalized measure
indicator, CV is defined as the ratio of the standard deviation to the average.

Figure 20 shows the statistical results of the b-value and the CV (k) of the U-1, U-2, and
U-3 specimens, taking the strain as the independent variable. In the process of calculation,
the AE data of each specimen were equally divided into 100 segments, and then the
corresponding b-value and CV (k) of each segment were calculated. The sample sizes of
the U-1, U-2, and U-3 specimens are 240, 199, and 269 respectively. In Figure 20, the phase
partition from Figure 19 is used again. Since the data in the pink dotted rectangle in the
figure are too dense, the data in this area are enlarged. Furthermore, two kinds of reference
lines are set in the figure. One is a horizontal dotted line, which corresponds to b-value = 1
and CV (k) = 1; the other is the vertical dotted line, which corresponds to the rapid growth
point of the tensile source, as described in Section 5.1.

It can be seen from Figure 20 that when the strain of all specimens reaches the corre-
sponding rapid growth point of the tensile source, the b-values decrease significantly, and
when the b-values decrease to less than 1, the specimen will enter phase-III. In phase-III,
except for individual points, the other b-values are less than 1, and when the specimen
is close to complete failure, the b-values decrease significantly again. Additionally, when
the strain of all specimens approaches the rapid growth point of the corresponding tensile
source, CV (k) shows a downward trend, and the first CV (k) behind the vertical reference
line is close to 1. In phase-III, the CV (k) of all specimens is stable at less than 1. Differently
from the b-value, when the specimen is close to complete failure, the CV (k) increases
significantly and will exceed 1.

In the early loading phase of all specimens, the b-values were basically distributed
between 0.7 and 1, and then increased to 1–1.5, which indicates that the micropores of
the specimens were gradually compacted at the initial phase of loading, and then small
fractures dominated in the specimens. However, until the specimens approached the failure
phase and were in the failure phase, the b-value began to decrease sharply. The b-value of
the U-2 specimen suddenly decreased in the early phase of loading, but then returned to a
higher level, which indicates that some large-scale fractures appeared in this phase, but did
not continue to develop, and returned to the fracture development mode dominated by
small-scale fractures.

In the early loading phase of all specimens, the span of CV (k), basically distributed
between 1 and 3.4, was large, which means that the dispersion of the k-value was large,
indicating that there were great differences, with tensile cracks and shear cracks occurring
together, in the crack types of the specimens in the early loading phase. However, when
the strain reached the corresponding rapid growth point of the tensile source, especially
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after the specimen entered phase-III, the CV (k) was relatively stable, which means that the
dispersion of the k-value was small, indicating that tensile cracks were mainly produced.
Meanwhile, in phase-III, the CV (k) also increased locally on the basis of relative stability,
especially when the specimens were close to complete failure, which increased significantly.
This shows that a small number of shear cracks were also generated in the specimen in
phase-III, and when the specimen was in complete failure, a large number of shear cracks
were generated.

 

 

 
Figure 20. Comparison of CV(k) and b-values among different specimens. (a) U-1; (b) U-2; (c) U-3.
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From the above results, it can be found that the combination of b-value and CV (k) can
reveal the failure process of a specimen. In the early (stable) failure phase, the b-value was
mainly distributed between 1 and 1.5, while the CV (k) value’s distribution span was large,
ranging from 1 to 3.4; in the instability failure phase, both the b-value and CV (k) were less
stable than 1. Only when the final failure occurred did CV (k) increase significantly, and
come to exceed 1. Therefore, 1.0 can also be used as the recommended judgment value of
the CV (k) index.

In a practical sense, when the CV (k) is greater than 1, the dispersion of the k-value
exceeds 100%. It can be seen from the above conclusions that in the unstable failure phase,
tensile fracture is the main fracture type, and the corresponding k-values are large. With
the aggravation of the fracture, when the specimen is in complete failure, the proportion of
shear fracture signal increases, and more signals with small k-value appear.

The dispersion of k-values exceeding 100% indicates that the number of AE signals
with small k-value increased significantly, and the proportion of shear fracture signals
increased significantly. Therefore, taking CV (k) as the fracture failure judgment value of
red sandstone has practical significance.

6. Conclusions

The AE characteristics of red sandstone in BITT, DST, and UCT were analyzed using
AE monitoring technology. The variation law of the RA and AF values was analyzed
to study the fracture mode and propagation characteristics of cracks in red sandstone.
Based on the kernel density estimation (KDE) function and coupling the AE parameters
(RA–AF values) in DST and BITT, the classification method of red sandstone fractures
was determined. The reliability of this method was verified by the results of uniaxial
compression tests. The conclusions are as follows:

(1) AE event rate can reflect the transformation of rock samples from microcracks to
macrocracks. The macrocrack generation phase in UCT was the longest, that in DST
was the second longest, and that in BITT was the shortest;

(2) The KDE method can effectively identify and visualize the high-density areas of RA
and AF values. In the failure mode dominated by tensile fracture, the RA value was
low and the AF value was high. On the contrary, in the failure mode dominated by
shear fracture, the RA value was high and the AF value was low. When rock failure
occurred, the RA and AF values both developed in opposite directions;

(3) It was determined that the dividing line for classifying tensile and shear cracks in the
RA and AF value data is AF = 93RA + 75. The reliability of the dividing line has been
verified by analyzing the failure mode and fracture mechanism of the sample;

(4) Under uniaxial compression loading, the fracture source of red sandstone was mainly
the shear source in the initial phase of loading, and the tensile source in the critical
failure phase, and the number of the latter was far greater than that of the shear source;

(5) K = AF/(93RA + 75) was proposed as an AE parameter index to reflect the internal
fracture of the red sandstone specimen. Further, the corresponding reference judgment
value CV (k) = 1 was proposed. It can be considered that the test sample entered the
instability failure phase when CV (k) < 1.
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Abbreviations

AE Acoustic emission
BITT Brazilian indirect tensile test
DST Direct shear test
UCT Uniaxial compression test
KDE Kernel density estimation
RA RA = rise time/amplitude
AF Average frequency
σs Shear strength
σc Uniaxial compressive strength
F(τ) The inter-event time function/AE event rate
Tt Time at the beginning of drastic increase in AE events
Ft Load at the beginning of drastic increase in AE events
Fp Peak load during the test
CV The coefficient of variation
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Abstract: Coal dust explosion constitutes a significant hazard in underground coal mines, coal
power plants and other industries utilising coal as fuel. Knowledge of the explosion mechanism and
the factors causing coal explosions is essential to investigate for the identification of the controlling
factors for preventing coal dust explosions and improving safety conditions. However, the underlying
mechanism involved in coal dust explosions is rarely studied under Artificial Intelligence (AI) based
modelling. Coal from three different regions of Khyber Pakhtunkhwa, Pakistan, was tested for
explosibility in 1.2 L Hartmann apparatus under various particle sizes and dust concentrations.
First, a random forest algorithm was used to model the relationship between inputs (coal dust
particle size, coal concentration and gross calorific value (GCV)), outputs (maximum pressure (Pmax)
and the deflagration index (Kst)). The model reported an R2 value of 0.75 and 0.89 for Pmax and
Kst. To further understand the impact of each feature causing explosibility, the random forest AI
model was further analysed for sensitivity analysis by SHAP (Shapley Additive exPlanations). The
study revealed that the most critical parameter affecting the explosibility of coal dust were particle
size > GCV > concentration for Pmax and GCV > Particle size > Concentration for Kst. Mutual
interaction SHAP plots of two variables at a time revealed that with <200 gm/L concentration,
−73 μm size and a high GCV coal was the most explosive at a high concentration (>400 gm/L),
explosibility is relatively lower irrespective of GCV and particle sizes.

Keywords: coal dust explosibility; random forest; SHAP

1. Introduction

The explosion is “an event that once initiated, grows rapidly and initially unbounded” [1].
Therefore, the need for coal dust explosion investigation is a factor for safety in the chemical
process industries and its storage for potential energy management [2]. Furthermore, coal
dust explosion in a confined environment (coal mine and chemical process industries)
results in the production of high pressure due to heating and the expansion of air and gases
produced, which leads to destruction and human loss.

Therefore, understanding coal dust explosions is significant to finding the governing
factors to mitigate them for increasing safety in industrial working environments. It has
been reported that coal dust explosibility is affected by particles size, amount of fines [3],
ignition temperature [4,5], air quantity [6] and concentration of coal [7–9] in an explosive
environment [10]. The Pmax (in MPa or bar) indicates the maximum destructive pressure
released from a coal dust explosion, and the deflagration index (Kst in MPa or bar-m/s) is
reported as the measure of explosibility [11]. The strength of explosibility is represented
by the Kst values from no explosion (0) to weak (0–200), intense (200–300) and powerful
(> 300) [12].
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Sensors are available to monitor dust concentration and size [13], supported by com-
munication through cloud computing [14]. With the emerging fields of IoT and real-time
prediction, e.g., water in-rush [15], tailing dam stability [16], coal fire in sealed off re-
gions [17], and stress monitoring in underground mines [18], available sensors for mea-
suring coal quality, size and dust concentration could be used to predict explosibility as
an early warning to prevent explosions. However, apart from other causes such as lack of
awareness and safety hazard violations, many coal mining accidents are caused by a lack
of calibration of sensors and the non-availability of coal dust prediction systems [19].

In the past few years coal dust explosibility has been studied extensively [5–15]. Coal
dust emanates from heavy cutting machines (e.g., longwall mining), crushers and during
loading on conveyor belts [20]. The particles may remain suspended where air ventilation
velocity is high and later settle on the surface after some time in the accessways and
mine entries [21]. The water spray lets the dust settle down, which is powdered with an
inert material to reduce its explosibility [22]. Recent trends follow the use of AI to model
flame propagation [23] of settled coal dust in galleries. Computational fluid dynamics
(CFD) based models have been used to model flame propagation using airflow and coal
dust measures [24–27]. Multilinear regression models have been used to model moisture
vs. coal explosibility [3]. A generalised model for understanding how different types
of explosible coal dust are affected by the coal characteristics and other coal parameters
remains a challenge. Rarely has explosibility been modelled using an AI algorithm for
investigating various aspects of coal explosibility. Particle dispersion and turbulence [24,28]
are vital factors governing dust explosibility, which is dependent on particle concentration,
size and shape [26–29]. Therefore, measuring coal dust characteristics during the air
suspension phase can enable early monitoring and warning, and it can be an indirect
measure to estimate the inert material required after dust suppression. This work is carried
out to address the modelling part for its possible subsequent use in these environments in
connection with IoT sensors to predict explosibility before time.

The phenomenon of explosibility was modelled using data collected from three dif-
ferent regions of Khyber Pakhtunkhwa (KP) and tested in a 1.2 L Hartman equipment.
Using the fractional factorial design, the required number of tests have been conducted to
generate data for modelling explosibility by an AI algorithm. A random forest regression
algorithm was used to model the effect of coal properties on the response, i.e., the maximum
pressure (Pmax) and the deflagration index (Kst). A game theory-based method, Shapley
Additive exPlanations (SHAP) [30], explains how the variation in coal dust properties
affects the response. Furthermore, sensitivity analysis is performed to quantify this effect
and to identify the safe limits for each parameter to mitigate coal explosibility in the KP
coal mines.

Literature Review

Many researchers have investigated coal dust explosibility to measure the main factors
influencing explosibility [2,4–11,31–34]. Moradi et al. [35] investigated the effect of sizes of
coal particles from different mines on the burning rate of coal using a 2-litre closed chamber.
The coal dust concentration, pressure and initial temperature were constant at 10000 g/m3,
1.5 bar and 25 ◦C, respectively. The response of varying particle sizes was recorded, keeping
all the parameters stable. The maximum pressure rate and the explosibility index reported
an inverse relationship with the particle size, i.e., 44μm and 37 μm had a higher burning
velocity than other dimensions [35]. Another study was conducted on coal dust to measure
the explosion severity and the ignition sensitivity of different ranks of coal. Lower ranks
of coal are reported to be easily ignited with severe explosion due to the highly volatile
content and pyrolytic property of coal [35]. Cao et al. [33] used experimental and numerical
analysis to understand the explosion severity of coal dust. The simulations showed the
behaviour of coal dust particles after the explosion. These results were consistent with the
experimental observations; hence, the simulations can be reliably used to model coal dust
explosion. Cashdollar [36] used a US Bureau of Mines (USBM) 20-L laboratory chamber to
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measure the effect of coal dust explosibility. The 20-litre chamber data agree relatively well
with those from full-scale experimental mine tests.

Particle size, volatile and oxygen [37] contents are almost equally important in govern-
ing the strength of coal dust explosibility. Tan et al. [31] used a pipe apparatus to analyse
the effect of change in dust particle size, concentration and a mixture of methane-coal
dust on the explosion pressure. Both the particle size and the concentrations varied at
five different levels. A high explosibility index Kst and the maximum pressure Pmax were
recorded for nano-sized particles compared to micro-particles. Similarly, a 38 L explosive
chamber was used for testing coal dust explosibility ignition at different concentrations [32].
A 5 KJ Sobbe igniter ignited coal dust to test if the coal was under or over-fueled at dif-
ferent concentrations. It was observed that coal dust concentrations below 100 g/m3 and
200 g/m3 failed to deflagrate because of insufficient fuel.

Furthermore, higher dust concentrations above 1200 g/m3 and 1400 g/m3 significantly
affected the maximum pressure as less oxygen was available to detonate the coal dust
sample. When conducting a coal dust explosibility experiment, the range of each parameter
plays a vital role in governing the response to the dust explosion. The parameters studied
previously with the respective level of variation are reported in Table 1.

Table 1. Ranges of different coal dust parameters in previous research projects.

Sr. No. Concentration (g/m3) Particle Size μm Volatile Matter (%) References

1. 213–1282 <38, 38–74, 74–212 17.73 [7]

2. 400,500 5, 11, 33, 95, 145 and 190 [38]

3. 250, 500, 1000, 1500, 2000, 2500, 3000 32.7–44.4 [39]

4. 104-200 Qualitative [40]

5. 400 20,38,75,250,350 [9]

6. 60, 125, 250, and 500 14.03–40.97 [41]

7. 100 to 600 53, 75 6–38.5 [42]

8. 150, 250, 500 0–56, 56–71 and 71–90 [43]

11. 60, 80, 100, 120, 150, 200, 250, 300, 350,
400, 450 and 500 38,53,73,104,147,300 19.69–27.18 [4]

2. Materials and Methods

2.1. Samples Collection

Three different coal type samples from two regions (Figure 1), i.e., Cherat and Darra
localities of KP province in Pakistan, were collected and analysed for the proximate analysis
reported in Table 1. After the study, the samples were ground to prepare samples of
−43 μm, −53 μm, −75 μm, −120 and +125 μm sizes. The coal particle sizes were tested at
concentrations of 50, 100 to 800 gm/L in the 1.2 L Hartmann apparatus. Various particle
sizes of coal dust from three different coal types on different concentrations were tested for
explosion in the 1.2 L Hartman apparatus and modelled using an RF-based model. This
study would help to identify the response parameters, and the sensitivity analysis will help
to control coal dust explosions.
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Figure 1. The regions from which coal samples were collected.

2.2. Experimental Setup

Cerchar first created the Hartman apparatus in the 1970s [44], consisting of a glass
tube with a dispersion cup. The powder was dispersed through an air blast and whirled up
by the pressurised air. The test substance was then subjected to a flame to determine if it
could be ignited by the ignition source [44,45]. The concentration of the dust–air mixture in
the Hartmann tube could be varied incrementally between 100 g/m3 and 4000 g/m3. Dust
could be classified as a dust explosion hazard by this screening if ignition occurred with
one of the two ignition types (spark ignition or filament ignition). A complete exclusion
of the dust explosion hazard was not possible when screening in the Hartmann tube.
Suppose the result of the spark ignition and the filament ignition was negative. In that
case, the dust explosion hazard must be examined in the 20 L apparatus in order to make
a reliable statement on the dust explosion hazard as stipulated in the standard DIN EN
ISO 80079-20-2.

A total of 8 samples, each of 1.5 kg, were collected from the respective sites Dara 1,
Dara 2, and Cherat localities. The representative samples from each site were collected,
including subsamples using the coning and the quartering method. The samples were
crushed in a disc crusher in the Department of Geology, Universiti Teknologi Malaysia
(UTM) Johor Bahru. Explosibility tests were conducted in the Explosibility Lab of the En-
ergy Engineering Department UTM Malaysia. The chemical analysis of samples was
conducted in the Pakistan Council of Scientific and Industrial Research (PCSIR) Lab
Peshawar, Pakistan.

A schematic view of the 1.2 L Hartmann stainless steel tube is presented in Figure 2.
An ignition electrode is located on the vertically symmetric axis of the Hartmann tube,
approximately 6 inches from the bottom. The minimum ignition energy was the mini-
mum spark energy that could ignite dust and maintain combustion. The ignition source
used for the tests is a continuous spark generated by a high voltage transformer between
two standardised electrodes placed near the bottom of the cylindrical 1.2 L Hartmann tube.
The energy content of the spark corresponds to the equivalent energy of about 10 Joules of
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a discharge (temporary) spark. The known concentration and particle size coal sample was
placed on an umbellate diffuser arranged in the lower part of the device and used for dust
diffusion into a 1.2 L Hartmann tube.

Figure 2. Schematic diagram of the experimental setup for coal dust explosion experiments.

2.3. Random Forest Algorithm

Leo Breiman [46] first proposed the random forest (RF) algorithm as a supervised
ensemble learning approach to handle classification and regression tasks. An ensemble
learner combines the output from many predictors (trees in this case), referred to as a
forest [47], to learn complex relationships. The fundamental unit predictor, i.e., each tree, is
obtained by deriving nodes and branches from bootstrapping, using roughly 63% of the
original data for training [48]. At the same time, the remaining samples are termed ‘out-
of-bag’ (OOB) samples [49]. Each node in the tree represents the splitting of this training
data on an input variable homogeneously, starting from the root node at the top, branching
down through subsequent splitting and nodes selection, downward to the leaf (terminal)
node representing an output variable. Thus, each node on any tree represents data splitting
on a variable recursively down the tree until the terminal node or other stopping criterion
is reached. A node variable, i.e., an input variable and a respective cutoff is selected among
the ‘p’ out of ‘m’ input variables (p < m) and possible cutoff values. A critical trait of RF
variable selection during node formation and branching is that the ‘p’ predictors considered
are a subset of ‘m’ predictors in the bootstrap data, thus resulting in uncorrelated outputs
from a collection of B trees termed a forest. Therefore, uncorrelated outputs from each tree
in a forest reduces the RF model’s variance. For a chosen B possible bootstrapped training
data sets, resulting in b = 1, 2 . . . B trees, a bth bootstrapped training set provide the output
fb(x), and finally the average output from all trees report the final estimate

f bag (x) =
1
B ∑ f b(x)

Tree building in the random forest regression model commences from the starting
node and moves downward using the following steps:

• Divide the predictor space, i.e., the set of all features into J distinct non-overlapping
regions R1, R2 . . . Rj (cut values)

• For every observation that falls into a region, make the exact prediction, i.e., the mean
of all the response values which fall into that region

• Select the cut value which has the minimum residual sum of squares (RSS)
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RSS = ∑J
j = 1 ∑i∈Rj

(yi − ŷRj
)

2

• The same process is repeated at each node until any of the stopping criteria is met
Stopping criteria for a regression tree depth can be any of the following:

• Minimum observation at internal node

� Minimum number of sample observations required for a further split at a node is
not met

• Minimum observation at a leaf node

� Minimum number of sample observations needed is not found at each node
after splitting

• Maximum depth of the tree

� Maximum layers of the tree are reached

When running a machine learning model on any dataset, the variables that govern
the model’s structure are called hyperparameters. After setting the base model, the hy-
perparameters need to be tuned to improve the machine learning model’s performance.
For example, in a random forest regression model, the four primary hyperparameters are
as follows:

1. “n_estimators”: The number of estimators refers to the number of decision trees
built by the random forest regression model before taking the maximum average
of predictions. A higher number of trees improve the performance at the cost of
computational expense.

2. The “max_depth” maximum depth hyperparameter is the depth of each decision tree
in a random forest model. A very high value of the maximum depth hyperparameter
leads to overfitting the model.

3. “min_samples_split” is the minimum number of data points placed in a node before
splitting the node.

4. “min_samples_leaf” is the minimum number of data points allowed in a leaf node.

2.4. Sensitivity Analysis of the Model

Interpretation of most machine learning models, such as ensemble methods or deep
networks, is often complex and commonly referred to as a “black box” [30,50]. In recent
times Explainable AI (XAI) algorithms have seen a rising trend, where XAI algorithms like
(SHAP, Partial Dependence Plots (PDP), Accumulated Local Effects (ALE), etc.) are used
to explain the predictions by AI algorithms [51,52]. SHAP [30] is a novel approach that
unveils the learned complexity of these machine learning prediction models. It is a valuable
tool for exploring the response of individual variables to output variables as it breaks down
the predictions into individual feature impacts [52]. The SHAP feature importance chart
reports the importance of each input variable in descending order affecting the output in
absolute terms. The feature importance value of an input feature is based on the mean
absolute magnitude of the SHAP values over all instances. A summary plot of SHAP values
explains the output variable’s sensitivity to the concerned input variable. The summary
plot can describe the cause-and-effect relationship through high or low values (represented
by red to blue colours) of the input feature and the respective SHAP value (of the output)
on the horizontal axis. A positive (SHAP value) on the horizontal axis for high values (red)
of the input variable refers to a direct relationship while an inverse relationship occurs
if the input feature has low (blue) values. In contrast, input features with high values
(red) reporting negative (SHAP value) on the horizontal axis would refer to an inverse
relationship of the input with the output (response) variable, while a low (blue) value of the
input variable would indicate a direct relationship with the output. Jittered points placed
densely on the graph represent the same SHAP value reported in numerous instances.

SHAP dependence scatter plots show the effect a feature has on the predictions made
by the model. Each point in the scatter plot is a single prediction from the dataset. The
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x-axis represents the value of the feature, and the SHAP value on the vertical axis illustrates
the effect of a feature’s value on the model’s output. The colour corresponds to a second
feature that interacts with the first feature of concern.

Furthermore, to analyse the outcome of the RF model for the change in each respective
input feature, the model was also fed with different values of the feature understudy,
holding the mean of all other input features constant.

3. Modelling Explosibility of Coal from Khyber Pakhtunkhwa Province of Pakistan
Using Random Forest Regression Model

3.1. Data Collection

The design of experiments is necessary to generate the number of experimental runs
with the minimum essential experimentation [53]. The fractional factorial design [54] was
used to carry out the experimental runs to investigate these variables’ effect on explosibility.
Following the design of experiments, different levels of the two input variables, i.e., particle
size and concentration, are presented in Table 2. The fractional factorial design suggested
84 runs as an optimal representation of the extent of the full factorial.

Table 2. Coal Types with Proximate Analysis Results.

Coal Type
Total Moisture wt%

(Air Dried Basis)
Ash wt% Volatile Matter wt% Fixed Carbon wt%

Sulphur
wt%

GCV
kcal/kg

Cherat 6 26 15.45 49.7 2.81 4901

Dara 1 6.4 17.50 12.26 60.51 3.32 6318.2

Dara 2 7.03 18.57 10.28 61.07 3.02 6120.2

Various concentrations of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 g of coal sample
were obtained after passing from sieves of the required sizes through disc crusher. Samples
were fed to the 1.2 L Hartmann tube and sealed by tightening the screws at the bottom
of the tube. Next, the air inlet unit forced compressed air at 15 psi pressure into the air
storage tank. Then, a magnetic valve was opened to disperse the coal particles as dust into
the tube, followed by the final ignition of the electrode. The pressure sensor transmitted
the amplitude of explosion at millisecond intervals for registering values to the LabVIEW
software in the personnel computer (PC) connected to the system. The recorded data was
used to draw the graphs of pressure change against time to find (dp/dt), for reporting the
explosibility (Kst). The sensor did not report the dust ignition if the flame propagated less
than 60 mm from the spark position; the powder would be considered explosible if the dust
fired or exploded during the tests. If no dust fired or exploded in three series of tests for
any concentration, the powder was considered not explosible under the test conditions.

The raw data is read from a .csv file with >75,000 readings recorded at milliseconds
(ms) interval and plotted against the corresponding pressure (in bar) to determine the
maximum slope line (dP/dt) max, i.e., ‘maximum rate of pressure rise’ (Figure 3). A tangent
is fitted to this point and extended to find dP = (Pmax − 0) and dt, i.e., the difference between
times @ Pmax and intercept at P = 0. Finally, the Kst values were determined for each test
according to the equation given below:

Kst =

(
dP
dt

)
max

V
1
3
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Figure 3. Pressure vs. time and determination of (dP/dt)max for a single explosibility test of 1 gm
sample (from Cherat region Khyber Pakhtunkhwa Pakistan) tested in 1.2 L Hartman apparatus with
95 μm size and 500 mg/L concentration.

3.2. Data Preparation

A total of 84 tests were conducted, out of which 81 reported meaningful results.
Two samples that reported no explosibility values were removed; one outlier that reported
a very high value of Kst was also removed. The variables were normalised using the
Min–Max scalar to adjust various scales of variables to a standard between 0–1. Principal
component analysis (PCA) was applied to sample features reported in Tables 2 and 3,
including the outputs Pmax and Kst. Based on selected Eigen loadings (Table 4) of the most
critical components defined by Eigenvalues (Table 4), GCV, particle size and concentration
were selected. At the same time, redundant features were ignored during further processing.
GCV can be considered as an indirect representation of the coal type. Table 5 shows the
descriptive statistics of selected features for all 81 samples.

Table 3. Variation of Coal dust concentration and particle size.

Coal Dust Concentration (mg/L) 50 100 200 300 400 500 600 700 800

Size (μm) < (−sign) or >(+sign) −43 −53 −73 −120 +125

Table 4. PCA Eigen Vectors and Loadings.

PC 1 PC 2 PC 3 PC 4 PC 4 PC 5 PC 6 PC 7 PC 8

Eigen Values 182,759.4 63,250.0 519.6 2.7 0.6 0.004 0 0 0
Conc. −0.0 0.99 0.0 0.0 −0.0 −0.0 0 0 0
size 0.0 −0.0 0.99 0.01 0.01 −0.0 0 0 0

T. Moist −0.0 0 −0.0 0.2 0.04 −0.0 0.2 0.77 −0.56
Ash 0.0 0 0.0 −0.02 −0.0 0.0 0.6 −0.6 −0.6

V. Matter 0.0 0 0.0 −0.7 −0.2 0.01 −0.5 0.0 −0.5
F. Carbon −0.0 0 −0.0 0.6 0.14 −0.01 −0.6 −0.3 −0.4

GCV −0.99 −0.0 0.03 −0.007 −0.001 0.0 0.007 −0.0 −0.0
Pmax 0.0 −0.0 0.01 0.22 −0.97 −0.14 0 0 0
Kst 0.0 −0.0 0.003 0.05 −0.13 0.99 0 0 0
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Table 5. Data Descriptive Statistics.

Concentration mg/L
Particle Size

(Micron)
GCV kcal/kg Pmax bar Kst bar·m/s

Count 81 81 81 81 81

Mean 405.55 −78.66 6072.73 2.058 0.422

Std dev 251.49 33.42 427.30 0.877 0.165

Min 50 −43 4901 0.15 0.023

Max 800 +125 6318.2 3.41 0.661

Coal dust concentration, particle size and GCV were used as the independent vari-
ables and Pmax, Kst as the dependent variables for AI-based modelling. Previously, it was
reported that volatile matter is one of the most critical parameters that influence coal dust’s
explosibility characteristics [34,36]. However, in this case, the range and the magnitude of
volatile matter were low (10.28% to 15.45%); therefore, GCV represented a particular coal
type. In contrast, the volatile matter content in prior research was 11.19 to 42.26, reporting
a more significant effect on the explosibility beyond 20% [34].

The random forest (RF) regression model was applied using the Python Scikit-learn
package [55]. The model was trained on 75% of the training data, while the remaining
25% of data was used to test the model accuracy using the train test split method of model
selection in sklearn library. To find the best set of hyperparameters of the RF algorithm, the
parameters were varied using the grid search CV method [56], as shown in Table 6. A total
of 1200 combinations were investigated during hyperparameter tuning.

Table 6. Hyperparameters ranges tried.

S. No Description Range Number of Values

1 “min_samples_split” 2, 3, 4 3

2 “min_samples_leaf” 1, 2, 3, 4 4

3 “n_estimators” 10, 20, 30, 50, 100 5

4 “max_depth” 2, 5, 6, 10 4

(3× 4 × 5 × 4) × 5 fold cross-validation = 1200 combinations

The 5-fold cross-validation split the data (80:20 train test split ratio) 5 times for each
case of the chosen hyperparameters within the grid search and performed the training
and testing each time. This hyperparameter tuning process was repeated three times to
investigate the effect of random initiation on the hyperparameters. Following the best-
chosen hyperparameters based on the grid search, the data was randomly split using the
train_test_split method into train:test datasets based on a 70:30 split to train and to test the
model. Similarly, the testing accuracy was reported, and the model was further investigated
for sensitivity analysis. The most widely used regression evaluation metrics, i.e., coefficient
of determination (R2) [57] and root mean square error (RMSE) [57], were used to evaluate
the performance of the RF regression model.

4. Results

Table 7 reports the optimised value for each hyperparameter during the tuning of
the model. A Pearson R of 0.86 and 0.94 were observed for the Pmax and Kst, respectively,
with the corresponding R2 of 0.75 and 0.89 for the best combination of hyperparameters
(Table 7).
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Table 7. Optimised hyperparameters after the Grid search method.

Parameter Name Description Value

n_estimators The number of trees in RF 50

max_depth The maximum depth of the tree 2

min_samples_leaf The minimum number of samples required
to be at a leaf node 2

min_samples_split The minimum number of samples required
to split an internal node 3

Figure 4 shows the actual vs. the predicted values for both variables. The correspond-
ing root mean square Error (RMSE) were reported as 0.14 and 0.07 for the Pmax and Kst
during the testing phase.

 

 

Figure 4. Actual vs. Predicted Pmax (top) and Kst (bottom) Values.

The magnitude of importance of different input variables was visualised using the
SHAP feature importance chart given in Figure 5a,b. The most critical parameter was
particle size and GCV for predicting Pmax, while for Kst particle size was the most crucial
variable. Observing the SHAP summary plots in Figure 6, concentration indicated an
inverse relationship (negative correlation) with Pmax and Kst. Smaller particle sizes reported
lower Pmax and Kst, while a mix of different particle sizes caused higher Pmax and Kst,
which required further investigation. Similarly, higher GCV coal caused lower or higher
Pmax/Kst, while lower GCV coal was positively correlated with Pmax and Kst. Such nonlinear
relationships ought to be explored well by the SHAP interaction summary plot given
in Figure 7 and the interaction dependence plots in Figure 8 that report the effect of
two features on the predicted outcome of a model. It explores if the relationship between
the target and the variables is linear, monotonic, or more complex.
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Figure 5. SHAP feature importance chart for (a) Pmax and (b) Kst.

Figure 6. SHAP Summary Plot for Pmax (left) and Kst (right).

The clearest (and most significant) interaction effect occurs between the size and GCV,
indicated by the greatest horizontal spread followed by concentration and size (Figure 7).
Conversely, GCV and concentration had a minor interaction. Therefore, to explore further,
dependence interaction curves are reported in Figure 8.

Generally, explosibility (Kst) decreased with increasing concentration, as seen in
Figure 8a. At smaller concentrations, i.e., <200 mg/L, explosibility was higher. Fine
sizes, i.e., <−73, had a high positive contribution to Kst compared to larger particle sizes
(>−73 as red dots), showing a low positive contribution to Kst (SHAP values are close to 0).
At greater concentration (>500 gm/L), particle sizes <−73 have a higher negative impact
on Kst than greater particle sizes. Between 300–400 mg/L concentration, the positive impact
of Kst exists at a lower strength (lower positive SHAP values), as a threshold concentration
at which the high impact of coarse particle sizes starts becoming evident and then subsides
beyond 500 gm/L concentration. Figure 8c also reports the general decreasing trend of
Kst with the increase in concentration. Figure 8c,d show that at smaller concentrations
(<200 gm/L), higher GCV coal increased explosibility (Kst) compared to lower GCV coal
which had a minimal effect on explosibility. At 400 gm/L concentration, the overall impact
is positive on Kst. However, beyond a 400 gm/L concentration, high GCV coal negatively
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impacted explosibility (Kst), while low GCV coal had nearly no impact on Kst. Further-
more, Figure 8d shows that lower GCV (Cherat coal) did not affect explosibility, whereas
medium GCV (Darra 2) coal reported higher Kst, while lower Kst was reported by Darra
2 coal (GCV = 6138). Larger particle sizes increased explosibility (Figure 8e) for even lower
GCV Cherat coal. In comparison, medium GCV Darra 2 coal had a minimum effect on
explosibility for larger sizes, while fine sizes caused higher explosibility with high positive
SHAP values (Figure 8f). Moreover, the higher GCV Darra 1 coal reported the least overall
explosibility and a relatively lower explosibility for smaller sizes than larger.

In the case of dependence interaction plots for Pmax, a decrease in Pmax is seen with
increasing concentration (Figure 9a), similar to Figure 8a. The horizontally opposite Figures
complimented each other during interpretation. For example, the value for size is read from
Figure 9b, while explaining the concentration interaction with size in Figure 9a. Similarly,
interpreting Figure 9b concerning the importance of concentration to size, the concentration
values can be read from Figure 9a.

Figure 7. SHAP interaction summary plot of variables for Pmax (left) and Kst (right).

A nonlinear relationship is shown between concentration vs. size for Pmax, where at
a low concentration (<−200 mg/L), smaller sizes report a highly positive effect on Pmax
(Figure 9a); −53 μm size being the dominating cause of high Pmax, as seen in Figure 9b.
Beyond 500 gm/L concentration, negative SHAP values indicate a higher concentration
inverse effect Pmax irrespective of particle sizes. However, between 400–500 mg/L, larger
particle sizes have a higher positive impact on Pmax, and finer sizes have a lower impact
(SHAP values are close to 0). The −43 micron sizes exhibit very low SHAP values, indicating
they highly reduce explosibility, as shown in Figure 9b.

The particle size showed an increasing trend for Pmax beyond −53 μm size in Figure 9b
due to the nonlinear concentration vs. size interaction explained in Figure 9a. Figure 9c
also showed a decreasing trend of Pmax with an increase in concentration, as in Figure 9a. In
Figure 9c, at higher concentrations, >500 mg/L, a drop is observed in Pmax for both low and
high GCV coal. Figure 9e shows that Pmax reported an increase as the size increased. Cherat
coal (lower GCV) reported a slight positive correlation with Pmax (Figure 9f), while Darra
2 coal (6120 kcal/kg GCV) had a greater positive Pmax for smaller particle sizes compared
to those that were larger (Figure 9f). The impact of Darra 1 coal (6318 kcal/kg GCV) was
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highly negative (inverse) among the coal types. A similar effect was seen for smaller sizes
of this coal type than larger sizes.

  

  

  

Figure 8. Interaction dependence plots of (a) concentration vs. size, (b) size vs. concentration,
(c) concentration vs. GCV, (d) GCV vs. concentration, (e) size vs. GCV and (f) GCV vs. size for Kst

from SHAP values for explaining the RF model.
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Figure 9. Interaction dependence plots of (a) concentration vs. size, (b) size vs. concentration,
(c) concentration vs. GCV, (d) GCV vs. concentration, (e) size vs. GCV and (f) GCV vs. size for Pmax

from SHAP values for explaining the RF model.

To further explore the sensitivity of output variables, one of the input variables (particle
size, concentration and GCV) was varied while keeping other input variables constant
at the mean values given in Table 5. The results were plotted and reported in Figure 10.
Figure 10a,b showed that the Pmax and Kst decreased with increased concentration, as
reported in Figure 8a,b. Figure 10c,d indicated that Pmax and Kst increased with particle
sizes and dropped beyond −53 microns and −120 microns, respectively. Pmax and Kst are
the least for the highest GCV as in Figure 10e,f. These results give similar results to the
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SHAP dependence plots, but the SHAP dependence plots are more detailed, highlighting
the interaction between two variables.

 

 

 

 

  

Figure 10. Sensitivity Analysis Graphs for each input variable.
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5. Discussion

Machine learning models are considered black-box models that do not explain cause-
and-effect relationships. However, SHAP gave some interesting insights into the cause-
and-effect relationship between inputs (size, concentration and coal type represented by
GCV and outputs (explosibility (Kst) and maximum pressure (Pmax)). It is evident from
Figure 8a,b,e,f and Figure 9a,b,e,f that different particle sizes of coal dust have a significant
effect on both Pmax and Kst. Smaller particle sizes cause smooth and robust deflagration
due to greater intermolecular forces [49] and a higher contribution to volatilisation [41].
The model clearly shows this effect at lower concentrations <300 gm/L. Larger particles
are relatively dispersed in the form of flakes with edges and corners [31]. However, larger
particle sizes exhibited stronger explosibility (Kst) and maximum pressure (Pmax) at medium
concentrations (400 gm/L). Moreover, because the particle size ranges −43, −53, −73, and
−120 μm were cumulative, there was higher size dispersity as the particle size increased.

Moreover, coal dust lifted by impact airflow has dispersion and sedimentation pro-
cesses. Therefore, the dispersion and the sedimentation rates of coal dust with different
particle sizes are also different, which may have influenced the suspension state of coal
powder. In addition, the coal powder was not added with any anti-agglomerating sub-
stance; thus, agglomeration may occur in the explosion, thereby influencing the combustion
performance of coal dust. Additionally, the +125 μm particle sizes that exclude sizes smaller
than this range also report high Pmax and Kst in Figures 8b and 9b. Such an effect may occur
if the participation of coal dust in the explosion belonged to a gas–solid reaction; hence, the
reaction process and the mechanism may be more complicated.

In this study, higher GCV (6120 and 6318) and small sizes significantly affected both
explosibility and the maximum pressure. Dara 1 coal (GCV: 6318) reduces the Pmax and
Kst at smaller sizes than a larger size, and Dara 2 coal (GCV: 6120) increases both Pmax and
Kst at smaller sizes compared to those that are larger. Additionally, the lower GCV (4901)
Cherat coal had minimal effect on Pmax and Kst.

The concentration, in general, has an inverse relationship with both Pmax and Kst, i.e.,
lower concentration coal has high explosibility and vice versa. This may be because there
is sufficient oxygen for combustion reaction at low/medium concentrations or medium
carbon content represented by lower or medium GCV, aiding in faster heat transfer [58].

Without oxygen at higher concentrations, the densely concentrated dust particles
cannot get enough oxygen molecules to deflate completely. Furthermore, the leftover
unreacted molecules absorb the heat, leading to low explosibility [58]. Therefore, a lower
explosibility zone is mainly associated with high concentration (>500 mg/L). These results
indicate that the oxygen fuel is deficient in higher concentrations (>500 gm/L), causing
lower Pmax and Kst; therefore, the 1.2 L Hartmann is limited generally for conducting tests at
higher concentrations. It is also observed that smaller particle sizes at lower concentrations
are more explosible, i.e., positively contribute to Kst and Pmax, but this effect is reversed
at higher concentrations, i.e., smaller particle sizes negatively impacted Pmax and Kst.
Additionally, the larger particle sizes showed a minimal impact on explosibility with rising
concentrations as they have low SHAP values.

Sensor deployment, supported by the proposed AI model, may be implemented in
zones of high air velocities [19], where dust is in suspension with ample oxygen supply. This
safety monitoring system may be deployed with other dust suppression/control measures
that must also be in place to suppress dust. At 400 to 800 gm/L, the experiments were more
dominating due to the lower oxy-fuel ratio; therefore, further experiments at these ranges
must be conducted in a 20 L or 1 m3 chamber to explore explosibility characteristics at these
concentrations. An IoT sensor system + AI-based explosibility model may be analysed
using coal dust concentration, dust particle size, and coal type parameter as a monitoring
and warning system to further this research. The quantity of coal dust concentration and
suppression can also be linked to estimating the amount of inert material required to reduce
the explosive properties of coal to a safe level.
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6. Conclusions

The objective of the work was to address the knowledge gap by AI-based modelling
to investigate the effect of coal concentration, coal type and particle size on explosibility
Kst and Pmax. Coal from three different localities was tested in 84 experiments to measure
the maximum pressure Pmax and the explosibility index Kst in the 1.2 L Hartman apparatus
for various concentrations and particle sizes. Kst were determined by fitting a tangent to
each curve of the experimental run. Samples were recorded for GCV, dust concentration
and particle size as input variables to predict Pmax and Kst. The random forest algorithm
was applied to the input data for modelling the outputs, reporting R2 scores of 0.75 and
0.89 for Pmax and Kst, respectively. The Shapley Additive exPlanations (SHAP) algorithm
explained the behaviour/prediction of the random forest model, identifying the essen-
tial input variable with a sensitive limit. A SHAP based summary plot and interaction
dependence curves were plotted to get an insight into the cause-and-effect relationship
learned by the model. Additionally, the model’s response to the change in each feature
was derived through sensitivity analysis, where each feature was varied at different levels.
At the same time, all the other components were held constant at the mean values of each
respective feature.

The following are the essential conclusions:

• The coal dust samples of the KP region have low volatile matter (10–16%); hence GCV
was more representative of coal type as reported by PCA results.

• Initially, SHAP plots reported the parameters influencing the coal dust explosibility in
descending order were particle size > GCV > concentration for Pmax and GCV > particle
size > Concentration for Kst.

• SHAP plots reliably interpreted the random forest explosibility model explaining the
complex inter variable phenomenon in greater detail.

• A SHAP interaction plot revealed that the concentration of coal dust particles has an
inverse relationship with Pmax and Kst. A lower concentration results in a higher Pmax
and Kst, which is a consequence of sufficient oxygen available to deflagrate all the
coal dust particles. High GCV coal is utilised to its maximum at lower concentrations,
causing higher explosibility.

• At higher concentrations, there is not enough oxygen for the complete reaction of
the coal dust particles. The excess molecules absorb the heat of coal dust explosion,
resulting in an overall drop in maximum pressure and explosibility.

• At concentration <200 gm/L, lower particle size (−73 μm) and high GCV coal have
the highest explosibility, and more significant particle sizes have no impact.

• 400 gm/L is a threshold concentration as a high impact of fine particle sizes exists,
and explosibility is also positively related to this concentration.

• At greater concentrations (>500 gm/L), particle sizes <−73 μm negatively impact Kst
and Pmax compared to more significant particle sizes for even lower GCV coal.

• The increase in concentration beyond 400 gm/L decreased explosibility, high GCV
coal caused a negative impact on explosibility.

• Concentration vs. size interaction plot showed that lower concentration (<200 gm/L)
and fine size (<−73 μm) reported higher Pmax. While at >500 gm/L concentration,
Pmax decreased irrespective of particle sizes.

• At concentrations between 400–500 mg/L, larger particle sizes positively correlate
with Pmax compared to finer sizes.

• Cherat coal (lower GCV) reported a slight positive correlation with Pmax, while Darra
2 coal (6120 kcal/kg GCV) had a greater positive Pmax for smaller particle sizes than
those that were larger.

• The impact of Darra 1 coal (6318 kcal/kg GCV) was highly negative (inverse) among
the coal types; a similar effect was observed for smaller sizes of this coal type than
larger sizes.

• The model is valid for access airway vicinities with high air velocities, where dust is
suspended at a lower concentration with ample oxygen supply.
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• Further explosibility experiments must be conducted at higher concentrations
(400 to 800 gm/L) in a 20 L or 1 m3 chamber to overcome the lower oxy-fuel ra-
tio within the Hartmann apparatus. These will benefit modelling explosibility in
regions of high dust concentrations, e.g., underground mines with medium/lower
air velocity.

• An IoT sensor system may be developed by deploying the AI-based explosibility
model to use coal dust concentration, particle size, and coal type parameters as a
monitoring and warning system.
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Abstract: The use of a low-cost split-ring resonator (SRR) passive sensor for the real-time permittivity
characterization of hydrocarbon fluids is proposed in this paper. The characterization of the sensor
is performed through both full-wave simulation and measurements. Thanks to the analysis of
several crude samples, the possibility of discrimination between different types of crude and the
estimation of several of their properties are demonstrated. Between them, the estimation of sulfur,
aromatic hydrocarbons, and salt-water concentrations either in normal ambient conditions or in a
high-pressure and high-temperature environment can be mentioned. Experiments were run both at
normal ambient conditions and pressures up to 970 bar and temperatures up to 200 °C.

Keywords: effective permittivity; resonator; sensor; split-ring resonator (SRR); submersible sensor

1. Introduction

Intelligent well technology allows an efficient operation for both the oil and gas indus-
try. The use of downhole sensors has become popular since it allows for the continuous and
real-time monitoring of relevant reservoir factors, such as flow and pressure control, sand
and water monitoring [1,2], and leakage detection [3], among others. Gathered data can
be processed, analyzed, and used for closed-loop control, well management, and decision
making in the extraction, transportation, and processing activities. Moreover, measuring
the refractive index (or the permittivity) of the extracted fluid allows for the estimation
of other relevant thermodynamic and physical properties, such as critical constants, and
average molecular weight, density, viscosity, thermal conductivity, and boiling point [4].

The development of suitable downhole sensors is challenging since a well’s depth
can be between 1000 m and 4000 m [2]. These sensors must stand in a high-pressure
(above 900 bar) and high-temperature (above 150 °C) environment. This makes it hard to
obtain durable and reliable active sensors. Passive devices are more robust but suffer from
long-distance communication issues, such as high losses and thermal noise.

Until now, available sensors mostly rely on optical [5–8], acoustic [9–12], and radio
frequency (RF) [13,14] technologies. RF sensors are specially attractive for downhole
applications, since they are easy to manufacture, cost-effective, and robust. Since they
can be easily integrated inside well pipes, they are especially suitable for real-time crude
properties estimation.

This paper proposes the use of RF split-ring resonators (SRR) as downhole passive
sensors for real-time crude monitoring through permittivity estimation. SRR [15] and
complementary SRR (CSRR) [16] can be used for measuring a wide variety of magnitudes,
such as alignment [17], displacement [18], rotation [19], speed [20], blood glucose [21],
and thickness [22,23]. Both SRR [23,24] and complementary SRR [25–27] sensors can
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be used for solids and liquids permittivity characterization. A cost-effective RF sensor
interrogator is also introduced in this contribution. It can be placed in the well pad and
connected to the downhole sensor trough a low-loss coaxial cable. This device can work
as a stand-alone system that can be controlled via standard commands for programmable
instruments (SCPI)-compatible commands through a TCP/IP network or can be integrated
into a multi-sensor system. In our particular setup, a control system that implements a
support vector machine (SVM) classifier combines the measurement of different sensors.
Since all the data is normalized before the processing, calibrating the permittivity estimation
in the interrogator is not required.

The rest of this manuscript is organized as follows. In Section 2, we introduce our
proposed SRR sensor design for downhole crude permittivity estimation. The ability to
discriminate between different crude samples and the determination of the sulfur, aromatic
hydrocarbons, and salt-water concentrations is demonstrated in Section 3. In Section 4,
we introduce an autonomous remotely controlled SRR sensor interrogator that allows
real-time crude monitoring. The evaluation of the whole system in a high-pressure and
high-temperature setup is shown in Section 5. The interrogator performance is compared in
terms of stability and standard deviation with the ones obtained when using a conventional
and expensive vector network analyzer (VNA).

2. Submersible Split-Ring Resonator-Based Sensor

An SRR resonator excited by an open-ended microstrip line is used for determining
the electrical properties of the surrounding fluid. The electric parameter to be measured is
the reflection coefficient Γ = S11. Figure 1 shows the sensor model.

Figure 1. Model of a serial RLC resonator excited by a transmission line.

The complex SRR resonator input impedance Zin(ω) has a frequency-independent
real part, R, and an imaginary one, X(ω), which take both positive and negative values
at different frequencies. Around the resonant frequency f0, the input impedance can be
modeled with the following equation

Zin(ω) = R + j(ωL − 1
ωC

) = R + jX(ω) (1)

The quality factor Q, the coupling factor s, and the resonant frequency f0 are given as

Q0 =
ω0L

R
(2)

s =
Z0

R
(3)

f0 =
ω0

2π
=

1
2π

√
LC

∝
1√
εeff

(4)

f0 is determined by the structure dimensions and the effective permittivity εeff, which
depends on the substrate permittivity and the surrounding fluid permittivity εLUT . Any
increase in the liquid-under-test (LUT) permittivity εLUT leads to a reduction in f0, as will
be shown later in our sensor full-wave simulations. The working frequency, f0, has been
set in the UHF frequency band in order to reach larger propagation distances and show
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higher resolution in the variations of fluid surrounding the sensor. However, the use of
frequencies in the low microwave band makes the sensor have bigger sizes. In order to
reduce the dimensions of the sensor’s high permittivity substrates, Arlon AR1000 with
a relative permittivity εr = 10 can be used. For avoiding a low sensitivity due to this
relatively high permittivity, a thickness of 1.27 mm is chosen. Substrate losses are relatively
low (tan(δ) = 0.003) at the working frequencies. Furthermore, according to our tests, this
substrate can stand the expected level of pressure and temperature.

Several designs have been tested. In all of them, two SRRs are placed close to an
open ending in a symmetric configuration around the microstrip line. Figure 2 shows a
picture of the A-type (Figure 2a) and the B-type (Figure 2b,c sensor prototype. Both designs
have a resonant frequency in the range of the 500 MHz band ( f0,air = 474.5 MHz for the
A-Type and f0,air = 470.22 MHz for the B-Type). Due to the manufacturing tolerances,
each unit may have a different f0,air. Such bias can be easily compensated by considering
the frequency difference Δ f = f0 − f0,air instead of absolute frequency values for samples
characterization. The A-type sensor has a dimension of 95.25× 32.22 mm2, while the B-type
is a more compact version.

(a)

(b) (c)

Figure 2. Manufactured A-type (a) SRR resonator-based sensor. B-type front (b) and back (c) view.

Figure 3 sketches the B-type sensor. Each resonator has a length LSRR of 23 mm and a
width WSRR of 7.2 mm. Both line widths WL and gaps G are 0.8 mm. The distance between
the resonators and the microstrip line, D, is 0.93 mm. The microstrip line is 1.22 mm
wide, which corresponds to a Z0 = 50 Ω characteristic impedance. The resulting substrate
dimensions, L × W, are 35 × 30 mm2.

Due to the substrate porosity and roughness, the fluid to be measured may contaminate
the sensor, which would make it unfit for future measurements. Furthermore, the presence
of conductive compounds in the sample may short-circuit the resonators. Because of this,
all manufactured sensors are protected with a 25 μm-thick Kapton layer (Figure 2b,c). This
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protective layer has a relative permittivity εr = 3.4 and a loss tangent tan(δ) = 0.0018,
which must be taken into account in the resonator design.

The B-type sensor can be easily integrated inside a pipe for the real-time monitoring
of a fluid flow. Figure 4 sketches this scenario. A Teflon cover must be placed above
the sensor for ensuring a continuous axial flow. This cover was also considered in the
full-wave simulations.

All the full-wave simulations were performed with Ansys HFSS v19 ©. Figure 5 shows
the calculated |S11| when considering fluids of a relative permittivity from one to three.
As expected, the resonant frequency f0 shifts to lower frequencies when increasing the
fluid permittivity εLUT . As expected, the Teflon cover creates a slight shift of f0 that must be
taken into account.

Figure 3. Sketch of the B-type SRR-based sensor. The inset shows a detail of the microstrip open
termination.

Figure 4. Integration of the sensor inside of a pipe (gray). A Teflon cover is placed above the sensor
for ensuring an axial flow near the SRR resonator. Only part of the fluid (blue) contributes to the
measurement. For obtaining a relevant sample, a homogeneous flow must be achieved. The inset
shows a 3D view of the cover and the sensor.
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Figure 5. Simulated |S11| for the uncovered (solid) and covered (dashed) sensor. Fluids of permittivi-
ties between 1 and 3 are considered.

Only a one-dimension measurement, related to the complex magnitude Γ = S11, is
required for determining the resonant frequency. In Section 4, a cost-effective 1D interroga-
tor for the SRR sensor is introduced. It is an interesting alternative to a 2D S-parameter
determination using a one-port VNA, especially for multiple-sensors systems.

Next, we demonstrate that the resonant frequency measurement of SRR sensors allows
the determination of different sample parameters.

3. Crude Properties Estimation

All measurements shown in this section have been undertaken with a Keysight N9914A
Fieldfox VNA. The module of the S11 parameter of the resonator was obtained in order
to monitor its resonant frequency f0. The mixtures were prepared by taking into account
the mass fraction of each of its components. Using a magnetic mixer ensures sample
homogeneity. All measurements discussed in this section were taken under normal ambient
temperature and pressure.

3.1. Discrimination between Different Crude Samples

During the experiments, five different crude samples, labeled as A, B, C, D, and E were
used. Each of them were obtained from different wells around the world. Due to the differ-
ences in their composition, the permittivity is different and, therefore, also the measured
resonant frequency (Figure 6a). As expected, when mixing crudes, newer permittivities
are obtained. All possible combinations (binary, ternary, quaternary, and quinary) were
also characterized. All mixtures have an equal mass fraction for each of their compounds.
Figure 6a is a box plot that summarizes 100 measurements per sample of the immersed
sensor f0. Since f0,air (Figure 6b) keeps the same before (AIR 1) and after (AIR 2) measuring
the crudes, it is obvious that no damage or contamination has been produced.
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(a) (b)

Figure 6. Resonant frequencies f0 for different mixtures (a). Air was measured before and after
the crudes (b). Since the same resonant frequency was obtained, the SRR sensor survived all the
measurements between without any damage or substrate contamination. BDE sample is also shown.

3.2. Sulfur Concentration Estimation

Next, a group of samples with different sulfur concentrations were prepared from
the same crude. Figure 7 shows the resonant frequency over the mass fraction. The best
sensitivity is achieved for mass fractions of sulfur between 0.05% and 0.36%. Actual limits
of measurable concentrations are related to the achieved frequency resolution. For concen-
trations below 0.05%, the effect of sulfur in the permittivity of the sample is negligible.

Figure 7. Evolution of the resonant frequency f0 with the mass fraction of sulfur.

3.3. Aromatic Hydrocarbons Concentration Estimation

The same crude sample was used for evaluating the ability to detect aromatic hydro-
carbons concentrations with SRR sensors. Because of this, a low concentration leads to the
same resonant frequency ( f0 = 463.4 MHz), which corresponds to the specific crude sample.
The highest sensitivity is achieved for mass fractions between 20% and 36% (Figure 8).
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Figure 8. Evolution of the resonant frequency f0 with the mass fraction of aromatic hydrocarbons.

3.4. Salt-Water Concentration

Finally, we prove that the sensor can estimate the amount of salt-water inside the
crude fluid. Two different crude samples (CRUDE-1 and CRUDE-2, with resonant fre-
quencies of f0,C = 459.2 MHz) were used for generating this series of mixtures. A sample
of Mediterranean water (resonant frequency of 282.6 MHz) was used as the salt-water.
For each crude, four different mixtures of 0%, 5%, 20%, and 35% salt-water mass fractions
were prepared. Figure 9 shows the frequency deviation in MHz from the 0% salt-water
concentration. As can be seen, the frequency deviation is dependent on the salt-water
concentration and independent of the CRUDE sample used in the mixture preparation.

Figure 9. Evolution of the resonant frequency difference f0,C − f0 with the mass fraction of salt-water
for mixtures created from two different samples: CRUDE-1 (solid) and CRUDE-2 (dashed).

Since many crude properties can be obtained from the SRR-resonant frequency, we
have developed a cost-affordable sensor interrogator as an alternative to the S11 measure-
ment using VNAs. Our proposed system can be remotely operated and does not require
trained personnel, since it is fully autonomous after being installed.
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4. SRR Sensor Interrogator

For a real-time permittivity measurement, the following topology is proposed
(Figure 10). A continuous-wave voltage-controlled source injects power PTX into the sensor
through the circulator. The reflected power PRX in the SRR is sent back to the detector
through the circulator. An Atmega2560 microcontroller sets the VCO frequency via the
transmitter digital to the analog converter (DAC). The receiver output voltage VRX is then
digitized by using the microcontroller ADC. All the measurement parameters (frequency,
integration time, and scanning bandwidth, etc.) are configured via HTTP commands and
sent through a standard TCP/IP Ethernet connection. A low-cost Arduino MEGA2560 and
a W5100-based Ethernet shield are used for implementing the control electronics.

A Mini-Circuits ZX95-625+ is used as the VCO. A DPVCC45A circulator working
between 410 MHz and 500 MHz is used for connecting the sensor to both the transmitters
and receivers. The power detector is a Mini-Circuits ZX47-60LN+.

Next, both the transmitter and the receiver design is highlighted.

Figure 10. Sketch of the system.

4.1. Transmitter

The VCO is commanded by an I2C 12-bit MCP4725 DAC. The DAC outputs voltage
varies from 0 to 5 V. To maximize the frequency resolution, the VOSC voltage range is
tailored according to its response curve for the frequency range between 421.13 MHz and
506.5 MHz, which corresponds to a voltage level from 5.8 V to 9 V. This is achieved via offset
and amplitude compensation with a TL081 set in a non-inverting op-amp configuration.
Therefore, 212 = 4096 frequency steps imply a maximum resolution of ≈20.85 kHz.

The VCO generates a power level of 6 dBm for frequencies from 400 MHz to 520 MHz.
Due to the measured circulator isolation between ports one and three (max(|S31|) = −24.6
dB), an attenuator of LA = 16.3 dB is placed at the VCO output. The VCO power coupled
to the detector PC is then reduced to −34.3 dBm. The maximum power level in the detector
is 6 dBm − 16.3 dB = −10.3 dBm.

4.2. Receiver

The power detector response curve is shown in Figure 11 [28]. As can be seen, the out-
put voltage VD is inversely proportional to the input power in dBm. The red line shows
the power level PC. Depending on the phase between the VCO-coupled power and the
received signal, the power level in the detector can increase or decrease (blue). Both the
cable and the sensor affect the receiver signal amplitude and phase. In this design, the cable
impact is assumed to be constant and can be compensated by proper signal conditioning
after the detector.

The receiver offset and amplitude compensation is performed with a variable atten-
uator and a TL081 non-inverting op-amp configuration. The schematic of this topology
is shown in Figure 12. An MCP4725 DAC synthesizes the voltage VDAC for the offset
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compensation. A resistive divider attenuates both VDAC and the signal-detected VD. A set
of resistors, R2, R3, R4, R5, and R6, has been added to conform a variable resistor controlled
by the three ports A0, A1, and A2. Each port can be configured as a low-state output or
a high, which corresponds to low- and high-impedance status. This allows four different
attenuation LB values. Since the amplifier has a constant gain G = 151, a lower attenuation
can be used for compensating higher cable losses.

Figure 11. Response curve of the Mini-Circuits ZX95-625+ power detector [28].

Figure 12. Simplified schematic of the receiver signal conditioner.

The capacitor C1 limits the measurement speed and filters the high-frequency noise
( fC = 48.22 Hz). For flattening the microcontroller consumption, the Atmega2560 ADC is
kept measuring continuously, which drastically reduces the measurement noise. All the
samples taken during the measurement time tm are averaged. tm can be set from 300 ms to
30 s. Higher values can further improve the cable loss compensation. When using a 25 dB
attenuator for simulating cable losses (total loss of 50 dB) and tm = 400 ms, the sensor
resonance can be still detected. With proper cable selection (i.e., Times Microwave HP1200
or Commscope AVA7-50, with losses of 3.4 dB/km and 1.53 dB/km, respectively) distances
between the interrogator and the sensor above 1 km are feasible.

Figure 13 shows the prototype. It is integrated into a 19-inch universal case. The radio
frequency elements are integrated into a dedicated aluminum block as an independent
sub-assembly. This metal block is designed to have a large heat capacity. It allows thermal
stability for both the VCO and the detector without active temperature control through
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either thermoelectric cooler or fans. The system stability is demonstrated in Section 5.
The front panel has a single SMA female port on which the sensor is connected.

All the required operations are performed remotely via SCPI-compatible HTTP com-
mands. It can work as a stand-alone device or as a part of a multi-sensor system. Both the
SRR-resonant frequency and the full measurement vector can be obtained through HTTP
commands. When measuring the SRR-resonant frequency in a stand-alone mode, only
one-dimension data are extracted from the crude sample, so it is not possible to monitor
the change of more than one property at the same time.

Figure 13. Manufactured SRR sensor interrogator.

5. High Pressure and High Temperature Measurements

The system was tested in a laboratory environment. The sensor is integrated into a
bottle where the high pressures (up to 970 bar) and the high temperatures (up to 200 °C) are
generated when filling with the liquid under test (LUT). The LUT constantly recirculates
to avoid stratification. The measurement setup is sketched in Figure 14. Only the SRR
sensor and a coaxial segment work in a high-pressure and high-temperature environment.
The interrogator, the personal computer (PC), and the TCP/IP network run at a normal
ambient pressure and temperature.

Figure 14. Sketch of the high-pressure and high-temperature measurement setup.

Figure 15 shows the experimental setup. The SRR sensor is fitted inside the high-
pressure bottle (Figure 15a). The feed-through (Figure 15b) allows the radio frequency
connection between the high-pressure and the low-pressure coaxial cable sections. It can
also accommodate several optic fibers for multi-sensor characterization systems. The bottle
is fixed to a holder that controls the experiment temperature (Figure 15c).
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(a)

(b) (c)

Figure 15. High-pressure and high-temperature measurement setup: high-pressure bottle (a), feed-
through (b), and bottle holder and heater (c).

5.1. System Stability

Several crude samples and mixtures were characterized in different measurement
rounds. The interrogator was kept on and measuring during the days that the experimental
work was undertook, which allowed us to test the stability of the system after some
time. Figure 16 shows the evolution of the two main peaks of VRX when measuring
heptane continuously during 11 h 30 min. The frequency resolution was 358.1 kHz so the
frequency determination was inside the f0,H ± 895.2 kHz interval, f0,H being the mean of
all resonant frequencies.

Figure 16. Frequency of the first and second VRX peaks along time. No drifts can be appreciated when
no parameters are changed in the high-pressure bottle. The inset shows all VRX sweeps overlapped.
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5.2. VNA and Interrogator Comparison

Six crude samples were measured with the same SRR sensor driven by using both the
Keysight N9914B VNA and the developed interrogator in order to qualitatively compare
their discrimination capabilities. They are plotted in Figure 17 in the frequency range from
445 MHz to 475 MHz. Figure 17a shows the module of the S11 parameter measured with
the VNA in dB. Figure 17b shows the measured voltage VRX (see Figures 10 and 12).

(a) (b)

(c)

Figure 17. Measurements of six crude samples using the same SRR sensor, the VNA (a), and the
Interrogator (b). The inset shows the number of measurements performed for each sample. The 2D
plot of VMAX and f0 of each measurement (c). The air measurements are not shown.

The resonant frequency can be obtained by finding the minimum in the module of the
S11 curve or the peak VMAX in the VRX curve. The resonant frequencies f0 and the achieved
standard deviations σ are summarized in Table 1. The VNA achieves a standard deviation
that is one order of magnitude below the one achieved by our solution. For this experiment,
the interrogator was configured with a measurement time of tm = 400 ms. Smaller σ
are achievable when increasing tm. For the achieved value of σ, it is not obvious that a
crude differentiation can be performed when considering only f0. In our application, it was
possible to do it thanks to the SVM that takes into account all the measured points. If our
interrogator is used as a stand-alone system, a rudimentary classifier can be implemented
in the microcontroller. Besides f0, other parameters, such as the peak amplitude VMAX and
the peak width, can be considered. As an example, Figure 17c shows f0 and VMAX for each
measurement. Although crude samples two, four, and five have a close f0, the classification
is still possible in the 2D plane.

As it can be appreciated, there is an agreement between the VNA and the interrogator
measurements. Air was measured before and after all crude characterization. Since there
is an agreement between both air measurements, we can conclude that the sensor is not
contaminated or degraded and both the VNA and the implemented interrogator remain
frequency-stable during the whole experiment, as expected after the results shown in
Figure 16. Both systems were able to discriminate between the different samples.
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Table 1. List of the measured resonant frequencies and standard deviation σ = | f0 − f0|2/N for the
same sensor driven by the VNA and the implemented interrogator for different crude samples.

Sample
VNA

f0 [MHz]

Interrogator

f0 [MHz]

VNA
σ

Interrogator
σ

Air (before) 470.22 470.35 0.025 0.000
Air (after) 470.22 470.11 0.024 0.207
CRUDE-1 451.88 451.85 0.038 0.185
CRUDE-2 453.60 453.88 0.016 0.000
CRUDE-3 455.61 455.33 0.022 0.078
CRUDE-4 453.97 454.06 0.038 0.196
CRUDE-5 453.71 453.63 0.026 0.167
CRUDE-6 453.14 453.16 0.037 0.000

6. Conclusions

In this document, an SRR sensor-based system is proposed for the real-time monitoring
of crude properties for the petroleum industry. The sensor can be integrated into the well’s
pipes and can work at high-pressure and high-temperature conditions.

Experimental work has been carried out for demonstrating that the system can discrim-
inate between different crude samples. It is also able to determine the sulfur, the aromatic
hydrocarbons, and the salt-water concentrations. It is obtained by detecting permittivity
changes by measuring the corresponding SRR-resonant frequency.

A cost-affordable sensor interrogator has been developed. It is an autonomous system
that can be remotely operated via HTTP commands sent through a TCP/IP network.

The whole system has been validated at high-pressure and high-temperature working
conditions. The system stability has been tested through several weeks of continuous
measurements. Nevertheless, further work is required in order to test our solution in a
more realistic environment, since the effects of high pressure and high temperature on
coaxial connectors could degrade the performance of the whole system. Furthermore, our
solution should be compared with other state-of-the-art alternatives in on-site tests.
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Abstract: It is essential to study the mechanical properties of saturated rock under different loading
and unloading paths for strength calculation, safety assessment and disaster prevention; however,
current literature rarely mentions conventional triaxial loading and unloading conditions. To analyze
the mechanical properties, strain energy evolution characteristics and failure mode, a series of
conventional triaxial unloading tests (with axial loading rate va of 0.06–6 mm/min and circumferential
unloading rate vu of 0.1–10 MPa/s) and conventional triaxial compression tests were carried out on
saturated granite. The test results showed that the damage sources of specimens in the conventional
triaxial unloading test were mainly related to circumferential deformation, while in the conventional
triaxial compression test, it was related to the axial deformation. Under the same va, the confining
pressure and axial stress at the failure point decreased with the increase of vu, and the stress coordinate
of the failure point was located outside the conventional triaxial compression envelope of σ1–σ3.
As vu increases, except for the variation of circumferential strain energy ΔUc decreasing slowly, the
trend of strain energy changes must be determined together with va. As va increases, the relationship
between the magnitude of each energy changes from ΔUa > ΔU > ΔUd > ΔUe > ΔUc to ΔUd > ΔUa

> ΔU > ΔUe > ΔUc, while the change of dissipated energy is dominated by vu and va together to
become dominated by va. In addition, with the increase of vu and va, the damage pattern of the
specimen also changes from shear damage in a single shear plane to mixed damage with tensile strain
failure and shear plane during which the dilation angle of the specimen increases in total except for
vu = 10 MPa/s, va = 0.6 mm/min and 6 mm/min.

Keywords: saturated granite; loading and unloading tests; failure mode; energy evolution; dilatancy angle

1. Introduction

With the expansion of granite mining to deeper mines and the construction of large
hydropower stations with high slopes, the stability of granite excavation under high stress
has become an essential issue in engineering [1–4]. The final failure state of granite depends
not only on the stress state of the rock, but also on the stress path and loading rate as well
as geothermal, groundwater and other environmental factors [5–8]. There are apparent
differences in the mechanical properties of granite under the loading and unloading paths,
which is one of the crucial reasons for the lack of uniformity in the laws obtained from the
current unloading test studies [9,10]. Since the underground deposits are excavated and
unloaded, studying the rock damage under the unloading path may seem more meaningful
than relying on the loading test [11].

The excavation of underground rocks is divided into blasting or mechanical crush-
ing [12–14]. Accordingly, the rocks are damaged under different unloading rates. Many
scholars have studied the mechanical properties, failure modes, and energy dissipation
characteristics of rocks under different unloading rates, and the specific objects and stress
paths are shown in Table 1. This paper mainly discusses the conventional triaxial rather
than the true triaxial [15]. In [16], the author first proposed the virtual uniaxial compressive
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strength considering the unloading problem. He found that the Hoek–Brown material
parameters of the rock specimens before the peak load after unloading changed more than
the loading test. The virtual uniaxial compressive strength increased, and the Hoek–Brown
material constant m decreased. Before the peak load, a larger unloading rate responds
to a smaller axial strain and cohesion c and a larger lateral strain and a slight increase in
the angle of internal friction ϕ. In contrast, the deformation modulus increases gradually
after the peak load and decreases rapidly with the increasing unloading rate [13,14]. The
stress adjustment hysteresis mainly affected the unloading rate, and additional unloading
stress affects the rock strength, c and ϕ values. Higher unloading rates may lead to more
dramatic damage. The Hoek–Brown criterion can predict the damage-confining pressure
when the rock is unloaded laterally at lower unloading rates but may overestimate the
stress value at higher unloading rates [17]. In addition, some authors [18–21] have also
further analyzed the damage evolution law of rocks under unloading conditions after high
temperatures. Furthermore, it is worth mentioning that some researchers [22–25] have
employed theoretical or numerical methods to evaluate the characteristics of deeply buried
rock masses.

During the triaxial unloading test, the rock’s two failure modes are the tensile–shear
failure and the shear failure, and the volume strain changes from compression to expan-
sion [9]. In addition, the higher the initial confining pressure, the more severe the failure of
the specimen at the same unloading stress path, and the degree of rupture of the specimen
becomes more complicated as the unloading rate increases [26]. The failure evolution
characteristics vary for different types of rock [27–29]. For example, shale [27] exhibits
obvious elastic–plastic characteristics under conventional triaxial compression tests, while
it shows apparent elastic–brittle features under triaxial unloading tests, and the brittle
failure characteristics increase with the increase of unloading rate and initial confining
pressure. Columnar jointed rock masses [30] exhibit strong volume expansion during un-
loading, which becomes more severe and the damage pattern becomes more complex with
an increasing unloading rate, while unloading relaxation can be observed by decreasing
the unloading rate. The later the inflection point of negative volume strain growth occurs
when the unloading level is closer to the peak load, the damage caused by tensile cracking
in the specimen is more severe than the damage caused by compression shear during un-
loading. In general, the corresponding expansion rate decreases with increasing confining
compression at the same axial stress and increases with increasing axial stress at the same
confining compression [10]. The expansion boundary of the unloading test starts from the
unloading point, which is different from the expansion rate of the uniaxial and triaxial
compression tests. Rapid unloading promotes the growth of cracks, and larger inelastic
strains appear at lower unloading rates [31,32], which will increase the permeability of
the rock [33–36]. In addition, the response of the ratio of height to diameter [37] and the
acoustic emission behaviour [38] are also investigated, and the damage process can be
observed by CT technique [39] and nuclear magnetic resonance technique [40,41].

From the view of energy conversion, the energy changes from the three principal
stress directions in the test acted together to damage the rock. Wang [42] conducted triaxial
unloading tests and post-test CT scan analysis on fine-grained marble and found that the
specimens’ total energy, elastic energy and dissipated energy almost all increased with the
increase of deformation, and the elastic energy and dissipated energy decreased slightly
before increasing again. After the unloading point, the dissipated energy increased sharply,
and the elastic energy increment rate lowered; the crack pattern and energy dissipation and
release in CT images depend on the unloading rate and time. The strain energy absorbed
in the axial direction of the rock is mainly transformed into circumferential dilation to
consume strain energy [43]. The degree of dilation is: reduce axial stress and confining
pressure > maintain axial stress and reduce confining pressure > increase axial stress and
reduce confining pressure. In contrast, it is transformed into less dissipated energy, and the
dissipated energy increases significantly only near the time of destruction. The dissipation
energy is significantly influenced by the unloading path and the initial confining pressure.
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The initial confining pressure has a considerably more significant influence on the axial
strain energy, the circumferential expansion strain energy and the elastic strain energy than
the unloading path; all of them increase approximately linearly with the increase of the
initial confining pressure. This also indicates that the dissipated strain energy determines
the damage during the unloading test. In contrast, the damage during the triaxial compres-
sion test is mainly determined by the released elastic strain energy [44–46]. In addition, the
magnitude of the initial confining pressure and the unloading rate have significant effects
on the strain energy conversion, rock burst and limited storage energy [11], while at the
same initial confining pressure and unloading rate, the variation of the axial stress has little
effect on the ultimate storage energy of the rock. The higher the unloading rate, the smaller
the ultimate storage energy.

As one of the most common rocks in underground rock engineering, granite is usually
saturated in deep water-bearing environments. However, the existing literature mainly
focuses on studying specimens in their natural state. This study conducted conventional
triaxial tests with different loading and unloading paths on the saturated granite. The
unloading rate varies between 0.1–10 MPa/s to study the mechanical properties and
the evolution of strain energy of the surrounding rock under blasting excavation and
static excavation in underground tunnels. It is of great significance for understanding the
mechanism of unloading rockburst occurrence in high-stress rock masses and even the
permeability characteristics of the engineering surrounding rock masses.

Table 1. Summary of the conventional triaxial unloading tests.

Rock Type Stress Path σ3 (MPa)
Unloading Rate vu

(MPa/s)
Reference

Sandstone

1. Increase σ1, unload σ3

4–19 0.02–0.14 [47]
4–10 0.05 [48]
5–30 0.005 [49]

15–30 0.05, 0.1, 0.2 [50]
15–45 2 [51]

2. Keep σ1, unload σ3 15–30 0.0003–0.1667 [52]
1. Increase σ1, unload σ3

2. Keep σ1, unload σ3
10–30 0.1, 0.5 [53]

3. Unload σ1, σ3 10–30 0.0008 [33]

Marble

1. Increase σ1, unload σ3 40 0.05 [37]

2. Keep σ1, unload σ3
20 0.01–0.2 [40,42]

10–60 0.01–1 [54]

3. Unload σ1, σ3
20–60 0.05 [55]
20–40 0.1–10 [11]

1. Increase σ1, unload σ3
3. Unload σ1, σ3

20–40 0.26-1.28 [26]

Granite

1. Increase σ1, unload σ3
5–30 0.0017–0.0333 [56]

30–60 0.05 [57]

2. Keep σ1, unload σ3
10 0.005–0.0115 [19]

10–30 0.1 [17,58]
1. Increase σ1, unload σ3

3. Unload σ1, σ3
10–60 0.2 [45]

1. Increase σ1, unload σ3
2. Keep σ1, unload σ3

3. Unload σ1, σ3

10–30 - [43]

Mudstone 1. Increase σ1, unload σ3
6-15 0.05, 0.1, 0.2 [50]

10–50 0.005–0.5 [59]
Limestones 2. Keep σ1, unload σ3 15 0.0217 [39]

Shale
1. Increase σ1, unload σ3 20–60 0.4–1.0 [27]

2. Keep σ1, unload σ3 20–60 0.4 [27]
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Table 1. Cont.

Rock Type Stress Path σ3 (MPa)
Unloading Rate vu

(MPa/s)
Reference

Basalt 1. Increase σ1, unload σ3 3–12 0.008 [60]
3. Unload σ1, σ3 3–12 0.008 [60]

Coal 1. Increase σ1, unload σ3

30 0.001–0.005 [34]
4–8 0.012–0.024 [35]

4–10 0.02–0.14 [47]
Dacite 2. Keep σ1, unload σ3 5–15 0.0083 [44]

Rock salt 2. Keep σ1, unload σ3
15–25 0.005 [10]

23 0.001–0.5 [31]
Mudstone 2. Keep σ1, unload σ3 8–20 0.05 [61]

3. Unload σ1, σ3 8–20 0.05 [61]
Rock-Like 2. Keep σ1, unload σ3 4–8 0.0083–0.0333 [30]

2. Materials and Methods

2.1. Specimen Preparation

As shown in Figure 1, all the granite specimens were taken from a quarry in Mianning
district, Sichuan Province, China, about 400 km from the capital of Sichuan Province. The
dimensions of the specimens were ϕ50 mm × h100 mm, and all specimens were drilled and
cut in the same direction from a single rock mass to ensure minimum variability between
different specimens. In addition, the specimens were carefully smoothed to meet the
requirements of the International Society of Rock Mechanics (ISRM) [62], and the specimens
were soaked in tap water for 48 h to reach a saturated state. Meanwhile, all operations were
performed at room temperature. The XRD test result indicated that mineral compositions of
the specimens in nature are quartz (49%), potassium feldspar (35%), black mica (8%), white
mica (5%), apatite (2%) and others (1%). The SEM test demonstrated the specimens had a
dense microstructure. The physical parameters were particle size ranging from 0.05–4 mm,
average dry density of 2630 kg/m3, the average saturated density of 2635 kg/m3 and
average p-wave velocity of 4027 m/s. The basic mechanical parameters were: uniaxial
compressive strength was 104.93 MPa, Brazilian tensile strength was 4.53 MPa, cohesion
was 21.83 MPa, and internal friction angle was 49.82◦.

Figure 1. Geographical location and microstructure of the specimens: (a) specimens; (b) SEM image.

2.2. Test Scheme

As shown in Figure 2, the test was performed by the MTS815 testing machine, and the
test path was generally divided into three paths, Path-I, Path-II and Path-III. As shown in
Table 2, for Group-I, i.e., Path-I, conventional triaxial compression test, we first loaded σ1

286



Sustainability 2022, 14, 5445

and σ3 at 0.5 MPa/s to the corresponding initial hydrostatic pressure O’ with the help of
the confining pressure system in Figure 2a. Four confining pressures of 0, 10, 30 and 50 MPa
were selected to obtain the failure envelope under the conventional triaxial compression test.
The specimen was then loaded in the axial direction at a 0.12 mm/min rate along the O’A
path until the specimen was destroyed. For Group-II, the conventional triaxial unloading
test, which includes Path-II and Path-III, the initial confining pressure was selected as
50 MPa, which corresponds to the ground stress at a burial depth of about 2000 m, and
the difference from Group-I was that the confining pressure started unloading when the
axial load reached 80% (O”) of the triaxial compression strength, the unloading rates were
selected as 0.1, 1, 5 and 10 MPa/s, respectively. Meanwhile, the axial loading of different
specimens was carried out at a rate of 0.06, 0.6, and 6 mm/min, until the specimen failed.

Figure 2. Test machine and scheme: (a) MTS815 test machine; (b) unloading paths.

Table 2. Conventional triaxial loading and unloading test scheme.

Test Scheme Specimen Number
Initial Confining
Pressure (MPa)

Axial Loading Rate Unloading Rate of σ3

Group-I TC-0 0

0.12 mm/min

-
TC-10 10 -
TC-30 30 -
TC-50 50 -

Group-II G-0.06-X * 50 0.06 mm/min 0.1 MPa/s,
1 MPa/s,
5 MPa/s,
10 MPa/s

G-0.6-X 50 0.6 mm/min

G-6-X 50 6 mm/min

* X is the value of the axial loading rate.

3. Results and Discussion

3.1. Mechanical Characteristics
3.1.1. Stress–Strain Curve

Figure 3 shows the relationship between the axial strain εa, the circumferential strain
εc, the body strain εv and the principal stress σ1 for the saturated granite in the triaxial
unloading test. In the unloading stage, the change rate of strain values increased signifi-
cantly with the increase of the unloading rate, even though there was not much correlation
with the final strain value, while the change of axial stress values was closely related to the
axial loading rate va and the unloading rate vu. When va = 0.06 mm/min, the principal
stress σ1 decreased gradually with the εa increase in the unloading stage. In particular, the
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unloading rate obviously affected the strain value; the strain value of the specimen changed
rapidly when vu > 0.1 MPa/s. At va = 0.6 mm/min, σ1 gradually increased with εa except
for vu = 0.1 MPa/s and then gradually decreased with the increase of vu at the rest of vu;
at va = 6 mm/min, σ1 gradually increased with the increase of εa, and the magnitude of
increase increased with the increase of vu. The increased range decreased with the increase
of vu. until vu = 10 MPa/s. When it was converted to σ1,, σ1 increased first and then
decreased with the increase of the εa. In addition, the εc-σ1 and εv-σ1 curves have the same
trend as the εv-σ1 curve.

Figure 3. Stress−strain curves of saturated granite under a conventical triaxial unloading test with
different vu: (a−d) va = 0.06 mm/min; (e−h) va = 0.6 mm/min; (i−l) va = 6 mm/min.
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3.1.2. Strength Characteristics

Figure 4 illustrates the variation of σ1–σ3 of all specimens before damage in the
unloading test, in which the red scribed line is the conventional triaxial compression
strength fitting line of saturated granite specimens under 0, 10, 30 and 50 MPa confining
pressure. Combined with Table 3, it can be seen that in the triaxial unloading test, all the
failure points (σ1, σ3) fall to the left side of the fitting line of the triaxial loading test except
for G-0.6-1. This indicates that the bearing capacity of the specimen was improved to some
extent under the unloading test, and this phenomenon is more obvious in Path-III. The
main reason is that during the unloading test, the circumferential of the rock specimen has
a significant expansion. When the stress change rate of the unloading rate is greater than
that of the axial loading, for example, G-0.06-10, the confining pressure decreases quickly.
The axial pressure decreases at a rate lower than the amount of the confining pressure;
therefore, a smaller σ3 and a relatively larger σ1 are obtained. When the change rate of σ3
is less than σ1, for example, G-6-0.1, the specimen is loaded at a relatively larger rate in the
axial direction. This disguisedly increases the specimen’s strength. Only when the rate of
stress change due to the unloading rate is similar to that of axial loading, i.e., G-0.6-1, is the
axial loading rate of the specimen lower than the rate of conventional triaxial compression.
Therefore, the strength is less than the conventional triaxial compression strength fitting
line value.

In addition, when the ratio of axial loading rate to unloading rate a ≤ 0.001 mm/MPa,
the test paths correspond to Path-III, i.e., keep σ1 reducing σ3. When the ratio of the axial
loading rate to the unloading rate a ≤ 0.02 mm/MPa, the test paths are corresponding to
Path-II and are closer to Path-III, when a > 0.1 mm/MPa, the test paths are corresponding
to Path-II and are closer to Path-I. This phenomenon is more and more significant with the
increase of a.

Figure 4. σ1–σ3 curves of saturated granite during an unloading test.
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Table 3. Saturated granite’s physical and mechanical parameters under conventional triaxial loading
and unloading tests.

Test
Scheme

Specimen
No.

Dry Density
(kg/m3)

Saturated Density
(kg/m3)

σ3
0 (MPa) σ3

f (MPa) σ1
f (MPa)

E
(GPa)

ν

Group I TC-0 2637.49 2644.55 0 0 104.93 43.04 0.10
TC-10 2631.32 2637.24 10 10 202.99 42.67 0.10
TC-30 2635.72 2641.16 30 30 361.84 53.96 0.11
TC-50 2635.67 2639.43 50 50 480.32 50.57 0.12

Group II G-0.06-0.1 2635.13 2638.36 50 34.42 390.08 51.4 0.10
G-0.06-1 2637.42 2641.45 50 25.53 358.82 58.04 0.28
G-0.06-5 2635.50 2641.38 50 21.06 361.00 51.71 0.11

G-0.06-10 2638.97 2643.01 50 18.77 354.14 62.64 0.18

G-0.6-0.1 2632.97 2637.00 50 44.48 470.63 58.39 0.17
G-0.6-1 2651.75 2655.78 50 28.83 398.89 59.08 0.23
G-0.6-5 2638.89 2642.93 50 21.81 378.21 59.03 0.21
G-0.6-10 2636.85 2640.88 50 23.47 384.67 56.05 0.20

G-6-0.1 2632.28 2636.32 50 49.31 508.61 60.45 0.24
G-6-1 2602.96 2606.98 50 43.97 465.05 56.32 0.18
G-6-5 2620.01 2624.07 50 32.07 400.16 62.90 0.18
G-6-10 2592.90 2596.95 50 27.74 412.31 53.09 0.26

3.1.3. Strain Characteristics

Table 4 lists the strain axial strain εa
0, circumferential strain εc

0 and body strainεv
0 of

the specimen at the unloading point and the strain axial strain εa
f, circumferential strain

εc
f and body strain εv

f at the failure point, and the difference in body strain Δεv
f between

the failure and unloading points. The difference in circumferential strain Δεc and body
strain Δεv between the failure point and unloading points are shown in Figure 5. It was
found that the axial strain of the specimen in conventional triaxial compression was the
leading cause of specimen failure. Specifically, the axial strain difference Δεa = εa

f − εa
0

of the specimen gradually increased with the increase of confining pressure, while the
circumferential strain difference Δεc = εc

f − εc
0 did not change much. The body strain

difference Δεv = εv
f − εv

0 gradually increases with increasing circumferential pressure,
except for uniaxial compression. Where Δεa/Δεc = 15.94%, the specimen mainly occurs
in circumferential tensile strain failure. Under confining pressure, Δεa/Δεc gradually
increases with increasing circumferential pressure from 21.12% to 50.24%. At this time,
the confining pressure has a good restraint effect on the circumferential deformation. The
circumferential deformation is the leading cause of specimens’ damage in the triaxial
unloading test. At the axial loading rate of 0.06 mm/min, the maximum value of Δεa/Δεc
is only 33.37% (G-0.06-5), and the minimum value of Δεa/Δεc is 4.23%, i.e., G-0.06-1, which
is the minimum value in all the tests. At the axial loading rate of 6 mm/min, the axial
loading rate is five times the loading rate of the conventional triaxial compression test,
which causes the axial deformation of the specimen to be significantly enhanced, with the
maximum value of Δεa/Δεc even reaching 35.69% at G-6-10.

The stress state achieved by unloading the confining compression is equivalent to
superimposing a circumferential tensile stress on the original stress state, resulting in a
significant circumferential expansion of the specimen. In plasticity theory, the dilatancy
angle ψ is usually used to characterize the inelastic volume change. As suggested by
Vermeer [63], the dilatancy angle ψ can be expressed as Equation (1):

ψ = arcsin

(
Δε

p
v

Δε
p
v − 2Δε

p
a

)
(1)

where Δεa
p and Δεv

p are the axial and volumetric plastic strain increments, respectively,
and can be calculated by Equations (2)–(4).
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εe
a =

σ1 − 2νσ3

E
(2)

εe
v =

(1 − 2ν)σ1 − 2(1 − ν)σ3

E
(3)

ε
p
a = εa − εe

a, ε
p
v = εv − εe

v (4)

Table 4. Strains at the unloading point and the failure point of saturated granite specimens.

Specimen
No.

σ3
0

(MPa)

Unloading Point Failure Point
Δεv

f

(×10−3)
εa

0

(×10−3)
εc

0

(×10−3)
εv

0

(×10−3)
εa

f

(×10−3)
εc

f

(×10−3)
εv

f

(×10−3)

TC-0 0 2.19 −0.14 1.91 2.92 −2.43 −1.94 −3.85
TC-10 10 3.55 −0.49 2.57 4.53 −2.81 −1.09 −3.66
TC-30 30 5.17 −0.97 3.23 7.38 −3.70 −0.02 −3.25
TC-50 50 8.16 −1.84 4.48 10.24 −3.91 2.42 −2.06

G-0.06-0.1 50 7.14 −1.22 4.70 9.06 −4.55 −0.05 −4.75
G-0.06-1 6.26 −2.30 1.67 6.89 −9.75 −12.60 −14.27
G-0.06-5 7.07 −1.28 4.51 9.88 −5.49 −1.09 −5.60
G-0.06-10 6.12 −1.24 3.64 6.67 −5.66 −4.65 −8.29
G-0.6-0.1 50 6.55 −2.24 2.07 9.90 −8.39 −6.88 −8.95
G-0.6-1 6.56 −2.07 2.42 8.43 −9.84 −11.25 −13.67
G-0.6-5 6.53 −2.04 2.46 7.94 −7.16 −6.37 −8.83

G-0.6-10 6.78 −3.86 −0.94 7.34 −6.44 −5.53 −4.59
G-6-0.1 50 6.46 −1.99 2.49 9.85 −7.35 −4.84 −7.33
G-6-1 6.74 −1.95 2.85 10.59 −10.05 −9.50 −12.35
G-6-5 6.19 −2.25 1.68 7.20 −11.92 −16.63 −18.31
G-6-10 7.23 −1.43 4.38 9.15 −4.12 0.91 −3.47

 

Figure 5. Strain difference between failure point and unloading point of saturated granite during a
conventional triaxial unloading test: (a) circumferential strain difference; (b) volume strain difference.

The evolution of the dilatancy angle ψ with the normalized plastic shear strain incre-
ment Δγp/Δγp

max from the beginning of unloading to the ultimate bearing strength under
different unloading rates is given in Figure 6. For the influence of the loading rate on the
dilatancy angle at the axial loading rate va = 0.06 mm/min, the change in the dilatancy angle
ψ of the specimens was not significantly related to the unloading rate at Δγp/Δγp

max < 0.2,
while at Δγp/Δγp

max ≥ 0.2, the dilatancy angle ψ increased slowly overall with the increase
of Δγp/Δγp

max. The size of the dilatancy angle was closely related to the initial dilatancy
angle and less related to the unloading rate. Finally, the dilatancy angle exhibits a small de-
crease as the plastic shear strain Δγp/Δγp

max approaches 1. At va = 0.6 mm/min, the ψ of
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the specimen slowly decreases with the increase of plastic shear strain when the unloading
rate vu is 10 MPa/s and increases first before Δγp/Δγp

max = 0.45, then decreases when vu
is 0.1 MPa/s. It slowly increases with the increase of plastic shear strain at the unloading
rate of 1 MPa/s and 5 MPa/s. From the late stage of damage, the ψ of the specimen will
gradually increase with the increase of the vu except for G-6-10. When the axial loading
rate va = 6 mm/min, the ψ of the specimen increases slowly with the increase of the plastic
shear strain, except for vu = 10 MPa/s. At this time, a higher unloading rate will correspond
to a larger ψ of the specimen. At vu = 10 MPa/s, the ψ of the specimen decreases rapidly
with the increase of the plastic shear strain. It is noteworthy that at an unloading rate of
1 MPa/s, the ψ of the specimen decreases with an increasing axial loading rate, while at an
unloading rate of 5 MPa/s, the ψ of the specimen increases with an increasing axial loading
rate. This also indicates that slight plastic damage in the unloading process can cause a
high expansion process, which is the reason for the expansion deformation in the annulus
caused by the unloading stress path.

Figure 6. The evolution of the dilatancy angle ψ under triaxial unloading tests: (a) va = 0.06 mm/min;
(b) va = 0.6 mm/min; (c) va = 6 mm/min.
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3.2. Energy Evolution Characteristics

The total energy U, axial strain energy Ua, circumferential strain energy Uc, elastic
energy Ue and dissipation energy Ud of the specimen during the tests can be calculated
from the following Equations (5)–(8) [43], and the calculated results are presented in Table 5.

U = Ua + Uc = Ue + Ud (5)

Ua =
∫ εt

a

0
σ1dεa =

n

∑
i=1

1
2

(
σi

1 + σi+1
1

)(
εi+1

a − εi
a

)
(6)

Uc = 2
∫ εt

c

0
σ3dεc =

n

∑
i=1

(
σi

3 + σi+1
3

)(
εi+1

c − εi
c

)
(7)

Ue =
1

2Et
u

[
σ2

1 + 2σ2
3 − 2μt

u

(
2σ1σ3 + σ2

3

)]
(8)

where n is the total number of segments of the stress–strain curve, i is the segmentation
points, and the segment interval time is 0.1 s; Eu

t and μu
t are the unloaded elastic modulus

and Poisson’s ratio at time t, respectively.

Table 5. Energy under conventional triaxial loading and unloading test (unit: MJ/m3).

Specimen
No.

σ3
0

(MPa)

Unloading Point Failure Point

Ua
0 Uc

0 U0 Ue
0 Ud

0 Ua
f Uc

f Uf Ue
f Ud

f

TC-0 0 - - - - - 0.16 - - 0.13 0.03
TC-10 10 - - - - - 0.91 0.03 0.94 0.55 0.39
TC-30 30 - - - - - 2.55 0.14 2.70 1.74 0.95
TC-50 50 - - - - - 4.88 0.24 5.11 3.35 1.77

G-0.06-0.1 50 1.66 −0.06 1.60 1.32 0.28 2.44 −0.19 2.25 1.47 0.79
G-0.06-1 1.43 −0.11 1.32 1.02 0.29 1.68 −0.34 1.34 0.73 0.60
G-0.06-5 1.63 −0.06 1.56 1.30 0.26 2.69 −0.17 2.51 1.56 0.96

G-0.06-10 1.46 −0.06 1.39 1.11 0.28 1.67 −0.16 1.50 0.97 0.53
G-0.6-0.1 50 1.53 −0.11 1.42 1.08 0.34 3.02 −0.40 2.62 1.59 1.53
G-0.6-1 1.51 −0.10 1.40 1.11 0.30 2.27 −0.37 1.90 1.11 1.51
G-0.6-5 1.53 −0.10 1.43 1.10 0.32 2.08 −0.24 1.84 1.19 1.53
G-0.6-10 1.57 −0.19 1.37 0.96 0.41 1.79 −0.26 1.52 1.11 1.57
G-6-0.1 50 1.51 −0.10 1.41 −0.34 1.74 3.07 −0.36 2.71 −1.34 1.51
G-6-1 1.57 −0.10 1.47 1.16 0.31 3.31 −0.46 2.85 1.58 1.57
G-6-5 1.44 −0.11 1.33 1.01 0.32 1.90 −0.45 1.45 0.67 1.44

G-6-10 1.69 −0.07 1.62 1.32 0.30 2.49 −0.16 2.33 1.67 1.69

3.2.1. Evolution of Strain Energy in the Triaxial Compression Test

From the energy statistics in Table 5, it can be seen that the confining pressure σ3
performs positive work in the conventional triaxial compression test to stop the destruction
of the rock specimen, while in the conventional triaxial unloading test, the σ3 does negative
work to help the rock destruction. Meanwhile, Ua > Uc, and Ue > Ud. In the conventional
triaxial compression test, the relationship between energy and confining pressure is shown
in Equation (9), where Uc and Ud increase approximately linearly with the increase of the
confining pressure, while U, Ua and Ue increase quadratically with the increase of the
confining pressure.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U = 0.0007σ3
2 + 0.0646σ3+0.1831 r2= 0.9999

Ua = 0.0007σ3
2 + 0.0595σ3+0.1904 r2= 0.9996

Uc = 0.0049σ3 + 0.0085 r2= 0.9946
Ue = 0.0005σ3

2 + 0.0374σ3+0.1274 r2= 0.9999
Ud = 0.0341σ3 + 0.0185 r2= 0.9933

(9)
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3.2.2. Evolution of Strain Energy in a Triaxial Compression Unloading Confining
Pressure Test

The variation of each energy in the conventional triaxial unloading confining pressure
test is shown in Figure 7. It can be found that the relationship of each energy throughout the
test is Ua > U > Ud > Ue > Uc, while the change of energy after the unloading point becomes
more complicated.To explore the change characteristics, we define ΔUα = Uα

f − Uα
0,

which represents different energy types, and thus obtain the relationship between different
unloading rates and the amount of energy change under the same axial loading rate as
shown in Figure 8. It can be found that when the axial loading rate is 0.06 mm/min and
0.6 mm/min, the relationship between various energy changes is roughly ΔUa > ΔU >
ΔUd > ΔUe > ΔUc. When the axial loading is 0.6 mm/min, the relationship between
various energy changes is ΔUd > ΔUa > ΔU > ΔUe > ΔUc. The reason for this phenomenon
is that when the axial loading rate is 0.06 mm/min and 0.6 mm/min, except for the
unloading rate of 0.1 MPa/s and the axial loading rate of 0.6 mm/min, the σ1 of the
specimens is slowly reduced from the unloading point under the rest of the loading rate.
The confining pressure has been doing negative work from the unloading point, so ΔUa
> ΔU > ΔUd > ΔUe > ΔUc, due to the reduction of the confining pressure. The bearing
capacity of the specimen is gradually reduced, and part of the elastic energy Ue has been
transformed into dissipated energy; Ud1 was released. In addition, the dissipated energy
Ud2 released during the unloading process increases ΔUd to a point greater than the change
of elastic energy ΔUe. Furthermore, the circumferential strain energy Uc that has been
doing negative work enables Ua < Ud, and finally, the relationship between each energy
change amount is obtained by Equation (5). It is worth noting that at the axial loading
rate of 0.6 mm/min with the unloading rate of 5 MPa/s and 10 MPa/s, the relationship
of each energy change is consistent with that of the axial loading rate of 6 mm/min, i.e.,
ΔUd > ΔUa > ΔU > ΔUe > ΔUc.

When the axial loading rate va is 6 mm/min, despite the unloading rate of the confining
pressure gradually increasing, the growth of σ1 slowly decreases, and σ1 gradually increases
overall, the axial stress increases rapidly, the confining pressure does negative work. As
a result, ΔUc becomes the smallest, and the amount of change gradually decreases with
the increase of the unloading rate. The axial stress increases rapidly, the restriction of the
circumferential direction becomes smaller and smaller. The dissipation energy increases
sharply, and ΔUd is the largest. From Figure 8c, it can be seen that the amount of change
of ΔUd is not much on the whole, i.e., it is not much correlated with the unloading rate,
which also means that with the increase of the axial loading rate, the dissipation energy is
determined from the original by the unloading rate and the axial loading rate to the axial
loading rate alone. ΔUa is slightly lower than ΔUd, while the elastic energy change ΔUe has
a slight increase. The ΔUa and ΔU decrease gradually with an increasing unloading rate,
while ΔUc decreases until the unloading rate is 1 MPa/s and increases slowly after that.

With the increase of vu, the variation of circumferential energy ΔUc tends to decrease
slowly, independent of the axial loading rate. While the variation of the rest of the energy at
va = 0.06 mm/min and va = 0.6 mm/min shows inverted V-shaped and V-shaped changes,
respectively. Moreover, when va = 6 mm/min, except for the variation of total energy ΔU,
axial energy ΔUa decreases with the increase of the unloading rate, and the variation of the
rest of the energy has increased in different degrees.
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Figure 7. Energy variation under a triaxial compression test with different unloading rates: (a–d) axial
loading rate 0.06 mm/min; (e–h) axial loading rate 0.6 mm/min; (i–l) axial loading rate 6 mm/min.
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Figure 8. Energy variation at different loading rates and different unloading rates: (a) axial loading
rate 0.06 mm/min; (b) axial loading rate 0.6 mm/min; (c) axial loading rate 6 mm/min.

3.3. Rock Failure Characteristics and Destruction Mechanism

The failure patterns of the saturated granite specimens under conventional triax-
ial unloading tests are shown in Figure 9. As you can see, at the axial loading rate of
0.06 mm/min, the failure surface of the specimen is a single shear failure plane, which
is similar to the failure pattern of the specimen under conventional triaxial compression.
At the axial loading rate of 0.6 mm/min, the failure surface of the specimen is complex,
with a form of multiple shear surface compound. However, when the axial loading rate
is 6 mm/min, the specimens show conjugate shear failure accompanied by a few tension
strain failure, indicating that before the axial loading rate is 0.6 mm/min, the failure form
of the specimen is mainly controlled by the axial stress, while after the axial loading rate of
0.6 mm/min, the failure mode of the specimen is controlled by both the axial stress and the
circumferential stress.
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Figure 9. Failure patterns of saturated granite specimens under a conventional triaxial unloading test
with different unloading rates.

Figure 10 shows the damage evolution process of the granite specimen. The damage
to the specimen is attributed to the combined effect of internal microcracks, axial stress
and circumferential stress. Due to many microcracks inside the granite specimen, the
microcracks have started to crack or tend to crack during the initial triaxial compression
stage. As the triaxial unloading test begins, σ1/σ3 gradually increases with the unloading
of the circumferential stress and the change of the axial stress. Meanwhile, the specimen is
gradually compressed in the axial direction. At the same time, the reduction of the lateral
constraint of the specimen provides help for the lateral deformation of the specimen. The
specimen tended to be compressed axially and expanded laterally. The internal microcracks
are cracked and expanded continuously, leading to penetration between step cracks and
crack penetration along the σ1 direction, which eventually leads to the specimen’s shear
failure and tensile strain failure.

Figure 10. Damage evolution process.

Although a series of unloading tests with different axial loading rates and circum-
ferential unloading rates have been successfully carried out on saturated granite, these
tests are all based on conventional triaxial test equipment, which still cannot achieve the
three unequal principal stresses in the underground space. Moreover, considering that the
explosion is completed instantaneously during blasting excavation, the unloading rate is
much larger than the unloading rate that can be achieved in the laboratory. Nevertheless,
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the damage to the surrounding rock results from the combined effect of axial and lateral
stresses after unloading. Our study also provides some references for understanding the
geological hazards such as rockburst in deeply buried tunnels. Subsequent research should
consider the geological discontinuity and diversity, including single or multiple cracks or
different materials included in one sample. Moreover, it is also meaningful to consider more
environmental factors such as thermal shock and to study the microscopic characteristics
and acoustic emission [64,65] characteristics of the fracture surface of the specimen using
SEM and other equipment.

4. Conclusions

(1) In the conventional triaxial unloading test, the circumferential deformation is the
leading cause of failure, and its strain is greater than that of conventional triaxial
loading. Under the same axial loading rate, the faster the unloading rate and axial
loading rate, the smaller the σ3

f and σ1
f at the time of failure, and the failure point

is outside the envelope of conventional triaxial compression tests. While under the
same unloading rate, a faster axial loading corresponds to a larger σ3

f and σ1
f.

(2) The variation of circumferential energy ΔUc decreases with the unloading rate, and
ΔUd, ΔUa, ΔU and ΔUe showed inverted V-shaped and V-shaped va = 0.06 and
0.6 mm/min, respectively. When va = 6 mm/min, except for a slight increase in ΔUa,
the rest of the variation of energy decreases with the increase of the unloading rate.
The variation of dissipation energy changes from being determined by the unloading
rate and the axial loading rate together to being determined by the axial loading rate
with the axial loading rate increasing.

(3) The failure modes of the specimens were mainly controlled by the axial stress and
showed a single shear crack before va = 0.6 mm/min, while it is influenced by both
axial and circumferential stress after the axial loading rate of not less than 6 mm/min,
and the failure surface is a conjugate shear failure and tensile strain failure.

(4) In the triaxial unloading test, the specimens were in the high expansion process most
of the time, and the dilatancy angle of the specimens showed an overall upward trend
except for vu = 10 MPa/s, va = 0.6 mm/min and 6 mm/min.
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Abstract: This paper is devoted to solving the problem of how to comprehensively control coal seam
gas and hydrogen sulfide in the mining face, distributed from the coal seam in abandoned oil wells in
coal mining resource areas. The abandoned oil wells of Ma tan 30 and Ma tan 31 in the No. I0104105
working face of the Shuang Ma Coal Mine were taken as examples. Through parameter testing, gas
composition analysis, field investigation at the source distribution, and the influence range of gas
and hydrogen sulfide in coal seam in the affected range of the abandoned oil wells were studied. The
results show that the coal-bearing strata in Shuang Ma coal field belong to the coal–oil coexistence
strata, and the emission of H2S gas in the local area of the working face is mainly affected by closed
and abandoned oil wells. Within the influence range of the abandoned oil wells, along the direction
of the working face, the concentration of CH4 and H2S gas in the borehole increases as you move
closer to the coal center, and the two sides of the oil well show a decreasing trend. In the affected
area of the abandoned oil well, the distribution of the desorption gas content in coal seam along the
center distance of the oil well presents a decreasing trend in power function, particularly the closer
the working face is to the center of the oil well. The higher the concentration of CH4 and H2S, the
lower the concentration when the working face moves further away from the oil well. The influence
radius of CH4 and H2S gas on the coal seam in the affected area of Ma tan 31 abandoned oil well
is over 300 m. The results provide a theoretical basis for further understanding the law of gas and
hydrogen sulfide enrichment in the mining face and the design of treatment measures within the
influence range of abandoned oil wells.

Keywords: abandoned oil well; gas treatment; hydrogen sulfide; coal-bearing strata; coexistence
of kerosene

1. Introduction

As more and more producing oilfields in the world enter the mature stage, abandoned
oil wells have become a problem that the world needs to deal with urgently. Oil drilling
activities that have lasted for more than a century have left great hidden dangers. Millions
of abandoned oil and gas wells scattered in many countries have become the most serious
environmental challenge in the world [1]. Taking the United States, Canada, and China as
examples, the United States does not have specific statistics on abandoned oil and gas wells,
but, according to the EPA (Environmental Protection Agency, Washington, DC, USA), there
are about 3 million in California, Arizona, New Mexico, and Texas alone. Abandoned oil
and gas wells pose a serious threat to local water sources, soil, and wildlife. An unknown
number of aging, unplugged, and abandoned oil and gas wells are rampantly releasing
methane and other greenhouse gases across the continental United States, bringing toxins
to the surface, polluting groundwater and the surrounding ecosystem. Furthermore, these
oil and gas wells are spread all over North America [2]. EPA estimates that the annual
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emissions of methane leaking from abandoned oil wells in the United States are about
263,000 tons, equivalent to the carbon emissions of more than five coal-fired power plants.
According to Columbia University in the United States, methane emissions from abandoned
oil and gas wells in the United States are as high as 280,000 tons per year, equivalent to
the carbon dioxide emissions of 2.1 million cars. More than half of Canada’s oil and gas
wells have been out of service for more than a decade, Canada’s energy regulator said,
with a more than 50 per cent increase in idle wells in the province between 2015 and 2021,
with 6014 more expected to be idled in 2022. The surrounding environment of abandoned
oil wells is full of hidden dangers, which increases the difficulty and cost of treatment of
abandoned oil wells in various countries [3].

China’s abandoned oil wells are increasing year by year. According to incomplete
statistics, the number of abandoned oil wells increased by 25,119 from 2005 to 2010, with
an annual growth rate of 19.7%; by 2021, the total number of abandoned oil wells will
reach 150,000. In northwest China, there are numerous mining areas with superimposed
resources and a large amount of coal, oil, natural gas and other resources existing in the
area [4].

Fossil fuel companies around the world emit a large amount of toxic and harmful gases
into the atmosphere every year, destroying the natural and ecological climate environment
on which human beings depend [5]. The production of sulfur dioxide, carbon monoxide,
soot, radioactive dust, nitrogen oxides, carbon dioxide and other substances during the
combustion of fossils will directly harm human health, cause human cancer and cause
radiation damage to organisms. Fossil fuels contain sulfur, which will produce toxic sulfur
dioxide when burned, causing acid rain and damaging the ecological balance. Burning
fossil fuels also produces carbon particles, which pollute the air and cause respiratory
diseases. Burning fossil fuels also releases carbon dioxide, which eventually creates a
greenhouse gas effect that causes sea level rise and threatens human habitation. Global
warming will induce certain diseases, threatening the safety of people, especially the elderly.
Frequent extreme climates, such as droughts, floods, storms and heat waves, threaten the
living environment of animals and plants, increase the mortality rate, disability rate and
infectious disease rate, and lead to climate change in some areas, thereby affecting the
production and living environment of people in the area. At the same time, it also increases
social psychological pressure [6].

Due to the early development of oil, natural gas and other resources, there are many
abandoned oil wells in coal mining areas, and there is a large amount of water, gas, oil,
etc. in the oil wells, which brings major safety hazards to the mining of mines. Among
them, gas and hydrogen sulfide are the main toxic and harmful gases in the process of oil
and gas well field exploitation, especially hydrogen sulfide, which, as a highly toxic gas,
is seriously harmful [7]. The Shen fu coalfield in the Ordos basin is the largest coalfield
proven in China and the largest integrated gas field proven on land. The mining area is
rich in coal, oil, natural gas, and rock salt resources [8]. The coexistence of coal resources
and oil exists in the Ma jia tan mining area in the western margin of the Ordos Basin [9].
There are also symbiosis phenomena of coal resources and oil in coal mining areas such as
Huangling in Shanxi and Yao jie in Gansu [10]. Due to the early development of oil and
natural gas resources, there are many abandoned oil and gas wells in overlapping resource
areas. These abandoned oil and gas wells have brought great difficulties to the mining
design of coal mines. It not only causes a waste of resources but also has significant safety
hazards for the mining of coal seams adjacent to oil and gas wells [11].

Once the excavation roadway exposes the oil and gas wells, there will be significant
safety hazards such as water, gas, and oil pouring into the working face, which seriously
restricts coal mines’ safe and efficient production [12]. The Shuangma Wellfield overlaps
with the “Hu jianshan oil and gas exploration in Shaanxi, Ningxia, and Mongolia Ordos
Basins” block of Petro-China. Shuangma coal mine is located in the overlapping area of
coal and oil exploitation. There are 170 abandoned oil wells in the minefield [13].
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In the past ten years, ten abandoned oil wells have affected the mining face. Many
harmful gases such as gas and hydrogen sulfide have gradually escaped into the coal
seams in the oil wells [14,15]. The concentration of gas and hydrogen sulfide in the affected
area of abandoned oil wells suddenly increases, bringing great hidden dangers to the
safe mining of the mining face of the mine [16,17]. The sudden emission of hydrogen
sulfide in the affected area of abandoned oil wells causes not only personal injury but also
has explosive and corrosive coal mine equipment and monitoring and testing facilities,
and other hazards [18]. Hydrogen sulfide is a standard toxic and harmful gas in coal
mines [19,20]. In response to the severe harm of hydrogen sulfide in coal mines, domestic
and foreign research on prevention and control technologies for coal mine hydrogen sulfide
ventilation and dilution, coal extraction, spraying of alkaline solution, and coal pre-injection
of alkaline absorption liquid have been carried out [21,22]. At the same time, excellent
results have been achieved. However, only a few studies on the law of hydrogen sulfide
enrichment in coal mines, especially the occurrence of toxic and harmful gases such as
gas and hydrogen sulfide within the influence range of abandoned oil wells, have been
carried out. Only some scholars have carried out preliminary research on oil well plugging
and coal seam hydrogen sulfide treatment [23–25]. In this regard, the author researches
the source and distribution of gas and hydrogen sulfide under the influence of oil wells in
Shuangma coal mine and the scope of power to provide a theoretical basis for the design
of gas and hydrogen sulfide treatment measures within the influence scope of abandoned
oil wells. Moreover, the research theory of this paper provides technical support for the
coordinated exploitation of coal and oil, reduces the potential safety hazards in the process
of coal mining near oil and gas wells, and ensures the safe, environmentally friendly and
efficient development and production of coal, oil, natural gas and other mineral resources.

2. Analysis of Gas Sources

2.1. Gas Source Statistics during Face Excavation

According to on-site statistics, since the Shuangma coal mine was produced, there have
been no abandoned oil wells in or near the I0104102 working face and I0104103 working
face that have been stopped. There has never been H2S in the working face during the
tunneling and mining period. The first occurrence of H2S in the mining face is the return
air lane of the I0104104 working face, the return air lane of the I0104105 working face, the
transportation lane I0104105 working face, and the return air lane of the I0104106 working
face. According to the mining layout of the mine, this area is mainly the abandoned oil well
of Ma tan 31, with a strike distance of 460 m. The relationship between the driving face and
the H2S gushing position is shown in Figure 1.

 
Figure 1. Emission position of H2S on driving face.

According to the H2S gushing position relationship shown in Figure 1, the H2S gush-
ing situation during the excavation of the working face is counted, as shown in Table 1.
According to the statistical results shown in Table 1, H2S will gush out only when the areas
near the abandoned oil wells of Ma tan 30 and Ma tan 31 are operated, and the closer the
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distance to the abandoned oil well, the greater the concentration of H2S gushing from the
tunneling face [26].

Table 1. Statistics of H2S emission at different positions of the tunneling face.

Location and Location
Gushing Gas Volume

Fraction/10−6 Actual Site Situation

I0104104 return air tunnel excavation, 404–508 m away from
no. 5 connecting lane, 212 m away from ma tan 30 oil well – Local roof fissure oil seepage

I0104104 return air tunnel excavation, 158 m away from ma
tan 30 oil well 3.5~15.0 The smell of rotten eggs in the lane

I0104105 return air tunnel excavation, 331 m away from no.
5 connecting lane, 251 m away from ma tan 30 oil well 1.5~50.0 Smell of rotten eggs

I0104105 transport lane excavation, 627 m away from no. 2
ventilation measures lane, 150,435 m away from ma tan 30

and 31 oil wells
60~80 The volume fraction of H2S gushing out

at 445 m is 45 × 10−6

I0104106 excavation of return air lane, 296 and 313 m away
from ma tan 30 and ma tan 31 oil wells 60~80 H2S gushes out during tunneling

2.2. Analysis of Gas Composition in Detection Boreholes

Taking the abandoned oil well of Ma tan 31 as an example, the center of the oil well is
80 m (vertical distance) from the return airway of the I0104105 working face, 203 m (vertical
distance) from the transportation lane, and the distance to the open-cut is 376 m, passing
through 4-1 coal seam, 4-2 coal seam and 4-3 coal seam from top to bottom. When section
II of the return air lane of the I0104105 working face was excavated to a position of 1050 m
away from the No.5 connecting lane, two detection boreholes were constructed on the
working face (the K1 borehole and K2 borehole were, respectively, 85 and 60 m away from
the center of the abandoned oil well of Ma tan 31), The drilling layout is shown in Figure 2.
Gas samples were then collected in the holes for gas detection and analysis. At the same
time, a detection borehole was constructed in the return airway of the I0104105 working
face (the borehole is 41 m south of the abandoned oil well in Ma tan 31), and gas samples
were collected in the borehole for detection and analysis to obtain the gas component. The
measurement results are shown in Table 2.

 

Figure 2. Schematic diagram of detection drilling layout.

306



Energies 2022, 15, 3373

Table 2. Detecting results of borehole gas detection in return airway of I0104105 working face.

Detection Location Inclination/(◦) Length/m Aperture/mm μ (H2S)/10−6

K1 drilling 7 40 94 38,033.52
K2 drilling 6 35 94 25,599.14

The borehole is located 41 m south of the
abandoned oil well of ma tan 31 - - - 10,200.00

According to the gas composition analysis results in Table 2, the volume fraction of
H2S in borehole K1 is 38,033.52 × 10−6, and the volume fraction of H2S in borehole K2 is
25,599.14 × 10−6.

As shown in Table 3, according to the gas analysis results of the borehole 41 m to the
south from the abandoned oil well of Ma tan 31, the main harmful gas components in the
borehole are CH4, H2S, CO, and C2 alkanes (the H2S gas component has a volume fraction
of 10,200 × 10−6), which is roughly the same as the main gas components (CH4, H2S, CO,
C2H6 et al.) commonly found in oil wells.

Table 3. Analysis results of borehole gas 41 m to the south from the abandoned oil well of ma tan 31.

Serial Number Analysis Project Analysis Result/% Serial Number Analysis Project Analysis Result/%

1 H2 <0.01 7 COS <0.005
2 CO2 0.90 8 CH4 75.51
3 O2 1.98 9 C2 alkanes 0.46
4 N2 21.13 10 C2 alkanes 0.01
5 CO <0.01 11 C3 olefin <0.01
6 H2S 1.02 12 C4 alkanes <0.01

Based on further analysis of the literature [27,28], it is concluded that the leading
harmful gases in the mining activities affected by abandoned oil wells in the Shuangma
coal mine are H2S and CH4, which further shows that H2S at the working face mainly
comes from abandoned oil wells and is enriched in a specific range of the affected area of
abandoned oil wells.

3. Analysis of the Positional Relationship between Oil Wells and Coal Seams

3.1. Wellbore Structure of Well Field Oil Well

According to relevant research data, the oil wells in the Shuangma mining area include
exploration wells and production wells, all of which are vertical wells. The depth of oil wells
(oil-bearing layers) is generally 700~900 m [29], and the depth of some oil wells is more than
2000 m, and the casing pressure is about 24~27 MPa. Most oil wells were constructed in the
1970s and 1980s, or even the 1950s and 1960s [30,31]. Most of the surveyed oil boreholes
only have coordinate positions and cannot describe the sealing, casing setting, and borehole
depth [32]. Figure 3 shows the actual situation of the abandoned Ma tan 31 oil well. It can
be determined that the depth of the oil well is relatively small. Abandoned oil wells in the
Shuangma coal mine field generally have only one layer of production casing (the depth
of the oil well is small), and the surface of the wellhead is covered with surface sealing
cement. There is the cement for fixing the casing between the bottom of the case and the
cracks in the rock, and there may or may not be plugging cement inside the container. In
addition, some of the abandoned oil wells are directly drilled bare, and the construction
depth is different.

Due to the old age of the abandoned oil wells, most of the casings in the abandoned
oil wells have been damaged [33,34]. After the open hole and casing are damaged, many
harmful gases such as hydrogen sulfide and methane that may be stored in the oil well
gradually invade the coal seam. Migration channels can be divided into three types, as
shown in Figure 4.
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Figure 3. Records of underground exposure of Ma tan 31 oil well.

 
(a) 

 
(b) 

Figure 4. Cont.

308



Energies 2022, 15, 3373

 
(c) 

Figure 4. Schematic diagram of the wellbore structure of an abandoned oil well. (a) No casing (open
hole); (b) Broken casing; (c) Reinforced wells are not toghtly sealed by ceme.

It can be seen from Figure 4 that after the oil well is abandoned, the well may be
filled with harmful gases under pressure. In no casing, harmful gases directly contact the
coal-measure formation and gradually penetrate the coal seam, forming an escape ring. In
the case of the casing, if the casing is damaged, harmful gas will penetrate the coal seam
through the damaged point. If the casing is intact, the harmful gas in the abandoned oil
well will not contact the coal seam. If the gap between the casing and the wall of the oil
well is not tightly sealed, the oil and gas in the oil-bearing layer will gradually migrate to
the coal-measure formation through the pores.

In addition, if the oil well has a shallow depth and is abandoned before being con-
structed to the oil-bearing layer, oil and gas in the oil-bearing layer will not enter the coal
seam. Therefore, whether the mining face in the area adjacent to the abandoned oil well
is affected by harmful gases such as hydrogen sulfide in the abandoned oil well must be
determined according to the completion status, damage type, and layer relationship of the
abandoned oil well.

3.2. Position Relationship between Oil Wells and Coal-Measure Strata

According to the relevant geological data of Ma tan 30 and Ma tan 31 abandoned oil
wells, the crossing conditions and thickness of the abandoned oil wells of Ma tan 30 and
Ma tan 31 are shown in Table 4. The coal-bearing strata in the Shuangma minefield are the
Middle Jurassic Yan a Formation, with nearly 30 coal-bearing layers.

Table 4. Abandoned oil wells pass through the formation and statistics of thickness.

Oil Well

Layer Thickness/m
Layer Thickness/m

Cumulative
Depth/m

Jurassic Triassic

Fourth
Series

Paleogene
Stability
Group

Zhiluo
Formation

Yan’an
Formation

Yan’an
Formation

Ma tan 30 10 81.8 - 134.7 344.7 666 1237.2
Ma tan 30 15 64.0 63.1 67.9 290.0 666 1166.0

According to geological survey data, the buried depth of coal seams in all areas near the
Ma tan 30 and Ma tan 31 oil wells within the I0104105 working face is 185.71–513.66 m [35].
Among them, the average thickness of the 4-1 coal seam mined at the I0104105 working
face is 3.8 m, the buried depth is 226.86 m, and the distance between the underlying 4-2
and 4-3 coal seams is 10 and 35 m, respectively. The average inclination angle of the coal
seam is 7◦, and the lithology of the roof and floor of the coal seam is mainly siltstone and
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sandy mudstone [36]. Figure 5 shows the positional relationship between the Ma tan 31 oil
well and the coal-measure strata.

 
Figure 5. The positional relationship between the Ma tan 31 oil well and the coal-measure strata.

Therefore, based on the analysis of the relationship between oil wells and coal seams
and field demonstrations, there are oil-bearing layers in some areas of the coal-bearing
strata, but they have little impact on mining. The oil layer of the Shuangma well field is
a Triassic stratum, which is located below the bottom layer of the mine (18-2 coal seam,
buried depth of about 520 m). Its impact on the coal seam in the abandoned oil well area
mainly depends on the oil well’s form of destruction [37].

3.3. Oil Well Damage Form and Impact

Abandoned oil wells are mainly production wells, water injection wells, and other oil
and gas wells [38]. Some oil wells are open hole wells, and other oil wells have casings.
Due to the long period of completion of wells, most of the casings in the abandoned oil
wells are damaged due to rust, corrosion, etc. A significant amount of H2S, methane, and
other gases in the petroleum reservoir gradually escape into the coal seam. According to
the classification of oil well risk levels, the main factors that affect the H2S, methane, and
other gas enrichment in coal seams near abandoned oil wells are the distance between the
oil-bearing stratum and the coal-bearing stratum, the presence or absence of casing, the
damage of casing, and the location of the breaking point [39,40]. Generally speaking, when
the oil well casing is undamaged, or the damage point is below 100 m in the coal-bearing
strata, H2S, methane, and other gases in the abandoned oil well will not easily escape into
the coal seam.

When the casing is damaged and is within 100 m below the coal-bearing strata, and
when the casing is damaged and located in the coal-bearing strata, it will have varying
degrees of influence on the mining of the working face. According to the conditions of the
exposed oil wells and gas analysis results and the analysis of the sealing conditions of the
Ma tan 30 and Ma tan 31 oil well, the casing of the Ma tan 30 oil well is intact. The Ma tan
31 Oil well were wholly damaged by corrosion in the coal-measure formation, so the Ma
tan 31 oil wells have a more significant impact on the H2S and methane enrichment of the
coal seams.
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Based on the above analysis, it can be seen that because the oil-bearing strata and
coal-bearing strata in the Shuangma coal mine are the same set of strata, the coal seam roof
contains a certain amount of petroleum. In terms of content, the roof may contain oil-poor
layers, but it has little impact on the mining face. H2S gushing in local areas of the mining
face is mainly affected by poor sealing, damaged casing and within 100 m of coal-bearing
strata, and abandoned oil wells with broken casing and located in the coal-bearing strata.

4. Distribution Laws Regarding Gases

4.1. The Distribution Law of Gas and Hydrogen Sulfide Gas Concentration in Boreholes

In view of the current technology and equipment limitations of coal seam hydrogen
sulfide content testing [41,42]. To obtain the distribution law of coal seam gas and hydrogen
sulfide in the area affected by abandoned oil wells, by measuring the gas and hydrogen
sulfide gas concentration in coal seam boreholes in the area affected by abandoned oil wells,
the distribution law of gas and hydrogen sulfide can be indirectly reflected. With the Ma
tan 31 abandoned oil and the center, 26 boreholes were constructed within 100~150 m of
the I0104105 return airway along the strike. Twenty-one drilling holes were constructed
within 100 m before and after the I0104105 transportation lane along the strike. After the
drilling was completed, the holes were immediately plugged, and after the gas escaped
and balanced in the holes, on-site sampling tests and ground gas sample analysis were
carried out.

The layout diagram of the gas concentration test borehole is shown in Figure 6.

 
Figure 6. H2S concentration test drilling layout of Ma tan 31 oil well.

The oil-bearing strata and coal-bearing strata in the Shuangma coal minefield are the
same set of strata. The roof of the coal seam contains a certain amount of oil. The top
may include oil-poor strata in terms of content, but it has little impact on the mining face.
H2S gushing in local areas of the mining face is mainly affected by poor sealing, damaged
casing and within 100 m of coal-bearing strata, and abandoned oil wells with broken casing
located in coal-bearing strata. According to the test and analysis results, taking the center of
the Ma tan 31 oil wells as the benchmark, the gas concentration distribution law of H2S and
gas in each borehole of the return airway and transportation lane of the I0104105 working
face is shown in Figures 7 and 8.
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Figure 7. Distribution law of gas concentration in each borehole at the side of the transportation road
in I0104105 working face.

 
Figure 8. Gas concentration distribution law in each borehole on the side of return airway in I0104105
working face.

According to the analysis results of the borehole gas composition measured in area
100–150 m before and after the strike of the abandoned oil well of Ma tan 31, it can be
concluded that the I0104105 working face transportation lane side, along the working face,
the closer to the center of the oil well, the higher the hydrogen sulfide gas concentration,
but the hydrogen sulfide concentration distribution in the range of −80~80 m shows a
gradually increasing trend. On the side of I0104105 transportation lane and return air lane,
along the strike direction, within the range of 100~150 m, the area with high hydrogen
sulfide concentration is located within 80 m of the cut hole from the center of the oil well to
the working face.

Since the coal seam contains gas, the distribution of gas concentration in the borehole
on the side of the transportation lane relatively far away from the oil well is relatively stable
with little change. The distribution on the side of the return airway where the oil well is
relatively close in the horizontal distance shows fluctuations. Still, near the center of the oil
well, the gas concentration is relatively high.
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Analysis of the Source of Hydrogen Sulfide Gushing

According to the data analysis measured before and after the absorbent injection
and ten days later, it was concluded that the hydrogen sulfide absorption effect after the
absorbent injection is almost 100%. When the injection of absorbent into the borehole
was stopped, it was found that there were signs of rapid rebound of hydrogen sulfide in
boreholes F6, F12, F14, and F18, which fully proved that the source of hydrogen sulfide had
a supply channel, as shown in Figure 9.

 

Figure 9. The trend diagram of hydrogen sulfide concentration before and after the absorbent
injection in the abandoned oil well of Ma tan 31.

4.2. Determination and Distribution Law of Coal Seam Gas Content

Coal is a porous dual-medium with a lot of pores and cracks [43]. Due to coal pores
and crevices, gas generally occurs in coal in two forms, including free and adsorbed states,
and is in a state of dynamic equilibrium and constant exchange [44,45].

Under the action of gas pressure, gas, hydrogen sulfide, and other gases existing in
abandoned oil wells flow through reverse seepage for an extended period and enter the
coal seam from the oil well. Therefore, the gas content of the coal seam in the affected area
of the abandoned oil well is generally more significant than that outside the affected area.

Measurement Results of Coal Seam Gas Content

To grasp the distribution law of gas content in the affected area of abandoned oil wells,
by drilling test boreholes in the affected area of abandoned oil wells and outside the affected
area of abandoned oil wells, the original gas content determination and distribution law of
the coal seams in the affected area were analyzed.

Due to the small gas content of the coal seam itself, to avoid the difference in the
distribution of coal seam gas content in different mining areas of the working face and
the influence of measurement errors, when sampling on-site, it is important to avoid the
geological structure area and adopt the method of direct and rapid gas content test as
far as possible to make the measurement data accurate and reliable. Five boreholes were
constructed in the return airway of the I0104105 working face, and the original gas content
of the coal seam in the 120 m area of the abandoned oil well was measured. Each borehole
had a depth of 60 m, and coal samples were taken at 20 m, 40 m, and 60 m for testing.

As shown in Figure 10, according to the measurement results, the maximum desorb
gas content of coal seam 4-1 in the affected area of the abandoned oil well is 1.28 m3/t.
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⋅

 
Figure 10. Variation law of gas content near Ma tan 31 abandoned oil well.

Taking the Ma tan 31 abandoned oil well as the research object, the influence of the
abandoned oil well on the distribution of coal seam gas content is studied. By sampling the
gas concentration test borehole shown in Figure 6 in the affected area of the abandoned
oil well (within the radius of 160 m), the desorb gas content of the coal seam was tested,
and the distribution of desorbing gas within the influence range of the abandoned oil well
was obtained.

As shown in Figure 11, the closer to the abandoned oil well of Ma tan 31, the higher
the desorb gas content of the coal seam. The distribution of coal seam gas content in the
affected area of abandoned oil wells along the distance from the center of the oil well shows
a decreasing power function trend. Through data fitting, the distribution model of coal
seam desorb gas content can be obtained, as shown by Equation (1) [46]:

y = −17.439x0.0149 + 19.4076, R2 = 0.7999 (1)

where y is the desorb gas content of the 4-1 coal seam, m3/t, x is the radial distance from
the center of the abandoned oil well, m.

To verify the influence of abandoned oil wells on coal seam gas content distribution,
three boreholes at 100, 150, and 200 m south of the 05B4 drilling field in the return airway
of the I0104106 working face (the distance between the borehole and the abandoned oil
well is more than 300 m) were constructed with a drilling depth of 80 m, and coal is used at
a depth of 40, 60, and 80 m, respectively. Direct testing of the coal seam gas content of the
sample shows that the maximum desorb gas content of coal seam 4-1 outside the affected
area of abandoned oil wells is 0.72 m3/t (average value 0.64 m3/t).

Therefore, the desorb gas content of the coal seam in the affected area of the abandoned
oil well is generally more significant than the desorb gas content of the coal seam outside
the affected area of the abandoned oil well. However, due to the relatively small gas content
of coal seam 4-1 in Shuangma coal mine, after fully considering the differences in coal
seam gas content distribution in different mining areas and reducing errors, abandoned
oil wells have a particular impact on coal seam gas content, but the degree of effects is
relatively small.
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⋅

 
Figure 11. The distribution law of coal seam desorb gas content along the radial direction.

5. The Law of Harmful Gas Gushing

5.1. Investigation on Distribution Law of Gas and Hydrogen Sulfide

The coal body is a porous dual-medium that is rich in pores and cracks. Therefore,
the gas occurs in the coal body in two forms: free and adsorbed [47,48]. They are mainly
adsorbed and in a dynamic equilibrium state. Regarding the occurrence of hydrogen sulfide
in coal seams, relevant scholars have carried out coal adsorption experiments on CO2, CH4,
and N2 [49,50]. The results show that the adsorption capacity of adsorbed substances
increases with the increase in gas boiling point. Since the lowest boiling point of H2S gas is
−60.33 ◦C, which is higher than CO2, CH4, N2, and other gases, coal has a more substantial
adsorption capacity for H2S than the above gas [51].

At the same time, because the polarization rate of hydrogen sulfide 3.64 × 10−30 m3

is greater than that of methane gas 2.60 × 10−30 m3, the adsorption capacity of hydrogen
sulfide gas is more vital than that of methane gas coal [52]. According to the actual
measurement results of the attenuation law of hydrogen sulfide emission in the area
affected by abandoned oil wells during the tunneling and mining of the I0104105 working
face of Shuang Ma coal mine, it is concluded that after the coal seam is mined, the escape of
hydrogen sulfide will be accelerated. Still, it will be emitted when coal cutting is stopped.
The hydrogen sulfide decreases rapidly and quickly decays until no hydrogen sulfide
is detected.

Therefore, it is further proved that the hydrogen sulfide in the coal body mainly
exists in an adsorbed state [53,54]. It is not easy to release the hydrogen sulfide in the
adsorbed state in the coal body without the effect of considerable energy. In addition,
studies have shown that some hydrogen sulfide gas exists in a free state in the coal body.
Because hydrogen sulfide gas is easily soluble in water, hydrogen sulfide also occurs in a
water-soluble state to form sulfuric acid or sulfurous acid. The attenuation law of hydrogen
sulfide gushing after mining is shown in Figure 12.
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Figure 12. The attenuation law of hydrogen sulfide gushing during the mining process of the
working face.

5.2. Investigation on the Influence Scope of Gas and H2S Mining and Gushing

Taking the abandoned oil well Ma tan 31 as the research object, the gas, and hydrogen
sulfide emission distribution law during the mining of the working face through the area
affected by the abandoned oil well was studied. The abandoned oil well is 375 m away
from the I0104105 working face. The maximum hydrogen sulfide concentration measured
by boreholes in the affected area of the abandoned oil well reaches 0.012, and the maximum
desorb gas content is 1.28 m3/t. At the initial mining stage, the air distribution volume is
about 1260 m3/min, and after the return air gas concentration increases, the air distribution
volume is adjusted to 1800–2300 m3/min.

As shown in Figure 13, according to the collected field data, before the working face
is advanced to the abandoned oil well, the gas concentration rises. As the working face
advances away from the abandoned oil well, the gas concentration decreases. Affected by
abandoned oil wells, there is abnormal gas emission in the upper corners of the working
surface. It reaches the maximum value before approaching the center of the oil well.

Figure 13. Gas concentration change curve during the period of the impact of the I0104105 working
face passing through the Ma tan 31 abandoned oil well.
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In the areas before and after passing through the center of the oil well, the gas concen-
tration in the working face and the return airway has an increasing trend. The abandoned
oil well of Ma tan 31 is an open hole with no casing, and ground plugging has not been
carried out in advance. The gas in the oil and gas formation penetrates the coal-measure for-
mation through the cracks and is adsorbed in the coal–rock layer. The gas in the coal–rock
layer is affected by mining, with a large amount of escaping ito the mining space.

As shown in Figure 14, from the beginning of recovery to the 150 m of the oil well,
the working face tends to have a relatively large hydrogen sulfide gushing concentration.
The average gushing concentration is between 40 × 10−6 and 350 × 10−6 ppm. When the
working face starts to be mined, the coal seam is affected by mining, and a large amount of
hydrogen sulfide gushes out. After that, the concentration of hydrogen sulfide gushes out
to maintain a high concentration value and fluctuates. After the oil well is blocked until the
working face is far away from the oil well, the sulfide concentration of hydrogen gushing
gradually decreases.

Figure 14. The concentration change curve of hydrogen sulfide emission during the I0104105 working
face passing through the Ma tan 31 abandoned oil well.

As shown in Figure 15, the gas and H2S gushing trend of the I0104105 working face
when passing through the Ma tan 31 abandoned oil well can be obtained. Combining
the location of H2S during the excavation and the distribution of gas and H2S within the
affected area of abandoned oil wells, it can be concluded that:

⋅

⋅

 
Figure 15. The trend diagram of absolute gas and hydrogen sulfide emission changes in the I0104105
working face passing through the Ma tan 31 abandoned oil well.

317



Energies 2022, 15, 3373

(1) Before the working face passes the abandoned oil well, the concentration of gas and
H2S rises. As the working face is far away from the abandoned oil well, the concentration
of gas and H2S shows a downward trend.

Since the abandoned oil well of Ma tan 31 is an open hole without casing, and the
ground has not been plugged in advance, the gas and H2S of the oil and gas formation
invade into the coal-measure formation through the fissures and are adsorbed in the coal
seam. When the coal seam is gradually moving forward, a large amount of toxic and
harmful gas slowly escapes to the mining space.

(2) When the abandoned oil well of Ma tan 31 is about 376 m away from the I0104105
working face, according to the changing trend of H2S concentration, H2S appeared when
the I0104105 working face started to advance, which is completely consistent with the
gas source statistics during the tunneling of the aforementioned working face. When the
I0104105 working face passes through the Ma tan 31 abandoned well, the impact range of
the Ma tan 31 abandoned oil well on strike is more than 600 m.

(3) In the I0104105 working face, the gas and H2S concentration exceeded the limit in
varying degrees during tunneling and coal mining. At the same time, gas was exceeded
in the upper corner after advancing 80 m on the working face, and the highest volume
fraction reached 1.13%. Based on the changes in the location and concentration of gas and
hydrogen sulfide during excavation and coal mining, as well as long-term tracking and
determination of gas and hydrogen sulfide, it is proposed that the affected area of the Ma
tan 31 abandoned oil well has a “300 m radius of escape circle”, that is the abandoned oil
well. As the center of the circle, the diffusion radius of H2S and other harmful gases in the
oil well is above 300 m.

6. Conclusions

(1) According to the structure of the oil well and the positional relationship with the
coal seam, the source of hydrogen sulfide in the affected area of the abandoned oil well
in the coal mining face of Shuangma Coal Mine is mainly affected by the abandoned oil
well, and the casing of the oil well is damaged and within 100 m below the coal-bearing
formation, and when the casing is damaged and located in the coal-bearing formation, it
will have a greater impact on the working face.

(2) The hydrogen sulfide in the coal in the affected area of the abandoned oil well
mainly exists in the adsorbed state. The petroleum reservoir contains H2S, CH4 and other
gases with a certain pressure (concentration), which gradually escape to the coal-measure
strata after a long period of time and are adsorbed in the coal-measure formation. In the
coal seam, a large amount of desorption is released under the influence of mining. The
distribution of coal seam desorbs gas content along the distance from the center of the oil
well, showing a decreasing trend in the power function.

(3) The study shows that the gas and H2S in the affected area of the Ma tan 31
abandoned oil well in Shuangma coal mine have an impact radius of at least 300 m
on the I0104105 working face. The hypothesis of gas “escape circle” distribution in the
affected area of abandoned oil wells are proposed. However, due to the influence of coal
physical properties, hydrogen sulfide adsorption characteristics, geological structure, and
other factors, the distribution of gas and H2S in the affected area of abandoned oil wells
and the scope of influence may be different in the next step. The above factors will be
comprehensively considered in further in-depth research.

(4) The concentration distribution and variation trend of coal seam gas and hydrogen
sulfide gushing in the area affected by abandoned oil wells are generally consistent with
the distribution and changing trend of coal seam gas content distribution. The hydrogen
sulfide gushing has a greater impact on the working face. Due to the particularity of the
occurrence of hydrogen sulfide in the coal seam, the problem of gushing control cannot
be solved only by ventilation and dilution. Active and passive control methods such as
injection of absorbing liquid into the coal seam before mining and spray absorption during
mining can be adopted.
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Abstract: The marble industry in Mexico, similarly to the international market, is going through some
problems which are characterized by low productivity performance, inconsistency in management
and administrative organization, high raw material waste, and negative social and environmental
impact. The methodology used in this paper is based on a systematic review of the strategies and
solutions used to address these problems reported between 2014 and 2021, including the results of
the application of in situ surveys to three marble companies in the Mixteca Poblana region. These
surveys are collected in this article alongside industry experience to propose, in a structured way,
a three-pronged management approach with the aim of directing the marble industry towards a
sustainable industry model. The structure of this approach, based on forms of capital and sustain-
ability dimensions, engages governments, companies, schools and society to guide this industrial
sector to become a sustainable business, integrating knowledge and experience of the marble industry
processes. We recommend adding performance metrics to this approach to assess the value chain of
the marble industry.

Keywords: sustainability; marble; capital forms; production

1. Introduction

Internationally speaking, the exploitation, extraction, and transformation of marble is
a model of profitable economic development which has seen exponential demand since
the 1980s. However, this industry has reported low productivity levels, high raw material
waste levels, and a negative environmental impact generated by its dimension stone
extraction and transformation processes [1,2]. In the last decade [3], an assessment of
the environmental, social, and cultural factors from a perspective of sustanibility within
this industry has been provided. The results show the formation of pollutants being
discharged into bodies of water, the emission of dust from the cutting processes, the
presence of occupational hazards, the creation of environmental noise, and damage to
health in Palestine. Similar circumstances have been reported in the marble industry in
Turkey [4], where remedial actions have been proposed in order to reduce the damage
to workers’ health and the environment, and strengthen economic aspects in the marble
industry, resulting in a 7% improvement in the productive efficiency of the marble process.
In this context [2], to assess the problems of air, soil, and water pollution resulting from
stone and marble activities in China, a methodology was proposed that lays the foundations
to create a clean production scheme.
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In Mexico, the problems in the industry are characterized by low productive perfor-
mance, a lack of management and organization structures [5], high amounts of raw material
waste [6], and negative social and environmental impacts in the two representative marble
exploitation areas in Mexico: the Comarca Lagunera and the Mixteca Poblana [7,8]. In this
industrial context, actions towards sustainability must be part of the corporate strategy
of the industrial sector, with the objectives of raising the quality of life, reducing and
eradicating poverty, and minimizing the environmental impact created by this industry [9].
The publication Governance of Mineral Resources in the 21st Century: Guiding the Extractive
Industry towards a Sustainable Development at the 2020 International Resources Panel has offered
suggestions to improve the economic state of the mining industry, alongside encouraging
companies to comply with social and environmental standards in order to generate trust
among the population and avoid social conflicts. In this context, the 2030 Agenda for Sus-
tainable Development promotes action plans to eradicate poverty, protect the environment,
and reduce problems related to climate change. Within the 17 objectives set out in the 2030
Agenda, objective 9—“Industry, Innovation, and Infrastructures”—refers to generating and
applying actions to ensure that industry is more productive while significantly reducing
carbon dioxide emissions and the amount of waste generated in its processes.

This research is based on the method of the Business Council (BS) for Sustainable
Development (2002), and the framework is a diagnostic study of the context and the chal-
lenges of the Mexican marble industry in these dimensions: social, political, economic,
cultural, environmental, research, and development. Thus, this article contributes a com-
prehensive management approach of three helices for the integration of forms of capital
reported in the Mining, Minerals, and Sustainable Development (MMSD) project of 2006,
and the Multidimensional Model proposed by [10], to synergize government, business,
school, and society strengths, with the aim of transforming the marble industry sector in
the following principles of sustainability. The integration of the strengths of the marble
industry in the international arena under a comprehensive management approach of three
helices—government–business–school—allows the experiences and knowledge related to
the marble industry processes reported internationally to be aligned with the local expe-
rience where this comprehensive three-helix management (THM) approach is replicated.
With this purpose in mind, the objectives of this article are the following:

• Synthesize the internationally written research articles about the marble industry from
2014 to 2021 and accumulate knowledge to help address problems in this mining
sector;

• Suggest the government–business–school approach as a useful intervention guide for
researchers to address problems in the marble industry value chain.

In the following sections, we summarize the experience reported by international
writings related to problem-solving strategies in environmental, economic, social, cultural,
political, and social dimensions, and integrate them into the comprehensive three-helix
intervention, or triple-helix intervention (THI), approach for the sustainable development
of the marble industry.

2. Materials and Methods

This exploratory and descriptive research integrates the socio-economic and environ-
mental dynamics of the marble industry, reported in the scientific writings from 2014 to
2021, with the objective of relating the dimensional elements of a sustainable company
reported by [10] and described in Figure 1, with the forms of capital of the Mining, Minerals
and Sustainable Development (MMSD) project reported in the United Nations through
ECLAC, i.e., natural capital, manufactured capital, human capital, social capital, and fi-
nancial capital. As shown in Figure 2, this research uses secondary information sources
organized according to [11] which provides a model for the revision of the articles and
written research defined by stages of evaluation. This model is relevant to describe the
technological, productive and environmental context of the Mexican marble industry, sup-
ported with international articles. In this research, the primary information was collected
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in situ from three marble companies in Tepexi de Rodríguez-Puebla in Mexico by applying
five hedonic-level Likert scale surveys validating aspects related to the processes of marble
extraction and processing, and which have been reported by international and national
research articles.

Figure 1. Multidimensional approach (MA) for sustainable development.

Figure 2. Model proposal with an integral approach and its influence field in the forms of capital for
the marble industry in Mexico.

Findings identified in the literature framework and from the in situ research are used
in this study for a THI approach to manage the processes of the marble industry towards
becoming a sustainable enterprise in relation to economic, social, and environmental
progress. The scientific literature has reported the evolution of models with a quadruple- or
quintuple-helix approach, in which knowledge of society is highlighted to create synergies
between economy, society, and democracy [12]; however, this industry in Mexico is in the
process of development. Therefore, it is considered that the mining sector, and specifically
the marble industry, in the process of this development, must be oriented so that products’
exploitation, production, and transformation are sustainable in order “to” preserve those
resources that are essential for human subsistence.

3. Results

3.1. Socioeconomic and Environmental Contexts of the National Marble Industry and Its
International Contrast

One of the industrial activities with a great negative impact to ecosystems is the mining
industry and, specifically, the extraction and transformation of stone materials, such as
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marble. Worldwide, the countries with the largest deposits are Italy, Spain, Portugal, Turkey,
and Greece. From these countries, the three main producers are Turkey, with 39%, followed
by Italy with 16%, and Greece with 7% [13]. In this industry, Palestine, Turkey, and Pakistan
have identified problems inlcuding the unsustainable management of waste resulting from
the extraction, transformation, transportation and distribution of marble [14], as well as
the demand for large amounts of water for the cutting and polishing processes of the
marble cuts, with an estimated annual average of 38,700,000 m3 [15]. According to [16], the
high demand for this resource negatively impacts the communities in which this industry
operates due to the discharge of contaminated water characterized by a high content of 95%
calcium carbonate, with the remaining 5% comprising chemicals such as calcium sulfide,
chrome, zinc, and iron used in the marble cutting and finishing processes [16,17]. This
section is divided by subheadings. It should provide a concise and precise description of
the experimental results and their interpretation, as well as the experimental conclusions
that can be drawn.

On the other hand, the low professionalization of workers in this industry is also a
concern, as are the poor conditions in the ventilation and lighting of the facilities, compro-
mising the medium- and long-term health of the workers in this industry [4]. In this context,
the absence of good practices in the management and exploitation of quarries, the absence
of formally established environmental controls, companies with changing structures and
organizations, negative externalities to public health, and push production systems are
all factors that affect the integration of the supply chain in the marble industry, and can
be divided into economic, social, and environmental dimensions. In this regard [1], it is
highlighted that the lack of strategic association with suppliers and customers, the lack of
communication and integration between areas, as well as the absence of marketing plans
and inventory management, consequently impact the disarticulation of processes which,
in turn, greatly affect the profitability of the company, and increase negative externalities.
Recently [3], it was reported that, in Palestine, the marble and stone industry has negative
effects on public health, the environment, water resources, and ecosystems, as well as
causing noise pollution and radical changes to the environment landscape where this
industry is located.

In Mexico, the marble industry has been growing in economic activity since the 1960s,
with two areas dedicated to exploitation and extraction of marble: Comarca Lagunera, with
15 municipalities [18], and the state of Puebla with 5 municipalities [19]. The statistical
yearbook of 2019 Mexican Mining reported a production of 1,964,041.14 tons, with an
estimated value of 12 billion dollars [20], which shows that this type of industry meets a
demand that strengthens the economy of the country. However, the negative externalities
caused by its exploitation, transformation, storage, and distribution must be considered [21].
A disarticulation between economic agents and, consequently, a push type of production is
reported, which generates the excessive waste of natural and human resources, negatively
impacting economic, social, cultural, and environmental factors. Meanwhile, [8] it has been
emphasized that the marble industry has collaterally created large amounts of waste from
its extraction to finishing processes, without having a responsible final disposal for them,
with the waste being thrown into open-air landfills.

The Ministry of Economy of Mexico in 2020 reported that, in the extraction and
exploitation stage, there have been performance problems in terms of the efficient use of
resources, low levels of safety, and the effective use of the minerals, as well as low economic
profitability, due to the fact that artisanal and improvised techniques, as well as the use of
machinery in poor technological conditions, continue to be used. Hence, ref. [6] it has also
been identified that small companies in this industrial sector are technologically backwards.

The recommendations identified through the research performed on this sector place
special emphasis on the fact that the marble industry requires an in-depth analysis and
an action plan to remedy its negative externalities and to lead this sector towards being a
sustainable industry. Figure 3 shows that the marble industry in Mexico had a rise in 2014
and a significant drop in production in the following years.
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Figure 3. Marble production volume in Mexico from 2009 to 2019.

Various authors agree that the problems faced by the Mexican marble industry can be
summarized by social, political, cultural, and environmental dimensions. The Ministry of
Economy of Mexico have emphasized the importance of giving this industry an impulse
from the start point of exploitation of the stone so that problems hindering its progress can
be addressed. To achieve this, experts in the sector, as well as Mexican mining organizations
and the Mexican Ministry of Economy, highlight the importance of learning from the
experiences of other countries such as Pakistan, Turkey, Iran, and Italy which, despite
encountering the same problems as Mexico, have shown some signs of progress in the
productive and environmental dynamics of the marble industry.

Table 1 illustrates the challenges the marble industry faces in Mexico that require
the attention of the scientific community and stakeholders in this industrial sector. The
common problems in the two marble industrial zones in Mexico are summarized by
negative externalities to public health and damages to the green mantle, soil, and air;
inefficient processes from excessive exploitation of the rocks in the quarry; and waste in the
extraction of the dimension rocks and in the lamination process.

Table 1. Problems and challenges of the marble industry in Mexico.

Dimension Problem Challenge

Social

The marble industry in Mexico is characterized by the
participation of the community and agricultural actors
who have this marble industry as their primary source of
income. This industry’s operation has negative effects on
public health caused by dust, environmental noise, and
occupational hazards [22]. Technical advice is not
available for this industry; there are no financing
programs with the scope of the productive investment
required by this sector [5,23].

• Manage and promote effective links with research
centers that provide advice to guide and exploit the
marble industry in a sustainable manner;

• Within a three-helix framework (THF), manage
advisory programs for the exploitation of marble
reserves;

• Identify those public policies that promote and
bring together marble entrepreneurs and the ejido
communities to address the social problems arising
from the activities of the marble industry to find
suggestions and solutions;

• Implement occupational hygiene and safety
management systems that guarantee the physical
health of the workers who provide their services in
the quarries, and marble processing companies.

Political and Economic

The productive and technological situation faces
problems characterized by inefficient processes, poor
organization and administration, added to technological
obsolescence and conventional methods still being
applied. The previous mentioned aspects impact the low
use of the dimensional marble stone, and more quality
defects also start showing [8]. On the other hand, as a
non-concessionable activity, the extraction of marble is
exempt from the payment of mining rights at a federal
level. Hence, there has been an increase in excessive
exploitation without considering a geological analysis of
the mine and land where these deposits are located.

• Establish public policies that regulate the
exploitation of marble deposits;

• Identify programs that promote the marble
industry in its different stages of the value chain;

• Encourage school–company relationships for the
development of competitive advantages in the
marble industrial sector.
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Table 1. Cont.

Dimension Problem Challenge

Cultural

Various externalities of the marble industry that
transcend in the community´s cultural changes, for
example, working in marble factories and leaving lands
to cultivate [24]. For this reason, populations living near
the areas of marble exploitation and extraction demand
that their rights, customs and traditions are not altered
by the marble mining activities. There are also reports of
water scarcity in the municipalities where this industry is
located [17].

• Develop strategic alliances between interested
parties and organizations that participate directly
and indirectly in the marble industry (ejidatarios,
business owners, entities at local, state, and
national government levels); as well as private
organizations, higher education universities and
research centers to create collaboration networks
for mutual government–society–business benefit.

Environmental

The marble industry in Mexico has an impact on green
mantles [7] and the irregular consumption of water
resources [17], as well as affecting local landscaping [5].
These problems are attributed to the extraction, cutting
and transformation processes of dimension stones.

• Promote practices and processes, under a socially
responsible culture, to regulate environmental
policies so that the marble industry can be led
towards sustainable development;

• Identify three-helix association mechanisms aimed
to manage and promote circular economy models
based on marble industry waste;

• Identify linking mechanisms between public and
private organizations to establish strategies for the
treatment of discharges to soil, air, and water that
come from polishing, smoothing, and special
processes;

• Develop collaborative strategies between public
and private organizations and the marble industry
to carry out environmental impact evaluations
before and during industry operations, as well as in
quarry operations.

3.2. International Marble Industry: Problems and Solutions

Table 2 shows that one of the problems of great concern in the marble industry in
the international context is waste management; secondly, the low quality in the finishing
process and the productivity related to the efficient use of raw and in-process materials
are also concerning. On the other hand, as shown in Figure 4, in this industrial sector,
job security is a large problem, yet it receives little attention in the industry: most of the
proposals for improvement are frequently focused on reducing waste generated by this
industry. Likewise, the least managed issues are those oriented to environmental safety, and
the treatment of industrial effluents from this industry. Those problems raise the possibility
of waste management and the treatment of its effluents from a circular economy approach.
The proposed solutions show that they are focused, with greater importance, on addressing
the problems related to occupational health and safety, as well as negative externalities
caused by dust and environmental noise [4]. The waste generated by the marble industry—
essentially pieces of laminated marble and sludge from marble cutting—have caused
obvious environmental damage that range from changing the landscape [6] to impact on
flora and fauna, in addition to the pollution caused by the emission of marble dust into the
air, causing respiratory diseases [25]. Given the fact that these events have been reported in
international articles [2], the authors recommend carrying out environmental performance
evaluations and looking for alternative economies that are useful and marketable [4].

The reality faced by the marble mining sector in the international order, and its contrast
in the national order, show similar scenarios. In Mexico and other parts of the world, the
low efficient use of marble in its extraction and transformation processes [6], the damage to
the health of workers and of local people in the community in this industry [25], and the
high amounts of waste and sludge created [3] are among the most recurrent problems. To
that effect, given the scenario of declining production shown by the industry in Mexico
(Figure 3), several authors recommend improving the processes of marble extraction,
transformation, and distribution.
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Table 2. Problems and solutions of the marble industry in some countries.

Author Country

Problems Solutions
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[14] Palestine x x x x x x x x x
[26] Cuba x x x x
[27] Turkey x x x
[16] Pakistan x x x x
[4] Turkey x x x x x x
[8] Spain x x

[28] Peru x x
[29] Spain x x
[1] Ethiopia x x x x

[30] Spain x x x
[31] Egypt x
[2] China x x

[32] Pakistan x x x
[33] Guatemala x x
[34] Spain x x
[35] India x x
[36] Egypt x x
[3] Palestine x x x x x x x

[37] Turkey x x

 

Figure 4. Proportion of the problems and solutions of the marble industry internationally.

4. Discussion

Conceptual Approach of Triple-Helix Intervention for the Marble Industry in Mexico

The dynamics of emerging economies motivate industries to innovate to increase
competitiveness and promote the economic development of the region where they are em-
bedded [38]. Currently, academics and researchers observe the convergence of the activities
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of citizens, companies, the government, universities, and society with great attention and
interest. This idea describes the conceptual approach of the quadruple- and quintuple-helix
models. However, in the current context of the marble industry, especially in emerging
countries such as Mexico, social intervention behaves only as a regulatory body of indus-
trial practice. To that effect, we propose initiating the transition towards the sustainability
of this industry through a conceptual model of THI: government–company–school. In
this regard, the findings reported by international research on the problems of the marble
industry and the fieldwork of three marble companies located in Tepexi de Rodríguez in
Puebla, Mexico, coincide with the importance of the intervention of the government, com-
panies, and universities to manage an efficient and friendly marble industry in a socially
responsible environment. It is evident that the problems and challenges of the marble
industry in Mexico are not unrelated to those presented by industries in other countries.
Some experiences in the different dimensions of sustainability have been internationally
covered in different articles. These experiences have made it possible to address specific
problems when public policies, research, and responsible societies are presented.

The Ministry of Economy and the Ministry of Mining recognize that Mexico has an
important diversity of marble reserves that have not yet been quantified, and that its quality
allows it to compete internationally. Therefore, it is important for direct and indirect agents
to participate in this industry, and to tackle the global environmental regulatory challenges
to transition towards a sustainable industry. Countries in the European community are
already on this path towards a sustainable marble industry.

In the 1990s, the United Nations—through the division of natural resources and
infrastructure—carried out a reform of the mining laws in Latin-American and Caribbean
countries. These agreements essentially focused on the economic aspects and, later, rele-
vance was given to the environmental dimension [9]. However, the social dimension was
not addressed, causing the mining industry to reflect an imbalance affecting sustainable
development. The report Governance of Mineral Resources in the 21st century: Gearing the
Extractive Industry towards Sustainable Development at the 2020 International Resources Panel
identified suggestions to improve the economic performance of the mining industry to
ensure compliance with social and environmental standards. Moreover, this report ob-
served a series of guidelines so that this sector could establish a governance structure
that addresses safety and resource efficiency. These approaches motivated replacing the
concept of “Social License” with “Sustainable Development license” and “Operate”. The
first built trust among the population and avoided social conflicts, whereas the second
works under an integrating approach, with the objective for companies to achieve positive
environmental, social, and economic results with fairer agreements, taking part in positive
actions for the environment and stakeholders so that local customs and traditions can be
preserved.

In this train of thought, it is necessary to create “alternatives for life and the gen-
eral welfare without compromising the ability of future generations to meet their own
needs” [39], which is the case of the mining industry and, especially, of the marble industry.
In this respect, the report of the project MMSD (2006) describes that, to satisfy the needs of
current contexts without affecting future generations, things must be sorted in an effective
way [40]; in other words, the available capitals must be produced and exploited in a reason-
able manner, considering the preservation of those fundamental for human life. The MMSD
project (2006) defines five forms of capital as a valuable investment for the sustainable
operation of the mining sector: natural, manufactural, human, social, and financial.

Natural capital provides a sustained income from ecosystem benefits, such as biolog-
ical diversity, mineral resources, clean air, and water. Manufacturing capital transforms
natural capital to create consumption value, and is defined by machines, facilities, and
infrastructure. Social capital is represented by groups and institutions that make collabora-
tions between people and groups possible. Financial capital is the representation and result
of the natural, manufacturing, human, and social capitals [40].
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Figure 5 concentrates this set of elements in terms of dimensions and forms of capital
with which [10] positive impacts will contribute to improve production practices along
with environmental quality, resulting in a positive impact on the community by addressing
common interests from a multidimensional systematic perspective with the collaboration
of specialists and social actors. This intervention approach seeks to integrate synergies
based on partnerships between stakeholders so that the marble industry can transition to
sustainability. The author of [9] notes that collaboration agreements and the creation of
communication channels are two necessary aspects in a world with an empathetic and
responsible society. This work scenario is strengthened by [23], which recommends creating
committees as managers to monitor the operation of this industry. With this purpose in
mind, the design and permanent assessment of the performance of the different operations
from the supply of dimension stone and throughout the chain of economic actors of this
industry is necessary.

 

Figure 5. Comprehensive THI approach for sustainable development in the marble industry.

In essence, the sum of the efforts of all intervening actors, directly and indirectly,
is fundamental for the development of this national industry. Hence, many research
centers and universities have created connections or partnerships in regard to research and
development (R&D).

This school–company relationship can be seen, for example, in India [35], where they
have created a recycling alternative for approximately 12 million tons of marble waste
under the concept of a sustainable circular economy approach. In Turkey, the successful
transformation of marble and the costs involved were documented by the computational
program of the mathematical model of linear programming of mixed integers, which solved
the problem of marble cutting waste and the planning of marble cutting [37].

In Ethiopia [1], a research project was carried out to determine the factors that af-
fect the performance of the supply chain of the marble industry, supported by a review
of information from research documents, the application of surveys, interviews, and de-
scriptive statistical analysis. The results provided recommendations with emphasis on
creating a strategic partnership between customers and suppliers through an electronic
communication network for the management of operations in the extraction and trans-
formation of marble. In Peru, similarly to the case in India, a study that reused marble
waste for the construction industry, reported by [28], demonstrated the usefulness of these
residues to manufacture concrete with a resistance of 279.18 kg/cm2 through mechanical
resistance and comprehension tests, showing greater resistance compared to the formula of
conventional concrete.

In regard to health, safety, and the environment in Turkey, problems related to human
factors (noise and lighting) and to the environment (reuse of waste, water, sludge) were
solved by using the Inventive Problem-Solving Theory (TRIZ), which resulted in an increase
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in productivity of more than 7.5%. The author of [5] documented the characterization of the
marble production chain in the state of Puebla so areas of opportunity could be identified
regarding raw material, transformation processes, and organizational knowledge. From
this research, a series of recommendations, such as those reported in Ethiopia by [1], could
be emphasized, leading to the efficient integration of the production chain, the creation of
new management and organizational practices, and the diversification of marble products
towards new national and international selling markets.

These findings highlight the importance of government–business–school conections
to undertake improvements throughout the value chain in the marble industry. For this
purpose, Figure 5 shows a comprehensive THI approach for the development of the
sustainable marble company. This approach, based on a government–company–school
relationship as an intervention manager, seeks to bring research centers and universities
closer together to carry out research and the innovation of these processes throughout the
supply value chain, including supply, production, and distribution. The improvement
interventions in the marble industry supply chain are managed as capital reported by
the MMSD project (2006), and the dimensions are oriented towards those of a sustainable
company, as reported by [10]. In this THI approach, society has an important role in
which permanent communication is maintained to assess the impact of the benefits and
externalities caused by the marble industry.

Given the dynamics of emerging economies, some studies have argued for the need to
apply actions aimed at innovation, entrepreneurship, and economic development through
the synergistic work of companies, governments, and universities in a triple-helix manage-
ment approach [41]. However, given the development observed by academic and research
bodies, the need in these economies to incorporate the social sector as a manager oriented
towards business innovation stands out [42].

Based on the comprehensive proposal of the triple-helix intervention to guide the
marble industry in Mexico towards sustainable development, it is important to establish a
descriptive model of the stages where all components, dimensions, and forms of capital
converge to create processes that are efficient and friendly to the social and environmental
surrounding contexts (Figure 6).

 

Figure 6. Descriptive functional model of the THI aproach in the marble industry.

Figure 6 shows the three stages of the descriptive functional model. The planning
phase, from a systemic approach, allows the comprehension of the context of the productive
and environmental dynamics in the marble industry, leading it towards sustainability. In
the next section, the action stage, the direct and indirect variables are fundamental so
that the transformation, logistics, and service processes can generate social benefits with
activities that elicit more efficient and productive dynamics, considering social and eco-
logical implications. Based on the forgoing, the third phase of “continuation” emphasizes
the universal measures that help to quantitatively assess the performance of the marble
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industry in regard to the labor, production, and environmental aspects, through a perma-
nent evaluation in which indicators will be identified, managed, and referenced to ensure
continuous improvement.

5. Conclusions

The exploitation, extraction, and transformation of marble have structured a model of
profitable economic development which has observed a significant economic exponential
increase since the 1980s. However, this industry in the international market has reported
low levels of productivity, high levels of raw material waste, and a negative environmental
impact generated by its extraction and transformation processes. In this context, the
marble industry in Mexico presents similar problems with its two representative zones:
the Comarca Lagunera and the Mixteca Poblana. To solve these problems, the literature
reports various strategies. In this article, an approach is presented to intervene in the value
chain of the marble industry based on social dimensions and forms of capital, with the aim
of integrating the knowledge of public organisations and the experience of stakeholders
in this industry to lead it in a sustainable manner. This integrating approach suggests the
improvement of the productive processes, including the extraction, transformation, and the
distribution of marble. To this end, the integration of the social sector to stimulate synergy
between operations should follow the triple-helix model proposed here as a manager of
innovation, and leave behind actors with only social claim.

Finally, although the identification of the performance metrics of the value chain have
not yet been identified, this approach strives to intervene so that the value chain can be
complemented.
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