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Abstract: Partial shade condition is a significant factor contributing to the PV panel performance in
mismatch losses and power generation. The technique suggested in this study allows the physical
rearrangement of the PV panel to distribute the shade on the entire PV array. MPPT, selecting
suitable inverter topology, or PV panel reconfiguration enhances the performance of the PV panel.
This study proposes a new shade dispersing method, novel shade dispersion (NSD). It compares
the performance of the NSD method with conventional configurations (CCs). This research article
models and simulates 6 × 6 PV array configurations such as Series-Parallel (SP), Total-Cross-Tide
(TCT), Bridge-Linked (BL), Honey-Comb (HC), and the newly proposed NSD method under non-
shading and nine different partial shading cases. The performance indices used for comparative
analysis are global maximum power points, efficiency, power enhancement, open circuit voltage,
short circuit current, and number of crests. The Soltech 1 STH-215-P PV module was selected in
the MATLAB/Simulink environment to simulate PV array arrangements. Hardware experiments
validate the performance of the NSD method.

Keywords: partial shading; conventional configuration; reconfiguration techniques

1. Introduction

Renewable energy has become one of the most critical factors to preserve the climate
and the earth’s assets for the coming generation. Power has a crucial part in the financial
growth and the welfare of a nation. From India’s perspective, solar energy increases power
generation and generates energy reliably considering ecological, communal, and financially
beneficial properties. India has significant potential, availability, and other features of
solar power. Therefore, the government also emphasizes the promotion of photovoltaic
generation in the Indian power sector [1]. Series and parallel connected modules form an
array to obtain power per requirement. PV material, temperature, irradiance, dust, array
structure, maximum power point tracking (MPPT) method, converter topology, etc., are
the different parameters responsible for the performance of PV array [2,3]. This uncertainty
affects the estimation of a PV cell’s series and shunt resistances (namely, Rs and Rsh).
Ref. [4] provided the uncertainty analysis of the measured currents, voltages, temperatures,
and irradiances. At a constant temperature, the output current increases with an increase in
irradiance with negligible effect on the voltage. Voltage is substantially reduced at constant
irradiance, and the current slightly increases with increased temperature up to the rated
temperature [5]. Any object that obstructs the sun rays’ path to the PV panel or uneven
falling sunlight on the earth creates a partial shading condition (PSC) [6]. A bypass diode
is connected antiparallel to the PV module to avoid the hot spot issues created by PSC.
Under PSC, the difference between the minimum irradiance received by non-overlapped
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and overlapped solar cells determines the overcurrent [7]. A diode adds antiparallel either
to a PV module or a set of PV series modules [8]. It inserts the number of peaks in the
PV curve, among which the rise consisting of the highest value is known as the global
maximum power point (GMPP). Traditional MPPT struggles to obtain true MPP in rapidly
changing PSCs. In this area, extensive research considers improved conventional methods,
new metaheuristic methods, etc., which increases the complexity and cost of the MPPT
system [9]. Ref. [10] performed the experimental validation of TCT with the standard
deviation of PSC and found a better configuration. Results demonstrated that 15% and 25%
reduced irradiance. The power yield degraded to 4% and 7.5%. Refs. [11,12] explored the
performance of series (S), parallel (P), SP, TCT, BL, and HC PV topologies and concluded,
without considering bypass diode BL, and with bypass diode TCT generates maximum
power. Reconfiguration is an effective way to improve power generation [13]. This was
classified into two broad categories: electrical and physical reconfiguration. Both methods
have their boons and downsides [14]. Ref. [15] proposed the maximum and minimum
algorithm dynamic reconfiguration method, which uses a double pole double throw switch
to change the electrical connections. Ref. [16] provided the dynamic array reconfiguration
for water pumping applications. The authors of [17] investigated efficiency and robustness
of the dynamic array reconfiguration for hybrid PV system application. Refs. [15–17]
efficiently used the switch matrix to reconfigure the PV modules in the array for different
applications. Ref. [18] proposed an electrical repositioning on a 4 × 5 arrangement with
12 switches to make adaptive cross ties to enhance the power generation. For case I the
proposed method improved GMPP, fill factor (FF), and power enhancement (PE) compared
with SP, and minimized power losses (PL). It was found best at 291.3 W, 0.586, 2.71%,
55.6 W, and 83.97%, for TCT in MATLAB/Simulink and experimentation with the same
performance index under all PSCs. Complexity, sensor requirement, switches, and their
controlling structure, sensor speed dependency, cost, etc., are the significant limitations of
dynamic reconfiguration. Therefore, many researchers go for static array reconfiguration.
The authors of [19] proposed and demonstrated a Sudoku-based physical reconfiguration
system on a 9 × 9 array. It improves the power generation from 4 to 26% for different PSCs.
The authors of [20] proposed an improved Sudoku method on a 9 × 9 array and compared
it to the CC. Ref. [21] offered a magic square method and compared it with TCT, Sudoku,
and the optimal Sudoku method on an 81 modules array structure. Ref. [22] proposed the
zigzag method and compared it with the TCT and Sudoku method on a 6 × 6 PV array.
Ref. [23] related competence square and the dominance square method with TCT on a
9 × 9 PV array. Ref. [24] proposed a clue-based skyscraper puzzle method and compared it
with TCT, Sudoku method, and the puzzle-based competence square method. This study
reviews many static reconfiguration (SR) methods and analyzes their performance. SR
is a robust, simple, less costly, and effective way to deal with partial shading issues and
improve the performance of the PV array. Still, these methods have some limitations.

The novelty of work is:
Electrical networks persist similarly to TCT and the physical position of units in the

PV array changed.

• Sudoku is limited to a 9 × 9 array and has different logic patterns. Calculating a
higher-order magic matrix is very difficult in the magic square method. Square puzzle
patterns may require more computational burden, complex wiring, and losses; puzzle-
based methods such as the skyscraper have clue dependency, and clue choosing
is tedious. This study proposes a new method of static reconfiguration to address
these issues;

• The proposed novel shade dispersion (NSD) method is a two-step method. In the
first step, a magical submatrix is formed, and in the second step, logical shifting is
performed to distribute the shade and increase the power generation of the PV array.
This method considers magic sub-matrix shifting to reposition the panels in the same
column, maintaining the least possible wiring;

2
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• The proposed scheme was analyzed under ten shading cases. The results validated
with SP, TCT, BL, and HC compared the global maximum power point (GMPP),
mislead power (MP), output power (%O/P), efficiency, fill factor, and % power en-
hancement for NSD under-considered shading pattern. Figure 1 gives the workflow
of this paper.
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Figure 1. Representation of PV array connection structures under partial shading conditions with
performance evaluation parameters.

2. Modeling and Simulation of NSD Method

This section explains the modeling and simulation of conventional PV array configu-
rations and the proposed novel shade dispersion (NSD) method in MATLAB/Simulink.
The panel electrical parameters has mentioned in Appendix A. The flowchart for panel
repositioning is provided in Figure 2. The present work consists of 36 modules placed in
six rows and six column patterns (shown in Figure 3a) for conventional configurations and
the NSD method (Figure 3b). The TCT connection-based MATLAB simulation is shown in
Figure 4. Mathematical modeling for output voltage, output current, and output power
of all the traditional PV array structures are provided in Table 1. Here, the module, row,
and array output voltages are Vj, VR, and VPV, respectively. The module, string, and
array output currents are Ij, IS, and IPV. PPV is the PV generation of the array. A novel
shade dispersion method is proposed to reconfigure the panel of a variety to improve the
performance through shade dispersion. In the proposed technique, electrical connections
remain the same as in TCT [20]; only the physical location of the modules changes. It
uses voltage, current, and power equations for TCT, as mentioned in Table 1. The basic
principle used for this method is row current equalization. It proposes a magic submatrix

3
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arrangement with the magic number 21 and its logical shifting to reposition the panels
within a column, as shown in Figure 3b.

Energies 2022, 15, x FOR PEER REVIEW 4 of 18 
 

 

mentioned in Table 1. The basic principle used for this method is row current equaliza-
tion. It proposes a magic submatrix arrangement with the magic number 21 and its logi-
cal shifting to reposition the panels within a column, as shown in Figure 3b. 

The steps involved to build the proposed 6 × 6 NSD matrix are: 
Step I: Formation of the submatrix 

1. The submatrix is proposed so that rows and column multiplication of the submatrix 
is 6; 

2. Therefore, numbers 1 to 6 are placed in the 2 × 3 submatrix to summation equal to 
the magic number 21; 
Step II: Formation of the primary matrix 

3. The submatrix placing is started in the 1st row, 1st column position. The next sub-
matrix is placed at the next (3rd) row, next (2nd) column position. This process con-
tinues until the last (6th) row is filled by the considered submatrix; 

4. Submatrix rows are interchanged, and that submatrix starts to fill in vacant places of 
the primary matrix, starting from the next column of previously filled areas. Here, 
the interchanged submatrix is filled from 1st row, 4th column. The next submatrix is 
placed in the 3rd row and 4th column. The last column of the submatrix is placed in 
the same row and vacant column serially; 

5. It is performed so that the summation of row numbers, as well as column numbers, 
is equal to the magic number 21, as shown in Figure 3b; 

6. The process continues until vacant places in the primary matrix are filled, and the 
fifth step is achieved. 

 
(a) 

Start

Select m×n submatrix

Is 
m*n= a 

Is 
m<n

Is 
m≥ 2

Start placing 1 to a number 
from mth row, nth column

Start placing 1 to a number 
from nth column

Place next number in next row, 
next column (feed forward)

Place next number in next 
column with skipping one 

column

Is 
‘a’ number 

filled

Stop

Is 
‘a’ number 

filled

Is 
m=n 

Yes
Yes

Yes
Yes

No

No

No

No

NoNo

Yes Yes
Energies 2022, 15, x FOR PEER REVIEW 5 of 18 
 

 

 
(b) 

Figure 2. Flowchart for panel repositioning of NSD method (a) Step 1: submatrix formation; (b) 
Step 2: main matrix formation. 

(a)

C1 C2 C3 C4 C5 C6

R1 1 1 1 1 1 1

R2 2 2 2 2 2 2

R3 3 3 3 3 3 3

R4 4 4 4 4 4 4

R5 5 5 5 5 5 5

R6 6 6 6 6 6 6

11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66

 

(b)

C1 C2 C3 C4 C5 C6

R1 2 6 4 5 3 1 21

R2 5 3 1 2 6 4 21

R3 1 2 6 4 5 3 21

R4 4 5 3 1 2 6 21

R5 3 1 2 6 4 5 21

R6 6 4 5 3 1 2 21

21 21 21 21 21 21

2 6 4
5 3 1

21

Submatrix

 
Figure 3. Panel positions in PV array (a) conventional methods, (b) NSD method. 

Start

Select square matrix of a×a

Is 
‘a’ prime 
number

Place next submatrix element row-
wise staring from next row and 
jump by skipping one column of 

previous submatrix

Place submatrix of m×n  from next 
row, next column of previous 

submatrix

Is 
‘ath ’ row 

filled

Stop

Is 
‘ath ’ row 

filled

Start placing submatrix from 
1st  row, 1st  column

Are 
all the places 

filled?

Yes 

Yes Yes 

Yes 

No

NoNo

No

Figure 2. Flowchart for panel repositioning of NSD method (a) Step 1: submatrix formation; (b) Step
2: main matrix formation.

4



Energies 2022, 15, 3515

Energies 2022, 15, x FOR PEER REVIEW 5 of 18 
 

 

 
(b) 

Figure 2. Flowchart for panel repositioning of NSD method (a) Step 1: submatrix formation; (b) 
Step 2: main matrix formation. 

(a)

C1 C2 C3 C4 C5 C6

R1 1 1 1 1 1 1

R2 2 2 2 2 2 2

R3 3 3 3 3 3 3

R4 4 4 4 4 4 4

R5 5 5 5 5 5 5

R6 6 6 6 6 6 6

11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66

 

(b)

C1 C2 C3 C4 C5 C6

R1 2 6 4 5 3 1 21

R2 5 3 1 2 6 4 21

R3 1 2 6 4 5 3 21

R4 4 5 3 1 2 6 21

R5 3 1 2 6 4 5 21

R6 6 4 5 3 1 2 21

21 21 21 21 21 21

2 6 4
5 3 1

21

Submatrix

 
Figure 3. Panel positions in PV array (a) conventional methods, (b) NSD method. 

Start

Select square matrix of a×a

Is 
‘a’ prime 
number

Place next submatrix element row-
wise staring from next row and 
jump by skipping one column of 

previous submatrix

Place submatrix of m×n  from next 
row, next column of previous 

submatrix

Is 
‘ath ’ row 

filled

Stop

Is 
‘ath ’ row 

filled

Start placing submatrix from 
1st  row, 1st  column

Are 
all the places 

filled?

Yes 

Yes Yes 

Yes 

No

NoNo

No

Figure 3. Panel positions in PV array (a) conventional methods, (b) NSD method.

Energies 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. TCT-based MATLAB simulation for the NSD method. 

Table 1. The output voltage, current, and power for conventional PV array configurations. 

Connection Output Voltage Output Current Output Power 

SP V = V = 6V  I = I = 6I  P = 36V I  

TCT V = V = 6V  I = I I I I I I = 6I  P = 36V I  

BL V = V = 6V  I = I I I I I I = 6I  P = 36V I  

HC V = V = 6V  I = I I I I I I = 6I  P = 36V I  

3. Partial Shadings Conditions and Shade Dispersion Effect 
For CCs the shade does not scatter, as shown in Figure 5. Through NSD, the partial 

shading condition spread on a complete array, as shown in Figure 6. Under case I (i.e., 
non-shading condition), the performance of the NSD method is the same as the CC (i.e., 
without reconfiguration), as shown in Figure 7a. The performance indicators are the 
global maximum power point (GMPP), mislead nine PSCs as power (MP), output power 
(%O/P), efficiency, fill factor, and % power enhancement of NSD. The %PE was calcu-
lated for NSD and compared with all the CCs. For case I, all 36 modules of the PV array 
have 1000 W irradiance; the remaining PSCs have four groups of irradiance. 
• Case II to case IV have group 1 of 24 panels with 1000 W irradiance; groups 2, 3, and 

4 have 200 W, 500 W, and 700 W irradiance, respectively, with four panels in each 
group; 

• In case V, 10 modules have PSCs, group 1 with 1000 W has 26 panels. Group 2, with 
200 W, has four modules, and groups 3 and 4 have 500 W, 700 W irradiance, respec-
tively, with three panels; 

• Case VI has groups 1, 2, 3, and 4 with 1000 W, 200 W, 500 W, and 700 W irradiance 
on 28, 3, 1, and 4 modules, respectively; 

• In case VII, 24 panels came in group 1. Groups 2 and 3, have 200 W and 700 W irra-
diance, respectively. Group 4 has two panels that have 700 W irradiance; 

• In case VIII, groups 1, 2, 3, and 4 have five panels in each group of 1000 W, 200 W, 
500 W, and 700 W irradiance with 16, 8, 7, and five panels, respectively; 

Figure 4. TCT-based MATLAB simulation for the NSD method.

Table 1. The output voltage, current, and power for conventional PV array configurations.

Connection Output Voltage Output Current Output Power

SP VPV =
6
∑

j=1
Vj = 6Vj IPV =

6
∑

j=1
ISj = 6IS

PPV = 36VjIS

TCT VPV =
6
∑

j=1
Vj = 6Vj

IPV = I1 + I7 + I13 +
I17 + I23 + I29 = 6IS

PPV = 36VjIS

BL VPV =
6
∑

j=1
Vj = 6Vj

IPV = IS1 + IS2 + IS3 +
IS4 + IS5 + IS6 = 6IS

PPV = 36VjIS

HC VPV =
6
∑

j=1
Vj = 6Vj

IPV = IS1 + IS2 + IS3 +
IS4 + IS5 + IS6 = 6IS

PPV = 36VjIS

The steps involved to build the proposed 6 × 6 NSD matrix are:
Step I: Formation of the submatrix

1. The submatrix is proposed so that rows and column multiplication of the submatrix
is 6;

2. Therefore, numbers 1 to 6 are placed in the 2 × 3 submatrix to summation equal to
the magic number 21;

Step II: Formation of the primary matrix

5
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3. The submatrix placing is started in the 1st row, 1st column position. The next subma-
trix is placed at the next (3rd) row, next (2nd) column position. This process continues
until the last (6th) row is filled by the considered submatrix;

4. Submatrix rows are interchanged, and that submatrix starts to fill in vacant places of
the primary matrix, starting from the next column of previously filled areas. Here,
the interchanged submatrix is filled from 1st row, 4th column. The next submatrix is
placed in the 3rd row and 4th column. The last column of the submatrix is placed in
the same row and vacant column serially;

5. It is performed so that the summation of row numbers, as well as column numbers, is
equal to the magic number 21, as shown in Figure 3b;

6. The process continues until vacant places in the primary matrix are filled, and the
fifth step is achieved.

3. Partial Shadings Conditions and Shade Dispersion Effect

For CCs the shade does not scatter, as shown in Figure 5. Through NSD, the partial
shading condition spread on a complete array, as shown in Figure 6. Under case I (i.e.,
non-shading condition), the performance of the NSD method is the same as the CC (i.e.,
without reconfiguration), as shown in Figure 7a. The performance indicators are the global
maximum power point (GMPP), mislead nine PSCs as power (MP), output power (%O/P),
efficiency, fill factor, and % power enhancement of NSD. The %PE was calculated for NSD
and compared with all the CCs. For case I, all 36 modules of the PV array have 1000 W
irradiance; the remaining PSCs have four groups of irradiance.
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• Case II to case IV have group 1 of 24 panels with 1000 W irradiance; groups 2, 3, and 4
have 200 W, 500 W, and 700 W irradiance, respectively, with four panels in each group;

• In case V, 10 modules have PSCs, group 1 with 1000 W has 26 panels. Group 2,
with 200 W, has four modules, and groups 3 and 4 have 500 W, 700 W irradiance,
respectively, with three panels;

• Case VI has groups 1, 2, 3, and 4 with 1000 W, 200 W, 500 W, and 700 W irradiance on
28, 3, 1, and 4 modules, respectively;

• In case VII, 24 panels came in group 1. Groups 2 and 3, have 200 W and 700 W
irradiance, respectively. Group 4 has two panels that have 700 W irradiance;

• In case VIII, groups 1, 2, 3, and 4 have five panels in each group of 1000 W, 200 W,
500 W, and 700 W irradiance with 16, 8, 7, and five panels, respectively;

• In case IX, only five modules are partially shaded, and 31 modules have 1000 W
irradiance in group 1. It has two 200 W modules in group 2, one 500 W module in
group 3 and two 700 W irradiance panels in group 4;

• In case X, with 1000 W, group 1 has 25 panels. Group 2, with 200 W has four panels,
and groups 3 and 4 have 500 W and 700 W irradiance, respectively, with three panels.

4. Result and Discussion

The performance evaluation of PV array CCs and proposed reconfiguration was
performed under various shading situations on MATLAB/Simulink. The assessment has
two segments, (1) power-voltage profile and (2) computational parameters.

4.1. Power-Voltage Profiles under Various PSC

The sketches in Figure 7 represent the variation in PV curves for different conventional
configurations and the proposed NSD method of reconfiguration under various irradiance
levels. Under case I of the non-shading condition, all the panels have the same standard
irradiance of 1000 W. Figure 7a highlights that all the configuration and NSD methods have
the same ideal performance under case I with only one peak on the PV curve.

Under case II, conventional configurations have two peaks on the PV curve, while
the NSD method has only one extreme. TCT, BL, and HC have identical extreme power,
and it is more than SP, while for NSD, the maximum capacity is much more enhanced, as
revealed in Figure 7b. Figure 7c indicates that SP has the lowest power output for case III.
It offers continuous improvement for BL, HC, TCT, and NSD. NSD offers 6234 W as the
maximum power output. In Figure 7d, SP has three peaks, and other methods have two
heights. BL and HC show improved performance over SP but lesser than TCT and NSD.
NSD provides the highest output of 6234 W, as shown. Figure 7e portrays that BL and HC
have six peaks, SP and TCT have five peaks, while NSD is reduced to four peaks and the
highest power generation equal to 6303 W for case V. In Figure 7f case VI, HC and SP have
the same maximum power generation as BL and TCT with three peaks; in contrast, the
NSD has the highest power generation of 6646 W with three small deep peaks. Figure 7g
showcases the case VII PV curves for SP, TCT, BL, HC, and NSD. NSD has a single top with
6133 W as the highest power generation. In Figure 7h SP and TCT have six and four peaks.
BL, HC, and NSD structures have three peaks with the highest power, 5160 W, for the NSD
method. Figure 7i portrays case IX. Under this shade, TCT has maximum power extraction
of 6563 W in conventional configuration while NSD has improved power extraction with
6953 W.

4.2. Computational Parameters

The performances of all CC and NSD were investigated in the following six computa-
tional parameters, as observed in Appendix B, which highlights the efficacy of NSD over
CC. Tables 2–6 give the performance of SP, TCT, BL, HC and NSD method under ten PSCs
respectively.
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Table 2. SP performance under PSC.

Shade
Cases

VOC
(V)

ISC
(A)

No. of
Peaks

PM
(W)

VM
(V)

IM
(A)

Case I 217.80 47.16 1 7665.80 174.00 44.00
Case II 217.80 43.49 2 4654.30 115.15 40.42
Case III 217.80 38.64 2 5655.20 174.98 32.31
Case IV 217.80 47.15 4 4711.90 115.76 44.00
Case V 217.80 45.23 5 5005.40 160.34 31.21
Case VI 216.31 44.81 3 5818.10 153.06 38.01
Case VII 214.91 43.49 4 4496.00 123.36 36.45
Case VIII 213.54 37.49 6 3309.10 115.42 28.67
Case IX 216.81 47.16 4 6068.50 175.65 34.55
Case X 215.89 44.80 5 5768.50 164.53 35.06

Table 3. TCT performance under PSC.

Shade
Cases

VOC
(V)

ISC
(A)

No. of
Peaks

PM
(W)

VM
(V)

IM
(A)

Case I 217.70 47.16 1 7665.80 174.00 44.00
Case II 215.41 47.16 2 5039.80 114.48 44.02
Case III 215.76 42.42 3 6001.20 179.43 33.45
Case IV 215.90 44.74 4 6028.20 180.12 33.47
Case V 215.30 47.14 5 4627.30 189.10 27.74
Case VI 216.48 44.80 3 5833.80 147.02 39.68
Case VII 215.09 47.15 4 4807.50 116.94 41.11
Case VIII 214.02 42.44 4 4172.10 118.73 35.14
Case IX 216.95 47.15 3 6563.30 181.91 36.08
Case X 216.01 44.78 4 6093.50 180.53 33.75

Table 4. BL performance under PSC.

Shade
Cases

VOC
(V)

ISC
(A)

No. of
Peaks

PM
(W)

VM
(V)

IM
(A)

Case I 217.00 47.16 1 7665.80 174.00 44.05
Case II 215.36 47.16 2 5039.80 114.48 44.02
Case III 215.73 42.43 3 5849.50 178.21 32.82
Case IV 216.03 44.79 3 5749.20 146.56 41.22
Case V 216.30 47.15 6 5036.20 184.84 27.24
Case VI 216.40 44.80 3 5706.00 148.28 38.48
Case VII 215.01 47.15 4 4702.90 117.56 40.00
Case VIII 213.57 39.29 3 4033.20 115.99 34.77
Case IX 216.90 47.15 4 6300.60 179.86 35.03
Case X 215.97 44.79 3 5862.10 178.79 32.79

Table 5. HC performance under PSC.

Shade
Cases

VOC
(V)

ISC
(A)

No. of
Peaks

PM
(W)

VM
(V)

IM
(A)

Case I 217.78 47.16 1 7665.80 174.00 44.00
Case II 215.33 47.16 2 5039.80 114.48 44.00
Case III 215.75 42.43 4 5913.70 179.34 32.97
Case IV 215.63 44.79 2 5674.10 146.28 38.78
Case V 216.40 47.15 6 5102.40 185.66 27.48
Case VI 216.38 44.81 3 5873.30 151.80 38.69
Case VII 214.98 47.16 4 4797.10 119.08 40.29
Case VIII 213.59 39.30 3 4042.00 116.37 34.74
Case IX 216.90 47.16 2 6320.40 179.78 35.16
Case X 216.04 47.14 5 5915.20 179.48 32.96
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Table 6. NSD performance under PSC.

Shade
Cases

VOC
(V)

ISC
(A)

No. of
Peaks

PM
(W)

VM
(V)

IM
(A)

Case I 217.79 47.17 1 7665.80 174.00 44.06
Case II 215.79 40.86 1 6234.00 175.95 35.43
Case III 215.79 40.86 1 6234.00 175.95 35.43
Case IV 215.94 44.75 3 6211.00 177.56 34.98
Case V 216.04 44.75 4 6303.20 177.23 35.56
Case VI 216.54 44.78 3 6645.70 177.48 37.44
Case VII 215.54 39.25 1 6132.90 174.90 35.07
Case VIII 213.98 34.57 3 5160.20 176.34 29.26
Case IX 216.97 47.10 2 6952.80 176.76 39.34
Case X 216.04 43.18 2 6350.60 177.09 35.86

4.2.1. Global Maximum Power Point (GMPP)

The PV curve has multiple peaks due to PSC, as shown in Figure 8. GMPP is the
maximum power of all the crests. Figure 8a indicates that GMPP for all CCs and NSD have
concentrated 7665 W. For case II, TCT, BL, and HC provide equal power at 5039 W in CC,
and NSD improves it up to 6234 W. Case III also NSD has GMPP at 6234 W. Under case IV
in CC, TCT provides maximum output at 6028 W while NSD has 6211 W. Under case V,
NSD has 6303 W as a GMPP; this is 1201 W more than HC, which offers the highest power
of all CCs. Under case VI to case X in CC, TCT offers the uppermost GMPP while NSD
has GMPP at 6646 W, 6133 W, 5160 W, 6953 W, and 6350 W for respective PSC. It is 812 W,
1325 W, 988 W, 389 W, and 257 W more than TCT under the same PSCs.

4.2.2. Mislead Power (MP)

Figure 8b shows that the proposed NSD method provides the least misleading power
as the red NSD trace is at the innermost on the radar pattern. Case I does not have any
MP. From case II to case X it is 1431 W, 1431.8 W, 1454 W, 1363 W, 1020 W, 1533 W, 2506 W,
713 W, and 1315 W continuously. NSD reduces the MP by about 11 to 46% under these
shading cases.

4.2.3. Percent Output (%O/P)

Figure 8c Highlights that all considered structure provides 100% output for case I.
NSD provides 81% O/P, the maximum from cases II, III, and IV. In CC, HC provides the
highest %O/P at 66.5% under case V, while NSD improves it to 82.69%. In CC under case
VI to case X, TCT offers the uppermost %O/P, and NSD improved it by 10.5%, 17.3%, 12.9%,
5%, and 3.4% compared with TCT for the respective shading cases.

4.2.4. Efficiency (η)−

Figure 8d shows the NSD structure is more efficient than TCT, which has the same elec-
trical connections; under-considered PSCs. The radar pattern representation in Figure 8d
clearly shows that NSD offers efficiency near 21%. It is approximately equal to the PV array
efficiency for case I.

4.2.5. Fill Factor (FF)−

Figure 8e highlights that the proposed method offers 2–5% improvement in FF for
cases III, IV, IX, and X; 15.19% more FF for case V, 8% improvement for case VI, and 20–25%
enhancement for case II, VII, and VIII, compared with maximum FFs in CC.

4.2.6. Percent Power Enhancement (%PE)

The %PE ensures the power increment by the proposed reconfiguration. Figure 8f
shows that NSD improves power extraction compared with CC. Compared with SP, TCT,
BL, and HC, NSD has a 25.9, 15.79, 17.44, and 16.45% power boost.
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5. Experimental Implementation and Result Analysis
5.1. Experimental Setup

Towards real-time implementation of the proposed NSD method, a prototype labo-
ratory experiment with 16 PV modules and a 4 × 4 array structure was conducted on the
PV chroma 62050 H-600 S simulator (Taiwan). The chroma 63203 E DC (Taiwan) electronic
load was used to develop an experimental setup, as shown in Figure 9. The electrical
parameters for each 5 Watt panel are, VOC = 21.6 V, VM = 17.5 V, ISC = 0.3 A, IM = 0.29 V.
Under non-shading conditions, this PV array provides 80 W power generation.

As shown in Figures 10 and 11, two types of irradiance circumstances were examined
in the experiment. The shading patterns considered for experimentation were horizontal
(case I) and triangular corner (case II). These are similar to case II and case V in Section 2 but
with different irradiance levels and array sizes. The shade concentrates before reconfiguring
this array structure, as shown in Figure 10, for all the conventional configurations. After
applying the proposed NSD reconfiguration, the shadow was distributed on the array, as
shown in Figure 11.
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5.2. Experimental Result Analysis

To perform the analysis of conventional configurations, SP, BL, HC, TCT, and the
proposed NSD reconfiguration, the PV curve nature was obtained by changing the load
resistance through DC Electronic load from 4000 Ω to 1 Ω. The curve nature was observed
on an HDO4034A (USA) 350 MHz high-definition oscilloscope.

5.2.1. PSC Case I

Figure 12 depicts the PV curves for each conventional configuration, NSD reconfig-
uration scheme, and the global MPP (the dot on the PV curve) under PSC case I. The PV
curve shows GMPP for SP, BL, HC, TCT, and NSD at 59.22 W, 49.79 W, 49.79 W, 59.23 W,
and 66.57 W, respectively. Moreover, SP and TCT have two peaks on the PV curve, BL and
HC have three heights, and NSD reconfiguration reduces the number of peaks.
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5.2.2. PSC Case II

Under this shading condition, Figure 13 shows that all conventional configurations
have three peak PV curves. In contrast, the proposed NSD reconfiguration has one minor
local peak and GMPP at a higher level with an improved curve nature. SP, BL, HC, TCT,
and NSD provide GMPP at 52.92 W, 54.63 W, 53.75 W, 56.04 W, and 70.03 W, respectively.
Figure 13 highlights that there is much improvement in the PV curve nature under this
shading condition and GMPP location.
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• In partial shading cases, for the least irradiating case VIII and most irradiating case IX,
NSD has maximum power extraction of 5160 W and 6952.8 W, respectively; the highest
efficiency of 20.97% and 20.87%, respectively; FF is 0.6976 and 0.6803, respectively;
and the lowest ML of 2505.6 W and 713 W among all configurations, respectively;

• Under PSC for the considered PV array, TCT has the highest GMPP, %O/P, efficiency,
FF, %PE, and least %MP at 5683 W, 74%, 18.54%, 0.5784, and 28.73%. Compared with
TCT, NSD has 705.77 W, 9.2%, and 0.1139 enhancement in GMPP, %O/P, and FF, and a
2.41% reduction in MP;

• The results obtained from the first simulation show that the NSD method achieved the
most significant output power and overall performance compared with all conven-
tional configurations under nine partial shading cases;

• Moreover, experimental research was carried out. The suggested NSD PV array
reconfiguration design beats the other conventional PV array configurations (SP, BL,
HC, and TCT) in power increase and several peaks. The experimental setup validated
the influence of panel shifting on various PV array topologies.
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V.C.C., S.M. and T.S.; Investigation, Resources, Writing—Original Draft Preparation, Writing—Review
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Appendix A

Table A1. PV Module electrical characteristics.

Symbol Electrical Characteristics Ratings

Pmax Maximum power 231.15 W
Voc Open circuit voltage 36.3 V
Isc Short circuit current 7.84 A

Imax Maximum power point current 7.35 A
Vmax Maximum power point voltage 29 V

- Temperature coefficient of Voc −0.3609%/deg. ◦C
- Temperature coefficient of Isc 0.102%/deg. ◦C

Appendix B

Definitions:

• Global Maximum Power Point (GMPP): GMPP is the single maximum point on the
PV curve.

GMPP = max(multiple power Peaks)

• Mislead Power (MP): MP denotes the difference between GMPP in the non-shading
(NS) condition and GMPP in the shaded (PSC). It creates the hot spot effect and, due
to that, power loss. It is provided by:
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MP = GMPPNS −GMPPPSC

• Percent Output (%O/P): The %O/P is calculated as the maximum power ratio under
PSC to extreme power under non-shading (NS) conditions. It provides how much
energy is generated under PSC compared with power at standard irradiance. It
reaches the %O/P of the PV array under PSC and NS conditions. It provides how
much percentage of PSC affects the PV array output.

%O/P =
Pmax(PSC)

Pmax(NS)

• Efficiency (η): It is provided by the ratio output power (power generation) POut to
input power (solar insolation) Pin On the PV panel. It is provided by:

η =
POut

Pin

• Fill Factor (FF): The maximum power generated at PSC to the total rated capacity of a
solar PV array is FF. It is also known as the usefulness of PV array. It is always 0 to 1.
It is provided by:

FF =
VMIM

VOCISC

• Percent Power Enhancement (%PE): %PE is provided by the difference between the
GMPP for the proposed NSD method and the GMPP for conventional configuration
(CC) under partial shading conditions. It provides how much power is enhanced by
NSD compared with CC under various irradiance conditions.

% PE =
GMPPNSD −GMPPCC

GMPPCC
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Abstract: Coal-fired power plants are widely used to achieve a power balance in grids with renewable
energy, which leads to new requirements for speediness in load dispatch. This paper presents a
nondominated-sorting grey wolf optimizer algorithm (NSGWO) for the multiobjective load dispatch
of coal-fired power plants that employed efficient nondominated sorting, a reference-point selection
strategy, and a simulated binary crossover operator. The optimization results of the benchmark
functions indicated that the NSGWO algorithm had a better accuracy and a better distribution than
the traditional multiobjective grey wolf optimizer algorithm. Regarding the load dispatch of economy,
environmental protection, and speediness strategies, the NSGWO had the best performance of all the
simulated algorithms. The optimal-compromise solutions of the economy and speediness strategies
of the NSGWO algorithm had a good distribution, which elucidated that this novel algorithm was
favorable to allowing coal-fired power plants to accommodate renewable energy.

Keywords: load dispatch; multiobjective optimization; grey wolf optimizer; nondominated sorting;
coal-fired power plant

1. Introduction

Modern coal-fired power plants are clean and highly efficient, and their emissions
of NOx and coal consumption are controlled at remarkably low levels [1]. Regarding the
national energy distribution in China, coal-fired power plants still need to output power
for basic loads in the grid. A coal-fired power plant may have different units (such as
water-cooling and air-cooling units [2]) and units of various scales. Differences in unit
characteristics may result in variable performances; therefore, it is necessary to optimize
the operation strategy of coal-fired power plants with multiple units on the basis of both
the economy and environmental-protection objectives. Furthermore, regarding the long-
term objective of carbon neutrality [3], coal-fired power plants will play a new role in the
power grid. Considering the development of renewable energy including solar power
and wind power, coal-fired power plants, which have a strong capability to accommodate
renewable energy, are widely used to achieve a power balance in power grids. In terms of
the uncertainty of renewable energy [4], it is necessary to operate coal-fired power plants
under conditions of rapid load change. Therefore, the optimal operation of coal-fired
power plants should be further investigated while considering the factors of the economy,
environmental protection, and speediness.
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1.1. Load-Dispatch Strategy

Units of various types and scales in a coal-fired power plant usually receive the load
command from the grid, which limits the optimal operation of the coal-fired power plant.
Regarding the load-dispatch strategy, the coal-fired power plant receives the total load
command from the grid, and then dispatches it to different units [5]. Based on previously
mentioned factors, namely the economy, environmental protection, and speediness, the
load dispatch of a coal-fired power plant is a multiobjective optimization of load command
between different units.

Several researchers have employed optimal load-dispatch strategies for power genera-
tion systems. Dai et al. [6] proposed a multiobjective economic load-dispatch method for
large coal-fired power plants using a hierarchical clustering and retrieval strategy based
on the fuzzy c-means clustering algorithm. They concluded that the data-mining-based
method was able to achieve plant-level optimal load dispatching while meeting the actual
requirements of the grid. Ishraque et al. [7] introduced various optimization strategies of
load dispatch for microgrid power systems with renewable energy sources. They consid-
ered that the proposed load-following method was the best dispatch strategy to achieve
lower operating costs and lower pollutant emissions. Cui et al. [8] considered that the heat
load and power load could be optimized simultaneously in microgrids. Regarding the
differences in real-time response of heat load and power load, they performed short-term
and long-term simulations and elucidated that the total cost could be reduced, as could
the peak load of the power grid. Li et al. [9] also focused on investigating multiobjective
load dispatch between the heat load and power load, and concluded that the proposed
method could balance the production cost and pollutant-emission objectives under the
fluctuation of the thermoelectric load demand. Xu et al. [10] introduced the load-dispatch
strategy to save coal for coal-fired power plants using a support-vector machine. Their
results indicated that the proposed load-dispatch strategy performed better than the normal
separate load demand on a single unit in a coal-fired power plant. In addition, novel load-
dispatch strategies have been studied for similar power-generation systems. Liao et al. [11]
investigated the short-term load-dispatching method for a hydropower plant with multiple
turbines, and simulation results indicated that it could achieve optimal operation while
simultaneously meeting the practical operation requirements of the hydraulic and electric
constraints. Jamal et al. [12] introduced a bioinspired computational heuristic algorithm for
dispatch loads for a power-generation system that included coal-fired thermal-generating
units and wind-power units. They considered that the proposed algorithm had advantages
in accuracy, convergence, and robustness in solving load-dispatch problems. Furthermore,
Bie et al. [13] conducted a load-dispatch investigation based on the uncertainty of renewable
energy, and the results showed that the real-time load-dispatch model could calculate the
load command while considering the primary and secondary regulation of the grid.

In general, much research has been published on load-dispatch optimization, but few
studies considered the present application of a coal-fired power plant with renewable-
energy accommodation, which is significant in terms of the multiobjective load dispatch of
modern coal-fired power plants.

1.2. Multiobjective Optimization Algorithms

Among the load-dispatch strategies, researchers consider the optimization algorithm
to be the key technology needed to achieve the objectives of energy saving and reducing pol-
lutant emissions. In addition to the traditional optimization methods (including dynamic
programming, Lagrange relaxation, and the exhaustive method), intelligent optimization
algorithms have already been introduced in recent investigations.

Intelligent optimization algorithms usually employ an evolutionary mechanism or
heuristic algorithm to enhance the convergence speed and robustness ability of the optimal
solution procedure. Ghasemi et al. [14] proposed a differential evolution algorithm (DE)
based on the mathematical model of sociopolitical evolution. They performed comparative
simulations to verify the effectiveness of the algorithm, and concluded that this algorithm
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was a reliable tool for solving the load-dispatch problem. Neto et al. [15] proposed a method
that combined a differential-evolution algorithm and the greedy randomized adaptive
search procedure algorithm. The simulation results showed that the algorithm could solve
the nonsmooth load-dispatch problem by considering the effect of valve-point loading.
Secui et al. [16] proposed a new heuristic algorithm called modified symbiosis (MSOS) that
could solve the large-scale-unit load-optimization problem with a valve-point effect. They
concluded that the proposed algorithm had a good performance based on the simulation
results of five power-generation systems of different constraints and dimensions.

Furthermore, other heuristic algorithms, including the bat algorithm and the popula-
tion extremum algorithm, have been introduced to solve the multiobjective optimization
of load dispatch. Kavousi-Fard et al. [17] proposed an improved bat algorithm to solve
the nonconvex load-optimization problem, which was then examined on IEEE test sys-
tems to show its high abilities and satisfying performance. Chen et al. [18] used the
feasible-solution method to deal with constraints, and proposed a constrained multiobjec-
tive population extremal optimization algorithm called CMOPEO-EED. They considered
the proposed algorithm to be a viable option to solve the load-dispatch problem with
renewable power generation.

Particle-swarm optimization (PSO) is another commonly used algorithm in multiob-
jective optimization. Hosseinnezhad et al. [19] used an improved PSO algorithm (θ-PSO)
to solve the economic load-optimization problem that could easily deal with various
constraints. The findings of this study elucidated that the advantage of computational
efficiency of the θ-PSO algorithm could be a promising alternative approach to solving the
load-dispatch problem in practical power systems. Regarding the combined advantages of
the PSO algorithm and other intelligent algorithms, researchers have investigated hybrid
algorithms based on PSO. Narimani et al. [20] proposed a hybrid algorithm based on the
PSO algorithm and leapfrog algorithm for multiregional economic and environmental-
protection load distribution. They verified the effectiveness of the hybrid algorithm using
different test systems to balance the multiobjectives of generation costs and environmen-
tal issues. Zou et al. [21] proposed a new global particle-swarm-optimization algorithm,
which adopted an updated method that relied on the global optimal particle to guide all
particle-search activities and a slightly perturbed randomization method for particle flight
trajectories with uniform distribution. Mandal et al. [22] introduced variable acceleration
coefficients into the PSO algorithm and then proposed a self-organized hierarchical particle-
swarm-optimization algorithm. They found that the results of the proposed method were
superior in terms of fuel costs, emission output, and losses.

In general, intelligent optimization algorithms have advantages in solving the multi-
objective optimization problems of load dispatch at power plants, though their application
under the conditions of renewable energy accommodation should be further investigated.

1.3. Grey Wolf Optimizer

Former studies show that various intelligent algorithms have been employed to
solve the multioptimization issues in power-generation systems and similar applications.
However, considering the rapid load-change conditions present under renewable-energy
accommodation, the load dispatch of current coal-fired power plants requires rapid and
accurate convergence.

The grey wolf optimizer (GWO) is a swarm-intelligence optimization algorithm pro-
posed by Mirjalili et al. [23]. Compared with other natural heuristic optimization algorithms
such as particle-swarm optimization and differential evolution, GWO has attracted atten-
tion due to its fast convergence speed, strong robustness, and high solution accuracy with
a simple structure. Zhang et al. [24] used a GWO to plan the path of an unmanned combat
aerial vehicle, and they concluded that it was more competent than other state-of-the-art
evolutionary algorithms in terms of quality, speed, and stability of solutions. Although
the grey wolf algorithm has superior performance on most data sets, it may not have
the best performance on all. In view of the defects of a GWO, many scholars have made
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relevant improvements to the performance of the GWO algorithm. Madhiarasan et al. [25]
optimized the initial population of a GWO to improve the diversity of the population.
Saremi et al. [26] improved the search mechanism of a GWO. The results indicated that the
proposed GWO algorithm was able to significantly improve the performance of multiobjec-
tive optimization. Long et al. [27] proposed an updating method for the key parameter of a
GWO in the application of constrained optimization problems. They considered that the
simulations for both benchmark functions and engineering applications could demonstrate
the good performance of the proposed GWO algorithm. Moreover, hybrid optimization
algorithms combining GWO with other intelligent optimization algorithms have already
been introduced by researchers [28–30]. However, few scholars have conducted in-depth
research on the evolution mechanism of the GWO for the present application of load-
dispatch optimization. Song et al. [31] introduced a GWO to solve the economic emission
problem of two different power systems, and used a price penalty factor to combine the
goals of economic dispatch and emission dispatch into a single function. Wong et al. [32]
solved the economic scheduling problem under practical constraints with a GWO and
tested them on two test systems with practical constraints. Moradi et al. [33] used a GWO
to solve nonlinear and nonconvex economic scheduling problems while considering the
valve-point effect and transfer loss, and compared the obtained results with some exist-
ing heuristic methods. Jangir et al. [34] investigated the economic constrained-emission
dispatch problem based on a nondominated-sorting GWO, and they considered that it
could be used in a power grid with wind power. However, they did not consider the
speediness requirement of units in the coal-fired power plant, which indicated that the
solving procedure of nondominated-sorting GWO should be further optimized.

The above shows that limited work has been conducted on the multiobjective opti-
mization algorithm while considering the rapid and accurate convergence requirements
under the unit rapid load-change condition. The more constraints that are considered,
the more complex the load-dispatch optimization will be. Therefore, further research on
the GWO needs to be carried out according to the specific problems of the multiobjective
optimization of the load dispatch of coal-fired power plants.

1.4. Present Investigation

On the basis of the previous literature review, although much research has been
published on load-dispatch optimization, few studies considered the present application
of a coal-fired power plant with a renewable-energy accommodation. Moreover, limited
work has been conducted on the multiobjective optimization algorithm that considered the
rapid and accurate convergence requirements under the unit’s rapid load-change condition.
Therefore, an investigation into the multiobjective optimization of the load dispatch of a
coal-fired power plant was conducted using a novel grey wolf algorithm.

In the present paper, the proposed nondominated-sorting grey wolf algorithm showed
that it may help solve various optimization problems in similar applications. The or-
ganization of this study was arranged as follows. Section 2 shows the methods for the
multiobjective optimization problem of load dispatch. Section 3 details the solving proce-
dure of the novel grey wolf algorithm. Section 4 presents the simulation results and further
discussion. Section 5 presents the conclusions of this study.

2. Methods

A theoretical model for the multiobjective optimization of the load dispatch of a coal-
fired power plant, as well as optimization constraints and performance evaluation indices,
were proposed in order to achieve the requirements related to the economy, environmental
protection, and speediness.
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2.1. Multiobjective Optimization Problem of a Coal-Fired Power Plant
2.1.1. Problem Description

The load-dispatch problem of a coal-fired power plant can generally be described as
per Equation (1): 




min F(x) = min(f1(x), f2(x), . . . , fm(x))T

st.
{

gi(x) ≤ 0, i = 1, 2, . . . p
hj(x) = 0, j = 1, 2, . . . , q

(1)

where F(x) is the objective function of the economy performance, and the sub-functions
represent the economy characteristics of units in the coal-fired power plant. Further, gi(x)
and hj(x) represent inequality constraints and equality constraints, respectively. Specifically,
pollutant emission is an inequality constraint when it is not selected as an optimization
objective.

For a coal-fired power plant, the relationship between the pollutant emission gi and
the unit load Pi can be expressed as the quadratic function relationship shown below

gi(Pi) = αiP2
i + βiPi + γi (2)

where αi, βi, and γi are the emission-characteristic coefficients of the unit.
Regarding the requirements of the relevant national policies of environmental pro-

tection, it is necessary to employ the environmental protection index as an optimization
object instead of an inequality constraint. Thus, the objective function of load dispatch
when considering environmental protection is defined as shown in Equation (3):

min G = min∑N
i=1 gi(Pi) (3)

where G represents the pollutant discharge of the whole plant.
The power grid has specific requirements for the load response rate of coal-fired power

plants, specially under the condition of renewable-energy accommodation. Therefore, the
speediness of load variation should be considered in the load dispatch of coal-fired power
plants. The minimum time consumption of load dispatch under ideal conditions Tideal is
shown in Equation (4):

Tideal =
∣∣∣PD −∑N

i=1 Pi,now

∣∣∣/∑N
i=1 vi (4)

where PD is the total load command of all units, MW; and vi represents the load changing
speed of unit i, MW/min.

The sum of squares of the differences between the load-dispatch times of each unit
and the minimum time under ideal conditions T(P) can be calculated as follows:

T(P) = ∑N
i=1 ((Pi − Pi,now)/vi − Tideal)

2 (5)

Therefore, combining former indicators with the economic indicators, the multiobjec-
tive optimization of load dispatch for a coal-fired power plant can be described as shown
in Equation (6):

min(F, G, T), min(F, G), min(F, T)

st.





∑N
i=1 Pi − PD

Pmin
i ≤ Pi ≤ Pmax

i∣∣Pi − Pnow
i

∣∣/ti ≤ vi

(6)

2.1.2. Constraint-Violation Degree

The constraint-violation degree is introduced to show whether an individual x vio-
lates the i-th inequality constraint or the j-th equality constraint, which is expressed in
Equations (7) and (8):

Coni(x) = max{gi(x), 0}, 1 ≤ i ≤ p (7)
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Conj(x) = max
{

hj(x), 0
}

, 1 ≤ j ≤ q (8)

Thus, the total constraint-violation degree of individual x is shown in Equation (9):

ν(x) = ∑p
i=1 Coni(x) + ∑q

j=1 Conj(x) (9)

In the multiobjective optimization of the load dispatch for a coal-fired power plant,
the equation constraint describes that the sum of the loads of each unit must be equal to
the total load command, while the inequality constraint shows the load-regulation range.

2.1.3. Feasible and Infeasible Solutions

When an individual x satisfies both the inequality constraints and the equality con-
straints in the load-dispatch model, this individual is called a feasible solution; otherwise, it
is an infeasible solution. The region composed of all feasible solutions is called the feasible
region Ω, and the set composed of infeasible solutions is called the infeasible region.

2.1.4. Dominance

For the two specific solutions x1 and x2, the economy, speediness, and environmental-
protection indicators corresponding to solution x1 are better than those corresponding to
solution x2. Thus, solution x1 is called a nondominated solution, while solution x2 is called
a dominant solution, which can be written as x1 � x2.

All individuals in the solution set that cannot be dominated by other individuals are
called nondominated solutions, and this set of nondominated solutions is called the Pareto
front (PF) of optimization solutions.

2.2. Constraints for Multiobjective Optimization

Constraint processing should be conducted to balance the relationship between the
objective function and the constraints. In this paper, the penalty-function method was used
to deal with constraints. By adding the penalty function F(x, M) into the objective function,
the constrained optimization problem was transformed into an unconstrained optimization
problem. Parameter M in the penalty function represents a large positive number, called
the penalty factor, which acts as a penalty for the solution that violates the constraints.
Using the external penalty function, the multiobjective function with the penalty function
is expressed as follows:

minF(x, M) = min( f1(x) + M1v(x), f2(x) + M2v(x), . . . , fm(x) + Mmv(x)) (10)

2.3. Evaluation Index of Multiobjective Optimization

For the multiobjective optimization of a load dispatch, evaluation indices were em-
ployed to compare the simulation results, which may have shown the convergence perfor-
mance and comprehensive performance of the optimization algorithm.

2.3.1. Convergence Evaluation Index

The generational distance (GD) was introduced to evaluate the convergence perfor-
mance, which represented the degree of the solution set P to the real Pareto frontier P*, as
shown in Equation (11):

GD(P, P∗) =
1
|P|

√
∑|P|

i=1 d2
i (11)

where |P| is the number of solutions in P, and di represents the Euclidean distance from
the i-th solution in P to the nearest solution in P*. Therefore, a small GD value meant the
convergence performance was better.

22



Energies 2022, 15, 2915

2.3.2. Comprehensive Evaluation Index

The inverse generational distance (IGD) was used to represent the degree of the real
Pareto frontier P* to the solution set P [35]. It evaluated the convergence and diversity of
the algorithm simultaneously, which was defined as:

IGD(P, P∗) =
1
|P∗|

√
∑|P∗ |

i=1 d′2i (12)

where d′i
2 represents the nearest Euclidean distance from the i-th individual in P* to the

solution in P. Here, a small IGD showed that the optimization algorithm was better in both
the convergence performance and the diversity of solutions.

2.3.3. Optimal-Compromise Solution

For the multiobjective optimization of a load dispatch, the fuzzy set theory is suggested
to find an optimal-compromise solution from the Pareto fronts. The fuzzy membership
degree for the load-dispatch optimization can be expressed as:

ϕpi =





1 fpi ≤ f min
i

( f max
i − fpi)/( f max

i − f min
i ) f min

i < fpi < f max
i

0 fpi ≥ f max
i

(13)

where ϕpi represents the satisfaction of the i-th objective of the p-th optimal solution,
i ∈ {1, 2, . . . , m}; fpi represents the value of the i-th objective of the p-th optimal solution;
and f max

i and f min
i represent the maximum and minimum values of the i-th objective in all

optimal solutions, respectively. When ϕpi was equal to 1, it meant that the individual was
completely satisfied with the i-th target value.

The standardized satisfaction calculation method of each solution p in the nondom-
inated solution set is shown in Equation (14), where the solution corresponding to the
largest ϕpi was the optimal-compromise solution:

ϕp = ∑m
k=1 ϕpk/∑N

p=1 ∑m
k=1 ϕpk (14)

Regarding the previous objectives and constraints of the multiobjective optimization
of the load dispatch for a coal-fired power plant, the sequence diagram is shown in Figure 1.
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3. Solving Procedure of the Optimization Algorithm

The multiobjective grey wolf algorithm was employed to find the load-dispatch-
optimization solution for a coal-fired power plant. However, the issues of local optimum
and insufficient stability may limit the performance of this optimization algorithm. In
addition, the influence of the alpha wolf may result in a poor distribution of the obtained
solutions., and the traditional nondominated sorting may consume more time in the
iteration process. Considering the multiobjective optimization of a load dispatch with
multiple complex constrains, a nondominated-sorting grey wolf optimizer (NSGWO)
algorithm was proposed that employed efficient nondominated sorting (ENS), a reference-
point selection strategy, and a simulated binary crossover operator.

3.1. Fast Nondominated Sorting Based on ENS

Fast nondominated sorting is a cyclic stratification process. If this process is conducted
in sequence, it will require too much time to converge. In fact, the frontier number of
individuals is determined by the dominated individual, which could infer the follow-
ing equation:

f ront(p) = 1 + max
q∈Q

f ront(q) (15)

where f ront(p) represents the number of the frontier where individual p is located, and Q
is the set composed of all individuals that dominate individual p.

The first step of the ENS was to arrange all individuals in the population according
to their first-dimension target values from small to large. If the first-dimension target
values were the same, we compared their second-dimension index values, and so on. In the
sorted population, it was impossible for the individual in the latter order to dominate the
individual in front of it. This meant that the individual that dominated p must have been
assigned to the frontier when examining p. The number of the frontier where p is located
was calculated using Equation (15).

On this basis, starting from the first frontier F1, it was judged in turn whether each
frontier contained an individual that dominated p. The first frontier that does not contain
the dominant p was the frontier where p resides. If there were individuals dominating
p up to the last frontier Fk, then p was assigned to a new frontier Fk+1. If all individuals
were mutually nondominant, then a nondominant comparison was required between them.
In this case, since there was only one frontier, the complexity was Tworst = m · N(N −
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1)/2 = O(mN2). The algorithm could achieve the best performance if the population
satisfied the following conditions: there were

√
N frontiers in total, and each frontier

contained
√

N individuals. Moreover, an individual was dominated by all individuals
whose frontier number was smaller than its under this condition. For a specific individual
p, if it belonged to frontier Fi, it was necessary to find an individual dominating it in
each frontier Fi(j < i). This indicated that at least i − 1 nondominated comparisons were
required. For all

√
N individuals in Fi, a total of

√
N(i + 1) comparisons were required. In

addition, all individuals of Fi needed to be compared pairwise, which meant that a total of√
N(
√

N − 1)/2 comparisons were required. Considering all frontiers, the best period of
complexity is shown in Equation (16):

Tbest = m ·∑
√

N
i=1

[√
N(i− 1) +

√
N(
√

N − 1)/2
]
= m ·

[
N(
√

N − 1)/2 + N(
√

N − 1)/2
]
= O(MN1.5) (16)

3.2. Selection Strategy Based on Reference Point

To select N individuals from the set of offspring and parents Rt = Pt∪Qt, it should
firstly divide Rt into multiple nondominated layers (F1, F2, . . . , Fk) by nondominated sorting.
Then, a new population St is established from the start of F1 until its size is equal to or
exceeds N for the first time. In order to maintain the diversity of solutions, a selection
strategy based on reference point was used to select nL = N −∑L−1

i=1 Ni individuals, where
Ni is the number of individuals in the i-th frontier, and nL is the number of individuals that
needed to be selected from the last frontier satisfying the former requirements. Moreover,
the systematic approach was introduced to generate a set of uniform weight vectors
{λ1, λ2, . . . , λR} so that the reference points could be determined. In order to compare the
target values of each dimension, it was necessary to adaptively normalize the target value

of each dimension. The ideal point
−
z = (zmin

1 , zmin
2 , . . . , zmin

m ) of defining population St was
composed of the minimum value zmin

1 , i = 1, 2, . . . , m of each dimension of St. Based on the
ideal point, the objective function could be transformed to f ′i (x) = fi(x)− zmin

i . Then, a
hyperplane could be built by extra points obtained from the objective function; this process
can be expressed as:

ASF(x, w) = maxm
i=1 f ′i (x)/wi, x ∈ St (17)

Zi,max = s : argmins∈St ASF(s, w), w = (τ, . . . , τ), τ = 10−6 (18)

For the i-th target, an extra target vector zi,max was generated. Thus, m extra vectors
were generated by m targets which further constituted an m-dimensional linear hyperplane,
and then the intercept ai, i = 1, 2, . . . , m could be calculated. The objective function can be
normalized as shown in Equation (19):

f n
i (x) = ( f ′i (x)− zmin

i )/(ai − zmin
i ) (19)

3.3. Simulated Binary Crossover Operator

Under the influence of the top three levels of wolves, a GWO easily falls into a local
optimum. Therefore, a simulated binary crossover (SBX) operator was introduced in this pa-
per. Assuming that the two parent individuals are x1(x1

1, x1
2, . . . x1

n) and x2(x2
1, x2

2, . . . x2
n), the

SBX operator could generate the offspring individuals c1(c1
1, c1

2, . . . c1
n) and c2(c2

1, c2
2, . . . c2

n)
using the following equations:

{
c1

i = 0.5× [(1 + β)·x1
i + (1− β)·x2

i ]
c2

i = 0.5× [(1− β)·x1
i + (1 + β)·x2

i ]
(20)

where β is randomly determined by the distribution factor η according to Equation (21):

β =

{
(rand× 2)1/(1+η), rand ≤ 0.5
(1/(2− rand× 2))1/(1+η), rand > 0.5

(21)
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With the increase in iterations, the probability of generating individuals according to
the grey wolf hunting mechanism increased, thereby enhancing the development ability
and convergence of the algorithm. In this paper, the variable a was controlled by a non-
linear decreasing strategy to balance the exploration and development capabilities of the
algorithm, as shown in Equation (22):

a = 2(1− (t/iter)2) (22)

where iter is the maximum number of iterations.

3.4. Solving Procedure of NSGWO

The solving procedure of the proposed nondominated-sorting grey wolf optimizer
algorithm is presented in Figure 2. There were five specific steps of this algorithm, which
are detailed as follows.
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Step 2: Initialize the grey wolf population P, and generate a reference point Z. 
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Figure 2. Solving procedure of nondominated-sorting grey wolf optimizer algorithm.

Step 1: Set the number N of individuals in the grey wolf population and the maximum
number of iterations iter. Initialize parameters a, A, and C.

Step 2: Initialize the grey wolf population P, and generate a reference point Z.
Step 3: Calculate the target value of each dimension of individuals in the population.
Step 4: Perform the nondominated sorting based on ENS, and select the first three

levels of wolves α, β, δ.
Step 5: Update the population Pt and generate the offspring Qt. When the random

number is greater than the set probability threshold, binary crossover mutation is conducted.
Otherwise, update the population based on the evolution mechanism of GWO.

Step 6: Select the first N individuals based on the reference point in the merged
population Rt = Pt∪Qt, and then generate a new population St.

Step 7: If the maximum number of iterations is not reached, repeat steps (2–4). Other-
wise, output the optimization results.

4. Results and Discussion
4.1. NSGWO Algorithm Performance Test

In order to test and evaluate the performance of the NSGWO algorithm, three bench-
mark functions [36] were employed in this paper, the detailed structures of which are
shown in Table 1.
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Table 1. Benchmark functions for multiobjective optimization test of NSGWO algorithm.

Function Name Objective Function Variable Range

ZDT1





f1(x) = x1
f2(x) = g(x)h( f1(x), g(x))
g(x) = 1 + 9

29 ∑30
i=2 xi

h( f1(x), g(x)) = 1−
√

f1(x)/g(x)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

UF2





f1 = x1 +
2
|J1| ∑

j∈J1

y2
j

f2 = 1−√x + 2
|J2| ∑

j∈J2

y2
j

J1 = {j|jis even number, 2 ≤ j ≤ n}, J2 = {j|jis odd number, 2 ≤ j ≤ n}
yj =

{
xj − [0.3x2

1 cos(24πx1 + 4jπ/n) + 0.6x1] cos(6πx1 + jπ/n), j ∈ J1
xj − [0.3x2

1 cos(24πx1 + 4jπ/n) + 0.6x1] cos(6πx1 + jπ/n), j ∈ J2

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

UF4





f1 = x1 +
2
|J1| ∑

j∈J1

h(yj)

f2 = 1− x2 +
2
|J2| ∑

j∈J2

h(yj)

yj = xj − sin(6πx1 + jπ/n), j = 2, 3, . . . , n
h(t) = |t|/(1 + e2|t|)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

Then, test simulations were conducted for the multiobjective optimization algorithm;
the results for the GD and IGD values of the former benchmark functions are presented
in Tables 2 and 3, respectively. Here, the results of the multiobjective grey wolf optimizer
(MOGWO) and the multiobjective particle-swarm optimizer (MOPSO) are also shown for
performance comparisons. For the unimodal function ZDT1, the IGD value of the NSGWO
optimization result was 0.00690, which was an order of magnitude smaller than the results
of other optimization algorithms, indicating that the improved algorithm had a strong
ability to jump out of the local optimum. The UF series functions were all multimodal
functions, which provided many local optimal solutions, and therefore the requirements
for the algorithm were relatively high. Regardless of the IGD value or the GD value, the
results of the improved algorithm were better than those of the other algorithms in the UF4
function. However, the IGD of the improved algorithm was smaller, as was the difference
between the maximum and minimum values of the GD value, indicating that the improved
algorithm had a better stability. The above test results showed that the improved algorithm
NSGWO had good stability and the ability to jump out of the local optimum.

Table 2. GD values of optimization results for benchmark functions.

Function Algorithm Mean Value Worst Value Optimal Value

ZDT1
NSGWO 0.00490 0.01250 0.00090
MOGWO 0.00754 0.06144 0.00119
MOPSO 0.06150 0.36040 0.00370

UF2
NSGWO 0.00500 0.00600 0.00420
MOGWO 0.05949 0.11078 0.02178
MOPSO 0.10420 0.15110 0.06570

UF4
NSGWO 0.04160 0.04260 0.04000
MOGWO 0.05756 0.06230 0.05198
MOPSO 0.07910 0.08800 0.07030

27



Energies 2022, 15, 2915

Table 3. IGD values of optimization results for benchmark functions.

Function Algorithm Mean Value Worst Value Optimal Value

ZDT1
NSGWO 0.00690 0.01340 0.00390
MOGWO 0.20824 0.69615 0.01391
MOPSO 0.06310 0.34060 0.00820

UF2
NSGWO 0.01600 0.01980 0.01250
MOGWO 0.06961 0.08307 0.05542
MOPSO 0.09580 0.11190 0.08190

UF4
NSGWO 0.03430 0.03530 0.03220
MOGWO 0.06200 0.06890 0.05861
MOPSO 0.07733 0.08944 0.06682

Figure 3 shows the Pareto fronts of optimization results of the benchmark function,
in which the horizontal and vertical coordinates represent a certain target value of the
benchmark function. For the ZDT1 function, the solutions of MOGWO and NSGWO were
close to the real Pareto fronts. For the UF2 function, most of the MOGWO solutions were
far from the real Pareto fronts, while most of the NSGWO solutions were concentrated on
the real Pareto fronts. Moreover, the results indicated that the UF4 function was relatively
complex. Although the optimization results of the NSGWO algorithm in Figure 3c were
not close to the real Pareto fronts, they were still better than those of MOGWO. In general,
the NSGWO had better accuracy and a better distribution of the obtained solutions.

Energies 2022, 15, x FOR PEER REVIEW 13 of 20 
 

 

   
(a) (b) (c) 

Figure 3. Pareto fronts of multiobjective optimization algorithms for benchmark functions. (a) 
ZDT1; (b) UF2; (c) UF4. 

4.2. Multiobjective Optimization of Load Dispatch Based on NSGWO 
The NSGWO algorithm was employed in the multiobjective optimization of the 

load dispatch for coal-fired power plants while considering the economy, environmental 
protection, and speediness. To better show the performance of the NSGWO algorithm in 
load dispatch, four intelligent algorithms, including the real-number coding genetic al-
gorithm (RCGA), particle-swarm optimizer (PSO), modified nondominated-sorting ge-
netic algorithm (NSGA-II), and MOGWO, were employed in the following simulations. 
Their configurations in terms of the population size and maximum number of iterations 
are summarized in Table 4, and were selected through analyses of presimulations. 

Table 4. Configurations of NSGWO and other intelligent algorithms used in simulations of multi-
objective optimization. 

 Simulation I 1 Simulation II 1 Simulation III 1 
 NSGWO RCGA PSO NSGWO NSGA-II MOGWO NSOGWO MOGWO 

Population size 200 200 200 100 100 100 100 100 
Number of iterations 500 500 500 300 300 300 1000 1000 

1 Simulations I-III represent the optimization of economy and environmental protection, the opti-
mization of economy and speediness for various power-scale units, and the optimization of econ-
omy and speediness for similar-scale units, respectively. 

4.2.1. Optimization of Economy and Environmental Protection 
The NSGWO algorithm was employed for the multiobjective optimization of the 

load dispatch for coal-fired power plants while considering economy and environmental 
protection. The penalty function was used in the following simulations to deal with the 
equality constraints in the load-dispatch model. Firstly, a coal-fired power plant with six 
units was investigated; its coal consumption and pollutant-emission characteristics are 
listed in Table 5 [37]. The total command of these six units was 283.4 MW, and their 
load-changing speed was limited to 5% of the current output power. To better show the 
performance of the NSGWO algorithm in the load dispatch, the RCGA and PSO were in-
troduced for a comparison with the optimization results. Then, the simulations were 
conducted; the results are shown in Tables 6 and 7. 

  

Figure 3. Pareto fronts of multiobjective optimization algorithms for benchmark functions. (a) ZDT1;
(b) UF2; (c) UF4.

4.2. Multiobjective Optimization of Load Dispatch Based on NSGWO

The NSGWO algorithm was employed in the multiobjective optimization of the load
dispatch for coal-fired power plants while considering the economy, environmental pro-
tection, and speediness. To better show the performance of the NSGWO algorithm in
load dispatch, four intelligent algorithms, including the real-number coding genetic algo-
rithm (RCGA), particle-swarm optimizer (PSO), modified nondominated-sorting genetic
algorithm (NSGA-II), and MOGWO, were employed in the following simulations. Their
configurations in terms of the population size and maximum number of iterations are
summarized in Table 4, and were selected through analyses of presimulations.
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Table 4. Configurations of NSGWO and other intelligent algorithms used in simulations of multiob-
jective optimization.

Simulation I 1 Simulation II 1 Simulation III 1

NSGWO RCGA PSO NSGWO NSGA-II MOGWO NSOGWO MOGWO

Population size 200 200 200 100 100 100 100 100
Number of iterations 500 500 500 300 300 300 1000 1000

1 Simulations I–III represent the optimization of economy and environmental protection, the optimization of
economy and speediness for various power-scale units, and the optimization of economy and speediness for
similar-scale units, respectively.

4.2.1. Optimization of Economy and Environmental Protection

The NSGWO algorithm was employed for the multiobjective optimization of the
load dispatch for coal-fired power plants while considering economy and environmental
protection. The penalty function was used in the following simulations to deal with the
equality constraints in the load-dispatch model. Firstly, a coal-fired power plant with
six units was investigated; its coal consumption and pollutant-emission characteristics
are listed in Table 5 [37]. The total command of these six units was 283.4 MW, and their
load-changing speed was limited to 5% of the current output power. To better show the
performance of the NSGWO algorithm in the load dispatch, the RCGA and PSO were
introduced for a comparison with the optimization results. Then, the simulations were
conducted; the results are shown in Tables 6 and 7.

Table 5. Characteristics of dispatched units based on economy and environmental protection.

Unit Coal Consumption Characteristics Pollutant Emission Characteristics
Pmin

i
/MW 1

Pmax
i

/MW 1

1 f1(P1) = 0.010P2
1 + 2.0P1 + 10 +

∣∣1.5 sin[6.28(Pmin
1 − P1)]

∣∣ g1(P1) = 6.49× 10−4P1 − 0.056P1 + 4.091 5 50
2 f2(P2) = 0.012P2

2 + 1.5P2 + 10 +
∣∣1.0 sin[8.98(Pmin

2 − P2)]
∣∣ g2(P2) = 5.64× 10−4P2 − 0.061P2 + 2.543 5 60

3 f3(P3) = 0.004P2
3 + 1.8P3 + 20 +

∣∣1.0 sin[14.78(Pmin
3 − P3)]

∣∣ g3(P3) = 4.59× 10−4P3 − 0.051P3 + 4.258 5 100
4 f4(P4) = 0.006P2

4 + 1.0P4 + 10 +
∣∣0.5 sin[20.94(Pmin

4 − P4)]
∣∣ g4(P4) = 6.38× 10−4P4 − 0.030P1 + 5.326 5 120

5 f5(P5) = 0.004P2
5 + 1.8P5 + 20 +

∣∣0.5 sin[25.13(Pmin
5 − P5)]

∣∣ g5(P5) = 4.59× 10−4P5 − 0.051P5 + 4.258 5 100
6 f6(P6) = 0.010P2

6 + 1.5P6 + 10 +
∣∣0.5 sin[18.48(Pmin

6 − P6)]
∣∣ g6(P6) = 5.15× 10−4P1 − 0.056P1 + 6.131 5 60

1 Variables Pmin
i and Pmax

i represent lower limit and upper limit of output power.

Table 6. Optimization results of economic load dispatch for coal-fired power plant without valve-
point effect of steam turbines.

Algorithm P1
/MW

P2
/MW

P3
/MW

P4
/MW

P5
/MW

P6
/MW

Coal Consumption
Cost/(USD h −1)

Pollution Emission
/(th −1)

NSGWO 15.7 33.0 58.4 94.4 46.7 35.2 94.5382 0.2321
RCGA 11.5 30.6 59.9 98.2 51.3 35.5 95.6516 0.2199

PSO 12.8 27.0 55.5 100.5 45.4 44.5 95.6517 0.2207

The results showed that the performance of the NSGWO algorithm was better than
that of the other algorithms in reducing power-plant coal consumption and power-plant
emissions, which indicated the advantages of the NSGWO algorithm in the optimal dis-
patch of multiobjective economic and environmental-protection loads. Tables 6 and 7 also
show that the valve-point effect of steam turbines had a great influence on the optimal
dispatch results. The optimization results of Unit 1 and Unit 6 in the two models were
quite different. When the valve-point effect was considered, the optimal dispatch results of
these two units were 21.4 MW and 41.0 MW, respectively. However, the optimal dispatch
results changed to 15.7 MW and 35.2 MW without considering the valve-point effect of the
steam turbines.
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Table 7. Optimization results of load dispatch under economy and environmental-protection strate-
gies for coal-fired power plant considering valve-point effect of steam turbines.

Item
Economy Strategy Environmental-Protection Strategy

NSGWO RCGA PSO NSGWO RCGA PSO

Cost/(USD h −1) 95.2184 96.1129 99.0861 100.7577 101.5641 101.9237
Emission/(th −1) 0.229 0.214 0.214 0.193 0.194 0.195

P1/MW 21.4 11.5 9.9 40.5 41.1 37.1
P2/MW 30.9 30.6 36.3 40.7 46.3 46.7
P3/MW 50.5 59.9 48.4 50.2 54.4 56.4
P4/MW 93.0 98.2 87.4 37.7 39 36.5
P5/MW 46.7 51.3 66.4 58.8 54.4 52.2
P6/MW 41.0 35.5 39.0 55.5 51.5 57.8

In order to further illustrate the advantages of NSGWO, the Pareto fronts were de-
termined for the NSGWO and MOGWO algorithms without considering the valve-point
effect, as shown in Figure 4. The solutions of NSGWO were more widely distributed, and
the solutions of MOGWO were basically dominated by the solutions of NSGWO. The
comparison results show that the NSGWO algorithm had a certain application value in the
multiobjective optimization of the load dispatch for coal-fired power plants.
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4.2.2. Optimization of Economy and Speediness for Various Power-Scale Units

Considering the requirements of rapid load change of coal-fired power plants under a
renewable-energy accommodation, simulations were conducted to show the performance
of the NSGWO algorithm in the multiobjective optimization of economy and speediness.
Here, 10 units of various power scales are selected to be dispatched in the following
simulations, the characteristics of which are shown in Table 8 [38]. The total dispatch
command of the 10-unit power plant was 1500 MW, and the penalty-factor values of the
two-dimensional objective of economy and speediness in the NSGWO algorithm were 0.5
and 2.1, respectively. Table 9 presents the optimization results of the load dispatch under
the economy and speediness strategies. To better explain the advantages of nondominated
sorting, the optimization of the NSGA-II was also performed, as shown in Table 9.
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Table 8. Characteristics of 10 dispatched units with various power scales based on economy and
speediness.

Unit Coal-Consumption Characteristics Pnow/MW vi/(MW min −1) Pmin
i /MW Pmax

i /MW

1 f1(P1) = 0.00510P2
1 + 2.2034P1 + 15 15 7 15 60

2 f2(P2) = 0.00396P2
2 + 1.9101P2 + 25 20 8 20 80

3 f3(P3) = 0.00393P2
3 + 1.8518P3 + 40 30 10 30 100

4 f4(P4) = 0.00382P2
4 + 1.6966P4 + 32 35.8 15 25 120

5 f5(P5) = 0.00212P2
5 + 1.8015P5 + 29 50.3 8 50 150

6 f6(P6) = 0.00261P2
6 + 1.5354P6 + 72 75.4 6 75 280

7 f7(P7) = 0.00289P2
7 + 1.2643P7 + 49 124 11 120 320

8 f8(P8) = 0.00148P2
8 + 1.2130P8 + 82 251.85 10 125 445

9 f9(P9) = 0.00127P2
9 + 1.1954P9 + 105 298.75 12 250 520

10 f10(P10) = 0.00135P2
10 + 1.1285P10 + 100 298.9 9 250 550

Table 9. Optimization results of load dispatch under economy and speediness strategies for 10 units
of various power scales.

Item
Optimal-Compromise Solution Economy Strategy Speediness Strategy

NSGWO NSGA-II MOGWO NSGWO NSGA-II MOGWO NSGWO NSGA-II MOGWO

fh/(th −1) 1 3118.20 3120.77 3124.15 3115.02 3115.22 3123.25 3130.11 3131.29 3126.27
T/min 1 4.91 4.98 4.49 7.48 7.12 5.13 3.52 3.59 3.77
P1/MW 15.64 20.96 24.48 15.14 15.00 23.50 34.21 35.94 25.66
P2/MW 37.58 37.88 45.04 26.00 27.33 45.24 44.566 45.50 46.30
P3/MW 45.16 48.03 48.21 36.20 34.21 45.48 59.17 61.00 52.29
P4/MW 65.82 69.80 76.64 58.34 55.86 76.33 80.19 70.07 77.91
P5/MW 79.48 76.81 76.43 76.74 82.85 75.24 77.36 78.82 78.27
P6/MW 101.45 94.49 97.10 109.45 109.63 95.54 94.91 96.26 97.04
P7/MW 159.34 156.95 152.18 146.84 149.06 152.97 157.04 155.41 156.39
P8/MW 298.22 294.80 296.78 302.62 306.39 301.44 284.90 286.40 289.48
P9/MW 354.25 358.46 345.97 364.46 356.67 339.19 339.36 341.79 344.03
P10/MW 343.06 341.81 337.18 364.15 363.01 345.06 328.23 328.81 332.64

1 Variables fh and T represent coal consumption per hour and adjustment time, respectively.

The results indicated that the optimal solutions of the NSGWO algorithm had the min-
imum adjustment times. For the minimum coal consumption of the economy strategy, the
optimal solutions of the NSGWO algorithm were better than those of the other algorithms.
Moreover, we found that the optimal-compromise solution of the NSGWO algorithm was
able to dominate the solutions of the NSGA-II algorithm.

Figure 5 shows the Pareto fronts of the NSGWO algorithm and the MOGWO algorithm
under the combined dispatch of economy and speediness. Here, a speediness index was
employed to better present the optimal solutions that was defined as the square of the
adjustment time. It can be seen that the optimization results of the NSGWO algorithm
were more widely distributed than those of the MOGWO algorithm. The solution that
dominated the optimization results of the MOGWO algorithm was found in the Pareto
fronts of the NSGWO algorithm. In general, this indicated that the performance of the
NSGWO algorithm in the load-dispatch optimization of economy and speediness was the
best among the simulated algorithms.
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4.2.3. Optimization of Economy and Speediness for Similar-Scale Units

Moreover, a real coal-fired power plant with eight 600 MW units and two 660 MW
units was investigated under a renewable-energy accommodation, which may further
explain the performance of the NSGWO algorithm in the load dispatch. These 10 units
had similar power scales, so a higher optimization accuracy was needed in the algorithm.
The coal-consumption characteristics, as well as other initial conditions and constraints,
are shown in Table 10, in which the unit for coal consumption is grams of coal per kWh.
In addition, the penalty-factor values of the two-dimensional targets of economy and
speediness in the algorithms were 0.5 and 1.1, respectively, and the total power command
of this 10-unit power plant was 4000 MW.

Table 10. Characteristics of 10 dispatched units based on economy and speediness with 10 similar-
scale units.

Unit Coal-Consumption Characteristics Pnow/MW vi/(MW min −1) Pmin
i /MW Pmax

i /MW

1 f1(P1) = 0.000128P2
1 − 0.10413P1 + 361.508 409.164 10 240 600

2 f2(P2) = 0.000118P2
2 − 0.10897P2 + 360.777 343.598 10 240 600

3 f3(P3) = 0.000104P2
3 − 0.11813P3 + 348.179 321.472 12 240 600

4 f4(P4) = 0.000115P2
4 − 0.11699P4 + 350.690 368.000 10 240 600

5 f5(P5) = 0.000190P2
5 − 0.12183P5 + 352.533 359.787 10 240 600

6 f6(P6) = 0.000154P2
6 − 0.11906P6 + 350.421 420.531 8 240 600

7 f7(P7) = 0.000150P2
7 − 0.11031P7 + 352.498 362.807 8 240 600

8 f8(P8) = 0.000144P2
8 − 0.10936P8 + 346.564 333.882 10 240 600

9 f9(P9) = 0.000272P2
9 − 0.12038P9 + 342.560 400.494 5 264 660

10 f10(P10) = 0.000292P2
10 − 0.12938P10 + 340.501 427.870 5 264 660

Table 11 shows the optimization results for the real coal-fired power plant with 10
similar-scale units. It indicates that the minimum coal consumption of NSGWO was
328 g/(kWh), which was better than that of MOGWO. The minimum adjustment time of
NSGWO was 1.36 min, which was also shorter than that of MOGWO. Furthermore, the
solutions of the MOGWO algorithm for these two minima were dominated by the NSGWO
algorithm, which meant that the distribution of the solutions of the NSGWO algorithm was
better than that of the MOGWO algorithm.
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Table 11. Optimization results of load dispatch under economy and speediness strategies for a real
coal-fired power plant with 10 similar-scale units.

Item
Optimal-Compromise Solution Economy Strategy Speediness Strategy

NSGWO MOGWO NSGWO MOGWO NSGWO MOGWO

fw/(gkWh −1) 1 329.70 330.34 328.02 328.19 331.30 331.71
T/min 1 11.16 8.17 22.85 23.21 5.32 6.68
P1/MW 378.15 405.97 302.75 323.48 434.55 385.14
P2/MW 394.44 420.79 353.30 415.80 379.64 376.09
P3/MW 455.35 419.57 595.65 600.00 385.35 401.64
P4/MW 462.83 414.01 527.16 543.27 413.77 412.89
P5/MW 353.74 351.06 382.36 309.99 359.38 372.00
P6/MW 450.43 438.11 447.16 427.13 455.26 465.65
P7/MW 368.90 371.26 376.00 350.80 383.84 379.13
P8/MW 385.39 408.06 383.56 347.93 371.17 384.94
P9/MW 366.62 376.87 310.88 336.77 392.15 393.99
P10/MW 383.84 394.51 321.08 344.28 425.31 421.73

1 Variables fw and T represent coal consumption per kWh and adjustment time, respectively.

Figure 6 illustrates the Pareto fronts of coal consumption and adjustment time of the
former simulations for NSGWO and MOGWO. It shows that the optimization results of
NSGWO were basically at the lower left of MOGWO, indicating that the optimization effect
of NSGWO was better. Most of the solutions of the MOGWO algorithm are concentrated in
the upper left, while the solutions of the NSGWO algorithm are more uniformly distributed.
This indicates that the solutions of the NSGWO algorithm had a better distribution in
the combined load dispatch while considering the requirements of both economy and
speediness for coal-fired power plants.
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Figure 6. Pareto fronts of coal consumption and adjustment time of load-dispatch optimization for
coal-fired power plant with 10 similar-scale units under NSGWO and MOGWO algorithms.

The results of this study showed that the proposed nondominated-sorting GWO
algorithm achieved high accuracy and had a good distribution of solutions, which may
extend its applications in multiobjective optimization. We caution that the presented
analyses for the NSGWO and other intelligent algorithms were somewhat simplified, and
further investigations are needed. The optimization procedure proposed in this study
may help researchers conduct other investigations into the optimization of multiobjective
problems and the operation of power-generation systems.
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5. Conclusions

Multiobjective optimizations of load dispatch under a renewable energy accommo-
dation were conducted based on the NSGWO algorithm. On the basis of the performed
analyses, the conclusions of this paper can be summarized as follows:

(1) The proposed NSGWO algorithm employed efficient nondominated sorting, a reference-
point selection strategy, and a simulated binary crossover operator in order to avoid
falling into the local optimum, enhance the solution diversity, and shorten the con-
vergence time. The optimization results of benchmark functions indicated that the
NSGWO algorithm had a better accuracy and a better distribution than the MOGWO
algorithm.

(2) Regarding the load dispatch of economy and environmental-protection strategies, the
performance of the NSGWO algorithm was better than those of the other simulated
algorithms in reducing power-plant coal consumption and emissions. In addition, the
widely distributed solutions of the NSGWO algorithm could dominate those of the
MOGWO algorithm, which elucidated the application value of the NSGWO algorithm
in the multiobjective load dispatch of coal-fired power plants.

(3) The NSGWO algorithm could achieve lower coal consumption and a shorter ad-
justment time than the MOGWO algorithm could for coal-fired power plants with
various power-scale units and similar-scale units. The optimal-compromise solutions
of the NSGWO algorithm had a better distribution in the combined load dispatch of
economy and speediness strategies; thus, it is favorable for coal-fired power plants to
accommodate renewable energy.
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Abstract: The Korean government has declared the goal of net-zero-carbon emissions with a focus on
renewable energy expansion. However, a high proportion of baseload generators and an increasing
proportion of variable renewable energy (VRE) may cause problems in the power system operation
owing to the low cycling capability of baseload generators and variability of VRE. To maintain system
reliability, the government is planning to construct pumped-storage hydropower (PSH) plants, which
can provide flexibility to the system. This study evaluated the operating cost savings obtained by
different types of PSH: the adjustable-speed PSH (AS-PSH) and fixed-speed PSH (FS-PSH), based
on the duck-curve phenomenon and the increase in spinning reserve requirement. In this study,
the reserve-constrained unit commitment was formulated using a mixed-integer-programming
considering the operational characteristics of AS-PSH and conventional generators. To consider the
duck-shaped net-load environment, the projected VRE output data were calculated through physical
models of wind turbines and photovoltaic modules. The operating costs for the non-PSH, FS-PSH,
and AS-PSH construction scenarios were KRW 43,129.38, 40,038.44, and 34,030.46, respectively. The
main factor that derived this difference was determined to be the primary reserve of AS-PSH’s
pumping mode.

Keywords: adjustable-speed pumped-storage hydropower; fixed-speed pumped-storage hydropower;
variable renewable energy; duck-curve; reserve-constrained unit commitment; spinning reserve
requirement; nuclear power generators

1. Introduction
1.1. Research Motivation

The Korean government has declared the goal of achieving net-zero carbon emissions
by 2050. Therefore, Korea is planning to significantly increase the proportion of renewable
energy resources. In the generation expansion plan, which determines the Korean invest-
ment in power generation facilities, 2030 was set as the target year to ensure that 20% of
the annual power is generated by renewable energy resources [1]. Among the renewable
energy resources, 75% is expected to be generated from wind and solar energy, which are
variable renewable energy (VRE) resources. However, VRE resources may cause difficulties
in balancing the supply and demand within a power system owing to their output variabil-
ity and uncertainty [2]. Specifically, solar power generation makes the system net-load have
the characteristics of a duck-curve, which is a concept first introduced by the California
Independent System Operator [3]. It has a duck-shaped net-load pattern, which is carried
by conventional generators. The VRE’s long-term and short-term variability require in-
creased cycling capabilities of the generator and operating reserves, respectively. Therefore,
it is difficult for the system operator to maintain system reliability while maintaining the
operating proportion of baseload generators during the daytime.
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In 2020, the first output reduction of nuclear power generators was conducted by
the system operator to maintain reliability in the Korean power system. Shinkori nuclear
power generators (#3 and #4) have a total capacity of 2800 MW. The power system operator
was scheduled to reduce the total output power to 600 MW for 8 h, and the scheduled
output power was maintained for 13 h. The system operator predicted that the system
demand was lower than usual owing to long special holidays and analyzed that it would be
difficult to meet the system frequency maintenance range if a nuclear power generator with
the maximum output (1400 MW) is tripped. There are similar issues with implementing
net-zero carbon emissions. Although the coal-fired and nuclear power generators are
expected to gradually phase out, the proportion of these baseload generators is still expected
to be high in 2030. It is especially difficult to expect frequent output adjustments or
startup/shutdown operations with nuclear power generators. In addition, existing nuclear
power generators in Korea do not provide frequency response capabilities. Accordingly,
situations can occur where several nuclear power generators would need to be operated
at a minimum generation level or even excluded from scheduling. In those cases, the
operating cost of the power system can increase significantly, and the existing baseload
generators may even become stranded assets.

Grid-scale energy storage systems, such as battery energy storage systems (BESS)
and pumped-storage hydropower (PSH), can provide solutions to operating costs by
mitigating the effect of the duck-curve phenomenon of the net-load and increasing the
utilization of nuclear power generators. Although BESSs are capable of providing load
shifting and fast frequency responses, PSH is technically proven and more desirable in
that it has a large energy capacity and the capability of providing operating reserves. The
Korean government is planning to build PSH plants [1]. However, there are three types
of PSH plants: fixed-speed (FS), adjustable-speed (AS), and ternary (T) types. As a quick-
start resource, a conventional FS-PSH can be rapidly deployed to the system in case of a
generator’s forced outage or insufficient reserve [4]. AS-PSHs and T-PSHs can provide the
same operational advantages as FS-PSHs. In addition, AS-PSH can control its rotor speed
using power electronic devices, which enables a rapid power adjustment in the generating
and pumping modes and is therefore expected to further improve the flexibility of the
power system. Given that the pump and turbine of T-PSH can rotate simultaneously on the
same shaft in the same direction, it has the advantage of adjusting the pumping power in
the hydraulic short-circuit mode and requires less time to transition between the generating
and pumping modes [5]. Therefore, we needed to decide which type will be of benefit to
our system when they are constructed, which was the motivation of our research. In this
paper, we focused on the economic effect obtained by AS-PSH using the unit commitment
(UC) optimization approach in a future Korean power system. In the case of T-PSH, there
are three modes: generating mode, pumping mode, and short-circuit mode, which each
have different operational characteristics. Therefore, future research is needed to model the
operational characteristics of T-PSH in UC formulation.

1.2. Related Research

Typically, PSH charges at night when the system demand is low and discharges during
peak-demand hours. However, owing to the large-scale integration of VREs, the economic
benefits that can be obtained from the PSH have been studied from new perspectives [6–12].
In [6], the impact of reducing the operating cost achieved by the input of FS-PSH in a
power system with high wind energy was analyzed, and FS-PSH was found to reduce the
scheduling cost by reducing the startup and shutdown costs of thermal power generators.
In [7], the effect of reducing operating costs through FS-PSH in a wind energy environment
was analyzed through a genetic algorithm. The paper derived the reduction in energy
purchase cost and environmental cost of the power system. In [8], it was found that as the
initial upper reservoir volume of PSH increases, the overall operating cost consisting of
grid power purchase cost, demand response program purchase cost, and solar power sale
income decreases. In [9], the effect of reduction in the wind power curtailment and the
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total operating cost consisting of energy cost, ancillary service cost, and startup cost were
derived using FS-PSH as a reserve resource. In [10], the energy cost in a standalone hybrid
wind/solar/biomass system was lower in the scenario when PSH was the input than when
battery storage was the input. In [11], the authors evaluated the potential contribution of
PSH to the Greek power system’s future scenario. Through UC simulation, it was deduced
that the PSH contributes to energy balance by absorbing the over-generation of wind and
solar energy. Ref. [12] proposes a stochastic scheduling approach considering price-based
demand response and PSH in a microgrid. In [12], the operating cost was reduced by
PSH’s discharging at the peak time and charging at the off-peak time. However, given
the proposed methods in [6–12], it is difficult to verify the economic contribution obtained
from the flexibility of AS-PSH.

The reduction in operating costs due to the flexibility of AS-PSH was studied in [13–15].
In [13], the dynamic dispatch optimization problem was solved with the reserve and net-
work constrained in a wind energy environment, and an economic analysis was performed
on FS-PSH, T-PSH, and AS-PSH. However, in [13], it was difficult to verify probable changes
in operating conditions within the duck-curve phenomenon, given that the influence on
solar energy was not considered. In [14], the economic impact of AS-PSH was analyzed
under the conditions of minimizing fuel, cycling, and startup cost. It was modeled as
having an operating range in the pumping mode and was derived to reduce the operating
cost. In [15], the cost benefits obtained with AS-PSH from the viewpoint of daily operation
were compared with those of FS-PSH. However, the study focused on the AS-PSH’s flexible
operating range in pumping. Therefore, it is still necessary to focus on the reserve capability
of AS-PSH that can respond to VRE’s short-term variations.

In addition to PSH-related studies, UC optimization research is ongoing from various
perspectives. Authors in [16–18] developed methods to efficiently find the UC solution at
a high time resolution to cope with the variability and intermittent nature of renewable
energy. Ref. [16] proposes a thermal unit commitment algorithm through dynamic pro-
gramming that combines a priority list method to perform UC and ED at a time resolution
of less than 60 min. In [17], the authors pointed out that the branch and cut strategy may
exceed the allowable value in the sub-hourly UC problem due to large numbers of virtual
transactions. In [17], the authors reduced the calculation time by including the concept
of ordinal-optimization in surrogate absolute-value Lagrangian relaxation [19]. Ref. [18]
proposes an approach to reduce calculation time by implementing soft constraints of re-
serve and transmission capacity within the surrogate absolute-value Lagrangian relaxation
framework. References [20,21] analyzed the impact of greenhouse gas emissions on the
UC problem. In [20], the authors formulated the environmental UC problem considering
greenhouse gas emission constraints and carbon taxes in the existing UC approach. In [21],
the authors adopted the piecewise linearized greenhouse gas function of the generator’s
loading level to the UC based on the MIP method. The greenhouse gas function was
applied in the form of cost by applying a weighting factor.

1.3. Contribution

Previous studies on PSH verified its effects on the operating cost savings of power
systems with integrated VRE and PSH. However, the majority of these studies focused
on the traditional FS-PSH’s contribution to power systems in terms of energy saving. The
other studies [13–15] on AS-PSH did not consider its capability to supply primary and
secondary reserves, particularly in the pumping mode. In a system with a considerable
amount of solar energy resources, system operators need large operating reserves, and most
generation sources need to be off-lined owing to an over-generation; on the other hand,
most PSHs are required to operate in pumping mode. Therefore, to analyze the economic
contribution of AS-PSH in a power system with a high proportion of renewable energy
resources, it is necessary to model the AS-PSH to provide various reserves, including the
primary reserve. Based on the above discussion, the purpose of this study is to verify the
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economic contribution of AS-PSH’s reserve capability compared with that of FS-PSH in the
Korean power system.

To achieve the objective of this study, a reserve-constrained UC (RCUC) was formu-
lated using mixed-integer-programming (MIP) to consider the cycling characteristics of
conventional thermal generators in the duck-curve environment and reflect the Korean
operating reserve services. The primary, secondary, and regulation reserves defined by the
Korean power market were modeled in the RCUC formulation. This formulation can be
widely used in other power systems with a similar scheme of system frequency restoration
by primary and secondary reserves. The time-series data of the VRE were calculated
through physical models, including the output model of wind turbines and photovoltaic
(PV) modules. The short-term variation of the VRE was extracted from the time-series
data. The increment in the spinning reserves was considered under the n-sigma criterion,
assuming that the distribution of the VRE’s short-term output variation follows a Gaussian
distribution. With the operation range set in the generating and pumping modes, the
AS-PSH was modeled to provide primary, secondary, and regulation reserves. Simulations
were performed on the 2030 generation mix in Korea. Scenarios were set depending on the
types of new PSH plants, namely, non-PSH, FS-PSH, and AS-PSH plants. The simulation
was implemented using the optimization solver Xpress-MP.

The main contributions in this paper are listed below:

• An MIP-based RCUC problem was formulated. FS-PSH was modeled to provide the
primary and secondary/regulation reserves in the generation mode, while AS-PHS
was modeled to provide the primary and the secondary/regulation reserve both in
the generating and pumping modes.

• A comparative analysis was performed on the Korean power system considering
the generation mix in 2030 using the developed RCUC. The Korean power system
is expected to consist of more than 200 large generators, including eighteen nuclear
power generators with a capacity of 20.4 GW and a peak demand of 110 GW in 2030.

• The comparative study showed that the AS-PSH was superior to the FS-PSH in terms
of operating costs, which are mainly dependent on the procurement of primary and
secondary reserves. It is partly because the system is isolated and partly because
the share of non-flexible nuclear power generators is high. We verified that the most
critical factor is the capability of supplying the primary reserve.

2. Variable Renewable Energy in Future Korean Power System

Before analyzing the influence of the new PSH on the future power system in Korea,
a methodology to generate the time-series data of the 2030 VRE is introduced. Based on
the data, the increment in the spinning reserve due to the short-term variation of the VRE
was estimated.

2.1. Modeling of Variable Renewable Energy’s Output Power

The 2030 target capacity of the VRE is about 54.2 GW, and wind and solar energy
account for 17.7 GW and 36.5 GW, respectively [1]. Based on the capacity of the VRE to be
installed, the 2030 output power can be calculated using historic regional meteorological
data. From the Korea Meteorological Administration (KMA), the regional wind speed,
solar irradiance, and temperature data measured every minute were used [22].

2.1.1. Wind Energy Output Power Model

To calculate the total output power of wind energy in 2030, it is necessary to determine
the location and capacity of each wind farm. To solve the problem, it was assumed that the
total capacity of wind energy in which the location is not determined would be distributed
to areas with high energy potentials. Therefore, the capacity was distributed proportionally
to the locations with high average annual wind speed. Finally, a total of 94 locations of the
2030 wind farms and their capacity were determined.
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In a wind farm, each wind turbine is installed at a distance. Therefore, input data
conversion was performed without applying the same wind speed to all wind turbines in
the same wind farm. Each wind farm consists of N turbine units, and the wind speed after
(n − 1) minutes is applied to calculate the output power of the nth wind turbine at time t.

PWF(t) =
N

∑
n=1

PWT,n(t) =
N

∑
n=1

PWT,n(Vh(t− n + 1)) (1)

To calculate the output power of the wind turbine, Equations (2) and (3) were used [23].
For the convenience of calculation, each wind turbine group was modeled with one unit.
The data in Table 1 were used for the specifications of onshore and offshore wind tur-
bines [24].

PWT,n(t) =





0 f or Vh(t− n + 1)< Vin and Vh(t− n + 1) >Vout,
Pcurve f it(Vh(t− n + 1))· CWF

Pr ·N f or Vin ≤ Vh(t− n + 1) ≤ Vr,
CWF

N f or Vr < Vh(t− n + 1) ≤ Vout.

(2)

Pcurve f it(Vh(t)) = a1Vh(t)
6 + a2Vh(t)

5 + a3Vh(t)
4 + a4Vh(t)

3 + a5Vh(t)
2 + a6Vh(t) + a7 (3)

Table 1. Parameters of wind turbines (onshore and offshore).

Onshore Offshore

Rated power 3 MW 8 MW
Cut-in wind speed 3 m/s 3.5 m/s
Rated wind speed 10 m/s 10 m/s

Cut-out wind speed 20 m/s 25 m/s
Tower hub height 120 m 130 m

Given that wind speed increases with an increase in altitude, the wind speed used
as input data for Equations (2) and (3) should be measured at the tower height. However,
the wind speed data of the KMA are measured at an altitude of 10 m. Therefore, using
Equation (4) based on the wind power law, we estimated wind speed data at the tower
height [25].

Vh = Vm

(
Zh
Zm

)α

(4)

2.1.2. Solar Energy Output Power Model

By 2030, 36.5 GW of PV plants is expected to be installed. As in the case of wind
power, it is necessary to determine the capacity and the location of each PV plant. However,
most PV plants are expected to be installed at a small scale and dispersed over the nation.
Therefore, it is necessary to estimate insolation data for areas where KMA does not observe
the insolation. To address this problem, we expanded the number of observation stations
using a two-dimensional interpolation method [26]. The capacity of each PV plant was
assigned in proportion to historical accumulated solar insolation.

The solar insolation data were converted to the irradiance data. The PV output power,
which is determined by the irradiance and temperature on the PV module surface, can be
expressed as Equation (5) [27].

PPV,M = P∗PV,M·
G
G∗

[1− γ·(TC − 25)] (5)

Given that each PV plant consists of PV arrays of several PV modules, the output
power of each PV plant can be calculated using Equation (6).

PPV = PPV,M·CPV/P∗PV,M (6)
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Given that the temperature on the PV module surface used in Equation (5) is difficult
to measure, it can be approximated using Equation (7) based on the irradiance and the air
temperature [28].

TC = TA +
TNOCT − 20

800
G (7)

2.2. Characteristics of Variable Renewable Energy in Korea

In this subsection, the output power characteristic of the 2030 VRE is described.
Figure 1 depicts the calculated time-series output power of the VRE and its duration curve
for the year 2030.
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Figure 1. Output and duration curve of VRE for 2030.

Figure 2 presents the average daily wind and solar power generation of each month.
The average daily wind power generation is highest in winter and lowest in summer. The
average daily solar power generation is highest in spring and lowest in winter. Based
on these results, the average daily VRE power generation is highest in spring and lowest
in autumn.
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Figure 3 illustrates the hourly average output power for wind and solar energy
throughout the year 2030. Wind energy demonstrates the highest output power between
14:00 and 15:00, and the highest PV output power and both wind and solar output power
are between 12:00 and 13:00.
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2.3. Influence of Variable Renewable Energy on Reserve Requirements of the Korean Power System

Traditionally, most power system operators have used the N−1 contingency method,
which secures a reserve equal to one or more largest units [29]. The system operator of
the Korean power system uses the traditional reserve procurement approach to cover the
largest generator outage (1400 MW). Table 2 outlines the operating reserve requirements
for the Korean power market [30].

Table 2. Operating reserve requirements for the Korean power system.

Operating Reserves Requirement State Activated by Secured for

Regulation reserve 700 MW Spinning AGC signal Short-term load variation

Frequency
restoration

reserves

Primary reserve 1000 MW Spinning Governing system Largest unit loss
Secondary reserve 1400 MW Spinning AGC signal Largest unit loss

Tertiary reserve 1400 MW Standstill Manual Reserve restoration

Quick-start reserve 2000 MW Standstill Manual Load forecast error, etc.

The primary reserve prevents the system frequency from dropping immediately after
an instantaneous event, such as a generator’s forced outage by the synchronized generator’s
governor response, and the secondary reserve is used to restore the system frequency to the
nominal frequency (60 Hz). The required primary reserve in Table 2 was calculated based
on the value at the time of a quasi-steady state of the system frequency after the outage
of the largest unit (1400 MW) in Korea. In this process, an unused capacity of 1400 MW is
required as the secondary reserve to restore the system frequency to the nominal frequency
(60 Hz). Immediately after restoration to the nominal frequency by the secondary reserve,
the primary reserve is automatically resecured. The regulation reserve is estimated as
700 MW to respond to non-instantaneous events, such as short-term load fluctuations. The
tertiary reserve is secured by resources in the standstill state to cover the case of reserve
shortages, and the quick-start reserve responds to load forecasting errors.

The unit capacity of VRE resources is lower than that of conventional generators, and
the short-term variation of the VRE can influence the system frequency. Therefore, the
traditional approach of securing a spinning reserve equal to one or more of the largest
units is not effective, and it is necessary to adopt an approach that can cover the short-term
variation of the VRE.

Based on the operating reserve concept presented in [2], we divided the VRE output
fluctuation into event and non-event cases. The reserve for an event is assumed necessary
for instantaneous events, such as generator outages and short-term output variations of
VRE. These events can be covered by the governor response of the generator. The non-event
reserve can be provided by the generator ramping capability according to AGC signals or
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manual operation. In this study, a 1 min variation in the VRE was assigned to the primary
reserve and a 5 min variation to the secondary and regulation reserve. The 1 min and 5
min variations were calculated using Equations (8) and (9), respectively, based on the VRE
output data calculated at 1 min intervals, as presented in the previous subsection.

P(t)− P(t− 1) = P1min (8)

P(t)− P(t− 5) = P5min (9)

As outlined in Table 3, the n-sigma criterion was used to calculate the increment in
each spinning reserve requirement due to the output fluctuation of the VRE. The standard
deviation σ refers to the time series variability of the VRE. Assuming that the output
variability of the VRE follows a normal distribution, an additional reserve to cover ±σ
of the variability can respond to 68% of the statistical data, a reserve of ±2σ to 95%, and
that of ±3σ to 99.7% [31]. Table 3 presents the specifications of the method for allocating
additional spinning reserve requirements under the assumption that the current spinning
reserve requirement is maintained.

Table 3. Allocation method of the increment amount of reserve requirement.

Reserves Activated by Current Standard Increments of Reserve

Primary reserve Governing system Largest unit loss nσ of one-min. variation
of wind and solar output

Secondary reserve
AGC signal

Largest unit loss nσ of five-min. variation
of wind and solar outputRegulation reserve 3σ of five-min. variation of load

The simple arithmetic addition of the estimated reserve requirement for VRE to the
existing reserve requirement for load variability can result in an overestimation, which
can be costly. This problem can be solved by using geometric additions [32]. Figure 4
illustrates the method of calculating the primary reserve requirement secured through the
governor response, and Figure 5 presents the calculation method for the requirement of the
secondary reserve and regulation reserve activated by AGC signals.
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3. RCUC Considering Adjustable-Speed Pumped-Storage Hydropower

This section introduces the RCUC formulation. Section 3.1 presents the features
of AS-PSH. Section 3.2 presents the objective function for the optimization, which is to
minimize the operating costs of the power system. Section 3.3 presents the constraints
considering AS-PSH’s operational characteristics.

3.1. Flexibility of Adjustable-Speed Pumped-Storage Hydropower

AS-PSH is a resource that can provide a higher quality of flexibility to power sys-
tems than FS-PSH by adjusting the rotor speed and electrical output/input of the genera-
tor/motor. With respect to power system operations, AS-PSH has the following advantages
when compared with FS-PSH.

(1) AS-PSH can be operated over a wider operational range in the generating mode, and
the input power can be controlled in the pumping mode.

(2) AS-PSH can provide primary, secondary, and regulation reserves in the generating
and pumping modes.

The critical factors for the advantages of AS-PSH in power system operation are its
operation range and spinning reserve capacity. Therefore, it is necessary to determine the
operation range and spinning reserve capacity of AS-PSH. In this study, the operation range
and spinning reserve capacity were determined based on an investigation of the technical
reports and AS-PSH plants in practice.

The operation range is defined by the difference between the minimum and maximum
powers. The operation ranges of FS-PSH and AS-PSH were reviewed in reports [5] and [33],
and the comparison is shown in Table 4. However, the operation ranges of practical PSH
plants vary. For example, in the Kazunogawa PSH plant [34], Unit #4 is an AS-type, and
Units #1 and #2 are FS-type. In the generating mode, the operation range of Unit #1 is
wider than that of Units #1 and #2 by 32.5%. In the pumping mode, the operation range of
Unit #1 is approximately 32%. In this study, the operation range of future AS-PSH plants
was set as 30–100% in the generating mode and 60–100% in the pumping mode.

Table 4. Example of pumped-storage hydropower (PSH) operation range.

Operation Range FS-PSH AS-PSH

Generating mode
Argonne Report [5] 16–100% 16~100%

JICA Report [33] 30–100% 30~100%

Pumping mode
Argonne Report 60–100% 60~100%

JICA Report 70–100% 70~100%

The primary reserve keeps the system frequency within operation range directly
after a disturbance. Therefore, the capacity with which AS-PSH can instantaneously
control the power within a few seconds was assumed to be the primary reserve. The
range of the primary reserve was set based on the example of the AS-PSH in practical
operation. Unit #4 of the Okawachi PSH in Japan is capable of a step response output
change of 32 MW (10% of the maximum rated power) within 0.2 s in the generating mode,
and 80 MW (20% of the maximum rated power) within 0.2 s in the pumping mode [35].
Accordingly, we set the range of the primary reserve to be secured by AS-PSH to 10%
of the maximum rated power in the generating mode and 20% in the pumping mode.
The range of secondary/regulation reserves can be set based on the capacity to control
the power for several minutes. Given that AS-PSH has a high ramping capability, the
maximum capacity of the secondary/regulation reserves was set as the difference between
the minimum and maximum power. The operation and reserve range of each PSH type
are shown in Figures 6 and 7 and Table 5. The reserves were divided into upward and
downward directions.
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Table 5. Operation and reserve range of FS-PSH and AS-PSH.

Operation Range Max. Primary Reserve
(Up/Downward)

Max. Secondary/Regulation Reserve
(Up/Downward)

FS-PSH
Generating mode 50~100% 10% 50%

Pumping mode Constant at 100% - -

AS-PSH
Generating mode 30~100% 10% 70%

Pumping mode 60~100% 20% 40%

3.2. Objective Function to Minimize the Operating Cost of the Power System

To predict the output pattern of the conventional generators of the future power system,
it was assumed that the generators produced an economic output under the spinning
reserve constraints and generator cycling characteristics. Accordingly, we formulated
an objective function to minimize the operating cost of the power system. The system
operating cost was divided into the fuel and startup costs of the generator. To implement
the constraints of the minimum output, minimum downtime, and minimum uptime of
generators, the objective function containing integer variables can be defined as follows:

Min : ∑
i∈GU

T

∑
t=1

{
FCi

(
pg

i,t

)
+ STCi·ui,t

}
(10)
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In general, the power generation cost function is expressed as a quadratic function.
However, in this study, we modeled the cost function of the quadratic function as a
piecewise linearization function [36,37].

3.3. Constraints Considering AS-PSH

AS-PSH increases the total system load during its pumping mode and can provide
primary, secondary, and regulation reserves in the pumping mode, which should be con-
sidered in the constraints. This subsection presents the constraints of the RCUC containing
the modeling of AS-PSH.

3.3.1. Integer Variable Constraints

Constraints (11) and (12) represent the startup and shutdown states of a generator and
prevent the simultaneous occurrence of the startup and shutdown states. Constraint (13)
prevents the concurrent occurrence of the PSH generating and pumping modes.

ui,t − di,t = ii,t − ii,t−1 (11)

ui,t + di,t ≤ 1 (12)

ii,t + li,t ≤ 1 (13)

3.3.2. Load Balance Constraints

At each hour, the total generated power and the difference between the load and VRE
power were set as equal. In addition, considering the pumping input power of the PSH
plants, the load balance constraint can be expressed by Constraint (14).

PLoad
t − PVRE

t + ∑
i∈PP

pp
i,t = ∑

i∈GU
pg

i,t (14)

3.3.3. Power Limit Constraints

The output power of generators and the input power of AS-PSH plants in the pumping
mode can range from the minimum to maximum power, as expressed by Constraints (15)
and (16).

Pmin
i × ii,t ≤ pg

i,t ≤ Pmax
i × ii,t (15)

PPmin
i × li,t ≤ pp

i,t ≤ PPmax
i × li,t (16)

3.3.4. Minimum Uptime/Downtime Constraints

During the daytime, when the power generated by VRE resources increases, a valley is
created in the net-load curve, and generator cycling operations can be required. In the case
of a coal-fired power generator in an offline state during the period wherein the net-load is
lowered, the offline state should be maintained for a minimum of 8–12 h. Therefore, it is
difficult to provide ramping capabilities during the period wherein the net-load increases
due to the decrease in the VRE’s output. The minimum downtime and minimum up-time
constraints were thus considered through Constraints (17) and (18).

k+MUi−1

∑
t=k

ii,t ≥ MUi × ui,k (17)

k+MDi−1

∑
t=k

(1− ii,t) ≥ MDi × di,k) (18)
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3.3.5. Generator Ramp-rate Constraints

The difference in output power between hour t and t − 1 of a generator is limited by
the ramp rate and expressed by Constraints (19) and (20).

pg
i,t − pg

i,t−1 ≤ 60× RUi (19)

pg
i,t−1 − pg

i,t ≤ 60× RDi (20)

3.3.6. Spinning Reserve Provision Constraints

The spinning reserve requirements should be secured under the constraints of the
generator operation range. The target value of a synchronized generator for governor
response is determined by the system frequency deviation and its droop characteristic [38].
To maintain the system frequency, the governor response that each unit can provide should
be within the operation range of the system frequency. Therefore, the maximum capacity
of the primary reserve of each unit can be expressed by Constraint (21) and the primary
reserve of a generator at hour t by Constraints (22) and (23).

GRCG,up,max
i = GRCG,down,max

i =
Pmax

i ·SFl
/

Ri·SFs (21)

0 ≤ grCG,up
i,t ≤ GRCG,up,max

i × ii,t (22)

0 ≤ grCG,down
i,t ≤ GRCG,down,max

i × ii,t (23)

As discussed in the previous subsection, the maximum primary reserve provided in the
generating and pumping modes of the AS-PSH is expressed by Constraints (24) and (25).
The primary reserve provided by an AS-PSH at hour t is expressed by Constraints (26), (27),
(28), and (29).

PRg,up,max
i = PRg,down,max

i = Pmax
i × 10% (24)

PRp,up,max
i = PRp,down,max

i = PPmax
i × 20% (25)

0 ≤ prg,up
i,t ≤ PRg,up,max

i × ii,t (26)

0 ≤ prg,down
i,t ≤ PRg,down,max

i × ii,t (27)

0 ≤ prp,up
i,t ≤ PRp,up,max

i × li,t (28)

0 ≤ prp,down
i,t ≤ PRp,down,max

i × li,t (29)

The secondary/regulation reserves are provided by the ACG signals according to
the ramp-rate of each generator. Therefore, a ramp-rate should be reflected in the ACG
capacity available to each generator. The UC problem in this study considers the constraints
of secondary and regulation reserves at 5 min intervals. The secondary and regulation
reserves available to each generator can be calculated using Constraints (30) and (31), and
the AGC capacity secured by a generator at hour t is expressed by Constraints (32) and (33).

AGCCG,up,max
i = 5× RRup

i (30)

AGCCG,down,max
i = 5× RRdown

i (31)

0 ≤ agcCG,up
i,t ≤ AGCCG,up,max

i × ii,t (32)

0 ≤ agcCG,down
i,t ≤ AGCCG,down,max

i × ii,t (33)
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The secondary/regulation reserve capacities of the AS-PSH are defined by Constraints (34)
and (35). The reserves of the AS-PSH in the generating and pumping modes at hour t are
expressed by Constraints (36)–(39).

AGCg,up,max
i = AGCg,down,max

i = Pmax
i − Pmin

i (34)

AGCp,up,max
i = AGCp,down,max

i = PPmax
i − PPmin

i (35)

0 ≤ agcg,up
i,t ≤ AGCg,up,max

i × ii,t (36)

0 ≤ agcg,down
i,t ≤ AGCg,down,max

i × ii,t (37)

0 ≤ agcp,up
i,t ≤ AGCp,up,max

i × li,t (38)

0 ≤ agcp,down
i,t ≤ AGCp,down,max

i × li,t (39)

3.3.7. Power Limit Constraints Considering Spinning Reserve

The output range of a conventional generator should consider its spinning reserve at
hour t, as expressed by Constraints (40) and (41).

pg
i,t + agcCG,up

i,t + grCG,up
i,t ≤ Pmax

i (40)

pg
i,t − agcCG,down

i,t − grCG,down
i,t ≥ Pmin

i (41)

The output and input power range of AS-PSH can be further expressed by Constraints (42),
(43), (44), and (45).

pg
i,t + agcg,up

i,t + prg,up
i,t ≤ Pmax

i × ii,t (42)

pg
i,t − agcg,down

i,t − prg,down
i,t ≥ Pmin

i × ii,t (43)

pp
i,t − agcp,up

i,t − prp,down
i,t ≤ PPmax

i × li,t (44)

pp
i,t + agcp,down

i,t + prp,down
i,t ≥ PPmin

i × li,t (45)

3.3.8. Spinning Reserve Requirement Constraints

The spinning reserve procured at each hour should satisfy Constraints (46) and (47),
which specify the requirements of the primary reserve and secondary/regulation reserves,
respectively. In this study, the up-spinning and down-spinning reserve requirements were
assumed to be identical. The primary reserve requirement in the Korean power market
is secured for the largest unit loss as the change in the generators’ output power in a
quasi-steady state after a generator outage. The Korean power system has an average
governor response of 1000 MW at the quasi-steady state for the largest unit outage [39].
The requirement of a 1400 MW secondary reserve is the capacity required to remove the
steady-state error of the system frequency after the largest unit loss. In addition, the
standard deviations of VRE are set to vary according to its output power, preventing the
overestimation of spinning reserves during the night when the output power of the VRE
is low. Based on the reserve requirement determination method in [40], we derived the
standard-deviation function of VRE’s output.

SRPR,up
t = SRPR,down

t = PRLU + n·σ1min
VRE

(
PVRE

t

)
(46)

SRAGC,up
t = SRAGC,down

t = SRLU +

√(
n·σ5min.

L
)2

+
(
n·σ5min

VRE
(

PVRE
t

))2 (47)
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The spinning reserve secured by AS-PSHs and conventional generators should satisfy
the reserve requirements at each hour, as expressed by Constraints (48), (49), (50), and (51).

∑
i∈APc

grCG,up
i,t + ∑

i∈AP
(prg,up

i,t + prp,up
i ) ≥ SRPR,up

t (48)

∑
i∈APc

grCG,down
i,t + ∑

i∈AP

(
prg,down

i,t + prp,down
i

)
≥ SRPR,down

t (49)

∑
i∈APc

agcCG,up
i,t + ∑

i∈AP
(agcg,up

i,t + agcp,up
i,t ) ≥ SRAGC,up

t (50)

∑
i∈APc

agcCG,down
i,t + ∑

i∈AP
(agcg,down

i,t + agcp,down
i,t ) ≥ SRAGC,down

t (51)

3.3.9. Upper Reservoir of PSH Constraint

The PSH has an energy constraint based on its upper reservoir volume. Constraints (52)
and (53) consider the efficiency when the PSH charges and discharges. The upper reservoir
volume at hour t was measured based on electrical energy.

vi,t = vi,t−1 − pg
i,t−1 + pp

i,t−1 × EFFi (52)

0 ≤ vi,t ≤ Vmax
i (53)

4. Simulation

This section presents the scenarios, simulation results, and discussion.

4.1. Scenarios

The construction of three new PSH plants by 2030, with reference to [1], was assumed;
and the following scenarios were set. Scenario A denotes no PSH plant construction,
Scenario B denotes FS-PSH plant construction, and Scenarios C and D denote AS-PSH
plant construction. To verify the contribution of the AS-PSH operating in the pumping
mode to primary reserve provision, Scenario C constrained the AS-PSH to provide only
secondary/regulation reserves in pumping mode, and the AS-PSH in Scenario D was
modeled to provide all the reserves. Table 6 outlines each scenario. Both FS-PSH and
AS-PSH were assumed to have the same capacity for the generating and pumping modes.

Table 6. Scenario description of RCUC simulation.

Scenario
Existing PSH Plants New PSH Plants in 2030 Total Capacity of PSH

Plants, MWFS-Type, MW FS-Type, MW AS-Type, MW

A 4700 0 0 4700
B 4700 600 × 3 = 1800 0 6500
C 4700 0 600 × 3 = 1800 6500
D 4700 0 600 × 3 = 1800 6500

Given the low frequency of the high output power of VRE, in addition to the low
investment efficiency of transmission and distribution facilities required, we considered
curtailing approximately 5% of the target power generation of VRE. If the VRE output is
limited to a maximum of 26 GW in 2030, 5% of the total generation can be curtailed, and
the VRE output curve in Figure 1 can be depicted as shown in Figure 8.
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The calculated output of VRE in Korea differs by month, and the generation of VRE is
highest in spring. Generally, the load curve on weekends tends to be lower than that on
weekdays. The effects of VRE were assumed to be significant on weekends. Therefore, UC
simulation was performed on a weekend daily load curve with high VRE generation in
spring 2030. To verify the VRE effect in a typical load curve pattern, special days, such as
traditional holidays, were excluded.

The daily load, net-load, and output power of the VRE considering the output limit are
shown in Figure 9. The requirements of the spinning reserves with respect to Constraints (46)
and (47), which adopt the 2σ criterion of the short-term variation of the VRE, are plotted in
Figure 10. The current standard adopting the 3σ criterion for the short-term variation of
the load was maintained.
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4.2. Results

In the UC simulation, the following two assumptions were made:

(1) All of the available nuclear power generators are maintained in an online state for 24 h.
(2) Nuclear power generators do not provide spinning reserves.

Assumption 1 implies that there is no startup or shutdown operation of nuclear power
generators for 24 h. Nuclear power generators are set to have a significantly limited
ramp-rate. Assumption 2 implies that the UC results do not count as a spinning reserve,
even if nuclear power generators have unused capacity. The total available capacity of
nuclear power generators was assumed to be 16.4 GW out of 20.4 GW in 2030, with reference
to their historical planned outage rates. Starting with the case where all available capacity
of nuclear power generators is operable, the feasible solution was found by excluding
the online state nuclear power generators. Table 7 presents the feasible solutions to the
optimization problem according to the capacity of the nuclear power generators in the
online state for each scenario.

Table 7. Feasibility of each scenario.

Scenario
Total Online Capacity of Nuclear Power Generators, GW

16.4 15.4 14.4 13.4 12.4 11.4 10.4 9.4 8.4 7 5.6 4.2
A Infeasible Feasible
B Infeasible Feasible
C Infeasible Feasible
D Infeasible Feasible

In all scenarios, the UC problem was found to be infeasible when nuclear power
generators were employed at the maximum capacity of 16.4 GW. In Scenarios A and B,
the maximum available capacities of the nuclear power generators were derived as 4.2
GW and 7 GW, respectively. Similarly, the maximum available capacities of the nuclear
power generators in Scenarios B and D were 7 GW and 12.4 GW, respectively. Figures 11–14
present the diagram of the UC solution for each scenario when the feasible solution is
operated as per the maximum capacity of the nuclear power plant, as derived in Table 7.
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Table 8 presents the operating cost results of each scenario. Given the characteristics of
the Korean power market, which is based on fuel cost, the costs of VRE and hydro energy
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were not considered. In Figures 11–14, the resources named ‘others’ consists of new energy
resources, such as fuel cells and by-product gases. Using the expected power generation of
the new energy resources in 2030, the output power was assumed to be uniform throughout
the day [1]. Given that the 24 h power generation pattern of the energy sources was applied
in all scenarios, their costs were neglected.

Table 8. Cost result of each scenario.

Fuel-Type

Scenario A Scenario B Scenario C Scenario D

Cost, KRW Share,
%

Cost,
KRW

Share,
%

Cost,
KRW

Share,
%

Cost,
KRW

Share,
%

Nuclear 493.24 6.8 822.84 11.4 825.00 11.4 1,427.16 19.9
Coal 25,078.89 38.0 23,594.92 35.5 23,453.91 35.4 19,604.10 29.4
Gas 17,557.25 17.3 15,620.68 15.3 15,076.00 15.4 12,999.19 12.9

Total costs 43,129.38 62.1 40,038.44 62.2 39,354.92 62.2 34,030.46 62.2

The total operating costs decreased in the order of Scenarios A, B, C, and D. The propor-
tion of nuclear power generation was 6.8%, 11.4%, 11.4%, and 19.9% in Scenarios A, B, C, and
D, respectively, and that of thermal power generation was calculated as 55.3%, 50.8%, 50.8%,
and 42.3%, respectively. Based on the operating cost result of Scenario A, the operating cost
savings for scenarios B, C, and D were KRW 3090.94, 3774.46, and 9098.92, respectively.

4.3. Discussion

The results shown in Table 8 and Figures 11–14 were found to be strongly related to the
generator output limit in Constraints (15), (40), and (41); the generator’s spinning reserve
provision in Constraints (21)–(23) and (30)–(33); and the spinning reserve requirement in
Constraints (46)–(51). If nuclear power generators with a total capacity of 16.4 GW are
operating, the thermal power generators carry a given net-load, excluding the output power
of the nuclear power generators. However, in this case, the spinning reserve requirement is
not satisfied. In contrast, if the nuclear power generator is operating at 16.4 GW and the
thermal power generators procure the requirement of spinning reserves, the supply and
demand balance of Constraint (14) is violated.

Therefore, the AS-PSH operating in pumping mode during low net-load and providing
primary reserves was the main factor for the result of Scenario D. The primary reserve from
a conventional generator is dominated by its droop and not its ramp-rate characteristics. As
mentioned above, the primary reserve that can be secured for each generator is considerably
limited when compared with the secondary/regulation reserve. For example, under
Constraint (21), if the system-frequency maintenance range is ±0.2 Hz, the primary reserve
that can be secured by a 500 MW generator with droop 6% is merely 25 MW (5% of the
maximum rated power of the generator). In this case, with a 25 MW increase in the primary
reserve, 500 MW of thermal power generation must be committed sequentially.

An increase in the primary reserve requirements requires an increased number of
thermal power generators in the online state, but the duck-curve phenomenon limits the
number of online generators. The FS-PSH operated in pumping mode, contributing only to
mitigating the duck-curve phenomenon, while the AS-PSH operated in pumping mode and
contributed to both primary reserve provision and mitigating the duck-curve phenomenon.
As shown in Figure 15, the results of the AS-PSH securing all the unused capacity as the
primary reserve in the low net-load period were derived. Therefore, the maximum available
capacity of nuclear power generators, which are economic resources, was the highest in
Scenario D.

54



Energies 2022, 15, 2386Energies 2022, 15, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 15. Reserves of AS-PSHs and conventional generators in Scenario D. 

5. Conclusions 

In this study, we performed RCUC simulations for the Korean power system pro-

jected for 2030 and analyzed the economic effect obtained by the flexibility of AS-PSH. 

Prior literature focused on the traditional advantages of PSHs, such as energy storage and 

quick-start capabilities, and provided insufficient analysis on the economic effect from the 

primary reserve capability of AS-PSH. In this study, we focused on the reserve capability 

of AS-PSH, considering that AS-PSH in pumping mode can provide primary, secondary, 

and regulation reserves. To analyze the economic effect obtained by AS-PSH in environ-

ments with a high share of VRE, we considered the short-term variations of VRE in the 

spinning reserve requirement defined by the Korean power market. We then divided the 

flexibility provided by AS-PSH into primary, secondary, and regulation reserves and 

modeled them in the RCUC formulation to allow for a range of operations in the pumping 

mode. In the simulation, it was postulated that the spinning reserve is procured only 

through generators, including PSHs. We simulated four scenarios: Scenario A denoted no 

PSH plant construction, Scenario B denoted FS-PSH plant construction. Scenarios C and 

D denoted AS-PSH plant construction. Scenario D showed the best cost result. 

The key findings of this study are as follows. 

• In the duck-curve environment with an increased spinning reserve requirement, it 

was difficult to operate nuclear power generators at their maximum capacities. In the 

results of Scenario A, the maximum available capacity of the nuclear power genera-

tors was 4.2 GW out of 16.4 GW. 

• New PSH plants contributed to mitigating the duck-curve phenomenon and in-

creased the maximum available capacity of the nuclear power generators, resulting 

in operating cost savings.  

• The costs in Scenarios A, B, C, and D were KRW 43,129.38, 40,038.44, 39,354.92, and 

34,030.46. The results were mainly derived from the provision of the primary reserve 

by AS-PSH’s pumping mode. 

This study is limited in that the patterns of load curves vary depending on weekdays 

or weekends and are influenced by the seasons. The characteristics of VRE are also influ-

enced by the seasons. Therefore, it is necessary to evaluate the economic effect over a 

longer timeframe in a follow-up study. In a long-term evaluation, a more simplified model 

for long-term economic analysis should be developed because the computational burden 

of the MIP model increases significantly as the analysis period increases. However, in a 

simplified model, the results of a short-term analysis model may not be guaranteed. 

Therefore, in a future long-term economic evaluation model, it will be necessary to de-

velop a novel algorithm capable of considering the operational characteristics derived 

from the short-term economic evaluation model. 

Author Contributions: Conceptualization, W.-J.K.; data curation, W.-J.K.; formal analysis, W.-J.K.; 

funding acquisition, Y.-H.C.; investigation, W.-J.K. and Y.-S.L.; methodology, W.-J.K. and Y.-S.L.; 

Figure 15. Reserves of AS-PSHs and conventional generators in Scenario D.

5. Conclusions

In this study, we performed RCUC simulations for the Korean power system projected
for 2030 and analyzed the economic effect obtained by the flexibility of AS-PSH. Prior
literature focused on the traditional advantages of PSHs, such as energy storage and
quick-start capabilities, and provided insufficient analysis on the economic effect from the
primary reserve capability of AS-PSH. In this study, we focused on the reserve capability of
AS-PSH, considering that AS-PSH in pumping mode can provide primary, secondary, and
regulation reserves. To analyze the economic effect obtained by AS-PSH in environments
with a high share of VRE, we considered the short-term variations of VRE in the spinning
reserve requirement defined by the Korean power market. We then divided the flexibility
provided by AS-PSH into primary, secondary, and regulation reserves and modeled them
in the RCUC formulation to allow for a range of operations in the pumping mode. In
the simulation, it was postulated that the spinning reserve is procured only through
generators, including PSHs. We simulated four scenarios: Scenario A denoted no PSH
plant construction, Scenario B denoted FS-PSH plant construction. Scenarios C and D
denoted AS-PSH plant construction. Scenario D showed the best cost result.

The key findings of this study are as follows.

• In the duck-curve environment with an increased spinning reserve requirement, it
was difficult to operate nuclear power generators at their maximum capacities. In the
results of Scenario A, the maximum available capacity of the nuclear power generators
was 4.2 GW out of 16.4 GW.

• New PSH plants contributed to mitigating the duck-curve phenomenon and increased
the maximum available capacity of the nuclear power generators, resulting in operat-
ing cost savings.

• The costs in Scenarios A, B, C, and D were KRW 43,129.38, 40,038.44, 39,354.92, and
34,030.46. The results were mainly derived from the provision of the primary reserve
by AS-PSH’s pumping mode.

This study is limited in that the patterns of load curves vary depending on weekdays or
weekends and are influenced by the seasons. The characteristics of VRE are also influenced
by the seasons. Therefore, it is necessary to evaluate the economic effect over a longer
timeframe in a follow-up study. In a long-term evaluation, a more simplified model for
long-term economic analysis should be developed because the computational burden of the
MIP model increases significantly as the analysis period increases. However, in a simplified
model, the results of a short-term analysis model may not be guaranteed. Therefore, in
a future long-term economic evaluation model, it will be necessary to develop a novel
algorithm capable of considering the operational characteristics derived from the short-term
economic evaluation model.
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Nomenclature
Sets and indices

GU Set of all generating units
PP Set of PSH units, PP ⊂ GU
AP Set of AS-PSH units, AP ⊂ PP ⊂ GU
T Operation period, index by t
i Index for unit, i ∈ GU, PP, or AP
t Index for time interval, t = 1, . . . , T

Parameters and functions

FCi(·) Fuel cost function of unit i at hour t $
STCi Startup cost of Unit i, $
PLoad

t System load at Time t, MW
PVRE

t Output of renewable energy sources at Time t, MW
Pmin

i Minimum output power of Unit i, MW
Pmax

i Maximum output power of Unit i, MW
PPmin

i Minimum pumping input power of PSH plant i, MW
PPmax

i Maximum pumping input power of PSH plant i, MW
MUi Minimum up-time of Unit i, hour
MDi Minimum down-time of Unit i, hour
RUi Up-ramping limit of Unit i, MW/minute
RDi Down-ramping limit of Unit i, MW/minute
Ri Droop of Unit i, p.u.
SFi Operational limit deviation of system frequency, Hz
SFs Standard system frequency, Hz
PRLU Requirement of primary reserve respond to largest unit loss, MW
SRLU Requirement of secondary reserve respond to largest unit loss, MW
σ1min

VRE Standard deviation of VRE’s 1 min variation
σ5min

VRE Standard deviation of VRE’s 5 min variation
σ5min.

L Standard deviation of load’s 5 min variation
EFFi Pumping efficiency of PSH plant i
Vmax

i Maximum volume of upper reservoir of PSH plant i, MWh
AGCCG,up,max

i Maximum up-secondary and regulation reserve of unit i, MW
AGCg,up,max

i Maximum up-secondary and regulation reserve of AS-PSH i (generating), MW
AGCp,up,max

i Maximum up-secondary and regulation reserve of AS-PSH i (pumping), MW
GRCG,up,max

i Maximum up-primary reserve of unit i, MW
PRg,up,max

i Maximum up-primary reserve of AS-PSH (generating) i, MW
PRp,up,max

i Maximum up-primary reserve of AS-PSH (pumping) i, MW
AGCCG,down,max

i Maximum down-secondary and regulation reserve of unit i, MW
AGCg,down,max

i Maximum down-secondary and regulation reserve of AS-PSH i (generating), MW
AGCp,down,max

i Maximum down-secondary and regulation reserve of AS-PSH i (pumping), MW
GRCG,down,max

i Maximum down-primary reserve of unit i, MW
PRg,down,max

i Maximum down-primary reserve of AS-PSH (generating) i, MW
PRp,down,max

i Maximum down-primary reserve of AS-PSH (pumping) i, MW
SRPR,up

t Up-primary reserve requirement at hour t, MW
SRPR,down

t Down-primary reserve requirement at hour t, MW
SRAGC,up

t Up-secondary and regulation reserve requirement at hour t, MW
SRAGC,down

t Down- secondary and regulation reserve requirement at hour t, MW
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Variables

ui,t Integer variable for startup, 1 when off to on at hour t
di,t Integer variable for shutdown, 1 when on to off at hour t
ii,t Integer variable for on/off, on = 1/off = 0 at hour t
li,t Integer variable for on/off (pumping mode of PSH), on = 1/off = 0 at hour t
pg

i,t Output of unit i at hour t, MW
pp

i,t Pumping output of PSH plant i at hour t, MW

agcCG,up
i,t Up-secondary and regulation reserve of unit i at hour t, MW

agcg,up
i,t Up-secondary and regulation reserve of AS-PSH (generating) i at hour t, MW

agcp,up
i,t Up-secondary and regulation reserve of AS-PSH (pumping) i at hour t, MW

grCG,up
i,t Up-primary reserve of unit i at hour t, MW.

prg,up
i,t Up-primary reserve of AS PSH (generating) i at hour t, MW

prp,up
i Up-primary reserve of AS PSH (pumping) i at hour t, MW

agcCG,down
i,t Down-secondary and regulation reserve of unit i at hour t, MW

agcg,down
i,t Down-secondary and regulation reserve of AS-PSH (generating) i at hour t, MW

agcp,down
i,t Down-secondary and regulation reserve of AS-PSH (pumping) i at hour t, MW

prg,down
i,t Down-primary reserve of AS-PSH (generating) i at hour t, MW

prp,down
i Down-primary reserve of AS-PSH (pumping) i at hour t, MW

grCG,down
i,t Down-primary reserve of unit i at hour t, MW

vi,t Volume of PSH plant i at hour t

Solar and wind power model parameters

n Index for a wind turbine in a wind farm, n = 1, 2, 3, . . . , N
PWT,n Output power of nth wind turbine in a wind farm, MW
Pcurvefit Polynomial function of output power for (Vin ≤ V ≤ Vr), MW
Pr Rated output power of wind turbine, MW
Vin Cut-in wind speed, m/s
Vr Rated wind speed, m/s
Vout Cut-out wind speed, m/s
PWF Output power of wind farm, MW
CWF Capacity of wind farm, MW
Vm Wind speed at height Zm, m/s
Vh Wind speed at height Zh, m/s
Zm Height 1 (lower height, 10m), m
Zh Height 2 (upper height, Tower hub height), m
α Power-law exponent
PPV,M Output power of PV module, W
P∗PV,M Rated output power of PV module in STC, W
G Actual solar irradiance, W/m2

G* Solar irradiance in STC, 1000 W/m2

γ Module maximum power temperature coefficient, 1/◦C
TC PV module temperature, ◦C
PPV Output power of PV power plant, MW
CPV Capacity of PV power plant, MW
TA Air temperature, ◦C
TNOCT Nominal operating cell temperature, ◦C
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Abstract: Electrification of remote rural areas by adopting renewable energy technologies through the
advancement of smart micro-grids is indispensable for the achievement of continuous development
goals. Satisfying the electricity demand of consumers while adhering to reliability constraints
with docile computation analysis is challenging for the optimal sizing of a Hybrid Energy System
(HES). This study proposes the new application of an Artificial Ecosystem-based Optimization
(AEO) algorithm for the optimal sizing of a HES while satisfying Loss of Power Supply Probability
(LPSP) and Renewable Energy Fraction (REF) reliability indices. Furthermore, reduction of surplus
energy is achieved by adopting Demand Side Management (DSM), which increases the utilization
of renewable energy. By adopting DSM, 28.38%, 43.05%, and 65.37% were achieved for the Cost
of Energy (COE) saving at 40%, 60%, and 80% REF, respectively. The simulation and optimization
results demonstrate the most cost-competitive system configuration that is viable for remote-area
utilization. The proposed AEO algorithm is further compared to Harris Hawk Optimization (HHO)
and the Future Search Algorithm (FSA) for validation purpose. The obtained results demonstrate
the efficacy of AEO to achieve the optimal sizing of HES with the lowest COE, the highest consistent
level, and minimal standard deviation compared with HHO and FSA. The proposed model was
developed and simulated using the MATLAB/code environment.

Keywords: Demand Side Management; Artificial Ecosystem-based Optimization; optimal sizing;
Hybrid Energy System; Future Search Algorithm; Harris Hawk optimization; Renewable Energy
Fraction; surplus energy; Loss of Power Supply Probability

1. Introduction

The reduction of conventional energy sources coupled with increasing global warming
have accelerated the growth of renewable energy sources (RES) such as solar and wind [1].
RES can be exploited for both grid connection and for off-grid, especially in rural areas with
restricted grid connection [2–4]. This will reduce fossil fuel dependency, harmful emissions,
and consumption costs. In spite of their benefits, RES performance is often limited due to
the intermittent and unpredictable nature of their output power [5]. These factors affects
both energy production and the operational costs of the system. Connecting two or more
RES is essential to sustain energy for remote areas by preserving the quality and reliability
of power [6]. Likewise, incorporating diesel generators with RES can ensure service quality
and reliability and results in less battery maintenance [7,8]. Therefore, it is essential to
optimize Hybrid Energy System (HES) size to minimize installation and maintenance cost.

Several studies have adopted analytical, probabilistic, and heuristic techniques in
achieving HES optimization. The probabilistic technique is modelled on the random
prospect of a particular system [9,10]. However, this method is not robust for obtaining
optimal result with dynamic change in RES. The analytical technique is only capable of
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handling simple and precise methods [11,12]. The potent results of the heuristic meth-
ods [13–20] make them dependable for complex optimal sizing of HES with sufficient
computational time. In [13], the Harmony Search (HS) algorithm was utilized for sizing
PV/diesel energy sources. The obtained result in [13] demonstrated the robustness of HS
in reducing pollution and system cost. Masoud et al. [14] demonstrated the effectiveness
of Dynamic Multi-Objectives Particle Swarm Optimization (DMOPSO) for sizing the HES.
By utilizing the DMOPSO algorithm, the results revealed a decrease in PV panel cost and
NPC. In [15], a genetic algorithm combined with particle swarm optimization was used for
the optimal design of a hybrid wind–PV–battery system. Loss of Load Expected (LOLE)
and Loss of Energy Expected (LOEE) were subjected to constraints to minimize operation
cost using multi-objective particle swarm optimization [16]. Eftichios et al. [17] presented a
genetic algorithm using the system cost function subject to Loss of Load Hours (LOLH)
constraints for HES optimization. Minimization of COE is presented in [18] to optimize the
size of the HES subject to Renewable Energy Fraction (REF) and LPSP constraints. In [17],
the levelized cost of energy was obtained through optimal sizing of PV, wind, battery, and
diesel generator. Wang et al. [20] proposed a non-dominated sorting algorithm II, incorpo-
rated with re-ranking based genetic operators to determine system reliability, greenhouse
gas emission, and lifetime cost for optimal sizing of the HES. Crow Search (CS) and Particle
Swarm Optimization (PSO) were introduced in [21,22] for optimal sizing and allocation of
renewable distributed generations. Morteza et al. presented a solar-hydrogen model for
hybrid energy sizing using Demand Side Management (DSM) [23]. The results revealed the
decrease in electricity cost; however, the model did not utilize system constraints. Hassan
et al. [24] presented a strategy to allocate renewable distributed generations using CS
with PSO.

The majority of the optimal sizing of HES in the literature did not apply DSM concepts.
DSM is the future of power systems, incorporating cutting-edge technologies and distri-
butions system for supplying electricity in efficient and smart ways [25]. DSM buttresses
smart grid in several ways, such as control, electricity cost reduction, monitoring, and
management of energy resources [26]. DSM can help to reduce load peak, which increases
the efficiency of grid operation, promotes a decrease in the greenhouse gas effect, and
leads to electricity bill reduction. Effective DSM can avoid the upgrading of electrical
infrastructures such as transmission lines and distribution networks. Some of the generic
method of DSM [27] are valley filling, load conservation, peak clipping, load growth or
load establishment, and load shifting. Peak clipping is the reduction of peak loads without
shifting it to off-peak hours. Valley filling involves encouraging consumption during the
off-peak period. Load conservation involves encouraging consumers to make use of effi-
cient appliances to reduce energy wastage. Load growth is adopted in a situation of surplus
energy that might be the result of the integration of renewable energy. Load shifting is
most commonly utilized and involves the shifting of load from peak periods to off-peak
periods or periods where the energy cost is cheap [27]. Cost saving is the major purpose of
the load-shifting process [28]. This method will be utilized in this study for the optimal
sizing of the HES. Figure 1a–d shows a pictorial representation of various DSM strategies.

Thus, the foremost objective of this study is to extend the work presented in [29]
by incorporating DSM for the optimal sizing of HES for remote communities of Al Su-
laymaniyah village, Saudi Arabia, using a new optimization algorithm. The evaluation
of three algorithms: Artificial Ecosystem-based Optimization (AEO) [30], Future Search
Algorithm (FSA) [31], Harris Hawk Optimization (HHO) [32], were evaluated for optimal
sizing. These algorithms were analyzed for optimizing Cost of Energy (COE) at zero Loss of
Power Supply Probability (LPSP). Additionally, the Renewable Energy factor is proposed
to ensure a hybrid energy utilization among the energy sources: diesel, battery storage, PV,
and wind. The results demonstrated the efficacy of AEO in obtaining the lowest COE with
and without DSM.
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Figure 1. (a) Peak Clipping; (b) Valley Filling; (c) Load Shifting; (d) Load establishment.

The novelty and contribution of this paper can be summarized as follows:

• A new application of Artificial Ecosystem-based Optimization is utilized for the first
time to achieve optimal sizing of HES by minimizing the Cost of Energy (COE);

• Renewable Energy Fraction (REF) and Loss of Power Supply Probability (LPSP) are
utilized to achieve stand-alone HES consisting of PV/WTGs/battery/diesel for Al
Sulaymaniyah village, Saudi Arabia;

• A load-shifting strategy based on the available renewable is employed for the DSM to
achieve a minimal cost of energy;

• AEO is compared to FSA and HHO with DSM and without DSM in achieving the COE
and to verify its efficacy;

• Different values of REF at 40%, 60%, and 80% are utilized as constraints to determine
the COE with DSM and without DSM;

• The results demonstrated the effectiveness of AEO to achieve the lowest COE, both
with DSM and without DSM.

The rest of the paper is arranged as follows: Section 2 describes the Al Sulaymaniyah
site and load; Section 3 proposes the HES configuration; Section 4 discusses the AEO
algorithm; Section 5 describes the power management approach; Section 6 introduces the
developed DSM; Section 7 describes the reliability indices; Section 8 illustrates the objective
function; Section 9 discusses the results; and Section 10 presents the conclusion.

2. Al Sulaymaniyah Site Description and Meteorological Data

The geographical location of Al Sulaymaniyah is shown in Figure 2 [29]. The village
is located in the northern part of Saudi Arabia at an elevation of 1820 ft above sea level.
The location has enormous availability of wind and solar energy. Al Sulaymaniyah village
comprises mosques, a water pump, a small hospital, and recreation facilities. The village is
supplied through diesel generators by the Saudi Electricity Company (SEC). The climatic
conditions at the village are continental. The village’s temperature ranges between 0 ◦C
and 45 ◦C throughout the year. The summer period is usually from May to September,
while the winter season is from November to February. The day period varies throughout
the year. The lengthiest day occurs in June, with 14 h of sunlight, and the shortest day
occurs in December, with 10 h of sunlight.
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Figure 2. Al Sulaymaniyah village, Saudi Arabia.

The measured average hourly energy consumption at Al Sulaymaniyah village com-
prises 8760 data points. Currently, the village is powered by three 456 kW diesel generators
connected in parallel to a common bus. The generated power is connected to a 1250 kVA
step-up transformer. The full description of Al Sulaymaniyah meteorological data and load
pattern are described in [29].

3. Configuration of the HES

The proposed structure for the Hybrid Energy System is presented in Figure 3 [33].
This comprises battery storage, the inverter for converting DC energy sources to AC, diesel
generators, load, PV, and wind energy sources. In this study, PV and wind are considered
as the two major sources of energy. Either the diesel generator or storage energy system
compensates the disparity between PV and wind. Al Sulaymaniyah’s low PV and wind
coefficient of correlation implies that PV and wind might not be able to adequately supply
the energy required without the utilization of energy storage and diesel sources. PV and
storage system are connected to the DC side of the bus bar, while the diesel generator and
wind turbines are linked to the AC side of the bus bar. The diesel generator serves as an
alternative source of energy whenever the PV, wind, and storage system are unable to meet
the load demand.

Figure 3. Overview of the proposed Hybrid Energy System.
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The modelling of the PV, wind, storage system, and diesel generator is introduced
as follows.

3.1. PV Modelling

Solar irradiance, PV array manufacturer’s data, and temperature are major factors that
influence the output power generated from PV systems, as shown in (1) [34].

PPV= Pr f pv

[
GT

GT,STC

]
(1 + αp(Tc − Tc,STC)) (1)

where Pr, Tc,STC, Tc, GT , GT,STC, αp, and f pv are the PV rated power, PV temperatures
under STC and normal conditions, global irradiance under normal and Standard Test
Conditions (STCs), power temperature coefficient, and de-rating factor, respectively. The
temperature of the PV steady-state operation is described in (2).

Tc =
Ta + (NOCT − Ta, NOCT)

(
1− 1.11ηMPP(1− αpTc,STC)

)( GT
GT,NOCT

)

1 + 1.11(αρηMPP,STC) (NOCT − Ta,NOCT)
(

GT
GT,NOCT

) (2)

where NOCT and Ta are operating cell nominal and ambient temperature, respectively.
GT,NOCT and Ta,NOCT are, respectively, the solar irradiance and ambient temperature with
respect to NOCT; ηMPP and ηMPP,STC are the Maximum Power Point (MPP) efficiency of
the PV module and efficiency under STCs, respectively.

3.2. Wind Turbine Generator (WTG) Modelling

The approximated curve of power output of a wind turbine system can be expressed
as follows [35]:

PWT(u) = Pr ×





0 u ≤ uc or u > u f
u2−u2

c

u2
r −u2

c
uc < u ≤ ur

1 ur ≤ u ≤ u f

(3)

where u, uc, Pr, ur, and u f are wind speed, cut-in/starting speed of wind turbine, rated
power of wind turbine, rated speed, and cut-out/furling speed, respectively. It is evident
from Equation (3) that wind turbine output power depends on five parameters, which
are the four wind turbine parameters and the site wind speed (u). The four wind turbine
parameters are uc, Pr, ur, and u f . Based on a quadratic model, a typical wind turbine output
power characteristic curve is shown in Figure 4 [29].

Figure 4. Wind turbine output power characteristics curve.
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3.3. Storage System Modelling

One of the critical aspects of RES is the storage system because of the stochastic nature
of RES output power. The depth of discharge and battery bank nominal capacity are
important factors to be considered in storage system. The load demand determines the
energy flow through the storage system. The State of Charge (SOC) of the battery bank is
represented as (4) [29].

SOC(t) = SOC(t− 1)(1− σ) +

(
PGA(t)−

PL (t)
ηinυ

)
ηbattery (4)

where PL(t), ηinυ, ηbattery, PGA(t), and σ are total load demand, net inverter efficiency, round
trip efficiency of battery within [0.5, 0.95], total output power, and self-discharging rate,
respectively. The charging and discharging operation of the storage system is described
by the positive and negative second term of Equation (4). The constraints for the storage
system State of Charge (SOC) are described in (5).

SOC(t) =





SOCmin SOC(t) < SOCmin
SOC(t) SOCmin < SOC(t) < SOCmax
SOCmax SOC(t) > SOCmax

(5)

The SOC cannot exceed the maximum limit of SOCmax, and likewise the minimum
SOC must be equal to or exceed the minimum allowable limit, SOCmin.

3.4. Diesel Generator

The diesel generator is utilized whenever the storage and RES is insufficient to sustain
load demand. The annual fuel consumption and the cost is represented as (6) [35].

CDsl = CF ∑8760
t=1 A× PDsl(t) + B × PR (6)

where CDsl,, PR, CF, and PDsl(t) are the annual fuel consumption (L/h), nominal power,
cost of fuel per liter, and generated power (kW) of diesel, respectively. A, B are the fuel
constants (L/kW). The two main import factor that influences the fuel consumption are
both the output power and nominal power. The output power of the diesel generator is
recommended by the manufacturers between a preset minimum level and nominal power.

4. Artificial Ecosystem-Based Optimization (AEO)

AEO is a type of population-based optimization algorithm. It imitates the production,
decomposition, and consumption behavior of living organisms. This concept depicts energy
flow in the ecosystem of the Earth. In the Earth’s ecosystem, producers use water, sunlight,
and carbon dioxide to make food energy. Similarly, the AEO production stage is used to
improve the balance between exploration and exploitation. The second stage, consumers,
just like animals, cannot produce their own food. They acquire their energy and nutrients
from fellow consumers or producers. This stage improves the exploration of the algorithm.
Decomposition is the last stage. Decomposers feed on both consumers and producers. The
exploitation of the algorithm is enriched at this stage [30].

4.1. Producer

In the search space at this stage, a random individual (xrandi) and a best individual
(xq) are randomly produced. The decomposer (best individual) and the search space’s
upper and lower boundaries update the producer (worst individual). This update will
facilitate other individuals to hunt for separate regions. The mathematical representation
for this is illustrated in (7) [30].

x1(ti + 1) = (1− a)xq(ti) + axrandi(ti) (7)
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where

a =

(
1− ti

It

)
∗ r1 (8)

xrandi = r ∗ (Up− Lw) + Lw (9)

x2(ti + 1) = x2(ti) + K[x2(ti)− x1(ti)] (10)

where r1 and r are random numbers within 0 and 1, It is maximum iterations, a is linear
weighting coefficient, q is the population number, and Lw and Up are the lower and upper
boundaries, respectively. The flight levy, K, is for enhancement of the exploration level.
This is represented in (11) [36]:

K = 0.5 ∗ v1/|v2| (11)

where v2 = N(0, 1) and v1 =∼ N(0, 1). N(0, 1) denotes normal distribution.

4.2. Consumption

This stage enhances the exploration by letting the algorithms upgrade the solution
of individuals. The consumers can be classified as herbivore, carnivore, or omnivore. The
herbivore feeds on both the consumers and the producers. The second feed on the con-
sumers with an advanced energy level. The last feeds on the producers and/or consumers
with an advanced energy level. The mathematical equation for herbivore as a consumer is
represented as follows [36]:

xi(ti + 1) = xi(ti) + K[xi(ti)− xi(ti)], i ∈ [3, . . . , n] (12)

The mathematical equation for consumer as a carnivore is represented as follows:

{
xi(ti + 1) = xi(ti) + K

[
xi(ti)− xj(ti)

]
,

i ∈ [3, . . . , n], j = randi([2 i− 1])
(13)

The mathematical equation for an omnivore consumer is denoted as:

{
xi(ti + 1) = xi(ti) + K

[
r2(xi(ti)− x1(ti)) + (1− r2)

(
xi(ti)− xj(ti)

)]
,

i ∈ [3, . . . , n], j = randi([2 i− 1])
(14)

where r2 is within the range of 0 and 1.

4.3. Decomposers

The decomposition stage is very important because it feeds the producers and en-
compasses the food chain. In Earth’s ecosystem, when a consumer passes away, the
decomposers feed on its leftovers. The mathematical Equation (15) for the decomposer
model introduces new factors. The factors are weight coefficients (we and he) and decom-
position factor (De). The decomposition supports the exploitation of the algorithm by
updating individual locations based on the best solution, as described in (16) [30].

xi(ti + 1) = xn(ti) + De(wexn(ti)− hexi(tt)), i = 1, . . . , n (15)

The newly introduced factors are defined by Equation (16), shown below.




De = 3u, u ∼ N(0, 1)
we = r3 ∗ randi([1, 2])− 1

he = 2 ∗ r3 − 1
(16)

where r3 is within the range of 0 and 1.
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4.4. Termination

During this stage, xq is updated after the fitness is obtained for each individual.
Subsequently, the termination condition is evaluated; if it is met, the execution is terminated
and xq is returned, or else the first stage is repeated. Figures 5 and 6 show the typical flow
of energy in Earth’s ecosystem and the AEO ecosystem [30], and Algorithm 1 summarized
the pseudocode AEO algorithm.

Figure 5. Energy flow in an ecosystem.

Figure 6. AEO ecosystem.

Algorithm 1: Pseudocode of Artificial Ecosystem-based Optimization for optimal the sizing
of HES

1. Initialization: Random initialization of AEO ecosystem, x1, and evaluation of fitness, ffi; xq =
best solution established so far.
2. While the halt condition is not obtained, perform:

First Stage: Production
Individual x1, update its position with (7).

Second Stage: Consumption
Individual x1 (i = 2, . . . ,n)

Herbivorous act occurs
If rand < 1

3 , the individual update is carried out using (12)
Omnivorous act occurs

Else if 1/3 and rand < 2/3 the update to individual is carried out using (14)
Carnivorous act occurs

Else the individual update is carried out with (13)
End if

End if
Third stage: Decomposition

Individual update is carried out with (15)
Individual fitness is calculated
Best position found so far is updated, xq
End while

Fourth Stage: Termination
Return xq
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5. Power Management Approach

The unstable nature of renewable resources creates a multifaceted power management
scheme for HES. Due to the fact that the quantity of energy generated from resources is
paltry, the capability of the generator cannot be instantaneously amplified to balance the
increase in load. Moreover, occasionally, a dump load is required to dispel the surplus when
the quantity of electricity generated is more than the demand. Moreover, this will avoid the
overcharging of the batteries. To design an effective system, it is essential to adopt a power
management methodology. Table 1 shows the parameters used for the simulation [35]. The
following cases are considered for the power management methodology.

Case 1: The required energy is supplied by renewable generation and the surplus is
utilized for charging the storage facility.

Case 2: As in Case 1, if the excess energy is greater than the storage capacity and load,
the surplus is dissipated via a dump load.

Case 3: The storage facility is utilized as a priority when the renewable energy is
insufficient to meet the load rather than making use of diesel.

Case 4: The generator is used to charge the battery and to supply the load when the
renewable energy is insufficient to sustain the load and the storage is depleted.

Table 1. Parameters of the HES system.

Parameters Values Unit

Battery

Depth of Discharge 60 %

Round-trip efficiency 80 %

O&M Cost 5 USD/kWh/year

Capital cost 200 USD/kWh

Life span 5 years

Photovoltaic Module

O&M Cost 15 USD/kW/year

Capital cost 1000 USD/kW

Efficiency 16 %

Life span 20 years

WTG

Hub-height 60 M

Cut-in/cut-off/ rated
Speed 3/25/9.5 m/s

O&M Cost 30.33 USD/KW/year

Capital cost 1300 USD/kW

Life span 20 years

DC/AC Converter
Life span 10 years

Capital cost 133 USD/kW

Diesel Generator

Life span 15,000 hours

Capital cost 300 USD/kW

O&M Cost 0.012 USD/kWh

Project Factors

Interest rate 3 %

Life span 20 years

Inflation rate 2 %

6. Demand Side Management (DSM)

Demand Side Management modifies the consumption patterns of consumer electricity
to yield the desired alterations in the load structure of power distributions. The resulted
changes are expected to reflect the planned objectives. This study presents a load-shifting
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technique to maximize the utilization of renewable energy resources and reduce the energy
supply from the diesel. The objective load curve is aimed at reducing the load during
periods of insufficient renewable energy and likewise increasing the load during periods
of surplus renewable energy. The DSM strategy cannot be scheduled beyond a day, and
the shifted load is limited to 20% of the total load. If the renewable energy is less than the
load and within 24 h, as represented in (17), the load shift is described as (18). If (18) is
greater than 20% of the load, the load shift is donated as (19). More so, by considering the
future surplus available renewable energy, the load shift is limited to (20) if the available
renewable energy is less than the expected shifted load in (19). The load at time, t, and
future time, t + i, are represented as (21) and (22), respectively. The methodology also
applies when there is surplus renewable energy.

P(t) + P(w) <

(
P1(t)
univ

)
& t < 24 h (17)

lt = (

(
P1(t)
univ

)
− (Pw(t) + Pp(t)) (18)

lt = 0.2 ∗ P1(t) (19)

lt = P(ren) (20)

P1(t) = P1(t)− lt (21)

P1(t) = P1(t)− lt (22)

where P(t), P(w), P1(t), univ, P(ren), and lt represents PV power, wind power, load,
inverter efficiency, surplus renewable energy, and load shift at time, t, respectively.

7. Reliability Indices
7.1. Loss of Power Supply Probability

The probability of power supply failure can be measured using one of the statistical
reliability indices, Loss of Power Supply Probability (LPSP). Loss of power can be as a
result of technical failure or low energy supply from the generating source that is not able
to meet the demand [30]; 0% and 1% LPSP demonstrate, respectively, that the load will not
be supplied and the load will be supplied. This can be calculated as described in (23) [35].

LPSP =
∑
(

Pload − Ppv − Pwind + Psocmin + Pdiesel
)

∑ Pload
(23)

where Pload, Ppv, Pwind, Psocmin , and Pdiesel , are load demand, PV power, wind power, mini-
mum battery power, and diesel power, respectively.

7.2. Renewable Energy Fraction (REF)

This is the ratio of diesel energy generated compared to energy generated from both
the wind and the PV system, as shown below. The fraction is an indication of how much
renewable energy is served. A fraction of 100% represents an ideal system, with only re-
newable energy resources. An equal sum of PV and wind power to diesel power represents
a fraction of 0%. A fraction between 0% and 100% represent a hybrid energy source. REF is
represented as (24) [29].

REF =

(
1− ∑ Pdiesel

∑ Pwind + Ppv

)
∗ 100 (24)

8. Objective Function

Appropriate sizing of the energy system with high quality units can lead to resourceful
energy management and low-cost electricity for the consumers. The aim of the optimization
is to obtain a minimal Cost of Energy (COE). COE is a widely used indicator for HES
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financial profitability [31]. This is defined as the ration of cost to unit price of electricity, as
described in (25), subject to constraints (26) [29,35].

COE
(

$
kWh

)
=

Annualized cost($)
annual energy delivered by the system (kWh)

= Total Net Present Cost ($)

Pload(kW)
(

8760h
year

) ∗ CRF (25)

Constraints





LPSP ≤ LPSPdesired
REF ≤ REFdesired

0 ≤ PWind ≤ Pwind,max
0 ≤ Ppv ≤ Ppv,max
0 ≤ Pbat ≤ Pbat,max

0 ≤ PDSL ≤ PDSL,max

(26)

The total NPC comprises installed capital costs. The installed capital costs includes
the replacement cost, operation cost, maintenance cost, and present cost. Pload is the power
consumed per hour. The current worth of HES components for a specific duration with the
interest rate is calculated with the Capital Recovery Factor (CRF), which is shown below in
(27) [35].

CRF =
i ∗ (1 + i)n

(1 + i)n − 1
(27)

where n is the system life period, which is represented by PV life duration because of
its lengthier life, and i represents interest rate. Pwind, Ppv, PDSL, and Pbat represent the
rated power of wind, solar, diesel, and battery (in kWh), respectively, with their maximum
denoted as Pwind,max, Ppv,max, PDSL,max, and Pbat,max. REFdesired and LPSPdesired denote the
defined REF and LPSP, respectively.

9. Simulation Results and Discussions

The proposed AEO, in addition to HHO and FSA, were employed to determine the
optimal sizing of the stand-alone Hybrid Energy System to obtain the minimal Cost of En-
ergy (COE). The hourly average load, wind speed, and solar irradiance of Al Sulaymaniyah
village, Saudi Arabia, were selected for the study of optimal energy sizing in this study.
The variables for the optimization are the capacity of the PV energy source, batteries, diesel
generators, and wind turbine energy. The performance of the algorithms was evaluated
under four performance indicators, which are Standard Deviation (STD), mean, best solu-
tion, and worst solution. The metaheuristics algorithm involves a stochastic model in their
computational analysis. As a result, each run of the algorithm will not yield the same result.
This creates an enormous challenge to determine the quality of the solution. Hence, it is
crucial to investigate the consistency of the solution. By running the algorithms for 30 runs,
a unique distinct pattern is obtained for the algorithms, which implies that the parameters
always unite at a definite location. To obtain a rational comparison, the algorithms were
evaluated under the same population sizes, iterations, boundary conditions, and number of
runs. The simulation was developed using the MATLAB environment. Moreover, different
levels of REF at 40%, 60%, and 80% at an LPSP of 0% were employed to achieve the COE
and optimal sizing.

9.1. Optimal Sizing of the HES without DSM

One substantial standard for evaluating the performance of any optimization method
is the assessment of the obtained fitness results. Tables 2–4 show the Standard Deviation
(STD), mean, best solution, and worst solution obtained for REF at 40%, 60%, and 80%,
respectively. These results were evaluated during 30 runs, 300 iterations, and a population
size of 50 without DSM at 0% LPSP. Figures 7–9 show the fitness curve of the three algo-
rithms without DSM at 40%, 60%, and 80% REF, respectively. From the results, it is obvious
that AEO obtained the minimum COE for all three stages. The algorithm further maintains
a low STD value in obtaining the COE, as shown in Tables 2–4.
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Table 2. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO at 40% REF and LPSP
of 0%.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 1.383630 62.46 167.98 102.14 168.56 35.05

Mean 1.393066 59.96 154.99 108.26 168.50 35.82

Max 1.467197 61.53 81.25 142.95 171.01 40.19

STD 0.016362 10.03 25.08 10.71 1.29 1.11

FSA

Optimal 1.463650 0.00 166.14 111.88 164.88 36.17

Mean 1.500501 34.71 161.68 109.69 167.88 37.12

Max 1.993242 37.52 156.82 109.91 166.11 40.00

STD 0.23622 28.89 67.40 19.13 8.76 4.07

HHO

Optimal 1.392138 60.77 147.83 110.09 168.35 35.32

Mean 1.500154 57.73 122.63 123.51 173.22 38.55

Max 1.799334 47.34 7.50 190.97 189.51 51.14

STD 0.106058 26.01 65.86 29.47 6.33 4.05

Table 3. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO at 60% REF and LPSP
of 0%.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 1.133689 69.55 190.20 129.39 162.26 39.27

Mean 1.143942 65.13 180.08 135.52 162.00 40.39

Max 1.206799 50.35 102.23 177.15 162.26 46.53

STD 0.016446 8.80 28.97 14.17 1.00 1.83

FSA

Optimal 1.134227 66.36 185.97 131.59 161.82 40.39

Mean 1.154109 27.32 198.22 133.23 159.85 41.24

Max 1.177233 0.00 250.00 118.59 159.41 39.19

STD 0.015713 31.73 19.06 7.21 1.66 2.11

HHO

Optimal 1.138241 56.38 211.12 123.02 161.48 39.65

Mean 1.206398 62.38 157.37 146.20 165.00 42.25

Max 1.596142 8.81 39.77 190.56 175.87 50.89

STD 0.095449 29.07 58.09 26.11 5.46 3.37

Table 4. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO at 80% REF and LPSP
of 0%.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 0.832235 71.22 244.09 189.75 150.20 49.71

Mean 0.837487 66.17 224.90 200.15 149.78 51.3

Max 0.853710 63.39 178.53 225.41 149.48 53.77

STD 0.004773 10.14 18.05 9.25 1.23 2.53
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Table 4. Cont.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

FSA

Optimal 1.224227 75.22 200.09 180.75 123.20 48.71

Mean 1.247038 60.17 221.90 210.15 159.78 50.3

Max 1.336750 60.39 188.53 221.42 159.28 53.77

STD 0.234455 22.41 67.05 29.25 8.23 3.13

HHO

Optimal 0.835613 74.05 239.33 190.54 150.56 49.61

Mean 0.922779 73.36 203.67 190.57 155.05 47.8

Max 1.702104 78.25 11.09 199.96 189.03 44.47

STD 0.156130 20.19 53.99 11.74 7.85 2.33

Figure 7. Fitness for cost of energy without DSM at 40% REF and 0% LPSP.

Figure 8. Fitness for cost of energy without DSM at 60% REF and 0% LPSP.
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Figure 9. Fitness for cost of energy without DSM at 80% REF and 0% LPSP.

Figure 10 shows the percentage energy utilization for each of the algorithms without
DSM. The run with the lowest COE for each algorithm was selected for the energy utilization
plot. AEO utilizes the right combination of PV and wind energy sources to obtain the
minimal cost of energy. Figure 10 shows that FSA utilizes the highest percentage for diesel
energy. This influences its COE to be highest among the algorithms.

Figure 10. Energy utilization percent for AEO, FSA, and HHO without DSM and at 0% LPSP.

9.2. Optimal Sizing of the HES with DSM

The DSM is performed to optimize the usage of the available renewable energy
resources. The loads are shifted in two categories: if there is insufficient renewable energy
to meet the load or when there is surplus renewable energy. In the case of the surplus
energy, future loads that are less than the available renewable energy are shifted to present
time. All these load shifting are limited to a 24 h time frame. Tables 5–7 show the Standard
Deviation (STD), mean, best solution, and worst solution obtained for 30 runs under
300 iterations and a population size of 50 for the three stages of Renewable Energy Fraction
(REF). Figures 11–13 show the fitness curve (COE) for the 30 runs of each algorithm at
40%, 60%, and 80% REF, respectively. It is obvious from Tables 5–7 and Figures 11–13 that
AEO achieved the minimal cost of energy at very low STD for all the 30 runs at 0% LPSP.
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This further demonstrates the ability of AEO to maintain the lowest COE with the highest
consistent level and minimal STD.

Table 5. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO with DSM at 40% REF
and 0% LPSP.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 1.077723 22.41 228.15 62.25 143.73 29.24

Mean 1.119163 41.46 164.24 86.23 149.94 29.93

Max 1.267866 58.48 50.08 139.18 159.44 37.23

STD 0.047366 12.68 50.36 21.67 3.68 2.59

FSA

Optimal 1.087369 26.59 220.29 64.32 144.40 28.94

Mean 1.195678 10.33 215.97 68.28 143.48 30.38

Max 1.445218 57.70 129.56 98.27 153.31 29.84

STD 0.092633 16.50 77.73 31.46 12.79 5.96

HHO

Optimal 1.087369 16.40 202.62 71.30 144.81 29.43

Mean 1.199288 53.89 123.47 103.10 156.13 32.11

Max 1.445218 41.38 11.77 154.75 168.20 41.77

STD 0.091652 24.77 67.14 29.99 7.48 4.23

Table 6. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO with DSM at 60% REF
and 0% LPSP.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 0.792494 29.27 247.04 76.52 127.85 29.27

Mean 0.811080 37.90 208.59 90.92 132.09 37.90

Max 0.922186 64.84 91.04 146.83 144.38 64.84

STD 0.027468 15.01 35.78 15.93 3.78 3.01

FSA

Optimal 0.816321 59.17 217.05 79.51 117.45 30.17

Mean 0.962236 37.90 208.59 90.92 132.09 36.91

Max 1.152819 61.85 91.12 136.13 124.18 66.81

STD 0.092889 15.01 35.78 15.93 3.78 6.02

HHO

Optimal 0.814320 59.70 128.63 127.71 143.48 30.45

Mean 0.910234 59.70 128.63 127.71 143.48 35.15

Max 1.115856 101.25 19.23 191.81 160.80 35.17

STD 0.068200 24.95 52.29 27.79 6.51 5.12

Table 7. Optimal, Minimum, Maximum, and STD for AEO, FSA, and HHO with DSM at 80% REF
and 0% LPSP.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

AEO

Optimal 0.503245 37.28 242.48 123.52 106.58 36.50

Mean 0.511628 36.54 215.42 136.24 108.43 37.82

Max 0.528746 33.89 171.15 159.52 110.70 41.07

STD 0.007268 17.74 22.49 10.57 2.36 1.42
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Table 7. Cont.

COE
(USD/kWh)

Pbatt
(kW) PV (kW) Pw (kW) Pdiesel

(kW)
Surplus

(%)

FSA

Optimal 0.644275 74.29 217.11 199.87 125.87 50.0

Mean 0.644275 77.73 172.01 192.91 147.81 46.33

Max 0.781750 90.51 21.71 209.00 138.48 42.66

STD 0.319604 19.94 70.91 9.09 12.90 4.3

HHO

Optimal 0.627125 54.28 247.16 196.86 135.86 49.83

Mean 0.787858 78.79 176.08 194.92 147.84 45.34

Max 1.353082 89.50 20.70 200.00 178.48 41.65

STD 0.217370 18.93 74.90 8.06 11.89 3.3

Figure 11. Fitness for cost of energy with DSM at 40% REF and 0% LPSP.

Figure 12. Fitness for cost of energy with DSM at 60% REF and 0% LPSP.
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Figure 13. AEO, FSA, and HHO Cost of Energy with DSM at 80% REF and 0% LPSP.

Figure 14 shows the percentage energy utilization for each of the algorithms with DSM.
The run with the lowest COE for each algorithm was selected for the energy utilization plot.
From Tables 5–7 and Figures 11–13, AEO utilizes the right combination of PV and wind
energy sources to obtain the minimal cost of energy compared to the other algorithms. In
the Figure, FSA utilizes the highest percentage for diesel energy. This influences its COE to
be highest among the algorithms.

Figure 14. Energy utilization percent for AEO, FSA, and HHO with DSM and at 0% LPSP.

9.3. COE with DSM and without DSM

The DSM in this study is aimed at reducing the surplus renewable energy. Comparing
the several results obtained, it can be observed that reducing the surplus energy decreases
the COE. Because AEO produces the optimal results among the algorithms, Table 8 shows
the percentage energy cost savings and COE at different REF when DSM is introduced
as obtained from AEO. It can be observed that, with the introduction of DSM, greater
energy saving is achieved. Figures 15–17 show a typical one-day load profile for the
AEO algorithm compared with and without Demand Side Management. The load profile
shows how the surplus energy is utilized when there is low renewable energy and surplus
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renewable energy. In the figures, during the early hours of the day with low renewable
energy supply, the loads are shifted to a later period in the day when there is a surplus
renewable energy supply.

Table 8. Percentage energy cost saving and COE at different REF.

REF (%) COE with DSM
(USD/kWh)

Surplus Energy
with DSM (%)

COE without
DSM (USD/kWh)

Surplus Energy
without DSM (%)

Percentage Energy
Cost Saving (%)

40 1.077723 29.24 1.38363 35.05 28.38

60 0.792494 29.27 1.133689 39.27 43.05

80 0.503245 36.5 0.832235 49.71 65.37

Figure 15. Daily load profile of AEO at 40% REF.

Figure 16. Daily load profile of AEO at 60% REF.
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Figure 17. Daily load profile of AEO at 80% REF.

10. Conclusions

This paper presents a new application of AEO in the optimal sizing of a stand-alone
Hybrid Energy System (HES). Al Sulaymaniyah, a rural area in Saudi Arabia, was selected
for the optimal sizing of the HES. Cost of Energy (COE) was considered as the objective
function of this model using both REF and LPSP as the reliability indices. Because of the
abundance of renewable energy at the location, the optimal sizing selected both wind and
solar energy as the major sources of energy. Furthermore, the optimal sizing was evaluated
with and without Demand Side Management (DSM) under different Renewable Energy
Fractions. It is obvious for both scenarios that AEO outperformed both HHO and FSA.
By performing the DSM, more renewable energy was utilized while reducing the surplus
unutilized energy. The DSM strategy achieved 28.38%, 43.05%, and 65.37% in COE saving
at 40%, 60%, and 80% REF, respectively. The results stressed the importance of utilizing
DSM for optimal sizing by further reducing the CEO. While the AEO algorithm introduced
in this study has been shown to be efficient, it may not be efficient in other optimization
problems. The efficacy of the algorithm can also be extended to the optimal load flow and
optimal sitting of distributed generation.
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Abbreviations
The following are abbreviations used.

AEO Artificial Ecosystem-based Optimization
COE Cost of Energy
CRF Capital Recovery Factor
DMOPSO Dynamic Multi-Objectives Particle Swarm Optimization
DSM Demand Side Management
FSA Future Search Optimization
HES Hybrid Energy System
HHO Harris Hawk Optimization
HS Harmony Search
LOEE Loss of Energy Expected
LOLE Loss of Load Expected
LOLH Loss of Load Hours
LPSP Loss of Power Supply Probability
MPP Maximum Power Point
PFT Power Failure Time
REF Renewable Energy Fraction
RES Renewable Energy Resources
SOC State of Charge
STCs Standard Test Conditions
STD Standard Deviation
WTG Wind Turbine Generator
a Linear weighting coefficient
A, B Fuel constants
σ Total output power
αp Power temperature coefficient
CDsl Annual fuel consumption
CF Cost of fuel per liter
De Decomposer model
El(t) Total load demand
he Weight coefficients
GT Global irradiance under normal conditions
GT,STC Global irradiance under STC
GT,NOCT Solar irradiance with respect to NOCT
fpv De-rating factor
ηMPP Maximum Power Point (MPP) efficiency of PV module
ηMPP,STC Efficiency under STCs
ηinυ Net inverter efficiency
ηbattery Round trip efficiency of battery
NOCT Operating cell nominal temperature
Lw Lower boundary
lt Load shift
Pr PV rated power
PDsl(t) Generated power of diesel
PR Nominal power
P(t) PV power
P(w) Wind power
P1(t) Load
Pwind Wind rated power
Ppv Rated solar power
Pbat Rated battery power
P(ren) Surplus renewable energy
q Population number
r, r1 Random number
Tc,STC PV temperatures under STC
Tc PV temperatures under normal conditions

80



Electronics 2022, 11, 204

Ta Ambient Temperature
Ta,NOCT Ambient temperature with respect to NOCT
we Weight coefficients
uc Cut-in speed
ur Rated speed
xrandi Random individual
Up Upper boundary
xq Best individual
uf Cut-out frequency
univ Inverter efficiency
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Abstract: As a consequence of the increasing share of renewable energies and sector coupling
technologies, new approaches are needed for the study, planning, and control of modern energy
systems. Such new structures may add extra stress to the electric grid, as is the case with heat
pumps and electrical vehicles. Therefore, the optimal performance of the system must be estimated
considering the constraints imposed by the different sectors. In this research, an energy system
dispatch optimization model is employed. It includes an iterative approach for generating grid
constraints, which is decoupled from the linear unit commitment problem. The dispatch of all energy
carriers in the system is optimized while considering the physical electrical grid limits. From the
considered scenarios, it was found that in a typical German neighborhood with 150 households,
a PV penetration of ∼5 kWp per household can lead to curtailment of ∼60 MWh per year due to
line loading. Furthermore, the proposed method eliminates grid violations due to the addition
of new sectors and reduces the energy curtailment up to 45%. With the optimization of the heat
pump operation, an increase of 7% of the self-consumption was achieved with similar results for the
combination of battery systems and electrical vehicles. In conclusion, a safe and optimal operation of
a complex energy system is fulfilled. Efficient control strategies and more accurate plant sizing could
be derived from this work.

Keywords: sector coupling; optimal power flow; energy system optimization; grid flexibilization;
oemof-Solph; PowerFactory

1. Introduction
1.1. Background

Nowadays, there are several initiatives and international efforts to reduce the CO2
emissions in all energy sectors as part of the Paris agreement [1]. In Germany, the so-called
“Energiewende” establishes the goals for the energy transformation towards a zero-emission
national energy system [2]. A fundamental step to achieve such ambitious goals is the
electrification of the residential heat and transport sectors that accounted in 2016 for ∼10%
and ∼18.2% of the total emissions in Germany, respectively [3]. By 2050, an increase of
50% of the district heating in Europe is expected, with approximately 30% of that demand
being covered by heat pumps [4]. However, combined heat and power is expected to serve
as a bridge technology coupling electricity and heat sectors [5]. Additionally, a fleet of
around six million electrical vehicles is planned by the German government by 2030 [6].
This makes the analysis of modern and future energy systems more challenging, due to the
added complexity of the new technologies and energy sectors. Along with a significant
deployment of renewable sources in the electricity grid, the integration of these sector
coupling technologies may add an extra burden to the existing distribution grids [7,8].
Therefore, new concepts and techniques are needed to properly study and optimize the
grid structure for adequate operation of such new energy systems [9]. In this research, an
approach that enables the ease evaluation and optimization of energy systems considering
the power grid limits is developed. This methodology was based on the energy system for
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the “Energetisches Nachbarschaftsquartier Fliegerhorst Oldenburg”, which will be a living
laboratory in the city of Oldenburg, Germany [10].

1.2. Optimization of Energy Systems

Typically, the aggregation approach has been of common use in the literature when
it comes to the analysis and optimization of energy systems [11]. Then, the optimization
problem is independent of its actual physical characteristics. Mathematically, the energy
system optimization problem can be expressed as:

min : ∑
t∈T

(
∑

(s,e)∈E
∑
i∈I1

ci
(s,e)(t) · pi

s,e(t) · τ
)

+ ∑
(s,e)∈E

∑
i∈I2

ci
(s,e) · pi

(s,e)

+ ∑
t∈T

(
∑

n∈N
∑
i∈I3

ci
n(t) · pi

n(t) · τ
)

+ ∑
n∈N

∑
i∈I4

ci
n · pi

n

(1)

s.t. ∑
n∈N

aj
n(t) · pn(t) ≥ ∑

m∈M
dj

m(t), ∀j ∈ J, ∀t ∈ T (2)

0 ≤ pi
(s,e)(t) ≤ p̄i

(s,e)(t), ∀(s, e) ∈ E, ∀t ∈ T (3)

0 ≤ pi
n(t) ≤ p̄i

n(t), ∀n ∈ N, ∀t ∈ T (4)

The Equation (1) minimizes the cost in a period T at a resolution τ. The set E represents
the energy flow between nodes, whereas the set N represents the flows between nodes
and sources. The sets I1 to I4 establish the alternative to have multiple flows with different
associated costs. Fixed and time-varying costs are included in c. The variable p denotes the
power that flows between nodes and sources. The set J constitutes the types of sectors to
consider (e.g., heat and electricity), whereas the set M represents the demand associated
with the jth sector. The inequality constraint (2) ensures that the sum of the M demands
for each jth sector is fulfilled by the sum of the sources multiplied by the coupling factor a
corresponding to the nth source and the jth sector. The constraints (3) and (4) represent the
boundary conditions for flows and sources.

Many approaches are found in the literature dealing with the optimization of energy
systems considering the actual electrical grid topology. For power systems, the implementa-
tion of linearized power flows approaches to relax the optimization problem is of common
use in the researched literature [12,13]. Whereas the typical DC power flow neglects reactive
power, some studies have enhanced the method by adding the consideration of reactive
power and with the implementation of data-driven approaches to determine voltage mag-
nitudes and angles [14]. Novoa et al. [15] have applied a decoupled linearized power
flow [16] in combination with a mixed-integer linear problem to find the optimal allocation
of PV and batteries within an energy system. However, these methods are less accurate
than the AC power flow and more complex than the DC power flow. The combination of a
commercial tool to solve power flow problems with a linear unit commitment is presented
by Nolden et al [17]. In this approach, only an electrical system without storage at a single
time step is considered. Similarly, Fortenbacher et al. [11] propose a distributed model
predictive control within sub-grids to solve a multi-period dispatch optimization problem.

When an entire energy system with multiple energy carriers is optimized, generally
the physical structures are disregarded and the systems are simplified. Some solutions
to work around the over-simplification of the models have been developed. Lohmeier
et al have proposed specialized tools for each energy sector that can be implemented
together in a co-simulation [18]. As the physical constraints of the energy systems are
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considered, the complexity in solving such problems also increases. For instance, non-
convex systems result when hydraulic equations are taken into consideration in an energy
hub with multiple energy carriers [19]. The time-step dependency from energy storage may
add extra complexity to the already mentioned systems. The utilization of the Newton–
Rapson method is inefficient in time-domain equations. Therefore, Levron et al. [20] have
used in combination with a power flow solver, dynamic programming to tackle the time-
dependent functions. As the share of renewable energies increases at the medium and
low voltage of the grid, some power quality issues such as line over-loading and over-
voltages may appear [7,9]. For this reason, the potential of CHP and P2G options has been
considered to provide grid flexibilization [21,22].

The main contribution of this research is the development of a decoupled approach
for the dispatch optimization of a sector coupled energy system. The method takes into
consideration the electric grid limits to optimally integrate different energy sectors into
an energy system. In order to assess the method, some scenarios comprising an energy
system with high share of renewables, storage systems, and sector coupling technologies
were considered. As a main result, it was found that high shares of PV without storage
lead to a higher energy curtailment. Additionally, the proposed method was capable of
reducing energy curtailment and increase self-consumption of the energy system by adding
flexibility through the implementation of heat pumps and electric vehicles.

2. Methodology

In this section, the implemented methodology to consider grid limitations in dispatch
optimization problems in energy systems is presented. The idea behind this work is to
reduce the complexity of the optimization problem when considering grid constraints.
The unit commitment problem and the power flow solutions are decoupled, the solution
to the unit commitment is realized considering a mixed-integer linear problem (MILP)
using oemof-Solph [23], whereas an AC optimal power flow (OPF) calculation is carried
out in PowerFactory [24] to verify grid quality standards compliance. From this OPF, grid
congestion and voltage violations are avoided; the measurements to achieve this are re-
implemented in the linear problem as constraints. Figure 1 shows this iterative process to
obtain the solution of the optimization problem in the energy system. Even though this
approach could be applied to any energy system, regardless of its dimension, this work is
primarily intended for its implementation on mid and low voltage systems as described in
Section 1.

2.1. Overview: Iterative Process

Since sector coupling and energy storage technologies will be present in the energy
systems of the future, an iterative approach is needed when decoupling the unit dispatch
optimization and the grid constraint generation. This is due to the fact that the constraint
generation from the OPF may influence the dispatch of the sector coupling technologies
and storage such as heat pumps, heat water tank, and batteries.

This section presents an overview of the main steps depicted in Figure 1.

1. Energy system structure: Here, the energy sectors to be considered are defined as
well as the relevant technologies and their models. Natural renewable resources and
demands time series must also be included. Time steps have to be big enough to make
valid the steady-state assumption of the different energy sectors [18]. In this work,
only the electric and heat sector are considered and a time step of an hour during
a year is evaluated. Although several technologies, markets, and demands could
be present in a distributed energy system [25], only the ones presented in Table 1
were considered in this study. Furthermore, the energy system is seen as a system
aggregator from the grid perspective. This means that the system can buy and sell
electricity in the market.
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Figure 1. Steps for constraints generation in the optimization process.

Table 1. Summary of the considered energy system components.

Source Market Storage Coupling Demand

Photovoltaic
(PV) Natural Gas Battery Heat Pump Electricity

Cogeneration
(CHP) Electricity Hot Water

Storage CHP Heat

Gas Boiler Electro-Vehicles

2. Linear unit commit: Using a holistic approach, an abstraction of the energy system
structure is created in oemof-Solph. This abstraction contains all possible energy
flows between sources and sinks, and between energy sectors through the coupling
technologies as depicted in Figure 2.
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Figure 2. Simplified example of an energy system structure representation in oemof-Solph and the
energy flow between sectors. The blue lines represent the electrical part of the system, whereas the
red and orange represent the heat and gas sectors, respectively.

Costs and additional constraints can be associated with each of the energy flows [23].
Here, the system will only consider the economical constraints of the energy flows.
Therefore, the objective function is the cost minimization. From Equation (1), the
following objective equation is derived for the considered energy system:

min : ∑
t∈T

(
pelec_ext(t) · cday_ahead(t) (5)

+ pin_chp(t) · cgas + pin_boiler(t) · cgas

)
· τ (6)

where pelec_ext represents the imported or exported electric power from the exter-
nal grid, cday_ahead the day ahead price for a given time, pin_chp and pin_boiler the
gas import for the CHP and boiler, respectively, and cgas represents the cost of
gas. The power given or provided to the external grid at a given time is given
by pext = pelec_loads − pelec_gen. The electric generation pelec_gen and electric loads
pelec_loads can be defined as follows:

pelec_gen(t) = ppv(t) + pelec_chp(t) (7)

pelec_loads(t) = pelec_demand(t) + pbattery(t) + pev(t) + pelec_heat_pump(t) (8)

In Equations (7) and (8), the parameters ppv and pelec_chp refer to the PV generation
and the CHP electric power generation within the system, whereas the parameters
pelec_demand, pbattery, pev, and pelec_heat_pump refer to the electric demand, the battery
power consumption, electrical vehicle charging, and the heat pump demand, re-
spectively. Every storage unit (including EVs) has been considered as a load. That
means that a negative power represents a power injection to the system. The same
convention has been used for the external grid power flow. As constraints for the
optimization problem, the thermal and electric demands must be supplied at any time.
Equations (9) and (10) depict such constraints where pth_demand, pelec_demand, and ppv
are fixed time series.

pth_demand(t) = pth_heat_pump(t) + pth_boiler(t) + pth_chp(t)− pth_storage(t) (9)

pelec_demand(t) = pelec_ext + ppv(t) + pelec_chp(t)− pbattery(t)− pev(t)− pelec_heat_pump(t) (10)

As a result, the optimized power dispatch for each non-fixed source to supply the
demand at each time step is obtained. However, up to this point, just the total installed
capacities and demands have been considered as per the inequality (4). The actual
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topology of the electrical and thermal grid has been also disregarded as a common
practice in the optimization of energy systems [19].

3. Grid topology consideration: Before integrating these flows into the electrical grid
in PowerFactory, the flow distribution must be considered. This applies only to the
electric sources, sinks, and sector coupling technologies. The distribution of heat
technologies is disregarded since only the electrical grid topology is being considered
in this study.
To represent a typical low voltage grid, one of the so-called “Merit Order Netz-Ausbau
2030” (MONA) reference grids is used. The ONT_8003 grid model is used as refer-
ence [26] and depicted in Figure 3. This topology represents a typical low voltage grid
in Germany.

Figure 3. Representation of the ONT_8003 MONA grid with the addition of the technologies men-
tioned in Table 1.

The energy flows for each node per technology are derived from the optimization
results and the capacity installed per building.

4. Power flow calculation: Once the flow distributions at each node have been ob-
tained, these energy flows must be added as time characteristics to the corresponding
elements in PowerFactory.
To determine if the optimized dispatch complies with the grid standards, a quasi-
dynamic power flow (QDPF) study is performed for a year with 1 h time steps. From
the results of the QDPF, lines exceeding 100% loading and voltage variation outside
of the range of ±10% of the nominal voltage are considered as grid violations [8].
The time steps containing such violations will be re-optimized by PowerFactory
to avoid line congestion and bus voltage violations. For the system to converge,
a dispatchable source is considered as slack, so it has enough power to cover the
demand in case that the renewable sources are curtailed due to system violations.

5. Constraints generation: Similar to the constraint generation for the linear optimiza-
tion [27], the oemof-Solph model will be limited by constraints generated from the
OPF as denoted in Equation (4). Power time-series are the link between the two tools.
Therefore, PowerFactory and oemof-Solph will exchange information about the active
power flows, being the reactive power flow after the last OPF calculation considered
as optimal.
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To build the OPF problem, the following objective function and constraints are consid-
ered:

min : ∑
t∈Top f

(
pop f

elec_ext(t) · cday_ahead(t)

+ pop f
in_chp(t) · cgas

)
· τ

(11)

s.t.Sl
line(t) ≤ Sl

nom(t), ∀l ∈ L (12)

Sline =
√

P2
line + Q2

line (13)

0.9 ·Vnom ≤ |Vb
bus(t)| ≤ 1.1 ·Vnom, ∀b ∈ B (14)

−ebattery(t− τ)

τ
≤ pop f

battery(t) ≤
kbattery − ebattery(t− τ)

τ
(15)

0 ≤ pop f
pv (t) ≤ ppv(t) (16)

Sn ≤ Sn
nom, ∀n ∈ N (17)

In Equation (11), the term for the thermal boiler is not considered. This is due to the
fact that only electric units are taken into consideration in the OPF. The set Top f is a
sub set of T comprising only the periods of time that led to grid violations from step 4.
The variables pop f

elec_ext and pop f
elec_chp denote the optimized power flows to avoid such

violations. The constraints (12) and (13) ensure that the nominal capacity Snom of any
line of the system is not violated by the actual power flow Sline. The set of all lines in
the energy system is denoted by L. The actual power flow in the line is given by the
square root of the sum of squares of the real power Pline and the reactive power Qline.
To ensure voltage compliance, the constraint (14) is included. This keeps the voltage
magnitude |Vbus| of all buses in the system, denoted by the set B, within ±10% of the
nominal voltage Vnom. The constraint (15) limits the power that can be drawn by the
batteries. The difference between the battery system capacity kbattery and the battery
system energy content ebattery at the previous time-step t− τ provides the available
energy to be drawn for charging the batteries. The energy content is provided from
the linear optimization performed in step 2. The difference is divided by τ in order to
get the charging power limit. A lower energy bound is given to allow the discharge
of the batteries. This lower bound is equal to the negative of the energy content. In
the OPF additional flexibility is provided with the PV system. The optimizer can
reduce the power output pop f

pv as per constraint (16). Furthermore, to keep the thermal
limits of all technologies within acceptable ranges, constraint (17) is included. Where
the apparent power Sn of each technology of the set N must not exceed the nominal
apparent power Sn

nom. Similarly to the linear optimization, constraint (10) must be
complied by the OPF, therefore:

pelec_demand(t) = pop f
elec_ext(t) + pop f

pv (t)+

pop f
elec_chp(t)− pop f

battery(t)− pop f
ev (t)− pop f

elec_heat_pump(t)
(18)

In Equation (18), the superscript op f denotes the power flow obtained from the OPF
from the respective source or sink. Considering that COPheat_pump =

pth_heat_pump
pelec_heat_pump

and
pth_sources = pth_heat_pump + pth_boiler + pth_chp, Equations (18) and (9) can be combined
to yield:

pth_demand − pth_sources − pth_heat_pump − pth_storage

COPheat_pump
= pop f

elec_ext + pop f
elec_gen − pop f

elec_loads

+pop f
elec_heat_pump

(19)
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Equation (19) shows how the changes in the OPF have to be compensated by the
heat elements in the energy system. However, as previously indicated, the OPF only
takes into consideration the electric components and the sector coupling technologies.
Therefore, the changes in the OPF have to be reflected in the linear optimization.
Equation (20) is employed to determine the deviation between the OPF and the initial
power flow.

∆pn = |pop f
n − pn|, ∀n ∈ N (20)

The power flow per nth technology resulting from the OPF is represented by pop f
n ,

whereas the initial power from the linear optimization is represented by pn. Whenever
∆pn 6= 0, the value of the OPF is passed as an upper bound in (4) for the linear
optimization in the next iteration.

2.2. Evaluation Scenarios

In order to assess the method described in Section 2, three main scenarios are evaluated:

1. High generation scenario: The size of the PV installation is fixed to 1500 kWp and
no storage or flexible loads are considered. The influence of line loading and voltage
levels in the optimization is evaluated.

2. Heat pump and heat storage scenario: The influence of heat pump and heat storage
is analyzed. Here, the size of the PV installation is reduced to 700 kW. Heat pumps
and heat storage are added with 600 kWth and 150 m3 of capacity, respectively. The
potential for flexibilization services from the heat sector is evaluated in this scenario
through the implementation of the proposed method.

3. Electromobility scenario: A fleet of 62 EVs and 500 kWh of battery storage are added
to the Heat pump and heat storage scenario. These are connected at eight different points
within the network. It is assumed that the EVs are only connected from 6 p.m. to
7 a.m. of the next day [28]. Additionally, it is assumed that the daily required demand
of the EVs is around 10 kWh, which is approximately the double required per EV per
day [6]. Therefore, the state of charge is not the constraint for charging at the end of
the charging period in the optimization, but to ensure enough daily coverage in a
daily basis.

3. Results

In this section, the main results obtained from the implementation of the electric grid
constraints into the optimal operation of an energy system are presented.

3.1. High Generation Scenario
3.1.1. Line Loading Constraint

As described in Section 2, in this scenario, a significant capacity of PV is considered to
be installed in the system. In Figure 4a, the loading on the main feeder during one year is
shown. It is observed that the line can be overloaded up to 150% of its capacity. Figure 4b
shows the new line loading after the OPF has generated the corresponding grid constraints
at each time step. With the consideration of the violated hours shown in Figure 4a as
constraints, the optimization reduces the load in the line at around 100% of its nominal
capacity.
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(a) Without grid constraints. (b) With grid constraints.

Figure 4. Main feeder loading with and without the consideration of the grid constraints into the
optimization.

3.1.2. Voltage Constraint

Similarly, Figure 5a,b depict the voltage behavior on the PV bus before and after the
grid constraints generation.

Following the same pattern than the over-loading caused by the high in-feed depicted
in Figure 4a, voltages above of the nominal voltage occur along with the main feeder
over-loading.

(a) Without grid constraints. (b) With grid constraints.

Figure 5. PV bus voltage at node number 4 with and without the consideration of the grid constraints
into the optimization.

Figure 6a,b show the power dispatched by the PV plant before and after the considera-
tion of the voltage and loading constraints of the grid. A noticeable curtailment is needed
to maintain the grid quality parameters of loading and voltage within the admissible
ranges. The absence of means to store or shift loads during such midday peaks leads to the
unavoidable PV curtailment.

(a) Without grid constraints. (b) With grid constraints.

Figure 6. PV power dispatch optimization with and without the consideration of the grid constraints.
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3.2. Heat Pump and Heat Storage

In this section, the proposed methodology is tested by adding some flexibilization
technologies such as heat storage and heat pumps.

Even though the installed PV capacity has been decreased to 700 kWp for this scenario,
the mismatch between the electric demand and the generation will still create energy flows
back to the grid. Such energy flows are big enough to overload the main feeder. As the
heat pumps and heat storage are considered in the energy system, the optimizer has the
possibility to transfer the energy surplus from the PV system into another energy carrier.
Figure 7 shows how the line loading constraint due to the high PV feed-in affects the power
dispatch of the heat pumps and PV. The flexibilization of the heat pump activation avoids
that the locally generated energy leaves the system. This diminishes the energy injected into
the grid, avoiding in this manner the line overloading and diminishing the PV curtailment.

Figure 7. Flexibilization provided by heat pumps and heat storage. The blue area represents the
energy otherwise curtailed without the grid constraints implementation in the dispatch optimization.

Figure 8 shows the variation in energy content in the water storage tank. A noticeable
difference is found especially in the months of summer. This is in accordance with the
fact that higher values of sun irradiance and less thermal demand are present during such
months. Therefore, the heat pumps are continuously being used to tackle PV generation
surplus when grid constraint violations occur.

Figure 8. Change in energy content of the water heat storage.

3.3. Electromobility Scenario

As the fleet of electric cars is added to the energy system, the yearly demand is
increased by around 300 MWh. This increment in demand causes line overloads throughout
the network. In Figure 9, it can be seen how the main feeder is over-loaded while supplying
energy to the EVs during the charging phase. It can be noted that the EV batteries support

92



Energies 2022, 15, 192

the grid after they have been connected at 6 pm, which is typically a time of the day with
high demand. After the implementation of the constraints into the proposed method, the
optimizer re-schedules the EV’s batteries charging and grid feed-in to avoid the overload
of the lines.

Figure 9. Cumulative EV charging profile comparison with and without grid constraints.

The proposed method successfully integrates the EV and the distance coverage con-
straint together with the grid constraints into the dispatch optimization problem of the
energy system.

4. Discussion

In Section 3, it was found that the high share of PV at the low voltage level of the
electrical system can lead to over-loads at the point of common coupling. This is caused
by the residual energy fed into the grid. Neighborhoods with a PV capacity of 10 kWp
per household are prompted to lead to grid violations [8]. From the results, it may be
inferred that a PV installed capacity of 5 kWp per household can be led to feed-in levels
exceeding the nominal voltage in a typical low voltage grid [26]. Nevertheless, over-
voltages exceeding 10% of the nominal voltage are very unlikely to occur at this level of
penetration. In the case of high share of PV without sector coupling or storage possibility, a
curtailment up to ∼60 MWh per year is applied by the method to keep grid limits within
acceptable ranges.

The integration of different sector coupling technologies may cause some grid events
in the low voltage grids [28–30]. However, with a proper control strategy, such technologies
can also provide some flexibility to the grid [31,32]. In the scenarios with flexibility options,
the method re-schedules the power dispatch from these technologies. Table 2 provides
a summary of the influence of the grid constraints in some indicators on each scenario.
The summary demonstrates the relevance of the grid constraints in the optimization of
an energy system. As it is shown in Table 2, this not only avoids grid limit violations,
but it also saves energy from curtailment. From the simulation results, it was found that
the methodology here proposed is capable of reducing the energy curtailment up to 45%
by adapting to the economic dispatch, the technical grid constraints. Additionally, the
self-consumption is increased up to ∼7% per year with the implementation of the method.
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Table 2. Summary of the influence of grid constraints in the optimization parameters. Values are
shown in MWh/year.

Scenario

Self-Consumption Curtailment

Energy SavedWithout Grid
Constraints

With Grid
Constraints

Without Grid
Constraints

With Grid
Constraints

High PV
Generation 288.60 288.60 270.04 270.04 0

Heat Pump 323.91 346.71 60.65 37.84 22.81
Electromobility 434.87 462.16 49.55 27.64 21.91

Therefore, the most economically and technically feasible dispatch of the energy sys-
tem is achieved. The contribution of the oemof-Solph–PowerFactory toolchain results evident
when flexible loads are present in the system. In this regard, the optimization decreases the
overall energy that would be otherwise curtailed. Table 3 establishes a comparison between
the proposed method and some of the most relevant researches found in the literature.

Table 3. Comparison with relevant works found in the literature.

Source Considered Energy
Carriers Storage Technology Grid Constraints Approach

Cesena et al. [33] Gas, heat, and power Building heat inertia Gas and power
MILP with heuristic
penalization of grid

constraints

Huang et al. [34] Electromobility and
power EV battery Power

Optimal EV charging
scheduling through a

genetic algorithm

Clegg et al. [35] Gas, heat and power — Gas

Determination of
flexibility according to

gas availability and
DC-OPF

Nolden et al. [17] Power — Power

Unit commitment and
power flow solver to

achieve a
techno-economic

dispatch

This research Electromobility, heat,
gas, and power

Battery storage, EV
battey, and heat storage Power

MILP with iterative
grid constraint

generation

Due to the flexibility of energy systems provided by oemof-Solph, the proposed method
surpasses the approaches found in the literature in terms of the complexity of the energy
system itself. Whereas Martinez et al. [33] consider gas, heat, and power, this study
additionally considers, the electromobility sector and the influence on the system by
batteries and heat storage. On the other hand, this research only considers the influence
of the electric power grid. In some other studies, the grid constraints are considered, but
neglecting either storage or other energy sectors [17,34,35].

5. Summary and Outlook

The proposed method combines a linear optimizer such as oemof-Solph and a power
analysis tool such as PowerFactory. This combination allows the optimization of an energy
system with multiple energy carriers while considering the actual grid limits for sector
coupling technologies integration. Such grid limits have an impact on the performance of
the energy system:

• For scenarios with PV capacity above 5 kWp per household, the voltage and line
loading constraints are violated, therefore affecting the optimization results. In the
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case study, curtailment of ∼60 MWh/year is needed to keep the grid within its limits.
This due to the lack of storage or flexibilization options.

• If flexible technologies are present, parameters as curtailment and self consumption are
affected by the grid constraints. In the case study, the self-consumption can increase
7% and the curtailment be reduced by 45% as compared with the typical optimization
without grid constraints. The method successfully integrated the additional load from
the heat pumps and EV without grid violations.

• In comparison to other approaches, the decoupled constraint generation in the op-
timization problem determines the techno-economical power dispatch for all the
different energy sectors and storage technologies.

To adapt the method to large-scale grids, different open source tools might provide a
faster interface and interaction with oemof-Solph compared to the PowerFactory API. Most
of these tools are written in python or julia [36]. Another novel approach would be to
consider a data-driven constraint generation. This might be especially relevant for online
applications or analysis in the transmission system. Due to its high accuracy and run-time,
this topic is yet to be exploited [37]. Furthermore, the influence of the heat network is a
feature that could be added to this approach in future research.
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Abstract: This paper proposes a composite nonlinear controller combining backstepping and double-
integral sliding mode controllers for DC–DC boost converter (DDBC) feeding by constant power loads
(CPLs) to improve the DC-bus voltage stability under large disturbances in DC distribution systems.
In this regard, an exact feedback linearization approach is first used to transform the nonlinear
dynamical model into a simplified linear system with canonical form so that it becomes suitable
for designing the proposed controller. Another important feature of applying the exact feedback
linearization approach in this work is to utilize its capability to cancel nonlinearities appearing
due to the incremental negative-impedance of CPLs and the non-minimum phase problem related
to the DDBC. Second, the proposed backstepping double integral-sliding mode controller (BDI-
SMC) is employed on the feedback linearized system to determine the control law. Afterwards, the
Lyapunov stability theory is used to analyze the closed-loop stability of the overall system. Finally,
a simulation study is conducted under various operating conditions of the system to validate the
theoretical analysis of the proposed controller. The simulation results are also compared with existing
sliding mode controller (ESMC) and proportional-integral (PI) control schemes to demonstrate the
superiority of the proposed BDI-SMC.

Keywords: backstepping double-integral sliding mode control scheme; constant power load; exact
feedback linearization approach; Lyapunov stability theory; negative-resistance characteristics; non-
minimum phase; nonlinear dynamical model

1. Introduction

Over the past few decades, the power electronic converters (PECs) have been widely
used in vehicular power systems (VPSs) (e.g., space vehicles, sea, land, etc.) and in
renewable energy source (RES)-based systems (e.g., DC and AC microgrids) due to their
voltage step-up, step-down, or conversion capabilities [1–5]. Recently, the power electronic-
based DC distribution networks (DCDNs) are becoming more popular owing to their
distinct advantages in terms of efficiency, controllability, flexibility, etc. [6,7]. However,
two major challenges need to be addressed for a stable and reliable operation of power
electronic-based DCDNs in conjunction of RESs, where the first challenge is the low
terminal voltage of RESs while important to maintain a relatively high and stable terminal
voltage of the DC-bus as all loads and RESs are either directly or indirectly connected to
this bus [8–10]. As a results, DC–DC boost converters (DDBCs) are usually used in DCDNs
as the interface between the DC-bus and RESs, which need to be appropriately controlled
to achieve the desired DC-bus voltage [11,12]. On the other hand, the maintenance of

Energies 2021, 14, 6753. https://doi.org/10.3390/en14206753 https://www.mdpi.com/journal/energies97



Energies 2021, 14, 6753

stable and reliable operations becomes even more challenging when a large number of
DC–DC converters are used to interface loads and RESs [13–15]. The second challenge is
the instability issue caused by constant power loads (CPLs) in DCDNs with tightly coupled
power electronic converters [16–18]. It is well-known that the constant power is drawn by
CPLs, and consequently, it exhibits negative-impedance characteristics that destabilize as
well as even cause blackouts [18,19]. Thus, it is essential to design an advance controller
that not only deals with the destabilization but also provides quick dynamic response
while guaranteeing the stability of the system.

Several control strategies have been proposed to resolve the instability issue of DDBCs
caused by CPLs. Passive damping methods are proposed in [18,20] to neutralize the
destabilization effect by increasing the damping into a system. However, these methods
have limited applications due to their high costs and large sizes of passive elements such
as capacitors and inductors. To alleviate these drawbacks, active damping methods such
as virtual impedance [21], virtual resistance [22], and virtual capacitor [23] are proposed
for stabilizing the system by adding extra control loops to reshape impedances. In these
methods, the destructive effects of CPLs are mitigated by enforcing the unstable poles
into the stable region through the modification in control loops. However, the satisfactory
performance of these damping methods is highly dependent on the switching frequency.
Thus, a voltage–current (V–I) droop-based dual-loop control scheme is proposed in [24] to
stabilize the system by injecting sufficient damping torque into networks that overcomes
the aforementioned drawbacks. However, a small variation in the droop gain leads to
an inaccurate power sharing in networks [24]. To overcome this issue, an adaptive V–I
droop control approach is proposed in [25] in which the virtual resistance is emulated at
the output terminal of converters. However, these control approaches so far discussed here
can only ensure the stability of the system near nominal operating points as these control
schemes are developed by considering small disturbances around actual operating regions.
Therefore, the system will be unstable when large disturbances due to variations in RESs
and loads appear in the system.

A model predictive controller (MPC) is proposed in [26] to improve the stability of the
system and extends the operating point. Though the MPC can handle the operating point
issue, it cannot ensure better transient behaviors in the presence of large disturbances as it
is designed without considering model uncertainties. This limitation is addressed in [27,28]
by designing a hybrid MPC using the Takagi–Sugeno fuzzy-based scheme in conjunction
with a traditional MPC. However, an accurate dynamical model is required to achieve the
desired performance, which is always practically obstructed due to the presence of external
disturbances and model uncertainties. Furthermore, the online computational complexity
of MPCs limited their practical application in real-time platforms.

Nonlinear control schemes can be used to stabilize the system by considering the
nonlinearity issue of CPLs and non-minimum phase problem of DDBCs. In [29], a passivity-
based nonlinear controller is designed to resolve the instability issue due to CPLs while
improving the transient and dynamic behaviors of the DC-bus voltage. However, the
damping performance is severely affected with variations in the system parameters, which
is overcome in [30] by proposing an adaptive passivity-based approach. However, the major
drawback of these approaches is that the non-minimum phase problem of DDBCs cannot
be avoided and further deteriorates the overall stability margin under large disturbances.
Moreover, a time-scale model is required to design these controllers, which are quite hard
to deal with in realistic applications.

Nonlinear feedback linearizing controllers (FBLCs) have an uncertainty/noise de-
coupling capability as discussed in [31–34], and these controllers are used in [35,36] for
stabilizing the DC-bus voltage by overwhelming the non-minimum phase problem as-
sociated with DDBCs and the instability issue caused by CPLs. Though the approaches
in [35,36] tackle the instability issue due to CPLs, the elimination of non-minimum phase
problems is not completely achieved. Another FBLC is proposed in [37], where the non-
minimum phase problem associated arising from DDBCs is avoided by considering the
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inductor current as an output function. However, the zero-dynamic stability is not pre-
sented in [37] though it is important and the control law in [37] is derived only for resistive
loads though nonlinear dynamics of CPLs lead to unstable operation. Moreover, the per-
formance of FBLC schemes so far discussed here highly rely on the precise parametric
information of the system, which is quite impossible as these parameters change due to
changes in operating points. On the other hand, the nonlinear sliding mode controller
(SMC) is an effective approach for dealing with robustness against parameter uncertainties
and external disturbances in both nonlinear and linear systems [38,39]. Hence, the parame-
ter sensitivity problem of a FBLC can be resolved using SMC schemes and a robust pulse
width modulation (PWM)-based SMC is used in [40] to achieve the desired transient and
steady-state performance of DC microgrids where DDBCs feed CPLs. Similar approaches
are presented in [41,42] to achieve the same control objective as that of [40]. Though SMCs
effectively handle the effects of parameter variations, the utilization of a discontinuous
function and fixed gain for the sliding surface results in unwanted chattering in control
laws, which can even damage power electronic converters in practical applications.

The shortcomings of SMCs are overcome in [43–46] by proposing a nonlinear back-
stepping controller (BSC), and these controllers are explored in [47] for stabilizing DC-bus
voltage in the DDBC feeding CPLs. However, the implementation of the BSC still requires
knowing the accurate parameters of the system as neither parametric uncertainties nor
external disturbances are incorporated during the design. The issues related to parametric
uncertainties and external disturbances are alleviated in [48] using an adaptive BSC for
ensuring the large signal stability of the DCDN with CPLs. However, an observer is used
to estimate external disturbances, which is quite an expensive approach. Moreover, the
non-minimum phase problem associated with DDBCs is not dealt with in this work. To
avoid this drawback, a composite controller that is a combination of FBLC and adaptive
BSC schemes is proposed in [49,50], where the non-minimum phases problem and impacts
of the negative-impedance due to CPLs are canceled by transforming the nonlinear model
into a linear canonical form. However, these controllers do not ensure better transient
response when the system parameters change due to wide variations of operating points.
Apart from this, the zero dynamic stability for the remaining state variables that are not
transformed through the feedback linearization process is not discussed in these papers.
To address the aforementioned problems, an SMC and adaptive BSC are combined in [51].
However, a conventional sliding surface is used in this controller ,which leads to the
chattering phenomena in the control effort and makes it impossible to ensure the desired
control performance.

Motivated from the limitations of existing literature, a composite scheme based on the
backstepping double integral-sliding mode controller (BDI-SMC) is proposed in this work
to enhance the stability of DDBC feeding CPLs in DCDNs. In this work, the issues related
to the non-minimum phase arising from DDBCs and negative-impedance behaviors of
CPLs are tackled by canceling nonlinearities and transforming the nonlinear dynamical
model into a feedback linearized model using the exact feedback linearization approach.
A double integral-sliding surface is then considered to derive the control law that can en-
hance the steady-state tracking performance while eliminating unwanted chattering effects.
Afterwards, the actual control law is determined following design steps in both BSC and
SMC. Finally, the feasibility of the actual control input in terms of maintaining the stability
is analyzed using the Lyapunov function. A simulation study is conducted considering
different operating scenarios of the system to verify its effectiveness. Additionally, its
superiority is demonstrated by comparing the results with those of traditional nonlinear
SMC and PI controllers.

2. System Description and Its Dynamical Model

The overall structure of a DCDN is depicted in Figure 1. It is well-known that the DC
source generally consists of renewable energy-based distributed generation systems (DGS)
such as solar photovoltaic (PV) system, rectifier in conjunction wind power generation
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systems, etc., which works as the main power supply. The DDBCs are commonly used for
interfacing the DC source with the main DC-bus so that the voltage requirement of various
loads can easily be met. Among these loads, some tightly regulated loads draw constant
power from the DC-bus, which are also known as CPLs and exhibit negative-impedance
characteristics. The electrical characteristic of CPLs can be described using the following
voltage–current relation:

iCPL =
PCPL
vbus

(1)

where iCPL denotes the current of a CPL, PCPL represents the power of a CPL, and vbus is
the DC-bus voltage. The concept of the small disturbance analysis can be applied around
an equilibrium point of Equation (1). Based on this analysis, the equivalent impedance of a
CPL can be expressed as follows:

RCPL =
∂vbus
∂iCPL

= −PCPL

I2
CPL

(2)

where ICPL is the CPL steady-state value of the current. From Equation (2), it is obvious that
the negative-impedance behavior of a CPL creates a negative impact on the performance,
i.e., it decreases the damping of the system, which further destabilizes the system, especially
when it is connected with a converter. Since the nonlinearity introduced into system is
due to CPLs, traditional linear controllers cannot guarantee the stability against large
disturbances. Hence, the employment of a nonlinear controller is essential to neutralize
the nonlinear effect of CPLs. However, to achieve such an objective from a controller, it is
necessary to have an appropriate dynamical model. Hence, a dynamical model for DDBCs
feeding a CPL is developed in the following to meet the controller design requirement.

Figure 1. Typical layout of a DCDN.

The simplified structure of a DDBC feeding a CPL in DCDNs is shown in Figure 2. In
this configuration, a current controlled source is used to represent a lumped CPL whereas
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the lumped resistive load is represented by RLoad. It is worth mentioning that the input
DC voltage source of the DDBC will be obtained from RESs or another DC–DC converter.
Now, according to the simplified structure as shown in Figure 2, the expression of its model
while on (Ton) and off (To f f ) can be obtained as follows:

ẋ = (Aonx + bon)u + (Ao f f x + bo f f )(1− u) (3)

with

Aon =

[
− rb

Lb
0

0 − PCPL
vbus

]
, bon =

[
Vin
Lb

0

]
, Ao f f =

[
− rb

Lb
− 1

Lb
1

Cbus
− PCPL

vbus

]
, bo f f =

[
Vin
Lb

0

]
, and x =

[
ib

vbus

]

where ib represents the inductor current, Vin is the input voltage of the converter, vbus is the
main DC-bus voltage, L is the inductor, rb is the parasitic resistance of an inductor, u is the
duty cycle, and Cbus is the DC-bus capacitance. It worth noting that the inductor current,
ib, and the main DC-bus voltage, vbus, are considered state variables. It is well-known that
a discontinuous converter model can be approximated by a continuous model by selecting
the converter switching frequency as being higher than the natural frequency. Hence, for
continuous conduction mode (CCM) operations, the discontinuous control input u can
be replaced by the duty ratio µ, which is a continuous function in the subinterval [0, 1].
Therefore, by considering the CCM operation, the model as represented by Equation (4)
can be expressed as follows:

dib
dt

= − rb
Lb

ib +
Vin − vbus

Lb
+

vbus
Lb

µ

dvbus
dt

=
1

Cbus
(ib −

vbus
RLoad

− PCPL
vbus

)− ib
Cbus

µ

(4)

The proposed BDI-SMC is designed based on the model as described by
Equation (4) which is discussed in the next section.

Figure 2. The simplified structure of a DDBC feeding a CPL.

3. Proposed Controller Design Approach

In this section, the proposed BDI-SMC is designed for DDBCs feeding CPLs. The
key control objective is to achieve fast transient and desired steady-state tracking errors
of the DC-bus voltage. However, the dynamical model represented by Equation (4) is not
suitable for designing the BDI-SMC in its current form. Hence, the following steps need to
be followed to make the model suitable for the controller design:
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• Transformation of the model into an exactly linearized system using an exact feedback
linearization approach and making it suitable to apply the backstepping
control approach;

• Elimination of the non-minimum phase problem of DDBCs by considering the total
stored energy and its rate of change as two new state variables;

• Derivation of the control law using the proposed scheme that satisfies the desired
tracking performance to track the DC-bus voltage; and

• Stability analysis of the whole system with the newly derived control input performed
using the Lyapunov stability theory.

All these steps are discussed in detail through the following subsections.

3.1. Transformation of the Model into an Exactly Linearized System Using the Exact
Feedback Linearization

The transformation of the nonlinear model of the DDBC with a CPL in Equation (4)
can be represented as the following generalized form:

ẋ = f (x) + g(x)u

y = h(x)
(5)

where x = [x1, x2, . . . , xn]T is the state of the system, u is the input, y is the output of the
system, and f (x) and g(x) are nonlinear functions of states and parameters with g(x) 6= 0.
Fitting Equations (4) into (5), it can be written as follows:

f (x) =

[
− rb

Lb
x1 + (Vin−x2

Lb
)

1
Cbus

(x1 − x2
RLoad

− PCPL
x2

)

]
, and g(x) =

[ x2
Lb
− x1

Cbus

]T

where x = [ib vbus]
T and u = µ. The following steps are necessary to transform the nonlin-

ear system into an exactly linearized system using the exact feedback linearization scheme.
Step 1: Selection of the output function
The feedback linearizability depends on the output of the system, which can be

selected in a different way. For the DDBC with a CPL, the output function can be chosen
as any of the states (i.e., the capacitor voltage or inductor current) and the combination of
these states in the form of the total energy of the system. The system becomes partially
linearized when the capacitor voltage is selected as the output. Hence, the system will be
a non-minimum phase one as the internal dynamic stability cannot satisfy the stability
criterion. This issue can be tackled by selecting the inductor current as the output, which
also makes the system partially linearized but with the stable internal dynamic. However,
the regulation of the output voltage by indirectly controlling the inductor current results
in excessive overshoot and slower response. Under this situation, the output needs to be
chosen in such a way that satisfies the requirement of the exact linearization approach,
i.e., the system is exactly linearized for which the relative degree of the exactly linearized
system is equal to the order of the system. Based on this discussion, the total stored energy
is considered an output function that can be expressed as follows:

y = h(x) =
1
2

Lbi2b +
1
2

Cbusv2
bus (6)

Step 2: Relative degree calculation
In this step, the relative degree for the nonlinear system as presented by Equation (5)

is calculated using the Lie derivative while considering the output function in Equation (6).
To calculate the relative degree, the following condition should be satisfied:

LgLr−1
f h(x) 6= 0 (7)
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In Equation (7), r is the relative degree while L represents the Lie derivative along the
vector field denoted by the subscript. To satisfy the condition for the exact linearization
approach, the relative degree of the nth order system will be r = n, which satisfies the
following expressions:

LgL1−1
f h(x) = LgL2−1

f h(x) = . . . = LgLn−2
f h(x) = 0

LgLn−1
f h(x) 6= 0

(8)

Based on the model and output function, the following expressions are obtained:

r = n = 2

LgL1−1
f h(x) = 0

and

LgLn−1
f h(x) 6= 0

Hence, the system is exactly linearized.
Step 3: Nonlinear coordinate transformation and exact linearization
In this step, the coordinate transformation technique is adopted to convert the original

x state variables into new z state variables, which can be discussed as follows:

z1 = h(x) = L1−1
f h(x) =

1
2

Lbi2b +
1
2

Cbusv2
bus (9)

in which the dynamic can be written as

ż1 =
∂h(x)

∂x
ẋ (10)

Using Equation (5), Equation (10) can be written as follows:

ż1 =
∂h(x)

∂x
f (x) +

∂h(x)
∂x

g(x)u = L f h(x) + LgL1−1
f h(x)u (11)

Since LgL1−1
f h(x) = 0, Equation (11) can be written as follows:

ż1 = z2 = L f h(x) = Vinx1 −
x2

2
RLoad

− PCPL − rbx2
1 (12)

Equation (12) can be written as follows:

ż2 = L2
f h(x) + LgL2−1

f h(x)u = ν (13)

Since LgL2−1
f h(x) 6= 0, the original nonlinear system can be represented as the follow-

ing exactly linearized form:

ż1 = z2

ż2 = ν
(14)

where z1 and z2 are the state variables of the exactly linearized system and ν is the control
variable of the transformed linear systems. The model in Equation (14) can be rewritten
as follows:

ż1 = z2

ż2 = ν = a(x) + b(x)µ
(15)
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where

a(x) = L2
f h(x) =

(Vin − 2x1rb)(Vin − x2 − rbx1)

Lb
− 2x2

RLoadCbus
(x1 −

x2

RLoad
− PCPL

x2
)

b(x) = LgL f h(x) =
(Vin − 2x1rb)x2

Lb
+

2x1x2

RLoadCbus

The proposed controller is designed based on this model, which is discussed in the
following subsection.

3.2. Controller Design

In this subsection, the control law is determined using the combination of backstepping
and double integral-sliding mode control schemes. Here, the main objectives are to track z1
and z2, which ultimately ensures the desired tracking of the DC-bus voltage under large
disturbances. The following steps describe the design process for the proposed BDI-SMC.

Step 1: For fulfilling the design objective, the first tracking error (e1) can be defined
as follows:

e1 = z1 − z1(re f ) (16)

where z1(re f ) is the reference value of the state z1, which can be calculated as follows:

z1(re f ) =
1
2

Lbi2b(re f ) +
1
2

Cbusv2
bus(re f ) (17)

where ib(re f )=
PCPL
Vin

is the reference value of the inductor current and vdc(re f ) is the reference
value of the DC-bus voltage. Now, the dynamic of e1 using Equation (16) can be obtained
as follows:

ė1 = z2 − ż1(re f ) (18)

As the actual control input does not appear in Equation (18), z2 is assumed to be the
virtual control input and γ is assumed to be the corresponding stabilizing function or
virtual control law. Hence, the final error (e2) can be defined as follows:

e2 = z2 − γ (19)

Using Equation (19), Equation (18) can be rewritten as follows:

ė1 = e2 + γ− ż1(re f ) (20)

At this stage, it is required to check the stability of the tracking error dynamic ė1, and
to do this, the following Lyapunov function (LF) is considered:

W1 =
1
2

e2
1 (21)

in which the time derivative using Equation (20) can be written as follows:

Ẇ1 = e1[e2 + γ− ż1(re f )] (22)

From Equation (22), γ can be selected as follows:

γ = −k1e1 + ż1(re f ) (23)

where k1 is a positive constant. Substituting Equations (23) into (22) yields the following:

Ẇ1 = −k1e2
1 + e1e2 (24)
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From Equation (24), it can be seen that, if e2 = 0, then Ẇ1 ≤ 0. To achieve this, the
next step is essential.

Step 2: The dynamic of e2 can be written as follows:

ė2 = ż2 − γ̇ (25)

Using Equation (15), the dynamic of e2 can be expressed as follows:

ė2 = a(x) + b(x)µ− γ̇ (26)

At this instant, a double-integral sliding surface in term of e2 can be selected as follows:

S = e2 + α1

∫
e2dt + α2

∫ ∫
e2dtdt (27)

where α1 and α2 are constant parameters of the sliding surface. The dynamic of Equation (27),
using the value of ė2, can be expressed as follows:

Ṡ = a(x) + b(x)µ− γ̇ + α1e2 + α2

∫
e2dt (28)

It is well-known that appropriately selecting a reaching law is very important to
mitigate the chattering while improving the convergence time. Hence, a reaching law is
selected as follows to meet the above objective:

Ṡ = −β1sgn(S)− β2S (29)

where β1 and β2 are positive constants and the chattering effect depends on these values.
Combining Equations (28) and (29), it can be written as follows:

a(x) + b(x)µ− γ̇ + α1e2 + α2

∫
e2dt = −β1sgn(S)− β2S (30)

From Equation (30), the actual control law can be determined as follows:

µ = − 1
b(x)

[a(x)− γ̇ + α1e2 + α2

∫
e2dt +

1
S

e1e2 + β1sgn(S) + β2S] (31)

Substituting Equation (31) into Equation (28) yields

Ṡ = −β1sgn(S)− β2S− 1
S

e1e2 (32)

The following Lyapunov function is selected to ensure overall stability with the
derived control law:

Ẇ2 = W1 +
1
2

S2 (33)

Using Equations (24) and (32), Ẇ2 can be written as follows:

Ẇ2 = −k1e2
1 − β1|S| − β2S2 (34)

Since k1 > 0, β1 > 0, and β2 > 0, Ẇ2 ≤ 0. Thus, the overall stability of the sys-
tem is guaranteed with the designed control law as represented by Equation (31). The
effectiveness of the designed BDI-SMC is demonstrated in the next section.

4. Simulation Results

To verify the effectiveness of the designed composite BDI-SMC strategy, a similar
simulation model as that shown in Figure 2 is built on the MATLAB/Simulink platform.
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The nominal voltage of the main-DC bus of the distribution network is considered as
110 V while the rated power of DC loads is considered as 2 kW. In order to capture the
highest destabilization effect of the DC load on the DC distribution network, a pure CPL
is considered the DC power demand rather than taking into account the composite load
demand. The frequency of the power electronic interface boost converter is set as 5 kHz
with a sampling frequency of 100 kHz to evaluate the performance of the designed BDI-
SMC. It is well-known that, during the implementation of controllers, it is essential to know
the system parameters. Hence, the system parameters used for the simulation study are
listed in Table 1. The gain parameters of the designed nonlinear controller are listed as
follows: k1 = 1000, α1 = 70, α2 = 0.45, β1 = 100, and β2 = 0.01. It is worth mentioning that
the gain parameters are selected based on the trial and error method to meet the desired
control objective.

Table 1. Nominal system parameters of the system.

Parameters Description Value

Vin Supply voltage 55 V
Vbus Main DC-bus voltage 110 V
PCPL Nominal power in constant power load 2 kW

rb Parasitic resistance of an inductor 2 mΩ
Lb Inductance of the converter 5 mH

Cbus Capacitance of the main DC-bus 6 mF
RLoad Resistive Load ∞

The performance of the BDI-SMC is verified by widely varying the operating region by
considering the variations in the reference power of CPLs, main DC-bus reference voltage,
and input power in terms of the input source voltage. Therefore, the following three case
studies are considered to demonstrate the performance of the designed controller:

• Case I: Controller performance investigation with variations in the reference power
of the CPL;

• Case II: Controller performance investigation with variations in the reference voltage
of the DC-bus; and

• Case III: Controller performance investigation with variations in the input voltage.

To show the merits of the designed BDI-SMC, the performance is also compared
with the existing SMC (ESMC), as proposed in [40], and with a conventional proportional-
integral (PI) controller.

Case I: Controller performance investigation with variations in the reference power of
the CPL

In this scenario, the variation in the reference power of CPLs is taken into consideration
to evaluate the performance of the designed controller and existing controllers. At the
beginning of the simulation, the rated power of the CPL is considered as 2 kW whereas it
is increased to 4 kW at t = 1 s. On the other hand, other parameters are kept unchanged.
Due to the transient power of CPLs, as shown in Figure 3a, the post-disturbance dynamic
response of the main DC-bus and inductor current are affected, which can be seen in
Figure 3b,c, respectively. From these responses, it can be observed that all three controllers
can ensure stability. However, the designed BDI-SMC can provide faster dynamic responses
along with less undershoot compared with the ESMC and PI. Again at t = 2 s, the CPL
power is decreased from 4 kW to 500 W, which is considered a large disturbance in the
system. Due to this large disturbance, the conventional PI controller is unable to provide
sufficient damping torque into the networks, consequently leading to instability in both
the main DC-bus voltage and inductor current, which can be clearly seen from Figure 3b,c.
Meanwhile, both the designed BDI-SMC and the ESMC can ensure stability, which can be
clearly seen from Figure 3b,c, respectively. However, though both controllers can maintain
zero output voltage tracking errors, the designed BDI-SMC ensures a faster settling time
and less overshoot. The corresponding control signal for all three controllers is depicted in
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Figure 3d,e, where it is obvious that the designed control signal is more stable compared
with the PI and ESMC controllers. Furthermore, it can be observed that the designed
controller can effectively eliminate the chattering effect on the PWM whereas the ESMC
cannot attenuate the chattering effect.

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2

4

6

8

10

P C
PL

 (k
W

)

(a) CPL dynamic response

BDI-SMC
ESMC
PI

1.021 1.0215 1.022 1.0225 1.023
-5

0

5

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

100

200

300

V
D

C
 (V

)

(b) Main DC-bus voltage dynamic response

BDI-SMC
ESMC
PI

1 1.1 1.2

50

100

150

2 2.2 2.4

50

100

150

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

100

200

300

I L (A
)

(c) Inductor current dynamic response

BDI-SMC
ESMC
PI

1 1.1 1.2
0

50

100

150

2 2.1 2.2

0

20

40

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

0.2

0.4

0.6

0.8

1
C

on
tro

l s
ig

na
l

(d) Control signal of the ESMC

ESMC

2.04 2.0401 2.0402
0

0.5

1

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

0.2

0.4

0.6

0.8

1

C
on

tro
l s

ig
na

l

(e) Control signal dynamic response

BDI-SMC
PI

1 1.1 1.2
0

0.5

Figure 3. Dynamic response of the system with the variations in the CPL reference power.

Case II: Controller performance investigation with the variations in the reference
voltage of the DC-bus

In this case study, the main DC-bus voltage increases from its equilibrium state 110 V
to 160 V at t = 1.2 s and again increases from 160 V to 220 V at t = 2.2 s, whereas the
CPL is set as 2 kW. The corresponding system responses are illustrated in Figure 4. From
Figure 4a, it can be observed that the PI and ESMC cannot ensure a main DC-bus voltage
tracking performance with a faster settling time and less overshoot/undershoot whilst
the BDI-SMC can quickly track the new reference main DC-bus voltage as the settling
time overshoot/undershoot are close to zero. Similarly, from Figure 4b, it can be observed
that the designed BDI-SMC can provide a faster dynamic performance compared with
the ESMC and PI. However, although the overshoot/undershoot in the inductor current
is less with the ESMC, the control signal contains higher chattering, as illustrated in
Figure 4d. As a result, the switching losses are higher, which reduces the overall system
performance. On the other hand, the designed BDI-SMC is able to provide an oscillation-
free control signal to the PWM compared with the ESMC, which can be clearly seen from
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Figure 4d,e. Throughout this simulation study, the load power is constant due to the
electrical characteristics of the CPL, which is shown in Figure 4c.
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Figure 4. Dynamic response of the system with the variations of the main DC-bus reference voltage.

Case III: Controller performance investigation with the variations in the input voltage
Practically, the output power of RESs is continuously changeable due to their intermit-

tent characteristics. To show that impact on the distribution network, in this case study,
the variation in the input power is considered. For this purpose, the input voltage of the
DC voltage increases from 55 V to 70 V and decreases from 70 V to 40 V at t = 1.4 s and
t = 2.4 s, respectively. Figure 5 shows the corresponding dynamic responses of the system.
From Figure 5b,c, it can be observed that all three controllers can accurately track the main
DC-bus voltage and inductor current when input voltage variation occurs. However, the
designed BDI-SMC has a faster dynamic response and a smaller overshoot compared with
the ESMC and conventional PI control methods. Moreover, it can be seen that the CPL
remained unchanged at the equilibrium state 2 kW, which is illustrated in Figure 5d.

From the above simulation results, it can be concluded that the designed BDI-SMC
can provide fast dynamic convergence speed, accurate tracking of the DC-bus voltage,
and good large disturbances stability for a DC–DC boost converter feeding a CPL. More-
over, it is obvious that the stability of the DC-bus voltage is not destroyed even after the
large variations in the CPL power. Hence, the simulation result is consistent with the
theoretical analysis.
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5. Conclusions

A composite nonlinear controller combining the backstepping control theory and
double integral-sliding mode control theory is proposed for a DC–DC boost converter
feeding a CPL with distribution networks. In order to design the proposed controller, a
canonical form is developed using the exact feedback linearization approach by considering
the total stored energy as the output function. Based on the canonical form of the model, a
composite nonlinear controller is designed to guarantee DC-bus voltage stability under
large disturbances of a DC–DC boost converter feeding CPLs with negligible steady-state
tracking error and fast transient responses. The effectiveness and theoretical analysis of
the designed controller are verified through simulation results. In the future, a robust
adaptive nonlinear composite controller will be designed by considering both parametric
uncertainty and external disturbances.
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Abbreviations

The following abbreviations are used in this manuscript:

BDI-SMC Nonlinear Backstepping Double Integral-Sliding Mode Controller
BSC Nonlinear Backstepping Controller
CPL Constant Power Load
CCM Continuous Conduction Mode
DGSs Distributed Generation Systems
DDBC DC–DC Boost Converter
DCDNs DC Distribution Networks
ESMC Existing Sliding Mode Controller
FBLCs Nonlinear Feedback Linearizing Controllers
MPC Model Predictive Controller
PV Solar Photovoltaic
PECs Power Electronic Converters
PI Proportional-Integral Controller
PWM Pulse Width Modulation
RESs Renewable Energy Sources
SMC Sliding Mode Controller
VPSs Vehicular Power Systems

References
1. Roy, T.K.; Mahmud, M.A.; Oo, A.M.T.; Haque, M.E.; Muttaqi, K.M.; Mendis, N. Nonlinear adaptive backstepping controller

design for islanded DC microgrids. IEEE Trans. Ind. Appl. 2018, 54, 2857–2873. [CrossRef]
2. Orchi, T.F.; Mahmud, M.A.; Oo, A.M.T. Generalized dynamical modeling of multiple photovoltaic units in a grid-connected

system for analyzing dynamic interactions. Energies 2018, 11, 296. [CrossRef]
3. Roy, T.K.; Mahmud, M.A. Active power control of three-phase grid-connected solar PV systems using a robust nonlinear adaptive

backstepping approach. Sol. Energy 2017, 153, 64–76. [CrossRef]
4. Ghosh, S.; Roy, T.; Pramanik, M.; Mahmud, M.A. LMI-Based Optimal Linear Quadratic Controller Design for Multiple Solar

PV Units Connected to Distribution Networks. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC),
College Station, TX, USA, 2–5 February 2021; pp. 1–6.

5. Roy, T.K.; Mahmud, M.A.; Oo, A.M.T.; Bansal, R.; Haque, M.E. Nonlinear adaptive backstepping controller design for three-phase
grid-connected solar photovoltaic systems. Electr. Power Compon. Syst. 2017, 45, 2275–2292. [CrossRef]

6. Ghosh, S.K.; Roy, T.K.; Pramanik, M.A.H.; Sarkar, A.K.; Mahmud, M. An energy management system-based control strategy for
DC microgrids with dual energy storage systems. Energies 2020, 13, 2992. [CrossRef]

7. Xiao, J.; Wang, P.; Setyawan, L.; Xu, Q. Multi-level energy management system for real-time scheduling of DC microgrids with
multiple slack terminals. IEEE Trans. Energy Convers. 2015, 31, 392–400. [CrossRef]

8. Roy, T.K.; Mahmud, M.A. Dynamic stability analysis of hybrid islanded DC microgrids using a nonlinear backstepping approach.
IEEE Syst. J. 2017, 12, 3120–3130. [CrossRef]

9. Nasir, M.; Khan, H.A.; Hussain, A.; Mateen, L.; Zaffar, N.A. Solar PV-based scalable DC microgrid for rural electrification in
developing regions. IEEE Trans. Sustain. Energy 2017, 9, 390–399. [CrossRef]

10. Mendis, N.; Mahmud, M.A.; Roy, T.K.; Haque, M.E.; Muttaqi, K.M. Power management and control strategies for efficient
operation of a solar power dominated hybrid DC microgrid for remote power applications. In Proceedings of the 2016 IEEE
Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016; pp. 1–8.

11. Roy, T.K.; Mahmud, M.A.; Oo, A.M.T.; Haque, M.E.; Muttaqi, K.M.; Mendis, N. Nonlinear adaptive backstepping controller
design for controlling bidirectional power flow of BESSs in DC microgrids. In Proceedings of the 2016 IEEE Industry Applications
Society Annual Meeting, Portland, OR, USA, 2–6 October 2016; pp. 1–8.

12. Mahmud, M.A.; Roy, T.K.; Saha, S.; Haque, M.E.; Pota, H.R. Robust nonlinear adaptive feedback linearizing decentralized
controller design for islanded DC microgrids. IEEE Trans. Ind. Appl. 2019, 55, 5343–5352. [CrossRef]

13. Ravada, B.R.; Tummuru, N.R.; Ande, B.N.L. Photovoltaic-Wind and Hybrid Energy Storage Integrated Multi-Source Converter
Configuration for DC Microgrid Applications. IEEE Trans. Sustain. Energy 2020, 12, 83–91. [CrossRef]

14. Garg, A.; Tummuru, N.R.; Oruganti, R. Implementation of Energy Management Scenarios in a DC Microgrid using DC Bus
Signaling. IEEE Trans. Ind. Appl. 2021, 57, 5306–5317. [CrossRef]

15. Ghosh, S.K.; Roy, T.K.; Pramanik, M.A.H.; Ali, M.S. Energy management techniques to enhance DC-bus voltage transient
stability and power balancing issues for islanded DC microgrids. In Advances in Clean Energy Technologies; Elsevier: Amsterdam,
The Netherlands, 2021; pp. 349–375.

16. Lucas, K.E.; Pagano, D.J.; Vaca-Benavides, D.A.; Garcia-Arcos, R.; Rocha, E.M.; Medeiros, R.L.; Rios, S.J. Robust Control of
Interconnected Power Electronic Converters to Enhance Performance in dc distribution systems: A case of study. IEEE Trans.
Power Electron. 2020, 36, 4851–4863. [CrossRef]

110



Energies 2021, 14, 6753

17. Chang, F.; Cui, X.; Wang, M.; Su, W. Region of Attraction Estimation for DC Microgrids with Constant Power Loads Using
Potential Theory. IEEE Trans. Smart Grid 2021, 12, 3793–3808. [CrossRef]

18. Wang, M.; Tang, F.; Wu, X.; Niu, J.; Zhang, Y.; Wang, J. A Nonlinear Control Strategy for DC-DC Converter with Unknown
Constant Power Load Using Damping and Interconnection Injecting. Energies 2021, 14, 3031. [CrossRef]

19. AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant Power Loads (CPL) with Microgrids:
Problem Definition, Stability Analysis and Compensation Techniques. Energies 2017, 10, 1656. [CrossRef]

20. Majstorovic, D.; Celanovic, I.; Teslic, N.D.; Celanovic, N.; Katic, V.A. Ultralow-latency hardware-in-the-loop platform for rapid
validation of power electronics designs. IEEE Trans. Ind. Electron. 2011, 58, 4708–4716. [CrossRef]

21. Lu, X.; Sun, K.; Guerrero, J.M.; Vasquez, J.C.; Huang, L.; Wang, J. Stability enhancement based on virtual impedance for DC
microgrids with constant power loads. IEEE Trans. Smart Grid 2015, 6, 2770–2783. [CrossRef]

22. Rahimi, A.M.; Emadi, A. Active damping in DC/DC power electronic converters: A novel method to overcome the problems of
constant power loads. IEEE Trans. Ind. Electron. 2009, 56, 1428–1439. [CrossRef]

23. Magne, P.; Marx, D.; Nahid-Mobarakeh, B.; Pierfederici, S. Large-signal stabilization of a DC-link supplying a constant power
load using a virtual capacitor: Impact on the domain of attraction. IEEE Trans. Ind. Appl. 2012, 48, 878–887. [CrossRef]

24. Gui, Y.; Han, R.; Guerrero, J.M.; Vasquez, J.C.; Wei, B.; Kim, W. Large-Signal Stability Improvement of DC-DC Converters in DC
Microgrid. IEEE Trans. Energy Convers. 2021, 36, 2534–2544. [CrossRef]

25. Augustine, S.; Mishra, M.K.; Lakshminarasamma, N. Adaptive droop control strategy for load sharing and circulating current
minimization in low-voltage standalone DC microgrid. IEEE Trans. Sustain. Energy 2014, 6, 132–141. [CrossRef]

26. Karami, Z.; Shafiee, Q.; Khayat, Y.; Yaribeygi, M.; Dragicevic, T.; Bevrani, H. Decentralized model predictive control of DC
microgrids with constant power load. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 451–460. [CrossRef]

27. Karami, Z.; Shafiee, Q.; Sahoo, S.; Yaribeygi, M.; Bevrani, H.; Dragicevic, T. Hybrid Model Predictive Control of DC–DC Boost
Converters With Constant Power Load. IEEE Trans. Energy Convers. 2020, 36, 1347–1356. [CrossRef]

28. Vafamand, N.; Yousefizadeh, S.; Khooban, M.H.; Bendtsen, J.D.; Dragičević, T. Adaptive TS fuzzy-based MPC for DC microgrids
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Abstract: Grid-connected microgrids consisting of renewable energy sources, battery storage, and
load require an appropriate energy management system that controls the battery operation. Tradi-
tionally, the operation of the battery is optimised using 24 h of forecasted data of load demand and
renewable energy sources (RES) generation using offline optimisation techniques, where the battery
actions (charge/discharge/idle) are determined before the start of the day. Reinforcement Learning
(RL) has recently been suggested as an alternative to these traditional techniques due to its ability
to learn optimal policy online using real data. Two approaches of RL have been suggested in the
literature viz. offline and online. In offline RL, the agent learns the optimum policy using predicted
generation and load data. Once convergence is achieved, battery commands are dispatched in real
time. This method is similar to traditional methods because it relies on forecasted data. In online RL,
on the other hand, the agent learns the optimum policy by interacting with the system in real time
using real data. This paper investigates the effectiveness of both the approaches. White Gaussian
noise with different standard deviations was added to real data to create synthetic predicted data to
validate the method. In the first approach, the predicted data were used by an offline RL algorithm.
In the second approach, the online RL algorithm interacted with real streaming data in real time, and
the agent was trained using real data. When the energy costs of the two approaches were compared,
it was found that the online RL provides better results than the offline approach if the difference
between real and predicted data is greater than 1.6%.

Keywords: reinforcement learning (RL); microgrid; battery management; offline and online RL; opti-
misation

1. Introduction

Grid-connected microgrids are becoming the main building blocks of smart grids.
They facilitate the vast deployment and better utilisation of RES, reduce stress on the
existing power grid, and provide consumers with uninterrupted power supply. The main
aim for any Energy Management System (EMS) for grid-connected microgrids is to reduce
operational costs by reducing the cost of power imported from the grid. This is achieved by
controlling the Battery Energy Storage System (BESS) to store power when RES generation
is higher than load demand and release power when it is less than the load demand.
However, BESS capacity is finite and hence, depending on the battery size, imported
power from the grid is likely to be used. Therefore, grid tariffs, which can vary during the
day, must be taken into account when deciding charging and discharging commands. In
addition, the feed-in tariff can also be available to enable consumers or prosumers to sell
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their excess power to the grid [1]. These factors demonstrate the need for an intelligent
optimisation method. However, due to the lack of information regarding future generation
and load profiles, this presents a challenge for EMS.

Inspired by the classical economic dispatch of power systems, various studies have
suggested different optimisation techniques to plan, schedule, and control the BESS in
grid-connected microgrids. These studies have formulated the operation of the BESS as a
dispatch optimisation problem and solved it using Linear Programming (LP) [2,3], Mixed
Integer Programming (MIP) [4], Mixed-Integer Linear Programming (MILP) [5–7], and
Mixed-Integer Nonlinear Programming (MINLP) [8,9]. In Chen et al. [2], a general algebraic
modelling system (GAMS) was developed and solved by CPLEX solver and then tested
in a physical system based in Taiwan. The study compared two models to determine the
impact of energy storage on optimal scheduling. The first model consisted of thermal and
electrical loads and a CHP unit. The second model used additional thermal and electrical
storage. Both models used in this work relied on the prediction of load profiles. In Luna
et al. [5], the model reflects a deterministic problem that promotes self-consumption based
on 24 h look-ahead forecast data. The microgrid consists of a supervisory control stage that
compensates for any mismatch between the offline scheduling process and the real-time
microgrid operation. In Li et al. [7], the microgrid optimisation problem is formalised using
a general algebraic modelling system (GAMS) via a discretised step transformation (DST)
approach and finally solved using the CPLEX solver. This paper proposes a new optimal
scheduling mode by modelling the uncertainty of spinning reserves provided by energy
storage with probabilistic constraints. These achievements are highly dependent on the
proper estimation of spinning reserves, which is a big challenge while working on a real
system. In Mosa and Ali [9], the MINLP algorithm was used to reduce the operational
cost of a DC microgrid consisting of a photovoltaic (PV), fuel cell (FC), micro turbine (MT),
diesel generator (DE), and battery/BESS. This study uses Egyptian grid load profiles over
four seasons of the year based on the prediction.

The above traditional approaches require a detailed and accurate mathematical model
of the system, while some of them require the linearisation of the system. In addition,
previous knowledge of future RES generation and load demand over a period is required
as an input to the optimisation problem. The accuracy of the prediction may affect the
accuracy of the BESS operation. Therefore, different forecasting algorithms that can handle
the stochastic nature of load demand and RES have been suggested in the literature. These
algorithms are designed to forecast short (daily), medium (seasonal), and long (yearly) load
demand and availability of RES. Most advanced forecasting algorithms include Artificial
Neural Networks (ANN), dynamic programming (DP)-based optimisation, and fuzzy logic
by considering the weather conditions. Although forecasting techniques vary within the
vast amount of existing literature [10–18], the most common objective of these techniques is
to decrease the forecasting error by better modelling the uncertainties in real time. Although
forecasting algorithms have improved in recent years, it is still challenging to predict the
future load demand and availability of RES with minimum error, especially if the decision
making is implemented in real time.

Recent studies [19–26] have introduced reinforcement learning as a potential solution
for the optimal operation of BESS due to its ability to develop an optimal policy online.
In RL, an agent interacts with the surrounding environment and develops an optimal
policy for taking the right action after exploring its state. The agent takes the action
to maximise a future accumulative reward. The main advantage for RL over traditional
methods is that it does not need any model of the environment and it can learn the optimum
policy in real time. Yoldas et al. [27] used the MINLP technique guided by a Q-learning
algorithm to decrease the daily energy cost and emission of harmful gases simultaneously.
Performance comparisons were made using only conventional Q-learning. The result
showed an approximately 1.2% reduction of the daily operational costs associated with the
proposed technique over conventional Q-learning approaches.
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There are two main types of online RL algorithms: off-policy and on-policy. In
off-policy methods (e.g., Q-learning), the action-valued function is approximated inde-
pendently of the policy being followed. Conversely, in on-policy approaches, e.g., in
state–action–reward–state–action (SARSA), the action-valued function is continuously up-
dated according to the developed policy, which makes it harder to converge [28]. Whereas
with off-policy RL, the agent does not need to follow any specific policy and in fact could
even act randomly, on-policy schemes rely on the policy that is being established. Despite
the possibly random behaviour, off-policy methods, including the Q-learning algorithm,
can converge onto the optimal policy independent on the policy employed during ex-
ploration [29]. On the other hand, offline, or data-driven RL develops the policy on
pre-collected data. Once the policy is developed, it is deployed to control the system. The
policy is not updated by interacting with the system in real time. Offline learning, such
as batch RL and other conventional techniques such as MILP, MINLP, and LP algorithms,
work with data in bulk. Therefore, the uncertainty of some unknown variables such as load
demand and PV profiles make these offline methods more challenging because the training
is done on forecasted and not real data. Conventionally, offline learning algorithms need to
be re-run from scratch in order to learn from modified or new data.

In Mbuwir et al. [19], the authors proposed batch reinforcement learning, offline RL, to
solve the optimisation of the microgrid problem in order to achieve a cost-efficient solution.
The goal was to find or statistically learn the pattern of the best control policy from the
training data (previous year’s load and PV profiles) in the form of several smaller batches
(sets) and then use this policy on the current environment in real time. When the batch
RL was compared to the MILP approach, it was shown to be 19% less efficient than MILP.
Kuznetsova et al. [30] developed a two-step-ahead RL algorithm to cut down utility bills
by learning the stochastic behaviour of the environment using RL and then scheduling
the battery two hours ahead from the current time. RL trains the agent and produces the
optimal actions of the battery using forecasted wind and load demand power profiles.
Liu et al. [20] proposed a cooperative RL algorithm for distributed economic dispatch in
microgrids. However, the challenge of using forecasted PV and load data, which can affect
function approximation, is not addressed in this paper. Jiang and Fei [21], suggested a
Q-learning based, economical smart microgrid with two-level hierarchical agents with
flexible demand response and distributed energy resource management. The authors claim
that the suggested scheme is very effective while satisfying the user’s preference. However,
the suggested work requires load demand from the user before scheduling its distributed
units and batteries. This can affect the cost optimisation adversely if the user’s demand
request changes during real-time operations.

In [22,25,31–43], shallow and deep neural networks have been suggested to approxi-
mate the Q-value function to achieve better optimisation results with shorter convergence
time. Low convergence time is also desirable for online applications. Lu et al. [22] used
deep RL to develop an energy-trading scheme according to the predicted future renewable
energy generation, estimated future power demand, and battery level. This work also
depended on forecasted renewable energy power generation. In Bui et al. [25], a double
deep neural network (DDQN) was proposed for function approximation of Q-values. The
authors claim that this method trains the model faster as compared with a single deep
(having one network) RL algorithm. This work also depends on the estimation of future
load demand and PV generation. Zhou et al. [24] suggested an algorithm to train the agent
in real time using real data profiles instead of forecasted datasets. A fuzzy Q-learning
approach is adopted for a system consisting of household users and a local energy pool in
which customers are free to trade with the local energy pool and enjoy low-cost renewable
energy while avoiding the installation of new energy generation equipment. Another
online approach was proposed in Kim et al. [26] in which real-time pricing is used to
reduce the system cost. Both Zhou et al. [24] and Kim et al. [26] do not provide informa-
tion regarding the efficiency of their algorithms with respect to other offline Q-learning
techniques. Another study by Kim and Lim [44] applied Q-learning directly in real time.
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Optimal cost was achieved for the whole year rather than for a single day. In contrast to
other offline approaches, this direct online approach trains the agent in real time using real
data by moving from one day to another. In the beginning, the agent experience is low;
however, as days progress, the agent starts exploiting more actions, and an optimal policy
is developed.

The literature reviewed here suggests that offline policies (including RL) require
predicted data in order to produce optimal results if the real data is the same as the
predicted data, i.e., zero prediction error. The RL online approach, on the other hand, does
not rely on predictions and uses real streaming data. However, it is not clear how effective
the online RL algorithm is as compared to the offline approaches when the prediction error
increases. Motivated by this shortcoming in the existing literature, this paper provides
a comprehensive comparison between the two approaches. Using one year of real PV
generation and load data obtained from [45], different profiles for predicted data were
created by generating random noise with different standard deviations. The noise was
added to the real data to create synthetic predicted data. Then, the 24 h of predicted data
were used to train the RL agent, and then, the optimised battery command achieved in
this process was applied to the real data (offline RL approach). The online RL, on the other
hand, interacted with real data in real time. Then, the energy costs of the two approaches
were compared to help users make decisions on the most appropriate approach given
the accuracy of the available forecasted data. Finally, the case with zero prediction error
was considered in the comparison of MINLP versus RL to establish a benchmark between
conventional offline approaches versus the offline RL.

2. Energy Management System

The aim of the EMS is to reduce the cost of the power imported from the grid as
shown in Figure 1. Thus, the grid supplies energy only if the RES and BESS do not fulfil the
demand, and the time of transfer is chosen in order to minimise the cost. Export of energy
to the main grid might also be possible if a feed-in tariff is available. Renewable energy, PV
in this study, has a priority to fulfil the load requirement first. If it is not sufficient, then
the battery, main grid, or combination of both are used to fulfil the demand. The BESS
may charge from the PV directly or charge from or discharge into the main grid if needed.
The EMS can make use of different tariff rates within the day by charging the BESS during
low-tariff periods and discharging it during high-tariff periods. In this work, a fixed feed-in
tariff is assumed, and there are three different tariffs (peak, mid, low) which are assumed
to import the energy from the main grid depending on time of the day.
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In this paper, an RL algorithm is used to interact with the microgrid and take auto-
mated decisions to control the BESS, taking into account a dynamically changing envi-
ronment characterised by the available PV output, load demand, and the level of battery
charge (SOC). The decisions are in the form of actions for the battery to charge, discharge,
or remain idle. The recommended actions for the BESS are developed through Q-learning.

2.1. System States

The state space (S) is discretised at ∆t = 30 min, which suggests that the learning agent
captures the information related to the dynamics of the microgrid after the time interval of
30 min. In Equation (1), t represents the time period, which has 48 states in 24 h of a day
due to its discretisation every 30 min.

st = [SOC, eNet
t , t] ∈ S, (1)

where SOC, eNet
t are the battery state of charge and net power demand, respectively. The

eNet
t is the difference between the load demand and the energy generated by PV such that:

eNet
t = edemand

t − ePV
t . (2)

The SOC should be bounded by maximum and minimum limits such that:

SOCmin ≤ SOC(t) ≤ SOCmax. (3)

We discretise the state space as shown in Equation (4) below in which the i, j, k indices
represent the SOC, eNet

t and t, respectively as:

Sdiscrete =
{

Si,j,k

}
, (4)

where each index in the state space has the following levels: i = 3 levels, j = 2 levels, i.e.,
positive (eNet

t ≥ ePV
t ) or negative (eNet

t < ePV
t ), and k = 48 levels. Thus, the total number of

states is 48× 3× 2 = 288.

2.2. Action Space

The action space consists of the charge, discharge, and idle command of the battery
such as:

A = { a|(Discharge, Idle, Charge)}. (5)

At each time step t, one action is selected from the action space A. If the action
“Discharge” is chosen, the battery discharges into the main grid, supplies the load, or both.
In case of the action “Idle”, the load demand is fulfilled by the PV source, main grid, or
both. If the “Charge” action is selected, the battery is charged from the PV, the grid, or
both.

2.3. Backup Controller

In this work, we used a backup controller, which acts as a filter for every control action
resulting from the policy π to take care of the practical constraint, such as the inability of the
battery to charge or discharge beyond its maximum and minimum SOC level, respectively.
In addition, there is a certain limit of battery charging or discharging at time t. For example,
if the “Charge” action is selected by the RL agent at time t and one of the discrete states is
(eNet

t > ePV
t ), then the battery should charge from the main grid up to a certain limit (∆e)

defined in Table 1 even if the capacity of the battery is more than ∆e. Moreover, if at time
t, one of the discrete states is (eNet

t < ePV
t ) and the RL agent selects the action “Charge”,

the battery will charge from the extra PV available (after fulfilling the load demand) by
respecting the charging rate parameter of the battery. If for example the current PV power is
more or less than the charging rate of the battery, the battery is charged up to the maximum
charging rate (∆e) or current PV power, respectively.
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Table 1. Chosen parameters of the microgrid used in this paper.

Name Values

Total capacity of the battery 12,000 KWh
Max/Min charging rate of battery (∆e) (2300/2) KW

SOCmax 100%
SOCmin 70%

Initial SOC of the battery (SOC(0)) [min, max]
Time step lenght (∆t ) 30 min

α, γ, ε 0.5, 0.5, 0.6
Total iterations (Offline) 10,000–15,000

2.4. Reward

The reward function r(st,at) is the immediate incentive gained by taking a specific
action a at time t in states. The reward function is chosen to minimise the running cost
of importing power from the grid and maximise the revenue of selling power to the grid.
The cost is calculated every 30 min (as ∆t = 30) by multiplying the respective tariff rates,
as mentioned in Section 2.5. The reward function is the negative of the cost of imported
energy or the cost of exported energy. Hence, the reward function can be formulated as
follows:

r(st, at) =

{
−Pgrid

t × ∆t× Tari f fimp, Pgrid ≥ 0
Pgrid

t × ∆t× Tari f fexp, Pgrid < 0

}
, (6)

where Tari f fimp and Tarri f fexp are the import and export tariffs, respectively. Pgrid
t is the

grid power and is given by:
Pt

grid = et
Net + Pt

batt, (7)

where Pbatt
t is the power used to charge the battery.

2.5. Tariff

The import tariff has three different values depending on the time of use:

Tari f fimp =





0.05£/kWh low peak, 22 : 00 to 8 : 00
0.08£/kWh medium peak, 9 : 00 to 12 : 00
0.171£/kWh high peak, 19 : 00 to 21 : 00



. (8)

The export tariff does not vary and it is Tari f fexp = 0.033£/kWh.

3. Q-Learning Algorithm

The backbone of the Q-learning algorithm is based on the two components described
in Equation (9) as:

Rt
π = r(st, at) +

∞

∑
i=1

γi.r(st+i.at+i). (9)

The first component shows the impact of the current action on future rewards, and
the second component is the total discounted rewards at time step t under a given policy
π. Therefore, Rπ

t is defined as the sum of the instant reward at time step t plus the
future discounted rewards. The parameter γ is the discount factor used to determine
the importance of future rewards from the next time step (t + 1) up to infinity. If γ = 0,
the algorithm considers the current reward only, while if γ = 1, both current and future
rewards have equal weight. In Q-learning, the policy is learned implicitly without any
prior knowledge. This is done by approximating the action-value function by repeatedly
updating the Q(st, at) through experience such as:

Q(st, at) = Q(st, at) + α[r(st, at) + γmaxQ(st+1, at+1)−Q(st, at)]. (10)
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To approximate the Q-table, it is important to estimate all state–action pairs of the
table. Parameter α is the learning rate that determines how much the newly obtained
value overrides the old value of Q(st, at). If α = 0, the newly obtained information is
ignored during training, whereas if α = 1, only the latest information is used. Therefore,
in Q-learning, the selection of α (ranging between 0 and 1) is very important to keep a
balance between the old and new information. The RL agent takes random actions in the
beginning if it follows an ε-greedy policy, which is adopted in this work. The idea behind
the purely ε-greedy approach is to try every decision once and then keep picking the one
that results in the highest reward as learning progresses. After certain iterations and by
performing different actions in each state of the Q-table, the agent learns to maximise the
value (state–action) of the Q-table by taking greedy actions. Random and greedy actions
correspond to exploration (ε) versus exploitation, respectively. In this work, taking a greedy
action, the decision is based on:

ε← ε/
√

M(s)−Mmax (11)

where M(s) is the number of times a certain action is taken in a specific state. Mmax is the
maximum constant value selected after which greedy actions are selected by the Q-learning
algorithm.

3.1. Offline RL Implementation

In this section, the implementation of offline RL to control BESS in microgrids will
be discussed. At the beginning of each day, the forecasted PV and load data are gathered
as inputs to RL. Then, Q-learning is run using the same input data until convergence is
achieved. The policy developed at the end of this phase is used to generate the charging,
discharging and idle commands for the next 24 h. This strategy is repeated for each day.
The backup controller monitors the control parameters of the battery. After selecting
the control actions of the battery from Q-learning, the backup controller ensures that all
physical constraints and limitations are met before actually applying the battery actions on
the physical system. Figure 2 illustrates the offline implementation of RL-based EMS.
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This offline RL implementation is similar to the traditional EMS approaches such as
MILP, where estimated data are used by the optimiser to produce decision variables, such
as charging/discharging/idle commands of the battery. The estimated synthetic data for
PV generation and load consumption for the next 24 h are used by RL to schedule the
battery command. Each episode of one day consists of 48 steps (30 min time interval). The
RL keeps on using the same data until convergence is achieved. A total of 10,000–15,000
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iterations were employed for better convergence. The optimised battery commands are
dispatched at the start of the following day for the battery to operate in real time. The same
process is repeated for every day of the year. As we are interested to find the total cost of
a complete year (365 days), for the initialization of offline Q-learning, the Q-table simply
initialises the action-value function at time step 0 with the value of 0 or ∞.

3.2. Online RL Implementation

Online RL is applied directly to real data in real time. Therefore, the agent learns the
optimal policy by interacting with the real system. There is no pre-training in this online
approach, unlike offline techniques. Figure 3 shows the online RL for EMS. The online
RL algorithm updates the actions of the battery and dispatches them every 30 min in real
time regardless of the status of convergence. Learning can be very slow, especially in first
few days. Before convergence, the performance would be suboptimal. With time, the
agent develops an optimal policy. The function of the backup controller in the online RL
implementation is the same as for offline RL, as described in Section 2.3.
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There is no separate training stage in online RL; rather, the agent gathers experiences
during real-time interaction with the environment. Therefore, in the beginning, the Q-table
is initialised with a shortsighted future reward with the algorithm hyper-parameter γ set
to 0. Then, the table will be updated in real time by interacting with the real system. This
simple initialisation step reduces the convergence time substantially as per [44].

3.3. Prediction Error Generation

To compare the performance of both offline and online Q-learning, there is a need
to create a difference between forecasted data (PV and load) and real data to represent
the prediction error. We use an algorithm to add random noise to the real net power
demand given by eNet

t = edemand
t − ePV

t . The real PV and load profiles for a complete year
are obtained from [45]. The noise is generated using normally distributed white Gaussian
noise having different standard deviation (σ) values. For each σ, five noise profiles are
generated, averaged, and then added to the real net power demand data to produce the
forecasted net power demand, as shown in Figure 4. The increase in the σ value will
increase the standard deviation error. Thus, the forecasted net demand with higher sigma
values represents an increasing trend of deviation with respect to the real power demand
and vice versa.
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4. Simulation Results

This section evaluates the performance of the offline and online optimisation tech-
niques. The offline and online RL were both applied on a daily basis with an interval of
30 min. Firstly, we compared the results of offline RL with MILP to analyse the efficiency of
both algorithms in terms of cost saving in a grid-tied microgrid system. Then, we compared
offline RL with online RL after establishing a benchmark between the offline RL and MILP
techniques. In this regard, both the offline and online RL optimisation techniques need to
be investigated in terms of cost saving per year. This work compares the behaviour of both
the approaches when there is a different percentage of errors present between forecasted
and real data profiles (PV and load). This information can be used to decide between offline
and online RL when the real data (PV and Load) profiles deviate from the forecasted data.
The real data assumed in this work are gathered from the online open-source data platform
in reference [45]. The chosen parameters used to simulate the behaviour of the microgrid
are provided in Table 1.

Below, Figure 5 shows the average net forecasted esum/year
f orecast /5 demand per year using

all five samples at each σ. Then, Equation (12) is used to find the percentage error between
the real and forecasted power demand per year:

Neterror/year =
1
n

n

∑
1


 esum/year

Real − esum/year
f orecast

esum/year
Real


. (12)

The error bars in Figure 5 above show the Neterror/year for each sigma using the highest
and lowest sample of esum/year

f orecast . The arrows indicating 1 and 2 in Figure 5 indicate the

constant esum/year
real and varying Neterror/year in Equation (12), respectively.

Figure 6 depicts the difference between the generated esum/year
f orecast /5 and the real power

demand. The difference of the total real power demand per year with the highest and
lowest sum of the generated forecasted power demand per year out of five samples at each
sigma is described using the error bars on the secondary axis of Figure 6.

121



Energies 2021, 14, 5688Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 5. Average sum of the net forecasted demand per year out of five random samples. 

The error bars in Figure 5 above show the /  for each sigma using the 
highest and lowest sample of  / . The arrows indicating 1 and 2 in Figure 5 indicate 
the constant  /  and varying /  in Equation (12), respectively. 

Figure 6 depicts the difference between the generated  / /5  and the real 
power demand. The difference of the total real power demand per year with the highest 
and lowest sum of the generated forecasted power demand per year out of five samples 
at each sigma is described using the error bars on the secondary axis of Figure 6.  

Figure 5. Average sum of the net forecasted demand per year out of five random samples.
Energies 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. Average sum of forecasted demand with respect to real demand per year. 

The two datasets, real (original) and forecasted (synthetic), are related to the net 
power demand per year and used to compare the performance of offline and online RL. 
Firstly, we compare offline MILP with offline RL by considering both the forecasted and 
real data profiles (PV, load demand) to be the same for both approaches. The results (Fig-
ure 7) show that both approaches have almost identical performance in terms of cost op-
timisation of the microgrid, with negligible difference. Over that small difference, MILP 
behaves slightly better due to the convergence requirements of RL. Therefore, the offline 
approaches, such as MILP and RL, which use the same forecasted and real data (having 
0% error) for training, are equally good in real time. 

 
Figure 7. Comparison between MILP and RL in terms of cost per hour. 
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The two datasets, real (original) and forecasted (synthetic), are related to the net power
demand per year and used to compare the performance of offline and online RL. Firstly,
we compare offline MILP with offline RL by considering both the forecasted and real data
profiles (PV, load demand) to be the same for both approaches. The results (Figure 7) show
that both approaches have almost identical performance in terms of cost optimisation of
the microgrid, with negligible difference. Over that small difference, MILP behaves slightly
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better due to the convergence requirements of RL. Therefore, the offline approaches, such
as MILP and RL, which use the same forecasted and real data (having 0% error) for training,
are equally good in real time.
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Figure 8 shows the convergence in terms of cost using offline RL. In this figure, only
real data (PV and load) profiles were employed to analyse the convergence pattern of the
offline RL as an ideal case. In the beginning, the cost is high and the curve shows random
behaviour. As the number of episodes increases, the learning ability of the agent improves
until the Q-table converges to show the optimal cost.
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4.1. Offline vs. Online RL with No Forecast Error

The performance of the two RL approaches is first compared when there is no forecast
error; i.e., the forecast data are the same as real data. Of course, this ideal situation does not
exist in practice, but it provides an initial benchmark for the results. Both RL approaches
are implemented as explained earlier in Section 3.1 and Section 3.2. In addition, MILP was
also used to optimise the battery operation. Figures 9 and 10 show the energy imported
from the grid with respective cost on a daily basis, respectively. It can be seen that when
the forecast error is zero, offline RL produces superior results. In Figures 9 and 10, it can
be seen that before the convergence of the online RL algorithm, a higher amount of grid
energy is imported; therefore, the cost is also higher with respect to offline RL in the initial
days. However, as the days progress and online RL learning converges to the optimal
policy, the controller follows the same pattern as offline RL in terms of cost saving and
reducing the imported energy. In this work, convergence was achieved in between 75 and
90 days in the case of online RL.
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Figure 11 shows the overview of the battery actions generated in an average day after
applying the Q-learning algorithm. We used the offline RL for a single day in Figure 11 to
show the different states of the battery after convergence during different time intervals of
the day with respect to load demand and PV availability. The difference between the load
and PV (eNet

t ) is shown in the graph below at each time step. The eNet
t can be negative if
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the PV power generated is greater than the load demand at time t. The suggested battery
actions by the RL agent pass through the backup controller to accommodate all physical
constraints, as described in Section 2.3. As shown in Figure 11, when ePV

t > eNet
t at time

t, the battery charges from the current PV power up to the maximum level of ∆e after
fulfilling the load demand. The outstanding PV power is sold to the main grid. During
discharging, the battery discharges up to maximum level of ∆e either to fulfil the load
demand or sell power to the utility grid.
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Figure 11 is the randomly selected day of the year when both online and offline RL
converge. The plot shows the same battery actions for both offline and online RL. Therefore,
the cost achieved in both approaches are also same.

4.2. Offline vs. Online with Varying Forecast Error

The forecasted profiles generated in Section 3.3 are used by the offline RL to create the
battery charge/discharge/idle commands, which are then applied to the real data as was
explained in Section 3.1 and Figure 2. For online RL, real data are used to generate the bat-
tery commands that are directly applied to the physical microgrid system. Figure 12 shows
the overview of the battery actions (kW) generated in an average day after introducing
1.6% forecasted error with respect to the real net demand. Figure 12 also showed the daily
cost of offline and online RL. The offline RL cost is higher than that of online RL at the time
steps 31 to 35. Therefore, the overall average cost of offline RL in a day is higher than that
of online RL (after convergence).

Figure 13 shows the optimal average cost achieved per year for both offline and online
RL.

The results show that the average cost and imported energy of the offline Q-learning
increase as the relative error between the forecasted and real power demand grows or
vice versa. The error between real and synthetic predicted profiles are calculated using
Equation (12). A rise in the value of the standard deviation reflects the increase in the error
(in percent), as shown in Figure 5. Therefore, the noise level (σ) and the relative error are
proportional to each other. At the start, when the error of the forecasted demand with
respect to the real demand is low, the offline Q-learning performs better in comparison
with the online RL in terms of cost optimisation per year. However, as the error increases,
for example at 1.61% (between forecasted and real net demand), the online Q-learning
begins to perform better and results in a lower cost than the offline Q-leaning.
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5. Discussion

In this study, we report a comparison between the offline and online optimisation
approaches to reduce the operational cost of a grid-connected microgrid by optimally
managing the BESS in the presence of forecasting error. A variation between the forecasted
and real-time demand may occur due to a change in the weather, ultimately affecting the
suggested real-time optimal battery actions obtained through offline training. Hence, the
results may not be optimal in terms of reducing cost. To avoid the complication of using
forecasted data profiles (PV, load) offline, the literature suggested the online Q-learning [44].
However, online Q-learning needs some days to converge, as its training happens online
after exploring real-time data. This knowledge gap in the existing research indicated a need
for thorough analysis and comparison of both offline and online approaches. Therefore,
we proposed the comparison between offline versus online algorithms on an annual basis.
Conventional MILP and offline RL show approximately similar behaviour in terms of
saving cost in microgrid operation. Then, the average annual costs of offline and online RL
approaches were analysed using different forecasted data profiles. The synthetic forecasted
data with respect to real data were produced by adding random white Gaussian noise with
specified standard deviation.
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Table 2 suggested the possible implementation of offline or online RL on modern
research to optimise the economy of power systems. For example, different type of opti-
misation problems were solved by using different methods in the past, as mentioned in
Section 1. These solutions faced a range of challenges, including convergence, inefficient
optimisation (cost, Co2 Emission), and computational time under different or varied condi-
tions. The scope of this article suggests that reinforcement learning (offline/online) has full
potential to deal with the different types of optimisation problems and challenges.

Table 2. Proposed offline and online RL on the current application scenario.

Reference Application Used Method Future Approach and Strategy

[3] Sizing large-scale thermal energy
storage (TES) MILP Apply offline day beforeApply online

in real time

[4] Minimise the use of fossil fuels LP and MILP Online RL

[7] Reduce the cost GAMSCPLEX Online RL

[27] Multi-objective Optimisation MINLP guided by Q-learning Multi-objective RL (online/offline)

[46] Control load shedding IOT, mathematical modelling Online RL

[47] Energy trading and security Blockchain based Compare block-chain based
mechanism with RL (online/offline)

[48] Power
management Fuzzy logic controller Offline RL

This work BESS management in MG Offline and online RL Apply offline RL for training, online
RL at real time

6. Conclusions

The following are the key findings of this paper:

• When the error is in between 0 and 1.5%, the offline RL algorithm performs better in
terms of cost with respect to the online RL.

• In the first few days, RL performs better as it converges from day 1, while online RL
shows better results in terms of cost after a few days. The number of days may vary
depending upon the difference between the real and forecasted demand.

• The operating cost of the microgrid is proportional to the imported energy from the
main grid by considering PV and battery operating cost equal to zero.

• The computational cost and time of offline RL is higher than that of online RL.
• In the literature [10–18], it was evident that the forecasting of PV has less accuracy

than load forecasting.

Therefore, a higher difference between forecasted and real PV and load profiles
suggests adopting an online Q-learning approach. For example, there are certain countries
and areas where the forecasting of PV and load demand are not certain due to abrupt
changes in the weather condition or the user behaviour. The actual energy demand at
run times may change a lot in contrast to the predictions. The online Q-learning for cost
optimisation provides a better solution in these regions. While operating in favourable
prediction conditions, the offline Q-learning performs better.

In the future, there may be other quantification methods such as root mean square
error (RMSE) that can be used to introduce errors in forecasted data with respect to real
data to compare these two approaches for other type of noise distributions. In the future,
both offline and online Q-learning approaches may be employed as a two-layer structure.
This can provide a better and more efficient solution for the cost optimisation in a real
microgrid.
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Nomenclature

ANN Artificial Neural Networks
BESS Battery Energy Storage System
CHP Combined Heat and Power
DDQN Double Deep Neural Network
DG Diesel Generator
DP Dynamic Programming
DSP Discretised Step Transformation
EMS Energy Management System
FC Fuel Cell
GAMS General Algebraic Modelling System
LP Linear Programming
MC Micro Turbine
MILNP Mixed-Integer Nonlinear Programming
MILP Mixed-Integer Linear Programming
MIP Mixed Integer Programming
PV Photovoltaic
RES Renewable Energy Sources
RL Reinforcement Learning
SOC State of Charge
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34. Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of

Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384.
35. Staddon, J.E.R. The dynamics of behavior: Review of Sutton and Barto: Reinforcement Learning: An Introduction (2 nd ed.). J.

Exp. Anal. Behav. 2020, 113, 485–491. [CrossRef]
36. Das, A.; Ni, Z. A Computationally Efficient Optimization Approach for Battery Systems in Islanded Microgrid. IEEE Trans. Smart

Grid 2017, 9, 6489–6499. [CrossRef]
37. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
38. Boait, P.; Advani, V.; Gammon, R. Estimation of demand diversity and daily demand profile for off-grid electrification in

developing countries. Energy Sustain. Dev. 2015, 29, 135–141. [CrossRef]
39. Hernandez-Aramburo, C.; Green, T.; Mugniot, N. Fuel Consumption Minimization of a Microgrid. IEEE Trans. Ind. Appl. 2005,

41, 673–681. [CrossRef]

129



Energies 2021, 14, 5688

40. Bui, V.-H.; Hussain, A.; Kim, H.-M. Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS)
in Microgrid System. Energies 2019, 12, 1789. [CrossRef]

41. Rancilio, G.; Lucas, A.; Kotsakis, E.; Fulli, G.; Merlo, M.; Delfanti, M.; Masera, M. Modeling a Large-Scale Battery Energy Storage
System for Power Grid Application Analysis. Energies 2019, 12, 3312. [CrossRef]

42. Hernández, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. Artificial neural networks for short-term
load forecasting in microgrids environment. Energy 2014, 75, 252–264. [CrossRef]

43. Castronovo, M.; François-Lavet, V.; Fonteneau, R.; Ernst, D.; Couëtoux, A. Approximate bayes optimal policy search using
neural networks. In Proceedings of the ICAART 2017—9th International Conference on Agents and Artificial Intelligence, Porto,
Portugal, 24–26 February 2017; Volume 2, pp. 142–153. [CrossRef]

44. Kim, S.; Lim, H. Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings. Energies 2018, 11,
2010. [CrossRef]

45. Data Platform—Open Power System Data. Available online: https://data.open-power-system-data.org/ (accessed on
8 February 2021).

46. Hussain, M.M.; Siddique, M.; Raees, A.; Nouman, M.; Javed, W.; Razaq, A. Power Management through Smart Grids and Advance
Metering Infrastructure. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia,
28 September–1 October 2020; pp. 767–772. [CrossRef]

47. Ahmad, R.F.; Siddique, M.; Riaz, K.; Hussain, M.M.; Bhatti, M. Blockchain based Secure Energy Trading Mechanism for Smart
Grid. Pak. J. Eng. Technol. 2021, 4, 100–107. [CrossRef]

48. Al Badwawi, R.; Issa, W.R.; Mallick, T.K.; Abusara, M. Supervisory Control for Power Management of an Islanded AC Microgrid
Using a Frequency Signalling-Based Fuzzy Logic Controller. IEEE Trans. Sustain. Energy 2018, 10, 94–104. [CrossRef]

130



energies

Article

Modified Beetle Annealing Search (BAS) Optimization Strategy
for Maxing Wind Farm Power through an Adaptive Wake
Digraph Clustering Approach

Yanfang Chen 1,2, Young-Hoon Joo 2,* and Dongran Song 3

Citation: Chen, Y.; Joo, Y.-H.;

Song, D. Modified Beetle Annealing

Search (BAS) Optimization Strategy

for Maxing Wind Farm Power

through an Adaptive Wake Digraph

Clustering Approach. Energies 2021,

14, 7326. https://doi.org/10.3390/

en14217326

Academic Editor: Frede Blaabjerg

Received: 21 September 2021

Accepted: 30 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics and Information Engineering, Jiujiang University, Jiujiang 332005, China;
6110011@jju.edu.cn

2 School of IT Information and Control Engineering, Kunsan National University, Kunsan 54150, Korea
3 School of Automation, Central South University, Changsha 410083, China; songdongran@csu.edu.cn
* Correspondence: yhjoo@kunsan.ac.kr

Abstract: Owing to scale-up and complex wake effects, the centralized control that processes the
command from turbines may be unsuitable, as it incurs high communication overhead and computa-
tional complexity for a large offshore wind farm (OWF). This paper proposes a novel decentralized
non-convex optimization strategy for maxing power conversion of a large OWF based on a modified
beetle antennae search (BAS) algorithm. First, an adaptive threshold algorithm which to establish
a pruned wake direction graph while preserving the most critical wake propagation relationship
among wind turbines are presented. The adaptive graph constraints were used to create wake
sub-digraphs that split the wind farm into nearly uncoupled clustering communication subsets. On
this basis, a Monte Carlo-based beetle annealing search (MC-BAS) nonlinear optimization strategy
was secondly designed to adjust the yaw angles and axial factors for the maximum power conversion
of each turbine subgroup. Finally, the simulation results demonstrated that a similar gain could be
achieved as a centralized control method at power conversion and reduces the computational cost,
allowing it to solve the nonlinear problem and real-time operations of the OWF.

Keywords: beetle antennae search optimization; wake propagation; direct graph; offshore wind
farm; clustering subset; graph adaptive pruning

1. Introduction

With increasing environmental problems, such as the greenhouse effect, clean energy
has become a critical issue that needs to be solved worldwide. Wind energy has become
very competitive in comparison with other green energy production technologies for the
mature control technology, such as the control approach to improve the performance of
wind turbines in different conditions [1], model predictive control [2], etc. Moreover, the ex-
ploitation of wind energy is mainly fulfilled by wind turbines in arrays or groups to reduce
the cost of energy [3,4]. Additionally, energy storage is also a very important branch [5].

To increase the total output power, the optimization methodology [6] plays a vital
role by considering the topography, prevailing wind direction environment [7], and the
space of turbines. For a designed wind farm, there are also some other methodologies for
improving the total output power [8–10], decreasing the thrust load [11], improving the
lifetime of turbines [12], and tracking power reference signals to improve wind integration
into the power grid [13–16]. Researchers have recently proposed some control methods
for optimizing power conversion in large wind farms without considering wake infec-
tion [17,18]. Some kinds of literature [19–21] propose novel graph theories. The production
of generating an interaction matrix is treated in the same way. However, the difference
is the kinetic energy deficits with considering the wind speed and direction probabilities,
which is explained in detail in Equation (7) in paper [18]. Additionally, in this paper, we
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focus on the variations of wind velocity between the upstream and downstream turbines.
However, the constraints of the offshore land limit the space of turbines, not infinitely
long. Therefore, the wake effects in a wind farm are inevitable, and the closely spaced
turbines will produce little output power. The reason is that wake affects the downstream
wind speed. Moreover, the relationship between the upstream and downstream turbines is
inseparable from the basic turbine model, and the existing turbine models currently contain
Jensen’s model [22], Frandsen’s model [23], CFD-wake model [24], etc. The Jensen and
Frandsen models have assumed “top-hat” shape distributions for the wake velocity deficit.
In fact, the actual distribution is Gaussian as in [21,25], which is based on self-similarity
theory and is often used in free shear flows. It has become a hot topic that the optimization
algorithm performs the search of the values of optimal axial and yaw angle to maximize
the output power and mitigate the wake interference.

For large-scale wind farms, the burden of communication with the central unit is
significantly large, and the speed of centralized implementation is no longer suited for
real-time control [15,16]. More recent studies have investigated decentralized control,
distributed control [26], and cooperate control [27] which are proposed to decrease the
communication burden and improve control speed by dividing whole turbines into several
decoupled subsets. Centralized control only suits a small-scale wind farm because there
is much large information sharing between turbines and the central controller, and every
turbine needs no other turbines’ information. Distributed control method was proposed
in [26]; there are several controllers in local groups instead of the central controller, and
some key information of shared turbines will be transmitted between them. Moreover,
every turbine considers the power information of itself and the neighbors to set the control
actions. Additionally, a cooperative optimization problem is designed in [27], the informa-
tion of the whole wind farm output power is transmitted to every turbine, and the control
variable is axial induction factors.

For example, an equivalent model for wind farm reduction was proposed in [28] to
cluster the same-feature wind turbines into a group. However, for a complex wake, the
same feature presented a difficult problem to find the k-means clustering algorithm [29,30],
k-median clustering algorithm [31], and k-nearest physical neighbor [32], which were
proposed to uncover the clustered index. Moreover, the disadvantage of [33,34] was the
clustering index with one-dimensional data, which only focuses on wind speed without con-
sidering the wake effect. However, for a large-scale offshore wind farms, one-dimensional
data cannot explain the wake relationship matrix of the wake effect, and two-dimensional
data, considering the wind speed and the wake effect are more suitable. Therefore, based on
a clustering index with two-dimensional data, another possible solution was to propose a
novel clustering approach that can construct decouple communication architecture. In [35],
the turbines were clustered into some groups through the singular value decomposition
(SVD) clustering algorithm. However, those clustering algorithms were assumed to be-
have similarly and were only valid for limited wind directions without considering the
differences in the incoming wind.

As mentioned previously, there is a lack of efficient cluster methods to cluster the
subset of communication neighbors of the turbines considering complex wake effects. To
solve this problem, in this paper, we propose an adaptive pruning wake digraph to divide
the large-scale offshore wind farm (OWF) into decoupled groups, then cluster the neighbors
into the same subset by setting the k-median of two turbines’ wake imperfect weights
as the clustering index. The wind farm control and the optimization problem in every
subset are non-convex, so it is critical to devise an efficient optimization algorithm. By
combining the wake model and the single objective function, there are some optimization
methods proposed in the literature [26,36–39]: in [38], a gradient-based method on wind
farm layout optimization is presented; however, a gradient-based optimization algorithm is
based on an analytical wind farm function which is simplified, so it cannot precisely reflect
the wind farm control. Therefore, without the wind farm function, only some necessary
measurement data for data-driven optimization algorithms are proposed, for example,
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in [26,37]. However, the high model complexity of the measurable data will become
significantly large. Moreover, the performance may not be good with noisy measurement
data unavoidable in real applications. The authors of [36] explored a cooperative greedy
algorithm optimizing energy production of wind farms; because of the wake effects, the
downstream turbine could not generate much energy, so the total output power was
not maximum.

Due to the large amount of large-scale wind farm data and nonlinear and non-convex
characteristics, the above-mentioned control methods become unsuitable for obtaining the
global optimum. Evolutionary algorithms (EAs) are one class of novel nature-inspired
global optimization algorithms that are proposed in the literature [40,41]. For maximiz-
ing the total output power of wind farms, other algorithms such as modified grey wolf
(GW) [42,43], particle swarm optimization (PSO) [44,45], and genetic algorithm (GA) [46]
have been proposed. The authors of [44] present PSO intelligent algorithms for power
conversion maximization using a nonlinear wake model. Importantly, no one algorithm
can fit all systems. The above-mentioned algorithms are prone to premature convergence
leading to a local optimum, not a global optimum, because of some unsuitable parame-
ters. Therefore, we use a novel intelligent algorithm dubbed the beetle antennae search
(BAS) [47] to improve calculation performance and searching ability to maximize wind
farm power conversion. The BAS may generally converge early and fall into the optimal
local solution for the unsuitable step size. In addition, the Monte Carlo (MC) method can
be used to prevent the evolutionary algorithm from stagnating at a local optimum.

To summarize, in this paper, we first define an adaptive wake digraph to cluster
a subset of communication neighbors of turbines. Secondly, we propose an MC-BAS
optimization algorithm based on adaptive communication network topology to solve the
non-convex power optimization problem. Finally, the yaw angles and axial factors are
optimized to increase the power output by simulating a wind farm with 2 × 2 turbines,
3 × 3 turbines, and 5 × 5 turbines. The main contributions are summarized as follows:

• A decentralized coordination control scheme is achieved by controlling the yaw angles
and axial factors to maximize power conversion on the wind farm. Large-scale wind
farms are divided into several decoupled subsets, and then the local controller only
controls the local subset’s data. The proposed control scheme enables efficiency in
the real-time application by optimizing the decentralized coordination to reduce
computational burden and information exchange.

• A wake-based graph adaptive pruning approach is presented to split a large wind
farm into several clustering subsets. This approach aims to find a decoupled sub-graph
that can preserve essential distribution characteristics of the original wake direction
graph. We adopt a graph clustering algorithm to divide turbines via wake graphs
adaptive pruning constraint, and threshold εk which is a vital point parameter to
control the number of groups of the pruned wake digraph.

• We develop a modified BSA optimization algorithm based on adaptive pruned com-
munication architectures. The Monte Carlo (MC) law of Simulate Anneal (SA) is
introduced to improve the BAS, which significantly improves the reproducibility and
stability of the algorithm. Finally, the improved algorithm is applied for wake steering
control and maximum power conversion on the wind farm.

This study is organized as follows: Section 2 introduces the Gaussian-based wake
model considering yaw angle. Section 3 introduces the algorithm to cluster turbine via
adaptive pruning wake digraph through setting the suitable global threshold εp. In
Section 4, the new MC-BAS control strategy in OWF is proposed to optimize the axial vale
and yaw angle in every subset. Section 5 presents the simulated result of the proposed
algorithm, the efficiency of power optimization and minimizing the calculating time is
verified, and some important look-up tables are constructed. Finally, some important
conclusions and summaries are presented in Section 6.
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2. Gaussian-Based Wake Model Considering Yaw Angle

This section describes the wind turbine wake model for total output power optimiza-
tion through axial induction and yaw angle control. The three-dimensional wind velocity
deficit behind the upstream turbine i is defined as Gaussian shape, which was derived
through Navier–Stokes equation [25]:

V(x, y, z)
V∞

= 1− Ce−(y−δ)2/2σ2
y e−(z−zh)

2/2σ2
z (1)

where V denotes the velocity in the wake, V∞ denotes the free-stream inflow wind velocity
of the wind farm, x, y, z is the direction of streamwise, horizontal spanwise, and vertical
spanwise, a decoupled topology, δ is the wake centerline, zh is the hub height, σy, σz is the
wake expansion in y, z direction, and C is the velocity deficit at the wake center. The main
parameters are shown in Appendix A.

The relationship of α, and γ, can be defined as [21,25]:

α ≈ 0.3γ

cos γ

(
1−

√
1− CT cos γ

)
(2)

where CT denotes the thrust coefficient.
The relationship between the initial lateral deflection of wake deflection δ0 as denied

as in [25], x0 is the length of the near wake as defined in [25], and the wake deflection angle
α can be defined as the following equation [21]:

δ0 = δ0 tan α (3)

δ = δ0 +
θE0
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√
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 (4)

After describing the atmospheric wake model of the wind field, the turbine model
used in this paper is introduced. The turbine model consists of a power coefficient Cp and
thrust coefficient CT which are all based on wind speed, tip speed ratio, and a blade pitch
angle. In this paper, the Cp and CT curves are used to form the fitting data of FAST and the
National Renewable Energy Laboratory’s (NREL’s) 5 MW turbine [48].

To calculate the output power P of a wind turbine, the formula can be shown as
follows [30]:

Pj
(
αj, γj; Vj

)
=

1
2

ηρAjCP cos
(
αj, γj

)1.88V3
j (5)

where η denotes generator efficiency; ρ is the air density; Aj is the rotor swept area;

cos
(
αj, γj

)1.88 represents the correction factor of axial factors αj and yaw misalignment
angle γj; wind velocity Vj can be calculated from Equation (1).

As depicted in Equations (1)–(5), the power conversion can be optimized by adjusting
the axial factors αj and yaw angle γj. The interested reader can read a more detailed
description of wake deflection in [19].

3. Clustering Turbine via Pruning Wake Digraph

This section will partition the large-scale OWF into several decoupled subsets based
on the weights calculated from the k-Median clustering algorithm [31].

The adaptive pruning wake digraph process can be summarized in Figure 1, including
the wake farm model, original digraph generation, digraph pruning, and turbines cluster-
ing. The decision variable is the magnitude of the strength between turbines wij as shown
in Figure 1c,e,g, then the large-scale OWF can be defined into several decoupled subsets.
The section is focused on how to obtain adaptive wake digraphs of the large-scale OWF
with wake interaction.
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Figure 1. The proposed whole decentralized control scheme on a 3 × 3 matrix OWF with V∞ = 8 m/s, ϕ = 15◦: (a) Wind
Farm; (b) wake field; (c) original wake digraph; (d) turbine original matrix; (e) pruned wake digraph with k = 3.2; (f) turbine
pruned matrix with k = 3.2; (g) pruned wake digraph with k = 5.1; (h) turbine pruned matrix with k = 5.1.
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3.1. The Original Wake Graph of Wind Farm

An autonomous wind farm can be modeled as a weighted directed graph with wake
impact from upstream turbines i to downstream turbines j [49]. Under this paradigm,
the digraph is determined by the wind speed direction and wind farm layout. Assuming
that there are N turbines in the OWF, we will explain how to construct the original wake
digraph G in detail.

To demonstrate the advanced approach, some definitions as follows are necessary:

Definition 1. The original wake digraph G = (V , E) where vertices V , V = {vii = 1, 2, . . . , N}
denote the turbines. Edges E , E ⊂ V × V represents the wake distribution between every pair of
upstream turbine and downstream turbine.

E can also be used the weight to indicate the strength of interactions between
two nodes [30]:

E =
{

wij : i, j ∈ V
}

(6)

where wij is a non-negative value. When the upstream turbine vi exerts a wake effect on
the downstream turbine vj, the following equation can describe it:

wij =





Aoverlap i,j∗Vwake

x/D , shadowing,
0, no shadowing.

(7)

where Vwake =
V∞−Vj

V∞
, the wake overlap effect area Aoverlap i,j is described in Figure 2, x

represents the physical distance between the upstream turbine Vi and downstream turbine
Vj; D represents the turbine rotor diameter of all the turbines. It is critical to note that the
wake distribution should remain constant during the control period so that the control
speed is high enough to counteract the changing wake distribution.

• The communication neighbors of vertex (turbine) vi are denoted by Ni =
{

vj|
((

vi, vj
)
∈ E

)}
.

• The set of shared turbine Si in communication neighbors between the subset Ni and
subset Nj, are denoted as Si =

{
Ti|Ti ∈ Ni ∩ Nj

}
where Ti represents the shared

turbine numbers in different subsets.
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Figure 2. An example of a two-turbine wake redirection control through setting the yaw misalignment
angle. γ is the upstream turbine i’s yaw angle, α is the deflection angle, and δ denotes the wake
deflection. The black dashed lines represent the wake of the upstream turbine i with no yaw control,
and the red lines indicate the wake of the upstream turbine i with yaw control. Aoverlap

i→j represents
the area overlap ratio that the wake effect area A(Ti|Tj) of the upstream turbine i to the downstream
turbine j and the rotor area A(Tj) of downstream turbine j.
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3.2. Decoupled Communication Scheme of Wind Farm Based on Adaptive Pruned Algorithm

For most turbines, the coupling degree of one turbine with other turbines may be
high or low. Therefore, the pruned wake digraph Gp can be pruned from the original wake
digraph G.

Definition 2. The pruned wake digraph Gp =
(
V , Ep,

)
, pruning edges Ep set Ep ⊂ V × V ,

Ep =
{

wijp : i, j ∈ V
}

where

wijp =

{
wij wij ≥ εk,
0, wij < εk

(8)

• The adaptive threshold εk = k ∗ ε, k is one hyper-parameter, and ε is the basic threshold.
• Basic threshold ε is defined as the geometric median of the whole wake weight

coefficients. The central idea of the geometric median is as follows: given the set
of n2 points w11, w12 . . . , wij, . . . , wnn find a value ε that minimizes the sum of
Euclidean distance:

f (x) def
=

N

∑
i=1

N

∑
j=1
‖x−Wij‖2 (9)

where εε argmin( f (x)).

A decoupled topology in this section will be achieved by using the adaptive pruned
wake digraph algorithm. However, determining the degree of pruning digraph has not
been deeply studied, and there is little literature discussing it. This paper proposes an
adaptive pruned algorithm to find a suitable threshold εk to solve the grouped problem by
obtaining more reasonable decoupled subsets.

Based on the pruned wake digraph Gp =
(
V , Ep

)
, for each angle ϕ ∈ {ϕ 1, . . . , ϕ w},

there are clustering subsets Nl , l ≥ 1. A given direction ϕ has a corresponding cluster
subset Ni ∈ {N1, . . . , NM}, M is the number of subsets. Then, according to the wind farm
layout, we build the original wake digraph G and calculate the weight coefficient matrix wij
to find the communication neighborhood of turbines. The algorithm for turbine clustering
via adaptive pruned wake digraph is shown as follows (Algorithm 1):

Algorithm 1: The method of clustering turbine via pruning wake digraph (Adaptive pruned wake digraph algorithm)

Step 1: Based on the layout of the position of the wind farm (X, Y), collect all relevant parameters, including wind direction Φ,
wind speed V∞. Additionally, the parameters of the wind turbines, for example, the rotor diameter D, the physical distance x
between WTs, and the overlap wake area Aoverlap

i→j , etc.
Step 2: Calculate the threshold E , and set the initial hyper-parameter k, step hyper-parameter ∆k.
Step 3: Obtain the pruned digraph Gp from the original wake digraph G according to the global threshold εk according to the
global threshold εk.
Step 4: Digraph clustering. Firstly, define the leading turbines for each subset that is experiencing free-stream velocity V∞.
Secondly, each leading turbine decides the communication neighbors through the connectivity information of the digraph Gp by a
depth-first tree search (BFS) algorithm into the same subset Ni.
Step 5: If there is a set of shared turbines Si, we need to continue to tune the value of k by set k = k + ∆k, go back to Step 3. If not,
go directly to step 6.
Step 6: Calculate the output power and calculating time with the k value from step 5, save the parameters.
Step 7: If the coefficients of Gp are not all 0, continue to tune the k value by setting k = k + ∆k, go back to Step 2. If the coefficients
of Gp are all 0, go to step 8.
Step 8: Based on the adaptive pruned wake digraph Gp, we can establish turbine clustering subsets Ni and analyze all the
parameters with different k, and select the suitable value k2.

Overall, the adaptive pruned digraph and the contribution can be simplified as follows:
Firstly: for one, considered wind speed and wind direction, to satisfy the pruned wake

digraph are decoupled (no shared wind turbines between all the subsets), the range of k
can be found out to be k ∈ [k1, k3], k1 is the minimum value, and k3 is the maximum value
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of k. In most literature, the k is one random value between the range so that the result may
be suboptimal.

Secondly: by comparing the performance of output power and calculating time,
deduce a suitable value k2.

Thirdly: change the wind speed and direction by the above method and obtain another
corresponding suitably k2.

Lastly: create a line-off query look-up table using the obtained result, which can be used
for quick reference with input winds velocity V∞ and wind direction ϕ, the output is k2.

The contributions are mainly to select suitable parameter k2 with the proposed algo-
rithm. Based on this condition, the control optimization can obtain the best result. The
procedure will be demonstrated in Section 5 by one simulation example.

4. Wind Farm Control Strategy

Upon establishing the pruned wake digraph and clustering subsets, the overall OWF
is controlled by multiple individual independents rather than by a single controller. The
decentralized optimization process is described in this section. In order to achieve the
control objectives of real-time output power optimization, a decentralized control scheme
is proposed for the large-scale OWF, as shown in Figure 3. This control scheme is divided
into two steps. First, wind farms are decoupled into several independent wind turbine
clusters, and their communication neighbors are determined by the network topology
of the adaptive pruned wake digraph. Therefore, a decentralized control strategy for
OWF is proposed to realize the power control of the host computer. Second, we use the
beetle antennae search (BAS) algorithm approach to optimize the yaw setting and the axial
induction factor setting in the OWF to maximize the total wind plant power conversion.
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Figure 3. The proposed whole decentralized control scheme on a 3 × 3 turbines offshore wind farm.

4.1. The Output Power Optimization Problem

For a given decoupled clustering subsets Ni, the corresponding decentralized power
control is based on the optimization objective: minimizing the power output of wind farms
in Equation (4). Each wind turbine cluster is composed of several neighbor wind turbines
that are decentralized on different communication network topologies of adaptive pruned
wake digraphs. The proposed decentralized control scheme is shown in Figure 3. The
corresponding decentralized power control for a given clustering subset Ni is based on the
following single-objective optimization problem. The control variables for the optimization
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are the axial factor α and yaw angle γ of the wind turbines. The whole OWF decentralized
optimization function f (x) can be expressed as follows:

min
x

f (x) = −
M
∑

i=1

K
∑

j=1
(Pi,j(γi,j, αi,j; Vi,j))

s. t.
{ −γmin ≤ γi,j ≤ γmax

αmin ≤ αi,j ≤ αmax

(10)

where i indicates subsets, j indicates turbines in subsets, M indicates the number of
uncoupled subsets on the wind farm, and K indicates the number of turbines in every subset.
The yaw angle γi,j is between the upper bound γmax and the lower bound −γmin; αmin and
αmax represent the lower bound and upper bound range of axial factor αi,j and the power
Pi,j is between the minimum power Plow and the rated power Prate .

4.2. Monte Carlo Law with the BAS(MC-BAS) Controller for Wind Turbines

The OWF cost function is given in Equation (9), which is a nonlinear and non-convex
optimization problem. Many methods do not guarantee to find the optimal global solu-
tion. Herein, we adopt the BAS algorithm to solve optimization problems. Like genetic
algorithms (GA), particle swarm optimization (PSO), and other intelligent algorithms,
BAS does not require prior knowledge of the specific shape of the function or gradient
information to optimize efficiency. The main two steps are the searching process and
the result detection, tuning the adaptive step size until the optimization value is reached.
The advantage of BAS is simple and fast speed to get the optimization object than other
intelligence algorithms. Moreover, the high-speed advantage of BAS over the particle
swarm optimization algorithm is that it requires only one individual, a longicorn beetle.

The Monte Carlo (MC) law of the annealing algorithm (SA) is introduced to improve
the repeatability and stability of the algorithm. The improved algorithm is then applied to
wake steering control so as to maximize power conversion on the wind farm. The optimal
target value of the object is determined by simulating the annealing process, and the lowest
energy of the target and simulated annealing incorporates random variables during the
search process. For example, it embraces a worse solution than the current solution with a
certain probability, increasing the possibility of exiting local optimization. The Modified
MC-BAS algorithm is shown below (Algorithm 2).

1. Random direction vector
To simulate the search behavior of longicorn, its direction vector is defined as [47]:

→
b =

rand(k, 1)
‖ rand(k, 1) ‖ (11)

where rand(k, 1) denotes a random function, and k represents position dimensions.
2. The coordinate of both right-hand and left-hand sides of the antennae of beetles are

presented as [47]:

xr = xt + dt
→
b

xl = xt − dt
→
b

(12)

where t represents the number of iterations; xr and xl denote the spatial position of the
right and left beetles of longicorn beetles in the t iteration, respectively; dt represents
the exploitability of antennae sensing length in the t iteration.

3. Fitness value:
{

fright = f (xr)
fle f t = f (xl)

(13)
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where fright and fle f t denote the fitness value of the right beetle and the left beard in
the current spatial position; f (·) is the fitness function as Equation (9).

Algorithm 2: The grouped MC-BAS methodology for wind farm power production (MC-BAS Algorithm)

Result: The best yaw angles and the best axial factors xbst
n and the best output power f bst

n .
Input: Establish output objective function f

(
xt

n
)
, where variable xt

n =
[
xt

1, xt
2, . . . , xt

N
]

and initialize the parameters
x0, d0, δ0, ηd, ηδ, MT ,N, α, δcriterion , tmax.
While (n < N) do
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To simulate the search behavior of longicorn, its direction vector is defined as [47]: 
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where rand (푘, 1) denotes a random function, and k represents position dimensions. 
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End

4. Pre-update position:

xt = xt−1 + δt
→
b sign

(
fright − fle f t

)
(14)

Pre-update the position of the beetles based on the iteration, and the sign(·) is a
symbol function; δt is the step size factor of the algorithm in the t iteration.

5. Accepted solution using the Monte Carlo law
The Monte Carlo law of the SA algorithm is embedding into BAS. In the iterative
process, the probability P is used to accept the inferior solution to improve the global
optimization ability of BAS:

Lp =





1, f
(
xt) < f

(
xt−1)

exp
(
− f (xt)− f (xt−1)

MT

)
, f

(
xt) ≥ f

(
xt−1) (15)

where f
(
xt) denotes a pre-update position, f

(
xt−1) denotes the best position in the

last iteration; exp (.) represents the exponential function; MT is the higher temperature.
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6. Step size:

dt = ηddt−1 + d0

δt = ηδδt−1 + δ0 (16)

where d and δ denote antennae length and step size, d0 and δ0 is the initial value,
where dt and δt is the step size factor of the algorithm in the t iteration, and the two
parameters ηd and ηδ are set by the user.

The Monte Carlo law is mixed with the BAS algorithm. The basic steps of the grouped
MC-BAS algorithm can be summarized as the pseudo-code shown in MC-BAS algorithm.

5. Validation and Discussion

Due to the randomness and intermittence, there are no constant wind speed and
constant wind direction. For simplification, based on the probability of the known wind
rose, we can calculate the average value of them in 10 min, then obtain an approximately
constant value to describe them. In this experiment, assume that the average wind speed
V∞ = 8 m/s, the range of wind direction is ϕ = {0◦, 15◦, 30◦, . . . , 180◦}, with which the
baseline direction is the x-axis direction and under the assumption that it is constant within
one control cycle.

The reason is that the wake is affected not much by the wind speed V∞ but by the
wind direction ϕ, so we only study the one wind speed V∞ = 8 m/s, however, the whole
wind direction is ϕ ∈ [0◦, 360◦], with considering the symmetricity in the square wind
farm, we only need to study the wind direction ϕ ∈ [0◦, 180◦], and in this Simulink, we
choose 5◦ as the step size in wind direction.

The wake digraph is the basic digraph from the wake field, as shown in Figure 4.
The performance of proposed optimization approaches will be verified in this section
by simulation results with the same NREL-5 MW Type III WT [48] turbine. The main
parameters are given in Table A1 (Appendix A). The layout structure of OWF with lateral
distance X = 500 m, longitudinal distance Y = 200 m, and rotor diameter D = 126 m, and
nominal power P = 5 MW. The test is conducted for a 10-minute average of free wind speed
and the direction range belongs to ϕ ∈ [0◦, 180◦] at 15◦ increment. Furthermore, to verify
the scalability and the feasibility of the proposed algorithm, in this paper, we study three
different scales of wind farms with the different numbers of turbines N = 4, N = 9, and
N = 25, respectively. The initial yaw angles γ are set to 0 with a range of γ ∈ [−30◦, 30◦],
and the initial factors are set to 1/3 with a range of α ∈ [0, 1/3]. It was observed that
the numerical results showed that the proposed control method could reach an improved
increase rate with a larger wind farm by comparing the result of 2 × 2, 3 × 3, 5 × 5 matrix
turbine wind farms. In other words, verification of the proposed method means that it is
suited for a large-scale wind farm.

5.1. Processing the Adaptive Pruning Wake Redirect Digraph

In this section, the cluster method splits the large OWF into several independent
subsets using the proposed pruned wake digraph clustering approach (see Section 3). The
5 × 5 wind farm location under different wind directions is shown in the proposed wake
digraph. In this case, we consider a wind direction of Φ = 45◦, 90◦, the wake original
digraph G, pruned digraph Gp as illustrated in Figures 5 and 6, respectively. In addition,
the decoupled communication topology comes from the suitably pruned wake digraph.
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Figure 6. The process of adaptive pruning wake digraph method with varying k for the wake digraph (ε = 0.0122) with
wind direction ϕ = 45◦: (a) wake field; (b–e) pruned wake digraph Gp with different k.

Figure 5 shows that the original wake digraph is the same as the pruned wake digraph.
This is because when the wind direction is ϕ = 90◦, the entire wake effect is concentrated
on the downstream turbines without any diffused. However, when the wind direction
changes to ϕ = 45◦, the power conversion of the OWF is increased since the influence of
wake interaction becomes low.

As shown in Figure 6, the original wake digraph G differs in the adaptive pruned
wake digraph Gp. The pruned wake digraph Gp is different with varying k. From Figure 6b
to Figure 6c, the threshold εp = k∗ε, k ∈ [0.5, 2.6], so the edges which are smaller than εp
are cut off, such as the edges E11,25, etc. From Figure 6c to Figure 6d, the global threshold εp
become bigger k, with the range of k ∈ [2.7, 4.6], then the edges which are smaller than εp
are cut off, for example, the edge E1,15, E16,25, E22,25, etc. Lastly, from Figure 6d to Figure 6e,
get bigger k at the range of k ∈ [4.7, 7.2], the more edges are cut off, for example, the edges
E13,20, E18,25, etc. and then the wake field is divided into 13 subsets with no shared turbine.

Figure 6 illustrates that the wake topology is parameter-dependent, as the external
relevant variables (ϕ, k) influence the wake effect. For a given ϕ, the suitable k is vital
for pruning the wake digraph to obtain the optimization decoupled subsets. The method
regarding tuning the hyperparameters k will be discussed in the next step, which is shown
in Tables 1 and 2 as follows.

Table 1. The relationship of subsets and shared turbines (ST) with different k.

k No of Subsets With ST or Not

0–0.4 9 Yes
0.5–2.6 13 Yes
2.7–4.6 13 No
4.7–7.2 16 No

7.3 21 NO
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Table 2. Comparing the results of different pruning wakes under different k.

k Baseline Power Total Power (W) Groups T(s) ∆P

2.7 3.23E+07 3.62 × 107 13 2.84 × 102 12.19%
2.8 3.23E+07 3.62 × 107 13 2.44 × 102 12.19%
3.3 3.23E+07 3.62 × 107 13 2.42 × 102 12.19%
3.8 3.23E+07 3.62 × 107 13 2.36 × 102 12.19%
4.3 3.23E+07 3.58 × 107 13 2.35 × 102 10.95%
4.8 3.23E+07 3.58 × 107 13 2.32 × 102 10.95%
5.3 3.23E+07 3.51 × 107 13 2.30 × 102 8.78%
5.7 3.23E+07 3.43 × 107 13 2.26 × 102 6.30%
5.8 3.23E+07 3.03 × 107 16 3.57 × 102 −6.10%
6.3 3.23E+07 3.03 × 107 16 3.59 × 102 −6.10%
6.8 3.23E+07 3.01 × 107 16 3.66 × 102 −6.72%
7.3 3.23E+07 3.01 × 107 21 3.66 × 102 −6.72%

Table 1 shows that there are shared turbines in the subsets depending on the value of
k. In this paper, we focus on the range of 2.7 ≤ k ≤ 7.3 because of no shared wind turbine.
In other words, the subsets are all decoupled. Then, there is another problem of how to set
the suitable value k. In this paper, the proposed adaptive pruning algorithm can solve this
problem. An adaptive threshold εp can be proposed by comparing the output power and
calculating time, and the comparison results are displayed in Table 2. It is essential to note
that in Table 2, considering the objective of the real-time control, we choose the suitable
value k2 that focuses more on computational efficiency and an increased power rate by
more than 4%. Moreover, when k is set as 5.3 as in Table 2, the control time is 226 s which is
smaller than others. The high control speed is a very vital parameter during the control
process. Therefore, we can find the suit k2 = 5.3.

From Table 2, we chose k = 5.7 as a suitable value. The reason is that when k > 5.7,
the output power is smaller than the baseline value, which is not permitted in this paper.
Moreover, the calculation time is the smallest at the range of 0 ≤ k ≤ 5.7. The controller
speed is important for the objection of real-time control. In this condition, the pruned wake
digraph will be divided into 13 decoupled subsets, and the clustered turbines’ neighbor tur-
bines of every subset are N1 = {T1, T8, T15}, N2 = {T2, T9}, N3 = {T3, T10}, N4 = {T4},
N5 = {T5}, N6 = {T6, T13, T20}, N7 = {T7, T14}, N8 = {T11, T18, T25}, N9 = {T12, T19},
N10 = {T16, T23}, N11 = {T17, T24}, N12 = {T21}, N13 = {T22}.

Using the above-mentioned method, the range of wind direction extends to 0◦ ≤ ϕ ≤ 90◦

with an increment of 15◦. Under different wind directions, to obtain decoupled communi-
cation topology by pruning the wake digraph, the experimental range of k is k1 ≤ k ≤ k3
and k2 is the suitable value, which can be obtained from the proposed adaptive prun-
ing algorithm.

In this way, wind speed keeps V∞ = 8 m/s, we can also obtain the suitable value k2
when wind direction ϕ varies from the range of [ 0◦, 90◦ ] which is shown in Table 3 as
follows. When wind speed V∞ and wind direction ϕ changed, a look-up table of k2 can be
obtained by the proposed adaptive algorithm, which is shown in Appendix B—Table A2.

5.2. The Combined Evaluation of the Decentralized MC-BAS Algorithm

When V∞ = 8 m/s, ϕ = 45◦, and k = 5.7, as shown in Tables 1 and 2, the OWF wake
digraph can be divided into 13 decoupled subsets. Taking the subset N2, for example,
it concludes two neighbor turbines in cluster N2, the upstream turbine WT2 and the
downstream turbine WT9. In this paper, the control actions and wake infection only work
in the same subset. To maximize the output power of OWF, the yaw angles γ and the axial
factors α are activated in an optimally decentralized manner. We will explain the sensitive
relationship between the control actions α, γ, the output power P, and the consequent
wind speed direction ϕ of the neighbor wind turbine in one subset as shown in Figure 7.
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Taking subset N2, for example, in the range of wind direction ϕ ∈ [90◦, 180◦], the
upstream turbine WT2, the output power of MC-BAS is larger than that with the greedy
method as shown in Figure 7b,c. Moreover, for the downstream WT9, the output power of
MC-BAS is larger than that of the greedy method. However, the reason is not because of
controlling the axial factors α and the yaw angle γ of WT2 but the decreasing wake effect
of WT2, which is clearly shown in Figure 7e,f. For WT9 having no downstream turbines,
the control parameters do not need to change the value significantly. This method is also
applicable to other wind direction ranges and some other subsets. For brevity, we will not
repeat the description in this paper.

When the wind direction is in the range of wind direction ϕ ∈ [20◦, 50◦], WT2 and WT9
are in the same subset. In other words, WT2 and WT9 are neighbor turbines. Essentially,
when wind direction ϕ changes significantly, the communication topology will also vary.
The wind turbine will infect each other for the same subset, and for different subsets,
the wind turbines are all independent. In this way, every wind turbine in all subsets
with varying wind direction is optimized, allowing the total output power to reach the
maximum value. The result is shown in Figure 8 and Table 4.

Table 3. The different adaptive k with the varying wind direction ϕ.

ϕ k P(W) ∆P T(s)

ϕ = 0
◦

Baseline 2.4556 × 107 0% 0.1896
k1 = 0.1 2.8528 × 107 16.18% 276.245
k2 = 5.6 2.8526 × 107 16.17% 211.5501

k3 = 11.7 2.0173 × 107 −17.85% 243.3781

ϕ = 15
◦

Baseline 2.4973 × 107 0% 0.1659
k1 = 1.6 2.8554 × 107 14.34% 268.4627
k2 = 2.4 2.8152 × 107 12.73% 138.1018
k3 = 2.7 2.1252 × 107 −14.90% 189.6079s

ϕ = 30
◦

Baseline 3.1375 × 107 0% 0.1595
k1 = 1.9 3.3643 × 107 7.23% 276.8732
k2 = 3.5 3.2142 × 107 2.45% 239.3284
k3 = 4.1 2.9763 × 107 −5.14% 293.1692

ϕ = 45◦
Baseline 3.9268 × 107 0% 0.1402
k1 = 2.5 4.1118 × 107 4.57% 284.4385
k2 = 5.7 4.0926 × 107 4.16% 226.5321
k3 = 7.3 3.8126 × 107 −2.97% 366.5429

ϕ = 60◦
Baseline 3.0271 × 107 0.00% 0.1385
k1 = 0.9 3.2014 × 107 5.76% 259.6893
k2 = 6.8 3.1139 × 107 2.87% 271.8649
k3 = 7.9 2.7853 × 107 −7.99% 350.6543

ϕ = 75
◦

Baseline 2.3257 × 107 0% 0.1243
k1 = 0.6 2.5473 × 107 9.53% 174.9643

k2 = 16.5 2.4385 × 107 4.85% 136.9856
k3 = 27.3 2.1072 × 107 −9.39% 181.6532

ϕ = 90◦
Baseline 1.8731 × 107 0% 0.1133
k1 = 0.0 2.2795 × 107 21.70% 112.5742 s

k2 = 31.6 2.1596 × 107 15.30% 98.7756 s
k3 = 83.7 1.6765 × 107 −12.00% 117.329 s
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Table 4. Comparison of power output and calculating time on OWF using centralized and decentralized algorithms on
5 × 5 matrix wind farm.

Wind Direction Control Method P_Total (w) ∆P_Total T_Total (s)

ϕ = 0◦
Centralized Greedy 2.4556 × 107 0.00% 0.1896

Centralized MC-BAS 2.8529 × 107 16.18% 636.5711
Decentralized MC-BAS (k1 = 0.1) 2.8528 × 107 16.17% 276.245
Decentralized MC-BAS (k2 = 5.6) 2.8526 × 107 16.17% 211.5501

ϕ = 25◦
Centralized Greedy 3.1281 × 107 0.00% 0.1279

Centralized MC-BAS 3.4255 × 107 9.51% 466.0449
Decentralized MC-BAS (k1 = 1.6) 3.4254 × 107 9.50% 218.4627
Decentralized MC-BAS (k2 = 2.4) 3.4252 × 107 9.50% 138.1018

ϕ = 45◦
Centralized Greedy 3.9268 × 107 0.00% 0.1102

Centralized MC-BAS 4.2164 × 107 7.37% 286.72145
Decentralized MC-BAS (k1 = 2.5) 4.1118 × 107 4.57% 284.4385
Decentralized MC-BAS (k2 = 5.7) 4.0926 × 107 4.16% 226.5321

ϕ = 90◦
Centralized Greedy 1.8731 × 107 0.00% 0.1133

Centralized MC-BAS 2.3853 × 107 27.35% 399.0926
Decentralized MC-BAS (k1 = 0.0) 2.2795 × 107 21.70% 112.5742
Decentralized MC-BAS (k2 = 31.6) 2.1596 × 107 15.24% 98.7756

Figure 8 presents the results of the respective power output, while Table 4 shows the
comparison of total power output. Generally, when the MC-BAS control method is used to
implement a centralized and decentralized approach, the total produced power increases
compared to the greedy control method. The decoupled cluster subset with wind direction
ϕ = 45◦ can be obtained from Table 4. For example, one cluster subset N1 includes turbines
T1, T8, and T15, symbolled as blue hexagon lines. Figure 8 shows that, with the greedy
control algorithm, the lead wind turbine T1 produces the maximum power output, while
the communication neighbors T8 and T15 only produce minimal power output without
regulating the wake effect. Furthermore, the upstream wind turbine can cause significant
wake disruption, reducing wind speed and lowering power conversion of the downstream
wind turbine [17]. The wake effect is taken into account in the MC-BAS decentralized and
centralized control scheme for optimizing overall power output. The majority of upstream
turbines reduce output power, whereas downstream turbines increase power conversion,
thereby increasing the entire power conversion. Furthermore, subsets N4, N5, N12, N13
have only one turbine, which is symbolized as a little red diamond on WT4, WT5, WT21,
and WT22, and, respectively, the output power has no significant difference in the three
different control methods since they are unconcerned about the downstream turbine. Other
wind directions can be analyzed in the same way. However, the methodologies were not
described in this paper to maintain brevity.

The calculated time differs between the decentralized and centralized methods. The
control speed of decentralized control is higher than the centralized control because there
are fewer turbines to solve, as shown in Table 4. The rate of power (∆P_total) is the
increased power at the baseline of P_total of the greedy centralized algorithm. Table 4
shows that ∆P_total increases at varying degrees in the decentralized MC-BAS control and
centralized MC-BAS method under different wind directions. Moreover, the decentralized
MC-BAS computation time (T_total) is reduced to less than 1/3 times of the centralized
approach. The mean total power generated by the centralized MC-BAS algorithm and
decentralized MC-BAS algorithm improves by 14.4% and 11.3676%, respectively, compared
to the baseline. This indicates about 3.0324% power loss in the decentralized MC-BAS
compared to the centralized MC-BAS method. Thus, the proposed control strategy is
practical for increasing power output and improving calculation speed from the perspective
of real-time control and the profit of the large-scale OWF. For different wind directions,
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we set the appropriate value k2 so as to improve the calculation efficiency. Moreover, the
importance of the adaptive pruned algorithm is also verified in Table 4.

5.3. The Advantage of MC-BAS over Other Algorithms

Generally, the higher the number of iterations, the more accurate the computation.
This section aims to take the least number of iterations possible to reach the optimum
control actions, resulting in improved total power conversion and communication burden.

According to Figure 9, the calculating time will increase significantly as the number
of iterations increases by 100 to 300 in 20 increments, verifying the statements made in
Section 3.1. The number of iterations plays a crucial role in reducing the calculation time,
therefore reducing the communication burden. Consequently, the exact iteration value is a
significant tuning value for optimization algorithms. The MC-BAS algorithm takes far less
calculating time than the other three control algorithms and is about 1/9 time of the PSO
method and 1/4 time of the GA method. Thus, the proposed centralized MC-BAS method
outperforms other intelligent methods (GA and PSO) in terms of calculating speed.

Figure 10 shows the power conversion depending on wind directions and iterations
with four different control algorithms. The PSO method can produce more power than
others in most iterations. However, when the number of iterations exceeds 140, the total
production in the PSO algorithm is equal to that of the MC-BAS algorithm. Consequently,
we set the number of iterations to 140 to obtain better total power conversions with the
proposed MC-BAS. The main drawback of the GA algorithm is the unstable output power,
which varies at different iterations, as shown in Figure 10b,d. Therefore, the GA algorithm
is not a suitable choice for OWF. The convergence of the algorithm can be measured by
error variation and the number of iterations. In this paper, in order to test the influence of
the number of iterations on the results, the number of iterations is used as the condition for
the end of the simulation.
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Moreover, we demonstrate the effectiveness and scalability of the proposed methodol-
ogy. The range of wind direction is ϕ ∈ [0◦, 10◦, . . . , 180◦] and the number of turbines is a
2 × 2 matrix and 3 × 3 matrix as shown in Figure 11.
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Figure 11a,c shows that the total power conversion of MC-BAS is exactly the same as
that of PSO, which is better than the value produced by the greedy algorithm in most wind
directions. In addition, the MC-BAS algorithm takes less calculation time than the PSO
algorithm on the 2 × 2 matrix and 3 × 3 matrix wind farms (Figure 11b,d). Notably, the
ordinate scale of Figure 11c is 10 times that of Figure 11a,d and is 10 times that of Figure 11b.
A more detailed analysis with the increasing output is displayed in Tables 5 and 6.

Table 5. The total power conversion improvement rate compared to the baseline with the
3 × 3 matrix OWF.

ϕ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦ 50◦ 55◦ 60◦

NMCBAS 9% 7% 5% 4% 4% 3% 2% 2% 1% 1% 1% 1% 1%

NPSO 9% 7% 5% 4% 4% 3% 2% 2% 1% 1% 1% 1% 1%

ϕ 65◦ 70◦ 75◦ 80◦ 85◦ 90◦ 95◦ 100◦ 105◦ 110◦ 115◦ 120◦ 125◦

NMCBAS 3% 5% 7% 11% 14% 16% 15% 13% 9% 7% 3% 2% 1%

NPSO 3% 5% 7% 11% 14% 16% 15% 13% 9% 7% 3% 2% 1%

ϕ 130◦ 135◦ 140◦ 145◦ 150◦ 155◦ 160◦ 165◦ 170◦ 175◦ 180◦

NMCBAS 1% 0% 1% 2% 2% 3% 4% 4% 3% 7% 9%

NPSO 1% 0% 1% 2% 2% 3% 4% 4% 3% 7% 9%

Table 6. The total power conversion improvement rate compared to the baseline in 2 × 2 matrix WF.

ϕ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦ 50◦ 55◦ 60◦

NMCBAS 6% 6% 6% 2% 0% 0% 2% 3% 2% 3% 1% 0% 0%

NPSO 6% 6% 6% 2% 0% 0% 2% 3% 2% 3% 1% 0% 0%

ϕ 65◦ 70◦ 75◦ 80◦ 85◦ 90◦ 95◦ 100◦ 105◦ 110◦ 115◦ 120◦ 125◦

NMCBAS 0% 0% 2% 5% 7% 7% 6% 6% 3% 1% 0% 0% 0%

NPSO 0% 0% 2% 5% 6% 6% 6% 6% 3% 1% 0% 0% 0%

ϕ 130◦ 135◦ 140◦ 145◦ 150◦ 155◦ 160◦ 165◦ 170◦ 175◦ 180◦

NMCBAS 1% 3% 2% 2% 2% 1% 0% 1% 4% 7% 6%

NPSO 1% 3% 2% 2% 2% 1% 0% 1% 4% 7% 6%

Tables 5 and 6 show the total production improvement rate is relative to the baseline
of greedy control with 2 × 2 matrix turbines and 3 × 3 matrix turbines. It can be observed
in some wind directions that the increased power rate is zero, such as ϕ = 20◦, 25◦, etc.,
in Table 6 and ϕ = 135◦ in Table 5. The advantage of the proposed MC-BAS algorithm
was verified by comparing it with several other algorithms, especially in increasing the
output power and decreasing the calculating time. Additionally, in a large-scale OWF, an
adaptive pruned wake digraph is proposed to divide it into several decoupled subsets.
Then, the same controller works on every subset to ensure real-time control. By analyzing
the data in Tables 3–6, we can conclude that the ∆P with the MC-BAS algorithm increases
with a greater number of wind turbines on the wind farm. For example, when ϕ = 15◦,
∆P = 2%, 4%, 12.73% on the 2 × 2, 3 × 3, and 5 × 5 matrix wind farms, respectively. We
anticipate that the proposed algorithm will demonstrate a good performance of large-scale
wind farms.

6. Conclusions

This paper proposed a decentralized real-time power optimization for large-scale
OWFs using an adaptive pruned wake digraph approach. The results of this paper can be
summarized as follows:
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1. The proposed adaptive pruning algorithm fully considers the real-time power opti-
mization control goals, providing a suitable method of grouping to avoid obtaining
a sub-optimization result due to the unsuitable communication topology. The vital
point of the adaptive pruned digraph is to uncover the accurate global threshold εp
corresponding to the different wind by setting the suitable parameter k2. Moreover,
the proposed method was verified to be efficient by the Simulink result, and the
off-line look-up table was constructed in Appendix B.

2. This work presents a modified BAS algorithm to raise BAS’s ability and efficiency for
dealing with high-dimensional nonlinear problems. The BAS can use fewer iterations
to rapidly search for the fitness function maximum in the parameter selection space.
Meanwhile, the Monte Carlo (MC) law of Simulate Anneal (SA) was introduced to
improve the reproducibility and stability of the algorithm by avoiding blind searching
and escaping the local traps minima.

3. For a large-scale wind farm, real-time state information may be excessive for the high
communication and computational burden—centralized control approaches might
fail. However, the adaptive pruned digraph decentralized operation can solve this
problem by dividing the large-scale wind farm into several decoupled subsets; the
local controller only deals with the local subset.

Future work will focus on increasing the control parameters and control objectives of
the large-scale OWF, considering the infection of nonlinear turbulent flow [50,51]. Moreover,
optimizing the wind farm layout with irregularly shaped wind farms will be studied by
decreasing the wake effect.
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Appendix A

Table A1. The main parameters of the 5 MW wind turbine for an offshore wind farm.

P_rate 5 MW

D 126 m

ωmin 6.9 rpm

ωmax 12.1 rpm

βmax 90◦

Gearbox ratio 97:1

Rated wind speed 11.4 m/s

Cmax
p 0.485

Hub height 90 m
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Appendix B

Table A2. The look-up table of different k2 with the varying wind.

V∞ ϕ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

8 m/s k2 5.6 2.4 3.5 4.8 6.8 16.5 31.6 19.9 7.5 5.3 4.3 3.8 6.2

9 m/s k2 5.9 2.8 3.9 5.1 7.4 16.9 31.8 21.3 8.0 5.7 4.5 5.3 6.7

10 m/s k2 6.2 3.3 4.2 5.7 7.6 17.6 41.8 27.3 9.6 6.7 5.8 6.9 7.6

11 m/s k2 6.8 3.9 6.4 8.4 18.9 43.4 29.8 10.9 7.9 6.9 7.3 7.6 9.4
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Abstract: The vehicle-to-grid concept emerged very quickly after the integration of renewable energy
resources because of their intermittency and to support the grid during on-peak periods, consequently
preventing congestion and any subsequent grid instability. Renewable energies offer a large source
of clean energy, but they are not controllable, as they depend on weather conditions. This problem
is solved by adding energy storage elements, implementing a demand response through shiftable
loads, and the vehicle-to-grid/vehicle-to-home technologies. Indeed, an electric vehicle is equipped
with a high-capacity battery, which can be used to store a certain amount of energy and give it back
again later when required to fulfill the electricity demand and prevent an energy shortage when the
main-grid power is limited for security reasons. In this context, this paper presents a comparative
study between two home microgrids, in one of which the concept of vehicle-to-home is integrated to
provide a case study to demonstrate the interest of this technology at the home level. The considered
microgrid is composed of renewable energy resources, battery energy storage, and is connected to the
main grid. As the vehicle is not available all day, in order to have consistent results, its intervention
is considered in the evening, night, and early morning hours. Two case studies are carried out. In
the first one, the vehicle-to-home concept is not taken into account. In this case, the system depends
only on renewable resources and the energy storage system. Subsequently, the electric vehicle is
considered as an additional energy storage device over a few hours. Electric vehicle integration
brings an economic contribution by reducing the cost, supporting the other MG components, and
relieving the main grid. Simulation results using real weather data for two cities in France, namely
Brest and Toulon, show the effectiveness of the vehicle-to-home concept in terms of cost, energy
self-sufficiency, and continuity of electrical service.

Keywords: vehicle-to-grid; vehicle-to-home; microgrids; distributed energy generation; energy
storage; optimal sizing; energy management systems; optimization; energy dispatching

1. Introduction

Vehicle-to-grid (V2G) could be considered as the biggest technological advancement
since renewable energy resources (RER) became commercially viable [1]. With more than
3 million EVs worldwide [2], these EVs are used only about 5% of the time; the rest of the
time they are parked when the owners are working or at home [3]. EVs can be used for a
secondary role during the 95% of available time. Indeed, electric vehicles (EV) with a large
battery can recover energy produced by RER, which would otherwise be lost. In this case,
the EV functions as a secondary storage system. In the opposite case, where production
is low, the storage systems and the main grid intervene by sending the missing energy, to
achieve the production consumption balance. This demand for energy can overload the
grid and cause blackouts or voltage and frequency drops. To relieve the grid, the energy
it supplies can be limited to a certain amount, the rest being supplied by the EV as it
discharges. In some cases, for same precedents reasons, it can be possible to sell the energy
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stored in the EV to the grid. In this case, the EV functions as a secondary energy source;
hence, the concept of V2G [4,5].

The microgrid (MG) concept has emerged for the optimal integration of renewable
energy resources, energy storage systems (ESS), and shedding loads, which may include
EVs. The integration of EVs must not change the roles of the MG elements, both in grid-
connected or islanded modes, i.e., to supply a given load at a given time. RER must be
exploited to the maximum, by implementing maximum power point tracking (MPPT) and
excess energy is stored in ESS. In the V2G concept, EVs represent a secondary production
and storage system in the MG. One of the advantages of bi-directional energy in the V2G
concept is the exchange of energy between EVs [6]. However, it is mandatory to consider the
degradation of the EVs batteries while implementing V2G technology. Optimal MG sizing
is one of the studies to be conducted for V2G concept integration. It involves many aspects
that need to be addressed, including the appropriate RER technologies with the optimal
siting and the environment considered. Moreover, other considerations should be taken
into account, such as improving conversion efficiency at charging stations, transmission
efficiency and loss minimization, optimal control of operation, the need for adequate loads
that better match the generation elements, and, finally, the type, capacity, and number of
EVs needed for safe and reliable operation [7]. As a result, interest in EV technologies has
increased considerably in recent years, resulting in several scientific publications on the
subject [8,9]. Moreover, the market share of EVs is expected to grow exponentially. Most of
the research deals with very important topics such as energy efficiency [10], EV charger
topologies and the impact of charging on the network [11], communication architecture [12],
degradation of the vehicle battery [13], frequency regulation [14], and the support provided
to the integration of RERs [15], mode of payment [16], etc.

Several technical aspects have been investigated in the literature. Indeed, an EV can be
considered as a storage medium for RERs depending on the availability and states of charge
of the EVs. In [17], Hasan and Elyas aim to optimise the operation of EVs in order to mitigate
the intermittency of RERs and to reduce energy costs by minimising the charge/discharge
cycles of vehicle batteries to avoid their degradation. In [18], Abdul et al. proposed a
new formulation for the design and management of grid-connected EV charging stations
with integrated solar panels. In [19], Mehdi et al. examined the value of the V2H concept
at the building level, and whether it can operate in an islanded mode by introducing
PV as an energy source to relieve the grid. One of the cited advantages of V2H is the
support it provides to the grid. In fact, an EV parked at home during peak hours can
power appliances. In [20], Philipp et al. assessed the ability of the expanded German
transmission network to cope with the additional demand due to the integration of electric
vehicles using a transmission problem formulation. In [21], authors presented an EMS
of an energy system composed of main grid, load, and a fleet of EVs. The scheduling
of EV charging/discharging can be done 24 h in advance, which allows for voltage and
frequency regulation in the grid. The EV can sometimes be used as a back-up when the
house is disconnected from the grid or when a blackout has occurred. Critical loads will be
connected directly to the vehicle, to ensure the continuity of supply for the user’s comfort.
In [22], Vítor et al. designed a V2H, such that the EV intervenes during power outages.
In [23], Hasan presented a model that significantly improves the energy resilience of a
building based on PV, a battery for storage, and an EV for V2H operating in connected
and islanded mode over a few hours. The coordination of the EV and the battery allows
one to respond to the load after failures in the grid and PV. Furthermore, an EV can be
added to increase battery lifetime. Since the vehicle’s storage capacity is greater than the
battery’s, the vehicle will experience fewer charge/discharge cycles, and, therefore, reduce
the charge/discharge cycles of the battery without degrading its battery too much [24].
Finally, an EV can allow for an efficient management of load shedding [25].

The economic perspective has been investigated in some studies. In [26], Sangyoon
and Dae-Hyun presented a hierarchical deep reinforcement learning method for energy
management of household appliances considering RER, ESS, and EVs. They consider
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four study cases: two during the week with different weather data, and two during the
weekend, with different vehicle states of charge. They find that the energy cost decreases
significantly in the cases where the RERs are productive. The presence of the vehicle at
home during the weekend is very cost effective due to its high storage capacity. In [27],
Harun and Seddik developed seven optimal strategies studied on 1000 use cases and
with four different daily energy price profiles in order to reduce the vehicle charging cost.
A V2G algorithm named Optimal Logic Control based on series of logic commands has
been developed. The results show the advantage of this algorithm over the traditional
optimal charging strategies available in the literature. The algorithm is mainly made to be
very efficient when the selling price/purchase ratio is greater than one, allowing the user
to earn money. In [28], Sausen et al. proposed a model for coupling an EV to a smart home
containing PV and batteries, having the objective of achieving cost minimization that was
conditional on maximizing vehicle efficiency. Four scenarios are considered: in the first one,
uncontrolled EV charging was adopted; in the second one, economic charging was applied;
in the third one, economic EV charging was adopted, including distributed generation; and
in the fourth one, economic EV charging was considered, with distributed generation and
V2H operation. The results show that the peak consumption has been reduced thanks to
the intervention of the EV and the bill has been decreased. In [29], Xuan et al. proposed a
strategy to extend the lifetime of the batteries, such that the batteries operate when there
is a surplus of RER production and when electricity prices increase during peak hours.
The results show the effectiveness of this strategy, as when the battery discharge cost is
higher than the market energy price, no power is supplied by the batteries, and conversely,
when the discharge cost is lower than the market energy price, the power demanded is first
supplied by the batteries, then, if the load is very high, the grid is allowed to supply the
remaining load.

There is a lot of literature on V2G, but the V2H concept is not thoroughly addressed,
as most research studies focus on the interaction of electric vehicles with the electric grid.
Additional research is needed to address the cost of implementing the V2H concept and its
profitability. In this context, this paper presents a sizing and optimization study of a MG
operating in a grid-connected mode at the home level. The MG is composed of PVs and WT
as RER, a battery as ESS, and a domestic load. The EV is used as a secondary energy storage
device, which allows for the enhancement of the overall MG performance. This study
concerns two aspects that are related to MG optimal sizing and smart day-ahead energy
management. Two case studies are considered in this paper: a first grid-connected MG with
only RERS and ESS is investigated; next, a second grid-connected MG with the integration
of RERs, ESS, and an EV is implemented and the results are compared. An economic study
is performed to investigate the advantages offered by the use of the EV and the interest
of V2H technology in terms of energy supply reliability, cost reduction, and grid support
during congestion periods. Simulation results are presented using actual weather data
from two cities, which are Brest (cold climate) and Toulon (hot climate) in France. Generally
speaking, the contributions targeted in this work are threefold:

• Optimal sizing of a home MG considering actual weather data, energy price, EV
batteries as a secondary ESS and limiting the grid power for enhancing the energy
self-consumption;

• Energy management system taking into account the availability of the EV;
• Investigate the economic profitability of V2H for the users by considering the electric

vehicle as backup in order to mitigate the grid congestion.

This article is organised as follows: Section 2 presents the proposed MG architecture,
presenting the used renewable energy resources and energy storage devices. Section 3
describes the MG optimal sizing and energy management considering two aspects, which
are optimal energy dispatching and economic viability. Section 4 discusses the simulation
results for the two considered case studies for two different cities in France. Finally, Section 5
concludes this paper and gives some perspectives for future work.
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2. Microgrid Architecture

A home microgrid, which implements the V2H concept, is designed for the relief of
main grid constraints. The MG is operated in grid-connected mode and consists of PV, WT,
battery energy storage, and an EV. The architecture of the MG is presented in Figure 1. All
components are linked to the DC bus through DC/DC converters (PV, batteries, and EV) or
AC/DC converters (WT and grid). The PV and WT produce a quantity of energy depending
on weather conditions, which does not always match the load demand. There are two
possible scenarios: energy production is insufficient or, conversely, there is surplus energy
generation. Energy storage and the main grid allow for the buffering of insufficient or excess
power generation. Indeed, the battery and grid can restore the production/consumption
balance by supplying the lack of energy or, conversely, by absorbing excess energy. Since
the energy absorbed/fed by the battery is limited by its SOC and its maximum power,
and since grid power can also limited, an EV can be used as an additional backup energy
storage. Indeed, an EV can be charged through public charging stations or when parked at
home. In order to support the grid and ensure the continuity of electricity supply, it can
have a bidirectional energy exchange with the home MG.

AC
Loads

EMSWeather data Energy market (cost)

Power flow Information flow

AC

DC

PV System

Wind 
turbine

EV

DC Bus

DC

AC

DC

DC

DC

AC

DC

DC

DC

DC

Grid

Battery

Figure 1. Structure of the home MG considering an EV as backup energy storage.

2.1. Home MG Components

The choice of MG components is based on the maturity of the distributed energy
resources (DER) and the efficiency of the ESS. Currently, the most mature RER is PV, which
is the most mastered and used by researchers in projects aiming to achieve autonomous
systems, relieve the grid, or produce clean energy. The PV used in this project is monocrys-
talline panels, which are suitable for cold climates, while polycrystalline panels are more
suitable for warm climates [30]. A domestic wind turbine is the second mature renewable
technology, known as an individual wind turbine [30]. WT is mainly installed at small-scale
residential customers. It can also be used to power larger loads, such as small businesses
and agricultural fields. The interest of this installation is to satisfy a part of the load,
reducing the dependence on the power grid. Two classes of these wind turbines can be
distinguished: vertical-axis wind turbines and horizontal-axis wind turbines. In the consid-
ered MG, the installed wind turbine is a horizontal-axis configuration with three blades,
a drive train consisting of a gearbox and a generator, and a tower to support the rotor.

The considered battery in this study is a lithium-ion battery. It is lighter than a lead-
acid battery (five times lighter), has a long lifespan (1500 cycles), and is more resistant to
deep discharges. New trends in the use of batteries for energy systems focus on integration
with multiple RERs (PV, WT, etc.) and also on the integration with other energy storage
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systems that complement them [31]. This trend fits perfectly with the proposed MG, which
includes PV and WT as well as an EV as an additional energy storage device.

The installed PV and WT maximum power and battery capacity are unknown and
are computed by the optimisation program based on the load data, weather data, grid
energy cost, renewables and battery investment cost, battery power limits, grid power
limits, and battery capacity of the EV. Subsequently, an optimal energy dispatching is
computed, which determines the power flows between all components within the battery
power and capacity limits, grid limits, RER availability, and EV displacement, considering
the economic aspects.

2.2. Modeling of the Renewable Resources and Energy Storage Devices

PV panels and wind turbines are considered as energy resources in this study. The
following subsections describe these renewable resources modeling for optimal sizing and
smart energy management.

2.2.1. PV Panels

The power generated by the PV panels depends on the installed maximum power and
weather conditions. The PV output power depends on the irradiance, the efficiency of the
generation, the area of the panels and the optimal orientation depending on the location.
The chosen PV technology has an efficiency ηpv = 15%. The power produced by PV over a
day is given as follows:

PPV(t) = ηPV · SPV · PIrr(t); 1 < t < 24 h (1)

where:

• SPV is the PV panels area in m2;
• PIrr(t) corresponds to the irradiance in the considered location W/m2;
• ηPV stand for the chosen PV technology efficiency.

2.2.2. Wind Turbine

A wind turbine has an output power that mainly depends on its radius and the
wind speed in the considered area. The other variables are constants, such as air density
(ρ = 1.225 kg/m3), or can be considered as constants by setting them to a value given by the
control algorithm by implementing maximum power point algorithm (MPPT), such as the
power coefficient (Cp = 0.4). The electrical power extracted by a wind turbine is as follows:

PWT(t) =
1
2

· ρ · Cp · π · R2
WT · VWind(t)3; 1 < t < 24 h (2)

where:

• RWT is the wind turbine radius in m;
• VWind corresponds to wind velocity, in m/s.

2.2.3. Energy Storage Devices: Battery and EV

The energy supplied by the battery and the EV depend on their capacity and their state
of charge (SOC). Moreover, the output power is limited to enhance the lifespan of energy
storage devices. The SOC represents the ratio between the energy contained in the battery
(respectively, EV battery) and its maximum capacity (respectively, EV battery capacity). The
SOC of the battery (respectively, EV battery) depends on the power supplied or recovered
by the battery (respectively, EV battery), the time of application of this power (δt = 1 h),
and its maximum capacity (respectively, EV battery capacity). The SOC varies from one
hour to another and can increase during charging and decrease during discharging. The
SOC for both the battery and the EV battery is given by the following formula:
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SOCbat(t) = SOCbat(t− 1)− Pbat(t) · dt
Emax

bat
; 1 < t < 24 h (3)

SOCEV(t) = SOCEV(t− 1)− PEV(t) · dt
Emax

EV
; 1 < t < 24 h (4)

where:

• SOCbat(t) and SOCEV(t) correspond to battery and EV battery state of charge at time t;
• Pbat(t) and PEV(t) stand for power of battery and EV battery. This power can be either

positive or negative depending on the operation conditions;
• Emax

bat and Emax
EV are the maximum battery and EV energy capacity.

3. Optimal Sizing and Planning of a Home MG with V2H Technology

A domestic MG with V2H concept optimization is carried out in two steps, which are
the optimal sizing and the energy management system (EMS), as shown in Figure 2. MG
sizing is performed based on the weather data, the market energy cost, and the investment
cost, all while fulfilling the technical constraints. Next, an optimal energy management
algorithm is proposed considering that the home MG is optimally designed. In this section,
the objective of the proposed energy management system is presented, which is mainly
related to the sizing and the minimisation of the energy cost over 20 years of operation of
the MG while integrating the V2H technology.

𝑰𝒏𝒑𝒖𝒕 𝒅𝒂𝒕𝒂

𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 𝑀𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒𝑠

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠 Load

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑜𝑜𝑓 𝑎𝑟𝑒𝑎 𝐵𝑙𝑎𝑑𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝐸𝑆𝑆 Power balance

𝑀𝐺 𝑆𝑖𝑧𝑖𝑛𝑔

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑃𝑉 𝑝𝑜𝑤𝑒𝑟 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑊𝑇 𝑝𝑜𝑤𝑒𝑟

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑜𝑟 ℎ𝑜𝑚𝑒 𝑀𝐺
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Figure 2. Scheme describing the proposed MG sizing and energy management system.

3.1. Energy Management Strategy

The objective in this work is to achieve a V2H system with maximum autonomy and
minimum energy cost. Figure 3 shows the scheme of the proposed energy management
algorithm. Five different layers can be distinguished in this energy management strategy.
Indeed, in order to ensure maximum autonomy and favour the use of renewable energy,
the load has to be fed by RERs at any time. On-maximum power point tracking (On-MPPT)
mode is prioritized. Depending on the value of net power Pnet = PLoad − (PPV + PWT),
there are three possible scenarios as follows:

• Pnet = 0: Renewables fully satisfy the load and there is no need for energy from battery,
power grid, and EV;

• Pnet > 0: In this case, the battery, the grid, and the EV are required the complement
renewables underproduction. The use of each of these resources depends on batteries
state of charge, power limitations, and EV availability;
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• Pnet < 0: Battery free capacity is used to store the overproduction. If the battery is
fully charged or the required power is higher than the maximum power, the excess
power is supplied to the grid. However, if the EV is available or the grid power is not
within its power limitations, the EV battery is used as a backup energy supply.

𝑃𝑛𝑒𝑡 = 𝑃𝐿𝑜𝑎𝑑 - (𝑃𝑃𝑉+ 𝑃𝑊𝑇)

𝑃𝑛𝑒𝑡>0 𝑃𝑛𝑒𝑡 <0

𝑆𝑂𝐶𝑏𝑎𝑡 ≤ 𝐷𝑂𝐷𝑏𝑎𝑡𝑆𝑂𝐶𝑏𝑎𝑡> 𝐷𝑂𝐷𝑏𝑎𝑡

𝑃𝑏𝑎𝑡 =0

𝑃𝑛𝑒𝑡 ≤ 𝑃𝑏𝑎𝑡
𝑚𝑎𝑥

𝑃𝑏𝑎𝑡 =𝑃𝑏𝑎𝑡
𝑚𝑎𝑥

𝑃𝑟𝑒𝑠 = 𝑃𝑛𝑒𝑡 - 𝑃𝑏𝑎𝑡

𝑃𝑟𝑒𝑠 ≤ 𝑃𝑔
𝑚𝑎𝑥 𝑃𝑟𝑒𝑠 >𝑃𝑔

𝑚𝑎𝑥

𝑃𝑔𝑟𝑖𝑑 =𝑃𝑔
𝑚𝑎𝑥𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑟𝑒𝑠

𝑆𝑂𝐶𝐸𝑉 ≤ 𝐷𝑂𝐷𝐸𝑉

𝑃𝐸𝑉 =0

𝑃𝑏𝑎𝑐𝑘 ≤ 𝑃𝐸𝑉
𝑚𝑎𝑥 𝑃𝑏𝑎𝑐𝑘 >𝑃𝐸𝑉

𝑚𝑎𝑥

𝑃𝐸𝑉 =𝑃𝐸𝑉
𝑚𝑎𝑥𝑃𝐸𝑉 = 𝑃𝑏𝑎𝑐𝑘

𝑃𝑏𝑎𝑐𝑘 = 𝑃𝑟𝑒𝑠 - 𝑃𝑔𝑟𝑖𝑑

Load shedding

𝑃𝑏𝑎𝑡 = 𝑃𝑛𝑒𝑡

𝑆𝑂𝐶𝑏𝑎𝑡 < 1

𝑃𝑏𝑎𝑡 =0

𝑃𝑟𝑒𝑠 = 𝑃𝑛𝑒𝑡 - 𝑃𝑏𝑎𝑡

𝑃𝑛𝑒𝑡 < 𝑃𝑏𝑎𝑡
𝑚𝑖𝑛

𝑃𝑏𝑎𝑡 =𝑃𝑏𝑎𝑡
𝑚𝑖𝑛

𝑃𝑛𝑒𝑡 > 𝑃𝑏𝑎𝑡
𝑚𝑖𝑛

𝑃𝑏𝑎𝑡 = 𝑃𝑛𝑒𝑡

𝑃𝑟𝑒𝑠 < 𝑃𝑔
𝑚𝑖𝑛

𝑃𝑔𝑟𝑖𝑑 =𝑃𝑔
𝑚𝑖𝑛

𝑃𝑟𝑒𝑠 > 𝑃𝑔
𝑚𝑖𝑛

𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑟𝑒𝑠

𝑃𝑏𝑎𝑐𝑘 = 𝑃𝑟𝑒𝑠 - 𝑃𝑔𝑟𝑖𝑑

𝑆𝑂𝐶𝐸𝑉 = 1 𝑆𝑂𝐶𝐸𝑉 < 1

𝑃𝑏𝑎𝑐𝑘 > 𝑃𝐸𝑉
𝑚𝑖𝑛𝑃𝑏𝑎𝑐𝑘 < 𝑃𝐸𝑉

𝑚𝑖𝑛

𝑃𝐸𝑉 =0 𝑃𝐸𝑉 =𝑃𝐸𝑉
𝑚𝑖𝑛 𝑃𝐸𝑉 = 𝑃𝑏𝑎𝑐𝑘

Off-MPPT

𝑃𝑛𝑒𝑡 > 𝑃𝑏𝑎𝑡
𝑚𝑎𝑥

𝑆𝑂𝐶𝑏𝑎𝑡 = 1

𝑃𝑛𝑒𝑡 =0

𝑆𝑂𝐶𝐸𝑉 > 𝐷𝑂𝐷𝐸𝑉

Figure 3. Energy management strategy (Pnet is the net power, Pres stands for residual power, and
Pback corresponds to backup power).

In the renewables underproduction situation, the first element that will intervene is the
battery. This step is shown in purple on the algorithm diagram. On one hand, if the battery
is sufficiently charged and the power demand does not exceed the maximum discharge
power specified by the manufacturer, the battery provides the power required to ensure
the generation/consumption power balance. On the other hand, if the discharge power
exceeds the maximum acceptable battery discharge power, battery provides its maximum
power while the remaining power is provided by the grid, as shown by the yellow stage in
the EMS scheme. Even though the grid can be considered as a large energy resource, its
power can be limited for security and reliability reasons (to prevent overload, for example).
If the power demand does not exceed grid power limitations, the load is supplied by the
grid. Otherwise, the EV is used as a backup to ensure the electricity continuity of service,
as shown in the pink section of the algorithm. A final situation can occur for which the
EV maximum power is exceeded or the EV state of charge does not allow the use of the
EV battery. In this case, a load shedding is required as depicted by the grey part of the
EMS scheme.

Conversely, in an overproduction situation, the battery is first used to store the excess
energy generation, as shown by the purple section of the algorithm. If the battery is
fully charged or the required power exceeds the maximum charge power given by the
manufacturer, the main grid intervenes to guarantee the generation/consumption balance
(yellow part of the diagram). As previously specified, the grid power is limited to enhance
the system reliability and improve autonomy, which is the reason why the EV is used to
store a part of the produced energy if the grid maximum power is achieved, as described in
the pink part of the energy management strategy. Finally, if the EV is not available or the
EV battery is fully charged, renewables are operated in off-MPPT mode in order to reduce
energy production (grey part).

3.2. Objective Function

The objective of this work is to design an optimal home MG, which minimizes the
investment and energy costs while ensuring the integration of V2H technology. This is
done by maximizing home autonomy and reducing the energy issued from the grid. The
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optimization is performed over 20 years, taking into account weather data, grid energy
price, and investment costs. The investment cost includes all equipment, namely PV panels,
a wind turbine, batteries, power electronics, and cables, purchase and installation, and the
operating and maintenances costs. The energy cost, however, mainly consists of the energy
bills from the grid operator. The objective function is to ensure the optimal operation of
the microgrid by minimizing its operating cost. Indeed, the area of the PV panels and the
wind turbine power should be minimized to satisfy the load while minimizing the energy
cost. Moreover, battery installed capacity should be optimized by taking into consideration
its degradation cost. Consequently, the cost function to be optimized can be expressed
as follows:

Cost = Cinv + Cene (5)

where:

• Cinv corresponds to the investment cost, which is given by:

Cinv = CPV · Pins
PV + CWT · Pins

WT + CBat · Emax
bat (6)

with:

– CPV , CWT , and CBat are PV panels cost in (€/W), WT cost in (€/W) and battery
cost in (€/J), respectively;

– Pins
PV , Pins

WT , and Emax
bat are the installed PV power, wind power, and battery capacity,

respectively.

• Cene stand for the energy cost of the power provided by the main grid. It can be
expressed as follows:

Cene = Cg ·
20 years

∑
i=1

(
24 h

∑
t=1

(Pi
g(t))) (7)

with:

– Cg corresponds to the grid energy cost, which is variable during the day: On
peak periods have higher price than off-peak periods;

– Pi
g(t) is the power fed or supplied by the power grid, which is minimized in

this study.

3.3. System Constraints
3.3.1. Generation/Consumption Balance and Power Limitations

Minimizing the previously presented cost function is performed while respecting
constraints related to each component of the home MG. The production/consumption
balance is the main constraint of the system. To ensure a continuous and reliable power
supply, the energy supplied by the RERs, the batteries, the grid, and the EV must be
equal to the power required by the load at any time. This constraint is provided in
Equation (8). Energy conversion efficiency is considered to account for the losses that
occur when charging or discharging batteries or the EV battery. To express these losses
in the power balance, the charging power is divided by the charging energy conversion
efficiency (ηcha

bat = ηcha
EV = 0.9) and the discharging power is multiplied by the discharging

energy conversion efficiency (ηdisch
bat = ηdisch

EV = 0.9). Equation (9) represents the new power
balance constraint. Where P+

bat(t), P+
g (t), and P+

EV(t) correspond to power supplied to the
load and P−bat(t), P−g (t), and P−EV(t) stand for power fed to battery, power grid, and EV,
respectively. Equations (10)–(12) describe the fact that these energy resources cannot charge
and discharge at the same time. Moreover, to ensure that the battery, main grid, and EV
do not exchange energy with each other, the constraint in Equation (13) is added. This is
mainly set to minimize losses introduced by the energy conversion between these elements.

Equations (14) and (15) are set to ensure that the battery and EV battery recover its
initial state of charge at the end of each day. To ensure this, the battery and EV provide a
quantity of energy during underproduction periods, which is recovered during overpro-
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duction periods. Since the EV is not available all the day, it can be used only for a certain
period of the day as specified by Equation (16). Finally, the power supplied (absorbed)
by the battery is limited because of the characteristics of the conductors and switches, as
shown by Equation (17). In addition of that, grid power should be limited to increase
autonomy and avoid overloading. Its power is limited between minimum and maximum
values as depicted by Equation (18).

PLoad(t) = PPV(t) + PWT(t) + Pbat(t) + Pg(t) + PEV(t) ; 1 < t < 24 h (8)

PLoad(t) = PPV(t) + PWT(t) + ηdisch
bat · P+

bat(t)−
1

ηcha
bat

· P−bat(t) + P+
g (t)−

P−g (t) + ηdisch
EV · P+

EV(t)−
1

ηcha
EV

· P−EV(t) ; 1 < t < 24 h
(9)

P+
bat(t) · P−bat(t) = 0 ; 1 < t < 24 h (10)

P+
g (t) · P−g (t) = 0 ; 1 < t < 24 h (11)

P+
EV(t) · P−EV(t) = 0 ; 1 < t < 24 h (12)

|PEV(t)|+ |Pbat(t)|+ |Pg(t)| = |PEV(t) + Pbat(t) + Pg(t)| ; 1 < t < 24 h (13)

24 h

∑
t=1

Pbat(t) = 0 (14)

24 h

∑
t=1

PEV(t) = 0 (15)

P+
EV(t) = P−EV(t) = 0 ; 8 < t < 18 h (16)

Pmin
bat < Pbat(t) < Pmax

bat ; 1 < t < 24 h (17)

Pmin
g < Pg(t) < Pmax

g ; 1 < t < 24 h (18)

3.3.2. Renewable Resources and ESS Constraints

The installed PV power is determined by the optimisation algorithm. This power
depends on the peak irradiation and is limited by the available area on the roof of the house.
Equation (19) ensures that the area is within the tolerated limits. The installed wind power
depends on the peak value of the wind speed. The radius of the turbine is also limited by a
maximum value. This maximum value should not exceed the value tolerated for domestic
installations in urban areas and it cannot be negative, which is expressed by the constraint
in Equation (20).

0 < SPV < Slimit (19)

0 < RWT < Rlimit (20)

To ensure maximum lifespan (maximum cycles) for the battery and the EV battery,
minimum SOC should be limited. On one hand, to ensure a safe operation of batteries
(respectively EV battery), the SOC is limited by an upper limit, equal to 1. On the other
hand, batteries (respectively, EV battery) usually have a maximum DOD set by the designer,
indicating that by respecting this DOD the battery (respectively, EV battery) will be able
to be operated at the maximum of charge/discharge cycles. SOCs for both the battery
ESS and EV battery are then limited by a lower limit equal to the DOD for the whole day.
These constraints are presented in Equations (21) and (22). Maximum battery capacity to be
installed is optimized and is consequently limited to a reasonable capacity, denoted Cmax

bat ,
as expressed by Equation (23).

DODbat < SOCbat(t) < 1; 1 < t < 24 h (21)
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DODEV < SOCEV(t) < 1; 1 < t < 24 h (22)

0 < Emax
bat < Cmax

bat (23)

with:

• SOCbat(t) and SOCEV(t) are state of charge of battery ESS and EV battery;
• Emax

bat is the installed battery capacity that need to be optimized, which is limited by a
maximum capacity Cmax

bat ;
• DODbat and DODEV are depth of discharge of battery ESS anf EV battery.

4. Simulation Results

Numerical studies have been carried out to investigate the benefits of integrating EVs
in terms of financial benefits, optimal sizing, and guaranteed energy autonomy by limiting
power issued from main grid. From Equations (6) and (9), it is possible to distinguish
decision variables, which must have the optimal values to minimize the total cost while
respecting constraints; mainly the power balance constraint. The decision variables are:

• Grid power: P+
g (t) and P−g (t);

• Charging and discharging power of the battery: P+
bat(t) and P−bat(t);

• Battery capacity: Emax
bat ;

• PV and WT dimensions: SPV and RWT ;
• The evolution of renewable powers during a day: PPV(t) and PWT(t);
• Vehicle charging and discharging powers: P+

EV(t) and P−EV(t).

The dealt with problem is a constrained non-linear optimization problem, which is
described by Figure 4. The model is characterised by non-linear equality constraints and
non-linear inequality constraints. In addition to these constraints, it is mandatory to define
a set of lower and upper bounds on the design variables so that the solution is always in
the specified range, such as the limits of the PV area and the radius of the wind turbine.

The sizing and energy management system is formulated as an optimization problem
and is solved using the following method based on the Interior-point algorithm [32] using
MATLAB software:

min
x

f (x), s.t.:





C(x) ≤ 0
Ceq(x) = 0
A× x ≤ b
Aeq × x = beq

lb ≤ x ≤ ub

(24)

With:

• x: Decision variables;
• A× x ≤ b: Linear inequality constraints;
• Aeq × x = beq: Linear equality constraints;
• C(x): Non-linear inequality constraints;
• Ceq(x): Non-linear equality constraints.

This method fits the problem as it minimises a multivariate function; some variables
are scalars and some are vectors. It allows one to compute the minimum of the objective
function under non-linear equality and non-linear inequality constraints, with upper and
lower bounds of the decision variables.
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𝑺𝒊𝒛𝒊𝒏𝒈 𝒂𝒏𝒅 𝑬𝒏𝒆𝒓𝒈𝒚𝒎𝒂𝒏𝒂𝒈𝒆𝒎𝒆𝒏𝒕 𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Figure 4. Scheme of the optimization problem.

In the following, two case studies are presented and the results are discussed as
follows:

• Case study 1: Numerical studies for a grid-connected renewables-based MG without
EV integration for Brest and Toulon;

• Case study 2: Numerical studies for a grid-connected renewables-based MG with EV
integration for Brest and Toulon.

4.1. Optimization Input Data

The investment, maintenance, and operating costs of PV, WT, battery, and grid energy
costs are taken from [33], considering a lifetime of 20 years for PV and wind turbine, and
5 years for batteries. These data are provided in Table 1. Variable energy consumption for
24 h is considered in this study. Indeed, the used load profile is equivalent to the energy
consumption of a small house with variable consumed power. Figure 5b shows the hourly
load pattern of 24 h. Three load peaks can be noticed in the provided load profile: in the
morning, at noon, and in the evening. The same consumer profile is considered for the two
case studies and for the two cities for a fair and reliable comparison.

The weather data used for home MG optimal sizing and energy management system
design are actual weather data issued from [34,35]. Numerical studies have been performed
for two different cities in France considering a cold and hot climate for the sake of compari-
son and to prove the effectiveness of the proposed approaches for different climates and
weather conditions. First, a cold city, namely Brest, is considered, which is characterised by
high speed wind during a significant period of the year and low sunshine with high solar
irradiance variability during the year. Second, Toulon, which is a city in the south of France,
is considered. Toulon is characterised by higher constant irradiance compared to Brest, but
it has less wind due to its geographical location. Weather conditions of these two cities are
different, which is of great interest to show differences in terms of MG sizing, autonomy
of the installation, and the economical benefits. Since the designed MG is connected to
the main grid, the worst case is not presented hereafter. Indeed, yearly mean values are
considered for both PV panels and wind turbine optimal sizing. The irradiance and wind
curves for the considered cities are shown in Figure 5b and Figure 5c, respectively.
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(a) Considered load power. (b) Solar irradiance.

(c) Wind speed.

Figure 5. Load power and weather data for typical day in Brest and Toulon.

Table 1. Investment, maintenance, and lifetime costs of the used energy resources, with a lifetime of
20 years for PV and wind turbine, and 5 years for batteries.

Solar Panels
(€/kW)

Battery ESS
(€/kWh)

Wind Turbine
(€/kW)

Grid Energy Price
(€/kWh)

Investment cost 2835.00 148.00 5832.00 On-peak periods: 0.216
Maintenance and
operating costs 56.7 2.96 38.08 Off-peak periods: 0.108

In the simulations carried out, all parameters to be optimized are bounded in order
to get more realistic installation corresponding to urban usage. All decision variables’
boundaries are provided in Table 2, as described in the optimization problem constraints.

Table 2. Decision variables boundaries.

Variables Cmax
bat

(MJ) Pmax
bat (W) Pmin

bat (W) Pmax
g (W) Pmin

g (W) Slimit (m2) Rlimit (m) DODbat DODEV

Bounds 100 2500 −2500 1000 −1000 30 2 0.4 0.85

4.2. Simulation Results for Home MG without EV Integration

Simulations have been performed first for a home MG without considering EV usage.
Hot and cold weather climate regions in France are selected to assess the renewable
resources-based MG optimal design and, consequently, to study the output power and
the economic benefits. The design results give the optimal sizing of the energy generation
system and is given in Table 3.

166



Energies 2022, 15, 2830

Table 3. Case study 1: PV, wind turbine, and battery optimal sizing.

PV Power (kW) PV Surface (m2)
Wind Turbine
Power (kW)

Wind Turbine
Radius (m)

Battery Energy
(kWh)

Brest 2.58 26.66 2.46 1.88 5.59
Toulon 3.84 27.26 0.89 1.86 16.51

These results are coherent since the solar energy potential in Toulon is higher than
in Brest and wind power generation is more available in Brest. On one hand, the area of
PV panels is larger in Toulon than in Brest, which is due to Toulon’s high solar energy
potential compared to Brest. The installed power in Toulon is 3.84 kW, whereas in Brest
it is equal to 2.58 kW. On the other hand, due to high wind speed in Brest, the installed
wind power is higher than in Toulon. Indeed, wind power reaches 2.46 kW against 0.89 kW
in Toulon. Battery capacity in Toulon is much higher than in Brest. This is mainly due to
the fact that the net power, which represents the difference between energy consumption
and the actual PV and WT energy generation is higher in Toulon. Indeed, the battery is the
first component to intervene in the energy management algorithm in order to maintain the
consumption/generation balance.

Once the optimal sizing is performed, a one-day simulation is performed in order to
show the behaviour of the MG components. Hence, PV and WT energy generation in Brest
and Toulon are provided in Figure 6. Figure 7 shows the total RER energy production and
net power (difference between RER production and load consumption). Net power can
be provided using battery ESS if the SOC and the required power are within the specified
limits or using the main grid, as shown by Figure 8. The sum of the battery and grid powers
is equal to net power at any time, which shows that the main constraint related to power
balance is achieved. The constraint related to the prohibited exchange of power between
the battery and the grid (in both directions) is also fulfilled during the day.

(a) PV energy generation. (b) WT energy generation.

Figure 6. Case study 1: Renewable energy resources energy generation in Brest and Toulon.

The variation of battery SOC is provided in Figure 8b. It can be noticed that the battery
charges and discharges during the day while respecting the the specified DOD. The battery
is safely operated, its SOC varies between the limits indicated in the constraints, which
makes it possible to consider a lifetime of 5 years. It is also shown that the battery SOC at
the end of the day is equal to the initial value.

The total energy from the grid before the integration of the RERs was 377.24 MWh
during 20 years. This energy consumption issued from the grid is reduced to 92.2 MWh in
Brest and 126.95 MWh in Toulon after the integration of the RERs, allowing an autonomy
of 75.56% in Brest and 66.35% in Toulon. These results show the profitability of the system
after 20 years of operation. Indeed, the total energy cost before the integration of the RER
was 70,703 €. This energy cost is reduced to 40,449 € in Brest and 46,105 € in Toulon. The
investment cost, the grid energy cost, and the autonomy in the considered cities are given
in Table 4.
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(a) (b)

Figure 7. Case study 1: Net power and battery power for Brest and Toulon. (a) Net power highlighting
production/consumption unbalance during the day. (b) Battery power for 24 h.

(a) Grid power for 24 h. (b) State of charge of battery ESS.

Figure 8. Case study 1: Grid power and state of charge of the battery for Brest and Toulon.

Table 4. Case study 1: Energy cost and autonomy achieved without EV.

Total Energy
Consumption

(MWh)
Cost without

RER (€)
Local

Generation
(MWh)

Investment
Cost (€)

Grid Energy
(MWh)

Grid Energy
Cost (€)

Battery
Energy
(MWh)

Total
Cost (€)

Achieved
Autonomy

(%)

Brest 377.24 70,703 322.89 28,152 92.2 12,296 50.771 40,449 75.56
Toulon 377.24 70,703 272.19 27,424 126.95 18,680 98.984 46,105 66.35

4.3. Simulation Results for a Home MG with EV Integration

A second case study has been investigated to assess the interest of integrating the
V2H concept in a home MG in terms of energy self-sufficiency and total cost comprising
the investment, operating and maintenance costs of the MG, and the energy bill from the
main grid. Two operating conditions may arise during operation, which are the vehicle is
parked at home and can be used as an additional ESS or the vehicle is in normal every-day
use. In the last operating situation, the home MG is operated as in case study 1 operating
conditions. Numerical studies have been conducted for the same domestic MG, taking into
account the use of EV batteries and limiting the available main grid power. Indeed, another
constraint is considered in this second case study in order to relieve the grid by limiting
the power exchange with the main grid to ±1000 W. The same cities are considered for
the sake of comparison. This allows for the studying of the power outputs of renewable
resources, battery ESS, EV, and grid, as well as the economic benefits of the integration of
EVs at domestic MGs.

Domestic MG optimal sizing results with the integration of the EV are provided in
Table 5 for Brest and Toulon. The same conclusions can be drawn from these results as
the results discussed in case study 1. Indeed, the solar energy potential of Toulon remains
higher than that of Brest and vice versa for the wind energy generation. The battery ESS
to be installed has increased as the grid power is severely limited to enhance the use of
renewables and EV batteries, and, consequently, to limit the stress on the grid, especially
during on-peak periods.
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Table 5. Case study 2: PV, battery, and wind turbine sizing results.

PV Power (kW) PV Surface (m2) Wind Turbine
Power (kW)

Wind Turbine
Radius (m)

Battery Energy
(kWh)

Brest 3.2 29.78 1.11 1.26 8.74
Toulon 4.1 29 0.967 1.9 17.8

Renewable resources generated powers for 24 h are shown in Figure 9. It can be noticed
that the integration of the EV as an additional ESS does not significantly change the sizing
and the installed power of the RERs. It can be considered that renewable energy production
mainly depends on meteorological data and these results allow for the extraction of the
maximum energy from the RERs. The imbalance between renewable energy production
and load consumption is shown in Figure 10. This imbalance is compensated for using
battery-based ESS, the main grid, and the EV when the EV is parked at home. Otherwise,
during EV daily use, only the battery-based ESS and the grid intervene to guarantee the
production/consumption balance. System constraints are respected and power balance is
achieved all the time. Moreover, there is no energy exchange between the battery, the grid,
and the EV, as can be seen from Figure 11. Finally, the EV power exchange with a domestic
MG and state of charge of the EV batteries are given by Figure 12. It can be seen that the
EV is mainly used during periods where renewables energy generation is lower and load
consumption is higher. This usage relieves the grid and decreases the energy bill.

(a) PV energy generation for 24 h. (b) WT energy generation for 24 h.

Figure 9. Case study 2: Renewable energy resources generation for Brest and Toulon.

(a) Net power for 24 h. (b) Battery power during 24 h.

Figure 10. Case study 2: Net power representing the difference between renewables energy generation
and load consumption and batteries power for Brest and Toulon.
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(a) Grid power during 24 h. (b) State of charge of battery.

Figure 11. Case study 2: Grid power and batteries state of charge for Brest and Toulon.

(a) EV power during 24 h. (b) State of charge of EV batteries.

Figure 12. Case study 2: EV batteries power and state of charge for Brest and Toulon.

EV usage in a home MG, even if limited to few hours, is still profitable because the
home MG self-sufficiency is considerably increased in Toulon, which raises to 84.61%,
and slightly increases in Brest, being raised to 76.87%, reducing the high electric network
utilisation. The total cost for 20 years operation is 35,063 € in Brest and 38,827 € in Toulon.
This allows financial savings of 5000 € and 8000 € in both cities, respectively compared
to case study 1. The investment cost, battery energy, main grid energy, total energy cost,
and achieved energy self-efficiency in the two considered cities are given in Table 6. It can
be seen that the total cost is divided by almost 2 for the two cities. Moreover, the grid is
relieved due to the use of the V2H concept and the energy bill is significantly decreased
while achieving a very good autonomy.

Table 6. Case study 2: Energy cost and achieved autonomy with EV.

Total Energy
Consumption

(MWh)

Cost
without
RER (€)

Local Gen-
eration
(MWh)

Investment
Cost (€)

Grid
Energy
(MWh)

Grid
Energy
Cost (€)

Battery
Energy
(MWh)

EV Energy
(MWh)

Total
Cost (€)

Achieved
Autonomy

(%)

Brest 377.24 70,703 257.520 21,880 87.238 13,182 57.642 47.289 35,063 76.87
Toulon 377.24 70,703 291.170 29,476 58.073 9350 95.126 53.494 38,827 84.61

4.4. Discussion

Numerical studies have proved that the integration of an EV in home microgrids
has brought several benefits, starting with the economic gains, which is of interest for
householders. Such financial savings encourage customers to switch to the V2H concept,
given the reduction in the electricity bill and in the capacity of the installed battery ESS. The
major disadvantage is the investment cost, which is still a bit expensive, but considering
the duration of the project, this cost is quickly paid back in few years.

The second advantage to mention is the reduction of the energy provided by the main
grid. Simulation results showed that the integration of an EV reduces the grid power and,
consequently, lowers the stress on the grid, especially during congestion periods. The
energy decreases from 92.2 MWh to 87.238 MWh in Brest, and it decreases by almost 50% in
Toulon as the energy issued from the main grid decreases from 126.95 MWh to 58.073 MWh.
The EV battery provides a certain amount of energy when it is connected to the home
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MG, and, therefore, allows grid power limitation. If the V2H and V2G concept is further
expanded, there will be a decrease in grid power and therefore fewer outages, fewer voltage
and frequency regulation problems, and also fewer CO2 emissions thanks to the massive
use of local renewable resources.

In a home MG, battery power decreases after the integration of an EV as an additional
ESS. This leads to the reduction of the number of cycles, and, therefore, the lifetime of the
battery increases. The increase in lifetime induces financial savings as the operating and
maintenance costs will straightforwardly decrease. Moreover, the installed battery capacity
decreases, which allows for a decrease in the initial investment cost. Indeed, a part of the
required energy storage system to handle the intermittency of RER is ensured by using
EV batteries.

Despite the large amount of energy supplied by the EV, its SOC does not significantly
vary, which can be explained by the large storage capacity of the EV to ensure certain
autonomy. Indeed, the EV will have enough energy to support the home MG while limiting
main grid power. In this work, the EV SOC is limited to a DOD of 85% to avoid its battery
being significantly discharged, but in reality, the EV can be discharged even more. Indeed,
the Lithium-ion batteries used in EVs can be discharged even more than 50% of their
maximum capacity to support the home MG.

Table 7 summarizes the two conducted case studies. It is clear from this table and
the previously discussed results that the integration of the EV brings great benefits to a
home MG. Indeed, the energy self-sufficiency has increased in both cities, with a large
improvement for Toulon (hot climate with huge PV potential). In terms of financial benefits,
it is obvious from the given results that the use of renewable resources and the EV energy
storage capacity lowers the energy bill for 20 years of operation, even if the investment cost
is quite high, mainly due the price of battery energy storage devices.

The use of the electric vehicle as a RER energy storage device leads to the degrada-
tion of its battery over time [13], as the lifespan of the battery depends on the number of
charge/discharge cycles. It would be more interesting to integrate an EV battery degra-
dation cost in future work. Moreover, more aspects related to home MG EMS can be
investigated, such as demand response and energy trading in the community integrating
an EV fleet for enhancing the overall operation of the community MG [36].

Table 7. Summary of the achieved benefits for 20 years of operation of the home MG in Brest
and Toulon.

MG without EV MG with EV

Brest
• Total Cost = 40,449 (€)
• Financial savings = 30,254 (€)
• Achieved autonomy = 75.56%

• Total Cost = 35,063 (€)
• Financial savings = 35,640 (€)
• Achieved autonomy = 76.87%

Toulon
• Total Cost = 46,105 (€)
• Financial savings = 24,598 (€)
• Achieved autonomy = 66.35%

• Total Cost = 38,827 (€)
• Financial savings = 31,876 (€)
• Achieved autonomy = 84.61%

5. Conclusions and Perspectives

This paper has presented an optimal sizing algorithm and energy management scheme
for a home MG integrating the V2H technology for both hot and cold climates. The pre-
sented case studies show the advantage of the V2H concept, especially with the high
integration of renewable energy resources. The electric vehicle presents a support for
renewable energies by offering a larger storage capacity, thus efficiently increasing renew-
able energy generation by increasing on-MPPT mode usage. This increase in renewable
production reduces the dependence on the grid, as shown in the simulation results. There-
fore, the energy bill is reduced and the use of clean energy is empowered for sustainable
development. It is mainly demonstrated that the use of V2H presents a financial interest for
homeowners, supports the integration of RER for sustainable development, and relieves
the main grid during on-peak periods.
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The economic advantage of V2H and its cost-effectiveness may encourage homeown-
ers to switch from thermal to electric vehicles, thus reducing the pollution rate, knowing
that the total amount of CO2 emitted by the design of the electric vehicle is half that emitted
by the manufacturing and operation of the combustion vehicle. This greatly reduces the
level of CO2 emissions over a period of 20 years. Moreover, in a house MG, the electric
vehicle reduces the size of the storage system and avoids its degradation by storing surplus
production, which lowers the total investment cost and reduces the rate of manufacturing
and changing of storage systems, in this case the battery ESS.

In the near future, it is interesting to scale up to a district, using a fleet of electric
vehicles, to show the benefits of the V2G concept. It is foreseeable that the integration
of electric vehicles will significantly reduce the pollution rate. However, the economic
profitability needs to be demonstrated through further investigations. The move towards a
larger scale will lead to more constraints, as vehicles will not have the same displacement
and availability over a day, and this constraint will further complicate the optimisation of
the objective function. It is not certain that, by increasing the number of electric vehicles, the
network will be relieved, it may happen the other way round, where the charging stations
require a huge amount of energy, and if the number of stations increases, the energy
required increases accordingly. One solution to this problem is to power the charging
stations with renewable energy.

Other aspects linked to artificial intelligence must be used to forecast weather data
for optimal energy production and also to predict the displacement and consumption
of vehicles, as well as their availability. Other parameters need to be considered in the
modelling of the battery degradation cost, solar panels, and wind turbines to achieve more
accuracy, such as the temperature, the change of the energy cost in the energy market, and
load shedding.
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Nomenclature
The following variables are used in this manuscript:

PIrr Irradiance of the day W/m2

Pins
PV Installed PV power (computed considering maximum irradiance)

PPV(t) Power produced by PV at time t
Pins

WT Installed wind power (computed considering maximum wind speed)
PWT(t) Power produced by WT at time t
P+

bat(t) Battery discharge power at time t
P−bat(t) Battery charging power at time t
P+

g (t) Power supplied by the grid at time t
P−g (t) Power sent to the grid at time t
Pi

g(t) Grid power at time t at for the ith year
P+

EV(t) Electric Vehicle discharge power at time t
P−EV(t) Electric Vehicle charging power at time t
Pmax

bat Maximum discharge power of the battery
Pmin

bat Maximum charging power of the battery
Pmax

g Maximum power supplied by the grid
Pmin

g Maximum power sent to the grid
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Emax
bat Capacity of the installed battery (J)

Emax
EV Capacity of the electric vehicle (J)

SOCbat(t) Battery state of charge at time t
SOCEV(t) Electric Vehicle state of charge at time t
DODbat Battery depth of discharge
DODEV Electric vehicle depth of discharge
SPV PV surface m2

Slimit Surface limit of the PV
RWT Radius of the wind turbine
Rlimit Radius limit of the WT
ηcha

bat Battery charging efficiency
ηdisch

bat Battery discharging efficiency
ηcha

EV Electric vehicle charging efficiency
ηdisch

EV Electric vehicle discharging efficiency
ηPV PV efficiency
ρ Air density
Cp Power coefficient
VWind Wind velocity (m/s)
dt Power application time (1 h)
CPV Total PV investment, maintenance, and operating costs in €/kW
CWT Total wind turbine investment, maintenance, and operating costs in €/kW
Cbat Total batteries investment, maintenance, and operating costs in in €/kWh
Cg Cost of energy purchased from the grid in €/kWh
ESS Energy storage system
MG Microgrid
PV Photovoltaic
WT WInd turbine
V2H Vehicle to home
V2G Vehicle to grid
RER Renewable energy resources
SOC State of charge
DOD Depth of charge
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Abstract: The restructuring of power systems and the ever-increasing demand for electricity have
given rise to congestion in power networks. The use of distributed generators (DGs) may play a
significant role in tackling such issues. DGs may be integrated with electrical power networks to
regulate the drift of power in the transmission lines, thereby increasing the power transfer capabilities
of lines and improving the overall performance of electrical networks. In this article, an effective
method based on the Harris hawks optimization (HHO) algorithm is used to select the optimum
capacity, number, and site of solar-based DGs to reduce real power losses and voltage deviation. The
proposed HHO has been tested with a complex benchmark function then applied to the IEEE 33 and
IEEE 69 bus radial distribution systems. The single and multiple solar-based DGs are optimized for
the optimum size and site with a unity power factor. It is observed that the overall performance of
the systems is enhanced when additional DGs are installed. Moreover, considering the stochastic and
sporadic nature of solar irradiance, the practical size of DG has been suggested based on analysis
that may be adopted while designing the actual photovoltaic (PV) plant for usage. The obtained
simulation outcomes are compared with the latest state-of-the-art literature and suggest that the
proposed HHO is capable of processing complex high dimensional benchmark functions and has
capability to handle problems pertaining to electrical distribution in an effective manner.

Keywords: RDS; Harris hawks; optimal power flow; optimization; solar PV; transmission loss

1. Introduction

Installing distributed generation (DG) sources in the distribution network system has
been standard practice in recent years to minimize overall power losses and enhance the
power quality [1,2]. The optimum sizing and positioning of DGs in power system networks
are essential to maximize the benefits from those installations. The incorrect allocation
and unreasonable sizing of DG units in the power system networks may increase voltage
sags, voltage flickering, harmonic distortion, fault current, and power losses. With the
application of DG units, the power system losses may be reduced by 13% [3,4]. In the
functioning of power systems, economic damage and voltage collapse may be avoided
through the reduction in power loss and voltage stability enhancement, respectively [5].
Thus, the investigation in optimal location selection and sizing of DG units in the distribu-
tion network is a step towards a profitable electricity supply [6,7]. Among all DG systems,
solar photovoltaic DG systems seek attention worldwide for their abundant availability,
easy installation, maintenance, and environment-friendly features.

The major goals of most techniques to determine the best location and size of DG
units are to reduce power loss and improve voltage profile. The various techniques such
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as analytical methods, ant bee colony (ABC), genetic algorithm (GA), tabu search (TS),
particle swarm optimization (PSO), fuzzy system, evolutionary programming, dynamic
programming, etc., have been utilized to achieve the aforesaid objectives in a distribution
network through the proper allocation and sizing of DG units. In the literature, GA is
used to estimate the placement and size of DG units to improve the voltage profile and
reduce power loss. Once DG units are appropriately placed in the distribution system
network, voltage stability and loss reduction are improved significantly. The GA is utilized
as the most applied optimization technique in resolving the problem of DGs allocation
and sizing [8,9]. The multiobjective genetic optimization method is used in radial distri-
bution systems to determine the best position and size for renewable-based DG units [10].
For site determination of DGs planning and performance index-based size, a GA-based
multiobjective optimization is utilized to minimize the actual power loss in distribution
systems with constant power, current, and impedance models [11]. Almabsout et al. [12]
suggest an improved GA to determine the best placement and capacity of the simultaneous
allocation of DGs/SCs in radial systems by combining the benefits of genetic algorithms
and local search [12]. To minimize system losses, a mix of analytical and genetic algo-
rithm approaches is utilized to optimize the allocation of numerous DGs in a distribution
network [13].

To reduce real power losses and improve the voltage profile, Madhusudhan et al. [14]
proposed the GA to identify the optimum location, as well as the size of the distribution
network’s DG units. Ayodele et al. [15] used GA to find the best DG technology for optimal
power system functioning, as well as the best position and size of the DG to reduce network
power loss. GA is applied to reduce the cost of system expansion and improves system
stability [16,17]. However, GA convergence time is high, especially, when applied in the
solution of complex problems, and may suggest inaccurate solutions. When compared to
GA and TS techniques, Hassan et al. and Fan et al. [18,19] employed simulated annealing
(SA) to find and specify the capacity of DGs while lowering computation time. However,
the SA method has disadvantages such as termination at a local minimum, significant
computational time, no information regarding the divergence of the local minimum from
the global minimum, and no upper constraint for the calculation time. Using the TS
approach, Liu et al. and Azam et al. [20,21] concentrated on DG optimum planning with
the goal of minimizing both losses and line loadings. The TS technique, on the other hand,
has the drawback of requiring a large number of iterations and parameter calculations.
PSO was used to determine the best scale and distribution of DG units in the power system,
together with its benefits [22].

One of the most effective and widely used optimization strategies is the PSO [23–25].
Barik et al. [26] presented a multiobjective PSO method for determining the best location
and size of DG units while taking economic and technical factors into account. The
advanced versions of PSO methods, such as improved PSO [27], binary PSO [28], social
learning PSO [29], PSO with inertia weight, and PSO with constriction factor [30], are also
applied in the DG allocation and sizing problems. However, the PSO technique has some
disadvantages, such as difficulty in initializing the design parameters and inapplicability
to scattering problems. Tolabi et al. and Oloulade et al. [31,32] introduced the ant colony
optimization (ACO) technique to tackle the allocation and size problem of renewable energy
source-based DGs in radial distribution networks with the goal of minimizing overall
system losses. Their analysis showed that ACO gives a better solution, and computational
time is less than GA. However, ACO takes more time to converge due to the complex
nature of the problem but is still shorter than analytical methods. The major disadvantage
of the ACO technique lies with its uncertainty in time to convergence. Das et al. [33] and
Seker and Hocaoglu [34] used the artificial bee colony (ABC) method to compare results
to the PSO technique and discovered that ABC provides a higher-quality solution with a
faster convergence rate. The cuckoo search algorithm was used by Yuvaraj and Ravi [35]
to improve the voltage profile and reduce power losses in biomass and solar–thermal DG
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units. To optimize the system voltage profile and decrease line losses, Arya and Koshti [36]
used a shuffled frog leaping algorithm.

Rajaram et al. [37] used a plant growth simulation algorithm with objectives such
as decreasing the losses and improving the voltage profile. To reduce energy losses in a
distribution network system, Othman et al. [38] used the big bang–big crunch approach
to find appropriate DG units. The bat algorithm was suggested by Sudabattula and
Kowsalya [39] for the efficient allocation of solar-based DGs in the distribution network. To
decrease power losses while preserving voltage profile, Duong et al. [40] developed an effi-
cient biogeography-based optimization for optimal location and size of solar photovoltaic
distributed generating units.

Harris hawks optimization (HHO) is a new metaheuristic optimization algorithm
used in various applications, as tabulated in Table 1.

After a thorough search in credible academic publications, as shown in Table 1, to-date,
the efficient newly invented HHO method has not been utilized to optimal solar-based DG
allocation in a radial distribution system. As a result, this study compares and contrasts the
suggested work with well-known optimization techniques. Suitable DG unit placement
may bring significant benefits, including cost saving through a reduction in power loss and
increasing the purchasing power capacity.

Table 1. Application of HHO in different literatures.

Year Area of Application Research Objectives Research Findings Reference No.

2021 Design of truss
structures

The use of HHO to solve planar and
spatial trusses with discrete design
variables was investigated in this
paper. Five benchmark structural
issues were used to assess HHO’s

performance, and the resultant
designs were compared to 10

state-of-the-art algorithms.

The statistical results
demonstrate that HHO is quite

consistent and reliable when
related to truss structure

optimization.

[41]

2021 Prediction of slope
stability

The study’s major goal is to develop a
new metaheuristic optimization

approach HHO for improving the
accuracy of the traditional multilayer
perceptron technique in estimating the

factor of safety in the presence of
inflexible foundations. Four slope
stability conditioning elements are
taken into account in this method:

slope angle, rigid foundation position,
soil strength, and applied surcharge.

The findings revealed that
employing the HHO improves
the ANN’s prediction accuracy

while analyzing slopes with
unknown circumstances.

[42]

2021 Power flow controller

To reduce oscillations in single and
multimachine power systems, a HHO

tuned dual interval type-2 fuzzy
lead–lag (Dual-IT2FLL)-based

universal power flow controller
(UPFC) is suggested. The suggested

damping controller uses speed
deviation, a distant input signal for
stability enhancement, to coordinate
between the modulation index (MI)
and phase angle of series and shunt

converters of UPFC at the same time.

Different performance indicators
(PIs) such as mean, standard
deviation, overshoots, and

settling time are used to
demonstrate that the proposed
HHO-tuned dual-IT2FLL-based
UPFC outperforms others under
various operating circumstances.

[43]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2021
Shear strength

estimation of reinforced
concrete walls

The authors suggested three novel
models for estimating peak shear

strength using a mix of support vector
regression and metaheuristic

optimization techniques including
teaching–learning-based optimization
(TLBO), PSO, and HHO. The authors
compiled a huge database with 228

RC shear wall experimental data and
eight input parameters.

The suggested models may be
used to estimate the shear
strength of RC shear walls,
potentially improving the
accuracy of forecasting the
structure’s behavior and

lowering construction costs.

[44]

2021 Screening of COVID-19
CT-scans

For the identification of COVID-19
from CT scan images, they suggested

a two-stage pipeline consisting of
feature extraction followed by feature

selection (FS). A state-of-the-art
convolutional neural network (CNN)

model based on the DenseNet
architecture was used for feature

extraction. The HHO method was
used in conjunction with SA and
Chaotic initialization to remove
noninformative and redundant

features. The SARS-COV-2 CT-Scan
dataset, which contains 2482 CT-scans,

was used to test the suggested
method.

The technique has an accuracy of
about 98.42% without the chaotic
initialization and the SA, which
improves to 98.85% when the

two are included, and therefore
outperforms several

state-of-the-art methods
including other

metaheuristic-based feature
selection (FS) algorithms. The

suggested approach reduces the
number of characteristics chosen

by around 75%, which is
significantly better than most

existing algorithms.

[45]

2021 Drug design and
discovery

The authors presented a modified
Henry gas solubility optimization

(HGSO) based on heavy-tailed
distributions (HTDs) utilizing
improved HHO. A dynamical

exchange between five HTDs were
employed in this work to increase the

HHO, which alters the exploitation
phase in HGSO.

According to the values of
accuracy, fitness value, and the

number of selected
characteristics, the results show
that dynamic modified HGSO
based on improved HHO has a

high quality.

[46]

2021 Prediction of
meteorological drought

In this study, the SVR (support vector
regression) model was combined with

two distinct optimization methods,
PSO and HHO, to forecast the

effective drought index (EDI) one
month in advance in various sites

across Uttarakhand, India.

The SVR-HHO model beat the
SVR-PSO model in forecasting
EDI, according to the results.
SVR-HHO performed better

than SVR-PSO in recreating the
median, interquartile range,

dispersion, and pattern of the
EDI calculated from observed

rainfall, according to visual
assessment of model.

[47]

2021 Wireless sensor
networks

The authors applied the HHO method
to sensor node localization and

compared their findings to other
well-known optimization techniques

that had just become available.

The suggested work’s simulation
results revealed that it
outperforms existing

computational intelligence
methods in terms of average
localization error, number of
localized sensor nodes, and

computational cost.

[48]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2021 Groundwater

The HHO method was used to
minimize the sum of absolute

deviation between observed and
simulated water-table levels in order
to optimize hydraulic conductivity
and specific yield parameters of a

modular three-dimensional
finite-difference (MODFLOW)

groundwater model.

According to the findings, the
Pareto parameter sets gave

appropriate results when the
maximum and minimum aquifer
drawdown were defined in the

range of –40 to +40 cm/year.

[49]

2020
Parameter optimization

of support vector
regression

The goal of this research is to look at
the SVR approach that is optimized

using HHO, also known as HHO-SVR.
To establish the performance of the
HHO-SVR, five benchmark datasets

were used to assess it. The HHO
method is also compared to various
metaheuristic algorithms and kernel

types.

The findings revealed that the
HHO-SVR has almost the same

performance as other techniques,
but is less time efficient.

[50]

2020 MPPT control

This study offers a new MPPT
controller based on HHO that

successfully tracks maximum power
in all weather situations.

The suggested HHO
outperforms the competition in
terms of maximum power point

tracking (MPPT) and
convergence at the global

maximum power point. The
HHO-based MPPT approach

provides faster maximum power
point (MPP) tracking, decreased

computing burden, and
increased efficiency.

[51]

2020 Data dissemination for
the Internet of Things

This study offers reliable data
dissemination for the Internet of

Things using HHO technique, which
is a safe data diffusion mechanism for

wireless sensor networks
(WSN)-based IoT that accoutered a
fuzzy hierarchical network model.

Simulation results show that
RDDI delivers a more

dependable approach and a
better result than the other three

disposals.

[52]

2020 Image segmentation

The HHO algorithm and the lowest
cross-entropy as a fitness function are
used to provide an efficient approach

for multilevel segmentation in this
work.

This HHO-based method
outperforms other segmentation
methods currently in use in the

literature.

[53]

2020 Modeling of
rainfall–runoff

To simulate the rainfall–runoff
connection, data-driven approaches

such as a multilayer perceptron (MLP)
neural network and least squares

support vector machine (LSSVM) are
combined with a sophisticated

nature-inspired optimizer, namely
HHO.

All of the enhanced models with
HHO outperformed other

integrated models with PSO in
predicting runoff changes,
according to the findings.

Furthermore, when HHO was
combined with LSSVM, a high

degree of accuracy in forecasting
runoff levels was attained.

[54]

2020 Image segmentation
The HHO technique is used in this

study to find reduced pulse coupled
neural network settings.

The results of the experiments
show that the HHO method is

superior in image segmentation.
[55]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2020
Prediction of scour

depth downstream of
the ski-jump spillway

To forecast scour depth (SD)
downstream of the ski-jump spillway,
an alternative to standard techniques
was used in this study. To improve the

performance of an artificial neural
network (ANN) to predict the SD, a
novel optimization technique HHO

was suggested.

The ANN-HHO model beat
other existing models during the
testing period, according to the

findings. Furthermore, graphical
evaluation reveals that the
ANN-HHO model is more

accurate than other models in
predicting SD near the ski-jump

spillway.

[56]

2020 Optimal power flow

By addressing single and
multiobjective Optimal Power Flow

(OPF) problems, this study provides a
unique nature-inspired and

population-based HHO approach for
reducing emissions from thermal

producing sources.

The findings are compared to
artificial intelligence (AI), whale
optimization algorithm (WOA),

salp swarm algorithm (SSA),
moth flame (MF), and glow
warm optimization (GWO).

Furthermore, according to the
study on DG deployment,

system losses and emissions are
decreased by 9.83% percent and

26.2%, respectively.

[57]

2020 Water distribution
network

A model based on the HHO was
created to optimize the water

distribution network for a one-month
period, in Homashahr, Iran.

The findings showed that the
HHO algorithm performed

effectively in the challenge of
optimal water supply network

design. This method was
equivalent to approximately 12%
of the optimization in the end.

[58]

2020 Design of load
frequency control

The best settings of the
proportional-integral (PI) controller

modeling load frequency control
(LFC) in a multi-interconnected

system with renewable energy sources
are evaluated using a reliable

technique-based HHO.

The collected findings proved
the validity and superiority of

the suggested HHO-based
strategy for developing LFC for
the systems under consideration.

[59]

2019 Design of microchannel
heat sinks

For the reduction of entropy
production, a unique Harris hawks
optimization technique is used to

microchannel heat sinks. The slip flow
velocity and temperature jump

boundary conditions were taken into
account when creating the

microchannel heat transfer model.

The Harris hawks method
outperforms the other

algorithms in terms of reducing
microchannel entropy

production.

[60]

Motivation and Contributions

The primary motivation behind this work is to design a novel technique for appropri-
ate allocation and sizing of solar photovoltaic DGs to reduce power losses and enhance
the voltage profile. Worldwide sustainable development is possible through the gener-
ation of electricity from renewable energy resources. The Indian government has taken
a number of steps to stimulate the use of renewable energy (RE) resources, including
setting state-specific RE objectives in the form of solar purchase obligations (SPO) and
renewable purchase obligations (RPO). Every state has set a goal to fulfill a significant
part of its overall energy demand from renewable resources under the provisions of RPO
and SPO. The solar photovoltaic DGs (PV DG) considered in this paper are among all
the renewable energy resources; solar energy has received major importance due to its
abundant availability worldwide. Although researchers have previously used a variety of
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approaches to tackle the problem of DG allocation and size in the power system network,
the authors have not considered the actual field installation capacity of PV DG; instead,
they have considered only the actual power to be injected. Whereas the output of the solar
PV DG is a meteorological parameter and PV module parameter-dependent system, thus,
it is imperative to calculate the actual size of the PV DG to be installed to inject the targeted
power into the grid. The contribution of this work is presented below:

• The proposed HHO has been tested with complex benchmark functions;
• Assign a novel approach for appropriate allocation and sizing of PV DGs in IEEE 33

bus and IEEE 69 bus power system network using HHO to minimize the power losses
and improve the voltage profile;

• Compare the simulation outcomes of the proposed technique together with the re-
cently available methods such as the teaching–learning-based optimization (TLBO),
genetic algorithm (GA), particle swarm optimization (PSO), quasi-oppositional TLBO
(QOTLBO), comprehensive teaching learning-based optimization (CTLBO), CTLBO
ε-method, improved multiobjective elephant herding optimization (IMOEHO), im-
proved decomposition-based evolutionary algorithm (I-DBEA), bat algorithm (BA),
simulated annealing (SA), invasive weed optimization (IWO), bacterial foraging opti-
mization algorithm (BFOA), and moth–flame optimization (MFO) to determine the
effectiveness of the proposed algorithm over the exciting ones;

• Calculate the actual/practical size of the solar PV DG units to be installed to inject the
targeted power into the power system grid.

The remainder of this article is structured in the following order. The mathematical
formulation of the problem with various constraints is detailed in Section 2. The detail of
the proposed HHO and the solution approach for the considered problem is presented in
Section 3. In Section 4, the problem is tested with a benchmark function and with standard
test systems. Section 5 deals with the practical calculation of solar PV DG. Section 6
concludes with some final observations together the breadth of future development.

2. Formulation of the Mathematical Problem
2.1. Loss Minimization

The objective of the present work is to relax the congestion in power lines along
with determining the proper size and optimal location of DGs while keeping the losses
(202.67 kW and 224.9 kW for IEEE 33 and IEEE 69 bus RDS, respectively) to the minimum.
The major objective function (OF) is framed in the form of total system losses. Therefore,
the OF may be stated by Equation (1).

OF = Minimize(PLoss) (1)

where

PLoss =
n

∑
k=1

gk

(
V2

i + V2
j − 2Vi ×Vj × cos

(
δi − δj

))
(2)

The various constraints of the proposed optimization problem are as stated in Equa-
tions (3)–(7).

Vmin
i ≤ Vi ≤ Vmax

i (3)

Pmin
DG ≤ PDG ≤ Pmax

DG (4)

Qmin
DG ≤ QDG ≤ Qmax

DG (5)

Qmin
Gi
≤ QGi ≤ Qmax

Gi
(6)

Pmin
Gi
≤ PGi ≤ Pmax

Gi
(7)

where gk is the conductance of branch k; Vi and Vj are the magnitude of voltages at
sending and receiving bus, respectively; PDG and QDG represent active and reactive power

181



Energies 2021, 14, 5206

generation by DG; δi is the phase angle at ith and jth bus, respectively; and PGi represents
active power generation at ith bus.

In Equations (3)–(7), the superscripts max and min represent the upper and the lower
limits of the respective variables. The major objective here is to reduce congestion in lines
and minimize losses.

2.2. Practical Sizing of PV DG

The power output of the PV module depends on meteorological parameters (such
as ambient temperature and solar irradiance at the particular location) and on the pa-
rameters of the PV modules. To address the dependence on solar irradiation, the beta
probability density function was used to model the uncertain nature of solar irradiance.
The distribution of solar irradiance may be written as Equation (8) [61].

fb(s) =

{
Γ(α+β)

Γ(α)Γ(β)
s(α−1)

0
(1− s)(β−1) 0 ≤ s ≤ 1 & α, β ≥ 0 (8)

β = (1− µ)

(
µ(1− µ)

σ2 − 1
)

(9)

α =
µβ

(1− µ)
(10)

where Γ(◦) is defined as the gamma function, s is defined as the random variable of solar
irradiance, fb(s) is defined as the beta distribution function of s, α and β are defined as the
parameters of the beta distribution function, µ and σ are defined as the mean and standard
deviation of s.

Equations (11)–(13) have been used to address the effect of ambient temperature on the
output of the PV module. The temperature of the PV module is influenced by the nominal
operating module temperature (NOMT), solar irradiance, and ambient temperature, as
shown by Equation (11) [62].

TM = TA + s
(

NOMT− 20
0.8

)
(11)

The output current of the PV module is a function of the solar irradiance, short-circuit
current, temperature coefficient of current, and temperature of PV module, shown by
Equation (12) [63].

IM = s[ISC + εi(TM − 25)] (12)

The voltage of the PV module is a function of the open-circuit voltage, voltage temper-
ature coefficient of the module, and its temperature, as shown by Equation (13).

VM = [VOC − εv(TM − 25)] (13)

FFM =
Impp ×Vmpp

ISC ×VOC
(14)

Considering aforesaid environmental and PV module parameters correction factors,
Equation (14) will be modified to Equation (15).

FFM =
Impp ×Vmpp

IM ×VM
(15)

The output power of PV module, operating at maximum power point at solar irradi-
ance s, may be estimated using Equation (16).

Po(s) = Impp ×Vmpp = FFM × IM ×VM (16)
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The output power of the PV plant, operating at maximum power point at solar
irradiance s may be estimated using Equation (17) [64].

Po(s) = NM × FFM × IM ×VM (17)

The power output from the PV module considering maximum power point may be
obtained by Equations (14) and (15). The variables used are defined as follows: TM is
the temperature of the PV module; TA is the ambient temperature; NOMT is the nominal
operating module temperature; IM is the current of the PV module; VM is the voltage of the
PV module; ISC is the short-circuit current of PV module; VOC is the open-circuit voltage
of PV module; εi is the temperature coefficient of current; εv is the temperature coefficient
of voltage; Impp is the current at maximum power point at standard test condition (STC);
Vmpp is the voltage at maximum power point at STC; FFM is defined as the fill factor; NM
denotes the number of PV modules used in the PV plant; and Po(s) is the power output
from the PV module (NM = 1)/plant at solar irradiance s.

The expected output power from the PV module considering the effect of solar irradi-
ance s and ambient temperature TA may be calculated using Equation (18), and the expected
total output power for a specific time period may be calculated using Equation (19) [64].

EOP(s) = Po(s)× fb(s) (18)

ETOP =

1∫

0

EOP(s) ds (19)

Monocrystalline silicon PERC PV module of the following specifications as presented
in Table 2, was used for calculation [65].

εi = Ti × Impp (20)

εv = Tv ×Vmpp (21)

Table 2. PV module parameters.

Parameter Specification

Nominal power—Pmpp (Wp) 350
Vmpp (V) 38.9
Impp (A) 9.0
VOC (V) 46.7
ISC (A) 9.72

Tv (Temperature coefficient of voltage) −0.30 %/◦C
Ti (Temperature coefficient of current) 0.066 %/◦C

NOMT 44.6 ◦C
Area 2.01 m2

To convert the temperature coefficient of voltage and current from %/◦C (Ti and Tv)
to A/◦C (εi) and V/◦C (εv), Equations (20) and (21) are used, respectively. Impact of NOMT
and irradiance on the temperature, voltage, and current of the PV module are depicted in
Figure 1.
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Considering the parameters effecting the output of PV module, it is observed that the
voltage and the current of the PV module varies from 45.85 to 42.62 V and 0.49 to 9.43 A,
respectively, with the variation of solar irradiance. The temperature of the PV module
varies from 32.3 to 60 ◦C as irradiance changes, as shown in Figure 1.

The ambient temperature, mean, and standard derivation of solar irradiance during
a specified time period are considered as 30.76◦, 0.52 kW/m2, and 0.21 kW/m2, respec-
tively [61]. The expected output power from the PV module considering the effect of solar
irradiance and ambient temperature, associated environmental parameters, PV module
parameters and modeling parameters are tabulated in Table 3.

Table 3. The expected output power from the PV module considering correction factors.

Environmental Parameters PV Module Parameters
Considering Correction Factors Modeling Parameters Output

s TA IM VM fb(s) β Po(s) EOP(s)

0.05 30.76 0.49 45.85 2.16 0.14 17.26 2.38
0.15 30.76 1.47 45.49 2.16 0.56 51.48 28.66
0.25 30.76 2.45 45.13 2.16 0.98 85.28 83.44
0.35 30.76 3.44 44.77 2.16 1.32 118.66 156.88
0.45 30.76 4.43 44.41 2.16 1.54 151.62 234.05
0.55 30.76 5.42 44.05 2.16 1.62 184.16 297.55
0.65 30.76 6.42 43.70 2.16 1.52 216.27 329.15
0.75 30.76 7.42 43.34 2.16 1.26 247.95 311.49
0.85 30.76 8.42 42.98 2.16 0.83 279.20 230.65
0.95 30.76 9.43 42.62 2.16 0.27 310.02 83.51

Average 175.78

The power output from the PV module Po(s) and fb(s) with respect to solar irradiance
s is presented in Figure 2.
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Figure 2. Output power from the PV module at different solar irradiance s.

The expected total power obtained from a single PV module is the average of EOP(s),
which is shown in Table 3 and depicted in Figure 3, i.e., 175.78 W.
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Figure 3. Expected output power from the PV module.

3. Proposed HHO and Solution Approach
3.1. HHO: Features

The Harris hawks is a recent population-based and gradient-free metaheuristic [66],
hence, equally applicable to all optimization models or problems. The different phases of
Harris hawks formulation are described in the next subsections.

3.2. Exploration Phase

In this phase, Harris hawks randomly search on locations and adopt a wait and watch
strategy to catch the prey, as per Equation (22) [66].

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

(22)

185



Energies 2021, 14, 5206

where Xrabbit is the rabbit position and X (t+1) is the hawks’ position for next iteration; x
(t) shows the current position of the hawks. The LB and UB are maximum and minimum
of decision variables. Xrand(t) is a randomly selected hawk from the current position. The
random number in the range (0,1) is shown by the r(1–4).

Xm(t) =
1
N

N

∑
i=1

Xi(t) (23)

where Xm is the mean of the current population of hawks while N indicates the hawks’
total population.

Assuming the energy of the rabbit is given by

E = 2Eo

(
1− t

T

)
(24)

E, Eo, and T represent the escaping energy of prey, primary energy, and the maximum
number of iterations taken, respectively.

3.3. Exploitation Phase
3.3.1. Soft Besiege

This behavior is demonstrated by Equation (25) [66].

X(t + 1) = ∆X(t)− E|JXrabit(t)− X(t)| (25)

∆X(t) = Xrabit(t)− X(t) (26)

where X(t) and J represent the difference between the position vector of the rabbit and the
current location in iteration and the random jump strength of the rabbit, respectively.

3.3.2. Hard Besiege

This behavior is showcased by (27).

(t + 1) = Xrabit(t)− E|∆X(t)| (27)

3.3.3. Soft Besiege along with Rapid Drives

In this behavior, it is assumed that hawks may choose their next step provided by the
rule given in Equation (28) [66].

Y = Xrabit(t)− E|JXrabit(t)− X(t)| (28)

Z = Y + S× LF(D) (29)

D, S, and LF are problem dimensions, a random number of order (1 × D), and levy
flight function, respectively. In addition, u and v are random numbers (0 to 1 range), while
beta is the default constant value (assuming 1.5).

LF(x) = 0.01× U × σ

|ϑ|
1
β

, σ =




Γ(1 + β)× sin
(

πβ
2

)

Γ
(

1+β
2

)
× β × 2(

β−1
2 )




1
β

(30)

Soft besiege updates the position of the hawks by

X(t + 1) =

{
Y, i f F(Y) < F(X(t))
Z, i f F(Z) < F(X(t))

(31)
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3.3.4. Hard Besiege along with Rapid Drives

Hard besiege condition given by the following rule:

X(t + 1) =

{
Y, i f F(Y) < F(X(t))
Z, i f F(Z) < F(X(t))

(32)

Y = Xrabit(t)− E|JXrabit(t)− Xm(t)| (33)

Z = Y + S× LF(D) (34)

The step-by-step procedure of HHO is summarized to the pseudocode, as shown in
Figure 4 [66].

Energies 2021, 14, x FOR PEER REVIEW 14 of 29 
 

 

𝑋(𝑡 + 1) = {
𝑌, 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍, 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))
 (32) 

𝑌  = 𝑋𝑟𝑎𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)| (33) 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷) (34) 

The step-by-step procedure of HHO is summarized to the pseudocode, as shown in 

Figure 4 [66]. 

Start

End

Input system data

Initialize population, 
termination criterion, and design 

variables 

Obtain initial solution and 
fitness function using Eq. 35

|E| => 1

Exploitation Phase:
Update position using 
Eq. (25, 27, 31 & 32) 

Exploration Phase:
Update position using 

Eq. 22

Termination 
criterion satisfied?

Calculate E using Eq. 24 

YesNo

Obtain solution with updated 
position 

Yes

NO

 

Figure 4. Flow chart of HHO. Reproduced from [66], Elsevier: 2019. Figure 4. Flow chart of HHO. Reproduced from [66], Elsevier: 2019.

187



Energies 2021, 14, 5206

3.4. Solution Approch
3.4.1. HHO for PV DG Placement and Location

The major goal of this research is to determine the best placement and size for numer-
ous PV DGs with the least amount of network power loss and a better voltage profile. In
this work, the inequality constraints are converted to the penalty functions (PFs), and these
PFs are added to the OF to construct the fitness function (FF) defined in Equation (35).

Minimum FF = OF + PF×
VB

∑
j=1

(
∆Vj

)2 (35)

Here, FF is essential to be minimized in order to get minimum loss value, VB represents
the set of overloaded lines and voltage violated load buses, and PF represents the penalty
factor. The violation in inequality constraints such as load bus voltage and line power
flows was handled using the penalty function approach. PF that represents penalty factor
was taken as 10,000 throughout the simulation process.

3.4.2. Computational Practice of HHO for DG Location and Values

Step 1 Read the input data of the system, such as the maximum number of iterations,
number of PV DG units, and population size.
Step 2 Generate the value of the size of PV DG within their upper (DGmax) and lower limits
(DGmin). The same is shown in Equation (36).

DGi = DGmin
i + rand×

(
DGmax

i − DGmin
i

)
(36)

Here, DGi represents the size of ith DG unit. Now, constitute a vector Xj, that contains
the possible locations (LOC) and size of DGs as mentioned in Equation (37).

Xj =
[
DGj,1, DGj,2, . . . . . . . . . , DGj,n, LOCj,1, LOCj,2, . . . . . . . . . , LOCj,n

]
(37)

The LOC is generated randomly. Initial solution set X is then formulated as shown in
Equation (38).

X = [X1, X2, . . . . . . . . . . . . , XN ] (38)

Step 3 Evaluation of the fitness function is processed using Equation (35) for individual
Harris hawks, and the best hawk location is acknowledged.
Step 4 Calculate E using Equation (24).
Step 5 Exploration phase: Update the location of Harris hawks using Equation (22).
Step 6 Exploitation phase: Update the position using Equation (25), (27), (31), and (32).
Step 7 Once the number of iterations reaches the maximum value, then terminate. Else, go
back to Step 3.

4. Simulation Results and Discussions
4.1. Testing Strategies

The simulations were run on a MATLAB 9.9 computer with an Intel i3 CPU running at
2.4 GHz and 4 GB of RAM. The software utilized is MATPOWER 7.2, which is a well-known
power modeling tool.

4.2. Case 1

In order to establish an algorithm, the proposed HHO was tested with selected
extremely complex benchmark functions taken from CEC-2014 (see Table 4). The results
obtained are tabulated in Table 5. The HHO seems to provide very competitive results as
compared to other recent metaheuristic optimization techniques.
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Table 4. Summary of the CEC-2014 benchmark functions considered.

Type ID Functions Fi = Fi(x)

Unimodal
F1 Rotated High Conditioned Elliptic 100
F2 Rotated Bent Cigar 200

Simple Multimodal F3 Shifted and Rotated Rastrigin’s 900
F4 Shifted Schwefel’s 1000

Hybrid F5 Hybrid Function 3 (N = 4) 1900
F6 Hybrid Function 4 (N = 4) 2000

Composition F7 Composition Function 8 (N = 3) 3000

Table 5. Comparative experimental outcomes on selected benchmark functions.

ID Parameters PSO TLBO CS GSA SFS HHO

F1

max 4.56 × 108 8.93 × 108 5.51 × 108 5.31 × 107 1.17 × 106 3.01 × 105

min 2.47 × 108 4.39 × 107 1.18 × 108 4.56 × 106 1.54 × 105 1.43 × 104

median 3.31 × 108 3.42 × 108 3.10 × 108 8.37 × 106 6.16 × 105 1.52 × 105

std 7.92 × 107 3.42 × 108 1.05 × 108 1.32 × 107 2.35 × 105 1.23 × 105

F2

max 3.63 × 1010 4.06 × 104 2.42 × 104 1.61 × 104 2.00 × 102 2.00 × 102

min 6.00 × 107 6.00 × 103 3.09 × 102 3.47 × 103 2.00 × 102 2.00 × 102

median 1.55 × 1010 1.52 × 104 8.08 × 103 8.38 × 103 2.00 × 102 2.00 × 102

std 1.43 × 1010 8.65 × 103 6.00 × 103 2.90 × 103 7.89 × 10−9 0. 00

F3

max 1.24 × 103 1.12 × 103 1.34 × 103 1.10 × 103 9.84 × 102 9.03 × 102

min 1.13 × 103 1.06 × 103 1.15 × 103 1.02 × 103 9.35 × 102 9.20 × 102

median 1.18 × 103 1.09 × 103 1.25 × 103 1.06 × 103 9.61 × 102 9.19 × 102

std 4.33 × 10 0.25 × 102 4.41 × 10 1.74 × 10 1.11 × 10 1.017 × 10

F4

max 7.90 × 103 5.92 × 103 3.21 × 103 5.25 × 103 2.71 × 103 1.05 × 103

min 6.26 × 103 4.14 × 103 1.36 × 103 3.45 × 103 1.02 × 103 1.00 × 103

median 7.18 × 103 5.06 × 103 2.17 × 103 4.37 × 103 1.49 × 103 1.01 × 103

std 5.98 × 102 7.89 × 102 4.33 × 102 3.61 × 102 3.62 × 102 1.45 × 10

F5

max 2.10 × 103 1.91 × 103 2.04 × 103 2.00 × 103 1.91 × 103 1.92 × 103

min 1.91 × 103 1.90 × 103 1.91 × 103 1.91 × 103 1.90 × 103 1.90 × 103

median 1.97 × 103 1.91 × 103 1.92 × 103 2.00 × 103 1.91 × 103 1.91 × 103

std 7.07 × 10 1.65 3.30 × 10 3.43 × 10 1.47 1.46

F6

max 4.37 × 103 5.34 × 103 6.02 × 104 6.82 × 104 2.10 × 103 2.75 × 103

min 2.55 × 103 2.30 × 103 2.22 × 104 2.32 × 103 2.02 × 103 2.00 × 103

median 3.00 × 103 2.74 × 103 3.68 × 104 1.77 × 104 2.06 × 103 2.26 × 103

std 5.32 × 102 7.00 × 102 8.42 × 104 1.39 × 104 2.60 × 10 2.06 × 102

F7

max 9.70 × 105 1.56 × 106 5.08 × 105 1.14 × 105 7.66 × 103 5.62 × 103

min 6.90 × 104 2.08 × 104 6.26 × 104 1.22 × 104 4.25 × 103 3.56 × 103

median 3.35 × 105 6.56 × 105 1.77 × 105 1.46 × 104 5.63 × 103 4.71 × 103

std 3.63 × 105 5.64 × 105 9.11 × 104 1.84 × 104 7.38 × 102 1.30 × 103

4.3. Case 2

The proposed HHO-based approach is applied to find the suitable location and
capacity of the DGs in the IEEE 33-bus RDS test system where the network and load data
may be obtained from [67]. The single line diagram of the IEEE 33-bus RDS is shown in
Figure 5. IEEE 33-bus RDS has a total of 33 buses, among which 32 are load buses and 1 is
a generator bus. It can be visualized from Figure 5 that at bus no. 1 generator is connected;
the other buses may have any type of load connected, as per the requirement. The total
active power demand is 3.72 MW while reactive is 2.3 MVAR. Total power loss of the
system is 202.67 kW.
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Figure 5. Single line diagram of IEEE 33-bus RDS.

In order to find candidate buses for locating a PV DG using this approach for each
individual bus, it is assumed that there is a PV DG at that bus at a time. For optimal
sizing of a PV DG at this stage, it is assumed that the PV DG may produce electric power
in all possible ranges (e.g., 0–1 MW). The proposed HHO algorithm is applied for the
minimization of overall loss as the objective function of the problem. First, only one PV
DG is used to relax the congestion in lines, and the results obtained are tabulated in Table 6.
With the application of proposed HHO on distribution problem, the losses are reduced to
129.2 from 202.67 kW with only one DG in installation of size 0.95 MW.

Table 6. Variation in power loss with change in an optimal allocation of PV DGs.

Test System Buses Count Array Location Ploss (kW) Loss Reduction
(%)

33 bus system
1 30 129.20 38.76
2 12, 30 86.90 58.81
3 13, 24, 30 72.10 64.42

For further improvement, the problem is tested by installing two and three PV DGs
in the power network. The results obtained are presented in Table 6. The overall active
power losses decreased to 86.9 and 72.10 kW with the application of two and three PV DGs,
respectively, using HHO. The comparative results are portrayed in Table 7 in terms of the
best location and size of PV DGs. The locations suggested by HHO to install PV plants in
IEEE 33 bus are depicted in Figure 6.

Table 7. Comparative results for optimal location and values of PV DGs corresponding to case 2.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

Base case - - - - 202.67 0.00

TLBO [68] 3
12 1.1826

3.560 124.70 38.4728 1.1913
30 1.1863

GA [69] 3
11 1.5000

2.994 106.30 47.5529 0.4230
30 1.0710

PSO [69] 3
8 1.1770

2.989 105.30 48.0413 0.9820
32 0.8300
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Table 7. Cont.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

GA/PSO [69] 3
11 0.9250

2.998 103.40 48.9816 0.8630
32 1.2000

QOTLBO [68] 3
13 1.0834

3.470 103.40 48.9826 1.1876
30 1.1992

CTLBO
ε-method [70] 3

13 1.1926
3.693 96.17 52.5525 0.8706

30 1.6296

IMOEHO [71] 3
14 1.0570

3.852 95.00 53.1324 1.0540
30 1.7410

I-DBEA [72] 3
13 1.0980

3.913 94.85 53.2024 1.0970
30 1.7150

CTLBO [70] 3
13 1.0364

3.721 85.96 57.5924 1.1630
30 1.5217

BA [39] 3
15 0.81630

2.721 75.05 62.9725 0.95235
30 0.95235

HHO
[Proposed] 3

13 0.8311
2.731 72.10 64.4224 0.9500

30 0.9500
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The size and location suggested by HHO (refer to Table 7) provide maximum reduction
in losses as compared to TLBO [68], GA [69], PSO [69], GA/PSO [69], QOTLBO [68], CTLBO
ε-method [70], IMOEHO [71], I-DBEA [72], CTLBO [70], and BA [39]. In addition, the
voltage graph of all the buses obtained after utilization of PV DGs is showcased in Figure 7.
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The bus voltages are obtained from the load flow analysis. The bus voltage profile improves
significantly under the application of three PV DGs at their respective optimal locations.
The variation of fitness function against the number of iterations for installation with three
PV DGs using HHO is showcased in Figure 8. The iterative graph shows that the HHO
converges to an optimal solution value with very few iterations.
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Figure 8. Convergence characteristics of fitness function pertaining to case 2 (with three PV DG).
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4.4. Case 3

To test the effectiveness of the HHO on a larger system, the proposed approach is
tested to find the suitable location and capacity (size) of the DGs in the IEEE 69 bus RDS
test system where the load and branch data values may be obtained from [73]. The single
line diagram of the IEEE 69-bus RDS is shown in Figure 9. IEEE 69-bus RDS consists of
69 buses, including 68 load buses and 1 generator bus. The generator is connected at bus
no. 1 and a load of the required amount can be connected to the other buses. The total
active power demand is 3.80 MW while reactive is 2.69 MVAR. Total power loss of the
system is 224.9 kW.

Energies 2021, 14, x FOR PEER REVIEW 21 of 29 
 

 

 

Figure 9. Single line diagram of IEEE 69-bus RDS. 

For addressing the most suitable candidate buses for locating a PV DG using this 

approach for each individual bus, it is assumed that there is a PV DG at that bus at a time. 

For optimal sizing of a PV DG at this stage, it is assumed that the PV DG may produce 

electric power in all possible ranges (e.g., 0–1 MW). The proposed HHO algorithm is ap-

plied for the reduction/minimization of overall loss as the objective function of the 

problem. First, only one PV DG is used to relax the congestion and reduce losses in lines, 

and the results obtained are tabulated in Table 8. The installation of one optimum PV DG 

the line losses reduced by 48.86% with DG size of 0.95 MW. 

Table 8. Variation in power loss with change in an optimal allocation of PV DGs. 

Test System Bus Count Array Location DG Size (MW) Ploss (kW) Loss Reduction (%) 

69 bus system 

1 61 0.95 115 48.866 

2 61, 62 0.95, 0.9118 83.4 62.916 

3 17, 61, 62 0.5329, 0.95, 0.822 71.8 68.074 

For further improvement, the problem is tested by installing two and three PV DGs 

in the power network. The results obtained are presented in Table 8. The overall active 

power losses decreased to 71.80 kW with the application of three PV DGs using HHO. 

The comparative results are portrayed in Table 9 in terms of the best location and size of 

PV DGs. The locations suggested by HHO to install PV plants in the IEEE 69 bus are de-

picted in Figure 10. 

Table 9. Comparative results for optimal location and values of PV DGs corresponding to case 3. 

Optimization  

Method 
Bus Count Array Location DG Size (MW) 

Total DG Size 

(MW) 
Ploss (kW) 

Loss Reduction 

(%) 

Base case - - - - 224.9 0.00 

GA [69] 3 

21 0.9297 
2.9897 89 60.43 62 1.0752 

64 0.9848 

PSO [69] 3 
61 1.1998 

2.9879 83.2 60.43 
63 0.7956 

Figure 9. Single line diagram of IEEE 69-bus RDS.

For addressing the most suitable candidate buses for locating a PV DG using this
approach for each individual bus, it is assumed that there is a PV DG at that bus at a
time. For optimal sizing of a PV DG at this stage, it is assumed that the PV DG may
produce electric power in all possible ranges (e.g., 0–1 MW). The proposed HHO algorithm
is applied for the reduction/minimization of overall loss as the objective function of the
problem. First, only one PV DG is used to relax the congestion and reduce losses in lines,
and the results obtained are tabulated in Table 8. The installation of one optimum PV DG
the line losses reduced by 48.86% with DG size of 0.95 MW.

Table 8. Variation in power loss with change in an optimal allocation of PV DGs.

Test System Bus Count Array Location DG Size (MW) Ploss (kW) Loss Reduction
(%)

69 bus system
1 61 0.95 115 48.866
2 61, 62 0.95, 0.9118 83.4 62.916
3 17, 61, 62 0.5329, 0.95, 0.822 71.8 68.074

For further improvement, the problem is tested by installing two and three PV DGs
in the power network. The results obtained are presented in Table 8. The overall active
power losses decreased to 71.80 kW with the application of three PV DGs using HHO. The
comparative results are portrayed in Table 9 in terms of the best location and size of PV
DGs. The locations suggested by HHO to install PV plants in the IEEE 69 bus are depicted
in Figure 10.
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Table 9. Comparative results for optimal location and values of PV DGs corresponding to case 3.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

Base case - - - - 224.9 0.00

GA [69] 3
21 0.9297

2.9897 89 60.4362 1.0752
64 0.9848

PSO [69] 3
61 1.1998

2.9879 83.2 60.4363 0.7956
17 0.9925

TLBO [68] 3
13 1.0134

3.1636 82.172 63.4661 0.9901
62 1.1601

GA/PSO [69] 3
63 0.8849

2.988 81.1 63.9461 1.1926
21 0.9105

QOTLBO [68] 3
15 0.8114

2.9606 80.585 64.1761 1.1470
63 1.0022

CTLBO
ε-method [70] 3

12 0.9658
3.3301 79.66 64.5825 0.2307

61 2.1336

I-DBEA [72] 3
61 2.1487

3.32 78.347 65.1619 0.4717
11 0.7126

SA [74] 3
18 0.4204

2.1813 77.09 65.7260 1.3311
65 0.4298

CTLBO [70] 3
11 0.5603

3.1411 76.372 66.0418 0.4274
61 2.1534

IWO [75] 3
27 0.2381

1.9981 76.12 66.1565 0.4334
61 1.3266

BFOA [76] 3
27 0.2954

2.0881 75.21 66.5665 0.4476
61 1.3451

MFO [77] 3
61 2.0000

2.9625 72.37 67.8218 0.3803
11 0.5822

HHO
[Proposed] 3

17 0.5329
2.3049 71.8 68.0761 0.9500

62 0.8220

The size and location suggested by HHO (refer to Table 9) provides maximum reduc-
tion in losses as compared to GA [69], PSO [69], TLBO [68], GA/PSO [69], QOTLBO [68],
CTLBO ε-method [70], I-DBEA [72], SA [74], CTLBO [70], IWO [75], BFOA [76], and
MFO [77]. In addition, the voltage graph of all the buses obtained after utilization of PV
DGs is showcased in Figure 11. The bus voltages are obtained from the load flow analysis.
The bus voltage profile improves significantly under the application of three PV DGs at
their respective optimal locations. The variation of fitness function against the number of
iterations for installation with three PV DGs using HHO is showcased in Figure 12. The
iterative graph shows that the HHO converges to an optimal solution value with very few
iterations.
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5. Practical PV DG Size Analysis

The optimum allocation of PV DGs using HHO indicates (refer to Table 7) that PV
DGs need to be installed at bus number 13, 24, and 30 in case 2 and at bus number 17, 61
and 62 in case 3 (refer to Table 9) for optimum results. The analysis based on calculation
from Section 2.2 suggests that in case 2, power to be injected at bus number 13, 24, and 30
are 831, 950, and 950 kW, respectively. In case 3, power to be injected at bus number 17, 61,
and 62 are 532.9, 950, and 822 kW, respectively. Practically, to inject the targeted power as
calculated through HHO, DC overload needs to be considered as described in Section 2.2.
The actual field size of the PV DG plant and the number of PV modules required for case 2
and case 3 are tabulated in Table 10.

Table 10. Size of practical PV DG corresponding to case 2 and case 3 (with three PV DGs).

Case No. Bus No. Targeted Power to
Be Injected (kW)

Actual Size of PV
DG (kW)

DC Overload
(kW)

Number of PV
Modules

Case 2
13 831.0 1655.00 824.00 4728
24 950.0 1891.00 941.00 5404
30 950.0 1891.00 941.00 5404

Case 3
17 532.9 1061.08 528.18 3032
61 950.0 1891.59 941.59 5405
62 822.0 1636.73 814.73 4676

In case 2, the number of PV modules used in bus number 13 is 4728 to form a PV
array of capacity 1.655 MWP. The PV array of capacity 1.891 MWP is proposed to be
installed at bus number 24 and 30 using 5404 numbers of PV modules at each bus. In
case 3, the practical size of the PV plant to be installed at bus number 17, 61, and 62 are
of size 1.061, 1.892, and 1.637 MWP, respectively. The analysis shows that in practical
conditions, approximately 50% DC overload exists on PV DGs installation. The allocation
of PV DGs in-network without considering the practical size of the PV DG may lead to
underperformance.
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6. Conclusions

The proposed HHO-based approach is significantly effective in finding the optimum
number, optimal locations, and optimal sizes of DGs. On conventional IEEE 33 and
IEEE 69 bus test systems, the efficacy of the suggested technique is evaluated. With the
employment of optimally sized DGs at their optimum location, voltage profiles of load
buses are improved and the losses reduced noticeably. When more PV DGs are installed,
the system’s performance improves. The comparison with the TLBO, GA, PSO, QOTLBO,
CTLBO, CTLBO ε-method, IMOEHO, I-DBEA, SA, IWO, BFOA, MFO, and BA methods
shows that the proposed method performs comparatively better among all. The active
power loss is reduced by 64.42% and 68.07% using this approach with the installation
of three PV DGs in IEEE 33 and IEEE 69 bus RDS, respectively. The collected findings
demonstrate that the proposed technique reduces power loss by a greater proportion with
a smaller DG size when compared to other algorithms, and it offers better convergence
properties. According to the analysis, there is roughly a 50% DC overload on PV DGs
installations under real-world situations. The in-network allocation of PV DGs without
consideration of the PV DG’s realistic size may result in underperformance.

The HHO is established as a reliable optimization technique for tackling the congestion
problem of power systems with the application of DGs. The proposed method provides
an alternative way for both system operators and energy producers to tackle complex
problems such as voltage instability, transmission congestion, and huge system losses in an
impressive way. In addition, current work suggests the practical size of PV DGs that may
be employed for producing effective outcomes.
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Abstract: Regarding different challenges, such as integration of green energy and autonomy of micro-
grid (MG) in the multi-microgrid (MMG) system, this paper presents an optimized and coordinated
strategy for energy management of MMG systems that consider multiple scenarios of MGs. The
proposed strategy operates at two optimization levels: local and global. At an MG level, each energy
management system satisfies its local demand by utilizing all available resources via local optimization,
and only sends surplus/deficit energy data signals to MMG level, which enhances customer privacy.
Thereafter, at an MMG level, a central energy management system performs global optimization and
selects optimized options from the available resources, which include charging/discharging energy
to/from the community battery energy storage system, selling/buying power to/from other MGs,
and trading with the grid. Two types of loads are considered in this model: sensitive and non-sensitive.
The algorithm tries to make the system reliable by avoiding utmost load curtailment and prefers to
shed non-sensitive loads over sensitive loads in the case of load shedding. To verify the robustness of
the proposed scheme, several test cases are generated by Monte Carlo Simulations and simulated on
the IEEE 33-bus distribution system. The results show the effectiveness of the proposed model.

Keywords: cost optimization; differential evolution; energy management system; multi-microgrids
system; renewable generation

1. Introduction

Over the past decade, energy demand has considerably increased because of energy-
dependent lifestyle of humans, industries, and electric vehicles (EVs) [1]. Conventional
power systems are traditionally designed and operate on key reliability principles of
security and adequacy [2]; they cannot meet these enormous rising demands adequately.
The up-gradation of power systems to smart grids has been considered to address the
energy shortage problem, improve reliability, and facilitate the integration of renewable
energy sources (RESs). One of the significant ideas in smart grid is microgrids (MGs). An
MG is comprised of a segment of distribution framework, including distributed energy
resources (DERs), and diverse end clients. An MG can operate in two modes: grid-tied and
islanded modes. The MG generally works in grid-tied mode. In grid-tied mode, there is
bidirectional flow of energy and information between an MG and different MGs or the
power grid, i.e., an MG can absorb or supply power. In stand-alone mode, it only acts as a
source, i.e., only supplies power to the connected load. DERs include distributed generator
(DG) and distributed storage (DS) units with various limits. The DG can be controllable
DG (CDG) or renewable DG (RDG): PVs and WTs. Integration of RESs (PVs and WTs)
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participates in cost minimization and reduction in load shedding. In an MG, energy is
generated near the point of demand which reduces transmission and distribution losses, as
well as grid expansion deferral. The whole operation of the MG is supervised by the MG
energy management system (EMS) which incorporates power generation, energy storage,
and load management programs. A fast energy management strategy is required for sound
functioning of the MG with various DERs especially in autonomous mode [3–5]. The
EMS performs optimal scheduling of all available energy resources and energy storage
systems (ESSs) to meet load demands [6]. The optimal operation of smart grid is a great
challenge due to uncertainties in the DGs’ generation, load requirement, real-time prices,
and penetration of EVs. The MMGs system, the combination of different MGs, can deal
with these uncertainties, to a large extent. The main objectives of considering MMGs are
cost optimization and the reliability of the system.

Significant research has been conducted to put forward different algorithms and
optimization models for MMG-EMS. However, these studies have some limitations in
comparison to the vast literature available on the energy management of a single MG.
A multi-step hierarchical optimization algorithm based on a multi-agent system consid-
ering adjustable power and demand response (DR) was proposed in Reference [6]. In
Reference [7], authors proposed energy management of islanded DC MG with dual active
bridge converter-based power management units and control interface. The optimized
and coordinated strategies for energy management in MMGs were proposed, and a 69-bus
system was used for case study in Reference [8]. According to References [9,10], the MGs
could transfer energy and coordinate with each other to make the entire system reliable and
stable. In Reference [11], the impact of DR, which was synchronous with the MMG-based
operation of active distribution networks, was investigated, and the optimization problem
was solved with non-dominated genetic algorithm-II (NSGA-II) and tested on an IEEE
69-bus distribution system. A multi-period optimal dispatch model was suggested for a
distribution network with clustered MGs in Reference [12]; a modified hierarchical ge-
netic algorithm was used to solve bi-level optimization problem and tested on IEEE 14-bus
distribution system. A hierarchical decentralized system of systems has been studied for co-
ordinating multiple autonomous microgrid systems with grid connection in Reference [13].
In Reference [14], a hierarchical multi-agent EMS was proposed to increase the utilization
of RES based on the DR programs (DRP) and BESSs within the MG. Interconnected MMGs
(IMMGs) have numerous benefits over the single MGs. First, IMMGs have good economic
characteristics both in grid-tied [15,16] and in islanded modes [1,17] because energy sharing
fulfills load demands of the MGs with their own cheap RESs, thus reducing the cost of
generation based on fossil fuels and the power losses occurred in distant transference by
trading energy among the MGs which are close to each other. Second, the IMMGs are more
reliable than the single MG in reducing stress on the main grid.

In all of the aforementioned papers, the main focus of the research was to maximize the
utilization of the cheapest controllable DG (CDG) by considering its generation price. Few
papers considered the price of RESs to ensure maximum utilization of renewable sources.
Most of the papers have sufficiently discussed the DRP or demand-side management (DSM)
schemes to meet load demands. Moreover, some researchers have considered islanded
individual MG, islanded MMG system and grid-connected MMG system for their studies.
However, they overlooked the different combinations of MGs. The MMG system is the
most optimized network and can operate in two ways: either as a cooperative or as an
autonomous system. In the cooperative MMG system, the benefits of overall system will
be considered in that it is not necessary that each individual MG is getting profit, whereas,
in the autonomous MMG, each MG will consider and prefer its own benefit in that it is not
necessary that the overall system is in the most optimized form. Therefore, it is possible
that an MG is getting more benefit individually than to be a part of the cooperative MMG
system, and vice versa. Furthermore, the types of loads and the load shedding of sensitive
load have not been considered so far in the literature.
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In this paper, a hierarchical EMS for the optimal operation of MMGs is proposed; the
MGs are in islanded or MMGs connected mode. A two-level optimization, local and global,
has been formulated. In local optimization, each MG acts autonomously and maximizes
the utilization of RESs to meet load demand. In global optimization, there is a cooperative
operation between the MGs which optimizes the overall system. This optimization strategy
maximizes the utilization of cheap renewable energy, minimizes total cost, and reduces
the load shedding. The total loads have been divided into two sets: sensitive and non-
sensitive loads. The penalty prices of these loads are considered much higher than all other
prices to avoid load shedding, whereas the penalty prices of sensitive loads are considered
higher than that of non-sensitive loads to provide uninterrupted supply to sensitive load
during load shedding. The proposed model is tested on the IEEE 33-bus test system, and
the presented optimization problem is solved by differential evolution (DE) algorithm.
Moreover, we have studied the proposed methodology for selected cases in order to check
the robustness of the proposed scheme. For this purpose, we have used Monte Carlo
Simulations (MCS) to generate the random cases of all total possible cases and run the
numerical simulation of the proposed algorithm. Some of the major contributions of this
study are summarized as:

1. A new energy management model to formulate day-ahead energy management prob-
lem for optimal operations of MGs is proposed which allows autonomous operation
mode; each MG incorporates DG units (CDG, PV, and WT), a battery ESS (BESS), and
its own EMS.

2. A two-step optimization problem is proposed. In the first step, each MG-EMS consid-
ers maximum local consumption of renewable energy, whereas, in the second step, the
central EMS (CEMS) monitors the power mismatch, achieves optimal energy trading
among MGs, and reduces load shedding.

3. A hierarchical EMS is developed in which the algorithm makes price-based decisions
and selects the optimized options from the available resources. A methodology for the
assessment of the energy management strategy is illustrated, which enables marking
and examining the characteristics of MMGs.

4. Different scenarios and cases have been generated by MCS and tested on modi-
fied IEEE 33-bus distribution system; the results represent the stability of proposed
algorithm and advantages of energy management system.

The rest of the paper is organized as follows. Section 2 focuses on the proposed
MMG model and mathematical modeling of wind turbine and photovoltaic DGs. Section 3
explains the optimization formulation of the strategy: local and global. Section 4 refers to
the simulations and case study of the modified IEEE 33-bus distribution system. Section 5
discusses the results, including the proposed scenarios and the cases generated by MCS.
The conclusion is summarized in Section 6.

2. System Model
2.1. Configuration of Proposed MMG System

Figure 1 shows the proposed hierarchical two-step energy management system model.
Each MG includes CDG, PV, and WT units which have sufficient power generation to fulfill
its MG demands, BESS to reserve surplus energy in off-peak hours and utilize it in on-peak
hours to avoid load shedding, and an EMS to make all this management possible. The EMS
at the MG level ensures optimized energy management by utilizing all energy and ancillary
services. In this paper, two sets of loads are taken into consideration: sensitive loads
(SLs) and non-sensitive loads (NSLs). If a customer, in the event of low power generations,
requires to shed loads due to shortage of power, the NSL is curtailed, and the SL gets
uninterrupted supply. The CEMS is connected to each MG-EMS, central BESS (CBESS), and
to the grid to coordinate the overall system to make it reliable and minimize emergency
load shedding, which lowers the chance of system-collapse. The CEMS at the MMG level
ensures interconnection of different autonomous MGs. The EMS of every single MG is also
connected to the EMS of every other neighboring MG via power lines for power flow when
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needed. The MMG system, presented in Figure 1, has the following benefits: (i) they share
reserves in on-peak hours or in crucial condition (e.g., faults on generation side or sudden
increase in the load demand); (ii) economic dispatch in the whole system, either islanded or
grid-connected; and (iii) a CBESS can serve critical loads after utilizing all available options
and increases the resilience of the system.

Figure 1. Proposed energy management model.

For the purpose of simulations, wind speed and solar irradiance are modeled by
implementing the Weibull [18] and beta probability distributions, respectively. Each MG has
the freedom to take part in the MMG system. Otherwise, it can operate as an autonomous
single islanded entity.

2.2. Wind Turbine DGs
2.2.1. Wind Speed Modeling

Different probability distributions are used to model variations in the wind speed.
Weibull probability distribution is often used [19] and is also used in this paper. The
probability density function of this distribution is given in (1).

f (sw|a, b) =

{
b
ab sb−1

w e−(
sw
a )b

, for x > 0
0, for x ≤ 0

, (1)

where a and b are the scale and shape parameters of the Weibull distribution, respectively.
Maximum likelihood estimation (MLE) method is used to find these parameters.

2.2.2. Wind Power Model

The wind power DG-model used for obtaining electrical energy from the generated
wind speed data is given in (2) [19].

Pw =





Pr × sw−sci
sr−sci

, for sci ≤ sw ≤ sr

Pr, for sr ≤ sw ≤ sco

0, otherwise

. (2)

where Pw and Pr are power generated from a WT and rated capacity of a WT, respectively;
sw, sci, sco and sr are current, cut-in, cut-out and rated wind speeds, respectively.
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2.3. Photovoltaic DGs
2.3.1. Solar Irradiance Modeling

The beta distribution is usually used for modeling of the variations in the solar
irradiance [20]. For α, β > 0, the pdf of Beta distribution is given as (3).

f (sird|α, β) =





γ(α+β)
γ(α)γ(β)

× sird
(α−1)

×(1− sird)
(β−1), for 0 ≤ sird ≤ 1

0, for sird < 0

, (3)

where γ is the gamma function; α and β are known as the shape parameters of the beta
distribution. Both parameters are estimated by the MLE method.

2.3.2. Solar Power Model

The model of a PV panel given in (4)–(8) provides electric power obtained from the
generated solar irradiance samples [20].

Tcell = Tamb +

(
sird ×

Tnot − 20
0.8

)
, (4)

I = sird × (Isc + Ki × (Tcell − 25)), (5)

V = Voc − Kv × Tcell , (6)

FF =

(
Vmaxp × Imaxp

Voc × Isc

)
, (7)

Ps = Ntotal × FF×V × I. (8)

where sird, FF, Ntotal , Ps, Tcell , Tamb and Tnot are solar irradiance, fill factor, total number of
PV modules, power generated from a PV panel, temperature of a cell, ambient temperature
and nominal operating temperature of a cell, respectively; Isc, Imaxp, Ki, Voc, Vmaxp and
Kv are short circuit current, current at maximum power point, temperature coefficient for
current, open circuit voltage, voltage at maximum power point and temperature coefficient
for voltage, respectively.

3. Optimization Formulation

In this section, a day-ahead energy management problem for proposed MMGs model
is formulated based on the DE algorithm. The objective function is to minimize the total
operational cost of the MG network whether it is operating as a single islanded or grid-tied
MG system; the MMGs islanded or grid-connected network makes the system reliable by
giving uninterrupted supply of energy and minimizes curtailment of loads. The elements
of bi-level optimization model are shown in Figure 2 including decision input variables,
constraints, objective function and optimal output variables. A constraints-handling tech-
nique is used in the presented DE algorithm to get the best fitness value of the decision
variables, and penalty factor technique is used to attain the most feasible and optimized
value of objective function. The proposed model is figured for a twenty-four-hour schedul-
ing horizon with a time period of ‘t’; ‘t’ can be any uniform interval of time. However, in
the suggested model, ‘t’ has been considered to be one hour. As mentioned earlier, it is a
two-step optimization strategy: local and global. Step-wise detailed mathematical models
are developed in the following subsections.
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Figure 2. Elements of the optimization model.

3.1. Local Optimization

At local level, the EMS of each MG generates energy management strategy based
on the proposed model, load/generation data, prices, and constraints. The objective func-
tion is given by (9) and includes CDG generation cost, RDG generation cost, prices of
buying/selling power from/to the grid, and penalty prices of SL/NSL curtailments. The
penalty price of curtailment of the SL is considered higher than that of the NSL. Therefore, in
case of load shedding, only a part of NSL will be shed, and the SL will get continuous supply.

min
I

∑
i=1

T

∑
t=1

(CCDG
i,t · PCDG

i,t + CRDG
i,t · PRDG

i,t ) +
T

∑
t=1

(PRBuy
t · PDe f

t + PRSell
t · PSur

t ) +
T

∑
t=1

(CPenSL
t · PShedSL

t + CPenNSL
t · PShedNSL

t ), (9)

where P is respective power value being multiplied with corresponding cost/price (i.e.,
C = cost and PR = price) for time from t = 1 to t = T and for DGs (CDGs and RDGs) from
i = 1 to i = I in an MG.

Subject to:

ci,t · PCDGmin
i ≤ PCDG

i,t ≤ ci,t · PCDGmax
i ∀ i ∈ I, t ∈ T , (10)

PPV
t + PWT

t +
I

∑
i=1

PCDG
i,t + PDe f

t + PB−
t = PL

t + PSur
t + PB+

t ∀ t ∈ T , (11)

0 ≤ PB+
t ≤ PCap

B · 1− SOCB
t−1

ηB
∀ t ∈ T , (12)

0 ≤ PB−
t ≤ PCap

B · SOCB
t−1 · ηB ∀ t ∈ T , (13)
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SOCB
t = SOCB

t−1 −
1

PCap
B

·
(

PB−
t
ηB
− PB+

t · ηB

)
, (14)

0 ≤ SOCB
t ≤ 1 ∀ t ∈ T . (15)

In (10), the inequality constraint related to the generation of CDG unit ‘i’ is given,
which shows that the output of a CDG is between its minimum and maximum generating
capacities. The power generated by all DGs units, deficit power, and power from battery
must be adjusted with demand, surplus power, and power to the battery at each interval
and is represented by (11). During charging, the storage system is considered as a load,
and it acts as a source during the discharging of power. The constraints of the BESS of an
MG, which include the charging, discharging, and SOC, are given by (12)–(15). The SOC is
updated in each interval.

In single grid-tied mode, the MG adjusts surplus/deficit power by trading with the
main grid, whereas, in the case of single islanded mode, the surplus power is balanced by
ramping down the dispatchable generating units. Likewise, a load curtailment mechanism
is employed for balancing the deficient amount of power. If the MG network is islanded or
grid-tied MMGs system, after finalizing local optimization by every single MG-EMS at the
first step, every MG-EMS delivers the information to the CEMS agent about the surplus
and deficient amount of powers calculated from the local optimization algorithm.

3.2. Global Optimization

After being informed by each MG-EMS about surplus/deficit powers and connec-
tion/disconnection of that MG with the grid in the MMGs network, the CEMS carries out
the global optimization in this step. The objective function of the MMGs network is given
by (16). It contains buying-selling energy prices of all the MGs and the grid. In this paper,
the CBESS is considered in subservient mode in that it will act under the command of
the CEMS, instead of acting in autonomous mode. Therefore, the costs of charging and
discharging of CBESS are not added in the objective function.

min
K

∑
k=1

T

∑
t=1

(PRRec
k,t · PRec

k,t + PRSend
k,t · PSend

k,t ) +
K

∑
k=1

T

∑
t=1

(PRBuy
t · PBuy

k,t + PRSell
t · PSell

k,t ), (16)

where P is respective power value being multiplied with corresponding price (i.e., PR = price)
for time from t = 1 to t = T and for the MGs from k = 1 to k = K participating in the MMG
system at that time.

Subject to:

K

∑
k=1

PRec
k,t +

K

∑
k=1

PBuy
k,t +

K

∑
k=1

PSur
k,t + PCB−

t =
K

∑
k=1

PSend
k,t +

K

∑
k=1

PSell
k,t +

K

∑
k=1

PDe f
k,t + PCB+

t ∀ t ∈ T , (17)

0 ≤ PCB+
t ≤ PCap

CB ·
1− SOCCB

t−1
ηCB

∀ t ∈ T , (18)

0 ≤ PCB−
t ≤ PCap

CB · SOCCB
t−1 · ηCB ∀ t ∈ T , (19)

SOCCB
t = SOCCB

t−1 −
1

PCap
CB

.
(

PCB−
t
ηCB

− PCB+
t · ηCB

)
, (20)

0 ≤ SOCCB
t ≤ 1 ∀ t ∈ T . (21)

The power bought from the neighboring MGs and the main grid, surplus power from
each MG, and the CBESS discharging must be adjusted with the amount of sold power to
the neighboring MG and the grid, deficit from each MG, and the CBESS charging demand
as represented in (17). The limitations related to the CBESS charging, discharging, and
the SOC are given by (18)–(21). In this cooperative model, selling/buying power to/from
other MGs of the MMGs system is preferred. If further power is required, trading with the
CBESS will be performed. If it is grid-tied MMGs system, the last option will be to trade
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with grid if required. Similarly, an MG with surplus energy after fulfilling its own demand
and charging its BESS will sell power to other deficit MGs, charge the CBESS, and will
sell power to the grid in the end. To make this strategy possible, the prices are introduced
interval-wise, which will help the algorithm to make a quick, and optimized decision.

min
I

∑
i=1

T

∑
t=1

(CCDG
i,t · PCDG

i,t + CRDG
i,t · PRDG

i,t ) +
T

∑
t=1

(PRRec
t · PRec

t + PRSend
t · PSend

t ) +
T

∑
t=1

(PRBuy
t · PBuy

t + PRSell
t · PSell

t ), (22)

subject to:

PPV
t + PWT

t +
I

∑
i=1

PCDG
i,t + PBuy

t + PRec
t + PB−

t + PCB−
t = PL

t + PSell
t + PSend

t + PB+
t + PCB+

t ∀ t ∈ T . (23)

In the proposed MMGs model, the CEMS notifies all MG-EMSs about their commit-
ments and schedulings. Each MG-EMS reschedules its generation after global optimization
via local optimization again (rescheduling). Now, the objective function of local opti-
mization of an MG in MMGs network is (22). It includes the CDG generation cost, RDG
generation cost, and prices of buying/selling power from/to other MGs and grid. The load
balancing constraint is presented in (23). In addition to this constraint, objective function
constraints (10)–(15) are also considered. The complete optimization procedure for the
proposed MMGs network is illustrated in Figure 3.

Figure 3. Flowchart of the proposed methodology.

4. Case Study

The proposed scheme has been verified on the IEEE 33-bus distribution system. The
detailed specifications of the test system can be found in Reference [21]. We have modified
the test system and constructed four autonomous MGs, as shown in Figure 4. For MCS,
the wind speed and solar irradiance data of four seasonal data of six years (2007–2012) and
seventeen years (1998–2014) have been taken [22,23].
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Figure 4. Modified IEEE 33-bus distribution system with four MGs.

Four different load curves, presented in Figure 5a, are used as daily load demands
of MGs of the modified test system. The load curves of NYISO-CAPITAL zone, NYISO-
N.Y.C. zone, ERCOT, and ISO-NE are used as demands of MG1, MG2, MG3, and MG4,
respectively [24]. The parameters of a PV panel and a WT are same as considered in
Reference [25]. Each MG has its own CDG, PV, WT, BESS, and EMS. Figure 5b shows
the daily forecasted curves of output percentage of solar and wind DGs. The following
three scenarios have been studied for the simulations. In Scenario 1, all four MGs are
participating in the MMGs network; MG2 and MG3 are grid-tied. Only MG2 and MG3 can
trade energy with the grid after sending or receiving power from other MGs. In Scenario 2,
three MGs are participating in the MMGs grid-tied network, while the MG1 is in single
islanded MG mode. In Scenario 3, three MGs are participating in MMGs grid-tied network,
while MG3 is in single islanded MG mode.

(a) (b)
Figure 5. (a) Fixed load profile of the different MGs and (b) daily forecasted curve of output
percentage of solar and wind DG.

It can be observed that there can be many possible combinations of the MGs. In the
proposed model, an MG can be in State 1: islanded single MG entity; State 2: grid-tied
single MG; State 3: islanded MMGs system or State 4: grid-tied MMGs system, as shown
in Figure 6a. Depending on these four possible states of an MG, there are total 256 cases
for our test system. In order to verify the robustness of the scheme, 10% of the total cases
are generated by MCS, and their details are provided in the next section. To understand
the connection of MGs in different states, Cases 07 and 11 from Table 1 are illustrated in
Figure 6b,c, respectively. State 1 refers to a single islanded entity, i.e., it has to fully depend
on its resources, and no external source is available as MG4 in Figure 6b. In State 2, the
MG is a single autonomous entity but has the grid as an external resource, as is MG1, in
Figure 6c. In State 3, the MG is connected to other MGs that are also taking part in the
MMG system. Other MGs may be connected with the grid depending on their respective
states, but this MG is not connected to the grid, as depicted MG2 in Figure 6c, which is
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connected with other MGs but has no connection with the grid. In State 4, the MG is also
connected to the grid besides the connection with other MGs in the MMG system. The
connections of other MGs with the grid depend on their respective states. For instance,
MG3 in Figure 6b is in the MMG system with MG2, and both are also grid-connected,
whereas MG3 in Figure 6c is in MMG system with MG2 and MG4; MG3 and MG4 are
connected to the grid, but MG2 is not depending on their states.

(a)

(b) (c)
Figure 6. (a) States of an MG, (b) States in case 07, and (c) States in case 11.

Table 1. Optimal cost and exchange powers of the MGs.

State of Microgrids MG1 MG2 MG3 MG4

Cases MG1 MG2 MG3 MG4 PS(kW) PB(kW) LS(kW) C(Rs.) PS(kW) PB(kW) LS(kW) C(Rs.) PS(kW) PB(kW) LS(kW) C(Rs.) PS(kW) PB(kW) LS(kW) C(Rs.)

Case 01 4 4 4 4 7749.82 0 0 46,189 5743.81 0 0 22,804 3965 0 0 11,874 374.44 408.59 0 13,511
Case 02 1 1 3 4 0 0 0 51,469 0 0 0 25,675 340.23 0 0 13,304 374.44 340.23 0 13,375
Case 03 1 1 3 3 0 0 0 51,469 0 0 0 25,675 340.23 0 0 13,304 0 340.23 0 13,647
Case 04 2 1 3 2 7749.82 0 0 47,594 0 0 0 25,675 0 0 0 14,352 374.44 1533 0 13,400
Case 05 4 2 1 4 7749.82 0 0 46,189 5743.81 0 0 22,804 0 0 55.73 14,562 374.44 408.59 0 13,511
Case 06 4 4 4 2 7749.82 0 0 47,594 5743.81 0 0 22,804 3965 0 0 11,874 374.44 1533 0 13,400
Case 07 2 4 4 1 7749.82 0 0 47,594 5743.81 0 0 22,804 3965 0 0 11,874 0 0 1533 18,759
Case 08 2 4 1 4 7749.82 0 0 47,594 5743.81 0 0 21,396 0 0 55.73 14,562 374.44 408.59 0 13,511
Case 09 2 4 4 3 7749.82 0 0 47,594 5743.81 0 0 21,396 3965 0 0 11,874 0 408.59 0 13,783
Case 10 1 4 2 4 0 0 0 51,469 5743.81 0 0 21,396 3965 55.73 0 11,902 374.44 408.59 0 13,511
Case 11 2 3 4 4 7749.82 0 0 47,594 408.59 0 0 24,064 3965 0 0 11,874 374.44 408.59 0 13,511
Case 12 4 4 1 4 7749.82 0 0 46,189 5743.81 0 0 22,804 0 0 55.73 14,562 374.44 408.59 0 13,511
Case 13 2 1 4 2 7749.82 0 0 47,594 0 0 0 25,676 3965 0 0 11,874 374.44 1533 0 13,400
Case 14 4 4 3 2 7749.82 0 0 47,594 5743.81 0 0 22,804 0 0 0 14,352 374.44 1533 0 13,400
Case 15 4 3 2 2 7749.82 0 0 47,594 0 0 0 25,676 3965 55.73 0 11,902 374.44 1533 0 13,400
Case 16 4 2 4 1 7749.82 0 0 47,594 5743.81 0 0 22,804 3965 0 0 11,874 0 0 1533 18,759
Case 17 4 3 1 1 7749.82 0 0 47,594 0 0 0 25,676 0 0 55.73 14,562 0 0 1533 18,759
Case 18 1 3 2 2 0 0 0 51,469 0 0 0 25,676 3965 55.73 0 11,902 374.44 1533 0 13,400
Case 19 3 2 2 3 408.59 0 0 49,859 5743.81 0 0 22,804 3965 55.73 0 11,902 0 408.59 0 13,783
Case 20 4 3 3 3 7749.82 0 0 46,189 0 0 0 25,676 0 0 0 14,352 0 408.59 0 13,783
Case 21 1 3 3 2 0 0 0 51,469 0 0 0 25,676 0 0 0 14,352 374.44 1533 0 13,400
Case 22 2 4 1 1 7749.82 0 0 47,594 5743.81 0 0 22,804 0 0 55.73 14,562 0 0 1533 18,759
Case 23 2 4 4 4 7749.82 0 0 47,594 5743.81 0 0 21,396 3965 0 0 11,874 374.44 408.59 0 13,511
Case 24 2 3 3 2 7749.82 0 0 47,594 0 0 0 25,676 0 0 0 14,352 374.44 1533 0 13,400
Case 25 1 1 1 1 0 0 0 51,469 0 0 0 25,676 0 0 55.73 14,352 0 0 1533 18,759

Note: PS = Power sold; PB = Power bought; LS = Load shed; C = Total optimal cost.

5. Results Analysis
5.1. Proposed Scenarios

Figures 7–9 show total generation, total demand, charged/discharged powers of the
BESS, trading with grid and other MGs of the MMG system, and load curtailment of each
MG. In the first scenario, as it can be seen in Figure 7a, MG1 has sold the surplus power
from 5:00 a.m. to 7:00 a.m. to others deficit MGs. From 5:00 p.m. to 9:00 p.m., MG1 needed
to discharge the BESS after utilizing the maximum capacity of its resources. In Figure 7b,c,
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MG2 and MG3 were selling their surplus energy to the grid from 12:00 a.m. to 4:00 p.m.
and utilizing the stored-BESS-energy from 5:00 p.m. to 9:00 p.m. MG2 was charging the
BESS from 10:00 p.m. to 11:00 p.m., but MG3 was still deficient in energy, and its BESS
was completely discharged already, and no neighboring MG had energy to sell the power.
Therefore, it was receiving the discharged power from the CBESS for these two hours.
MG4 was considered with the demand more than the generation to study the behavior and
impact of the proposed scheme for worst-case scenario of any practical MG. In Figure 7d,
from 12:00 a.m. to 4:00 a.m., the demand was being fulfilled by the storage system, which
was completely discharged at 5:00 a.m. Therefore, it had to buy the energy from other MGs
from 5:00 a.m. to 7:00 a.m. Later, it started charging the storage system from 8:00 a.m. to
12:00 p.m.; at 12:00 p.m., it was completely charged. From 4:00 p.m. to 7:00 p.m., the local
energy storage was completely utilized, and no other MG had extra energy to sell. As a
result, from 7:00 p.m. to 11:00 p.m., MG4 was using the discharged energy of the CBESS,
and there was no load shedding in the whole day. This is the benefit of the proposed
MMG system.

(a) (b) (c) (d)
Figure 7. Scenario 1: (a) MG1, (b) MG2, (c) MG3, (d) MG4.

In the Scenario 2, MG1 was the MG which had capacity to meet the demand by its
own without buying any energy. This behavior can be seen in Figure 8a. Even though MG1
was in single MG islanded mode, there was no load shedding during the whole day, and it
was in the most optimized form. The behavior of MG2 was same as in Scenario 1; the only
difference was: it was selling the energy to MG4 as in Figure 8b. The behavior of MG3 was
same in Figure 8c as in the previous scenario. In this scenario, MG4 was grid-connected,
Therefore, its behavior was slightly different from Scenario 1, i.e., it was selling surplus
energy to the grid from 12:00 p.m. to 3:00 p.m. in Figure 8d.

(a) (b) (c) (d)
Figure 8. Scenario 2: (a) MG1, (b) MG2, (c) MG3, (d) MG4.

In Scenario 3, MG1 was grid-tied similar to MG2 and MG4, it was selling the surplus
power to the grid in Figure 9a. Figure 9b,d show behaviors of MG2 and MG4, which were
identical to Scenarios 1 and 2, respectively. MG3 was successfully meeting its demand from
12:00 a.m. to 9:00 p.m. by its own resources in Figure 9c, and there was a little amount of
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load curtailment from 10:00 p.m. to 11:00 p.m. of the NSL, which shows that the MG is
reliable and providing uninterruptible energy to the SL.

(a) (b) (c) (d)
Figure 9. Scenario 3: (a) MG1, (b) MG2, (c) MG3, (d) MG4.

Figure 10a compares these three scenarios for the sum of load shedding in four MGs
hour-wise. In Scenarios 1 and 2, there was no load shedding, whereas, in Scenario 3,
there was a small load curtailment from 10:00 p.m. to 11:00 p.m. Figure 10b compares all
scenarios for the sum of total optimal cost of all MGs hour-wise. It can be seen that the costs
in all scenarios were nearly the same because, in each scenario, the proposed algorithm
took the decision considering minimum cost. Therefore, all three scenarios were having
the most optimized costs at each hour.

(a) (b)
Figure 10. (a) Total Load shedding in all MGs and (b) total optimal cost of all MGs.

5.2. Cases Generated by MCS

The 25 cases were generated by MCS, and their respective results per day for each MG
are presented in Table 1.

MG1 and MG2 were modeled in such a way that, most of the time, both MGs had
surplus energy and never depended on external resources, whereas MG3 and MG4 were
modeled in such a way that they were frequently independent of external resources,
but, for a few hours, they were deficient in energy. This type of modeling revealed the
effectiveness of the proposed strategy and the stability of the presented system model. In
Table 1, it can be seen that the MGs in State 4, the MMG grid-connected state, were the
most optimized and reliable with the minimum total cost and maximum profit. After
meeting their demands, the MGs were selling/buying energy to/from other MGs, charging
or discharging the CBESS, and later selling/buying energy to/from the grid. As MG1 and
MG2 were microgrids with surplus energy most of the time, they were earning maximum
profit in this state by selling the energy to other deficit MGs, charging the CBESS, and
selling the energy to the grid. Their buying energy and load shedding were zero for all
cases. In State 4, MG3 and MG4 were buying the deficit energy from MG1 and MG2 for
few hours if they were in the MMG system, discharging the CBESS, and buying from
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the grid. In State 4, MG3 and MG4 were selling power to the MGs, charging the CBESS,
or selling energy to the grid for rest of the hours, thus also earning the profit, and there
was again no load shedding in these two MGs for State 4. In State 3, all MGs could only
sell/buy energy to/from other MGs and charge/discharge the CBESS, and there was no
trading with the grid. Again, the MG with maximum sold energy earned maximum profit,
which is ultimately making its total cost minimum. The MG with buying energy is also
in profit because there is no curtailment of the load, which would increase total cost with
its penalty price. Thus, it proved that the proposed MMGs scheme is beneficial for each
MG, either it has more or less generation capacity than the total demand, making it reliable
and curtailment-free MG. In State 2, the MGs were only connected to the grid. They could
neither sell/buy energy to/from other MGs nor charge/discharge the CBESS. The MGs
could sell power to the grid in surplus energy hours and buy in deficit energy hours. We
can see in Table 1 that, for respective states, the total cost of the MGs was nearly equal to
or slightly more than that in previous states. In State 1, the MGs had only to depend on
their own resources, i.e., they were single islanded entities. MG1 and MG2 in this state
were fulfilling their respective demands, whereas MG3 and MG4 needed energy for few
hours. No option was available to buy the power, thus having to shed the load. Now, the
algorithm preferred to shed the NSL and had provided continuous supply to the SL. In
this state, the MGs had more total cost than that in all three previous states. They were
still reliable because there was no curtailment in the SL which would maximize the total
cost, and there would be no use of energy management scheme. It can be clearly observed
from Table 1 that the participation of a large number of MGs in the MMG system will be
profitable for each MG, and there will be minimum local and global total costs as in Case 1.
If the lesser number of MGs will participate in the MMG system, the lesser the profit will
be, and the local and global total cost will increase, as in Case 25.

6. Conclusions

This paper proposed a novel energy management strategy for the day-ahead schedul-
ing of the MMG systems. Four MGs were considered and optimized locally and globally.
Each MG was fully connected with all other MGs in the MMG system. The MG-EMS per-
formed local optimization and, after satisfying its local demand, updated the CEMS about
its surplus and deficient amount of energy, thus preserving its privacy from other MGs.
Only the CEMS took decisions about the power exchange between the MGs or with the grid
by considering the state of the MG, generation and trading prices. As it was a two-level
management strategy, thus, it increased privacy and resilience of the network. Various
test cases were generated by MCS for all possible connections of the MGs. The study
was performed on the IEEE 33-bus distribution system, and it has been proven that the
proposed strategy and the algorithm are able to satisfy the demands of all MGs optimally.
The numerical outcomes confirmed that the proposed methodology is compatible and can
be executed effectively for practical microgrid applications. In summary, the proposed
method can be utilized to make the management of the MMGs easy for real-world power
systems, which will eventually transform the conventional power systems.
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Nomenclature

T Index of time intervals.
I Index of distributed generators.
K Index of microgrids.
CCDG

i,t Production cost of a dispatchable unit ‘i’.
CRDG

i,t Production cost of a renewable unit ‘i’.
CPenSL

t Penalty cost for shedding of a sensitive load (l) at time ‘t’.
CPenNSL

t Penalty cost for shedding of a non-sensitive load (l’) at time ‘t’.
PRRec

k,t Power buying price from an MG ‘k’ at time ‘t’.
PRSend

k,t Power selling price to an MG ‘k’ at time ‘t’.

PCap
CB Capacity of a central battery energy storage system (CBESS).

PCDGmin
i,t Minimum generation limit of a dispatchable unit ‘i’ at time ‘t’.

PCDGmax
i,t Maximum generation limit of a dispatchable unit ‘i’ at time ‘t’.

PL
k,t Load of an MG ‘k’ at time ‘t’.

PBuy
k,t Power of an MG ‘k’ bought from the grid.

PSell
k,t Power of an MG ‘k’ sold to the grid.

SOCB
t State-of-charge (SOC) of a BESS at time ‘t’.

SOCCB
t SOC of a CBESS at time ‘t’.

PPV/PWT Forecasted output of a photovoltaic (PV) panel/wind turbine (WT).
PRBuy

t Power buying price from the grid at time ‘t’.
PRSell

t Power selling price to the grid at time ‘t’.
PCap

B Capacity of a battery energy storage system (BESS).
ηB/ηCB Efficiency of a BESS/CBESS.
PCDG

i,t Production amount of a dispatchable unit ‘i’.
PRDG

i,t Production amount of a renewable unit ‘i’.
PSur

k,t Surplus amount of power in an MG ‘k’.

PDe f
k,t Deficient amount of power in an MG ‘k’.

PB+
k,t Power required to charge a BESS in an MG ‘k’.

PB−
k,t Power discharged from a BESS in an MG ‘k’.

PShedSL
k,t Amount of sensitive loads shed from an MG ‘k’.

PShedNSL
k,t Amount of non-sensitive loads shed from an MG ‘k’.

PRec
k,t Power of an MG ‘k’ bought from another MG.

PSend
k,t Power of an MG ‘k’ sold to another MG.

ck,i,t Commitment status of a dispatchable unit ‘i’ of an MG ‘k’.
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Abstract: We develop a strategy, with concepts from Mean Field Games (MFG), to coordinate the
charging of a large population of battery electric vehicles (BEVs) in a parking lot powered by solar
energy and managed by an aggregator. A yearly parking fee is charged for each BEV irrespective
of the amount of energy extracted. The goal is to share the energy available so as to minimize the
standard deviation (STD) of the state of charge (SOC) of batteries when the BEVs are leaving the
parking lot, while maintaining some fairness and decentralization criteria. The MFG charging laws
correspond to the Nash equilibrium induced by quadratic cost functions based on an inverse Nash
equilibrium concept and designed to favor the batteries with the lower SOCs upon arrival. While the
MFG charging laws are strictly decentralized, they guarantee that a mean of instantaneous charging
powers to the BEVs follows a trajectory based on the solar energy forecast for the day. That day
ahead forecast is broadcasted to the BEVs which then gauge the necessary SOC upon leaving their
home. We illustrate the advantages of the MFG strategy for the case of a typical sunny day and a
typical cloudy day when compared to more straightforward strategies: first come first full/serve
and equal sharing. The behavior of the charging strategies is contrasted under conditions of random
arrivals and random departures of the BEVs in the parking lot.

Keywords: battery electric vehicle; mean field games; nash equilibrium; parking lot; solar energy

1. Introduction

The massive introduction of battery electric vehicles (BEVs) [1–3] in modern power
systems is bound to have important impacts, positive or negative, depending on the way
this novel situation is managed [4]. There will be a great pressure to introduce numerous
charging stations where the need is anticipated, but if too many high speed charging BEVs
are connected at any one time (for example upon departure from work towards residence
place), that may create both local transformer and eventually system wide overloads [5].
Many works in the literature [6–10] present algorithms for an optimal scheduling of vehicle-
to-grid (V2G). The authors in [6] propose a centralized algorithm based on reinforcement
learning which reduces the total power grid load variance by 65% in a test scenario of
300 consecutive days by charging 50 homogeneous BEVs in each hourly time slot in a
neighborhood of 250 households. The authors in [7] propose a centralized weighted fair
queuing (WFQ) algorithm with a 5 min time slot control switch in each smart charger to
charge 300 homogeneous BEVs, by favoring those arriving with less charge. The algorithm
selects a subset of BEVs to charge in each interval during peak demand when there is not
enough energy. They compare the results with a first come first serve (FCFS) algorithm.
They show that when the supply demand ratio (SDR) is equal to 1, there is 5% of BEVs
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which cannot leave their homes on time while it is 7% for FCFS. Recently, the authors
in [10] study the case where the maximum charging power depends on the state of charge
of the BEV’s battery. They propose a centralized mixed integer linear programming (MILP)
algorithm to charge a fluctuating heterogeneous population of BEVs at a single station
considering availability of each BEV in order to minimize time-dependent electricity costs.

On the other hand, adequate management of the battery storage associated with
an aggregate of BEVs can turn such an aggregate into a virtual power plant. Thus, in a
context of integration with clean sources of energy, such as photovoltaics, despite other
energy harvesting and storage techniques in the literature [11,12], BEVs’ batteries could
be storing the solar energy available during the day when BEVs are parked [13–16]. As is
well known in the photovoltaics rich state of California for example, a so-called power
demand duck curve [17] is observed: the peak demand occurs at the end of the day, upon
return of working people to their homes. At that point, available solar radiation has all
but disappeared and while solar energy may have been used by consumers during the
day, there is a need for a high electric power ramp at dusk followed by several hours of
sustained high power consumption. The latter power demand will be most likely met by
fossil based energy sources, unless some other mitigating actions are taken. In [18,19], the
authors show in their geographic context, that if the electric energy storage contained in a
large number of BEVs is properly utilized, this could help significantly reduce the power
needed from fossil sources during the evening peak.

The authors in [20], whose objective is close to ours in this paper, propose a centralized
linear programming (LP) algorithm, in a solar powered parking lot of a car-share service to
fairly distribute the available solar energy amongst 97 heterogeneous BEVs by favoring
those arriving with less charge. They study the case where the SDR is strictly inferior to 1,
and that all BEVs are available during the daily charging session of 5 h in the parking lot.
They demonstrate, by charging a subset of 5 BEVs during each time slot, a reduction of 60%
of yearly average standard deviation in the battery charge levels at the end of recharging
compared to the equal sharing (ES) approach. The authors in [6,7,10,20] do not propose
a decentralized algorithm. A decentralized algorithm scheme allows individual BEVs to
determine their own charging pattern. Their decisions could, for example, be made on the
basis of time-of-day, electricity price or battery state of health [21,22].

Table 1 below places our work in the BEVs charging optimization when the aggregators
are parking lot operators (PLOs) or distribution system operators (DSOs).

Table 1. Classification of related work.

Aggregators Potential Goal
User Satisfaction Monetary Benefits Grid Impact

PLOs our work, [20] [18,21] [9]
DSOs [7] [10,22] [6]

Our objective in this paper is to propose an algorithm for sharing solar photovoltaic
(PV) power amongst homogeneous BEVs parked in a parking lot, or a collection of federated
parking lots. The BEVs belong to commuters working in the neighborhoods of these
parking lots and could recharge at least partially depending on sunshine availability, their
batteries at the parking lot charging stations. One particular business model is that the
parking lots aggregator would charge a yearly fee for use of a parking space and the
associated charging station. In a potential extension of the business model, if the BEVs’
owners wish to recuperate part of their parking costs, they could choose to participate in
a financially compensated grid support operation coordinated by the aggregator of the
parking lots. In that case, it would be in the interest of the aggregator to equalize charging of
BEVs to maximize the probability of vehicle-to-grid charging participation.

We suggest relying on an adequately tailored variation of a Mean Field Game-based
algorithm scheme [23,24] which, while it fills all BEVs simultaneously, tends to provide
more instantaneous charging to the BEVs with the lowest current fill levels. The problem is
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formulated as large population game on a finite charging interval. In [21], the authors study
the existence, uniqueness and optimality of the Nash equilibrium of the charging problems
to minimize local electricity costs and to fully charge. In a decentralized computational
mechanism, they show in a deterministic case that the large population charging games
will converge to a unique Nash equilibrium which is globally optimal for a homogeneous
population.

In what follows we shall present a novel Mean Field Game-based charging algorithm to
calculate the operator broadcasted decentralized algorithm laws according to the potential
solar energy available. Subsequently, the performance of these laws will be compared
to that of two common algorithms used in the literature. The first algorithm, first come
first full (which, in a dynamic context, will be upgraded to first come first serve), consists of
recharging maximally (or up to an adequately updated SOC in real time) the BEVs in order of
arrivals at the parking lot. The second algorithm, equal sharing, consists of sharing equally
at all times the available solar power amongst battery BEVs still not fully charged. All
algorithms make full use of the available daily energy. Furthermore, for the purpose of
meaningfully comparing the performance of the different algorithms in our case studies,
we assume that the SDR is less than one.

In order to implement the charging algorithms, we make the following assumptions:

• There exists a communication infrastructure to coordinate BEVs charging in the
parking lot.

• The BEVs are equipped with microprocessors in the chargers allowing them to locally
compute and implement a local feedback-based charging algorithm.

The rest of this paper is organized as follows. In Section 2, we present the theoretical
underpinnings and details of the MFG-based algorithm in the case of homogeneous BEVs.
In Section 3, we present the numerical results assuming a fixed population of BEVs which are
charged in the parking lot simultaneously with common characteristics of batteries. In Section 4,
we present the algorithmic modifications and the numerical results in a more realistic
situation where BEVs arrive and depart randomly in the parking lot. Finally, in Section 5, we
conclude and give an outlook on future research.

2. Mean Field Game-Based Control of a Large Population of BEVs
2.1. Battery Model

We consider a population of n homogeneous BEVs in a parking lot. The assumption
of a large population is needed only if, as we do in (1) below, we assume randomness in the
dynamics of battery charging and later on in our analysis we will assimilate the empirical
mean of SOCs with its mathematical expectation (a predictable deterministic quantity) by
virtue of the law of large numbers. Because of the linearity of the model, the analysis will
be perfectly exact for arbitrarily small numbers of BEVs if the battery charging processes
remain deterministic. Each BEV i, i = 1, . . . , n, has a SOC xi,arr upon arrival which results
of a daily traffic pattern from home to parking lot. We can then write the SOC stochastic
dynamics for BEV i as follows [21] :

dxi,t = bui,tdt + νdωi, (1)

where t ∈ [t0, T] is time in hours (h), xi,t is the SOC in per unit (pu) of capacity, b = α
β ,

α ∈ (0, 1] is the charger efficiency in pu/h, β is the battery capacity in kWh, ui,t ∈ R+ is
the charging rate in kW, ωi is a normalized Brownian process, ν is the intensity of that
Brownian noise and ωi is assumed independent of ωj for i 6= j. The term νdωi defines the
stochasticity of the SOC which can result physically from fluctuations in the charging and
losses of the battery. We first present the algorithm in the simple case where all BEVs are
started charging at the same time and depart at the end of control horizon, i.e., t0 = tbegin
and T = tend. Then the algorithm will be updated in a dynamic context, where [t0, T] will
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be made up of successive fixed short control horizons representing random arrivals and
random departures of BEVs between tbegin and tend.

2.2. Considerations

The charging algorithms tested in this paper will be compared with respect to the
following requirements:

2.2.1. Fairness

We develop here our notion of fairness. While it is very hard to realize in practice, we
wish that BEVs have near identical SOCs at the time they leave the parking lot irrespective of
the time they arrived or their SOC at arrival. Furthermore, for BEVs that are simultaneously
present in the parking lot, at no time should the BEV that arrived with a lower SOC be
allowed to have its SOC exceed that of the other BEV. Such a criterion will lead us to the
definition of a fairness coefficient by means of which we shall contrast the performance of
various charging algorithms. We aim at:

(a) BEVs having relatively close SOCs at the time of their departure (under an assumption
that they will spend statistically equivalent amounts of time in the parking lot).

(b) Pairs of BEVs present in the parking lot at the same time must maintain a fixed
relative ordering of their SOC values (SOC of BEV i > SOC of BEV j) throughout their
simultaneous stay, and until one of them leaves.

This leads us to the definition of a fairness coefficient (FC) that will help compare the
fairness of the various charging strategies.

• Given (a) above, we consider that FC should be proportional to the the reduction in
standard deviation of the SOCs’ BEVs at departure time relative to the SOC standard
deviation at arrival time.

• Given (b) above, we should count for all BEV pairs that qualify, the number of
violations of the fixed SOC relative value ordering criterion during their simultaneous
stay. Let NO be the number of such violations, and let (N

2 ) be the number of BEV pairs
in a population of N BEVs. Let η be the ratio of the two. We consider that FC must
decrease exponentially with the value of η.

We suggest using the following expression:

FC =
σxi,arr − σxi,dep

σxi,arr

e−η , where η =
NO

(N
2 )

=
2 NO (N − 2)!

N!
. (2)

• The degree of fairness of the charging strategy is measured by FC if FC > 0.
• The charging strategy is considered neutral if FC = 0.
• The charging strategy is rejected if FC < 0.

2.2.2. Decentralization

From the point of view of the parking lot operator, decentralized charging algorithm
laws are quite desirable because they minimize the need to observe the state of charge of
individual batteries, a process which is both complex and invasive. Furthermore, a local
algorithm allows a user to interrupt the process at any time, particularly if the parking
operator has designed a charging scheme based on a poor model of the battery.

We wish to address the decentralized control of battery recharging of a set of BEVs as
part of a so-called Mean Field Game (MFG). The control will be of linear-quadratic (LQ)
type [25,26]. The parking lot operator broadcasts an average SOC target trajectory (xtarget

t )
based on the solar energy forecast for the current day. The goal is that the BEVs store up as
much of the solar energy available as possible and yet share the energy in a manner which
will be deemed as fair. The proposed algorithm requires that the parking lot operator know
the average SOC of the BEVs upon arrival (x0). This can be achieved by recording initial
SOCs as BEVs enter the parking lot.
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The key point of the approach is the prescription of a daily quadratic cost Ji for each
BEV i to ensure that the BEVs that are initially fuller recharge less quickly than those that
are less full, so that final SOC standard deviation of departing BEVs is reduced; while still
maintaining the goal of using up the available solar power at all instants. More precisely the
cost functions are designed so that by optimizing the individual BEV costs Ji, one achieves
the aggregator’s goals (fairness and decentralization) while using all available solar energy
in the parking lot.

2.3. Establishment of Individual Battery Cost Function

The battery cost function is a mathematical expectation. It is designed by the aggrega-
tor and defined for a BEV as follows:

Ji(xi,0, ui,t) = E
[ ∫ T

t0

e−δt[ qy
t

2
(xi,t − y)2 +

r
2

u2
i,t +

qx0

2
(xi,t − xi,0)

2]dt | xi,0

]
, (3)

where E is the expectation operator, t0 is the charging starting time, T is the charging
stopping time, δ is a discount coefficient to ensure convergence of the cost, y is the collective
direction of the BEVs’ SOCs which is equal to 1 in our case (it serves as a direction signal
to all BEVs, such that all BEVs should move toward y but not beyond), r is a coefficient
which penalizes the level for charging rate, qx0 is a pressure coefficient aimed at limiting the
distance from the SOC xi,0 (for the state of health of the user’s battery and fairness to others)
and qy

t is the pressure field trajectory. The latter is common to all BEVs and is numerically
obtained as the solution of a system of differential equations. It is the key quantity which
will drive all SOCs towards a full state of charge while sharing instantaneously available
solar energy in a way that reduces the standard deviation of SOCs. Its computation is
further detailed below and it is at the heart of our inverse Nash equilibrium procedure.
Note that the class of quadratic cost functions has been frequently used in the MFG
literature [23,25,27].

The BEVs will collectively recharge their batteries with a time dependent coefficient
(qy

t ) penalizing the gap between the current SOC (xi,t) and the ultimate destination direction
of SOCs defined by the value of y. Once the target for steady-state mean SOC of BEVs
(xtarget

T ) is reached, qy
t will settle to a constant value, allowing the reaching of a mean SOC

steady-state that meets the constraints set by the parking lot operator.

2.4. Optimal Control Problem and Solutions

We begin by making the following variable changes to simplify the expression of cost
Ji in Equation (3):

Xi,t = (xi,t − y)e−δt/2, Ui,t = ui,te−δt/2,

Vt = νe−δt/2 and Zi,t = (xi,t − xi,0)e−δt/2.
(4)

Then:

dXi,t = dxi,te−δt/2 − δ

2
xi,te−δt/2dt +

δ

2
ye−δt/2dt

= (bui,tdt + νdωi)e−δt/2 − δ

2
(xi,t − y)e−δt/2dt

= − δ

2
Xi,tdt + bUi,tdt + Vtdωi.

(5)

The solution approach is based on assuming a quadratic form of the optimal cost
function [26] (with coefficients π, s and γ):

J∗i (Xi,t) =
1
2

πi,tX2
i,t + si,tXi,te−δt/2 + γi,t. (6)
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We then write the dynamic programming equation corresponding to this guess [28].

∂J∗i
∂t

+ min
U

{ qy
t

2
X2

i,t +
qx0

2
Z2

i,t +
r
2

U2
i,t +

∂J∗i
∂X
(
− δ

2
Xi,t + bUi,t

)
+

∂2 J∗i
∂X2

V2
t

2

}
= 0. (7)

Differentiating with respect to Ui,t yields:

∇U
{ qy

t
2

X2
i,t +

qx0

2
Z2

i,t +
r
2

U2
i,t
}
+∇U

{∂J∗i
∂X
(
− δ

2
Xi,t + bUi,t

)
+

∂2 J∗i
∂X2

V2
t

2

}
= 0

−→ U∗i,t = −
b
r

∂J∗i
∂X

.
(8)

The second derivative with respect to Ui,t is r > 0, so the value found will indeed
correspond to a minimum:

U∗i,t = −
b
r
[
πi,tXi,t + si,te−δt/2]. (9)

The optimal control therefore depends on the values πi,t and si,t. The expressions of
πi,t and si,t are then determined by identification:

1
2

X2
i,t

dπi,t

dt
+ Xi,te−δt/2(dsi,t

dt
− δ

2
si,t
)
+

dγi,t

dt

= − qy
t

2
X2

i,t −
qx0

2
Z2

i,t +
b2

2r
(
π2

i,tX
2
i,t + 2Xi,tπi,tsi,te−δt/2 + s2

i,te
−δt)

+
δ

2
Xi,t
(
πi,tXi,t + si,te−δt/2)− V2

t
2

πi,t

= X2
i,t
( b2

2r
π2

i,t +
δ

2
πi,t −

qy
t

2
− qx0

2
)
+ Xi,te−δt/2( b2

r
πi,tsi,t +

δ

2
si,t − yqx0 + xi,0qx0

)
+ . . .

(10)

The analysis results in the following system of differential equations that must be
solved backwards:

dπi,t

dt
=

b2

r
π2

i,t + δπi,t − qy
t − qx0 ,

dsi,t

dt
= (δ +

b2

r
πi,t)si,t + qx0(xi,0 − y),

(11)

and the optimal control law is given by:

u∗i,t = −
b
r
[
πi,t(xi,t − y) + si,t

]
. (12)

The coefficient qy
t appearing in the differential equation of π is unknown at this stage.

Nonetheless, it must respect the fact that when the BEVs use the optimal control u∗i,t, their
empirical average trajectory (xt), assimilated thanks to the law of large numbers to the
mathematical expectation of the SOC of a generic BEV

(
E[xi,t]

)
, will correspond to the

average target trajectory (xtarget
t ) imposed by the parking lot operator. The charging strategy

that is developed, relies on knowing the anticipated solar energy during the day. Based on
the dynamics of the SOC xi,t in Equation (1), the average target xtarget

t needed is determined
by integrating the curve of the forecast solar power (uWt ) over the time [t0, T] of interest
and dividing, for a case of homogeneous battery capacities, by the total number of BEVs
present in the parking lot for recharging. The total forecast solar energy W available in the
parking lot is assumed less than the total energy that all BEVs would need to fully recharge
their batteries.
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2.5. Calculation of qy
t by Nash Equilibrium Inversion

We calculate the pressure field qy
t directly by numerical resolution of differential

equations. The system of differential equations to be solved is obtained by imposing that
under the action of qy

t , and the associated optimal control law in Equation (12), the average
trajectory xt of the BEVs follows the average target trajectory xtarget

t broadcasted by the
parking lot operator. This restriction allows us to write the Mean Field equations based
on taking the mathematical expectation of the SOC of a generic battery in the population
subject to decentralized control law (Equation (12)).

dxtarget
t
dt

= bu∗t = − b2

r
[πt(xtarget

t − y) + st],

dπt

dt
=

b2

r
π2

t + δπt − qy
t − qx0 ,

dst

dt
= (δ +

b2

r
πt)st + qx0(x0 − y),

(13)

where πt = πi,t and st =
∑n

i=1 si,t
n . With this approach, the goal is to obtain a mathematical

relationship between dxtarget
t
dt and qy

t . This is the so-called inverse Nash algorithm, its first steps
were developed in the control of electric space heaters [27].

With the first equation of (13), we can write the relation between πt and st:

πt = −
st

xtarget
t − y

− r dxtarget
t
dt

b2(xtarget
t − y)

. (14)

The differential equation governing the dynamics of st is then written as follows:

dst

dt
= − s2

t b2 + rst
dxtarget

t
dt

r(xtarget
t − y)

+ (x0 − y)
[
qx0 +

dxtarget
t
dt

b2(xtarget
t − y)

]
. (15)

To solve this differential equation numerically in the interval of time [t0, T], we need
to specify a terminal condition at T. Since this equation is solved backwards in time, this is
equivalent to determining sT . By choosing a time horizon T such that the solar power curve

has already fallen to zero at T, xtarget
t will settle at xtarget

T . Thus, dxtarget
t
dt = 0, t ≥ T, and this

is consistent with imposing dπt
dt = dst

dt = 0, t ≥ T. We will then assimilate qy
T , πT , sT to their

steady-state values. This allows us to write:

0 = − b2

r
[πT(xtarget

T − y) + sT ],

0 =
b2

r
π2

T − qy
T − qx0 ,

0 =
b2

r
πTsT + qx0(x0 − y),

(16)

and yields:

qy
T = qx0

( x0 − xtarget
T

xtarget
T − y

)
,

πT =

√
r
b2 (qx0 + qy

T),

sT = πT(y− xtarget
T ) or sT =

rqx0(y− x0)

πTb2 .

(17)
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Thereafter, we solve numerically and backwards the differential equation of dst
dt , which

yields the trajectory of st. The latter is re-injected into the equation of πt. Finally, we have
all the necessary ingredients to calculate qy

t from:

qy
t =

b2

r
π2

t + δπt −
dπt

dt
− qx0

(18)

3. Numerical Results in the Case of a Fixed Population of BEVs
3.1. Required Data

• Homogeneous population of BEVs: we consider an average BEV with α = 0.85 and
β = 23 kWh representing the average values of a realistic population of BEVs.

• Simulation parameters: we consider installing 100 solar panels in the parking lot for
recharging 400 BEVs between tbegin = 6 h and tend = 18 h in the sunny day case or
the cloudy day case with a random normal distribution of SOCs upon arrival (with a
mean of 0.15 and a standard deviation of 0.10). Here the charging of all BEVs starts at
tbegin and stops at tend (i.e., t0 = 6 h and T = 18 h), dt = 0.01 h, ν = 0.01, δ = 0 (we
set δ to zero to work on a finite control horizon), qx0 = 1000, r = 0.001, y = 1.

3.2. MFG Inverse Nash Algorithm of Charging BEVs

Figure 1 shows the outline of the operation of the algorithm.

Broadcasting uWt Computing qy
t Computing u∗i,t

Using battery model

Data xtarget
t πt, xi,t si,t, u∗i,t

Figure 1. Block diagram of the MFG inverse Nash algorithm of BEV i at time t.

Below is the detailed Algorithm 1.

Algorithm 1 MFG inverse Nash
Require: t0 (charging starting time), T (charging stopping time), uWt (forecast solar power

at time t), n (number of BEVs present in the parking lot, i.e., at time t0), xi,0 (BEVs’ SOCs

at time t0), x0 = ∑n
i=1 xi,0

n , α, β, b = α
β , dt, ν, qx0 , r, y, δ.

Ensure: The parking lot operator computes the pressure field (qy
t ) of n BEVs using the steps:

1. Solve dxtarget
t
dt = 1

n buWt and note the mean target SOC (xtarget
T ) of n BEVs.

2. Calculate qy
T = qx0

(
x0−xtarget

T

xtarget
T −y

)
, πT =

√
r

b2 (qx0 + qy
T) and sT = πT(y− xtarget

T ).

3. Solve dst
dt = − s2

t b2+rst
dxtarget

t
dt

r(xtarget
t −y)

+(x0 − y)
[
qx0 +

dxtarget
t
dt

b2(xtarget
t −y)

]
backwards.

4. Calculate πt = − st

xtarget
t −y

− r
dxtarget

t
dt

b2(xtarget
t −y)

and determine dπt
dt (by mean value theorem).

5. Calculate qy
t = b2

r π2
t + δπt − dπt

dt − qx0 .
Ensure: Each BEV i, i = 1, 2, 3, · · · , n, computes its local feedback strategy using the steps:

1. Solve dsi,t
dt = (δ + b2

r πt)si,t + qx0(xi,0 − y) backwards with si,T =
rqx0 (y−xi,0)

πTb2 .

2. Solve dxi,t = bu∗i,tdt + νdωi = − b2

r
[
πt(xi,t − y) + si,t

]
dt + νdωi.

3.3. Obtaining the Average Target SOC by Using Daily Solar Energy in the Parking Lot

Realistic generation curves based on historical meteorological data are used (Figure 2),
assuming that similar generation curves can be predicted using for example, a machine
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learning based model. The meteorological data is obtained from photovoltaic geographical
information System (PVGIS) made available by the European Commission. A typical
meteorological year in the city of Montreal (45.50 North, 73.58 West) is used with a data
resolution of one hour. The very same data can also be found in Canadian Weather Energy
and Engineering Datasets (CWEEDS). The solar photovoltaic (PV) power output is then
modeled with the simulation software TRNSYS using type 103 appropriate for modeling
the electrical performance of mono and polycrystaline PV panels.
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Figure 2. Solar energy production in the parking lot with 100 PV panels in Montreal (Canada).

We determine two different real solar power curves (sunny day and cloudy day cases)
in order to compare the influence of the difference in generation on the behaviour of the
BEVs charging. Starting with the sunny day case, and 400 BEVs, we get an average target
curve that saturates at the end of the horizon (xtarget

T = 0.90). Looking at the cloudy day
case and as a result of that a lower energy output at the end of the horizon, charging the
same number of BEVs with the same distribution SOCs upon arrival (x0 = 0.15) would
result in an average target that is low (xtarget

T = 0.50). The parking lot operator would
then announce the situation the day before, so that the BEVs arrive next day more full in
the parking lot. However here, for comparison purposes, we shall work with the same
distribution SOCs upon arrival as for the sunny day case.

3.4. Pressure Field, Empirical per BEV Average SOC and Individual SOCs of BEVs Using MFG
Inverse Nash Algorithm

In Figures 3–5, first we see that the trajectories of the empirical per BEV average SOC
and the mean target SOC broadcasted by the parking lot operator are quite the same in both
days, thanks to the law of large numbers. And as expected in steady-state we have constant
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values, the proposed MFG algorithm makes full use of the available daily energy between
6 a.m. and 6 p.m. The results of individual SOCs of BEVs in the sunny day case, in Figure 6,
show a strong reduction in standard deviation σxi,T while in the cloudy day case, in Figure 7,
we have a slight reduction in standard deviation. Additionally, all the curves’ behaviour in the
cloudy day case well reflects the characteristic of solar fluctuations, and more importantly
the results are less desirable in the cloudy day case relative to the sunny day case because
the charging rate needed to achieve full solar utilization is lower in the cloudy day case.
Furthermore, we confirm the main features of the proposed MFG algorithm, that of filling
more batteries that were emptier to start with while bringing all batteries close to a predefined
mean target.

6 7 8 9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

600

700

800

900

1000

6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Daily solar power curves (uW) for charging 400 BEVs and mean target SOC trajectories
(xtarget

t ) broadcasted by the parking lot operator.
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Figure 4. Pressure fields (qy
t ) of a fixed population of 400 BEVs.
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Figure 5. Empirical per BEV average SOCs (xt) of a fixed population of 400 BEVs.

Figure 6. Individual SOCs of a fixed population of 400 BEVs in the sunny day.

Figure 7. Individual SOCs of a fixed population of 400 BEVs in the cloudy day.
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3.5. Different Charging Strategies

• First come first full (FCFF), which fills up to maximum capacity each BEV in the order
of their arrival in the parking lot.

• Equal sharing (ES), which fills all the BEVs in the parking lot at equal rates until BEVs
quit charging when they are full.

• Mean Field Game (MFG), which fills all the BEVs according to the MFG inverse Nash
algorithm (see Algorithm 1 in Section 3.2).

3.6. Comparison of Charging Strategies

In the following, we present the results for three charging strategies in Figures 8 and 9.
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Figure 8. SOC levels at time of departure for a fixed population of 400 BEVs in the sunny day.
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Figure 9. SOC levels at time of departure for a fixed population of 400 BEVs in the cloudy day.
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3.6.1. FCFF Strategy

It is the easiest strategy to implement. A centralized signal is sent to fill maximally the
BEVs in the parking lot regardless of their SOCs upon arrival, and only depending on the
ordering of their arrival times. This approach is not suitable at all for our charging objective.
It does not meet any of the requirements. First, it is a centralized charging strategy since
the parking lot operator must not only note the order of arrivals of BEVs in the parking lot,
but also when they finish filling up. Secondly, at the end of the day, there will generally
be users who have not recharged their batteries at all (12% of BEVs in the sunny day case
and 59% of BEVs in the cloudy day case). Thirdly, we have the highest standard deviations
of SOCs upon departure: σxi,T = 0.280 (an increase of 175%) in the sunny day case and
σxi,T = 0.426 (an increase of 318%) in the cloudy day case.

3.6.2. ES Strategy

This is a straightforward charging scheme. Using the forecast solar power available
throughout the day, the parking lot operator estimates at every instant an average level per
BEV available for charging and thus, the average charging rate. As BEVs get charged, the
number of BEVs still in demand must be updated. Thus, this scheme, although superior to
the previous one, is not decentralized. By giving the same amount to everyone, one does
not significantly reduce σxi,T relative to σxi,0 . We have σxi,T = 0.082 (a reduction of 20%) in
the sunny day case and σxi,T = 0.102 in the cloudy day case. Indeed, the SOCs’ standard
deviation remains close to what it was at the beginning, except for a slight reduction due
to some BEVs completely filling up in the sunny day case.

3.6.3. MFG Strategy

This is our novel charging strategy scheme based on the idea of inverse Nash control.
The parking lot operator, after broadcasting xtarget

T , prescribes a decentralized strategy via
an inverse Nash algorithm in the smart charger in the parking lot. Each user applies their
optimal control locally so that, the average trajectory (xt) of all users corresponds to the
average target trajectory (xtarget

t ) broadcasted by the parking lot operator. The standard
deviation at the end of recharging has been significantly reduced. We have σxi,T = 0.013
(a reduction of 87%) in the sunny day case and σxi,T = 0.061 (a reduction of 40%) in the
cloudy day case. Furthermore, except for the broadcasting of some initialization data by
the parking lot operator, the charging scheme is decentralized. This strategy meets all the
requirements of our charging objective.

In Table 2 the fairness coefficient (FC), as defined previously in Section 2.2.1, is com-
puted for each charging strategy.

Table 2. Comparison of fairness coefficient and departing SOCs (min xi,0 = 0 and max xi,0 = 0.45)
for a fixed population of 400 BEVs.

Sunny Day Cloudy Day
min xi,T max xi,T FC min xi,T max xi,T FC

ES 0.76 1 0.19 0.35 0.79 0
FCFF 0 1 −0.72 0 1 −2.13
MFG 0.88 0.93 0.86 0.40 0.67 0.40

The results in both days show that the MFG strategy is the fairest strategy while the
FCFF strategy is rejected.

4. Numerical Results in the Case of a fluctuating Population of BEVs
4.1. Considerations

• In the parking lot, the BEVs start arriving before 6 a.m., stop arriving at 12 p.m., start
departing after 3 p.m. until after 6 p.m. (with tbegin = 6 h, tend = 18 h).
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• We consider a Poisson distribution for the arrivals (Figure 10). A Poisson distribution
allows us to realistically fill parking spaces in the parking lot, where the number of
arrivals at each time interval decreases exponentially until some fixed stopping time.
Each 15 min arriving time interval ϕa, a = 1, 2, 3, · · · , 24, a subpopulation of na BEVs
is connected to the charging stations at random times t(a)

j < 6 + 0.25(a − 1) a.m.,
j = 1, · · · , na. We then charge, between 6 + 0.25(a− 1) a.m. and 6 + 0.25a a.m., all
∑a

k=1 nk BEVs present in the parking lot. For example, the first n1 BEVs connected to
their charging stations before 6 a.m. will start charging at 6 a.m., the next n2 BEVs
connected between 6 a.m. and 6:15 a.m. will start charging at 6:15 a.m., and so on.
The last n25 BEVs, arrive between 11:45 a.m. and 12 p.m., are connected at random
times t(25)

j < 12 p.m., j = 1, · · · , n25. We then charge, between 12 p.m. and 3 p.m., the

total expected number of ∑25
k=1 nk = 400 BEVs in the parking lot.

• We also consider a Poisson distribution for the departures (Figure 10). Here, a Poisson
distribution is used for the same reason as in the case of arrivals but will be defined
to empty the parking lot so that on average the departing BEVs spend the same
parking time. Each 15 min departing time interval ϕd, d = 26, 27, 28, · · · , 38, a
subpopulation of nd BEVs is disconnected from the charging stations at random times
t(d)j > 3 + 0.25(d− 26) p.m., j = 1, · · · , nd. We then charge, between 3 + 0.25(d− 26)

p.m. and 3 + 0.25(d− 25) p.m., the remaining
(
400−∑d

k=26 nk
)

BEVs in the parking
lot. Here, we cannot delay recharging the BEVs within a given departing time interval
ϕd as the charging remains continuous despite the random departures of the BEVs.
It is only at the end of ϕd that we can record the exact number of vehicles that have
disconnected from their charging stations. We then consider a small-size battery in the
parking lot to store the unused energy W∗ϕd

in a given departing time interval ϕd, i.e.,
not really distributed to the BEVs already left the parking lot. W∗ϕd

is therefore added
to the forecast solar energy Wϕd+1 acquired in the next departing time interval ϕd+1.

• For all other parameters, we use the same values as in the case of a fixed population
of BEVs (both in the sunny day case and in the cloudy day case).

• To summarize here, BEVs recharging is updated in 15-min cycles between 6 a.m. and
6 p.m. except between 12 p.m. and 3 p.m. when the cycle lasts 3 h.
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Figure 10. Daily solar power curves (uW) for charging 400 BEVs and arrivals/departures of a
fluctuating population of 400 BEVs in the parking lot.
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4.2. Updated MFG Inverse Nash Algorithm

Each charging time interval ϕc (considering both arrival time interval ϕa and depart-
ing time interval ϕd), i.e., c = 1, 2, · · · , 25, 26, 27, · · · , 38 (where ϕ1 = [6, 6.25[ h, ϕ2 =
[6.25, 6.5[ h, · · · , ϕ25 = [12, 15] h, ϕ26 =]15, 15.25] h, ϕ27 =]15.25, 15.5] h, · · · , ϕ38 =
]17.75, 18] h), the parking lot operator calculates the mean target SOC trajectory of all BEVs
present in the parking lot. Unlike in the case of a fixed population of BEVs in the parking
lot where we worked with a solar curve over the entire control horizon between tbegin
and tend, here we work with successive fixed short control horizons at the start of which
the number of BEVs present in the parking lot is recorded. In order to enforce the Riccati
steady-state conditions (illustrated in Section 2), in each charging time interval ϕc we add
to the solar power curve uWϕc

a fictitious extension ũWϕc
into ϕc+1 with the solar power

falling smoothly to zero at the end of ϕc+1. Below, in Figure 11, is the example of a piece
of solar power curve between 8 a.m. and 10 a.m. in the sunny day case with fictitious
added parts.
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Figure 11. Section of solar power curve in the sunny day case with fictitious added parts.

The MFG inverse Nash algorithm (see Algorithm 1 in Section 3.2) will be applied here
in each charging time interval ϕc on short control horizons (i.e., here t0 is the beginning of ϕc

and T is the end of ϕc) with the resulting mean target SOC trajectory xtarget
t , t ∈ {ϕc ∪ ϕc+1},

knowing that resulting solar power curve is equal to {uWϕc
∪ ũWϕc

} (Figure 11).

4.3. Adjustment of Different Charging Strategies

• First come first full (FCFF), which fills up to maximum capacity each BEV among the n
BEVs present in the parking lot in the order of their arrival in the parking lot in each
charging time interval ϕc. We propagate this order of arrivals to the next charging
time interval, ϕc+1.

• First come first serve (FCFS), is a refined version of FCFF, i.e., has the same characteristics
as the FCFF except that instead of filling up to maximum capacity the n BEVs present
in the parking lot, they are filled in each charging time interval ϕc up to

∑n
i=1 xi,0

n
+

1
n

∫ T

t0

uWt dt.

• Equal sharing (ES), which fills the n BEVs present in the parking lot at equal rates (until
BEVs quit charging when they are full) over each charging time interval ϕc.

• Mean Field Game (MFG), which fills the n BEVs present in the parking lot by using
the inverse Nash algorithm in each charging time interval ϕc (see Algorithm 1 in
Section 3.2).
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4.4. Comparison of Charging Strategies Considering SOCs’ BEVs at Departure Times

First, we present in Figure 12 the results of the SOCs’ averages and standard deviations
for the remaining BEVs in the parking lot knowing that the SoCs’ averages before the
departures (i.e., before 3 p.m.) are all the same for all charging strategies in both days, as
they use all solar energy in the parking lot. As expected, the FCFS strategy comes first with
the highest SOCs’ averages and the lowest SOCs’ standard deviations for the remaining
BEVs as its perfectly equalizes the BEVs’ SOCs regardless of their SOCs at the beginning
of recharging, while the MFG strategy comes second as its also equalizes the BEVs’ SOCs
by maintaining some fairness criterion (with regard to their SOCs at the beginning of
recharging). The ES strategy, considered as the base case, comes third, while the FCFF is
clearly the worst strategy with the lowest SOCs’ averages and the highest SOCs’ standard
deviations as its fills up to maximum capacity the BEVs’ SOCs.
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Figure 12. SOCs’ averages and standard deviations of the remaining BEVs in the parking lot.

Then, we present in Figures 13 and 14 the results of SOCs for the departing BEVs
knowing that the average parking time is 8 h.

In both days, we note that the MFG strategy remains the best between the four options
insofar as the resulting standard deviation for the departed BEVs are concerned.

In the sunny day case, the MFG strategy reduces significantly the standard deviation
(σxi,dep = 0.026, a reduction of 75%). The FCFF strategy gives the worst standard deviation
(σxi,dep = 0.296, an increase of 190%) with 12% of users who have not recharged their
batteries at all. The FCFS strategy is the improved version of the FCFF, as we can see that
the BEVs are recharged with a better standard deviation (σxi,dep = 0.062, a reduction of 39%).
The ES strategy results in a slight increase of 16% of the standard deviation (σxi,dep = 0.118)
due to the fluctuating population of BEVs and to some BEVs completely filling up.

In the cloudy day case, the MFG strategy also reduces significantly the standard
deviation (σxi,dep = 0.024, a reduction of 76%) due to the fluctuating population of BEVs.
The FCFF strategy gives the worst standard deviation (σxi,dep = 0.457, an increase of 348%)
with 54% of users who have not recharged their batteries at all. The FCFS strategy is
the improved version of the FCFF, as we can see that the BEVs are recharged with a
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better standard deviation (σxi,dep = 0.053, a reduction of 48%). The ES strategy results in
a slight reduction of 21% of the standard deviation (σxi,dep = 0.081) due to the fluctuating
population of BEVs.
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Figure 13. SOC levels at time of departure for a fluctuating population of 400 BEVs in the sunny day.
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Figure 14. SOC levels at time of departure for of a fluctuating population of 400 BEVs in the
cloudy day.

In Table 3 the fairness coefficient (FC), as defined previously in Section 2.2.1, is evalu-
ated for each charging strategy.
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Table 3. Comparison of fairness coefficient and departing SOCs (min xi,arr = 0, max xi,arr = 0.45) for
a fluctuating population of 400 BEVs.

Sunny Day Cloudy Day
min xi,dep max xi,dep FC min xi,dep max xi,dep FC

ES 0.50 1 −0.12 0.32 0.77 0.19
FCFF 0 1 −0.83 0 1 −2.78
FCFS 0.79 0.98 0.18 0.42 0.58 0.19
MFG 0.85 0.94 0.37 0.41 0.62 0.61

The results show that the MFG strategy remains the fairest strategy in both days while
the FCFF strategy is rejected in both days and the ES strategy is rejected in the sunny
day case.

5. Conclusions and Future Research

We have considered the situation of a large daytime work parking lot with homoge-
neous battery electric vehicles (BEVs) for simplicity, and solar sources based electricity
charging. We have used realistic data to implement deterministic daily solar power curves
with photovoltaic panels in a parking lot for a typical sunny day and a typical cloudy day.
One should note that a large heterogeneous population of BEVs can be analyzed by assum-
ing that it is possible to group the BEVs into classes considered homogeneous. Thus, all
the BEVs of a class share the same physical parameters and, in order to better redistribute
energy according to individual BEV needs, the forecast solar energy can be distributed by
favoring a class with more BEVs, a larger-size battery and a lower charger efficiency.

In Section 3, a fair, and decentralized MFG strategy, for recharging a large fixed
population of BEVs, has been developed. The goal was to reduce significantly the SOCs’
standard deviation while elevating the SOCs of BEVs to a satisfactory level regardless of
their SOCs upon arrival. A comparison was carried out with an equal sharing (ES) strategy
and a first come first full (FCFF) strategy which we saw could result in some unsatisfied
individual users with little SOCs at the end of recharging. In Section 4, we considered
a large fluctuating population of homogeneous BEVs. This new situation allowed us to
improve the FCFF strategy into first come first serve (FCFS) strategy. The results showed
that the MFG strategy remains the most desirable charging strategy with regards to the
standard deviation of SOCs upon departure and fairness criterion. Finally, we did much
better than the literature [20] (60% as maximum reduction of SOCs’ standard deviation
in the case of a fluctuating population of BEVs) as we illustrated in the summary Table 4
below when we compared our results to the base case which is here the ES strategy.

Table 4. Standard deviation increase/reduction of SOCs’ BEVs.

400 Fixed BEVs in a 400 Fluctuating BEVs in a
Sunny Day Cloudy Day Sunny Day Cloudy Day

FCFF ↑ 241% ↑ 318% ↑ 151% ↑ 464%
FCFS ↑ 0% ↑ 0% ↓ 47% ↓ 35%
MFG ↓ 84% ↓ 40% ↓ 78% ↓ 70%

In future research, we shall extend this work by considering stochastic solar acquisition
in the parking lot and explore MFG based algorithms this time for potential partial restitu-
tion of battery energy from solar charged BEVs to the grid during evening peak hours.
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Nomenclature

E mathematical expectation symbol
∇ vector differential operator
∂�/∂4 partial derivative of � with respect to4
d4 differential of4
t time in h
tbegin, tend beginning of the horizon, end of the horizon
t0, T charging starting time, charging stopping time
ϕ = [t0, T] charging time interval
t(a)

j , t(d)j random arrival times, random departure times
i a user of BEV
α charger efficiency in pu/h
β capacity of the battery in kWh
b = α/β characteristic of the battery in pu/kW
J, J∗ cost to minimize, optimal cost
ui,t charging rate of BEV user i at time t in kW
u∗i,t optimal charging rate of BEV user i at time t
uWt forecast solar power in the parking lot at time t
W =

∫ tend
tbegin

uWt dt total forecast solar energy in the parking lot in kWh

Wϕ =
∫

ϕ uWt dt forecast solar energy in the parking lot between t0 and T
xi,t state of charge (SOC) of BEV user i at time t in pu of capacity
xi,0, xi,T SOC of BEV user i at t0, SOC of BEV user i at T
x0, xT average SOCs of BEVs at t0, average SOCs of BEVs at T
xt mathematical expectation of SOCs of BEVs at time t
xtarget

t target for mean SOC of BEVs at time t
xtarget

T target for steady-state mean SOC of BEVs
σxi,0 , σxi,T standard deviation of SOCs at t0, standard deviation of SOCs at T
qy

t pressure field trajectory of BEVs at time t
qy

T steady-state pressure field of BEVs
qx0 comfort coefficient of BEVs
r charging rate penalty coefficient of BEVs
y collective direction of BEVs’ SOCs
ν Brownian noise intensity
ω Brownian motion
δ coefficient to ensure convergence of the cost J
π, s, γ coefficients of quadratic form of optimal cost J∗

235



Energies 2021, 14, 8517

References
1. Global EV Outlook 2021: Accelerating Ambitions Despite the Pandemic; Technical Report; International Energy Agency: Paris, France

2021.
2. Canada’s Energy Future 2020: Towards Net-Zero; Technical Report; Canada Energy Regulator: Calgary, AB, Canada, 2020.
3. EV30@30: A Campaign Launched under the Electric Vehicle Initiative; Technical Report; Clean Energy Ministerial: Helsinki, Finland,

2019.
4. Su, W.; Wang, J.; Hu, Z. Planning, Control, and Management Strategies for Parking Lots for PEVs. In Plug in Electric Vehicles

in Smart Grids: Integration Techniques; Rajakaruna, S., Shahnia, F., Gosh, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015;
Chapter 3, pp. 61–98. [CrossRef]

5. Olivella-Rosell, P.; Villafafila-Robles, R.; Sumper, A. Impact evaluation of plug-in electric vehicle on power systems. In Plug in
Electric Vehicles in Smart Grids: Integration Techniques; Rajakaruna, S., Shahnia, F., Gosh, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2015; Chapter 6, pp. 149–178.

6. Tuchnitz, F.; Ebell, N.; Schlund, J.; Pruckner, M. Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle
Fleet Based on Reinforcement Learning. Appl. Energy 2021, 285, 116382. [CrossRef]

7. Zhou, Y.; Maxemchuk, N.; Qian, X.; Mohammed, Y. A weighted fair queuing algorithm for charging electric vehicles on a smart
grid. In Proceedings of the 2013 IEEE Online Conference on Green Communications (OnlineGreenComm), Piscataway, NJ, USA,
29–31 October 2013. [CrossRef]

8. Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y.; Padmanaban, S.; Mihet-Popa, L.; Blaabjerg, F. Minimization of Load Variance
in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling. Energies 2017, 10, 1880. [CrossRef]

9. Sortomme, E.; Hindi, M.M.; MacPherson, S.D.J.; Venkata, S.S. Coordinated Charging of Plug-In Hybrid Electric Vehicles to
Minimize Distribution System Losses. IEEE Trans. Smart Grid 2010, 2, 198–205. [CrossRef]

10. Schaden, B.; Jatschka, T.; Limmer, S.; Raidl, G.R. Smart Charging of Electric Vehicles Considering SOC-Dependent Maximum
Charging Powers. Energies 2021, 14, 7755. [CrossRef]

11. Mariello, M.; Blad, T.; Mastronardi, V.; Madaro, F.; Guido, F.; Staufer, U.; Tolou, N.; De Vittorio, M. Flexible piezoelectric AlN
transducers buckled through package-induced preloading for mechanical energy harvesting. Nano Energy 2021, 85, 105986. doi:
10.1016/j.nanoen.2021.105986. [CrossRef]

12. Kim, J.; Yamanaka, S.; Murayama, I.; Katou, T.; Sakamoto, T.; Kawasaki, T.; Fukuda, T.; Sekino, T.; Nakayama, T.; Takeda, M.;
et al. Pyroelectric power generation from the waste heat of automotive exhaust gas. Sustain. Energy Fuels 2020, 4, 1143–1149.
[CrossRef]

13. Ghotge, R.; Snow, Y.; Farahani, S.; Lukszo, Z.; van Wijk, A. Optimized Scheduling of EV Charging in Solar Parking Lots for Local
Peak Reduction under EV Demand Uncertainty. Energies 2020, 13, 1275. [CrossRef]

14. Chandra Mouli, G.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces.
Appl. Energy 2016, 168, 434–443. [CrossRef]

15. Figueiredo, R.; Nunes, P.; Brito, M.C. The feasibility of solar parking lots for electric vehicles. Energy 2017, 140, 1182–1197.
[CrossRef]

16. Deshmukh, S.S.; Pearce, J.M. Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renew. Energy
2021, 169, 608–617. [CrossRef]

17. Denholm, P.; O’Connell, M.; Brinkman, G.; Jorgenson, J. Overgeneration from Solar Energy in California: A Field Guide to the Duck
Chart; Technical Report; National Renewable Energy Laboratory: Washington, DC, USA, 2015.

18. Drude, L.; Pereira Junior, L.C.; Rüther, R. Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand
reduction in urban regions in Brazil in a smart grid environment. Renew. Energy 2014, 68, 443–451. [CrossRef]

19. Rüther, R.; Pereira Junior, L.C.; Bittencourt, A.H.; Drude, L.; dos Santos, I.P. Strategies for plug-in electric vehicles to grid (V2G)
and photovoltaics (PV) for peak demand reduction in urban regions in a smart grid environment. In Plug in Electric Vehicles
in Smart Grids: Integration Techniques; Rajakaruna, S., Shahnia, F., Gosh, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015;
Chapter 7, pp. 179–219. [CrossRef]

20. Lee, S.; Iyengar, S.; Irwin, D.; Shenoy, P. Shared solar-powered EV charging stations: Feasibility and benefits. In Proceedings of
the 2016 Seventh International Green and Sustainable Computing Conference (IGSC), Hangzhou, China, 7–9 November 2016.
[CrossRef]

21. Ma, Z.; Callaway, D.S.; Hiskens, I.A. Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans.
Control. Syst. Technol. 2013, 21, 67–78. [CrossRef]

22. Xydas, E.; Marmaras, C.; Cipcigan, L.M. A multi-agent based scheduling algorithm for adaptive electric vehicles charging. Appl.
Energy 2016, 177, 354–365. [CrossRef]

23. Huang, M.; Caines, P.E.; Malhamé, R.P. Large-Population Cost-Coupled LQG Problems with Nonuniform Agents: Individual-
Mass Behavior and Decentralized ε-Nash Equilibria. IEEE Trans. Autom. Control. 2007, 52, 1560–1571. [CrossRef]

24. Cardaliaguet, P. Notes on Mean Field Games (from Pierre-Louis Lions’ Lectures at Collège de France); Université Paris-Dauphine: Paris,
France, 2013.

25. Kizilkale, A.C.; Salhab, R.; Malhamé, R.P. An integral control formulation of Mean Field Game based large scale coordination of
loads in smart grids. Automatica 2019, 100, 312–322. [CrossRef]

26. Anderson, B.D.; Moore, J.B. Optimal Control, Linear Quadratic Methods, 12th ed.; Dover Publications: Mineola, NY, USA, 2007.

236



Energies 2021, 14, 8517

27. Lénet, Q. Contrôle Décentralisé d’un Ensemble de Dispositifs de Chauffage électrique. Master’s Thesis, Polytechnique Montreal,
Montreal, QC, Canada, 2020.

28. Bellman, R.E.; Dreyfus, S.E. Applied Dynamic Programming, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2015.

237





Citation: Zhou, B.; Shen, X.; Pan, C.;

Bai, Y.; Wu, T. Optimal Reactive

Power Dispatch under Transmission

and Distribution Coordination Based

on an Accelerated Augmented

Lagrangian Algorithm. Energies 2022,

15, 3867. https://doi.org/10.3390/

en15113867

Academic Editor: Abu-Siada Ahmed

Received: 28 April 2022

Accepted: 23 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Optimal Reactive Power Dispatch under Transmission and
Distribution Coordination Based on an Accelerated Augmented
Lagrangian Algorithm
Bin Zhou 1, Xiaodong Shen 1,*, Caimei Pan 2, Yuanbao Bai 2 and Tian Wu 2

1 College of Electrical Engineering, Sichuan University, Chengdu 610065, China; 2019223030002@stu.scu.edu.cn
2 Sichuan Energy Investment Integrated Energy Co., Ltd., Chengdu 611130, China; 015740@ntsd789.com (C.P.);

baiyuanbao0827@yeah.net (Y.B.); oversky2012@163.com (T.W.)
* Correspondence: shengxd@scu.edu.cn; Tel.: +86-166-0282-7868

Abstract: As many distributed power sources flood into the distribution network, the relationship
between transmission and distribution grids in reactive power and voltage is becoming closer and
closer. The traditional way of independent reactive power optimization in transmission and distri-
bution grids is no longer appropriate. In this study, a collaborative and distributed reactive power
optimization method for transmission and distribution grids based on the accelerated augmented
Lagrangian (AAL) algorithm is proposed to adapt to the independence of the transmission and
distribution grids in operation and management. The global reactive power optimization problem
is decomposed into the transmission network subproblem and several distribution network sub-
problems. According to AAL, subproblems are solved in a distributed manner until the optimal
global solution is finally reached after several iterations, and coordination between transmission and
distribution grids is achieved only through the interaction of information on coordinating variables.
For better convergence, a linearized and convergence-guaranteed optimal power flow model (OPF)
with reactive power and voltage magnitude was applied to model the transmission grid optimization
subproblem, while the second-order cone programming (SOCP) technique is used in the distribution
network subproblems. The simulation results confirm that the method in this paper can effectively re-
duce network losses and achieve better economic performance, and converges better when compared
to other algorithms.

Keywords: transmission and distribution coordination; linear approximation; reactive power
optimization; accelerated augmented Lagrangian algorithm; distributed generator

1. Introduction

With the rapid development of distributed energy, distribution networks are gradually
evolving into active distribution networks, and the reactive power characteristic has also
changed [1]. Traditionally, the transmission and distribution network′s optimal reactive
power dispatch (ORPD) is carried out separately. The lower distribution networks remain
unchanged when optimizing the transmission network, and the voltage of the boundary
buses are used as the reference when optimizing the distribution networks, making it prone
to overvoltage problems and cascading blackouts of distributed generators when there is
a large-scale influx of distributed generators into distribution networks [2]. Therefore, it
is necessary to give full play to the voltage support role of the transmission network and
make full use of the reactive power regulation capability of the distribution network, which
helps active distribution networks to eliminate overvoltage problems and reduce network
losses [3,4].

Theoretically, the centralized optimization method could be used to establish a global
optimal dispatch model to realize the coordinated optimal dispatch of transmission and
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distribution networks [5]. However, for the existing power system, transmission and distri-
bution networks are under the jurisdiction of different dispatching agencies, which makes
it hard for centralized optimization to deal with the confidentiality of information among
various stakeholders and the independence of transmission and distribution networks in
the process of operation and management. On the other hand, the centralized optimization
method must concentrate the data of the global system to the dispatch center for calculation.
However, aggregating data from multiple distribution networks will dramatically increase
the complexity and computational cost of optimization problems. Therefore, it is reasonable
to use a distributed optimization method when carrying out the optimal dispatch under
transmission and distribution network coordination [6].

Recently, several researches have been conducted on distributed optimization meth-
ods for coordinated transmission and distribution networks. In [7], a reactive power
optimization model considering coordinated transmission and distribution networks was
established and solved by the generalized Benders decomposition method. However, this
approach requires the subproblems to be convex to obtain the efficient Benders cut. How-
ever, shunt capacitors (SCs) and on-load transformers (OLTCs) in distribution networks are
discrete control variables, which poses a challenge to the Benders decomposition method.
In [8,9], the heterogeneous decomposition (HGD) was applied to the economic scheduling
problem of coordinated transmission and distribution networks. However, the HGD may
lead to local optima and is unsuitable for topologically complex networks, especially when
there are connections between different distribution networks [10]. As a commonly used
distributed optimization algorithm in optimization problems, the alternating direction
multiplier (ADMM) has been widely used in multi-region network operation problems,
including distributed optimal power flow and fully distributed reactive power optimiza-
tion [11,12]. In [13], ADMM was applied to the reactive power optimization problem of
multiple partition coordination in active distribution networks, and the results proved that
the ADMM is an effective method for dealing with collaborative optimization problems.
By improving the ADMM algorithm, the accelerated augmented Lagrangian algorithm
(AAL) can obtain a faster convergence speed when dealing with collaborative optimization
problems [14]. In [15], the AAL was applied to the distributed restoration problem of an
integrated power transmission and distribution system with distributed energy sources.
In [16], a framework was established to deal with the reactive power optimization of trans-
mission and distribution networks coordination through the method of curve fitting, but
the method cannot take into account the role of DGs. In addition, methods such as multi-
parameter planning and the principle of auxiliary problems were also used to optimize
transmission and distribution networks coordination problems [17,18].

The optimization problem of transmission and distribution networks can be for-
mulated by nonlinear AC-OPF, DC-OPF, or other forms, such as mixed-integer linear
programming, second-order cone programming (SOCP), and semidefinite programming.
In [19], the DC-OPF was used for the transmission network optimization problem, and the
nonlinear AC-OPF was used for the distribution network optimization problem, thereby
improving the calculation speed. However, since the variables related to reactive power are
not modeled in the traditional DC-OPF, it cannot be used to deal with the optimal reactive
power dispatch problem. For that issue, a novel linearized OPF model with reactive power
(Q) and voltage magnitude (V) was established to achieve the better performance of the DC-
OPF models [20]. By applying the novel linear approximation method to the transmission
network subproblem model, the complexity of the transmission network subproblem and
the global optimization problem can be significantly reduced. In addition, the effectiveness
of SOCP for radial networks has been demonstrated in the related literature, and it is often
used in the optimization of distribution networks [21].

To give full play to the synergy between the transmission network and the distribution
network, a coordinated transmission and distribution optimal reactive power dispatch
(CTD-ORPD) framework is established in this paper. The main contributions are listed
as follows:
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(1) A fully distributed framework based on the AAL algorism is constructed for CTD-
ORPD, through coordination between transmission and distribution grids to achieve
the common goals of minimizing network losses and maximizing economic bene-
fits, which performs better in terms of economy and safety when compared to the
traditional independent optimization method of distribution grids [22].

(2) In the proposed CTD-ORPD framework, the global reactive power optimization
problem is decomposed into the transmission network subproblem and several dis-
tribution network subproblems. Based on AAL, the subproblems are solved in a
distributed manner until the optimal global solution is finally reached after several
iterations, and coordination between transmission and distribution grids is achieved
only through the interaction of information on coordinating variables. By adopting
a distributed approach, the issues of data privacy, cybersecurity, and the computing
and communication of independent system operators are reasonably addressed. Ad-
ditionally, the AAL-based CTD-ORPD framework proposed in this paper is proved to
have better convergence performance and solving efficiency when compared to those
co-optimization methods using HGD [9] or ADMM [13].

(3) For a better convergence performance and solving efficiency of the established dis-
tributed optimization model, a novel linearized OPF and the SOCP technique are
applied to the modeling of transmission network subproblem and distribution net-
work subproblems, respectively.

The rest of this paper is organized as follows: In Section 2, the framework of the
CTD-ORPD is introduced, including the separate modeling of transmission network and
distribution network subproblems, as well as the novel linearized OPF and SOCP applied
to the modeling of the transmission network and distribution networks, respectively. In
Section 3, the distributed solving algorithm of the CTD-ORPD is detailed, and the algorithm
flowchart is given. Section 3 establishes three test cases to verify the validity of the proposed
CTD-ORPD and compares the performance of the proposed method in this paper with
other methods. Finally, Section 4 presents our conclusions.

2. Framework of the CTD-ORPD

In this section, the CTD-ORPD framework based on AAL is introduced. In the pro-
posed CTD-ORPD framework, the global reactive power optimization problem is de-
composed into the transmission network subproblem and several distribution network
subproblems. Based on AAL, the subproblems are solved in a distributed manner until
the optimal global solution is finally reached after several iterations, and coordination
between transmission and distribution grids is achieved through the interaction of infor-
mation on coordinating variables. Coordinating variables are the variables of the points
of common coupling (PCCs) between the transmission network and the distribution net-
works, including bus voltage magnitude and phase angle, active power output and reactive
power output.

In the transmission network subproblem, control variables such as SCs, OLTCs, and
reactive power output of generators need to be optimized. A novel linearized approxi-
mation method is applied to handle the nonlinearity of the power flow equations of the
transmission network for better convergence [20]. In the distribution network subproblem,
control variables such as SCs, OLTCs, and reactive power output of various distributed
power sources need to be optimized. Additionally, SOCP method is applied to the convex
modeling of the distribution network subproblems. The framework of the established
CTD-ORPD is illustrated in Figure 1.
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2.1. Linear Approximation of Power Flow Equations

A novel linear approximation of power flow equations to construct the linearized OPF
model of the transmission subproblem is detailed in this part, which is the foundation for
formulating the proposed CTD-ORPD model.

Taking advantage of the power flow equations in the polar coordination, the expression
for power flows on branch i-j are as follows:

Pij =
(

v2
i − vivj cos θij

)
gij − vivjbij sin θij (1)

Qij = −
(

v2
i − vivj cos θij

)
bij − vivjgij sin θij (2)

where Pij and Qij are the active and reactive power passing on branch i-j, respectively;
vi and vj are the voltage magnitudes of bus i and bus j, respectively; and gij and bij are
conductance and susceptance of branch i-j. Given the initial values of voltage magnitudes
and phase angles (v0,θ0), the trigonometric function in the above formula can be linearized
and approximated by the first-order Taylor series as follows:

sin θij ≈ s1
ijθij + s0

ij (3)

cos θij ≈ c1
ijθij + c0

ij (4)

s1
ij = cos θij,0, s0

ij = sin θij,0 − θij,0 cos θij,0 (5)

c1
ij = − sin θij,0, c0

ij = cos θij,0 + θij,0 sin θij,0 (6)

The initial value of the voltage phase angle is very close to the final value after iteration
due to the quasi-linear relationship between the active power and the voltage phase angle in
the power system [23]. Therefore, Equations (3) and (4) have a good accuracy. Substituting
Equations (3) and (4) into Equations (1) and (2), we can obtain:

Pij = v2
i gij − vivj

(
gijc0

ij + bijs0
ij

)
− vivjθij

(
gijc1

ij + bijs1
ij

)
(7)

Qij = −v2
i bij + vivj

(
−gijs0

ij + bijc0
ij

)
− vivjθij

(
gijs1

ij − bijc1
ij

)
(8)

242



Energies 2022, 15, 3867

Considering vivj as a whole, use the first-order Taylor series expansion to decouple
the variable vivj from the variable θij in the expression vivjθij:

vivjθij ≈ vi,0vj,0θij +
(
vivj − vi,0vj,0

)
θij,0 (9)

By substituting Equation (9) into Equations (7) and (8), the following expressions can
be obtained:

Pij = gijv2
i − gP

ijvivj − bP
ij
(
θij − θij,0

)
(10)

Qij = −bijv2
i + bQ

ij vivj − gQ
ij
(
θij − θij,0

)
(11)

where gP
ij, bP

ij, gQ
ij , and bQ

ij are the active equivalent conductance, active equivalent sus-
ceptance, reactive equivalent conductance, and reactive equivalent susceptance of line i-j,
respectively, and their expressions are as follows:

gP
ij =

(
gijc0

ij + bijs0
ij

)
+
(

gijc1
ij + bijs1

ij

)
θij,0 (12)

bP
ij =

(
gijc1

ij + bijs1
ij

)
vi,0vj,0 (13)

gQ
ij =

(
gijs1

ij − bijc1
ij

)
vi,0vj,0 (14)

bQ
ij =

(
−gijs0

ij + bijc0
ij

)
−
(

gijs1
ij − bijc1

ij

)
θij,0 (15)

There is still a nonlinear variable vivj in Equations (10) and (11), respectively. In order
to eliminate the nonlinearity of the model, the following mathematical transformations are
performed on vivj:

vivj =
1
2

[
v2

i + v2
j −

(
vi − vj

)2
]
=

v2
i + v2

j

2
−

v2
ij

2
(16)

The expression
(

v2
i + v2

j

)
/2 is linear when considering v2 as an independent variable.

In practical power systems, the values of v2
ij are very small and often negligible. Thus,(

v2
i + v2

j

)
/2 can be used as an approximation of vivj, the approximation error would be

small and not affected by the initial value of the voltage magnitude [24]. For keeping the
error as low as possible, the following approximation is made to v2

ij in Equation (16) based
on a Taylor series expansion:

v2
ij ≈ 2vij,0vij − v2

ij,0 ≈ 2vij,0vij
vi + vj

vi,0 + vj,0
− v2

ij,0 = 2
vi,0 − vj,0

vi,0 + vj,0

(
v2

i − v2
j

)
− v2

ij,0 = vs
ij,L (17)

where vs
ij,L is an approximation of v2

ij. Equation (17) are linear when considered v2 as an

independent variable. Since v2
ij is non-negativity, the following non-negativity constraint

should be applied:
vs

ij,L + εij ≥ 0, εij ≥ 0 (18)

By substituting Equations (16) and (17) into Equations (10) and (11), the linearized
approximation of the power flow equation is obtained:

PL
ij = gijv2

i − gP
ij

v2
i + v2

j

2
− bP

ij
(
θij − θij,0

)
+ gP

ij

vs
ij,L

2
(19)

QL
ij = −bijv2

i + bQ
ij

v2
i + v2

j

2
− gQ

ij
(
θij − θij,0

)
− bQ

ij

vs
ij,L

2
(20)
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In Equations (19) and (20), the active and reactive components of the power flow are
both linear functions when considering v2 as an independent variable.

The following are the expressions of the nodal injection power equations:

Pi =
N

∑
j=1

(
vivjGij cos θij + vivjBij sin θij

)
(21)

Qi = −
N

∑
j=1

(
vivjBij cos θij − vivjGij sin θij

)
(22)

where Gij and Bij are the real and imaginary parts of the node admittance matrix, respec-
tively. Equations (21) and (22) can be converted into the following forms:

Pi = ∑
(i,j)

Pij +

(
N

∑
j=1

Gij

)
v2

i (23)

Qi = ∑
(i,j)

Qij +

(
N

∑
j=1
−Bij

)
v2

i (24)

Finally, the linearized power flow equation constraints are obtained, which are com-
posed of Equations (19), (20), (23), and (24). They are all linear functions when v2 is
considered as an independent variable.

2.2. Transmission Network Subproblem Model

In this part, the linearized OPF model of the transmission network subproblem is
established based on the above linear approximation of power flow equations.

In traditional optimal reactive power dispatch, minimizing network losses is often
applied as the objective function, where network losses are functions of the voltage mag-
nitude and the voltage phase angle [25]. However, minimizing network losses without
considering generator costs may be in conflict with economic principles. Thus, minimizing
active power injections at the root bus is also usually used as the objective function of the
optimal reactive power dispatch problem [26]. In this paper, minimizing the operating cost
was adopted as the objective function of ORPD of the transmission network subproblem,
and its expression is as follows:

minFT = ∑
g∈G

C(Pg) (25)

2.2.1. The Cost of Coal Consumption

According to the characteristics of coal consumption, a convex quadratic function is
used as the generation cost of generator g [27]. By default, the unit commitment is already
achieved, so the binary variables indicating the on/off status of the unit are not included in
the equation.

C(Pg) =
(

cP
g,2P2

g + cP
g,1Pg + cP

g,0

)
(26)

where cP
g,2, cP

g,1, and cP
g,0 are the quadratic term coefficient, primary term coefficient, and

constant term of the quadratic cost curve of the generator g, respectively. Pg denotes the
active power output of the generator g.

For better convergence, a segmented linearization technique is applied to the lineariza-
tion of the generator cost function. Figure 2 shows the linearized cost curve of generator g.
We equally divided [Pmin

g , Pmax
g ], the power output range of generator g, into mg segments,

and the length of each segment is denoted as PIg,1, PIg,2, . . . , PIg,mg ; the slope is denoted
as KIg,1, KIg,2, . . . , KIg,mg , respectively. Since C(Pg) is a convex function, then we have
KIg,1 < KIg,2 < . . . < KIg,mg and the power of the later segments can only be used after the
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power of the previous segments has been used to the upper limit. Denoting the power at
the segmented points as Pmin

g , Pg,1, Pg,2, . . . , Pg,mg−1, Pmax
g , then the linearized operating

cost and power output can be expressed as follows:

C(Pg) = C(Pmin
g ) +

mg

∑
k=1

PIg,k × KIg,k (27)

Pg = Pmin
g +

mg

∑
k=1

PIg,k (28)

0 6 PIg,1 6 Pg,1 − Pmin
g , 0 6 PIg,2 6 Pg,2 − Pg,1, . . . , 0 6 PIg,mg 6 Pmax

g − Pg,mg−1 (29)
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Figure 2. The linearized cost curve of generator g.

When the initial values of the voltage magnitude and phase angle (v0,θ0) are given,
according to the description in Section 2.1, the constraints of the transmission network
subproblem are constructed as follows:

2.2.2. Nodal Injection Power Balancing Constraints

For all the nodes, the following constraints need to be satisfied:

Pk
i = ∑

g∈i
Pg − Pi,d = ∑

(i,j)
Pk

ij +

(
N

∑
j=1

Gij

)
Vi (30)

Qk
i = ∑

g∈i
Qg −Qi,d = ∑

(i,j)
Qk

ij +

(
N

∑
j=1
−Bij

)
Vi + Qi,sc (31)

where Pi,d and Qi,d are the active and reactive loads at bus i; Gij and Bij are the real and
imaginary parts of the node admittance matrix, respectively; Qi,sc is the reactive power
output of SCs at bus i.; Vi = v2

i represents the square of voltage magnitude at node i, and it
is used as an independent variable in this paper.

2.2.3. Branch Power Balancing Constraints

Equations (19) and (20) are the branch power balancing constraints for those branches
without OLTCs. For those branches with OLTCs, the branch power balancing constraints
are as follows:

Pk
ij = gijVi,OLTC − gP

ij

Vi,OLTC + Vj

2
− bP

ij
(
θij − θij,0

)
+ gP

ij

VOLTC
ij,L

2
(32)

Qk
ij = −bijVi,OLTC + bQ

ij

Vi,OLTC + Vj

2
− gQ

ij
(
θij − θij,0

)
− bQ

ij

VOLTC
ij,L

2
(33)

VOLTC
ij,L = 2

vi,OLTC,0 − vj,0

vi,OLTC,0 + vj,0

(
Vi,OLTC −V2

j

)
−
(
Vi,OLTC,0 −Vj,0

)2 (34)
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2.2.4. Constraints of OLTCs

Denote K ∈ {K0, K1, K2, . . . , Kn} as the optional status of OLTCs. When the operation
status of OLTCs is Km, the following constraint should be satisfied:

Vi = K2Vi,OLTC = K2
0Vi,OLTC +

t

∑
m=1

(K2
m − K2

m−1)Vi,OLTC (35)

However, K2
t Vi,OLTC in the above equation contains a nonlinear term, which is detri-

mental to the solution of the model. A set of 0–1 variables {z1, z2, . . . , zn} is introduced to
linearize it.

Vi = K2
0Vi,OLTC +

n

∑
m=1

∆Vm (36)

0 ≤ ∆Vm ≤ zmVmax

(
K2

m − K2
m−1

)
(37)

∆Vm ≤
(

K2
m − K2

m−1

)
Vi,OLTC (38)

∆Vm ≥
(

K2
m − K2

m−1

)
Vi,OLTC − (1− zm)Vmax

(
K2

m − K2
m−1

)
(39)

zm ≥ zm+1, m = 1, 2, . . . , n− 1 (40)

where ∆Vm stands for the term (K2
m − K2

m−1)Vi,OLTC, replacing K as the decision variable
about OLTCS in the optimization process. When zm = 0, then ∆Vm = 0 according to
Equation (37); when zm = 1, then ∆Vm =

(
K2

m − K2
m−1

)
Vi,OLTC according to Equations (38)

and (39). According to Equation (40), when zt − zt − 1 = 1, then the values of the 1st to the
tth term of the set {z1, z2, . . . , zn}, then the values of the 1st to the tth term of the set are 1,
while all the remaining values are 0. Substituting all the values into Equation (36), we can
see that the set of constraints Equations (36)–(40) are equivalent to the original constraints
Equation (35).

2.2.5. Constraints of SCs

The set {Bi,1, Bi,2, . . . , Bi,n} is used to represent the conductance of SCs available at bus
i. Assuming that the capacitors are put in sequentially, i.e., Bi,t is put in before Bi,t+1, then
the reactive power output of SCs can be expressed as follows:

Qi,sc = Vi

t

∑
m=1

Bi,m =
t

∑
m=1

(ViBi,m) (41)

Similar to the modeling process of OLTCs, a set of 0–1 variables {x1, x2, . . . , xn} is
introduced to represent the operational state of SCs, then the constraint Equation (41) can
be equivalently represented by the following set of linear constraints:

Qi,sc =
n

∑
m=1

Qsc
i,m (42)

0 ≤ Qsc
i,m ≤ xmVmaxBi,m (43)

Qsc
i,m ≤ ViBi,m (44)

Qsc
i,m ≥ ViBi,m − (1− xm)Vi,maxBi,m (45)

xt ≥ xt+1, t = 1, 2, . . . , n− 1 (46)

where Qsc
i,m stands for the term ViBi,m.
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2.2.6. Operational Constraints

For the maintenance of the system in a normal working condition, the following
constraints need to be satisfied:

Pmin
g ≤ Pg ≤ Pmax

g (47)

Qmin
g ≤ Qg ≤ Qmax

g (48)

v2
i,min ≤ Vi ≤ v2

i,max (49)

In addition, the linearized form of line capacity constraint can be referred to [20] and
will not be repeated in this paper.

In the above transmission network ORPD subproblem, all constraints are linear when
considering V = v2 as an independent variable. Since discrete variables are included, the
above-mentioned ORPD subproblem is a mixed-integer programming problem with linear
constraints.

2.3. Distribution Network Subproblem Model

In this part, the distribution network subproblem model is established based on the
SOCP method. In the ORPD of distribution network subproblems, in addition to the
traditional OLTCs and SCs, the variables that need to be optimized also include Static
Var Compensators (SVCs) and various controllable DGs. Since there are generally no
conventional generators in the distribution network, using the minimum network loss
as the objective function of the distribution network subproblems is in line with the eco-
nomic principle. The objective function of the ORPD of the distribution network DSOk is
as follows:

minFD,k = ∑
(i,j)

rij,kLij,k (50)

where Lij,k represents the square of the current on branch i-j. The constraints of the DSOk
subproblem are as follows:

2.4. Power Flow Equation Constraints

For a typical radial distribution network, the power flow constraint can be expressed
as follows: (

Pij,k

)2
+
(

Qij,k

)2
= Lij,kui,k (51)

∑
i∈u(j)

(
Pij,k − Lij,krij,k

)
+ PGj,k = ∑

t∈v(j)

(
Pjt,k

)
+ PDj,k (52)

∑
i∈u(j)

(
Qij,k − Lij,kxij,k

)
+ QGj,k = ∑

t∈v(j)

(
Qjt,k

)
+ QDj,k (53)

uj,k = ui,k − 2
(

rij,kPij,k + xij,kQij,k

)
+

((
rij,k

)2
+
(

xij,k

)2
)

Lij,k (54)

In the above distribution network subproblem, Equation (51) contains quadratic terms,
and SOCP is usually applied to transform it into the following form:

∣∣∣∣∣

∣∣∣∣∣

2Pij,k
2Qij,k

Lij,k − ui,k

∣∣∣∣∣

∣∣∣∣∣
2

≤ Lij,k + ui,k (55)

2.5. Security Constraints

For a typical radial distribution network, the power flow constraint can be expressed
as follows:

Lij,k,min ≤ Lij,k ≤ Lij,k,max (56)
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ui,k,min ≤ ui,k ≤ ui,k,max (57)

2.6. Constraints of DGs

There are a large number of wind turbines, photovoltaics (PVs), and micro gas turbines
(GTs) in distribution networks. They are generally connected to the grid through inverters,
have good reactive power potentials, and participate in the distribution network’s reactive
power optimization process. Depending on the types of DGs and their inverter control
modes, they have different reactive power regulation characteristics.

The inverter of the micro GTs generally adopts the PQ decoupling control method,
and the reactive power regulation capacity is determined by the active power output and
the total capacity of the inverter:

QDG,max =
√

S2
max − P2

DG (58)

QDG,min = −QDG,max (59)

where QDG,max and QDG,min represent the upper and lower limits of the reactive power
regulation capability of the micro gas turbine; Smax is the maximum apparent power of the
inverter; and PDG is the active power output of the micro gas turbine.

For Doubly fed Induction Generators (DFIGs), the reactive power regulation capability
is mainly determined by the reactive power capacity on the stator side and the total capacity
of the inverter:

QDG,max = Qs,max −Qc,min (60)

QDG,min = Qs,min −Qc,max (61)

For PVs, the grid-connected inverters mainly have two control modes: voltage control
and current control. Due to the limitations of the voltage control mood, the photovoltaic
inverter usually adopts the current control mood. In the reactive power optimization
process, the reactive power output of photovoltaics is jointly determined by the nodal
voltage, active power output, and current constraints:

QDG,max =
√

V2
DG I2

DG,max − P2
DG (62)

QDG,min = 0 (63)

2.7. Other Constraints

The modeling of the OLTCs and SCs in the distribution networks is similar to that in
the transmission network and will not be repeated here.

3. Solving Algorithm of the CTD-ORPD

This section describes the details of the algorithm AAL for solving the proposed
CTD-ORPD framework.

The AAL algorithm is a novel distributed algorithm that combines the advantages of
the Diagonal Quadratic Approximation (DQA) method and the ADMM method. It uses a
local augmented Lagrangian function similar to that of DQA, while discarding its inner
loop step. Compared to ADMM, the updated rules for original variables and dual variables
are improved. The original variables are updated one more time compared to ADMM on
the basis of the solution of the local augmented Lagrangian function, which is then used for
the update of the dual variables. In addition, a fully distributed rule is used for the update
of dual variables in the AAL algorithm [14].

Based on AAL, the global ORPD problem is decomposed into the TSO subproblem
and several DSOk subproblems, and the subproblems are solved in a distributed manner
until the optimal global solution is finally reached after several iterations. Coordination
between the TSO subproblem and DSOk subproblems is achieved only through the inter-
action of information on coordinating variables, which consists of the variables of PCCs,
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including bus voltage magnitude and phase angle, active power output and reactive power
output, and denoted as xCT and xCD in this paper. The following is the definition of the
coordinating variables:

xCT =
d∪

k=1
xCT,k, xCT,k =

[
PCT,k QCT,k VCT,k δCT,k

]
(64)

xCD =
d∪

k=1
xCD,k, xCD,k =

[
PCD,k QCD,k VCD,k δCD,k

]
(65)

The CTD-ORPD problem is an optimization problem defined by the objective func-
tions and related constraints of the TSO and DSOk subproblems, which can be expressed
as follows:

min
x

FT(xT, xCT) +
d

∑
k=1

FD,k(xD,k, xCD,k) (66)

s.t. gT(xT, xCT) ≤ 0, hT(xT, xCT) = 0 (67)

gD,k

(
xCD,k, xD,k

)
≤ 0, hD,k

(
xCD,k, xD,k

)
= 0 k = 1, 2, . . . d (68)

xCT − xCD = 0 (69)

In Equation (66), FT and FD,k are the objective functions of the TSO and DSOk subprob-
lems established in the previous section, respectively. Equations (67) and (68) represent the
inequality constraints and equality constraints of TSO and DSOk (k = 1,2, . . . ,d), respec-
tively. xT and xD,k are local variables in the respective systems of TSO and DSOk (k = 1,2,
. . . ,d). Equation (69) demonstrates the consistency constraint of the coordinating variables.

In the proposed distributed method, the CTD-ORPD problem Equation (66) is decom-
posed into (d + 1) subproblems and coordinated optimization is performed. According to
AAL, the decomposed subproblems have the following expressions:

minΛTSO(xT, xCT, λ) = minFT(xT, xCT) +
d

∑
k=1

[
λk

(
xCT,k −

~
xCD,k

)
+

ρ

2
‖xCT,k −

~
xCD,k‖

2
]

(70)

minΛDSO,k

(
xD,k, xCD,k, λk

)
= minFD,k

(
xD,k, xCD,k

)
+[

λk

(~
xCT,k − xCD,k

)
+ ρ

2‖
~
xCT,k − xCD,k‖

2
]

, k = 1, 2, . . . , d
(71)

ΛTSO/ΛDSO,k are the local augmented Lagrangian functions of the TSO/DSOk sub-
problems, respectively. They are, respectively, composed of the corresponding objective
function, the penalty term of the consistency constraint, and a quadratic term that improves
the convergence speed of the Lagrangian function. λ is the Lagrange multiplier associated
with coordinating variables, and ρ > 0 is the penalty term coefficient. The expression of λ is
as follows:

λ =
d∪

k=1
λk, λk =

[
λP,k λQ,k λV,k λδ,k

]
(72)

where
~
xCT,k and

~
xCD,k denote the reference values of the DSOk and TSO coordination

variables, respectively, which are derived from the last optimization results of the TSO and
DSOk subproblems. When optimizing the TSO subproblem, the coordinating variables of
the DSOk subproblem

~
xCD,k serve as the benchmark values of xCT,k in the TSO subproblem.

Similarly,
~
xCT,k would be served as the benchmark values of xCD,k when optimizing the

DSOk subproblem. Figure 3 illustrates the overall pictorial view of the interactions between
TSO and DSOs in the proposed distributed framework, where the solid line connections
between TSOs and DSOs represent connections through transformers and the dotted line
connections indicate information interactions.
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In each iteration, the transmission network subproblem is solved first, and then the
coordinating variables are transferred to each distribution network subproblem. After the
distribution network receives the coordinating variables, the subproblems are solved in
parallel, and then the updated coordinating variables are transmitted to the transmission
network. After the transmission grid receives data from all distribution grids, feasibility
constraints and optimality constraints are checked. The optimal solution is obtained,
and the optimization process ends if these two constraints are satisfied. Otherwise, the
next iteration begins. Due to the parallelism of the subproblems, the time consumed by
each iteration process depends on the transmission network optimization time and the
distribution network with the longest optimization time. The detailed iterative steps of the
algorithm are as follows.

1. Set t = 1, initialize λt, ρ > 0, τ∈(0,0.5), initial local variables x0
T/x0

D,k, initial coordinating

variables x0
CT/x0

CD,k, and
~
xCD,k = x0

CD,k.

2. Optimization of the TSO subproblem: Optimize the problem Equation (70) at fixed λ

and
~
xCD,k, and obtain the local/coordinating variables

^
x

t

CT/
^
x

t

T. After the following
update steps are completed, transfer

~
xCT,k to DSOk (k = 1,2, . . . ,d).

xt
T = xt−1

T + τ(
^
x

t

T − xt−1
T ) (73)

~
xCT = xt

CT = xt−1
CT + τ(

^
x

t

CT − xt−1
CT ) (74)

3. Optimization of the DSOk subproblem: Optimize the problem Equation (71) at fixed

λ and
~
xCT,k, and obtain the local/coordinating variables

^
x

t

CD/
^
x

t

D. After the following
update steps are completed, then transfer

~
xCD,k to TSO.

xt
D,k = xt−1

D,k + τ(
^
x

t

D − xt−1
D,k ) (75)

~
xCD,k = xt

CD,k = xt−1
CD,k + τ(

^
x

t

CD − xt−1
CD,k) (76)
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4. When the TSO receives all the data from DSOk, iterations enter the next step, or else
hold and wait.

5. Use Equation (77) to check whether the feasibility constraint and optimality constraint
are satisfied. If both are satisfied, then the optimization process ends; otherwise,
update the dual variables according to Equation (78), set t = t + 1, and return to step 1.

xt
CT −

~
xCD < ψ, xt

e −
^
x

t

e < γe, Ft
e − Ft−1

e < ξe, e ∈ {TSO, DSO1, . . . , DSOd} (77)

λt+1 = λt + ρτ(xt
CT −

~
xCD) (78)

In Equation (77), ψ, γe, and ξe together determine the accuracy of the algorithm, all of
which took the value of 10−2 in this paper.

Based on the concept of independent system operators, the program only needs to
exchange a small amount of boundary information, which protects the information privacy
and independent decision-making of system operators at all levels. Each distribution
network subproblem can be optimized in parallel, which is beneficial to improving compu-
tational efficiency.

4. Analysis of the Simulation Case
4.1. Introduction of the Simulation Case

In order to prove the effectiveness of the proposed distributed CTD-ORPD framework,
three test cases were constructed based on the IEEE-30 node system (transmission network)
and the IEEE-33 node system (distribution network) for simulation calculation.

(1) Case 1: Connect an IEEE-33 node test system at node No.26 of the IEEE-30 node test
system, which is denoted by TSO and D26 in the following text.

(2) Case 2: Connect an IEEE-33 node test system at the 7th, 19th, and 26th nodes of the
IEEE-30 node test system, respectively, which are represented by TSO, D7, D19, and
D26 in the following text.

(3) Case 3: Connect an IEEE-33 node test system at the 7th, 17th, 19th, 26th, and 29th
nodes of the IEEE-30 node test system, respectively, which are represented by TSO,
D7, D17, D19, D26, and D29 in the following text.

In the three test cases, the transmission network and the distribution network were
connected through 132/12.66 kv transformers. The high voltage side bus of the transformer
was treated as the PCC. The active and reactive power exchanged between transmission
and distribution networks through PCC, as well as the magnitude and phase angle of PCC,
were used as the coordinating variables in the process of transmission and distribution
co-optimization. The power reference value of both the distribution network and the
transmission network was set to 100 MVA.

In the IEEE-30 node system, the OLTCs were set to be adjustable within 0.95~1.05, and
the adjustment step was 0.01.

In the IEEE-33 node systems, nodes 2, 4, 6, 10, 13, 24, and 28 were connected to DGs,
and the detailed parameters of the DGs are shown in Table 1.

Table 1. Buses and parameters of the DGs.

DGs Buses Control Modes Parameters/p.u.

GT 4 PQ decoupling P = 0.002, Smax = 0.005

DFIG 2, 28 Constant voltage control
P = 0.002,

Qs,max = 0.003, Qs,min = −0.003,
Qc,max = 0.005, Qc,min = −0.005

PV 6, 13 Current control P = 0.002, Imax = 0.005
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Since the accuracy of the linearization of the power flow equation in the transmission
network is related to the quality of the initial value (v0,θ0), the latest result of the integrated
power flow calculation was used as the value of (v0, θ0).

Other parameters in the transmission and distribution grids, such as load data,
impedance data, and unit cost coefficients, were derived from MATPOWER (v.7.1, Cornell
University’s Charles H. Dyson School, U.S.).

The program in this paper was established in MATLAB R2019b (v.9.7, MathWorks,
U.S.) and ran on a computer with Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz CPU and
32 GB memory.

4.2. Comparison with Other Methods

To verify the superiority of the transmission and distribution coordination method
proposed in the paper over the traditional independent method and centralized method,
the centralized method, the independent method and the method proposed in the paper
were used for simulation calculations for three test cases. “Centralized method” means that
the distribution network is regarded as a new branch connected to the PCC node in the
transmission network, and the centralized optimization calculation is performed by the con-
trol center. “Independent method” means that there is no information interaction between
the transmission network and the distribution network, and independent optimization is
carried out according to the boundary power flow information.

Tables 2–4 shows the results of solving the three test cases by different methods, and
the boundary voltage magnitudes are in the form of per-unit values. It can be seen from
the tables that in the three calculation cases, the network losses and system operating
costs of the independent optimization method are significantly higher than those of the
centralized optimization method. However, the results obtained by the method proposed
in this paper are very close to that of the centralized optimization method. This is due to the
fact that the initial value (v0, θ0) used in the linearization of the power flow equations of the
transmission network adopts the result of the last integrated power flow calculation. This
proves that our proposed method can obtain a solution with high precision when the initial
value (v0, θ0) has high accuracy. This also demonstrates that it is feasible and effective
to realize the ORPD problem of the global system through the cooperative calculation
between the transmission and distribution networks.

Table 2. Comparison of the results of solving test case 1 by different methods.

Independent Method Proposed Method Centralized Method

System operating costs/thousand USD 61.6128 61.3055 61.3074

Network losses/MW
D26 0.0816 0.0756 0.0769
TSO 5.1020 5.0728 5.0756
Total 5.1836 5.1484 5.1525

Boundary voltage magnitudes (phase angles/(◦)) 1.0066(0) 1.0379
(−10.38)

1.0381
(−10.38)

In test case 1, the method proposed in the paper converges after three iterations, the
total duration is 4.3 s, and the total duration of centralized optimization is 1.890 s. The
total duration of the algorithm in this paper is 2.3 times that of centralized optimization. In
test case 2, the method proposed in this paper converges to the optimal solution after four
iterations. The whole process takes 5.1 s, and the total duration of centralized optimization
is 7.269 s. At this time, the total duration of the method proposed in this paper is only
0.7 times that of centralized optimization. As for the situation in test case 3, the method
proposed in this paper converges to the optimal solution after four iterations. The whole
process takes 5.8 s, and the total duration for centralized optimization is 21.326 s. Eventually,
the method proposed in this paper is obviously less time-consuming than centralized
optimization, and the total duration of the algorithm in this paper is only 0.23 times that for
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centralized optimization. It can be inferred that, when the number of distribution networks
connected to the transmission grid is further increased, the time consumption of centralized
optimization increases sharply, while the total time consumption of the method proposed in
this paper would be basically stable. This is because the distribution network optimization
subproblems are solved in parallel in the proposed distributed computing method. In this
case, the total duration is only related to the number of iterations, the time consumption of
the transmission network subproblem, and the most time-consuming distribution network
subproblem, but has little to do with the number of connected distribution networks. At
the same time, the linearization approximation on the transmission subproblem greatly
reduces the complexity and time consumption of the transmission subproblem, so the total
time consumption of the method proposed in this paper is relatively low.

Table 3. Comparison of the results of solving test case 2 by different methods.

Independent Method Proposed Method Centralized Method

System operating costs/thousand USD 61.6134 61.2250 61.2265

Network losses /MW

D7 0.0812 0.0769 0.0774
D19 0.0796 0.0781 0.0794
D26 0.0826 0.0759 0.0765
TSO 5.0836 5.0307 5.0324
Total 5.3270 5.2642 5.2657

Boundary voltage
magnitudes (phase

angles/(◦))

D7 1.0031(0) 1.0192
(−6.52)

1.0190
(−6.52)

D19 1.0155(0) 1.0287
(−9.83)

1.0284
(−9.83)

D26 0.9985(0) 1.0305
(−10.46)

1.0300
(−10.46)

Table 4. Comparison of the results of solving test case 3 by different methods.

Independent Method Proposed Method Centralized Method

System operating costs/thousand USD 61.6150 61.1229 61.1265

Network losses /MW

D7 0.0818 0.0779 0.0801
D17 0.0750 0.0718 0.0729
D19 0.0796 0.0791 0.0795
D26 0.0903 0.0821 0.0826
D29 0.0801 0.077 0.0776
TSO 5.0801 5.0109 5.0134
Total 5.4869 5.3988 5.4061

Boundary voltage
magnitudes (phase

angles/(◦))

D7 1.0033(0) 1.0193
(−6.54)

1.0190
(−6.52)

D17 1.0276
(0)

1.0433
(−8.64)

1.0429
(−8.64)

D19 1.0144(0) 1.0296
(−9.82)

1.0284
(−9.83)

D26 0.9901(0) 1.0309
(−10.50)

1.0300
(−10.46)

D29 1.0066
(0)

1.0234
(−6.10)

1.0230
(−6.10)

Figures 4 and 5 show the voltage distribution of TSO and D26 using different methods
to solve test case 1, respectively. (The results of test case 2 and test case 3 are similar.)
Tables 5 and 6 present the optimization results of controllable resources in TSO and D26,
respectively, while Table 7 shows the power exchange between TSO and D26. The result
indicates that the proposed method makes fuller use of the reactive power regulation
potential of the DGs in the distribution network. On the one hand, it improves the voltage
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distribution and reduces the network losses in D26. On the other hand, the demand of
D26 for remote reactive resources in TSO is reduced, thus further improving the voltage
distribution and reducing the network losses in TSO. As can be seen from the figures, the
nodal voltage distributions obtained by the proposed method are very close to that of the
centralized optimization method. For the transmission grid, the local voltage distribution is
improved by making full use of the reactive power regulation capability of the distribution
grid in the transmission and distribution coordination optimization process. In either
the proposed method or the centralized optimization method, the voltage magnitudes
of the PCC node of the transmission network, i.e., node 26 and its nearby nodes, are
significantly improved when compared to that of the independent optimization case. In
addition, Appendix A shows the detailed branch power flow of TSO, which demonstrates
the influence of coordinated transmission and distribution ORPD on the branch power
flow of TSO.
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Table 5. Power output of generators in TSO with different methods on test case 1.

Independent Method Proposed Method Centralized Method

P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)

G1 41.52 −5.13 41.31 −5.14 41.31 −5.14
G2 55.37 2.53 55.09 2.49 55.09 2.49
G3 16.13 35.21 16.05 35.22 16.05 35.22
G4 22.7 33.59 22.58 33.35 22.58 33.35
G5 16.13 6.87 16.05 6.63 16.05 6.63
G6 39.62 31.95 39.44 30.85 39.44 30.85

Total 191.47 105.02 190.52 103.4 190.52 103.4

Table 6. Reactive power output of DGs in D26 with different methods on test case 1.

Independent Method Proposed Method Centralized Method

DFIG-2/MVar 0.1264 0.3712 0.3717
GT-4/MVar 0.2012 0.3873 0.3869
PV-6/MVar 0.2367 0.3426 0.3430

PV-13/MVar 0.3246 0.3651 0.3654
DFIG-28/MVar 0.4000 0.4000 0.4000

Table 7. Power transmitted from TSO to D26 with different methods on test case 1.

Independent Method Proposed Method Centralized Method

Active Power/MW 2.9310 2.9266 2.9253
Reactive Power/MVar 1.4407 0.8632 0.8628

4.3. Comparison of Different Distributed Algorithms

In order to test the superiority of the proposed method in relation to the other dis-
tributed methods, ADMM [13], G-MSS [9], ATC [28], AAL (without the linearized approxi-
mation method to model the TSO subproblem), and the proposed method in this paper
were applied to test case 1, and the results are shown in Table 8.

Table 8. Comparison of the results of different distributed algorithms to solve test case 1.

Distributed Methods System Operating Costs/thousand USD Iterations Total Duration/s

ADMM 61.3034 5 9.3
G-MSS 61.3022 6 11.6

ATC 61.3046 5 10.2
AAL 61.3058 5 7.1

The proposed method 61.3055 3 4.3

It can be seen from Table 8 that the operating costs of the systems optimized by
various methods are not much different, and all the results are fairly close to those of
the centralized optimization method, which demonstrates the effectiveness of various
distributed methods for solving transmission and distribution synergy problems. However,
compared with the other methods, the iterations and the total duration of the proposed
method are significantly reduced. This means that the accuracies of various distributed
methods are almost the same, but the method proposed in this paper has a higher efficiency.
On the one hand, the AAL algorithm, which is the basis of the proposed method in the
paper, combines the advantages of other algorithms to obtain improved convergence
performance and solution efficiency. On the other hand, the linear approximation is applied
to the power flow equations of the TSO subproblem, which greatly reduces the complexity
of the optimization model, thereby improving the calculation speed and convergence
performance. With the simultaneous application of the novel linearized approximation
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method and AAL algorithms, the proposed method achieves a significant improvement in
convergence performance and solution efficiency compared to other methods.

The above results are obtained with a convergence accuracy of 10−2. Figures 6 and 7
illustrate the system operating costs and iterations of the various methods for different
convergence accuracies. As can be seen, the proposed method consistently achieves better
optimization results as well as convergence performance compared to other distributed
algorithms when the convergence accuracy varies. At the same time, as the convergence
accuracy increases, the optimization results of various methods gradually converge and
approach the results of centralized optimization, but the number of required iterations
also increases. As the convergence accuracy increases from 10−2 to 10−3, the quality of
the optimization results of various algorithms improves significantly, while the number
of iterations increases only slightly. When the convergence accuracy is increased from
10−4 to 10−5, the quality of the optimization results of various methods improves just a
little, while the number of required iterations increases a lot. We can thus see that the
distributed methods can obtain the same results as the centralized optimization when
the convergence accuracy is high enough, however, at the expense of the convergence
performance. In practice, a reasonable compromise between optimization accuracy and
convergence performance should be made before the computation process. It can also be
seen that, when compared to the case of using only the AAL algorithm for distributed
computation without using the novel linear approximation method to model the TSO
subproblem, the proposed method in the paper has a better convergence performance
at all convergence accuracies, which indicates that using both methods can effectively
improve the convergence performance of the transmission and distribution collaborative
framework. Furthermore, the inconsistency in the total operating cost between the two
is caused when the nonlinear network loss term is linearized according to the linearized
approximation method.
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4.4. Effect of the Linearized Approximation on the TSO Subproblem

As can be seen from the analysis of the above arithmetic cases, the nonlinear opti-
mization solver used by MATPOWER converges in all arithmetic scenarios. However,
the linearized approximation method used in the paper for the TSO subproblem has the
following unique advantages:

1. All formulas are convex functions, which theoretically guarantee convergence;
2. The local optimum corresponds to the global optimum;
3. The linearized OPF model of the transmission grid subproblem leads to a significant

reduction in the complexity of the global optimization model, especially considering
the weight of the TSO time consumption in the global optimization process.

However, the accuracy of the linearized approximation of the flow equations depends
on the accuracy of the initial value (v0, θ0), and in the previous analysis, the results of the
latest integrated flow calculation are used as the initial value (v0, θ0). The above analysis
shows that this approach causes little error in the optimization process when the loads do
not vary much. To further verify the feasibility of the linearized approximation method
adopted in the paper, load variation coefficients αP and αQ are introduced to analyze the
errors caused by the linearization of the power flow equations when the loads vary. The
node loads after changes are as follows:

P′i,d = Pi,d ×
(

1 + αP ×
2i−N

N

)
, Q′i,d = Qi,d ×

(
1 + αQ ×

2i−N
N

)
(79)

where P′i,d/Q′i,d represents the changed load at bus i, and N is the number of transmission
grid buses. When calculating the errors, the calculated results after the load change are
used as the base values, and the errors at different load variation coefficients are shown in
Table 9. As can be seen from the table, the errors in operating costs as the objective function
of the optimization problem increase when the absolute values of αP and αQ increase,
because the errors due to the linearization of the network losses become larger in that case.
It can also be seen that the operating costs errors of the system and the modeling accuracy
of Q are satisfactory for different load variation coefficients. This shows that the method in
the paper of directly adopting the results of the latest integrated power flow calculation
as the initial values (v0, θ0) and linearizing the transmission grid power flow equations is
feasible and effective when the accuracy requirement is not particularly high. Alternatively,
when a higher accuracy is required, the accuracy of the linearized approximation method
can be further promoted by using the warm-start iterative method described in [20], where
only one more iteration is required to obtain a solution significantly close to the exact
modeling case.

Table 9. Errors of the linearized approximation method at different load variation coefficients.

αP αQ Errors in Total Costs Maximum Error of Qij (p.u.)

20% 20% 0.078% 0.27
30% 20% 0.30% 0.22
40% 20% 0.47% 0.26
20% 40% 0.10% 0.27
30% 40% 0.31% 0.26
40% 40% 0.57% 0.27

5. Conclusions

This paper established a distributed framework of the coordinated transmission and
distribution networks optimal reactive power dispatch (CTD-ORPD) based on the AAL
method. The global reactive power optimization problem of transmission and distribution
grids was decomposed into a TSO subproblem and several DSOk subproblems. Each of
the subproblems ran in a distributed manner and iterated until the optimal global solution
is finally reached. The transmission grid and distribution grid subproblems achieved
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fully distributed cooperative optimal reactive power control only through the information
interaction of the coordinating variables. The main conclusions are as follows:

(1) Under the background of a large influx of new energy in the distribution networks, the
coordinated reactive power optimization of transmission and distribution networks
can better allocate the reactive power resources of the system than the independent
optimization method. On the one hand, it gives full play to the voltage supportability
of the transmission network to the distribution networks, and also makes full use of
the reactive power regulation ability of the distribution networks. Thereby minimizing
system network losses and maximizing economic benefits;

(2) Under the proposed framework, each subproblem is solved in a distributed manner,
which protects the privacy of each independent subject and greatly reduces the
complexity of the problem. The distribution network subproblems run in parallel;
when there are many distribution networks connected to the transmission network,
the complexity of the problem only depends on the distribution network subproblem
with the longest solution time, and has little to do with the number of distribution
networks. Thus, compared with the centralized optimization method, the solution
speed of the optimization problem is greatly improved. Compared with the ADMM
method, the AAL method updates the variables twice in each iteration, and has
advantages in convergence performance and solving efficiency;

(3) The transmission subproblem plays a decisive role in the complexity of the entire
model and the total time consumption. By applying a linear approximation to the
power flow equations of the transmission subproblem, the complexity of the optimiza-
tion problem and the total time consumption are both significantly reduced.

The AAL algorithm and the novel linearized approximation method improve the
convergence performance and solving efficiency of the cooperative transmission and dis-
tribution reactive power optimization problem in terms of the distributed computation
method and the model building method, respectively, to achieve more stable convergence
and faster solution. Considering the demand for regulating the voltage problems in the
distribution networks in the background of the influx of DERs, the proposed CTD-ORPD
framework in this paper is expected to play a good role in the short-term or real-time
cooperative reactive power optimal control process of transmission and distribution, thus
promoting further DER consumption.
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Appendix A

Table A1. Branch power flow in TSO with different methods evaluated on test case 1.

Independent Method Proposed Method

Branch
#

From
Bus

To From Bus
Injection To Bus Injection Loss From Bus

Injection To Bus Injection Loss

Bus P(MW) Q(MVAr) P(MW) Q(MVAr) P(MW) Q(MVAr) P(MW) Q(MVAr) P(MW) Q(MVAr) P(MW) Q(MVAr)

1 1 2 21.05 −2.31 −20.88 2.81 0.17 0.50 21.04 −2.31 −20.87 2.81 0.17 0.50
2 1 3 20.47 −2.82 −20.08 4.31 0.39 1.49 20.47 −2.83 −20.08 4.32 0.39 1.49
3 2 4 18.63 −5.49 −18.22 6.66 0.41 1.17 18.62 −5.5 −18.21 6.67 0.41 1.17
4 3 4 17.85 −2.93 −17.79 3.18 0.06 0.25 17.85 −2.94 −17.79 3.19 0.06 0.25
5 2 5 14.36 −0.53 −14.17 1.30 0.19 0.77 14.35 −0.53 −14.16 1.30 0.19 0.77
6 2 6 21.64 −3.85 −21.11 5.45 0.53 1.60 21.64 −3.87 −21.10 5.47 0.54 1.60
7 4 6 17.55 5.77 −17.49 −5.52 0.06 0.25 17.55 5.76 −17.49 −5.51 0.06 0.25
8 5 7 14.25 1.13 −14.05 −0.66 0.20 0.47 14.25 1.12 −14.05 −0.65 0.20 0.47
9 6 7 8.71 8.29 −8.62 −8.06 0.09 0.23 8.71 8.3 −8.62 −8.07 0.09 0.23
10 6 8 23.81 21.37 −23.62 −20.60 0.19 0.77 23.82 21.37 −23.63 −20.60 0.19 0.77
11 6 9 7.26 −7.9 −7.26 8.37 0.00 0.47 7.25 −7.91 −7.25 8.38 0.00 0.47
12 6 10 4.15 −4.51 −4.15 4.90 0.00 0.39 4.14 −4.52 −4.14 4.92 0.00 0.40
13 9 11 0 0 0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00
14 9 10 7.26 −8.15 −7.26 8.38 0.00 0.23 7.25 −8.17 −7.25 8.40 0.00 0.23
15 4 12 11.07 −14.66 −11.07 16.31 0.00 1.65 11.06 −14.67 −11.06 16.32 0.00 1.65
16 12 13 −16.13 −33.35 16.13 36.69 0.00 3.34 −16.13 −33.36 16.13 36.70 0.00 3.34
17 12 14 4.68 2.08 −4.63 −1.95 0.05 0.13 4.68 2.08 −4.63 −1.95 0.05 0.13
18 12 15 6.05 3.19 −5.99 −3.08 0.06 0.11 6.04 3.19 −5.98 −3.08 0.06 0.11
19 12 16 5.27 5 −5.19 −4.82 0.08 0.18 5.27 4.99 −5.19 −4.81 0.08 0.18
20 14 15 −1.55 0.42 1.56 −0.40 0.01 0.02 −1.55 0.42 1.56 −0.40 0.01 0.02
21 16 17 1.73 3.1 −1.71 −3.06 0.02 0.04 1.72 3.09 −1.70 −3.05 0.02 0.04
22 15 18 7.18 3.71 −7.05 −3.46 0.13 0.25 7.18 3.71 −7.05 −3.46 0.13 0.25
23 18 19 3.91 2.67 −3.88 −2.62 0.03 0.05 3.91 2.67 −3.88 −2.62 0.03 0.05
24 19 20 −5.6 −0.76 5.62 0.80 0.02 0.04 −5.61 −0.76 5.63 0.80 0.02 0.04
25 10 20 7.87 1.62 −7.77 −1.37 0.10 0.25 7.88 1.62 −7.78 −1.37 0.10 0.25
26 10 17 7.3 2.78 −7.27 −2.69 0.03 0.09 7.31 2.78 −7.28 −2.69 0.03 0.09
27 10 21 −4.48 −11.23 4.56 11.41 0.08 0.18 −4.49 −11.25 4.57 11.43 0.08 0.18
28 10 22 −5.09 −8.19 5.21 8.44 0.12 0.25 −5.1 −8.21 5.22 8.46 0.12 0.25
29 21 22 −22.02 −22.53 22.20 22.89 0.18 0.36 −22.04 −22.55 22.22 22.91 0.18 0.36
30 15 23 −10.92 −2.67 11.14 3.12 0.22 0.45 −10.92 −2.66 11.14 3.11 0.22 0.45
31 22 24 −4.58 2.53 4.64 −2.44 0.06 0.09 −4.61 2.26 4.67 −2.17 0.06 0.09
32 23 24 1.89 2.34 −1.87 −2.30 0.02 0.04 1.88 2.11 −1.86 −2.07 0.02 0.04
33 24 25 −11.43 −1.86 11.87 2.63 0.44 0.77 −11.47 −2.35 11.92 3.14 0.45 0.79
34 25 26 2.96 2.49 −2.90 −2.40 0.06 0.09 2.95 0.9 −2.91 −0.85 0.04 0.05
35 25 27 −14.64 −4.78 15.07 5.61 0.43 0.83 −14.67 −3.69 15.08 4.48 0.41 0.79
36 28 27 −11.48 −21.05 11.48 25.32 0.00 4.27 −11.48 −21.06 11.48 25.34 0.00 4.28
37 27 29 6.16 1.65 −6.02 −1.38 0.14 0.27 6.16 1.65 −6.02 −1.38 0.14 0.27
38 27 30 7.1 1.63 −6.83 −1.13 0.27 0.50 7.1 1.63 −6.83 −1.13 0.27 0.50
39 29 30 3.68 0.6 −3.63 −0.49 0.05 0.11 3.68 0.6 −3.63 −0.49 0.05 0.11
40 8 28 −6.29 −9.06 6.41 9.47 0.12 0.41 −6.29 −9.06 6.41 9.47 0.12 0.41
41 6 28 −5.07 −14.46 5.15 14.71 0.08 0.25 −5.07 −14.47 5.15 14.72 0.08 0.25
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Abstract: In smart grids, a hybrid renewable energy system that combines multiple renewable energy
sources (RESs) with storage and backup systems can provide the most cost-effective and stable energy
supply. However, one of the most pressing issues addressed by recent research is how best to design
the components of hybrid renewable energy systems to meet all load requirements at the lowest
possible cost and with the best level of reliability. Due to the difficulty of optimizing hybrid renewable
energy systems, it is critical to find an efficient optimization method that provides a reliable solution.
Therefore, in this study, power transmission between microgrids is optimized to minimize the cost
for the overall system and for each microgrid. For this purpose, artificial bee colony (ABC) is used
as an optimization algorithm that aims to minimize the cost and power transmission from outside
the microgrid. The ABC algorithm outperforms other population-based algorithms, with the added
advantage of requiring fewer control parameters. The ABC algorithm also features good resilience,
fast convergence, and great versatility. In this study, several experiments were conducted to show the
productivity of the proposed ABC-based approach. The simulation results show that the proposed
method is an effective optimization approach because it can achieve the global optimum in a very
simple and computationally efficient way.

Keywords: microgrid; ABC; power-sharing; cost optimization; renewable energy

1. Introduction

Today, the world’s greatest challenges are the rapidly growing demand for electrical
energy [1], rising electricity prices, the increasing use of non-renewable energy, the limits
of conventional energy for power generation, global warming, global climate change, and
related environmental problems [2]. All these challenges have resulted in the world being
in a catastrophic economic and political crisis. Because of this, every government in the
world is eager to expand renewable energy generation [3]. Renewable energy generation
can help nations achieve their long-term development goal of providing safe, cheap, clean,
environmentally friendly, and sustainable energy [4]. Despite the many advantages of-
fered by renewable energy compared to conventional energy, they all have weaknesses in
common, such as high weather vulnerability, low stability, and high unpredictability [5],
all of which lead to low reliability and efficiency of energy generation [6]. Consequently,
the hybrid renewable energy system can solve important problems and constraints in
efficiency, reliability, and economy [7], which makes it an effective choice to meet the load
requirements and support and improve the system [8]. The use of a central control unit to
control the integrated power management of microgrids improves the efficiency, flexibility,
and response time to fluctuations. The optimal power flow in the grid, the voltage level
in each bus, and the transmission losses are all essential variables to be considered in
efficient power systems [9]. The actual problem is an MILP problem, and the constraints
on the optimal power flow are linear. For this purpose, a stochastic two-stage model of
the interactions between the distribution system operator and many microgrids on the
distribution line is used in [10].
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The Stackelberg game concept is used in [11] for the interconnections between genera-
tors and microgrids. This model considers all electrical power flow constraints, voltage
constraints, and line losses. The main objective of each is to maximize the profit.

MGs are classified in terms of power, control, mode, phase, and applications, as shown
in Figure 1.
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A microgrid (MG), as shown in Figure 2, consists of various distributed energy sources
(DERs), responsive loads, and critical loads. A common connection point (PCC) connects
the MG to the main grid [12]. Each DER is connected to the power electronic interface (PEI)
in both grid-connected and islanded modes to perform control, measurement, protection,
and plug-and-play functions. An MG in the grid-connected mode benefits from sharing
power with the main grid. However, in the event of a fault or failure of the main grid, MG
switches to the islanded mode to ensure system stability. In this mode, critical loads are
continuously supplied with power by efficiently integrating DERs, demand response (DR),
and load shedding (LS). The central microgrid controller (MGCC) and local controllers
(LCs) manage and coordinate the entire MG operation [13]. Efficient DER management and
coordination in MG lead to higher system performance and long-term development [14].
Due to increased environmental awareness, socioeconomic growth, and the need to reduce
greenhouse gas emissions, MGs are mainly composed of sustainable energy systems, such
as renewable energy sources and energy-efficient systems that use local heat waste [15].
Various energy storage technologies that have potential for high penetration and integration
in microgrids are mentioned in [16]. Different energy trading systems are examined for
interactive energy trading, multienergy management, and resilient operations in [17]. The
DSM technique is used in [18] to reduce the operating cost of the grid-connected microgrid.
An optimization-based energy management system is used to reduce the generation and
curtailment costs [19]. In [20], an optimization controller is developed to control the energy
management system for distributed energy sources in microgrids.

Table 1 shows a few examples of sustainable energy being used to run the energy
management system from the literature review.
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Table 1. Sustainable energy (SE) system in microgrids.

References Solar WT FC CHP EES Biomass Hydro Tidal

[21] 3 3

[22] 3 3 3

[23] 3 3 3

[24] 3

[25] 3

[26] 3

[27] 3 3 3

[28] 3 3 3 3

[29–31] 3

The microgrid EMS is a decision-making technique. For sustainable development,
these techniques improve system efficiency, boost system reliability, decrease energy con-
sumption, reduce DER operating costs, decrease system losses, and eliminate GHG emissions.

This paper presents a model for a hybrid renewable energy system integrated with a
smart grid. The hybrid system includes wind turbines (WTs), photovoltaic (PV) systems,
an electricity distribution company (Disco), gas turbines (GTs), and battery storage. Each
component of the generation and load side is represented by a model. The hourly data of
the wind speed and solar radiation on a daily basis are used as a case study in this paper.
The proposed approach is used to optimize the power-sharing in the MGs to minimize the
total cost of the system and the cost of each integrated microgrid. An artificial bee colony
(ABC), as the optimization algorithm, is designed here to deal with the proposed model,
with the objective of minimizing the cost and power imported from outside the MG. The
idea of this paper is represented in Figure 3.
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Figure 3 shows a microgrid (MG) connected to a distribution network. This MG
contains multiple small MGs, which are connected with each other by electric lines. The
electric line can be allowed to export and impart energy from small MGs. The small MG
contains a mixture of components that consume and produce electricity (solar and wind
plants) in addition to electricity storage units. The operational status of the small MG
is divided into three sections: first, self-sufficiency in the event of equal production and
consumption, so the MG will neither import nor export energy; second, import, which
occurs when consumption is greater than production, as the MG needs energy; and third,
export, which occurs when there is a surplus of energy within the MG and it needs to be
exported.

Optimization is a mathematical problem that may be found in all engineering domains.
This term’s literal definition is “best possible or desirable”. Because optimization problems
are so broad and varied, it is a significant academic field.

Optimization algorithms are classified into two types: deterministic and stochastic.
Previously, tackling optimization issues required tremendous computational effort, which
frequently failed as the problem size grew larger. This is why bio-inspired stochastic
optimization algorithms are being used as computationally efficient alternatives to deter-
ministic approaches. Metaheuristics are based on the iterative improvement of either a
population of solutions (evolutionary algorithms or swarm-based algorithms) or a single
solution (Tabu Search) to solve a given optimization problem, and they primarily use
randomization and local search.

The literature on bio-inspired algorithms (BIAs) for solving a wide variety of issues
is vast, and various studies have reported on the usefulness of such tactics for handling
difficult problems in the main disciplines of engineering in recent years. The two most
prevalent and successful BIA classes or routes are evolutionary algorithms and swarm-
based algorithms, both inspired by animals’ collective behavior and natural development.
In order to obtain a broader view on the subject, the algorithms were divided into regions
based on where the inspiration for them came from in nature.

Swarm intelligence is a novel and rising paradigm used for creating adaptive systems
in bio-inspired computing. In this sense, evolutionary computation (EC) is an extension
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of this. Swarm intelligence is based on organisms’ collective social behaviors, whereas
evolutionary algorithms are based on species’ genetic adaptability. Swarm intelligence,
as defined in the literature, is the use of the collective intelligence of groups of simple
organisms to solve problems, based on the behavior of actual insect swarms. The term
“swarm” refers to the chaotic movement of particles in the affected region. Some important
SI algorithms are particle swarm optimization (PSO), the ant colony optimization algorithm
(ACO), the fish swarm algorithm (FSA), the firefly algorithm, and the artificial bee colony
(ABC) methods, which have all been employed as optimization methodologies. In the
foraging process, these algorithms, which were inspired by animals’ collective behavior,
exhibit decentralized self-organized patterns. However, the artificial bee colony (ABC)
approach was used in this article [32].

The ABC algorithm outperforms or is similar to other population-based algorithms,
with the added advantage of requiring fewer control parameters. The ABC algorithm also
features good resilience, fast convergence, and great versatility.

The ABC algorithm, developed by Karaboga and Basturk, replicates the intelligent
foraging behavior of a honeybee swarm. The ABC algorithm’s artificial bee colony is made
up of three categories of bees: hired bees, bystanders, and scouts. An employed bee is a
spectator who does not participate in the dance but instead travels to the food source being
frequented by the observer. The scout bee, on the other hand, performs random searches
for fresh sources. The quality (or fitness) of a solution may be measured by comparing the
location of a food source to the amount of nectar it generates. Beehives are built and then
released into the two-dimensional search space. Bees build social relationships with one
another while foraging for nectar. Intense bee–bee interactions are essential to the discovery
of a solution.

2. Problem Formulation
2.1. ABC Algorithm

In 2005, Karaboga discovered the ABC algorithm, influenced by honey bee behavior.
The algorithm of a honey bee colony has the ability to find the best quality food sources
in nature with ease. Therefore, the concept of ABC was derived from the clever foraging
behavior of honey bees to find suitable solutions to optimization problems. Generally, bee
colonies are classified into three types according to their foraging ability: employed bees,
onlooker bees, and scout bees. The employed bees are responsible for collecting nectar
(food). They investigate the location of the food supply in advance and alert the scout bees
about the quality of the food. Based on the information relayed by the employed bees, the
scout bees wait in the swarm and decide whether to take advantage of a food source. The
scout bees randomly search the environment for a new nectar supply, either from internal
motivation or from likely external cues [33]. The quality (fitness) of the feasible solution to
the optimization questions is related to the profitability of a nectar source. The presence of
a nectar source indicates a feasible solution to the optimization issues. Each nectar source
is visited by only one honey bee. In other words, the number of employed or onlooker
bees is proportional to the number of nectar sources [34]. Employed bees maintain an
excellent solution, onlooker bees accelerate convergence, and scout bees improve the ability
to eliminate local optimums [35,36].

ABC Algorithm Iteration Steps

ABC algorithm’s main steps are listed as follows [37,38]:
1. Initialization. Generate N random solutions (food sources) Xi (i = 1, 2, 3, . . . , N)

in a dimensional searching space D, where N represents the number of food sources, which
is half the size of the colony Xi (i = 1, 2, 3, . . . , D) is a D-dimensional solution vector.
For i = 1, 2, 3, . . . , N, the ith food source in the original population, and the number of
optimization population parameters is denoted by D.

2. During the honey collection stage, each employed bee creates a new nectar source in
the food source’s vicinity. When a new nectar source is compared to the previous one, the
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high probability will be memorized. Each onlooker bee assesses the attractiveness of nectar
sources received from all employed bees and selects a food source with a high probability.
Like the employed bees, she changes the source location in her memory and maintains a
higher nectar supply. In these two phases, the following formula is employed to regenerate
nectar sources:

lij = hij + θ ·
(

hij − hkj

)
(1)

where i (k = 1, 2, 3, . . . , N), (j = 1, 2, 3, . . . , D), and θ[0, 1] is a random number that de-
termines the generation range of hij′s neighborhoods. As the search comes closer to an
optimal solution, the number of neighborhoods available will decrease.

3. Food source selection. In the next step, the onlooker bees compare the probability
calculated by the fitness value to select a food source. Nectar sources with a high probability
are chosen with a high degree of certainty. The chance of being chosen for food sources is
computed using the equation below:

Pi =
Fiti

∑N
i Fiti

(2)

The fitness value of the ith solution, Fitii(i = 1, 2, 3, . . . , N) may be determined using
following equation:

Fiti =





1
1 + fi

, i f fi ≥ 0,

1 + | fi|, i f fi ≤ 0
(3)

If the quality of the new food source location is the same as or better than the previous
one, the old one is updated with a new one, where fi is the value of the objective function
for i = 1, 2, 3, . . . , N, which is unique to the optimization problem. Otherwise, the old one
will be kept the same as the stage of employed bees.

4. Population elimination. A solution is considered to have fallen into a local optimum
solution if it has not improved significantly after a specified number of trials, known as
“max iteration”, and the starting position is abandoned. As a consequence, the matching
employed bees will become scout bees, and a new solution, which may be described as
follows, will be generated at random in place of the discarded solution:

h_ij = θ ∗ (h_maxj− h_minj) + h_minj (4)

where h_maxj and h_minj are the jth and ith individual maximum and lowest values,
respectively, and i and j are the same (1).

The ABC algorithm may be expressed in the following stages based on the preceding
phases [39].Flowchart of ABC algorithm is shown in Figure 4.
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3. Mathematical Modeling

The microgrid architecture studied in this paper is represented in Figure 5. It includes
wind turbines (WTs), gas turbines (GTs), photovoltaic (PV), batteries (BT), additional
storage components, general loads, and essential loads with different characteristics. The
connection point, also known as the point of common coupling (PCC), is the interface
between this architecture’s utility and microgrid systems. As a result, there are two types
of modes.
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When the MG is connected to the main grid via PCC, it is in the grid-connected mode,
and when it does not connect with the main grid, it is in the islanded mode.

Renewable energy sources (RESs) can be connected via a DC, AC, or a hybrid DC/AC
bus. For most generators and loads, the appropriate configuration is determined by the type
of output power. Therefore, DC bus coupling is preferred when both loads and generators
are DC [40]. When the loads and generators are AC, then AC bus coupling is preferred [41]
when the generation and load are mixed, such as AC and DC hybrid renewable energy
sources (HRESs). A hybrid AC, DC bus coupling system is used [42], as shown in Figure 6.
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3.1. Hybrid Wind/PV/Battery Storage/Gas Turbine

The configuration shown in Figure 6 consists of wind energy, a PV energy system,
battery storage, a gas turbine, and the main load. The response of this configuration is
simple and easy to understand. Due to the bidirectional converter, the WT and the PV
system are mainly responsible for supplying the main load. The excess power generated
by wind and/or PV is stored in a battery storage system until the battery is fully charged
to SOCmax . Excess power generated above SOCmax is supplied to dedicated loads, i.e.,
dummy loads, such as loads for cooling, home appliances and heating, and charging the
batteries of emergency lights when the battery storage is full. When the load power exceeds
the generated power, the batteries are used to make up the difference until they reach
the minimum SOC (SOCmin). Suppose the battery is fully discharged by SOCmin and the
hybrid renewable energy sources cannot meet the microgrid’s load demand. In this case, it
imports energy from another microgrid. Moreover, when it is unable to purchase energy
from another microgrid, the microgrid purchases power from the main grid to balance the
load demand [43].

3.1.1. Wind Energy System

Wind generation depends on both the wind speed and the height of the hub at a given
location. The power–law equation [44] is used to calculate the wind speed at the hub height
of WT using data collected at the anemometer height: u(h) and u(hg) are the wind speeds
at the hub height (h) and the anemometer height (hg), respectively, and α is the roughness
factor. The value changes from location to location and over time at the same location:

V(h) = V
(
hg
)( h

hg

)α

(5)

where V(h) and V
(
hg
)

are the wind speeds at hub height h and anemometer height hg. α
is a roughness factor and varies from location to location and time to time.
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The output power of WT from the typical WT curve is as follows [45]:

pwt =





0, vwt< vci, vwt >vco

pr ∗ v2
wt−v2

co
v2

r−v2
ci

, vci < vwt < vr

pr, vci < vwt < vco

(6)

where pwt is the output power of the wind turbine, pr is the rated output power of the
wind turbine, vci is the cut in wind speed of WT, vr is the rated wind speed of WT, and vco
is the cut off wind speed of the wind turbine.

3.1.2. PV Energy System

The solar radiation on a tilted surface (Ht) can be calculated using solar insolation,
the ambient temperature, data from the PV panel manufacturer, the PV panel slope, and
the site latitude and longitude [46,47]. The following equation [48] is used to compute the
PV system’s output power:

ppv(t) = ht(t) ∗ PVA ∗ µc(t) (7)

where µc(t) is the PV system’s hourly generating efficiency, which may be calculated in
terms of the cell temperature using Equation (8) [49]:

µc(t) = µcr[1− βt ∗ (Tc(t)− Tcr)]) (8)

where βt is the temperature coefficient, µcr and Tcr are the solar cell efficiency and tempera-
ture at maximum radiation solar flux Tc(t), It is an hourly solar cell temperature at ambient
temperature (Ta):

Tc(t) = Ta + λht(t) (9)

where λ (Ross coefficient) is a coefficient that represents how the temperature increases
above ambient as solar flux increases. The overall output of the PV array is:

ps =

(
Gpv

Go

)
∗ pr (10)

where ps is the PV array output power, Gpv is the irradiation of solar, Go is the solar
irradiance under standard test conditions (1000 W/m2). pr is the rated power of solar [49].
Table 2 represents the PV parameter values.

Table 2. PV panel parameters. Reproduced from [49], the (Journal of Energy storage): 2021.

Parameters Values Unit

Go 1000 W/m2

µ 20 %
TM,O 25 ◦C

NOCT 44 ◦C
ΠPV 0 Cent/kWh

3.1.3. Battery Storage

The state of charge (SOC) of a battery is determined based on the energy balance
between the wind, PV energy systems, and the load as given by the following equations
after a particular time (t):

Eb(t) = Eb(t− 1)(1− σ) + Ps ∗ ηbc (11)
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where (11) is the battery charging mode equation:

Eb(t) = Eb(t− 1)(1− σ)− pd
ηbd

(12)

where (12) is the battery discharging mode equation. Eb is the energy of the battery bank,
and ηbc, ηbd is the charging and discharging efficiency of the battery storage system. It is
considered to be 90% and 85%, respectively, in [50], where σ is the battery self-discharge
rate and is assumed to be 0.2% per day for most batteries [51]. Ps is the surplus power, and
pd is the deficit power.

The battery bank should always follow the following limitations:

Eb,min ≤ Eb(t) ≤ Eb,max (13)

Eb(t) = Eb(t− 1)(1− σ) (14)

where Eb,max and Eb,min are the battery bank’s maximum and minimum storage capacity,
respectively. The following equation can be used to calculate Eb,min:

Eb,min = DOD ∗ Eb (15)

where Eb is the battery nominal storage capacity, and DOD is the depth of discharge of a
battery opposite to the SOC of a battery.

4. Mathematical Modeling of the Proposed Approach

The proposed approach of this article is to optimize the power transfer between
microgrids to minimize the overall cost of the system and each microgrid. For this purpose,
a mathematical model is designed for a net load for each microgrid first. The proposed idea
is represented in Figure 3, and the proposed work is represented by the flowchart shown in
Figure 7.

The proposed approach has two main tasks: storage; the other is energy sharing
in the first part, which is energy storage. If the net load is greater than zero, storage is
used to discharge energy to meet the load requirements. If the net load is less than zero,
the extra system energy is either shared with other microgrids or stored in the storage
system to reduce the total cost of electricity. Data about the load, PV, and wind in each
MG is calculated. After obtaining data of the load, PV, and wind in each MG, the sharing
parameters are initialized, such as the SOC of the battery, the size of the battery, and
the minimum and maximum generation in each MG, the net load is calculated using the
generation and load balance equations.

The proposed work shown in Figure 7 is about energy management in small MGs and
is an attempt to reduce imports from energy distribution networks as much as possible, by
linking several small microgrids together. These MGs contain different mixtures of energy
production and consumption, which helps to increase the reliability of these small MGs and
gradually dispense with power distribution networks. The novelty is that the difference
in the energy mix between these small MGs and linking them together will help dispense
with distribution networks, which will reduce energy losses and the price of electricity
and provides the possibility for small consumers to benefit from the production and sale
of energy.

Suppose a microgrid has a battery energy storage system. In this case, it will have two
possibilities if the net load exceeds zero. The SOC of a battery is checked to observe whether
it is above 20%, and the battery will be discharged to meet the load requirements. Still, if
the net load is not greater than zero, there is some extra energy in the system, which may be
used to charge the battery if the SOC of a battery is less than the maximum storage capacity.
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In the second task of the proposed approach, whether the net load is greater than or
less than zero is checked. If it is greater than zero, the microgrid will import energy from
other microgrids or the main grid. If the net load is less than zero, the microgrid will export
energy to other microgrids or the main grid.

The above process is iterated until optimal power-sharing among the microgrids is
achieved.

4.1. Microgrids’ Net Load

The mathematical equation for Disco is:

Disco Net Load = LD − GD (16)

where LD is the load of the distribution company (Disco) and GD is the conventional
generation in Disco:

MG1 Net Load = LMG1 − PVMG1 ∗ PFPV (17)
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where LMG1 is the load of MG1, PVMG1 is the rated power of PV in MG1, and PFPV is the
24 h PV profile:

MG2 Net Load = LMG2 − GD1 − GD2 −WTMG2 ∗ PFWT (18)

where LMG2 is the load of MG2, GD1, GD2 are the generation of conventional generators 1
and 2, WTMG2 is the wind turbine generation in MG2, and PFWT is the wind profile of 24 h

MG3 Net Load = LMG3 − PVMG3 ∗ PFPV (19)

LMG3 is the load of MG3, PVMG3 is the rated PV power, and PFPV is the PV profile for
24 h.

MG4 Net Load = LMG4 −WTMG4 ∗ PFWT (20)

LMG4 is the load of MG4, WTMG4 is the wind turbine generation in MG4, PFWT is the
24 h wind profile:

MG5 Net Load = LMG5 − GD −WTMG5 ∗ PFWT (21)

where LMG5 is the load of MG5, GD is the generation of a conventional generator, WTMG5
is the wind generation in MG5, and PFWT is the 24 h wind profile.

The net load is the difference between the load and generation inside the MG itself. It
is used to determine whether the microgrid has a shortage or excess of energy to import or
export to other microgrids with a shortage of energy, store it in battery energy storage, or
sell it to the main grid.

4.2. Energy Management Strategy

The proposed HRES management algorithm is described in the following strategy.
If the amount of power generated by RES surpasses the amount needed to meet the load
requirements, the excess power will be used to charge the batteries until they reach their
maximum capacity, Eb,max. The extra power in the batteries will be used to power the
dummy load, Pdummy. The reason behind this can be described as follows:

i f Pg(t) > PL(t) and SOC < Eb,max then;

Pbc = [Pw(t)− PL(t) + PPV(t)]ηbc Charging Process
(22)

i f Pg > PL(t) and SOC ≥ Eb,max then

Pbc(t) = 0

Pd(t) = [Pw(t)− PL(t) + PPV(t)]
(23)

where Pd is the power to the dummy load:

i f Pw(t)< PL(t) , [Pw(t) + PPV(t)] >PL(t) and

SOC < Eb,max then

Pbc(t) = [PPV(t)− (PL(t)− Pw(t))]ηbc,
(24)

Equation (24) shows the charging process:

i f Pw(t)< PL(t) and (Pw(t) + PPV(t)) >PL(t) and

SOC > Eb,max then;

Pbc(t) = 0

Pd(t) = [Pw(t)− PL(t) + PPV(t)]

(25)
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If the load demand requires more power than RES can provide, the battery will meet
the demand until it is reduced to its minimal level Eb,min. If there is still a power shortage,
the DG will make up for the deficit load demand. The equations that describe this logic are
as follows:

i f [Pw(t) + PPV(t)]< PL(t) and SOC >Eb,min then;

Pbd(t) =
[PL(t)−Pw(t)−PPV(t)]

ηbd
,

(26)

where Pbd(t) is discharging power, and this is a discharging process:

i f [Pwt(t) + PPV(t)] < PL(t) and SOC < Eb,min then;

Pbd(t) = 0

All the above equations and details of the generation, load, and storage indicate how
the energy management strategy is effectively working in this case. When the generation
of HRES in the microgrid is higher than the load, the surplus energy is stored in the
battery energy storage system. When the generation of the HRES is less than the load of
the microgrid, then the shortage of energy is met by the battery storage system. If the
generation of HRES is less than the load and the battery energy is less than the minimum
level of stored energy, then the microgrid will import energy from another microgrid to
meet the demand. In the above equations, SOC is the state of the charge of the battery, Pbc
is the power used to charge the battery, and Pbd is the discharging power of the battery. ηbc,
ηbd is the battery charging and discharging efficiencies, respectively.

The power flow constraints of the HRES and battery are as follows:

0 ≤ PG ≤ Pmax Conventional Generation (27)

0 ≤ PPV ≤ Pmax PV Generation (28)

0 ≤ Pwt ≤ Pmax WT Generation (29)

Pmin ≤ Pb ≤ Pmax Battery power (30)

SOCmin ≤ SOC ≤ SOCmax Battery State o f Charge (31)

4.3. Microgrid Energy Sharing Problem

The microgrid has an excess or shortage of energy. The microgrid with excess energy
will export the energy to other microgrids, which need a power through-line between
them (S1, S2, S3, . . . , S15). The microgrid with a shortage of energy will import the en-
ergy from other microgrids, which have an excess power through-line between them
(S1, S2, S3, . . . , S15). If all microgrids do not have enough energy to cover the shortage in
the system, the system will import energy from the main grid. If we consider a sequence
of 1 : Disco, 2 : MG1, 3 : MG2, 4 : MG3, 5 : MG4, 6 : MG5, if sending end SN = 1 and
receiving end RN = 2, it means the line is connected from Disco to MG1 and so on.

5. Power Balance

The power balance in the generation and load is represented as:

System Load− PPV − Pw − Pcon − PGrid = 0 (32)

MG Load + Export Energy−MG Generation− Import Energy = 0 (33)

Objective Function

The objective function is a cost reduction of the generated power, transfer power, and
import and export power:

CT = ∑G
1 CG + CDis + CMG + CB + CP (34)
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where CG is the total conventional generation cost, CDis is the total transfer energy cost
from Disco to MG, CMG is the total transfer energy cost from MG to MG, CB is the total
energy cost from the battery, and CP is the penalty cost for the unsupplied energy.

Mathematically, all of the above costs are represented as:

CG = (GDis + G1MG2 + G2MG2 + G5MG5) ∗ Pgas (35)

where GDis is conventional generation in Disco, G1MG2 is conventional generation in MG2,
G2MG2 is conventional generation in MG2, G5MG5 is conventional generation in MG5, and
Pgas is the gas price:

CDis = (S1 + S2 + S3 + S4 + S5) ∗ PDis (36)

where S1, S2, S3, S4, S5 transfer power from Disco to MG1, MG2, MG3, MG4, MG5,
respectively, and PDis is the energy cost of Disco:

CMG = (S6 + S7 + S8 + . . . + S15) ∗ PMG (37)

where (S6 + S7 + S8 + · · ·+ S15) is the power transfer from MG to MG, and PMG is the
cost of energy from MG to MG:

CB = (BESDisco + BESMG2 + BESMG4 + BESMG5) ∗ PB (38)

In Equation (38), BESDisco is the energy of the battery in Disco, BESMG2 is the energy
of the battery in MG2, BESMG4 is the energy of the battery in MG4, BESMG5 is the energy
of the battery in MG5, and PB is the cost of energy from the battery:

CP = Ens ∗ PP (39)

where Ens is the unsupplied energy and PP is the penalty price that is fixed [49].
Table 3 represents the cost data of different parameters (also taken from [49]).

Table 3. Cost data. Reproduced from [49], the (Journal of Energy Storage): 2021.

Parameters Values Unit

Pgas 5 Cent/kWh
PMG 15.75 Cent/kWh
PDis 15.3 Cent/kWh
PB 3 Cent/kWh
Pp 40 Cent/kWh

6. Simulations and Results Analysis

As discussed above, in all the mathematical formulations regarding the objective
functions and microgrid components, an ABC optimization technique reduces the system’s
total cost and minimal sharing cost of all the microgrids. Microgrids consist of conventional
generation and intermittent energy sources, such as PV, wind, and battery energy storage
systems. Among all the sources, conventional generators produce 24 h electricity, and wind
generation is wind speed dependent and PV dependent on solar irradiations. Conventional
generation occurs in Disco, MG2, and MG5. If their capacity fails to meet the desired load
demands, they will import energy from the main grid if there is an unavailability of energy
from other microgrids.

There are different power-through lines between Disco and microgrids and from micro-
grids to microgrids. The lines connecting Disco and microgrids are (S1, S2, S3, S4, S5), i.e.,
from MG1 to MG5. From MG1 to (MG2, MG3, MG4, MG5), the lines are (S6, S7, S8, S9);
from MG2 to (MG3, MG4, MG5), the lines are (S10, S11, S12); from MG3 to(MG4, MG5),
the lines are (S13, S14); and the last connection between MG4 and MG5 is S15. These lines
from S1, S2, . . . , S15 represent power transfer from Disco to MG and MGs to MGs. If the
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value of S1 to S15 is negative, power is transferred from the receiving to the sending end
and vice versa if it is positive.

A cost convergence curve is shown below in Figure 8, which shows how the best
solution deals with each iteration. We can see the best solution decreases when the iteration
increases until it reaches the best one. The maximum number of iterations considered in
the proposed idea is 150, upon which it converges to an optimal value.
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Regarding the MG with only PV generation source, Figure 9 shows that it can only
generate power according to the solar irradiance data in the PVWT profile. For the rest of
the hours, it imports energy from outside, and from 11 to 13 h, it sells energy as it exceeds
the load demand. MG1 has only one PV generation source, and as per Equation (7), PV
generation is dependent on thee tilted surface, PV array, and its efficiency. Maximum
generation is achieved when maximum sunlight is available for the tilted surface, and
it is generally from 7 to 19 h that power is generated. Moreover, the intensity of light is
very high, from 11 to 13 h, during which the generated power reaches th maximum and is
available to sell to other MGs or the main grid. In the absence of sunlight, MG1 will not
generate electricity. Hence, it will purchase electricity from other MGs.

Microgrid 2 contains wind generation, battery storage, and 2 thermal units. The wind
is almost always the available generation source, as shown in Figure 10. From 1–6 h, the
load demand can easily be met by the wind generation source and thermal unit generation.
During this time, extra power is used for charging the battery. From 7–8 h, EES is used to
meet the load demand along with the wind and thermal generation sources. From 9–23 h,
wind generation, thermal generation, and EES are not able to meet the load demand; hence,
electricity is purchased from outside.

Microgrid 3 has one source of PV and load demand, as shown in Figure 11. To meet
the load demand with just one PV source, it will purchase electricity from other microgrids
in the absence of sunlight. When sunlight becomes available, it will gradually overcome
the load demand and at high intensity, sunlight from 11–13 h MG3 will be able to meet the
entire demand. The extra amount of electricity will be sold to other MGs.
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MG4 contains wind generation and battery storage, and the load demand is shown
in the Figure 12. The result in Figure 12 shows that from 1–6 h, wind generation is able to
meet the required load demand and the extra amount of electricity will be used to charge
the battery. Due to the intermittent nature of wind, it will purchase electricity if the wind
generation is less than the load demand. As shown in Figure 12, from 7–10 h, the load
demand exceeds wind generation; hence, EES is used to meet the load demand along with
wind generation, and some energy is still required to meet the required demand, it will be
purchased from other microgrids. From 11–24 h, wind generation cannot meet the required
load demand; hence, the extra amount of electricity needed will be purchased from other
microgrids.
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MG5 contains wind generation, battery storage, and one thermal unit. The load
demand is shown in Figure 13. Wind generation is available 24 h as shown in the figure.
From 1–6 h, the load demand is met by wind and thermal generation and the extra amount
of electricity is used to charge the battery. From 7–8 h, the load demand exceeds the wind
and thermal generation; hence, EES is used to meet the required demand. From 9–24 h, as
the load demand is higher than the inside generation, the extra energy required to meet the
demand is purchased from other microgrids.
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Disco contains battery storage and one thermal unit. The thermal generation is a
constant source of generation as shown in Figure 14, and the load demand of Disco is
shown in the figure. From 1–6 h, thermal generation alone cannot meet the load demand.
Therefore, energy is purchased from other microgrids at the optimal rate and the battery is
charged during this time. From 7–8 h, thermal generation and EES are both used, and the
extra amount needed to meet the load demand is purchased from outside. From 9–24 h,
thermal generation is used, but the generation is not sufficient to meet the required demand.
Therefore, the extra amount is purchased from outside.
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The cost optimization results of the microgrids and total systems are shown in
Figure 15. It is clearly shown in the figure that the total cost of MG2, MG4, and MG5
is zero, which means that they do not import energy from other microgrids or the amount
of electricity that is bought or sold is the same; hence, they compensate for their cost effects,
which is why their cost is zero.
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7. Conclusions and Future Work

The microgrid has emerged as a new paradigm shift for global energy systems to
replace remote centralized power plants with more efficient, localized, and distributed
generation systems, especially in various cities and towns around the globe. It provides
more stable, flexible, and energy-efficient solutions for the power grid so that an increasing
number of loads can be handled without new infrastructure needing to be built. This work
provides a new iterative ABC optimization method that addresses HRESs, such as solar,
wind, GT, and battery. In particular, this work optimizes the power transmission between
different microgrids to minimize the cost of each microgrid and the whole system while
maintaining the load requirements and stability. The optimization problem was solved
by the new iterative method ABC. This study also conducted several experiments with
historical data to test the proposed method for the HRES model. The simulation results
show that the proposed method is efficient in finding the best solution and adjusting the
optimization parameters and constraints. This method can also be applied to any site with
meteorological data and any WT with technical information.

Future research will focus on the use of hybrid swarm intelligence systems, such as
the particle swarm algorithm and the artificial bee colony algorithm or the differential
evolution algorithm, for the economic dispatch of microgrids. In addition, flexible switching
techniques for real-time scheduling in microgrids that consider more constraint situations
is an interesting future research direction.
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Abstract: Economic Dispatch (ED) problems have been solved using single-objective optimization
for so long, as Grid System Operators (GSOs) previously only focused on minimizing the total
production cost. In modern power systems, GSOs require not only optimizing the total production
cost but also, at the same time, optimizing other important objectives, such as the total emissions of
the greenhouse gasses, total system loss and voltage stability. This requires a suitable multi-objective
optimization approach in ensuring the ED solution produced is satisfying all the objectives. This paper
presents a new multi-objective optimization technique termed Multi-Objective Immune-Commensal-
Evolutionary Programming (MOICEP) for minimizing the total production cost and total system loss
via integrated Economic Dispatch and Distributed Generation installation (ED-DG). This involved
the application of a weighted-sum multi-objective approach that combined with an optimization
technique called Immune-Commensal-Evolutionary Programming (ICEP). The proposed MOICEP
has been compared with other multi-objective techniques, which are Multi-Objective-Evolutionary
Programming (MOEP) and Multi-Objective-Artificial Immune System (MOAIS). It was found that
MOICEP performs very well in producing better optimization results for all the three types of
Economic Dispatch (ED) problems compared to MOEP and MOAIS in terms of cheap total production
costs and low total system loss.

Keywords: multi-objective optimization; economic dispatch; distributed generation installation;
evolutionary programming; artificial immune system; symbiotic organisms search; commensalism

1. Introduction

In the early years after the introduction of Economic Dispatch (ED), most of the ED
problems were solved based on single optimization [1]. This means that only the total
production cost was optimized to get the minimum value. Nowadays, researchers and
engineers are interested in solving ED problems with multiple objectives [2]. Besides the
total production cost, the total greenhouse gasses emissions and total system loss can also be
optimized at the same time. The reason for this multi-objective optimization introduced to
solve ED problems is that greenhouse gasses emissions from fossil-fueled generating units
and total system loss are also grid system operators’ main concerns in modern electrical
power systems [3]. There are two popular approaches to solve multi-objective problems,
which are the weighted-sum and Pareto optimal [4]. The weighted-sum approach has been
widely used to solve multi-objective problems due to its simplicity, while Pareto optimal
solution is more complicated but could give a better nondominated solution for certain
optimization problems [5].
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Numerous multi-objective ED problems have been solved by researchers and engi-
neers for the past ten years. Thenmalar et al. [3] solved Economic Dispatch and Economic
Emission Dispatch using multi-objective optimization. Two objective functions are op-
timized by them, which are minimizing the total production cost and minimizing the
emission of nitrogen oxides (NOx). Quadratic programming by Wolfe’s method was
chosen to solve the multi-objective ED problem. M. Musau et al. [6] proposed to solve
the multi-objective ED problem by considering the presence of renewable energy. They
optimized both the renewable cost and total production cost functions by combining
them to be solved using one single-objective function. Roy et al. [7] optimized the total
production cost and total emissions simultaneously. In this study, a Normal Boundary
Intersection (NBI)-based decomposition scheme was utilized to implement multi-objective
optimization. In Reference [8], Dash and Mohanty applied the weighted-sum approach to
solve a multi-objective ED problem. There three objectives were solved simultaneously
using a simulated annealing optimization technique. The objectives were to minimize the
total production cost, to minimize the nitrous oxide (NOx) emissions and to improve the
security of the transmission lines. Therefore, there were three weights that were associated
with the three fitness function equations. Meiqin et al. [9] also solved three objectives of
the ED problem, which were the total production cost, consumer outage cost and total
emissions. They used weighted-sum integrated with a membership degree of the fuzzy
set theory to solve the multi-objective ED problem. Man-im et al. [10] applied the Pareto
solution instead of the weighted-sum approach to solve a multi-objective ED problem that
simultaneously minimized the total production cost and power system security risk. The
Pareto optimal solution approach was associated with the optimization technique and
termed Non-dominated Sorting Particle Swarm Optimization (NSPSO). In Reference [11],
minimizing the total system loss was also considered as one of the ED problem objectives,
together with minimizing the total production cost and minimizing the NOx emissions.
Minimizing the total production cost and total system loss are more crucial than minimiz-
ing the total emissions in a modern power system that consists of substantial amounts of
renewable energy sources. The emissions and fuel costs were optimized simultaneously
using the Pareto optimal approach in Reference [12]. In this study, the multi-objective
results of ED were compared with single-objective results. It was found that the results
of the single-objective optimization were better than the multi-objective optimization in
terms of producing the lowest fuel costs. However, in the multi-objective optimization,
two objectives were achieved, which were to minimize the fuel costs and emissions. This is
far better compared to only one objective being achieved. In a later study, Huang et al. [13]
optimized three objective functions while solving for ED. The objective functions were the
total fuel consumption function, oxynitride emission function and electricity purchase cost
function. The ED problem was solved using a hybrid optimization technique termed the
Hybrid Intelligent Algorithm. The technique is based on Particle Swarm Optimization
(PSO) and Artificial Fish Swarm Algorithm (AFSA). From this review, it was discovered that
multi-objective optimization is more powerful than single-objective optimization in solving
ED problems, as more objectives can be optimized using multi-objective optimization at
one time.

Single-objective optimization has its limitation in terms of satisfying more than one
ED problem’s objectives. For instance, some GSOs prefer to minimize both the total system
loss and total production cost or to minimize the total production cost and emissions at
the same time. Furthermore, GSOs will have flexibility in solving the ED problem of their
power systems. Instead of solving the ED problem with only one objective, they can add
other important objectives to be optimized concurrently. In previous practices, a power
system problem was solved independently without integrating with other power system
problems. For instance, the ED problem was solved independently to find the optimal
production cost, and the Distributed Generation (DG) installation problem was solved to
find the optimal location and sizing of DG units in a power system so that the system loss
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is the minimum. This practice is not efficient for GSOs to solve various problems of their
power systems, especially in modern power systems.

This paper presents the implementation of a multi-objective optimization technique
termed Multi-Objective Immune-Commensal-Evolutionary Programming (MOICEP) for
solving integrated ED-DG problems. Two power system problems (ED problem and DG
installation problem) are solved concurrently using MOICEP. Furthermore, two important
objectives in power system optimization, which are the total production cost and total
system loss, are chosen to be optimized simultaneously using the weighted-sum multi-
objective approach with the help of ICEP as the optimizer. The weight coefficients of
the two objectives are varied to observe and analyze the multi-objective optimization
solution produced by MOICEP. There are three ED problems solved in this study, which
are the basic ED problem (smooth cost function), ED problem with prohibited operating
zones and ED problem with valve-point loading effect. Each of these ED problems is
solved with the DG installation problem of three DG units. It was decided to install three
DG units in this study based on the sizes of the test systems. It was assumed that the
more DG units in the system, the lower the total production cost of the power system.
The solutions for these integrated problems are the optimal output of the conventional
generating units and the optimal location and sizing of the DG units. The proposed
MOICEP technique is validated by implementing it on the IEEE 30-Bus RTS and IEEE 57-
Bus RTS. Besides that, the solution of the integrated ED-DG problems produced by MOICEP
is compared with the solution produced by the existing multi-objective techniques of Multi-
Objective-Evolutionary Programming (MOEP) and Multi-Objective-Artificial Immune
System (MOAIS) for comparative studies purposes.

2. Proposed Weighted-Sum Multi-Objective Immune-Commensal-Evolutionary
Programming for Total Production Cost and Total System Loss Minimization

In this study, the total production cost and total system loss are optimized simul-
taneously using the weighted-sum Multi-Objective Immune-Commensal-Evolutionary
Programming (MOICEP) technique. The total production is calculated using Equation
(1) for the basic ED problems and ED problems with prohibited operating zones, while
Equation (2) is used to calculate the total production cost for the ED problems with a
valve-point loading effect. The total system loss is calculated using Equation (3).

Ctotal =
n

∑
i=1

Ci(Pi) =
n

∑
i=1

aiP2
i + biPi + ci (1)

where

Ci is the production cost of ith generating unit, and
Pi is the real power output of the ith generating unit.
ai, bi and ci are the cost coefficients of the ith generating unit and
n is the number of dispatchable generating units:

Ctotal =
n

∑
i=1

Ci(Pi) =
n

∑
i=1

aiP2
i + biPi + ci +

∣∣∣eisin
(

fi

(
Pmin

i − Pi

))∣∣∣ (2)

where ei and fi are the valve-point loading effect coefficients of the ith generating unit.

Ploss =
l

∑
k=1

gk[V2
i + V2

j − 2ViVjcos
(
δi − δj

)
], k ∈ {1, 2, . . . , l} (3)

where

gk is the conductance of kth line,
Vi and δi are the voltage magnitude and angle of bus i, respectively,
Vj and δj are the voltage magnitude and angle of bus j, respectively, and
l is the number of lines in the system.

285



Energies 2021, 14, 7733

The implementation of this proposed technique is illustrated in Figure 1. The proce-
dure of minimizing the total production costs and total system loss using MOICEP shown
in Figure 1 is explained in the following steps.
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Step 1: Generate decision variable

MOICEP starts with the randomization of the decision variable values based on their
constraints. There are three types of decision variables for this problem: real power output
of generating units, location of DG units and size of DG units. This randomization is a part
of the initialization process of MOICEP. Twenty individuals of each decision variable are
stored in the initialization pool that satisfied the constraint violation test. The group of
individuals in the pool is called as the initial population.

Step 2: Cloning process

Subsequently, the initial population is cloned to increase its size to two hundred. The
fitness of this multi-objective is then calculated using Equation (4). The weight coefficients
are varied depending on the problem’s desired output. For this study, there were five
settings of weight coefficients used to minimize the total production costs and total system
loss, which are w1 = 0.9, w2 = 0.1, w1 = 0.5, w2 = 0.5, and w1 = 0.1, w2 = 0.9.

F(x) = w1 f1(x) + w2 f2(x) (4)

where

F(x) is weighted objective function,
w1 is weight coefficient for the first objective function,
w2 is weight coefficient for the second objective function
f1(x) is the first objective function (total production cost minimization) and
f2(x) is the second objective function (total system loss minimization).

Step 3: Mutation process

Then, the best two hundred cloned individuals that produce the best value of fitness
are mutated using the commensalism equation of the Symbiotic Organisms Search (SOS),
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as shown in Equation (5). This mutation process is conducted to produce offspring of the
mutated population. There are two hundred individual offspring after this process.

Xi,new = Xi + rand(−1, 1)×
(
Xbest − Xj

)
(5)

where

Xi,new is the offspring of the ith individual,
Xi is the parent of the ith individual,
Xbest is the fittest individual and
Xj is another individual besides the ith individual.

Step 4: Combination process

The cloned population and the mutated populated are then combined to become a
large population with the size of four hundred.

Step 5: Ranking and selection process

From these four hundred individuals, the twenty best individuals will be selected to
undergo the convergence process. However, prior to that, the combined individuals are
ranked based on their fitness. Those who give the best value of fitness will be included into
the best twenty group; otherwise, they will be excluded from undergoing the next process.

Step 6: Convergence test

Subsequently, the best twenty individuals will undergo the convergence process. In
this convergence process, a stopping criterion is set to indicate that the algorithm has found
the global optima of the multi-objective optimization problem. The stopping criterion used
is as shown in Equation (6). If the stopping criterion is not met, the process will proceed to
the cloning process and repeat the previous whole steps until the solution converges.

f itnessmax − f itnessmin ≤ 0.0001 (6)

where

f itnessmax is the maximum fitness value and
f itnessmin is the minimum fitness value.

3. Results and Discussion

This section presents the results and discussion on Multi-Objective Immune-Commensal-
Evolutionary Programming (MOICEP) for the total production costs and total system loss
minimization via integrated Economic Dispatch and Distributed Generation installation
(ED-DG). As mentioned previously, the weight coefficients of the objective functions
can be varied from 0 to 1.0 between the two objective functions (total production cost
minimization and total system loss minimization) to find the trade-off between the two
objective functions. The set of weight coefficients for the two fitness functions are as shown
in Table 1. The objective functions for this multi-objective problem are the total production
cost and total system loss minimization. It can be seen from the table that the summation
of w1 and w2 is equal to one. If the weight of one of the fitness functions is set to one, then
the weight for the other fitness function will be zero. This means that only the objective
function with the value of one is optimized, and the other fitness function is not optimized.
If the weight value is more than zero, it means that the fitness function is optimized with
the amount of the weight. The difference between the fitness and objective functions needs
to be understood. Fitness is the equation for the problem formulation, while the objective
function is the minimization or the maximization of the fitness function. Let us say, our
fitness function f1 = f1(x); thus, the objective function will be max ( f1(x)) or min ( f1(x)).
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Table 1. Weight coefficients values for two objective functions (total production cost and total
system loss).

Setting

Weight Coefficients Fitness Function

w1 w2
Total

Production Cost
Total System

Loss

1 1 0 X ×
2 0.9 0.1 X X
3 0.8 0.2 X X
4 0.7 0.3 X X
5 0.6 0.4 X X
6 0.5 0.5 X X
7 0.4 0.6 X X
8 0.3 0.7 X X
9 0.2 0.8 X X

10 0.1 0.9 X X
11 0 1.0 × X

As suggested by N. A. Rahmat [14], the best settings of the weight coefficients (trade-
off) for optimizing the two objective functions were settings 2, 6 and 10, as shown in Table 1.
This was because the other settings produced the same nondominated values as settings 2,
6 and 11. Therefore, in this study, the weighted-sum Multi-Objective Immune-Commensal-
Evolutionary Programming (MOICEP) technique applied settings 2, 6 and 10 for minimiz-
ing the total production costs and total system loss minimization simultaneously.

The overall implementation of the MOICEP is illustrated in Figure 2. The proposed
technique has been used to minimize the total production costs and total system loss for
three different ED problems. The problems are a basic ED problem, ED problem with
prohibited operating zones and ED problem with a valve-point loading effect. Furthermore,
for each ED problem, two test systems are used for implementing the MOICEP, which are
IEEE 30-Bus RTS and IEEE 57-Bus RTS.
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3.1. MOICEP-Based Technique for Basic Economic Dispatch Problem

For this basic ED problem (smooth cost function), Equations (1) and (3) are used to
calculate the total production cost and total system loss, respectively. The MOICEP was
implemented on the IEEE 30-Bus RTS and IEEE 57-Bus RTS. For each test system, there are
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five settings of weight coefficients of the two objectives (total production cost minimization
and total system loss minimization). The settings are w1 = 0.9, w2 = 0.1, w1 = 0.5, w2 = 0.5
and w1 = 0.1, w2 = 0.9. w1 is the weight coefficient of objective 1 (total production cost
minimization), while w2 is weight coefficient of objective 2 (total system loss minimization).

3.1.1. For w1 = 0.9 and w2 = 0.1

The results of the integrated Basic ED and DG installation of the IEEE 30-Bus and
57-Bus RTSs for the second setting of the weight coefficients (w1 = 0.9 and w2 = 0.1) are
tabulated in Tables 2 and 3, respectively.

Table 2. Results of the integrated basic ED and DG installation of the IEEE 30-Bus RTS (w1 = 0.9 and
w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 19 19
Lo2 9 28 28
Lo3 5 5 25

Sizes of DGs (MW)
DG1 5.00 4.62 4.62
DG2 50.00 27.70 27.70
DG3 100.00 75.81 101.63

Generating Unit Output (MW)

PG1 16.42 58.48 32.36
PG2 20.00 48.66 48.66
PG5 15.00 23.32 23.32
PG8 26.21 16.87 16.87
PG11 23.26 17.19 17.19
PG13 28.95 13.33 13.33

Total Production Cost ($/h) 355.91 463.64 402.50
Total System Loss (MW) 1.44 2.60 2.28

Table 3. Results of the integrated basic ED and DG installation of the IEEE 57-Bus RTS (w1 = 0.9
and w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 25 33 33
Lo2 22 10 10
Lo3 13 40 40

Sizes of DGs (MW)
DG1 4.84 2.66 2.66
DG2 49.99 36.55 36.55
DG3 150.00 141.03 141.03

Generating Unit Output (MW)

PG1 137.42 191.80 191.80
PG2 47.83 6.68 6.68
PG5 22.57 58.45 58.45
PG6 71.59 68.68 68.68
PG8 381.87 323.93 323.93
PG9 39.43 93.04 93.04
PG12 355.16 346.93 346.93

Total Production Cost ($/h) 33,285.97 35,369.69 35,369.69
Total System Loss (MW) 9.90 18.95 18.95

From Table 2, it can be seen that MOICEP continued to give the best solution of
the basic ED and DG installation of the IEEE 30-Bus RTS by producing the lowest total
production costs and total system loss of 355.91 $/h and 1.44 MW, respectively. The
locations of the three DG units found via MOICEP were bus 29, bus 9 and bus 5 with
the sizes of 5.00, 50.00 and 100.00 MW, respectively. While the locations and sizes for the
three DG units found via MOEP were bus 19 with 4.62 MW, bus 28 with 27.70 MW and
bus 5 with 75.81 MW. MOAIS identified bus 19 with 4.62 MW, bus 28 with 27.70 MW and
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bus 25 with 101.63 MW, respectively. MOEP and MOAIS produced total production costs
and total system losses of 463.64 $/h and 2.60 MW and 402.50 $/h and 2.28 MW, respectively.
These values were higher than the MOICEP. The proposed MOICEP performed much better
than MOEP and MOAIS.

For the results of the IEEE 57-Bus RTS shown in Table 3, similar pattern of results
as for the IEEE 30-Bus RTS could be seen. MOICEP maintained producing the lowest
total production cost and total system loss of 33285.97 $/h and 9.90 MW, respectively,
whereas MOEP and MOAIS found the same total production cost and total system loss of
35,369.69 $/h and 18.95 MW. The optimal location determined by the MOICEP to install
the three DG units were bus 25, bus 22 and bus 13 with the sizes of 4.84 MW, 49.99 MW and
150.00 MW, respectively, while MOEP and MOAIS identified bus 33, bus 10 and bus 40 to
install the three DG units (Lo1, Lo2 and Lo3) with the sizes of 2.66, 36.55 and 141.03 MW,
respectively. MOICEP forced generating unit 8, PG8, to produce the highest power to the
system, while generating unit 12, PG12, produced the highest power in MOEP and MOAIS.

3.1.2. For w1 = 0.5 and w2 = 0.5

The results value for w1 was set to 0.5, and w2 was 0.5 as the third setting. For the
third setting of the weight coefficients, the results of the IEEE 30-Bus RTS and IEEE 57-Bus
RTS are tabulated in Tables 4 and 5, respectively.

Table 4. Results of the integrated basic ED and DG installation of the IEEE 30-Bus RTS (w1 = 0.5
and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 27 19
Lo2 21 7 28
Lo3 5 5 25

Sizes of DGs (MW)
DG1 5.00 4.06 4.62
DG2 31.87 33.33 27.70
DG3 101.63 60.69 94.86

Generating Unit Output (MW)

PG1 18.54 21.75 32.36
PG2 24.51 60.95 48.66
PG5 15.00 38.82 23.32
PG8 35.00 15.13 16.87
PG11 30.00 26.73 17.19
PG13 30.00 24.18 13.33

Total Production Cost ($/h) 402.50 557.01 429.30
Total System Loss (MW) 1.40 2.25 2.28

From Table 4, the MOICEP achieved 402.50 $/h as the total production cost and 1.40 MW for
the total system loss. These values were the lowest compared to MOEP (557.01 $/h and 2.25 MW)
and MOAIS (429.30 $/h and 2.28 MW). The best total production cost and total system loss in
MOICEP were contributed through the placement of DG1, DG2 and DG3 at bus 29, bus 21 and
bus 5 with the sizes of 5.00 MW, 31.87 MW and 101.63 MW, respectively. Generating unit 5,
PG5, produced the least power in MOICEP, while generating unit 8, PG8, and generating unit
13, PG13, in MOEP and MOAIS, respectively. Apparently, MOICEP consistently outperformed
MOEP and MOAIS.
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Table 5. Results of the integrated basic ED and DG installation of the IEEE 57-Bus RTS (w1 = 0.5
and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 35 45 34
Lo2 38 30 23
Lo3 3 55 11

Sizes of DGs (MW)
DG1 3.65 3.53 3.44
DG2 44.23 24.77 40.05
DG3 68.97 132.47 92.34

Generating Unit Output (MW)

PG1 206.60 237.10 24.14
PG2 16.24 25.01 53.09
PG5 34.87 120.52 91.62
PG6 52.04 47.13 40.76
PG8 351.68 278.28 450.99
PG9 81.82 60.04 71.83
PG12 400.55 335.20 397.14

Total Production Cost ($/h) 37,513.91 38,111.41 37,752.82
Total System Loss (MW) 9.90 13.26 14.61

From the results of the IEEE 57-Bus shown in Table 5, it can be seen that MOICEP
continued to produce better total production costs and total system loss as compared to
MOEP and MOAIS. MOICEP produced 37,513.91 $/h and 9.90 MW, while MOEP and
MOAIS produced 38,111.41 $/h and 13.26 MW and 37,752.82 $/h and 14.61 MW, respec-
tively. Bus 35, bus 38 and bus 3 were determined as the optimal locations to install DG1,
DG2 and DG3. The corresponding sizes for the three DG units were 3.65 MW, 44.23 MW
and 68.97 MW. Generating unit 2, PG2, produced the least power output compared to the
other generating units in MOICEP and MOEP, while generating unit 1, PG1, in MOAIS.
From the results when w1 = 0.5 and w2 = 0.5, it is observed that the total production cost
was slightly expensive, and the total system loss was lower than the previous two settings
of weight coefficients.

3.1.3. For w1 = 0.1 and w2 = 0.9

The fourth setting was w1 = 0.1 and w2 = 0.9. For this fourth setting of the weight
coefficients, the results of integrated Basic ED and DG installation of the IEEE 30-Bus RTS
and IEEE 57-Bus RTS are tabulated in Tables 6 and 7, respectively. From the comparison of
the results between the three techniques (MOICEP, MOEP and MOAIS), it was observed
that the total production cost produced by MOAIS was the lowest, while the total system
loss produced by MOICEP was the lowest. The total production cost in MOAIS was lower
than in MOICEP and MOEP, because the total DG size for the three DG units was the
highest, worth 133.95 MW compared to MOICEP (121.26 MW) and MOEP (98.08 MW).
However, MOICEP still exhibited the lowest total system loss of 1.39 MW as compared
to MOEP (2.25 MW) and MOAIS (2.28 MW). Bus 29, bus 21 and bus 5 were the optimal
locations to install DG1, DG2 and DG3. The corresponding sizes for the three DG units
were 5.00, 29.77 and 86.49 MW. Generating unit 1, PG1, in MOICEP produced the lowest
power output, while, in MOEP, generating unit 8, PG8, and, in MOAIS, generating unit 13,
PG13, were the ones with the lowest power outputs.
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Table 6. Results of the integrated basic ED and DG installation of the IEEE 30-Bus RTS (w1 = 0.1
and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 27 19
Lo2 21 7 28
Lo3 5 5 25

Sizes of DGs (MW)
DG1 5.00 4.06 4.62
DG2 29.77 33.33 27.70
DG3 86.49 60.69 101.63

Generating Unit Output (MW)

PG1 18.65 21.75 32.36
PG2 27.91 60.95 48.66
PG5 22.01 38.82 23.32
PG8 34.96 15.13 16.87
PG11 30.00 26.73 17.19
PG13 30.00 24.18 13.33

Total Production Cost ($/h) 461.64 557.01 402.50
Total System Loss (MW) 1.39 2.25 2.28

Table 7. Results of the integrated basic ED and DG installation of the IEEE 57-Bus RTS (w1 = 0.1
and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 25 45 34
Lo2 23 30 23
Lo3 13 55 11

Sizes of DGs (MW)
DG1 4.99 3.53 3.44
DG2 44.63 24.77 40.05
DG3 123.36 132.47 92.34

Generating Unit Output (MW)

PG1 125.84 237.10 24.14
PG2 26.37 25.01 53.09
PG5 87.41 120.52 91.62
PG6 95.96 47.13 40.76
PG8 238.78 278.28 450.99
PG9 100.00 60.04 71.83
PG12 409.98 335.20 397.14

Total Production Cost ($/h) 36,159.62 38,111.41 37,752.82
Total System Loss (MW) 6.52 13.26 14.61

For the results of IEEE 57-Bus RTS shown in Table 7, both the total production cost and
total system loss for this setting of weight coefficients (w1 = 0.1 and w2 = 0.9) were found
to be the lowest in MOICEP, which were 36,159.62 $/h and 6.52 MW as compared to MOEP
with 38,111.41 $/h and 13.26 MW and MOAIS with 37,752.82 $/h and 14.61 MW. The
optimal locations to install the three DG units identified by MOICEP were bus 25, bus 23
and bus 13 with the corresponding sizes of 4.99, 44.63 and 123.36 MW, respectively. It could
be observed that MOICEP forced the DG units to operate near to their maximum capacity.
This was the reason why the total production cost reduced significantly as compared to
MOEP and MOAIS.

3.2. MOICEP-Based Technique for Economic Dispatch Problem with Prohibited Operating Zones

The proposed MOICEP technique was also used to solve the ED problem with pro-
hibited operating zones. In this study, the same equations of the total production cost
(Equation (1)) and total system loss (Equation (3)) in the first ED problem were reutilized.
However, there was a difference in the constraint of the operating limits of the generating
units. The generating units would only be allowed to operate in the allowable zones to

292



Energies 2021, 14, 7733

make sure the stability of their operation. The allowable and prohibited zones for the IEEE
30-Bus RTS and IEEE 57-Bus RTS are shown in Tables 8 and 9, respectively.

Table 8. Cost coefficients and generating unit limits for the ED problem with the prohibited operating
zones (IEEE 30-Bus RTS).

Gen.
Unit

Pmin Pmax
Prohibited Zones Cost Coefficients

Zone 1 Zone 2 ai bi ci

1 50 200 55–66 80–120 0.00375 2.00 0
2 20 80 21–24 45–55 0.01750 1.75 0
5 15 50 30–36 - 0.06250 1.00 0
8 10 35 25–30 - 0.00834 3.25 0

11 10 30 25–28 - 0.02500 3.00 0
13 10 30 24–30 - 0.02500 3.00 0

Table 9. Cost coefficients and generating unit limits for the ED problem with the prohibited operating
zones (IEEE 57-Bus RTS).

Gen.
Unit

Pmin Pmax
Prohibited Zones Cost Coefficients

Zone 1 Zone 2 ai bi ci

1 0 575.88 10–50 480–520 0.0775795 20 0
2 0 100 5–10 75–80 0.0100000 40 0
3 0 140 10–25 100–110 0.2500000 20 0
6 0 100 5–10 - 0.0100000 40 0
8 0 550 10–30 - 0.0222222 20 0
9 0 100 5–10 - 0.0100000 40 0

12 0 410 10–35 - 0.0322581 20 0

3.2.1. For w1 = 0.9 and w2 = 0.1

The integrated ED problem with prohibited operating zones and DG installation
continued to be solved using MOICEP, MOEP and MOAIS for the second setting of weight
coefficients (w1 = 0.9 and w2 = 0.1). The results for this setting are shown in Table 10
(IEEE 30-Bus RTS) and Table 11 (IEEE 57-Bus RTS). Similar to the first setting, the solutions
produced by MOEP and MOAIS were the same for both systems. From Table 10 of the
IEEE 30-Bus RTS, the total production cost and total system loss produced by MOICEP
were 380.05 $/h and 1.71 MW, respectively. While MOEP and MOAIS produced a total
production cost of 503.05 $/h and total system loss of 3.81 MW. MOICEP significantly
outperformed MOEP and MOAIS.

For the DG installation, it was found that bus 29 with 5.00 MW, bus 21 with 50.00 MW
and bus 5 with 100.00 MW were the optimal locations and sizes for the three DG units
in the IEEE 30-Bus RTS, while, for the IEEE 57-Bus RTS, as shown in Table 11, bus 25,
bus 14 and bus 13 were found to be the suitable locations to install the three DG units with
the sizes of 3.87, 50.00 and 150.00 MW, respectively, via MOICEP. This resulted in a total
production cost and total system loss worth 33,315.31 $/h and 11.29 MW, respectively.

Generating unit 6, PG6, was found to be the least generating unit supplying its real
power output to the IEEE 57-Bus RTS in MOICEP, while generating unit 2, PG2, in MOEP
and MOAIS. Comparing the total production cost produced in this second setting with
the first setting, it can be observed that the total production cost in the second setting was
higher for both systems. This was due to the value of w1 decreasing to 0.1 and the value of
w2 increasing to 0.1 in the second setting.
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Table 10. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 30-Bus RTS (w1 = 0.9 and w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 24 24
Lo2 21 15 15
Lo3 5 22 22

Sizes of DGs (MW)
DG1 5.00 4.03 4.03
DG2 50.00 49.60 49.60
DG3 100.00 68.27 68.27

Generating Unit Output (MW)

PG1 12.26 19.48 19.48
PG2 26.70 44.96 44.96
PG5 27.43 39.54 39.54
PG8 34.25 32.76 32.76
PG11 10.27 15.25 15.25
PG13 19.20 13.33 13.33

Total Production Cost ($/h) 380.05 503.05 503.05
Total System Loss (MW) 1.71 3.81 3.81

Table 11. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 57-Bus RTS (w1 = 0.9 and w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 25 50 50
Lo2 14 33 33
Lo3 13 10 10

Sizes of DGs (MW)
DG1 3.87 3.62 3.62
DG2 50.00 23.72 23.72
DG3 150.00 120.12 120.12

Generating Unit Output (MW)

PG1 121.07 201.79 201.79
PG2 96.27 0.77 0.77
PG5 43.92 53.68 53.68
PG6 34.14 41.75 41.75
PG8 379.12 377.72 377.72
PG9 41.12 58.90 58.90
PG12 342.59 381.48 381.48

Total Production Cost ($/h) 33,315.31 36,146.27 36,146.27
Total System Loss (MW) 11.29 12.75 12.75

3.2.2. For w1 = 0.5 and w2 = 0.5

Tables 12 and 13 show the results of the integrated ED problem with the prohib-
ited operating zones and DG installation of the IEEE 30-Bus RTS and IEEE 57-Bus RTS,
respectively, with weight coefficients w1 = 0.5 and w2 = 0.5.

Again, MOEP and MOAIS produced the same solution for both systems. As referred
to in Table 12, MOICEP produced a total production cost of 492.48 $/h and total system
loss of 1.84 MW, while MOEP and MOAIS produced a similar total production cost of
559.24 $/h and a similar total system loss of 3.34 MW. MOICEP managed to save about
66.76 $/h in the total production cost. Besides that, the total system loss found via MOICEP
was almost half of the total system loss produced via MOEP and MOAIS.

According to Table 13 for the IEEE 57-Bus RTS, MOICEP managed to produce the
lowest total production cost of 35,926.32 $/h and total system loss of 11.83 MW. MOEP
and MOAIS produced a similar total production cost of 36,146.27 $/h and a similar total
system loss of 12.75 MW. MOICEP identified the optimal locations of DG1, DG2 and DG3
in the IEEE 57-Bus RTS at bus 57, bus 36 and bus 43, respectively. The sizes for the three
DG units were 4.52, 44.13 and 101.28 MW. MOEP and MOAIS identified bus 50, bus 33
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and bus 10 as the optimal locations to install DG1, DG2 and DG3 with the sizes of 3.62,
23.72 and 120.12 MW, respectively. Generating unit 8, PG8, was found to be the highest
generating unit to supply a real power output to the IEEE 57-Bus RTS in MOICEP. In MOEP
and MOAIS, generating unit 12, PG12, was the highest contributor of real power output to
the system.

Table 12. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 30-Bus RTS (w1 = 0.5 and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 23 23
Lo2 5 10 10
Lo3 9 27 27

Sizes of DGs (MW)
DG1 5.00 3.84 3.84
DG2 45.57 42.29 42.29
DG3 81.18 54.73 54.73

Generating Unit Output (MW)

PG1 3.99 57.48 57.48
PG2 53.22 20.05 20.05
PG5 41.51 42.07 42.07
PG8 17.06 17.98 17.98
PG11 10.14 18.35 18.35
PG13 27.56 30.00 30.00

Total Production Cost ($/h) 492.48 559.24 559.24
Total System Loss (MW) 1.84 3.34 3.34

Table 13. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 57-Bus RTS (w1 = 0.5 and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 57 50 50
Lo2 36 33 33
Lo3 43 10 10

Sizes of DGs (MW)
DG1 4.52 3.62 3.62
DG2 44.13 23.72 23.72
DG3 101.28 120.12 120.12

Generating unit output (MW)

PG1 182.78 201.79 201.79
PG2 57.29 0.77 0.77
PG5 68.03 53.68 53.68
PG6 73.47 41.75 41.75
PG8 363.59 377.72 377.72
PG9 29.91 58.90 58.90
PG12 337.61 381.48 381.48

Total Production Cost ($/h) 35,926.32 36,146.27 36,146.27
Total System Loss (MW) 11.83 12.75 12.75

3.2.3. For w1 = 0.1 and w2 = 0.9

The results of the fourth setting of the weight coefficients (w1 = 0.1 and w2 = 0.9) for
the IEEE 30-Bus RTS and IEEE 57-Bus RTS are tabulated in Tables 14 and 15, respectively.
As referred to in the two tables, it can be seen that MOEP and MOAIS continued to produce
the same solution of the integrated ED problem with prohibited operating zones and DG
installation. This could be due to the prohibited operating zones of the generating units
that make the searching space of the MOEP and MOAIS algorithms smaller and lead to
the same global optima. MOICEP achieved a total production cost of 517.76 $/h and
total system loss of 1.49 MW for the IEEE 30-Bus RTS, while, in the IEEE 57-Bus RTS,
35,184.12 $/h and 6.94 MW. As referred to in Table 14, the optimal locations to install DG1,
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DG2 and DG3 in the IEEE 30-Bus RTS were bus 29, bus 21 and bus 5 with the sizes of 5.00,
27.69 and 85.03 MW, respectively.

Table 14. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 30-Bus RTS (w1 = 0.1 and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 23 23
Lo2 21 10 10
Lo3 5 27 27

Sizes of DGs (MW)
DG1 5.00 3.84 3.84
DG2 27.69 42.29 42.29
DG3 85.03 54.73 54.73

Generating Unit Output (MW)

PG1 13.55 57.48 57.48
PG2 38.62 20.05 20.05
PG5 27.96 42.07 42.07
PG8 34.17 17.98 17.98
PG11 16.25 18.35 18.35
PG13 36.61 30.00 30.00

Total Production Cost ($/h) 517.76 559.24 559.24
Total System Loss (MW) 1.49 3.34 3.34

Table 15. Results of the integrated ED problem with prohibited operating zones and DG installation
of the IEEE 57-Bus RTS (w1 = 0.1 and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 21 3 3
Lo2 26 53 53
Lo3 13 16 16

Sizes of DGs (MW)
DG1 4.99 4.87 4.87
DG2 34.73 28.54 28.54
DG3 150.00 77.88 77.88

Generating Unit Output (MW)

PG1 148.50 175.15 175.15
PG2 1.04 10.46 10.46
PG5 81.08 93.14 93.14
PG6 76.86 83.34 83.34
PG8 254.90 319.71 319.71
PG9 99.82 65.86 65.86
PG12 405.81 402.63 402.63

Total Production Cost ($/h) 35,184.12 38,362.28 38,362.28
Total System Loss (MW) 6.94 10.80 10.80

On the other hand, in MOEP and MOAIS, the locations and sizes were bus 23 with
3.84 MW, bus 10 with 42.29 MW and bus 27 with 54.73 MW. The six generating units (PG1,
PG2, PG5, PG8, PG11 and PG13) in MOICEP produced 13.55, 38.62, 27.96, 34.17, 16.25 and
36.61 MW, respectively. In MOEP and MOAIS, they produced 57.48, 20.05, 42.07, 17.98,
18.35 and 30.00 MW, respectively. Generating unit 1, PG1, in MOICEP produced the lowest
real power output compared to the other units. Generating unit 8, PG8, produced the
lowest real power output in MOEP and MOAIS.

According to Table 15 of the IEEE 57-Bus RTS, bus 21, bus 26 and bus 13 were found
to be the optimal locations to install DG1, DG2 and DG3, respectively. Their sizes were
4.99 MW, 34.73 and 150.00 MW, respectively.

Meanwhile, in MOEP and MOAIS, bus 3, bus 53 and bus 16 were the optimal locations
to install DG1, DG2 and DG3 with the sizes of 4.87, 28.54 and 77.88 MW, respectively. It
was observed that generating unit 2, PG2, in MOICEP produced a very little real power
output of 1.04 MW compared to the other units. The lowest real power output produced by
a generating unit in MOEP and MOAIS was 10.46 MW, which was generating unit 2, PG2.
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3.3. MOICEP-Based Technique for Economic Dispatch Problem with Valve-Point Loading Effect

The total production cost and total system loss for this type of ED problem were
calculated using Equations (2) and (3), respectively. The cost function of this ED was not
smooth because of the valve-point loading effect of the generating unit considered in the
cost function. The results of the integrated ED problem with a valve-point loading effect
and DG installation are observed and discussed in this section.

3.3.1. For w1 = 0.9 and w2 = 0.1

Tables 16 and 17 show the results of the integrated ED problem with a valve-point
loading effect and DG installation of the IEEE 30-Bus RTS and 57-Bus RTS with w1 = 0.9
and w2 = 0.1, respectively. It can be seen from Table 16 that MOICEP maintained producing
the best solution of an ED with a valve-point loading effect and DG installation for the
second setting of the weight coefficients by giving the lowest total production cost of
11,817.81 $/h and the lowest total system loss of 2.04 MW. MOEP and MOAIS produced
13,331.25 $/h and 3.61 MW and 11,627.07 $/h and 13.32 MW, respectively. The best solution
from MOICEP was backed by the placement of DG1, DG2 and DG3 at bus 26, bus 5 and
bus 9 with the sizes of 5.00, 50.00 and 100.00 MW, respectively. Generating unit 1, PG1,
and generating unit 8, PG8, produced the lowest and the highest real power outputs in
MOICEP, respectively. The most expensive total production cost was obtained in MOEP,
which was 13,331.25 $/h. However, MOAIS produced the highest total system loss of
13.32 MW compared to the other two techniques. It was five times more than the total
system loss produced via MOICEP.

As referred to in Table 17 of the IEEE 57-BUS RTS, it can be seen that MOICEP pro-
duced the cheapest total production cost of 32,560.84 $/h and total system loss of 9.78 MW
compared to MOEP and MOAIS. MOEP and MOAIS produced the same solution, with the
total production cost of 35,369.69 $/h and total system loss of 18.95 MW.

MOICEP found bus 26, bus 10 and bus 14 as the optimal locations to install DG1, DG2
and DG3 with the sizes of 5.00, 49.96 and 149.98 MW, respectively. MOEP and MOAIS
identified bus 33, bus 10 and bus 40 as the optimal locations to install DG1, DG2 and DG3
with the sizes of 2.66, 36.55 and 141.03 MW, respectively. It was observed that the real
power output of the three DG units was higher in MOICEP compared to the real power
output in MOEP and MOAIS.

Table 16. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 30-Bus RTS (w1 = 0.9 and w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 26 25 29
Lo2 5 27 4
Lo3 9 7 18

Sizes of DGs (MW)
DG1 5.00 1.06 2.50
DG2 50.00 35.98 39.45
DG3 100.00 93.41 1.30

Generating Unit Output (MW)

PG1 8.39 3.75 13.23
PG2 20.00 51.78 22.77
PG5 22.29 31.26 18.40
PG8 34.46 33.52 30.59
PG11 15.30 11.00 23.90
PG13 30.00 25.23 16.34

Total Production Cost ($/h) 11,817.81 13,331.25 11,627.07
Total System Loss (MW) 2.04 3.61 13.32
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Table 17. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 57-Bus RTS (w1 = 0.9 and w2 = 0.1).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 26 33 33
Lo2 10 10 10
Lo3 14 40 40

Sizes of DGs (MW)
DG1 5.00 2.66 2.66
DG2 49.96 36.55 36.55
DG3 149.98 141.03 141.03

Generating Unit Output (MW)

PG1 132.46 191.82 191.82
PG2 43.98 6.68 6.68
PG5 49.48 58.44 58.44
PG6 72.02 68.67 68.67
PG8 327.03 323.93 323.93
PG9 73.78 93.04 93.04
PG12 356.90 346.92 346.92

Total Production Cost ($/h) 32,560.84 35,369.69 35,369.69
Total System Loss (MW) 9.78 18.95 18.95

3.3.2. For w1 = 0.5 and w2 = 0.5

The third setting of the weight coefficients for solving the integrated ED problem
with a valve-point loading effect and DG installation for the IEEE 30-Bus RTS and IEEE
57-Bus RTS are tabulated in Tables 18 and 19. Referring to Table 18, it can be seen that
MOICEP managed to provide a better solution of ED with a valve-point loading effect and
DG installation by producing a total production cost of 11,758.98 $/h and total system loss
of 1.50 MW compared to MOEP (13,340.00 $/h and 3.31 MW) and MOAIS (13,178.04 $/h
and 2.28 MW). This was caused by the placement of DG1, DG2 and DG3 at bus 18, bus 9
and bus 5 with the sizes of 5.00 MW, 50.00 MW and 100.00 MW, respectively. The total DG
size was the highest in MOICEP (155.00 MW), while, for MOEP, it was 125.91 MW and, for
MOAIS, it was 133.95 MW. Generating unit 1, PG1, produced the lowest real power output
of 7.05 MW compared to the other generating units in MOICEP.

Table 18. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 30-Bus RTS (w1 = 0.5 and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 18 16 19
Lo2 9 19 28
Lo3 5 9 5

Sizes of DGs (MW)
DG1 5.00 3.35 4.62
DG2 50.00 43.05 27.70
DG3 100.00 79.51 101.63

Generating Unit Output (MW)

PG1 7.05 12.77 32.36
PG2 20.00 39.05 48.66
PG5 15.00 46.04 23.32
PG8 34.65 26.30 16.87
PG11 24.78 13.01 17.18
PG13 28.42 23.63 13.33

Total Production Cost ($/h) 11,758.98 13,340.00 13,178.04
Total System Loss (MW) 1.50 3.31 2.28
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Table 19. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 57-Bus RTS (w1 = 0.5 and w2 = 0.5).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 25 45 45
Lo2 22 30 30
Lo3 13 55 55

Sizes of DGs (MW)
DG1 4.97 3.53 3.53
DG2 42.96 24.77 24.77
DG3 150.00 132.47 132.47

Generating Unit Output (MW)

PG1 131.64 237.10 237.10
PG2 36.11 25.01 25.01
PG5 65.13 120.52 120.52
PG6 72.78 47.13 47.13
PG8 273.04 278.28 278.28
PG9 100.00 60.04 60.04
PG12 381.24 335.20 335.20

Total Production Cost ($/h) 33,447.51 38,013.28 38,013.28
Total System Loss (MW) 7.10 13.26 13.26

The results of the IEEE 57-Bus are shown in Table 19. It can be observed that MOICEP
continued to produce a better solution of the integrated ED problem with a valve-point
loading effect and DG installation. This was based on the total production cost and total
system loss produced, which were the lowest at 33,447.51 $/h and 7.10 MW, respectively.
MOEP and MOAIS produced the same results, with a total production cost of 38,013.28 $/h
and total system loss worth 13.26 MW.

In MOICEP, bus 25, bus 22 and bus 13 were identified as the best locations to install
DG1, DG2 and DG3 with the sizes of 4.97, 42.96 and 150.00 MW, respectively. The generating
units 1, 2, 5, 6, 8, 9 and 12 produced real power outputs of 131.64, 36.11, 65.13, 72.78, 273.04,
100.00 and 381.24 MW, respectively.

MOEP and MOAIS identified bus 45, bus 30 and bus 55 as the optimal locations to
place DG1, DG2 and DG3 with the sizes of 3.53, 24.77 and 132.47 MW, respectively. The total
DG size was higher in MOICEP, which was 197.93 MW compared to MOEP and MOAIS,
which was 160.77 MW. As a result, MOICEP achieved a lower total production cost than
MOEP and MOAIS.

3.3.3. For w1 = 0.1 and w2 = 0.9

The breadth of this study was expanded with the next weight coefficient setting, i.e.,
w1 = 0.1 and w2 = 0.9. Tables 20 and 21 show the results of the integrated ED problem
with a valve-point loading effect and DG installation of the IEEE 30-Bus RTS and IEEE
57-Bus RTS, respectively.

From Table 20, it can be seen that MOICEP achieved the lowest total system loss
of 1.47 MW compared to MOEP (2.34 MW) and MOAIS (2.28 MW). However, the total
production cost produced in MOAIS was the lowest compared to MOICEP and MOEP.
MOAIS produced a total production cost of 13,178.04 $/h, while MOICEP and MOEP
produced 13,472.72 $/h and 15,179.41 $/h, respectively. The highest total production cost
was found in MOEP. The optimal locations and sizes found via MOICEP for DG1, DG2 and
DG3 were bus 29 with 5.00 MW, bus 22 with 28.71 MW and bus 5 with 86.75 MW. It was
observed that, to make sure the total system loss was the lowest, MOICEP avoided the
three DG units operating near their maximum capacity.

A similar observation was experienced by the IEEE 57-Bus RTS, as shown in Table 21;
the total system loss produced via MOICEP was the lowest. However, the total production
cost was the highest compared to MOEP and MOAIS. MOICEP produced a total production
cost of 38,352.96 $/h and total system loss of 8.35 MW. MOEP and MOAIS produced the
same results, with a total production cost of 38,013.28 $/h and total system loss of 13.26 MW.
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The optimal locations to install DG1, DG2 and DG3 in the IEEE 57-Bus RTS via MOICEP
were bus 29, bus 22 and bus 13 with the sizes of 1.03, 44.02 and 59.53 MW, respectively.
The total system loss produced via MOICEP was 37.03% lower than the total system loss
produced via MOEP and MOAIS. However, in terms of the total production cost, MOICEP
did not force the three DG units to operate near their maximum capacity. This resulted
in a high total production cost produced via MOICEP. It must be kept in mind that the
weight coefficients also play an important role that leads to the results. As the value of
w1 decreases and the value of w2 increases, the algorithm tends to focus on optimizing
objective function 2 (total system loss), as expected.

Table 20. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 30-Bus RTS (w1 = 0.1 and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 27 19
Lo2 22 4 28
Lo3 5 5 5

Sizes of DGs (MW)
DG1 5.00 3.12 4.62
DG2 28.71 35.20 27.70
DG3 86.75 50.38 101.63

Generating Unit Output (MW)

PG1 12.52 26.03 32.36
PG2 41.12 60.73 48.66
PG5 20.46 38.78 23.32
PG8 35.00 33.37 16.87
PG11 29.18 17.67 17.18
PG13 26.12 20.39 13.33

Total Production Cost ($/h) 13,472.72 15,179.41 13,178.04
Total System Loss (MW) 1.47 2.34 2.28

Table 21. Results of the integrated ED problem with a valve-point loading effect and DG installation
of the IEEE 57-Bus RTS (w1 = 0.1 and w2 = 0.9).

Optimization Technique MOICEP MOEP MOAIS

Locations of DGs (Bus no.)
Lo1 29 45 45
Lo2 22 30 30
Lo3 13 55 55

Sizes of DGs (MW)
DG1 1.03 3.53 3.53
DG2 44.02 24.77 24.77
DG3 59.53 132.47 132.47

Generating Unit Output (MW)

PG1 143.43 237.10 237.10
PG2 54.96 25.01 25.01
PG5 84.08 120.52 120.52
PG6 79.60 47.13 47.13
PG8 309.65 278.28 278.28
PG9 85.57 60.04 60.04
PG12 397.27 335.20 335.20

Total Production Cost ($/h) 38,352.96 38,013.28 38,013.28
Total System Loss (MW) 8.35 13.26 13.26

4. Conclusions

The new Multi-Objective Immune-Commensal-Evolutionary Programming (MOICEP)
technique for the total production cost and total system loss minimization via integrated
Economic Dispatch and Distributed Generation installation (ED-DG) was presented in this
paper. It was employed for the total production cost and total system loss minimization
in an integrated weighted-sum multi-objective optimization technique for solving the ED
problem with DG installation consideration. This scheme is uniquely termed as Economic
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Dispatch and Distributed Generation installation (ED-DG). The proposed weighted-sum
multi-objective function that integrated both the total production cost and total system
loss was highlighted in this study. The introduction of weight coefficients in the proposed
fitness exhibited convincing results in addressing both components. The weight coefficients
were varied between 0.1 and 0.9 to find the optimal solution that satisfied both the total
production cost and total system loss. From the variations, it could be seen that, as the
value of w1 was greater than w2, the solution produced favored total production cost
minimization, while, if the value of w2 was greater than w1, the solution favored total
system loss minimization. GSOs can decide which solution is the best for their system
requirements and their desired output. The proposed MOICEP technique managed to
achieve better results over benchmarked techniques, i.e., MOEP and MOAIS, for the
minimization of the total production costs and total system loss for three types of ED
problems (basic ED, ED problem with prohibited operating zones and an ED problem with
a valve-point loading effect). This phenomenon highlights the superiority of MOICEP
over MOEP and MOAIS. This phenomenon has been identified as cutting edge in ED
problems as the original independent scheme, i.e., ED and DG installation. The proposed
multi-objective technique could be feasible for solving other optimization problems with
considerable fine-tuning. It is also beneficial for power system utilities in solving their
ED problems. It can also be concluded that, while optimizing the two objectives, total
production cost and total system loss, the integrated Economic Dispatch and Distributed
Generation installation ED-DG problems solved using the proposed MOICEP technique
simultaneously solved two power system problems, ED and DG installation, which have
been previously solved separately by many researchers. The two objectives are inextricably
linked to the two problems.

The number of objectives for the multi-objective ED problems can be increased in
the future. This can be done by adding more objectives like voltage stability improve-
ment, emission minimization and DG installation cost minimization into the integrated
ED-DG problems.

Author Contributions: All the authors listed conceived and designed the project. Conceptualization,
M.H.M. and I.M.; acquired the funding, M.H.M.; methodology, M.H.M., I.M. and M.M.O.; validation,
M.H.M. and I.M.; analysis, M.H.M. and M.M.O.; writing—original draft preparation, M.H.M. and
I.M. and writing—review and editing, M.M.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Higher Education Malaysia (MOHE), grant
number FRGS/1/2020/TK0/UNITEN/03/4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity

systems. Energy 2018, 163, 822–836. [CrossRef]
2. Zhan, J.; Wu, Q.H.; Guo, C.; Zhou, X. Economic Dispatch With Non-Smooth Objectives—Part I: Local Minimum Analysis.

IEEE Trans. Power Syst. 2015, 30, 710–721. [CrossRef]
3. Thenmalar, K.; Anujak, S.; Ramesh, S. Multi-Objective economic emission load dispatch solution using wolf’s method in

various generation plants with wind power penetration. In Proceedings of the 2014 International Conference on Electronics and
Communication Systems, ICECS 2014, Coimbatore, Tamilnadu, 13–14 February 2014; pp. 1–13.

4. Jakob, W.; Blume, C. Pareto optimization or cascaded weighted sum: A comparison of concepts. Algorithms 2014, 7, 166–185.
[CrossRef]

5. Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim.
2010, 41, 853–862. [CrossRef]

6. Musau, M. Multi Area Multi Objective Dynamic Economic Dispatch with Renewable Energy and Emissions. In Proceedings of
the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 112–117.

301



Energies 2021, 14, 7733

7. Roy, N.; Ghosh, A.; Sanyal, K. Normal Boundary Intersection based multi-objective Harmony Search algorithm for environmental
Economic Load Dispatch problem. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems, ICPS 2016,
New Delhi, India, 4–6 March 2016; pp. 1–6.

8. Mohanty, P.S. Multi-objective economic emission load dispatch with nonlinear fuel cost and noninferior emission level functions
for IEEE-118 bus system. In Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS),
Coimbatore, India, 26–27 February 2015; pp. 1371–1376.

9. Mao, M.; Ji, M.; Dong, W.; Chang, L. Multi-objective economic dispatch model for a microgrid considering reliability.
In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2010, Hefei,
China, 16–18 June 2010; pp. 993–998.

10. Man-Im, A.; Ongsakul, W.; Singh, J.G.; Boonchuay, C. Multi-objective economic dispatch considering wind generation uncertainty
using non-dominated sorting particle swarm optimization. In Proceedings of the 2014 International Conference and Utility
Exhibition on Green Energy for Sustainable Development, ICUE 2014, Pattaya City, Thailand, 19–21 March 2014; pp. 19–21.

11. Bilil, H.; Ellaia, R.; Maaroufi, M. A New Multi-objective Particle Swarm Optimization for Economic Environmental Dispatch.
In Proceedings of the 2012 IEEE International Conference on Complex Systems (ICCS), Agadir, Morocco, 5–6 November 2012;
Volume 3, pp. 1–6.

12. Shen, X.; Zou, D.; Duan, N.; Zhang, Q. An efficient fitness-based differential evolution algorithm and a constraint handling
technique for dynamic economic emission dispatch. Energy 2019, 186, 1–28. [CrossRef]

13. Yuan, G.; Yang, W. Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent
Algorithms (PSO and AFSA). Energy 2019, 183, 926–935. [CrossRef]

14. Rahmat, N.A. Computational Intelligence Based Technique for Solving Economic Dispatch Problem. Ph.D. Thesis, Universiti
Teknologi MARA, Shah Alam, Malaysia, 2016.

302



energies

Article

DSO Strategies Proposal for the LV Grid of the Future

Bartłomiej Mroczek 1,2,* and Paweł Pijarski 1

Citation: Mroczek, B.; Pijarski, P.

DSO Strategies Proposal for the LV

Grid of the Future. Energies 2021, 14,

6327. https://doi.org/10.3390/

en14196327

Academic Editors: Victor Becerra and

Ahmed Rachid

Received: 30 August 2021

Accepted: 29 September 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Power Engineering, Lublin University of Technology, Nadbystrzycka St. 38D,
20-618 Lublin, Poland; p.pijarski@pollub.pl

2 Head of Strategy Department, ENERGA SA, Aleja Grunwaldzka 472, 80-309 Gdańsk, Poland
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Abstract: A significant challenge for the DSO (Distribution System Operator) will be to choose the
optimum strategy for flexibility service in the LV area with high RES (renewable energy sources)
penetration. To this end, a representative LV grid operated in Poland was selected for analysis. Three
research scenarios with RES generation were presented in the range of 1–8 kW for the power factor
from 0.9 to 1. The grid PV capacity was determined for four load profiles. Based on this factor,
optimum RES volume management service types were determined. Under the flexibility service,
the proposed power conversion services and active RES operations for DSO were proposed. The
research was conducted using the Matlab and PowerWorld Simulator environment. Optimum active
power values were obtained for the RES generation function for single and dual operation systems of
the power conversion system. In future, the knowledge in the field of grid capacity will enable the
DSO to increase the operating efficiency of the LV grid. It will enable the optimum use of the RES
generation maximisation function and proper strategy selection. It will improve the energy efficiency
of the power input through the MV/LV node.

Keywords: grid feeding; energy storage; PV; flexibility service; optimisation model

1. Introduction

The European Union strategy presented in the European Green Deal aims at reducing
greenhouse gas emissions by at least 55% by 2030 [1]. The set target will be attained among
other things by installing renewable energy sources, while improving the energy efficiency.
The direction to de-carbonise the power generation sector has already been accepted by
the member states, including Poland. One of the main premises of the transformation
process is action intended to protect the planet and human health. The validity of the
assumed transformation path is confirmed by section VI of the IPCC report (AR6) [2],
which indicates that global warming of 1.5–2 deg C/F can be stopped by quick greenhouse
gas reduction.

The commonly observed mega-trend towards the development of prosumer power
generation in Poland is confirmed by the statistics in the reports presented by the President
of Energy Regulatory Office [3], who point to the significant dynamics of the year-to-year
increase in new installations. The dynamics of the increase in prosumer microinstallations
was approximately 191% in the period of 2018/2019 and approximately 202% in the
period of 2019/2020. Due to the availability of subsidies and financial support for such
projects, territorial units work with the residents to de-carbonise the urban and suburban
sections of the LV grid. The electricity supply and consumption balance for end consumers
changes locally.

At the national level, Poland’s energy policy until 2040 predicts a fivefold increase
in the number of prosumers by 2030, relative to the current condition. In addition, the
number of energy-sustainable areas will increase at the local level [4]. It is predicted that
microgrids will be formed based on separated sections of the LV grid. The power and
electrical energy settlement for end consumers will be shifted to local balance areas as the
local dispersed generation capacity increases.
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It should be noted that the photovoltaic panel technology changes at the same time.
At present, manufacturers are introducing to the market a new type of panel in bifacial
technology [5–7], with higher capacity levels (500–670 kWp) than previous types, defined
as ultra-high power modules. This will provide the prosumers with higher generation
capacities, often exceeding their momentary power requirements.

The process of power generation sector transformation through dispersed power
generation changes the operating characteristics of the LV grid [8,9], to which these sources
are connected. This phenomenon has at least two new contexts. The first context is the
technical adjustment of the LV grid and the second context is the current balancing of
the demand and the supply according to the established quality of service parameters.
The European Commission has identified the need to manage these contexts. It defined
the mitigation tool as energy grid flexibility and addressed it in art. 32 of chapter IV of
Directive 944/2019 [10]. This enabled the DSO to apply a freely selected strategy (demand
size response, storage system, etc.), depending on the context of the LV grid operation.

Considering the above-listed factors changing the existent LV grid operation, this
research was motivated by the need to develop and describe the possible strategies for
the DSO in the area. At present, the authors of the paper point to two possible technical
solutions. The first solution is centralised and consists in using power converter systems
as energy storage systems (ESS) in the grid operation system on the DSO side [11–15], as
part of the infrastructure. In this solution, there is no description of a particular location for
grid connection (beginning, middle, end of the LV grid) and the number of such systems as
ESS. These considerations are exclusively connected with a single specific test case. The
second solution is decentralised and consists in using power conversion systems with
energy storage systems at the consumer (prosumers) [16–20]. The use of dispersed ESS
systems depends on the times of response to the service of the ESS user [21] and/or the
availability of the ESS systems at the given adjustment moment [22]. At the given moment,
each ESS features different parameters: Capacity, power, ramp, rate, cycle time [23]. The
flexibility of this service is negligible, including the control/adjustment capacity on the
side of the DSO. Therefore, the authors of this paper identified the research problem in the
form of the selection of the strategy for the LB grid based on a measurable factor. The grid
PV capacity indicator was selected [24–26] for the LV grid operating in Poland. The power
flow throughput limits of the LV grid were the subject of this research and the resulting
evaluation, positive or negative, is a proposal for strategy development by the DSO.

2. Materials and Methods
2.1. Research Problem

The basic assumption of the research is the absorption of the maximum output of
electrical energy generation of all PV sources in the LV grid, without applying restrictions
to micro-producers. The role of the DSO is to use the available grid flexibility utilities to:

1. Maintain the voltage value at the individual connection points (0.9÷1.1)·Un, as per
EN 50160 [27,28].

2. Reduce the impact of the energy flow towards the LV grid [8,29–31].
3. Reduce the ML/LV transformer overload during PV generation [11,30–32].

The authors of the paper assumed the research hypothesis that flexibility service rating
exists, connected with the prosumer and generation load profile. The rating was built on
the basis of the cost index [33,34] (unit power price of the converter system, number of ESS
in relation to the existing PV inverters) and effective grid regulation. The obtained results
are presented in Section 4. The ultimate purpose was to provide the DSO with a proposal
including effective service flexibility strategies in accordance with the process presented in
Figure 1.
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Figure 1. Launch the grid LV flexibility service.

The light beige colour was used to mark the tasks that the DSO currently performed
in the distribution service provision process. The dark brown colour was used to mark the
tasks that the DSO would perform in the future [10].

2.2. Research Object

The DSO infrastructure of the LV grid selected for research purposes was typical of
suburban areas of agglomerations, to which new dispersed energy sources were connected
systematically. The LV grid is radial and overhead, with two feeders (F1 and F2). The bus
is made using a wire with a section of 70 mm2; this results directly from the DSO standard
in Poland [35]. The LV grid diagram is presented in Figure 2. The LV grid is connected
with 23 consumer/prosumers with the connection power of 11 kW. Figure 2 shows the
distances of the individual sections of the F1 and F2 bus (unit: Meter, e.g., −45—between
the power poles Nr S1-1 and Nr S1-2).
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Figure 2. Diagram of the research LV grid.

The technical specifications of the analysed grid were specified in Tables 1–3. The
technical specifications were extracted from the LV line design and supplemented with
catalogue specifications.

Table 1. Technical specifications of the overhead line [36].

AsXSn LV 50 mm2 70 mm2

R [Ω/km] 0.641 0.443
X [Ω/km] 0.085 0.083

SAXKA MV 50 mm2

R [Ω/km] 0.641 -
X [Ω/km] 0.144 -

Table 2. Technical specifications of the transformer.

Power Rate 63 kVA

Voltage rate MV/LV 15.75/0.4 kV
Winding configuration Dyn5

No load loss 0.81 kW
Load loss 1.2 kW

Impedance 4.5%

Table 3. Distances between the MV/LV transformer and the connection points (only data per
consumer/connection point).

Connector Number Feeder 1
[km] (Name)

Feeder 2
[km] (Name)

1 0.066 (1.01) 0.077 (2.01)
2 0.068 (1.02) 0.120 (2.02)
3 0.10 (1.03) 0.174 (2.03)
4 0.150 (1.04) 0.18 (2.04)
5 0.155 (1.05) 0.509 (2.05)
6 0.160 (1.06) 0.592 (2.06)
7 0.247 (1.07) 0.599 (2.07)
8 0.257 (1.08) 0.604 (2.08)
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Table 3. Cont.

Connector Number Feeder 1
[km] (Name)

Feeder 2
[km] (Name)

9 0.261 (1.09) 0.716 (2.09)
10 0.262 (1.10) 0.768 (2.10)
11 0.354 (1.11) -
12 0.402 (1.12) -
13 0.453 (1.13) -

The total length of LV line for feeder 1 = 0.427 km, for feeder 2 = 0.732 km.

2.3. Boundary Conditions for Simulations

Research works were conducted based on specifications of the actual LV grid in
Central Poland (Tables 1–3). To this end, the Matlab environment was used, integrated
through dedicated scripts with the PowerWorld Simulator environment (Figure 3). Power
distribution for the given condition, for each connection point, was calculated in accordance
with the following formula (Equations (1) and (2)) [22,37].

Pk
(
Vk, Vj, θk, θj

)
=

N

∑
j=1
|Vk|

∣∣Vj
∣∣(Gkj cos(θkj) + Bkj sin(θkj)) (1)

Qk
(
Vk, Vj, θk, θj

)
=

N

∑
j=1
|Vk|

∣∣Vj
∣∣(Gkj sin(θkj)− Bkj cos(θkj)) (2)

where:
Pk—active power at bus k;
Qk—reactive power at bus k;
Vk—Voltage magnitude at bus k;
Vj—Voltage magnitude at bus j;
Gkj—Mutual conductance between buses k and j;
Bkj—Mutual susceptance between buses k and j;
θkj—Voltage angle difference between buses k and j;
One of the most important components for the development of proper evaluation of

LV grid operation with a large number of PV generators is proper selection of the Pl load
model by the consumer/prosumers. The consumer profiles used in simulation are selected
to include the broadest possible range of cases possible under the given conditions, the
most extreme for the LV grid operation [38]. In addition, Pl has a direct impact on the
LV grid operation, balancing or not the current/present generation profile—Pgc. The four
selected profiles Pl are presented in Table 4.

Table 4. Load profiles used in power distribution simulations.

Profile Pl Name Feeder 1 Feeder 2

1. Simultaneity factor for peak power demand in accordance
with the Polish standard
SEP-E-002, Figure 4a

SF 3.27 kW 3.78 kW

2. Right skewed
Figure 4c,e
distribution exponential function f (x) = ax

RS n=13
∑
n

Pl = 42.51 kW
n=10

∑
n

Pl = 37.8 kW

3. Left skewed
Figure 4d,f
distribution exponential function f (x) = xa

LS n=13
∑
n

Pl = 42.51 kW
n=10

∑
n

Pl = 37.8 kW

4. Random data, Figure 4b RD <0.5–2.5> kW <0.5–2.5> kW
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The generation PV profiles Pgc for Central Poland are the production hours from 9 am
to 6 pm within prosumer load demand Pl, in the same time [39]. The value Pl on the side
of prosumers is different for period: (A) Saturday–Sunday/holiday, (B) Monday–Friday.
Generally, Pl in the LV grid is stochastic. Therefore, an attempt was made to define the
boundary conditions so that they contain the largest number of solutions corresponding
to the real Pl profile. The first three profiles—SF, RS, LS—correspond to period A. With
this end in view, defined load with a constant value (SF) was calculated in accordance with
the standard SEP-E-002 (power connection 11 kW). The other two profiles, RS and LS, are
unequal loads. There are differences at the beginning and end of the circuit F1 and F2.
This has been described mathematically (Table 4). The fourth profile (Table 4.4) is typical
loads for period B, where the profile is developed based on small household appliances
(refrigerator) and electronics in stand-by mode.
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Figure 4. Distribution of load profiles: (a) SR; (b) RS; (c) LS F1; (d) RD F1; (e) LS F2; (f) RD F2.

The apparent power distribution in the LV grid for each of the described profiles Pl,
were simulated for Pgc in the range of 1 kW to 8 kW and tracking of 0.25 kW. Since the LV
grid, despite the high R/X ratio [37], does not operate in pure resistance mode (PV power
electronic system operation) [40], PV generation is simulated for the power factor (p.f.)
from 0.9 to 1. The encountered voltage asymmetry in the LV grid was eliminated by the
four-wire power conversion system, controlled independently for each phase [41,42]. In
the research, this fact was omitted as negligible; phases F1 and F2 can be considered as
technically separate and controlled independently.

2.4. Scenarios

The boundary conditions described in the previous section as components of data
input for the research were framed in three research scenarios. In addition, the operating
system of the LV grid (Figure 1) is supplemented with ESS operating in the grid feeding
mode [43] (Figure 5).

The operation of the LV grid with ESS was controlled by the inputs P (active power)
and Q (reactive power) of the power converter system (Figure 5) to achieve the objectives
described in Section 2.1 (Numbers 1–3).
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Figure 5. Control system—Grid Feeding.

The first research scenario is the evaluation of the grid PV capacity for LV, the “AS
IS” condition analysis. The input data values Pgc and Pl were searched for the LV grid,
where the voltage requirement of 1.1 Un is not met. In addition, power flows towards MV
through the transformer were checked.

The second research scenario was implemented using ESS in the operation system,
Figure 6a. The analysis covered the LV grid and its operating characteristics with the
boundary conditions described in Section 2.3 to define the values of P and Q for ESS.
Location at one point of the grid—the MV/LV station (Figure 6a).
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The third research scenario was implemented using two ESS systems: S1 and S2
in the operation system, Figure 6b. The analysis covered the LV grid and its operating
characteristics with the boundary conditions described in Section 2.3 to define the values
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of P1, P2 and Q1, Q2 for S1 and S2 (Figure 6b). The location of the ESS in the depth of the
LV grid is based on the data of scenario no. 1.

3. Results

By iterative power flow analysis in the dedicated LV grid, within the scope of three
scenarios and four load profiles, the answer was obtained in the field of grid PV capacity.
Developed results presented in Table 5. Based on them, a non-linear function was devel-
oped, described in three dimensions f(x, y, z) where: x—distance from the MV/LV station
(distance); y—values of PV current generation (Pgc); z—voltage at the given node (U p.u.).
It should be emphasized that the results in Table 5 are the maximum values of PV power
generation for which the Un = 1.1 condition is met for each node in the LV grid.

Table 5. Capacity Grid for four load profiles.

Capacity Grid SF RS LS RD
Feeder 1, cosf(ϕ) = 1.00 for PV <8 kW <8 kW <8 kW 7.5 kW
Feeder 2, cosf(ϕ) = 1.00 for PV 7.75 kW <8 kW 7.0 kW 5.75 kW
Feeder 1, cosf(ϕ) = 0.95 for PV 6.5 kW 7.25 kW 5.75 kW 5.5 kW
Feeder 2, cosf(ϕ) = 0.95 for PV 6.0 kW 6.75 kW 5.25 kW 4.25 kW
Feeder 1, cosf(ϕ) = 0.90 for PV 5.75 kW 6.25 kW 5.0 kW 4.5 kW
Feeder 2, cosf(ϕ) = 0.90 for PV 5.25 kW 6.0 kW 4.75 kW 4.0 kW

The values presented in Table 5 are the starting point for the regulation of power converter systems (power
tracking) in accordance with the diagram in Figure 5. The obtained grid PV capacity results will also be the basis
for the evaluation of the strategy selection on the DSO side. Green: Grid PV capacity values that do not require
adjustment for a given load profile; red: Those cases of LV network operation that require a response from the
DSO; yellow: Result values are shown for little regulation adjustment.

Analytical research was carried out in two ways. The first track of works was carried
out in the field of searching for a grid PV capacity for one value of the maximum RES
generation capacity per every node. The second course was carried out by the optimal grid
PV capacity values for all nodes (different values of RES per node). Below is a mathematical
model for the second track.

The purpose of the research is to maximise RES generation. Therefore, the objec-
tive function is grid PV capacity measured by the maximum generation value of P at
cos(ϕ) = const., for which the voltage requirements for the electrical energy supply are
met. For the purposes of optimisation of the objective function f(x, y, z), the equations of
Karush–Kuhn–Tucker [44,45] for non-linear programming algorithms were used, following
the formulae (Equations (3)–(6)) [46]:

max
x ∈ Rn = f (x) (3)

L(x, u, v) = f (x) +
m

∑
i=1

µigi(x) +
r

∑
j=1

λjhj(x), (4)

−∇ f (x) +
m

∑
i=1

µi∇gi(x) +
r

∑
j=1

λi∇hj(x) = 0, (5)

gi(x) ≤ 0, f or i = 1, . . . , m
hi = 0, f or j = 1, . . . ., r

µigi(x) = 0, f or i = 1, . . . ., m.
(6)

The objective function has two limits: gi—in the RES power range (Pgc); hi—in the 1.1
p.U. value range for each node (U per unit).

3.1. The First Scenario

The first scenario is dedicated to the evaluation of grid PV capacity without flexibility
service. It clearly indicates the limits, at which the given feeder (F1 and F2) achieves the

311



Energies 2021, 14, 6327

maximum operating values. In addition, Figure 6 presents the results of optimisation of
RES operation. However, Figure 5 presents the operation profile of the MV/LV transformer
in this type of grid.

3.1.1. Grid PV Capacity

In Table 5, the max Pgc values obtained for each Pl profile were listed. At the same
time, reactive power from the RES side was input at connection points.

3.1.2. Optimisation of the Non-Linear Function

In Figure 7, only for Pl = SR (limited due to the number of possible diagrams), optimum
RES generation values were presented for each connection point as a function of the
distance. These are the optimum values of grid PV capacity per node. The analysis points
to the limits for the individual feeders and individual nodes. This points to the potential
ESS connection point in the depth of the grid, the minimum value of the function in the
given distance range.

3.1.3. Operation Balance for the MV/LV Transformer

For the load profile of Pl = SR, as in the previous sub-section, power inputs through
the MV/LV station were determined as a function of RES generation increase. Figure 8
shows how the power input from the MV grid to the LV grid changes the vector to LV to
MV. The process is completed regardless of the type of load profile and p.f., in connection
with the increase of the RES generation value (Pgc).
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Figure 8. Operation profile of the MV/LV transformer as a function of RES generation increase (Pgc).

Therefore, the selection of transformer power at high RES penetration is important.
Nominal service operation with PV requires re-selection of the transformer power or in
addition requires the use of flexibility service.

3.1.4. Reactive Power during PV Generation

The requirements for PV inverters on the side of the DSO are p.f. = 1. Due to the
quality of the power electronic systems used by the prosumers, deviations from this value
exist. Notwithstanding, this type of operation in case of small Pl power values does not
serve its purpose in terms of grid PV capacity (Table 5).

The second method is active collaboration with the prosumers for reactive power
consumption from the LV grid. Reactive power could be managed by PV inverters in the
p.f. range of 0.9–1. This will reduce the RES production, but at the same time it will enable
the prosumer to provide service to the DSO. Below is presented the most demanding case:
Pl = RD and p.f. = 0.9, the results of the described prosumer service. Figure 9 features the
RMS value of the nodal voltage for the two feeders—blue, while red states restriction level
for node 1.1 Un.
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Figure 9. The voltage value distribution at connection points, with reactive power consumption by RES: (a) RD, p.f. = 0.9
for F1; (b) RD, p.f. = 0.9 for F2.

The conducted research proved that in this case, regardless of the load profile, and for
RES generation in the range of 〈1 : 8〉 kW, there is no voltage excess at node points. This is
the most effective method; however, it depends on a third party.

3.2. The Second Scenario

The second scenario is dedicated to the evaluation of the required capacity of the
power conversion system for voltage condition adjustment at nodes. The operation system
is presented in Figure 6a. The volume of data collected for S1 at the given Pl depends on
the grid PV capacity (Table 5). Figures 10–12 present the active power values P for S1, with
identification of the function S1 = f (Pgc).
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In accordance with the obtained results (Table 5), only three load profiles are subject
to power input adjustment. Adjusted R-square (R2) for SR = 1 (small data volume), R2 for
LS = 0.9997, R2 for RD = 0.999.

In accordance with the obtained results (Table 5), four load profiles are subject to
power input adjustment. R2 for SR = 0.9993, R2 for PS = 1, R2 for LS = 0.9998, R2 for
RD = 0.9996.
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Figure 12. S1, p.f. = 0.9: (a) All figures for S1; (b) SR; (c) PS; (d) LS; (e) RD.

In accordance with the obtained results (Table 5), four load profiles are subject to
power input adjustment. R2 for SR = 0.998, R2 for PS = 0.9996, R2 for LS = 0.9997, R2 for
RD = 0.9997. The application of only S1 for operation adjustment only is to maintain the
voltage conditions with active power from 2.5 kW to 201.5 kW.

3.3. The Third Scenario

The third scenario is dedicated to the evaluation of the required capacity for two
power conversion systems for voltage condition adjustment at nodes, independent of F1
and F2. The operation system is presented in Figure 6b. Two ESS systems: S1 and S2 are
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connected in the depth of the LV grid. For F1, it is the node No. S2_10_2 (Figure 2); for F2
it is the node No. S1_7 (Figure 2). The volume of data collected for S1 at the given load
profile depends on the grid PV capacity (Table 5). Due to the collected data volume, the
results are presented in tables (Tables 6–8).

Table 6. Results for S1 and S2, p.f. = 1.

Load Profile/Pgc (kW) 5.75 6.0 6.25 6.5 6.75 7.0 7.25 7.5 7.75 8.0

SR
S1 (kW) - - - - - - - - 0 0
S2 (kW) - - - - - - - - 0.5 2.5

LS
S1 (kW) - - - - - 0 0 0 0 0
S2 (kW) - - - - - 1.5 4.0 6.0 8.5 11.0

RD
S1 (kW) 0 0 0 0 0 0 0 0 0 2.0
S2 (kW) 1.5 4.0 6.0 8.0 10.0 12.5 14.5 16.5 19.0 21.0

R2 for SR S2 = 1 (small data volume), R2 for LS S2 = 0.9982; R2 for RD S1 = 0.9997; RD S2 = 0.9994. On average,
approximately 40% smaller active power is required to control the LV grid if two, not one, ESS systems are used.
In extreme cases (Pgc = 8 kW), even approximately 90% smaller.

Table 7. Results for S1 and S2, p.f. = 0.95.

Load Profile/Pgc (kW) 5.75 6.0 6.25 6.5 6.75 7.0 7.25 7.5 7.75 8.0

SR
S1 (kW) - 0 0 0.5 3.0 5.0 7.5 10.0 12.0 14.5
S2 (kW) - 2.5 5.5 7.0 9.5 12.0 13.5 15.5 18.0 20.0

RS
S1 (kW)
S2 (kW)

-
-

-
-

-
-

-
-

0
1.0

0
4.0

0.5
6.5

3.5
8.5

6.0
11.0

8.5
13.0

LS
S1 (kW) 0 2.0 4.5 7.0 9.0 11.5 14.0 16.5 18.5 21
S2 (kW) 6.5 9.0 11.0 13.0 15.0 17.5 19.5 21.5 23.5 25.5

RD
S1 (kW) 3.5 5.5 8.0 10.5 13.0 15.5 17.5 20.0 22.5 24.5
S2 (kW) 15.5 18.0 19.5 21.5 23.5 25.5 27.5 30.0 32.0 34.0

R2 for SR S1 = 0.9991, S2 = 0.9967; R2 for LS S1 = 0.9995, S2= 0.9994; R2 for PS S1 = 0.9968, S2 = 0.9762; R2 for RD
S1 = 0.9995, RD S2 = 0.9972.

Table 8. Results for S1 and S2, p.f. = 0.9.

Load Profile/Pgc (kW) 5.75 6.0 6.25 6.5 6.75 7.0 7.25 7.5 7.75 8.0

SR
S1 (kW) 1.5 3.5 6.0 8.5 10.5 13.5 16.0 18.5 20.5 23.0
S2 (kW) 6.0 8.5 10.0 12.5 14.5 16.5 18.5 20.5 23.0 25.0

RS
S1 (kW) - 0.0 1.0 3.5 6.0 9.0 11.5 14.5 17.5 20.5
S2 (kW) - 1.5 4.0 6.0 8.0 10.5 12.5 14.5 17.0 19.5

LS
S1 (kW) 7.0 9.5 11.5 14.0 16.5 19.0 21.5 24.0 26.0 28.5
S2 (kW) 11.5 13.5 15.5 17.5 19.5 22.0 24.0 26.0 28.0 30.5

RD
S1 (kW) 10.0 12.5 15.0 17.5 20.0 22.0 24.5 27.5 30.0 33.5
S2 (kW) 19.0 21.5 23.5 25.5 27.5 30.0 31.5 33.0 36.0 37.5

R2 for SR S1 = 0.9989, S2 = 0.986; R2 for LS S1 = 0.9994, S2= 0.9988; R2 for PS S1 = 0.9986, S2 = 0.9989; R2 for RD
S1 = 0.9985, RD S2 = 0.9985.

4. Discussion

The collected simulation data clearly indicate that the consumer load profile with
simultaneous RES generation has a direct impact on the grid PV capacity (Table 5). Based
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on the completed mathematical power flow simulation in the LV grid, in different research
scenarios, it should be ascertained that the control (maintenance of the voltage value of
1.1 Un) and efficient balance optimisation (Figure 5) of the grid are possible. The research
indicates that there is no single method of flexibility service. Proper selection of the method
depends on the effective grid regulation and profitability (capex and/or opex) and the day
of the week (confirmed hypothesis—Section 2.1). These above-mentioned items will build
a method rating for a given area of the grid.

Table 9 lists flexibility service proposals according to the load profile type (Table 4).
It also represents a method rating using a colour and mark (+, −, +/−). Green is used to
mark the types of service that provides technical efficiency at the lowest cost per service.
Yellow is used to mark the services that do not provide the full range of LV grid adjustment
and/or that may have a high cost per service. Red is used to mark the services that do not
provide LV grid adjustment and/or are too expensive [47,48].

Table 9. Proposed flexibility service rating.

Type of Flexibility Service SF RS LS RD
PV inverter

Inverter parameters
power factor = 1,

Additional requirements in Networks Codes DSO.

+ + +/− −

PV inverter
Reactive power consumption, + + + +

One ESS system
central installation, connected with main bus +/− + - −

Two ESS systems
Storage systems installed in the depth of the grid + + + +/−

DSR
signals calling for an increase in power consumption − +/− + +

Hybrid
bundling services +/− +/− + +

In addition, the research indicates a quasi-linear (laboratory confirmation required)
relationship between the P and jQ of RES generation, and the P and jQ of the power conver-
sion system S1 and/or S2. There is an error connected with non-linearity, measured by the
indicator of function alignment with measurement data, adjusted R-square statistic, which
is close to 1 (descriptions under Tables 6–8). The error results only from the precision of ESS
control by power increase in 0.25 kW increments [49]. The simplest and cheapest service
method is the maintenance of the p.f. close to 1 by RES or reactive power consumption
by the inverter [50,51]. The developed results (data) will be used in the future to build
machine learning for the purposes of power and voltage regulation in the LV grid [52–54].

5. Conclusions

There is still need for research works on bridging the gap between power generation
based on end consumer supplied from central generation units and power generation based
on local RES. The assumed research hypothesis (section research problem) was confirmed
by the results obtained in dedicated scenarios (Tables 5–8, Figures 7–12). The basic task of
the future DSO is to prepare the bus LV grid—the minimum section of 70 mm2—for the
mega-process that is RES growth in the grid. In addition, the accumulation of knowledge
of the load profile and generation is necessary for the development of grid PV capacity, as
well as future strategies of dedicated services.

Proper selection of the MV/LV transformer with ESS remains an extremely important
issue. Even constant PV generation at the level of 3.5 kW in the investigated LV grid
resulted in the change of the power flow direction. The services proposed in Table 9
directly contribute to the transformer load balance, but full coverage of the power flow
towards MV will only be possible in connection with ESS.

318



Energies 2021, 14, 6327

Author Contributions: Oprogramowanie Naukowo-Techniczne sp. z o.o. sp. k, Software Vendor
of Matlab in Poland in the scope of technical support in the optimisation of non-linear functions.
Conceptualization, B.M. and P.P.; methodology, B.M.; software, B.M. and P.P.; validation, B.M.; formal
analysis, B.M.; investigation, B.M. and P.P.; resources, B.M.; data curation, B.M.; writing—original
draft preparation, B.M.; writing—review and editing, B.M. and P.P.; visualization, B.M.; supervision,
P.P.; project administration, B.M.; funding acquisition, B.M. and P.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/

delivering-european-green-deal_en#transforming-our-economy-and-societies (accessed on 30 September 2021).
2. IPCC Home. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 30 September 2021).
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Abstract: Recently, because of the increase in the number of connections to Distributed Generation
(DG), the problem of lowering voltage stability in the distribution system has become an issue.
Reactive power compensators, such as Static Synchronous Compensators (STATCOM), may be used
to solve the problem of voltage stability degradation. However, because of the complexity of the
distribution system, it is very difficult to select the installation location for STATCOM. Furthermore,
when installed in the wrong location, economical efficiency and availability problems may occur.
This paper proposes a Virtual STATCOM Configuration and Control method that would operate like
a single STATCOM based on multiple DGs connected to the system. The proposed Virtual STATCOM
has the merit of being economical by using existing facilities without adding new power facilities, and
it solves the problem of the difficulty of selecting the installation location because of the complexity of
the distribution system. In addition, while the conventional STATCOM uses an independent control
method in consideration of the power quality of the access point, the Virtual STATCOM performs
the Point of Common Coupling (PCC) power quality compensation using the integrated control of
multiple DGs connected to the system. In the proposed method, the Virtual STATCOM integrated
control algorithm is configured by adopting linear programming, and the compensation is performed
while considering the distance between DG and PCC, the inverter’s rated capacity, and the power
generation. The performance of the Virtual STATCOM power quality compensation was verified
using MATLAB/SIMULINK and Real Time Simulator (OPAL-RT).

Keywords: STATCOM; reactive power compensation; power quality

1. Introduction

In the existing power system, electricity generated from large-scale power sources
such as nuclear power generation and thermal power generation is supplied to loads tens
or hundreds of kilometers away through long-distance high-voltage transmission lines. For
about 50 to 60 years, this has been operating well without changing the configuration of the
power system, providing inexpensive and stable electric power to industrial, commercial,
and residential loads. However, existing large-scale power generation sources emit a lot of
carbon, causing problems such as global warming. To solve these problems, the configura-
tion of the power system is changing for de-carbonization worldwide [1]. As small-scale
DGs such as wind power and solar power are rapidly increasing on the distribution system
level, the configuration of the distribution system is changing to become very different
from the existing ones [2–5]. However, there may be problems in that the power supply is
not constant because of the increase in the connection of intermittent power sources to the
distribution system, and the degradation of voltage stability caused by the Ferranti Effect
occurs as the voltage of the distribution system increases [6].
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Many studies have been conducted on the Flexible AC Transmission System (FACTS)
to solve the following problems [7]. STATCOM, as one kind of FACTS, is a facility that is
connected to the power system in parallel to compensate for the power quality of the con-
nected point. STATCOM is mainly installed in transmission systems and substations with
large capacities to compensate for the power quality using the reactive power compensation
for the power system [8–11]. Depending on the STATCOM installation location, the power
quality compensation performance has large deviations. When the optimal installation
location is selected, the active power loss may be minimized, and the voltage stability of the
power system may be improved [12,13]. The DG inverter is composed of a smart inverter,
so it is possible to control active and reactive power. This means that the DG connected
to the system can be controlled in an integrated way [14–17]. When a PV solar farm is
used as a STATCOM, it has been proven to increase the grid interconnection of the wind
power plants connected to the surrounding area and to improve the power transmission
capacity [18–20]. Power oscillation damping (POD) can be performed using a PV power
plant as a STATCOM. As soon as power oscillations caused by a system disturbance are
detected, the solar farm discontinues its real power generation function very briefly and
makes its entire inverter capacity available to operate as a STATCOM for POD [20–24].

STATCOM installed in the transmission system cannot compensate for the power
quality considering the distribution system. When installing STATCOM to compensate for
the power quality of the distribution system, it is difficult to select the installation location
because of the complexity of the distribution system. Furthermore, when installing a large
number of STATCOMs, the investment cost is high, resulting in economic degradation. The
installation location can be selected using an optimization algorithm [25]. However, as
the number of DGs increases, the complexity of the distribution system increases and the
optimal installation location may be changed. To solve the above-mentioned problems, this
paper proposes a solution to the problem of selecting the optimal installation location by
configuring a Virtual STATCOM that operates like a single STATCOM based on DGs.

2. Overview of STATCOM Power Quality Compensation

The active power of the power system affects frequency fluctuations, and the reac-
tive power affects the voltage fluctuations [26]. To improve the power quality, voltage,
frequency, and waveform should be kept constant. It is very important to keep the voltage
constant. When the supply and demand balance of reactive power is not achieved, voltage
fluctuations occur. A generator is used to supply the active power to the power system.
However, facilities such as a synchronous generator, a passive filter, and an active filter
may be used to supply the reactive power.

The frequency and voltage of the power system are kept constant using the active
power—frequency (P− f (δ)) control by the generator and the reactive power—voltage
(Q−V) control by the reactive power compensator. When the load voltage VL and the
line reactance component X are constant, the voltage fluctuation ∆V has a proportional
relationship with the reactive power Q [27]. Where Vs = source voltage:

∆V = Vs −VL =
QX
VL

(R� X) (1)

Equation (1) shows the relationship between the voltage fluctuation ∆V and the
reactive power Q. It is found that the voltage fluctuation can be controlled by controlling
the reactive power from STATCOM.

Principle of STATCOM Voltage Stability Improvement

Figure 1 is an equivalent circuit diagram of a system in which STATCOM is installed
to explain the principle of voltage stability improvement. VS is the equivalent of the
bus voltage, YL is the equivalent of the admittance, and ZS is the equivalent of the line
impedance generated between the bus voltage VS and the load. STATCOM is connected to
the grid in parallel to improve the voltage stability by the amount of the reactive power
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compensated for when the load-end voltage stability is improved. The voltage drop
between the load terminal and the bus voltage is caused by the line impedance ZS. When
the voltage drops because of load admittance YL and the line impedance ZS is ∆V, it can be
expressed by the following equation [28]:

∆V = VS −VL = ZS IL (2)

∆V = (RS + jXS)
(PL − jQL)

VL

=
(RSPL + XSQL)

VL
+ j

(XSPL − RSQL)

VL

= ∆VR + ∆VX = ISRS + jISXS

(3)
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Figure 1. Principle of STATCOM voltage stability improvement.

Figure 2 is a vector diagram of voltage drop ∆V caused by the line impedance ZS.
Depending on the power system situation, STATCOM operates in the form of supplying
reactive power (Capacitive Reactive Power) or absorbing the reactive power (Inductive
Reactive Power), or in the form of supplying the active power or absorbing the active power.
When a voltage drop occurs at the receiving end because of the inductance of the line
impedance ZS, the reactive power compensation current Ish is supplied for compensating
the voltage drop of the system. A voltage drop is generated by resistance component IsRs
and reactance component jIsXs, and before compensation the load current angle is θL. VS
and VL can be kept the same through Ish current compensation, and the load current angle
is compensated to θS. The reactive power compensation current Ish can be expressed as
Equation (4) [29]:

IS = IL + Ish (4)

When the loads is an inductive load, STATCOM can make a capacitive current and
scale it to change the phase angle of IS. By adjusting ∆V according to the compensation
current of STATCOM, the voltage of the load stage and the magnitude of the bus voltage
can be kept constant.
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3. Proposed Virtual STATCOM System

DGs, such as solar power and wind power ESS, are connected to the power system via
inverters, and a number of inverters connected to the DG are capable of outputting active
power and reactive power. However, distributed power sources currently connected to
the grid operate as the power sources and supply only active power. The reactive power
generated in the power system is not compensated for. Since each inverter is individually
and independently controlled, it is difficult to effectively compensate for the reactive power
of the power system. The proposed Virtual STATCOM system can effectively control the
reactive power of the power system with an integrated control rather than the independent
control of multiple inverters of distributed power sources connected to the power system.
Since no new facilities are installed for compensating for the reactive power, the installation
cost can be economically feasible. Furthermore, compensating for the reactive power of
the PCC stage to 0 can be expected to improve voltage stability, to remove harmonics, to
increase transmission capacity, and to enhance the lifespan of facilities. Figure 3 shows the
configuration schematic of Virtual STATCOM.
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3.1. Configuration of Virtual STATCOM

In general, STATCOM is a facility that improves the stability of the power system
by controlling the reactive power of the connection point. When multiple DG inverters
connected to the system independently compensate for reactive power at the connection
point, like in the case of a general STATCOM, the system stability may deteriorate because
of the hunting that occurs during the control operation. The purpose of this paper is
to compensate for or control the reactive power at a designated location in the system
by controlling the inverters of DGs connected to multiple connection points. That is, it
is expected that the proposed Virtual STATCOM can improve the stability of the entire
power system by controlling reactive power at a desired point, such as a weak or important
location of the connection or distribution end of the transmission and distribution system,
like the PCC of the power system. In this paper, PCC was designated as the control
reference point that is the connection point of transmission and distribution, and the Virtual
STATCOM integrated control algorithm was configured by the linear programming. To
improve the voltage stability of the PCC, the reactive power of the PCC should be controlled
to 0. The reactive power of the PCC stage is divided into a component generated by the
line impedance and a component generated by the load. To compensate for the reactive
power of the PCC stage to 0, it is necessary to compensate for the reactive power while
considering both causes of the reactive power.

Figure 4 shows the configuration of the Virtual STATCOM system. Three solar power
plants are connected between the voltage source and load. It is assumed that each solar
power plant has a different distance from the bus of the PCC stage, and the amounts of
connected load, solar power plant capacities, and power generation amounts are different
from each other. The inverter of the solar power plant can output the active power and the
reactive power as much as the rated capacity S. When there is room in the inverter output
rated capacity after supplying the active power P generated by the PV panel to the grid,
the reactive power can be supplied. The inverter rated capacity S of a solar power plant
can be expressed as Equation (5):

Sinv_n =
√

P2
inv_n + Q2

inv_n (5)
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The Virtual STATCOM integrated control algorithm selects the inverter closest to the
PCC to give it priority, and when the amount of the reactive power that can be output is
insufficient, the compensation will be performed from the inverter as the next priority.

Figure 5 shows the configuration of the integrated control algorithm of Virtual STAT-
COM. By combining Solar Station, PMU, and Distance Information, the Virtual STATCOM
Control algorithm is configured based on LP, and the control reference of the inverter
is derived. A plurality of inverters improves the voltage stability by the reactive power
compensation of the PCC stage.
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Figure 5. Configuration of Virtual STATCOM Integrated Control Algorithm.

3.2. Scheme of Virtual STATCOM Control

To configure the integrated control algorithm of Virtual STATCOM based on LP, the
decision variables, the objective functions, and the constraints must be selected according
to the control purpose [30].

3.2.1. Decision Variable

The decision variable is for setting the variable that is the control criterion of the
LP. Since the purpose of the Virtual STATCOM is to output the inverter reactive power
compensation reference, the inverter reactive power output amount was selected as a
decision variable.

Decision Variable = Qinv: Inverter Reactive Power Output

3.2.2. Objective Function

The objective function is for setting the goal of the decision variable. As the distance
from the PCC terminal increases, the loss caused by the line impedance increases, so it is
designated as the goal to use an inverter with a shorter distance. To select a minimum
distance, a point where the product of the decision variable and the weight wn is minimized
is set as the optimal point.

Objective Function = min(w1 ∗Qinv1 + w2 ∗Qinv2 + · · ·+ wn ∗Qinvn)

where, wn refers to the distance weight of inverter, and ln refers to the line distance of
inverter from the PCC end point. wn is decided by the following equation as a consideration
of the distance between the inverter and the PCC end point.

wn =
ln

l1 + l2 + l3 + · · ·+ ln
(6)
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3.2.3. Constraints

The constraints determine the minimum compensation value and the maximum
compensation value for the decision variable of the inverter to determine the reactive
power that is to be compensated for by the inverter. The constrains for the minimum and
maximum amounts of the inverter reactive power output can be expressed as Equation (7):

Qinv_n_min ≤ Qinv_n ≤ Qinv_n_max (7)

where Qinv_n_min = Minimum of Inverter Reactive Power Compensation (var), and Qinv_n_max
= Maximum of Inverter Reactive Power Compensation (var).

When the output of the inverter is maximized, the life of the inverter rapidly decreases,
so the maximum output of the inverter is limited to 80%. To determine the amount of the
reactive power compensation of the inverter, the minimum and maximum amounts of
reactive power compensation of the inverter should be set as the constraints. Constraints
are determined in consideration of the effective load amount of the inverter terminal, the
reactive load amount of the inverter terminal, the rated capacity, the inverter active power
generation amount, and the inverter generation rated limit.

Qinv_n_max means the maximum reactive power compensation amount that can be
compensated for by the inverter. The maximum amount of inverter reactive power com-
pensation is determined by considering the rated capacity of the inverter, the amount of
active power currently being generated by the inverter, and the inverter power generation
rating limit.

(Sinvn ∗ 0.8) =
√

P2
inv_n + Q2

invn
(8)

Qinv_n_max =
√
(Sinvn ∗ 0.8)2 − P2

invn
(9)

where Qinv_n_min means the minimum reactive power compensation amount that can be
compensated by the inverter. The reactive power can be expressed in negative or positive
number according to inductivity and capacity, so the negative number of the maximum
amount of compensable reactive power is determined as the minimum compensable
amount of the inverter.

Qinv_n_min = −Qinv_n_max (10)

Considering the reactive power QPCC generated in the PCC stage, the reference value
of the reactive power compensation for each inverter is calculated. The reactive power of
PCC stage consists of the reactive power QLine generated by line impedance and the reactive
power QLoad generated by load. When the total amount of reactive power generated in the
PCC stage is equal to the total amount of reactive power compensated for by the inverter,
the reactive power in the PCC stage is compensated to 0.

QPCC = QLine + QLoad (11)

QPCC − (Qinv1 + Qinv2 + Qinv3 + · · ·+ Qinvn) = 0 (12)

Table 1 shows the parameters for configuring the Virtual STATCOM system.

Table 1. Virtual STATCOM System Parameters.

Parameters inv_n

Load Active Power (W) PL_n
Load Reactive Power (var) QL_n

Inverter Rated Capacity (VA) Sinv_n
Inverter Active Power Output (W) Pinv_n
Inverter Output Rating Limit (%) 80%
Inverter Compensation min (var) Qinv_min = −Qinv_max

Inverter Compensation max (var) Qinv_max =
√
(Sinvn ∗ 0.8)2 − P2

inv_n
PCC Distance (km) ln
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Figure 6 shows the Virtual STATCOM Integrated Control Algorithm Diagram. The
compensation algorithm is configured through five steps. Step 1 measures the parameter
values required for Virtual STATCOM configuration. Step 2 determines the reactive power
compensation’s possible range based on the measured parameter value. Step 3 determines
the optimal reference QLP for reactive power compensation using LP. Step 4 performs
reactive power compensation through an inverter and measures the reactive power of PCC.
If the reactive power of PCC converges to 0, proceed to Step 5. If it does not converge,
return to Step 1 and perform the algorithm again. Step 5 is the step of storing the reactive
power compensation value determined by Steps 1–4. Equation (13) shows the reactive
power compensation value of the algorithm diagram, where QPCC_n_pre is the stored PCC
reactive power value of Step 5.

QPCC = QPCC_n_pre + ∆QPCC (13)

If the reactive power compensation value is not saved and the algorithm is executed,
only the value of ∆QPCC is compensated for when a load change occurs, and PCC reactive
power is generated to as much as the QPCC_n_pre value.
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4. Virtual STATCOM Simulation

To verify the Virtual STATCOM’s performance, simulation was conducted using
Matlab Simulink and the Real Time Simulator (OPAL-RT) OP5700.

The Real Time Simulator is a simulation technology that proceeds by setting the
simulation time to be same as the real time. By running the simulation under the same
conditions as in reality, problems that do not appear in the off-line simulation can be

330
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derived, and the reliability of the simulation can be improved. By establishing a virtual
controller and a virtual plant in the target PC, a Model In the Loop Simulation (MILS) was
performed. The plant of the simulation model was designated as Master, and the controller
was designated as Slave, and tow cores were used. The result data of the simulation were
output via the target PC. Figure 7 shows the Simulation Model of Virtual STATCOM.
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The system model used in the simulation was that of Anseong, in South Korea. The
distributed resources connected to the Anseong area, and the system diagram of the entire
systems was made equivalent by integrating the system load into sections as shown in
Figure 8. Table 2 shows the DG inverter and load data of the Anseong area system.
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Table 2. Virtual STATCOM Simulation Model Parameters.

Inverter
Rating
(MVA)

Distance
(km)

Load Active
Power
(MW)

Load Reactive
Power
(Mvar)

inverter1 0.5 2 Load1 0.988 0.33
inverter2 1.5 6 Load2 1.25 0.541
inverter3 3 9 Load3 1.75 0.707
inverter4 1 17 Load4 3.12 1.3
inverter5 5 18 Load5 0.294 0.104
inverter6 3 18 Load6 0.159 76.5
inverter7 1 2 Load7 0.178 74.2
inverter8 0.5 4 Load8 1.68 0.743
inverter9 1.5 5 Load9 3.32 1.32
inverter10 2 7 Load10 1.48 0.588
inverter11 2 10 Load11 0.211 88.6

For the simulation system model, the simulation was performed with equivalence to
a system including one voltage power source, 11 DGs, and 11 loads. The power source
output AC of 22.9kV, 60Hz via the Three Phase Source. The load was simulated by dividing
the section of the system using the three-phase parallel RLC load and making the load
within the section equivalent to one load. The load between PCC and DG1 was set as Load1,
and the subsequent loads were designated as Loadn by grouping the loads between DGs.
All loads used in the simulation were divided into 11 sections. To perform compensation
considering the distance between the PCC terminal and the DGs, the line impedance
according to the distance was made equivalent using the PI Section Line.

For the simulation sample time, the simulation was conducted by dividing it into
three categories: the power system, the inverter controller, and the algorithm according to
the purpose. The sample time of the power system was set to 50 (µs) for simulating the
instantaneous system change situation, and the sample time for the inverter controller was
set to 100 (µs). The Virtual STATCOM integrated control algorithm sample time was set to
0.1 (s) in consideration of the data measurement period of the PMU.

Table 3 shows the Virtual STATCOM simulation scenario. This table indicates whether
the Virtual STATCOM Control Algorithm operates according to the simulation time, and
also indicates the load change time. The data for the load change are shown in Table 4.
For the simulation time of 0~1 (s), a situation, in which the Virtual STATCOM Control
Algorithm does not operate and the load fluctuation does not occur, is simulated.

For the simulation time of 1 (s), the load variation situation was simulated. Load1
generated a variation of +0.7 (Mvar) in 1 (s), Load3 generated +0.3 (Mvar), Load4 generated
−0.25 (Mvar), Load5 generated +1.1 (Mvar), Load8 generated +2.1 (Mvar), Load9 generated
+0.2 (Mvar), and Load10 generated the variation of −0.15 (Mvar), so the reactive power
of PCC generated the variation of +4 (Mvar). At the simulation time of 2 (s), Load1 had
the variation of −0.4 (Mvar), Load2 had −0.2 (Mvar), Load3 had +0.5 (Mvar), Load4 had
−0.3 (Mvar), Load5 had −0.5 (Mvar), Load6 had +1 (Mvar), Load7 had +0.2 (Mvar), Load8
had −2 (Mvar), and Load10 had the variation of −0.3 (Mvar), so the reactive power of PCC
having the variation of −2 (Mvar) was simulated.

Table 3. Virtual STATCOM Simulation Scenario.

Simulation Time
(s)

Virtual STATCOM Control
Algorithm

Load Variation
(Mvar)

0~0.5 Off 0

0.5~1 On 0

1~2 On +4

2~3 On −2
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Table 4. Virtual STATCOM Simulation Model Parameters (Load Variation).

0~1 (s) Load
Reactive

Power
(Mvar)

1 (s) Load
Variation

(Mvar)

1~2 (s) Load
Reactive

Power
(Mvar)

2 (s) Load
Variation

(Mvar)

2~3 (s) Load
Reactive

Power
(Mvar)

Load1 0.33 +0.7 1.03 −0.4 0.63

Load2 0.541 0 0.541 −0.2 0.341

Load3 0.707 +0.3 1.007 +0.5 1.507

Load4 1.3 −0.25 1.05 −0.3 0.75

Load5 0.104 +1.1 1.204 −0.5 0.704

Load6 0.0765 0 0.0765 +1 1.076

Load7 0.0742 0 0.0742 +0.2 0.274

Load8 0.743 +2.1 2.843 −2 0.843

Load9 1.32 +0.2 1.52 0 1.52

Load10 0.588 −0.15 0.438 −0.3 0.138

Load11 0.0886 0 0.0886 0 0.0886

Figure 9 shows the simulation results, assuming that power quality compensation
using the Virtual STATCOM control algorithm is not conducted. During the simulation run
time of 0~1 (s), the distributed power supply was connected to the system and the steady
state operation was in progress. The voltage of PCC has a voltage drop of 22.87 kV caused
by the inductance L and resistance R. In PCC reactive power, the ground reactive power of
5.8 (Mvar) is generated by line impedance components and non-linear loads. In 1~2 (s), it
is found that the reactive power of +4 (Mvar) is increased by the load variation, and the
voltage of PCC is 22.85 kV, so that the voltage drop is increased. In 2~3 (s), the occurrence
of voltage transients and reactive power of −2 (Mvar) were reduced because of the increase
of the capacitive load, and reactive power of 7.8 (Mvar) is generated at the PCC point, and
a voltage drop of 22.86 kV occurs.

Figure 10 shows the power quality compensation simulation results using the Virtual
STATCOM control algorithm. Virtual STATCOM was configured using inverters of multiple
DGs connected to the system, and the optimum compensation command value of inverters
was controlled using LP. Each inverter was controlled for the purpose of improving voltage
stability by compensating for the reactive power of PCC to 0. Figure 10a,b show the
PCC voltage and reactive power, and Figure 10c shows the amount of reactive power
compensation of Virtual STATCOM inverters.

As the simulation time of 0~0.5 (s) is the status in which the Virtual STATCOM
algorithm is not applied, the power quality is not compensated for, so the reactive power of
the PCC stage is about 5.8 (Mvar). Furthermore, the voltage at the PCC terminal is 2.287 kV
due to the line and load impedance components, and a voltage drop has occurs. It was
found that when the Virtual STATCOM control algorithm operated at 0.5 (s), the reactive
power of PCC stage converged to 0 by the reactive power compensation, and the voltage of
the PCC stage was compensated to 22.9 kV. At 1 (s), as the reactive power of PCC increased
with +4 (Mvar) by Load Variation, a voltage drop of 22.88 kV occurred, but the reactive
power and the voltage of the PCC were compensated for to the reference values by the
Virtual STATCOM integrated algorithm. For 1~2 (s), there was no change. At 2 (s), Load
Variation occurred, and the capacitance reactive power of −2 (Mvar) occurred in PCC, so
the voltage rose to 22.93 kV. However, it was found that the reactive power of the PCC
stage was compensated to 0 and the voltage was sustained to 22.9 kV by the integrated
control algorithm.
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Figure 9. PCC Variation according to the Load Variation of Virtual STATCOM (Before Compensation
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Figure 11 shows the amount of reactive power compensation of Virtual STATCOM
inverters 1–11. To control the reactive power of the PCC to 0 using the inverter integrated
control, the reactive power compensation amount of the inverters was determined in
consideration of the available reactive power amount of the inverter and the distance
between the PCC and the inverter. Since inverters have different distances from the
PCC, the loss caused by the line impedance may increase when the long-distance inverter
compensates for a large amount. Therefore, compensation was carried out by selecting
an inverter that is relatively close to the PCC as the compensation priority. In addition,
the rated capacity is different for each connected inverter, and the amount of the reactive
power that can be output is different because the amount of power currently being output is
different. Therefore, by considering the rating and remaining capacity of each inverter, the
optimum compensation command is generated with priority according to the maximum
amount of reactive power and distance.
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In the time of 0~0.5 (s), the Virtual STATCOM control algorithm does not operate,
so the Virtual STATCOM inverters are not outputting the reactive power. The control
algorithm operates at 0.5 (s), and the reactive power compensation is carried out in consid-
eration of the distance of the inverter to the maximum reactive power output. The reactive
power compensation is carried out by dividing reactive power 5.8 (Mvar) generated in PCC
by inverters 1, 2, 7, 8, 9, and 10. Inverter 1 compensated 0.4 (Mvar) reactive power, Inverter
2 compensated 1.35 (Mvar), Inverter 7 compensated 0.9 (Mvar), Inverter 8 compensated
0.45 (Mvar), Inverter 9 compensated 1.4 (Mvar), and Inverter 10 compensated 1.2 (Mvar).
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In Load Variation 1 (s), inverters 1, 2, 3, 7, 8, 9, 10 and 11 divided PCC reactive power of
9.8 (Mvar), so Inverter 1 compensated 0.4 (Mvar), Inverter 2 compensated 1.35 (Mvar),
Inverter 3 compensated 2.5 (Mvar), Inverter 7 compensated 0.9 (Mvar), Inverter 8 compen-
sated 0.45 (Mvar), Inverter 9 compensated 1.4 (Mvar), Inverter 10 compensated 1.8 (Mvar),
and Inverter 11 compensated 1 (Mvar). In the case of a load variation of 2 (s), inverters 1,
2, 3, 7, 8, 9 and 10 divided PCC reactive power of 7.8 (Mvar), so Inverter 1 compensated
0.4 (Mvar), Inverter 2 compensated 1.35 (Mvar), Inverter 3 compensated 1.5 (Mvar), Inverter
7 compensated 0.9 (Mvar), Inverter 8 compensated 0.45 (Mvar), Inverter 9 compensated
1.4 (Mvar), and Inverter 10 compensated 1.8 (Mvar).

5. Conclusions

This paper proposed a Virtual STATCOM Configuration and Control method that
operates like a single STATCOM based on multiple DGs connected to the system. The
conventional STATCOM has the following demerits: as it is installed in the power trans-
mission/transformation system, it is hard to operate while considering the power quality
of the distribution system; when installing STATCOM in the distribution system, it is hard
to select the installation location because of the complexity of the distribution system; and
when proper positioning is not considered, the economic feasibility of STATCOM will be
reduced. The Virtual STATCOM solves the problem of installation location selection with
the configuration that includes a DG inverter connecting to the grid system, and enhances
the economic feasibility by using the equipment connected to the existing system.

Virtual STATCOM is controlled using the operating principle of the existing STAT-
COM. It improves voltage stability through reactive power compensation. Multiple DGs
connected to the grid were integrated and controlled through an LP-based algorithm. As
a result of the simulation, we confirmed that the voltage drop occurred because of the
line impedance and load impedance components before compensation through the Virtual
STATCOM integrated control algorithm. As a result of the compensation using the Virtual
STATCOM algorithm, we confirmed that the voltage stability was improved through the
reactive power compensation of the PCC. To verify the performance, a simulation was
conducted based on a real-time simulator. The off-line simulation results and the real-time
simulation results are the same, so we verified that there is no problem in an environment
similar to the real one.
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Abstract: Battery energy storage systems (BESSs) play a critical role in eliminating uncertainties
associated with renewable energy generation, to maintain stability and improve flexibility of power
networks. In this paper, a BESS is used to provide energy arbitrage (EA) and frequency regulation
(FR) services simultaneously to maximize its total revenue within the physical constraints. The EA
and FR actions are taken at different timescales. The multitimescale problem is formulated as two
nested Markov decision process (MDP) submodels. The problem is a complex decision-making
problem with enormous high-dimensional data and uncertainty (e.g., the price of the electricity).
Therefore, a novel co-optimization scheme is proposed to handle the multitimescale problem, and
also coordinate EA and FR services. A triplet deep deterministic policy gradient with exploration
noise decay (TDD–ND) approach is used to obtain the optimal policy at each timescale. Simulations
are conducted with real-time electricity prices and regulation signals data from the American PJM
regulation market. The simulation results show that the proposed approach performs better than
other studied policies in literature.

Keywords: battery energy storage; energy arbitrage; frequency regulation; real-time market; deep
reinforcement learning

1. Introduction

With wider integration of renewable resources, energy storage has become a significant
technology to help eliminate uncertainties associated with renewable energy generation, in
order to maintain stability and improve flexibility of power networks. Among different
kinds of energy storage technologies, battery energy storage systems (BESSs) have played
an irreplaceable role in energy storage, grid synchronization, and other operation-assistance
services [1,2] due to the following advantages: (1) BESSs can be flexibly configured depend-
ing on the power and energy requirements of system applications [3]; (2) BESSs have an
instantaneous response nature [4,5]; (3) BESSs are not limited by external conditions such
as geographical resources. Various research has been carried out related to battery energy
storage systems planning and design for different applications. Optimized planning was
proposed for a battery energy storage system considering battery degradation to reduce
the operational costs of the nanogrid and microgrid [6]. In [7], the authors identified the
optimal conditions for wireless charging of electric vehicles when they were in motion to
reduce energy consumption. A model was presented for a residential energy management
system to dispatch battery energy storage in a market-based setting [8]. A privacy-aware
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framework was presented for utility-driven demand-side management with a realistic en-
ergy storage system model [9]. However, the economic viability of using BESSs to provide
various services with a large scale is questionable due to their high investment costs [10].

One of the most discussed revenue sources for BESSs is to provide energy arbitrage
(EA) services in a real-time electricity market by deliberately charging at low prices and
discharging at higher prices to gain profit [11,12]. EA using BESSs was studied in [13],
where the electricity price was assumed to be known before making storage decisions.
More recent research took electricity price uncertainty into consideration, and thus many
forecast methods were proposed to improve the quality of electricity price prediction, and
a reinforcement learning method was proposed to maximize the profit of EA based on
historical prices [14]. A stochastic dynamic programming method was used to optimize
the BESS based on the forecast electricity price [15]. Neural networks were used to address
the price prediction uncertainty by introducing a scenario-based optimal control frame-
work [16]. Different models were presented in [17] to process the various price signals to
optimize the price forecast.

In order to further increase the revenue of BESSs, some research work has considered a
battery to provide EA and frequency regulation (FR) services simultaneously [18], since FR
is a significant income source for energy storage [19–23]. For FR, BESSs are used to regulate
the frequency of the power grid by charging or discharging based on the regulation signals
sent by the power grid operator [5,19,24,25]. A comprehensive evaluation for stacked rev-
enue by using the grid-connected BESS was introduced to provide EA and FR services [26].
A linear programming method was used to maximize the potential revenue of electrical en-
ergy storage from participation in EA and FR in the day-ahead market [27]. Co-optimizing
EA and FR services simultaneously is considered a multitimescale problem, and a dynamic
programming approach was proposed to solve the co-optimization problem [19,20]. These
two existing works on co-optimizing EA and FR services assumed that the electricity prices,
regulation signals, or their distributions were known in advance. However, the distri-
butions or the values are hard to attain in the real-time market. Furthermore, these two
works did not consider the degradation cost of the BESS, a key factor in energy operational
planning, without which there might be aggressive charging or discharging of the BESS [4].

Deep reinforcement learning (DRL), combined with deep neural networks (DNNs)
and reinforcement learning (RL) techniques, can be powerful tools for addressing BESS-
related decision-making problems using the trial-and-error mechanism [28,29]. Compared
to model-based methods, such as MILP methods, DRL approaches have the following
advantages: the ability to learn from historical data, to be self-adaptable, and to learn a
good control policy even under a very complex environment [12]. A novel continuous
DRL algorithm was used for energy management of the hybrid electric vehicles [30]. An
expert-assistance deep deterministic policy gradient (DDPG) strategy was introduced to
minimize the energy consumption and optimize the power allocation of the hybrid electric
buses [31]. A multiphysics-constrained fast-charging strategy was proposed for lithium-ion
batteries in [32] based on an environmental perceptive DDPG. However, DDPG is not
effective in avoiding overestimation in the actor–critic setting [33,34].

To address the above issues, a novel co-optimization scheme considering the degra-
dation of the battery cell in the BESS is proposed for the multitimescale problem of co-
optimizing EA and FR services. A novel deep reinforcement learning (DRL) approach, a
triplet deep deterministic policy gradient with exploration noise decay (TDD–ND), is pro-
posed to handle the uncertainty of the real-time electricity prices and frequency regulation
signals in the multitimescale co-optimization problem due to the following reasons: (1)
TDD–ND does not rely on the knowledge of probability distributions; (2) TDD–ND can
be used to solve the problem with continuous action space directly by using deterministic
policy in an actor–critic algorithm [34–36]; (3) The TDD–ND algorithm takes the weighted
action value of triplet critics, which overcomes estimation bias in the deep deterministic
policy gradient (DDPG) algorithm and the twin delayed deep deterministic policy gradient
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(TD3) algorithm [34]; (4) The TDD–ND algorithm adopts the exploration ND policy, which
improves the exploration at the beginning of the training compared to DDPG and TD3.

The main contributions of this paper are as follows:

1. A novel co-optimization scheme is proposed to handle the multitimescale problem.
The BESS decides an optimal EA action every five minutes to maximize its revenue
due to the total amount of energy change, and every two seconds the BESS decides an
optimal FR action to maximize the total reward including the revenue due to energy
change and FR settlement reward. Based on the FR action, the EA action has to be
adjusted based on the power constraints of the BESS to maximize the total revenue of
the day on the two-second level.

2. The TDD–ND algorithm is proposed to solve the co-optimization problem. To the best
of our knowledge, the TDD algorithm [34] is for the first time used for energy storage.
Our proposed method combines the TDD algorithm with ND policy to improve the
exploration during the training, and thus to achieve the higher total revenue.

3. Real-time data are used to evaluate the performance of the proposed TDD–ND co-
optimization approach. Simulation results show that our proposed DRL approach
with the co-optimization scheme performs better than studied policies.

The rest of this paper is organized as follows. Section 2 explains the Pennsylvania New
Jersey Maryland (PJM)’s frequency regulation market. Section 3 presents the nested system
model used to formulate the co-optimizing problem. Our proposed TDD–ND approach is
described in Section 4. The simulation results are discussed in Section 5. The conclusion is
made in Section 6.

2. PJM Frequency Regulation Market

In the PJM frequency regulation market, generators and other devices (e.g., energy
storage) can provide grid ancillary services in exchange for regulation credits [37]. PJM
sends the regulation (RegD) signal to the resources wishing to provide regulation ser-
vices every two seconds. Afterwards, PJM tracks the response from each resource and
computes a performance score for each resource every two seconds based on the RegD
signal and regulation response. For every five minutes, the market also calculates the
average performance score within the five-minute period. The performance score is a
weighted sum of correlation, delay, and precision [38,39]. A BESS typically has the nature
of the instantaneous response and hence the scores of correlation and delay are close to 1.
Therefore, the average performance score SC of a BESS within a five-minute period can be
calculated based on the precision score as follows [19]:

SC =
∑150∆t

t=0 SCt

150
, (1)

SCt = |1−
∣∣∣λF

t + rdt

∣∣∣/ar|, (2)

where λF
t , rdt, ar are denoted as the regulation response power taken by BESS response

to the RegD signal at time t, the RegD signal at time t, and the maximum power capacity
assigned for FR, respectively. ∆t is set to two seconds because the RegD signal rdt is sent
every two seconds. SCt denotes the two-second performance score. When the BESS is 100%
following the RegD signal,

∣∣λF
t + rdt

∣∣ = 0 and SCt = 1.
Every five minutes, the PJM market determines the eligibility of the resource for

regulation based on its average performance score SC, and calculates the amount of the
regulation credit settlement received by the eligible resource. If the average performance
score is less than 40%, the resource will lose its regulation qualification and regulation
credits during that time period [37]. The five-minute regulation credit settlement RC can
be calculated as follows [37]:
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RC =

{
SC · ar · PC, SC ≥ 0.4,
0, SC < 0.4,

(3)

where PC, in $/MW·5min, is the five-minute regulation clearance price for 1 MW regulation
capacity.

3. Nested System Model and Problem Formulation

The system model, illustrated in Figure 1, consists of two main parts, i.e., the power
grid and the BESS including a battery and an energy management system (EMS). The
BESS participates in the energy and regulation market. The power grid sends the real-time
electricity locational marginal price (LMP), FR signal, and FR market clearance price to the
EMS in the BESS. The EMS then generates the operation signal to the battery to take action.
At the same time, the battery sends feedback with its real-time status to the EMS. Based
on the real-time status of the battery and the information from the power grid, the EMS
generates a new operation signal to the battery.

Figure 1. The configuration of the system model.

The BESS co-optimizes EA and FR services to maximize its total reward within a one-
day time horizon in a real-time PJM market: EA acts every five minutes, and FR responds
every two seconds [19]. Due to the nature of the problem, the timescale is divided into
two dimensions: a large timescale with five-minute intervals and a small timescale with
two-second intervals, where two-second intervals are nested in the five-minute timescales.
The two optimization problems are formulated as two nested MDP submodels in the two
following subsections, respectively.

3.1. The Five-Minute MDP Submodel Formulation

The one-day horizon of five-minute submodel T A, decomposed into 288 five-minute
increments (i.e., ∆T = 5 min) illustrated in Figure 2, is denoted as
T A = {0, ∆T, 2∆T, 3∆T, . . . 287∆T}. The BESS takes a charging or discharging action
every five minutes based on its current state to maximize the cumulative reward within
the one-day horizon. The state, action, and reward are defined as follows.
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Figure 2. The nested timescales in a day.

3.1.1. State

The state of the BESS at time T can be defined as SA
T =

(
ET , PA

T
)
, where ET is the BESS

energy level, and PA
T is the real-time electricity locational marginal price (LMP) at time T.

3.1.2. Action

The action in the five-minute submodel, denoted as λT , is the total amount of power
change due to EA and FR at time T within the five-minute interval. λT > 0 represents
that the BESS is charging, while λT < 0 implies that the BESS is discharging. The optimal
action at time T is denoted as λ∗T . The action space should not exceed the maximum power
capacity of BESS B:

|λT | ≤ B. (4)

The total amount of energy stored in the BESS at time T should be within its maximum
energy capacity Emax:

0 ≤ ET + λT · ∆T ≤ Emax. (5)

After taking action λT , state SA
T is converted to state SA

T+∆T at time T + ∆T. The
real-time price PA

T is updated to PA
T+∆T , and the energy level ET evolves to ET+∆T , which

can be calculated as follows:

ET+∆T =

{
ET + ∆T · λT · ηc, λT ≥ 0,
ET + ∆T · λT/ηd, λT < 0,

(6)

where ηc and ηd denote the charging and discharging efficiency, respectively.

3.1.3. Degradation Cost and Reward

The degradation cost of the BESS is a key factor in energy operational planning [4] as
the battery cells degrade for repeated charge/discharge cycles. The degradation cost of the
BESS can be calculated as follows [4]:

fT(b) = cb|λT | · ∆T, (7)

where cb is the degradation cost coefficient, and can be calculated as follows [4]:

cb =
Pcell

2N · (SOCmax − SOCmin)
, (8)

where Pcell is the price of the battery cell in the BESS and N is the number of cycles that the
BESS could be operated within the state of charge (SoC) constraint [SOCmin, SOCmax].

After taking the action, the BESS will receive a reward. In order to avoid conservative
actions caused by the negative reward in the learning process, an average electricity price
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P̄A is introduced in the reward RA
T
(
SA

T , λT
)

for performing λT action in state SA
T based on

the basic principle of EA [14] as follows:

RA
T

(
SA

T , λT

)
=
(

P̄A − PA
T

)
· λT · ∆T − fT(b). (9)

3.2. The Two-Second MDP Submodel Formulation

The BESS needs to respond to the updated RegD signal every two seconds. Because two-
second intervals are nested in the five-minute horizon, the time horizon of one day within ev-
ery two-second increment is denoted as TF = {0, ∆t, 2∆t, 3∆t, . . . (150 · 288− 1)∆t}, where
∆t = 2 s, shown in Figure 2. The BESS takes a charging or discharging action every two
seconds based on its current state to maximize the cumulative reward within the one-day
horizon. The state, action, and reward are defined as follows.

3.2.1. State

The state at time t is denoted as SF
t = (Et, rdt), where Et is the energy level of the BESS

and rdt is the received RegD signal at that time.

3.2.2. Action

The action is the regulation response power, denoted as λF
t at time t, which is con-

strained by Equation (4). The action space also should not go beyond the maximum power
capacity of BESS B. After performing an action λF

t at time t, state SF
t will transfer to state

SF
t+∆t at time t + ∆t, and the energy level Et will be updated to Et+∆t based on λt denoted

as the total amount of power change at time t due to EA and FR:

Et+∆t =

{
Et + ∆t · λt · ηc, λt ≥ 0,
Et + ∆t · λt/ηd, λt < 0.

(10)

3.2.3. Reward

Based on the PJM market regulation policy, the reward Rt
(
SF

t , λF
t
)

by performing
action λF

t at state SF
t can be calculated as

Rt

(
SF

t , λF
t

)
= RA

t + RF
t − ft(b), (11)

where ft(b) = cb|λt| · ∆t according to Equation (7) and RA
t is the reward due to the total

amount of energy change caused by both EA and FR within the two-second interval:

RA
t =

(
P̄A − PA

T

)
· λt · ∆t. (12)

Instead of calculating the FR settlement at the end of every five minutes, in the two-
second submodel, we need to evaluate the FR reward every two seconds once choosing
an action λt. Based on Equation (3), RF

t is the equivalent real-time regulation settlement
reward within the two-second interval:

RF
t =

{
SCt · B ·

(
PC/150

)
, SCt ≥ 0.4,

0, SCt < 0.4,
(13)

assuming that the maximum power capacity ar assigned for FR is the power capacity of
the BESS B.

3.3. Proposed Co-Optimization Scheme

Solving the co-optimizing problem for EA and FR is to find the optimal action se-
lection policy for the BESS to obtain the maximum expected reward within a day. A
co-optimization scheme is proposed to handle the multitimescale problem and coordinate
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the EA and FR services, which is illustrated in Figure 3. Once λF
t is derived, λt can be

calculated as follows:

λt =





B + λF
t , λ∗T − λF

t > B,
λ∗T ,

∣∣λ∗T − λF
t
∣∣ ≤ B,

−B + λF
t , λ∗T − λF

t < −B,
(14)

where λt is not always equal to λ∗T , due to the power constraint (Equation (4)) of the BESS.
The first case shows that when the optimal action for FR λF

t is discharging (i.e., λF
t < 0)

and the best action for EA is charging, the action for EA will be charging with the highest
power capacity B. In this case, the charging value of λ∗T was set too high, and λt is less than
λ∗T . For the second case, the λt is set to λ∗T . For the third case, when the optimal action for
FR λF

t is charging and the best action for EA is discharging, the action for EA is discharging
with the highest power capacity −B. In this case, the discharging value of λ∗T was set too
low, and λt is greater than λ∗T .

Figure 3. The TDD–ND approach for the proposed co-optimization scheme.

4. Proposed Triplet Deep Deterministic Policy Gradient with Exploration Noise
Decay Approach

A novel DRL approach, combining TDD [34] and ND, is proposed to address the
co-optimization problem. TDD–ND is a model-free, off-policy actor–critic algorithm, in
which the triplet critics are used to limit estimation bias, and the exploration ND policy is
used to improve the exploration in the algorithm.

4.1. Triplet Deep Deterministic Policy Gradient Algorithm

The TDD algorithm [34] is an off-line RL algorithm which can be applied to solve the
optimization problem with continuous state space as well as continuous actions [35,36].
TDD includes a single actor network (i.e., a deterministic policy network) πφ and its actor
target network πφ′ . In addition, TDD adopts three critic networks Qθ1 , Qθ2 , and Qθ3 for
Q-value estimation. Qθ′1

, Qθ′2
and Qθ′3

represent three target networks, corresponding to
critic networks Qθ1 , Qθ2 , and Qθ3 , respectively. The target value yt can be updated using
the weighted minimum Q-value of target Q-networks Qθ′1

and Qθ′2
, combined with the

weighted value of Qθ′3
as follows [34]:

yt = rt + γ

[
β min

j∈{1,2}
Qθ′j

(st+1, ãt+1) + (1− β)Qθ′3
(st+1, ãt+1)

]
, (15)
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where β ∈ (0, 1) is the weight of the pair of critics, γ ∈ [0, 1] is a discount factor, and ãt+1 is
the clipped target action, calculated as follows:

ãt+1 ← πφ′(st+1) + ε, ε ∼ clip(N (0, σ̃),−c, c), (16)

where ε is the clipped Gaussian noise with standard deviation of σ̃, and c is the edge value.
The parameters of the critic networks will be updated by minimizing the following loss:

L(θ) = E(st ,at ,rt ,st+1)∼R
[
(Qθ(st, at)− yt)

2
]
, (17)

whereR is a replay buffer to store and relay experience transactions (st, at, rt, st+1) includ-
ing states, actions, rewards, and next states. The deterministic policy network in actor is
updated using sampled policy gradient which is shown as follows:

∇φ J(φ) = N−1 ∑∇aQθ1(st, at)
∣∣∣
a=πφ(st)

∇φπφ(st), (18)

4.2. Proposed TDD–ND Co-Optimization Approach

The ND policy is combined with the TDD algorithm to address the co-optimization
problem. For the ND policy, the standard deviation of the exploration noise ε is set to the
maximum value σmax at the beginning of the training, gradually reduced to the minimum
value σmin with a decay of σdecay with the increase of the number of the training episodes,
and kept at the minimum value σmin for the rest of the training. A TDD–ND algorithm for
five-minute submodel optimization is presented in Algorithm 1.

Algorithm 1: The TDD–ND training process for five-minute submodel
optimization

Initialize the actor network πφ, the actor target network πφ′ ← πφ, the size R of
replay bufferR, and the mini-batch size m.

Initialize the three critic networks Qθ1 , Qθ2 and Qθ3 , and three critic target
networks Qθ′1

← Qθ1 , Qθ′2
← Qθ2 and Qθ′3

← Qθ3 .

1: for episode i← 0 to I do
2: for t ∈ T A do
3: Based on the state of the BESS SA

T including ET and PA
T , choose action λT ,

observe reward RA
T and next state of the BESS SA

T+1.
4: Store transition

(
SA

T , λT , RA
T , SA

T+1
)

inR.

5: Sample a batch of transitions
(

SA
j , λj, RA

j , SA
j+1

)
fromR.

6: From the next state of the BESS SA
T+1, the actor target plays the next

charging or discharging action of the BESS λT+1 via Equation (16).
7: Select Gaussian noise ε ∼ N (0, σ) to this next action λT+1. Decrease σ

from σmax to σmin with the decay of σdecay as the increasing of the episode.
8: Calculate the estimated target value via Equation (15).
9: Update parameters of the three critic networks by minimizing the loss

defined by Equation (17).
10: Update the weights of the critic target networks by:

θ′i ← τθi + (1− τ)θ′i, i = 1, 2, 3 every 2 iterations, where τ � 1 is the target
update parameter.

11: Update the actor network by performing gradient every 2 iterations based
on Equation (18).

12: Update the weights of the actor target networks by:
φ′ ← τφ + (1− τ)φ′ every 2 iterations.

13: end for
14: end for
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The flow chart of the proposed TDD–ND co-optimization approach is illustrated in
Figure 3. The TDD–ND algorithm is used to train the neural networks for five-minute
submodel optimization. The best actions of the five-minute submodel λ∗T are then input
into the two-second submodel environment. The TDD–ND algorithm is then used to train
neural networks for two-second submodel optimization. For each training iteration, after
action λF

t is chosen, λt is calculated based on Equation (14), and the reward Rt(SF
t , λF

t ) will
be calculated using Equation (11) to maximize the accumulated reward within the one-day
horizon. After each time step, a mini-batch of m transitions is sampled uniformly from a
replay bufferR.

5. Experimental Results

The performance of the proposed co-optimization approach is evaluated in a real-
world scenario. The values of the parameters used in the simulations are listed in Table 1.
Some of the parameters are varied in the simulation and will be noted accordingly. The
parameter settings for the TDD–ND algorithm are listed in Table 2.

Table 1. The value of the parameters used in the simulation.

Parameters Value

PA
T

PJM historical real-time LMP from 00:00:00 AM
to 11:55:00 PM, 30 July 2021 [40]

PC PJM historical real-time clearance price for FR from 00:00:00 AM to
11:55:00 PM, 30 July 2021 [40]

rdt
Historical real-time RegD signal from 00:00:00 AM to

11:59:58 PM, 30 July 2021 [41]
Emax 5 MWh
B, ar 1 MW
Pcell 8× 104 $/MWh
Cb 4/MWh

Table 2. TDD–ND parameter settings.

Parameters Value

αactor 8× 10−4

αcritic 8× 10−5

γ 0.99
σmax 1
σmin 0.01

σdecay 3× 10−3

R 1× 106

m 1× 100

5.1. Performance Evaluation of the Proposed TDD–ND Algorithm

Based on the principle of EA, the BESS charges at low electricity prices and discharges
at high electricity prices. The average price works as a simple indicator to determine
whether the price PA

T is low or high compared to the historical values. The operations of
the BESS in a day are illustrated in Figure 4. The figure shows that when the PA

T is lower
than the average price, the BESS actions are mainly larger than 0, which means the BESS is
charging. However, when the PA

T is higher than the average price, the BESS operations are
discharging to gain profits. The figure matches well with the principle of EA.
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Figure 4. The BESS operation in a one-day period after five-minute submodel optimization.

The performance of the TDD–ND algorithm for co-optimizing EA and FR is studied
by comparing it with another widely-used DRL algorithm, the deep Q-learning (DQL)
algorithm. TDD–ND and DQL algorithms were used to train the five-minute and two-
second submodels for 500 times (500 episodes). During the training using TDD–ND, the
total revenue of a day was validated after every 10 episodes without adding exploration
noise ε to see whether the results were close to the training results. The learning curves
of the TDD–ND algorithm and the DQL algorithm are illustrated in Figures 5 and 6,
respectively. These two figures show that the TDD–ND algorithm has a much better
performance than the DQL algorithm in terms of the average performance score and
the total reward. The reason is that the TDD–ND algorithm can choose more accurate
continuous actions rather than using discretized actions in DQL, and can thus obtain a
higher average performance score and total reward.

Figure 5. The learning curve of the average performance score of the day trained by TDD–ND
and DQL.
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Figure 6. The learning curves of TDD–ND and DQL of the total revenue within a day.

The impact of different levels of power capacity B and energy capacity Emax on
the performance of the TDD–ND algorithm and the DQL algorithm are studied. After
training, the TDD–ND test results are slightly higher than their training values without
the exploration noise. Figure 7 shows that the proposed TDD–ND algorithm always
performs better than the DQL algorithm. The reason is that the DQL algorithm chooses
discretized actions rather than continuous actions to take, and thus negatively impacts the
total revenue. The figure also shows that the total revenue using both algorithms increases
with power capacity B in the similar trend. For both algorithms, the total revenue increases
sharply with B when B is between 0.5 and 1.0. The reason is that when B is 0.5, the SCt is
smaller than 0.4 in most time slots, and thus the regulation settlement reward RF

t becomes
0. When B increases to 1, the SCt is greater than 0.4 in many more time slots. Therefore, the
total revenue is significantly increased. Between B = 1 and B = 2.5, the improvement in
total revenue approximately follows the increase of B, since RF

t is the dominant factor in
the total revenue, and is a linear function of B.

How energy capacity Emax impacts the total revenue using the proposed TDD–ND
algorithm and the DQL algorithm is shown in Figure 8. The figure shows that the TDD–ND
algorithm generates more total revenue than the DQL algorithm under each of the Emax

settings. Compared to the impact of power capacity B, the increase of energy capacity Emax

only makes a slight change to the total revenue. For both algorithms, the total revenue
rises slowly with the increase of Emax between Emax = 2.5 and 12.5, as the energy capacity
increasing only improves RA

t but RF
t dominates the total revenue in Equation (11) when

B = 1 MW. Compared to the TDD–ND algorithm, the DQL algorithm has a slightly higher
improvement rate of the total reward with the increase of Emax, since higher Emax allows the
DQL algorithm to choose better discretized actions for EA, and thus a higher improvement
rate of RA

t compared to the TDD–ND algorithm with continuous actions.
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Figure 7. The total revenue of the day with different levels of power capacity B.

Figure 8. The total revenue of the day with different levels of energy capacity Emax.

5.2. Performance Comparison of Various Schemes

To demonstrate the effectiveness of our proposed TDD–ND co-optimization scheme,
the following methods are compared: (1) Pure-EA scheme, in which the BESS only provides
the EA service; (2) Pure-FR scheme, in which the BESS only provides the FR service;
(3) Rule-based co-optimization scheme, in which the BESS provides the EA and FR services.
The rule is as follows: The action λt is set to λ∗T to maximize the reward due to the total
amount of energy change caused by both EA and FR; (4) TDD–ND co-optimization scheme
is our proposed TDD–ND algorithm and co-optimization scheme.

The total revenue using each scheme with different settings of B and Emax is illustrated
in Figures 9 and 10, respectively. Figure 9 shows that the TDD–ND co-optimization scheme
generates much more total revenue than the other three schemes at every setting of B, as
the TDD–ND co-optimization scheme tries to maximize the total accumulated reward. The
total revenue using the pure-EA scheme is very small, since FR is much more profitable
than EA. For the TDD–ND scheme, the rule-based scheme and the pure-FR scheme, the
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regulation settlement reward RF
t increases with B, and thus the total revenue increases

with B. For the pure-EA scheme, the higher B allows the BESS to charge more when PA
T

is low and discharge more when PA
T is high. The increasing rates of the total revenue

using the TDD–ND co-optimization scheme and the rule-based co-optimization scheme
from B = 0.5 to B = 1 are higher than those from B = 1 to B = 2.5. The reason is that when
B = 0.5, the performance score is smaller than 0.4 in most time slots, and thus the regulation
settlement reward becomes 0. Therefore, the total revenue of the rule-based co-optimization
scheme is close to that of the pure-FR scheme. When B increases to 1, the performance
score is greater than 0.4 in many more time slots, and with the coordination of EA, the total
revenue is significantly increased. When B is between 1 and 1.5, the total revenue of the
pure-FR scheme is much lower than that of the rule-based co-optimization scheme and that
of the TDD–ND cop-optimization scheme. The reason is that the pure-FR scheme cannot
follow rdt signals closely due to the limitations of the energy capacity, while the rule-based
scheme can coordinate the energy capacity for EA and FR. When B reaches 2 or higher,
the rule-based scheme has similar total revenue to the pure-FR scheme, as the setting of B
allows the rule-based scheme to follow rdt signal closely.

Figure 9. The comparison of the total revenues between using our proposed TDD–ND co-
optimization scheme, rule-based co-optimization scheme, pure-FR scheme, and pure-EA scheme
under different levels of power capacity B.

The total revenue of each of the four schemes under different settings of energy
capacities Emax is presented in Figure 10. The total revenue of the proposed TDD–ND
co-optimization scheme is much higher than those of the other three schemes. FR is much
more profitable than EA under all of the Emax settings. The total revenue of the TDD–ND
scheme and the rule-based scheme increases slightly with Emax, because the increase of
Emax only improves the value of RA

t , which is a small portion of the total revenue Rt. For
the pure-EA scheme, the total revenue increases with energy capacity Emax, as higher
energy capacity allows the BESS to charge more when PA

T is low and discharge more when
PA

T is high.
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Figure 10. The comparison of the revenues between following the proposed TDD–ND co-
optimization, rule-based co-optimization, and pure-FR and pure-EA schemes under different settings
of energy capacity Emax.

6. Conclusions

A battery energy storage system (BESS) providing both energy arbitrage (EA) and
frequency regulation (FR) services simultaneously to maximize its total revenue within a
day was considered. The BESS takes an EA action every five minutes and an FR action
every two seconds. The multitimescale co-optimization problem was formulated as two
nested Markov decision process (MDP) submodels. A novel co-optimization scheme was
proposed to handle the multitimescale problem and to coordinate the EA and FR services
to maximize the total revenue. The novel deep reinforcement learning (DRL) algorithm,
triplet deep deterministic policy gradient with exploration noise decay (TDD–ND), was
proposed to determine the best actions to take to maximize the accumulated reward within
the one-day horizon. The proposed TDD–ND algorithm achieved 22.8% to 32.9% higher
total revenue than the deep Q-learning (DQL) algorithm under various power capacity
settings of the BESS when its energy capacity was 5 MWh, and achieved 16.7% to 26.6%
higher total revenue under various energy capacity settings when the power capacity was
1 MW. Additionally, our proposed TDD–ND co-optimization scheme achieved 37.7% to
148.8%, 41.8% to 156.3%, and 3507.8% to 15,583.2% higher total revenues compared to
the rule-based co-optimization scheme, the pure-FR scheme, and the pure-EA scheme,
respectively, under various power capacity settings when the energy capacity of the BESS
was 5 MWh. When the power capacity was set to 1 MW, the proposed TDD–ND co-
optimization scheme achieved total revenues 49.6% to 56.2%, 51.0% to 198.4%, and 7156.2%
to 12,777.0% higher than the rule-based co-optimization scheme, the pure-FR scheme, and
the pure-EA scheme, respectively, under the various energy capacity settings. In the future,
investigation can be carried out on the use of the co-optimization methods in multivector
energy systems considering different timescales.

Author Contributions: Conceptualization, Y.M.; methodology, Y.M., T.C. and S.B.; software, Y.M.,
and T.C.; simulation, Y.M.; validation, Y.M.; formal analysis, Y.M.; investigation, Y.M., T.C. and S.B.; re-
sources, Y.M. and S. B.; data curation, Y.M.; writing—original draft preparation, Y.M.; writing—review
and editing, Y.M., S.B., H.L. and Z.H.; visualization, Y.M.; supervision, S.B.; project administration,
Y.M., T.C. and S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by start-up funds provided by Brock University, NSF CNS-
2128368, CNS-2107216, Toyota and Amazon.

Conflicts of Interest: The authors declare no conflicts of interest.

354



Energies 2021, 14, 8365

Nomenclature

ar The maximum regulation capacity in MW assigned by PJM
B The maximum power capacity of the BESS in MW
cb The linearized battery degradation cost co-efficient
ET Energy level of the BESS in MWh at time T in five-minute submodel
Et Energy level of the BESS in MWh at time t in two-second submodel
Emax The maximum energy capacity of the BESS in MWh
f (b) The degradation cost
m The mini-batch size
N The number of cycles that the BESS
PA

T The real-time electricity price at time T
P̄A The average value of electricity prices in the past day
Pcell The price of the battery cell in the BESS

RegD
Dynamic signal for fast regulation, which is a measure of the imbalance between
sources and uses of power in MW in the grid

rdt
The regulation signal (RegD) sent by PJM at time t to the BESS to provide
regulation service

RC The five-minute regulation settlement
RA

T The reward for performing an action λT state SA
T in five-minute submodel

Rt The reward for performing action λF
t at state SF

t in two-second submodel
RF

t The real-time regulation settlement reward within the two-second interval

SC
Average performance score within a five-minute period indicating the
performance of FR

SCt The two-second performance score at time t
SA

T The state of five-minute submodel at time T
SF

t The state of two-second submodel at time t
T The time indicator in five-minute submodel
t The time indicator in two-second submodel
T A The one-day horizon of five-minute submodel
TF The one-day horizon of two-second submodel
∆T The five-minute time interval
∆t The two-second time interval

λT
The action of the total amount of power change in MW due to EA and FR
at time T in five-minute submodel

λF
t

The action in MW of BESS response to the RegD signal at time t in two-second
submodel

λ∗T The optimal action of five-minute submodel at time T

λt
The total amount of power change at time t due to EA and FR in two-second
submodel

ηc The charging efficiency of the BESS
ηd The discharging efficiency of the BESS,
αactor learning rate for actor
αcritic learning rate for critic
σmax The maximum standard deviation value in the exploration noise
σmin The minimum standard deviation value in the exploration noise
σdecay The decay of standard deviation value in the exploration noise decay policy
γ The discount factor for future rewards
R Replay buffer
R The size of replay buffer
ε Clipped Gaussian noise
πφ The actor network in TDD–ND
πφ′ The actor target network in TDD–ND
Qθ Critic networks in TDD–ND
Qθ′ Target networks in TDD–ND
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Abstract: Increasing the share of Renewable energy sources in District Heating (DH) systems is
of great importance to mitigate their CO2 emissions. The combined integration of Solar Thermal
Collectors (STC) and Thermal Energy Storage (TES) into existing Combined Heat and Power (CHP)
systems can be a very cost-effective way to do so. This paper aims at finding the optimal design of
STC and TES systems integrated in existing CHP’s considering two distinct objectives: economic
profitability and environmental impact. To do so, we developed a three-stage framework based on
Pareto-optimal solutions generated by multi-objective optimization, a Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS)-entropy method to select the optimal solution, followed by
the definition of final Operation strategy. We proposed relevant improvement of the state-of-the-
art models used in similar analysis. We also applied the proposed methodology to the case of a
representative, 12 MWth CHP plant. Our results show that, while the addition of TES or STC alone
results in limited performances and/or higher costs, both the cost and the CO2 emissions can be
reduced by integrating the optimal combination of STC and TES. For the selected, optimal solution,
carbon emissions are reduced by 10%, while the Annual Total Cost (ATC) is reduced by 3%. It also
improves the operational flexibility and the efficiency by peak load shaving, load valley filling and
thus by decreasing the peak load boiler operation. Compared to the addition of STC alone, the use of
TES results in an increased efficiency, from 88% to 92%. The optimal share of STC is then increased
from 7% to 10%.

Keywords: combined heat and power; thermal storage; solar heating; multi-objective optimization;
decision making

1. Introduction

The share of Renewable Energy Sources (RES) in energy systems is growing rapidly
to accelerate the energy transition and tackle climate change. However, their penetration
in the heating and cooling sector, which accounts for more than 50% of the final energy
demand in EU [1], is only about 22% in Europe [2]. One of the key solutions to increase
this share on the short term and in a cost-effective way is to integrate renewable energy
in existing District Heating (DH) systems. Many initiatives are currently taken to do so.
According to IRENA [3], Denmark has the ambition to increase the share of RES in their
DH systems up to 73% in 2030 (vs. 42% in 2014). China targets a 24% share by 2030.

In terms of renewable resources, biomass, solar heating and geothermal energy are
the options with largest potential to reach higher shares of RES in DH’s [3], also at large
scale [4–6]. Among these options, solar collectors present the additional challenge of being
an intermittent source of energy, therefore potentially requiring additional heat storage,
which represents an interesting optimization problem.
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Hot water Thermal Energy Storage (TES) can provide load shifting and is 100 times
cheaper than electricity storage for the same energy capacity [7]. Thanks to TES, up to
25% RES would be integrated in energy systems without significantly affecting its effi-
ciency [8]. Hybrid systems composed of Combined Heat and Power (CHP) units integrated
with RES and TES is therefore considered as a first step towards the 4th generation district
heating systems [8].

TES alone can also be added to existing CHP’s. It contributes to peak load shaving,
it can store energy when the demand is low and deliver it when the demand is high. With
an optimal operation, it can also increase the energy efficiency, which in turn results in
lower CO2 emissions [9]. In many studies, the optimization of a combined CHP-TES system
often focuses on economic aspects, taking into account the cost of CO2 emissions. Benal-
cazar [10] proposed an optimization method based on the economic performance for the
optimal sizing of how water TES, integrated in an existing CHP plant considering specific
investment cost and different carbon prices. His analysis showed that the integration
of the TES units can save operational cost and decrease the use of the heat-only boiler,
which reduces fuel consumption and decreases CO2 emissions. Mugnini et al. [11] assessed
possible energy flexibility strategies to improve the performance of such system. Their
results revealed that a hot water tank can increase the CHP working hours and primary
energy savings. Lai et al. [12] developed an operation optimization model based on Particle
swarm optimization method, to investigate the flexibility and thermodynamic performance
of a CHP unit integrated with an integrated heat storage tank. Their results show that such
an integration led to an increased range of operational conditions of CHP units.

Although the addition of Solar Thermal Collectors (STC) can lead to larger CO2
emission savings than TES alone, they generally increase the production costs of existing
systems [3]. The question of the optimal combination of STC and TES in terms of both
economic and environmental impacts may therefore be raised. This corresponds to a multi-
objective optimization problem with two design variables, i.e., the sizes of the STC and the
TES systems.

Single economic objective optimization does not provide alternative solutions to deal
with conflicting objectives [13]. Therefore, recent research efforts focused on multi-objective
optimization of energy systems. Multi-objective optimization is used to find a trade-off
between two or more conflicting objectives to support decision making. Ren et al. [14]
proposed a multi-objective linear programming method for operational strategy of a Dis-
tributed Energy System (DES). Their model was based on trade-off analysis of economic and
environmental optimization. Fazlollahi et al. [15] developed a multi-objective, multi-period
optimization for sizing and operating a DH system with the objectives of maximizing the
system efficiency and minimizing the CO2 emissions and the Annual Total Cost (ATC),
the annualized value of the total cost over the lifetime of the project. Luo et al. [16] de-
veloped a framework for the optimization of DES integrated with Genetic Algorithm for
multi-objective optimization, and multi-criteria evaluated by Technique for Order Perfor-
mance by Similarity to an Ideal Solution (TOPSIS) method. Karmellos et al. [17] presented
a multi-objective Mixed-integer linear programming (MILP) model for the optimal design
and operation of DES by ε-constraint method, with minimizing the ATC, and the total
carbon emission as objective function. Franco and Versace [18] carried out a multi-objective
strategy considering energetic and economic objectives to investigate design and operation
strategy of a CHP-TES to DH network.

As discussed above, various approaches have therefore been applied to determine
the economically and/or environmentally optimal design and operation of RES and TES
integrated into existing CHP systems. However, the proposed methodologies can be
further improved in the following respects. First, the modelling of the CHP systems
could be more accurate. An increased accuracy of the techno-economic models for the
following aspects could lead to more accurate results [19]: Piece-wise Linear Investment
functions allowing for a non-linear evolution of the investment costs, and account for
part-load efficiencies, start-up costs, CHP acceptable operation ranges and maximum
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ramp rates, which significantly affect technical and economic performances. Secondly,
few recent works [15,16] integrated multi-objective optimization models with decision
making methods to optimize the capacity and the operation strategy of TES and RES
integrated to existing CHP systems. Moreover, limited research was carried out on the
effect of fluctuating investment cost on the sizing and the operation of the system.

In this work, we therefore aim at integrating multi-objective optimization and decision-
making methods featuring advanced techno-economic models, and to apply them to 1the
STC and TES systems.

Our main objectives are the development a comprehensive methodology to allow
decision-makers to determine the optimal design of hybrid heat and power production
systems and to assess the economic and environmental impact of the optimal integration of
STC and TES systems into existing, conventional CHP systems.

The main innovative features of this work can be summarized as follows:

• The techno-economic models of the sub-systems features Piece-Wise Linear Invest-
ment function, part-load efficiencies, start-up costs, maximum ramp rates and CHP
acceptable operation ranges.

• The variation of the economic and technical parameters, such as ambient temperature,
electricity and fuel prices, is considered.

• Pareto-optimal solutions are generated using multi-objective optimization, from which
the optimal solution is picked using the TOPSIS-entropy method, an effective method
to make decisions processes more reliable and accurate.

The paper is organized as follows. Section 2 describes the proposed methodologies.
The case of a hybrid energy system is defined in Section 3, including the input data and the
investigated scenarios. Section 4 presents and discusses the results of the case study. Lastly,
conclusions are drawn in Section 5.

2. Materials and Methods

This Section describes the proposed methodology for the optimization of the studied
hybrid systems. Their general structure is defined in Section 2.1. The multi-objective
optimization model is then described in Section 2.2. Finally, the Decision-making method
is presented in Section 2.3.

Figure 1 illustrates the flow chart of the optimization framework used in this study.
The framework consists of three stages:

1. Pareto-optimal solutions, generated by multi objective optimization model. It involves
a trade-off analysis between economic and environmental aspects.

2. Optimal solution selected among the Pareto solutions using a decision-making tool.
The optimal solution with the maximum relative quality ranking is picked up as the
final optimal solution.

3. Final design and operation strategy. The hourly operation strategy of the optimal
solution is further described to assess performance of each unit with optimal capacity.
More detailed description will be introduced in the Section 2.2.

2.1. Hybrid Heat and Power Production System

The components of the existing CHP system considered in this study are a 12 MWth
coal-fired CHP with Extraction Condensing (EC) steam turbine, and two gas-fired Heat
Only Boilers (HOB) with a thermal power of 5 MWth, respectively, also connected to the
system. The sizes of the STC and of the TES that will be added to the existing system are the
design variables. A schematic of the system is given in Figure 2. Electricity is produced by
the CHP and sold to the local market. The generated heat can be sent to both the heat clients
and the TES system. HOBs are only in operation when the heat production is insufficient.
The constraints related to each unit described in Section 2.2.2, and the input data described
in Section 3.1.
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Figure 1. Optimization Framework of hybrid energy system.

Figure 2. Schematic of Hybrid energy system.

2.2. Optimization Model
2.2.1. Objective Function

In this study, the weighting method [20] will be used to solve the multi-objective
optimization problem through MILP method. The two objective functions to be minimized
are the ATC and the total carbon emissions. A general objective function is then defined as
shown in Equation (1):

min
{

Fobj = α· ATC
ATCmin

+ (1− α)· Carbon
Carbonmin

}
(1)

where α is a weighting factor and where the objectives functions are normalized using the
corresponding single optimization value ATCmin and Carbonmin.

The ATC of the studied hybrid systems is defined in Equation (2) as the sum of the
annualized investment cost Cinv, the maintenance cost CM and the operating cost CO, minus
the revenues RS from the electricity production [14]. The total CO2 emissions are calculated
for all heat and power generation systems by multiplying the fuel consumption with the
corresponding CO2 emission factor, as shown in Equation (3).

ATC = Cinv + CM + CO − RS (2)

Carbon = ∑
u

∑
t

CFu ∗ FCu,t (3)

The total investment cost Cinv is calculated following Equation (4). The annualized
investment cost cinv

u,t , cinvTES
t and cinvSTC

t (Equations (5)–(7)) are calculated using the annuity
factor defined in Equation (8), which considers the discount rate i and the lifetime nu
for each unit, respectively. The maintenance costs are defined as a fixed proportion of

362



Energies 2022, 15, 1942

the investment costs and are calculated following the same structures, see Equation (9).
Operational costs consist of fuel consumption and unit startup costs, see Equation (10).

Cinv = ∑
u

∑
t
(cinv

u,t ∗ Capu + cinvTES
t ∗V + cinvSTC

t ∗ A) (4)

cinv
u,t =

au ∗ Iinv
u

8760
(5)

cinvTES
t =

au ∗ IinvTES

8760
(6)

cinvSTC
t =

au ∗ IinvSTC

8760
(7)

au =
i ∗ (1 + i)nu

(1 + i)nu − 1
, ∀ u ∈ units, t ∈ periods (8)

CM = ∑
u

∑
t

(
cM

u,t ∗ Capu + cMTES
t ∗V + cMSTC

t ∗ A
)

(9)

CO = ∑
u

∑
t
(c f uel

u,t ∗ FCu,t + δu,t ∗ SCu) (10)

The revenues RS consist in selling electricity to the grid, see Equation (11).

RS = ∑
t

P ∗ Elt (11)

2.2.2. Constraints for System Design and Operation

All units are subject to some constraints. The following constraints are considered in
this study for the design and the operation of each sub-system.

Common Types of Constraints

Common types of constraints are applied to all units:

• Minimum and maximum loads

For all units, the production must be within the minimum and maximum loads,
see Equation (12):

PLRlb
u,t∗ Qnorm

u ≤ Qu,t ≤ PLRub
u,t∗ Qnorm

u ∀ u ∈ units, t ∈ periods (12)

• Ramping rate limits

Maximum ramping rates (up and down) of the thermal units should be defined for
stability, integrity and safety reasons, see Equation (13) and (14):

Qu,t+1 −Qu,t ≤ rampupu,t
∗ Qnorm

u ∀ u ∈ units, t ∈ periods (13)

Qu,t+1 −Qu,t ≤ rampdownu,t ∗Qnorm
u ∀ u ∈ units, t ∈ periods (14)

• State of units

In the framework of MILP optimization, the binary variable Iuse
u,t is used to illustrate

the state of the units. It is constrained by the variables TON
u,t and TOFF

u,t defining whether the
unit is on or off at time t, see Equations (15) and (16).

Iuse
u,t+1 − Iuse

u,t ≤ TON
u,t+1 ∀ u ∈ units, t ∈ periods (15)

Iuse
u,t − Iuse

u,t+1 + TON
u,t+1 ≤ TOFF

u,t+1 ∀ u ∈ units, t ∈ periods (16)

• Minimum uptime and downtime
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Minimum uptime and downtime constraints are considered for safety and reliability
reasons. If a unit is in service, the duration should be at least equal to the defined minimum
uptime, as indicated in Equation (17). Similarly, if a unit is not in running, the period
should be at least equal to the defined minimum downtime as expressed in Equation (18).

t

∑
t−min_uptime

TON
u,t ≤ Iuse

u,t ∀ u ∈ units, t ∈ (min_uptime, periods), (17)

t

∑
t−min_downtime

TOFF
u,t ≤ 1− Iuse

u,t ∀ u ∈ units, t ∈ (min_downtime, periods), (18)

Extraction Condensation CHP Unit

The CHP plant considered in this study is of the Extraction Condensation type (EC):
heat is provided to the heat clients through the condensation of steam extracted from
the turbine. EC-based CHP can be operated in a flexible way, since steam can usually
be extracted from more than one pressure stage, and power may vary with same heat
production. In this study, the total energy efficiency of the CHP plant is considered as
constant, as suggested in [17,19].

For EC-based CHP’s, the power loss coefficient β, defined as the power generation
reduction caused by heat extraction, is a key characteristic [21]. It can be calculated based
on the ambient and DH temperatures [22], see Equations (19) and (20):

β = 1− T0

TM
(19)

TM =
Tsupply − Treturn

ln
(

Tsupply

Treturn

) (20)

The acceptable operation zone of the CHP plant in terms of heat extraction and
electrical power for a given supply and return temperature is illustrated in Figure 3. It is
elaborated as suggested by [22]. The blue line BC is the backpressure line, exhibiting a
slope σ. It represents the operation points with the designed power to heat ratio [21].
The maximum load line CD is parallel to the minimum load line AB (both with a slope β).
Any line with the same slope corresponds to a constant fuel consumption.

Figure 3. Cogeneration of Power and heat extraction for EC based CHP plant.
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Equation (21) and (22) express the corresponding constraints on the operational loads.
The fuel consumption can be calculated using Equation (23).

PEC
t = PLREC

t ∗ Iuse
EC,t∗

(
σEC + βt

)
∗ Qnorm

EC −QEC
t ∗ βt ∀ t ∈ periods (21)

PEC
t ≥ σEC∗ QEC

t ∀ t ∈ periods (22)

FCEC
t = (QEC

t + PEC
t )/ηEC ∀ t ∈ periods (23)

Heat Only Boiler

The part load efficiency of the gas-fired Heat Only Boiler (HOB) is considered ac-
cording to the model proposed by [19]. Equation (24) provides an expression for the
consumption of the HOB boiler, which leads to the non-linear evolution of its efficiency,
as shown in Figure 4.

Figure 4. Normalized efficiency for HOB, according to [19].

FCHOB
t = 0.4576∗ Qnorm

HOB∗ Iuse
HOB,t + 0.6599 ∗QHOB

t ∀ t ∈ periods (24)

Equations (25) and (26) state that the two HOB (HOB1 and HOB2) are only in operation
when the heat demand cannot be satisfied by the main steam boiler (peak load), during
maintenance or when the demand exceeds the CHP output.

QEC
t ≥ Iuse

HOB1,t ∗Qnorm
CHP (25)

QEC
t + QHOB

t ≥ Iuse
HOB2,t ∗ (Qnorm

CHP + Qnorm
HOB) (26)

Thermal Energy Storage Unit

The Thermal Energy Storage (TES) system is modeled based on the formulation
proposed by Wang et al. [23]. Upper and lower boundary conditions are defined for the
charging and discharging rates, see Equations (27) and (28). To ensure the availability
of the TES, the stored thermal energy at the end of the schedule period is assumed to be
equal to its initial value, see Equation (29). The energy balance of the system, taking into
account the storage efficiency and the charging and discharging efficiencies, is expressed in
Equation (30). The binary variable z(t) is used to illustrate the TES charging and discharging
operation status, see Equation (31). Equations (32) and (33) express the constraints that the
stored thermal energy must be lower than the maximum storage capacity of the system,
which depends on TES volume and DH supply and return temperatures.

0 ≤ HSchr
t ≤ αchr

t · CapTES
t ∀ t ∈ periods (27)
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0 ≤ HSdis
t ≤ αdis

t · CapTES
t ∀ t ∈ periods (28)

QTES
1 = QTES

end ∀ t ∈ periods (29)

QTES
t = ηTES

s QTES
t−1 + ηTES

chr HSchr
t − HSdis

t /ηTES
dis ∀t ∈ periods (30)

z(t) =

{
1, HSdis

t = 0
0, HSchr

t = 0
∀ t ∈ periods (31)

CapTES
t =

ρVc
3600

{min((Tsupply
t − 5), 98)−

(
Treturn

t + 5
)
} ∀ t ∈ periods (32)

QTES
t ≤ CapTES

t ∀ t ∈ periods (33)

The investment costs for the TES system, including the auxiliary equipment, can be
estimated following [10,24]. Due to limitation of linear programming method, the expo-
nential decay function of specific investment cost should be replaced with piecewise linear
approximation for further use [10]. The specific investment costs curve according to [24],
a piecewise linear function is used to make it compatible with MILP, see in Figure 5.

Figure 5. Investment costs for TES systems: (a) Specific investment cost according to [24]; (b) Cumu-
lative investment cost.

Solar Thermal Collectors Unit

Equations (34) shows how the heating performance of STC can be calculated based
on the collector area, solar irradiance and DHN temperature according to the formulation
from [25].

QSTC
t = A ∗ ((0.839∗ QSR

t − 2.46∗
(

Taver
t − Tambient

t

)

−0.0197 ∗
(

Taver
t − Tambient

t

)2
) ∀ t ∈ periods

(34)

The specific investment costs of ground mounted solar collector field (shown in
Figure 6a) are estimated based on [25]. PLI is also applied, cumulative investment cost see
Figure 6b.

Energy Balance

Equation (35) expresses that the heat demand from the local distribution network must
always be fulfilled for each time interval.

QCHP
t + QHOB

t + QSTC
t + ηTES

dis HSdis
t − HSchr

t ≥ Qdemand
t ∀ t ∈ periods (35)
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Figure 6. Investment costs for STC: (a) Specific investment cost according to [25]; (b) Cumulative
investment cost.

2.3. Decision-Making Method

Figure 7 illustrates the flow chart of the decision-making process used in this study.
The decision-making process is to provide a quantitative evaluation on the system with
several conflicting objectives, to support the Decision makers the most potential solutions
by considering the important criteria [13]. To evaluate performance of the multi-objective
optimization model, a decision-making method combining Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) with Entropy method (EM) is investigated. TOPSIS
is a classic method to find optimal solution within finite objectives [26], while EM aims
at determining the weights of each objective in an automatic way, in order to minimize
man-made error [27]. As illustrated in Figure 7, The TOPSIS-entropy method selects the
solution with the maximal relative quality as the optimal solution.

Figure 7. Flowchart of Decision-making process.

The different steps followed to the TOPSIS-entropy method are as follows [28]:

• Weights calculation:

The first step is matrix normalization, see Equation (36). This ensures that all indicators
are positive and present comparable ranges. Then, standardized value pij and entropy
value of objective ej are calculated using Equations (37) and (38). Finally, weighting values
of the objectives ωj are defined, see Equation (39).

yij =
max

(
xij
)
− xij

max(xij)−min
(
xij
) ∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (36)
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pij =
yij√

∑m
i=1 yij

∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (37)

ej = −
1

ln(m)

m

∑
i=1

pij ln
(

pij
)
∀ j ∈ (1 . . . n) (38)

ωj =
1− ej

∑n
j=1
(
1− ej

) (39)

• TOPSIS method

The weighted matrix used as a basis for the TOPSIS method is described in. Equation
(40) The positive ideal solution V+ and negative ideal solution V− are then determined
using Equations (41) and (42). The distances D+ and D− between any evaluated result and
the two positive and negative solution V+ and V− are calculated using Equations (43) and
(44). Finally, the relative quality Ci is defined to compare the distance between any result
and the two ideal solutions, see Equation (45). The optimal solution corresponds to the
highest value of Ci.

vij = ωij ∗ yij ∀ i ∈ [1 . . . m], i ∈ (1 . . . n) (40)

V+ =
{(

max Vij |j ∈ J1
)
,
(
min Vij |j ∈ J2

)}
∀ i ∈ (1 . . . n) (41)

V− =
{(

min Vij |j ∈ J1
)
,
(
max Vij |j ∈ J2

)}
∀ i ∈ (1 . . . n) (42)

D+ =

√
∑n

j=1 (Vij −Vj
+ )2 ∀ i ∈ (1 . . . n) (43)

D− =

√
∑n

j=1 (Vij −Vj
−)2 ∀ i ∈ (1 . . . m) (44)

Ci =
D−

D+ − D−
∀ i ∈ (1 . . . m) (45)

3. Case Study

In this Section, the proposed optimization framework is applied to a specific case of
hybrid system described in Section 2.1. The considered input data is described in Section 3.1.
Four different scenarios are defined in Section 3.2.

3.1. Input Data

The considered heat demand, ambient temperature, supply and return temperatures
are field data retrieved in 2017 from an existing DH plant located in France. The hourly
market electricity price was imported from EPEX SPOT for the year 2017 [29] and local
climate data of solar radiation were retrieved from PVGIS for the same year [30]. The impact
of the uncertainty on the main parameters will be investigated in Section 4.4.

However, the annual profile with 8760 time steps makes is difficult to solve due
to complexity of optimization model [31–33]. To limit the computational time without
significantly impacting the simulation results [32], the approach of typical periods is used
in this work [33], a full year period was discretized into 12 typical days, each of them being
representative for a month.

Figure 8 shows that the heat demand varies from 1.44 MWth to 16.9 MWth. The average
heat load and heat load variations are larger in the winter. The corresponding supply and
return temperatures range from 75 to 90 °C and from 55 to 75 °C, respectively. The average
electricity price is also slightly higher in the winter, as illustrated in Figure 9. For each
typical day, the heating load peak is observed between 8 and 10 AM and between 8 and
10 PM, while the peak of electricity price is observed between 8 and 9 AM and between 6 and
7 PM. The hourly variations of ambient temperature and solar irradiance are also presented
in Figure 10. The heat collected by the STC was calculated following the methodology of
Schmidt (Ref. [10]). The considered tilt angle of the collector was 40◦.
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Figure 8. Heat Load in: (a) one year; (b) monthly typical days.

Figure 9. Electricity price in: (a) one year; (b) monthly typical days [29].

Figure 10. Hourly variation of ambient temperature and solar irradiance over the year [30].

The considered technical parameters of the heating and the thermal storage systems
are provided in Tables 1 and 2. The related economic parameters, including investment and
maintenance costs, lifetime and startup costs are presented in Table 3. The startup costs
actually vary with the size of the units, but the constant values from [34] were considered
here as they match the considered range of unit size.

CO2 emissions are calculated based on the specific emission factors to the primary
consumption [1]: 350 kg CO2/MWh for coal and 200 kg CO2/MWh for natural gas [35].
The CO2 price in France in 2017 is collected from World Bank Carbon Pricing dashboard
30.5 € per tonne [36]. The fuel costs are assumed constant: 28 €/MWh for Coal and
32 €/MWh for natural gas [34].
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The following assumption were also made on the efficiency of the systems: the effect
of incidence angle was neglected in the design of the STC system and the CHP operation
efficiency was considered constant.

Table 1. Technical parameters of each unit.

Units Capacity Minimum Part
Load Ratio Min Uptime Min

Downtime
Ramp-Up
Rate %/h

Ramp-Down
Rate %/h

Norm
Efficiency

CHP 12 MW 0.3 10 7 30 30 0.883
HOB1 5 MW 0.3 2 2 100 100 0.9
HOB2 5 MW 0.3 2 2 100 100 0.9
TES 0–6000 m3 0 4 4 100 100 -
STC 0–40,000 m2 0 1 1 100 100 -

Table 2. Technical parameters of TES [23].

Unit Charging
Ratio

Discharging
Ratio

Storage Efficiency
per Hour

Charging
Efficiency

Discharging
Efficiency

TES 0.4 0.4 0.998 0.95 0.95

Table 3. Economic data of each unit [34].

Units Investment Cost Maintenance Cost Startup Cost per Time Lifetime

CHP 1154 €/kW 43.2 €/(kW·year) 5000 € 25
HOB 62.9 €/kW 1.26 €/(kW·year) 1290 € 17
TES See Figure 5 - - 25
STC See Figure 6 - - 30

3.2. Scenarios

Different scenarios are investigated in this study to analyze the impact of the inte-
gration of TES and STC systems into the existing CHP system. Scenario 1 covers the
operation of the existing system without the addition of TES nor STC. Both systems are
then considered and optimized in Scenario 2. In Scenarios 3 and 4, the addition of TES or
STC alone is studied. The scenarios are summarized in Table 4.

Table 4. Overview of each Scenario.

Scenario Name CHP HOB1 HOB2 TES STC

1 • • •
2 • • • • •
3 • • • •
4 • • • •

4. Results and Discussion

In this Section, the results of the optimization performed for the 4 Scenarios of the case
study are presented and discussed. In this study, the MILP model implemented in Python
and solved with IBM DOcplex toolbox. Section 4.1 gives the results of the Pareto Frontiers
for all Scenarios. In Section 4.2, the optimal solutions chosen using the TOPSIS-entropy
method are presented. Section 4.3 gives more detailed information on the hourly operation
strategy, and Section 4.4 presents a sensitivity analysis on the main parameters.

4.1. Pareto Frontiers

Figure 11 shows the Pareto frontiers computed for Scenarios 2 to 4 in terms of ATC
and CO2 emissions, expressed relatively to the reference Scenario 1. In Scenario 1, the ATC
is 4380 k€/year and the CO2 emissions are 43,435 ton/year.
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Figure 11. Relative Pareto frontiers for Scenarios relative to Scenario 1.

Considering the addition of TES only (Scenario 3) quickly allows for a reduction of the
system cost (5%) and a moderate reduction of the CO2 emissions (up to 1% less). This is
due to the larger consumption of the produced heat hen heat storage is available (see
Section 4.3). When even lower CO2 emissions must be reached with TES only, the price of
the system however increases very sharp: it becomes higher than the reference cost for CO2
emissions reductions around 7% and increases exponentially afterwards: +30% compared
to the reference scenario for a 10% CO2 emissions reduction.

On the other hand, considering STC only (Scenario 4) immediately leads to a higher
cost, because of the higher price of STC. This system however becomes cheaper than TES
only to reach CO2 emissions reductions larger than 8%, although the cost also increases
very rapidly for larger emission savings.

Figure 11 also shows that, combining TES and STC (Scenario 2) allows decreasing
the ATC while reaching much larger CO2 emissions reduction. The combination of these
systems indeed leads to the valorization of a higher amount of heat collected by the STC
system by storing it and making it available when the demand is high. Parity with the
reference scenario in terms of costs is reached for 12% less CO2 emissions. For even lower
emissions, the cost increase is also significantly reduced compared to TES or STC only:
17% less CO2 is emitted for cost increase of 7%. The installation of the additional equipment
is made more cost-effective by their complementarity.

4.2. TOPSIS-Entropy Method Analysis

The TOPSIS-entropy method was used to choose the optimal solution on the Pareto
frontiers obtained from the MILP optimizations. The weights calculated by the entropy
method for each Scenario are very similar: around 0.54 and 0.46 for ATC and CO2 emissions
respectively. The solutions presenting the maximum relative quality for each Scenario are
given in Table 5 and illustrated on the Pareto frontiers of Figure 11. The results generated
for 12 representative days, see Section 3.1, have been extrapolated to a full year. Compared
to the reference Scenario 1, the identified, optimal solution for Scenario 2 corresponds to a
decrease of both the CO2 emissions (10%) and the ATC (3%), which is an excellent trade-off.
The total efficiency of the system increases from 87% to 92%, while the share of renewable
energy in the system reaches 10%. The optimal solution for TES only (Scenario 3) is selected
before the strong increase of the system cost on the Pareto frontier. The CO2 emissions are
reduced by 5% while the cost is reduced by 4%. When only the STC system is installed
(Scenario 4), the optimal solution is again selected before the strong increase of the cost.
In that case, the cost increases with 2%, for a CO2 emissions reduction of 7%. The ATC is
higher than for Scenario 2 because of the lower proportion of renewable heat that can be
consumed. The addition of TES indeed allows for the displacement of the consumption of
the heat collected by the STC to the periods when the demand is higher.
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Table 5. Optimal solutions by TOPSIS-entropy method for each scenarios.

Scenario
Name TES/m3 STC/m2 CO2

(ton/year)
ATC

(k€/year)
HOB Operation

Hour (h/year)
Total

Efficiency, %
Share of
RES, %

1 - - 43,435 4380 1520 87 0
2 1382 22,399 39,268 4258 730 92 10
3 742 - 41,184 4198 730 88 0
4 - 17,649 40,363 4471 1460 90 7

4.3. Hourly Operation Strategy

In this Section, the hourly operation of the optimal systems selected for the 4 scenarios
during the typical days are presented and discussed. Figure 12 shows the hourly heat
production per system and the hourly operation modes of the CHP on its operational map,
over the 12 typical days in a row. It is obvious that integration of TES and STC significantly
improve system operation flexibility and efficiency.

Figure 12. Cont.
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Figure 12. Hourly heat production for all Scenarios over the 12 typical days in a row: (a) Hourly
Heat production of Scenario 1; (b) CHP operation field of Scenario 1; (c) Hourly Heat production of
Scenario 2; (d) CHP operation field of Scenario 2; (e) Hourly Heat production of Scenario 3; (f) CHP
operation field of Scenario 3; (g) Hourly Heat production of Scenario 4; (h) CHP operation field of
Scenario 4.

First, it can be observed that the TES and the STC systems play an important role in
increasing the system flexibility. The system with TES is more flexible as it can achieve peak
load shaving and load valley filling, which results in a decrease of the HOB operation [10].
The HOB’s are operated up to 52% less when TES is implemented (Scenarios 2 and 3),
as shown in Table 5. In the winter period, the thermal energy supplied by HOB during
peak load time in Scenarios 1 is replaced by TES in Scenarios 2 and 3. During the summer
period, the daytime heat demand is covered by STC in Scenarios 2 and 4. As expected,
the excess heat produced by STC in Scenario 2 is stored in TES and discharged later on
when STC cannot meet the demand.

Secondly, the operational flexibility of the CHP unit is also increased by the integration
of TES and STC. Figure 12 shows that the CHP operates more on the left-hand part of
the A-B line (minimum fuel consumption) in Scenario 2 than in Scenario 1, which helps
increasing the electrical power generation for the same fuel consumption and, hence,
the same CO2 emissions.

The detailed performances of the TES system are also shown in Figure 13. TES enables
the operation of the system associated with electricity prices, to maximize the profits from
selling electricity without affect heat supply safety. Furthermore, TES is more active in the
summer period when used in combination with STC. The optimal TES size in Scenario 2 is
therefore twice larger than for Scenario 3, see Table 5.

4.4. Sensitive Analysis

The input parameters used in the case study above are prone to uncertainty. To assess
the impact of these uncertainties, a sensitivity analysis is carried out for the optimal solution
of Scenario 2, for the following key input parameters [37]: heat demand, carbon price,
electricity price, fuel price and interest rate.

Figure 14 shows the performance of the optimal solutions in terms of ATC, CO2
emissions and size of TES and STC, with the variation of the inputs (±20%). It must be
noted that each of these results corresponds to an optimal solution computed for the new
set of input parameters, and not to the results obtained for the reference optimal solution
for other input parameters.
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Figure 13. Charging or discharging load and heat storage levels of TES over the 12 typical days in a
row: (a) TES charging and discharging load of Scenario 2; (b) TES heat storage levels of Scenario 2;
(c) TES charging and discharging load of Scenario 3; (d) TES heat storage levels of Scenario 3.

Although they affect the optimal sizes of the TES and STC systems, the influence
of economic parameters on the amount of CO2 emitted in the optimal cases is negligible
compared to the influence of the heat demand, see Figure 14a. As far as ATC is concerned
(Figure 14b), heat demand and fuel price have a similar impact: ATC increased by 15% when
the input parameter increases by 20%. The price of electricity exhibits the opposite trend:
the ATC is 12.5% higher when it decreases with 20%, due to the lower revenues from the
CHP unit. The price of CO2 and the interest rate should not be neglected, although they
have a lower impact on ATC.

In terms of impact on the systems design in Figure 14c,d, the TES volume is less
sensitive to the uncertainties on the inputs than the STC area, which significantly varies
with heat demand, fuel price and interest rate. Although this study showed that their
combination with TES can result in a profitable reduction of CO2 emissions, this shows that
economic aspects can be a limiting factor in the implementation of STC.
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Figure 14. Sensitivity of the main results to the variation of key input parameters: (a) CO2 generation;
(b) ATC; (c) TES volume; (d) STC area.

5. Conclusions and Future Work

A framework for the multi-objective optimization of the integration of Solar Thermal
Collectors (STC) and Thermal Energy Storage (TES) systems in existing fossil-fuel based
heat and power production systems was presented. The proposed method was applied
to the representative case of a medium-scale CHP system coupled to a District Heating
network. As a comparison, the integration of TES or STC alone was also considered.

The proposed TOPSIS-entropy method has been proved to be efficient to select the
optimal design in terms of trade-off between cost and CO2 reduction. Our results show
that, while the addition of TES or STC alone results in limited economic and environmental
performances and exhibits a rapid increase of the cost with the targeted CO2 emission
reduction, the optimal combination of TES and STC can lead to a reduction of both the
cost and the CO2 emissions: respectively 3% and 10% in the studied case. For larger
CO2 emissions savings, beyond the optimal trade-off, the additional cost remains limited
compared to the other solutions. The integration of TES and STC also significantly improves
the system flexibility and efficiency. TES allows for peak load shaving and load valley
filling, resulting in up to 52% less operation of peak units. For the optimal design, the total
efficiency of the system increases from 87% to 92%. The share of renewable energy reaches
10% when both TES and STC are integrated, compared to 7% with STC alone.

The operational flexibility of the CHP unit itself is also increased by the integration of
TES and STC, which helps increasing the electrical power generation.
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A sensitivity analysis shows that only the heat demand has a significant impact on
the environmental performance, while both the heat demand and the fuel price have a
significant influence on the economic performances. Furthermore, the optimal TES volume
is less sensitive to the uncertainties on the inputs than the STC surface, that is more impacted
by the economic parameters.

In future works, the same methodology could be applied to the integration of more
renewable energy sources such as heat pumps and power-to-X based on renewable electric-
ity production. The case of a new CHP unit will also be investigated instead of a retrofit,
taking into account the optimal sizing of this unit and the related investment costs. More-
over, the impact of the uncertainties on the input data could be studied using advanced
Uncertainty Quantification and Robust Design techniques.
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Nomenclature

Abbreviations
ATC Annual total cost
CHP Combined heat and power
DES Distributed energy system
DH District heating
EC Extraction condensation steam turbine
HOB Heat-only boiler
MILP Mixed-integer linear programming
RES Renewable energy source
STC Solar thermal collector
TES Thermal energy storage
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
Indices and sets
u Unit index, u ∈ units
t Time index, t ∈ periods
Parameters
Capu Maximum capacity of each unit, MW.
cinv

u Specific investment cost per hour, €/MW.
cinvTES

t Specific investment cost per hour for TES, €/m3.
cinvSTC

t Specific investment cost per hour for STC, €/m2.
au Annuity factor.
Iinv
u Specific Investment cost per unit, €/MW.

IinvTES Specific Investment cost per volume for TES €/m3.
IinvSTC Specific Investment cost per area for STC €/m2.
cM

u,t Specific maintenance cost, €/(MW·h).
cMTES

t Specific maintenance cost for TES, €/(m3·h).
cMSTC

t Specific maintenance cost for STC, €/(m2·h).
c f uel

u,t Fuel cost, €/MWh
SCu Start-up cost per time, €.
CFu Carbon emission factor for each fuel, kg CO2/MWh
Elt Electricity price, €/MWh.
ramp_upu,t Maximum ramp up rate.
ramp_downu,t Maximum ramp down rate.
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PLRlb
u,t Minimum Part load ratio.

PLRub
u,t Maximum Part load ratio.

Qnorm
u Norm Heat capacity, MW.

Qinitial
u Initial generation for each units, MW.

ηEC Total efficiency of EC CHP
ηTES

s Storage efficiency of TES.
ηTES

chr Charging efficiency of TES.
ηTES

dis Discharging efficiency of TES.
Tsupply

t Supply temperature of DH network, K.
Treturn

t Return temperature of DH network, K.
Taver

t Mean panel temperature, K.
Tambient

t Ambient temperature, K.
T0 Reference temperature, K.
TM Average temperature, K.
QSR

t Solar irradiance, MW.
αchr

t Maximum charging ratio of TES.
αdis

t Maximum discharging ratio of TES.
σEC Power to heat ratio of EC CHP.
β Power loss coefficient
yij Value of positive matrix Y.
ej Entropy value of objective
pij Standardized value in normalized matrix P.
J1, J2 Benefit and cost indicators.
ωj Weighting value of the objective
V+ Positive ideal solution
V− Negative ideal solution
Ci Relative quality
Positive Variables
A STC area, m2.
V Thermal storage tank volume, m3.
Cinv Annualization of investment, k€.
CM Maintenance cost, k€.
CO Operation cost, k€.
CapTES

t Maximum storage capacity of TES, MW.
FCu,t Fuel consumption, MW
HSchr

t Thermal energy charging amount at time t, MW.
HSdis

t Thermal energy discharging amount at time t, MW.
PEC

t Power production of EC CHP, MW.
PLREC

t Part load ratio of EC CHP.
Qu,t Heat production, MW.
RS Revenue from selling electricity back into grid, k€.
Binary Variables
δu,t Binary variables, δu,t = 1 when units turn on.
TON

u,t Binary variables of ON status
TOFF

u,t Binary variables of OFF status
Iuse
u,t Binary variables of In_Use status.

zt TES charging/discharging operation status
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Abstract: In this work, a neural super-twisting algorithm is applied to the design of a controller for a
flywheel energy storage system (FESS) emulator. Emulation of the FESS is achieved through driving
a Permanent Magnet Synchronous Machine (PMSM) coupled to a shaft to shaft DC-motor. The
emulation of the FESS is carried out by controlling the velocity of the PMSM in the energy storage
stag and then by controlling the DC-motor velocity in the energy feedback stage, where the plant’s
states of both electrical machines are identified via a neural network. For the neural identification,
a Recurrent Wavelet First-Order Neural Network (RWFONN) is proposed. For the design of the
velocity controller, a super-twisting algorithm is applied by using a sliding surface as the argument;
the latter is designed based on the states of the RWFONN, in combination with the block control
linearization technique to the control of the angular velocity from both machines in their respective
operation stage. The RWFONN is trained online using the filtered error algorithm. Closed-loop
stability analysis is included when assuming boundedness of the synaptic weights. The results
obtained from Matlab/Simulink validate the performance of the proposal in the control of an FESS.

Keywords: wavelet neural network; block control form; filtered error algorithm; neural super-
twisting control; flywheel energy storage system

1. Introduction

For many years, flywheels made of stone or other primitive materials have been
used for the operation of different mechanisms. Currently, there are mechanisms built
from metal flywheels, powered by electric motors, which can work in both motor and
generator mode and whose main function is to store energy in the flywheel; because of this
property, these mechanisms are known as Flywheel Energy Storage Systems (FESSs) [1].
Induction motors and synchronous motors are some types of electrical machines used in
the application of FESSs. For the proper functioning of the electrical grid, it is essential
to have a balance between consumption and supply of electrical energy. Due to its rapid
response of operation, an FESS has the ability to reduce some of the problems caused by
power variations. The control and comparison between different electrical machines used
in FESSs are shown in [2]. The FESSs have been studied by different authors showing
the performance from different control strategies. Furthermore, in several published
works, a complete FESS has been emulated through the use of electric motors where the
main operation of the flywheel is the storage of mechanical energy in a rotating flywheel,
which can then be converted to electrical energy using an electrical machine with power
inverters [3]. An FESS has several advantages in contrast with other energy storage systems,
including long useful life, and an FESS has multiple applications such as in wind generators,
electric vehicles, etc. [4]. In [5], a vector control strategy was presented to emulate a FESS
using a DC permanent magnet machine, where the machine was coupled to a PMSM to
control the angular velocity of the flywheel in the charging and discharging stages. In [6],
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an integral sliding mode controller with a super-twisting algorithm was presented. In that
work, the rotor side converter in the doubly-fed induction generator is used for controlling
a wind generator, where the sliding surfaces are generated such that these are compatible
with the errors in the stator active and reactive powers. In [7], emulation of an FESS using
reconfigurable hardware test-bed of power converters was presented, where the emulation
was carried out to the acceleration, deceleration and standby modes. The flywheel’s model
is described in the dq domain with relations among voltage, current and rotating speed.
In [8], an adaptive control for high-speed FESSs was proposed where the controller has
the task of controlling the DC-link voltage for the FESS and controlling the active power
exchange between the FESS and the grid, whose advantage of inertia emulation is that
the inertia and damping can be altered in real-time. In [9], under the assumption that
all the states are measurable, a sliding mode control system for a 4-quadrant DC–DC
converter was designed. Furthermore, a low voltage prototype for a flywheel application
was constructed.

Recently, a control scheme applied to an FESS for the improvement of the dynamic
performance of the utility grid, based on a PMSM incorporated into a multi-machine system,
was presented in [10]. In that work, the speed and voltages generated were monitored
by the FESS in order to generate the real and reactive power. Such control strategy was
designed against three-phase faults.

On the one hand, considering that the fundamental parts of an energy storage system
are the electric motors, the PMSM is a kind of synchronous motor that features low inertia,
low noise, high power density and high efficiency, simple structure, and easy control.
PMSMs have been used for the control of robotic movements, electric and aerospace
propulsions, etc. [11]. The nonlinear mathematical model of a PMSM is strongly coupled.
In addition, its parameters are not fixed but are kept within an operating range depending
on the work environment. Angular velocity and torque can fluctuate in some parameter
regions [12]. Recently, a feedback technique of dynamic surface control for a chaotic PMSM,
based on nonlinear mappings using neural networks (NNs) to approximate the system
dynamics as well as to estimate the unknown parameters, has been proposed in [13].
In [14], NNs were implemented in a PMSM for the detection of damage or failure in motor
bearings by analyzing mechanical vibrations, comparing different types of NNs and the
effectiveness of failure detection.

On the other hand, DC machines are generators that convert mechanical energy
into DC electrical energy and motors that convert DC electrical energy into mechanical
energy. Most DC machines are similar to alternating current machines in that they have AC
voltages and currents inside them. DC machines have a DC output only because there is a
mechanism that converts internal AC voltages into DC voltages at their terminals; since
this mechanism is called a commutator, DC machinery is also known as a commutator or
commutator machinery [15].

Implementation of the sliding-mode control to DC motors has been studied by differ-
ent authors. In [16], an adaptive neural controller in discrete-time was proposed, where
a NN was used to identify the plant model, using the Kalman extended filter training
algorithm, when applying the block control in sliding mode for angular velocity con-
trol. A speed control scheme for a DC motor, based on state observers of sliding modes,
was presented in [17]. In that work, the state observers estimate the angular velocity
and the load torque; thus, in this way, it was possible to apply the controller, designed
from the application of the exact linearization technique in combination with the super-
twisting control.

The application of super-twisting control has been recently studied in [18], introducing
the control to roll suppression of marine vessels subjected to harmonic wave excitations,
where some of the main control objectives were to reduce the phenomenon of vibration
over dynamic behaviors such as chaos, due to parametric variation.

The main contribution of this work is the proposal of a methodology to emulate a fly-
wheel energy storage system by driving a motor-generator group formed by two machines,
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namely, a PMSM coupled with a DC-motor. The state variables of the system are identified
via recurrent wavelet NNs of first-order trained online by the filtered error algorithm. By
using these NNs, it is possible to involve unmodeled dynamics and parameter variations,
avoiding uncertainty in the machine parameters. The PMSM velocity controller is designed
to emulate the stored kinetic energy of the flywheel, while the DC-motor velocity controller
is used to emulate the energy that is discharged towards the utility grid. Both controllers
are synthesized based on the proposed NN model transformed into the block controllable
form to define a sliding surface that is steered to the origin in finite time by the action of
the super-twisting control algorithm.

This paper is organized as follows. In Section 2, the mathematical background is
presented, which is related to the kinetic energy storage, identification of the nonlinear
system via recurrent wavelet first order neural network (RWFONN) using the filtered
error training algorithm, and the super-twisting control algorithm; Section 3 presents the
proposed methodology, where the procedures of charge/discharge are explained in detail;
in Section 4, the simulation results are shown, from which the proposed methodology is
validated; some important discussions are presented in Section 5; conclusion and some
remarks about the application of the Neural Super-Twisting Control (NSTC) are drawn
in Section 6. Furthermore, in Appendices A and B, the boundedness of the identification
error and the complete closed-loop stability analysis are shown, respectively.

2. Mathematical Background

This section describes the energy storage in an FESS, the nonlinear mathematical
representation of a permanent magnet synchronous motor and a DC-motor, the mathe-
matical model of the dynamic behavior for an RWFONN and summarizes the filtered
error algorithm, the block control linearization technique, and the super-twisting control
algorithm.

2.1. FESS

The main function of FESSs is to store rotational kinetic energy, which can then be
converted into electrical energy by means of an electric machine. In order to generate
rotational kinetic energy, the flywheel must be driven by an electric machine that meets the
requirement of operating in both motor and generator mode, allowing to convert rotational
kinetic energy into electric energy and vice versa [4]. The main components from an FESS
are the steering wheel, a vacuum containment to avoid loss by air friction, magnetic or
metallic bearings, an electric machine capable of operating in both operation modes, i.e.,
motor and generator mode, and a three-phase converter to connect the FESS with the
utility-grid [1]. The kinetic energy stored in the flywheel can be approximated by the
following equation [19]

Ek =
1
2

Jmω2
m, (1)

where Ek is the stored kinetic energy in J, Jm is the inertial moment in N·m·s2, and ωm is the
rated angular velocity in rad/s. In order to emulate the FESS deceleration, it is considered
the next equation

d
dt

ωm =
−Bmωm

Jm
, (2)

which defines the mechanical behavior of the flywheel when the energy is delivered to the
utility grid [20], with Bm the frictional coefficient in N·m·s.

2.2. Nonlinear Systems

A class of nonlinear multi-input/multi-output system given in the general form

χ̇ = f(χ, t) + B(χ, t)u + g(χ, t) (3)
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where χ ∈ X ⊂ Rn is the state vector of the system, f(χ, t) is the nonlinear system function
vector; u ∈ U ⊂ Rm is the control input vector, B(χ, t) is a non-singular matrix that
characterizes the system, and g(χ, t) is a smooth function vector that represents external
disturbances and parametric variations. It must be noticed that in the present work, both
PMSM and DC-motor mathematical models match with that given in the general form (3).
It is important to mention that due to the purpose of this work, these mathematical models
are not shown here.

2.3. RWFONN

First-order NNs are used for system identification as well as to design neural con-
trollers for some electrical, mechanical or electromechanical systems. A novel neural
identification scheme, namely a Recurrent Morlet Wavelet Neural Network (RMWNN) also
known as RWFONN, based on a recurrent high-order neural network (RHONN) structure
was proposed in [21]. In the NN propose in this work, the classical sigmoid activation
function has been replaced by a Morlet wavelet function. The general structure from an
RWFONN is given by [22]

ẋi
j = −ai

jx
i
j + (wi

jk)
>ψi

jk (4)

where xi
j is the state of the i-th neuron, ai

j > 0 for i = 1, 2, . . ., n is part of the underlying

network architecture and it is fixed during the training process, wi
jk is the k-th adjustable

synaptic weight connecting the j-th state to the i-th neuron, and ψi
jk is a Morlet wavelet

activation function. The dynamic behavior of the whole neural network can be described
by expressing Equation (4) in the vector notation

ẋ =Ax + w>ψ, (5)

where x =
[

x1
j x2

j . . . xn
j

]>
∈ Rn is the state vector of the NN, w =

[
w1

j w2
j . . . wn

j

]>
∈ RL×n

is the synaptic weights vector, with L representing the total number of weights used to iden-
tify the plant behavior, A = diag

[
−a1

j − a2
j . . . − an

j

]
∈ Rn×n is the parameter (Hurwitz)

matrix, and ψ is the regressor vector. In this work, ψ(χ) = e(−χ2/β)cos(λχ) is the Morlet
wavelet function used here as the activation function where χ is the state from the plant
(Equation (3)) and the parameters β, λ are the expansion and dilation terms [22], re-
spectively. Thus, the nonlinear system (3) is identified online by using an RWFONN
(Equation (5)), where the synaptic weights vector w is adjusted via a filtered error algo-
rithm.

2.4. Filtered Error Training Algorithm

For the application of the filtered error algorithm, this study begins under the as-
sumption of an unknown system (3), which can be modeled (identified) by using an
RWFONN structure (5). The synaptic weights are adjusted according to the following
update law [23,24]

ẇi
jk = −Γi

jkψi
jkξ i

jk, (6)

where Γ ∈ RL×L is a definite positive gain matrix, ψ is the Morlet wavelet activation
function, and ξ is the identification error, i.e., the difference between the states from the
RWFONN (Equation (5)) and those from the plant (3), namely, ξ i

j = xi
j− χi

j. The update law
(Equation (6)) corresponds to the filtered error training algorithm [23]. Since the RWFONN
is given in a generalized way from the structure for a RHONN, the following theorem
establishes that identification and parametric errors for the RWFONN are bounded.

Theorem 1. Consider the RWFONN model whose weights are adjustable according to Equation (6)
for each i = 1, 2, . . ., n;
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1. ξi
j, wi

j∈ L∞ (i.e., ξ i
j and wi

j are uniformly bounded);
2. limt→∞ ξi(t) = 0.

Proof. See [24,25].

Appendix A presents the boundedness of the identification error ξ i
j given by the

synaptic weights wi
j.

2.5. Nonlinear Block Controllable Form

One of the main characteristics of the block control linearization technique is to
transform a nonlinear system into an equivalent form expressed by first-order subsystems
consisting of r blocks, which can be solved independently one from each other. Such
equivalent form is commonly known as the block controlled form whose representation is
described by [26]

ẋ1 = f1(x1, t) + B1(x1, t)x2 + g1(x1, t),

ẋî = fî(x̄î, t) + Bî(x̄î, t)xî+1 + gî(x̄î, t), î = 2, . . .., r− 1,

ẋr = fr(x̄r, t) + Br(x̄r, t)u + gr(x̄r, t),

(7)

where f(x, t) is a smooth and bounded mapping, x = [x1 x2. . . xr]
> is the state vector

decomposed, x̄î =
[
x1 . . . xî

]>, for î = 2, . . ., r, xî is a nî × 1 vector, and the subscripts
(n1, n2, . . ., nr) define the structure of the system. The matrix Bî, since the fictitious xî+1
for each î-th block has full rank, rank(Bî) = nî, ∀x ∈ X ⊂ Rn and t ∈ [0, ∞], î = 1, . . ., r.
Therefore, in this work, the block control technique is applied to the NN structure (5) to
define a sliding surface, which is the argument of the super-twisting controller.

2.6. Super-Twisting Control Algorithm

The first-order sliding mode has long been used as a robust control technique to
cancel nonlinear terms and uncertainties due to external disturbances in a system, but its
main disadvantage is the presence of the chattering effect, which induces vibrations in
the controlled system. In order to reduce the chattering effect, high-order sliding modes
have been used. A particular case is the super-twisting algorithm (STA), which has been
playing a very important role in sliding mode controllers. The super-twisting control
(STC) algorithm of second-order can be applied to systems where the control appears
in the first derivative of the sliding surface. The application of the STC allows to cancel
perturbations and nonlinearities, forcing the sliding surface toward zero in finite time.
Furthermore, the states that define the sliding surface are directed to zero with asymptotic
motion. The dynamics of the sliding surface are known as sliding mode movement, and it
is characterized by being a reduced-order system [27,28].

The sliding surface for the NSTC is defined from the nonlinear system once the latter
resembles the block controllable form (7) for the variable on which the control input of the
system appears. Therefore, the sliding surface is [29]

s = xr, (8)

where the dynamics of the sliding surface (Equation (8)), involving the STC algorithm and
the system (7), take the form

ṡ = fr(x̄r, t)− Br(x̄r, t)(λs|s|
1
2 sign(s) + us) + gr(x̄r, t),

u̇s = αs sign(s),
(9)
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with λs =

[
λs11 0

0 λs22

]
and αs =

[
αs11 0

0 αs22

]
diagonal matrices. Then, the super-twisting

control law provides finite-time convergence to zero, simultaneously s and ṡ, where the
term λs|s|

1
2 sign(s) commutes its gain at high frequency for giving robustness to annul the

nonlinearities fr(x̄r, t), and to cancel the external disturbances gr(x̄r, t), while the term us
reduces the chattering effect and the steady state error [28].

In order to ensure the stability of the system with the super-twisting control law
(Equation (9)), the control matrix gains λ and α are holding to the following restrictions:

ki > 2δi, ki >
1
2

k2
i (δi − ki)

ki − 2δi
(10)

where the disturbance norm is defined as |fr(x̄r, t) + gr(x̄r, t)| = δ|s|1/2, for δ > 0. The
inequalities in Equation (10) are defined in the stability analysis presented in Appendix B.

3. Proposed Methodology

This section describes the procedure for emulating the FESS through a group motor-
generator formed by two electrical machines mechanically coupled. The angular velocity
of the PMSM, when it is working in motor mode, is controlled in order to emulate the
storing of energy, whereas the velocity for the DC-machine is controlled emulating the
discharge of the flywheel where the PMSM is now working in generator mode. The FESS’s
emulator scheme is shown in Figure 1. The procedure followed to the emulation of the
FESS is explained next:

• The charging procedure (storing kinetic energy in the flywheel). This procedure
consists of the PMSM in the dq coordinate frame [30] working in motor mode to the
control the angular velocity through the RWFONN using the block control lineariza-
tion technique. In this scenario, the kinetic energy is stored in the flywheel (dotted
red block in Figure 1);

• Discharging procedure (releasing energy). In this stage, the stored energy is now
transferred to the PMSM working in generator mode. This scenario is considered in
the case when there exists an electrical failure in the utility grid or when the flywheel
is required to compensate with active power to the utility grid to solve a problem of
the power management office, and the velocity controller for the DC-motor emulates
the deceleration of the flywheel through the use of Equation (2). The flywheel energy
discharge is emulated by the DC-machine (dotted blue block in Figure 1).

In this work, the sliding surface defined in Equation (8) is designed through the
transformation of the RWFONN to the block controllable form involving the dynamics
of the tracking error, such that this transformation resembles the structure described in
Equation (7). By applying the super-twisting algorithm to the system (7) and using the
RWFONN (Equation (5)), trained with the filtered error halgorithm (6), the result is the
NSTC system, which is uniformly ultimately bounded (UUB). The stability proof is carried
out in Appendix B.

Note that from Figure 1, the dotted blue block contains the motor-side converter gray
block, where such block represents a future real-time implementation, while the dotted red
block contains the gray blocks of the SVPWM and 3-phase inverter, which also represent a
future real-time implementation.
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Figure 1. FESS’s emulator scheme.

Additionally, Figure 2 shows a general flowchart of the proposed algorithm applied
to the control of both electrical machines, namely, the PMSM and the DC-motor. Both
identification and control processes are indicated separately. Note that in this figure, there
are particular notations for the PMSM (ξi, x1, u1s, and ε1) and for the DC-motor (ξidc, x1dc,
usdc, and ζ1). The particular notations and the processes of identification and control will
be explained in the following subsections.

Figure 2. General flowchart of the proposed control algorithm.

3.1. Flywheel Storage System

In this section, the mathematical analysis of the stored kinetic energy from the flywheel,
emulated by the DC-motor, is developed. Under the assumption that the mass is uniformly
distributed and the axis of rotation passes through the mass center, the mass moment of
inertia for a solid disk is given by [31]

Jm =
1
2

mr2, (11)
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where Jm is the mass moment of inertia and m, r are the mass and radius of the disk,
respectively. Then, for the numerical calculation of the mass moment of inertia of the disk,
when considering m = 2 kg and r = 0.3 m, Equation (11) yields

Jm = 0.09 kg ·m2. (12)

Now, the kinetic energy storage equation is calculated when substituting Equation (12)
into (1). Therefore, considering the angular velocity as ωm = 130 rad/s, the energy stored
in the flywheel results

Ek = 760.5 J (13)

when considering that the deceleration caused by the kinetic energy stored in the flywheel
is emulated by the DC-motor and its drive. To calculate the deceleration of the emulated
flywheel, from the knowledge of the mass moment of inertia in Equation (12), replacing Jm
in Equation (2), it is then possible to calculate the reference angular velocity ωmre f for the
DC-motor and, consequently, to be able to apply the NSTC.

3.2. Nonlinear Identification and NSTC Applied to PMSM

To convert the electrical energy applied to the PMSM into kinetic energy, the PMSM is
activated in motor mode with the inputs vd and vq. In the following subsections, the neural
identification and the NSTC applied to the PMSM in motor mode are presented.

3.2.1. PMSM Neural Identification

In this work, the mathematical model of the PMSM is taken from [30], which consists
of a third order nonlinear system given in the general form (3), which is modeled in a dq
coordinated frame rotating at the rotor velocity. Then, the RWFONN with structure (5),
proposed to identify the dynamic system of the PMSM mathematical model, is defined as

ẋ1 =− a1x1 + b1w1ψ1(χ1) + x2 + x3,

ẋ2 =− a2x2 + b2w2ψ2(χ2) + vd,

ẋ3 =− a3x3 + b3w3ψ3(χ3) + vq,

(14)

where the RWFONN’s states x1, x2, and x3 identify the states ωr = χ1 (angular velocity),
id = χ2 (d-current), and iq = χ3 (q-current) from the PMSM, respectively. a1, a2, a3, b1,
b2, and b3 are positive fixed parameters; w1, w2, w3 are the synaptic weights; ψ1(χ1) =

e(−χ2
1/β1)cos(λ1χ1), ψ2(χ2) = e(−χ2

2/β2)cos(λ2χ2), and ψ3(χ3) = e(−χ2
3/β3)cos(λ3χ3) are

Morlet wavelet activation functions. The RWFONN’s inputs are the same as PMSM, vd
and vq. The filtered error algorithm used for training the RWFONN (Equation (14)) is
performed as w1 = γ1ψ1(χ1)ξ1, w2 = γ2ψ2(χ2)ξ2 and w3 = γ3ψ3(χ3)ξ3, with γ1, γ2,
γ3 adjustable parameters, where ξ1 = x1 − χ1, ξ2 = x2 − χ2 and ξ3 = x3 − χ3 are the
respective identification errors. According to Equation (5), i = j = k = 1, 2, 3.

It should be noticed that the proposed structure (14) has only one neuron for each
state, which represents a low computational burden in contrast with that from structures
for high-order neural networks (HONNs). The parameters from the PMSM mathematical
model are mentioned in [30], and the values are shown in Table 1 [32].

3.2.2. NSTC Application to PMSM

In order to control the angular velocity ωr of the PMSM, a first step toward that goal
consists of transforming the RWFONN (Equation (14)) into the form (7) by using a recursive
transformation of the tracking error εi [29]. For this, the structure of the system (14) is
rewritten in the vector form

ẋ1 =− a1x1 + b1w1ψ1(χ1) + a1x2,

ẋ2 =A2x2 + A3b1 + B2v,
(15)
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with a1 =
[
1 1

]
, A2 =

[−a2 0
0 −a3

]
, A3 =

[
b2w2ψ2(χ2) 0

0 b3w3ψ3(χ3)

]
, b1 =

[
1 1

]>,

B2 =

[
1 0
0 1

]
, x2 =

[
x2 x3

]>, and v =
[
vd vq

]>. Now, by applying the recursive

transformation to the structure (15) to resemble it into the block control form, the tracking
error ε1 is defined by

ε1 =ωrre f − x1, (16)

where ωrre f is the reference angular velocity to the PMSM, and x1 represents the state of
the neural network (15). Therefore, the tracking error dynamics are given as

ε̇1 =ω̇rre f − ẋ1. (17)

Table 1. Values and parameters of PMSM [32] and DC-motor [33].

PMSM Parameters Value

Stator Resistance R 1.4 Ω
Inductance Ld 6.6 mH
Inductance Lq 5.8 mH

Inertial Moment J 0.00176 kg·m2

Damping Coefficient B 0.00038818 N·m ·s/rad
Flux Linkage λa f 0.1546 V·s/rad

Pair Poles P 3

DC-motor Nameplate Data and Parameters Value

Field Voltage 120 V
Field Current 0.5 A

Armature Voltage 120 V
Armature Current 3.0 A

Rotor Velocity 1750 rpm
Armature Resistance Ra 12.5 Ω
Armature Inductance La 0.075 H

Motor Constant Km 2.602
Inertial Moment Jm 0.0036 N·m·s2

Frictional Coefficient Bm 0.002 N·m·s

Substituting ẋ1 Equation (15) into (17), and assigning the desired dynamics k1ε1,
it yields

ε̇1 =ω̇rre f − (−a1x1 + b1w1ψ1(χ1) + a1x2) = −k1ε1, (18)

where k1 is adjusted to vanish the tracking error. In this way, it is possible to synthesize a
control law through the vector state x2, where the reference vector is defined as

x2re f = apinv
1 [ω̇rre f + a1ωrre f − a1ε1 − b1w1ψ1(χ1) + k1ε1], (19)

where the superscript “pinv” denotes the pseudo-inverse. Furthermore, the second error
in vector form is defined as

ε2 = x2re f − x2 (20)

with dynamics

ε̇2 =ẋ2re f − ẋ2. (21)
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Substituting Equation (15) into (21) yields

ε̇2 =ẋ2re f −A2x2re f + A2ε2 −A3b1 − B2v. (22)

Moreover, using Equations (18) and (22), the representation in the block control form
from Equation (15), in terms of the tracking error εi, is obtained as

ε̇1 =− k1ε1 + a1ε2,

ε̇2 =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2v,

(23)

Furthermore, defining the sliding surface s = ε2, with the relative degree from
Equation (23) equals to 1, and applying the NSTC Equation (9) in (23) results

ε̇1 =− k1ε1 + a1ε2,

ε̇2 =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2(λs|s|

1
2 sign(s) + u1s),

(24)

where u1s represents the control vector. Note that in Equation (23), the control input vector
v =

[
vd vq

]> is replaced by the STC resulting Equation (24) under the fact that the tracking
error variables ε1 and ε2 are decoupled. This latter will guarantee that the tracking errors
be steered to zero in finite time. From Equation (24), selecting the sliding surface s = x2
arises the system given by [29]

ṡ =apinv
1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]

−A2

(
apinv

1 [ω̈rre f + a1ω̇rre f − b1w1ψ1(χ1)]
)

+ 0.5
[

a1k1 − k2
1 + a1a2k1 − a2k2

1
a1k1 − k2

1 + a1a3k1 − a3k2
1

]
ε1 + A2ε2 −A3b1 − B2(λs|s|

1
2 sign(s) + u1s),

u̇1s =αs sign(s).

(25)

where Equation (25) is the NSTC applied to the PMSM through the RWFONN structure.

3.3. Nonlinear Identification and NSTC Applied to DC-Motor

In order to convert the kinetic energy stored by the flywheel into electrical energy,
the PMSM must be operated in generator mode. The discharge of the kinetic energy is
controlled by the angular velocity of the DC-motor, this can be achieved by decelerating
the angular velocity taking into account the reference velocity generated by Equation (2).

3.3.1. DC-Motor Neural Identification

The mathematical model of the DC-motor is taken from [16], which consists of a
three state nonlinear system with structure (3). Note that due to the linearity between the
effective field current and its constant magnetizing flux, the mathematical model of the
DC-motor becomes a linear system of two differential equations. Therefore, the RWFONN
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here proposed, following the structure (5), to identify the dynamics of the DC-motor
mathematical model is defined as

ẋ1dc =− a1dcx1dc + b1dcw1dcψ1dc(χ1dc) + x2dc,

ẋ2dc =− a2dcx2dc + b2dcw2dcψ2dc(χ2dc) + uadc,
(26)

where the RWFONN’s states x1dc and x2dc identify the states ωm = χ1dc (angular velocity)
and ia = χ2dc (armature current) from the DC-motor, respectively. a1dc, a2dc, b1dc, and b2dc
are positive constant parameters; w1dc and w2dc are the synaptic weights; ψ1dc(χ1dc) =

e(−χ2
1dc/β1dc)cos(λ1dcχ1dc) and ψ2dc(χ2dc) = e(−χ2

2dc/β2dc)cos(λ2dcχ2dc) are Morlet wavelet
activation functions. The RWFONN’s input uadc is the same as ua (armature voltage) to
the DC-motor. The filtered error algorithm used for training the RWFONN (Equation (26))
is performed through w1dc = γ1dcψ1dc(χ1dc)ξ1dc and w2dc = γ2dcψ2dc(χ2dc)ξ2dc with γ1dc,
γ2dc adjustable parameters, and ξ1dc = x1dc − χ1dc, ξ2dc = x2dc − χ2dc are the respective
identification errors. From Equation (5), i = j = k = 1, 2.

It must be noticed that the proposed RWFONN (Equation (26)) has only one neuron
for each state, in a similar way as in Equation (14), which represents a low computational
burden in contrast with HONN. The parameters of the DC-motor mathematical model are
mentioned in [16], whose values are shown in Table 1.

3.3.2. NSTC Application to DC-Motor

By following the methodology as that in Section 3.2.2, the recursive transformation is
now applied to the structure (26), where the generation of the tracking error ζ1 is defined by

ζ1 = ωmre f − x1dc (27)

where ωmre f represents the reference angular velocity of the DC-motor and x1dc is the state
variable from Equation (26). The dynamics of the tracking error ζ1 is given by

ζ̇1 = ω̇mre f − ẋ1dc. (28)

By substituting Equation (26) into (28) yields

ζ̇1 =ω̇mre f − (−a1dcx1dc + b1dcw1dcψ1dc(χ1dc) + x2dc) = −k1dcζ1, (29)

where k1dcζ1 constitutes the desired dynamics to vanish the tracking error. In this way, it is
possible to synthesize a control law through the state x2dc, so, to such an end consider

x2dcre f =ω̇mre f + a1dcωmre f − a1dcζ1 − b1dcw1dcψ1dc(χ1dc) + k1dcζ1. (30)

Furthermore, the second error is defined as

ζ2 = x2dcre f − x2dc, (31)

with error dynamics

ζ̇2 = ẋ2dcre f − ẋ2dc. (32)

By substituting Equation (26) in (32) it yields

ζ̇2 = ẋ2dcre f − (−a2dcx2dc + b2dcw2dcψ2dc(χ2dc) + uadc). (33)
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Moreover, using Equations (29) and (33), the block control form for Equation (26) is
defined as

ζ̇1 =− k1dcζ1 + ζ2,

ζ̇2 =ẋ2dcre f + a2dcx2dc − b2dcw2dcψ2dc(χ2dc)− uadc.
(34)

Thus, based on the error dynamics ζi, the Equation (34) represents the block control
transformation with structure (26). Furthermore, from the system (26) with relative degree
equals to 1, the NSTC is given by

ζ̇1 =− k1dcζ1 + ζ2,

ζ̇2 =ω̈mre f + (−a1dc + a2dc)ω̇mre f + (a1dca2dc)ωmre f

− (a1dck1dc + k2
1 + a1dca2dc − a2dck1dc)ζ1 − a2dcζ2 − a2dcb1dcw1dcψ1dc(χ1dc)−

b2dcw2dcψ2dc(χ2dc)− (λsdc|sdc|
1
2 sign(sdc) + usdc)

(35)

It should be noticed from Equation (35), regarding the tracking error variables ζ1 and
ζ2, that the control input usdc = uadc guarantees that these errors will be steered to zero in
finite time.

4. Simulation Results

This work presents the simulation results of the NSTC for controlling the angular
velocity of a PMSM and a DC-motor to emulate an FESS. The angular velocity of the PMSM
is controlled to store kinetic energy in the flywheel, meanwhile the angular velocity of the
DC-machine is controlled to emulate the deceleration of the flywheel by transferring kinetic
energy to the PMSM working in generator mode, where it is converted into electrical energy
and delivered to the utility grid. The used parameters of the motors are shown in Table 1.
The simulation was performed using Matlab/Simulink (MatlabTM) with a Runge–Kutta
solver and a step size of 100 µs.

4.1. Neural Identification

This subsection presents the simulation results of the neural identification of the PMSM
state variables, as well as the DC-motor state variables using the RWFONN structure.

4.1.1. PMSM States Identification

For the neural identification of the PMSM states, the parameter values are: a1 = 6000,
a2 = a3 = 4000 and b1 = 6000, b2 = b3 = 4000; the parameters for the Morlet Wavelet
activation functions are: β1 = 75 × 103, β2 = 22 × 103, β3 = 35 × 103, λ1 = λ2 =
λ3 = 0.001; the parameters of the filtered error are: γ1 = γ2 = γ3 = 855× 102. In
Figures 3–5, the neuronal identification of the PMSM states is shown, where, in Figure 3
the identification of the angular velocity is the red dashed line that represents the angular
velocity of the PMSM (ωr) and the blue continuous line represents the state of RWFONN
(x1). In order to show the convergence of these results, the initial conditions are given as:
ωr = 0 and x1 = −1. Note that in the detail of the figure, the identification convergence is
given in 0.0002 s, approximately. The transient is shown when the PMSM is started in the
energy storage, where the velocity response has a settling time of 0.15 s, approximately.

The identification of current id is presented in Figure 4, where the red dashed line
represents the current of the PMSM (id) and the blue continuous line represents the state of
RWFONN (x2); the initial conditions are given as: id = 0 and x2 = 0.5. The identification
convergence is given in 0.0003 s approximately, as is shown in the detail of the Figure 4.
In the transient response, the inrush current id achieves a maximum value of the 132 A
with an oscillation frequency of 0.0014 Hz. As it is shown, the identification process is
effectively realized.

In Figure 5 the identification of current q is shown, where the red dashed line repre-
sents the current iq of the PMSM, and the blue continuous line represents the state of the
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RWFONN (x3), and where the initial conditions are given as: iq = 0 and x3 = −0.5. The
identification convergence is given in 0.0003 s, approximately. Figure 5 shows the transient
when the PMSM is started, and in the process of energy storage, the inrush current iq
achieves a maximum value of the 153 A with an oscillation frequency of 0.0489 Hz. In the
transient, the identification procedure is more demanding and is effectively realized.
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Figure 3. Angular velocity and neural identification behavior: ωr and x1.
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Figure 4. Current and neural identification behavior: id and x2.
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Figure 5. Current and neural identification behavior: iq and x3.

4.1.2. DC-motor States Identification

In this section, the neuronal identification of the DC-motor states is carried out, where
the values of the parameters used in the RWFONN are defined as follows: a1dc = a2dc =
6000 and b1dc = b2dc = 6000; the parameters for the Morlet Wavelet activation functions
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are: β1dc = 85× 103, β2dc = 75× 103, λ1dc = 0.001, λ2dc = 0.01; the parameters of the
filtered error are: γ1dc = γ2dc = 855× 102.

In Figure 6, the neural identification of the angular velocity of the DC-motor is shown.
In this figure, ωm is a state variable of the motor, and x1dc is a state variable of the NN. As
it can be seen in the detail of the figure, the NN identifies the state of the motor with a
convergence time of 0.0003 s. The initial conditions are: ωm = 0 and x1dc = 1. The figure
shows the transient when the DC-motor is starting. The velocity response in the transient
has an overshoot of 1.13% and a settling time of 0.05 s.
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Figure 6. Angular velocity and neural identification behavior: ωm and x1dc.

Figure 7 shows the neural identification of the armature current of DC-motor, where
ia is the current of the motor and x2dc is the state of the network; the initial conditions are:
ia = 0 and x2dc = 0.5, and obtaining the neural identification with a time of convergence
0.0004 s, approximately. In this figure, the transient presents the typical inrush current of a
DC-motor when it is fed with nominal voltage. The current has a maximum value of 21.7 A
and achieves the steady-state value of 0.53 A at 0.08 s.
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Figure 7. Armature current and neural identification behavior: ia and x2dc.

In order to make a comparison of the performance of the RWFONN used in this
work, numerical simulation results about the identification process from both Recurrent
Sigmoid First-Order Neural Network (RSFONN) and RHONN have been obtained. This
comparison consists of using the RHONN and RSFONN structures, instead of that for the
RWFONN, to the dynamics identification of the plant, training them via a filtered error
algorithm. Then, from the data obtained by the identification process, the root mean square
(RMS) error is computed, which represents the difference between the actual state and the
estimated state when using approaches with different NNs. The comparison is made by
estimating the states from both PMSM and DC-motor, where Tables 2 and 3 show the RMS
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for each state from both motors, respectively. It can be seen in Table 2 that the lowest RMS
values (bold values) are for ωr and id from the RSFONN and for iq from the RHONN. In
Table 3, the results show that the lowest RMS values (bold values) are for ωm from the
RSFONN and for ia from the RWFONN.

Table 2. RMS error for PMSM.

Neural Network Structure ωr id iq

RWFONN 0.1496 0.0311 0.0263
RSFONN 0.0105 0.0015 0.0286
RHONN 0.0386 0.0032 0.0128

Table 3. RMS error for DC-motor.

Neural Network Structure ωm ia

RWFONN 0.0018 0.00004
RSFONN 0.0004 0.00005
RHONN 0.0206 0.0009

Even when different NNs obtain the lowest RMS in the identification process, there
are different reasons to consider when choosing the NN structure. Such is the case with the
RWFONN, having a very single structure, for which it is easy to apply the STA, contrary
to the case with the RHONN or even the RSFONN. Another important thing is that the
computational burden is lower for simple structures such as the RWFONN but not for the
RHONN or when increasing the high-order terms of the latter.

4.2. PMSM and DC-motor Controller-Emulation of Flywheel

In this subsection, the NSTC for PMSM and a DC-motor controller for emulating the
complete system of the flywheel are presented. For the case of the PMSM, the controller is
designed to control the angular velocity (ωm) indirectly through the states of the NN, where
the parameters and gains for the NSTC of PMSM are defined as: k1 = 8000, λ1s = 0.1,
λ2s = 2.5, and α1s = 0.1, α2s = 2.5.

In Figure 8, the behavior of the PMSM in motor and generator modes is shown. In the
case of motor mode, the velocity tracking performances from 0 to 10 and from 30 to 52 s are
shown, where the blue dashed line represents ωrre f , and black continuous line is ωm. In this
time, the tracking is to ωrre f = 130 rad/s, and there is kinetic energy storage during this
operation mode. A detail of the transient is shown where a fast convergence can be seen.
Due to consideration of a grid failure, the case of PMSM as a generator mode is plotted
during the period of time from 10 to 30 and from 52 to 70 s. In this time, the deceleration of
the flywheel is emulated by controlling the angular velocity of the DC-motor (see Figure 9
on the sign named Discharge of flywheel) and in this figure, the velocity reference ωmre f
(blue dashed line) is described by Equation (2) and meanwhile, ωm is the gray continuous
line; a detail is shown in the middle of the figure where the very good results of the tracking
can be noted. To ensure the NSTC of the DC-motor, the parameters and gains are defined
as: k1dc = 8000, λsdc = 3 and αsdc = 3.
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Figure 8. PMSM velocity tracking to emulate the energy storage.
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Figure 9. DC-motor velocity tracking to emulate the flywheel deceleration.

Figure 10 shows the PMSM velocity controller performance, where tracking velocity
error ε1 (Figure 10a) is steered to zero effectively by the super-twisting control law vq
(Figure 10a). Note that the transient response at 30 s corresponds to the change from the
generator to motor mode. The error diminishes to zero in 0.015 s, as can be seen in the
detail of Figure 10a.

Figure 11 shows the DC-motor velocity controller performance. Figure 11a displays
the tracking error signal in the intervals (10–30 s) and (52–70 s), which is steered to zero
in finite time by the action of the super-twisting control law shown in Figure 11b. When
the tracking error is zero, then the velocity control of the DC-motor is achieved, and the
control goal is fulfilled, which consists of emulating the deceleration of the flywheel.

4.3. Power Delivery

In Figure 12, the kinetic energy stored in the flywheel is shown from 0 to 10 s and from
30 to 52 s due to the fact that PMSM is in motor mode, generating 760.5 J in steady-state.
From 10 to 30 s and from 52 to 70 s, the PMSM is in generator mode, and it shows the
discharge of the energy when considering a fault in the utility grid or when the flywheel
is required to compensate for the utility grid with active power to solve a problem of the
electrical office.
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Figure 10. PMSM velocity controller performance: (a) velocity error ε1, (b) control signal vq.
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(10–30 and 52–70 s).
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Figure 12. Storage and discharge kinetic energy.

5. Discussion

There exists a variety of three-phase electrical machines that can be implemented in
an FESS, such as wound squirrel cage [34] and doubly-fed asynchronous machines [35].
In this work, we used the PMSM to emulate a flywheel storage system because, based
on the literature, the small and medium capacity applications of the flywheels make it
more convenient to use the PMSM since it is more efficient and less difficult to control.
The doubly-fed induction generator is used more in large capacities because the control
is carried out by the rotor circuit, where the power flow is proportional to the slip of the
machine. Consequently, the electronic power drive is of lower capacity, near 30% of the
flywheel capacity, which allows a considerable economic saving in the converter.

This proposal can be extended to other applications in energy storage systems such
as power compensators in wind generators as well as wind diesel power systems, electric
vehicles, direct electrical grid applications, i.e., applications where it is possible to involve
charge/discharge cycles.

Regarding the advantages, this work can be used as a general methodology where
it is possible to work as a motor/generator, such as wound squirrel cage, doubly fed
asynchronous machines, and of course the PMSM. It is clear that this is possible by making
the corresponding changes for the mathematical model of the machine to be used, which
all depends on the range of speeds that it is going to operate at, and taking advantage of
the benefits offered by the material with which the machine is built (low-speed FESS, or
high-speed FESS [35]), and the particular features (electrical, mechanical) of the three-phase
machine, etc. It is possible to control nonlinear and linear systems using the NSTC based
on RWFONNs trained via a filtered error algorithm. These plants to be controlled are
considered unknown regarding the parameters, and only the state-space variables are
measured. This work can be extended to other three-phase machines, such as doubly fed
asynchronous machines or wound squirrel cage motors.

The main limitation is that this work is an emulated system in simulation, and even
when different real scenarios are considered, a real system will always show all the benefits
of the proposal. Furthermore, this work is limited by the structure of the RWFONN, as
even when the obtained numerical results are good, the computational process can be
degraded.

The following interpretation of the results are made: the identification (Figures 3–7)
results offer a good approximation of the plants by the RWFONN, and the filtered error
algorithm that causes the tracking results in Figures 8 and 9 is good, including the tracking
error maintained at zero for ε1 and ζ1, Figures 10 and 11, respectively. This demonstrates
that the proposed methodology is viable for use in the applications already mentioned. It is
clear that they are considered ideal switching processes when the grid failure is presented
and there is the change from motor to generator in the PMSM also in the DC-motor, such as
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in the case in Figures 8 and 9, from which a good tracking is noted when there is a change
in the storage–discharge modes.

The perspective of this work is obtaining results when considering more real scenarios
in order to have a better approximation of a real-system. This will contribute to making
real-time experiments with this proposal considering different structures of NN with the
same or even other control algorithms.

6. Conclusions

Simulation results from this work show the emulation of the FESS through identifica-
tion and control of the states from the models for two different electrical machines, namely,
the PMSM and the DC-motor. This is achieved through the use of a RWFONN, the block
control linearization technique, and the NSTC, by controlling the velocity of the PMSM
in the energy storage stage and controlling the velocity of the DC-motor in the energy
feedback stage. The stability analysis demonstrates the convergence of the whole system in
a closed-loop using the boundedness of the identification error. It is worth mentioning that
the authors intend to continue with the study of this work in real-time until laboratories
can be accessed and tests can be performed.
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The following abbreviations are used in this manuscript:

AC Alternating-Current
DC Direct-Current
dq Direct-Quadrature
FESS Flywheel Energy Storage System
HONN High Order Neural Network
NN Neural Network
NSTC Neural Super-Twisting Control
PMSM Permanent Magnet Synchronous Machine
RMS Root Mean Square
RHONN Recurrent High Order Neural Network
RSFONN Recurrent Sigmoid First-Order Neural Network
RWFONN Recurrent Wavelet First-Order Neural Network
STA Super-Twisting Algorithm
STC Super-Twisting Control
SVPWM Space Vector Pulse Width Modulation
UUB Uniformly Ultimately Bounded

Appendix A. Identification Error Boundedness

Theorem A1. Suppose that the system (3) and the model (5) are initially at the same state
x(0) = χ(0); then, for any ε > 0 and any finite T > 0 there exist an integer L and a matrix
w∗ ∈ RL×n such that the state x(t) of the RWFONN model (5) and weight values w = w∗ satisfies
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sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

Then, using the Bellman–Gronwall Lemma [36], it is obtained that the identification
error ξ = x− χ is bounded by

‖ξ‖ ≤ ε

2
. (A1)

Proof. See Reference [37].

Appendix B. Closed-Loop Stability Analysis

In order to analyze the stability of Equations (25) and (35), a representation in scalar
form is made as follows [29]:

ṡh =− kh|sh|
1
2 sign(sh) + uh + fh

u̇h =− khsign(sh), h = 1, 2, .., d
(A2)

Considering µ>h =
[
|x1|

1
2 sign(x1), x2

]
as the state vector of the super-twisting algo-

rithm, µh can be rewritten in terms of sh, then µ>h =
[
|sh|

1
2 sign(sh) uh

]
and considering

that the matrix P is positive definite, the derivative of µh is defined as [38]:

µ̇h =




1
2

1

|sh |
1
2
((−k1h)|sh|

1
2 sign(sh) + uh)

−k2hsign(sh)


 =

1
|sh|

Ahµh (A3)

Equation (A3) can be expressed as the following linear system:

µ̇h = Ahµh + ρh (A4)

From Equation (A2), fh is bounded with the following restrictions:

| fh| ≤ δh|sh|
1
2 , | fh| ≤ δh|µh|, δh ≥ 0 (A5)

Assuming that fh in (A2) is an external disturbance bounded by:

fh = δh|sh|
1
2 sign(sh) = δhµh (A6)

To construct a complete family of strong Lyapunov functions for Equation (A2) of the
form (A8) the matrix P = P> > 0, the Lyapunov function can be reduced to the solution of
an algebraic Lyapunov equation (ALE) [38] as:

A>P + PA = −Q (A7)

Lyapunov’s candidate function can be written as follows [29,38]:

Vh(µ) = µ>h Phµh (A8)

Considering that the matrix A = 1
|µh |

[− 1
2 kh

1
2

−kh 0

]
and ρh =

[
1

2|µh | fh

0

]
where kh > 0,

then A is Hurwitz. For every symmetric and positive definite matrix Q = Q> > 0,
and P = P> > 0 is the unique symmetric and positve definite solution of the ALE
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(Equation (A7)). Moreover, the derivative V̇ of the Lyapunov function satisfies the differen-
tial inequality almost every where:

V̇ ≤ −γ(Q)V
1
2 (s) (A9)

where

γ(Q) =
λmin(Q)λ

1
2
min(P)

λmax(P)
(A10)

is a scalar depending on the selection of the Q matrix [38].

Proof. The Lyapunov function (A8) is continuous, positive definite and radially un-
bounded in R2, it is differentiable everywhere, except on the line s1 = 0. As the trajectories
of Equation (A2) cannot stay on this set, before reaching the origin, the derivative of V(µ)
can be written from Equation (A3) as follows:

V̇h(µ) =
1
|µh|

µ>h (A>h Ph + Ph Ah)µh + 2µ>h Phρh (A11)

Involving Equation (A6) in the term ρ of Equation (A11), it yields:

V̇h(µ) = −
1
|µh|

µ>h Qhµh (A12)

Now, defining P =

[ 1
2 k2

h + 2kh − 1
2 kh

− 1
2 kh 1

]
and using the standard inequality for

quadratic forms

λmin{P}‖µ‖2
2 ≤ Vh(µ) ≤ λmax{P}‖µ‖2

2 (A13)

where ‖µ‖2
2 = µ2

1 + µ2
2 = |s1|+ s2

2 is the Euclidean norm of µ. Equation (A11) along the
solutions of the system (A2) can be rewritten as follows:

V̇h(µ) = −
1

|s1|
1
2

µ>Qµ ≤ − 1

|s1|
1
2

λmin{Q}‖µ‖ (A14)

V̇h(µ) is negative definite if Q > 0, which is the case when kh > 0.

Where Q = kh
2

[
k2

h + 2kh − δh(kh + 4 kh
kh
) −kh

−(kh − δh) 1

]
, therefore the matrix Q is positive

definite if kh satisfies the following condition: kh > 2δh also kh > 1
2

k2
h(δh−kh)
kh−2δh

. Using

Equations (A13) and (A14) and the fact that |s1|
1
2 ≤ ‖µ‖2 ≤

V
1
2 (s)

λ
1
2
min{P}

, the inequality (A9)

is satisfied.
Now, the convergence of ξ i

j should be considered, involving in this way the identifica-
tion error boundedness (Equation (A1)), then, the Lyapunov function (A8) can be rewritten
as follows:

V(µ, ξ) = µ>Pµ +
1
2
(ξ i

1)
2 (A15)

where the time derivative of Equation (A15) is:

V̇(µ, ξ) = − 1
|µh|

µ>h Qhµh + ξ i
1ξ̇ i

1 (A16)

401



Energies 2021, 14, 6416

substituting the time derivative of ξ i
1 = xi

1 − χi
1, which is obtained through the filtered

error algorithm (6) and is applied in Equation (A16)

V̇(µ, ξ) = − 1
|µh|

µ>h Qhµh + ξ i
1

[
(−ai

1xi
1 + bi

1wi
1ψi

1 + xi
2 + xi

3)− χ̇i
1

]
(A17)

In order to guarantee that Equation (A17) is negative definite, the desired dynamics
for x2d is

xi
2d = −c1ξ i

1 + ai
1xi

1 − bi
1wi

1ψi
1 − xi

3 + χ̇i
1 (A18)

thus,

V̇(µ, ξ) =− 1
|µh|

µ>h Qhµh+

ξ i
1(−ai

1xi
1 + bi

1wi
1ψi

1 + (−c1ξ i
1 + ai

1xi
1 − bi

1wi
1ψi

1 − xi
3 + xi

3 + χ̇i
1)− χ̇i

1)

=− 1
|µh|

µ>h Qhµh − c1ξ2
1

(A19)

with c1 > 0 real value. In this way, by Theorem (1) and Equation (A1), the uniformly
ultimately bounded stability of the complete system is ensured.
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