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Cyber-Security Threats and Side-Channel Attacks for Digital Agriculture
Reprinted from: Sensors 2022, 22, 3520, doi:10.3390/s22093520 . . . . . . . . . . . . . . . . . . . . 79

Yulia Cherdantseva, Pete Burnap, Simin Nadjm-Tehrani and Kevin Jones

A Configurable Dependency Model of a SCADA System for Goal-Oriented Risk Assessment
Reprinted from: Appl. Sci. 2022, 12, 4880, doi:10.3390/app12104880 . . . . . . . . . . . . . . . . . 93

Yanmiao Li, Yingying Xu, Yankun Cao, Jiangang Hou, Chun Wang, Wei Guo, Xin Li, 
Yang Xin, Zhi Liu and Lizhen Cui

One-Class LSTM Network for Anomalous Network Traffic Detection
Reprinted from: Appl. Sci. 2022, 12, 5051, doi:10.3390/app12105051 . . . . . . . . . . . . . . . . . 123

Junho Seo, Seonah Lee, Ki-Il Kim and Kyong Hoon Kim

A Fine-Grained Secure Service Provisioning Platform for Hypervisor Systems
Reprinted from: Electronics 2022, 11, 1606, doi:10.3390/electronics11101606 . . . . . . . . . . . . 139

Zhuangkun Wei, Liang Wang, Schyler Chengyao Sun, Bin Li and Weisi Guo

Graph Layer Security: Encrypting Information via Common Networked Physics
Reprinted from: Sensors 2022, 22, 3951, doi:10.3390/s22103951 . . . . . . . . . . . . . . . . . . . . 155

Tao Peng, Bochao Hu, Junping Liu, Junjie Huang, Zili Zhang, Ruhan He and Xinrong Hu

A Lightweight Multi-Source Fast Android Malware Detection Model
Reprinted from: Appl. Sci. 2022, 12, 5394, doi:10.3390/app12115394 . . . . . . . . . . . . . . . . . 175

v



Hasan Alkahtani and Theyazn H. H. Aldhyani

Developing Cybersecurity Systems Based on Machine Learning and Deep Learning Algorithms
for Protecting Food Security Systems: Industrial Control Systems
Reprinted from: Electronics 2022, 11, 1717, doi:10.3390/electronics11111717 . . . . . . . . . . . . 201

Mike Nkongolo, Jacobus Philippus van Deventer, Sydney Mambwe Kasongo, 
Syeda Rabab Zahra and Joseph Kipongo

A Cloud Based Optimization Method for Zero-Day Threats Detection Using Genetic Algorithm 
and Ensemble Learning
Reprinted from: Electronics 2022, 11, 1749, doi:10.3390/electronics11111749 . . . . . . . . . . . . 227

Yanjie He and Wei Li

A Novel Lightweight Anonymous Proxy Traffic Detection Method Based on Spatio-Temporal
Features
Reprinted from: Sensors 2022, 22, 4216, doi:10.3390/s22114216 . . . . . . . . . . . . . . . . . . . . 253

Gun-Yoon Shin, Sung-Sam Hong, Jung-Sik Lee, In-Sung Han, Hwa-Kyung Kim and

Haeng-Rok Oh

Network Security Node-Edge Scoring System Using Attack Graph Based on Vulnerability
Correlation
Reprinted from: Appl. Sci. 2022, 12, 6852, doi:10.3390/app12146852 . . . . . . . . . . . . . . . . . 269

Israel Barbosa de Brito and Rafael T. de Sousa, Jr.

Development of an Open-Source Testbed Based on the Modbus Protocol for Cybersecurity
Analysis of Nuclear Power Plants
Reprinted from: Appl. Sci. 2022, 12, 7942, doi:10.3390/app12157942 . . . . . . . . . . . . . . . . . 283

vi



About the Editors

Leandros Maglaras

Leandros Maglaras is a Professor of Cybersecurity at the School of Computer Science

and Informatics, De Montfort University, UK. From September 2017 to November 2019, he

was the Director of the National Cyber Security Authority of Greece. He can be contacted at

leandros.maglaras@dmu.ac.uk.

Helge Janicke

Helge Janicke is the Research Director of the Cyber Security Cooperative Research Centre,

Australia, Professor at Edith Cowan University and Visiting Professor at De Montfort University,

U.K. He can be contacted at helge.janicke@cybersecuritycrc.org.au.

Mohamed Amine Ferrag

Mohamed Amine Ferrag is a Senior Lecturer at the Department of Computer Science, Guelma

University, Algeria and Visiting Senior Researcher at the NAU-Lincoln Joint Research Center

of Intelligent Engineering, Nanjing Agricultural University, China. He can be contacted at

ferrag.mohamedamine@univ-guelma.dz.

vii





Preface to ”Cyber Security and Critical Infrastructures

- Volume II”

The digital revolution has made people more dependent on ICT technology to perform everyday

tasks, either at home or at work. The systems that support critical aspects of this smart way of living

are characterized as critical and the security level of such systems is higher compared to others. The

definition of criticality of a system is a rather difficult exercise and for that reason, novel cybersecurity

regulations have been established to introduce the idea of digital managed services, which include

security monitoring, managed network services or the outsourcing of business processes that are

critical to the functioning, reliability, and availability of critical national infrastructures (CNIs).

Moreover, ENISA recently issued a new report that deals with supply chain attacks. Those attacks

target any chain of the ecosystem of processes, people, organizations, and distributors involved in

the creation and delivery of a final solution or a product that can be used or incorporated into a CNI,

thus further extending the scope of the security posture of a system.

The idea of securability lies in the triptych analysis, prediction and optimization. Concepts

such as the mean time to attack (MTTA) and mean time to recovery (MTTR) (which is based on

the existing incident response and mitigation plans) could be used in order to represent the operation

of the system under analysis. There is a lack of new methodologies that could define the system

requirements by incorporating security (and privacy) with reliability (and safety), and introduce a

new research area under the broad term of securability. These methodologies are expected to be

introduced in the following years.

This editorial presents the manuscripts accepted, after a careful peer-review process, for

publication on the topic “Cyber Security and Critical Infrastructures” in the following MDPI journals:

Applied Sciences, Electronics, Future Internet, Sensors and Smart Cities. The second volume

includes the following sixteen articles: one editorial article and fifteen original research papers that

describe the current challenges, innovative solutions, and real-world experiences involved in critical

infrastructure cybersecurity issues.

Leandros Maglaras, Helge Janicke, and Mohamed Amine Ferrag

Editors
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Combining Security and Reliability of Critical Infrastructures:
The Concept of Securability

Leandros Maglaras 1,*, Helge Janicke 2 and Mohamed Amine Ferrag 3

1 School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK
2 Cyber Security Cooperative Research Centre, Edith Cowan University, Perth 6027, Australia;

helge.janicke@cybersecuritycrc.org.au
3 Department of Computer Science, Guelma University, Guelma 24000, Algeria;

ferrag.mohamedamine@univ-guelma.dz
* Correspondence: leandros.maglaras@dmu.ac.uk

The digital revolution has made people more dependent on ICT technology to perform
everyday tasks, whether at home or at work. The systems that support critical aspects of
this smart way of living are characterized as critical, and the security level of such systems is
higher as compared to others. The definition of the criticality of a system is a rather difficult
exercise, and for that reason, we have seen novel cybersecurity regulations to introduce the
idea of digital managed services [1], which include security monitoring, managed network
services, or the outsourcing of business processes that are are critical to the functioning,
reliability, and availability of Critical National Infrastructures (CNIs). Moreover, ENISA
recently issued a new report that deals with supply chain attacks [2]. Those attacks target
any chain of the ecosystem of processes, people, organizations, and distributors involved
in the creation and delivery of a final solution or product that can be used or incorporated
into a CNI, thus further extending the scope of the security posture of a system.

The cybersecurity posture of system or infrastructure can be measured using several
methods, including risk management, maturity assessment [3], or posture assessment.
Using well-established cybersecurity frameworks such as NIST or ISO, an organization can
establish an effective information management system, systematize cybersecurity controls,
and improve the security of an organization. These frameworks can be very efficient in
helping organizations understand the risks they face, analyze their vulnerabilities and
organize their security countermeasures and mitigation plans [4]. The adaptation of those
models to specific areas such as banking, healthcare, maritime, or critical components such
as industrial systems is still needed [5] in order to achieve better mapping of the system
processes and functions.

Reliability, on the other hand, is a measure to estimate the success of a system to
perform according to its specifications in terms of time and operation conditions. The
reliability is defined as the probability that the system will perform in an adequate manner
for a predefined time period. The adequate operation of the system depends on the
requirements of the application that are offered by the system. In order to define the
reliability of the system, we need to have a very good understanding of the components
that comprise the system and the way that these components operate. In order to define the
reliability of a system, we need to calculate the reliability of each subsystem or entity and
their interconnections and inter-dependencies. The reliability of the system is combined
with several metrics such as the Mean Time to Failure (MTTF) and the Mean Time to Repair
(MTTR), among others. Reliability analysis and optimization have been used for many years
for the development of highly critical systems. In general, reliability evaluation methods
can be categorized into two main groups: analytical and simulation-based techniques [6].

The effectiveness of reliability theory in mapping the operation of complex systems,
and thus developing highly stable ones, can be used as a basis for the introduction of the

Appl. Sci. 2022, 12, 10387. https://doi.org/10.3390/app122010387 https://www.mdpi.com/journal/applsci1
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securability of systems. Securability can be a metric to represent the ability of the system
to operate in a secure manner according to the requirements of the offered services by
incorporating the basic concepts of reliability. Since errors and failures are factors that
affect the correct operation of system, those can and should be part of the securability
analysis. The idea of securability lies in the triptych analysis, prediction, and optimization.
Concepts such as Mean Time to Attack (MTTA) and Mean Time to Recovery (MTTR) (which
are based on the existing incident response and mitigation plans) could be used in order
to represent the operation of the system being analyzed. Some first attempts towards
this direction have already been made through the use of patterns that combine security
and reliability [7] and attack prediction using Markov models [8]. What is missing and is
expected to be introduced in the following years is new methodologies that could define the
system requirements by incorporating security (and privacy) with reliability (and safety),
introducing a new research area under the broad term of securability.

This editorial presents the manuscripts accepted, after a careful peer-review process,
for publication in the topic “Cyber Security and Critical Infrastructures” of the MDPI
journals Applied Sciences, Electronics, Future Internet, Sensors, and Smart Cities. The second
volume includes sixteen articles: one editorial article and fifteen original research papers
describing current challenges, innovative solutions, and real-world experiences involving
cybersecurity issues in critical infrastructures.

One major aspect of a smart city involves traffic management using ICT technologies.
These technologies come with new vulnerabilities that could expose sensitive data of
citizens to hackers. The authors in [9] propose a selective encryption scheme using singular-
value decomposition and chaotic systems in order to overcome such issues. The proposed
method ensures the confidentiality of video streams originating from devices that have
minimal resources and that are mostly used in a smart-traffic management systems. The
NIS directive (which is now substituted by the NIS2 Directive) has identified several critical
sectors, including transport, and the proposed method could be used as an efficient tool to
secure the information that is created and transmitted through a smart traffic system.

When dealing with attacks in critical infrastructures that are usually large complex
systems interconnected with several others, the correct prioritization of vulnerabilities is
rather a difficult exercise to take. The lack of a proper vulnerability assessment leaves the
infrastructure exposed to several attacks that could have devastating physical outcomes
when it supports critical services to citizens. The authors in [10] present a vulnerability
prioritization model that can reveal characteristics of information-security-related vulnera-
bilities. Coping with node–edge risk calculation, the authors in [11] propose a vulnerability
Correlation and Attack Graph-based node–edge Scoring System. These works reveal the
continuous and crucial need for novel vulnerability analysis methods that are based on
prioritization and risk analysis.

Dealing with the security and privacy of information during transmission into a digital
environment, the authors in [12] propose a GCN algorithm for detecting malicious digital
certificates. Malicious certificates can be used in order to hide malicious activities from
threat actors. In order to achieve an efficient detection of malicious certificates, the authors
design a rules-based method for extracting certificate attributes from documents that are
used as features for the classification algorithm. The proposed method is very promising
and can be applied in several aspects of electronic transactions where digital certificates are
used to link ownership of public keys with the entities that own them. In order to secure
transmission of information against tampering and cracking, authors in [13] propose a
novel secure communication method based on the message hash chain. The tampering of
information has been proven to be very dangerous, especially for industrial control systems
that support or offer critical services to citizens, such as energy plants, and solutions that
can secure those systems are in need.

On June 2022, the EU Member States agreed on revising the EU Network and Informa-
tion Security Directive: NIS2. One of the additions of NIS2 as compared to the NIS was the
extension of the scope of the NIS with the addition of new sectors, such as the food sector.
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The authors in [14] discuss the new threats and security challenges that the digitization of
agriculture has to face. Among the many open issues, challenges, and future directions that
both organizations and governments will face, the authors propose the development of
proper incident response and business continuity plans.

Focusing on the security of industrial control systems (ICS), the authors in [15] propose
a configurable dependency model that can be used for risk assessment. The authors
identified correctly the specific requirements of an ICS risk model that includes the need to
cope with the diversity of experts that cooperate in an ICS along with the need to create
a model that can offer an overview of the system at a high level of abstraction while
capturing all inter-dependencies. Using the proposed configurable model organisations
can save time and resources dedicated to risk assessment and thus be better prepared for
cybersecurity incidents.

It has been proven that machine learning principles can be used in order to deploy
efficient intrusion detection systems. One-class models have long been proven to be very
efficient in circumstances where there is a need for the detection of both known and
unknown (novel) attacks; the model must be robust to noise samples and where there
is a lack of datasets that include attacks when training the model, all of the above being
the standard situation for an ICS. The authors in [16] propose a new IDS that integrates
long short-term memory principles into the one-class model and has been tested through
extensive experiments on three complex network security data sets.

Following a similar approach, the authors in [17] propose an intelligence system based
on machine learning and deep learning approaches to detect serious attacks on ICSs. In
another article in this collection, the authors in [18] analyzed the classification of 0-days
threats and anomalous intrusion in a novel dataset that includes cloud services. In addition,
the authors in [19] propose a malicious anonymous proxy traffic that is based on the
principles of deep learning and image transformation. In order to keep the computational
overhead of image transformation low, the method converts the sequences of the size and
inter-arrival time of the first N packets of a flow into images before applying classification.
The proposed methods achieve high accuracy while keeping the sizes of the produced
images more than 90% smaller than that of existing image-based deep learning methods
All of the aforementioned works of the SI collection are very important since they provide
valuable conclusions about the performance of several machine-learning-based intrusion-
detection systems against sophisticated attacks, methods to improve their performance and
possible future improvements or research directions.

Mobile phones have been used recently for tasks that are not directly linked to com-
munication between users. E-banking, e-commerce, emails, and remote desktop services
can help users stay always connected and to perform many of their activities through their
mobile devices. The vulnerabilities in these services must be discovered through the execu-
tion of the code into a safe or isolated environment. Often, this leads the normal operation
of the OS to halt, thus making it unable to offer any services. The authors in [20] try to
solve this problem by proposing a secure service provisioning platform that guarantees
the execution time of the normal OS while providing hypervisor-level security services.
Coping with the same problem from a different perspective, the authors in [21] propose a
lightweight, multi-source, fast Android malware detection model by using data from the
internal files of the applications in order to build the machine learning models.

The authors in [22] focus on providing a solution for secure health monitoring and for
digital twins in adversarial radio environments. The authors propose graph layer security
(GLS) in order to secure the information that is transmitted wirelessly by exploiting some
of the networked domain’s physical dynamics. The method can be robust against both
passive eavesdropping attacks and active attacks.

In the last article of this collection, the authors in [23] introduce a testbed for the
study of cyber-attacks against a realistic simulation of a nuclear power plant. The testbed
integrates a simulated Modbus/TCP network environment containing basic industrial

3
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control elements implemented with open-source software components and is validated
against several cyberattacks.

Funding: This research received no external funding.

Conflicts of Interest: All authors declare no conflict of interest.
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Using Singular Value Decomposition and Chaotic Maps for
Selective Encryption of Video Feeds in Smart
Traffic Management

Oussama Benrhouma 1,*, Ahmad B. Alkhodre 1, Ali AlZahrani 1, Abdallah Namoun 1 and Wasim A. Bhat 1,2
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aalkhodre@iu.edu.sa (A.B.A.); a.alzahrani@iu.edu.sa (A.A.); a.namoun@iu.edu.sa (A.N.);
wab.cs@uok.edu.in (W.A.B.)

2 Department of Computer Sciences, University of Kashmir, Srinagar 190006, India
* Correspondence: oussama.benrhoumaa@gmail.com or oussama.benrhouma@iu.edu.sa

Abstract: Traffic management in a smart city mainly relies on video feeds from various sources such
as street cameras, car dash cams, traffic signal cameras, and so on. Ensuring the confidentiality of
these video feeds during transmission is necessary. However, due to these devices’ poor processing
power and memory capacity, the applicability of traditional encryption algorithms is not feasible.
Therefore, a selective encryption system based on singular value decomposition (SVD) and chaotic
maps is presented in this study. The proposed cryptosystem can be used in smart traffic management.
We apply SVD to identify the most significant parts of each frame of the video feed for encryption.
Chaotic systems were deployed to achieve high diffusion and confusion properties in the resulted
cipher. Our results suggest that the computational overhead is significantly less than that of the
traditional approaches with no compromise on the strength of the encryption.

Keywords: SVD; chaotic maps; selective encryption

1. Introduction

Smart-traffic management systems make use of sensors, car dash cams, street and
traffic light cameras, mobile networks, and many other technologies to monitor, regulate,
and respond to traffic congestion and vehicular accidents [1]. It mainly relies on the video
feeds received from these technologies, which are processed by servers. Any unauthorized
access to these feeds during their transmission can result in a confidentiality breach of
the system. Therefore, ensuring the confidentiality of such video feeds is of paramount
importance in smart-traffic management. Unfortunately, due to the huge volumes of data
generated by such sources [2] and their low computational power and memory capacity,
applying classical encryption schemes [3] such as Advanced Encryption Standard (AES) [4]
and Data Encryption Standard (DES) [5] is not feasible. In addition, certain properties in
multimedia content, such as redundancies and high correlation, makes the use of such
classical encryption schemes inefficient and expensive in terms of computational time and
power required [6], especially in real-time applications such as smart-traffic management.

Fortunately, chaos-based cryptography presents a solution where certain properties of
chaotic systems, such as the high sensitivity to initial condition (IC) and control parameter
(CP) and random-alike appearance, can be used to yield strong encryption but with less
computational and memory capacity required [7]. It is relatively easy to generate such
chaotic system using differential or recursive equations. Over the last two decades, various
chaotic-based image encryption schemes were proposed [8–24]. However, as the volume
of data increases, the computational and memory capacity requirements also increase. To
overcome this problem, selective encryption can be used to select and encrypt only the
most significant parts of the data [25–29]. If the selection is done properly, encryption
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using chaotic maps of the selected parts of an image (or a video sequence) results in strong
encryption with a significantly less requirement of computational and memory capacity
for encrypting huge volumes of data in real time [30]. This selective encryption can be
done in a spatial domain where only the four most significant bits (MSBs) of each pixel
are selected and encrypted [31], or in a frequency domain where the image is decomposed
using discrete cosine transform (DCT); then, only 25% of the frequencies are selected to be
encrypted [30].

In this paper, a study on the singular value decomposition (SVD) [32] is conducted, and
experiments were drawn to understand the properties of the decomposition and identify
the coefficients that needs to be selected for encryption; this is done in order to reduce
the amount of data that needs to encrypted given the huge size of the video feeds and
the limitations in the computational power. Chaotic maps [8,30] were used in the design
of the cryptosystem to increase the complexity and take advantage of the random-alike
appearance. The proposed scheme is implemented and evaluated, and the results suggests
that the scheme dramatically reduces the computational overhead.

The rest of the paper is organized as follows: Section 2 presents the background and
related work, Section 3 discusses the proposed scheme, Section 4 describes the experiments
and results, and finally, Section 5 presents the conclusion.

2. Background and Related Work

2.1. MPEG Video Sequence

An MPEG video sequence has three types of frames: (a) an I-frame that represents
the most important information of the sequence, (b) a P-frame that represents a predictive
frame, and (c) a B-frame that is a bi-directional frame, as shown in Figure 1.

(a) (b)

Figure 1. (a) An MPEG video sequence (b) MPEG video sequence structure.

A typical MPEG video sequence looks like the following: IBBPBBPBBPBBIBBPBBP
BB . . .. Since the I-frame contains the most important information of the sequence, en-
crypting this frame results in the encryption of the whole video sequence [33]. In this
paper, the extracted I-frames are treated as JPEG images, and singular value decomposition
is used to extract the most relevant parts of the frame to be encrypted using PRESENT
ultra-lightweight block cipher and chaotic maps.

2.2. Singular Value Decomposition

Given a matrix X of size m × n, the singular value decomposition of X results in three
matrices (U, S, and V). U and V are orthogonal matrices with size m × m, whereas S is a
diagonal matrix containing values called “the singular values”. Equation (1) shows the
SVD results.

X = U ∗ S ∗ VT (1)

To prove the importance of the diagonal matrix S, an image is split into blocks sized
4 × 4, and the svd is applied on each. As shown in Equation (2), the singular matrix for
each block contains four singular values : S1 . . . S4. Due to the huge difference between the
first value and all other values, we can conclude that S1 has the most significant impact on
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the image. The values of the singular values for some blocks of the standard images are
shown in Table 1.

Bi(X) = U · S · VT

= U ·

⎡⎢⎢⎣
S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 S4

⎤⎥⎥⎦ · VT (2)

Table 1. Values of the singular matrix for some blocks of the standard images.

Standard
Image

Block
Number

Value

S1 S2 S3 S4

cameraman
1 628.5056 16.6462 7.8219 2.7480

33 474.5510 24.6315 8.2719 0.4573

tank
40 522.7868 14.9429 3.7784 1.1981

200 527.5800 13.3748 10.0325 0.9129

lena
4000 530.3523 36.7818 8.0956 3.1669

2150 455.2935 14.5609 6.7711 3.6052

To prove the importance of the first singular value (S1) for each block in comparison
with all other singular values, multiple standard images are used (shown in Figure 2), and
each image is split into blocks sized 4 × 4. Singular value decomposition is applied on
each block, and the last three singular values (S2, S3, and S4) are set to zeros. Then, the
images are reconstructed, and the results are illustrated in Figure 3. The results prove that
even with only a quarter of the singular values, we are able to reconstruct the images with
acceptable quality. This compels us to conclude that if this quarter is encrypted, it will
result in the encryption of the whole image, while the amount of data to be encrypted is
reduced to a quarter.

(a) (b) (c)

(d) (e) (f)

Figure 2. Original standard images. (a) aerial; (b) lena; (c) cameraman; (d) jet; (e) lake; (f) tank.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Images reconstructed with only the quarter of singular values. (a) aerial; (b) lena; (c) cam-
eraman; (d) jet; (e) lake; (f) tank.

The structural similarity (SSIM) is a metric that measures the similarity between two
images [34]. It is used in many fields such as watermarking and compression to measure
the effects of distortion or compression on images. The closer the value of SSIM is to “1”,
the higher the similarity of the images. SSIM is defined by Equation (3).

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(3)

where:

• μx and μy represent the averages of x and y, respectively.
• σ2

x and σ2
y represent the variances of x and y, respectively.

• σxy represents the covariance of x and y.
• C1 = (k1L)2 and C2 = (k2L)2 are two variables used to stabilize a division with a

weak denominator.
• L is the dynamic range of the pixel values.
• k1 = 0.01 and k2 = 0.03.

Table 2 shows the SSIM values between the original images and the images recon-
structed using only one-quarter of the singular values. The results prove that the most
important information of image blocks is contained within the first singular value.

Table 2. SSIM values for original and reconstructed images.

Aerial Lena Cameraman Jet Lake Tank

0.8007 0.9250 0.9323 0.9285 0.8900 0.8737
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2.3. Logistic Map

The logistic map is used to take advantage of chaotic functions’ pseudo-random nature.
The bifurcation diagram of the function described in Equation (4) is used to determine
its chaotic behavior, which is depicted in Figure 4a. This behavior can be seen when the
control parameter μ ∈ [3.8, 4]. The quasi-uniformity of the invariant natural density of the
logistic map, as shown in Figure 4b, confirms this.

xn+1 = μxn(1 − xn) (4)

Exploiting the pseudo-random behavior of the logistic map, 80 pseudo-random values
are generated starting from an initial condition x0 and a control parameter μ; these values
are then quantified to 0s and 1s based on a threshold T to construct an 80-bits ling key,
which will represent the secret key for the PRESENT block cipher.

(a) (b)

Figure 4. (a) The bifurcation diagram. (b) Invariant natural density.

2.4. The Generalized Cat Map

The generalized cat map (Equation (5)) is used to shuffle pixel positions and increase
the confusion and diffusion in the resulted cryptogram.[

xi+1
yi+1

]
=

(
1 a
b ab + 1

)[
xi
yi

]
mod N (5)

where xi, yi represent the position of a pixel, and xi+1, yi+1 represent its new position after
the iteration; N is the size of the squared image.

The cat map shows a periodic phenomenon for some parameters a, b, and N, which
means that after a certain number of iterations P, all the pixels return to their initial
positions [35]. Figure 5 shows an example of the periodic phenomenon of a cat map when
applied on a standard image. All the pixels of the image returned to their initial positions
after 96 iterations.

In our scheme, the parameters used in the cat map are as follows: a = b = 1 and
N = 128. The equation used is given below (Equation (6)).[

i′
j′
]
=

[
1 1
1 2

][
i
j

]
mod 128 (6)

where (i, j) represents the initial position of the pixel, and (i′, j′) indicate its new position.
It is worth mentioning here that the images used in Equation (6) are of size 128 × 128.

For larger images (say 256 × 256), the images are split into sub-images of size 128 × 128 to
apply shuffling on one sub-image at a time.

9



Appl. Sci. 2022, 12, 3917

(a) (b) (c) (d)

Figure 5. Periodic phenomenon of a cat map applied on a standard image. (a) aerial 128 × 128;
(b) 3 iterations; (c) 50 iterations; (d) 96 iterations.

2.5. PRESENT Block Cipher

PRESENT [36] is a lightweight block cipher that consists of a substitution–permutation
network [37]. The block size is 64 bits, and the key size is either 80 or 128 bits. The
encryption is performed through 31 rounds. The flowchart of the working of PRESENT
block cipher is shown in Figure 6.

Figure 6. Flowchart of the working of PRESENT block cipher.

2.6. Selective Encryption

One of the potential techniques for ensuring image secrecy in resource-constrained
devices is selective encryption. This technique selects and encrypts only significant parts of
the images. If the selection is done properly, the encryption of the selected part results in the
confidentiality of the whole image. The selection techniques can be performed in the spatial
domain by selecting and manipulating pixel values directly or in the frequency domain by
applying one of the transformations to represent the image in the frequency domain. One
of the earliest contributions to selective encryption in the spatial domain demonstrated a
significant reduction in computational overhead by encrypting only the most significant
bits (MSBs) while leaving the least significant bits untouched [31]. Another study proposed
a classification of the bit planes representing the pixels based on their significance [19].
The study encrypted only significant bits with a key stream sequence that is generated
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using a chaotic pseudo-random binary number generator to evaluate it. Ref. [21] proposed
a technique that initially divides a plain-text image into blocks and then calculates the
correlation coefficients of each block. The random numbers generated from a skew tent
map based on a predetermined threshold value were pixel-wise XORed with the block with
the highest correlation coefficient values. Similarly, a stenography algorithm was proposed
that consists of selecting and encrypting only 4 MSBs of the secret image to be embedded
into the cover [38]. This significantly reduces the computational overhead and results in a
significant visual distortion of the cover image and security of the secret image. Studies
have also used discrete cosine transform (DCT2) to transform the image into the frequency
domain, and then selecting only AC and 25% of DC coefficients for encryption [30]. This
reduces the number of coefficients to be encrypted, thereby reducing the computational
overhead. Studies have also applied discrete wavelet transform (DWT2) to divide the
image into an approximation coefficient and detail coefficients, and it encrypted only the
approximation frequencies [39,40]. As the approximation coefficient contains the most
critical information of the image, this led to the encryption of the entire image.

3. Proposed Approach

The proposed approach employs SVD to select that part of each frame of video feed
that contains the most significant information. This selected part of the frame is encrypted
using PRESENT block cipher [36] for which an 80-bit key is generated using a logistic map.
The following are the steps of the proposed approach:

Given an image M with size 128 × 128,

1. The image M is split into non-overlapping blocks, each measuring 4 × 4.
2. For each block, the singular value decomposition is applied, and the diagonal matrix

Si is extracted, where i is the block number.

Bi(M) = U · S · VT

= U ·

⎡⎢⎢⎣
S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 S4

⎤⎥⎥⎦ · VT

3. For each block, the first singular value is extracted and stored in matrix Ms with size
N/4× N/4. After processing all the blocks, matrix Ms is constructed, and it represents
the input to encryption procedure.

4. The singular values of the matrix Ms are rounded and converted to binary. Then, the
binary values are transformed to a vector, which is decomposed into blocks of size
64 bits that are encrypted.

5. Starting from an initial condition x0 and a control parameter μ, 80 pseudo-random
numbers are generated by iterating the logistic map. These numbers are quantified
using a threshold T to construct the encryption key K.

6. The encrypted blocks are reshaped, and the encrypted singular matrices are constructed.
7. The inverse singular value decomposition is applied to each block to obtain the image

with encrypted singular values.
8. The pixels of the resulted images are shuffled using the Arnold cat map. The number

of iterations of the cat map t is considered one of the keys of the cryptosystem.

The secret keys of the scheme are: the initial condition and control parameter (x0, μ)
of the logistic map, the threshold T used for the quantification step of the pseudo-random
sequence, and the number of iteration t of the Arnold cat map. The following are the values
used in our experiments:

• x0 = 987,654,326 and μ = 3.993787543;
• The threshold T = 0.498754632;
• The number of iterations of the Arnold cat map t = 66.
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Figure 7 shows the flowchart of the encryption method, whereas Figure 8 shows the
encryption results.

Figure 7. Flowchart of the encryption procedure employed.

(a) (b) (c)

(d) (e) (f)

Figure 8. Result of encryption-procedure employed on standard images: (a) aerial; (b) lena; (c) cam-
eraman; (d) jet; (e) lake; (f) tank.

The encrypted images can be decrypted at the receiver’s end using the following procedure:

1. To restore pixel coordinates, the cat map is iterated “P-t” times, where “P” is the
period of the cat map and “t” is the number of iterations in the encryption process.

2. The encrypted image Me is split into non-overlapping blocks of size 4 × 4.
3. Every block is decomposed using singular value decomposition, and the diagonal

matrix is extracted.
4. For each block, the first singular value is extracted and stored in a matrix to construct

the encrypted singular matrix.
5. The singular values of the encrypted matrix are rounded and converted to binary. The

binary values are then transformed to a vector, which is is decomposed into blocks of
size 64 bits that are decrypted.
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6. The logistic map is used to generate 80 pseudo-random numbers, which are quantified
using the threshold T to construct the decryption key K.

7. The blocks are injected along with the key K into the decryption procedure.
8. The decrypted values are reshaped and transformed to singular blocks.
9. Finally, the inverse singular value decomposition is applied to each block to obtain

the decrypted image.

Figure 9 shows the flowchart of the decryption method, whereas Figure 10 shows the
decryption results.

Figure 9. Flowchart of the decryption procedure employed.

(a) (b) (c)

(d) (e) (f)

Figure 10. Result of decryption-procedure employed on encrypted standard images: (a) aerial;
(b) lena; (c) cameraman; (d) jet; (e) lake; (f) tank.

4. Experiments and Results

The experimental setup used to evaluate the performance of the proposed scheme is
illustrated in this section.

4.1. Setup

We implemented the proposed scheme using Matlab (R2016a) and executed our
experiments on a Windows 10 operating system running on an Intel core i7-6500 CPU
clocked at 2.50 Ghz with 8 GB of memory. Figure 2 shows the standard images used in
our experiments.
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4.2. Evaluation Metrics

To test the performance of the proposed scheme, several tests need to be conducted [41,42].
We used the following evaluation metrics:

1. Tonal distribution of the encrypted images—It is used to see if the encrypted image
is subject to any kind of statistical attack. To avoid a statistical attack, the tonal
distribution of the encrypted images should be uniform.

2. Correlation of adjacent pixels—Plain images have a high degree of correlation between
neighboring pixels, which should not be present in an encrypted image. In both plain
and encrypted photos, we calculate the correlation of adjacent pixels in all directions.

3. Sensitivity to differential attacks—In this experiment, the difference between two
cryptograms that resulted from the encryption of two slightly different images is
measured to evaluate the cryptosystem’s strength against differential attacks.

4. Entropy—It measures the randomness in the data. An encrypted image should show
a random alike appearance.

5. Computational complexity—We calculate the time required to encrypt the image using
selective encryption and full encryption. This metric evaluates the time consumed
by the encryption, and it should be less for selective encryption as compared to
full encryption.

6. Key space—Key space could be defined as the theoretical set of all possible combina-
tions. This number (key space) should be significantly large to make the brute-force
attack impractical.

7. Key sensitivity—These are experiments drawn to assess the sensitivity of the secret
keys; the slightest change in the one of the keys should be diffused through the cipher.

8. Comparison with recent encryption schemes—To validate our scheme, it needs to be
compared with recent cryptosystems.

4.3. Results
4.3.1. Tonal Distribution

An image histogram is a graphical representation of a digital image’s tonal distribu-
tion [43]. Figure 11 shows histograms for plain photos, whereas Figure 12 shows histograms
for encrypted images. The encrypted images’ histograms demonstrate uniformity, implying
that any statistical attack on the suggested system will have difficulty succeeding.

(a) (b) (c)

(d) (e) (f)

Figure 11. Tonal distribution: histograms of plain standard images: (a) aerial; (b) lena; (c) cameraman;
(d) jet; (e) lake; (f) tank.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Tonal distribution: histograms of encrypted standard images that are encrypted using the
proposed approach: (a) aerial; (b) lena; (c) cameraman; (d) jet; (e) lake; (f) tank.

4.3.2. Correlation of Adjacent Pixels

The amount of redundant information in digital photographs is extremely large, result-
ing in a strong correlation between adjacent pixels within the image [44]. This correlation of
adjacent pixels is expected to be reduced by encryption. We used the formula in Equation (7)
to compute the correlation coefficients of both plain and encrypted standard photos.

r =
cov(p, q)√

D(p)
√

D(q)
(7)

where

D(p) =
1
S

S

∑
i=1

(pi − p)2

cov(p, q) =
1
S

S

∑
i=1

(pi − p)(qi − q)2

• pi and qi: two neighboring pixels. (horizontal or vertical).
• S is the number of (pi, qi) couples.
• p and q are the mean values of pi and qi.

The correlation coefficients of both plain and encrypted standard images are shown
in Table 3. The results suggest that the pixels of encrypted images show low correlation
in every direction (horizontal, vertical, and diagonal), which is graphically illustrated in
Figure 13.

4.3.3. Sensitivity to Differential Attack

Differential cryptanalysis aims to locate the “differences” in the cryptograms of two
closely related plain-texts in order to find similarities that could lead to the break of the
cryptosystem. To prevent that, a cryptosystem should show high plain-text sensitivity. In
our cryptosystem, six plain images were used to assess the plain image sensitivity; the
images were slightly altered (only some LSBs were shifted) and encrypted to compare the
their corresponding ciphers. In this context, two metrics must be used: NPCR and UACI.
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Table 3. Correlation of adjacent pixels in plain and encrypted images.

Image
Horizontal Vertical Diagonal

Plain Encrypted Plain Encrypted Plain Encrypted

Aerial 0.6652 −0.0018 0.7425 −0.0066 0.6922 0.0084

Lena 0.9679 −0.0062 0.9342 −0.0048 0.8961 0.0077

cameraman 0.9565 −0.0093 0.9333 −0.0038 0.9045 0.0069

Jet 0.9109 0.0022 0.9023 −0.0085 0.8862 0.0044

Lake 0.9366 0.0081 0.9340 0.0028 0.9145 0.0061

Tank 0.8761 −0.0034 0.9195 0.0080 0.8542 0.0075

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 13. Correlation of neighboring pixels in plain and encrypted images: (a) aerial; (b) horizontal;
(c) vertical; (d) diagonal; (e) encrypted aerial; (f) horizontal; (g) vertical; (h) diagonal; (i) lena;
(j) horizontal; (k) vertical; (l) diagonal; (m) encrypted lena; (n) horizontal; (o) vertical; (p) diagonal.

NPCR and UACI are two metrics used to assess the similarities between two images in
pixel-level comparison and in terms of average intensity change [45]. The NPCR is used to
calculate the number of pixels that differ between the two images, which is specified by
Equation (8).
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NPCR =
∑i,j R(i, j)

M
× 100% (8)

where M represents the total number of pixels and R(i, j) is defined by:

D(i, j) =

{
0 i f I(i, j) = I′(i, j)
1 i f I(i, j) �= I′(i, j)

where I and I′ are the two images in comparison and i, j are the pixel coordinates. NPCR
measured between two random images should be around 99.609375%.

The average intensity difference between the two images I and I′ is measured using
UACI. UACI is defined by Equation (9).

UACI =
1
M ∑

|I(i, j)− I′(i, j)|
2C − 1

(9)

where C is the number of bits used to encode the pixels. Between two random images, the
expected value of UACI should be around 33.46354%.

Table 4 shows the NPCR and UACI values between two cryptograms of slightly
different images. One of the experiments is shown in Figure 14. The findings show that the
cryptosystem is resistant to differential attacks.

Table 4. Sensitivity to differential attacks—NPCR and UACI.

Images Aerial Lena Cameraman Jet Lake Tank

NPCR% 99.6454 99.6515 99.7855 99.6652 99.7544 99.8711

UACI% 33.3288 32.9722 33.7811 30.1776 32.5110 30.4588

(a) (b) (c) (d)

Figure 14. Plain image sensitivity: (a) lake; (b) encrypted lake; (c) lake SSIM = 0.9989; (d) en-
crypted lake.

4.3.4. Entropy

The entropy is a statistical measure of data randomness [46]. In random data, the
information entropy should be around 8. The entropy of the encrypted standard images
was calculated and displayed in Table 5. According to the findings, the encrypted photos
contain the required entropy.

Table 5. Entropy results for encrypted images.

Images Aerial Lena Cameraman Jet Lake Tank

Enrtopy 7.9114 7.9059 7.9178 7.9453 7.8938 7.9068

4.3.5. Computational Complexity

We evaluated the time consumed to encrypt an image using the proposed scheme
and compare it with full encryption. In full encryption, the image is divided into non-
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overlapping blocks to which SVD decomposition is applied. All singular values are then
rearranged in a matrix to be encrypted. In contrast, in the proposed method, only the first
SV of each block is encrypted. The results of our experiments are shown in Table 6.

Table 6. Computational complexity of selective encryption against full encryption.

Image Full Encryption Selective Encryption

256 × 256 tank 31.652340 s 3.780312 s

256 × 256 lena 30.875214 s 3.010088 s

4.3.6. Key Space Analysis

As mentioned in Section 3, the secret keys of our scheme are:

• The initial condition x0 and the control parameter μ of the logistic map.
• The threshold T used for quantification of the generated pseudo-random sequence.
• The number of iterations t of the Arnold cat map

The precision of the cat map initial condition x0 and control parameter μ reach 10−15.
This means for these two first secret parameters, the key space reaches 1030 (10−15 for x0
and 10−15 for μ). This number is almost 2100, which is a huge number that makes the key
space large enough to resist exhaustive attacks. Add to that the number of iterations of
the Arnold cat map, which has a size of 27 and the threshold T, whose precision is set
to 10−12 ≈ 240. This make the key space reach 2147. We can say with confidence that
brute-force attack is not an option to attack this cryptosystem.

4.3.7. Key Sensitivity

To assess the sensitivity of the keys, an experiment was drawn: we are encrypting the
same image using the two slightly different keys. In the experiment, we are assessing the
sensitivity of the initial condition x0 and the control parameter μ of the logistic map. The
difference is set to Δ = 10−15. Figure 15 shows the results of the experiments. A structural
similarity metric is used for comparison of the two resulted ciphers.

(a) (b) (c)

(d) (e) (f)

Figure 15. Keys sensitivity: (a) lena; (b) encrypted lena (x0, μ); (c) encrypted lena (x0 + Δ, μ)

SSIM = 0.0081; (d) tank; (e) encrypted tank (x0, μ); (f) encrypted tank (x0, μ + Δ) SSIM = 0.0122.
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As shown in the experiment, the slightest change in the key results in a huge change
in the cipher.

4.3.8. Comparison with Related Work

Table 7 shows a comparison between our scheme and a recently proposed image
encryption scheme; our schemes showed better performance in terms of NPCR and cor-
relation values. This proves that the selection of the singular values to be encrypted is
successful, and the encryption of those singular values resulted in high confusion and
diffusion in the cipher.

Table 7. Comparison with related work.

NPCR% UACI
Correlation

Entropy
Horizontal Vertical Diagonal

Proposed 99.6172 30.7198 −0.0017 −0.0021 0.0068 7.9135

Niu et al. [22] 99.1600 33.0400 0.0478 0.0829 −0.0889 7.9328

Premkumar et al. [23] 93.6800 29.6100 −0.0586 0.0881 0.0696 7.4944

Murali et al. [24] 99.5210 33.2451 −0.0710 −0.0655 −0.0953 7.9987

5. Conclusions

In this study, we proposed a selective encryption scheme using singular value decom-
position and chaotic systems. The proposed approach aims to ensure the confidentiality of
video streams originating from resource-limited devices used in a smart-traffic manage-
ment system. The proposed scheme uses singular value decomposition to identify the most
important parts of video frames to substantially decrease the quantity of data that needs to
be encrypted. Chaotic maps were deployed, which increase the diffusion and confusion
properties of the encrypted images to achieve strong encryption. Our experimental results
suggest that using the proposed selective encryption results in uniform tonal distribution,
low correlation between adjacent pixels, immunity to differential attack, high entropy, and
low computational complexity of the encrypted images. As a result, the proposed method
is appropriate for devices with minimal resources, as it provides computational efficiency
due to a significantly lower amount of data processed as compared to full encryption while
not compromising the strength of encryption promised by full encryption.
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Abstract: Vulnerabilities represent a constant and growing risk for organizations. Their successful
exploitation compromises the integrity and availability of systems. The use of specialized tools
facilitates the vulnerability monitoring and scanning process. However, the large amount of infor-
mation transmitted over the network makes it difficult to prioritize the identified vulnerabilities
based on their severity and impact. This research aims to design and implement a prioritization
model for detecting vulnerabilities based on their network environment variables and characteristics.
A mathematical prioritization model was developed, which allows for calculating the risk factor
using the phases of collection, analysis, and extraction of knowledge from the open information
sources of the OSINT framework. The input data were obtained through the Shodan REST API. Then,
the mathematical model was applied to the relevant information on vulnerabilities and their envi-
ronment to quantify and calculate the risk factor. Additionally, a software prototype was designed
and implemented that automates the prioritization process through a Client–Server architecture
incorporating data extraction, correlation, and calculation modules. The results show that prioriti-
zation of vulnerabilities was achieved with the information available to the attacker, which allows
evaluating the overexposure of information from organizations. Finally, we concluded that Shodan
has relevant variables that assess and quantify the overexposure of an organization’s data. In addition,
we determined that the Common Vulnerability Scoring System (CVSS) is not sufficient to prioritize
software vulnerabilities since the environments where they reside have different characteristics.

Keywords: prioritization model; probability theory; risk factor; Shodan; vulnerability scanning;
vulnerability detection

1. Introduction

The significant technological advance and the constant use of applications on the
network increase the number of vulnerabilities that cybercriminals exploit daily. Fixing
vulnerabilities requires a lot of effort, time, and resources [1,2]. The cybersecurity analysts
in the CERT/CSIRT of the different organizations have an arduous task at the level of
proactive services whose main objective is to prevent attacks before they happen [3]. Those
responsible for security must also analyze what vulnerabilities affect IT assets. In this
process, they generally face an overwhelming volume of openness, which represents a
high complexity when they have several assets connected to different networks. Resource
limitations prevent mitigating all but a small number of vulnerabilities in an enterprise
network [4–6].

A wide variety of tools help in the vulnerability scanning and detection process [7,8].
Most of the results from these tools are the Common Vulnerabilities and Exposures (CVE)
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records, which are stored in the National Vulnerability Database (NVD) [7]. NVD includes
specific parameters such as solution information, severity scores via CVSS, and impact
scores [4]. The CVSS Score is the global standard for characterizing and measuring the
severity of security vulnerabilities. However, the efficiency of this metric is affected by
additional environment variables present in computer networks. Thus, by itself, it is
not a good predictor of vulnerability exploitation and probability of occurrence [1–3].
Additionally, due to the large number of vulnerabilities that NVD contains and the amount
of information for each exposure, it is essential to maintain an analysis with as many
variables as possible [9].

Vulnerability treatment is a critical process in network and software security man-
agement [10]. The key to success is prioritizing [3], since it speeds up attention to the
vulnerabilities with the most significant impact on assets, optimizing resources and im-
proving security [5]. The prioritization of vulnerabilities is a complex process, where the
order of attention must be defined to remedy and minimize the risk. Various organizations,
companies, and researchers have their own rating systems to classify and prioritize vulner-
abilities based on qualitative and quantitative rating systems. Qualitative rating systems
are an intuitive approach for describing the severity of vulnerabilities. On the other hand,
quantitative rating systems associate a score with each vulnerability [11,12].

To address the prioritization problem focused on the organization and its environment
variables which define a specific risk factor for the IT asset where the vulnerability is
located, this study proposes the development of a prioritization model that uses Shodan as
a vulnerability scanning tool. The input data are collected through its REST API due to the
large amount of information that the tool provides. Therefore, it is necessary to carry out
a process of extracting information related only to vulnerabilities. For the prioritization
process, formulas are proposed that quantify the environment variables to obtain the
probability of occurrence. More precisely, the variables proposed from the collected data
are the following:

• Total number of vulnerabilities identified;
• Average organizational risk;
• Average remediation time;
• Number of vulnerabilities per IP;
• Open ports of the organization;
• Ports opened by IP;
• Query Tags by IP that Shodan crawlers have identified;
• Total number of references;
• Probability of exploiting a vulnerability.

To achieve a quantitative qualification, values must be assigned to the qualitative
variables; in this way, the order of attention can be prioritized. Finally, a starting point
is achieved for the review and remediation of vulnerabilities based on the probability
of occurrence of the vulnerabilities in each network IP, accounting for the information
available to any attacker.

Among the main contributions of this study, we can mention:

(i) The creation of a mathematical prioritization model that allows for assigning a risk
factor to each vulnerability identified within a set of IPs for the same organization.

(ii) The design and implementation of the proposed model following a client/server
architecture based on variables of the network environment and variables extracted
from the set of identified vulnerabilities. This prototype has three modules that
include data extraction, correlation, and prioritization algorithms.

The remainder of this article is organized as follows: in Section 2, related work is briefly
overviewed. Section 3 explains the methodology for the prioritization process. Section 4
presents the methods and relevant aspects in developing the prototype that automates the
prioritization process. In Section 5, the results achieved during the prototype execution and
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the main findings are discussed. Finally, Section 6 ends with the conclusions and outlines
future work.

2. State of the Art of Current Vulnerability Prioritization

The global standard used by organizations worldwide is CVSS, which has constantly
evolved and improved. However, its constant development and research is proof of the
difficulty of standardizing risk and impact in a way that can be applied to all organizations.
CVSS consists of three groups of metrics: base, temporal, and environmental [13]. The
first works in this area tried to leverage the characteristics of the vulnerability to determine
the probability of exploitation [14]. Dondo [5] presented a fuzzy system approach based
on vulnerability attributes that help assess the relative potential risk of computer network
assets. The CVEs obtained through vulnerability databases known as NVDs are used
as input data. Furthermore, fuzzy rules are employed to infer risk exposure and attack
probability; this allows vulnerabilities to be classified and the priority of attention to be
defined. He also mentions that the prioritization approach demonstrates more significant
severity values than those calculated by the CVSS.

One of the fundamental objectives of prioritization models is to create automated
processes that obtain high effectiveness percentages. Amankwah et al. [1,15] propose a
new automated framework for assessing the severity of vulnerabilities in open-source
web scanners. This study mentions that CVSS is criticized for its high sensitivity but low
specificity for the exploits used and, therefore, the inconsistency in the severity score. For
this reason, they propose four evaluation references metrics: impact, exploitability, preva-
lence, and detectability. The framework of this study has three components: vulnerability
detection, vulnerability assessment based on the references mentioned above, and, finally,
vulnerability prioritization according to the determined severity. The results show a more
centralized approach achieving greater risk precision that allows prioritizing attention
to vulnerabilities.

Sharma and Singh [12] propose a hybrid approach derived from the combination of
Vulnerability rating and scoring system (VRSS) and CVSS with two temporary metrics:
remediation level and vulnerability index. The input data are collected from NVD and
consider the level of remediation and the rate at which a particular vulnerability grows
over time, called the vulnerability index. The vulnerability index raises the static score to
account for the rate of change in exposure over time. A quantitative score is obtained from
qualitative variables for prioritization in this study.

Spanos et al. [9] propose a text mining process, which analyzes the description issued
by NVD regarding known vulnerabilities. They apply three classification methods: decision
trees, neural networks, and support vector machines. This study concluded that the
description itself is a very accurate and reliable source of information for prioritizing
vulnerabilities. Sharma et al. [11] also perform a similar process using a convolution neural
network (CNN). Specifically, the authors try to prioritize the vulnerabilities based on
keywords emitted in the description.

Deb and Roy [16] present a mathematical formulation through a Bayesian network in
the software-defined networking (SDN) environment to identify the status of the different
hosts on the network. The CVSS and the Bayesian network are robust methodologies for
determining the mutual relationship between vulnerabilities and prioritizing the effective
care process. On the other hand, Hu et al. [17] propose two algorithms, the threat prediction
algorithm based on a dynamic Bayesian graph and the security risk quantification algorithm
based on threat prediction. The first algorithm aims to provide comprehensive predictive
information under a specific threat scenario. The second algorithm quantifies the threat
in the first algorithm based on the security risk at two levels: host and network. The
framework proposed in his study contains three components: situational factors collection,
threat scenario prediction, and security risk situation quantification.

Chen et al. [18] mention that the average time it takes for NIST to issue a result on
the risk of discovered vulnerabilities is around 132.7 days. To mitigate this long delay,
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they propose a Vulnerability Analysis and Scoring Engine (VASE) system. The system is
based on the results issued in cybersecurity forums on Twitter to collect the possible scores
and average them, yielding tentative results about the vulnerability rating in question.
VASE adopts the convolutional graph network (CGN) model, where the nodes correspond
to CVEs. VASE consists of three main components: graph construction based on basic
natural language processing methods, attention-based input embedding, and transductive
inference with GCN-AE.

It is essential to note that the input data are massive for several studies described
above. That is, the applied models focus on all vulnerabilities and their characteristics.
Our study tries to contribute additional evaluation values to the CVSS model, making it
more specific when defining risk and impact. Moreover, the studies analyzed so far lack an
approach that addresses organizational variables. CVSS remains a generic model that does
not address the specificity necessary for successful prioritization in organizations [1–3].

Aiming to address the aforementioned problem, Farris et al. [10] present a software
called VULCON, which has a strategy based on two fundamental performance metrics:
time-to-vulnerability remediation (TVR) and total vulnerability exposure (TVE). The au-
thors use a mixed-integer multi-objective optimization algorithm to prioritize vulnerabili-
ties. Their study analyzes the environment variables where vulnerabilities are found and
detected. The different variables contained in the vulnerabilities, such as the year shown in
the CVE-ID, are essential when prioritizing. In addition, the ports corresponding to the
network’s IPs are considered since there is a greater probability of use and exploitation.
VULCON tries to add environment variables that improve the prioritization quality each
time. The achieved results demonstrate higher quality in prioritization with the additional
environment variables.

One of the fundamental factors when forming a correct prioritization is the quality of
the information. The more specific it is, the greater the likelihood of successful prioritiza-
tion. The objective is to propose generic vulnerability prioritization models that evaluate
the organization, leveraging and relying on the information provided by the collected
data [11,12]. This approach means that prioritization is not biased in any direction, provid-
ing a justification panorama according to which cybersecurity experts in organizations do
not address vulnerabilities that represent a “lower risk”. Finally, the data identified in the
scanning processes will only predict an organization’s actual risk.

Compared to our study, the analyzed works provide relevant information about
certain network environment variables and how they are quantified [10,18]. They also
allow the definition of validation rules based on the results obtained in [5,14,17]. On the
other hand, one of the approaches is to propose improvements in the CVSS model [1–3].
However, keeping CVSS as a variable has been identified to help optimize prioritization
time as it extensively describes the impact of vulnerability [10–12]. Some studies focus
on proposing prioritization models that have as input a set of specific test vulnerabilities
extracted from NVD [1,9,12,16]. Unlike these works, our study focused on calculating the
risk factor to prioritize vulnerabilities identified for any organization by understanding the
environmental variables included in the data. For this reason, the order of prioritization
that we propose is generic and easily adaptable to changes in the continuous vulnerability
detection process since it can correlate the data of the same organization.

3. Research Methodology

We employed the OSINT framework for data collection, analysis, and knowledge
extraction. This search process aims to prioritize the vulnerabilities exposed to any user on
the Internet, which can be collected openly. Similarly, we use the Shodan search engine to
obtain relevant information about existing vulnerabilities of different IPs of the computers
within the same domain or organization. Due to the large amount of data that a query
can return through Shodan’s REST APIs, we have applied specific algorithms that allow
us to extract information regarding only the vulnerabilities and characteristics of the
environment where they have been identified. Later, we apply mathematical formulas to
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quantify the qualitative variables. Once the environment variables have been mapped to
the vulnerabilities, attention can be processed and prioritized. In this way, an added value
is included in the management of vulnerabilities, taking into account that the actions of
cyber criminals begin with the data and information collected openly. A brief description
of the methodological process followed is presented below.

3.1. OSINT Framework

Open Source Intelligence (OSINT) is a framework that allows collecting, processing,
and correlating information from open sources from all over cyberspace to generate knowl-
edge. Technological advances make OSINT evolve at a dizzying pace, providing innovative
applications driven by data and Artificial Intelligence for different areas such as politics,
the economy, or society. This framework also offers new lines of action against cyber threats
and cybercrime [19]. OSINT has three representative phases that define the information
processing methodology. Figure 1 describes these phases.

Figure 1. OSINT Phases [19,20], sequential phases for open-source information processing. The
objective of this process is to generate knowledge from the data collected.

3.2. Collection Phase

We use Shodan, a cloud-based computer security scanner for the collection phase.
Shodan is a security software with several search algorithms and relies on various Open
Source tools that provide extensive information about the hosts detected by its crawlers [20].
It is regarded as the world’s first search engine for Internet-connected devices [21]. In
Shodan, all one has to do is enter the org code: “Organization _Name” and a series of IP
addresses begin to be collected, from which information will be obtained.

3.2.1. Shodan

Shodan provides valuable information to cybersecurity researchers in organizations,
but also to users with malicious intentions since, being a search engine, it is available to
the general community [22]. It has a database that stores all the information collected by
its crawlers about the different IPs that they track on the Internet. Due to the information
collected from Shodan, many experts choose to use techniques that hide the different IPs
of the crawlers; in this way, they avoid being detected. On the other hand, some experts
use this valuable information to apply corrective measures that improve the security of
their networks.

Shodan provides a REST API to make general or specific queries according to the needs
of the developers. It returns a JSON response that facilitates the manipulation and extraction
of data. In addition, it has an automated notification process, which alerts and notifies the
different results that it monitors, complying with an early detection service. Shodan can
display 11 general variables via a banner provided by the REST API, depending on the
scanned IP and its detection. These variables, in turn, contain other properties, resulting in
more than 50 variables in total. Table 1 lists the 11 general variables that are relevant to this
analysis process; this information is directly related to the knowledge and understanding
of vulnerabilities and the environment where they have been identified.
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Table 1. Variables of Shodan Banner Specification.

Variable Description

domains An array of strings containing the top-level domains for the hostnames of the
device.

hostnames An array of strings containing all of the hostnames that have been assigned to
the IP address for this device.

org The name of the organization that is assigned the IP space for this device.

data Contains the banner information for the service.

city The name of the city where the device is located.

isp The ISP that is providing the organization with the IP space for this device.
Consider this the “parent” of the organization in terms of IP ownership.

last_update Date and time of the last IP update/revision

vulns An array of strings containing the CVE code of the detected IP vulnerabilities.

country_name The name of the country where the device is located.

ip_str The IP address of the host as a string.

ports The port number that the service is operating on.

During this phase, an attempt is made to obtain the details of each vulnerability
identified. The variables that a vulnerability contains are described below:

Common Vulnerabilities and Exposures (CVE)

CVE is a list of records released by MITER Corporation in 1999. Each record has an
identification number, a description, and at least one public reference for publicly known
vulnerabilities. CVE records are used in numerous cybersecurity products and services
around the world. The CVE ID syntax is made up of CVE + year + sequence number. It is
important to mention that the year does not indicate when the vulnerability was discovered
but only when it was made public or assigned. At the same time, the number sequence
is the unique identifier by year. Additionally, CVE includes a unique description, which
generally contains details such as the name of the affected product and vendor, a summary
of the affected versions, the type of vulnerability, the impact, the access required by an
attacker to exploit the vulnerability, and the code components or important inputs that are
involved [23]. In Table 2, we present a representative CVE comprised of two fields, CVE ID
and description.

Table 2. Example of CVE.

Field Value

CVE ID CVE-2017-9798

CVE Description Apache HTTPD allows remote attackers to read secret data from process
memory if the Limit directive can be set in a user’s .htaccess file, or if
httpd.conf has certain misconfigurations, aka Optionsbleed. This affects
the Apache HTTP Server through 2.2.34 and 2.4.x through 2.4.27. The at-
tacker sends an unauthenticated OPTIONS HTTP request when attempting
to read secret data. This is a use-after-free issue and thus secret data are
not always sent, and the specific data depend on many factors including
configuration. Exploitation with .htaccess can be blocked with a patch to the
ap\_limit\_section function in server/core.c.

Common Vulnerability Scoring System (CVSS)

Each CVE is assigned a value by a scoring system designed to provide an open and
standard method for estimating the impact derived from vulnerabilities. It also helps
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to quantify the severity that vulnerabilities may represent. This scoring system obtains
standardized vulnerability values for CVEs ranging from 0 to 10, with 0 being the lowest
and 10 considered critical. In this way, consistent criteria can be maintained for managing
weaknesses in hardware and software that have been evaluated.

The CVSS score is calculated by combining several vulnerability characteristics called
CVSS metrics [24]. By using an open framework, it is possible to know the characteristics
of each vulnerability. However, being a general overview, there are no variables specific
to the environment where they have been identified. A method of this nature contributes
to having a broad picture of an organization’s exposure to risks, which can arise from
vulnerabilities that have already been identified and assessed.

3.3. Analysis Phase

An organization can have i vulnerabilities, with each vulnerability having j variables.
In addition, the set of vulnerabilities can be stored as an IP with k variables, which al-
lows collecting and defining information regarding the environment where they have
been detected.

The collected dataset allows the understanding of the environment variables of the
organization in question. For this study, prioritization variables are analyzed, extracted
directly from the set of vulnerabilities and data detected in the collection phase. Next, the
environment variables extracted from the collected data are presented.

3.3.1. Global Variables

The set of vulnerabilities found in the same network is an indicator of quantitative
values to extract knowledge of the environment variables where they have been detected.
Below are mathematical formulas that allow us to assign global values to vulnerabilities.

Total Vulnerabilities (TV)

Any public discussion of information about vulnerabilities can help a hacker. An
organization uses many resources and works to protect its networks and fix all possible
holes. It is easier for a hacker to find a single vulnerability, exploit it, and compromise the
network. About 52% of exploited vulnerabilities are discovered by the direct action of the
cybercriminal [25–28].

More and more highly sophisticated vulnerability exploit tools are being made public.
For example, the National Security Agency (NSA) security tools leaked in 2016 contained
hundreds of sophisticated exploits and back doors to vendor systems [29,30]. At the
same time, patching or quickly updating vulnerabilities is impractical in domains such
as critical infrastructure networks due to their high availability demands. In addition, an
organization’s risk increases when it has many unaddressed vulnerabilities. Considering
that the global average cost to organizations for a data breach and vulnerability exploitation
is USD 86 million [25,26], it can be determined that the number of vulnerabilities increases
the risk of the organization because of the exploitation probability increases.

Shodan displays the number of vulnerabilities identified on each IP it tracks. For this rea-
son, this variable is the growth or decrease rate of the general risk of an organization [12,23,31].
For this reason, in Equation (1), the following summation is presented:

tv =
N

∑
i=1

vi (1)

where N is the number of scanned IPs, and vi represents the number of vulnerabilities
identified in the IP.

Average Organizational Risk (AOR)

The CVSS scoring system is widely researched and used in most organizations world-
wide, representing the risk for each vulnerability [32,33]. However, as mentioned, its score

29



Electronics 2022, 11, 1334

is focused on vulnerabilities. For this reason, organizations use their additional evaluation
criteria to be able to define the actual impact on their environment [1–3].

Since CVSS has a quantitative scoring system, vulnerabilities can be grouped according
to their criticality range as shown in Table 3. Using Equation (2), it is possible to obtain the
score that demonstrates the organizational risk based on the vulnerabilities contained. In
addition, an average value of the risk to which the organization is exposed can be obtained
since all the identified vulnerabilities are immersed in the same environment.

Table 3. Correspondence between CVSS score and qualitative value (severity).

Score Severity

0 Null

0.1–3.9 Low

4.0–6.9 Medium

7.0–8.9 High

9.0–10.0 Critical

More precisely, the average risk of the organization defined by CVSS is calculated
as follows:

aor =

N

∑
i=1

vi

∑
j=1

(CVSSij)

tv
(2)

where N represents the number of IPs in the organization and vi is the number of vulnera-
bilities contained in each IP. As can be seen, it is necessary to add each CVSSij that contains
a vulnerability. The resulting AOR value is mapped to the ranges presented in Table 3 to
measure the severity of the organizational risk.

Average Vulnerability Time (AVT)

The remediation time reflects the extent to which an organization is prepared to deal
with a vulnerability. The level of preparedness of an organization for a vulnerability can
significantly affect the severity associated with the vulnerability. Therefore, it is an essential
variable for prioritizing vulnerabilities [12]. It is important to note that generally there is
no security patch available when the vulnerability is released. For this reason, the severity
score of a vulnerability is adjusted downward, suggesting a decreasing level of urgency
as the remediation becomes final. The less official the fix, the higher the vulnerability
score [23]. However, this logic allows for defining that, if this repair is not applied in the
organizations, the risk of that environment will remain adjusted to discharge because the
initial impact scenario is maintained.

The average time to exploit an unpatched vulnerability in systems is rapidly decreas-
ing. According to reports submitted by different industries, it takes about 15 days to exploit
a vulnerability by cybercriminals since its discovery [34]. The organizations targeted by
cybercriminals require a more significant effort to correct attack vectors. For this reason, it
is not recommended to have a vulnerability exposed for a long time period. The average
time it took for an organization to detect and remediate a vulnerability was 180 days in
2018, and, for 2020, it was 280 days, indicating that it is increasing [26,27]. On the other
hand, the vulnerabilities in the respective CVE ID offer information regarding the year they
were made public. This helps to identify the extent to which the organization is dealing
with known vulnerabilities. Regardless of the year in which a specific technology has
been implemented, the CVE-ID will demonstrate that said service or software has been
vulnerable for some time; therefore, it is advisable to update it. If good security practices
are ignored, the probability of being attacked increases [34]. Therefore, this time variable is
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essential in the prioritization process. The average time of the vulnerabilities is calculated
as follows:

avt =

N

∑
i=1

vi

∑
j=1

(Currentyear − CVEyearij) ∗ 365)

tv
(3)

Since the resulting AVT value corresponds to an average in days, it must be adjusted
to a range of values between 0 ≤ avt ≤ 1. In this way, the probability can be evaluated,
taking the average detection and remediation time for the organizations described above
as a reference. Accordingly, the following conditions are proposed:

• avt ≥ 280 → avt = 1
• 140 < avt < 280 → avt = 0.5
• avt ≤ 140 → avt = 0.1

The average detection time with which the comparison is made is referential and will
change over the years. It is vital to consider when executing the prioritization process since
the average time is the one previously proposed for the ongoing process of this study.

3.3.2. IP Variables

These variables are generated from the information obtained only from the scanned IP
and directly affect the set of vulnerabilities identified within the IP.

Probability of Occurrence of an Event in the IP (POE)

Given that each IP in the network is independent [10] and assuming that the probability
of occurrence of an event is independent of the IP, we define Equation (4):

poeip =
vip

tv
(4)

where vip represents the number of vulnerabilities in the IP. As can be seen, the greater the
number of vulnerabilities, the greater the probability of an event occurring, regardless of
the impact it represents.

Probability of Open Ports (POP)

The protection of information and the high availability of services require excellent
technical and technological effort. Losing or exposing information or leaving services inac-
tive harms organizations, both at a functional and a reputational level [35]. The rapid digital
transition exposes vulnerabilities that are being exploited by cybercriminals [36,37]. Com-
mon security incidents include malware infection, ransomware, exploit exploits, improper
access to applications, social engineering attacks, and denial of services [38,39].

Shodan detects the different open ports that a given IP has. The ports represent
information exchange and communication vectors; they identify the process to which
messages within the machine should be delivered. For this reason, the ports that are open
and exposed directly to the public on the Internet represent a greater risk and, therefore, a
greater priority for attention and control since they allow the exchange of information. In
order to obtain a quantitative value, the following equations are defined:

top =
N

∑
i=1

opi (5)

where op is the number of open ports in an IP; therefore, top represents the total number of
open ports in the organization with N IPs.

Since each IP is independent in the network, the risk of open ports is defined for each
IP as follows:

popip =
opip

top
(6)
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Probability for Query Tags (PQT)

While collecting IP addresses of the target organization of this study, it was observed
that Shodan returns a variable called “tags”. This variable contains character strings that
refer to the service found or hosted on the scanned IP. For the target IPs of this study,
“tags” such as “database” and “self-signed” were demonstrated. This field was taken as a
prioritization variable because, when a “tag” is detected in an IP, the Shodan variable “data”
contain more specific information about the service—for example, versions, technologies,
Operating Systems, and among other characteristics hosted on that IP.

Figure 2 illustrates the trend in the IPs presenting this variable. When the IPs have the
“tag” variable, there are more data items. The number of vulnerabilities is greater because
Shodan knows more specific organization data and can relate a more significant number of
known vulnerabilities.

Figure 2. Number of data items and vulnerabilities when Query Tag is displayed in Shodan. The
trend is directly proportional.

Because Shodan is a secure software and its documentation only describes the variable
“tag” for the query processes and not in the response processes, we have limited ourselves to
verify its existence in order to assign a risk value for the prioritization process [21,40]. Since
the quality of information exposed in Shodan provides more significant value in knowledge
and investigation for cybercriminals [20,22], the risk increases when this variable called
“tags” has some content. In order to obtain quantitative values, the following conditions
are proposed:

• IF (tags > 0) → pqt = 1
• IF (tags = 0) → pqt = 0

3.3.3. Vulnerability Variables

These types of variables are generated from the information of each vulnerability and
affect only the vulnerability in question.

Total References (TR)

Each CVE record includes references where a broader context about the vulnerability
can be understood. References should point to content relevant to the vulnerability and
include at least all the details included in the CVE record. A key feature is that the references
must also be publicly available [23].

There are two approaches to this variable. On the one hand, references are sources of
valuable information when proceeding with the correction or mitigation of a vulnerability.
On the other hand, this same information allows the attacker to know first-hand which
products and versions are affected. In several cases, it has also been identified that the
reference presents the exploits with which these vulnerabilities can be exploited [4,12].

For our case study, we employ the second approach mainly because, when applying
OSINT techniques, we propose obtaining the most significant amount of information that
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allows for compromising the organization’s integrity, availability, and confidentiality. In
addition, we maintain the attackers’ point of view, where all this information is accessible
without any limitation and allows them to carry out an intelligence process to understand
the technological infrastructure. Based on the proposed approach and considering that
the average number of references of a vulnerability with broad understanding is more
significant than 8 [18], the following conditions are proposed:

• IF (Vreferences ≥ 10) → tr = 1

• IF (Vreferences < 10) → tr =
(

Vreferences
10

)
Exploitation Probability (EP)

For the identification and detection of vulnerabilities, researchers use exploits, which
are codes that show the existence of a flaw; that is, confidentiality, integrity, or availability
may be compromised. A CVSS score is indicative of the severity of the vulnerability but
does not help predict the delay of the exploit [29].

According to Frei [41], while 94% of exploited vulnerabilities had an exploit available
within 30 days, only 72% of patches were available within that period. Therefore, this is
an indicator that there is an exploit available for the vast majority of old vulnerabilities.
CVSS scores do not allow efficient discrimination between the probability of exploitation
and non-exploitation [14,42]. However, studies have shown that high-risk vulnerabilities
are more likely to be exploited [29,43]. In other studies, this variable is also known as the
age of vulnerability [10]. Given that CVEyear ≤ Currentyear, the following conditions are
proposed to prioritize attention to vulnerabilities:

• IF (CVSS ≥ 7.0) → ep = 1
• IF (4 ≤ CVSS ≤ 6.9) → ep = 0.5
• IF (0 ≤ CVSS ≤ 3.9) → ep = 0.1

3.3.4. Knowledge Extraction Process

Prioritization algorithms, models, and mathematical formulas cause many difficulties
when applied to a real-world environment due to the organizations’ multiple and conflicting
objectives. More precisely, the different problems at the prioritization level have enormous
practical implications since they produce a set of solutions based on the importance assigned
to each of the business objectives [10].

According to the target organization, this study proposes a prioritization model based
on the knowledge that the vulnerabilities themselves and the specific characteristics of the
environment where they reside can offer us. Based on the set of vulnerabilities detected,
the quantitative variables presented above are obtained, which contain hidden knowledge
about the management and risk of the organization in question.

In order to quantify each vulnerability based on the identified environment variables,
the risk factor that each one represents for the organization is calculated. The corresponding
calculation process is described below:

Risk Factor (RF)

Two vectors define the risk factor, namely the probability of occurrence and the
impact [2,44,45]. The following equation determines the RF:

RF = Probability o f occurrence(po) · Impact(i) (7)

In this study, three types of variables are distinguished:

• Global Variables;
• IP Variables;
• Vulnerability Variables.

Determining the probability of occurrence by grouping the variables according to the
type to which they belong is essential to keep the calculation focused on the level of impact,

33



Electronics 2022, 11, 1334

i.e., whether it affects the vulnerability, IP, or network level. Considering that, for this case
study, importance or superiority has not been defined by the type of variable, it is possible
to average the values as presented in Equation (8):

Probability of occurrence:

po =

(
tr + ep

2

)
·
(

poe + pop + pqt
3

)
· avt (8)

The impact is a widely researched and studied parameter in the CVSS framework,
where various metrics are established to assess vulnerabilities and how these would affect
the elements of the IT security environment if they materialize [13,46,47]. Considering that
the objective of this study is to rely on the CVSS score to approximate a more exact value
focused on the affected environment, the following equality i = CVSS is determined.

Finally, the prioritization values assigned to the vulnerabilities after calculating the
RF, are grouped according to a criticality range presented in Table 3. In Figure 3, the RF is
graphically presented by ranges.

Figure 3. Risk Factor. The risk factor increases the criticality of a vulnerability when the probability
of occurrence and impact is close to 1 [44].

Illustrative Example

After processing the information for our case study, the Risk Factor represents knowl-
edge. When this process is applied to the total set of vulnerabilities, a quantitative prioritiza-
tion is achieved that is close to the organizational reality due to incorporating environmental
variables. For illustrative purposes, the calculation of a specific vulnerability is detailed. For
this case, we will take the vulnerability CVE-2017-9798 determined in the previous section.

The organization that was the object of this study presented the following variables:

• Global Variables

– tv = 541
– avt = 1

• IP Variables

– poe =
( 96

541
)
= 0.18

– pop =
( 9

14
)
= 0.64

– pqt = 1

• Vulnerability Variables

– tr = 1
– ep = 0.5
– CVSS = 5

10 = 0.5

RF =
(

1+0.5
2

)
·
(

0.18+0.64+1
3

)
· 1 · 0.5

RF = 0.23
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Finally, taking the information available to the attacker as evaluation parameters, the
RF of the previously presented vulnerability is less than the reference value that CVSS has
assigned. This scenario will be discussed in detail in the Results section.

4. Prototype Development

The number of vulnerabilities detected in organizations is constantly increasing. The
rapid digital transition organizations face forces staff to make hasty configurations and
deployments, subject to continuous testing and change. These processes are constant,
which explains why vulnerabilities appear and disappear with each phase of work.

The mitigation and treatment of vulnerabilities make the technological infrastructures
improve or maintain their levels of security. The scanning, detection, and prioritization of
vulnerabilities must be continuous and automated since the environment variables change
according to the values obtained. Without a doubt, it is a great challenge for organizations
to maintain these processes in such changing environments.

Previous studies have identified no methodologies or development processes defined
for this type of system. However, the methodologies applied for the development process
must show rapid results, constant changes, and evaluations during their construction.
Due to being a complex data treatment process, it is essential to seek increasingly efficient
results. On the other hand, from several studies analyzed, we conclude that 48% apply
prototypes to evaluate the proposed processes because it reduces costs and time; the results
are continuously evaluated and adjusted with the required changes. Figure 4 shows the
phases proposed in our previous study, which we will follow for the development of
the prototype.

Figure 4. Development Process Phases. The six-phase process allows us to constantly evaluate the
software, control complexity and risks, and increase its functionality throughout the process.

The screening approach for this study has been presented in detail in Section 3.
However, it is crucial to consider that, according to the classification made in our pre-
vious study, we propose a mixed approach that takes advantage of information from
known vulnerabilities and characteristics of information overexposure at the network
level. Because Shodan provides extensive information and the approach for this study is
mixed, we use its variables in a combined way to prioritize the order of attention of the
vulnerabilities detected.

Shodan’s documentation mentions that all their websites are entirely built on the same
public API; this means that anything that can be done through the website can also be done
programmatically using the API. Figure 5 shows a high-level diagram illustrating the flow
of data on the Shodan platform.

According to the operating concept of Shodan’s websites, we can see that Shodan itself
is a server where the data found by its crawlers are stored. In this way, the data already
present a preprocessing and mapping. However, it is still very scattered information, so the
official website does not show all the API returned information.
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Figure 5. High-level diagram showing the flow of data in the Shodan platform [21]. Shodan’s
communication is unidirectional as it only allows client-side data queries.

In Figure 6, we propose a Client/Server architecture, where we make the necessary
queries to Shodan to obtain the information corresponding to the IPs of the same organi-
zation. The queries start with a data extraction and analysis process, presented in a web
service through three modules that show the correlated information about the detected
vulnerabilities. The objective of these modules is to provide knowledge to the client about a
specific organization. The correlation of vulnerabilities and network characteristics avoids
the dispersion of data that have no relevance and require human capital to be interpreted
and analyzed. It is possible to optimize resources, especially when knowing, interpreting,
and prioritizing the vulnerabilities that Shodan has detected.

Figure 6. Architecture of the prototype’s resource consumption and data processing diagram.

The prototype was developed in React, an open-source Javascript library designed
to create user interfaces to facilitate the development of applications on a single page.
Facebook and the free software community maintain it. We have published the source
code of the individual modules and complete framework for further use by the respective
community in a public repository (https://github.com/jorgereyesn/prioritization--model-
shodan-jreyes-web-app.git (accessed on 2 December 2021). The ease of interacting with
frontend and backend code allows dynamic testing quickly.

Shodan returns the information in JSON format; thus, a mapping process is neces-
sary for its presentation and interpretation. In this study, we focus on the extraction of
vulnerabilities following the architecture presented in Figure 6, which defines a process
for extracting only the vulnerabilities found within all the collected data. To that end,
Algorithm 1 was developed for extracting all the information related to the CVEs from the
resulting JSON of Shodan.
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Algorithm 1: Extract Vulnerabilities.
Data: Variable data and vulns of Shodan
Result: Vulnerabilities with description, CVSS and references (returnData)
tempValue ← Array[empty];
returnData ← Array[empty];
count ← 0;
for i ← 0 , data.length do

if data[i].vulns �= undefined then

tempValue.push(data[i].vulns);
end

end

for i ← 0 , data.length do

count ← 0;
for j ← 0 , tempValue.length do

if tempValue[j][vulns[i]] �= undefined then

if vulns[i].index = tempValue[j][vulns[i]].index and count < 1 then

tempValue[j][vulns[i]].cve ← vulns[i];
returnData.push(tempValue[j][vulns[i]]);
count ++;

end

end

end

end

Once the vulnerability extraction function has been defined, the function responsible
for connecting to Shodan is called. Algorithm 2 is in charge of connecting, mapping, and
extracting the information by making use of the algorithm mentioned above—Algorithm 1.
The objective of this process is that, after Shodan returns the information to us, two
values can be separated and returned that will contain only the necessary information
on vulnerabilities and network, which facilitates the treatment and correlation for the
prioritization and presentation processes on the screen.

Algorithm 2: Shodan Data Acquisition.
Data: shodanData in JSON format from

https://api.shodan.io/shodan/host/ip?key=API_KEY where ip is input
variable

Result: Network and Vulnerabilities values ({network, vuln})
vuln ← Array[empty];
network ← Array[empty];
if shodanData.vulns �= undefined then

network.push(shodanData);
vuln.push(extractVulnerabilities(shodanData.data , shodanData.vulns));

end

Finally, the formulas presented in Section 3 were transformed into algorithms for the
prioritization process, applying cyclical flow control structures to calculate the necessary
values and assign them as variables to each vulnerability. Algorithm 3 is in charge of as-
signing the RiskFactor to each vulnerability to finally order them, achieving a prioritization
based on the information that has been detected as available to the attacker.
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Algorithm 3: Risk Factor Calculation
Data: in f o = {network, vuln} with tr, ep, poe, pop, pqt and avt values
Result: vulnerabilities with risk factor value (in f o)
for i ← 0 , info.length do

for j ← 0 , info.vuln.length do
info[i].vuln[j].po ← ((info[i].vuln[j].tr + info[i].vuln[j].ep)/2) *
((info[i].network.poe + info[i].network.pop + info[i].network.pqt)/3) * avt;

info[i].vuln[j].impact ← info[i].vuln[j].cvss /10;
info[i].vuln[j].rf ← info[i].vuln[j].po * info[i].vuln[j].impact;

end

end

5. Results Analysis

This section describes the input data to check the operation of the prototype. In
addition, the results obtained in the prioritization process are analyzed according to the
proposed model.

5.1. Validate Software Operation

Considering that the prioritization model is based on the data available to the attacker,
some variables related to the case study organization will not be shown for security reasons.
This study proposes a generic model that can be applied to any organization. As such, in
order to begin with detecting and analyzing vulnerabilities, it is enough to know a group
of IP addresses that are part of the technological infrastructure.

To define the input data, it is necessary to carry out previous research in Shodan
through its official website, where the following search string must be entered: org :
”Organization_Name”. Once the different IPs that are visible in Shodan have been collected,
we enter them into the prototype to perform the necessary queries and map the information
to be displayed in the modules. For this case study, nine IP addresses have been discovered,
containing vulnerabilities and belonging to the same organization. As previously men-
tioned, the three component modules and the overall employed architecture are presented
and described in Figure 6.

The Vulnerability Overview Dashboard Module shows general information related to
the network and the detected vulnerabilities. This is achieved by applying Algorithm 1,
which is responsible for extracting vulnerability and network information to be analyzed
and mapped into fields. The objective of this module is to provide a global vision of the
resulting data. Of the nine IPs scanned, 541 vulnerabilities have been detected, the same
ones verified in Shodan directly through its website. The set of vulnerabilities shows an
organizational risk of 5.29, which, according to Table 3, corresponds to medium severity. In
addition, the average time of the identified vulnerabilities exceeds 2300 days.

After obtaining the general information about the set of detected vulnerabilities, it is
important to have detailed information on how they were detected, i.e., the vulnerabilities
for each specific IP. The Detailed Vulnerability Banners by IP Module contains in detail the
information related to each scanned IP and the vulnerabilities that have been identified
in it. Furthermore, the links of the vulnerabilities are referenced towards NVD for a more
detailed investigation, the IP plus the ports are concatenated for a review of the content
hosted in each port, and a link is generated according to the detected hostname, also for
investigative purposes.

Finally, the Prioritization Table Module contains every vulnerability and the correspond-
ing calculated prioritization variables. This is achieved using Algorithm 3 plus some simple
calculations to obtain the values of the environment variables. The detected vulnerabilities
have been ordered from highest to lowest (i.e., according to the risk factor evaluated)
to suggest the user’s order of review. In Table 4, an extract of the module found in the
prototype is presented. It is important to mention that all modules are intended to provide
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correlated and calculated information for cybersecurity experts to analyze and define their
own conclusions about the organization under investigation. However, the prioritization
process needs further analysis that will be presented in the following section.

Table 4. Prioritization table: Extract of 11 vulnerabilities with calculated values shown through the
prioritization table in the prototype.

ip cve tr ep poe popI pqt po Impact rf

IP-6 CVE-2012-2688 1 1 0.25 0.73 1 0.66 1 0.66

IP-5 CVE-2016-2842 1 1 0.2 0.73 1 0.64 1 0.64

IP-5 CVE-2016-0799 1 1 0.2 0.73 1 0.64 1 0.64

IP-5 CVE-2016-0705 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-0799 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-2842 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-0705 1 1 0.2 0.73 1 0.64 1 0.64

IP-6 CVE-2011-3268 0.8 1 0.25 0.73 1 0.59 1 0.59

IP-6 CVE-2012-2376 0.6 1 0.25 0.73 1 0.53 1 0.53

IP-6 CVE-2011-3192 1 1 0.25 0.73 1 0.66 0.78 0.51

IP-5 CVE-2016-6304 1 1 0.2 0.73 1 0.64 0.78 0.5

Because the data are correlated to achieve a resulting value of RiskFactor, it was
possible to validate the value obtained for the illustrative example in Section (Illustra-
tive Example) with the value obtained in the prototype, ensuring the correctness of the
calculation process prototype.

5.2. Prioritization Analysis

To analyze the prioritization process by calculating the RiskFactor, it is essential to
know the data resulting from the environment variables since they are the ones that define
the prioritization order. According to the point of view of an attacker, the vectors and
ways of compromising a network are various and very ingenious. However, all attack
processes begin with investigating the information that is available in the wide world of
the Internet [35–37,48]. The previous process of knowing how difficult it is to compromise
an organization is decisive for an attacker or group of attackers to spend their resources
and time. For this reason, all the information that organizations allow to be leaked on the
Internet is of vital importance to become a target or not [34,38,39].

Initially, it is essential to know the number of vulnerabilities the organization presents
in general. The variable tv is responsible for providing us with this information. It is the
initial parameter to define whether an automated prioritization process is needed or if the
expert in charge has sufficient knowledge.

This variable reflects the time factor since a greater number of vulnerabilities sug-
gests a greater analysis time. If so, our prioritization model applies; otherwise, it is not
needed [49,50]. Environment variables can be correlated based on the characteristics and
number of vulnerabilities presented by each scanned IP. In Figure 7, the corresponding
details are shown. It can be seen that the maximum number of vulnerabilities that an
IP contains is 123, and the lowest is 6. These values are essential because they allow for
defining whether the number of vulnerabilities establishes the trend of the risk factor; that
is, the higher the number of vulnerabilities, the higher the risk factor score.

The vulnerability CVE-2017-9798 presented throughout this study is found in
IP-5, IP-7, IP-9, and the prioritization values are 0.23, 0.07, and 0.22, respectively. Con-
sequently, for IP-5, the probability of this vulnerability occurring is higher, giving it a
higher priority for attention. If we look at Figure 8, we can see that the existence of
the variable pqt indicates that the risk factor increases in an IP. Regarding this parame-
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ter, we confirm that the model works according to the theoretical approach presented in
Section (Probability for Query Tags (PQT)), where it is explained that, when Shodan offers
this variable, it shows more information about the place where the vulnerability resides,
giving the attacker a more extensive knowledge [20,22,51,52].

In addition, we have the variables of vulnerability. In Figure 9, we can see the trend of
the variables tr and ep that are inversely proportional. We have many vulnerabilities in
IPs that maintain a high percentage of referrals. Therefore, the probability of exploitation
is adjusted downwards as the correction is final [4,12,18]. In addition, a particular case is
observed in IP-2, which presents a total of six vulnerabilities, none of which contains more
than ten references. In addition, the CVSS scores on three of the six vulnerabilities are one
high and two critical. Despite having the last year in the CVE-ID, an increased risk is still
identified, which indicates that vulnerabilities do not constantly adjust downward over the
years. This shows that the reference year in the CVE-ID is an unpredictable variable. It will
depend on the context of interpretation and the additional information that allows it to be
correlated with the probability of exploitation. Therefore, it is concluded that it does not
have a fixed trend that indicates lower importance in older vulnerabilities.

According to this study, we can define the IPs’ predominant variables. As can be seen
in Figure 10, if only CVSS would be used to prioritize vulnerabilities, IP-2 would be the first
to be addressed. However, this IP is the lowest priority based on the risk factor calculation.
Amankwah et al. [1], Dobrovoljc et al. [3], and Keramati [2] mention that CVSS is usually
very generic and does not meet the specificity necessary for an accurate prioritization,
which is demonstrated by the trend in Figure 10. Furthermore, if we look at Figure 11,
it is clear that CVSS would have a very dysfunctional prioritization order in terms of the
organization where the examined vulnerabilities are found.

Figure 7. Number of Vulnerabilities per IP. A total of 541 vulnerabilities were identified across nine
IPs of the same organization.
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Figure 8. Variable IPs. When the pqt variable is present in an IP, the poe and pop variables tend to
increase as Shodan reveals more information. The IPs with high levels of sensitive and confidential
information are exposed, allowing the collection of a more significant number of environment
variables. Therefore, the risk and the probability of occurrence of an event are greater; that is, it is a
directly proportional relationship.

Figure 9. Variable vulnerabilities. The relationship between these variables is inversely proportional.
When the number of references is low, the vulnerability maintains a high ep since there is a lack of
knowledge about the containment and mitigation of the vulnerability.

Figure 10. CVSS trend and risk factor by IP. The environment variables evaluated and applied for
calculating the r f differ from the value assigned by CVSS to a vulnerability since the additional
values mean that a vulnerability does not maintain a total impact on the organization. This graph
shows that, even with a high CVSS score, the risk factor can be different; i.e., there is no absolute
consistency in prioritizing through CVSS.
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Figure 11. CVSS trend and risk factor by vulnerability. If an organization relies only on CVSS, it
runs the risk of wasting much time, evaluating vulnerabilities that do not represent a priority risk
because environmental variables mitigate the impact and probability of occurrence. This waste of
time generates economic losses and increases the organization’s risk.

6. Discussion

The present prioritization model allows for identifying characteristics of the information-
security vulnerabilities and their environment. Case in point, Dondo [5] mentions that
systems based on vulnerability attributes help assess the relative potential risk of computer
network assets. For their part, Farris et al. [10] analyze the environment variables where
vulnerabilities are found and detect vulnerabilities. The different variables contained in the
vulnerabilities, such as the year shown in the CVE code and the ports configured in the IPs
of the network, are essential when prioritizing since they can indicate a greater probability
of exploitation. It is essential to infer risk exposure and the probability of attack; this allows
for the classification of vulnerabilities and defining the priority of attention more effectively
than CVSS. According to our results, we identify that this approach is fulfilled both for
each vulnerability as shown in Figure 11, and for the set of vulnerabilities identified for
each IP as shown in Figure 10.

Within the same context, Amankwah et al. [1] mention that CVSS is criticized for its
high sensitivity but low specificity for the exploits used and, therefore, the inconsistency in
the severity score. For this reason, the vulnerability variables tr and ep allow us to evaluate
the probability of exploitation from these two vectors. The vectors are based on identifying
the existence of an exploit for the vulnerability, according to the information that the NIST
presents about the CVE. The results show a more centralized approach as shown in Figure 9
and a higher risk precision that allows for prioritizing attention to vulnerabilities.

As previously mentioned, Sharma and Singh [12] propose a hybrid approach derived
from the combination of Vulnerability rating and scoring system (VRSS) and CVSS with
two temporal metrics. A quantitative score is obtained from qualitative variables for
prioritization in this study. The correction level adjusts the severity score downward,
leading to less urgency as the correction becomes definitive. Frei [41] mentions that
vulnerabilities are exploited within 30 days of their appearance; therefore, it is correct that
a vulnerability is adjusted downward. However, it is adjusted downward as there is a
definitive correction. However, when this correction is not applied, the risk remains and
grows since it also increases the probability of an exploit. For this reason, we use this
approach in reverse, achieving a prioritization that assesses an organization’s inability to
address legacy vulnerabilities.

Likewise, Deb and Roy [16] present a mathematical implementation to identify the
status of the different hosts on the network. On the other hand, Hu et al. [17] propose two
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algorithms. The first algorithm aims to provide comprehensive predictive information
with the threat scenario. The second algorithm quantifies the threat in the first algorithm
at the security risk from the host and network levels. Furthermore, the authors mention
that CVSS is a good predictor of impact. Based on this network scenario, the environment
variables that Shodan provides us about the IP help us to refine the risk factor; as seen in
Figure 8, the IP variables mark the prioritization trend since it is the environment where
the impact can materialize.

Finally, our model takes CVSS as a reference point plus an additional analysis on the
environment variables, which allows us to define a higher quality in the prioritization since
the actual environment is analyzed. However, it is not enough to generate an adequate
prioritization value that focuses on the technological infrastructure environment variables
where vulnerabilities are identified [14,16,53–55]. Thus, the studies that focused only on
improving the CVSS model tend to be complex mathematical models that focus on adding
variables that define and characterize vulnerability.

7. Conclusions and Future Work

In this study, it was possible to define a prioritization model that focused on the
attacker’s information to compromise an organization through the exploitation of a vul-
nerability. CVSS is very useful for quantifying environment variables because its metrics
allow comparisons with additional information that an organization presents. In addition,
it is essential to have an initial risk based on which the criticality of the vulnerabilities
can be addressed on their own. When vulnerabilities are not addressed in organizations,
they become easy targets for even moderately skilled hackers. Furthermore, if there is
overexposure of information on the technological infrastructure, the probability of an event
occurring increases.

The risk factor calculated from the information available to an attacker allows for
prioritizing vulnerabilities that are visible to any user on the Internet and allows for
evaluating the type of information and its sensitivity. Shodan is a powerful search engine
with lots of relevant information when using its APIs. The data extraction, treatment, and
correlation process become dynamic, achieving continuous monitoring, which allows for
evaluating and improving the security of technological infrastructures. Finally, it has been
shown that the environment variables indicate that each organization must evaluate the
prioritization of vulnerabilities. However, prioritization is best adjusted when a tailored
risk factor is calculated for each environment.

As future work, we plan to refine the environment variables presented in this study
with historical values. The objective will be to correlate the results of the vulnerabilities
that affected the organization and adjust a generic prioritization model that leverages the
data to understand its environment through Artificial Intelligence.
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Abstract: Encryption is widely used to ensure the security and confidentiality of information. Because
people trust in encryption technology, a series of attack methods based on certificates have been de-
rived. Malicious certificates protect many malicious behaviors and threaten data security. To counter
this threat, machine learning algorithms are widely used in malicious certificate detection. However,
the detection efficiency of such algorithms largely depends on whether the extracted features can
effectively represent the data. In contrast, graph convolutional networks (GCNs) can automatically
extract useful features. GCNs are powerful at fitting graph data, which can improve the effectiveness
of learning systems by efficiently embedding prior knowledge in an end-to-end manner. In this paper,
we propose an algorithm for detecting malicious digital certificates with GCNs. Firstly, we transform
the digital certificate dataset with pem document structure into a corpus of graph structure based on
attribute co-occurrence and document attribute relations. Then, we put the graph structure certificate
dataset into a GCN for training. The results of the experiment show that GCN is very effective in
certificate classification and outperforms traditional machine learning algorithms and extant neural
network algorithms. The accuracy of our algorithm to detect malicious certificates is 97.41%. This
shows that our algorithm is very effective.

Keywords: cyber security; digital certificates; graph convolutional networks; data of the graph structure

1. Introduction

As digitization plays an increasingly important role in people’s lives, security of
data and information during transmission has become an important issue. Encryption is
widely used to protect the privacy of data as a technique to prevent data leakage. Because
information is vulnerable to man-in-the-middle attacks during data transmission, HTTPS
protocol is proposed to protect the security and stability of information communication,
where SSL and TLS are encrypted communication frameworks. SSL, which is based on the
HTTP standard and encrypts data transmitted by TCP, is a protocol layer on top of the TCP
protocol and under HTTPS. TLS is an upgraded version of SSL and more secure. Certificate
are a digitally signed document used in SSL/TLS protocol to verify identity. They are
used to identify each participant in Internet interactions and to protect the confidentiality
of information, the certainty of identity, the non-repudiation of transactions as well as
the non-repudiation. To a certain extent, certificates reduce the possibility of users being
attacked, but they also become a tool for attackers to carry out their attacks, causing great
harm to the network. Certificates have also become increasingly important to protect users
from cyber attacks.

The Computer Science Research Institute (CSRI) [1] has revealed information about
stolen digitally signed certificates being sold and software’s digital signature certificates be-
ing modified. In these ways, the attacker makes such certificates undetectable by browsers,
allowing the malware to bypass the antivirus software and carry out the attack. Hackers
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can use the CA certificates and private keys that they have obtained to issue fake certificates,
perform SSL hijacking and listen to HTTPS traffic. According to the Anti-Phishing Working
Group (APWG) [2] report on phishing activity trends for the third quarter of 2021, 90%
of phishing websites use free DV certificates (such as those issued by Cpanel and Let’s
Encrypt, which do not require user authentication, only the domain name). Malware also
often uses certificates to communicate with Command Control servers to avoid detection
by traffic analysis tools. The SSL blacklist exposes numerous X.509 certificates. Because
malicious certificates protect many phishing sites, they do a huge amount of damage to
networks. The question of how to protect users from cyber attacks is becoming more and
more important.

Although the certificate format is standardized, there are differences between cer-
tificates, and they are not structured data. When machine learning is used to classify
certificates, the features of the certificates need to be extracted through feature engineering.
However, a GCN does not need to use feature engineering methods to extract features [3–7].
It extracts features from the dataset automatically. Our Cert GCN model is based on an
improved Text GCN [8–10] that allows the Cert GCN to convert a pem-structured certificate
dataset into a graph-structured form, and then use the GCN to detect malicious digital
certificates. In this paper, a GCN algorithm for detecting malicious digital certificates is
proposed. The experimental results show that the accuracy of the algorithm is 97.41% for
malicious certificates and 93.01% for benign certificates. The contributions of this paper are
as follows:

• We design a rules-based method for extracting certificate attributes from documents
to build a corpus of certificates. The advantage of this approach is that all useful infor-
mation in certificates is extracted, saving time in constructing a corpus of certificates,
and the constructed corpus of certificates is more comprehensive.

• The certificate graph is constructed by describing the unstructured certificate dataset
with a heterogeneous graph. We extract the nodes of the graph and the relationship be-
tween nodes from the certificate corpus to construct a graph structure of the certificate
that can better represent the certificate data.

• Cert GCN is proposed to coordinate and integrate heterogeneous information in
certificate graphs. We use Cert GCN to detect malicious digital certificates and find
that the accuracy is very high, up to 97.41%.

• We conduct experiments on the certificate dataset and compare the results with other
models to prove the effectiveness of Cert GCN.

The rest of the paper is organized as follows: In Section 2, we describe previous
efforts and results in malicious certificate detection. In Section 3, we propose Cert GCN
for detecting malicious certificates. In Section 4, we describe our experimental procedure
and results. Our experiments include the experimental setting, the dataset, the experiment
design, and the analysis of the experimental results. Eventually, the conclusions of the
work in this paper are discussed in Section 5.

2. Related Work

Traditional research on malicious certificate detection has focused on feature extraction
and detection algorithms. We describe related work in more detail below.

2.1. Malicious Certificate Feature Extraction

Extracted certificate features play a very important role in the detection of malicious
certificates, and the results of malicious certificate detection algorithms depend heavily
on whether the extracted features can describe the data well. Feature extraction of digital
certificates is either by manual methods or by using expert rules to extract valid fields.
Manual methods of extracting features [11,12] obtain features directly from certificates,
digitizing features with one-hot encoding [13], implementing discrete data vectorization
with CLE, or processing data to get features with TF-IDF [14]. To address the shortcom-
ings of manual feature extraction, tools for extracting features through expert rules were
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designed and implemented. Jiaxin Li et al. designed and employed the VFE [15] method
for certificate verification and feature extraction; the VFE extracts features through four
parts: base analysis, criteria checking, certificate chain construction, and certificate chain
verification. The extracted features were put into classical machine learning models and
ensemble learning models for training. The ultimate result is that the ensemble learning
model has better results for malicious certificate detection. Dong et al. [16] designed and
implemented a certificate detection system containing a certificate downloader, a feature
extractor, a classification actuator, and a decision-making section. The feature extractor
uses expert knowledge to extract features in this system. This method is easier and less
time-consuming, but blacklist expansion is time-consuming and tedious.

2.2. Malicious Certificate Detection Algorithm

There are two main types of detection algorithms: one is based on blacklisting mali-
cious digital certificates and the other is based on machine learning [13,17] for malicious
digital certificate detection. Ibrahim Ghafr et al. [18] proposed a malicious SSL certificate de-
tection module (MSSLD) in response to APT attacks. It detects APT command and control
(C&C) communication of malicious SSL certificate blacklists by matching the blacklist with
a certificate or IP. This method is easier and less time-consuming, but the blacklist update
is time-consuming and tedious. To solve this problem, it has been proposed that machine
learning [19–21] be applied for malicious certificate detection. Akanchha et al. [22] pro-
posed a system for automatically detecting phishing website systems using key attributes
of SSL certificates. It uses different machine learning algorithms to do research utilizing
extracted SSL certificate features and found that the decision-tree algorithm achieved better
classification accuracy than others. Deep neural networks are also widely used in the
field of network security, such as malicious certificate detection, backdoor attacks [23–26],
and Android malware detection. Ivan Torroledo et al. [27] proposed a method that uses
deep neural networks to identify web-based malicious certificates. It successfully identifies
legitimate certificates and the malicious patterns used by attackers through the contents of
the TLS certificate. The features of SubjectPrincipal and IssuerPrincipal were encoded with
one-hot and trained by LSTM, and the results were fused with the other features extracted
after training in the Dense/Relu layer. The system had an accuracy of 94.87% for the identi-
fication of malware certificates and 88.64% for the identification of phishing certificates.

Although all these models achieve good classification results, they all require feature
engineering to extract the features of the certificate. Almost all features need to be identified
by industry experts and then the features are manually coded. Eventually, the model can
be trained to identify malicious certificates. The effectiveness of the model depends heavily
on how well the features describe the data, which leads to the limitations of traditional
machine learning methods. This problem is addressed by GCNs [28], which attempt to
learn features in the data by themselves, significantly reducing the cost of feature discovery.
GCNs achieve the best performance available for the node classification task, and they
are also able to effectively take advantage of structural information of neighbors while
retaining low-frequency signals. Jie Lu et al. [29] applied graph attention mechanism
networks to website fingerprinting, using a GCN to learn intra-process and inter-process
features. His work further demonstrates the advantages of GCNs over traditional machine
learning methods.

3. Method

In this section, we describe how a GCN algorithm can be used to detect malicious
digital certificates. To begin with, we explain the process of certificate data pre-processing,
and then we describe how the data can be used to detect malicious certificates in GCN.
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3.1. Data Pre-Processing
3.1.1. SSL/TLS Certificate

The digital certificate is an unencrypted file with a public encryption key that contains
organizational details about the certificate owner and the encryption key. The format of
the certificate is defined by the X.509 standard. X.509 certificates play an important role
in encrypting data transmission between two parties under the HTTPS protocol. X.509
is a signed data structure that binds a public key to a person, computer, or organization
and is used in many Internet protocols, including SSL/TLS [30,31]. X.509 is also complex
in terms of structure and syntax. Each certificate consists of a sequence of three required
fields: tbcertificate, SignatureAlgorithm, and SignatureValue. The first part, the tbcertificate,
contains the subject, the publisher, and other basic information. Compared to Version 1
certificates, Version 2 certificates have added the SubjectUniqueID (subject unique identifier)
and trusteduniqueid (issuer unique identifier) fields. In addition, extended fields have
been added to the Version 3 certificate. The second part, SignatureAlgorithm, contains
the identifier of the signature algorithm used by the certificate authority (CA) to sign
the certificate. The third part, SignatureValue, records the digital signature calculated
on TBcertificate. In a Public Key Infrastructure (PKI), certificates are usually organized
together with their issuer into a certificate chain. The structure of the X.509 certificate is
shown in Figure 1.

Figure 1. X.509 certificate structure.

3.1.2. Data Preprocessing

Using a rules-based entity extraction approach, we build a heterogeneous certificate
graph containing certificate attribute nodes and certificate document nodes. The original
dataset for constructing the heterogeneous graph uses benign and malicious certificates
(both in pem format). The benign certificates come from the top one million website ranking
files from Alexa [32]. The certificate fingerprints of the malicious certificates are obtained
from abuse.ch [33]. We search for malicious certificates with SHA1 values corresponding
to the fingerprints of previously identified malware certificates. Then, we decrypt the
certificate using the openSSL toolkit to obtain X.509 standard structured certificate data. We
put all the data into the corpus and tag each piece of data. The next step is data cleaning,
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and finally, feature values in the certificates are extracted from each certificate’s data by a
python script that stores the feature values in a new corpus.

3.2. Certificate Graph Convolutional Networks (Cert GCN)

Since we wish to use the graph structure to represent the certificate dataset, which
contains many discrete pem structure files, all of these certificate documents are packaged
into a corpus of certificates, represented in graphical structure. To facilitate the study, this
paper gives a formal definition of the structure of a certificate graph, which consists of
edges of certificate nodes and certificate nodes.

Theorem 1. Gcert is a certificate graph that is composed of nodes, edges, and the adjacency matrix.
It is formulated as Gcert = (V, E, Ã), where V = (Vattribute, Vdocument) and Ã = A + I.

Where Vattribute is the set of certificate attributes, and Vdocument is the set of document names.
E represents the relationship between nodes (document-to-attribute and attribute-to-attribute). The
certificate graph structure is described in terms of the adjacency matrix Ã where A is constructed
from the relationships between nodes and edges, and I stands for the identity matrix, which is added
for each node to solve the problem of its own information loss.

We detect malicious certificates using a GCN. To facilitate the study of GCNs for the
detection of malicious digital certificates, we define the formula for Cert GCN.

Theorem 2. Cert GCN refers to a GCN based on certificate documents and is used for malicious digi-
tal certificate detection. Z represents a two-layer Cert GCN, where Z = linear(BReLU(BXW0)W1).

Where B = D− 1
2 ÃD− 1

2 , Ã is the adjacency matrix mentioned in Theorem 1, D is the degree
matrix of A (Dii = ∑j Aij), and X is the input layer representation feature matrix. Each node i has
feature xi. The characteristic matrix of a node can be represented by the matrix XN×M , where N
is the number of nodes and M denotes the number of features per node. W0 is the weight matrix
for the first layer and W1 is the weight matrix for the second layer. The first layer of the activation
function is ReLU. The second layer is the linear activation function.

In this paper, we constructed a dataset of certificate graph structures and put the
dataset into the GCN layer. Each layer of the network consists of a convolutional layer, an
activation function layer, and a dropout layer. The first layer of the activation function is
ReLU. The second layer is the linear activation function. The constructed Cert GCN model
is shown in Figure 2.

Figure 2. Schematic of Cert GCN.

The flowchart for malicious digital certificate detection is shown in Figure 3.

51



Appl. Sci. 2022, 12, 4440

Figure 3. Malicious digital certificate detection flowchart.

4. Experimental Method

4.1. Experimental Environment

The software framework for use in the experiments was TensorFlow 2.6. The environ-
ment is established on a computer with the Windows 10 operating system and 8G of RAM.
The code is edited using the Python 3.8 toolkit and the Anaconda integrated environment.

52



Appl. Sci. 2022, 12, 4440

4.2. Dataset

We use the openSSL toolkit to verify whether the collected certificate files fit the X.509
certificate format standard so that the data can be cleaned [14]. The number of malicious and
benign certificates changes after the cleaning, as shown in Table 1. Through using features
of the certificate by means of rules-based entity extraction, we build a heterogeneous
certificate graph containing certificate attribute nodes and certificate document nodes, and
the features are described as shown in Table 2.

Table 1. Sample size of the dataset.

Benign Certificates Malicious Certificates

Before decryption 14,388 2267
After decryption 6438 1623

Table 2. Sample features from certificates.

Feature Description

Version Version information of the certificate.

Signature Algorithm
The signature algorithm of the certificate, the

algorithm used to obtain the signature,
corresponds to the OID.

Issuer
The issuer of the certificate, which generally
adopts X.500 format, usually contain fields

such as CN, O, L, S, C, E, G and OU.

Validity Not Before The start date of the certificate validity period.

Validity Not After The expiration date of the certificate
validity period

Subject
The identifiable name of the certificate owner,
generally with fields such as CN, O, L, S, C, E

and G.

Public Key Algorithm Public key signing algorithm for certificates.

RSA Public-Key Public key encryption key for certificates—RSA

X509v3 Authority Key Identifier The authorization key identifier for
the certificate.

X509v3 Subject Key Identifier The key identifier of the certificate subject.

X509v3 Subject Alternative Name Optional name of certificate user.

X509v3 Extended Key Usage Extended key usage.

X509v3 Certificate Policies Certificate strategy.

Authority Information Access

Authorizer information access for certificates,
including the URL of the certificate authority

and the URL of the online certificate
status protocol.

X509v3 CRL Distribution Points URL information for the CRL
distribution point.

X509v3 Key Usage: Critical Key usage of the certificate.

X509v3 Basic Constraints: Critical Whether the certificate is a CA certificate.

CT Precertificate SCTs Version Certificate transparency version.

CT Precertificate SCTs Timestamp Certificate transparency timestamp.

CT Precertificate SCTs Signature Signature algorithm for certificate transparency

53



Appl. Sci. 2022, 12, 4440

4.3. Evaluation Indicator

In this paper, the effectiveness of the model is evaluated by accuracy, recall, and F1
value. The accuracy formula is Accuracy = TP+TN

TP+FN+FP+TN . The formula for the recall rate
is Recall = TP

TP+FN . The F1 formula is F1 = 2Precision×Recall
Precision+Recall .

4.4. Experiment Design

The certificate corpus is obtained by pre-processing. The heterogeneous graph is
constructed by using the extracted features and certificate document names as graph nodes
in the certificate graph structure dataset. The weight between certificate document nodes
and feature nodes is determined by the TF-IDF of the feature in the pem document, where
TF is the frequency of the word in the document and IDF is the index of the inverse text
frequency. The calculation formulas are as follows:

t fi,j =
ni,j

∑k nk,j
(1)

id fi = lg
|D|

|j : ti ∈ dj| (2)

t f id fi,j = t fi,j × id fi (3)

The relationship between two feature nodes is represented by the mutual information
of the nodes. PMI [10] is a common metric for word association, and the formula for PMI is
as follows:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(4)

p(i, j) =
#W(i, j)

#W
(5)

p(i) =
#W(i)

#W
(6)

#W(i) represents the number of nodes i contained in the sliding window in the corpus,
and #W(i, j) represents the number of nodes i and j contained in the sliding window in the
corpus. #W represents the number of sliding windows in the corpus. These are the formulas
for calculating PMI. The positive value of PMI indicates a high similarity of words in the
corpus, while a negative value indicates low similarity. The weight of the edge between the
node and itself is 1. The rest of the nodes have a weight of 0. The adjacency matrix of the
certificate graph is then constructed. For the certificate GCN, the convolutional embedding
size of the first layer was 200, the number of training sessions was set to 200, the learning
rate was set to 0.005, dropout was set to 0.5, and weight decay was set to 5 × 10−4.

4.5. Experimental Results

Comparing Cert GCN with Text GCN, the difference is that Cert GCN constructs graph
certificate datasets using the attributes of the certificates and the names of the certificate
documents as nodes, whereas Text GCN processes certificate datasets by constructing the
corpus using the words in the certificate file and the certificate documents as nodes. They
also use different activation functions and have different learning rates. Figures 4 and 5
depict the accuracy of the training and validation sets of Cert GCN and Text GCN [10],
respectively, applied to malicious and benign certificates.
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Figure 4. Classification accuracy of Cert GCN model on the training set and validation set of certificates.

Figure 5. Classification accuracy of Text GCN model on the training set and validation set of certificates.

As the line graph shows, Cert GCN is 8% more accurate than Text GCN at the point at
which the training set has the highest accuracy. Cert GCN is 4% more accurate than Text
GCN at the point of highest validation set accuracy. In Cert GCN, the accuracy of the test
set is close to 99%, the accuracy of the validation set is close to 95%, and the model is more
stable. In Text GCN, the highest accuracy is 92% in the test set and 91% in the validation
set, but the model is not yet stable, and there is an upward trend in the accuracy of the
model. The fitting speed of Text GCN is slower than that of Cert GCN and the accuracy is
not as high as that of Cert GCN. Figures 6 and 7 show the visualization of certificate node
classification after training the model.
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Figure 6. Visual classification of certificate documents by Cert GCN, in which yellow points are
malicious certificate nodes and blue points are benign certificate nodes.

Figure 7. Visual classification of certificate attributes by Cert GCN. Different colors in the figure
represent different documents, and each point represents an attribute of the document. There are
8061 digital certificate files in total.

Tables 3 and 4 compare the evaluation of Cert GCN and Text GCN for detecting
malicious and benign certificates. Figure 8 depicts the accuracy, recall, and F1 values of
Cert GCN and Text GCN for malicious certificate classification. The diagram shows Cert
GCN is 3.86% more accurate than Text GCN, and Cert GCN has 16.05% higher recall and
13.05% higher F1 than Text GCN. Figure 9 depicts the results of the two algorithms for
benign certificate detection. The figure shows Cert GCN is 3.42% more accurate than Text
GCN, and Cert GCN has 0.46% higher recall and 2.085% higher F1 than Text GCN. Cert
GCN achieves good classification results.
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Table 3. Evaluation of model results of malicious certificate detection by Cert GCN and Text GCN.

Model Accuracy Recall F1

Cert GCN 97.41% 69.75% 81.29%
Text GCN 93.55% 53.70% 68.24%

Table 4. Evaluation of model results of benign certificate detection by Cert GCN and Text GCN.

Model Accuracy Recall F1

Cert GCN 92.89% 99.53% 96.10%
Text GCN 89.47% 99.07% 94.02%

Figure 8. Accuracy, recall, and F1 values for Cert GCN and Text GCN malicious certificate classifiers.

Figure 9. Accuracy, recall, and F1 values for Cert GCN and Text GCN benign certificate classifiers.

In this paper, the accuracy of Cert GCN is compared with that of SVM, KNN, MLP,
LSTM, NB, and Text GCN. We find that the accuracy of Cert GCN is better than that of
all these other algorithms, and Cert GCN achieves 97.41% accuracy in detecting malicious
certificates. The model with the lowest prediction accuracy is NB, which has an accuracy of
85.42%, as shown in Table 5 and Figure 10.
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Table 5. Accuracy of different models for malicious certificate detection.

Cert
GCN

Text
GCN

SVM KNN MLP LSTM NB

Accuracy 97.41% 93.55% 96.53% 95.10% 93.21% 93.72% 85.42%

Figure 10. Accuracy of various algorithms in predicting malicious certificates.

We found that Cert GCN does not perform better with more layers in classification
compared with other neural networks. On the contrary, the more layers of Cert GCN
convolution layer used, the lower the accuracy rate. Two-layer Cert GCN is the best for
malicious certificate detection. There are also different results in the training process using
different learning rates. If the learning rate is too large, the network will not converge and
will hover around the optimal value. If the learning rate is too small, the network will
converge too slowly and will fall into local extreme value convergence and not find the
real solution. Experiments show that a learning rate of 0.005 works best. The maximum
Chebyshev polynomial degree is set to 5, with a decrease in accuracy below and above 5.
Dropout works best with a value of 0.5.

5. Conclusions

In this paper, we propose a new approach to malicious certificate detection (Cert GCN).
The certificate dataset is processed by using certificate attributes and certificate documents
as nodes of the graph and using attribute co-occurrence information as edges between
nodes. We construct a heterogeneous graph for the certificate corpus. Cert GCN transforms
the certificate detection problem into a node classification problem. A classification model
was constructed based on GCN. The experimental results show that Cert GCN outperforms
Text GCN and several other machine learning algorithms in terms of accuracy. Using Cert
GCN, we address the problem with machine learning algorithms being unable to handle
unstructured data and must therefore rely on whether the features extracted by feature
engineering can accurately represent the data.

However, with the emergence of new malicious certificates, there is a growing problem
of model degradation. There is still a space for improvement to enhance the accuracy of
detection. The certificate dataset is relatively small and has data imbalance problems. Im-
provement of future work can: (1) address the problem of model degradation in malicious
certificate detection by improving the model; (2) expand the dataset of benign and mali-
cious certificates to alleviate the problem of low data size and data imbalance; (3) introduce
other detection techniques of graph neural networks to improve the accuracy of malicious
certificate detection.
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Abstract: Traditional network communication methods lack endogenous security mechanisms, which
is the root cause of network security problems, e.g., spoofing identity and address forgery. This
paper proposes a secure communication method based on the message hash chain, referred to as the
chain communication method or MHC method. We use the message hash chain to ensure that the
transmission process is immutable, non-repudiation, reliability, and the integrity and synchronization
of the message. At the same time, we can sign and authenticate data streams in batches through chain
signature and authentication technology, which can significantly reduce the overhead of signature
and authentication, thereby improving the efficiency of secure message transmission. This paper
formally proves the security of the message hash chain, conducts an in-depth analysis of the reliability
of the MHC method, and conducts relevant experimental tests. The results show that the average
transmission efficiency of the MHC method applied at the network layer is about 70% lower than that
of the IP protocol communication method without a security mechanism. However, it is about 5%
higher than the average transmission efficiency of the non-repudiation IPSec protocol communication
method. The average transmission efficiency of the MHC method is about 23.5 times higher than that
of the IP protocol communication method with the packet-by-packet signature. It is easier to ensure
the non-repudiation of the data stream.

Keywords: message hash chain; chain communication method; chain signature; endogenous safety

1. Introduction

Nowadays, network communication applications are ubiquitous, causing various
security problems. The data receiver wants to get all the data content sent by the sender
and wants the data to be complete, authentic, and non-repudiation. At the beginning of the
design of the existing network communication methods, the focus is only on data transmis-
sion connectivity, while data transmission security is ignored. This design fundamentally
lacks endogenous security mechanisms and is also the root cause of security problems such
as identity spoofing, address forgery, route hijacking, and denial of service in cyberspace.
Moreover, the weak association between each message in the data stream leads to low
reliability of the transmission process.

Traditional network communication methods do not have endogenous security mech-
anisms such as data integrity verification, making the transmitted content easy to be
tampered with and forged, making it difficult to trace the source of the attack and the
attacker’s identity. To solve such security problems, the IPSec [1] (IP Security) security
suite of the network layer is mainly used to perform integrity verification, data encryption,
and data source authentication on the transmitted IP datagrams. Nevertheless, IPSec can
usually only solve local problems on a regional scale. In particular, implementing IPSec
technology is relatively complex, requiring two stages of negotiation before data trans-
mission. The time and computing resources consumed by each step of the negotiation
process are rather significant [2], necessarily leading to the problem of poor deployability.
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Reference [3] has proposed an attack method for the first-phase authentication process, and
the IKE protocol used in the negotiation also has vulnerabilities such as man-in-the-middle
attack [2] denial of service attack [4]. At the same time, the authentication header proto-
col [5] (Authentication header, AH) and the encapsulating security payload protocol [6]
(Encapsulating Security Payload, ESP) are included in IPSec. However, the AH proto-
col can ensure the integrity of the transmitted messages, data source authentication, and
anti-replay protection services. The ESP protocol can also provide data stream encryption
services. Both protocols can easily guarantee the non-repudiation of the message, and both
communicating parties can effectively synchronize the message and trace the message.

The latest technologies in vehicular ad hoc networks and the Internet of Things (IoT)
provide solutions to traditional networks that lack security and trust mechanisms [7–9].
These technologies ensure the authenticity, reliability of the information in the network,
and the legitimacy of the vehicles disseminating such information. In traditional networks,
the authenticity and reliability of packets transmitted between network nodes and the
trust between nodes are also crucial. We consider that constructing a “chain” of messages
communicated between nodes in a traditional network can provide a secure and reliable
mechanism for the network. Lamport first proposed the concept of a “hash chain” to solve
the problem of password tampering during transmission [10]. Existing research on the
hash chain only constructs various forms of hash chain structures for application-layer
data. These studies make hash chains computationally expensive for security reasons.
However, none of these schemes use a sequence of network communication messages
to construct a hash chain nor a synchronization mechanism for network communication
messages. At the same time, these schemes all use a hash chain to encrypt data or keys to
achieve higher security for data content while preventing encrypted content from being
cracked and tampered with, and none of the solutions is to improve the efficiency of secure
data transmission.

Contributions

Aiming at the shortcomings of the above traditional network communication methods,
we propose a novel secure communication method based on the message hash chain,
referred to as the Message Hash Chain (MHC) method. The main contributions of the
proposed MHC method are summarized as follows:

1. The MHC method adopts a new chain transmission method to ensure the non-
tampering, non-repudiation, and higher reliability requirements of multiple messages.
The main idea is to iteratively hash the digest of the transmitted message to form a
hash chain about the message sequence. The two communicating parties can ensure
the integrity, immutability, and synchronization of the message sequence through the
hash chain, thereby effectively guaranteeing the security of message transmission.

2. When performing data signature and authentication, both parties only need to per-
form signature authentication on messages at certain intervals and do not need to
complete it on each message. In this way, the authenticity and non-repudiation of all
previously transmitted messages can be ensured, the overhead of signature authentica-
tion is reduced, and the efficiency of secure message transmission is greatly improved.

3. Using the sequence number and node value of the message hash chain of the MHC
method can provide anti-protection against replays and ensure reliability.

2. Related Works

The method proposed by Lamport is to encrypt the password through the hash
function many times iteratively, and the verifier can verify the entire ciphertext sequence
through the result of the latest encryption.

Based on Lamport, Chung et al. [11] proposed the star chaining technique and tree
chaining technique. The star chaining technique can verify each packet individually and can
tolerate any degree of packet loss. The tree chaining technique can be regarded as a multi-
layer star chaining technique. Although this scheme can achieve a smaller communication
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load than a star hash chain, it disadvantages sender delay, buffering of packets before
sending, and less payload.

Golle [12] proposes a hash chain with high performance and a high proportion of
payload, but its biggest flaw is that it cannot avoid the risk of chain disconnection caused
by too many packets contained in the chain.

Liu [13] proposed a hash pre-streaming data signature scheme. The basic idea is to
divide a long sequence into m subsequences and use the hash pre-streaming data signature
scheme to sign the first packet of the m subsequences. At the same time, a buffer dedicated
to storing the hash values and signatures of the n packets in the subsequence is added to
the server.

Zhang et al. [14] proposed a butterfly-graph-based stream authentication scheme
with advantages in payload, packet authentication probability, and packet loss tolerance.
However, compared with other structures of hash chains, this method needs to run the
hash function many times, making it less efficient.

Miller et al. [15] improved the scheme proposed by Zhang. Although the security of
the hash chain and the probability of data packet authentication were strengthened on the
original basis, the complex structure led to a further decrease in its operating efficiency.

The authentication protocol based on hash chain proposed by Liu [16] can calculate
a continuous hash chain by performing multiple hash function calculations on the hash
value of the data payload. Although the biggest feature of this authentication protocol is
that it can resist replay attacks, it still cannot guarantee the non-repudiation of each packet.

Huang et al. [17] used different hash functions to iterate keys multiple times and
finally got a hash chain authentication scheme for message integrity verification. Still, this
scheme’s order of hash functions needs to be kept secret.

References [18,19] propose self-updating hash chains and optimized tree hashing,
respectively. These two hash chain structures optimize the security and packet loss tolerance
on the original basis. Still, the overall operating efficiency is not much different or even
slightly insufficient from the original structure.

The concept of “hash chain” is currently widely studied in application fields such
as the Internet of Things, autonomous driving protocols, data security, and lightweight
transmission protocols. Hakeem et al. proposed a hash chain-based V2X security protocol
and a key generation and management protocol at [20,21]. The primary method uses the
hash function to iterate the generated key many times, which realizes the highly secure
message authentication in the V2X device at a low cost. At the same time, it can solve the
key update problem of remote WAN and can resist key leakage attacks and replay attacks.
Huang et al. [22] proposed a hash chain-based data availability monitoring method, which
applies the hash chain to the distributed system to solve the data consistency problem in the
system. Kim et al. [23] proposed a lightweight authentication scheme applied to military
networks. This scheme combines the hash chain with the one-time password, which
ensures the integrity of the transmission content and reduces the network transactions of
transmission. Luo et al. [24] improved the blockchain consensus algorithm by using the
hash chain to realize the recording and verification of blocks.

3. Chain Communication Model

3.1. Notation and Meaning

The notation involved in this paper and their corresponding meanings are shown
in Table 1.

3.2. Message Hash Chain Communication Model

The MHC method is not only for a specific layer in the TCP/IP network model but also
for each message in the data flow, which can be applied to any logical layer. The structure
diagram of the chain communication model is shown in Figure 1. The MHC method adds
the message sequence number (Sequence) and the node value of the message hash chain
fields. The sequence is used to provide the reliability of the transmission process, and the
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node value of the message hash chain is used to verify the message. Its construction process
is described in detail in Section 4.

Table 1. Notation and meaning.

Notation Meaning

h(·) Cryptographic hash functions, h : {0, 1}∗ → Z∗
q .

A||B Concatenate string A with string B.
pi The ith message of message transmission sequence.

HCi
The ith node value of the message hash chain constructed by the sender is sent
to the communication peer together with the payload and needs to be verified.

HC′
i

The ith node value of the message hash chain constructed by the receiver is used
to compare with the received message hash chain.

mi The content of the ith message sent by the sender.
si The digital signature of pi.

(ek, dk) Key pair in the asymmetric digital signature.

Sig(ek, HCi)
Based on its ek, the sender uses an asymmetric encryption algorithm to calculate
the signature si of HCi.

Ver(dk, si)
The receiver verifies the signature si against the sender’s publickey. If the value
is 1, it means that the verification can be successful; otherwise, it means that the
verification cannot be passed.

Figure 1. Message hash chain communication model.

The chain communication model mainly includes the sender constructing the message
hash chain and the receiver verifying the message hash chain during the interaction between
the two communicating parties. The specific processing procedures of the sender and
receiver are as follows.

1. The sender first determines the src(source address), dst(destination address), and
other(other fields of the header) of the sent message, and then the header information
hdri = (src, dst, other) can be obtained. The expression of the message mi that the
sender needs to send in the MHC method is

mi = (hdri, payloadi). (1)

where payloadi is the payload of mi. The sender needs to obtain the message hash
chain from src to dst locally and record the message hash chain as HC(src, dst). Ac-
cording to the mi and the tail node HC(src, dst)i−1 of the message hash chain, the
latest node HC(src, dst)i−1 of the message hash chain is constructed, i.e., the node
value HC(src, dst)i = h(h(mi)||HC(src, dst)i − 1) of message hash chain correspond-
ing to the message mi. At the same time, HCi−1 is updated to the intermediate node
of this message hash chain, and HCi is updated to the tail node of the chain of this
message hash chain. The sender sends the message pi = (mi, seqi, HCi) to the receiver
according to dst, where seqi is the sequence.
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2. After receiving the pi, the receiver verifies the node value of the message hash chain.
Record the receiver’s message hash chain as HC′(src, dst). The receiver calculates a
node value HC′(src, dst)i = h(h(mi)||HC′(src, dst)i−1) to be verified in the message
hash chain between src and dst through the construction method of the message hash
chain, where HC′(src, dst)i−1 is the tail node of the message hash chain constructed by
the receiver. Next, the receiver verifies whether HC(src, dst)i = HC′(src, dst)i holds. If
so, the The receiver’s verification of pi ends successfully and updates HC′(src, dst)i−1
to the intermediate node of the message hash chain and HC′(src, dst)i to the tail node
of the message hash chain. Otherwise, the receiver’s verification of pi is unsuccessful
and must to discard the pi and report an error.

3.3. Message Structure

The MHC method forms a message hash chain from unrelated data packets. The
receiver can use the node value of the message hash chain to verify the integrity of the
current message content and ensure the immutability of the data stream. When the receiver
is affirming the packet, the verification succeeds only if the value calculated by using the
digest of the previous message and the node value of the message hash chain is equal to the
node value of the chain carried in the message. The node value of the chain corresponding
to each message in the data flow constitutes a message hash chain, as shown in Figure 2.
Through this message structure, the integrity of the message can be verified, but the
reliability of the transmission process can be improved.

Figure 2. Schematic diagram of message hash chain structure.

4. Construction Method of Message Hash Chain

Two communicating parties, A and B, communicate, and sender A transmits the
message stream P = p1, p2, · · ·, pn, n ∈ N∗ to receiver B. The structure of each message is
pi = (mi, seqi, HCi). Where mi is the content of the message sent by sender A in sequence,
seqi is the sequence number of the message, and HCi is the result calculated by sender A
according to mi and the tail node HCi−1 of the message hash chain by the constructing
method of the chain. When receiver B receives pi, it also needs to use mi and the local tail
node HC′

i−1 of the message hash chain to calculate the HC′
i for verification.

The construction method of the message hash chain is shown in Figure 3. The com-
munication node needs to calculate the first node value HC1 of the message hash chain
according to the first message m1, obtained by performing two hash function calculations
on m1. After that, each message needs to calculate a digest using a hash function and then
splice this digest with the tail node of the message hash chain to calculate the corresponding
node value of the chain.

The last node of each message hash chain is called the tail node, and the other nodes
are called the intermediate nodes. The sender updates the node of the message hash chain
corresponding to the latest sequentially sent message to a tail node and updates the original
tail node to an intermediate node. The receiver verifies the messages in sequence and uses
the successfully verified messages to construct a node of the message hash chain. Update
this newly constructed node to the tail and the previous tail node to the intermediate nodes.
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Figure 3. Construction method of the message hash chain.

The iterative process of the message hash chain node is shown in Algorithm 1. The
parameters used in Algorithm 1 are described below:

• Get_address: The role of the Get_address function is to obtain the source and destina-
tion addresses from the message header.

• Match_HC_lnode: Match the message hash chain between two addresses.

Algorithm 1 HC_Iteration
Input: Header content, payload, node value of the message hash chain.
Output: A new node value of the chain.
1: pkt_hash ← Hash(hdr, seq, payload)
2: src, dst ← Get_address(hdr).
3: HC_lnode ← Match_HC_lnode(src, dst).
4: return Hash(HC_lnode, pkt_hash)

The message hash chain construction algorithm is shown in Algorithm 2.

Algorithm 2 The construction process of the message hash chain

1: HC_lnode = “”
2: for MQueue is not empty do
3: payload ← MQueue.poll
4: HC_lnode ← HC_Iteration(hdr, payload, HC_lnode)
5: end for

The two communicating parties update the message hash chain every time they
construct a message hash chain node. At a specific time t, a message hash chain node of mi
is constructed, then the complete message hash chain expression at time t is as following:

HCi =

{
h(h(mi)||HCi−1), i ≥ 2
HC1, i = 1

. (2)

5. Chain Synchronization

5.1. Sequence Number

The MHC method needs to add a sequence field to ensure the reliability of the trans-
mission process. According to the position of the sequence number, when the node value
of the message hash chain is calculated, there are two ways to calculate the chain. The first
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way is that the sequence number seqi can be included in the message header hdri, and the
node value HCi of message hash chain is obtained by MHC calculation. In this way, the
non-repudiation of the sequence field can be guaranteed, but it will cause difficulties when
tracing the message’s contents. The message hash chain expression constructed in this way
is the following:

HCi = h(h(mi||seqi)||HCi−1). (3)

The second way is to concatenate the digest of the sequence number and the message’s
digest to construct the message’s node value of the message hash chain. This way ensures
that the message and sequence cannot be tampered with, and makes it easier to trace the
message’s content. Therefore, it is recommended to use the second way when constructing
the node value of the message hash chain. The expression of the node value of the message
hash chain constructed in this way is the following:

HCi = h(h(mi)||h(seqi)||HCi−1). (4)

5.2. Chain Synchronization Mechanism
5.2.1. General Chain Synchronization Mechanism

In order to solve the problem of locating the error and re-request and verifying the
message when the message hash chain verification or signature verification fails in the
MHC method, we propose a communication synchronization mechanism, referred to as
the chain synchronization mechanism. The MHC method uses this mechanism to maintain
the consistency of the message hash chain of both parties. Two communicating nodes
are communicating via the MHC method, A sending data stream P = p1, p2, . . . , pn to
B. Note that the message hash chain constructed by the sender is HC, and the chain
constructed by the receiver is HC′. Whenever a message pδ = (mδ, seqδ, HCδ) satisfy
HCδ = h(h(mδ)||HC′(δ − 1)) during verification, its content is wrong, and the receiver
needs to re-request this message from the sender. On the contrary, the receiver can success-
fully verify the pδ and continue to verify pδ+1.

5.2.2. Chain Synchronization Mechanism Based on Signature Confirmation

Assuming that the interval between the chain signatures of two communication nodes
is d, the sequence numbers seqα and seqβ corresponding to the two chain signatures sα

and sβ should satisfy β = α + d. If ∃δ, α < δ < β, starting from pδ, the attacker can use
the algorithm Attack to tamper with the content of the message and make it successfully
pass the receiver’s message hash chain verification (it is challenging for the attacker to
do this). Subsequently, the message tampered with by algorithm Attack is recorded as
p∗δ = (m∗

δ , HC∗
δ ), and the message hash chain constructed by the receiver according to

HC∗
δ , HC∗

δ+1, . . . , HC∗
β−1 is recorded as HC′(Attack). When the sender reaches the signature

interval (or actively signs the chain as needed), the receiver must verify pβ = (mβ, HCβ, sβ),
satisfying as the following:{

Ver(dk, sβ) = 1
h(h(mβ)||HC′(Attack)β−1) �= HCβ

. (5)

Then the receiver needs to re-request pα+1, pα+2, . . . , pβ−1, and the receiver’s message
hash chain needs to be reconstructed from HC′

α.

6. Chain Signature

We improved the chain signature scheme previously proposed in [25] to achieve
higher security and efficiency. By Section 7, the (Gen, Sig, Ver) scheme is an additional
option of the (MHC, Gen, Sig, Ver) scheme, enabling the MHC method to guarantee the
authenticity and non-repudiation of data. In this way, the (MHC, Gen, Sig, Ver) scheme
can verify all previous messages with only one signature, dramatically improving signature
and authentication efficiency. Suppose there is a message mδ = (hdrδ, payloadδ), and its
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corresponding message hash chain node at the sender is HCδ. If the sender reaches the sig-
nature interval or chain-signatures the message as required, the signature sδ = Sig(ek, HCδ)
must be calculated first, and then the encapsulated message pδ = (mδ, HCδ, sδ) is sent to
the receiver. Suppose the receiver can successfully verify the node value and signature
of the message hash chain in the pδ in turn, i.e., in that case, the receiver can satisfy the
equations HCδ = HC′

δ and Ver(dk, sδ) when verifying the pδ, and it can guarantee the
non-repudiation of all previously transmitted messages.

6.1. Chain Signature Process

Algorithm 3 shows the process of chain signature for both parties in communication.
The messages transmitted by the two communicating parties include messages with a
signature and those without a signature, and the chain signature interval is d. In the
process, the communication node constructs the message hash chain and transmits the
messages synchronously, e.g., the node encapsulates the mδ and HCδ constructed according
to the mδ into a message pδ and sends it to the destination. For the security of the message
hash chain, the sender will chain-sign the message when the signature counter reaches d or
when necessary, e.g., after the sender signs HCδ, it only needs to sign HCδ+d next time. The
structure of a message with a signature is pi = (mi, seqi, HCi, si), and a message without
a signature is pj = (mj, seqj, HCj). The process of the sender encapsulating the messages
shown in Algorithm 3. The parameters used in Algorithm 3 are described below:

• cur_interval: Current signature interval.
• Sig_interval: A signature is required when the sender’s signature interval reaches

Sig_interval.
• EnPkt: The function that encapsulates parameters as header of message hash chain.
• Sig: The signature function described in Section 7.
• eksrc: Sender’s private key.

Algorithm 3 Message Hash Chain Encapsulates Messages Header
Input: Header content, signature interval, payload.
Output: Encapsulated MHC datagram.
1: According to the content of the message, the payload and the tail node of the message

hash chain, a node value HC_node ← HC_Iteration(hdr, payload, HC_lnode) of the
chain is generated.

2: The sender inserts HC_node at the end of the message hash chain.
3: The sender updates message hash chain tail node HC_lnode = HC_node.
4: if cur_interval < Sig_interval then
5: The sender encapsulates the header p ← EnPkt(hdr, payload, HC_node).
6: else
7: The sender computes the signature s ← Sig(eksrc, HC_node).
8: p ← EnPkt(hdr, payload, HC_node, s)
9: end if

10: return p

6.2. Chain Authentication Process

Algorithm 4 shows the process of chain authentication of the message by the re-
ceiver. For messages without a signature, the receiver needs first to determine whether
the sequence number of the messages is legal and then authenticate the node value of the
message hash chain of the messages. For messages with a signature, the receiver needs to
authenticate the signature and verify the sequence number of the messages and the node
value of the message hash chain. The parameters used in Algorithm 4 are described below:

• chain_seq: Sequence number counter.
• dksrc: Sender’s public key.
• HC_ver_node: Message hash chain node value used for verification.
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Algorithm 4 The Receiver Verifying The Received Messages
Input: Messages.
Output: Verification status .
1: Obtain header information, message sequence number, payload, and node value of the

chain from the message: hdr, seq, payload, HC_pkt_node ← DePkt(p).
2: if chain_seq + 1 �= seq then
3: return -1. # A value of “-1” indicates that the sequence number is not sequential.
4: end if
5: if cur_interval == Sig_interval then
6: s ← Get_Sig(p).
7: if Ver(dksrc, s) �= TRUE then
8: return -2. # A value of “-2” indicates an error in signature verification.
9: end if

10: else
11: HC_ver_node ← HC_Iteration(hdr, payload, HC_lnode).
12: if HC_ver_node == HC_pkt_node then
13: The sender inserts HC_ver_node at the end of the message hash chain and updates

message hash chain tail node HC_lnode = HC_ver_node.
14: return 0.# A value of “0” indicates that the authentication of the message is

successful.
15: else
16: return -3.# A value of “-3” indicates an error in message hash chain verification.
17: end if
18: end if

7. Safety Analysis

The necessary definitions for proving the security of the message hash chain are
given below.

Definition 1. If there is always a μ0 for all e such that ε(μ) < 1
μe when μ > μ0, then ε(μ) is said

to be a negligible value with μ as the parameter.

Definition 2. Note that H is the set of all hash functions, and h is a hash function. If h can find a,
b, a �= b, h(a) = h(b) in polynomial time, then it is considered that h will have a hash collision.
For ∀h ∈ H, if the probability of hash collision in h is equal to ε(μ), i.e., the probability of hash
collision in h is negligible, then H is a non-collision hash function set.

Definition 3. Denote a digital signature scheme triple (Gen, Sig, Ver), which satisfies:

• Gen represents the asymmetric key generation algorithm. For the key pair (ek, dk), ek is the
private key of the signature, and dk is the public key of the signature.

• Sig is the signature algorithm of the digital signature scheme. For the communication transmis-
sion sequence p1, p2, p3, . . ., there is Sig(ek, HCi, HCi, HCi+1, . . . , HCi+q) = si, si+1, . . .,
si+q on a certain segment of data transmitted, where q is a positive integer, and HCi, HCi+1, . . .,
HCi+q come from pi, pi+1, . . . , pi+q.

• Ver is the verification algorithm of the digital signature scheme. For the digital signature
si, si+1, . . . , si+q of a certain segment of data and the (ek, dk) generated by Gen, there is always
Ver(dk, si, si+1, . . . , si+q) = 1.

Definition 4. For the digital signature scheme (Gen, Sig, Ver), if only the dk cannot forge the ek
of the scheme in polynomial time, then the scheme is secure.

Definition 5. The message hash chain verification scheme (MHC, Gen, Sig, Ver) takes the digital
signature scheme (Gen, Sig, Ver) as an option. On the basis of (Gen, Sig, Ver), it also satisfies:
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• MHC is the construction algorithm of the message hash chain. For the transmission se-
quence pi, pi+1, . . . , pi+q, there is MHC(mi, mi+1, . . . , mi+q) = HCi, HCi+1, . . . , HCi+q,
where mi, mi+1, . . . , mi+q come from pi, pi+1, . . . , pi+q, respectively, .

• After receiving the sequence pi, pi+1, . . . , pi+q and the HCi, HCi+1, . . . , HCi+q encapsu-
lated in it, the receiver also constructs a message hash chain node MHC(mi, mi+1, . . . , mi+q)
= HC′

i , HC′
i+1, . . . , HC′

i+q for the received sequence through MHC, and there is ∀δ,
δ ∈ (i, i + 1, . . . , i + q), HCδ = HC′

δ.

Theorem 1. The messages between two messages authenticated by chain signature also have
authenticity and non-repudiation.

(Gen, Sig, Ver) is a secure digital signature scheme, h is a known hash function, and
the probability of hash collision at h is less than ε(μ), i.e., h is a non-collision hash function.
In this case, if the digital signatures of pα and pβ can be verified successfully and satisfy
α < α + 1 < β, then ∀δ, α < δ < β, pδ can verify their authenticity and non-repudiation
through massage hash chain verification.

Proof of Theorem 1. It is assumed that the message hash chain verification scheme (MHC,
Gen, Sig, Ver) is insecure. This means that under the condition that (Gen, Sig, Ver) is a
secure digital signature scheme and h is a non-collision hash function, the message hash
chain verification cannot guarantee the authenticity and non-repudiation of the message
sequence, which message sequence between the message pα and the message pβ that can
be successfully verified by (Gen, Sig, Ver). Then there is an attacker who uses algorithm
ATTCK to forge the (MHC, Gen, Sig, Ver) scheme, and obtains the signature sequence
S(1), S(2), . . . , S(k) transmitted by the victim and the message hash chain node value se-
quence HC(1), HC(2), . . . , HC(k) according to the victim’s dk, where S(t) = s(t)1 , s(t)2 , . . . , s(t)m ,

HC(t) = HC(t)
1 , HC(t)

2 , . . . , HC(t)
n , m, n ∈ N∗ and m < n.

Then the scheme can output a valid signature sequence and message hash chain
node sequence:

S∗ = s∗1, s∗2, . . . , s∗r , ∀x ∈ {1, 2, . . . , j},

S∗ /∈ S(x)andS∗ �= S(x),

HC∗ = HC∗
1 , HC∗

2 , . . . , HC∗
l , ∀y ∈ {1, 2, . . . , j},

HC∗ /∈ HC(y),

Specifically, algorithm ATTCK uses Gen to generate a pair of (ekATTCK, dkATTCK),
and then uses MHC to construct the message hash chain nodes HC∗

1 , HC∗
2 , . . . , HC∗

l of all
message sequences m1, m2, . . . , ml . Finally, encapsulate them into the message sequence
p1, p2, . . . , pl of the message hash chain, and sign p1, p2, . . . , pl with ekATTCK. The final
output of algorithm ATTCK is S∗ /∈ S(x) and HC∗ /∈ HC(y).

According to the assumptions, the signed and verified messages satisfy Sig(ek, pζ , pη)
= sζ , sη and Ver(dk, sζ , sη) = 1, 1 < ζ < η < r. For ∀δ, ζ < δ < η, pδ only uses the message
hash chain verification instead of the digital signature verification. Although the attacker
cannot forge ek in sζ = Sig(ek, pζ), it can forge its pζ as p∗ζ = (mζ , HC∗

ζ ). From pζ =

(mζ , HCζ) = (mζ , h(h(mζ)||HCζ−1)), the following two situations will inevitably occur.

1. HC∗
δ = HCδ = HC′

δ. Obviously if HC∗
δ = h(h(mδ)||HC∗

δ−1) = h(h(mδ)||HC′
δ−1),

where h is a non-collision hash function, then HC∗
δ−1 = HC′

δ−1 is obtained. Next,
algorithm ATTCK can output the message hash chain sequence

HC∗ = HC∗
δ , HC∗

δ+1, . . . , HC∗
η

and finally get s∗η = Sig(ekATTCK, HC∗
η). If there should be Ver(dk, sη) = 1, but

Ver(dk, s∗η) = 1, it means that algorithm ATTCK can forge (Gen, Sig, Ver) digital sig-
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nature scheme. However, it obviously contradicts the assumption that (Gen, Sig, Ver)
is a secure digital signature scheme.

2. HC∗
δ �= HCδ = HC′

δ. Knowing that HC∗
δ = h(h(mδ)||HC∗

δ−1), there must be HC∗
δ−1 �=

HCδ−1 = HC′
δ−1 that can recursively get HC∗

ζ+1 �= HCζ+1 = HC′
ζ+1. For the message

hash chains and digital signatures at both sides of the transmission correspond-
ing to mζ , they satisfy the relational expressions HCζ = HC′

ζ and Ver(dk, sζ) = 1.
If HC∗

ζ+1 = h(h(mζ+1)||HC∗
ζ ) �= HCζ+1, then the receiver can use the message hash

chain to verify the authenticity and non-repudiation of pζ+1, and then use the message
hash chain to verify the authenticity and non-repudiation of pδ in a recursive way,
which contradicts the null hypothesis.

In summary, the null hypothesis does not hold. It means that under the condition that
(Gen, Sig, Ver) is a secure digital signature scheme and h is a non-collision hash function,
the message hash chain verification scheme (MHC, Gen, Sig, Ver) is secure. Therefore, the
authenticity and non-repudiation of the data flow between two digital signature intervals
can be ensured by using the message hash chain verification.

Theorem 2. Through the chain signature and authentication of a message, all messages in the
previous sequence of this message can be verified

Under the same conditions as Theorem 1, the receiver verifies the digital signature of
a message pα in the data stream. If ∀δ, 0 < δ < α, then pδ can judge its own authenticity
and non-repudiation according to the correctness of pα’s digital signature.

Proof of Theorem 2. There is a sequence p1, p2, . . . , pk, the sender will sign the pk, and the
receiver will verify the signature. Suppose there is an attacker who can use algorithm
ATTCK to forge the node value of the message hash chain. This means that for the
message hash chain sequences HC = HC1, HC2, . . . , HCk and HC′ = HC′

1, HC′
2, . . . , HC′

k
constructed by m1, m2, . . . , mk, the algorithm ATTCK can output the forged message hash
chain node sequence HC∗ = HC∗

1 , HC∗
2 , . . . , HC∗

k according to m1, m2, . . . , mk, and make
HC∗ = HC. In the absence of an attacker, when the receiver receives the pk = (mk, HCk, sk),
the verification of the signature must satisfy Ver(dk, sk) = 1. If algorithm ATTCK can
output s∗k = Sig(ekATTCK, HC∗

k ) to satisfy Ver(dk, s∗k ) = 1, then it means that algorithm
ATTCK can forge scheme (Gen, Sig, Ver), but this obviously contradicts the assumption.
This shows that if pk can be verified by digital signature, then p1, p2, . . . , pk−1 also has
authenticity and non-repudiation; otherwise, p1, p2, . . . , pk−1 do not have authenticity and
non-repudiation.

Theorem 3. The message hash chain can ensure the integrity and immutability of the data flow.

Proof of Theorem 3. A message mi = (hdri, payloadi) and its corresponding node value
of message hash chain HCi are jointly encapsulated into a message hash chain mes-
sage pi = (mi, seqi, HCi), where hdri includes the source address src, destination address
dst and other contents of the message header other. Obviously, the equation HCi =
h(h(mi)||HCi−1) = h(h(hdri||payloadi)||HCi−1) can be obtained from the Formula (1). If
any content of the message hash chain message is tampered with by an attacker, and the
tampered values are hdr∗i , payload∗i and HC∗

i , respectively, then h(h(m∗
i )||HC′

i−1) �= HC∗
i

must occur when the receiver verifies it.

8. Reliability Analysis

It is necessary to set the sequence number in the MHC method because the node
values of the message hash chain should be calculated in strict order when constructing
the chain. The difference between the sequence number contained in the message hash
chain and that contained in IPSec is that the sequence number field is an optional field in
IPSec, which is mainly used to provide anti replay services, while the sequence number
field of MHC method is a necessary field, and each node of the message hash chain needs
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to be constructed according to the sequence number. After IPSec establishes a SA for
the first time or the SA reaches its life cycle to renegotiate parameters, it will clear the
sequence number stored in the SA, and then incrementally count each message. The
sequence number of the message hash chain inherits the previous changes and is not
cleared, and the verification of each message must verify whether the sequence number
changes incrementally in sequence. The reliability of message hash chain is mainly reflected
in that the communication receiver should not only compare the sequence number to
judge whether it is increased in order, but also verify the integrity, authenticity and non-
repudiation of the whole message through the (MHC, Gen, Sig, Ver) scheme, and complete
packet loss retransmission, chain synchronization and timely error detection through the
sequence number.

8.1. Packet Loss Retransmission

If there is a data stream communication between the two communicating parties
through the MHC method, the data stream P = p1, p2, . . . , pn sent by A to B, each packet is
pi = (mi, seqi, HCi), where mi = (hdri, payloadi). The message hash chain constructed by
the sender is HC, and the chain constructed by the receiver is HC′. Under the condition
that the network has the possibility of packet loss, the following two situations must occur:

1. At least, there is a possibility that it is greater than ε/2, and the P received by B
arrives in order, then the message hash chain HC′

i = h(h(mi||HC′
i−1)) constructed by

B through P satisfies HC = HC′.
2. At least, there is a possibility that it is greater than ε/2, and the data stream received

by B may arrive out of sequence or lose packets. Assume that at a certain time
t0, the sequence number corresponding to the sender’s tail node is seqj, and the
sequence number corresponding to the tail node used by the receiver for verification
is seqk, k < j. At this time, if the sender sends a new message pδ to reach B, and
its corresponding sequence number seqδ > seqk + 1, then set the message retention
time ts for pδ. Subsequently, at time t1, where t0 < t1 < t0 + ts, if the message hash
chain of the pδ has not been successfully verified, the pδ will be discarded, and the
sender will request the following message corresponding to the sequence number of
the current tail node of the chain. In contrast, if the chain of the pδ can be successfully
verified and the corresponding message hash chain is constructed at the receiver, the
verification of the message corresponding to the last sequence number is continued.

8.2. Error Detection and Correction

The error detection function of the MHC method mainly uses the chain signature
and chain synchronization mechanism to verify the message’s integrity, authenticity, and
non-repudiation in real-time by comparing the node values of the message hash chain in
real-time and signing and authenticating the chain at intervals. If the attacker tampers or
forges any message content, the verification of the node value and signature of the message
chain will fail. Both communicating parties should re-request the message with verification
error within a limited time to ensure that the data flow can achieve higher reliability or
disable the illegal message sender to reduce network security risk.

9. Efficiency Analysis

9.1. Experimental Environment

The experiment uses C language to realize the MHC method of the network layer, and
the experimental code runs on multiple PCs. The experiment uses the MHC method to
set up the sender and receiver of network-layer data transmission. The PC configuration
is Intel® Core™ i7-10875H CPU @ 2.30 GHz and 16 GB RAM. The TCP protocol of the
transport layer does not contain additional settings, and its protocol header length is 20 B.
The experiment compared the network layer’s MHC method with the network layer’s
communication method using the traditional IP protocol, the AH protocol, and the ESP
protocol of IPSec. The MHC method uses the SHA256 algorithm as the primary hash
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function, while the IPSec uses the HMAC-SHA1-96 algorithm as the hash function used
to calculate the HMAC. The asymmetric encryption algorithm in the (MHC, Gen, Sig, Ver)
scheme is the RSA-2048 algorithm.

9.2. Efficiency Comparison of Several Communication Methods

In order to test the transmission efficiency of the MHC method, the experiment com-
pared the efficiency of the network layer using the traditional IP protocol, the AH protocol,
and the ESP protocol of IPSec with the method. At the same time, the communication
method of IP protocol, which is signed and authenticated packet by packet to ensure data
non-repudiation, is compared with the transmission efficiency of several other communica-
tion methods. The experiment set up five groups of test subjects. The transport layer of
each group of experiments uses the TCP protocol. The network layer uses the IP protocol,
the IP protocol with packet-by-packet signature and authentication, the AH protocol, the
ESP protocol of IPSec, and the MHC method. We recorded the average number of messages
transmitted by five groups of subjects in 2 min, 5 min, 10 min, 30 min, and 60 min, and
the number of those in each group was the average of ten tests. The throughout capacity
is then calculated based on the average amount of data transferred per group. Finally,
the estimated throughout capacity is used as the standard to measure the transmission
efficiency, and the efficiency of several groups of experimental objects is compared. The
relevant information of the experiment is shown in Table 2.

Throughout capacity =
Average data transmission

Transmission time
.

Table 2. Information about test contents.

Serial
Number

Transport Layer
Protocol

Communication Mode Payload Length of Each Message

1 TCP protocol IP protocol 1460 B
2 TCP protocol Packet by packet signed IP protocol 1372 B
3 TCP protocol AH protocol MTU-TCPH-IPH-AHH = 1436 B
4 TCP protocol ESP protocol MTU-TCPH-IPH-ESPH = 1436 B
5 TCP protocol MHC method (signature interval 1000) About 1420 B without signature and about 1332 B with signature

Among them, the AH protocol test group uses the transmission mode, and the identity
authentication method uses certificate authentication. The life cycle of the first stage
negotiation is 86,400 s, and the life cycle of the second stage negotiation is 120 s. AHH
represents the AH protocol header, with a length of about 24 B; The ESP protocol test group
also uses the transmission mode, and the identity authentication method uses certificate
authentication. The life cycles of the first and second stages of negotiation are 86,400 s
and 120 s, respectively. It is set to only verify the integrity of the message. ESP represents
the ESP protocol header, with a length of about 24 B; The MHC method test group set its
signature interval to 1000, and the other experimental settings are consistent with those in
6.2. The experimental test results are shown in Table 3.

The AH protocol experimental group uses the transmission mode, and the identity
authentication method uses certificate authentication. The life cycle of the first-phase
negotiation is 86,400 s, and the life cycle of the second-phase negotiation is 120 s. The ESP
protocol experimental group maintains the same settings as the AH protocol experimental
group, and at the same time, it only performs integrity verification on messages. The
MHC method experimental group set the signature interval to 1000. MTU in Table 2 is
the maximum transmission unit, and its length is 1500 B. TCPH is the TCP header, whose
length is 20 B, while IPH is the IP header, the length is 20 B. MHCH is the MHC header,
including the sequence number length of 4 B, the remaining fields of about 4 B, and the
node value of the message hash chain length of 32 B, with a total length of 40 B. Finally,
AHH is the AH protocol header with about 24 B, and ESPH is the ESP protocol header with
about 24 B. The experimental results are shown in Table 3.
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Table 3. Test results of transmission efficiency of five communication methods.

Network Layer Communication Method 2 min 5 min 10 min 30 min 60 min

IP protocol
Million packets 4.26 10.52 21.28 63.47 128.51
Amount of data transmitted/Mb 49,809.46 122,837.52 248,540.61 741,347.66 1,501,003.01
Throughout capacity/Mbps 415.08 409.46 414.23 411.86 416.95

IP Packet signature
Million packets 0.06 0.14 0.29 0.87 1.72
Amount of data transmitted/Mb 641.96 1579.89 3217.72 9574.15 18,903.31
Throughout capacity/Mbps 5.35 5.27 5.36 5.32 5.25

AH protocol
Million packets 1.25 3.12 6.2 18.42 36.98
Amount of data transmitted/Mb 14,354.48 35,786.94 71,181.33 211,615.71 424,800.51
Throughout capacity/Mbps 119.62 119.29 118.64 117.56 118

ESP protocol
Million packets 1.23 3.08 6.14 18.48 36.89
Amount of data transmitted/Mb 14,151.8 35,376.74 70,483.29 212,260.47 423,755.83
Throughout capacity/Mbps 117.93 117.92 117.47 117.92 117.71

MHC method
Million packets 1.31 3.3 6.58 19.79 39.45
Amount of data transmitted/Mb 14,849.35 37,430.08 74,798.15 224,780.88 448,085.5
Throughout capacity/Mbps 123.74 124.77 124.66 124.88 124.47

Figure 4 shows the comparison of the experimental results of the five groups of
experiments. The results show that the transmission method whose network layer is
IP protocol has the highest average transmission efficiency, and the average throughout
capacity can reach more than about 400 Mbps. However, it has no additional security
means and is prone to network attacks. Under the condition that only the transmission
integrity is guaranteed, the average throughout capacity of the communication methods of
the AH protocol and the ESP protocol is the same. The average throughout capacity of the
MHC method is about 5% higher than that of the communication methods of the AH and
the ESP protocols. The reason is that the MHC method directly uses the message hash chain
for data authentication, and reduces the overhead of signature and verification through
chain signature and authentication technology. However, the AH and ESP protocols
require a two-stage key negotiation process before transmission. These two protocols
renegotiate new parameters before the end of the life cycle of the second stage. At the
same time, the negotiation process is expensive, and the processing speed of the messages
is not significantly improved compared with the MHC method. After the negotiation is
completed, these two communication methods have a slightly lower average throughout
capacity than the MHC method. In unit time, the average throughout capacity of the MHC
method is 4.96% higher than that of the AH protocol communication method and 5.70%
higher than that of the ESP protocol communication method. Finally, under the condition
that the transport layer is the TCP protocol, the average throughout capacity of the MHC
method is about 23.5 times higher than that of the IP protocol and the packet-by-packet
signature authentication method.

We also compared the transmission efficiency of the AH protocol communication
method and the MHC method by recording the time it takes for both parties to transmit
fixed-length data. We did not use the ESP protocol as a comparison object because the AH
protocol has no encryption function and fewer irrelevant fields, making it easier to compare
the transmission efficiency with the MHC method. Therefore, it is better to use the AH
protocol as a comparison object instead of the ESP protocol. The experimental conditions
were kept consistent with the above experimental conditions. In particular, the life cycle of
the SA in the AH protocol’s first stage is 86,400 s, and that of the SA in the second stage is
set, respectively, at 2 min, 5 min, 10 min, and 60 min. In the experiment, the lengths of the
data transmitted by the two communicating parties, respectively, were 1 G, 5 G, 10 G, and
50 G. The average value of five experiments is used to record the experimental results of
each group. The experimental results are shown in Table 4.
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Figure 4. Comparison of average transmission efficiency of five communication methods.

The SA established by the AH protocol needs to set the life cycle and renegotiate
and update the SA policy parameters before the end of the cycle. The shorter the life
cycle, the higher the security of the parameters, but the negotiation process will affect the
transmission efficiency. It can be seen from the test results shown in Table 4 that, under the
above experimental conditions, the time used to transmit data of the same length in the
MHC mode is shorter than that in the AH protocol communication mode. By calculating
the average throughput of each test group, we found that the MHC method was more
efficient than the AH protocol in each comparison group, and the larger the transmitted
data, the more pronounced the gap. Specifically, taking the AH protocol communication
method with a life cycle of 2 min as an example, when transmitting data with a length of 1G,
the average throughput of the MHC method is 2.79% higher than the average throughput
of the AH protocol, but when transmitting data with a length of 50G, this ratio increases
to 5.77%.

9.3. Comparison and Analysis of Security Properties of Several Existing Schemes

In order to illustrate the security properties and efficiency of this scheme, this paper
compares the chain network transmission mode using the MHC protocol at the network
layer with the transmission mode using the IP protocol, IPSec protocol, and other existing
schemes at the network layer. The differences in several security properties are shown in
Table 5.
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Table 4. The experimental results of the transmission efficiency of the AH protocol communication
method and the MHC method.

Schemes and Configurations
Length of Transmitted Data

1 GB 5 GB 10 GB 50 GB

The MHC method/signature interval is 1000 68.76 s 337.47 s 678.31 s 3374.16 s
AH protocol/SA phase II life cycle is 2 min 70.68 s 358.53 s 712.34 s 3568.89 s
AH protocol/SA phase II life cycle is 5 min 70.75 s 353.60 s 704.51 s 3530.46 s
AH protocol/SA phase II life cycle is 10 min 70.03 s 351.51 s 701.97 s 3514.27 s
AH protocol/SA phase II life cycle is 60 min 70.00 s 351.58 s 698.37 s 3510.16 s

Table 5. Comparison of security properties of different schemes .

Scheme Immutable Integrity Nonrepudiation Reliability Traceability Synchronicity Confidentiality Efficiency

IP protocol � � � � � � � Highest
IP protocol with signature 1 � � � � � � � Lowest
AH protocol � � � Higher � � � Higher
ESP protocol � � � Higher � � � Higher
[11] � � � � � � � Medium
[12] � � � � � � � Higher
[13] � � � � � � � Medium
[15] � � � � � � � Lower
[16] � � � Higher � � � Low
MHC � � � High � � � Higher

1 Sign and authenticate IP datagram packet by packet.

The IP protocol without a security mechanism has the highest transmission efficiency,
but it does not have any security properties, which is easy to cause network attacks. After
the IP protocol is signed and authenticated packet by packet, although the security of its
transmission is improved, it also dramatically reduces the transmission efficiency. Both
the AH protocol and ESP protocol of IPSec can ensure the integrity, non-tampering, and
certain reliability of the messages, and the ESP protocol can also ensure the confidentiality
of the messages. However, these two protocols cannot guarantee the non-repudiation of
messages during the transmission process and are vulnerable to denial attacks by both
parties. The rest of the schemes improve application-layer communication methods or use
different hash chain structures and signature methods to improve security. Although the
star-shaped and tree-shaped hash chain structure in the [11] can ensure that a signature
can verify the child nodes under each tree, it cannot process packet loss data. The hash
chain structure in the [12] improves the transmission efficiency, but it still cannot adapt
to the network with the possibility of packet loss. The method in [13] caches the data,
calculates its hash value, and then places the hash value in the message to be sent before
verifying the later content with the previous content. This method needs to know the
content of the entire transmission before transmission, which reduces the transmission
efficiency and does not have security mechanisms such as reliability and confidentiality.
The improved butterfly hash chain proposed in [15] has a complex structure, resulting in
low transmission efficiency. The method in [16] is improved for the Modbus/TCP protocol
at the application layer. It guarantees the confidentiality of the protocol through symmetric
encryption and digital signature and can resist replay attacks by using a synchronization
mechanism and a one-way guarantee scheme of a hash function. However, it still signs
and authenticates each packet, resulting in low transmission efficiency. The MHC method
ensures the integrity and immutability of the transmitted message through the hash chain.
It uses the chain signature technology to realize the batch signature and authentication of
the message stream, significantly reducing the overhead of signature and authentication.
According to the characteristics that the message hash chain needs to be calculated, we
designs the packet loss retransmission and chain synchronization mechanism to ensure
the protocol’s reliability and synchronization. It has the security properties of traceability
and confidentiality.
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10. Conclusions

The MHC method improves the traditional IP protocol. Using the improved MHC
method to replace the traditional IP protocol can ensure that the network layer transmission
has a security and reliability mechanism and the traceability of the message. The message
hash chain can ensure the integrity, immutability, and synchronization of the transmitted
data. At the same time, the use of chain signature and authentication technology can
significantly reduce the overhead of signature authentication and improve the efficiency of
secure transmission of message sequences. The MHC method has higher requirements on
the reliability of the transmission process, so we design packet loss retransmission, error
detection and correction, and chain synchronization for the communication process. Finally,
the experimental results show that the MHC method adds an endogenous authentication
mechanism and a reliable mechanism compared with the traditional transmission model
without an authentication mechanism in the general software implementation. The MHC
method can guarantee the non-repudiation of all previous messages through one signature.
The transmission efficiency of the method is higher than that of the AH protocol and the
ESP protocol of IPSec. Under the condition of ensuring the confidentiality of the transmitted
message, the method has higher transmission efficiency than the ESP protocol. The method
can make the transmission process more reliable and provide chain synchronization services
for the transmission process.

In the future, we will further explore the impact of different hash functions and
cryptographic algorithms on the efficiency and security of MHC methods. At the same
time, we will also improve the network protocol stack based on the MHC method and
try to implement the chip-level MHC method. Applying the MHC method to broadcast,
Internet of Vehicles, aerospace, and other application scenarios is also the focus of our
subsequent work.
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Abstract: The invention of smart low-power devices and ubiquitous Internet connectivity have
facilitated the shift of many labour-intensive jobs into the digital domain. The shortage of skilled
workforce and the growing food demand have led the agriculture sector to adapt to the digital
transformation. Smart sensors and systems are used to monitor crops, plants, the environment, water,
soil moisture, and diseases. The transformation to digital agriculture would improve the quality and
quantity of food for the ever-increasing human population. This paper discusses the security threats
and vulnerabilities to digital agriculture, which are overlooked in other published articles. It also
provides a comprehensive review of the side-channel attacks (SCA) specific to digital agriculture,
which have not been explored previously. The paper also discusses the open research challenges and
future directions.

Keywords: side-channel attacks; vulnerability analysis; power analysis attack; security threats;
cryptography; digital agriculture; smart agriculture; smart farming

1. Introduction

The human population has increased exponentially in the last century. It is estimated
that it will peak at 10.9 billion by 2100 [1]. The quality and quantity of global food resources
have improved mainly due to technological innovations in genetic engineering in the last
fifty years. Genetic engineering helps develop seeds and plants that can grow with less
water and produce more nutrients to meet the demands of a growing population. Digital
agriculture is the next technological innovation for the sustainable production of food in
the agriculture sector [2]. Countries are combating desertification, for example the Saudi
Green Initiative (an extension of Saudi Vision 2030), where four million lemon trees that
rely on recycled water for irrigation are being planted, as well as hundreds of millions of
other trees that should modify the climate and aid farming.

Digital agriculture is not immune to cyber-attacks, which can range from controlling a
heating and ventilation system of a vertical farm to controlling a drone used for spraying
crops. In recent times, cyber-attacks on the Florida water system [3], Lion (an Australian
beverage company with business in diary and drinks), wool broker software [4], and
JBS [5] (the world’s largest meatpacker) have made headlines around the world. This has
highlighted the vulnerabilities in digital agriculture and potential disastrous effects on the
general population in terms of supply, labour, and cost.

Typically, malicious actors target cheaper and more accessible pathways that could
be vulnerable, involving humans, devices, software, processes, or technologies, under-
protected by the user, but having very serious implications. The authors in [6] audited
six dairy farms in Finland, and it was found that most of the networking equipment
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was physically not secured and default credentials were used, which could be easily
compromised. The threat actors have also evolved from amateurs to sovereign states with
virtually unlimited resources. The 2022 World Economic Forum survey put cyber-security
failure in the top 10 risks, worsening in the COVID-19 crisis, while at the regional level, it is
in the top 5 risks [7].

Cyber-security is becoming common vernacular due to the plethora of attacks on digi-
tal infrastructure. Nakhodchi et al. [8] performed a bibliometric analysis of publications
in the security and privacy of smart farming and found 141 articles related to agricultural
cyber-security. Recently, some survey papers have discussed the security threats and vulner-
ability assessment for digital agriculture [9–13]. Most research revolves around traditional
threats and mitigation, in particular hardware and software security and cryptography.

Typically, in an information network, the confidentiality of data is achieved through
encryption, which scrambles the plain text into unreadable (cipher) text. Encryption is
physically implemented in electronics. Power consumption, electromagnetic emissions,
timing, and thermal signatures provide useful information that may reveal the encryp-
tion standard and keys to break the encryption. This extraction of information from the
operation of physical hardware is termed side-channel attacks (SCAs) [14].

Recently, researchers have turned their attention to side-channel attacks (SCAs) on
traditional computer networks, primarily investigating cryptographic information leakage.
To the best of the authors’ knowledge, there is no paper dedicated to side-channel attacks
on digital agriculture or smart farming. The closest work is about SCAs on the Internet of
Things (IoT) [15]. This research article would be the first to discuss side-channel threats,
attacks, and their implications for digital agriculture. We aim to initiate a conversation in
this relatively unexplored direction.

This paper has the following contributions:

• We critically evaluated the existing literature on the cyber threats to digital agriculture.
• Details of SCA threats to digital agriculture and their implications are presented.
• We discuss the cyber-threats and related open challenges, both technical and non-

technical, concerning digital agriculture.

The remainder of the paper is organised as follows: Section 2 defines digital agriculture
and its different applications. Section 3 details threats to digital agriculture. Section 4 gives
an overview of side-channel attacks, their different variants, and threats with examples
in digital agriculture. Section 5 discusses the research challenges, and Section 6 presents
the conclusions.

2. Digital Agriculture

Agriculture is the lifeline of humans and provides not only food, but also generates
employment. The high demand and sustainable food production, shortage of skills, and
efficient use of limited environmental resources demand the modernisation of the centuries-
old agricultural sector. Digital agriculture (DigAg) (also called smart agriculture/farming)
is the use of various digital devices to monitor, assess, and manage environmental parame-
ters that could affect food production (crops, fruit, etc.) [2]. The environmental parameters
could be soil condition, water use, moisture content, plant and crop diseases, weather
conditions, pests, pollination, nutrition, and the irrigation system. Digital devices such as
smartphones, various sensors, global position systems (GPSs), robotics, and drones could
be utilised to extract valuable data and analyse and make effective decisions to increase
food production with less human resources and intervention.

Figure 1 shows an overview of digital agriculture and its various components. Broadly,
it can be split into four separate layers.

1. Layer 1 is a sensing layer with different sensors to monitor the plants or environmental
factors ranging from soil to weather conditions. Sensors would vary for different
applications and use cases. These sensors are typically inexpensive, have small com-
putation and battery power, are deployed in the field, and are primarily unattended
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in a hostile environment. The same layer can have actuator functionalities to perform
a specific operation, such as water control or spraying via drones.

2. Layer 2 is the gateway layer, where gateways provide an interface between the Internet
and sensors. Typically, wireless communication is used to connect sensors. Depending
on the application requirements, Zigbee, WiFi, Bluetooth, NB-IoT, Sigfox, LoRa, 5G,
or satellite communication are used. The forwarding devices such as switches/access
points are part of this layer.

3. Layer 3 is the storage or processing layer. An in-house data storage or cloud solution
could be used.

4. Layer 4 is the application layer, where all the users see or control the sensors. Use-
ful analytics are extracted from the data, and based on this, an informed action is
performed. The end-user could be a farmer, an agroscientist, a broker, a trader, a
government official, or a business.

Figure 1. An overview of digital agriculture and its various applications.

The standard IoT model combines Layers 3 and 4 into one layer and calls it the
application layer. For digital agriculture, it should be split into two, as multiple users can
use the same data for their individual purposes. Further splitting it into two layers makes
the threat analysis easier and more accountable for data usage or malicious use.

DigAg (pronounced “Didge-Ag”) has several applications. Some are crop manage-
ment, automation, precision agriculture [16], and monitoring activities. The latter include
watching over or controlling irrigation and water quality [17], soil [18], weather, farm,
pests, and diseases [19]. The subsequent sections highlight the use of DigAg in smart
irrigation [20] and intelligent machinery [21], discussing some of the threats that malicious
actors could exploit.

2.1. Application—Smart Irrigation System

Water is, of course, essential for life, especially so in the desert. Global warming,
growth of the population, and inefficient use or scarcity of water demand smart irrigation
systems. Various kinds of sensors (temperature, moisture, ultrasonic, etc.) can be used
to monitor the water level, soil moisture, plant/crop condition, and weather to optimise
the use of precious water. These sensors are deployed remotely, battery-powered, and
have low computational power. An actuator is deployed based on the sensory data. Aerial
systems are also used to monitor soil and moisture content using cameras (thermal or RGB)
deployed on drones or low-Earth-orbit satellites. This creates a wide attack surface that is
difficult to defend against and is vulnerable to exploitation. The threats to smart irrigation
and sensors can range from physical compromise to falsifying the data. As mentioned in Table 1,
the traditional threats are equally applicable to different layers of a smart irrigation system.
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Table 1. Typical threats to digital agriculture and countermeasures.

Sensing/Actuation Gateway Storage User

Description Threats are related to
hardware, physical

access, damage,
firmware/ hardware
modification, or the
wrong actuation to

destroy crops.

Threats are related to
data in transit and
involve network

devices and
communication

protocols.
Vulnerabilities can be
exploited to sniff out

and access data,
leading to diverse

attacks.

Threats are related to
data at rest, either in

the cloud or
on-premises. The

compromise of data
could lead to IP theft.

The end-user interface
is at Layer 4, and the

compromise of
credentials through

social engineering or
malware injection

could compromise the
whole system.

Threats Physical attacks,
device/sensor or

firmware
alteration [22],

side-channel attacks,
eavesdropping [23],

booting, physical
damage, malicious
code, forgery, sleep

deprivation attacks [24]

Protocol
vulnerabilities [25],

authentication, MIM,
interference,

firmware [26], routing,
jamming [27],

DoS/DDoS, sniffing
attacks

SQL injection, data
privacy, IP theft,

encryption,
confidentiality and

integrity, cloud
malware injection [28],

misconfiguration,
flooding attacks in the

cloud [29]

Social engineering,
phishing, access
control, service

interruption, insider
attacks

Countermeasures
• Periodic assessment of devices including vulnerabilities, auditing, penetration testing
• Firmware/software update mechanism to patch security vulnerabilities
• End-to-end encrypted communication including encrypted drives to keep data inaccessible in the

case of device theft
• Two-factor authentication and secure password recovery mechanisms
• Block unnecessary services and ports on the devices
• Avoid device tampering with a physically unclonable function
• Adaption of a zero-trust model assuming a perimeter-less network

2.2. Application—Intelligent Machinery in Agriculture

An intelligent agricultural machine can use sensors and computer logic to control and
operate the equipment to achieve a defined goal on the ground with minimum human
intervention. A large agricultural paddock can be divided into small plots for cultivation.
The soil, moisture, precise seed planting, and land level variances make it difficult to
achieve maximum productivity with limited manual or semi-autonomous resources. For
example, analysing the soil and moisture contents in real-time and precisely applying
fertiliser or other chemicals based on need are time-consuming in a manual operation and
are dependent on the skilled farmer. An intelligent machine fills the skill gap and works
virtually 24/7. It could be used in all aspects of agricultural tasks such as seed planting on
waterways, harvesting, applying fertilisers, monitoring the health of crops, and levelling
and ploughing the fields.

A fully automated system should have the intelligence to know its precise location, find
the path, be equipped with a safety system, and activate monitoring, analysis, and actuation
related to cultivation. The intelligence can be achieved by integrating different sensors,
actuators, and communication systems. The attack surface spans multiple systems, and
exploiting a vulnerability in any part of the machinery could have devastating effects. For
example, substandard soil analysis could result in faulty application of chemicals/fertiliser,
which will have long-term effects on the productivity of the agricultural field. In some
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cases, it might not be noticeable even after many weeks, which would make the rectification
difficult both in terms of time and money.

3. Threats to Digital Agriculture

Various technologies are integrated into one product to perform specific agricultural
tasks, as stated in Section 2. For example, an irrigation system has smart sensors/actuators,
communication protocols, software, traditional networking devices, and human interac-
tion. These complex systems are often outsourced from diverse vendors produced for
many kinds of environment and application, which increases the attack surface, and cyber-
criminals can exploit vulnerabilities to compromise one or other parts of the agricultural
application. Some of the threats are similar to those in traditional computer or IoT networks,
whereas some threats are specific to digital agriculture. Table 1 details the traditional soft-
ware, hardware, and communication threats that are well investigated in the literature. The
mitigation of those threats can be applied to digital agriculture. The following subsections
discuss threats that are not explicitly researched for DigAg.

3.1. Research and Intellectual Property

In agriculture, years of collaboration and research work among academics, researchers,
students, industry partners, funding organisations, and government produce novel solu-
tions to improve the yield and quality of crops in many kinds of environments. Malicious
users and state actors are highly interested in this research and IP, which contribute to the
national economy and people’s livelihood. Threats to IP can come from an insider, social
engineering, technological vulnerabilities/misconfiguration, and data leakage.

3.2. Personally Identifiable Information

DigAg systems are a significant investment and are often deployed for long period.
Many users access them over their lifetime, such as technicians, farmers, tradespeople,
service providers, etc. The personally identifiable information (PII) of these users can be
compromised when accessing the system and can subsequently be used for identity theft.

3.3. Commercially Sensitive Information

Data theft leads to the extraction of commercially sensitive information, risking
small- and large-scale trade relations (farmer to a service provider or international trade).
Commercially-sensitive information can be classified [30] as:

• Competitors use production efficiency statistics in their trading decisions, putting
primary producers at a competitive disadvantage. Further, growth statistics lead to
targeted research and IP theft attacks.

• Land valuation data, pricing data (logistics, supply chain, invoices, etc.), trading
volume, sale trends, and growth statistics provide an insight to competitors for a better
bargaining edge.

• Poorly defended small agriculture businesses and farms can be targeted to steal invoice
information and banking details. These poorly secured businesses become weak links
that enable unauthorised access to a large-scale network.

3.4. Internet of Things, Robotics, and Aerial Systems

The Internet of Things, robotics, drones, and aerial systems are the enablers of digital
agriculture. Sensors and agricultural robots are remotely controlled. The compromise of
sensors, actuators, and robots can disrupt their normal operation or, in the worst case,
be used in agri-terrorism. Heavy tractors or drones can be used to destroy fields, trans-
port illegal goods, conduct a crime, or make physical attacks by crashing into the target.
GPS spoofing and wireless communication vulnerabilities can be exploited to conduct
destructive attacks.
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3.5. Big Data and Machine Learning Threats

A tremendous amount of data is generated from sensors and autonomous farming
machines. Machine learning and artificial intelligence techniques provide a unique insight
that can be used to improve food production and use the limited resources optimally.
However, it raises concerns about the privacy and accuracy of data. Data compromise,
falsification, or eavesdropping could skew the ML/AI algorithm, revealing the IP or
creating data ownership tension between stakeholders [31].

3.6. Supply Chain Threats

Currently, supply chain disruption is a buzz word due to the COVID-19-induced
higher inflation. A supply chain is defined as “the design, engineering, production and dis-
tribution processes of goods and services from suppliers to customers” [32]. The sourcing
of hardware, software, and services from different vendors (globally and locally) cre-
ates security vulnerabilities, which should be considered in the design and operation of
DigAg products and applications. Researchers have proposed IoT- [33] and blockchain-
based [32,34] monitoring and tracking solutions about product information in supply chain
management. However, the services part of the supply chain is still not explored, whereas
human expertise from third-party sources is vulnerable to insider attacks.

4. Side-Channel Attacks

A communication system consists of devices and communication channels. Reasonable
security is obtained by accessing devices only with secret credentials and encrypting the
communication channel. Side-channel attacks are related to extracting information from
the data leakage during the communication or while accessing the system. A related
concept to the side-channel is the covert channel used to communicate stealthily either
to avoid listeners in the middle or exfiltrate information. Side-channel and covert attacks
leverage the physical properties of the hardware, software, or transmission medium to
extract useful sensitive information from the internal functioning and operation of the
targeted device [35].

In 1996, Kocher [36] demonstrated that timing data in the cryptographic implemen-
tation could be used to recover the entire secret key. With the proliferation of smart
devices, IoT, sensors, and slack cryptographic implementation on the hardware, various
side-channel attacks have been discovered to break the encryption and extract sensitive
credentials. Side-channel attacks are categorised into physical and functional [37]. The
physical categorisation is based on a measurable quantity that is the by-product of the
implementation. Examples are power output, electromagnetic emission, clock timing,
user interaction, acoustic, optical, thermal, and network inference (wired/wireless). The
functional type is based on the internal functional implementation and computing system
working that could leak the data. Examples are memory implementation, CPU/GPU
architecture, and software/firmware cryptographic implementation/coding.

Figure 2 provides a snapshot of various side-channel attacks for a DigAg application.
All the physical and functional SCAs are possible on any DigAg applications since most
applications are deployed in a harsh environment, not monitored, operated by a non-
technical person, and sparsely used. Secret key leakage would lead to all other attacks as
mentioned in Section 3.

Table 2 shows the SCAs as reported in the literature. The previously reported SCAs are
mostly for computer systems. SCA analysis for IoT devices [15] is closely related to DigAg.
The DigAg systems consist of small sensors attached to highly computational devices
(drones, autonomous robots). Unlike computer systems, they are unattended and deployed
in a harsh environment. Further, their use is infrequent and monitored by a non-technical
person. Therefore, the malicious user has limited freedom to play with and change different
parameters to reveal sensitive information. A malicious user can install a hardware Trojan
to capture and transmit information in the worst-case scenario. For example, power usage
SCAs can be easily carried out with physical access to devices. For other applications
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(e.g., smart homes), the physical access would be relatively difficult compared to digital
agriculture, where agriculture equipment is deployed and left in the field.

Figure 2. Side-channel attacks for a typical digital agriculture application.

Table 2. Side-channel attacks’ classification and implications for digital agriculture.

SCA Threats Method and
Techniques

Explanation Implication to
DigAg

Microarchitectural
(MA) [35]

Speculative
execution, branch
prediction, data

flow analysis,
reverse

engineering

Malicious user
compromises the
vulnerability in
hardware and

software
optimisation

features of the
computer system

(CPU, GPU) to
reveal secret
information.

Most of the
equipment is

deployed
remotely.

Therefore, reverse
engineering and
MA techniques

could be used to
compromise
secret keys.

Power usage [14] Simple power
analysis,

correlation power
analysis,

differential power
analysis, USB

power analysis
[38]

Electronic
components

utilise energy to
execute different
instructions. The
analysis of energy
consumption to
execute different
instructions can

be used to extract
secret

information.

Like MA, voltage
and current

analysis could be
easily carried out

with physical
access to the

devices.
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Table 2. Cont.

SCA Threats Method and
Techniques

Explanation Implication to
DigAg

Electromagnetic
emission [39]

EM fault
induction, EM

disturbance, EM
correlation

analysis

Electromagnetic
emission is

related to power
usage. Frequency

and amplitude
are additional
information

revealed in EM.

Both physical and
remote attacks are
possible with EM

emissions’
analysis.

Clock timing [40] Timing analysis
including

differential
timing, evict and
reload, flush and

reload, prime,
and count

Clock timing is
related to MA
side-channel

attacks, where
internal clock

timing analysis
could be used to

time the
execution of an
instruction or

access the
memory.

DigAg
applications are
deployed in a

hostile
unmonitored
environment.

Physically
compromising

the devices would
make it easy to
recover secret

keys using MA,
EM, power usage,
and clock timing.

Cryptographic
operation [41]

Crypto algorithm
attacks [42], deep
learning attacks
[43], template

attacks

Cryptographic
algorithms are

implemented in
hardware or

software. MA,
EM, power usage,

or machine
learning could
reveal public or

private keys.

A combination of
MA, EM, power

usage, or machine
learning

techniques can be
used to extract

secret keys used
in public and

private
cryptography.

Memory
operations [44]

Memory
deduplication
[45], memory
translation,

electromagnetic
disturbance

Memory
deduplication is a

virtualisation
technique in

which the same
contents across
the pages are

shared between
processors.

Recovery of
memory traces by

physically
accessing the

devices used in
DigAg

applications.
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Table 2. Cont.

SCA Threats Method and
Techniques

Explanation Implication to
DigAg

User interaction
[46]

Gesture inference,
keystroke
inference,
reflective
inference,

User interaction
with devices

could be used to
infer secret

information. e.g.,
how keys are

pressed or
different gestures
while using the

device.

These threats are
related to users
and using the

devices to access
the DigAg

applications.

Acoustic [47,48] Noise inference
[49,50], radio

wave induction,
vibration
inference

Audio leakage of
keystrokes, voice

recording for
voice

authentication are
some examples

Hardware bugs to
record the

acoustic data and
exfiltrate for later

analysis

Virtualisation
interface [51]

Multi-tenant
cross-talk [52],

page fault exploit,
virtual machine

duplication
exploit

The same
physical resource
is shared among

different
applications, and

the attackers
could recover

memory traces.

These SCA
threats are related

to applications
and data hosted
on the cloud and
can lead to IP, PII,
and commercial

data theft.

Network interface
[37]

LED interface,
light induction

Physically
clamping to the
network card or

eavesdropping on
the wireless

communication

Identifying
communicating
parties—from
sending and

receiving
patterns,

behavioural
profiling to

improve
fingerprinting for

marketing
reasons

Thermal
Dissipation [53]

Thermal pattern
correlation

Measuring
thermal

dissipation and
correlating it to
the workload in

the hardware
during the

execution of
instructions.

Thermal cameras
and heat maps

can be used
alongside other
SCA techniques

on DigAg devices

An SCA is facilitated by physical access. The sensors, actuators, and other agriculture
equipment that enable digital agriculture are deployed in the field and occasionally used
during the various phases of farming, e.g., land preparation, seed selection and sowing,
irrigation, fertilising, and harvesting. The hardware remains in the field or in the shed,
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which could be easily accessible considering that most farms are out of the city and do not
have proper physical security (CCTVs, fencing etc.).

Once a malicious user has physical access, it is at the attacker’s mercy to monitor
the side-channels parameter, revealing the cryptographic information or inferring other
information, as mentioned in Table 2. For example, a power analysis attack requires power
consumption monitoring during a cryptographic operation. A simple power trace of
device operations correlated with data-dependent power variations can be used to infer the
cryptographic key. A high signal-to-noise ratio (SNR) requires fewer power consumption
traces, and close proximity would enable capturing a high SNR trace, making it easy to
differentiate traces from one another [15]. In other computing applications, hardware
is physically secured, and attackers cannot have prolonged access, unlike in agriculture.
Therefore, different variants of SCAs can be easily initiated, as given in Table 2.

Further, low-cost and re-purposed hardware devices (sensors, actuators) do not have
a built-in security mechanism to monitor their status, usage, or access to the memory. A
secure memory (EEPROMs) is required to store the cryptographic keys securely. Phys-
ical unclonable functions (PUFs) could be used for tampering protection and low-cost
authentication without relying on secure storage [54]. PUFs can derive secrets from the
integrated circuit and be used in low-cost authentication and key generation, minimising
secure storage requirements.

5. Research Challenges and Future Directions

Most new technology products are developed and commercialised to capture the
market quickly. Many devices and sensors are not made explicitly for DigAg applications,
but are modified to be used in agriculture, where customisation is mostly directed toward
utilisation in a harsh uncontrolled outdoor environment. Less thought is given to the
security of the devices. Like other technologies, security is usually considered the last
priority rather than embedding security into the design phase. This section discusses some
of the open challenges, which are still in the early research phase.

5.1. Intrusion Detection and Prevention System

Traditionally, intrusion detection and prevention systems (IDS/IPS) are developed for
large data networks. However, the requirements of digital agriculture are different and
include low-rate sensor data, sparse observation and attenuation, unattended deployment,
and remote control. Therefore, new intrusion detection/prevention algorithms should
be developed for digital agriculture. Currently, there is no IDS/IPS dataset available for
DigAg applications. Existing datasets are either traditional IoT-smart home datasets [55]
or computer networks [56]. The availability of an open-source agriculture-based dataset
would fuel the research and development of such algorithms and systems. AI algorithms
can be handy in the development of IDS/IPS systems. Further, using AI at edge computing
and blockchain would be useful to mitigate some of the existing attacks. Considerable
work is needed to deploy edge-based IDS systems for digital agriculture.

5.2. DigAg Cyber-Security Framework

The digital agriculture revolution is still at an early stage. Continuous Internet con-
nectivity, inexpensive sensors, remote deployment, non-technical end-users, and new
applications and use-cases open up new vulnerabilities and security issues. Frameworks
and standards are necessary to guide tradesmen, farmers, and businesses to implement
security controls. Typically, a framework development takes considerable time as it in-
volves consultation with stakeholders (business, farmers, different agriculture sectors). The
framework guides all the stakeholders on implementing security at different levels for
various assets (data, devices, applications, etc.). Currently, there is no security framework
developed explicitly for DigAg. The National Institute of Standards and Technology (NIST)
Cyber Security Framework (CSF) covers IT and operational security [30]. However, it does
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not capture control over all the IT assets. A closer look at the NIST framework could be a
good starting point for developing a security framework specifically for DigAg.

5.3. Privacy-Preserving Schemes

Most of the data in the DigAg are related to field work, which users might overlook.
Privacy-preserving schemes for DigAg are an emerging area [57]. New privacy-preserving
schemes need to be developed tailored for digital agriculture to protect the data from
the malicious user in all aspects such as data privacy, data analytics, data utility, and
overall system efficiency. New privacy-preserving schemes would mitigate IP theft, PII,
and commercially sensitive information.

5.4. Vulnerability and Threat Analysis

DigAg devices and IT requirements are different for various applications. Hardware
and software from multiple vendors are integrated into one particular solution, which
increases the attack surface. Before integrating the devices, a thorough vulnerability and
threat analysis should be performed, including the side-channel attacks, which are difficult
to analyse and typically not covered in the cyber-security frameworks. Each hardware
system should be analysed in the context of its use and threats, whether physical, hardware,
or software-related.

5.5. Cyber Awareness and Incidence Response

Cyber attacks are inevitable. It is not a question of if, but when. Previous security
breaches have shown that malicious users exploit technical vulnerabilities through an
unintentional harmless action by the end-users. Humans are always the weakest link.
Cyber awareness and training of end-users, installing security appliances (firewall, antivirus
software, etc.), and being physically aware of an anomaly would stop many of the threats
mentioned earlier in Section 2. However, end-users’ continuous engagement and training
are challenging, and technology should be developed for this purpose.

The end-user, business, and government should be prepared and equipped with
incident response and business continuity plans for unknown attacks in the future. De-
veloping simple incident response and business continuity templates for various DigAg
applications would be a cost-effective solution. They would motivate end-users to respond
appropriately in case of a breach.

6. Conclusions

The digitisation of agriculture paves the way for new applications and new use of
technology to increase the yield of crops with less utilisation of resources. Most existing
technology is modified and networked to provide innovative solutions to the decades-old
agriculture problem. This article provided a generic threat analysis of our four-layer DigAg
model. Threats such as IP, PII, etc., which are overlooked for DigAg and side-channel
attacks, and their implication were discussed in detail. Finally, open research challenges
and future directions were presented. The research challenges should be addressed at an
early stage during the development and deployment rather than leaving them to the very
end. Else, they would take considerable resources to fix.
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Abstract: A key purpose of a Supervisory Control and Data Acquisition (SCADA) system is to enable
either an on-site or remote supervisory control and monitoring of physical processes of various
natures. In order for a SCADA system to operate safely and securely, a wide range of experts with
diverse backgrounds must work in close rapport. It is critical to have an overall view of an entire
system at a high level of abstraction which is accessible to all experts involved, and which assists
with gauging and assessing risks to the system. Furthermore, a SCADA system is composed of a
large number of interconnected technical and non-technical sub-elements, and it is crucial to capture
the dependencies between these sub-elements for a comprehensive and rigorous risk assessment. In
this paper, we present a generic configurable dependency model of a SCADA system which captures
complex dependencies within a system and facilitates goal-oriented risk assessment. The model
was developed by collecting and analysing the understanding of the dependencies within a SCADA
system from 36 domain experts. We describe a methodology followed for developing the dependency
model, present an illustrative example where the generic dependency model is configured for a
SCADA system controlling water distribution, and outline an exemplary risk assessment process
based on it.

Dataset License: CC-BY-NC

Keywords: cyber security; risk assessment; risk analysis; dependency model; SCADA; ICS

1. Introduction

The main purpose of a Supervisory Control and Data Acquisition (SCADA) system
is to enable on-site or remote supervisory control and monitoring of physical processes
of various nature: manufacturing processes, water distribution, transportation, gas and
oil, etc.). It does so by collecting, analysing and visualising data from field devices, and by
changing the state of field devices in response to any disruptive change.

SCADA systems control physical processes in many sectors including those which
form a Critical National Infrastructure (CNI): Chemicals, Civil Nuclear, Energy, Food, Water,
Space, and Transport. Therefore, the cyber security and safety of a CNI as well as of many
other industrial processes heavily relies on the secure and safe operation of supporting
SCADA systems. A compromised SCADA system may have a detrimental impact on the
availability and integrity of critical services, and it could lead to the loss of life, casualties,
and significant environmental, economic and social impacts.

SCADA systems provide direct links from a digital world into physical processes
that may drastically affect physical resources, environment and even human health and
lives. In 2000, the unauthorised tampering with a SCADA system in the Maroochy Water
System by a former system engineer led to sewage overflow and resulted in the damage
to the surrounding environment [1]. In 2010, the Stuxnet computer worm was used in an
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attack on the Iranian nuclear facility, leading to the failure of one-fifth of all centrifuges [2].
The Stuxnet attack vividly illustrated the possible severe consequences of a cyber attack on
CNI. In 2020, Honda factories had to freeze global production after a ransomware attack,
which intended to disrupt ICSs. The overview of 43 historical attacks on Industrial Control
Systems (ICS) [1]—a SCADA system is a type of ICS—highlights the critical role that a
SCADA system may play in a cyber attack. The cyber attacks on SCADA systems are
considered to be one of the popular vectors of attacks on CNI [3].

Since SCADA systems underpin many industrial and critical processes, it is of pivotal
importance to manage efficiently risks within SCADA systems [4]. In SCADA and other ICS
systems, achieving a safe and secure operation of a system depends on a large number of
diverse factors of different nature, including but not limited to administrational, regulatory,
human-oriented, technical and environmental factors. These factors must be captured
and analysed.

For an efficient risk assessment and management to be in place, a wide range of
experts including network and hardware engineers, software developers, system operators,
Human Resources (HR) administrators, and floor managers (non-exhaustive list of roles
involved) with diverse backgrounds must communicate and work in rapport. Any risk
decision related to the safe and secure operation of a complex multi-variable system such as
a SCADA system requires a rigorous justification built upon a well-documented evidence
base. In this scenario, it is critical to have an overall view of the entire system accessible
to all experts. This “helicopter” view of a SCADA system will help to gauge risks to the
system and its components.

A SCADA system is a complex system composed of a large number of interconnected
and mutually influencing technical and non-technical components. It is crucial for risk
assessment methodology applied in the context of a SCADA system to account for the
dependencies between the components within the system as well as for the dependencies
on external systems, upon which the system under analysis has no control.

In this paper, we present a method of assessing cyber security risk in the context of a
SCADA system which is based on dependency modelling. Dependency modelling is an
objective-driven, dynamic, dependency-defining approach, which is standardised by the
Open Group [5]. We explain the dependency modelling method in detail in Section 2. The
dependency modelling approach in the context of a SCADA system aims to answer the
following questions:

• What is required for achieving the safe and secure operation of a SCADA system (the core
goal)? What does the success of this core goal depend upon?

• What is the likelihood of achieving the core goal?
• What can be done to maximise the likelihood of achieving the core goal?

The key contribution of this paper is a SCADA Dependency Model (SCADA DM)—a
widely applicable industry-agnostic multi-faceted dependency model of a SCADA system
which comprises 452 SCADA system dependencies. Our SCADA DM offers a holistic view
of a system that is an integration of sub-models developed by stakeholders responsible for
the different aspects of a SCADA system and for the systems reliant on it. The SCADA DM
we present in this paper was co-designed with domain experts with varying backgrounds
following a rigorous knowledge capture methodology and validated by practitioners and
academics via focus groups. By following the rigorous well-documented model develop-
ment process with the involvement of domain experts, we produced a comprehensive,
justified and validated model of a SCADA system, which is capable of supporting risk
assessment process.

The presented SCADA DM facilitates understanding of complex interactions and inter-
dependencies within a SCADA system. The adopted dependency modelling approach
offers the ability to predict the impact of failure of any dependency on other parts of
the system and on the system as a whole. A SCADA DM assists with managing the
dependencies within the system and well as accounting for external factors that are outside
of the system control (e.g., geo-environmental factors and espionage).
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The secondary contribution of the paper is the illustrative example of applying the
dependency modelling approach to risk assessment, underpinned by the SCADA DM,
in the context of SCADA systems. We focus on a water distribution process. To the best
of our knowledge, it is the first application of dependency modelling to assessing cyber
security risks within a SCADA system in a CNI sector. The illustrative example shows
how the presented generic SCADA DM could be configured for a specific SCADA system
and how it could facilitate risk assessment process.

The remainder of the paper is organised as follows. In Sections 2 and 3, we provide an
overview of dependency modelling and of the related literature, respectively. In Section 4,
we discuss the research methodology for the development and validation of the SCADA
DM. In Section 5, we present the SCADA DM, focusing on its six key areas. An illustrative
example of conducting a risk assessment for a SCADA system controlling water distribution
is outlined in Section 6. Finally, conclusions are drawn, and future work is discussed in
Section 7.

2. Background: Dependency Modelling

Dependency modelling is a goal-oriented risk assessment method, which is based
on the assumption that all risks come through interdependencies, and that in order to be
resilient, a system needs to recognise and manage all dependencies (both external and
internal). It is a positivist, top–down approach of elaborating dependencies from the core
system goal.

The major distinctive feature of this method is that it focuses on the desired outcome
of a system (the core goal) and on the supporting sub-goals that should be achieved for
the overall success of the core goal. This feature distinguishes dependency modelling
from failure-oriented risk assessment methods [4], which attempt to enumerate threats to a
system and list “all the things that could go wrong” with a system [5] (p. 10).

The Open Group’s Dependency Modelling standard [5] provides guidance on how
to construct a Dependency Model (DM)—a graph model of a system that consists of a
collection of nodes (systems dependencies) arranged in a tree-like hierarchy [5]. These
entities in a DM are referred to as paragons or goals, and they are depicted as rectangles.
A paragon represents a desired state of a system or of an element of a system.

A DM has only one root node, which represents the core goal of a system, and multiple
leaf nodes representing sub-goals upon which the core goal depends. Each leaf node has
only one parent node, but it can have zero-to-many child nodes. The leaf nodes that do
not have child nodes do not have dependencies within the scope of the model and are
called uncontrollables, highlighting the fact that the system itself has no control over the
state of these paragons. A DM is composed of smaller building blocks that are meaningful
low-level DMs.

One of the key concepts in dependency modelling is the probability of success/failure
of each node. This is because dependency modelling builds on the notion of conditional
probability, which is the probability of an event occurring given that another event has taken
place. In a DM, every childless leaf node is assigned a probability of being in a desired state
or being successful. The probability is assigned based either on expert opinion (subjective)
or based on historical data, when available (objective) [4]. The conditional probability of
a parent node being successful is calculated based on the success probabilities of child
nodes. Dependency modelling is a quantitative risk assessment method that facilitates risk
sensitivity analysis that shows which system dependencies present the highest risk to the
success of the core goal.

In a DM, there are two types of relationships between child nodes of one parent node:
and and or. An and relationship means that all child nodes should be successful for the
success of a parent node. An or relationship indicates that at least one child node should be
successful for the success of a parent node. An or relationship reduces overall risk, while an
and relationship increases it. An OR relationship may be used to introduce a cyber security
countermeasure which mitigates a risk posed to a system by a certain dependency.
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The probability of a parent paragon with an AND relationship between independent
child paragons is calculated as follows:

P(A) =
N

∏
i=1

P(Bi)

where A is the parent paragon, B is a child paragon, P(X) is the probability of the paragon
X, and N is the number of child paragons.

The equation for the probability of a parent paragon with an OR relationship between
independent child paragons is shown below:

P(A) = 1 −
N

∏
i=1

(1 − P(Bi))

A DM facilitates the communication between system stakeholders by providing a com-
mon ground for the discussion about system’s core goal, sub-goals, risks and dependencies.
It helps to avoid misunderstandings and omissions in risk assessment by providing a clear
visual representation of dependencies within a complex system. It is a flexible method
which is applicable to a system of any size or nature, as well as to an organisation or a
project [5].

3. Related Literature

In 2016, Cherdantseva et al. [4] presented an extensive literature review examin-
ing the risk assessment methods used in the context of SCADA systems and ICS. This
section contains a brief summary of that review and the discussion of the most recent
related publications.

Tree-based risk assessment methods as well as other risk assessment methods based
on directed graphs fall under the category of Probabilistic Risk Assessment (PRA) methods.
Tree-based methods are similar to each other in their logic and aim to define the probability
of a top event or its reliability [6]. What constitutes the major difference between various
tree-based methods is a top event: a threat, a fault, an attack or an incident. The vast
majority of tree-based risk assessment methods are failure-oriented. They start with an
attack, threat or negative consequences and work out a model based on it. Some of them
adopt an attacker’s perspective and, accounting for the vulnerabilities of an infrastructure,
model the steps to be performed by an attacker to gain unauthorised access to a system [7].

Dependency modelling also belongs to the group of quantitative, tree-based PRA
methods. A DM is a form of a directed graph. As other graph-based risk assessment
methods, dependency modelling strives to calculate the probability of a top event in a
graph. However, while in failure-oriented methods such as fault tree, attack trees, event
trees, and vulnerability trees a top event represents an undesired event, in dependency
modelling, a top event always represents a desired outcome (a core goal).

Among probabilistic tree-based methods for SCADA systems, inductive and deductive
methods are distinguished [8,9]. Inductive methods (e.g., event tree) trace from possible
causes to undesired events as opposed to deductive methods (e.g., fault and attack trees),
which trace from undesired events to possible causes [9]. Inductive methods are also
referred to as forward search techniques, while deductive methods are referred to as
backward search techniques [10]. Dependency modelling is a deductive method in terms of
how each dependency model is created, because it is necessary to start with a top desired
event (a core goal) in order to identify all underlying dependencies.

One of the limitations of failure-oriented methods, which dependency modelling
overcomes with the use of an OR relationship (Section 2), is that, in its basic form, attack
and fault trees do not facilitate the modelling of security countermeasures or defence
mechanisms [7]. However, more elaborated versions of attack graphs exist that allow
modelling countermeasures, e.g., [11].
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Failure-oriented PRA methods have another limitation [12]: one of the fundamental
issues is that the estimation of risk is never complete because it is not possible to identify
a full list of all undesired events/threats. Dependency modelling avoids this pitfall by
focusing on the “known” side of a system. In the majority of cases, it is possible to identify
all dependencies within a system and all elements upon which a core goal and each of
its child nodes depend. As any comprehensive and thorough risk assessment method,
dependency modelling requires time and effort to be invested in developing a complete
model of a system. Any DM will require continuous revision to ensure that it is up to date
at a given stage.

In [13], a multi-model incident prediction and risk assessment approach based on
Bayesian Networks and designed for ICS is described. This method also belongs to the
group of failure-oriented methods, but non-traditionally for failure-oriented methods, this
proposal claims to assess the risk caused by unknown attacks. In [7], a risk assessment
method is suggested based on Decision Networks that extend Bayesian Networks. It is de-
signed for the analysis of attack/defence scenarios in CNI. This method, while belonging to
the group of failure-oriented graph-based PRA models, allows modelling countermeasures
and accounting for their costs, thus facilitating the determination of the most cost-effective
set of countermeasures.

Many failure-oriented tree-based methods either enrich an attack tree with additional
data or combine it with the models of other types, including goal-oriented models. For ex-
ample, [14] exploits a dual approach: while an infrastructure hyper-graph is a goal-oriented
model, an evolution graph is an attack-oriented model. The Dynamic Risk Management
Response System (DRMRS) [15]—a framework consisting of three main components such
as attack modelling, risk modelling and response modelling—uses attack graphs, which are
accompanied by a mission graph presenting a business model of an organisation, business
functions, and assets required. A mission graph contains information only about technical
devices within a SCADA system. The dependency model of SCADA presented in this
paper adopts a much broader view and encapsulates diverse technical and non-technical
aspects pertaining to a SCADA environment.

Addressing the earlier call for a comprehensive risk management method for SCADA
systems [4], an integrated cyber security risk management framework for cyber-physical
systems is presented in [16]. The framework is illustrated using the scenario of a power
grid system. This approach is conceptually similar to the risk assessment approach adopted
in our research in the following ways: (1) it adopts a holistic perspective and a multi-
stakeholder view on a system, (2) it covers both technical and non-technical risks, and (3) it
addresses the effect from interdependent system components. However, as opposed to our
approach, the framework in [16] (1) does not focus on systematically identifying all system
dependencies, and it only lists high-level classes of interdependencies (physical, cyber,
logical and geographical interdependencies); and (2) adopts a failure-oriented approach by
generating cyber-security attack scenarios to support risk assessment.

In Section 6, we consider an illustrative example of a water distribution system; hence,
it is important to consider publications related to cyber-security risk assessment in this
sector. Cyber-physical attacks on water distribution systems are examined in [17], where an
attack model and a MATLAB toolbox are presented which support the identification of the
infrastructure components and the specification of attacks. As opposed to our approach,
this work, in line with the publications considered above, also adopts an attack-oriented
approach, and it only focuses on the technical components of a SCADA system. The focus
on the technical components (networks and hardware devices) persists in water distribution
risk assessment—according to the recent review of modelling methodologies for managing
water distribution security [18], all reviewed approaches focus on the network component
of a system only, failing to address in detail a wider view on cyber security and the role of
non-technical factors in a cyber attack.

The analysis in [4] indicates that quantitative PRA methods in general do not concen-
trate on the context establishment stage. The context establishment phase, if addressed
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by a method, is typically limited to the understanding of a network configuration. Conse-
quently, only risks associated with the ICT components of a SCADA system are taken into
account by a risk assessment method while overlooking a large number of risks arising
from non-technical aspects.

Among the related publications, only [19] is exclusively dedicated to the context estab-
lishment and the understanding of a SCADA system. It is one of a very few publications
adopting a goal-oriented approach. The Hierarchical Holographic Model (HHM), which
underpins risk assessment in [19], is the methodology for “capturing and representing the
essence of the inherent diverse characteristics and attributes of a system” [20]. Three sub-models
are distinguished in the HHM of a SCADA system: (1) hardware and software, (2) human
supervisory and (3) environment. Each of these sub-models is decomposed into elements
and each element is decomposed into sub-topics. The HHM model of SCADA in [19]
includes 263 elements. In comparison with the model in [19], our SCADA DM provides a
more detailed view of a SCADA system comprising six key areas and 452 system dependen-
cies. We expanded the key area System Architecture to include the Hardware, Software and
Networks elements. The sub-topic Human Supervisory from the SCADA HHM is included
in the SCADA DM under the key area Employees, which has a broader nature. In addition
to the three key areas addressed by the HHM model, we also identified and included the
three new key areas: System Life Cycle, Data (Information) and Management.

4. Research Methodology

The research methodology we followed in this research project is summarised in the
following steps:

1. Elicit relevant knowledge from experts using the mind mapping knowledge capture
technique;

2. Analyse the collected individual mind maps and develop a unified mind map of a
SCADA system;

3. Translate the unified mind map into a dependency model—the SCADA DM;
4. Validate the SCADA DM with experts;
5. Demonstrate how the SCADA DM facilities risk assessment and supports decision-

making (an illustrative example is presented in Section 6).

4.1. Why Mind Maps?

Expert knowledge could be captured using a variety of techniques ranging from
interviews and surveys to concept maps and mind maps. In this research, we chose mind
mapping guided by the reasons explained below.

Mind mapping is based on the natural structure of a human mind [21]. A mind map is
a radial diagram that represents semantic or other connections between portions of learned
material hierarchically [22]. Mind mapping finds its application in learning, research and
business where it may be used for knowledge capture and sharing, brainstorming and
problem solving. It is a convenient tool for the quick capture of opinion and summary of
knowledge. Mind maps accelerate the accumulation of information, its structuring and
systematisation. They assist reflective thinking and enable a user to link the knowledge
about a topic to the broader body of knowledge [23].

Mind mapping was preferred to other knowledge capture techniques because

• It is easy to learn and use so that all experts were able to produce detailed mind maps
during a one-hour workshop. Previous work reports the results of a comparative
analysis of four knowledge sharing techniques (mind maps, concept maps, conceptual
diagrams and visual metaphors). The comparison indicates that mind mapping is the
easiest technique to use and learn in comparison to other methods [22].

• It offers a more time-efficient data collection for the researchers. In particular, using
this method, we were able to elicit opinions from a group of experts at the same time.
It would not be possible with interviews, for example.
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• It allows optimising the data analysis by requesting the participants to produce mind
maps themselves rather than the researchers producing a mind map based on the
analysis of in-depth interviews or observations. According to [24], “mind mapping can
allow researchers to make rapid and valid transcriptions of qualitative interviews without the
need for interviews to be transcribed verbatim. It may also aid the researcher in the analysis
of qualitative data by helping her or him to ‘bracket’ their own preconceptions, which is
fundamental in phenomenological research”.

• The similarity of a tree-like structure between a mind map and a dependency model
guarantees that the raw data are already well structured and easier to analyse and
translate into a dependency model (than for example data from in-depth interviews). In
addition, mind maps are association maps [23]—mind maps allow making meaningful
connections and associations between various concepts and between different parts of
related knowledge—and as such, they could efficiently depict dependency associations.

4.2. Data Collection—The Mind Mapping Workshops

In order to capture expert knowledge, a mind mapping exercise was conducted with
a group of ICS/SCADA experts during the 3rd UK Workshop on Cyber Security of ICS
and SCADA systems. The SCADA mind mapping workshops were also run in Sweden
with selected industrial collaborators of the Swedish Centre for Resilient Information and
Control Systems (RICS) www.rics.se (accessed on 27 March 2022). We also employed
SCADA experts online via professional networking sites. Overall, 36 domain experts
participated in the mind mapping exercise. Twenty-one responses were captured during
the workshop with the UK-based experts in cyber security of ICS and SCADA. Twelve
mind maps were collected at the RICS centre. Three SCADA experts were employed via
LinkedIn. All participants irrespective of the mode of participation followed the same
procedure. The exercise took approximately one hour.

During the mind mapping workshops, the participants were invited to produce mind
maps of a SCADA system. We aimed to establish how domain experts conceptualise
and mentally represent the dependencies within a SCADA system. Prior to the exercise,
the rules of mind mapping were explained to the participants, and they were presented
with several mind map examples.

The following instructions were given to all participants for the mind mapping exercise:

• Place in the centre the name of the main topic—“SCADA” (use blue/black ink);
• Identify the major elements/components of a SCADA system, place them around the

main topic and link them to the main topic with lines indicating dependencies within
the system;

• For each new element of your mind map, identify sub-elements and connect them
using lines to the element;

• Continue identifying sub-elements for each new element of your mind map until you
reach the point where no more sub-elements may be specified;

• Use different colours to indicate the criticality of the elements within every node:

– The most critical elements of a node—circle with red;
– The elements of medium criticality—circle with green; and
– The least critical elements of the node—do not circle.

These instructions simplify the mind mapping guidelines provided in [21]. In our
experiment, we did not ask the participant to draw any images or symbols to accompany
the nodes of a mind map because the aim of the experiment was to elicit the hierarchy of
dependencies rather than to produce a cognitively effective mind map. Typically, in mind
maps, the links between nodes indicate unspecified connections among the element of the
map. To avoid misinterpretations, the participants were instructed to use links only to
indicate dependencies within a SCADA system. While working on their individual mind
maps, the participants were instructed to answer the questions outlined below:
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• What is required for successful operation of a SCADA system?
• What does a system depend upon?
• What does each element of a system depend upon?
• How critical is each element (colour-coded answer)?

The participants were requested to work individually, and no discussions were allowed
during the mind mapping exercise. This was done deliberately in order to prevent cross
influences between the participants and to enable the independence of responses. However,
after the mind maps were finished, the participants were invited to observe mind maps
of their colleagues and exchange opinions, and to add additional elements to their mind
maps if they felt any were missing.

4.3. Participants’ Profile

The profiles of 36 participants are presented in Appendix A in Tables A1 and A2.
Among the participants, the experience in SCADA systems has a mean of 10.8 years with
standard deviation of 11.8 and ranges from 1 to 40 years. Experts of a broad spectrum
of different roles participated in the exercise: academics and practitioners, engineers
and consultants, technical and non-technical specialists. Experts came predominantly
from industry with only six participants from academia. The participants came from
different domains including government and defence, energy, aerospace and marine, oil,
gas and petrochemicals, water, smart metering and transport. The aspects of SCADA
systems that the participants specialised in were also diverse and included management,
risk assessment, cyber security, certification, procurement, networks, modelling, design,
and implementation.

Among the participants, 6 did not have experience in cyber security. The number
of years of experience in security among the 29 experts with expertise varied from 2 to
37 years with the average of 11 years. The overall average for all participants is 9 years,
with the standard deviation of 9.

The set of mind maps was collected from the independent individuals, which were
experienced in the relevant subject areas. The broad range of domains and roles of the
participants makes the group representative of the SCADA stakeholders in general. Hence,
the collected mind maps present snapshots of a SCADA system from various perspectives
conditioned by the background of the participants. The diversity of the participants enables
the generalisation of the exercise results to the entire SCADA community and justifies the
assumption about the acceptable levels of completeness of the knowledge captured.

4.4. Data Analysis and Development of a Unified Mind Map

After the data collection stage, the 36 individual mind maps of a SCADA system were
analysed. In this process, we followed the 5 stages of qualitative data analysis [25]:

• Familiarization—Immersion in the raw data (mind maps) when the researchers ob-
served all mind maps to estimate the richness of the material;

• Identifying themes—Key areas derivation from the raw data;
• Indexing—Linking key areas and other elements throughout all participants’ mind maps;
• Charting—Rearranging the data from individual mind maps into a unified mind map

containing the data, first, from some and, then, all respondents;
• Mapping—In its general sense, this stage does not refer to mind mapping specifi-

cally, but to any form of creating a mental model or a framework of a phenomenon
under investigation. In our case, we used mind mapping at this stage to define the
phenomenon and find associations.

The template analysis method [26] was used in this project as a suitable and well-
established method for analysing interpretative phenomenological data collected in the
form of mind maps. Each unique element identified in a mind map became a code.
The codes were grouped into themes representing the key areas and arranged within a
hierarchy. An initial template of key areas and high-level sub-elements was created based
on the analysis of 5 randomly selected mind maps. We then worked through all remaining
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mind maps—element by element—looking for new elements that could be related to
previously identified themes or added as or under new themes.

All unique elements identified as a result of the analysis of the collected mind maps
were captured. Reasonable adjustments were made regarding the naming of the elements.
If the analysis showed that the participants referred to the same concept using differ-
ent names, these similar elements were merged together. For example, analysis of child
elements confirmed that the participants referred to the same concept as Networks, Com-
munications, or Interconnections. These elements were united under the term Networks.
We also united close terms such as TCP/IP, IP and IP-based networks in one element.
The elements Remotely Controlled Devices and Field Devices were merged as well as such
elements as Operator Terminal and Human–Machine Interface (HMI). The elements such as
business system link, enterprise interface and corporate access were also grouped together
under the term Corporate Access.

It was imperative to capture the complex hierarchical nature of a SCADA system,
and mind maps as a tool served in this goal well. The collected elements were analysed,
then grouped and categorised according to their nature to produce a unified mind map.
The process required an in-depth knowledge of SCADA systems. In many cases, we had to
refer to the SCADA literature to clarify the meaning of concepts and relationships between
them. Some elements were grouped together as they referred to closely related concepts;
for other elements, we had to add new node layers.

Each of the 36 mind maps contained between 14 and 107 elements with the average
number of elements per model of 42.25 ± 19.10. Overall, 1521 elements were identified out
of which 610 were unique. The maximum number of hierarchical levels of the mind maps
(max depth) varied in the range between 2 and 8 with the average of 3.89 ± 1.17. Each
mind map had between 1 and 15 key elements, i.e., the elements whose parent element is
the core element of a SCADA system. The average number of key elements was 6.89 ± 3.79.

Through this rigorous process, the unified mind map of a SCADA system was grad-
ually refined. Overall, the final version of the unified mind map comprises 610 elements.
Figure 1 shows an early version (work in progress) of the unified mind map. This figure
is presented here to demonstrate the richness of the model, not to show the individual
elements, which will be discussed in detail in Section 5.

For each element, we retained for analysis its parent element and its criticality; then,
the data were summarised into a table containing (1) the number of occurrences (i.e., how
many out of 36 experts included the element in their mind maps), (2) the average criticality,
and (3) the standard deviation for the criticality for each unique element. Due to the size of
the data, this summary table is not presented here but is available in the project repository
at https://git.cardiff.ac.uk/c1051916/SCADA_DM/ (accessed on 28 March 2022) in an
Excel format. Figure 1 is also available in the repository.
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4.5. From the Unified Mind Map to a Dependency Model

The unified mind map went through a rigorous transformation process to be converted
to a dependency model and to ensure that all rules of dependency modelling are obeyed.

At the very core of our dependency model is the safe and secure operation of a SCADA
system. Setting this as the major objective reflects the fact that safety and security, as well as
risks, are the properties of the overall system rather than of any sub-component on its own.
While in the unified mind map, there were 610 elements, in the process of transformation,
the number of elements was reduced to 452 elements due to the following reasons:

• Elements from the unified mind map were combined together to form one paragon
when an entry in a mind map referred to the characteristics of another entity, e.g., a
participant had drawn an element such as “Operating System” and then child elements
depicting its characteristics such as “Secure” and “Up-To-Date”.

• The entities which outlined various concrete implementations of higher-level enti-
ties were not included; e.g., we only kept a paragon for an Operating System (OS),
but we did not include all the different types of OSs listed by the participants (e.g.,
Linux, Windows, MAC OS), similarly for communication protocols. As the model
is configurable, it is expected that a user will enrich the model with the paragons
for every operating system that is in use by the organisation and paragons for every
communication protocol that is relevant to the system being modelled.

• A small number of elements did not find a place in the final model as the elements
either were not fit with the main structure of the model or were specific to a particular
sub-domain rather than being relevant to SCADA systems in general.

• In a small number of cases, it was not possible to establish the meaning of the entity
based on the information provided by the participants. This is one of the limitations
of the chosen approach to data collection where we did not have an opportunity to
clarify information provided during the workshops at a later stage.

The names of the paragons have been formulated generically to ensure that when
configured, they could be replaced with characteristics relevant to the scenario. For example,
we named one of the paragons “Software is Ok”. This may have different interpretations
for different organisations; some may interpret it to mean that “Software is effective in
fulfilling its purpose”, others as “Software is protected from external attacks”, or both
of the above. While identifying the important dependencies, we do not prescribe the
characteristics and exact interpretations of paragons, leaving the exact wording to the end
users of the configurable SCADA model to be defined to suit each particular context.

4.6. Validation by Experts

We ran three workshops with 9 cyber security and ICS experts (5 academics and
4 industry practitioners). The participants of these validation workshops were not involved
in the mind mapping exercise at the initial stage of the project. The experts were presented
with a printed version of the unified SCADA mind map (Figure 1) and asked to answer the
following questions:

1. Does the top-level mind map reflect your vision of a SCADA system?
2. Are there any irrelevant elements?
3. Are there any elements missing (completeness and coverage)?
4. Is the suggested hierarchy of elements consistent with your understanding of depen-

dencies within a SCADA system?

There were no new elements suggested during the workshops, and the expert group
positively commented on the completeness of the unified mind map. There were sugges-
tions made about the restructuring of elements under the key area “External Dependencies”.
All comments from the first workshop were addressed, and the final version of the mind
map was presented at the second workshop when the expert group agreed on the structure.
No further suggestions for change were received during the second workshop.
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During the validation workshops, the following comments were received from the
industry participants commenting on the usefulness of the SCADA DM:

• An ISC manager at a manufacturing plant: “It is useful to have an extensive model on
its own to look at. It is very difficult to sit down in a traditional workshop and cover every
scenario: you always forget something, you always miss something. Getting the right people
round the table, being able to manage those people to go though all the scenarios is very time
consuming and expensive. Most people do not want to be there it becomes boring after a while
for them. Certainly, if there is a predefined model that covers the majority of the scenarios, you
miss less. To have a model which captures that wider experience saves us money, saves us time.
Certainly, it is a useful tool”.

• An ICT manager at a manufacturing plant: “There is not really anything we use in terms
of modelling that helps us accurately look at probabilities. That is why a dependency model
may be quite useful, because you do not want to spend a huge amount of money if there is a
very low probability and because for everything we do we have to justify costs against benefits.
Without understanding probabilities it is very difficult to do that”.

• A SCADA specialist: “Never I could come up with over 400 elements in a model, I would
have struggled. It is certainly useful as it is all about knowledge sharing”.

5. The SCADA Dependency Model

5.1. Top Level of the SCADA DM

Figure 2 shows the top-level elements of the unified mind map. The template analysis
of the individual mind maps enabled us to identify the top six key areas of a SCADA system:

1. Management;
2. System Architecture;
3. Employees;
4. External Dependencies (Environment);
5. Data (Information); and
6. System Life Cycle.

The System Architecture element is decomposed into the following three elements:
Networks, Hardware and Software.

Figure 2. Top-Level Entities of the Unified Mind Map of a SCADA System.

The top level of the unified mind map was directly translated into the dependency
model of the safe and secure operation of a SCADA system. The top level of the SCADA DM
is presented in Figure 3. We used iDepend https://idependeu.herokuapp.com (accessed on
28 March 2022) as the tool for deploying our SCADA DM and conducting risk assessment
in Section 6. A plus sign at the top right corner of a paragon indicates the presence of
child paragons. Overall, the model includes 452 elements covering the six key areas of a
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SCADA system. Due to its size, it is not efficient to depict the full SCADA DM in this paper;
instead, the model is available in JPG and XML formats at https://git.cardiff.ac.uk/c10519
16/SCADA_DM (accessed on 28 March 2022).

Figure 3. The Top Level of the SCADA DM.

5.2. Key Areas Overview

The System Architecture key area depends upon the Software, Hardware and Net-
works paragons. The software paragon has dependencies on HMI, operating systems, and
different types of software applications in use (e.g., archiving software, training simulation
software, other bespoke and COTS software packages, etc.); authorised access is addressed
in the dependencies of this paragon as well as patching management and virtualisation.
The Hardware paragon has dependencies on a control centre, field and other embedded
devices, communication server and power supply. The Network paragon depends upon
wired and wireless communication at the physical layer, a range of communication pro-
tocols, and the availability and security of networks. It is captured in the model that all
network zones, including the control zone, corporate and external zones should function
as expected in order for the successful operation of a SCADA system.

The generic model includes the System Life Cycle as one of key areas of a SCADA
system. The dependencies of this paragon include elements ensuring that stakeholder
analysis is performed and that the requirements in the engineering stage are dealt with
effectively. A strong emphasis is placed on the design stage, where it must be ensured
that design specifications are accurate, poor design decisions are identified at the early
stages and eliminated, and security is addressed at the design stage (security-by-design).
The model lists all activities outlined by the participants related to the system integration
and delivery stages, operation stage and system disposal.

Another key element that is included in the model is Data. This paragon embraces the
dependencies of all activities related to handling of all types. A SCADA system manipulates
and generates a range of data of different types such as sensor readings, time signals,
climate data, events data, operator action logs, alarms, emails, SMSs, software settings and
configuration data. The precision of all types of data shall be ensured. The security of data
shall be achieved via appropriate encryption and via enforcing data-handling policies.
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Given the nature of SCADA systems, it was anticipated that the generic model will
predominantly focus on the technical infrastructure. However, the Management of SCADA
systems was denoted as one of the key areas. Other non-technical aspects received sig-
nificant attention in the generic model. For example, the participants outlined a range of
quality criteria including

1. Availability;
2. Integrity;
3. Confidentiality;
4. Agility;
5. Sustainability;
6. Maintainability;
7. Operability;
8. Resilience;
9. Reliability; and
10. Incident response readiness.

In addition, through such activities as operations monitoring, change, contract and
risk management, logistics, marketing and certification, the participants have indicated the
need for understanding of a problem at the decision level, and the need for appreciating the
business context in which a system operates. We have included safety and cyber security
into the model under the key area Management.

Despite the known criticality of safety consideration in SCADA systems, safety did
not receive a lot of attention in the mind maps collected. Only four out of 36 participants
included safety in their mind maps. More emphasis was placed by the participants on
cyber security. Twenty-five participants included cyber security or entities related to it
into their mind maps. Cyber security governance is included into the generic dependency
model under the key area Management, while the technical aspects of security are listed
under the key area System Architecture. Among the entities upon which effective cyber
security governance depends, the participants named cyber security policies, compliance
with cyber security regulations, organisational security culture, anticipation of unknown
vulnerabilities, understanding of known vulnerabilities, and security data analytics.

The important role of human factors in SCADA systems is extensively discussed in
the literature [19]. Errors made by human operators, who remotely control and monitor
SCADA systems, or engineers, who design and configure SCADA systems, may and in
many cases have led to undesirable or even disastrous consequences [4]. A significant
number of paragons in the generic dependency model are dependencies of the key area
that we named Employees. The model indicates a need for ensuring that all roles and
experts, who are involved in the design, development, operation and monitoring of a
SCADA system (including but not limited to software and system engineers, information
security engineers, managers, physical security personnel and operators), should receive
the required training and satisfy a number of requirements discussed below. Operators
must be competent and diligent, and they should be able to undertake manual supervision
of a system when required. All intentions shall be monitored and observed, which shall
help to identify malicious operators.

The SCADA operators, who are located remotely and do not have an opportunity
to observe the processes in real time, judge the state of physical processes only based
on the reports from the SCADA system via HMI. Hence, not only the correctness and
precision of the information is important but also the effectiveness of the information
representation. The importance of the interactions between human operators and machines
should be recognised in every SCADA system, and adverse effects of poor interactions
should be minimised.
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Training provided to the operators shall start with the analysis of training needs; both
individual and team training sessions are required. Use case scenarios shall be examined
during training sessions. Given the level of responsibility of the operators of the SCADA
system, a background check shall take place as a part of the procedures for new personnel.
Procedures for leaving personnel shall also be in place. Staff retention programs shall be in
place. The model also includes such elements as health and safety, required knowledge and
expertise, appropriate level of awareness, and effective administration of human resources.

Human resources management is also accounted for in the generic dependency model.
SCADA systems that use advanced technology require highly-skilled personnel, who will
keep their knowledge up-to-date through continuous training.

External dependencies also play an important role for the success of safe and secure
operations within a SCADA system. All external factors outlined by the participants
are captured under the key area External Dependencies (Environment). As one of the
external dependencies, third parties upon which SCADA processes rely were identified.
The third party list includes vendors, service providers, equipment and system design-
ers, equipment and system integrators (when these activities are outsourced), customers,
manufacturers and all stakeholders of a supply chain. Other dependencies of this paragon
include threat agents, industry working groups, press and media, and government and
standardisation bodies.

5.3. Configurability of the Model

The SCADA DM presented in Sections 5.1 and 5.2 is a configurable template. When
used in a particular scenario, the elements of the SCADA DM must be adjusted to reflect the
specifics of a particular system. The irrelevant or out of scope elements must be removed,
and system-specific elements and clarifying elements may be added. The model may also
be configured to address only certain aspects of a system (aspect view).

For example, if the analysis only requires risk assessment of the key area System
Architecture, then other key areas of the model may be omitted. In this instance, the paragon
representing the key areas of interest becomes the root paragon of a new aspect-specific
model. Thus, for example, if a risk assessment is conducted from the point of view
of a human resources department, then the consideration is only given to the key area
Employees and its dependencies.

Additional configuration should be done by creating definitions for paragon states
declared in a DM. For example, for a paragon “All hardware components are operational”,
the developers and users of a configured model should define what “operational” means
in each particular context.

An important question with regard to the population of the SCADA DM is about the
probabilities of leaf paragons on the far right—uncontrollables (see Section 2). The analysis
of risk assessment methods conducted in the frame of this research project [4] shows that
the probabilistic data for the calculations of risk or impact in Probabilistic Risk Assessment
(PRA) methods are typically derived based on (1) historical data (e.g., incident logs as
in [27]), (2) expert judgment or (3) a combination of both. The correctness of the results
rendered by any PRA method (including dependency modelling) strongly depends on the
quality of estimated probabilities, which ideally should originate from objective empirical
data. Objective data in this instance are data received from statistical sampling, historical
records or experimentation [10].
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However, historical data are not always available due to various reasons including
hardware and software specifics, legacy and confidentiality around safety- and security-
critical systems [4]. Hence, in many risk assessment methods, including dependency
modelling, it is necessary to rely on expert opinion. Since the correctness of risk estimation
is founded in the precision of the probabilities involved in the calculation, it is important
to ensure that the expert opinion is accurately captured and documented along with
all the evidence upon which the estimation of probability was made whenever possible.
For example, for the paragon Analogue Monitoring is Okay, the probability of this paragon
being in a successful state may be calculated based on the number of incidents with
analogue monitoring in the previous period.

Compiling national statistics, or reported compliance data, e.g., in the context of Euro-
pean regulations, may also be a means to ground the individual estimates on collectively
available knowledge.

6. Illustrative Example: Water Distribution System

In this section, we consider a cyber-physical system which controls water distribution
along a segment of a pipeline.

6.1. Scenario Description

The pipeline is equipped at intervals along its length with pressure transducers (sen-
sors), pumps and valves. The valves can be placed every 5 to 20 miles along the pipeline.
A Remote Terminal Unit (RTU) periodically collects data from the pressure sensors, which
are scattered over the pipeline, and sends commands to valves and pumps.

We examine the section of the pipeline where RTU 1 collects the pressure readings
from Sensor 1 and controls the safety shut-off valve, and where its neighbouring RTU
2 collects the pressure readings from Sensor 2 and controls the pump. Both RTUs are
commonly used data logging components CR1000 Measurement and Control Systems [28].

The business process diagram expressed in Business Process Model and Notation
(BPMN) [29] in Figure 4 shows the process of communication between the control centre,
RTU 1, RTU 2 and other field equipment. On the initiation of the control process RTU 1
requests a pressure value from Sensor 1 (P1) and verifies whether the pressure exceeds
a threshold value (Pmax). If P1 is greater than Pmax, then control actions are taken to
adjust the flow rate and pressure in the pipeline. We indicate this in the diagram with an
intermediate throwing Link Event “Pressure Correction”. The actions required to correct
the pressure may be depicted in a separate diagram, but in this example, we do not focus
on this scenario. If P1 does not exceed Pmax, RTU 1 requests the pressure reading from RTU
2, which it receives from Sensor 2 (P2). RTU 1 calculates the pressure difference between its
own sensor and the sensor of RTU 2 (ΔP = |P1 − P2|). The threshold (ΔPmax) is typically
exceeded by ΔP when the pipeline is broken. If ΔP does not exceed its threshold, then RTU
1 repeats the request to its sensor after a scan interval. A scan interval is set for each CR1000
and may vary between 1 s and 1 h. If ΔP exceeds the threshold, then RTU 1 sends an alarm
signal to the control centre. The control centre answers with an emergency control order to
RTU 1 to shut down the valve and to RTU 2 to stop the pump. The CR1000 has 8 Digital
I/O ports selectable under program control as binary inputs or control outputs. One of
these ports is used as output to switch power to the pump via a solid state relay. The orders
from the control centre allow shutting down the portion of the pipeline in the event of an
accident or for other safety reasons.
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Figure 4. Exchange of Information between Devices in a SCADA System in the Water Distribu-
tion Scenario.

The physical access to the RTUs is controlled in this segment of pipeline (in this
scenario, a 40 foot by 40 foot area around a mainline valve site is surrounded by a chain-link
fence and the devices are placed in a locked enclosure), and video surveillance is in place.
For the sensors, neither physical access is controlled nor is a video surveillance system
for monitoring these field devices installed. The RTUs are locally installed on pumps and
valves, and they control their operation-communicating via a unidirectional wired link
over fieldbus cables transmitting digital (binary) output from a digital port on CR1000 to
the two-state field devices. High-precision pressure sensors have RS485 digital interface
and an optional USB or RS232 converter cable. In our segment, the sensors are connected
to the CR1000s via RS232 port.

The RTUs communicate with the control centre, which is located hundreds of kilome-
tres away from the pipeline over public networks. The RTUs communicate with the HMI
at the control center over Modbus TCP communication protocol. RTUs communicate with
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each other to exchange pressure readings over a bidirectional wireless link using Modbus
RTU protocol.

6.2. Configuring SCADA DM for the Scenario

The generic SCADA DM presented in Section 5 is used as the baseline template. In or-
der to produce a dependency model for this specific water distribution system, controlling
water distribution, we first create a new model based on the generic template and then
refine it for the specific context.

In order to keep this example at a manageable scope, we focus on two out of the
six key areas: System Architecture, where we predominantly concentrate on the hardware
components, and Employees, since a human operator plays a crucial role in this process.

The top level of the resultant dependency model is shown in Figure 5. In this model
and other dependency models in this paper, the green part of a paragon reflects the
probability of success and the red part—the probability of failure. Figures 6 and 7 expand
the two key areas System Architecture and Employees, respectively. In this model, the names
of the paragons are made specific to the system. Since we only assess the risks related to
one SCADA system operator controlling this segment of the pipeline, we keep the paragon
focused on this particular employee.

Figure 5. Top-Level DM Configured for the Water Distribution System.

Figure 5 shows that the success probability of the root paragon is low: 0.0996. The suc-
cess probabilities of the paragons “The system architecture is reliable and secure” and “The
operator looking after the pipeline is Okay” are 0.1532 and 0.65, respectively.

The leaf node success–failure probabilities for all hardware components are assigned
based on the expert knowledge about the segment of the pipeline and available data and
statistics regarding (1) the failure of the field devices of a similar make in the previous
reporting period, (2) the duration of the field devices being in operation, and (3) the physical
state of each device as reported during the recent routine check. These probabilities are
shown in Figures 6 above the leaf paragons. There are two RTUs which are included in the
dependency model (Figure 6); while RTU1 was recently replaced, RTU2 was in operation
for several years, and the probability of its failure is 0.2, which is significantly higher in
comparison with RTU1, where the probability of failure is 0.04. (Note that in all dependency
model graphs in this paper, we show the probability of its success above each paragon).

The success probability of the paragon “Power supply is uninterruptible” is high and
equal to 0.994. It depends on the reliability of the Energy CNI. At the same time, emergency
backup power supply is available to support the operation of this segment of the pipeline.
The emergency power supply (the paragon “The emergency backup power source is
reliable”) is introduced into the model using an OR relationship as a countermeasure
against the failure of the paragon “Power supply is uninterruptible”.

In Figure 6, we imply that the paragons “Software functions as designed and is free
from vulnerabilities” and “Network communication is reliable and is free from vulnerabili-
ties” also have underlying dependencies. However, we do not detail them in this example.
The assumption is that the probabilities for the above named paragons are calculated
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beforehand, and they are approved and supplied by the respective domain experts as the
final probability figures and are included into the model as provided, with the underlying
dependencies not being considered.

Figure 6. Dependencies of the Paragon System Architecture.

The operator’s trustworthiness and ability to accurately evaluate SCADA system data
during normal and abnormal operating conditions is imperative. Therefore, a number of
requirements must be satisfied for the success of the paragon “The operator looking after
the pipeline is Okay”. In Figure 7, the observed states of the paragons “The background
check has been completed and is valid”, “Health and safety check is performed regularly”
and “The operator has required qualification” indicated that the requirements are fully
met (the value of the success probability is set to 1). A paragon should have at least two
distinct named states, which typically represent degrees of achieving of the key goal (from
failure to success). While it is possible setting the probabilities for each leaf paragon, in a
dependency model, it is also possible to declare an observed state as we did for the above
discussed paragons. This is possible because it is known that the required checks and
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actions were completed by and for the employee and are not subject to change during the
reporting period.

Figure 7. Dependencies of the Paragon Employees.

Figure 5 indicates that the success probability of the root paragon is low. Since this is an
unacceptable level of the success probability, we need to conduct risk assessment to identify
the dependencies that affect the key goal the most and then introduce countermeasures to
mitigate the key risks and to increase the success probability.

A three-point sensitivity chart was produced for the discussed scenario in order to
identify the dependencies that affect the key goal. The chart is presented in Figure 8 and
shows the sensitivity of the root paragon to the uncontrollable dependencies. The left
side of the red portion of each bar shows the decrease in success probability for the root
paragon if the success probability of the corresponding leaf paragon reduces to 0. The right
side of the green portion of each bar shows the increase of the success probability for
the root paragon if the success probability of the corresponding paragon increases to 1.
The difference between these two values is called the sensitivity of the root paragon to a
particular uncontrollable dependency. The border between the red and green parts of each
bar indicates the current success probability (equal to 0.0996 as shown in Figure 5) that the
root paragon has on all its leaf paragons together.

Figure 8 indicates that the uncontrollable dependencies which influence the success
of the root goal the most are “The operator understands safety and security procedures”
(0.1532), “Pressure sensor 1 is operational” (0.1443), “Pressure sensor 2 is operational”
(0.1443), “The shutoff valve is operational” (0.1277), etc. In the brackets in Figure 8, we
show the sensitivity of the success probability of the root paragon to an uncontrollable
dependency.

For example, the sensitivity of the core goal to the paragon “The operator understands
safety and security procedures” is 0.1532, and the red part of the bar starts at the 0 point on
the x-axis (Figure 8). This means that if the success probability of this paragon reduces to
0, then the success probability of the core goal also reduces to 0. If the success probability
of this paragon increases to 1, then the success probability of the core goal increases to
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0.1532. Figure 8 shows that while the key paragon is highly sensitive to the uncontrollable
dependency “The operator understands safety and security procedures”, its sensitivity to
the paragon such as for example “The emergency backup power source is reliable” is lower
and equal to 0.002. This implies that changing the success probability value from 1 to 0
for the latter paragon makes a less significant difference to the success of the root paragon.
Thus, a three-point sensitivity chart allows determining the paragons that present high
risks to the core goal. It means that focusing on reducing risks for high sensitivity paragons
will lead to more significant improvements in the success probability of the core goal.

Figure 8. Three-Point Sensitivity Graph for the Water Distribution SCADA System.

6.3. Introducing Countermeasures into the Dependency Model

Figures 9 and 10 show the updated parts of the dependency model where a range of
changes and countermeasures have been introduced to reduce the risks to the segment of
the pipeline and to increase the success of the root paragon. Figure 9 shows the updated
dependencies of the paragon “All field devices are functional and fault-free”, which in its
turn is one of the dependencies of the paragon “All hardware is functional and fault-free”,
as shown in Figure 6.

In order to deal with the risks posed by the failure of the passive and active field devices
in the examined segment of the pipeline (in this case, these are the pressure sensors 1 and 2,
the shutoff valve, and the pump), we have introduced a field device replacement support
service, which guarantees that any damaged field device that goes out of order either due
to wear and tear or due to any abnormal conditions will be promptly replaced or repaired.
Using an appropriate software interface, an engineer is able to read (upload) parameter
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values from an old device and write (download) them onto a new device to expedite the
replacement process. The replacement process also includes the examination of the stored
device values in order to support the analysis of the device behaviour and troubleshooting.

Figure 9. Introducing Field Device Replacement as a Countermeasure.

The new countermeasure is included in the model as a leaf node “Field device replace-
ment is fast and efficient” (Figure 9). It is connected using an OR relationship with the
new paragon “All passive and active components are operational” which unites under its
umbrella the two paragons “All passive components are operational” and “All active com-
ponents are operational”, which are adopted from the original model shown in Figure 6. In
Figure 9, the RTU2 is replaced with a new device, and the probability of its faulty behaviour
is reduced from 0.2 to 0.04.

The above two measures led to the increase of the success probability of the paragon “All
field devices are functional and fault-free” from 0.231 to 0.9216 (compare Figures 6 and 9).

Figure 10 presents the updated dependencies of the paragon “The operator looking after
the pipeline is Okay”. The three-point sensitivity chart in Figure 8 flagged that the operator’s
appreciation of the safety and cyber security procedures (or the lack of thereof) affects the
core goal the most. In order to mitigate this risk, we introduced a new countermeasure where
the SCADA system enforces strict access control and other security policies (e.g., access to
information based on the need-to-know approach, disallowance of the use of mobile and USB
devices and disabling the AutoRun feature). We introduce this paragon as a countermeasure
using an OR logical operator. We declare the observed state of this new paragon as “YES-1.00”,
since we consider the new state of the system where all these measures are fully implemented.
The introduction of this countermeasure increases the success probability of the paragon “The
operator looking after the pipeline is Okay” from 0.65 to 1.00 (compare Figures 7 and 10).
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Figure 10. Access Control and Other Security Policies are introduced as Countermeasures.

Figure 11 shows the state of the top level of the dependency model after introducing
all countermeasures discussed above. This figure demonstrates that the introduction of
countermeasures resulted in the increase of the success probability of the paragon “The
system architecture is reliable and secure” from 0.1532 to 0.61 (compare Figures 6 and 11).
As a result of all changes, the success of the root paragon has increased from 0.0996 to 0.61
(Figures 5 above and 11 respectively). Risk assessment and the introduction of additional
countermeasures, as well as the increase of success of highly sensitive paragons, should
continue until the success probability of a core goal reaches an acceptable value. In this
example, we assume that 0.61 is an acceptable value and stop the analysis at this point.

The three-point sensitivity chart is regenerated for the updated version of the depen-
dency model and is presented in Figure 12. It shows a new range of paragons to which the
core goal is sensitive together with the levels of sensitivity to each leaf paragon (between the
right and left sides of each bar). For example, for the leaf paragons where the corresponding
bars in Figure 12 have no green section, the conclusion is that the increase of the success
probabilities would not lead to any increase of the success probability of the root paragon.
This indicates that the current state of these leaf paragons is adequate, and they do not
require any further actions on them. For the leaf paragons where the corresponding bars
have a green segment, it means that increasing the success probability for these paragons
will lead to the increase of the probability of the core goal success. Based on this outcome,
a cost–benefit analysis may be conducted to establish what actions and improvements in
terms of risk management for these sets of leaf paragons is optimal. Figure 12 also shows
that the success of the root goal critically depends on those leaf paragons that have a large
red segment stretching on the sensitivity axis from the nominal probability (0.61) to 0.
For the paragons presented by the top ten bars, which exhibit a stretch of sensitivity from 0
to the nominal probability, the graph indicates that the drop of the success probability for
each of these paragons leads to the overall failure of the core goal.
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Figure 11. Updated Top-Level DM for the Water Distribution System.

Figure 12. Three-Point Sensitivity Graph for the Water Distribution SCADA System with Counter-
measures.
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Above, we presented some exemplary conclusions that may be derived from a three-
point sensitivity chart. A sensitivity chart forms a basis for a systematic and more detailed
risk assessment for each dependency in a model.

7. Conclusions and Future Work

In this project, we collected and analysed the understanding of the dependencies
within a SCADA system from 36 domain experts. As the key contribution, we have
produced and presented a configurable dependency model of a SCADA system containing
452 dependencies. The model addresses all identifiable areas of a SCADA system and serves
as a template that may be configured to fit the specifics and needs of a particular SCADA
system. It is time- and resource-consuming for any organisation to undertake the type
of activity we undertook in this project in order to build an extensive multi-dimensional
model of a SCADA system. Using our configurable model will help organisations save
time and resources dedicated to risk assessment, and it will allow them to benefit from
much broader domain expertise than they generally have access to.

The proposed model has a broad scope, as it identifies and incorporates the elements
that are pertinent to a diverse range of roles involved in the design, development, operation
and maintenance of a SCADA system. It is virtually impossible from the perspective of an
operator, for example, to identify the issues that are managed at a higher or different level,
e.g., communication with media in case of an incident or customer service, etc. At the same
time, from the perspective of a hardware engineer, it is hardly feasible to anticipate issues
with the cognitive effectiveness of data visualisation and timely training of operators on
updated security procedures. The SCADA DM presented in this paper brought together the
different perspectives onto a SCADA system and organised them in a hierarchical structure
of a dependency model which could facilitate risk assessment.

We demonstrated how dependency modelling could be utilised for risk assessment
using a case study of a water distribution SCADA system. The risk sensitivity of every
dependency was quantified, and the dependencies that pose the highest or significant risk
to the success of the core goal were flagged.

The presented configurable, customisable dependency model of a SCADA system
provides the academic and industry community with a toolkit for better understating of
a SCADA system and for risk assessment. The SCADA DM may support the justifiable
evidence-based decision making with regard to the choice of effective risk-mitigating
countermeasures based on probabilistic inferences. It is a template for predictive analysis
that could support those who deal with a myriad of issues in ICS systems and cyber
security investments.

The validation of the presented model is rooted (1) in the fact that the initial data
were collected from the domain experts, (2) in a rigorously documented and transparent
process of mind maps analysis and the subsequent process of transforming the unified
mind map into the dependency model, and (3) in the confirmation of the completeness and
appropriateness of the SCADA DM by experts during the validation workshops.

We recognise the limitations of the PRA method used in the following: dependency
modelling does not allow specifying the weighted importance of dependencies. This will be
a subject of our future work. The tool also inherits the weaknesses of a classic quantitative
risk-based analysis that is subjective and at the same time hard to justify with high confi-
dence for all paragons. A version of the approach could be developed allowing probability
intervals rather than fixed values reflecting the best–worst-case scenarios. Furthermore,
the SCADA DM will benefit from additional iterations of stakeholders’ reviews and mod-
ifications. Additional workshops with domain experts will help to fine-tune the model.
In the future, we plan to conduct a detailed comparison of the SCADA DM with other
emerging goal-oriented models of a SCADA system, and this may lead to the enriching of
the SCADA DM with new elements.
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In this paper, we focused on the use of the SCADA DM for risk assessment. However,
the model may have implications that go beyond this. The SCADA DM may support
in-work training and awareness programs. A newcomer to the SCADA domain or even an
expert willing to expand their knowledge may rely on the model to gain faster appreciation
of the complexity and diversity of a SCADA system. We believe that the SCADA DM
will be of value for the SCADA/ICS community and thereby provide it as a blueprint for
future instantiation.
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Appendix A. Participants’ Profile

Table A1. Participants’ Profile. Domains and Roles.

Participant No. Domain Role

1 Government Head of CNI/ICS defence

2 Academia Research Assistant

3 Energy-Nuclear C&I Safety Assessor/Inspector

4 Built Environment Director

5 Aerospace, Marine, Energy and Defence Software Intensive Systems Specialist

6 Nuclear, Defence, Aerospace and Marine Strategy Lead/Consultant

7 Oil, Gas & Petrochemicals Chief Engineer Control Systems

8 Academia/Electrical Energy Lecturer

9 Various domains from risk perspective Team Lead/ Cyber Security Consultant

10 Defence Security researcher

11 Defence Senior Engineer

12 Government and water Security advisor

13 Academia Technical Lead/Researcher

14 Academia Professor

15 Aerospace Cyber Technical Lead for Forensics

16 Energy, Gas and Smart Metering Managing Consultant, R&D in Technology Group

17 Energy, water Cyber security consultant

18 Academia Research

19 Academia Lecturer

20 Transport Lecturer

21 Defence and space Sales manager

22 Transport (Airports) Technical architect

23 Transport (Rail and MRTS) Senior Executive Officer

24 Energy, Net Grid Technical Advisor

25 Energy Developer

26 Energy Consultant

27 Energy/Electricity Technology Developer

28 Energy SCADA System administrator

29 Space and Geographical Systems Senior Software Developer

30 Energy (Transport) Operations Manager

31 Various domains Advisor, requirements, assessment

32 Energy Product manager

33 Critical Infrastructure CTO

34 Transport Infrastructure specialist

35 Energy Operations/System Engineer

36 Energy/Transport Technical specialist
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Table A2. Participants’ Profile. Expertise in SCADA and Cyber Security.

Partic. No. Years in SCADA Aspects of SCADA Years in Security Aspects of Security

1 2.5 Response/assurance testing 20 Malware, pen-testing, incident response, forensics etc.

2 1 SCADA forensics 4 Cyber security, digital forensics

3 40 SCADA/ICS 4 Computer-based safety systems

4 3 Business Processes & System Engineering 18 InfoSec, cyber security, system engineering and
development of code of practice

5 37 Protection (safety) systems 37 Defence, information assurance

6 2 System design/integration, information
assurance 10 secure systems design, secure life cycle, safety and

security

7 10 Specification, Procurement, Functional
Definition 3 Theory

8 9 WAN telecom delivery technology,
synchro phasors 0 N/A

9 1 Cyber risk 12 Security architecture, cyber risk identification and
mitigation

10 5 Not specified 5 Embedded systems

11 1 Research 20 Certification management, key management, system level,
SOCs

12 3 Protective security of SCADA systems 30 Military, Management, policy and advisory role

13 5 Architecture and technologies 5 Networks

14 2 Aircraft Docking Systems and Taxiway
routing 7 Detection and prediction of cyber attacks

15 1.5 Various 8.5 Forensics

16 6 Security Architecture and Integration,
Response systems 16

System Architecture and Network security, cryptographic
protocols, development, InfoSec Management, Systems
and Governance

17 1.5 Risk assessment 10 IT

18 3 Resilience Modelling 3 Resilience Modelling

19 6 Networks 6 Networks

20 2 Their use in remote condition monitoring 0 N/A

21 1 Sales 0 N/A

22 20 Design and implementation (complete
life cycle) 0 N/A

23 7

Complete SCADA System with main
focus on Control Centre (Software,
Hardware , Networking, System
Integration etc.)

15 Information Security – ensure integrity of recording data,
maintain data flows, controlled deletion

24 30 Statistics 0 N/A

25 30 Statistics 0 N/A

26 8 All aspects of SCADA 8 General knowledge

27 20 High level and generalisation at staff
level 2 General and related to high level

28 6 Servers, security, network,
changes/updates, education etc. 10 General knowledge

29 1 Design and architecture 4 Data Leakage Prevention, Security Policies

30 22 RTU, control systems integration 5 Ethical hacking, server hardening, DMZ

31 15 Cyber security 20 Diverse range of topics

32 20 Development 5 Security architectures, access control

33 5 Security and risk management 20 Governance and defence

34 40 Availability, procurement, projects, IT
security, safety 15 Regulation, networks and other

35 7 Central system, RU, HMI, IED 2 VPN, tunnelling, firewalls, routing, DMZ

36 15 Remote control of substations 0 Some knowledge

Average 10.79 9.01
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Abstract: Artificial intelligence-assisted security is an important field of research in relation to
information security. One of the most important tasks is to distinguish between normal and abnormal
network traffic (such as malicious or sudden traffic). Traffic data are usually extremely unbalanced,
and this seriously hinders the detection of outliers. Therefore, the identification of outliers in
unbalanced datasets has become a key issue. To help solve this challenge, there is increasing interest
in focusing on one-class classification methods that train models based on the samples of a single
given class. In this paper, long short-term memory (LSTM) is introduced into one-class classification,
and one-class LSTM (OC-LSTM) is proposed based on the traditional one-class support vector
machine (OC-SVM). In contrast with other hybrid deep learning methods based on auto-encoders,
the proposed method is an end-to-end training network that uses a loss function such as the OC-SVM
optimization objective for model training. A comprehensive experiment on three large complex
network traffic datasets showed that this method is superior to the traditional shallow method
and the most advanced deep method. Furthermore, the proposed method can provide an effective
reference for anomaly detection research in the field of network security, especially for the application
of one-class classification.
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1. Introduction

When analyzing real-world data, the common requirement is to determine which
instances are completely different from the others. Such instances are called outliers, and
the task of anomaly detection is to identify all such instances in a data-driven manner [1].
Generally, this is regarded as an unsupervised learning problem, and it is assumed that most
training datasets consist of normal data, among which the anomalous samples are unknown.
According to a recent study [2], unsupervised anomaly detection has proven to be very
effective and plays a key role in a variety of applications, such as fraud detection, network
intrusion prevention, and fault diagnosis [3–5]. One-class classification is a widely used and
effective unsupervised technique that learns from samples belonging to a single class while
treating samples belonging to other classes as anomalies. The most representative methods
of this type are the one-class support vector machine (OC-SVM) [6] and support vector data
description (SVDD) [7]. However, the performance of these shallow models is suboptimal,
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especially on large quantities of high-dimensional data (e.g., network traffic data). It is still
an open and challenging research problem to learn the inherent characteristics effectively
when only one class of samples is given.

With the development of artificial intelligence in recent years, deep neural networks
have been widely used in the field of information security due to their powerful feature
learning capabilities [8–10]. In general, the training of a deep learning model requires a
complete and detailed sample set that must contain labeled samples of all traffic types ap-
pearing in the network communication. Manually labeling such samples is time-consuming
and laborious, especially for large-scale backbone network traffic [11]. In addition, this pro-
cess may not cover all network anomaly types, such as complex network attack behaviors
and advanced persistent threats. On the other hand, due to the low incidence rates of many
network anomalies, it is usually difficult to collect enough anomaly data for training. Data
imbalances seriously affect the performance of classifiers, making many models that are
effective on balanced datasets perform poorly in terms of anomaly detection in real-world
network traffic applications [12]. As the data in these domains are growing rapidly in size
and dimensionality, people require effective and efficient ways to detect anomalies in large
quantities of high-dimensional data [13].

Traditional unsupervised techniques commonly used in anomaly detection include
k-means (k-means), isolation forest (IF), self-organizing maps (SOM), density-based noisy
spatial clustering (density-based spatial clustering of applications with noise, DBSCAN),
one-class support vector machine (OC-SVM), etc. [8]. However, traditional shallow unsu-
pervised models still perform poorly on complex high-dimensional datasets. Especially
when only normal type samples are given, the question of how to better learn their inherent
properties is still an open and challenging research problem. To improve the performance
of the unsupervised classification model and solve the problem of insufficient training data
in network traffic anomaly detection, an interesting approach is to complete the one-class
classification task through the use of a deep learning method. In this paper, LSTM is
introduced into one-class classification, and OC-LSTM is proposed based on the traditional
OC-SVM. In contrast with other hybrid deep learning methods based on auto-encoders,
the proposed method is an end-to-end training network that uses a loss function such as
the OC-SVM optimization objective for model training.

In a word, traditional shallow learning methods cannot adapt to the dynamic growth
of network traffic. They cannot meet the requirements for intelligent analysis and the
prediction of large-scale high-dimensional traffic data. Therefore, designing fast and
efficient anomaly detection algorithms according to the characteristics of traffic data has
become an urgent goal in the field of network security. In this paper, we study network
intrusion detection based on the deep learning method in order to reduce the workload of
security practitioners and enhance the network situational awareness of security systems,
and provide strong support for the improvement of China’s network security technology
system and the construction of the network power strategy. The main contributions of this
paper can be summarized as follows:

(1) In this paper we propose an unsupervised anomaly detection algorithm based on the
one-class long short-term memory (OC-LSTM) network. The model is an end-to-end
single-class neural network with a specially designed loss function equivalent to the
optimization objective of a single-class SVM.

(2) By directly adopting the objective of representation learning for anomaly detection,
OC-LSTM can directly process raw data without using unsupervised transfer learning
for further feature extraction. This will help to discern complex anomalies in large
datasets, especially when the decision boundary between normal and anomalous data
is highly nonlinear.

The rest of the paper is structured as follows. In Section 2, a detailed overview of related
research regarding one-class classification and anomaly detection is given. Section 3 outlines
the main models of the proposed OC-LSTM method. The experimental setup, including the
dataset used, the compared methods, and the evaluation metrics, is described in Section 4.
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An in-depth discussion and analysis of the obtained experimental results regarding OC-
LSTM and other state-of-the-art methods are the focus of Section 5. Section 6 provides the
conclusions of this paper, as well as the main points and directions of future work.

2. Background and Related Work

Before introducing the OC-LSTM method, this paper briefly reviews one-class classifica-
tion and presents existing deep learning-based unsupervised anomaly detection methods.

2.1. Anomaly Detection

In data mining and statistics literature, anomalies are also called abnormal data, outliers
or deviant data. Anomalies can be caused by errors in the data, but also sometimes indicate
the presence of new, previously unknown underlying processes. In fact, Hawkins defines
an outlier as an observation that is so different from other observations that there is good
reason to speculate that it is produced by a different mechanism. As shown in Figure 1,
the regions R1 and R2 that contain most of the observations are considered normal data
instance regions, whereas the regions R3 and P1, which are far from most of the data points,
contain only a few data points, and are considered exceptions. Often caused by system
failures, illegal operations, external attacks, etc., this situation often conveys and reveals
valuable information and exciting insights that exist in the data. Anomaly detection is an
indispensable part of various modern discriminant models and decision-making systems.
Traditional anomaly detection methods are mainly divided into four categories: based on the
statistical distribution, based on distance, based on density, and based on clustering.

Figure 1. An example of two-dimensional data anomaly detection.

2.2. One-Class Classification

One-class classification refers to the classification learning model that only provides
samples belonging to a certain class [14]. In contrast with the task of multiclass classification,
which learns distinguishing features by comparing multiple samples of different classes,
the key problem of one-class classification is how to effectively capture features related
to a single class [15]. The one-class classification problem is described below. For a given
training sample x from class A, the purpose is to learn the scoring function f (x) : x → R .
In R, a higher value indicates that the sample x is more likely to belong to class A. Therefore,
for the test sample x′, its score f (x′) can be calculated and evaluated to determine whether it
belongs to class A. In the one-class classification task, there are sufficient samples belonging
to the target category and very few outliers; that is, the negative category sample portion is
not available or not present. This property of the given dataset makes decision boundary
detection a complex and challenging task [16].

There has been much work performed on one-class classification, usually focusing
on feature fitting or feature mapping. Among them, the OC-SVM [6] is a one-class unsu-
pervised approach that is widely used in document classification, disease diagnosis, fraud
detection, etc. Intuitively, in OC-SVM, all data points are treated as instances with positive
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labels, whereas the origin is treated as the only instance with negative labels, as shown in
Figure 2a. Its main idea is to train a model (hyperplane) to achieve the maximum possible
separation between the target data and coordinate origin, that is

min
ω,ρ

1
2‖ω‖2 + 1

vN

N
∑

i=1
ξi − ρ

s.t. (ω·φ(xi)) ≥ ρ − ξi, ξi ≥ 0
(1)

where ω is the weight of the support vector, ρ is the distance between the hyperplane
and the origin of the coordinates, and v ∈ (0, 1] is used to control the trade-off between
the maximum distance from the origin to the hyperplane and the number of data points
allowed to cross the hyperplane. Training data xn ∈ X, i = 1, 2, . . . , N are mapped to a
high-dimensional feature space by the kernel function φ(·), and their distance from the
classified hyperplane is ξi/‖ω‖. The decision function in the feature space is similar to the
second-class SVM and is described by

f (xi) = sgn[ω·φ(xi)− ρ] (2)

and most of the training set lies in the region f (x) > 0.

Figure 2. Schematic diagram of the classic single classification algorithm.

However, the performance of the OC-SVM on complex, high-dimensional datasets
is not optimal. Based on the OC-SVM, the support vector data description (SVDD) [7]
method was proposed to map an original image to a hypersphere instead of a hyperplane,
as shown in Figure 2b. The primal problem in SVDD is

min
R,ξ

R2 + 1
vN

N
∑

i=1
ξi

s.t. ‖φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0
(3)

where a is the hypersphere center and R is the hypersphere radius. Again, slack variables
ξi ≥ 0 allow for a soft boundary, and a hyperparameter v ∈ (0, 1] controls the trade-off
between the penalties ξi and the volume of the sphere. The OC-SVM and SVDD are closely
related and are still limited to complex datasets. These kernel-based approaches often fail
in high-dimensional, data-rich scenarios due to their poor computational scalability and
the curse of dimensionality.

2.3. Deep Learning for Unsupervised Anomaly Detection

Anomaly detection is an important topic in data science research [17]. The aim in
unsupervised anomaly detection is to find a separation rule between anomalous and
normal data without labels. In recent years, with the unprecedented success of deep neural
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networks as feature extractors for processing image, audio, and text data [18], several hybrid
models that combine deep learning and the OC-SVM have emerged [19,20]. The hybrid
model uses a pretrained deep learning model to acquire rich representational features and
is then fed into shallow anomaly detection methods, such as the OC-SVM. However, these
hybrid OC-SVM methods are decoupled because their feature learning is task-agnostic and
is not customized for anomaly detection [21].

In addition to hybrid approaches, another common method of anomaly detection is
based on the use of deep auto-encoders such as the robust deep autoencoder (RDAE) [2]
and robust convolution autoencoder (RCAE) [22]. The input data X of a deep autoencoder
is decomposed into two parts, LD and S, where LD represents the latent representation of
the hidden layer and S represents the noise and outliers that are difficult to reconstruct.
Therefore, the optimization objective function is:

min
θ, S

+ ‖LD − Dθ(Eθ(LD))‖2 + λ·∥∥ST
∥∥

2,1

s.t. X = LD + S
(4)

Back-propagation and the alternating direction method of multipliers (ADMM) can be
used to solve the above optimization problems, and the reconstruction error is employed
as an anomaly score [23].

Auto-encoders have the objective of dimensionality reduction and do not target
anomaly detection directly. However, the main difficulty of this approach is the ques-
tion of how to choose the right degree of compression. Apart from auto-encoders, some
deep models train neural networks by minimizing the volume of the hypersphere sur-
rounding the data or the distance between the data and the hyperplane [20,24]. However,
such experiments are still based on features extracted via deep auto-encoders or pre-trained
models [25,26]. In our experiments, we carried out a detailed comparison between the
proposed OC-LSTM and the abovementioned anomaly detection methods.

3. Materials and Methods

This section introduces a one-class LSTM (OC-LSTM) neural network model that
employs the representation learning objective directly for anomaly detection. This makes it
possible to discern anomalies in complex and large data sets, especially when the decision
boundaries between the normal and anomalous data are highly nonlinear. We present the
OC-LSTM objective, its optimization process, and the associated algorithm.

3.1. OC-LSTM Objective and Optimization Process

The OC-LSTM is a simple feed-forward network, which can be regarded as a neural
architectural design with an OC-SVM-equivalent loss function. The optimization problem
of the OC-SVM is shown in Equation (1), and it can be written as follows:

min
ω,ρ

1
2
‖ω‖2 +

1
vN

N

∑
i=1

max(0, ρ − ω·φ(xi))− ρ (5)

Assuming that a simple network consists of a hidden LSTM layer with a linear activa-
tion function g(·) and an output node, the scalar output from the hidden layer to the output
node is W, and the weight matrix from the input to the hidden layer is V. The objective
function of the network can be formulated as:

min
W,V,ρ

1
2
‖W‖2 +

1
2
‖V‖2 +

1
vN

N

∑
i=1

max(0, ρ − W·g(Vxi))− ρ (6)

Thus, it is possible to leverage the transfer learning features obtained using an LSTM
layer by replacing ωφ(xi) with Wg(Vxi) [21].

However, the cost of this change is that the objective function becomes nonconvex
and therefore the global optimal solution cannot be obtained. Fortunately, the alternating
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minimization method can be used to optimize the objective [21]. Therefore, the optimization
problems of W, V, and ρ can be defined as

argmin
W,V

1
2
‖W‖2 +

1
2
‖V‖2 +

1
vN

N

∑
i=1

max(0, ρ − ŷi) (7)

argmin
ρ

1
vN

N

∑
i=1

max(0, ρ − ŷi)− ρ (8)

where ŷi = Wg(Vxi). Equation (7) can be optimized using the standard back-propagation
(BP) algorithm as shown in Section 3.2, and Theorem 1 in [21] has proven that v =

1
N

N
∑

i=1
(ρ − ŷi > 0), which means that the optimal value of ρ in Equation (8) is the vth quantile

of {ŷi}N
i=1. Finally, the decision function can be defined as

f (xi) = sign(ŷi − ρ), i = 1, . . . , N (9)

The proof process of (8) is as follows:

argmin
ρ

1
vN

N
∑

i=1
max(0, ρ − ŷi)− ρ

= argmin
ρ

1
vN

N
∑

i=1
max(0, ρ − ŷi)− (ρ − 1

N

N
∑

i=1
ŷi)

= argmin
ρ

1
vN

N
∑

i=1
max(0, ρ − ŷi)− 1

N

N
∑

i=1
(ρ − ŷi)

= argmin
ρ

N
∑

i=1
max(0, ρ − ŷi)− v . 1

N

N
∑

i=1
(ρ − ŷi)

= argmin
ρ

N
∑

i=1
[max (0, ρ − ŷi)− v .( ρ − ŷi)]

= argmin
ρ

N
∑

i=1

{
(1 − v) · (ρ − ŷi)ρ − ŷi > 0
−v · ( ρ − ŷi) ρ − ŷi ≤ 0

(10)

The derivative of (10) is obtained as:

F′(r) =
N

∑
i=1

{
1 − v r > ŷi
−v r ≤ ŷi

(11)

Let F′(r) = 0; when ρ − ŷi > 0 we can get:

(1 − v) ·
N
∑

i=1
[ρ − ŷi > 0] = v · N

∑
i=1

[ρ − ŷi ≤ 0]

⇒ (1 − v) ·
N
∑

i=1
[ρ − ŷi > 0] = v · N

∑
i=1

[1 − (ρ − ŷi > 0)]

⇒ (1 − v) ·
N
∑

i=1
[ρ > ŷi] = v · N − v · N

∑
i=1

[ρ > ŷi]

⇒ N
∑

i=1
[ρ − ŷi > 0] = v · N

⇒ ρ = v · N
∑

i=1
ŷi

(12)

3.2. OC-LSTM Algorithm

The training process of the OC-LSTM model is shown in Algorithm 1. First initialize ρ
in the third line. Then use the standard BP algorithm to train the parameters (W, V) of the
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neural network in the sixth line. The seventh line updates the parameter ρ with the value
of the vth aliquot of {ŷi}N

i=1. Equivalent to Equation (6), the cost function of the network is

C =
1
2
‖W‖2 +

1
2
‖V‖2 +

1
vN

N

∑
i=1

max(0, ρ − ŷi)− ρ (13)

where ŷ is the network output value. Then, the value of ρ is a network parameter, which
can be understood as the radius of the hypersphere. It is updated according to the solution
of Equation (8). In the experimental section, the original data are used as the network input
instead of the features extracted from the autoencoder. This indicates that the proposed
OC-LSTM is an end-to-end one-class classification method, which is different from other
deep-learning-based anomaly detection methods. When the network parameters converge,
the classification results of the original data can be obtained through the decision function.

Algorithm 1 OC-LSTM algorithm

1: Input: Set of training data xi, i = 1, . . . , N
2: Output: Set of decision scores f (xi), i = 1, . . . , N
3: Initialize=1.0
4: t ← 0
5: While (convergence not achieved) do

6: Optimize Equation (7) using BP, and find (Wt+1, Vt+1)

7: ρt+1← the vth quantile of
{

ŷt+1
i

}N

i=1
8: t ← t + 1
9: End while

10: Compute decision scores Si = ŷi − ρ for each xi
11: If(Si ≥ 0) then

12: xi is the normal data
13: else

14: xi is the anomalous data
15: Return f (xi) = sign(ŷi − ρ), i = 1, . . . , N

4. Experimental Setup

This section introduces the experimental setup in detail, including the data used, the
compared methods, and the detailed experimental implementation.

4.1. Compared Methods

In this study we selected three different types of detection algorithms—the shallow
model, deep model, and the OC-LSTM algorithm presented in this paper. For each type,
three representative and novel algorithms were selected for comparison, all of which are
widely used in the task of anomaly detection, and these are described in detail below.

4.1.1. Shallow Baseline Models

(1) OC-SVM/SVDD as per the formulation in [6]. When the Gaussian kernel function is
used, these two methods are equivalent and are asymptotically consistent density-
level set estimators. For the OC-SVM/SVDD models, the kernel size is the reciprocal
of the number of features, and the fraction of outliers v ∈ (0, 1) is set according to the
obtained outlier proportions.

(2) Isolation Forest (IF) as per the formulation in [27]. The amount of contamination is
set according to the proportion of outliers in the dataset, and the number of base
estimators in the ensemble is 100, as recommended in [24].

(3) Kernel Density Estimation (KDE) as per the formulation in [28]. The bandwidth of the
Gaussian kernel is selected from h ∈ {

20.5, 21, . . . , 25} using the log-likelihood score,
and the best result is reported.
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4.1.2. Deep Baseline Models

(1) Deep Convolution Autoencoder (DCAE) as per the formulation in [29]. The encoder
part and decoder part of the DCAE architecture contain four portions. Every portion
contains a convolutional layer, a batch normalization (BN) layer, an exponential linear
unit (ELU) layer, and a down-sampling/up-sampling layer, which can provide a better
representation of the convolutional filters. The DCAE is trained using a mean-squared
error (MSE) loss function to enable the hidden layers to encode high-quality, nonlinear
feature representations of the input data.

(2) One-class neural network (OC-NN) as per the formulation in [21]. A feed-forward neural
network consisting of a single hidden layer with linear activation functions is trained
with the OC-NN objective. The optimal value of the parameter v ∈ (0, 1), which
is equivalent to the percentage of anomalies in each dataset, is set according to the
respective outlier proportions.

(3) Soft-Bound SVDD and One-Class Deep SVDD as per the formulation in [24]. For the
encoder, we employed the same network architectures as those used for the DCAE
models. An initial learning rate η = 10−4 with a two-phase learning rate schedule was
employed following the implementation used in [24].

4.1.3. One-Class LSTM (OC-LSTM)

Unlike one-class deep SVDD and other deep baseline models, OC-LSTM is an end-to-
end training network and does not rely on a pretrained model. The original data were fed
as input to a feed-forward neural network consisting of a single LSTM layer, along with
linear activation functions, as recommended in [20] for producing the best results. The
number of hidden units within each LSTM cell of the model h ∈ {32, 64, 128, 256} was
tuned via a grid search. Note that the main reason for using an LSTM layer instead of other
types of layers is that the experiment in [21] proved that LSTM is a better feature extractor
for structured data. The extracted features were then fed into a classification network that
was characterized by a fully connected neural network. The fully connected layer (followed
by a softmax regression layer) assigned a confidence score to each feature representation
and the output of the classification network was the confidence score. The learning and
drop-out rates were sampled from a uniform distribution in the range [0.01, 0.001] in order
to obtain the best performance. The optimal value of the parameter v ∈ [0, 1) was set
according to the respective outlier proportions. The Adam optimizer was used to minimize
the squared error loss, and the other parameters were set to their default values. The entire
network was trained end-to-end using the loss function as described in Equation (6).

4.2. Datasets

Although the proposed method applies to any feature representation context, our
main concern is large-scale network traffic data. We compared all methods on three widely
used real-world datasets, as summarized in Table 1. Each of the data sets was further
processed to create a good anomaly detection task, as described in the next section.

Table 1. Summary of the datasets used in the experiments.

Datasets Instances Anomalies Features

NSL-KDD
KDDTrain+ 67,343 (53.46%) 58,630 (46.54%) 41
KDDTest+ 9711 (43.08%) 12,833 (56.92%) 41

CIC-IDS 2017
CIC-DDoS 97,718 (43.29%) 128,027 (56.71%) 78

CIC-PortScan 127,537 (44.52%) 158,930 (55.48%) 78

MAWILab
MAWILab-20200102 22,228,204 (97.06%) 673,825 (2.94%) 109
MAWILab-20201203 25,195,651 (96.80%) 832,028 (3.20%) 109

(1) The NSL-KDD dataset is the benchmark dataset in the field of network security, and
it can provide consistent and comparable evaluation results for different research
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works [30]. Furthermore, the number of records in the NSL-KDD datasets is reason-
able, and each record contains 41-dimensional features. The anomaly data mainly
include thirty-nine types of network attacks across four categories.

(2) The CIC-IDS2017 dataset contains benign data and the most up-to-date common
attacks, so it resembles true real-world data [31]. The data contain a total of five days
of network traffic in July 2017. The implemented attacks include Brute-Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack, PortScan, Infiltration, Botnet, and
DDoS. In this study we randomly selected Friday’s traffic as the experimental dataset,
which contained two types of abnormalities, DDoS and PortScan.

(3) MAWILab is a database that assists researchers in evaluating traffic anomaly detection
methods [32,33]. The dataset has been updated daily since 2001 to include new traffic
from upcoming applications and anomalies; this has been ongoing for over 20 years.
In this study, the data collected on the first collection day in January and December
2020 were selected as the experimental dataset. We used the code provided in [1] to
process the original network traffic and extract the inherent features. The processed
data contained 109-dimensional features, and the data distribution is shown in the
table above.

4.3. Evaluation Criteria

Anomaly detection is an unsupervised learning problem, and model evaluation in
this scenario is challenging. To effectively measure and compare the performances of
different models, the area under curve (AUC) was chosen as the main evaluation index, as
it is the most commonly used metric for one-class problems. The AUC is defined as the
area under the receiver operating characteristic (ROC) curve, which is independent of the
selected threshold and can provide an assessment of the overall performance of the given
classification model.

However, when the sample proportion changes, the insensitivity of the AUC makes it
difficult to observe the changes in model performance. The precision-recall curve (PRC) is
a useful measure of prediction success when the classes are very imbalanced. In practical
applications, the data are usually severely unbalanced, so the PRC can help to understand
the actual effects of the classifier and then improve and optimize the model on this basis.
Therefore, in the experiment, the ROC was used to judge the advantages and disadvantages
of the given classifier, whereas the results displayed by the PRC were used to measure the
classifier’s ability on unbalanced data.

5. Experimental Results and Discussion

In this section, the empirical results produced by the proposed OC-LSTM network
on real-world datasets are presented and compared with those of several state-of-the-art
baseline models, as illustrated in Section 4. For all datasets, all anomaly samples from the
training set were removed for one-class training, and two standard metrics, the AUPRC
and AUROC, were used to evaluate the predictive performance of each method according
to the ground truth labels. Publicly available implementations in scikit-learn were used
for the OC-SVM, IF, and KDE methods. For the DCAE, OC-NN, soft-bound deep SVDD,
and one-class deep SVDD, the codes released by their respective authors were used for
comparison. For our proposed OC-LSTM, TensorFlow [34] and Keras were used for the
experiment. All the experimental results are the average performances obtained with the
10-fold cross-validation method.

5.1. One-Class Classification on NSL-KDD

NSL-KDD contained four different anomaly categories from which we could construct
a one-class classification dataset. One of the categories was abnormal, and the samples of
the other categories represented normal data. We used the original training and test split
in the experiment, and only performed training with the training set examples from the
respective normal class. We preprocessed all records with numeralization using a one-hot
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encoder, rescaled them to [0, 1] via min-max-scaling, and finally obtained 121-dimensional
experimental data. Figure 1 shows the error graph of the abnormal detection performance
of different models. The optimizer used in the DCAE model was the stochastic gradient
descent (SOD) recommended by the original author, so the performance of the model was
not stable. The AUROC and AUPRC indicators in the detection results variances were
large. It can be clearly seen from Figure 3 that the method proposed in this paper achieved
excellent performance, reaching 96.86% ± 0.58% and 96.72% ± 0.34% on the AUROC and
AUPRC metrics, respectively. In addition, the anomaly detection performance of the deep
models was generally better than that of the shallow models.

Figure 3. Anomaly detection performance of each model on NSL-KDD.

In order to evaluate the detection ability of each model for different anomaly (attack)
types, in this study we combined normal types with different anomaly types to construct
different single-classification tasks. Figure 4 shows the detection performance of different
models for various types of anomalies, in which the R2L class of anomaly was difficult to
identify, and the AUROC performance of the model was generally low. In addition, due to
the serious unevenness in the number of normal and abnormal samples in the test set, the
proportion of R2L abnormal samples was about 10%, whereas the proportion of U2R abnor-
mal samples was less than 1%, so the AUPRC of each model in the abnormal types R2L and
U2R was relatively poor, as shown in Figure 4c,d. However, the OC-LSTM model proposed
in this chapter is stable in all four types of anomalies and significantly outperforms the
detection performance of other shallow and deep single-classification models. AUROC
indicators are 97.85% ± 0.23, 98.55% ± 0.15, 91.86% ± 1.33 and 98.01% ± 0.34, respectively.
AUPRC indicators are 96.42% ± 0.37, 91.38% ± 0.96, 65.18% ± 3.84 and 42.24% ± 5.98,
respectively. All experimental results were convincing, with shallow benchmark meth-
ods outperforming some of the deep models in the detection performance of individual
anomaly types, whereas the deep single-class model showed more robust detection perfor-
mance overall. It is worth noting that the detection performance of the shallow benchmark
model IF, as shown in Figure 4b, was better than that of other deep single-classification
models in relation to the Probe-type abnormalities.
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Figure 4. The detection performance of different models on NSL-KDD for various types of anomalies.

The results are presented in Tables 2 and 3, where “total” indicates all categories
of attacks that were considered anomalous. Among these, the R2L anomaly class was
difficult to identify, so the AUROC performance of each method was generally not good. In
addition, due to the extremely uneven amount of positive and negative samples in the test
set, the AUPRC performance for the R2L and U2R classes was particularly poor. However,
the proposed OC-LSTM maintained high and stable detection performance in terms of
both the AUROC and AUPRC, and it clearly outperformed both the shallow and deep
competitors on NSL-KDD. These results are convincing, but for certain classes, the shallow
baseline methods outperformed the deep models, whereas the deep models showed robust
performances overall. It is interesting to note that the shallow IF method performed better
than the deep methods on one of the four classes.

Table 2. Average AUROC values as percentages with StdDevs per method on NSL-KDD.

Anomaly
Class

OC-SVM/
SVDD

IF KDE DCAE OC-NN
Soft-Bound
Deep SVDD

One-Class
Deep SVDD

OC-LSTM

DoS 94.11 ± 0.02 97.12 ± 0.22 97.19 ± 0.00 92.92 ± 1.76 97.11 ± 0.24 97.37 ± 0.70 97.44 ± 0.67 97.85 ± 0.23
Probe 94.34 ± 0.07 99.20 ± 0.13 98.11 ± 0.00 94.81 ± 2.02 97.39 ± 0.16 96.44 ± 0.99 96.53 ± 0.44 98.55 ± 0.15
R2L 45.95 ± 0.28 83.80 ± 1.20 83.68 ± 0.03 59.19 ± 4.57 86.97 ± 0.70 92.92 ± 2.22 92.39 ± 1.86 91.86 ± 1.33
U2R 76.82 ± 0.17 95.51 ± 0.64 95.41 ± 0.01 77.29 ± 5.53 95.77 ± 1.00 93.00 ± 1.78 92.50 ± 2.05 98.01 ± 0.34
Total 83.86 ± 0.06 94.59 ± 0.25 94.42 ± 0.01 84.46 ± 4.91 94.97 ± 0.22 96.17 ± 0.71 96.11 ± 0.48 96.86 ± 0.58
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Table 3. Average AUPRC values as percentages with StdDevs per method on NSL-KDD.

Anomaly
Class

OC-SVM/
SVDD

IF KDE DCAE OC-NN
Soft-Bound
Deep SVDD

One-Class
Deep SVDD

OC-LSTM

DoS 93.65 ± 0.04 96.19 ± 0.43 95.76 ± 0.00 91.31 ± 1.88 94.11 ± 0.39 94.45 ± 1.70 94.95 ± 1.32 96.42 ± 0.37
Probe 82.16 ± 0.18 96.08 ± 0.74 90.13 ± 0.01 78.88 ± 6.36 87.97 ± 1.37 82.28 ± 4.78 83.27 ± 1.94 91.38 ± 0.96
R2L 20.14 ± 0.09 46.14 ± 3.00 50.80 ± 0.06 28.00 ± 5.10 59.13 ± 2.97 66.34 ± 5.56 66.82 ± 8.01 65.18 ± 3.84
U2R 7.83 ± 0.06 24.42 ± 3.56 24.42 ± 0.04 7.20 ± 2.20 21.68 ± 3.28 16.34 ± 4.13 15.57 ± 4.10 42.24 ± 5.98
Total 89.77 ± 0.03 95.73 ± 0.22 95.20 ± 0.00 88.90 ± 3.45 95.07 ± 0.25 95.51 ± 1.04 95.71 ± 0.53 96.72 ± 0.34

5.2. One-Class Classification on CIC-IDS2017

Two sub-datasets from CIC-IDS2017, CIC-DDoS, and CIC-PortScan were selected as
experimental data. We randomly selected 90% records from CIC-DDoS as the training set
and the rest as the test set. At the same time, CIC-PortScan data were also used as a test set
to measure the generalization abilities of the models, as this is quite important in the field
of network security.

Table 4 illustrates that the OC-LSTM model performed significantly better than the
existing state-of-the-art methods. It is evident that the ability of the OC-LSTM model to
extract progressively rich representations of complex sequential data within the hidden
LSTM layer of the feed-forward network induced better an anomaly detection performance.
In addition, the LSTM model also showed great generalization performance on the CIC-
PortScan dataset. In contrast, the generalization performance of conventional methods
such as soft-bound deep SVDD and one-class deep SVDD was poor, which means that
they may not be suitable for applications in complex and changeable large-scale network
traffic anomaly detection tasks. Note that the IF and DCAE methods performed better on
CIC-PortScan, mainly because of the difference caused by the different types of anomalies
in the two datasets. In addition, due to the use of SGD optimization (as recommended
in [24]), soft-bound and one-class deep SVDD exhibited higher standard deviations than
those of the other methods. The PRC and ROC for each model on the CIC-DDoS dataset
are shown in Figures 5 and 6, respectively.

Table 4. Average AUROC and AUPRC as percentages with StdDevs per method on CIC-IDS2017.

Method
CIC-DDoS CIC-PortScan

AUROC AUPRC AUROC AUPRC

OC-SVM/SVDD 66.46 ± 0.90 61.56 ± 0.79 71.92 ± 0.08 62.32 ± 0.06
IF 90.75 ± 1.92 84.95 ± 2.35 74.64 ± 5.42 67.11 ± 4.74

KDE 92.81 ± 0.34 89.78 ± 0.69 74.98 ± 0.20 67.79 ± 0.15
DCAE 90.62 ± 2.51 89.10 ± 5.12 94.75 ± 4.29 90.62 ± 7.37

OC-NN 99.07 ± 0.26 98.90 ± 0.41 98.53 ± 0.71 97.35 ± 1.48
Soft-Bound Deep SVDD 95.94 ± 2.83 96.56 ± 1.93 88.49 ± 7.78 82.47 ± 9.59
One-Class Deep SVDD 97.59 ± 1.12 97.72 ± 0.92 85.50 ± 4.91 79.25 ± 6.20

OC-LSTM 99.24 ± 0.14 99.15 ± 0.16 99.66 ± 0.19 99.07 ± 0.39

5.3. One-Class Classification on MAWILab

In the field of network security, people are mostly inclined to effectively detect anoma-
lous traffic in large-scale networks in order to ensure privacy and security. In this exper-
iment, we examined the performances of the proposed algorithms in detecting original
network traffic. We considered the raw network traffic dataset MAWILab, for which we per-
formed a series of preprocessing and feature engineering steps to obtain 109-dimensional
structured data.

The experiment was performed on two data subsets separated by one year to measure
the models‘ abilities to detect highly variable network anomalies. The ratio of the number of
samples in the training set to the number of samples in the test set was nine to one, and the
test set comprised anomaly instances with normal samples for the sake of having balanced
data. Note that due to the large amount of data in the training set, the shallow baseline
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models could not complete the training process in a reasonable time frame. Therefore, we
randomly sampled the training set again and selected 10% of the data for the training of the
shallow baseline models. This also reflects the superiority of the deep anomaly detection
methods, that is, they can handle a large amount of complex data.

Figure 5. The ROC and PRC for each model on the CIC-DDoS dataset.

Figure 6. The ROC and PRC for each model on the CIC-PortScan dataset.

Table 5 presents the AUROC and AUPRC scores obtained by the various methods. The
results on this dataset confirm that the performances of the deep methods were generally
better than those of the shallow models, but individual shallow learning methods had more
stable performance. The proposed OC-LSTM method undoubtedly outperformed all the
deep models, with high AUROC and AUPRC values. Notably, the one-class deep SVDD
method performed slightly better than its soft-boundary counterpart on both datasets.
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Table 5. Average AUROC and AUPRC values as percentages with StdDevs per method on MAWILab.

Method
MAWILab-20200102 MAWILab-20201203

AUROC AUPRC AUROC AUPRC

OC-SVM/SVDD 90.66 ± 0.23 83.59 ± 0.41 87.58 ± 0.30 80.19 ± 0.51
IF 94.58 ± 0.42 90.43 ± 0.86 89.35 ± 1.04 86.51 ± 1.29

KDE 92.17 ± 0.21 86.81 ± 0.55 89.81 ± 0.24 85.17 ± 0.31
DCAE 94.78 ± 1.04 92.49 ± 1.40 92.50 ± 1.31 90.45 ± 1.53

OC-NN 96.42 ± 0.30 94.90 ± 0.48 93.96 ± 0.21 92.71 ± 0.51
Soft-Bound Deep SVDD 94.89 ± 0.73 91.49 ± 1.46 90.96 ± 2.90 88.53 ± 1.60
One-Class Deep SVDD 95.00 ± 0.73 91.70 ± 1.26 91.79 ± 2.30 90.04 ± 1.80

OC-LSTM 97.36 ± 0.49 96.70 ± 0.72 94.58 ± 0.47 93.23 ± 0.64

5.4. The Anomaly Detection System

In order to verify the practicability of the above abnormal network traffic detection
methods, our team designed a real-time dynamic monitoring system for network abnor-
mality detection combined with a deep learning model and verified the effectiveness of the
system in an ultra-large-scale high-speed network traffic environment.

The intelligent network anomaly detection real-time dynamic monitoring system used
a browser/server (browser/server, B/S) structure. The system obtained traffic information
by deploying security engines at various key points of the network. The system used
an encrypted secure network to exchange information with the control center to achieve
network data acquisition, analysis, and detection. At the same time, according to the results
of the detection of abnormal traffic, the abnormal behavior that violates the security policy
was merged and recorded or automatically filtered and blocked, and relevant information
was sent to the control center in real time.

Based on the algorithm presented in this paper, the anomaly detection module in this
system was constructed. The anomaly detection link was responsible for building a model
to intelligently analyze the processed data and output the detection results. The network
detection module implemented packet capture based on WinPcap and Tshark, and the feature
engineering was implemented based on C++, and multi-threading was used to improve
the processing speed of the system in the face of high-speed network traffic. The processed
data contained 109-dimensional features. Based on the OC-LSTM algorithm proposed in this
paper, the captured features were classified and trained, and then the classification model and
prediction results were output and visualized. Among these, if the classification result was
abnormal, a warning would be sent to the security center for blocking.

5.5. Discussion

In this study, we conducted experiments on three public datasets, and the proposed
OC-LSTM algorithm achieved excellent results compared with other methods. As men-
tioned, on the NSL-KDD dataset, based on the total of all types of attacks, the method
proposed in this paper achieved excellent performance, reaching 96.86% ± 0.58% and
96.72% ± 0.34% on the AUROC and AUPRC metrics, respectively. However, in the single-
category classification, the IF algorithm obtained 99.20% ± 0.13% and 96.08% ± 0.74%
on the AUROC and AUPRC metrics, respectively, when the data type was Probe. This
shows that this shallow network model was not accurate in identifying all the data types.
However, it achieved better results than our algorithm for the Probe data type. When the
data type was R2L, the soft-bound deep SVDD algorithm achieved 92.92% ± 2.22% on
AUROC, and the one-class deep SVDD achieves 66.82% ± 8.01% on AUPRC.

The OC-LSTM algorithm proposed in this paper achieved excellent results in relation
to all data types on the other two data sets. However, there were also deficiencies in
terms of specific data types. This shows that the algorithm still has room for improvement
in identifying specific features. Furthermore, in designing a network anomaly detection
system, to avoid this from happening, we adopted the form of an ensemble network. Some
of the comparison methods and the OC-LSTM employed in this study were integrated
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in the server, and different weights were assigned to them for joint training. In this way,
the advantages of various methods could be integrated, thereby greatly improving the
accuracy and usability of anomaly detection of the system.

6. Conclusions

In this study, a one-class LSTM (OC-LSTM) method was proposed for end-to-end
anomaly traffic detection on large-scale networks, and it was trained using a loss function
similar to the OC-SVM optimization target. The advantage of the OC-LSTM is that it
constructs the hidden layer features for the special task of anomaly detection. The proposed
approach is quite different from the recently proposed hybrid approach based on auto-
encoders or pre-trained models, which use deep learning features as the input for the
anomaly detector. A series of comprehensive experiments on three complex network
security data sets were conducted to demonstrate the consistent ability of our method
to work well on a variety of one-class classification applications, which proves that the
proposed method has significantly better performance than the most existing state-of-the-
art anomaly detection methods. In future work, we will continue to refine our model and
system to improve the accuracy and usability of this anomaly detection approach.
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Abstract: As computing technology has been recently widely adopted, most computing devices
provide security-related services as basic requirements, which is an important research issue for
sustainability of computing devices. The rapid increase of software components makes it difficult
to detect or prevent vulnerabilities in the large-size software. One of the prominent approaches
for ensuring secure service is the isolation of service which allows the related code and data to be
executed only in a particular area. In this paper, we provide a secure service provisioning platform
for hypervisor systems. The main contribution of the proposed framework is to enhance the previous
secure service provisioning platform in order to solve the non-preemption problem of secure services.
Thus, the proposed framework improves the security isolation service in hypervisors and can be used
for fine-grained secure service in secure embedded systems.

Keywords: trusted service execution; security isolation; hypervisor; fine-grained secure service;
secure service provisioning platform

1. Introduction

Recently, personal computing devices such as smart phones, tablets, and laptops have
been widely used. Most of these devices are always connected to the Internet to provide
services such as e-mail, banking, and e-commerce. Although such seamless connection
provides convenience to individuals, this causes a severe problem since users’ personal
information can be taken over by vulnerability attack of service. This risk of vulnerable
service takes an important role in sustainability of computing systems. The services
use personal information which can be leaked through adversary attacks. Therefore,
a considerable amount of research has focused on how to safely execute services to protect
personal information [1–6].

In order to run a service safely, the most effective way is to remove any vulnerabilities
of the service to be executed. Since adversary attackers usually attack programs using
vulnerabilities in the program, creating a program without any vulnerabilities would be
the ideal way. However, as the size of software becomes larger and its complexity grows
exponentially, eliminating the vulnerabilities requires enormous effort and cost. Thus,
recent research has focused on the isolation of secure service from other applications.

One prominent approach for ensuring a secure service execution is to isolate service
execution from the normal execution environment. This security isolation method allocates
service codes or data to a secure area separated from the normal execution environment
and blocks abnormal access from non-authorized applications [1,7]. The secure area is
accessible only in a determined path and prevents unauthorized access. Using this method,
even if the normal execution environment is modified by vulnerability, the secure area
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is not affected and thus it can be protected. In addition, since the service using personal
information is performed only within the secure area, it is possible to protect the personal
information by blocking unintended modification.

Many studies have proposed security platform using this secure isolation
technique [2–6,8–10]. One example is the XMHF (eXtensible and Modular Hypervisor
Framework) proposed by Vasudevan et al. [4,5]. XMHF uses virtualization technology to
achieve isolation by allocating the secure area to the hypervisor separated from virtual
machines. The hypervisor is software that provides abstraction of hardware to operating
systems and performs resource management, such as redistribution of abstract resources,
virtual machine scheduling, and event handling, which are goals of virtualization tech-
nology. The guest OS in the virtual machine is not directly accessible to the hypervisor
because the hypervisor is implemented in a privileged layer for management. Using this
feature, XMHF assigns secure services to the hypervisor area and allows access to the
secure services only via a special command called vmcall [4,5]. In one recent work in [11],
they developed uberXMHF architecture for supporting commodity compatibility including
Linux and Windows based on XMHF so that they showed the practicality of a secure
micro-hypervisor system. In [12], they proposed a mixed-trust computing framework
that combines verification and protection for applications with trusted and untrusted
execution parts.

In the security isolation approach, however, there exists a critical problem that the nor-
mal OS hangs when the normal OS requests the secure service. For example, uberXMHF [11]
uses a mechanism called core quiescing in order to ensure the isolated execution of a secure
service in the running core by stalling other cores. The main reason for this problem is
because the normal OS cannot occupy the CPU resources. When the normal OS requests a
secure service, the CPU switches to the privilege mode for executing security services in
the hypervisor. However, the normal OS cannot be performed in privilege mode. Thus,
when the hypervisor is in operation, the normal OS cannot be scheduled and hangs until it
receives the service result.

Thus, we provide a modified secure service framework in order to solve the problem
mentioned above. The main contributions of this paper include:

• to propose a secure service provisioning platform for solving non-preemptive execu-
tion of services,

• to guarantee the execution time of the normal OS while providing the hypervisor-level
security services, and

• to implement the proposed framework.

The remainder of this paper is organized as follows: Section 2 provides the back-
ground information about security isolation. We define the problem of secure execution
framework in Section 3, and propose our secure service provisioning platform for executing
fine-grained secure services in Section 4. In Section 5, we show how our framework is
implemented. The evaluation of the proposed framework is described in Section 6. Finally,
Section 7 discusses several remaining issues such as secure execution on multi-cores and
concludes the paper.

2. Backgrounds

2.1. Virtualization

Virtualization is a technology of abstracting computer resources to hide the physical
resources and redistribute them into logical resources. Most of the resources required
for the platform to run, such as CPU occupancy, memory space, and storage space, are
abstracted. Using this technology, multiple logical platforms can be executed in a single
physical system. Logical platforms called virtual machines are executed independently
using the allocated resources. The virtual machines have their own OS called guest OS.
The resources allocated by a virtual machine are partitioned resources so that it is not
possible to access other virtual machines.
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The hypervisor is a monitoring program that redistributes abstract resources through
virtualization and manages the execution of virtual machines. The hypervisor provides a
service in response to resource requests or service execution requests from virtual machines
in a form similar to a kernel in an OS. The resources of the system are under the supervision
of the hypervisor whose area is inaccessible to virtual machines for administrative and
security reasons. Virtual machines need an interface to request resources to the hypervisor
because they are not directly accessible to the hypervisor’s resources and hardware. The hy-
percall is the interface for this request, so it is possible to communicate a resource request
and service request to the hypervisor only through a hypercall. The hypervisor provides
the corresponding services according to the type of hypercall and passes the return value
of the service to the OS.

For example, Intel has defined the root mode and the non-root mode to separate the
hypervisor and the virtual machines in the virtualization architecture [13–15]. The root
mode and the non-root mode are similar to the kernel mode and user mode of the OS.
Each mode grants privileges differently, such as restrictions on the commands that can
be executed. In the root mode, the hypervisor grants all system resources, commands,
and so on. On the other hand, in the non-root mode, the use of resources and commands is
restricted from virtual machines. Virtual machines can use a hypercall to request resources
that require privilege.

Since the root mode and the non-root mode have different privileges, they need the
ability to switch to each other’s state. In the x86 platform, the VM entry and the VM exit
operation perform the corresponding function. When a virtual machine requests a privilege
using a hypercall, a software trap is generated on the CPU to perform a VM exit function.
The VM exit function switches the state of the CPU to the root mode and calls the handler
implemented in the hypervisor. The hypervisor handler parses the requested hypercall
and performs the service using the root mode privileges. After switching to the non-root
mode in which the system enters the virtual machine, the virtual machine performs the
return operation of hypercall with limited privilege. If the virtual machine accesses an area
to be executed in the root mode or uses a privilege command, the CPU generates a trap
and performs a VM exit to notify the hypervisor that an exception handling routine has
occurred. The hypervisor performs the appropriate exception handling routine to prevent
the virtual machine from accessing the privilege area [13].

Recent processors have been developed with virtualization instructions. Describing
virtualization technology as hardware instructions has advantages such as faster execu-
tion of the virtualization platform and more extensive resource distribution. In addition,
isolating service routines using virtualization instructions can increase reliability by en-
suring isolation and performance at the hardware level. The benefits of this virtualization
technology are being applied in a variety of areas, and a lot of research is studying the secu-
rity platform with virtualization. Representative examples include the dynamic analysis
of malicious code using virtual machine, event logging analysis through virtualization,
and analysis through a system playback function of virtualization [16–19].

2.2. Security Isolation

The security isolation technique uses a strategy of isolating the service from the
vulnerable OS and avoiding the attack, rather than solving the vulnerability of the OS.
Although it is difficult to protect the entire mobile OS, it is more practical to limit the impact
of possible vulnerability. In general, OS has a vast amount of code, so it is difficult to verify
all the codes in the security aspects. However, the amount of source code of secure service
is part of the whole OS. In addition, the security isolation platform is lightweight because
it is written in code for security service execution. Therefore, the amount of code to be
verified is less than that of the OS source code, so that there is little chance of being exposed
to the vulnerability.

In the security isolation platform, the TCB (Trusted Computing Base) is defined as
the area where security is completely maintained regardless of whether other domains
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are vulnerable to attack if the secure service routine is fully implemented in terms of
security and reliability [20–22]. A TCB is a secure area from a security attack because it is
isolated from the area normally used by the user. Therefore, secure services, secure libraries,
and drivers should be designated as TCB. As the size of the TCB increases, it becomes
difficult to secure the reliability. Therefore, the reliability of the entire system is increased
by minimizing the TCB size.

Based on the security isolation method, researchers designed various secure execution
architectures. Among them, secure execution using virtualization and sandbox-based
secure execution architecture are widely used. Virtualization technology is a technology
that allows for running multiple virtual machines on one system by abstracting and redis-
tributing resources provided by modern CPUs. Redistribution of resources is managed
by monitoring software called a hypervisor. In this architecture, virtual machines or hy-
pervisors have the advantage of being isolated from each other, so that the secure service
can be isolated from the environment used by other users. Another architecture is the
sandbox-based architecture in which the secure service is executed by using special space
provided in CPU design. This space is only accessible with privileged commands, so the
secure service can be easily isolated.

2.3. Hypervisor Based Secure Execution

The hypervisor-based secure execution platform and secure OS-based secure execu-
tion platform use virtualization technology to achieve isolation of secure service. In a
virtualization platform, virtual machines do not have direct access to the hypervisor area.
This is because the hypervisor executes with special privilege. The hypervisor-based secure
execution method uses this feature to achieve isolation by placing secure services in a
hypervisor area. Therefore, even if the normal OS is modified by vulnerability, secure
service can maintain its reliability because the secure service is not affected.

In [1,23], they address that a lot of research has been proposed for the secure execution
method with virtualization technology. Using this architecture, many studies have pro-
posed a hypervisor-based security service platform, which aims to minimize the security
threat by reducing the size of the TCB. XMHF [5] is one of the representative lightweight
hypervisor-based security frameworks for the research of security services developed
by Vasudevan et al. As shown in Figure 1, XMHF achieved being lightweight using the
rich single guest OS execution model. The platform was developed to run only a single
guest OS in order to simplify guest OS control routines. In addition, the hypervisor dele-
gated control of all the devices in the system to the guest OS, which greatly reduced the
complexity by allowing the hypervisor to control only a minimal amount of devices and
resources. Thus, the hypervisor achieved being lightweight and reduced the possibility of
containing vulnerabilities.

XMHF also uses DRTM (Dynamic Root of Trust for Measurement) technology to
provide verification of its integrity at the time of system boot and initialization. DRTM
isolates and prevents code from being attacked for reliable execution of code [24], which has
been provided by commercial x86 CPUs. In addition, XMHF also uses IOMMU protection
technology for input and output memory management. Since XMHF hands over control of
the device to the OS, it needs to provide integrity for the memory area.

XMHF provides a module called hyperapp that allows for developing and running
secure services. The hyperapp supports the security services in the hypervisor area to run in
isolation from the guest OS. The guest OS uses a hypercall that is the only communication
method to request a hyperapp. When the guest OS invokes the secure service using the
hypercall, the XMHF event hub delivers to hyperapp for executing secure service. Secure
service invocation and delivery are protected by virtualization, so there is no other way to
access secure service in the guest OS. This ensures reliable secure service execution [4,5].
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Figure 1. An Architecture of XMHF [5].

Another implementation of secure service on hypervisor for trusted mobile computing
has been provided in [25,26]. TGVisor is a framework to ensure reliability of a user’s
geolocation information to provide reliable cloud service in a mobile environment [25,26].
The framework aims to provide cloud service based on geolocation, minimize TCB and
verify TCB and geolocation information. To provide cloud service based on trusted ge-
olocation, framework encrypts the user’s geolocation data and sends it with geolocation
data to the cloud server. The cloud server provides service by verifying the integrity
and the possibility of tampering. By reducing TCB, it is possible to reduce vulnerability.
In addition, TGVisor performs verification of TCB. It verifies whether the attacker attacks
using vulnerabilities of protocols defined by TGVisor and analyzes vulnerabilities. Figure 2
shows the architecture of TGVisor.

Figure 2. An Architecture of TGVisor [25].
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As TGVisor framework is implemented using the XMHF framework, it verifies its own
code to ensure integrity at boot time. The GPS module is connected to the serial port, and hy-
perapp can acquire the geolocation information using the serial port. Therefore, it is possible
to implement cryptographic service using TPM in hyperapp. As XMHF is a lightweight
hypervisor and TGVisor has been developed while being light weight, only a small number
of lines of codes are added to reduce the possibility of attack on vulnerabilities.

2.4. Secure OS-Based Secure Execution

Another approach for providing secure service is a secure OS-based execution frame-
work. The framework allocates and executes secure service in virtual machines separate
from normal OS. In this case, isolation can be achieved because the normal OS does not
affect securing OS even if the normal OS is attacked.

A representative platform of secure OS-based secure execution is ARM TrustZone [27].
The modern ARM architectures provide for virtualization of a single physical core into
two logical cores for the implementation of a secure execution platform. Each logical core
is divided into normal world for a normal OS execution and secure world for a secure OS
execution. The two worlds are executed in different privilege modes. The access path
between two worlds is managed by software similar to a hypervisor called secure monitor.
The secure service is performed in secure OS included in secure world. When a secure
service is needed, normal OS requests it using a special command called secure monitor call
(SMC), which is trapped by the secure monitor for performing the request operation. At the
time of the SMC call, the ARM core automatically changes to a privileged mode for secure
monitor execution because the secure monitor is included in a secure world. Because of
this privilege difference, normal OS cannot be accessed by secure service.

Recently, LTZVisor has been developed based on the TrustZone for providing real-
time secure service by porting RTOS to a secure world [2]. The feature of LTZVisor is that
secure world has a high priority for CPU preemption to guarantee real-time secure service.
The secure OS scheduler is capable of scheduling without being restricted by secure service
execution timing using the higher priority. In addition, the normal world where general OS
is ported is executed when secure world is in Idle state. Because the secure monitor does
not have a scheduler, so the CPU preemption of general OS follows the scheduler policy of
RTOS in secure world.

3. Problem Definition

As described in the previous section, the secure service in secure execution platform
runs in a special space isolated from normal OS. However, the isolation and privilege
difference for secure service execution require a certain duration during which the normal
OS cannot occupy the CPU. While a secure service is running, the normal OS cannot
perform the operation because the OS does not obtain an occupancy of CPU. In particular,
on a single-core system, there is only one CPU time to execute one of normal OS and secure
service at a certain time. Thus, while a secure service is executed, the normal OS will stop
because there is no free time to execute a OS task (see Figure 3). In addition, while the
secure service is running, the normal OS has no way to get a privilege from the secure
service. Thus, the OS hanging problem persists until the secure service is terminated.

As the execution time of secure service becomes longer, the CPU occupation time of
normal OS is limited. If the system only has a single core, the normal OS cannot provide
any service for that period. This problem does not affect the communication between
normal OS and user if a secure service consumes only a slight time. However, if a secure
service occupies the CPU for a long time, users can not do any other work while executing
the secure service. In addition, even if the secure service is repeatedly executed, the user
experiences inconvenience.

In order to solve this OS hanging problem, we propose a secure service provisioning
platform for hypervisor systems. The purpose of proposed framework is to guarantee
the execution time of normal OS. The current frameworks do not guarantee normal OS
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runtime because they focus on isolation and execution of secure services. Therefore, we
limit the execution time of secure service to guarantee the execution time of normal OS
within a certain period. In order to limit the execution time, a secure service is divided
into a certain size and implemented so that these slices are executed sequentially. Then,
when a partitioned service is done, the normal OS is executed. Thus, the execution time
of normal OS is guaranteed. On the other hand, since the execution of secure service
must be guaranteed, the execution time of normal OS is also limited to be executed for a
predetermined time. As a result, the secure service and the normal OS are executed within
a period of time.

Figure 3. A time table of secure service execution—on a normal environment.

4. Proposed Framework

In the proposed framework, the secure service is divided into several sub-services in
order to limit the preemptive execution time. The normal OS is executed after a slice of
secure service is terminated. The normal OS and secure service are executed only for a
certain time of period in order to guarantee normal OS and secure service execution, which
enables fine-grained service execution. The following sub-sections describe the framework
more in detail:

4.1. Fine-Grained Service

In the proposed framework, a secure service is divided into several sub-services in
order to solve the normal OS hanging problem. In case of a security service with a short
execution time of several milliseconds, the CPU is returned to the normal OS immediately,
so that it does not interfere with the user. Therefore, the proposed work divides the service
routines, which enables the normal OS to preempt the CPU for providing OS service.

A secure service consists of several routines with sequential order. When the all
routines are executed in sequence, the service is completed. The service developer develops
several routines in a modular form with consideration of this architecture. As shown in
Figure 4, developed routines are organized in a chain form and executed in that order.
When one routine finishes in one cycle, the next routine is executed in the next cycle.
Depending on the implementation of the service, the service routine is implemented to be
reusable by changing the order or repeating a routine. When all the routines are finished,
the service stores the result and ends. Each service routine is executed at regular intervals.
When one service routine is finished, the CPU occupation is passed to the OS. Therefore,
the shorter each service routine, the faster the OS can occupy the privilege, which can
further reduce the hang of the OS.

Figure 4. A time table of secure service execution—on fine-grained environment.

The partitioned secure service routines are also advantageous for minimizing the
vulnerability because each routine is performed independently. In the proposed method,
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all service routines are implemented modularly. Routine interactions have no effect other
than to save and pass the result. Therefore, since the LOCs for verification are inevitably
small, the probability of the vulnerability is reduced.

4.2. Secure Service Execution

The previous secure execution platforms perform services on the same core where the
application requesting the service is executed. However, the proposed method separates
the secure service request and execution for management of fine-grained service execu-
tion. When the service manager receives a service request from the normal OS, it returns
immediately after the request operation. This allows that the normal OS can use the CPU
without wasting time in root mode. While the secure service is running, the application
requesting secure service periodically checks the result and receives the result when the
secure service is completed.

The service execution is separate from the service request, so it is necessary to store
the input value for executing routine. Since the fine-grained secure services are performed
independently of each other, the previous routine needs to transfer the data to the next
routine. Therefore, we define additional fields in SSCB for storing the values required
for service execution. This field contains the value received as an input at the time of
service request and the value that is calculated during service execution and passed to the
next routine.

4.3. Scheduling

Since the execution of normal OS must be guaranteed during the execution of secure
service, the secure service completion time is longer than the original secure service comple-
tion time. Thus, we made the fine-grained secure services possible to be schedulable, so that
they can provide the proper order of secure service according to situation. The scheduling
algorithms implemented in the proposed framework are as follows.

4.3.1. First-In First-Out

The secure service inserted first in the service queue is processed first. When a secure
service is executed, the other services must wait until the executing secure service is
terminated. Since the execution order of the secure service is ensured, the first received
secure service is processed quickly, and the result value can be obtained quickly. However,
if the execution time of the currently executing service becomes long, the time taken for the
service to be executed later is delayed. Therefore, there is a possibility that execution of the
entire service is delayed.

4.3.2. Round Robin

All of the fine-grained secure services in the service queue are executed once in order.
When a routine of a partitioned service finishes execution, it is re-inserted to the end
of the service queue and waits for the next turn without performing the next routine.
The algorithm ensures that all the fine-grained secure services run fairly. However, as more
services are queued in the service queue, the time required to perform a service becomes
longer, so that it takes more time to obtain the result of the entire service.

4.3.3. High-Priority First

The secure services are given priorities and the service having the highest priority is
executed first. The services are sorted by the priority in service queue. The service manager
takes the highest-priority service from the sorted queue and runs the service first.

5. Implementation

We developed the proposed architecture based on the XMHF framework. Figure 5
shows the framework of proposed architecture. The framework is based on hypervisor
and runs the existing OS as a virtual machine. The hypervisor consists of XMHF-core for a
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secure platform, Service Request Management (SRM) for managing security service requests
and executions, and Secure Service Pool (SSP) for implementing secure services.

Figure 5. The architecture of the proposed framework.

5.1. Secure Service

The XMHF provides a service for secure execution called hyperapp. The hyperapp
can be loaded in the hypervisor area and executed independently of normal OS. However,
XMHF provides only a service as a framework for a single service. Thus, we modified this
framework to be able to perform multiple services.

Since the XMHF is designed for providing a single service, there is no need to distin-
guish between services. Thus, the hyperapp runs immediately upon receipt of a service
request via hypercall. In the proposed framework, however, it is necessary to distinguish
services when requesting service. For service classification, we assigned each service with
a unique number. The service number is entered as a parameter of the service request,
and this parameter is used to distinguish which service is required. SSCB is also assigned
with a service ID to distinguish service execution. Each running service is identified by the
service ID, so that even the same service can be classified as a separate service according to
the request.

In addition, we modified hypercall to use for service requests and return results.
The normal OS calls the desired service using hypercall, and then periodically calls hypercall
to check if the service result is ready to be returned. To distinguish between service call and
service result confirmation, we added a parameter to distinguish it. The SRM performs the
corresponding work by using this parameter. Figure 6 shows the main components and
service flows in the proposed framework.

5.2. Service Request Manager

The SRM is a manager that creates and executes a service requested by a user and
returns the result value. The framework needs to distinguish services because users can run
multiple services simultaneously. Therefore, the proposed method uses the Secure Service
Control Block (SSCB) for management. A SSCB is a basic unit for scheduling services,
and consists of basic information for providing services. The SSCB is created at the time of
service request, which is used to distinguish each service. Because a secure service has a
unique SSCB, some secure services performing the same operation are treated as a different
service according to the SSCB. Thus, secure services can be executed simultaneously by
managing them as service control blocks.
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Figure 6. Components and service flows in the implementation.

As shown in Figure 7, the generated SSCB is inserted into the queue and waits
for execution. The SRM dequeues and executes the SSCB inserted in the service queue
according to the scheduling policy. In order to simplify the service execution routine, we
defined a single queue for inserting a service. This is to avoid increasing the vulnerability
due to increased LOC when queue management becomes complicated. In addition, we
defined a result list to store the execution result of the service. The application calling
secure service inquires the execution status of service periodically to check whether the
service is completed. The service manager retrieves the result of corresponding service
from the result list and returns the result value.

In the proposed method, fine-grained services should be executed periodically. The ser-
vices are implemented in the hypervisor, but the OS occupies most of the time on the system.
Thus, the framework needs a trigger to request the execute of service periodically. The trig-
ger uses the timer interrupt to periodically invoke service execution regardless of normal
OS execution. However, the hypervisor has limited use of the timer due to the limita-
tions of XMHF architecture. Therefore, the implemented framework replaces trigger by
implementing periodic call using vmcall instead of timers.

Figure 7. Secure service queue with SSCB.

5.3. Secure Service Pool

The SSP is an area where a service developer implements a secure service. This area
stores service codes for executing a service when a user requests. A partitioned service has
several routines whose addresses are stored and managed in the SSCB. The SRM reads the
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information of current service execution recorded in the SSCB and calls the corresponding
routine using a stored address.

In the SSP, a service consists of an initialization routine, a terminate routine, and inter-
mediate routines. The initialization routine is called when the SSCB is created. This routine
stores input data received from the normal OS and initial values needed for execution of
secure service routines. Intermediate routines are routines that need to be computed for
service provision. The developer develops routines that divides a service into appropriate
function units. The developer can specify the next routine to execute multiple routines
in order or the current routine recursively at the end of the intermediate routine. Finally,
the terminate routine is invoked when the operation of secure service is completed and per-
forms the task to save the result data in result list. After this routine is executed, the SSCB
is deleted and the service execution is terminated.

6. Evaluation

In order to evaluate that the secure service provisioning platform is working properly,
we implemented the SHA256 encryption algorithm as a secure service. The SHA256
encryption algorithm is an algorithm that encrypts original data with abbreviated data
using a hash function. The abbreviated data are a unique value. If the original data are
changed even by one bit, the abbreviated data become a totally different value. This
characteristic is used to verify the authenticity of the original data. We implemented this
algorithm by separating it into five routines. The first routine is a routine for initialization
and is performed at the time of service request. The last routine is a routine for returning
results. Thus, the actual routine for executing the service consists of three routines.

Based on the implemented framework and secure services, we measured code length
and execution time. We show that the size of the TCB is small through code length
measurement. In addition, we analyzed the service execution overhead by measuring
execution time.

6.1. Minimized TCB

Since the proposed framework is a framework for secure execution, the length of
source code affects TCB reliability. We have measured the source code length of the
implemented framework using cloc command in linux to prove that the size of TCB is small.

Table 1 shows the lines of source codes of the proposed framework. The implemented
framework consists of the existing XMHF core part, the secure service handler that imple-
ments the proposed method, and the secure service routines that implement the developed
service. The XMHF core part is a hypervisor part for secure execution service. For reliability,
we have not modified this part. We only implemented the proposed method in hyperapp,
which is the handler part that executes the developed service routines. Therefore, the pro-
posed method with a scheduler is implemented in the hyperapp handler part. The service
function is the part where the developed service routines of the service to be provided is
implemented, and the sha256 function we have implemented for testing is written.

Table 1. Lines of code in the implemented region.

Part Lines of Code

XMHF core 6018
hyperapp handler 198
service function 330

As shown in Table 1, the handler part added to implement the proposed method is
about 3.2% of the whole framework and has a very small number of lines. This shows that
the implementation of the proposed method is consistent with the tendency to reduce the
TCB for reliability.
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6.2. Performance

We measured the execution time of the implemented service to check the performance
of the proposed framework. One to four services were executed simultaneously, and the
OS guaranteed time of the framework was set to 1 s. That is, the routines of service are
executed periodically at intervals of 1 s. The service to be executed simultaneously called
the same SHA256 service.

Table 2 shows the response times of first and last services for the number of services.
As the number of services increases, the amount of time that all services are terminated
increases in proportion to the number of services. Although the services run at the same
time in Table 2, the response times are different according to the scheduling policy, FIFO
(First-In First-Out) or RR (Round-Robin). For example, when four concurrent services are
executed, the first service finishes at about 3 s in FIFO policy. On the contrary, the first one
in RR policy ends at about 9 s. Let us note that we do not include the execution results of
the priority-based scheduling scheme because the results are similar to FIFO policy except
the order of services.

Table 2. Response times with a single timer.

Number of Services 1 2 3 4

FIFO First service 3000.72 3000.7 3000.76 3000.9
Last service - 6001.2 9002.85 12,002.25

RR First service 3000.77 5001.04 7001.37 9001.73
Last service - 6001.15 9001.77 12,002.21

(time : ms).

As we measured the scenarios, we also observed the hanging phenomenon of OS. As a
result, the OS is delayed slightly at intervals of 1 s because the implemented framework
is set up to perform service execution every one second. Thus, the OS is guaranteed to
occupy the CPU except the requesting time. Although the service response time is more
than 3 s, as shown in Table 2, the normal OS does not hang up for the whole response time
but is delayed just for the service execution time every one second.

The service time or OS hanging time consists of execution time of secure service
routine, hypercall time to execute secure service, and time for handling secure service.
As shown in Table 2, a maximum of 2850 us is required excluding the time required to
guarantee OS execution.

We also experimented with increasing the number of execution times on which the
service is running. Table 3 shows the results of execution time in which service runs two
times per period based on the experiment in Table 2.

Table 3. Response times with double timers.

Number of Services 1 2 3 4

FIFO First service 1500.5 1500.49 1500.51 1500.5
Last service - 3000.75 4501.01 6002.25

RR First service 1500.5 2500.72 3500.92 4501
Last service - 3000.74 4501.11 6001.42

(time : ms).

As a result of measurement, the response time of service was half of the previous
execution time. In addition, the execution overhead excluding OS execution time is not
very different from the previous experiment. During the experiments, we found that there
is no severe OS hanging problem at the double rate execution of the services.
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7. Discussion and Conclusions

7.1. Discussion

In this paper, the proposed method is based on a single core platform where the core
can only perform one task at a time. Thus, if the core executes a secure service, the normal
OS will stop because there is no extra core to execute. However, current commercial off-the-
shell CPUs are mostly multicore. In the multicore, even if one secure service is executed,
the normal OS does not stop because the OS can continuously perform operations on other
cores. Thus, it seems that the multicore platform is the solution to the OS hanging problem.

However, it is possible to execute multiple services on a multi-core platform. There
are many applications running on the normal OS, and many apps require secure services.
There are also many kinds of services provided by the secure platform. Thus, if the number
of requested services is equal to the number of cores at the same time, the OS may be
stopped again. For this reason, the multicore approach is not a fundamental solution.

We expect that, if the fine-grained secure service is extending, it also can support
multicore-based security service framework. The proposed framework separates service
request and execution, and it is possible to execute appropriately by applying service
scheduling. Therefore, it is possible to avoid a case where multiple services are simul-
taneously executed through scheduling. In addition, it is possible to distribute service
execution cores in a balanced manner, thereby preventing degradation of normal OS due to
service execution.

In addition, in order to solve the problem that normal OS is hanged due to simulta-
neous execution of secure services, it is possible to fundamentally solve the problem by
limiting the number of concurrent service executing cores. Limiting the number of cores
guarantees the normal OS execution because at least one core can execute the normal OS.
Alternatively, there is a way to restrict a particular core to execute only secure services.
In this case, the performance of the normal OS is deteriorated. However, it is impossible to
attack the vulnerability due to shared data in core such as vulnerability attack technique
which tracks back the cache at same core, so reliability of secure service is improved.

As a limitation of this study, there is the data race problem of shared resources. Since
the proposed method executes on a single core, the problems such as deadlock caused by
shared resource usage violation are not serious. However, this issue is expected to become
more prominent on a multi-core platform. When a number of services are executed, a race
for preemption of a shared device or a resource frequently occurs, which has the possibility
to lead to a sharing resource violation. In addition, since the secure service can invade
another memory, the memory access restriction should also be considered. Thus, we need
to find solutions to these problems.

In the proposed framework, the real-time secure service execution is guaranteed by
periodically executing the divided functions which are developed by the service provider.
If one of the divided functions runs for a long time, the task in the OS runs out of deadline
time, violating the deadline. To solve this problem, we need to extend the framework to
execute non-divided secure services for a certain amount of time periodically like scheduler
in normal OS. In future studies, we plan to apply this concept to the framework so that
real-time is guaranteed even if the developer does not divide the function.

7.2. Conclusions

The proposed platform describes how to solve the hanging problem of normal OS on
a secure execution platform. The secure execution platform, like XMHF, has a problem
that the OS is hanged while the secure service is running. This problem is caused by the
difference between execution area and privilege. Due to this difference, the normal OS has
limited the way of occupying CPU while secure service is running.

To solve this problem, we propose a fine-grained secure service provisioning platform
for hypervisor systems. The proposed platform divides and executes the secure service.
In addition, when one partitioned service is terminated, the normal OS is executed to
guarantee execution time. Since there is no way for normal OS to occupy CPU itself when
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a secure service is executed, we have restricted the execution of secure service to guarantee
normal OS execution time.

We implemented the proposed method based on XMHF framework. The implemented
framework does not immediately execute the secure service request but stores it in a queue
for a waiting of execution. In addition, the scheduler is called periodically to execute the
secure services stored in the queue according to scheduling policy. When a developed
secure service is executed, the CPU occupation is returned to normal OS, thereby ensuring
the execution of the OS.

We measured the execution time of implemented framework and confirmed that
normal OS execution time is guaranteed. As an experiment result, although the secure
service execution time was long, it was confirmed that the OS execution time is guaranteed
during that time. Since we need further investigation on the system overhead, we are
working on more experiments to analyze the system performance.

In future studies, we will extend the proposed method to be applied on multicore
platforms. In discussion, we described the extensions that we need to apply on multicore,
and we need to validate and apply them in future studies. In order to analyze the proposed
architecture, we will conduct more experiments for performance evaluation. We also need
to discuss the validation of security service implementation for providing vulnerability of
secure service software.

Another direction of further research is security analysis of the proposed framework.
For example, when real-time tasks with trusted and untrusted execution parts are given to
the framework [12], a new scheduling analysis is required to guarantee both real-time and
security requirements of tasks.
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Abstract: The proliferation of low-cost Internet of Things (IoT) devices has led to a race between
wireless security and channel attacks. Traditional cryptography requires high computational power
and is not suitable for low-power IoT scenarios. Whilst recently developed physical layer security
(PLS) can exploit common wireless channel state information (CSI), its sensitivity to channel esti-
mation makes them vulnerable to attacks. In this work, we exploit an alternative common physics
shared between IoT transceivers: the monitored channel-irrelevant physical networked dynamics
(e.g., water/oil/gas/electrical signal-flows). Leveraging this, we propose, for the first time, graph
layer security (GLS), by exploiting the dependency in physical dynamics among network nodes
for information encryption and decryption. A graph Fourier transform (GFT) operator is used to
characterise such dependency into a graph-bandlimited subspace, which allows the generation of
channel-irrelevant cipher keys by maximising the secrecy rate. We evaluate our GLS against de-
signed active and passive attackers, using IEEE 39-Bus system. Results demonstrate that GLS is
not reliant on wireless CSI, and can combat attackers that have partial networked dynamic knowl-
edge (realistic access to full dynamic and critical nodes remains challenging). We believe this novel
GLS has widespread applicability in secure health monitoring and for digital twins in adversarial
radio environments.

Keywords: cyber-physical systems; wireless security; sensor network; infrastructure health monitoring;
graph signal processing

1. Introduction

Mass digitisation of people and things has opened the doorway to the Internet of
Things (IoT), critical in many social and industrial applications [1,2]. In particular, IoT
is envisaged to deliver the vital data to inform digital twins and improve infrastructure
maintenance and safety. In many cases, wireless IoT sensors that measure physical signals
(e.g., gas pressure, water contamination) are buried underground [3,4]. Encrypting the criti-
cal infrastructure information is important for national security, commercial sensitivity, and
anti-tampering requirements. Many current IoT wireless transmissions (e.g., LoRaWAN [5],
ZigBee) are vulnerable to eavesdropping. Authentication (e.g., over-the-air activation
session keys in LoRaWAN, elliptic curve Diffie–Hellman in Bluetooth) verifies the user’s
identity and prevents malicious users from accessing the network. Encrypted wireless
transmission protects data integrity and confidentiality [6].

1.1. From Public Key Cryptography to Physical Layer Security

Conventional encrypted communications employ symmetric encryption such as the
advanced encryption standard (AES), which relies on a secret key shared between them
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beforehand. Public key cryptography (PKC) is the de facto key distribution protocol,
although efficient conventional PKC schemes are complex and computationally not suitable
for IoT devices with limited capability [7]. This introduces not only a computational cost
challenge, but also sets the IoT devices at a disadvantage against the most powerful
eavesdroppers with orders of magnitude more computational power.

Physical layer security (PLS) has been proposed in recent years as a way to overcome
many of the aforementioned challenges, which can be categorised as key-less PLS [8,9]
and physical layer secret key generation (PL-SKG) [10–12]. Key-less PLS leverages the
superiority of legitimate channels over wiretap ones, and tries to maximise the secrecy rate
or signal to interference plus noise ratio (SINR) by steering the variables, e.g., beamforming
vectors [13], trajectory of autonomous system [14], and even the phases of a reconfigurable
intelligent surface (RIS) [15]. One challenge lies in that the superiority of the legitimate
channel may not be always satisfied. For example, an Eve can make the channel act as
adversary to legitimate nodes by introducing an Eve-controlled RIS. In such cases, key-
less PLS cannot guarantee an existence of feasible solutions for secrecy rate and SINR
maximisation.

Another family in PLS is PL-SKG, which exploits the reciprocal channel random-
ness to generate the shared secret key between legitimate nodes, without the need for
a PKC management and distribution protocol [6,16,17]. PL-SKG negates the risk of key
intercept and high computational requirement of PKC schemes [18], which makes it very
suitable for IoT devices. PL-SKG does, however, require the wireless channel between
nodes to be reciprocal (true for most propagation environments), random (small-scale
fading), and unique [19,20]. This is to ensure robust symmetric key generation and avoid
brute force attempts. Although PLS has been applied to a variety of embedded wireless
(e.g., autonomous vehicle [21], UAV [22,23], and molecular [24]) and wired (e.g., fibre [25])
communication systems, the shortfalls are always overlooked. First, the common features
used by PL-SKG for data encryption are not detached from the communications, e.g., us-
ing channel phases or received signal strength (RSS), which may provide the chances of
sophisticated eavesdroppers to decode the secret key [26,27]. Second, for both key-less
and PL-SKG, they require the IoT devices to make accurate estimations of the wireless
channel statistics [28]. Accurate estimation requires reasonably powerful signal processing
units and also requires a reasonably high communication signal-to-noise ratio (SNR). Many
embedded or underground IoT devices operate in low-communication SNR regimes, and
therefore PLS is not suitable.

1.2. Introducing Graph Layer Security (GLS): Encryption Using Networked Physics

To overcome the PLS requirement of a high-communication SNR for accurate wireless
channel estimation, we identify and exploit a different physical attribute that is common
to many IoT sensors. The general idea to exploit common physics has been proposed
before, such as common heartbeat in different medical IoT devices across a body. However,
those devices typically do not suffer from the aforementioned low-communication SNR
challenges. Here, we consider IoT devices placed in underground or embedded networked
systems, such as oil/gas/water pipes, electrical networks, optical fibre networks, and other
underground connected systems. In networked physical systems, a common continuity
equation connects all the dynamics (e.g., Navier–Stokes for flow, nonlinear Schrodinger
for optic transmission, power flow for electricity). We propose to exploit the common
networked physical signals at different IoT monitoring points to encrypt the IoT device’s
wireless data. Such networked physics are the time-varying networked signals under each
node, and are irrelevant with the wireless communications (e.g., channel phases and RSS).
For example, in a smart grid, the networked physics is the electricity flow (what we will
use in our simulation part). In a water distribution network, the networked physics can
be the time-varying water pressure or the concentrations of some compounds. This has
the following advantages: (1) IoT sensors usually have very high precision in measuring
the physical signals, and (2) it requires no specific knowledge or requirement of wireless
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channel or public key distribution. This novel physical driven security is distinctive from
both PKC and PLS, and its security independence from the digital environment makes it
more resilient against digital attacks. The main contributions of this work are summarised
in the following.

(1) We propose a novel digital encryption paradigm over a physical network called
graph layer security (GLS). The process is data-driven and model-agnostic. We exploit the
dependency of underlying networked physical dynamics to enable encryption amongst
digital transceivers, without complex computations (for key generation/management in
traditional cryptography-based method, or for channel estimating techniques in PLS). In
GLS, the encryption and decryption is based on an additive noise generated by the wireless
channel-irrelevant physical networked dynamic on one node, and can be compensated by
other nodes with dependent networked dynamics. Leveraging this idea, for any pair of
network nodes as Tx and Rx, we select the relay nodes with dependent dynamics, and the
information then can be encrypted, reconciliated, and finally decrypted by Tx, relay, and
Rx nodes.

(2) One difficulty of the relay selection lies in the dependency analysis on the random
networked dynamics. To overcome this, we draw heavily on sparsifying high-dimensional
random nonlinear dynamics by the use of a data-driven graph Fourier transform (GFT) op-
erator, which is able to transform the random dynamics into a compact graph-bandlimited
subspace, given the graph smoothness of the evolved networked dynamics (or its time-
difference) [29]. By doing so, we pursue the dependency analysis of the random dynamics
by finding the dependent rows of the GFT-based surrogate matrix.

(3) We analyse and evaluate the performance of our proposed GLS using a IEEE 39-Bus
system. Both the passive eavesdroppers and the active attackers are considered, where the
former is defined as intercepting the transmitted information (encrypted) as well as hacking
parts of the network nodes and their dynamics, and the latter is defined to degrade the
dynamic dependency by adding jamming perturbations to the network. The simulations
show two results. First, the GLS performance depends mostly on the measuring accuracy
of the networked dynamics, other than the complex channel estimation techniques for key
generations required by the PLS. Second, GLS can protect communication security from
the eavesdroppers; the bit error rate (BER) of the legitimate (Tx,Rx) pair can approach
an order of 10−5 as opposed to the passive eavesdroppers (10−1), and can still remain an
order of 10−3 in the face of active dynamic attackers. This suggests a promising prospect of
the proposed GLS to secure the wireless communications using the graph layer common
physics.

The rest of the paper is organised as follows. In Section 2, we introduce the network
dynamic model, including a governing evolution pattern that maintains the dynamic
dependency, and the perturbation to keep the randomness of the networked dynamics.
In Section 3, we elaborate the GLS encryption and decryption process, as well as how to
select the relays for each (Tx,Rx) pair. Additionally, we define the passive eavesdroppers
and active attackers and analyse their influences on the GLS performance. The simulation
results are provided in Section 4. We finally conclude the whole piece of work in Section 5.

2. Physical Dynamic Model for Data Encryption

In this section, we introduce the physical networked dynamic model for further
encryption of wireless communications. The networked dynamics are the time-varying
networked signals in an IoT system (e.g., the electricity flows of the smart grid system,
or a time-varying compound concentrations in the water distribution network). Such
signals are irrelevant with the wireless communication aspects (i.e., the dynamic patterns
in a smart grid system or water distribution network do not depend on or affect the
communication channels and environment). The networked dynamic is described by the
underlying network topology and the dynamic signal flow over it. The network topology
is configured by a static graph, denoted by G(N , W). Here, N = {1, · · · , N} represents
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a set of total node indices. W of size N × N is the adjacent matrix, in which the (m, n)th
element wm,n ∈ {0, 1} reflects the existence of directed link from node n to m.

Given the topology of the network, the dynamic signal over each node evolves in
accordance with its self-dynamic and the coupling interactions from its neighbouring
(connected) nodes. We denote the signals for all k = 1, · · · , K (K ∈ N+) discrete time
as a matrix X of size N × K, and the evolution function from discrete time k to k + 1 as
F : RN → RN . Then, the networked dynamic model is expressed as

X:,k+1 = F(X:,k) + bk, (1)

where X:,k represents the kth column of X.
In Equation (1), bk is the perturbations that account for the randomness of the net-

worked dynamics. For example, in a smart grid system (in our case-study), bk ∈ RN

represents the electricity usages on N nodes at k time-index. Such usages by the users
are random, and thereby will make the whole networked dynamics in Equation (1) ran-
dom. Here, we specify bk by the compositions of the unknown injection amplitude bki

of
size N × 1 with respect to a random injection time (i.e., ki), governed by the Dirac delta
function, i.e.,

bk =
∑

ki∈N+

bki
· δ(k − ki). (2)

In Equation (2), both the injection amplitudes and time are unknown, and may have
different distributions for different dynamic systems. For this work, we do not rely on
the exact distribution of the perturbations, but assume its sparse appearance (e.g., the
contaminant injection into a water distribution network, or the steep variations of the power
usages in an electrical bus system are sparse). As such, the combination of the networked
evolution model F(·) and the random perturbation will provide the dynamic dependency
as well as the randomness to secure the dynamic irrelevant wireless communications, and
is hard to guess by brute force, unless the total underlying network dynamics are hacked.
We will then elaborate how to pursue information encryption and decryption using the
graph layer dynamics.

3. GLS Encryption Using Physical Networked Dynamic

Given the modelling of Equations (1) and (2), the purpose of this work is to encrypt
the wireless communications of any node pair, using the underlying physical dynamics of
the graph layer. The illustration of the GLS is provided by Figure 1. Before the start, the
nodes need to extract their underlying physical dynamics for further encryption and com-
munication process. For any node n to act as the Tx, we encrypt the desirable information
s (a time-series of length L) via the physical networked dynamic on node n, denoted as
Xn,:, i.e.,

s∗ = s + Xn,:, (3)

where s∗ is the encrypted information to be transmitted. As aforementioned, the networked
dynamic Xn,: is the time-varying networked signals under node n (e.g., the electricity
flows of the smart grid system, or a time-varying compound concentrations in the water
distribution network).

After the information encryption using Equation (3) at Tx node, it will then be trans-
mitted and processed via a group of selected relays and their dynamics (e.g., R1 and R2 in
Figure 1b). At the final Rx node, the encrypted information will be received and decrypted.
As such, for the wireless communication between any node pair, i.e., (Tx,Rx) = (n, m), the
idea of encryption and encryption is leveraging the linear dependency of the underlying
physical dynamics in Tx, relays, and Rx nodes, i.e.,

Xn,: +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,: = 0. (4)
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In Equation (4), i1, · · · ir are the selected relay nodes, and α
(m,n)
i is the corresponding

coefficient that will be determined in advance (we will discuss this in Section 3.2). As such,
s∗ can be transmitted via the selected relay nodes i1, · · · , ir, each of which processes the
received information via αi · Xi,:, and transmits the processed information to the next relay.
Finally, Rx node m decrypts the received information via Xm,: and derives the decrypted
information ŝ, i.e.,

ŝ = s∗ +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,:

= s +

⎛⎝Xn,: +
ir∑

i=i1

α
(m,n)
i · Xi,: + Xm,:

⎞⎠
= s.

(5)

+
+
+
+

=

R1

Tx

R2

Rx

Physical networked dynamic 

Decrypted information 

Transmitted information
Tx

Rx

Relays 

Figure 1. Illustration of graph layer security, where the wireless communications between (Tx,Rx)
node pair is secured by the wireless channel-irrelevant physical networked dynamics. The encryption
and decoding are leveraging the linear dependency of networked dynamics. (a) Shows the GLS
schematic flow; (b) presents the illustration of the physical networked dynamic and the linear
dependency among (Tx,Relays,Rx).

From Equations (3)–(5), it is seen that the essence of the proposed GLS is to use the
channel-irrelevant networked dynamics on each node as the additive noise for security
guarantees. Attributed to the dependencies of dynamics on different nodes, such additive
noise can be compensated step-by-step by the corresponding relay nodes and the Rx node,
whereby α(Tx,Rx) = [α(Tx,Rx)

i1
, · · · , α(Tx,Rx)

ir ]T accounts for the dependency coefficients. As
such, to ensure the secure communication between any (Tx,Rx)∈ N 2 node pair, each node i
should save a dependency coefficient matrix of size N × N, in which the (m, n)th element
is α

(m,n)
i representing its contribution to compensate the underlying dynamics of (Tx,Rx)

= (m, n) pair. In the following, we will elaborate an off-line data-driven computation of
the dependency coefficients, which avoids the use of the real-time networked dynamic for
encryption, but is able to capture the networked dynamic dependency from the simulated
training data.

3.1. GLS Secrecy Rate

The secrecy rate of the GLS encryption is the channel capacity subtraction between
legitimate (Tx,Rx) pairs and the wiretap channels. Here, we consider a simplified passive
eavesdropper for secrecy rate computation, where the eavesdropping can only happen
by intercepting the transmitted/received signal at Tx or Rx. Other sophisticated attackers
(e.g., an active attacker) are examined in Section 3.3 and in the simulations.
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Given Equations (3)–(5), the legitimate channel capacity of the (Tx,Rx) communication
node pair can be expressed as:

CTx,Rx = log2

(
1 +

E(s)2

‖XT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)
, (6)

InEquation(6),E(s) accounts for theexpectationof the information. α(Tx,Rx) = [α
(Tx,Rx)
1 , · · · , α(Tx,Rx)

N ]T

is the stacked weight vector of Tx node, selected relays, and Rx node, with zeros for un-
selected nodes. ‖XT · α(Tx,Rx)‖2

F (with the Frobineus norm ‖ · ‖F) therefore represents the
residual energy after the process of Tx, selected relays, and Rx. ‖α(Tx,Rx)‖2

2 · σ2 gives the
weighted variance of the physical measuring noise induced by the dynamic extraction
sensors, whose sampling noise is assumed to follow the Gaussian distribution with zero
mean and variance as σ2.

Similarly, the channel capacity from Tx to an eavesdropper that is proximate at Tx and
Rx can be formulated as follows:

Cj
eav = log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Xj,:‖2

2

⎞⎠, j ∈ {Tx, Rx}. (7)

In Equation (7), we remove the noise component to achieve an upper-bound eavesdrop-
ping channel capacity, which simplifies the following secrecy rate analysis for relay node
selection and their weight computation.

With the help of the legitimate and wiretap channel capacities in Equations (6) and (7),
the secrecy rate is specified as their difference:

RTx,Rx =

[
CTx,Rx − max

j∈{Tx,Rx}
Cj

eav

]+
, (8)

where [x]+ = max(x, 0). Then, we will elaborate how to select the relay nodes and their
weights by maximising the secrecy rate RTx,Rx, in the absence of the networked dynamics X.

3.2. Relay Selection & Weight Computation

To implement the GLS node pair encryption and communication in Equations (4)
and (5), one is required to select the appropriate relays and compute their weights. We
do so by maximising the secrecy rate RTx,Rx formulated in Equation (8). To be specific, for
each (Tx,Rx) communication pair, we compute the optimal weight vector α(Tx,Rx) ∈ RN by
solving the following optimisation problem:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖XT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Xj,:‖2

2

⎞⎠]+
.

(9)

As such, the relay selection is converted to the weight computation problem whereby the
non-zero weights account for the selection of the corresponding nodes.

In Equation (9), two challenges remain. First, the physical dynamic X is unknown, which
makes Equation (9) difficult to solve. Second, the objective function in Equation (9) is non-
concave (for maximisation) with respect to α(Tx,Rx), although the feasible region is convex.
To address the above challenges, we use a data-driven GFT operator as a surrogate matrix
for X, and then transform the non-concave maximisation problem into an approximated
convex optimisation. We elaborate these two in the following.
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3.2.1. GFT Operator-Based Surrogate

Suppose that the physical networked dynamic matrix can be decomposed as X = Γ · X̃

with rank(Γ) = rank(X). Then, if Γ is only related with the dynamic model, and is therefore
invariant with different initialisation cases, such a Γ can be used as the surrogate matrix for
analysing the row (node) dependency of X in Equation (9).

To implement this idea, we adopt the graph spectrum analysis and the concept of
graph-bandlimitedness from [30–35]. Before we start, we give a brief introduction of the
graph Fourier transform (GFT) and the graph-bandlimitedness. Given a GFT operator as
U−1 (typically an orthogonal matrix of size N × N, i.e., U−1 = UT), the processes of GFT
and inverse GFT are specified as follows [30–36]:

x̃ = U−1 · x, (10)

x = U · x̃, (11)

where x of size N × 1 is the graph signal, and x̃ is its graph frequency response. We call x

graph R-bandlimited to the GFT operator U−1, if only the elements of x̃ with rows in the
set R ⊂ {1, · · · , N} are non-zeros.

According to the work in [29], this property holds for a vast variety of the time-varying
networked dynamics in real-world systems, i.e., either the original X:,k or the time difference
X:,k − X:,k−1 are (or can be approximately treated as) graph R-bandlimited to U−1 for all
time indices k. Here, we denote Y as the original graph signal or the corresponding time
difference, i.e.,

Y =

⎧⎪⎪⎨⎪⎪⎩
X X:,kare graph-bandlimited

[X:,k− X:,k−1] with all k
X:,k − X:,k−1are graph-bandlimited

(12)

where the selection is dependent on difference scenarios. As such, by denoting Y = X or
[X:,k − X:,k−1] with all k, a surrogate of Y can be assigned as Γ = U:,R, if Y:,k for all time
indices k are graph R-bandlimited to U−1, i.e.,

Y:,k = U:,R · ỸR,k. (13)

Here, for Y = [X:,k − X:,k−1] with all k, we need to replace the original physical graph signal
X with the corresponding time difference Y in all GLS encryption and further processes,
i.e., Equations (3)–(9).

In Equations (10)–(13), the GFT operator U−1 is typically assigned as the eigenvector
matrix of the graph adjacent matrix denoted as W [30,32], or the graph Laplacian matrix,
computed as L = diag(W · 1) − W [33–35]. Accordingly, the graph-bandlimited set R
is truncated from {1, · · · , N} to concentrate on the low-graph-bandlimited area (e.g., to
minimise xT ·L · x for Laplacian matrix). The problem here lies in the difficulty in measuring
the actual elements in adjacent matrix W (although with the knowledge of the existence
status of each link). To address this, we exploit a data-driven method, as we notice that the
columns of U:,R in Equation (13) are the orthogonal vectors derived from the columns in Y.
As such, we use D groups of training networked dynamics denoted as Y(d), d = 1, · · · , D,
and the GFT operator U−1 can be computed as

U · diag([λ1, · · · , λN ]) · UT =
[
Y
(1)
:,1:L, · · · , Y

(D)
:,1:L

]
·
[
Y
(1)
:,1:L, · · · , Y

(D)
:,1:L

]T
, (14)

where λ1 > · · · λN are the descended-ordered eigenvalues. Then, by measuring the maximal
rank of all the training matrix, i.e, r = maxd=1··· ,D rank(Y(d)

:,1:L), we assign R = {1, · · · , r},
and the surrogate matrix is computed as

Γ = U:,1:r. (15)
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Here, it is noteworthy that for any discrete-time ki with a non-zero input perturbation
bki

�= 0, the GFT-based surrogate Γ may not be able to characterise X:,k = Γ · X̃:,k or X:,k −
X:,k−1 = Γ · (X̃:,k − X̃:,k−1), since the random bki

may not belong to the graph-bandlimited
subspace spanned by the orthogonal columns of Γ. However, given that the injection
perturbation is either sparse (e.g., the contaminant injection of the water distribution
network), or with small magnitudes (e.g., the power usage changes in the electrical bus
system), this will not severely affect the dynamic dependency characterised by the graph-
bandlimited subspace for GLS encryption

3.2.2. Weight Computation

After the derivation of the physical networked dynamic surrogate in Equation (15), we
elaborate the process to approximate the non-concave maximisation problem in Equation (9)
into a convex minimisation form for optimal (sub-optimal) weight computation. By replac-
ing the unknown networked dynamic matrix X with the surrogate matrix Γ, we rewrite
Equation (9) as follows:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Γj,:‖2

2

⎞⎠]+
.

(16)

We firstly remove the operator [·]+, and prove that the optimal value of Equation (16)
is same as that of the following form:

max
α(Tx,Rx)

[
log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

− max
j∈{Tx,Rx}

log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Γj,:‖2

2

⎞⎠]
.

(17)

Suppose L1 and L2 are the optimal values of Equation (16) and Equation (17), respectively.
It is straightforward that L1 ≥ L2, as Equation (16) always takes the maximal value from
Equation (17) and 0. Then, denote α∗ as the solution of Equation (16) corresponding to
the maximal value L1 > 0. The value of Equation (17) at α∗ equalling L1 suggests that the
maximal value of Equation (17), i.e., L2, is no less than L1, i.e., L2 ≥ L1. This, combined
with the aforementioned analysis of L1 ≥ L2, proves that L1 = L2, which validates the
replacement of original objective function in Equation (16) with that of Equation (17).

The problem then is converted to minimise the opposite of Equation (17), i.e.,

min
α(Tx,Rx)

[
− log2

(
1 +

E(s)2

‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2

)

+ max
j∈{Tx,Rx}

log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Γj,:‖2

2

⎞⎠]
.

(18)
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In Equation (18), it is seen that the second term is a convex function with respect to α(Tx,Rx)
j .

We will then make the first term of Equation (18) convex, by introducing a slack variable β.
The objective problem in Equation (18) is converted as:

min
α(Tx,Rx)

β

[
− log2

(
1 +

E(s)2

β

)
+ max

j∈{Tx,Rx}
log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Γj,:‖2

2

⎞⎠]
(19)

s.t. ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2 − β ≤ 0. (20)

In Equation (19), β is assigned as an upper-estimator of ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2,
therefore making the objective function in Equation (19) an upper-estimator of that in
Equation (18). As such, the minimisation problem in Equation (18) can be converted to
minimising its upper-estimator in Equation (19) with the constraint in Equation (20).

Then, it is noteworthy that − log2(1+E(s)2/β) is a concave function with respect to β.
To transform − log2(1 +E(s)2/β) as a convex form, we adopt the first-order Taylor expan-
sion to represent the upper-estimator. As such, the minimisation problem in Equations (19)
and (20) can be approximated by minimising its convex upper-bound with the convex
constraint. Accordingly, an iterative algorithm applying the successive convex optimisation
method can be designed. By assuming a given initial point as βini from the last epoch, the
first-order Taylor expansions of log2(1 +E(s)2/β) at βini are expressed respectively as:

− log2

(
1 +

E(s)2

β

)
≤ − log2

(
1 +

E(s)2

βini

)
+

E(s)2 · (β − βini)

ln 2 · (β2
ini +E(s)2 · βini

) , (21)

With the help of Equation (21), we take it into Equations (19) and (20), and add the l1-
norm of α(Tx,Rx) to constrain the number of selected relays. The approximated convex
optimisation problem is obtained as follows:

min
α(Tx,Rx)

β

[
E(s)2 · (β − βini)

ln 2 · (β2
ini +E(s)2 · βini

) + max
j∈{Tx,Rx}

log2

⎛⎝1 +
E(s)2

‖α
(Tx,Rx)
j · Γj,:‖2

2

⎞⎠+ ‖α(Tx,Rx)‖1

]
(22)

s.t. ‖ΓT · α(Tx,Rx)‖2
F + ‖α(Tx,Rx)‖2

2 · σ2 − β ≤ 0. (23)

3.2.3. Overall Relay Selection Algorithm

After the elaboration of the GFT-based surrogate and the weight computation, we
provide the relay selection algorithm in Algorithm 1. The input is the training data of
the physical networked dynamic for GFT surrogate Γ computation. Step 1 is to compute
the GFT surrogate that will be used for the following weight computation. Step 2 is
the initialisation for the successive convex optimisation method of weight computation.
Steps 3–7 are to pursue the successive convex optimisation, in which the weight vector
α(Tx,Rx) is successively computed by solving the convex problem in Equations (22) and (23).
Then, the output is the computed weight α(Tx,Rx).

It is noteworthy that the proposed relay selection algorithm is in the offline manner.
To be specific, the relay is selected without any knowledge of the real networked dynamics
that will be used for communication encryption, but the dynamic training data from the
simulator that is able to characterise the dependencies of the physical networked dynamics.
In this view, two benefits are given in the following. First, the relays and their weights
can be computed and saved in advance, and do not need to be re-evaluated if the hidden
governing dynamic equations in Equation (1) and the network topology are fixed. As
such, the computational complexity of the relay selection algorithm is trivial, and no delay
will be caused by the algorithm in the securing of wireless communications. Second,
the computations of the relays and their weights do not depend on the real networked
dynamics that will be used for information encryption, which suggests the communication
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security even if the selected relays and their weights are revealed by an active or a passive
attacker. We will discuss this in the following parts.

Algorithm 1 Offline relay selection algorithm

Input: D groups of training data, i.e., Y of networked dynamics.
1: Compute GFT-based dynamic surrogate using Equations (14) and (15).
2: Assign k = 0. Find am initial feasible solution α(Tx,Rx)(0) and an initial slack variable

β(0). Assign Δ(0) = f (α(Tx,Rx)(0)).
3: while Δ(k) > ε do
4: Assign k = k + 1.
5: Update α(Tx,Rx)(k) and β(k) by solving convex problem in Equations (22) and (23)

with initial variables α(Tx,Rx)(k − 1) and β(k − 1).
6: Compute Δ(k) = f (α(Tx,Rx)(k))− f (α(Tx,Rx)(k − 1)).
7: end while
8: Assign α(Tx,Rx)(k) as optimal α(Tx,Rx).

Output: Return α(Tx,Rx).

3.3. Active and Passive Attackers

After the elaboration of the GLS encryption, we discuss two types of the eavesdroppers,
i.e., the passive and active attackers. The essence of our proposed GLS is using the signal
dependency of the underlying networked dynamics to encrypt transmitted information
from eavesdropping. Therefore, here we choose attackers that can either (i) passively
recover the networked dynamics so as to decrypt the information, or (ii) actively destroy
the signal dependency of the networked dynamics so as to impair the encryption process.
Other types of attacks (e.g., spoofing, denial of services) are not within the scope of this
work.

3.3.1. Passive Eavesdropper

In the context of GLS, where the physical networked dynamic is used for encryption, a
passive eavesdropper is defined to intercept the transmitted information without degrading
the physical networked dynamics. In this view, the eavesdropper can (1) intercept only
the transmitted information, or (2) in a more sophisticated way, equip eavesdropping
sensors on parts of the network nodes and try to recover the whole physical networked
dynamic matrix X. The former has been discussed in Equation (9), i.e., the eavesdropper can
intercept the transmitted information at Tx or Rx, and the further optimal relay selection
and weight computation in Equations (22) and (23) can ensure the maximal secrecy rate. We
will show the GLS performance with the eavesdropper that only intercepts the transmitted
information in Section 4.2.

For the latter, the GLS encryption performance will be degraded in terms of how
accurately the eavesdropper recovers the unknown physical networked dynamic X, and
this depends on how many network nodes have been hacked by the eavesdropping sensors.
As such, the goal for this passive eavesdropper is to recover the networked dynamics
and then use the recovered dynamics to decrypt the transmitted information between
legitimate nodes. According to the graph sampling theory [30–35], the prerequisites of this
eavesdropper are to know the data-driven GFT surrogate, Γ, and the weight vector α(Tx,Rx)

for each (Tx,Rx) pair. Then, the eavesdropping process can be divided into the following
three steps.

Step 1: Eve identifies the critical subset of network nodes S ⊂ {1, · · · , N} using the
graph sampling theory, i.e.,

rank(ΓS ,:) = r. (24)

Here, Equation (24) is implemented via a greedy algorithm that minimises the condi-
tion number of ΓS ,: by finding and adding row index to S , i.e., S ← S ∪ {i}, such that
i = argminj∈N\S cond(ΓS+{j},:).
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Step 2: Eve deploys sensors on the selected nodes, i.e., S , and eavesdrops the physical
networked dynamics under these nodes, denoted as XS ,:. Then, Eve can reconstruct the
complete networked dynamics as [30–35]:

X̂ = Γ:,1:r · Γ†
S ,1:r · XS ,:, (25)

which will then be used for decrypting the intercepted information.
Step 3: Eve intercepts the communication data from Tx node, and uses its reconstructed

Tx underlying signals to decrypt the transmitted information.
It is noteworthy that hacking different network nodes for physical networked dynamic

recovery is a strong assumption for eavesdroppers, as they have to know the data-driven
GFT surrogate Γ and the weight vector α(Tx,Rx) for each (Tx,Rx) pair, not to mention how
difficult it is to embed eavesdropping sensors on a number of network nodes without being
detected. We will show the number of nodes being hacked versus the GLS performance in
Section 4.2

3.3.2. Active Attackers

The active attacker in GLS aims to degrade the networked dynamics and their depen-
dencies, which will subsequently deteriorate the GLS encryption that relies on them. The
method is to (1) hack some of the network nodes and (2) frequently inject harmful jamming
inputs from them to the networked dynamical system. Here, different from perturbation
bk in Equation (1), the jamming injection is more frequent and with larger amplitudes. For
example, in the electric bus system, an active attacker can steeply add huge and harmful
power usages at a single or multiple buses, and subsequently affect the whole networked
dynamic (such as rotor speed and angle).

In this view, the GLS performance depends on whether the GFT-based surrogate
matrix Γ is still holding for analysing the linearly dependency of rows (i.e., relay selection
and weight computation) in X. It is straightforward that an increasing rate of jamming
injection will make Γ fail to represent X = ΓX̃, as a large perturbation can be artificially
designed by orthogonal vectors that do not belong to the graph-bandlimited subspace
spanned by the columns of Γ. We will evaluate the GLS performance versus the active
attackers with different injection rates in Section 4.3.

4. Simulations and Results

In the simulation section, the case study is the communications among the nodes
in the smart grid IEEE 39-Bus system. IEEE 39-Bus is a very general network dynamical
system which has been widely used for research such as synchronisation, stability, optimal
sampling, etc. [37–39]. This network is composed of 10 generator buses (nodes) and
29 loaded buses. When there is electricity consumption at some of the loaded buses, the
angular speed under these buses will change from the standard 2π · 60 rad/s, and then the
cascaded effects will make all the angular speeds under all buses changes. In the meantime,
10 generator buses are used to maintain the angular speed back to the standard value,
i.e., 2π · 60 rad/s. These two constitute the time-varying networked dynamics (i.e., the
speed deviations) of the IEEE 39-Bus system. For our GLS work, the goal here is to use the
time-varying speed deviations under buses (nodes) to encrypt the wireless data transmitted
among them. Here, such networked dynamical speed deviations are irrelevant with the
communications (e.g., channels and RSS). For encryption and communication process,
we at first compute the relay nodes and coefficients, i.e., α(Tx,Rx) for any two pairs of
(Tx,Rx) node, using Algorithm 1 in the off-line mode. Then, information is encrypted and
transmitted from Tx using Equation (3), and then passed through and processed by relay
nodes and Rx using Equation (5). It is noteworthy that the relay computation result for this
case study is specific, and will be recomputed for different dynamical models.

165



Sensors 2022, 22, 3951

4.1. Experimental Setting

The IEEE 39-Bus dynamics are configured in the following. Figure 2 illustrates the
network structure with N = 39 nodes, in which i = 30, . . . , 39 are generator buses, and
i = 1, . . . , 29 are load buses.

Figure 2. Network topology of IEEE 39-Bus system, with N = 39 buses (nodes) including 10 generators
(buses 30–39) and 29 load buses (1–29).

The physical dynamic model over the network is expressed by following differential
and algebraic equations (DAEs) [37,40]:

dθi(t)
dt

= Δωi(t) i ∈ {1, . . . , 39} (26)

dΔωi(t)
dt

=
ωs

2Hi
· (Ti(t)− Pi(t)− D · Δωi(t)) i ∈ {30, . . . , 39} (27)

Ti(t) = −
(

KP · Δωi(t) + KI

∫ t

0
Δωi(τ)dτ

)
i ∈ {30, . . . , 39} (28)

Pi(t) =
39∑

j=1

Gi,jcos(θi(t)− θj(t)) + Bi,jsin(θi(t)− θj(t)) i ∈ {30, . . . , 39} (29)

PLi =
39∑

j=1

Gi,jcos(θi(t)− θj(t)) + Bi,jsin(θi(t)− θj(t)) i ∈ {1, . . . , 29}. (30)

In Equations (26)–(30), θi(t) is the phasor’s angle at i bus, and Δωi(t) is the phasor’s
speed deviation (i.e., the difference between actual speed and the standard synchronous
speed ωs = 2π · 60 rad/s). For generator node i (i.e., i = 30, . . . , 39), Hi is the inertia
constant, Ti(t) is the mechanical torque controlling the generator’s speed deviation (with
constants KI and KP), and Pi(t) is the electric air-tap torque affected by the neighbour nodes’
angles. Gi,j and Bi,j are, respectively, the real and imaginary parts of the (i, j)th element of
admittance matrix, which characterises the admittance of power lines between buses. The
aforementioned parameters are assigned according to the work in [37]. In Equation (30),
PLi represents the load under bus i, following a Gaussian distribution with empirical
expectation and variance, which accounts for the dynamical input of the system that affects
the networked dynamics (i.e., the angles and the speed deviation). We also emphasise
here that the aforementioned DAEs are only used for physical dynamic generation, and
are unknown for the encryption and communication processes (e.g., process is data-driven
and model-agnostic).

With the help of the dynamic model, we select the speed deviation as the physical
networked signal for GLS encryption. To be specific, each bus (node) i is equipped with
an IoT sensor (e.g., the phasor measurement unit PMU), aiming at measuring the speed
deviation from time t = 0 to t = 5, by sampling rate Ts = 10−3 s [41] (i.e., discrete-time
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K = 5000). As such, the (i, k)th element of matrix X in Equation (1) is assigned as the
measured ΔΩi(t = k · Ts), with a physical measurement noise (not to be confused with
communication SNR), which is used to encrypt (for Tx), process (for relays), and decrypt
(for Rx) the transmitted information. In this simulation, any pair of nodes are tested as
a transmitter (Tx) and a receiver (Rx). The information is assigned as the discrete on-off
keying (OOK) with length K = 5000. The channels for such communications are wireless
and are independent with the physical networked dynamics.

For attackers, we test the aforementioned passive and active types, respectively. In
the passive mode, we assume the eavesdropper can access part of nodes (e.g., 5%, 10%,
and 25%) and their time-varying electricity phases. Then, the eavesdropper will try to
recover the whole networked dynamics using the steps in Section 3.3.1. In the active mode,
we assume the attacker can inject the jamming perturbations into the nodes in order to
interfere with the dynamic pattern (as is discussed in Section 3.3.2).

4.2. GLS Performance with Passive Eavesdroppers

We at first evaluate the GLS performance with passive eavesdroppers mentioned in
Section 3.3.1. For this experiment, four passive eavesdroppers are considered. The first one
only intercepts the transmitted information without hacking any network node for the phys-
ical networked dynamics. The second to the fourth are considered to hack 5%, 10%, and 25%
network nodes and their underlying physical networked dynamics to recover the whole
dynamic matrix X, via the graph sampling theory in Equation (24). Here, it is noteworthy
that the hacked node set S are not randomly selected, but follow Equation (24), i.e., sat-
isfying rank(ΓS ,:) = r. For example, in IEEE 39-Bus system, |S| = 10 (or |S|/39 ≈ 25%)
selected by the graph sampling theory is S = {1, 2, 6, 10, 20, 21, 23, 25, 28, 33}.

In Figure 3a, we provide the average BERs of legitimate (Tx,Rx) pairs and of eavesdrop-
pers, versus the measurement noise variance (i.e., σ2) of sensors for physical networked
dynamic extraction. We can firstly observe that the BER of the legitimate users becomes
lower (e.g., 10−1 to 10−5) as σ2 decreases (from 10−3 to 10−5). This highlights the security’s
dependency on sensor accuracy (i.e., physical measuring accuracy) rather than the wireless
channel estimation quality or diversity (PLS) or public key security. For sensitive noise
variance (as one expects of good IoT systems), the encrypted communication channel can
achieve a decryption BER of ≈10−5, five orders of magnitude better than the eavesdroppers
(that only intercept the wireless transmitted information). This indicates the encryption
reliability of GLS, which can be ensured solely by a cheap but accurate physical sensor (to
extract and exploit the physical networked dynamics for communication security), as op-
posed to the existing wireless-based encryption (PLS) that requires complex and unreliable
channel estimation techniques.

(a) (b)

(W)

(ra
d/
s)

Figure 3. GLS performance with passive eavesdroppers: (a) Average BER with eavesdroppers
hacking 0% nodes, 5% nodes, 10% nodes, and 25% nodes; (b) recovery RMSEs of physical dynamics
by eavesdroppers hacking 0% nodes, 5% nodes, 10% nodes, and 25% nodes.
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Then, it is seen that with the increase of nodes being hacked by the eavesdroppers,
the eavesdropping BERs decrease. To be specific, the BER of eavesdroppers hacking 0%
nodes (i.e., only intercept transmitted information) is higher than that hacking 5% nodes,
higher than that hacking 10%, and the one with 25% hacked nodes is the lowest. This
is analysed with the help of Figure 3b, where the dynamic recovery RMSEs by eaves-
droppers versus the ratios of their hacked nodes are given, and that when the number of
hacked nodes is larger than 25%, the RMSE converges. This is due to the graph sampling
theory in Equation (24), which indicates that the appropriate node selection satisfying
|S| = r = 10 can guarantee the complete dynamic recovery (r = 10 here is given by the
data characteristic of IEEE 39-Bus with 10 generators). As such, Figure 3b gives the reason
that eavesdroppers with 10/39 ≈ 25% hacked nodes can obtain the whole underlying
dynamic for encryption and therefore achieve successful decryption. However, it is note-
worthy that hacking such a large number of nodes is difficult for the eavesdroppers, as
they have to equip their eavesdropping sensors on every network node they are interested
in without being discovered. As such, our GLS method provides a novel perspective and
security performance for IoT systems, by the utilisation of underlying physical networked
dynamics that are hard to extract by the eavesdroppers.

In Figure 4, we provide the statistical distribution of (Tx,Rx) pairs with respect to
different BER regions, i.e., <10−3, between 10−3 and 10−1, and >10−1. It is seen that the
ratios of (Tx,Rx) pairs belonging to the low BER regions are always larger than those from
the passive eavesdroppers (except for the one hacking 25% network nodes and obtaining
the full physical networked dynamics). For instance, when measurement noise variance
σ2 < 10−4, the ratio of (Tx,Rx) with BER less than 10−3 approaches 1, larger than those
eavesdroppers (i.e., with hacking 0%, 5%, and 10% nodes). This statistical result, combined
with the previous average result in Figure 4, demonstrates the encryption robustness and
reliability of the proposed GLS to secure wireless communications against potential passive
eavesdroppers.

Figure 4. Statistical distribution of all (Tx,Rx) pairs with respect to different levels of BERs with
passive Eves.

4.3. GLS Performance with Active Attackers

We next evaluate the GLS performance against active attackers. As is described in
Section 3.3.2), the active attackers here aim to degrade the dynamic dependency among
network nodes by adding artificial jamming inputs into the network. In the context of the
IEEE 39-Bus system, the jamming inputs are the variations of the power usages at each bus,
following the Gaussian distribution with means equalling the reference power usages at
each bus, and variance as 5 per unit (larger than that of the dynamic perturbation), which
will then affect the underlying dynamics (i.e., the rotor speed deviations) for information
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encryption and decryption. Four active attackers are considered and assigned with different
levels of jamming rates, i.e., 0 s−1, 10 s−1, 100 s−1, 200 s−1, and 500 s−1.

In Figure 5, we provide the average BERs of the legitimate (Tx,Rx) pairs versus the
measurement noise variance (i.e., σ2), under different levels of jamming attacks. It is
firstly seen that the BERs for all levels of jamming rates become lower, as the decrease
of the measurement noise variance σ2. This indicates the GLS reliability that relies on
the measuring accuracy of the physical networked dynamics for information encryption
and decryption. Then, it is observed that with the increase of the jamming rates, the
communication performance becomes worse. For example, at the point σ2 = 3.16 × 10−5,
the BER increases from an order of 10−5 to 10−2 when jamming rate increases from 0 s−1

to 500 s−1. This is because (i) the burst jamming injection degrades the linear-dependant
property of the dynamics among the (Tx, relays, Rx) nodes, and (ii) with such increases of
the jamming inputs, deteriorates the successful decryption rate at Rx.

In Figure 6, we provide the statistical distribution of (Tx,Rx) pairs with respect to
different BER regions, i.e., <10−3, between 10−3 and 10−1, and >10−1), under different
levels of the jamming rate from the active attackers. It is seen that, given the fixed physical
measurement noise variance, with the increases of the attacker’s jamming rate, the ratio of
(Tx,Rx) pairs belonging to the low BER regions decreases. For instance, when measurement
noise variance has an order such as σ2 = 10−5, the ratio of (Tx,Rx) with no jamming
belonging to BER < 10−3 approaches 1, larger than those affected by jamming input (i.e.,
with jamming rate 10 s−1, 100 s−1, 200 s−1 and 500 s−1). Nevertheless, with medium
jamming rates and sensitive physical measurement noise regions, as is depicted in Figure 6
(i.e., jamming rate <=100 s−1 and σ2 <= 10−4), the proposed GLS can still approach
the 7 overhead hard-decision FEC limit (i.e., BER ≈ 4.5 × 10−3) [42], indicating an error-
free BER performance with proper FEC codes. This statistical result, combined with
the previous average result in Figure 5, demonstrates the encryption robustness and
reliability of the proposed GLS to secure wireless communications against potential active
attackers. It is also noteworthy that the results, although from the networked dynamics
of the IEEE 39-Bus system, are able to show the general applicability of our GLS scheme
for securing other IoT systems with correlated underlying networked dynamics, as the
encryption steps/algorithm are irrelevant with the specific IEEE 39-Bus dynamic model,
i.e., Equations (26)–(30).

(W)

Figure 5. GLS performance with active attackers: Average BER versus physical measurement noise
with different levels of jamming rate.
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Figure 6. Statistical distribution of all (Tx,Rx) pairs with respect to different levels of BERs with active
attackers.

4.4. Comparison with Current PLS

We next compare our proposed GLS with current PLS. From a conceptual perspective,
the idea of our GLS is to use the underlying networked dynamics to encrypt the transmitted
information between Alice and Bob in the IoT scenarios. This is totally different with the
current PLS, which relies on the communication channels (e.g., superiority or common
feature). As such, we only provide conceptual comparisons other than experimental results,
and three aspects are given in the following:

(1) PLS uses the communication channel itself for encryption/security, but our GLS
leverages the networked dynamics that are totally irrelevant with the communication
aspects (e.g., channels, RSS). The networked dynamics can be the electricity flows in a
smart grid system (as what we used in simulations), or the water pressures in a water
distribution network.

(2) As described, the usage of our GLS requires an IoT with underlying networked
dynamics (e.g., communications of two nodes in one smart grid network, or communica-
tions of two water junctions in one water distribution network). This is different from PLS,
whereby any two legitimate users can have encrypted communications if the small-scale
fading (randomness) of their channel is enough.

(3) From attacker aspects, our GLS can be eavesdropped only if an eavesdropper can
reconstruct the networked dynamics under all IoT nodes, or any attackers can destroy the
GLS encryption by changing the dynamic pattern (e.g., the correlations of the dynamic
signals on different nodes). This is different from the attackers considered in PLS, which
try to either reconstruct the common channel feature for SKG, or weaken the superiority of
legitimate channels.

5. Conclusions

Graph layer security (GLS) is proposed for the first time here, as a way to secure the
wireless communication information via the wireless channel-irrelevant networked domain
physical dynamics. Our approach is premised on the exploration of the dependencies of
nonlinear physical networked dynamics among the network nodes for encryption and
decryption. The advantage of this approach, as described and demonstrated, is to rely
solely on the IoT sensors’ accuracy in measuring the physical dynamics X (e.g., water
flow rate, contamination, gas pressure, voltage) of a networked system. Over the past
few decades, we have developed cheap and accurate sensors. Therefore, encrypting the
wireless information by exploiting this accuracy makes sense compared to continuously
and accurately estimating the wireless environment in PLS, which remains challenging for
small IoT devices.
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The challenge with GLS is to develop representative GFT operators that can charac-
terise the dynamic dependency into a feasible graph-bandlimited subspace, so that the
(Tx,Rx) communication node pair can use such dependent channel-irrelevant dynamic to
encrypt their transmitted information. This is especially hard for those that involve PDEs.
Our prior work in sparse sensing of water distribution networks has shown that GSP can
be applied successfully to Navier–Stokes PDEs in water distribution networks [4]. The
generality of this data-driven approach is strong as it does not require knowledge of the
underlying physical dynamic model, and, indeed, many real-world systems do not have
one, or involve couplings between ODEs and PDEs (e.g., electricity grid connected to a
thermo energy storage).

Then, leveraging the GFT operator, encryption and decryption schemes were designed
by maximising the GLS secrecy rate. The simulation results demonstrate both the robust-
ness and the reliability of the proposed GLS, combating both the passive eavesdroppers
and the active attackers, which suggests its widespread applicability in secure wireless
communications over IoT systems, especially for the challenging radio environments and
computational resource scarcity scenarios where traditional cryptography and PLS are less
attractive. Here, one problem lies in the relay mechanism in our GLS method, which may
cause delay for information transmission and may increase the rate of interception by more
sophisticated eavesdroppers. The reason lies in the exploitation of solely the linear dynamic
dependency. In our future work, we will study how to extract and utilise the higher-order
dynamic dependency for point-to-point wireless communications over IoT systems.
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Abstract: Most of the current malware detection methods running on Android are based on signature
and cloud technologies leading to poor protection against new types of malware. Deep learning
techniques take Android malware detection to a new level. Still, most deep learning-based Android
malware detection methods are too inefficient or even unworkable on Android devices due to their
high resource consumption. Therefore, this paper proposes MSFDroid, a lightweight multi-source
fast Android malware detection model, which uses information from the internal files of the Android
application package in several dimensions to build base models for ensemble learning. Meanwhile,
this paper proposes an adaptive soft voting method by dynamically adjusting the weights of each base
model to overcome the noise generated by traditional soft voting and thus improves the performance.
It also proposes adaptive shrinkage convolutional unit that can dynamically adjust the convolutional
kernel’s weight and the activation function’s threshold to improve the expressiveness of the CNN.
The proposed method is tested on public datasets and on several real devices. The experimental
results show that it achieves a better trade-off between performance and efficiency by significantly
improving the detection speed while achieving a comparable performance compared to other deep
learning methods.

Keywords: android malware dectection; multi-source; lightweight model; deep learning; ensemble
learning

1. Introduction

1.1. Background

According to the “2020 Android Platform Security Situation Analysis Report” released
by Qi’anxin Threat Intelligence Center [1], Qi’anxin Threat Intelligence Center intercepted
a total of 2.3 million new malicious program samples on the Android platform in 2020
with an average of 6,301 new malicious program samples intercepted every day. Among
them, the malicious deduction category accounted for 34.9%, the toll consumption category
accounted for 24.2%, the rogue behaviour category accounted for 22.8%, the privacy theft
category accounted for 12.3%, the lure fraud category accounted for 4.3%, and the remote
control category accounted for 1.5%. From a global perspective, the security governance of
the mobile Internet is relatively weak, especially the Internet banking theft Trojan horse
virus is still widespread, showing a wide variety of types, methods and other characteristics,
the threat to user property is serious. Internet banking Trojan horse virus often disguised
as other applications to lure users into downloading and installing. Monitoring shows that
Chrome (23.7%), Sagawa Express (8.2%, a famous Japanese courier application) and Flash
Player (4.7%) are the applications with the highest number of counterfeits. Analysis of
the attack techniques revealed that hacker groups mainly stole users’ bank card credential
information in the following four ways: first, using phishing pages, such as pop-up bank
card binding pages to trick users into entering their bank card credentials; second, spoofing
bank APPs, disguising Trojan horse programs as legitimate Internet banking APPs to steal
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users’ Internet banking information; third, pop-up phishing pages to cover bank APPs,
where the attacker hides the Trojan horse program in the background of the phone. The
Trojan hides in the background of the cell phone, and once the Internet banking starts, a
phishing page will pop up to cover the original Internet banking page to trick users into
entering their bank card credentials for theft; fourth, using accessibility services, after the
Trojan starts, the user is asked to open the accessibility services provided by Android for
people with disabilities to listen to the user’s use of the banking APP, and the Trojan also
records keyboard input information to steal bank card credentials. The Trojan also records
keystrokes to steal bank card credentials. With the emergence of the Internet of Things,
more and more IoT devices are equipped with Android. IoT devices’ overall security
protection and security management ability is far less than smartphones. Therefore, IoT
devices have become a new target for many blackmail gangs. The old mining family
AdbMiner is more active in targeting IoT devices. The Trojan continues to infect insecure
IoT devices through specific ports to implement mining for revenue, so the security research
for the Android system must consider IoT devices.

1.2. Motivation

Android has become the most popular operating system for smart mobile devices
since its release in 2008. According to Statista, Android retained its position as the world’s
leading mobile operating system in June 2021, controlling the mobile operating system
market with a 73% share. Google’s Android and Apple’s iOS together have more than 99
percent of the global market share [2]. However, due to various factors such as the open
ecological model of Android, coarse-grained permission management, and the ability to call
third-party code, many security attack surfaces have emerged, which seriously threaten the
security of Android [3]. At present, while most of the current malware detection services
for the Android platform need to be supported by cloud technology and a vast virus
database established by authoritative security agencies, and such solutions are mostly on
server side for app markets. In addition to the official Google Play, a large number of users
will use third-party application markets such as Amazon App Store, GetJar, Mobogenie
Market, etc., and these different application markets have different censorship of the
applications on the shelves, when a new family of Android malware is reported, not all
app marketplaces are able to respond within the response time. At the same time, there
are also some users will choose to download applications from some third-party websites,
the security of which cannot be guaranteed. Fingerprint databases that rely on hashing
and cloud technologies are inefficient in coping with the huge number of new applications
generated every day, and as with traditional methods such as signature-based malware
detection (based on identifying specific patterns of known malware), malware can easily
change its fingerprints to bypass such detection methods [4]. Instead of relying on a fixed
fingerprint, artificial intelligence based technology Android malware detection method use
machine learning or deep learning algorithms to automatically extract the most appropriate
features and combinations of features to determine whether an Android application is
a malware according to a pre-designed objective function. A large number of current
research on Android malware detection based on artificial intelligence technology focuses
on accuracy, and various complex models are designed to achieve accurate detection, but
these models are too complex to achieve efficient detection on the user’s Android devices.
Currently, most malware detection tools running on the Android platform are implemented
by comparing signatures through cloud technology or by uploading software installation
packages to a server for detection, however, the traditional server-side based malware
detection surely has unignorable drawbacks when detecting such apps, because (1) it is
a time-consuming task to upload the apps to server before the installation, especially for
large apps; (2) the uploading process via the Internet is not secure. For example, attackers
may modify the malware during the uploading period such that an incorrect “benign”
result is returned [5]. Therefore, a last line of defense on mobile devices is necessary and
much-needed, it is necessary to propose a method that does not rely on fingerprints or
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cloud technologies but rather an offline algorithm to efficiently discriminate malware before
it is installed and run.

1.3. Our Works

To solve the above problems, we designed a lightweight and fast machine learning
model. We used a computational server to complete the training of the model, and finally
deployed the trained model to Android mobile devices. Experimental results showed that
our model achieved efficiency while achieving considerable accuracy. In summary, our
main contributions are as follows.

• We propose a multi-source approach for Android malware detection which uses
multiple files in an Android application package. It extracts relevant features contained
in the files from multiple dimensions, such as information in the file headers and the
power spectral density of the structural entropy of the executable file, which makes
the extraction of features more comprehensive.

• We studied the information in each field of the header of DEX files and found some
key features in the DEX file header that can be used for malware detection. Therefore,
a DEX header parser is proposed to extract key features from the DEX file header.

• We propose an adaptive shrinkage convolutional neural network, which can dynam-
ically adjust the convolutional kernel weights and activation function thresholds
through an attention mechanism, making the convolutional network with denoising
ability while improving the expressiveness of the neural network model.

• We propose a new adaptive soft voting method, which can dynamically change the
weight of each base model during the training process, overcoming the noise generated
by the traditional soft voting due to the large performance gap and jitter of the base
models, while significantly improving the performance of soft voting.

2. Related Work

The sandbox mechanism of Android makes it more challenging to monitor the dy-
namic behaviour of applications in non-custom systems. Many methods have been pro-
posed for Android malware detection in many previous studies. Most of the traditional
anti-virus techniques based on signature detection methods can detect known malware
quickly and effectively, signature-based detection is mainly achieved by extracting signa-
tures from malware and building malware libraries, but some malware can be hidden in the
system by using different obfuscation and disguise techniques to the extent that it cannot
detect unknown malware [6]. Machine learning algorithms usually have less than three
layers of computational units and limited computational power to process raw data [7].
As a result, the performance of machine learning models relies heavily on the features
extracted, and malware producers can bypass trained machine learning models by continu-
ously updating their fraudulent techniques to harm users and companies. In the face of
the increasing difficulty of Android malware detection, it is not easy to build a robust and
transparent detection model or system through traditional machine learning techniques [8].
While deep learning is one of the mainstream algorithms in recent years, feature extraction
by deep learning methods differs from conventional machine learning techniques. Deep
learning can learn feature representations from the raw input data without requiring much
prior knowledge. In addition, its ability to detect previously undetected types of malware
based on identifying specific patterns of known malware can provide better performance in
terms of detection efficiency and effectiveness, which is the key advantage of deep learning.

Techniques such as machine learning and deep learning are combined with program
analysis techniques to infer the behavioral properties of applications. In the following, we
will focus on two categories of program analysis techniques for the Android platform, static
analysis and dynamic analysis, to discuss the related work and analyze the characteristics
of these two categories of program analysis techniques.
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2.1. Static Analysis

Static analysis is widely used for Android malware detection. The code is examined
without execution, and the results are generated by analyzing the code structure, the
sequence of statements, and how variable values are handled in different function calls.
An example is the AndroidManifest.xml file, which describes the permissions, API calls,
package names, referenced libraries, and application components. Another one is the
classes.dex file contains all Android classes compiled into dex file format [9]. Some static
methods can represent the analyzed application code as abstract models such as opcodes in
the form of n-grams or other information about the program such as metadata (application
description, application ratings, number of application downloads) depending on the
purpose of the study, which can be collected from other perspectives for static analysis [3].
Daniel et al. [10] proposed Drebin, a lightweight mathod for Android malware detection
that enabled identifying malicious applications directly on smartphone, Drebin performs
a broad static analysis, gathering features and embedding them in a joint vector space,
finally, the features were classified by support vector machines, achieving 94% accuracy.
Zachariah et al. [11] looked at three aspects of static analysis (i.e., signature-based detection,
permission-based detection and Dalvik bytecode detection), proposed methods for An-
droid malware detection, and discussed the advantages and limitations of these methods.
HybriDroid [12] extracted permissions, API calls, the number of users downloading the
application and the rating of the application, and built a malware detection model using a
nonlinear integrated decision tree forest (NDTF) approach with a detection rate of 98.8%.
Xusheng et al. [13] used seven feature selection algorithms to select permissions, API calls,
and opcodes, and then merged the results of each feature selection algorithm to obtain a
new feature set. subsequently, they used this to train the base learner, and set the logical
regression as a meta-classifier to learn the implicit information from the output of base
learners and obtain the classification results and the F1-Score reached 96%. Although
static analysis has some problems resisting malicious deformation techniques such as java
reflection and dynamic code loading, static analysis is not only scalable and usable when
facing batch unknown APKs detection, but also can traverse all possible execution paths of
the APKs [14]. Moreover, static analysis can detect malware quickly and prohibit malware
before installation, which is one of the key factors that will enable us to achieve our goals.
so it is essential to use static analysis in Android malware detection.

2.2. Dynamic Analysis

Dynamic analysis techniques focus on runtime monitoring and profiling applications
to obtain multiple behavioral characteristics and enable efficient malware detection. The
dynamic analysis approach is used in a controlled environment to detect the application’s
behavior. Automatic dynamic analysis of Android applications requires user-simulated
input event streams, such as touch, gestures, or clicks, to achieve more excellent code
coverage when running in an emulator or on an actual phone [15]. The main objects of
dynamic analysis include network traffic, battery usage, CPU utilization, IP addresses,
and opcodes. One type of dynamic analysis relies on the Dalvik runtime or ART runtime
to obtain the same level of privileges as the Android application, which usually requires
modifications to the Android OS or the Dalvik virtual machine. Another type of dynamic
analysis typically uses Android Virtual Devices (AVDs), emulators (Genymotion), or in real
devices for data collection and analysis and achieves higher security through isolation [9].
Bläsing et al. [16] proposed a sophisticated kernel space sandbox that automatically executes
applications without human interaction and saves system calls and logs. IntelliDroid [17]
presented two input generation and injection techniques that iteratively detect event chains
and compute the appropriate injected inputs and the injection order to enable them to
trigger a broader code path. Dixon et al. [18] proposed a power-aware malware detection
framework based on the method [19] that collects power samples and constructs power
consumption based on the collected samples’ history and generates success rate signatures
based on the constructed history using noise filtering and data compression methods. The
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Andromaly framework [20] proposed a dynamic feature-based classification framework.
The framework consists of a host-based malware detection system capable of monitoring
features (i.e., CPU consumption, number of packets sent over the network, number of
running processes, and battery power) and events obtained from the mobile device during
execution. Dynamic analysis solves the problems that static analysis faces concerning
malware code obfuscation and insufficient detection of dynamic code loading means. Still,
it is pretty time-consuming and does not meet the light and fast detection of malware needs.
Moreover, our system is running on the user’s Android device, and dynamic analysis
requires running programs. If dynamic analysis is performed on the user’s device, the
user’s device is already threatened by malware before the analysis is completed, which is
unacceptable. Therefore dynamic analysis is not applicable to our approach.

2.3. Hybrid Analysis

Many types of malware have the ability to differentiate between environments, which
makes dynamics-only analysis much less reliable [21]. Hybrid analytics can be produced
by combining static and dynamic analytics. It is a method or technique that integrates
run-time data obtained from dynamic analysis with static analysis algorithms used to detect
malicious behavior or suspicious functionality, which can compensate for the shortcomings
of static and dynamic analysis. Arora et al. [22] proposed a mechanism to detect Android
malware from permissions and functions based on network traffic. In this method, permis-
sion and network traffic characteristics are used in FP growth algorithm to detect malicious
behavior. AspectDroid [23] performs static bytecode inspection at the application level
and does not require any specific support from the operating system or the Dalvik virtual
machine. It monitors the code at compile time using a set of predefined security questions.
The target application is then executed on any Android platform of choice and its behavior
patterns are dynamically monitored and documented. SamaDroid [24] is a hybrid malware
detection model for Android devices. SamaDroid works in two steps. In the first step, static
functions are extracted from the source code, such as requested hardware components,
requested permissions, used permissions, application components, intention filters and
suspicious and restricted API calls, and dynamic functions are collected after execution,
such as files generated by the application and network related system calls, such as opening,
reading, etc. In the second stage, these static and dynamic features are preprocessed and
used as the input of two different machine learning classifiers (such as SVM) to identify
whether the application is malware. If the results of static and dynamic analysis are mali-
cious, the application will be regarded as malware. Ahmed et al. [25] proposed a hybrid
approach that examined permissions, text and network-based features both statically and
dynamically by monitoring memory usage, system call logs and CPU usage, finally, stacked
ensemble learning is used to make predictions. Hybrid analysis greatly compensates for the
shortcomings of static and dynamic analysis, making the detection effect further improved.
However, hybrid analysis also brings a problem that it takes more time than using only
static or dynamic analysis. In addition, since dynamic analysis is a part of hybrid analysis,
hybrid analysis is not adopted by our method.

3. A Lightweight Multi-Source Fast Android Malware Detection Model

To achieve lightweight and fast Android malware detection, we propose a detection
method by combining power spectral density, file headers of Dalvik virtual machine
executables, and Intent and Permission call features in Android manifest files. Our method
is divided into two parts, feature extraction, and classification. The following paper
describes the feature extraction scheme, the ensemble model and the base model for each
feature in several aspects.

3.1. Android Application Structure and Its Feature Selection and Feature Extraction Scheme

As shown in Figure 1, Android application package is a ZIP file with the extension
.apk, which contains all the contents of the Android application. Assets stores the static
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resource files required by the application, such as images, etc. The resources files in the res
directory are compiled into binary to generate the corresponding index IDs in the R.java
file. lib directory stores the library files written in C/C++. META-INF stores the signature
information of the application, which will be checked before installing the application to
ensure the integrity and security of the Android application package. resources.arsc file is
used to record the correspondence between the resource files and IDs in the res directory.
This model mainly uses the classes.dex and AndroidManifest.xml files.

Figure 1. The Android application package with the file extension apk is a container file in which all
parts of the Android application are packaged.

classes.dex is an executable file for the Android Runtime (ART) and Dalvik virtual
machines. The compact Dalvik executable format is designed to work on limited memory
and processor speed systems.

classes.dex is essentially all the program logic of an Android application, given that
Android applications are typically written in Java and compiled to bytecode by the dx tool.
The Java compiler compiles all Java source files to Java bytecode (.class files), and then the
dx tool converts them from Java bytecode to Dalvik-compatible bytecode Dex files. The
dx tool eliminates the redundant information present in classes, and in dex files, all .class
files are wrapped into one file, merging the .class header information and sharing a pool of
constants and indexes as in Figure 2. As a result, the vast majority of the code logic of an
Android application is contained in the classes.dex file.

Mobile apps frequently request access to sensitive information, such as unique device
ID, location data, and contact lists. Android currently requires developers to declare what
permissions an app uses [26]. AndroidManifest.xml is the manifest file of the Android
application, which describes each component of the application and defines the manifes-
tation of the component such as component name, theme, launch type, operation of the
component, launch intent, etc. The manifest file also declares the application properties
and permission information.
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Figure 2. The structure of a Dalvik executable.

In summary, the classes.dex and AndroidManifest.xml files contain most of the features
of Android applications, so this paper ignores the other files in the APK file and only takes
the classes.dex file and AndroidManifest.xml file to extract the features.

3.2. Ensemble Model and Base Models

Based on the above, we propose a model to detect Android malware by Dex file
header information, power spectrum density information of dex file structure entropy, and
permission and intent information in the AndroidManifest.xml file. The structure of the
model is shown in Figure 3, this model is divided into four base models and one ensemble
learning model.

Figure 3. The structure of the lightweight multi-source fast Android malware detection model. This
model takes the classes.dex and AndroidManifest.xml files in the APK sample as input, followed
by feature selection and feature extraction of these two files. The extracted features are predicted by
4 different base models, these base models are integrated by adaptive soft voting method, and finally
the probability of the sample being malicious is output.
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Specifically, we used the following base models.

• Base model 1 : Abbreviated as MLP(H). It extract and parse the header information
of the classes.dex file, encode it as header features, and use the multilayer perceptron
for prediction;

• Base model 2: Abbreviated as MLP(P). It calculate the entropy of the classses.dex file,
extract the power spectral density of the entropy signal as features by the maximum
entropy method, and use the multilayer perceptron for prediction as well;

• Base model 3: Abbreviated as ASCNN(I). perform the prediction on the AndroidMan-
ifest.xml file is decoded and parsed. Permission and intent keywords are extracted
and encoded as features by bag-of-words model. Since the dimensionality is too high,
we use adaptive shrinkage convolutional neural network for dimensionality reduction
and then prediction by multilayer perceptron;

• Base model 4: Abbreviated as ASCNN(C). Since theoretically using more base models
for ensemble learning will give better results. To improve the ensemble learning, we
additionally added a base model that concatenate the features extracted from the DEX
file header and the permission and intent features and uses an adaptive shrinkage
convolutional neural network and a multilayer perceptron for prediction.

Finally, we use the adaptive soft voting method to perform ensemble learning and
predict the final results.

3.3. Base Model for Identifying Android Malware by Dex Header

Since the Dex files of different Android applications have different sizes, and some Dex
files have large sizes, scanning the entire dex file for all data can be quite time-consuming. A
malware detection tool proposed by Zubair et al. for extracting features from PEs completed
a single scan of all features in the dataset with a detection rate of over 99% [27]; however,
they scanned the entire contents of the PE file, which took nearly an hour. Therefore, we
elicit an approach to distinguish malicious and benign applications based only on the
header information. Dex headers hold meta-information about a dex file, such as the size
and offset information of each index area within the dex, which describes the summary
structure of a dex file. In this paper,We analyzed and compared the values of some fields in
the dex file header of the dataset malware and benign software samples and presented them
by data visualization as shown in Figure 4, we found that malware and benign software
have large differences in the distribution of the values of these fields, so we considered
that using header information for Android malware classification is effective, while we
confirmed this in our experiments.

The above analysis shows significant differences between malware and benign soft-
ware in the values of several fields in the Dex header. Thus we extract malware features
based on the Dex header to discriminate the base model of malware.

The Dex file header parser reads the basic section of the Dex header based on the
definition of the dex structure in dalvik/libdex/DexFile.h in the Android source code.
First, it determines whether it is a valid dex file by checking the Dex magic number field,
which the first 8 bytes of the dex file, represented by eight 1-byte unsigned numbers. Its
value is a combination of the dex string and the file version number combination, such as
“64 65 78 0A 30 33 35 00”, using the ASCII table for conversion to get “dex\n\035\0”,
where the version number is used for the system to identify and parse different versions of
the format of The version number is used to provide support for the system to recognize
and parse Dex files with different version formats. After judging the legitimate dex file by
checking, parse it according to the definition of DexHeader structure in DexFile.h, and get
all the fields in the structure. The size and offset information of the parsed file signature,
link segment, mapping item, type identifier, string identifier, prototype identifier, etc., are
encoded in hexadecimal and normalized to obtain a one-dimensional gray matrix is the
feature extracted from the dex header.
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(a) link_off (b) link_size (c) type_ids_size

(d) proto_ids_size (e) method_ids_size (f) map_off

Figure 4. Distribution of values in the header of malware and benign software files.

3.4. Base Model for Identifying Android Malware by Power Spectral Density of Structural Entropy
of Dex File

Entropy measures the randomness or uncertainty of a variable. Shannon relates
information to uncertainty; if one can measure the uncertainty of a thing, then one can also
measure the amount of information in a given piece of information.

Shannon entropy formula is expressed as Equation (1):

H(X) = −
n

∑
i=1

P(xi) log P(xi) (1)

where H(X) is the entropy of the variable X, ∑ defines the sum of the possible values xi of
the variable X, and P(xi) is the probability of occurrence of the possible outcomes xi of the
variable X, where i represents the number of outcomes, varying between 1 and n.

Malware of the same type usually has similar malicious code segments, which are
compiled and eventually reflected in the binary data stream of the Dex file. Therefore,
these malicious code fluctuations will also react to the entropy sequence obtained from
the binary data stream chunking calculation. The binary stream of the classes.dex file is
subjected to the information measure to obtain the entropy sequence. Many scholars have
detected the malware based on the entropy features. Wojnowicz et al. [28] proposed a
method for the detection of parasitic malware based on the entropy features and achieved
good performance. Liu et al. [29] extracted the entropy sequence of malicious documents
and detected the malware based on the machine learning algorithms.

Unlike previous studies, we use structural entropy for the detection against classes.dex
files, and also because the size of the classes.dex file of different Android programs is
inconsistent. The length of the received entropy sequence is also varying. So we use
the power spectral density method to calculate the power spectral density of the entropy
sequence to quickly obtain the fixed-length features for machine learning.
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The power spectral density of a signal (Power Spectral Density) describes the power
present in a signal as a function of frequency per unit. The calculation methods of power
spectrum mainly include the fast Fourier transform method, Welch method, multi-window
method, maximum entropy method, etc. The first three belong to the periodogram method.
Since the periodogram method is a method to estimate the finite length autocorrelation of
the signal, it requires truncation or windowing of the signal sequence so that the estimated
power spectrum is the convolution of the true spectrum of the signal sequence and the win-
dow spectrum, so its ability to produce accurate power spectrum estimates is limited [30],
which is why we use the maximum entropy method to calculate the power spectral density
P( f ) [31], which is expressed as Equation (2):

P( f ) =
Pm�t

|1 + ∑m
k=0 γm,kexp(−i2π f k�t)|2 (2)

where P(m) is the output power of the filter at the fluctuation period of the mth order, γm,k
is the filter coefficient when m = 0, 1, . . . , M, and M is the corresponding filter coefficient at
the optimal filter order, and Pm and γm,k are obtained by solving the Yule-Walker equation
through Burg method [32,33].

We randomly selected a benign sample and a malware sample and calculated the
structural entropy sequences of the binary streams of their Dex files and power spectral
densities of the entropy sequences, which we abbreviate as MEM-PSD, as shown in Figure 5,
from which we can learn that different lengths of structural entropy sequences can be
calculated for a fixed-length power spectral density.

(a) Structural entropy of a benign sample (b) Structural entropy of a malware sample

(c) MEM-PSD of a benign sample (d) MEM-PSD of a malware sample

Figure 5. Distribution of structural entropy and MEM-PSD of benign software samples and malware
samples.

We take the byte stream of classes.dex as a time series, divide the sequence with a
block size of 256 bytes, and then construct a structural entropy sequence according to
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Algorithm 1. We compute the power spectral density of the structural entropy sequence
to obtain a power spectral sequence of length 128 as a feature vector. This feature vector
is used as input and the multilayer perceptron is used as a classifier to construct this
base model.

Algorithm 1: Calculate the structural entropy sequences using Shannon entropy
Input: byte sequence Sb, block size bs
Output: structural entropy sequence SH

1 Lsb = Length of Sb;
2 Le f t = Lsb mod bs;
3 if Le f t < bs/2 then

4 Truncate the end of Sb by the length Le f t;
5 else if Le f t > bs/2 then

6 Pad the end of Sb with an all-zero sequence of length bs − Le f t;
7 end

8 X = Reshape Sb to a 2D matrix of size (Lsb|256 + 1256);
9 Initialize a one-dimensional array SH ;

10 for Row in first dimension of X do

11 Calculate the number of occurrences of each value in Row and assign the result
to C;

12 P = C/bs;
13 Filter out the elements of P equal to 0;
14 H = ShannonEntropy(P);
15 SH=Append H to SH ;
16 end

3.5. Base Model for Identifying Android Malware by Permission and Intent

Permission control is a key problem in the security of the Android operating system.
Android permissions enforce the restrictions on the specific operation to offer concrete
security features [34].

The AndroidManifest.xml holds information about the application structure and
is organized in the form of Components. Android Framework defines four kinds of
Components, namely Activity, Service, Broadcast Receiver, and Content Provider. The
manifest file also contains the list of permissions which are requested by the application to
work and needed to access its components [35].

Usually, AndroidManifest.xml is encrypted, we extract the application permissions
usage, components, and intent by decrypting the file into a legal XML document and
parsing it. The extracted information is used to construct a feature vector.

As shown in Figure 6, malicious applications make intensive use of some specific
permissions. They are more homogeneous in their functionality than general applica-
tions, requiring only a combination of specific permissions. The analysis shows that this
information in the manifest file plays a crucial role in determining the type of application.

Since the set of permission and intent keywords is small, we use a sparse expression
to reduce the model complexity, using the idea of the Bag of word model, which treats
the occurrence of each permission and intent keyword as an independent probability. All
permissions and intentions of the dataset are extracted and filtered to sieve out keywords
with frequencies less than 2, constituting a lexicon containing N keywords. The keywords
are removed from the list file of each application and encoded using Bag of Word model.
UNK replaces the keywords not in the dictionary to form an N + 1-dimensional feature
vector. Since the dimensionality of the bag-of-words vector is equal to that of the dictionary
(the number of words in the dictionary), the bag-of-words vector is also sparse, with often
only a few tens or hundreds of non-zero items in thousands or even tens of thousands
of dimensions. In our model, we designed a dictionary of size 4380. If we directly use a

185



Appl. Sci. 2022, 12, 5394

multilayer perceptron to predict this feature, we will generate a large number of redundant
parameters, which will greatly increase the size of our model, so we use a convolutional
network to further extract and optimize the feature, and at the same time reduce its
dimensionality so that the classifier can classify it quickly. We constructed a shallow
convolutional network using three layers of adaptive shrinkage convolution as shown in
Figure 7. This network finally outputs 128-dimensional feature vectors, which are finally
classified by a multilayer perceptron. Next, we explain the adaptive systolic convolution
unit in detail in the next subsection.

Figure 6. Statistics of permissions and intent used by benign software samples versus malware samples.

Figure 7. Convolutional network structure and feature dimension.

3.6. Adaptive Shrinkage Convolution Unit

For many Android malware applications, malicious code fragments are mixed into a
large number of normal code fragments. As a result, many noises unrelated to malicious
code fragments appear in the extracted features. The features need to be noise-reduced
to improve the feature learning ability to address this problem. The classical wavelet
threshold noise reduction method consists of three main steps: wavelet decomposition, soft
thresholding, and wavelet reconstruction; in this noise reduction method, it is a challenging
problem to construct a suitable filter operator to set a reasonable soft threshold. An adaptive
shrinkage convolution unit is proposed in this paper to solve this problem, its specific
structure is shown in Figure 8.
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Figure 8. Adaptive shrinkage convolution unit structure.

The convolutional layer is used to compute the output feature mapping by convolving
the feature mapping of the previous layer with a set of filters. These filters are the only
parameters of the convolutional layer and are usually learned in training by a backpropaga-
tion algorithm. This model makes two main improvements on the traditional convolutional
layer, which uses convolutional kernels (filters) learned in training and kept constant in
testing. In contrast, our model uses convolutional kernels that change during testing as
the input varies. This is achieved by learning the kernel functions that map the inputs to
the convolutional kernels through an attention mechanism. Meanwhile, the key of feature
learning method is not only to extract the target information related to the labels, but it
is also important to eliminate irrelevant information, so it is important to introduce soft
thresholding inside the deep neural network to adaptively eliminate redundant information
during the feature learning process and improve the learning of useful features. More
importantly, each sample should have a different threshold value. This is because a sample
set often contains many samples, and the amount of noise contained in these samples is
often different. In deep learning algorithms, the size of the threshold cannot be interpreted
because these features have no clear physical meaning, but the reasoning is similar, each
sample should have a different threshold, so this model also uses the attention mechanism
to learn to map the input to the threshold of the soft-threshold activation function.

The model representation for each convolutional layer is enhanced by superimposing
convolutional kernels nonlinearly according to attention by the dynamic convolution [36,37]
method. Let the traditional static convolution be represented as y = g(WT(x)x + b), where
W and b are the weight matrix and bias vector, and g is an activation function, and define
the dynamic convolution by aggregating multiple (K) linear functions W̃T

k x + b̃k as in
Equations (3)–(5):

y = g(W̃T(x)x + b̃(x)) (3)

W̃(x) =
K

∑
k=1

πk(x)W̃k (4)

b̃(x) =
K

∑
k=1

πk(x)b̃k (5)

where πk is the attention weight of the kth linear equation W̃T
k x + b̃k, πk(x) ∈ [0, 1] and

∑K
k=1 πk(x) = 1, the weight W̃(x) and the bias b̃(x) are functions of the inputs and share

the same attention. The attention weights πk(x) are not fixed but vary for each input
x, and they represent the best aggregation of a linear model W̃T

k + b̃k for a given input.
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The aggregated model W̃T(x)x + b̃(x) is nonlinear. Therefore, it is possible to change the
convolution kernel weights adaptively according to the input x to make it more expressive
compared to static convolution.

Meanwhile, in this paper, based on the study of deep residual shrinkage networks [38],
a soft thresholding activation function is introduced to set the features corresponding to
these noises to zero with the help of soft thresholding and dynamically set the thresholds
for each sample individually according to each sample through an attention mechanism,
integrated into this unit as a nonlinear transformation layer. Let x be the input feature, y
be the output feature, and τ be the threshold value. The formula for soft thresholding is
expressed as Equation (6).

y =

⎧⎨⎩
x − τ x > τ
0 − τ ≤ x ≤ τ
x + τ x < −τ

(6)

This unit improves the expressiveness of the convolutional network, at the same time,
it seeks a balance between the performance of the network and the computational load.
The computational complexity of the convolutional kernel and activation function increases
slightly, but the kernel function and activation function of the convolutional kernel need to
be computed only once, and the computational resources used are much smaller than those
of using more layers of convolution, thus reducing the complexity of the overall model.

3.7. Adaptive Soft Voting Ensemble Method

An ensemble learning method combines the results of two or more separate machine
learning algorithms and attempts to produce results that are more accurate than any single
algorithm.

Voting is a combination strategy for classification problems within ensemble learning.
The basic idea is to select the class with the most output among all machine learning
algorithms. There are two types of machine learning algorithm outputs for classification:
one is the direct output of class labels, and the other is the output of class probabilities,
using the former for voting is called Hard voting, and using the latter for classification is
called Soft voting.

Soft voting obtains the weighted average of each class probability by inputting weights,
and selects the class with the more significant value; soft voting returns the class labels
as Argmax of the sum of predicted probabilities, which is achieved by outputting class
probabilities. We propose the soft voting method using the above base models for ensemble
learning. The weights of traditional static weighted average probability soft voting are
determined manually. Generally, they use multiple homogeneous base models, but we
extract different features using different models. Since different features and models have
different training curves and fitting abilities, the voting weights need to be dynamically
adjusted during the training process. So we propose a dynamic weighted soft voting
method, where the gradient descent principle automatically determines the voting weights,
and a new loss function is designed for this model.

Let N be the number of samples, pi be the probability that the ith sample is a positive
case, and yi be the label of the ith sample, then the binary cross-entropy formula is as
Equation (7).

LBCE(p, y) =
1
N

N

∑
i=1

−[yi · log(pi) + (1 − yi) · log(i − pi)] (7)

where the probabilities [p1, p2, · · · , pj] of the positive cases derived from M models and
the weights W are calculated by the Hadamard product of Softmax operations to derive
the probability of positive cases pvote after soft voting, and the Softmax function σ(W) and
pvote is calculated as Equations (8) and (9).
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σ(W)j =
eWj

∑M
m=1 eWm

j = 1, 2, · · · , M (8)

pvote =
M

∑
j=1

([p1, p2, · · · , pj] ◦ σ(W)) (9)

The binary cross-entropy loss [l1, l2, · · · , lj] derived from M models for Softmax op-
eration and the absolute value of the difference between the value of the weights after
Softmax operation are calculated as the average and multiplied by the value obtained from
the weight parameter μ. Finally, the sum of this value and the binary cross-entropy of the
soft voting results is calculated as the loss Loss of adaptive soft voting, which is calculated
as Equation (10).

Loss = LBCE(pvote, y) + μ × ∑M
j=1 |σ(−[l1, l2, · · · , lj])− σ(W)|

M
(10)

This loss function can effectively suppress the problem that the adaptive soft voting
method assigns too small weights to the base model with slow gradient decline during
the training process so that the output of the base model is not considered even if the base
model achieves good results at the later stage of training, leading to the problem of falling
into a local optimum.

4. Experimental Results and Analysis

In this section, we first introduce the dataset, experimental environment for the
experiments. Then, we compare our model with other benchmark models through several
experiments to examine the performance of each module of this model, and finally we
analyze the experimental results and give the experimental conclusions.

4.1. Dataset

Three publicly available datasets were used in this experiment, the CICMalDroid2020
dataset [39] and CIC-InvesAndMal2019 dataset [40] from the Canadian Institute for Cyber-
security Research (CIC) and the Drebin (2012) dataset [10] from the Institute for Systems Se-
curity at the Technical University of Braunschweig: the CICMalDroid 2020 dataset has more
than 17,341 Android samples, including VirusTotal Service, Contagio Security Blog, AMD,
Maldozer and other datasets used in recent research contributions; CIC-InvesAndMal2019
contains 5491 samples (426 malware and 5065 benign software); the Drebin dataset contains
5560 malware samples. Since the sample size of individual datasets is too small, we decided
to combine them to build a larger dataset.

4.2. Experimental Setup

This experiment is trained on a Tesla V100 GPU (16 GB) using the Pytorch 1.9.0
framework in Centos7 and Cuda10.2 environments. The experiment sets the batch size to
16, the momentum of stochastic gradient descent SGD to 0.9, the learning rate to 0.5 × 10−2,
and the multiplicative factor of learning rate decay to 0.5.

Three metrics, area under the ROC curve (AUC), which formula is Equations (11)
and (12), accuracy (ACC), which is expressed as Equation (13), and the summed mean of
precision and recall (F1-Score), which is expressed as Equation (14), are selected to evaluate
the model performance.

AUC =
∑ I(Ppos, Pneg)

M · N
(11)

I(Ppos, Pneg) =

⎧⎨⎩
1 Ppos > Pneg
0.5 Ppos = Pneg
0 Ppos < Pneg

(12)
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where M is the number of positive samples (malware), N is the number of negative samples
(benign software), so there are M · N pairs of samples in the data set. Ppos is the prediction
probability of positive samples, and Pneg is the prediction probability of negative samples.

ACC =
TP + TN

TP + TN + FP + FN
(13)

F1 =
N − TN

N + TP − TN
(14)

where TP is the number of results that correctly predicted that the sample is malware, TN
is the number of results that correctly predicted that the sample is not malware, FP is the
number of results that incorrectly predicted that the sample is malware, and FN is the
number of results that incorrectly predicted that the sample is not malware.

4.3. Comparison of Different Methods

The methodology in this paper is compared with several recent benchmark models
for detecting Android malware, and their brief descriptions and experimental results are
given below.

• Meenu’s method: CNN-Based Android Malware Detection [41]. It Extracts permission
information from AndroidManifest.xml, encodes it into a permission vector, and
extracts features using LeNet.

• XushengXiao’s method: An Image-Inspired and CNN-Based Android Malware De-
tection Approach [42]. It reads Dalvik bytecode in hexadecimal, transforms it into a
three-channel color matrix, and extracts features using CNN.

• Muhammad’s method: Static Malware Detection and Attribution in Android Byte-
code through an End-to-End Deep System [43]. It proposes an end-to-end network to
detect the byte-code of an application by using a bidirectional LSTM on the extracted
opcodes to detect Android malware by using bi-directional LSTM.

• David’s method: EntropLyzer: Android Malware Classification and Characterization
Using Entropy Analysis of Dynamic Characteristics [44]. It proposes an entropy-
based behavior analysis technique using memory, API, network, Logcat, and battery
dynamic characteristics to classify and characterize Android malware.

• XushengWang’s method: MFDroid: A Stacking Ensemble Learning Framework for
Android Malware Detection [13]. It uses seven feature selection algorithms to select
permissions, API calls and opcodes, then merges the results of each feature selection
algorithm to obtain a new feature set, and subsequently uses logistic regression to
obtain classification results.

• Mahindru’s method: HybriDroid: an empirical analysis on efective malware detection
model developed using ensemble methods [12]. It applies five distinct machine
learning algorithms and non-linear ensemble decision tree forest to detect malware in
Android applications.

• Ahmed’s method: Mitigating adversarial evasion attacks of ransomware using en-
semble learning [25]. It proposes an hybrid analysis approach to detect Android
malware by monitoring memory usage, system call logs and CPU usage, statically
and dynamically checking permissions, text and network-based functions.

• Ruitao’s method: A Performance-Sensitive Malware Detection System Using Deep
Learning on Mobile Devices [5]. It proposes a fast malware detection method by ex-
tracting manifest properties and API calls directly from the binary code of an Android
application and vectorizing them, and finally using a quantized neural network.

The performance of the model is shown in Table 1, and the best results are bolded in
the table. Considering the metrics of AUC, ACC, F1-Score, and average time consumption,
our method achieves a better trade-off in accuracy and speed than several other methods.
The time consumption of methods using dynamic or hybrid analysis is not included in
the table.
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Table 1. Comparison of test results of different methods on PC.

Method AUC ACC F1-Score Average Time Consumption on PC

Meenu’s [41] 95.36% 93.67% 94.53% 0.64 s
XushengXiao’s [42] 94.34% 93.00% 94.02% 0.22 s

XushengWang’s [13] 97.66% 96.35% 96.10% 0.21 s
Muhammad’s [43] 98.82% 99.92% 98.35% 0.35 s

David’s [44] 99.06% 98.42% 98.20% -
Mahindru’s [12] 98.95% 98.53% 96.72% 0.15 s

Ahmed’s [25] 99.38% 98.77% 98.12% -

Ruitao’s [5] 97.06% 96.75% 96.91% 0.19 s
MSFDroid 99.52% 97.26% 97.89% 0.14 s

One of them, Ruitao’s method, has similar goals as our method to build lightweight
detection methods that can run with Android devices, so we delved into the gap in time
efficiency between our method and Ruitao’s. We tested on different devices while record-
ing the average detection time of the detected samples, and the statistics are shown in
Table 2. Our method achieves more accurate detection results with faster detection speed
on multiple test platforms compared to Ruitao’s.

Table 2. Comparison of our method with Ruitao’s in terms of time efficiency.

Device
CPU Time Consumption

Model Performance MSFDroid Ruitao’s [5]

Galaxy J7 Pro Exynos 7870 Octa 448 2.33 s 3.96 s
Nexux 6P Qualcomm Snapdragon 810 514 1.57 s 2.20 s
Oppo F3 Mediatek MT6750 668 1.36 s 1.76 s

OnePlus 3 Qualcomm Snapdragon 820 759 1.05 s 1.65 s
OnePlus 5T Qualcomm Snapdragon 835 1627 0.81 s 1.03 s
Huawei P30 HiSilicon Kirin 980 2419 0.37 s 0.46 s

OnePlus 8Pro Qualcomm Snapdragon 865 3045 0.28 s 0.38 s

The total time consumption includes the extraction and prediction times. The extrac-
tion time is the time consumption for decompressing the APK, calculating the structural
entropy of the Dalvik binary, calculating the maximum entropy-power spectral density,
decoding the Android manifest file, and calculating the Bag of word model. The prediction
time includes the calculation time of the base model and the calculation time of the soft
voting ensemble model as described above. We selected seven devices for testing, includ-
ing five real Android devices based on ARMv8 architecture with different generations of
releases, and used two x86_64 architecture computers for comparison.

Our research found that time consumption is mainly related to CPU performance.
It is difficult to measure CPU performance by design parameters due to inconsistencies
in the CPU process, architecture design, base clock speed, and turbo boost clock speed.
Therefore, we used GeekBench5 to measure CPU performance and plotted Figure 9, which
includes the CPUs used in our method and Ruitao’s. It reflects the single-core and multi-
core performance differences of different CPUs. The results of Table 3 and Figure 9 together
reflect that the multi-core performance of CPUs mainly influences the time consumption of
our method.
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Figure 9. CPU benchmarks

Table 3. Efficiency of running on different devices.

Device CPU Arch Extraction Time Prediction Time Total Time

Galaxy J7 Pro Exynos 7870 Octa ARMv8 476.85 s 1758.161 s 2.232 s
Nexus 6P QCOM Snapdragon 710 ARMv8 392.412 s 1183.588 ms 1.575 s
Oppo F3 Mediatek MT6750 ARMv8 375.939 ms 987.057 ms 1.363 s

OnePlus 3 QCOM Snapdragon 820 ARMv8 257.021 ms 793.548 ms 1.051 s
OnePlus 5T QCOM Snapdragon 835 ARMv8 211.628 ms 699.563 ms 0.911 s
Huawei P30 HiSilicon Kirin 980 ARMv8 176.942 ms 195.222 ms 0.372 s

OnePlus 8Pro QCOM Snapdragon 865 ARMv8 96.501 ms 182.123 ms 0.279 s
x64 Server Intel Xeon Silver 4210 x86_64 67.515 ms 89.088 ms 0.157 s

x64 PC AMD Ryzen7 5800X x86_64 58.019 ms 46.429 ms 0.104 s

Table 2 and Figure 10 shows the time consumption of our method and Ruitao’s on
devices with different CPU performances. CPU performance is referenced to GeekBench5’s
multi-core score results, time consumption is calculated in seconds, and the data are fitted
using a power function. To reduce the impact on Android malware detection, we repeat the
detection five times for each APK file. Figure 10 reflects that the predicted time consumption
of our method is generally lower than Ruitao’s on different devices.

Figure 10. The relationship between processor performance and time consumption.
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Meanwhile, we compare the number of model size and accuracy of our method and
Ruitao’s as shown in Figure 11. We use different base models for ensemble learning. Under
the condition of achieving the same or better performance, the number of parameters of our
model is much smaller than the number of parameters of several models given by Ruitao’s
and even better than the quantized results of Ruitao’s.

Figure 11. Comparison of model size.

Since we use multiple base models and different features, to reduce the complexity of
the representation, we define the abbreviations of models and features as follows. AdaSV
is adaptive soft voting, ASCNN is adaptive shrinkage convolutional neural network, and
MLP is multilayer perceptron. H is Dex head feature, M is power spectral density feature
of entropy sequence of Dex file, I is permission and intent feature, and C is the combined
features of Dex head features and power spectral density features of entropy sequences of
Dex files.

In summary, our method has a more significant advantage in terms of performance,
time efficiency, and space efficiency by comparing several dimensions.

4.4. Comparison with Anti-Virus Softwares

Compared with other methods in the literature, our method shows competitiveness
in terms of performance and efficiency. However, it should eventually be compared with
anti-virus products commonly used in the industry to show its practical value.

We selected five free antivirus software on the market and used the 5217 malware
samples for testing. The experimental results are shown in Table 4.

Table 4. Comparison with anti-virus softwares.

Anti-Virus Software Detection Rate Average Time Consumption per Sample

Huorong 86.4% 0.07 s
Norton 93.7% 0.06 s
McAfee 93.8% 0.05 s

Kaspersky 94.3% 0.07 s
Avast 96.7% 0.05 s

MSFDroid 98.6% 0.14 s

In this study, we observed a large difference in the detection effectiveness of these five
anti-virus software, which we believe is mainly due to their different virus libraries, which
are not specifically designed to detect Android malware. The detection rate of Avast, which
is the best detection, is 96.7%, and our method MSFDroid achieves a detection rate of 98.6%.
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This proves that our method is more effective with the fingerprint database used by many
anti-virus software.

4.5. Analysis of Experimental Results

This section compares and analyzes the performance of different base models, adaptive
shrinkage convolution neural network, and adaptive soft voting.

4.5.1. A Study on the Performance of Adaptive Shrinkage Convolution

The adaptive shrinkage convolutional neural network improves performance com-
pared to the conventional convolutional network using the same number of convolutional
layers. This result in Table 5 shows that the attention mechanism is used to dynamically
adjust the convolutional kernel’s weights and the activation function’s threshold according
to the noise level. Although the introduced attention mechanism increases the size and
complexity of the convolutional kernel generating function and activation function and
increases the computational effort, the additional computational step can be neglected
compared to the convolutional computation because the convolutional kernel parameters
and the activation function threshold are only computed once. Therefore, the traditional
convolutional neural network achieves higher performance with fewer convolutional layers
and reduces the overall network computation.

Table 5. Performance comparison of adaptive shrinkage convolution neural network and conven-
tional convolutional network.

Model AUC ACC F1-Score

3-layer convolutional neural network 97.26% 92.57% 94.76%
6-layer convolutional neural network 98.74% 95.15% 95.61%

3-layer adaptive shrinkage convolution neural network 99.23% 95.28% 96.29%

4.5.2. A Study on the Performance of Adaptive Soft Voting Method

As shown in Table 6, by comparing the performance of different base models and
adaptive soft voting assembled with multiple base models, a single base model has a
limited performance on malware detection. Still, as shown in Table 7, by assembling with
the adaptive soft voting method, we achieve a maximum improvement of +5%, +13%, +16%
by reaching 99.52%, 96.97%, 97.89% in three performance evaluation metrics. The adaptive
soft voting method assembles multiple base models. It achieves significant performance
improvements, while the performance of adaptive soft voting improves more with the
increase of the number of integrated base models.

Table 6. Performance between different base models and ensemble learning models.

Integration of Base Models AUC ACC F1-Score

MLP(H) 95.73% 83.54% 81.07%
MLP(M) 96.12% 88.98% 91.76%

ASCNN(I) 98.06% 88.97% 88.75%
MLP(H) + MLP(M) 97.66% 94.30% 95.94%

ASCNN(I) + ASCNN(C) 99.23% 95.69% 96.76%
MLP(H) + MLP(M) + ASCNN(I) 99.39% 96.83% 97.20%

MLP(H) + MLP(M) + ASCNN(I) + ASCNN(C) 99.52% 97.26% 97.89%

We use different ensembles of base models to compare the performance of adaptive
soft voting with static weighted soft voting, respectively. Under the condition of the
dynamic weighted soft voting weight parameter μ = 0.5, the ensembles using different
base models improves in three performance metrics, including a maximum improvement
of 3.49% in ACC, 2.58% in F1-Score, and 0.43% in AUC.
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Table 7. Comparison of adaptive soft voting and static weighted soft voting.

Integration of Base Models Ensemble Model AUC ACC
F1-

Score

MLP(H)+MLP(M) Adaptive Soft Voting (μ = 0.6) 97.66% 94.30% 95.94%
Static Weighted Soft Voting 97.14% 93.12% 95.13%

ASCNN(I)+MLP(M) Adaptive Soft Voting (μ = 0.6) 99.23% 95.28% 96.29%
Static Weighted Soft Voting 99.13% 93.86% 95.37%

MLP(H)+MLP(M)+MLP(I) Adaptive Soft Voting (μ = 0.6) 99.39% 96.83% 97.20%
Static Weighted Soft Voting 99.15% 94.06% 95.79%

MLP(H)+MLP(M)+ASCNN(I)+
ASCNN(C)

Adaptive Soft Voting (μ = 0.5) 99.52% 97.26% 97.89%
Static Weighted Soft Voting 99.09% 93.49% 95.42%

To investigate the reason for the performance difference between adaptive soft voting
and soft voting methods with static weights, we use the ensemble of two base models,
MLP(I), a multilayer perceptron with Intent & Permission features as input, and MLP(M),
a multilayer perceptron with MEM-PSD features as input, and their AUC, Loss, and soft
voting weights during the training process is shown in the Figures 12 and 13. It can be seen
from the figures that MLP(I) has more jitter during the training process, MLP(M) has less
jitter but the final performance is lower than MLP(I). In the traditional soft voting method,
which cannot adjust the weight of each base model, we can see from the training curve in
the Figure 12, the model with more jitter even becomes noise, which leads to a negative
impact on the decision making of the voting algorithm, making its AUC curve less flat and
underperforming than adaptive soft voting during the training process.

Our proposed adaptive soft voting method continuously adjusts the weights according
to the performance of each base model during the training process, effectively avoiding the
jitter problem caused by some base models and the noise generated by the poor performance
of some base models, making the adaptive soft voting method effectively adapt to different
base models and significantly improving the performance of soft voting.

Figure 12. Static weighted Soft Voting.

195



Appl. Sci. 2022, 12, 5394

Figure 13. Adaptive Soft Voting (μ = 0.6).

4.5.3. A Study of Weighting Parameter in Adaptive Soft Voting Loss Functions

The model’s accuracy is obtained by adjusting the weight parameter μ of adaptive
soft voting, conducting several experiments, and plotting the scatter plot as in Figure 14.
As μ increases continuously, the accuracy peaks around μ = 0.8 and decreases. When
μ = 0, the loss function cannot penalise the weights with large values, thus making the
weights almost completely concentrated in the base model with the best effect, as shown
in Figure 15. This makes the soft voting fall into a local optimum and makes the overall
performance of integrated learning drop significantly.
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Figure 14. Relationship between adaptive soft voting weights and performance.
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Figure 15. Adaptive Soft Voting (μ = 0).

5. Conclusions and Future Work

In this paper, we propose a fast Android malware detection method. We propose a
multidimensional feature engineering of Android application packages combining infor-
mation entropy, file headers, and manifest files, propose adaptive shrinkage convolution
to improve the convolution unit and propose a adaptive soft voting ensemble learning
method, which enables efficient and accurate Android malware detection and provides
a new idea for static Android malware detection. With the increasing camouflage and
obfuscation techniques, our future research will further improve the detection accuracy
and discrimination against unknown malware by combining dynamic analysis techniques.

We analyzed the performance indexes of our proposed several feature selection and ex-
traction methods and base models by the above experimental results, and the performance
index of our method is higher than that of single feature selection and extraction algorithm,
which indirectly proves that single feature selection and extraction algorithm will miss
some features, and in our future work, we will continue to find more expressive and less
computational feature extraction schemes, and also strengthen the denoising capability of
our model to achieve more efficient and accurate Android malware detection.
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Abbreviations

The following abbreviations are used in this manuscript:

MEM-PSD Power spectral density calculated by maximum entropy method
AdaSV Adaptive soft voting
ASCNN Adaptive shrinkage convolutional neural network
MLP Multilayer perceptron
H Dex head feature
M Power spectral density feature of entropy sequence of the Dex file
I APK’s permission and intent feature

C
Combined features of Dex head features and power spectral density features of
entropy sequences of Dex files
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Abstract: Industrial control systems (ICSs) for critical infrastructure are extensively utilized to
provide the fundamental functions of society and are frequently employed in critical infrastructure.
Therefore, security of these systems from cyberattacks is essential. Over the years, several proposals
have been made for various types of cyberattack detection systems, with each concept using a
distinct set of processes and methodologies. However, there is a substantial void in the literature
regarding approaches for detecting cyberattacks in ICSs. Identifying cyberattacks in ICSs is the
primary aim of this proposed research. Anomaly detection in ICSs based on an artificial intelligence
algorithm is presented. The methodology is intended to serve as a guideline for future research
in this area. On the one hand, machine learning includes logistic regression, k-nearest neighbors
(KNN), linear discriminant analysis (LDA), and decision tree (DT) algorithms, deep learning long
short-term memory (LSTM), and the convolution neural network and long short-term memory
(CNN-LSTM) network to detect ICS malicious attacks. The proposed algorithms were examined
using real ICS datasets from the industrial partners Necon Automation and International Islamic
University Malaysia (IIUM). There were three types of attacks: man-in-the-middle (mitm) attack,
web-server access attack, and telnet attack, as well as normal. The proposed system was developed
in two stages: binary classification and multiclass classification. The binary classification detected the
malware as normal or attacks and the multiclass classification was used for detecting all individual
attacks. The KNN and DT algorithms achieved superior accuracy (100%) in binary classification and
multiclass classification. Moreover, a sensitivity analysis method was presented to predict the error
between the target and prediction values. The sensitivity analysis results showed that the KNN and
DT algorithms achieved R2 = 100% in both stages. The obtained results were compared with existing
systems; the proposed algorithms outperformed existing systems.

Keywords: industrial control systems; intrusion detection system; machine learning; deep
learning; cyberattack

1. Introduction

In critical infrastructures that supply crucial services such as water, electricity, or
communications, industrial control systems (ICSs) are at the heart of the operation. ICSs
provide the foundational services for monitoring and controlling industrial operations. The
monitoring section uses sensors to collect data, keep track of the processes, and ensure
that they run properly [1]. On the one hand, the monitoring section oversees operations
and ensures that they run correctly. On the other hand, the controlling portion manages
the processes and makes decisions that cause actions to be carried out by actuators. If this
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workflow is disrupted as a result of technological difficulties or cyberattacks, many citizens
may be adversely affected, for example, as a result of interruptions in electrical power or
communications [2].

Information technology stacks (ITS) and remote connections are commonly used to
link ICS components. An increase in the likelihood of deliberate assaults on physical
plants might result from reliance on communication networks to transmit measurements.
Authentication, data encryption, and message integrity procedures are just a few methods
for keeping network traffic safe. Despite this, these solutions cannot defend all layers of an
ICS network from all types of invasions of privacy [3].

Operational technology (OT) processes, which are critical components of infrastructure,
are routinely targeted by criminal organizations. In the past, OT and information technology
(IT) networks were kept separate or “air-gapped” from one another [4]. However, due to
increased efficiency gained via digitalization, new business requirements are emerging,
increasing the time and money spent on digitalization. However, due to digitalization’s
increased efficiency, new business requirements are emerging, increasing the number of
organizations using the technology [5]. Over the Internet of Things (IoT), sensor and
actuator data, and multimedia data such as images and videos, are transmitted. It is vital
to put security measures in place to protect against malicious behavior and cyber risks.
On the one hand, cybersecurity approaches, which are critical to the long-term health
of supply chains, are required to ensure the safety of workers and commodities and to
protect information passing via their networks, among other things. On the other hand,
a cyberattack on an ICS might result in a malfunction, which could cause physical harm
to other physical components or even humans [6]. A cyberattack may result in the theft
of confidential information about a company’s business activities; it may also have the
unintended consequence of decreasing the degree of competitiveness of the industry in the
long term. The percentage of malware threats to ICSs over the last four years is presented
in Figure 1.
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Figure 1. Malware threats to ICSs over the last four years.
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An intrusion detection system (IDS) is one method of dealing with this problem. The
detection methodologies used by signature-based and anomaly-based IDSs are distinct [7].
The signature-based technique instructs the system to seek specific anomalies. In contrast,
the anomaly-based strategy instructs the system to look for any deviation from a previously
defined standard of behavior. Most of the time, an IDS examines the network traffic of
an ICS to detect irregularities in the incoming data packets. It is possible to safeguard
a network from unwanted infiltration attempts by implementing a network intrusion
detection system (NIDS), also known as packet filtering. The NIDS model utilized in
various studies [8–12] was developed using machine learning approaches to detect network
traffic intrusions. Because of its capacity to identify and quantify attacks in the network
flow, even if its performance against encrypted data packets, fake IP packets, and regular
false-positive alerts are not guaranteed, it is becoming increasingly popular.

Anomaly detection in industrial control systems (MADICSs) is a comprehensive
technique for identifying abnormalities in ICSS and is presented as a solution. To detect
cyber risks in ICSS, MADICSs seeks to provide a consistent and unified approach for
comparing data, which any researcher can utilize to compare data from different sources.
Although these processes are based on a standard machine learning/deep learning method-
ology [13,14], they have been tailored for industrial settings. They can deal with the unique
challenges of these types of scenarios. The statistically significant relationship between
the characteristics of an ICS and the repetitiveness of its actions is one of the peculiarities
that distinguishes it from other scenarios, such as 5G networks [15] or clinical information
systems [16]. The primary contributions of the proposed research are as follows:

• The development of an intelligence system based on machine learning and deep
learning approaches to detect serious attacks on ICSs.

• The use of a sensitive analysis to find the critical patterns in an entire dataset.
• The primary motivation for the research was to compare the results of the proposed

system with existing systems for this dataset. We concluded that the proposed system
achieved a high level of accuracy.

• The primary goal is the development of a mechanism for detecting anomalies to
protect ICSs from any cybersecurity threat to food security.

The remainder of this paper is arranged as follows: In Section 2, we provide the
background for the study; in Section 3, we explain the methods of data collection; in
Section 4, we describe the analytical findings of the proposed system for detecting ICS
attacks; in Section 5 we discuss the results as well as a comparison with existing ICS
systems; in Section 6, we present the conclusions of the proposed research.

2. Background Studies

Previous research has focused on detecting cyberattacks on ICSs, which has resulted
in several publications. An IDS based on rules and deterministic finite automata (DFA) are
two examples of this system. The majority of current research has focused on developing
new approaches that have taken advantage of cutting-edge technologies, such as big data
and machine learning/deep learning. A growing number of machine learning (ML) and
deep learning (DL) approaches are being used to detect cyberattacks in the industrial sector.
The most significant publications on ML and DL anomaly detection in industrial contexts
are evaluated here [16].

Many academic ICSs use publicly available datasets to investigate ML algorithms,
which is becoming increasingly common. The following are some of the drawbacks of
the public database system in use today. The architecture proposed is limited to materials
based on the Modbus/TCP protocol suite [17]. There was very little data acquired during
online testing activities by [18], and only multi-ML algorithms were developed due to those
activities. A similar issue existed in [19], where the database used was outdated and did not
represent current threats. In contrast, the dataset in [20] was small (around 1000 occurrences)
and was restricted to a single cyberattack. According to another report, the database was
out of date and the assaults were linked to the field of IT [21]. The Singapore University of
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Technology developed a water treatment testbed that included supervisory control and data
acquisition (SCADA) network traffic and assault scenarios for use in water treatment [22].
To train and test ML systems, real-time datasets, including common cyberattacks and 35
different types of cyberattacks, have recently been generated for training and testing ML
systems. The only strategies that have been used to compare the performances of different
algorithms are supervised ML techniques. The results have shown that algorithms have
a considerable probability of false detection, which is supported by the literature. The
performance of ML algorithms on a public dataset may result in a decent output depending
on the dataset [23]. However, the payload/data frame is controlled using dataset labels, and
the assaults are manually randomized and parameterized to imitate the operational/attack
situation [24].

Many DL and ML approaches have been reported in the literature, in addition to
convolution neural network and long short-term memory (CNN-LSTM) networks. Ac-
cording to [25], unsupervised ML may be used to identify irregularities in cyber-physical
systems (CPS). Among 23 methods, they tested deep neural networks (DNNs) and support
vector machine (SVM) techniques, which were both designed specifically to work with
time-series data. They used the test dataset’s mean and standard deviation to scale the
dataset to a new size. Autoencoders (AE) and 1D convolutional neural networks (CNN)
were proposed in [26] as a DL approach for identifying ICS anomalies. Additionally, the
authors recommended filtering features to choose those most suited for anomaly detection
from among the DL models they presented. They developed a feature extraction method
that used the discrete Fourier transform (DFT) to compute features in the frequency domain.
When utilizing DFT to extract features, important information from the remaining signal
was lost instead of using only the highest energy bands. In addition, they used a threshold
for anomaly detection based on the test dataset’s mean and standard deviation. Unsuper-
vised anomaly detection was presented by the authors of [27] that focused on large-scale
and real-time data processing. The three pillars of this strategy were update triggers, tree
growth, and mass weighting methods. Thanks to this combination, random trees could
be generated and updated in real time. They described the use of clustering analysis to
reveal the dataset’s underlying patterns for another unsupervised anomaly detection. Next,
the researchers used cluster intra-distances and inter-distances to extract features from the
clusters [28]. Finally, an inference method was used to determine whether an irregularity
was sparked. The authors in [29] devised an unsupervised learning technique based on
stacked denoising autoencoders. Because the original network stream was used in their
solution, it did not require any special skills.

Furthermore, several surveys on IDSs have been conducted on IoT networks and
their lightweight devices. Nevertheless, the majority of these surveys did not address
the deployment of ML or DL approaches as detection mechanisms in IoT networks and
their networks in any depth. In several recent studies, it was observed that the emphasis
was on studying IoT security difficulties in general and categorizing them into multiple
layers related to applications, network security, encryption, authentication, and access
controls [30–35]. There is still more work to be done in ML and deep learning-based
techniques for intrusion detection systems in IoT networks, which is the primary emphasis
of this study.

3. Materials and Methods

In this section, we present the components of an intelligent system based on ML anda
DL approach. The mechanism for detecting cyberattacks on ICSs is displayed in Figure 2.
The system can achieve high performance in detecting various types of ICS attacks.
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Figure 2. Framework of the ICS security system.

3.1. The Dataset

The standard dataset was collected from network traffic in ICS systems. The standard
dataset was operated in collaboration with industrial partners Necon Automation and
IIUM. IIUM has developed an ICS cyber system for evaluating and testing the proposed
system. The research produced a system for gathering data from the Necon Automation
system. The Institute of Information Technology and Management (IIUM) has created
an in-house revolutionary portable ICS cyber test kit for the purposes of research and
teaching [13]. The package includes a PLC system, an HMI system, modules for process
simulation, an Ethernet switch, a physical sensor, and an attacker system. Real industrial
network flow data were provided by the ICS portable kit package, which may be used for
research and training, as well as the developing of machine learning and deep learning
methods. Figure 3 shows the system architecture.
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Figure 3. ICSs portable testbed prototype [36].

The dataset contains six features: the timestamp of each packet, source IP, destination
IP, OT protocols, and a summary packet of information for DPI. Table 1 shows the MITM
attack, Telnet attack, and Web-server access attack based on OT ICS protocols.

Table 1. Description of the dataset attacks.

Attacks Description OT Protocol

MITM attack
A man-in-the-middle attack is one type of
eavesdropping attack which interrupts an
ongoing communication or data transfer.

MITM

Web-server access attack
Web-server attacks have many forms of attack
such as DoS, DDoS, and DNS server hijacking

used to misconfigure web servers.
Web-server access

Telnet attack This type of attack allows the hacker to remotely
access the router or switch off the network. Telnet

Normal S7 is a protocol run on programmable
logic controllers. S7, TCP

Table 2 shows the volumes of each attack on the dataset. Note that the MIMT has
height instance values as compared with other classes.
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Table 2. Input datasets for each attack label.

#Labels Volume

MIMT 14,594

Telnet attack 89

Web Access PLC attack 21,435

Normal packets 62,533

3.2. Preprocessing Method

An IDS cannot function well without first preparing the data for analysis. Therefore,
data preprocessing is vital. The preprocessing step comprises four units: one-shot encoding,
feature selection and data standardization, imbalance handling, and normalization.

3.2.1. One-Hot Encoding Method

Using a single one-hot encoding operation is one of the most commonly utilized
approaches for the numeralization of categorical characteristic ICSs. It turns each character
type characteristic into a binary vector and assigns a value of 1 to the associated category
while assigning a value of 0 to the others. For example, the attribute protocol type and
source and destination.

3.2.2. Normalization Method

A possible overlap in the training process caused by handling big datasets was avoided
by employing maximum-minimum normalization methods after the categorical variables
had been transformed. We utilized a scaling range from 0 to 1 in the normalization
procedure to scale the dataset in the same range.

zn =
x − xmin
xmax−xmin

(Newmaxx − Newminx ) + Newminx (1)

where, xmin is the minimum of the data, xmax is the maximum of the data; Newminx is the
minimum number (0); Newmaxx is the maximum number (1).

3.3. Machine Learning Approaches

The ML algorithms, namely KNN and decision tree (DT), were employed to detect the
ICS attacks. A detailed description of this algorithm is presented in the following subsection.

3.3.1. K-Nearest Neighbor (KNN) Algorithm

KNN is an ML algorithm based on the supervised learning technique and is one of
the most fundamental ML algorithms. The KNN algorithm compares new instances/data
to existing examples and sorts them into the most comparable categories, depending on
how similar they are to the previous cases. To classify new data points, the KNN algorithm
compares them to previously stored data points and determines their similarity. It is
possible to utilize the KNN approach to swiftly categorize new data into one of the relevant
categories when it is first introduced. However, the KNN approach is more typically
used for classification problems than for regression problems [37,38]. When utilizing the
KNN approach, no assumptions about the underlying data are made, resulting in it being
classified as a nonparametric approach. A lazy learner algorithm is sometimes termed
as such because it does not immediately learn from the training set but instead stores
the dataset and performs an action on it until it comes time to classify the data using the
algorithm. In this study, we used the Euclidean distance function (Ei) to find the distance
between the classes of ICS network data. The mathematical expression of this Euclidean
distance function is as follows:

Ei =

√
(c1 − c2) + (d1 − d2)

2 (2)
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where c1, c2, d1, and d2 are the input data variables.

3.3.2. Decision Tree Algorithm

Classification and regression issues are frequently addressed using the ML technique’s
DT. A root node is at the top of a DT model and branches based on the data’s core charac-
teristic ICSs are at the bottom. The output of a feature is represented by a branch, while
a child node represents the output of a category. Relying on sample training, one may
learn the classification model using a classification DT, an example of supervised learning.
Ultimately, the classification work is completed by the incoming data, which are evaluated
by each node. ID3, C4.5, and CART are three forms of decision trees that may be categorized
based on the parameters used to determine branch properties. ID3 implements a greedy
algorithm and uses information entropy as a branch criterion [39]:

Entropy = (S) = ∑C
i = 1 pi log2 pi (3)

entropy (S |B) = ∑j
j = 1

|si|
|Si| entropy (Si) (4)

Gain (S |B) = entropy(S)− entropy(S |B) (5)

where S is the training dataset, C is the class of dataset which is attacks and normal, Pi is
the probability of the sample that indicates class C, Si is the samples of subsets of the class
in features B.

3.3.3. Logistic Regression Algorithm

When categorizing dependent categorical data, binary classification is commonly
used [40]. There are several applications for this kind of guided learning. Based on the
values of the dependent variables, the algorithms forecast the outcome. Logistic regression
uses an S-shaped logistic curve to separate data points for the separation process. To predict
classification probabilities, logistic regression is used to construct a decision border, which
is known as drawing the logistic curve. Some people refer to the logistic function as a
sigmoid function:

S(x) =
1

1 + e − x
(6)

An integer is sent through the sigmoid function, which returns a 0–1 as the outcome
of the operation. The sigmoid function returns the likelihood of categorization in each case.
When S(x) is less than 0.5, the data is classified as class A, and when S(x) is more than 0.5,
the data is classified as class B.

3.3.4. Linear Discriminant Analysis

When dealing with high-dimensional applications, the linear ML method known as
linear discriminant analysis (LDA) comes in handy. It is used to model and convert data
from a high-space dimension to a low-space dimension by categorizing the data into regular
and harmful packets and transforming the data between the two groups [41].

3.4. Deep Learning Approach

A DNN is a well-known DL approach among scientists. The DNN topology consists of
three layers: the input, the hidden, and the output layers, all of which are connected. There
are no connections between any neurons in the layers above or below a layer, however,
every neuron in a layer, above or below the layer, is connected to every other neuron. The
efficiency of the network learning effect is increased by adding an activation function to the
output of each layer of the network. Consequently, a DNN may be viewed as an enormous
perceptron consisting of many perceptrons working together [42–45].

A CNN is an artificial neural network commonly used in a DL approach to identify
and classify images and objects. The CNN structure comprises three layers: convolutional,
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pooling, and fully linked layers. In this structure, feature extraction and dimensionality
reduction are accomplished using convolutional and pooling layers, respectively. Each
layer is attached to the preceding layer after being folded and connected. The fundamental
structure of the CNN model utilized to detect fraudulent Android apps is shown in Figure 4.

 

Figure 4. Structure of the CNN model based on ICS attack detection.

Long short-term memory (LSTM) is a recurrent neural network, although it performs
far better in terms of memory than ordinary recurrent neural networks. LSTM performs
significantly better when the learner has a firm comprehension of the patterns to be learned.
LSTM and other neural networks differ because LSTM may have several hidden layers. As
it progresses through each layer, valuable information is kept, and all irrelevant information
is eliminated in each cell. An LSTM block building is shown in Figure 5. To control how
much value is sent through the cell, each of the cell’s input, forget, ft, and output gates can
be employed independently. The four LSTM block gates are as follows: cell state gate Ct,
which remembers information over time; forget gate ft; input gate it; and output gate ot.
The cell state gate Ct is responsible for remembering information over time. The activation
functions for each gate are integrated into the gate layer. In addition to the three inputs, the
LSTM block has three outputs: the cell state Ct, the previously concealed cell state ht, and
the current input Xt. The LSTM block contains three inputs and three outputs. It is possible
to create the current output after the disguised state has been discovered. The following is
a mathematical formulation for the LSTM unit, which is defined as follows:

ft = σ
(

Wf . Xt + Wf . ht−1 + b f

)
(7)

it = σ(Wi. Xt + Wi . ht−1 + bi) (8)

St = tan h(Wc. Xt + Wc . ht−1 + bc) (9)

Ct = (it ∗ St + ft ∗ St−1) (10)

ot = σ(Wo + Xt + Wo . ht−1 + Vo.Ct + bo) (11)

ht = ot + tan h(Ct) (12)

The proposed CNN-LSTM model comprises two LSTM layers and four fully connected
(FC) layers. It also has input and soft-max output layers, among other features. In addition,
there are four convolutional layers and one pooling layer. The network architecture of the
CNN-LSTM model in the proposed system is shown in Figure 6.
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Figure 5. Structure of the LSTM technique.

 

Figure 6. The srchitectre of the CNN-LSTM model for detecting ICS attacks.

The suggested model directly incorporates the 1D ICS network data into the compu-
tation for the first time. The supplied data are in the following format, consisting of four
features: (1) a convolutional layer extracts abstract characteristic from the raw ICS data
using 512 1D convolutional kernels, each having a 5-by-1 shape, one stride in the conv
layer1, and one stride in the conv layer2 (the first convolutional layer); (2) an activation
layer with rectified linear units (ReLUs) follows the convolutional layer; this layer may
introduce nonlinearity into the proposed model. The following is a mathematical formula-
tion for the 1D convolutional operation, and the ReLU activation in the case of the ReLU is
shown below:

yι
j = σ(∑Nι−1

i = 1 conv
(

wι
i,j, xι−1

i

)
) + bι

j (13)
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where Nι−1 is the number of the feature map; yι
j is the feature map of ICS data; wι

i,j is the
convolutional kernel; bι

j is the bias of feature map.
The σ() denotes the ReLU activation function, which we used to avoid the overfitting

issue in the obtained data:

σ(x) =

{
0, x ≤ 0
x, 0 > 0

(14)

The convolution kernel was used to pass the training data into the max pool to extract
significant features to improve the classification actuary. A function expression of the max
pool is defined below:

Qj = Max
(

P0
j , P1

j , P2
j P3

j . . . .Pt
j

)
, (15)

where Qj denotes the output from the max pool, and Pt
j is the feature map before max. The

significant parameter indicator values of the proposed CNN-LSTM model are presented in
Table 3.

Table 3. Parameter values of the proposed CNN-LSTM model.

#Parameters Indicators #Values

Convolution kernel size 5
The size of max pooling 5

Drop out 0.50
The size of the FC layer 128

Activation function ReLU
Optimizer Adam

Epochs 20
Batch size 120

4. Experimental Analysis

In this section, we apply ML and DL algorithms to detect ICS cyberattacks. The
effectiveness of each algorithm was tested using a well-known ICS IDS dataset. The
questions for the proposed research are as follows:

How can ML and DL algorithms detect anomalies in an ICSs environment?
What are the appropriate algorithms for detecting ICSs attacks?
How can the developed, robustness, and efficiency models protect the ICSs system?

4.1. Splitting the Data

A validation method is essential for evaluating a system. In this study, we divided
the data into training and testing the proposed system. Table 4 shows the split ICS dataset
from artificial intelligence algorithms detecting intrusion.

Table 4. Volume of datasets.

Datasets Total Volume Training Testing

ICSs 98,651 69,055 29,596

4.2. Experimental Environments

The proposed system was developed in a specific hardware and software environment
because we knew the network data were very complex. The platform used to detect
intrusion in Android applications is presented in Table 5.
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Table 5. Environmental requirements of the proposed model.

Hardware Software Version

RAM size 8 GB Python 3.6
Intel(R) Core(TM) i7 Panda 1.4.2

CPU 1.80 GHz TensorFlow library 2.8.0
Keras library 2.8.0

Matplotlib 3.1
NumPy library 1.11.0

4.3. Performance Measurements

In order to evaluate the high performance of the ICS security system, evaluation met-
rics were proposed such as mean square error (MSE), the Pearson’s correlation coefficient
(R), the root-mean-square error (RMSE), accuracy, precision, recall and F1 score,

MSE =
1
n ∑n

i = 1

(
yi,exp − yi, pred

)2
(16)

RMSE =

√√√√
∑n

i = 1

(
yi,exp − yi,pred

)2

n
(17)

R2 bn1 − ∑n
i = 1 (yi, exp − yi, pred)

2

∑n
i = 1 (yi, exp − yavg, exp)

2 (18)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (19)

Recall =
TP

TP + FN
× 100% (20)

Precision =
TP

TP + FP
× 100% (21)

Fscore =
2 ∗ preision∗Sensitivity
preision + Sensitivity

× 100% (22)

R% =
n
(

∑n
i = 1 yi,exp × yi, pred

)
−
(

∑n
i = 1 yi,exp

)(
∑n

i = 1 yi, pred

)
√[

n
(

∑n
i = 1 yi,exp

)2 −
(

∑n
i = 1 yi,exp

)2
][

n
(

∑n
i = 1 yi,pred

)2 −
(

∑n
i = 1 yi,pred

)2
] × 100 (23)

where, the confusion metrics of ICS system such as true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are used as parameters for examining the model,
where yi,exp is ICSs input data and yi,pred is output of the developing ICS system.

4.4. Results

In this section, we present the results of the ML and DL approaches. The proposed
system was tested in two stages: binary classification (normal and attacks) and multiclass
classification in four classes (MITM attack, Telnet attack, Web-server access attack, and
normal). The system was tested using real ICS network datasets, including different types
of attacks.

4.4.1. Binary Classification Results

The proposed ML and DL algorithms were applied to test their effectiveness in binary
classification. We classified the datasets as normal or attacks. ML algorithms, such as KNN,
DT, and logistic function, were considered for classifying ICS attacks. Table 6 shows the
results of these algorithms for detecting ICS attacks. Based on the empirical results, most of
the algorithms achieved superior accuracy, but the KNN and DT algorithms both achieved
an accuracy of 100%.
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Table 6. Results of approaches in binary classification for detecting ICS attacks.

Algorithms Classes Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Logistic
regression

Normal
99

98 100 99

Attacks 100 99 99

KNN
Normal

100
100 100 100

Attacks 100 100 100

Linear
discriminant

Normal
99

98 99 99

Attacks 100 99 99

Decision tree
Normal

100
100 100 100

Attacks 100 100 100

The confusion matrix of the ML logistic regression, KNN, linear discriminant, and DT
approaches are shown in Figure 7. The matrix reports the results of this algorithm using
different metrics, such as false negatives, true positives, and true negatives. The binary
classification is either normal or attacks (0, 1). The logistic regression results were 62.94%,
classified as TP, where the TN was 36.18%, and the false-positive was 0.85%. The KNN
and DT approaches showed the correct classification of 36.18 classified as TN and 63.80
classified as TP. The linear discriminant was 0.64% FP, 36% normal, and 63.15% attacks.

Figure 7. Confusion metrics of ML models: (a) logistic regression, (b) KNN, (c) LDA, and (d) DT.
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Table 7 shows the results of the DL CNN-LSTM model for detecting and classifying
ICS attacks using the binary dataset. The DL approach achieved an accuracy of 98.89%.

Table 7. Results of the DL CNN-LSTM model for detecting ICS attacks using binary classification.

Algorithms Classes Accuracy (%) Precision (%) Recall (%) F1 Score (%)

CNN-LSTM
Normal

98.89
99.83 98.42 99.12

Attacks 100 99 99

The performance of the CNN-LSTM model for predicting ICS attacks using binary
classification is shown in Figure 8. The accuracy of the CNN-LSTM model in the training
process was 99%, whereas the performance of the CNN-LSTM model for detecting ICS
attacks as the validation step was 98.89%. The training model varied in each epoch. The
validation loss of the CNN-LSTM model was 750–250.

Figure 8. Performance and loss accuracy of the CNN-LSTM model using the binary dataset. (a) model
accuracy (b) model loss.

Figure 9 shows the confusion metrics of the CNN-LSTM model using binary classifica-
tion. The CNN-LSTM model showed promising results; the percentage of the true negative
was 36.11%, and the false-positive was 62.79%. The misclassification percentage of the
CNN-LSTM model was 1.01%.

4.4.2. Results of Multiclass Classification

In this experiment, ML and DL approaches were examined using the multiclass
classification dataset: MITM attack, web-server access attack, Telnet attack, and normal.
Table 8 shows the results of the logistic regression algorithm to detect ICS attacks. The
results of the logistic regression method were not satisfactory. The accuracy value in all
classes was 30%. We recommend that this algorithm be used for detecting multiclass attacks
on ICSs.
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Table 8. Results of logistic regression using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 67 46 54

MITM attack 0.0 0.0 0.00

Web-server access attack 82 0.01 0.02

Telnet attack 0.00 0.00 0.00

Accuracy 30%

Weighted average 60 30 35

Figure 9. Confusion metrics of the CNN-LSTM model using the binary dataset.

The detection results of the KNN algorithm for the multiclass classification on the ICS
platform are presented in Table 9. Based on the confusion metric ICSs, the results were
superior, with an accuracy of 100% for the KNN.

Table 9. Results of the KNN approach using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 100 100 100

MITM attack 100 100 100

Web-server access attack 100 100 100

Telnet attack 100 100 100

Accuracy 100%

Weighted average 100 100 100

The results of the LDA model for detecting ICS attacks using multiclass classification
datasets are shown in Table 10. The accuracy of the LDA model was 94.37%. The weighted
averages of the precision, recall, and F1 scores were 95%, 94%, and 94%, respectively.
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Table 10. Results of the LDA model using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 98 93 95

MITM attack 79 100 88

Web-server access attack 99 94 96

Telnet attack 0.00 0.00 0.00

Accuracy 94.37

Weighted average 95 94 94

Table 11 shows the results of the DT algorithm, which achieved superior performance.
The accuracy percentage of the DT in all classes was 100%. The weighted average perfor-
mance of the DT was 100% for all classes.

Table 11. Results of the decision tree using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 100 100 100

MITM attack 100 100 100

Web-server access attack 100 100 100

Telnet attack 100 100 100

Accuracy 100%

Weighted average 100 100 100

Figure 10 shows the confusion metric indicators such as actual negative false-positive
rate, valid positive rate, and false negative. The logistic regression model results showed
26.36% correctly classified as normal, whereas the model scored 0.26% and was correctly
classified as a Telnet attack. The false-positive rate was very high in the MITM attack at
14.74%, with 21.04% for the Web-server attack. The results of the KNN approach showed
63.84% detected as normal; the true positives were 14.74%, 21.31%, and 0.09% correctly
classified as MITM attack, Web-server access attack, and Telnet attack, respectively. The
misclassification (FP) was 0.00, demonstrating that the KNN algorithm was appropriate for
detecting ICS attacks. The confusion metric results for the LDA model were 59.59% correctly
classified as normal packets. In contrast, the true positive metrics showed 14.75% classified
as MITM attack, 20.03% classified as Web-server attack, and 0.00 classified as Telnet attack.
The false positives of the LDA model were slight at 0.01% uncorrected classified MITM
attack, 1.28% uncorrected classified as Web-server attack, and 0.091% uncorrected classified
as Telnet attack. The decision tree algorithm showed the same performance as the KNN
algorithm, with 63.84% detected as normal. The true positives were 14.74%, 21.31%, and
0.09%, correctly classified as MITM attack, Web-server access attack, and Telnet attack,
respectively.

A hybrid DL CNN-LSTM model is proposed to detect ICS cyberattacks. The perfor-
mance of the DL CNN-LSTM classifier according to evaluation metrics such as accuracy,
precision, recall, F-score, and classification performance was evaluated using the four
classes, i.e., MITM attack, Web-server access attack, Telnet attack, and normal. The results
of the CNN-LSTM model were compared with ML approaches. Table 12 shows the perfor-
mance of the CNN-LSTM model using the multiclass classification dataset. The CNN-LSTM
model achieved the highest accuracy, i.e., 98%. The weighted average performance of the
CNN-LSTM model for all four classes was 98%.

216



Electronics 2022, 11, 1717

Table 12. Results of the CNN-LSTM model using the multiclass classification dataset.

Attacks Precision (%) Recall (%) F1 Score (%)

Normal 99 98 99

MITM attack 100 97 98

Web-server access attack 88 50 64

Telnet attack 92 99 96

Accuracy 98%

Weighted average 98 98 98

Loss 0.076

Figure 10. Confusion metrics of ML models using a multiclass classification dataset: (a) logistic
regression; (b) KNN; (c) LDA; (d) DT.

Figure 11 shows the confusion metrics of the CNN-LSTM model for detecting anoma-
lies in the ICS system. The graphical representation of the CNN-LSTM model shows that
14.06% (TN) was correctly classified as normal; 62% was correctly classified as MITM
attacks, 0.04% was correctly classified as Telnet attacks, and 21.39% was correctly classified
as Web-server access attacks. The false-positive rate was high at 0.05% on the Telnet attack.
The false-negative rate was high at 0.13% with the normal.
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The accuracy performance and loss of the CNN-LSTM model for detecting multiple
classes are shown in Figure 12. The plot shows that the accuracy of training and volition
increased from 88% to 98%, whereas the accuracy loss decreased from 0.30 to 0.10 in the
testing phase with 20 epochs.

4.5. Sensitivity Analysis

A sensitivity analysis is an approach for measuring the influence of uncertainties of
input data variables. Analyzing the input data is very useful for extracting patterns from a
dataset. A sensitivity analysis determines the effects of fluctuations in network features
with different attacks on the outputs or performance of a mathematical model or system.
In other words, a sensitivity analysis may be used to assign changes in system outputs
to distinct sources of uncertainty in system inputs, as opposed to a traditional approach.
In this study, we determined that there was a strong association between input attributes
and class membership using Pearson’s correlation coefficient. Certain traits had strong
connections (normal and MITM attacks, Web-server access attacks, and Telnet attacks).

Figure 11. Confusion metrics of the CNN-LSTM model using the multiclass classification dataset.
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Figure 12. Performance of the CNN-LSTM model for detecting ICS attacks using the multiclass
classification dataset: (a) Accuracy; (b) loss.

We selected features with high relationships with classes. Figure 13 shows the results
of the Pearson’s correlation coefficient method to determine the significant elements. The
destination and source addresses are critical features, with superior corrections among
classes of 92%, whereas the length features do not have good connections among the classes.

Figure 13. The correlation coefficients of the ICS datasets.

Moreover, the mean absolute error statistical analysis (MAE), MSE, RMSE, and R2

were applied to measure the percentage error between the target and prediction values.
Table 13 summarizes the statistical analysis of ML and DL with binary classification. The
KNN and DT algorithms had the highest correlations between the target and prediction
values, i.e., R2 = 100% and prediction output of 0.00.
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Table 13. Sensitivity analysis of ML using binary classification.

Models MAE MSE RMSE R2 (%)

LG 0.0088 0.0088 0.093 96.21

KNN 0.0 0.0 0.0 100

LDA 0.0084 0.0084 0.0919 99.53

Decision tree 0.0 0.0 0.0 100

CNN-LSTM 0.0111 0.0106 0.1030 95.43

Table 14 compares the prediction results among the target values, ML and DL, using
multiclass classification. The KNN and DT algorithms scored the highest (R2 = 100%),
with the prediction error between the target values and prediction output being 0.00. The
prediction error of the logistic regression method was very high. Overall, the KNN and DT
algorithms were effective in predicting ICS attacks.

Table 14. Sensitivity analysis of ML and DL using multiclass classification.

Models MAE MSE RMSE R2 (%)

LG 0.705 0.7096 0.8424 72

KNN 0.0 0.0 0.0 100

LDA 0.073 0.110 0.331 83.73

Decision tree 0.0 0.0 0.0 100

CNN-LSTM 0.043 0.089 0.299 90.53

5. Results and Discussion

ICSs are part of contemporary critical infrastructures, such as water treatment facilities,
oil refineries, power grids, and nuclear and thermal power plants. An ICS is a system
developed by merging computational and communication components to govern a physical
process. An ICS includes devices and subsystems, such as sensors, actuators, programmable
logic controllers (PLC), human-machine interfaces (HMI), and SCADA systems.

A steady rise in the frequency of successful attacks on ICSs has led to an urgent
need to develop security systems that can accurately and quickly identify irregularities. A
new breed of anomaly detectors based on data-centric methods is gaining traction in this
effort. Such techniques may automatically understand the dynamic ICSs of the process
and the control strategies used in an ICS using ML and DL algorithms. Anomaly detectors
can be created more quickly and easily using these techniques than using design-centric
approaches based on plant physics and design.

ML, including logistic regression, KNN, linear discriminant, and DT algorithms, and
the CNN-LSTM model, are designed to detect ICS attacks and protect the infrastructure
of ICSs. The proposed system was examined using the Sung real dataset from industrial
partner Necon Automation. This study conducted two binary classification and multiclass
classification experiments to detect and classify ICS attacks. Overall, the KNN and DT
algorithms achieved the highest performance with binary classification and multiclass
classification of 100% concerning the accuracy metric. Figure 14 shows a regression plot
of the KNN and DT algorithms, including the correlation between input and prediction
values. These algorithms scored 100% with respect to R.
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Figure 14. Regression plots for the KNN and DT methods.

The proposed system was compared with that of Sinil Mubarak et al. [36], who
developed the dataset. The authors used logistic regression, KNN, naive Bayes, random
forest, and ANN algorithms. However, cross-validation was used to evaluate the algorithm.
The results of these algorithms were: logistical regression 95.18%, KNN 95.24%, naive Bayes
94.75%, random forest 95.52%, and ANN = 95.14, according to the accuracy metric. In this
study, the KNN and DT algorithms achieved accuracies of 100%; the hybrid DL CNN-LSTM
model achieved 98% accuracy. Table 15 shows the empirical results of the proposed ML
and DL model against existing security systems developing the dataset. Figure 15 shows
a graphical depiction of the results obtained by our system and those obtained by other
current methods based on accuracy metrics. In general, the approach we recommend has
the highest level of accuracy available.
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Figure 15. Comparison of the proposed system with the system that developed the dataset.
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Table 15. Comparison of the proposed system with the system that developed the dataset.

Reference Year Datasets Model Accuracy (%)

Ref. [36] 2022
Industrial

partner (Necon
Automation)

Logistic
regression 95.18

KNN 95.24
Naive Bayes

Random forest 94.75

95.52
ANN 95.14

Proposed model 2022
Industrial

partner (Necon
Automation)

KNN 100
Decision tree 100
CNN-LSTM 98

A comparison between the proposed system and the existing system using a different
dataset is presented in Table 16. Overall, the proposed system achieved superior accuracy
as compared with the existing system for protecting the ICS’s environment. Figure 16
displays the performance of the proposed system as compared with the existing systems
with respect to accuracy metrics.

Table 16. Comparison of the proposed system to existing systems using different ICS datasets.

Reference Year Datasets Model Precision (%)

Ref. [46] 2018

ICSs

CNN 96
Ref. [47] 2018 MPL 96
Ref. [48] 2019 LSTM 93
Ref. [49] 2017 DNN 98
Ref. [50] 2019 GAN 70

Proposed model 2022
KNN 100
Decision tree 100
CNN-LSTM 99
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Figure 16. Comparative results of the proposed system with systems using different ICS datasets.
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6. Conclusions

Increasing effective assaults on industrial control systems (ICSs) have prompted the
creation of protection measures for accurate and quick process anomaly detection. In
contrast to other types of cyberattacks, ICS-oriented intrusions have the potential to disrupt
critical infrastructure operations, cause significant economic losses, pollute the environment,
and even cost human lives. In this study, a security system was developed to protect and
prevent cyberattacks from threatening ICSs. The artificial intelligence algorithms namely
regression, KNN, LDA, DT, and the CNN-LSTM model are designed to detect malicious
ICS attacks. The following conclusions stem from the encouraging findings of this study:

• The machine learning and DL algorithms were tested using a standard dataset col-
lected from industrial partners Necon Automation and IIUM. The algorithms con-
tained MITM attacks, Web-server access attacks, Telnet attacks, and normal packets.

• Testing was conducted in two stages, namely binary classification and multiclass
classification, to achieve the high-performance mode for detecting ICS attacks.

• The ML algorithms KNN, LDA, and DT were examined to find the appropriate
algorithm for protecting ICS systems. The KNN and DT algorithms achieved the
highest levels of accuracy.

• The hybrid DL CNN-LSTM model proved to be the most effective and efficient algo-
rithm for successfully detecting malware in ICS systems.

• The inaccuracies between the anticipated output and the target values were discovered
during the validation phase using a sensitivity analysis that examined the metrics
MSE, RMSE, and R2. The KNN and DT algorithms provide fewer prediction errors in
binary classification and multiclass classification.

• The ML and DL approaches performed well in the validation phase, with the KNN and
DT algorithms outperforming the competition by a wide margin. This study’s findings
were compared with those of other recent studies, confirming the validity and efficacy
of our findings. We developed ML and DL algorithms and conducted experiments
with them to get the best malware detection possible in ICSs. Even though both of the
suggested classifiers obtained high accuracy, the KNN and decision accuracy were
100%, demonstrating that they can beat other state-of-the-art classifier models.

• In the future, we aim to design our system with a real ICS system for protecting
food security.
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Abstract: This article presents a cloud-based method to classify 0-day attacks from a novel dataset
called UGRansome1819. The primary objective of the research is to classify potential unknown threats
using Machine Learning (ML) algorithms and cloud services. Our study contribution uses a novel
anomaly detection dataset that carries 0-day attacks to train and test ML algorithms using Amazon
Web Services such as S3 bucket and SageMaker. The proposed method used Ensemble Learning with
a Genetic Algorithm (GA) optimizer having three ML algorithms such as Naive Bayes (NB), Random
Forest (RF), and Support Vector Machine (SVM). These algorithms analyze the dataset by combining
each classifier and assessing the classification accuracy of 0-day threats. We have implemented
several metrics such as Accuracy, F1-Score, Confusion Matrix, Recall, and Precision to evaluate the
performance of the selected algorithms. We have then compared the UGRansome1819 performance
complexity with existing datasets using the same optimization settings. The RF implementation
(before and after optimization) remains constant on the UGRansome1819 that outperformed the
CAIDA and UNSWNB-15 datasets. The optimization technique only improved in Accuracy on the
UNSWNB-15 and CAIDA datasets but sufficient performance was achieved in terms of F1-Score with
UGRansome1819 using a multi-class classification scheme. The experimental results demonstrate
a UGRansome1819 classification ratio of 1% before and after optimization. When compared to the
UNSWNB-15 and CAIDA datasets, UGRansome1819 attains the highest accuracy value of 99.6% (prior
optimization). The Genetic Algorithm was used as a feature selector and dropped five attributes of the
UGRansome1819 causing a decrease in the computational time and over-fitting. The straightforward
way to improve the model performance to increase its accuracy after optimization is to add more
data samples to the training data. Doing so will add more details to the data and fine-tune the
model will result in a more accurate and optimized performance. The experiments demonstrate the
instability of single classifiers such as SVM and NB and suggest the proposed optimized validation
technique which can aggregate weak classifiers (e.g., SVM and NB) into an ensemble of the genetic
optimizer to enhance the classification performance. The UGRansome1819 model’s specificity and
sensitivity were estimated to be 100% with three predictors of threatening classes (Signature, Synthetic
Signature, and Anomaly). Lastly, the test classification accuracy of the SVM model improved by 6%
after optimization.

Keywords: UGRansome1819; zero-day attacks; cloud computing; machine learning
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1. Introduction

Cloud computing and network services are rapidly growing in popularity nowadays.
Services and key operations of different businesses are migrating towards the cloud en-
vironment. Mobile computing, the Internet of Things (IoT), and emerging peer-to-peer
networks represent trending technologies that are transforming how we communicate.
Furthermore, the volume and diversity of unwanted traffic are also increasing [1]. Different
approaches are used by intruders, professional developers, and computer hackers to attack
cloud networking. The burden of identifying, managing, and safeguarding invasive traffic
is becoming more challenging and expensive as these networks attempt to comply with
organization-specific standards, quality regulations, and compliance obligations [2,3]. The
majority of the front-line tools in a secure network architecture consist of Uniform Resource
Locator (URL) filtering, firewalls, Intrusion Detection System (IDS), and access control.
With advanced network threats and novel intrusion strategies, it is difficult to protect rele-
vant data completely from attackers, Denial of Service (DoS) attacks, and data leakage [1–3].
In line with this, current research in the IDS field is aimed at improving AIDS using ML
techniques. Intrusion detection can be divided into the anomaly and signature-based
approaches. A signature-based approach is often used as a technique to detect misuse
based on pre-defined parameters [4,5]. The report provides detailed information about
predefined attacks and intrusions [6]. On the other hand, the anomaly detection method
begins by getting to learn from a normal model and searching for anomalous patterns
permitting the detection of unknown attacks [4,5]. The underpinning philosophy of the
anomaly method is to identify abnormal pattern behavior that is detected in the normal
model [2,5]. Cyclostationary threats being within the network traffic without the network
administrator’s awareness are generally known as a 0-day intrusion [7]. Various ML tactics
along with GA and Information Theory, are utilized to optimize and improve the detection
of network anomalies [2–4,8]. The AIDS assesses and analyzes network and host traffic:
In a Host-based Intrusion Detection System (HIDS) network features including system
or device logs are monitored [5], while the Network Intrusion Detection System (NIDS)
controls different types of traffic including Internet Protocol (IP) addresses, firewalls, logs,
and network ports [8,9]. The security setups will focus on the whole network to detect
various forms of abnormalities. Generally, enterprises use their cloud networks, scan
their architecture, and analyze intrusions to decide whether or not the traffic is normal or
malicious. This protection protocol is most useful in terms of securing cloud networks from
possible threats [10]. We have opted for a cloud-based ML optimization technique using a
novel AIDS dataset [7], which incorporates 14 attributes to achieve an efficient classification
accuracy from the range of 90% to 99%. The objective of this research is to categorize and
come across 0-day threats integrated into the UGRansome1819 dataset by using various
ML algorithms and two cloud services. The UGRansome1819 dataset has three predictive
classes of threatening behavior which include Anomaly (A), Synthetic Signature (SS), and
Signature (S) threats [7]. This dataset used the RF, NB, SVM, Ensemble Learning model,
and GA with a mixture of all the sub-cited ML algorithms to get the surest evaluation
results of the AIDS dataset. The interested reader should refer to Nkongolo et al. [7] for the
production methodology of the UGRansome1819 dataset. However, the feature selection
used in the construction of UGRansome1819 utilized Principal Component Analysis on the
UGR’16 and ransomware datasets to detect the most relevant features. Next, these features
were manually merged and combined using a fuzzy merging technique to build the final
dataset. The fuzzy merging is similar to an intuitionistic data fusion technique where data
retrieved from various sources are mixed to come up with one less redundant dataset.
Only the features that shared the same characteristics were combined and categorized into
normal and abnormal classes [7], but some updated and highly cited datasets features such
as CAIDA and Cambridge Lab were neglected. Choosing supervised algorithms for the
sake of anomaly detection needs strong justification. Because supervised algorithms have
better performance in terms of accuracy and a low rate of False Positive in detecting known
attacks rather than zero-day ones. Anomaly detection can be deployed with supervised
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ML models and automate the process of determining whether the data that is currently
being observed differs from typical data observed historically. This goes beyond the simple
threshold of data. Anomaly detection models can look across multiple sensor streams to
identify multi-dimensional patterns over time that are not typically seen. The supervised
learning model can recognize patterns in the dataset that indicate a high likelihood of 0-day
threatening behavior such as cyclostationarity. Anomaly detection models can also alert the
analyst to patterns that require closer investigation. This may force the engineer to perform
a sanity check on the network to detect the threats. In the most efficient implementation
with supervised learning, labeled anomalies are fed into the supervised learning model to
enhance and expand the predictive models. A threat with similar data patterns as labeled
anomalies might help in the detection of 0-day threats. Anomaly detection models coupled
with supervised learning learn efficiently from any dataset where each feature will have
its own normal or abnormal data patterns and it is still the gold standard of predictive
and classification experiments. So, anomaly detection is an important complement to
supervised learning. However, the challenges of labeling and collecting the necessary data
limit the construction of a robust solution based on supervised learning alone.

1.1. Research Question

The foremost research question may be stated as follows:

• Is there any classification performance difference in terms of optimization using the
UGRansome1819 dataset?

1.2. Aim and Objectives

The primary objective of the research is to detect potential 0-day (unknown) threats
using ML algorithms and cloud services. To obtain the favored outcomes, the research
study has the following targets:

1. Use SVM, NB, and RF classifiers to determine if the classifier’s assumptions are exact.
We have examined and trained those classifiers using SageMaker.

2. Compare the classifiers in terms of spotting 0-days threats and apply the GA on the
UGRansome1819 dataset to extract salient features.

3. Use the GA optimizer with each classifier to evaluate the improved performance.
4. Use Ensemble Learning to combine the results of classifiers and determine if this

method enhances the classification performance.
5. Lastly, compare the outcomes and the UGRansome1819 performance and complex-

ity with existing datasets with the same algorithms and optimization settings by
computing them on the CAIDA and UNSWNB-15 datasets.

Researchers in the IDS panorama are using legacy datasets that encompass obsolete
network threats that have changed and developed. As a result, cutting-edge NIDS cannot
discover novel network attacks. Additionally, 0-day threats datasets are not published to
investigate their behavior [7]. Hence, our study contribution is the use of a novel anomaly
detection dataset [7] that carries 0-day threats to train and test ML algorithms. We have
used two cloud services such as S3 bucket and SageMaker to achieve this goal. This article is
structured as follows: The research problem, aim, as well as research question was discussed
in Section 1. Section 2 will concentrate on the literature review. In Sections 3 and 4, the
research methodology and the proposed cloud optimization method are presented: we have
also introduced a schematic representation of the cloud optimization method and discussed
the computing environment that was utilized. Further, the results of the implementation
before and after optimization are illustrated in Section 5 and the discussion in Section 6.
Finally, the future works and conclusions are offered in Section 7.

2. Related Works

Daily, attackers update themselves as well as the technology they utilize to produce
new threats [11,12]. Under this assumption, IDS are being created at a growing rate to

229



Electronics 2022, 11, 1749

reinforce network systems to effectively combat evolved threats. Several studies have been
undertaken for this purpose, and novel studies are being carried out each day to optimize
the quality of the IDS. Intrusion is typically categorized as a form of incorrect motion that
involves damage to a network [11]. Thus, when the network security, confidentiality, and
accessibility of services are confronted; the event would be categorized as an intrusion.
Actions that make network services unusable to utilize for humans are also declared as
intrusion [11]. Signature-based IDS (SIDS) and AIDS are the two types of NIDS. The
SIDS makes use of pattern recognition strategies to understand common threats. Similar
strategies for SIDS can also discover the earlier threatening behavior. In some stages, an
alert message is activated on each intrusion when a signature of an intrusion resembles a
previous incursion that already existed within the signature database [13]. The literature
review consists of some research related to intrusion and anomaly detection and the usage
of datasets in the NIDS landscape. In Divekar et al. [14], a study was carried out on the
usage of benchmarking datasets for AIDS using the KDD CUP 99 dataset and its contrast
performance is discussed. While tested with K-Means, NB, RF, Decision Tree (DT), SVM,
and Neural Networks (NN) or using the SMOTE oversampling approach and random
below sampling, it was proved that unbalanced centered training in KDD-99 and NSL-KDD
avoid the effectiveness of classifiers on minority intrusion (User to Root and Root to Local
attacks), probably posing security troubles. The UNSW-NB15 dataset was investigated
to overcome patterns dispersion limitations of the KDD-99, when equating the overall
results of minority classes in the corpus after and before SMOTE oversampling, the research
reveals that for binary classification, a sufficient performance was achieved in terms of F1-
Score with the UNSW-NB15 dataset that is similar to the NSL-KDD and KDD-99 datasets,
and Divekar et al. [14] presented the UNSW-NB15 as a palliative for legacy datasets.
A thorough analysis of IDS was made by Ring et al. [15], the robustness of NIDS had
been tested to evaluate the usability of datasets. The dataset from the Defense Advanced
Research Projects Agency (DARPA) has been used for studies purposes over the past years.
This is a four-gigabyte collection transformed into binary and containing simulated data
packets with seven million network patterns [16]. However, the dataset is out of date.
The KDD99 dataset is constituted of forty-nine million hyperlink characteristics having
forty-one parameters, and it is been acquired from the DARPA98 dataset. Such features
have been categorized as either network data vulnerabilities or in any other case. The
DARPA dataset has analytical problems, making it unable to correctly discover malware
with excessive precision. The Network Security area became advocated to assemble the
NSL-KDD dataset as an upgraded model of the DARPA and KDD99 datasets because
of various drawbacks. When compared to the KDD98, KDD99, NSL-KDD, and DARPA
datasets, the NSL-KDD dataset attains fewer redundancy [10]. Over the last few years,
researchers have proposed different AIDS solutions including fog and parallel computing
amongst many others. AIDS has been utilized in a wide range of fields, not just in Network
Security, but also in Network Traffic Management [17–19]. Extensive research showcasing
novel anomalous intrusion is presented by Yu et al. [20].

2.1. Anomaly Intrusion Detection System (AIDS)

The key to AIDS has been the ability to discover 0-day threats. Whenever the examined
traffic varies from ordinary, the AIDS will send out an alert message. AIDS offers several
advantages. To start with, if the computer system has been attacked, this will raise an
alarm if such a threat seems to be identifiable [21]. Furthermore, there are many principal
advantages of using AIDS that help protect the network from potential cyber-attacks. It
can supply an intrusion signature [22] that facilitates the recognition of network attacks.
Lawal et al. [22] used a unique hybrid anomaly method based on fog computing for IoT
networks. The anomaly and signature-based detection approach was used. The paper fur-
nished a comparative analysis of anomaly detection solutions within the IoT. Shapoorifard
and Shamsinejad [23] reported anomalies or undesirable entry in the IoT object that process
data. In Software-Defined Networking (SDN), numerous approaches had been used to
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perceive network attacks. The two critical standards to discover intrusions are a deviation
from ordinary network traffic in addition to a low or high traffic flow [7]. Normally, IDS
continuously analyzes network traffic or time-series data and becomes computationally
expensive. With the advent of 5G, the accuracy of network attacks detection has become a
serious concern. SDN centralized networks and allows the examination of their traffic. As,
such, the time complexity for processing data in SDN has to be considered due to the delay
that could affect the execution time.

2.2. UGRansome1819 Dataset

This dataset is created by getting critical features of the UGR’16 and ransomware
datasets [7,24]. It is an anomaly detection dataset that consists of both normal and anoma-
lous network activities. The regular characteristic collection makes up 41% of the dataset,
while irregularity makes up 44% and the prediction is 15%. The dataset has been made
publicly available in [7]. Regular class threats such as User Datagram Protocol (UDP)
Scan and Bonet provide approximately 9% as well as anomalous category threats [7]. IP
addresses represent only 18% of the dataset with 19% of connection signals. A percent-
age distinction exists between network protocol (14%) and seed or expended addresses
(16%) [7]. According to Nkongolo et al. [7], a substantial proportion of the dataset can be
categorized by the following factors:

• The Transmission Control Protocol (TCP) carries the most characteristics in terms of
network protocols (92,157).

• The AF flag has the most features (72,814).
• Locky has the most features in terms of ransomware family (33,870).
• Addressing of class 1DA11mPS has the most properties (82,048).
• In comparison to classes B, A, and D, class C of IP addresses has much more character-

istics (95,508).
• The Secure Shell (SSH) threat has the most attributes (34,972) compared to UDP Scan,

Blacklisted, Spamming, DoS, Scan, and Bonet threats.
• The Signature (S) threat category has by far the most properties compared to the

Synthetic Signature (SS), and Anomaly (A) threats predictions.

All feature attributes of the UGRansome1819 can be summed up into the following
prediction categories [7]:

1. The A category represents unknown threats without signature keys. This prediction
includes the most 0-day threats.

2. The SS category includes unknown and known threats with and without signature
keys. This prediction exhibits both, regularity and irregularity.

3. The S category depicts well-known threats with updated signature keys. This predic-
tion portrays regularity or normality.

2.3. Support Vector Machine Algorithm

The SVM utilizes a multi-dimensional space configuration to stratify one category from
the other [25]. It is a technique that uses a kernel as a function that can be polynomial, radial
basis, linear, or other. The SVM properties determine a hyperplane given in Equation (1).
This function maps the original input space in a new space with a precise classification
rate and accurately distinguishes two categories with a maximum margin. That said, the
performance of SVM is determined by the type of function its kernel utilizes:

g(x) = WTx + b. (1)

Computationally speaking, xi is a set of data points belonging to a binary category.
The separability of observations from the hyperplane is equivalent to Equation (2):

g(x)
||w|| . (2)
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SVM attempts to discover the weights w and bias b, for inputs g(x) = 1 given the
nearest xi from the binary category. This can be represented by the following margin given
in Equation (3):

1
||w|| +

1
||w|| =

2
||w|| . (3)

This algorithm has been utilized by Dong [26] to resolve the multi-class classification
problem for Network Traffic Management. However, the RF, NB, GA, and Ensemble
Learning algorithms were not used to reduce the computational time and enhance the
classification accuracy to resolve the imbalance issue when compared to the SVM.

2.4. Naive Bayes Algorithm

The NB uses Bayes’ theorem and posits “naive” independence between features given
a specific dataset. X is a set with n features to be stratified. This can be mathematically
written by using a vector X = (x1, . . . , xn). This algorithm implements the following
probability (P) computation to specify the category Ck given x:

P(Ck|X) =
P(X|Ck)P(Ck)

P(X)
, (4)

The following equation is used to assign the class for X:

y = P(Ck)
n

∑
i=1

P(Xi|Ck) (5)

where the predicted label is denoted by y and the probability by P. The NB algorithm was
used with Laplace smoothing to help tackle the problem of zero probability. While testing
the NB algorithm, the ML model could face a new observation x̂ for which it was not
trained on. Then, P would be null for x̂ representing a specific data point. The Laplace
smoothing is then used to solve this problem by ensuring that P will never be zero for x̂. It
uses a smoothing parameter α that is not equal to zero:

P(Ck|x̂) = ∑K
k=1 x̂k ∗ yk + α

N + α ∗ K
, (6)

K represents the number of features in the dataset and N is the number of observations
on which the NB was trained. NB algorithm has been used by Guezzaz et al. [27] to
evaluate the probability of specific categories and enhance the classification model for the
Network Intrusion Detection Problem (NIDP). Nevertheless, in the worst-case scenario,
the training phase of the NB takes a similar amount of time as the testing phase [28] and
Guezzaz et al. [27] did not come up with an ensemble or optimization technique to improve
the classification model.

2.5. Random Forest

The RF is a classification tree and pattern recognition algorithm [29]. With RF, the
trees are grown adaptively to remove bias. The intuition in RF is to enhance the variance
by reducing the correlation between various trees, without increasing the variance. This
is computed in the tree-growing phase via random selection of the inputs (Algorithm 1).
RF was used by Disha and Waheed [30] for the NIDP. The algorithm creates a tree with
different training sets from a given dataset. The RF is used by Disha and Waheed [30] and
performed well on the UNSW-NB 15 dataset using Gini impurity as the splitting parameter
of trees that adjusted weights of the binary classification. The RF was then utilized to assess
features of the most significant relevance and did not have any problem with overfitting
or numeric variables [31]. However, the GA was not used to tackle the feature extraction
problem of imbalanced datasets.
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Algorithm 1 Random Forest Algorithm

Require: Features sampled fs
Ensure: b = 1 to B

Draw a bootstrap sample Z of size N from fs
Draw a Random Forest tree Tn to bootstrapped data
Recursively repeat the process for each node in Tn
Stop when the minimum size nmin is reached
while fs �= 0 do

if N �= 0 then
Select m variables at random from the p variables
Pick the best split point among the m � or pick the best variables
Split the node into two daughter nodes
Output the ensemble of trees TB

b
else if N > 0 then

Make a prediction at a new point x
Regression: f B

r f (x) = 1
B ∑B

b=1 Tb(x)
Classification: Let Cb(x) be the class prediction of the Random Forest tree
CB

r f (x) = Majority vote [CB
r f ]

B
1

2.6. Ensemble Model Technique

The merit of ML classifiers is to extract meaningful patterns from a given dataset.
The Ensemble Learning model of classification combines different classifiers and averages
the accuracy to provide a high classification rate having a low false classification ratio.
Ensembling refers to a particular method of training a model of weak classifiers. The model
classifiers are in the form:

FT(x) =
T

∑
t=1

ft(x), (7)

each ft is a weak classifier that takes an observation x as input and returns a value indicating
the class of the observation. The Tth sample classifier is positive if the sample is in a
positive cluster and negative otherwise. Each weak classifier produces an output h(xi) or a
hypothesis, for each sample in the training set. At each tth iteration, a weak classifier is
selected and assigned a coefficient αt such that the sum of the empirical or training error Et
of the resulting ensemble classifiers is optimized:

Et = ∑
i

E[Ft−1(xi) + αih(xi)], (8)

Ft−1(x) is the ensemble classifiers that have been built up to the previous stage of
training, E(F) is the error function and

ft(x) = αth(x), (9)

is the weak learner that is being considered for addition to the final classifier. Abu Al-
Haija and Al-Badawi [32] used an ensemble method on the NSL-KDD dataset in order
to implement a NIDS with quick model building time, minimal false positive rate, and
high classification accuracy [33]. However, the ensemble model was not used with GA to
produce a lower error and better accuracy rates.

2.7. Genetic Algorithm

The genetic optimization approach is a biologically inspired optimization paradigm
that utilizes evolutionary optimization techniques such as transmission, crossovers, and
variation [34]. The critical steps of the GA can be listed as follows [34]:

• Use the initial dataset (population) to search for a possible solution s. The algorithm
starts with a population that can be thought of as a set of individuals. Each individual
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represents a solution to the optimization problem. The solution is characterized by a
set of variables (parameters) called “genes” that are merged into a string to produce a
solution (chromosome). We have used ternary values (0, 1, and 2) to represent a set of
genes. This can be viewed as encoding genes into a chromosome.

• Calculate the fitness function. It determines how to fit a solution by comparing it to
other solutions and providing a fitness score for each solution. The probability that a
solution will be selected is based on the fitness score. The probability of selecting a
solution is denoted by P[s]. We posit that α and σ are constant:

P[s] = α + σs. (10)

• Selection. This phase selects the fittest solutions and lets them pass their genes to
the next iteration. This is like how it is the fittest individuals that pass their genes to
the next generation in Darwinism. The parents of individuals are selected using the
fitness scores. To be selected for reproduction, individuals should have high fitness. It
utilizes a probability distribution for selection where the given string should have a
selection probability proportional to its fitness. The mathematical formulation of the
selection process probability (Prob.) is:

s =
Prob ∗ [ f ittest string selection]

Prob ∗ [average string selection]
. (11)

• Compute the crossover process. A crossover point is selected for each pair of parents
to be mated. This is a random process within genes where offspring are created by
merging the parents’ genes among themselves to reach a crossover point and new
offspring are included in the population. Crossover replaces some parent’s genes by
corresponding them with the genes of other parents. If we have two strings x and y,
each having three variables:

(x1, x2, x3), (y1, y2, y3).

This represents possible solutions to the classification problem. Two cross-points are
randomly selected and a new possible solution is produced by merging the string of
the original parents. For example, the offspring solution would be

(x1, y2, y3), (y1, x2, x3).

• Implement the mutation process. Genes of offspring formed are subjected to a muta-
tion using a minimalistic random probability: String’s bits are flipped to maintain the
population diversity. The flip mutation selects random bits and flips them differently.
The bold indicates the permutation or the bytes that have been changed or flipped
during the process:

100101011 ←→ 110101001,

10 0 101011 ←→ 11 1 001011,

10 0 101011 ←→ 110001011.

When the population convergence is achieved, the GA terminates and provides a set
of solutions to the optimization problem.

As a result, the GA establishes a classification model using the aforementioned ap-
proaches to select appropriate variables for the detection and recognition of anomaly [35].
Additionally, the GA simplifies the process of feature selection by using tuning parameters
because high False Positive rates might bias the accuracy. Maseer et al. [25] analyzed past
AIDS studies that utilise NIDS datasets. The results of ML-AIDS algorithms in identifying net-
work threats are also provided. The algorithms present demerits in detecting novel and 0-day
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threats [31] for the multi-classification issue. To overcome this problem, Yihunie et al. [36]
provided a benchmarking approach that includes multiple classifiers using real datasets to
enable accurate evaluation of AIDS. The experiments reveal that a single ML algorithm cannot
detect all types of network attacks (known and unknown). Nevertheless, due to strong False
Negative and False Positive alerts, the NB-AIDS, KNN-AIDS, and DT-AIDS simulations
performed well but the EM-AIDS and SOM-AIDS algorithms perform badly.

2.8. Summary of Related Works

A comparative analysis of related works is given in Table 1 to summarise the literature
review. Most of the research papers discussed in the current literature [37–41] did not
solved the imbalance, optimization and multi-class issues.

Table 1. A Comparative Analysis of related Works.

Author Dataset Approach Limitations

[37] CAIDA SMO Anomaly detection

[38] CICIDS2017 Deep Neural Network IoT protection

[39] NF-BoT-IoT-v2 Random Forest Imbalance data

[40] UNSWNB-15 GWO Multi-classification

[41] WSN-DS KNN Optimization

The literature review describes major research for the NIDP and the most used re-
search methodologies such as Deep Neural Network, Random Forest, and clustering. The
limitations of the discussed research papers include the use of legacy datasets, as much
work has been conducted to detect and classify legacy network threats incorporated in these
datasets. As such, novel network attacks such as 0-day threats should be the focus of future
research work as suggested by Hindy et al. [10]. A similar recommendation is provided by
Nkongolo et al. [7] in terms of more AIDS research that will concentrate on 0-day threats
recognition and optimization. In this research, a comparison with other state-of-the-art
models is achieved. We have tabulated the results obtained using the UGRansome1819
by comparing its performance and complexity with existing models. We have used the
same algorithms (SVM, NB, and RF) with the optimization settings (Ensemble Learning
and Genetic Algorithm) and computed them on the CAIDA and UNSWNB-15 datasets.

3. Materials and Methods

Many researchers apply various ML algorithms on NIDS datasets to evaluate trained
algorithms, however, most of the time they do not succeed in accurately testing and
training these algorithms to reduce false alarms [42]. There are many reasons for this failure
such as data preprocessing, tuples selection, missing values occurrence, and anomaly
detection that affect the result of a classifier [34,42]. Selecting all features may also cause
a minimization in the assessment of a classifier because of overfitting problems [34]. ML
algorithms might also be computationally expensive and take more time to execute if there
are minimal features. To solve the execution and overfitting issues, it is crucial to select
relevant and important features attributes from the dataset for accurate evaluation [42,43].
Different methodologies such as variance Inflation Factor, Particle Swarm Optimization
(PSO), Stochastic Gradient Descent, and GA are utilized to extract and select important
features from a dataset [44]. In our research, a GA is used to extract eight important features
from the UGRansome1819 dataset.

3.1. The Proposed Model

The proposed methodology aims to optimize the classification of important features in
the UGRansome1819 using GA and Ensemble Learning (Figure 1). The optimization with
GA coupled with the DT is utilized as a feature selection that extracts relevant features from

235



Electronics 2022, 11, 1749

the UGRansome1819. The NB, SVM, and RF algorithms are then applied to the dataset
but assessed through the Recall, Accuracy, Confusion Matrix, and Precision evaluation
metrics (Figure 1). These ML classifiers are also computed on the same dataset using the
Ensemble Learning technique (Figure 1). The stacking Ensemble Learning technique is
applied to the SVM, RF, and NB classifiers. The RF and SVM classifiers are utilized as
member models while the NB has been used as the base model. In turn, the GA is then
executed on the dataset to extract relevant features. After this feature extraction process,
all the three selected ML classifiers along with the Ensemble Learning model are again
evaluated and trained on the newly optimized feature set. The classification results of the
ML algorithms are compared and assessed with each other. The UGRansome1819 dataset
is subdivided into three classes used for prediction: S, A, and SS. Similarly, these classes
include 16 attacks that represent abnormality of 0-day threats: Globe, SamSam, Flyper,
DMALocker, NoobCrypt, CryptoLocker, CryptoLocker2015, CryptXXX, Cryptohitman,
JigSaw, EDA2, Globev3, TowerWeb, APT, WannaCry, and Locky. Instances of normality
correspond to nine well-known threats such as Bonet, DoS, Spam, SSH, Scan, Blacklist, Port
Scanning, Nerisbonet, and UDP Scan [7].

Figure 1. Proposed Methodology.

3.2. Data Pre-Processing

We have used the multi-class classification model to pre-process the UGRansome1819
CSV file with the Python programming language that was utilized for the implementation
of SageMaker and S3 bucket. The first service enabled the implementation of ML in the
cloud while the second assisted in storing the dataset in a cloud database. To simplify the
pre-processing, each categorical feature was converted to numeric.

3.3. Specifications of Software and Hardware

The implementation of the ML classifiers is performed on the cloud using SageMaker
with a laptop having the Linux Operating System (OS) installed. The specification of the
employed computational environment is mentioned in Table 2.

The Python programming language is utilized to code the ML classifiers. It is widely
utilized to classify, predict, and analyze quantitative and qualitative data. The predictive
models are implemented with Seaborn, NumPy, Pandas, Sklearn, and Matplotlib libraries.
The three selected classifiers are computed on the same dataset before and after GA.

3.4. Cloud Services

The Amazon Web Service (AWS) SageMaker is used as a cloud ML framework
that assists in training, designing, executing, and optimizing ML classifiers as described
by Zhang et al. [45]. The advantages of utilizing AWS SageMaker are as follows [45]:
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(i) Data protection, (ii) fast and adaptable training, and (iii) continuous and enhanced
operating process.

Table 2. The Computing Environment.

Component Specification

Dataset UGRansome1819

Processor 2.60 GHz and 2.59 GHz

System Type 64-bit

Programming Language Python

CPU Intel (R) Core (TM) i7-10 750

OS Debian 11

Optimization GA and Ensemble Learning

Cloud Services S3 bucket and SageMaker

RAM 40 GB

4. Implementation

The suggested cloud-based optimization method execution has been supplied in
Figure 2. Implementation for this research requires the Amazon Web Services (AWS) which
provides various technologies for distributed services [46]. One of these services is the S3
bucket which supports object storage via an interface. The Amazon S3 bucket uses the same
storage environment that Amazon.com utilizes to run its e-commerce infrastructure [46].
The Amazon S3 URL was used to store, archive, and backup the UGRansome1819 for
cloud analytics (Figure 2). The AWS SageMaker assisted in building, preparing, deploying,
and training the three ML algorithms [46]. We have used the UGRansome1819 dataset
to compare the performance of selected classifiers that detect 0-days threats. This article
offers a multi-class model approach that utilizes an optimization algorithm named GA and
Ensemble Learning to discover 0-day threats from the dataset with the combination of the
three algorithms. The features in the UGRansome1819 dataset have been normalized to
make it more balanced in terms of normal and anomalous data [47]. The UGRansome1819
has been limited to 207,533 observations or tuples with 14 attributes or columns subdivided
into 80% of training data with 20% of testing data.

Figure 2. The Cloud Based Optimisation Method Execution.
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4.1. The UGRansome1819 Dataset

Figure 3 represents the class labels of the prediction column in the dataset [7].

Figure 3. The Prediction Class Labels.

The ratio of the three-class labels is 56,598 counts for Anomaly, 91,360 for Signature,
and 59,575 for Synthetic Signature attacks (Figure 3). This dataset is obtained from [7]
and contains 0-day threats for AIDS. The 207,533 tuples with 14 attributes are depicted
in Figure 4. The UGRansome1819 consists of both numeric and textual data: Six features
are numeric while the remaining eight features are categorical. Various features such as
Prediction, Port, Threats, IP address, Netflow, Dollars (USD), Bitcoins (BTC), Expended
address, Seed address, Clusters, Ransomware Family, Flag, Protocol, and Timestamp are
recorded. The prediction column representing the three-class labels (A, S, and SS) is
illustrated in Figure 3. S stands for Signature, A for Anomaly, and SS stands for Synthetic
Signature in the dataset (the last columns in Figure 4). All patterns categories of the
UGRansome have been stratified as follows:

Figure 4. The Dataset Description.

1. The category of Synthetic and Signature malware (SS). It represents characteristics
of well-known as well as unknown attacks. This category exhibits both, normality
and abnormality.

2. The category of Signature malware (S). It depicts well-known malware having avail-
able keys that have been released and updated regularly. The signature category
portrays normality.
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3. The category of anomaly malware (A). It is a set of unknown malware for which
signatures or keys do not yet exist. Abnormality is illustrated by this category.

Structure of the Dataset

The timestamp is just a numerical value expressing the time spent by the threaten-
ing behavior [48], the network protocol is a categorical communication protocol such as
TCP or Internet Control Message Protocol (ICMP) [49]. The network flag is a categorical
representation of the network status (for instance, APSF) [7]. The ransomware family is
the column containing the ransomware-type (e.g., EDA2, Flyper, and WannaCry) [24], it is
a categorical column (Figure 4). Every network threat is allocated to a numerical cluster,
which is a numerical feature. The seed (1AEoiHYZ) and extended (1SYSTEMQ) addresses
were converted during the features normalization phase; it is a categorical column that is
used for malicious activities (receive and transfer BTC or USD) [24]. The financial damage
caused by network threats is quantified in USD and BTC [24]. The network flow (Net-
flow) is a numerical representation of the network traffic where the threatening behavior
occurred [7,50]. The victimized host computer is represented by a unique categorical IP
address. It was a normal address such as 198.169.18.19 that was obfuscated into classes A,
B, C, and D for privacy reasons [7]. Network threats are categorical attributes such as Bonet,
DoS, UDP Scan, SSH, and Spamming. The network port is numerical: It is the port number
used by a threatening behavior. The prediction is categorical: It denotes the stratification
scheme that the ML algorithm will utilize to predict features into A, S, and SS [7]. The
construction methodology of the UGRansome1819 is discussed by Nkongolo et al. [7]. The
data structure of the UGRansome1819 is presented in Table 3.

Table 3. The UGRansome1819 Data Structure.

Abnormal Threats Example Prediction Total

DMALocker Port Scanning Anomaly 12,371

Globe UDP Scan Anomaly 13,200

CryptoLocker Types Blacklist Signature 20,527

JigSaw Scan Anomaly 17,544

SamSam Spam Anomaly 28,597

TowerWeb Spam Anomaly 7353

Flyper Nerisbonet Synthetic Signature 14,352

WannaCry Bonet Synthetic Signature 22,931

APT DoS Synthetic Signature 15,363

Locky DoS Synthetic Signature 33,870

Razy Scan Anomaly 12,535

EDA2 Blacklist Signature 8744

Globev3 Spam Anomaly 146

4.2. Pre-Processing

Data preprocessing plays a crucial role in ML classification. If the dataset is not
well processed the classifier may not correctly work as expected [51]. It might be due to
tuples that have missing values, outliers, and inconsistency. Therefore, it is also crucial
to pre-process the dataset to make it suitable for ML computation [34,51]. There are no
missing values in the UGRansome1819 dataset and all categorical features are translated
to a numerical form using the Python label encoder function. This function assigns a
numerical value to each category starting from zero. For instance, the prediction class
labels having three distinct category (A, S, and SS) is transformed by the label encoder: 2
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is assigned to SS, 1 to S, and 0 to A. All the categorical features presented in Figure 4 are
similarly transformed into a numerical form. The new pre-processed UGRansome1819
contains only numerical features and is recorded for further AIDS research (Figure 5).

Figure 5. The Numerical Format of the Dataset.

4.3. Evaluation of the Machine Learning Method

To quantify the performance of the ML, data scientists train a predictive model on
a specific amount of data [52]. The training requires feeding the features set with class
label results to the ML classifier [4]. The model is assessed after training by using the
holdout feature without the class labels results to predict the new output. Generally, the
evaluation metrics of the ML classifier compare the actual class labels with the predicted
class label result and quantitatively evaluate the ML predictive model [4,34,53]. In this
research, five evaluation metrics are used: Confusion Matrix, Accuracy, Recall, Precision,
and F1-Score. TP is the True Positive representing an outcome where the model correctly
predicts the positive class. FP is the False Positive representing an outcome where the
model incorrectly predicts the positive class. It is also named type-1 error [43]. FN is the
False Negative representing an outcome where the model incorrectly predicts the negative
class. It is also named type-2 error. TN is the True Negative representing an outcome where
the model correctly predicts the negative class. The Precision refers to correctly predicted
positive observations [43]. The Recall value specifies the percentage of some class correctly
identified from all of the given examples [54]. The Accuracy represents the proportion
of correct predictions in all predictions made [43,54]. It is a measure of the performance
of our ML model. The F1-Score is the mean of Recall and Precision. The mathematical
formulations of evaluation metrics are presented in Table 4. The Confusion Matrix is a n*n
table that allows visualization of the performance of an algorithm where the matrix row
represents instances in an actual class and each matrix column represents instances in a
predicted class [4,55]. It calculates the evaluation metrics such as Accuracy, Precision, and
Recall (Figure 6). In Figure 6, FN and FP represent misclassified data while TP and TN
represent accurate classification [7].

Table 4. The evaluation metrics.

Accuracy Precision Recall F1-Score

A = TP+TN
TP+TN+FP+FN P = TP

TP+FP R = TP
TP+FN F = 2∗P∗R

P+R

Figure 6. The Confusion Matrix.
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5. Results

5.1. Classification

We present the results of the classification model before and after optimization. Before
the optimization, the selected ML classifiers are computed individually with the stacking
ensemble technique, and their performance is assessed. For all classifiers, the UGRan-
some1819 is divided into equal ratios of 80% and 20%. Each algorithm is trained with
80% of the dataset and tested on the remaining 20%. The evaluation metrics discussed in
Section 4 are assessed for each ML classifier.

5.2. Without Optimisation

The SVM is applied on the UGRansome1819 to predict the most dominant class
label. However, it did not obtain satisfying results. The SVM algorithm achieved 67.7% of
Accuracy. The specification of the SVM is depicted in Table 5.

Table 5. The Specification of the SVM.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm Linear SVC

The SVM model accuracy is presented in Figure 7.

Figure 7. The SVM Classifier Prior Optimization.

The algorithm is trained by feeding the features with the class label output. After
this training, the testing data are provided to the SVM model without the class labels
output. The classifier predicts the class labels output for the testing data in this manner. A
comparison of the predicted data with the actual class labels output of the testing dataset is
then evaluated. The Figure 7 portrays the SVM accuracy rate without optimization. This
figure portrays the observed instability of the SVM classifier. The classification could not
demonstrate stable predictions of a single classifier using SVM. An optimized validation
technique will aggregate the weak classifier (SVM) into an ensemble and genetic optimizer
to improve the performance. The NB algorithm outperformed the SVM and achieved an
accuracy of 71%. Table 6 illustrates the NB specification model.
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Table 6. The Specifications Model of NB.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm Gaussian NB

The same dataset is used to train and test the NB algorithm. Similarly, the evaluation
metrics values obtained are not impressive. Figure 8 presents the accuracy ratio of the NB.
This figure confirms that the Laplace smoothing help tackles the problem of zero probability
and can be used to enhance single classification. The Laplace smoothing improved the NB
performance compared to SVM by optimizing the classification probability. The optimized
validation technique that aggregates the weak classifiers into an ensemble and genetic
optimizer to improve the performance will include both SVM and NB.

Figure 8. The Naive Bayes Evaluation Metrics.

The RF uses Ensemble Learning to combine multiple algorithms and enhance the
classification model [56]. In the enhancement of Accuracy and the other evaluation metrics,
the number of trees plays a crucial role [56]. The higher the number of trees, the better
the optimal values of assessment metrics can be obtained. We have used the Confusion
Matrix to obtain the presented results. However, the stability of the model improvement
was achieved only with 100 trees. It was useful to use this number during the training
phase. If this number increased; the evaluation metrics values also improved. Details of the
RF specification are shown in Table 7.

Table 7. Specifications Model of RF.

Parameter Shape

Test set 20%

Random state 42

Train set 80%

Algorithm RF

Trees 100
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Figure 9 shows the evaluation metrics of the RF classifier. We have trained this model
to compare results obtained by Nkongolo et al. [7] who achieved a similar Accuracy rate
using RStudio. Our RF model achieved an Accuracy of 99% as also with the ensemble
model. Figure 9 represents the accuracy ratio of the RF algorithm. The random state
in the ensemble model technique is 42. This number has been utilized to configure the
core random numbers generator, that controls the division of the UGRansome1819 into
testing and training sets. The test classification accuracy of the RF model was 99.6%
(before optimization). An improvement was not obtained after optimization because the
classification accuracy remained 99.5%. The sensitivity and specificity reached 100%. The
three most important predictors of 0-day threats were the Signature, Synthetic Signature,
and Anomaly category of threatening behavior. The Table 8 illustrates the ensemble
specification model.

Figure 9. The Random Forest Classifier Model Performance.

Table 8. Ensemble Model Specifications.

Parameter Shape

Test set 20%

Base model NB

Train set 80%

Random state 42

Member model 1 SVM

Member model 2 RF

Algorithm Stacking

This model produces impressive results when the members and base models such as
SVM and NB do not have substantial results (Figures 7 and 8). The outcome of ensemble
learning produces an efficient classification with a combination of weak classifiers such
as SVM and NB. As a result, the model classification improved by achieving 100% of
Precision and F1-Score with 99% of Recall and Accuracy. In this research, the RF algorithm
performance was impressive and achieved sufficient results as in [7] and the Ensemble
Learning also attained almost similar results. Figure 10 shows the accuracy ratio of the
Ensemble Learning. Figure 10 has the overall results of the three selected ML classifiers
using Ensemble Learning. All four evaluation metrics of all algorithms are illustrated. The
figure shows a maximal Precision value of all three classifiers among the metrics.
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Figure 10. The Ensemble Learning Evaluation Metrics.

Overall, the SVM and NB classifier does not perform very well. Ensemble Learning
and RF have almost the same performance. A GA is an optimization technique used
to extract relevant information from the UGRansome1819 dataset. It is a search-based
algorithm that used the concept of genetics and natural selection [34]. In a GA, all possible
solutions represent a population subset while a single possible solution to a problem is a
chromosome. The key factor of a GA is the fitness function that collects the input features
and generates possible output or solution for a given classification problem. In this research,
the GA is coded to retrieve the top eight attributes (columns) from the UGRansome1819
(Figure 11). The critical steps of the GA can be listed as follows [34]:

• Use the initial dataset (population) to search
• Calculate the fitness function
• Assess the efficiency of a candidate solution using the fitness function
• Compute the crossover process
• Implement the mutation process

Figure 11. The GA Specification. The verbose is used to produce logging information details and the
tournament to select individual attributes from a population dataset. The tournament is executed
three times and the winner of each tournament having the best fitness is selected.

The algorithm extracted the eight attributes namely, “Flag”, “Timestamp”, “Ran-
somware Family”, “USD”, “IP address”, “Network Flow”, clusters, and “Port number”.
The three ML classifiers along with the Ensemble Learning are again computed to the
newly pre-processed UGRansome1819. The normalized dataset consists of all tuples as
the original dataset, however, the 14 attributes have been reduced to nine. Dropping five
attributes caused a decrease in the computational time and the over-fitting chances are
also minimized because the UGRansome1819 has been reduced. If a model performance
remains the same, then it is important to re-optimize the dataset as this will reduce over-
fitting as well computational time. However, when a dataset is unbiased with a standard
deviation approaching one or a mean of all columns within a common range; it is not a
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good option to apply feature extraction. In the UGRansome1819, the standard deviation
(std) ranges from two to 26,435 and the mean from two to 14,179 (Figure 12).

Figure 12. The Standard Deviation and the Mean of the UGRansome1819 Dataset.

It was important to normalize UGRansome1819 and optimize it using a GA. The GA
shown in Figure 13 has been applied in the optimization of selected ML algorithms and it
is posited that this will increase the chances of improving the classification accuracy rate.

Figure 13. Genetic Algorithm Implementation Improving Classification.

5.3. With Optimization

Figure 14 shows evaluation metrics of the SVM algorithm after optimization. The
SVM has an improved Accuracy of 72.4% which was 66% before optimization. The test
classification accuracy of the SVM model improved by 6%. The NB classifier is applied to the
pre-processed dataset. This algorithm performed well by improving the computational time
with reduced features, the model has similar results as to prior the optimization. It is then a
best practice to utilize the pre-processed dataset as it will optimize the computational time
of the classifier. The Figure 15 mimics a decrease of one percent in the accuracy ratio of the
NB classifier with optimization. The test classification accuracy of the NB model decreased
by 1% after optimization. The straightforward way to improve the NB performance to
increase its accuracy after optimization is to add more data samples to the training data.
Doing so will add more details to the data and fine-tune the model can result in a more
accurate and optimized performance. The RF outperformed all the ML classifiers used in
this research. It achieved optimal accuracy before and after optimization. Almost similar
results have been obtained without and with optimization. As such, the optimization of the
RF classifier is also suitable as it minimizes the computational time and reduces overfitting
chances. Figure 16 portrays the evaluation metrics of the RF classifier after optimization.
It depicts an Accuracy of 99% with optimization. The test classification accuracy of the
RF model did not improve (99.5% after optimization and 99.6% before optimization). The
closer the decision is to the leave, the more noise we have in the decision. The entire dataset
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is taken from the top to the bottom and divided into two parts. In the end, the training
sample will only include a few samples. Pruning was performed to avoid the model from
overfitting the data. This figure shows that pruning provides a more compact tree and a
better model in terms of accuracy (before and after optimization). Figure 17 illustrates the
evaluation metrics of the Ensemble Learning, it is an accuracy ratio of 98% of ensembling
with an optimization that has been presented.

Figure 14. The SVM Classifier Performance After Optimization.

Figure 15. Naive Bayes Algorithm Performance After Optimization.

The same members and base models (SVM and NB) are used in the optimized valida-
tion model. The predictive capability of ensembling after optimization decreased by 1% for
the Precision and F1-Score which was 100% before optimization. The Recall value remains
at 99% (before and after optimization) while the Accuracy also decreased by 1% which was
99% before optimization. This result proves that the UGRansome1819 classification ratio
before and after optimization is 1%.
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Figure 16. Random Forest Algorithm Performance After Optimization.

Figure 17. Ensemble Learning After Optimization.

6. Discussion

The substantial overall results of the implementation come with optimization of GA:
99% of Accuracy is achieved by the RF model, Ensemble Learning 98.90%, NB 70.40%, and
SVM 72.40%. Before optimization, the RF reached a 99.60% of Accuracy, Ensemble Learning
99.60%, NB 71%, and SVM 66.4%. With this, the SVM classifier enhanced by six percent
reaching 72% of Accuracy but the Ensemble Learning, and NB reduced one percent of Ac-
curacy after optimization. The Recall, Precision, and F1-Score before and after optimization
are shown in Figures 18 and 19. According to Figures 18 and 19 which summarize the
evaluation results, it can be seen that the optimization part of the UGRansome1819 model
has a slight improvement in the model performance. All metrics remain almost the same.

The CAIDA and UNSWNB-15 datasets’ performance are compared to the UGRan-
some1819 with SVM, NB, and RF using the same optimization settings. The model’s
accuracy is presented in Table 9 before optimization. The UGRansome1819 outperformed
the CAIDA and UNSWNB-15 datasets in terms of accuracy values (Figure 20). The model’s
accuracy is also illustrated with optimization in Table 10. It can be observed that the
optimization improved in Accuracy on the CAIDA and UNSWNB-15 datasets (Figure 21).
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Figure 18. The Classification Results After Optimization.

Figure 19. The Classification Results Prior Optimization.

Figure 20. Comparing the UGRansome1819’s Accuracy to existing datasets (before optimization).
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Table 9. Comparing the UGRansome1819’s Accuracy Prior Optimization.

Dataset RF NB SVM Ensemble

CAIDA 85% 61.8% 63.2% 88%

UNSWNB-15 80% 70% 62.4% 88.2%

UGRansome1819 99.6% 71% 67% 99.6%

Table 10. Comparing the UGRansome1819’s Accuracy After Optimization.

Dataset RF NB SVM Ensemble

CAIDA 95.6% 71.2% 73.7% 92.5%

UNSWNB-15 90.3% 75.1% 72.4% 84%

UGRansome1819 99% 70.4% 72.4% 99%

Figure 21. The UGRansome1819’s Accuracy compared to existing datasets (after optimization).

7. Conclusions

We have analyzed the classification of 0-days threats and anomalous intrusion using a
novel AIDS dataset with cloud services. This research indicates that the UGRansome1819
dataset uses a multi-class prediction space. Relevant features are detected using this dataset
and three ML algorithms are computed before and after optimization of the GA. The
Ensemble Learning analyzed the overall performance of 0-day threats detection. Accuracy,
F1-Score, Recall, and Precision values were used to evaluate the classification model of
the UGRansome1819. To compare results, the NB, RF, and SVM are used with GA after
optimization and Ensemble Learning before optimization to test and train the dataset
accordingly. A Genetic Optimizer with each selected ML classifier was utilized as a feature
extraction technique that used a Decision Tree classifier. Our research findings suggest
the optimization with RF and Ensemble Learning to obtain accurate classification rates
of 0-day threats. Additionally, the UGRansome1819 outperformed the UNSWNB-15 and
CAIDA datasets in terms of accuracy values. It was also observed that the optimization
technique improved in accuracy on the CAIDA and UNSWNB-15 datasets. The experiments
demonstrate the instability of single classifiers such as SVM and NB and suggest optimized
validation techniques which can aggregate weak classifiers into an ensemble of the genetic
optimizer to enhance the classification performance. The Laplace smoothing improved
the NB performance compared to SVM by optimizing the classification probability. The
UGRansome1819 model’s sensitivity and specificity were estimated to be 100% with three
predictors of 0-day threats as Signature, Synthetic Signature, and Anomaly. The results of
ensemble learning produce a strong classification by combining weak classifiers such as
SVM and NB. With this, the predictive capability of ensemble learning could be improved
by achieving 100% of Precision and F1-Score. The test classification accuracy of the SVM
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model after optimization improved by 6%. To improve the performance and increase
the accuracy, one should add more data samples to the training data and fine-tune the
model to obtain more accurate and optimized performance. Pruning was used to avoid
overfitting of data and provided a better model in terms of accuracy. Similar research
should be conducted on the UGRansome1819 dataset using Deep Learning and analyzing
the feature extraction to determine if Deep Learning also works on this dataset. One can
also attempt to enhance the SVM and NB Accuracy on the UGRansome1819 dataset and
plot the Receiver Operating Characteristic curves (ROC) for the models. It is always great
to have such graphs in the evaluation to quickly assess the classification quality of the ML
models. Lastly, unsupervised algorithms with specific feature selection methods such as
Boruta should be applied to the UGRansome1819 and compare the results with the current
research outcome.
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Abstract: Anonymous proxies are used by criminals for illegal network activities due to their
anonymity, such as data theft and cyber attacks. Therefore, anonymous proxy traffic detection is
very essential for network security. In recent years, detection based on deep learning has become a
hot research topic, since deep learning can automatically extract and select traffic features. To make
(heterogeneous) network traffic adapt to the homogeneous input of typical deep learning algorithms,
a major branch of existing studies convert network traffic into images for detection. However, such
studies are commonly subject to the limitation of large-sized image representation of network traffic,
resulting in very large storage and computational resource overhead. To address this limitation, a
novel method for anonymous proxy traffic detection is proposed. The method is one of the solutions
to reduce storage and computational resource overhead. Specifically, it converts the sequences of
the size and inter-arrival time of the first N packets of a flow into images, and then categorizes the
converted images using the one-dimensional convolutional neural network. Both proprietary and
public datasets are used to validate the proposed method. The experimental results show that the
converted images of the method are at least 90% smaller than that of existing image-based deep
learning methods. With substantially smaller image sizes, the method can still achieve F1 scores up
to 98.51% in Shadowsocks traffic detection and 99.8% in VPN traffic detection.

Keywords: Shadowsocks traffic detection; VPN traffic detection; spatio-temporal features; CNN

1. Introduction

In recent years, anonymous proxy services, e.g., Shadowsocks [1], VPN (Virtual
Private Network) [2], and V2ray [3], have been used by increasingly more Internet users.
On one hand, they can help users to access restricted resources by circumventing Internet
censorship. On the other hand, they have become an important means for criminals to
engage in illegal network activities, e.g., data theft, darknet transactions, cyber-attacks,
and pornographic propagation [4]. Thus, anonymous proxy traffic detection is of great
significance for network security.

Anonymous proxy traffic detection methods can be categorized into traditional ma-
chine learning methods and deep learning-based methods. Traditional machine learning
methods require manually crafting and selecting features based on professional experience
following a trial-and-error paradigm. This paradigm is labor-intensive and time-consuming.
In recent years, the detection based on deep learning has become a hot research topic, since
deep learning algorithms can automatically extract and select traffic features.

Currently, most deep learning-based methods convert the network traffic into images,
for the purpose of making (heterogeneous) network traffic adapt to the homogeneous input
of typical deep learning algorithms. However, these methods have a common drawback,
i.e., large-sized converted images. For example, many methods (e.g., [5–8]) convert the
payloads of the first few packets of a flow into an image. They connect the payloads of
the first few packets of a flow into a byte stream, and then convert a byte into an integer
(0 to 255). As the byte stream comprises a lot of bytes, the converted images are large, e.g.,
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784 bytes and 1521 bytes. The method in [9] converts the sequences of packet sizes and
packet arrival time of a flow into a two-dimensional square histogram. The method extracts
the size and arrival time of each packet in the flow as a record pair, and then plots the
record pairs by defining the X-axis as the packet arrival time and the Y-axis as the packet
size. As the MTU (Maximum Transmission Unit) is 1500 bytes, the Y-axis is set between 1
and 1500. The size of converted images is 2250 KB (1500 × 1500 pixels). Large-sized images
result in very large storage and computational resource overhead.

To address the problems above, a novel method for anonymous proxy traffic detection
is proposed. The method is one of the solutions to reduce storage and computational
resource overhead. It converts the sequences of the size and inter-arrival time of the first
N packets of a flow into an image, and then categorizes the converted images using the
one-dimensional convolutional neural network (1D-CNN). As the method converts the
two-way and one-way spatio-temporal features of a flow into an image, the method can
comprehensively capture the flow differences. The method achieves comparable detection
performance to the state-of-the-art methods. Meanwhile, since the method uses only a
small amount of data regarding the size and inter-arrival time (rather than data including
packet headers and payloads), the converted images of the method are much smaller than
that of existing image-based deep learning methods. Thus, the method is very lightweight
and efficient. Compared with existing image-based deep learning methods, the method
can significantly reduce storage and computational resource overhead. Due to its high
efficiency and low storage requirements, the method can be applied to traffic analysis tasks
in large-scale networks.

To the best of our knowledge, we make the first effort towards building a lightweight
image representation of encrypted network traffic, with applications to anonymous proxy
traffic detection. The approach is not only lightweight, but also incorporates spatio-
temporal features, thereby achieving both high efficiency and accuracy. The main contribu-
tions of this paper can be summarized below.

• A novel lightweight anonymous proxy traffic detection method is proposed. The
method can convert the two-way and one-way spatio-temporal features of the flow
into an image. The converted images of the method are at least 90% smaller than that
of existing image-based deep learning methods, hence drastically lowering space and
time computational complexity.

• Besides smaller image sizes, the proposed method achieves comparable detection per-
formance to the state-of-the-art methods, i.e., F1 scores up to 98.51% in Shadowsocks
traffic detection and 99.8% in VPN traffic detection.

• Since the proposed approach features a compact image-based representation of en-
crypted traffic, it could be incorporated into existing traffic analysis systems that take
a mirrored copy of network traffic as input as needed. The analysis results of the
systems can be further transmitted to IDS/IPS systems deployed on the network
border, which then generate network management policies to allow or drop traffic.

The rest of this paper is structured as follows. Section 2 surveys the literature. Section 3
details our method, and Section 4 presents the experiments. Section 5 presents the perfor-
mance comparison. We finally discuss limitations in Section 6 and conclude in Section 7.

2. Related Work

In this section, anonymous proxy traffic detection methods and application traffic
identification methods are outlined. These methods can be divided into traditional machine
learning methods and deep learning-based methods.

Traditional machine learning methods: These methods utilize handcrafted features,
statistical features, and traditional machine learning algorithms to identify anonymous
proxy traffic or application traffic.

Miller et al. [10] extract flow statistics including time-based statistics and other metrics,
and then compile them into a dataset. They determine strongest features using Pearson’s
Correlation Coefficient algorithm. They detect VPN web traffic using multi-layered per-
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ceptron neural network. Parchekani et al. [11] utilize the time-related traffic features
(e.g., the forward inter-arrival time and the flow bytes per second) and the random forest
algorithm to detect VPN traffic. Deng et al. [12] propose several features, e.g., the fraction
of outcoming packets, the average burst length, and the time of the whole transmission.
They detect Shadowsocks traffic using the Random Forest algorithm.

Zeng et al. [4] propose 12 features (e.g., the number of flow bursts and the sum of all
flow burst lengths) from three aspects: the hosts’ flow behavior, the relationship between
flows, and the hosts’ DNS behavior. They detect Shadowsocks traffic using the Random
Forest algorithm. Cheng et al. [13] propose an active method for Shadowsocks servers
detection. They collect the IP and port of the server as a dataset, and then classify servers
of the Shadowsocks using machine learning algorithm XGBoost.

Shim et al. [14] use the packet order, direction, and payload size of the first N packets
of a flow to generate unique payload size sequence (PSS) signatures for each application.
They use the unique PSS signatures to identify application traffic (e.g., Skype, Outlook, and
GomTV). Hajjar et al. [15] propose an identification model for network traffic application
(e.g., SMTP, FTP, and MSN) identification. The identification model is based on the features
(i.e., the size, the direction, and the position) of the first application-layer messages of
the flow.

Deep learning-based methods: Compared with traditional machine learning methods,
deep learning-based methods can automatically learn nonlinear relationships between the
input and the output.

Wang et al. [16] propose a method for protocol traffic identification and anomalous
protocol traffic detection. They first propose to convert network traffic into images. They
connect the payload bytes of a TCP flow, and then a byte is transformed into an integer
(0 to 255). They classify the converted images using Artificial Neural Network (ANN) and
Stacked Auto-Encoder (SAE). Many methods improve the classification performance on
the basis of the method in [16]. Tang et al. [17] propose a novel deep neural network for
encrypted VPN network traffic identification. The deep neural network consists of CapsNet
and Long Short-Term Memory (LSTM) network. Guo et al. [5] propose two deep learning-
based models for VPN traffic detection and VPN traffic classification, i.e., convolutional
auto-encoding (CAE) and convolutional neural network (CNN). Cheng et al. [6] design a
lightweight model for online encrypted traffic classification. The number of parameters
and training time of the model are significantly reduced.

Lan et al. [7] propose a self-attentive deep learning method for application identifi-
cation and darknet traffic classification. They use a 1D-CNN and a bidirectional LSTM
network to capture local spatial–temporal features from the payload content of packets.
They also extract side-channel features (e.g., Number of packets/bytes per second) from
payload statistics to improve the classification performance. Lotfollahi et al. [18] propose
to categorize network traffic by classifying packets. They convert a packet into an image,
and then classify the converted images using the stacked autoencoder (SAE) and the con-
volution neural network (CNN). Wang et al. [19,20] show that the performance of 1D-CNN
is better than 2D-CNN in encrypted traffic classification. Hu et al. [21] propose a network
for encrypted traffic classification. The network consists of CNN and LSTM.

Johnson et al. [22] use various traditional machine learning algorithms (e.g., Random
Forest, Decision Tree, k-Nearest Neighbor) and Deep Neural Networks and time-based
statistical features to detect tor traffic. They demonstrate that time-based features are
effective for Tor traffic detection.

3. Method

In this section, a framework is used to introduce the implementation process of the
method. This framework consists of three stages, i.e., raw traffic preprocessing stage, image
conversion stage, and CNN model training and detection stage. Figure 1 presents the
details of the framework.
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Figure 1. The framework of the method.

3.1. Feature Analysis

The first few packets of the flow are the key negotiation stage of the application. The
negotiation process of the stage is based on predefined rules by the application. The key
negotiation stage is different for different applications. Therefore, the size sequence of the
first few packets of the flow can be used to identify application traffic [14,23].

Many anonymous proxies (e.g., Shadowsocks, V2ray, and VPN) have a similar op-
erational mechanism. They consist of the client (Proxy-client) and the remote server
(Proxy-server). The Proxy-client is generally deployed on a local machine, router, or other
machines on the local network. The Proxy-server is deployed outside the firewall. The
operational mechanism of anonymous proxies is as follows: the user client sends request
data to the Proxy-client. The Proxy-client encrypts the request data and forwards them
to the Proxy-server. The Proxy-server decrypts the request data and forwards them to
the target server. The response data from the target server are returned to the original
user client in the same pattern [4,12]. However, in a regular network environment, the
user client sends the request data directly to the target server. The target server sends the
response data directly to the user client. This comparison shows that using anonymous
proxies increases the time overhead of data transmission. The packet inter-arrival time
of anonymous proxy traffic is longer than that of regular traffic. Therefore, the packet
inter-arrival time sequence of a flow can be used as a distinguishable feature to detect
anonymous proxy traffic.

3.2. Image Conversion Method

The sequences of sizes and inter-arrival time of the first N packets of a flow are
considered as a grayscale image. The size of the packet is transformed into a binary integer.
Most packet inter-arrival time of regular traffic and anonymous proxy traffic is less than 1 s.
Therefore, the packet inter-arrival time is converted into an integer by Equation (1), and
then the integer is transformed into a binary integer. The binary integers of each feature
are connected into a binary stream. The binary stream is divided into bytes (8 bits), and if
there is binary data that less than a byte, 0 is added at the end of it to complement to a byte.
After that, a byte is converted into an integer (0 to 255), which corresponds to a pixel value
of an image.

Integer = round(Time × Value), (1)

where the Time is the packet inter-arrival time. The Value is the integer conversion value of
the packet inter-arrival time (the value that transforms the packet inter-arrival time into an
integer is called the integer conversion value).

CNN is used to detect anonymous proxy traffic. The images fed into the CNN must
have a unified size. In this work, the size of the converted images is set based on N (the
first N packets of a flow) and the MTU of the network. Specifically, to reduce data loss, the
size of the converted images is set according to the special case that the size of the first N
packets of a flow is MTU. For Shadowsocks traffic detection, the size of converted images
of the method is 49 bytes (7 × 7 pixels). For VPN traffic detection, the size of converted
images of the method is 16 bytes (4 × 4 pixels).
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Taking the converted images of 49 bytes as an example, the construction process of the
converted image is introduced. To reduce the interference between different features, the
pixel value sequences of the features are unified to the same length (i.e., 7 or 14 bytes). If the
sequence of pixel values is less than 7 bytes, 0 is appended to the end of it to complement
to 7 bytes. If the sequence of pixel values is more than 7 bytes and less than 14 bytes, 0 is
appended to the end of it to complement to 14 bytes. The pixel value sequences of all the
features are connected into a sequence. If the connected sequence is less than 49 bytes, 0 is
appended at the end of it to complement to 49 bytes. If the connected sequence is more
than 49 bytes, it is truncated to 49 bytes. Finally, the pixel value files and the label files are
transformed into IDX format files [24].

The process of converting the inter-arrival time of packets into pixel values is similar
to the process of converting the size of the packet into pixel values. Thus, taking the process
of converting the size of the packet into pixel values of an image as an example, the image
conversion process of the method is introduced. The image conversion process of the
method is shown in Figure 2. In this figure, the + and − stand for the forward direction
(client to server) and the backward direction (server to client) of the flow, respectively.

Figure 2. The image conversion process of the method.

3.3. Cnn Model

CNNs have been widely used in the field of computer vision, such as image recogni-
tion [25–27] and video analysis [28,29].
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The 1D-CNN model consists of 7 layers, i.e., an input layer, two convolutional layers,
two pooling layers, a fully connected layer, and an output layer. The convolutional layer
extracts different features of the input image by the convolution operation. The convolution
operation is defined as:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i − m, j − n)K(m, n), (2)

where I is the input, and K is a kernel function. The pooling layer selects important features,
which can reduce the parameters of the model. In this model, max-pooling is used. The
activation function introduces the nonlinearity into the network, which improves the
expressive ability of the model. In this model, the Rectified Linear Units (ReLU) activation
function is used. The ReLU activation function is defined as:

ReLU(x) = max(0, x), (3)

As mentioned before, the input of the model is grayscale images of size 16 bytes
(4 × 4 pixels) and 49 bytes (7× 7 pixels). Taking the input images of 49 bytes as an example,
the parameter of the model is introduced. The size of the filter of the 1-dimensional
convolutional layers is 1 × 25. The size of the filter of the max-pooling layer is 1 × 3. The
output of the first convolutional layer is 32 feature maps of size 1 × 49. The output of
the first max-pooling layer is 32 feature maps of size 1 × 17. The output of the second
convolutional layer is 64 feature maps of size 1 × 17. The output of the second max-pooling
layer is 64 feature maps of size 1 × 6. The output of the fully connected layer is 1024.
Moreover, the Dropout layer is used to improve the generalization ability of the model.
The details of the 1D-CNN model are presented in Table 1.

Table 1. The parameters of 1D-CNN model.

Layer Operation Input Filter Stride Pad Output

1 Conv+Relu 1 × 49 1 × 25 1 same 32 × (1 × 49)
2 maxpool 32 × (1 × 49) 1 × 3 3 same 32 × (1 × 17)
3 Conv+Relu 32 × (1 × 17) 1 × 25 1 same 64 × (1 × 17)
4 maxpool 64 × (1 × 17) 1 × 3 3 same 64 × (1 × 6)
5 Full connect 64 × (1 × 6) – – none 1024
6 softmax 1024/2 – – none 2

4. Experiment

In this section, the datasets and the process of traffic preprocessing are presented.
After that, metrics for evaluating the method are introduced. The parameters of the method
are analyzed. The performance of the method on different versions of Shadowsocks traffic
detection tasks is analyzed.

4.1. Datasets

Both the self-collected dataset Shadowsocks-Regular and the public dataset ISCX
VPN-nonVPN [30] are used to validate the proposed approach. The self-collected dataset
Shadowsocks-Regular was built by Wireshark [31]. When collecting the Shadowsocks
traffic, the Shadowsocks client is set to global mode. The Shadowsocks-Regular dataset
consists of regular network traffic and the network traffic via Shadowsocks. Both the
regular traffic and Shadowsocks traffic consist of data of multiple popular applications.

The public ISCX VPN-nonVPN dataset consists of 14 types of network traffic: 7 types of
regular network traffic (i.e., P2P, VoIP, Browsing, Streaming, Chat, File transfer, and Email)
and 7 types of network traffic via VPN (i.e., VPN-P2P, VPN-VoIP, VPN-Browsing, VPN-
Streaming, VPN-Chat, VPN-File transfer, and VPN-Email). Each type of traffic comprises
the data of multiple popular applications. For example, the Chat traffic comprises the
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data of ICQ, AIM, Facebook, Hangouts, and Skype. The details of these two datasets are
presented in Table 2 and 3.

Table 2. Shadowsocks-Regular dataset.

Categories Applications Number of Flows

Regular Iqiyi, Youku, Tengxun, Bilibili, Wangyiyun, Weibo,
some posts, some blogs 10,672

Shadowsocks Youtube, Spotify, Twitter, Instagram, some posts,
some blogs 10,658

Table 3. ISCX VPN-nonVPN dataset.

Categories Applications Number of Flows

VPN
ICQ, AIM, Facebook, Hangouts, Skype, VoipBuster,

Email, FTPS, SFTP, Bittorrent Vimeo, Youtube,
Netflix, Spotify, Firefox, Chrome

1331

nonVPN
ICQ, AIM, Facebook, Hangouts, Skype, VoipBuster,

Gmail, Email, FTPS, SFTP, uTorrent, Vimeo,
Youtube, Netflix, Spotify, Firefox, Chrome

2009

4.2. Data Preprocessing

The flow is a traffic unit based on the same 5-tuple (source IP, destination IP, source
port, destination port, and transport-level protocol) [7,32]. The packets in a flow are sorted
by the arrival time. The raw traffic is divided into multiple flows, each of which is saved as
a file. During Shadowsocks traffic collection, some regular traffic still was captured even
though the Shadowsocks client was set to global mode. Thus, the regular traffic was filtered
out based on the port number of the Shadowsocks server. The FIN and RST are the end
marker of TCP flows. If there is no packet including the FIN or RST in the TCP flow, the
end of the flow file is the termination of the flow.

Some network traffic that is useless to us was removed, such as the Domain Name
System (DNS) traffic. Flows without a payload were removed. Moreover, for the ISCX
VPN-nonVPN dataset, incomplete TCP flows and very small flows were removed. An
incomplete TCP flow has no connection establishment phase (Three-way handshake).
Flows with less than two packets with a payload are very small flows.

4.3. Evaluation Metrics

Four metrics are used to assess the proposed approach, i.e., Accuracy (Acc), Precision
(Pre), Recall (Rec), and F1 Score (F1). These four metrics are defined as follows:

Acc =
TP + TN

TP + FP + FN + TN
(4)

Pre =
TP

TP + FP
(5)

Rec =
TP

TP + FN
(6)

F1 =
2 ∗ Pre ∗ Rec

Pre + Rec
(7)

where FP, FN, TP, and TN stand for false positives, false negatives, true positives, and true
negatives, respectively.
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4.4. Experimental Evaluation under Different Parameter Settings

The validity of the features is validated. After that, the N (the first N packets of a
flow) value and the integer conversion value of the packet inter-arrival time that enable
the method to achieve better performance are analyzed. The detection performance of the
method using the payload size sequence of the flow is analyzed. The effect of zero-padding
between different features on the performance of the method is analyzed.

4.4.1. The Features

We evaluate the effectiveness of the features (i.e., the two-way and one-way packet
size sequences of a flow and the two-way and one-way packet inter-arrival time sequences
of a flow). The integer conversion value of the packet inter-arrival time and the N (the
first N packets of the flow) values that enable the method to achieve better performance
are analyzed. The performance of the method using temporal features of the flow on VoIP
traffic and VPN-VoIP traffic classification is not good. Therefore, 12 types of network traffic
of the ISCX VPN-nonVPN dataset except VoIP and VPN-VoIP traffic are used to validate
the temporal features of the flow. The analysis results are presented in Figures 3–8. In these
figures, the Two-way stands for the two-way packet size sequence of the flow or the two-way
packet inter-arrival time sequence of the flow. The One-way stands for the one-way packet
size sequences of the flow or the one-way packet inter-arrival time sequences of the flow.
The 5 packets stands for the first 5 packets of a flow.

As shown in Figures 3, 4, 6 and 7, the two-way and one-way packet size sequences of
the flow and the two-way and one-way packet inter-arrival time sequences of the flow are
effective in Shadowsocks and VPN traffic detection. Moreover, these features have optimal
N values that enable the method to achieve the best performance. For the time features, the
two-way and one-way packet inter-arrival time sequences of the flow have optimal integer
conversion values that enable the method to attain the best performance.

As shown in Figures 3 and 4, for Shadowsocks traffic detection, converting the two-
way size sequence of the first N packets of a flow into an image, the approach obtains
the best performance when N is 10. Converting the one-way size sequences of the first N
packets of a flow into an image, when N is 10, the approach achieves the best performance.
Converting the two-way inter-arrival time sequence of the first N packets of a flow into an
image, the approach attains the best performance when N is 10. Converting the one-way
inter-arrival sequences of the first N packets of a flow into an image, when N is 10, the
approach attains the best performance. As shown in Figure 5, the approach achieves the
best performance when the integer conversion value of the packet inter-arrival time is
1000/1500.

As shown in Figures 6 and 7, for VPN traffic detection, converting the two-way size
sequence of the first N packets of a flow into an image, the approach obtains the best
performance when N is 10/15. Converting the one-way size sequences of the first N
packets of a flow into an image, when N is 10, the approach achieves the best performance.
Converting the two-way inter-arrival time sequence of the first N packets of a flow into an
image, the approach achieves the best performance when N is 5. Converting the one-way
inter-arrival sequences of the first N packets of a flow into an image, when N is 5, the
approach attains the best performance. As shown in Figure 8, the approach achieves the
best performance when the integer conversion value of the packet inter-arrival time is 1250.

Through the above analysis, for the two-way and one-way packet size sequences of
the flow and the two-way and one-way packet inter-arrival time sequences of the flow,
the uniform N value is used. For Shadowsocks traffic detection, 1000/1500 is used as the
integer conversion value of the packet inter-arrival time. As the performance of the method
using temporal features of the flow on VoIP traffic and VPN-VoIP traffic classification is not
good, the temporal features of the flow are not used to detect VPN traffic.
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Figure 3. The Shadowsocks traffic detection performance of the method using the two-way and
one-way packet size sequences of the flow, respectively.

Figure 4. When the integer conversion value of the packet inter-arrival time is 1000, the Shadowsocks
traffic detection performance of the method using the two-way and one-way packet inter-arrival time
sequences of the flow, respectively.

Figure 5. The Shadowsocks traffic detection performance of the method using different integer
conversion values of packet inter-arrival time.
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Figure 6. The VPN traffic detection performance of the method using the two-way and one-way
packet size sequences of the flow, respectively.

Figure 7. When the integer conversion value of the packet inter-arrival time is 1250, the VPN traffic
detection performance of the method using the two-way and one-way packet inter-arrival time
sequences of the flow, respectively.

Figure 8. The VPN traffic detection performance of the method using different integer conversion
values of packet inter-arrival time.
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4.4.2. N (the First N Packets of a Flow)

We evaluate the parameter N that enables the approach to achieve better performance.
The evaluation results are shown in Figures 9 and 10. As shown in these two figures, for
Shadowsocks and VPN traffic detections, when the first 10 packets of the flow are used, the
method achieves the best detection performance. In comparison to Figures 6 and 10, for
VPN traffic detection, the best performance of the method using the two-way and one-way
packet size sequences of the flow is the same as that using only the two-way packet size
sequence of the flow. Therefore, for VPN traffic detection, only the two-way packet size
sequence of the flow is used.

These experimental results show that the first N packets (the key negotiation stage)
of the flow have unique features of an anonymous proxy. The sequences of the size and
inter-arrival time of the first N packets of the flow can be used as distinguishable features
to detect anonymous proxy traffic. The two-way and one-way spatio-temporal features
of the flow have different distinguishable features, they make different contributions to
anonymous proxy traffic detection.

Figure 9. The Shadowsocks traffic detection performance of the method using different N values.

Figure 10. The VPN traffic detection performance of the method using different N values.
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4.4.3. Payload Size Sequence

We analyze the detection performance of the method using the payload size sequence
of the first N packets of a flow. The analysis results are shown in Table 4. In this table, the
N stands for the first N packets of a flow. The Payload stands for the payload size sequence
of the flow. The Packet stands for the packet size sequence of the flow.

As shown in Table 4, in Shadowsocks and VPN traffic detections, the performance of
the method using the packet size sequence of the flow is better than that using the payload
size sequence of the flow. For Shadowsocks traffic detection, the F1 score of the method
using the packet size sequence of the flow is 1.83% higher than that using the payload
size sequence of the flow. For VPN traffic detection, the F1 score of the method using the
packet size sequence of the flow is 19.71% higher than that using the payload size sequence
of the flow. These experimental results show that the acknowledgment packet at the Key
negotiation stage can also make contributions to Shadowsocks and VPN traffic detections.

Table 4. The detection performance of the method using the payload size sequence of the flow (%).

Task Feature N Precision Recall F1 Score

Shadowsocks
Payload 5 94.31 97.81 96.03
Packet 10 97.63 98.1 97.86

VPN
Payload 10 86.98 74.21 80.09
Packet 10 99.6 100 99.8

4.4.4. Zero Padding

We analyze the effect of zero-padding between different features on the performance
of the method. Since only one feature is used in VPN traffic detection, the effect of zero-
padding on VPN traffic detection is no longer analyzed. The analysis results on Shadow-
socks traffic detection are shown in Table 5. In this table, the Non-padding means that the
pixel value sequences of all features are directly connected into a sequence, without zero
padding. Zero-padding means that the pixel value sequences of the features are unified
to the same length, if the sequence is less than the uniform length, then zero-padding.
Zero-padding (More) refers to padding more zeros between different features.

As shown in Table 5, in Shadowsocks traffic detection, the F1 score of the method
using zero-padding is 1.36% higher than that without zero-padding. The F1 score of the
method setting the size of converted images to 49 bytes is 0.04% higher than that setting
the size of converted images to 81 bytes. It can be seen that the performance of the method
using zero-padding is better than that without zero-padding. Padding more zeros between
different features does not improve the detection performance.

Table 5. The Shadowsocks traffic detection performance of the method using zero-padding and
non-padding, respectively (%).

Operation Imgsize Precision Recall F1 Score

Non-padding 49 B 96.88 97.43 97.15
Zero-padding 49 B 99.32 97.71 98.51
Zero-padding

(More)
91 B 98.75 98.19 98.47

4.5. Different Versions of Shadowsocks Traffic

In this section, the performance of the method on different versions of Shadowsocks
(i.e., Shadowsocks and ShadowsocksR) traffic detections is analyzed. Shadowsocks traffic
of different versions was collected in the same pattern. They consists of the traffic of the
same applications (i.e., Youtube, Spotify, Twitter, Instagram, some posts, and some blogs).
The analysis results are showed in Table 6. In this table, the Size represents the two-way and
one-way packet size sequences of the flow. The Time represents the two-way and one-way
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packet inter-arrival time sequences of the flow. The Value is the integer conversion value of
the packet inter-arrival time.

As shown in Table 6, the method achieves comparable performance in different ver-
sions of Shadowsocks traffic detection tasks. Moreover, the parameter settings of the
method in different versions of Shadowsocks traffic detection tasks are almost the same.
It can be seen that the method can be applied to different versions of Shadowsocks traffic
detection tasks. The method has wide applicability and robustness.

Table 6. The performance of the method on different versions of Shadowsocks traffic detections (%).

Version Feature N Value Precision Recall F1 Score

Shadowsocks
Size 10 - 95.56 97.54 96.54
Time 10 1500 93.79 93.69 93.74

Size & Time 10 & 10 1500 98.51 97.54 98.02

ShadowsocksR
Size 10 - 97.63 98.1 97.86
Time 10 1000/1500 93.71 95.14 94.42

Size & Time 10 & 10 1000/1500 99.32 97.71 98.51

5. Performance Comparison

We compare the detection performance of our approach against the state-of-the-art
methods. Specifically, the proposed method is compared with the methods in [5,9] from
two aspects: accuracy and the size of the converted images (Imgsize). Both methods in [5,9]
are image-based deep learning methods, but the ways they convert network traffic into
images are different. Both our method and the methods in [5,9] employ the public ISCX
VPN-nonVPN dataset to validate the performance of the method. Therefore, we copied the
experimental results from [5,9].

As shown in Table 7, for VPN traffic detection, the accuracy of our method is 0.15%
higher than that of the method in [9]. The accuracy of our method is 0.02% lower than that
of the method in [5]. The converted images of our method are much smaller than that of
the methods in [5,9]. Thus, our method is more lightweight and efficient than the methods
in [5,9]. In the same case (e.g., the same hardware devices), our method can save a lot of
resource overhead, e.g., storage resource overhead, computational resource overhead, and
model training and execution time overhead. The proposed method is efficient and has
low storage requirements. Thus, it can work in a large-scale network environment.

Table 7. Performance comparison of VPN traffic detection (%).

Methods Imgsize Accuracy Precision Recall F1 Score

This Paper 16 B 99.85 99.6 100 99.8
Shapira et al. [9] 2250 KB 99.7 - - -

Guo et al. [5] 1521 B 99.87 - - -

6. Discussion

The proposed method has several limitations that may affect its applicability in certain
scenarios. First, the integer conversion value of the packet inter-arrival time and the
parameter N (the first N packets of a flow) are obtained empirically. Although an optimal
setting can be found through experiments, empirically setting parameters is not user-
friendly. Second, it is possible to convert the traffic data into a non-image form other than
an image. Researchers converting network traffic into images may want to exploit this
advantage of CNN, since it is well known that CNN achieves better performance in image
classification, image recognition, and natural language processing. We leave these issues as
open questions for future study.
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7. Conclusions

A novel anonymous proxy traffic detection method is proposed. Benefiting from
converting the two-way and one-way spatio-temporal features of a flow into an image, the
method is effective and attains comparable detection performance to the state-of-the-art
methods. Moreover, the method is lightweight. Compared with existing image-based deep
learning methods, the size of the converted images of the method are reduced at least 90%.
Thus, the method can reduce storage and computational resource overhead. Since it is
based on CNN, the method can automatically extract and select features, omitting the works
of manually crafting and selecting features. Experiments have shown that our approach
can detect anonymous proxy traffic effectively, with the capability of detecting different
versions of Shadowsocks traffic and VPN traffic. Due to its high efficiency resulting from
compact image-based traffic representation, the method can be applied to traffic analysis
tasks in large-scale networks.
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Abstract: As network technology has advanced, and as larger and larger quantities of data are being
collected, networks are becoming increasingly complex. Various vulnerabilities are being identified in
such networks, and related attacks are continuously occurring. To solve these problems and improve
the overall quality of network security, a network risk scoring technique using attack graphs and
vulnerability information must be used. This technology calculates the degree of risk by collecting
information and related vulnerabilities in the nodes and the edges existing in the network-based
attack graph, and then determining the degree of risk in a specific network location or the degree
of risk occurring when a specific route is passed within the network. However, in most previous
research, the risk of the entire route has been calculated and evaluated based on node information,
rather than edge information. Since these methods do not include correlations between nodes, it is
relatively difficult to evaluate the risk. Therefore, in this paper, we propose a vulnerability Correlation
and Attack Graph-based node-edge Scoring System (VCAG-SS) that can accurately measure the risk
of a specific route. The proposed method uses the Common Vulnerability Scoring System (CVSS)
along with node and edge information. Performing the previously proposed arithmetic evaluation
of confidentiality, integrity, and availability (CIA) and analyzing the correlation of vulnerabilities
between each node make it possible to calculate the attack priority. In the experiment, the risk scores
of nodes and edges and the risk of each attack route were calculated. Moreover, the most threatening
attack route was found by comparing the attack route risk. This confirmed that the proposed method
calculated the risk of the network attack route and was able to effectively select the network route by
providing the network route priority according to the risk score.

Keywords: network security; common vulnerability scoring system; scoring system; vulnerability
correlation analysis; attack graph

1. Introduction

Recently, as an increasing variety of attacks have been actively performed, a growing
number of methods for detecting them have been studied. The attack graph-based method
uses information such as the existing network elements (nodes) and relationships (edges)
between elements to identify the optimal intrusion route. By blocking in advance, it is
possible to quickly and accurately detect attacks and then defend against them. In particular,
it creates an attack graph based on the existing network and uses it to create an optimal
attack route. Therefore, the security system that should be applied to the existing network
is also determined by calculating the optimal attack route and the expected damage in the
network. With this background, in fields such as national defense and security, research
is being conducted to perform optimized attack and target removal by applying it to the
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enemy’s network where the attack is being performed. Related research includes the
creation of an automated attack/defense agent based on reinforcement learning [1], the
establishment of a cyber battlefield based on the attack graph [2,3], and network attack and
defense based on the attack graph [4–9].

Attack graph is mainly used when a user, who plays the role of an attacker or intruder,
attacks a particular network to reach a target and attempts to compensate for each node’s
vulnerability by utilizing the intrusion results. In this context, it is important to create an
attack graph, as well as determine whether it is possible to construct and detect an optimal
route to a target node, at a minimum cost. The information used at that time includes
network security conditions, node-specific vulnerabilities, input/output information, pro-
tocols, and IP addresses. In previous research works, it was difficult to analyze and create
the optimal route because they analyzed the network and found the attack route within the
vast network. To overcome this problem, recent research has studied an automatic attack
route and defended the attack using it [1,10,11].

To identify and supplement vulnerabilities as well as prevent and detect attacks occur-
ring in the network, it is necessary to collect and analyze information related to each node
and edge in the network to build an attack graph and detect the optimal route accordingly.
Representative network information related to this includes network connection informa-
tion, access authority, network type, confidentiality, integrity, availability, vulnerability
score, etc. Using this information, most existing studies that have built attack graphs and
evaluated network vulnerabilities have used CVSS scores. CVSS performs an assessment of
each vulnerability and calculates the risk based on information that can be analyzed or col-
lected in common between networks. However, the problem with this is, because common
information is used, the exact score cannot be calculated by not considering the special
situations or information that each network has, and the association between network
nodes is not considered because each vulnerability is evaluated individually. Therefore,
further research is needed to solve this problem.

The number of attacks using vulnerabilities in the network is increasing rapidly every
year, and attacks using vulnerabilities in the network are mainly used. In addition, CVSS
scores, which are mainly used to detect such attacks, have a problem in that they do not
reflect the specialized parts of each security environment, because they are a universal
evaluation method. Therefore, in this paper, we propose a method that can determine the
risk of attacks utilizing network vulnerabilities on nodes and edges, and we calculate them
comprehensively to calculate the risk of each attack route and accordingly select the priority.
The CVSS score, attack type, and vulnerability association analysis were applied to calculate
the risk of nodes, edges, and attack routes. CVSS only used access location and CIA scores,
and the impacts of the attacks were determined through attack types that occurred during
the year collected in advance. In addition, the effect of vulnerabilities between nodes
connected to each other through experts was judged and analyzed. Experiments were
conducted through a self-generated network to verify the proposed method.

In this method, an attack graph was created, and an optimized route was then created
by analyzing the associations and vulnerabilities between nodes and edges based on various
points of information present in the nodes and edges included in the generated graph. The
vulnerability of each node was analyzed using CVSS, and the relationship between nodes
was analyzed to calculate the edge value. This allowed for the risk of nodes and edges to
be measured and identified the most vulnerable attack route. The contributions obtained
through the proposed method in this study are as follows.

• To calculate attack route risk score, we collect various types of information (vulnera-
bilities, CIA, access methods, etc.) about each node and edge present in the network.

• We propose VCGA-SS using CVSS, attack type, and vulnerability correlation, and calcu-
late each of the attack route risk scores based on the collected node and edge information.

• We calculate the attack route risk scores and utilize them to compare attack routes
using the calculated node and edge risk value.
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The rest of the paper is organized as follows. In Section 2, we provide related work.
In Section 3, we present the VCAG-SS that evaluates nodes and edges to calculate the risk
of the attack route. In Section 4, we experimentally verify the proposed method. Finally,
Section 5 draws conclusions and discusses future work.

2. Related Works

As shown in Section 1, attackers use various vulnerabilities present in the network to
perform attacks. To defend against such attacks, we need to know what vulnerabilities exist
on each node in the network and what routes can be created by them, and we typically use
attack graphs to identify them. CVSS is used for assessments of attack possibility or risk on
these routes.

2.1. Attack Graph

An attack graph is used in various fields, such as attack detection, identification, and
defense. In the security field, it helps establish an effective defense system by identifying the
intention, attack range, and vulnerability, and providing this information to the defender. It
also creates attack scenarios that extract possible routes that attackers can use to break into
target networks, which are then used to predict and block future attacks. This approach
creates an attack graph for the target, and it conducts attack simulation and attack optimal
route analysis. This approach makes it possible to understand what components the
network has, and the related cyber assets and problems (damage, situation, etc.) that occur
when each asset is attacked.

When carrying out an attack on a target, the attack graph provides priority to decision
makers, thus enabling quick and accurate decision-making. By evaluating the attack
graph-based target attack method, it provides the decision-maker with the expected effect
according to the attack route and the future occurrence situation. Related technologies
include Multihost, multistage Vulnerability Analysis (MulVAL), NETSPA, Dijkstra, and
Floyd. Jha et al. [4] proposed a method for determining the possibility of an attack through
an attack graph to which minimum hitting and greedy algorithm could be applied, so that
the minimum security measures to ensure the safety of the network could be determined.
Jajodia et al. [5] described a tool that implemented an integrated topology approach to
network vulnerability analysis. Then, an attack graph was created to analyze the network
security conditions of the Topological Vulnerability Analysis (TVA) tool, Exploit, Nessus
vulnerability scanner, and attack route analysis leading to a specific attack target, and the
vulnerabilities for each network were analyzed. Ingols et al. [6] proposed a method for
analyzing multiple prerequisite graph-based attacks that linearly expanded as the size
of the network increased. Ammann et al. [7] proposed a more concise and expandable
method with which to solve the expandability and complexity problems that occurred
in the existing attack graph generation method. Thus, an attack graph was created and
applied to a large network to identify useful information. Wang et al. [8] proposed an
attack graph-based automation method that strengthened the network in preparation for
intrusions performed in multiple stages, and unlike previous methods, it minimized the
cost with satisfactory conditions at the beginning. Sheyner et al. [9] defined the attack
model and attack graph in network security, proposed a method for accordingly generating
and visualizing the attack graph, and built an attack graph tool to automatically generate
the attack graph. This was visually shown to the user, so that vulnerability analysis could
be easily performed. Yoon et al. [12] proposed an attack graph-based moving target defense
(MTD) technique that used software-defined networking (SDN) to change the host network
configuration according to the host importance, and they built a hierarchical attack graph
model that provided network topology and network vulnerabilities that could be used
to make MTD shuffling decisions. Gonda et al. [13] proposed a method of inferring the
importance of vulnerabilities in a LAG or connection graph analysis and relaxed planning
graph using node centrality measurement. Thus, the number of meaningless attack vectors
was quickly reduced, and the vulnerabilities of each node were properly reflected. In
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Lu et al. [14], a graph neural network (GNN)-based attack graph ranking method was
proposed, and the optimal route of the attack graph was measured through the suitability
analysis of the GNN.

2.2. Common Vulnerability Scoring System

Starting with the Internet worm in November 1988, there has been increasing demand
for computer accident response over time, and many accident response teams have pro-
vided their own security incident results, but the vulnerability analysis standards were
different from one another, thus resulting in the problem that the standards for vulnerabili-
ties became unclear. To solve this problem, the CVSS method was proposed.

CVSS is an open-source-based framework that can calculate vulnerability risk, and it
performs risk assessment using items such as access route, complexity, authentication, con-
fidentiality, integrity, availability, etc. The National Institute of Standards and Technology’s
National Vulnerability Database (NVD) also provides relevant information. This has the
advantage of providing a standard for measuring the vulnerability score, providing an open
framework for evaluating the vulnerability score, and prioritizing and supporting vulnera-
bilities through vulnerability score evaluation. CVSS upgrades vulnerability evaluation
items through continuous updates; in this method, three types of matrix information (base,
temporal, and environmental) are calculated, and these are used to calculate a vulnerability
value. This method is also useful for using the network vulnerability level or detailed
values (CIA, access vector, complexity, authentication, etc.) as they are. A recent study
improved the CVSS and suggested a more suitable formula for each network.

Yang et al. [15] proposed a DBRank algorithm that calculated the vulnerability of a
node by considering the gain and spread of the vulnerability according to the attacker’s
characteristics. Spanos et al. [16] proposed the Weighted Impact Vulnerability Scoring
System (WIVSS) with improved CVSS, and in their method, the CIA weight was modified
from the existing base matrix. They proposed new rule about CIA. For example, the weights
were defined higher in the order of confidentiality, integrity, and availability, partial value
was multiplied by 0.5 of complete value, and impact score range was defined from 0 to 7.
Based on these rules, new confidence, integrity, availability values were proposed. In
CVSS 2.0, when the CIA value were ‘None’, ‘partial’, and ‘complete’, their weights defined
0.0, 0.275, 0.660. And the weights in confidence, integrity, availability were all the same.
But in this method, confidence was 0.0, 1.5, 3.0, integrity was 0.0, 1.2, 2.4 and availability
was 0.1, 0.8, 1.6. Through this, more detailed vulnerability risk scores could be obtained.

Jacobs et al. [17] proposed a system for predicting exploits using the information
provided by NVD’s CVSS and MITER’s Common Vulnerabilities and Exposures (CVE),
along with other information. The features used in that study were selected through three
steps. First, all the available information was extracted from the collected data set, and
then information having a share of less than 1% in the entire vulnerability database was
removed. Then, meaningless information was removed through expert opinion. Gallon
et al. [18] applied CVSS to the attack graph to increase accuracy. The CVE identifier
and the base, temporal, and environmental scores of CVSS were used. As such, rather
than applying the existing CVSS as is, it was necessary to improve CVSS, and apply a
method suitable for each network or attack graph. Gencer et al. [19] proposed a method for
determining a fuzzy-based vulnerability score using CVSS score. To define the relationship
between the exact inputs and fuzzy multiple outputs, they used a fuzzy logistic regression
(FLR). They also used the least squares method to estimate the parameters of the presented
model. Ref. [20] proposed a system utilizing a Markov chain and CVSS that identified
and evaluated vulnerabilities that occur frequently on the Internet of Medical Things
(IoMT). They analyzed representative vulnerabilities and weaknesses from IoMT, and they
measured scores by defining CVSS information according to the IoMT network. Moreover,
the probability for IoMT threats was calculated based on the Markov transition probability
matrix. Ref. [21] proposed a security system for detecting vulnerabilities that exist in the
government’s website. They used vulnerability scanners to analyze vulnerabilities that
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existed on websites and measured CVSS scores for vulnerabilities. Through this method,
they were able to identify what risks existed on the website and accordingly propose
recommendations. Ref. [22] proposed a method to reduce the CVSS matrix by using a
decision tree (DT) and reduce the error of the resulting score. A group of 15 experts
calculated a vulnerability assessment using the basic CVSS matrix and found that most
vulnerabilities scored differently. Therefore, to reduce these errors, basic CVSS metrics were
classified, and overlapping parts were removed through a correlation analysis between
metrics. In addition, the score was calculated by constructing an attribute subset through a
DT-based attribute selection. Ref. [23] proposed a method of detecting vulnerabilities and
determining priorities by analyzing the variables and the characteristics of the network
environment. Various information was collected through open-source intelligence (OSINT),
defined as global, IP, and vulnerability variables, and the risk was calculated using the
CVSS based on the variables.

2.3. Vulnerability Correlation

Most vulnerability research has focused on vulnerability classification and the vulner-
ability analysis of security assets. However, by applying the attack graph to the network
and comparing the vulnerabilities of each node, it has been confirmed that they are affected
by the vulnerabilities of other nodes, rather than independent vulnerabilities [24]. This
correlation is mainly expressed as a matrix, and refs. [25–28] also studied how to advance
this matrix. For example, in a specific network, if an attacker gains access by exploiting the
vulnerability of one node, then in this state, the attacker continues to perform additional
attacks using other weaknesses to reach the desired target node. This method shows that
there is a correlation between vulnerabilities, and it can be confirmed that vulnerabilities are
used as a precondition for attacking other vulnerability. Therefore, it is possible to obtain
an optimized attack route or pattern in a vast network by analyzing and understanding the
correlations between vulnerabilities.

Li et al. [24] performed a network security analysis by creating a matrix showing CVE
correlation information between two nodes. At that time, a vulnerability analysis graph
(VCG) was defined to identify the vulnerability correlation, and the correlation was defined
as one metric based on the precondition between the CVEs of the two nodes. Liang et al. [29]
proposed a method with which to evaluate a network security risk using VCG. They generated
VCG, and the node in the graph included the attacked node IP, the name of the vulnerability,
the permission obtained through the attack, and the security state at the edge. Nan et al. [30]
performed a vulnerability correlation analysis for a network situation analysis while using
a correlation coefficient. Further, Debnath et al. [31] proposed a CVSS-based vulnerability
and risk assessment (HPCvul) to analyze and evaluate vulnerabilities in high-performance
computing (HPC) networks. Standardization was performed to enable smooth sharing of
data, and the possibility of an attack using vulnerabilities was identified using an attack
graph. Static and dynamic risk assessments were conducted; the static risk assessments were
used to explore known vulnerabilities in the network and evaluate the relationship between
vulnerabilities to derive the possibility of successful exploitation, while the dynamic risk
assessment was used to perform a real-time risk analysis.

Previous research has applied methods such as redefining CVSS scores for each
environment [20,21,23], collecting additional information for risk assessment [15,17,23],
applying CVSS weights [16,18], and combining them with other algorithms [19,22,28–30],
and an improved CVSS-based risk calculation method has accordingly been proposed.
However, these methods are based on existing CVSS mechanisms, so they only evaluate
the risk by calculating the scores of each vulnerability while not considering possible
associations that could arise from vulnerabilities (PC, servers, users, etc.) in the network.
Further, even in the case of analyzing the correlation, a graph-based analysis using VCG
was the main focus. Therefore, this paper proposes a simple yet effective relationship
analysis method between vulnerabilities to solve the previous research problem of only
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calculating individual vulnerability scores, and a method for calculating the risk of attack
route as well as vulnerability scores.

3. Vulnerability Correlation and Attack Graph-Based Node-Edge Scoring System

In this paper, we propose VCAG-SS, a node-edge vulnerability correlation analysis
method for attack graph-based optimized attack route detection. The nodes PCs, servers,
users, and the like are included in the network, and node information includes IP, access
location, and CVE information. Further, the edge refers to the relationship between the
vulnerabilities of the nodes. For example, assuming that CVEi and CVEj vulnerabilities
exist, CVEi steals administrator information through an attack, and CVEj performs an attack
under the precondition that it has the authority of an administrator, then this indicates
that CVEi is an attack that must be carried out before CVEj is performed. Therefore, the
vulnerability correlation analysis identifies the relationship between the vulnerabilities
existing between the two nodes. The information collected in this way calculates the
individual risk of nodes and edges through the VCAG-SS, and the overall risk score for
the attack route is calculated by adding the node risk score and the edge risk score of the
attack route. For the node risk, the CVSS score is used, and for the edge risk, the access
location, attack type, CIA, and correlation are used. The proposed method calculates the
edge weight using the correlation index between vulnerabilities and the CIA values for
each access location, attack target, and vulnerability; through this, the node-edge value that
provides the optimal route at the minimum cost is identified. The proposed method can be
expressed as:

VCAG − SSroute = (nodeRankroute + arsRankroute) ∗ Pathroute (1)

Based on the node risk, edge risk, and number of routes, the attack priority risk is
calculated for the corresponding route. The node risk is determined as in Equation (2),
and the CVSS score of the vulnerability occurring in the node is used. The edge risk is
as expressed in Equation (3), and the evaluation is performed with the access method of
the two nodes, the type of attack performed on each node, the CIA, and the correlation
between the two nodes.

nodeRank = CVSSnode Score (2)

arsRank = w1 AL + w2 AT + w3CIA + w4CCI (3)

Equations (4)–(6) are the methods used to obtain each item of the edge risk, where AL
is the access location, AT is the target of attack, CIA is the CIA value for each vulnerability,
and CCI is the correlation index between vulnerabilities. w1, w2, w3, and w4, respectively,
refer to the weights according to the access location, attack target, CIA value for each
vulnerability, and the correlation index between vulnerabilities, which are arbitrarily
calculated by the user according to the relative importance of the four values. The AL
values are calculated according to the proposed method with the access methods (network,
local, etc.) of two nodes. To determine which attack method was used in the attack type,
the CIA used the CVSS-based CIA of the vulnerability. The vulnerability correlation index
can be used by experts to evaluate the correlation between possible vulnerabilities in the
two nodes.

Access Location (AL) = Nodei AL weight∗ Nodej AL weight (4)

Attack Type (AT) =
number o f attacki

∑n
k=1 kattacki

(5)

CIA = CVSScon f identiality + CVSSintergrity + CVSSavailability (6)

CVE correlation index (CCI) = ci,j (7)
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3.1. Access Location

The access location is one of the important factors to determine the vulnerability of
hosts and servers, and it can be divided into external and internal access. External access
refers to direct access to the host or server from the external network, without going through
a host or server in another internal network, and an attacker can perform various attacks
through the external network. Representative attack methods include DDos, hijacking,
drive-by, password, and phishing attacks. Conversely, internal access means that the host
or server can only be accessed through another internal host or server. As such, external
access can only be exposed to a larger variety of attacks than internal access, so there are
much more vulnerabilities in external access.

The access location can be largely divided into external and internal, and in detail, it
can be divided into network, adjacent network, local, and physical. “Network” means that
“the node (host, server, etc.) can be accessed from all external networks”; “adjacent network”
means “the node can only be accessed from the adjacent external network”; “local” means
“the node can be accessed only from the internal network”; and “physical” means “the node
can only be accessed by a physical method”. The access location was defined based on the
attack vector (access vector) provided by the CVSS, and it was proposed to be applicable
according to the CVSS version as presented in Table 1.

Table 1. Access location weight according to CVSS version.

Type
CVSS Version

1.0 2.0 3.0++

Network 1.0 1.0 0.85

Adjacent network - 0.646 0.62

Local 0.7 0.395 0.55

Physical - - 0.20

We calculated the edge weights based on the association between the two nodes; the
access location weights defined in Table 1 are defined for the two nodes and the edge
weights in Table 2 are defined according to Equation (4).

Table 2. Access location weight based on associations between two nodes.

Node i

Network Adjacent Network Local Physical

Node j

network 0.7725 0.527 0.4675 0.17

adjacent
network

- 0.3844 0.341 0.124

Local - - 0.3025 0.11

physical - - - 0.04

3.2. Attack Type

The attack type was defined based on the thirteen vulnerabilities that were de-
fined in [32] and the relative vulnerability occurrence rate according to Equation (5).
∑n

k=1 kattacki means the total number of occurrences of each vulnerability provided, and
the number of attacki is the number of occurrences of a specific vulnerability in the
previous year. Through this, the relative weight of each type of vulnerability can be
obtained. w is the weight given to the attack target, and we used a w value of 2. The
13 attack targets are DoS, Code Execution, Overflow, Memory Corruption, Sql Injection,
XSS, Directory Traversal, Http Response Splitting, Bypass something, Gain Information,
Gain Privileges, CSRF, and File Inclusion. For example, if there were vulnerabilities that
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occurred in 2021 and the number of occurrences was as presented in Table 3, it could be
calculated as (1836/14,318) = 0.1287 in the case of DoS, and as (1680/14,318) = 0.1173 in
the case of overflow.

Table 3. Number of identifications by attack target that occurred in 2021 [32].

DoS Code Execution Overflow Memory Corruption

1836 3843 1680 484

XSS Directory Traversal
Http response

Splitting
Bypass something

2703 503 5 874

Gain Privileges CSRF File Inclusion

260 504 46

3.3. CIA Impact by Vulnerability

The CIA impact for each vulnerability used the CIA impact of the base metric used
in the formula proposed in the CVSS [33]. CIA refers to confidentiality, integrity, and
availability. The corresponding values used the CIA impact value provided by each version
of CVSS, and Table 4 presents those values. Moreover, suitable weights can be used
depending on the CVSS version. In CIA, the values for each type of C, I, and A are the
same for each version.

Table 4. CIA impact according to CVSS Version.

Type
CVSS Version

1.0 2.0 3.0++

High 1.0 0.66 0.56

Low 0.7 0.275 0.22

None 0.0 0.0 0.0

3.4. Correlation Index between Vulnerabilities

We generated a matrix based on the prerequisites between the CVE of the two nodes.
A correlation between nodes can help identify what kind of relationship there is. At that
time, information such as the presence or absence of pre and post conditions, similar attack
methods, and conflicting attack methods was identified. Through this, the correlation index
between vulnerabilities was generated, and the method was as follows:

ci,j = c
(
vi, vj

)
(8)

In the proposed correlation index method (c), the vulnerabilities belonging to the two
nodes (i, j) are identified, and the prerequisite relationship is identified accordingly. If the
vulnerability in vi is a prerequisite or an attack that occurs in advance to the vulnerability
in vj, then the matrix is defined as a value of 1; in the opposite case, it is defined as a value
of 0. This is also determined when the two nodes are opposite to each other. That is, all
the preconditions between the two nodes are grasped (vi↔vj). The preconditions of the
two nodes analyzed in this way can be expressed in the manner listed in Table 5, and the
weights for each situation are defined and used in the previously defined arsRank.
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Table 5. Weight according to preconditions between two nodes.

vi

vi∈vl vi /∈vl

vl
vi∈vl 5 3

vi /∈vl 3 1

4. Experiment

In this section, an experiment is conducted using a network established by obtaining
the opinions of experts and data generated with vulnerabilities. It evaluates the risk of each
node and edge present in the network, defines six possible attack routes, and calculates the
risk of each route.

4.1. Data Set

In this paper, we defined the network and detailed information (vulnerability, port,
address, etc.) according to each node. In particular, the network and its vulnerabilities were
established with the advice of a group of experts. The network built using this method is
illustrated in Figure 1, and the attacker started the attack through node A and aimed to
reach node J, the final target. Each node contained vulnerabilities for an attacker to perform
an attack, and there were nine nodes (PC and server), with 11 vulnerabilities defined.

Figure 1. Network that included nodes and vulnerabilities generated in this experiment.

4.2. Priority Evaluation According to Attack Route

First, the attack priority was calculated through a method that suggested the risk of
each node and edge. Table 6 lists the result of calculating the risk for each node, and Table 7
presents the result of calculating the risk for each edge. C1 and C2 denotes CVE-2007-5969,
CVE-2014-2440. All values related to CVSS were calculated based on version 2.0. The
node risk was calculated using the CVSS basic score of the vulnerabilities of each node
(PC, server, etc.), and the edge risk was calculated by applying the risk calculation method
suggested in Section 3. Regarding the weight of each item of edge risk, the attack location,
attack type, and node association were judged to be more important than the CIA, and the
weight was calculated while reflecting this.
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Table 6. Node risk calculation results.

Node Node Risk Node Node Risk

A 0 F 2.1

B 5 G 6.25

C1 7.1 H 4.6

C2 5.1 I 6.4

D 7.2 J 2.1

E 2.1

Table 7. Edge risk calculation results.

Edge Edge Risk Edge Edge Risk

A-B 2.4664 D-H 3.2968

A-C1 3.9514 D-I 2.1914

A-C2 2.7964 D-G 2.6864

B-D 3.6214 G-D 7.6214

C-G 7.7026 G-I 2.4114

D-E 5.9976 I-J 1.9164

D-F 1.9976

For the node risk, the experimental results confirmed that nodes with vulnerabilities
with relatively high CVSS scores showed higher values. It was confirmed that nodes with
various vulnerabilities scored higher than attacks that could penetrate through a single
vulnerability, such as nodes C, G, and I, and that nodes that could attack with various
nodes such as nodes D and G also scored higher. In terms of the edge risk, it was confirmed
that the nodes (attack locations) that can be accessed from outside rather than inside and
the attack types that occurred more frequently as of 2021 showed relatively higher risks.
As a result of comparing D-G and G-D edge analysis, it was confirmed that the edge risk
differed depending on the correlation between each vulnerability, and that even when
connected to various nodes such as node D, different risk scores were calculated depending
on how the vulnerability of each node was related to the vulnerability of node D. Further,
in the case of A-C, it was confirmed that the vulnerabilities used to attack the two nodes
and the corresponding correlation showed different edge risks, although they were the
same nodes. Next, the risk for each attack route was calculated based on the calculated
node and edge risk; Table 8 lists the attack route used in this experiment. Table 9 lists the
results, and the attack route risk was calculated with 10 as the maximum. In the attack
pathroute risk calculation, along with the risks of nodes and edges, the path route that was
calculated based on the total number of nodes passed to reach the final target, node J, is also
included. pathroute is a value obtained by dividing the maximum number of routes to reach
the final goal by the number of corresponding attack routes. The longer the pathroute, the
lower the value. There were six routes in total, and the nodes and the edges used according
to each route were as follows.

Table 8. Nodes and edges along the attack route.

Attack Route Node and Edge Attack Route Node and Edge

Route 1 a-b-d-i-j Route 4 a-c1-g-d-i-j

Route 2 a-d-b-g-i-j Route 5 a-c2-g-i-j

Route 3 a-c1-g-i-j Route 6 a-c2-g-d-i-j
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Table 9. VCAG-SS risk assessment results according to attack vectors.

Attack Route (Path) VCAG-SS Score Attack Route (Path) VCAG-SS Score

Route 1 (5) 3.7075 Route 4 (6) 5.2433

Route 2 (6) 4.0052 Route 5 (5) 4.1612

Route 3 (5) 4.5398 Route 6 (6) 4.9278

It was confirmed that the risk of the fourth attack route was the highest, and it was
confirmed that the risk increased that much because the path was connected to the most
nodes, and passed through D nodes with various attack methods. Further, the vulnerability
score for Path 3 was higher than those for Paths 1 and 5, which had the same number of
paths. It was confirmed that the access method (access location) of the nodes was from the
outside, and it was an attack type that was used relatively more frequently than the attack
type used in other routes. It was also confirmed that attack routes containing routes with
a high edge risk had a relatively high attack route risk scores than the other routes. We
compared the proposed method with the method used in previous research. Since most
previous research works do not provide open network data and the information used is
different from each other, we compared research works that improved the value of CVSS.
As presented in Table 10, the priority for attack routes is the same as a result of comparing
the proposed method with existing methods, and there is only a deviation in the degree of
risk for each route.

Table 10. Comparative experimental results.

Attack Route Proposed WIVSS [16] Attack Route Proposed WIVSS [16]

Route 1 3.7075 4.7299 Route 4 5.2433 7.2499

Route 2 4.0052 5.1247 Route 5 4.1612 5.4416

Route 3 4.5398 6.1016 Route 6 4.9278 6.6999

5. Conclusions

In this paper, we proposed a method for defining node and edge values based on
the information of the network, accordingly calculating the risk of each node and edge,
and calculating the risk of a specific attack path through this. In previous research, the
information contained in the node was used preferentially; in particular, the vulnerability
scores provided by CVSS were used. However, in this study, we aimed to solve the problems
associated with previous studies by proposing a method to calculate edge risk along with
these values. A formula for calculating edge risk score was defined; access location, attack
type, CIA, and correlation were calculated; and we attempted to use correlation to calculate
more accurate risk scores through a vulnerability correlation analysis of two nodes. In the
process of calculating the edge risk score, by analyzing the link between the two nodes, it
was possible to determine which node was more dangerous when moving from one node
to the next. This method also helped reduce the error of the risk generated by calculating
the risk using only the CVSS information held by previous research. For the experiment,
a network was built, an attack route was defined, and the risk level for each attack route
was finally calculated. As a result of the experiment, the risks for 12 nodes and 13 edges
were calculated, and through this, the risk score increased as the number of vulnerabilities
increased or the number of nodes that could go through the node increased. In the edge
risk score, it was confirmed that the risk was calculated differently depending on the
prerequisites required for the vulnerability even if the two nodes were the same, and
even if the two edges started from the same node, the risk varied depending on which
vulnerability the arrival node had. Moreover, we calculated the risk score for six attack
routes, and it was confirmed that the higher the risk calculated through nodes and edges,
the higher the risk, which depended on the correlation between the states of the nodes
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included in the attack path and the vulnerability. In addition, we confirmed the number of
paths according to the attack route, and we confirmed that the states of the nodes and edges
included in it was more important than the number of paths. Unlike previous research,
this paper proposed a method of measuring risk score by defining an edge rather than
improving its own values of the CVSS. This made it possible to calculate a simple and
effective attack route risk score. However, since the values of CVSS 2.0 were used as is, the
values were old, and an association analysis between nodes was performed, but the pre and
post conditions of vulnerabilities were judged through experts, so a more accurate analysis
should be conducted. Therefore, in future research, we will propose a more sophisticated
risk calculation method by constructing a more complex network data set, calculating the
risk along the attack path, and upgrading the node risk and edge risk. Further, since the
number of paths to go through increases as the network becomes larger, we will also study
how to effectively apply the number of paths to the attack vector risk.
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19. Gencer, K.; Başçiftçi, F. The fuzzy common vulnerability scoring system (F-CVSS) based on a least squares approach with fuzzy
logistic regression. Egypt. Inform. J. 2020, 22, 145–153. [CrossRef]

20. Allouzi, M.A.; Khan, J.I. Identifying and modeling security threats for IoMT edge network using Markov chain and common
vulnerability scoring system (CVSS). arXiv 2021, arXiv:2104.11580.

21. Putra, F.G.; Soewito, B. Measurement of Security System Performance on Websites of Personnel Information Systems in Govern-
ment Using Common Vulnerability Scoring System. J. Pendidik. Tambusai 2022, 6, 2949–2957.

22. Kai, S.; Zheng, J.; Shi, F.; Lu, Z. A CVSS-based Vulnerability Assessment Method for Reducing Scoring Error. In Proceedings of
the 2021, 2nd International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China,
27–29 December 2021; pp. 25–32. [CrossRef]

23. Reyes, J.; Fuertes, W.; Arévalo, P.; Macas, M. An Environment-Specific Prioritization Model for Information-Security Vulnerabilities
Based on Risk Factor Analysis. Electronics 2022, 11, 1334. [CrossRef]

24. Li, Z.-Y.; Xie, C.-H.; Tao, R.; Zhang, H.; Shi, N. A Network Security Analysis Method Using Vulnerability Correlation. In
Proceedings of the 2009 Fifth International Conference on Natural Computation, Tianjian, China, 14–16 August 2009; pp. 17–21.
[CrossRef]

25. Ali, M.U.; Aydi, H.; Batool, A.; Parvaneh, V.; Saleem, N. Single and Multivalued Maps on Parametric Metric Spaces Endowed
with an Equivalence Relation. Adv. Math. Phys. 2022, 2022, 6188108. [CrossRef]

26. Zhou, M.; Saleem, N.; Liu, X.-L.; Özgür, N. On two new contractions and discontinuity on fixed points. AIMS Math. 2022, 7,
1628–1663. [CrossRef]

27. Saleem, N.; Zhou, M.; Bashir, S.; Husnine, S.M. Some new generalizations of F-contraction type mappings that weaken certain
conditions on Caputo fractional type differential equations. AIMS Math. 2021, 6, 12718–12742. [CrossRef]
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Abstract: The possibility of cyber-attacks against critical infrastructure, and in particular nuclear
power plants, has prompted several efforts by academia. Many of these works aim to capture the
vulnerabilities of the industrial control systems used in these plants through computer simulations
and hardware in the loop configurations. However, general results in this area are limited by the cost
and diversity of existing commercial equipment and protocols, as well as by the inherent complexity
of the nuclear plants. In this context, this work introduces a testbed for the study of cyber-attacks
against a realistic simulation of a nuclear power plant. Our approach consists in surveying issues
regarding realistic simulations of nuclear power plants and to design and experimentally validate
a software testbed for the controlled analysis of cyberattacks against the simulated nuclear plant.
The proposal integrates a simulated Modbus/TCP network environment containing basic industrial
control elements implemented with open-source software components. We validate the proposed
testbed architecture by performing and analyzing a representative cyberattack in the developed
environment, thus showing the principles for the analysis of other possible cybernetic attacks.

Keywords: cybersecurity; nuclear power plants; Asherah Nuclear Power Plant Simulator; GNS3;
PLC; OpenPLC; SCADA; ScadaBR; Modbus; ModRSsim2; industrial control systems (ICS)

1. Introduction

The main question addressed by this research is the design and validation of an easily
reproducible and accurate testbed for nuclear power plant (NPP) cybersecurity research. It
is important to bring results regarding the protection of such cyber-physical infrastructures
because there is concern of attacks against the monitoring and control systems used in
real nuclear plants. However, there are inherent risks associated with the safe operation of
radioactive materials and high costs involved in suspending nuclear plant operation for
safely testing cyber-attacks and defense measures. This scenario makes the use of nuclear
power plant simulations almost unavoidable in these situations. Therefore, presently and
in the foreseeable future, this question needs to be addressed to comprehend the possible
cyber-attacks, their related risks, and to compose adequate protection measures.

As lately increased computing power allows the operation of realistic simulations of
nuclear reactors on personal computers, this paper contributes with the design of a robust
simulation-based testbed for NPP cybersecurity studies, combining low-cost hardware
and software, to enable realistic simulations of the controlled physical processes and
the used communications networks. The validation of the proposal raises another paper
contribution in the form of a method for simulating cyber-attacks, presenting a case scenario
that illustrates how to minimize the cost, difficulty, and complexity of NPP cybersecurity
analysis, while maximizing the accuracy, reproducibility, and scalability of this type of
experimental setup.

Recent years have seen a rise in cases of cyber-attacks against critical infrastructure.
The impact of these attacks covers a spectrum that ranges from essential service interruption
and financial loss to physical destruction. These attacks have been facilitated by the
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increasing digitalization in critical infrastructure sectors, and the convergence between
information technology (IT) and operational technology (OT).

Examples taken from industry at large include: in 2013, the cyber-attack that paralyzed
a German steel processing plant; and the attacks of 2015 and 2016 against Ukraine’s
power distribution grid, responsible for disrupting the power supply of thousands of
homes [1]. Specifically in the nuclear industry, cases are known such as: in 2003, in
the USA, the Slammer worm disabled the safety monitoring system at the Davis–Besse
nuclear power plant (NPP); in 2006, in the USA, controller data traffic overload caused the
shutdown of unit 3 at the Browns Ferry NPP; in 2010, in Iran, the Stuxnet worm destroyed
uranium enrichment centrifuges; in 2014, in South Korea, hackers gained access to critical
information about the operation of Korea Hydro & Nuclear Power NPP and demanded the
shutdown of 3 reactors [2,3].

In response to the growing perceived cybersecurity threat against nuclear power plants,
the academia has sought to contribute on several fronts. Research in this area encompasses
proposals such as: qualitative assessments; best practice proposals; risk evaluations; cyber-
attack scenario studies; development of intrusion detection systems (IDS); precautions with
supply chain; and cyber–physical protection systems; among others.

Many of these studies rely on computer simulations as their main working tool, be it
purely software-based, or in a hybrid configuration (hardware-in-the-loop, HIL). Indeed,
for many decades, the use of computer simulations has turned into established practice in
the nuclear industry, particularly for training purposes, but also in the design and licensing
phases of the construction and operation of the reactors. The inherent risks associated with
the safe operation of radioactive materials and the high costs involved make the use of
simulations unavoidable in these situations [4].

Nuclear codes and full scope simulators are of high complexity and financial value,
and are generally beyond the wider reach of the academic community. Additionally, they
offer little flexibility, as they are designed specifically for the NPP model where they will
be employed. Finally, they do not address important aspects for real-world cybersecurity
studies, such as industrial communications networking and the interfacing of OT with
the company’s IT structure. This scenario leaves researchers with the task of developing
appropriate testbeds in order to: on the one hand, be able to draw sufficiently general
conclusions about the cybersecurity of nuclear power plants; and, on the other hand, avoid
oversimplification of the simulated scenarios.

Fortunately, in recent years, computing power has increased enough to allow the
operation of realistic simulations of nuclear reactors on personal computers. Examples
are the series of simulators developed and made available to the public by the Interna-
tional Atomic Energy Agency (IAEA) [5,6]. On the other hand, operating system (OS)
virtualization technology has become popular to the point of enabling, by means of virtual
machines (VM), the integration of these simulations with other typical OT elements in
the form of software, such as supervisory control and data acquisition system (SCADA)
and programmable logic controllers (PLC); in communication networks that use protocols
specific to the automation industry. Together, these techniques enable the conformation of
robust testbeds for NPP cybersecurity studies.

The purpose of this paper is to take advantage of these developments to propose
one such testbed. Centered on the possibility of carrying out cyber-attacks against the
Asherah NPP Simulator (ANS), developed by the University of Sao Paulo (Brazil) for
the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP)
“Enhancing Computer Security Incident Analysis at Nuclear Facilities” [4,7]; integrated into
a Modbus/TCP virtual network communicating with complementary OT elements based
on open-source software.

The remainder of the paper is organized as follows: Section 2 review the literature
and explore research gaps to be improved; Section 3 describes how the proposed testbed
was designed and implemented; Section 4 applies the testbed to perform a specific cyber-
attack scenario and evaluates the experimental results; Section 5 discusses the possibility
of employing the testbed for intrusion detection and defensive capabilities research; and
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Section 6 draws general conclusions, discusses limitations and suggests areas for future
studies.

2. Related Work

Our general hypothesis argues for the potential benefits of adoption of purely software-
based industrial testbeds or in combination with low-cost hardware, for cybersecurity
research purposes. Furthermore, we believe that these need to be based, as far as possible,
on realistic simulations of the controlled physical processes and of the communications
networks used, both in its OT and IT dimensions. In this way, we will be able to minimize
the cost, difficulty, and complexity while maximizing the accuracy, reproducibility, and
scalability of this type of experimental setup.

From this perspective, we list below some related work (this does not focus on the uses
of a HIL configuration for training purposes such as [8]); by way of example and without
any attempt to exhaust the list of initiatives in the area. At the same time, we recognize that
some of these works consider testbed development to be only a preliminary step to achieve
diverse specific research goals. Nonetheless, we believe that the principles that guided the
development of our testbed can be of value to the cybersecurity community in general.

C. N. Boldea, 2011 [9], suggested an open-source software framework to setup a
SCADA testbed where the network would be provided by the application GNS3, connect-
ing at one end a Modbus client simulator (ModRSsim2) and at the other end a SCADA
server (Free Scada). The author indicates the possibility of performing DoS attacks from
a VM situated in the same network against port 502 of the Modbus client. The article
presents some good ideas, but does not offer further elaboration or describe practical
results eventually obtained.

J. Z. Thornton, 2015 [10], designed a virtual SCADA laboratory where the physical
process (gas pipeline) was modeled out of complex mathematical equations simulated by
the Simulink/Matlab software [11]. This allows for a more complete study of the behavior
of a physical system during a cyber-attack. The control logic expressed in ladder language
was emulated by Python programming. The communication via Modbus/TCP by Python
libraries (modbus_tk). The SCADA was partly implemented with a proprietary solution
(GE iFix) and partly by Python libraries (TKInter). The pervasive use of Python on the
testbed, while positive from a monetary perspective, could have contributed to diminishing
the realism of the proposed virtual lab. Furthermore, the use of proprietary software should
be avoided, if possible, in our view.

M. Andrey Teixeira et al., 2018 [12], present the development of a SCADA testbed
to be used for cybersecurity research. Their setup was dedicated to controlling a water
storage tank in a HIL configuration via the Modbus protocol. The effects of reconnaissance
industrial network cyber-attacks on the testbed were assessed and used to train machine
learning (ML) algorithms, in order to develop an automated IDS. However, the choice of
the industrial subprocess to be simulated is too simple, and thus limits the possible practical
applications of the model. Furthermore, it resorts to specific commercial hardware such as
the Schneider PLC model M241CE40, which restricts the generality of its conclusions and
complicates the reproducibility of the experiment.

S. Figueroa-Lorenzo et al., 2019 [13], in order to test their proposal to improve the
security of the Modbus protocol, have built a virtual testbed, containing TCP/IP software
network elements (firewall, routers and switches) made available by Cisco for use in the
network simulator GNS3. Since the authors’ approach was based on applying the Transport
Layer Security (TLS) technique to traditional Modbus TCP/IP protocol, they assumed that
the cybersecurity of the model is guaranteed by design. It then remained to evaluate
possible problems arising from implementation flaws and low performance, which could
be verified with the help of the arranged setup. This article shows the power and flexibility
of virtualized testbeds, for exploring various aspects of cybersecurity of industrial control
systems (ICS). However, it relied on proprietary software in its choice of implementation
(Cisco GNS3 Appliances).
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F. Zhang et al., 2019 [14], describe a testbed architecture to demonstrate a multilayered
defense-in-depth-based IDS. That included an engineering workstation to run the SCADA,
a data storage unit, a National Instruments cDAQ9188 Ethernet chassis, and a malicious
computer running the Kali Linux OS. This setup allowed for different attacks, such as
Denial of Service (DoS) and man-in-the-middle (MITM). However, the physical process
representing a nuclear reactor subsystem was simulated only notionally. This limitation
was remedied in a later work by the authors, as in 2020, F. Zhang et al. [15] proposed a
HIL testbed built with the Asherah NPP Simulator (ANS), which is capable of a realistic
simulation. It also comprises a PLC, in order to conduct false data injection attacks and
collect data to ML training of a PLC process data anomaly detector. Still, it could be argued
that the choice of commercial PLC (Siemens S7-1200) and proprietary software (Prosys
OPC UA) contribute to prevent the widespread applicability of the proposed framework.

O. Pospisil et al., 2021 [1], summarize recent works in the area of industrial testbeds;
motivated by the lack of quality real data in the quantities and features required for ML
applications aimed at automating cybersecurity tasks. Although not specific to the nuclear
industry, the study describes concepts and strategies common to the development of these
testbeds. As choices related to the following factors: industrial processes to be studied;
project category (physical, simulation, virtual, hybrid); application scenario (cybersecurity,
education, functional testing, standards development); industrial communication protocols
(Ethernet/IP, Profinet, EtherCAT, Modbus, Siemens S7); and levels of the automation
pyramid to be modeled, according to the ANSI/ISA-95 model (ISO 62264) [16]. Specially
levels L0 to L2, where: L0 deals with production processes (sensors and actuators); L1 with
control (PLCs); and L2 with supervision (SCADA). The paper goes on to describe several
testbeds set up in their university’s laboratory for data collection purposes. The wealth of
scenarios explored, however, may pose difficulties for researchers with fewer laboratory
resources. In particular, in relation to testbeds assembled from a great diversity of physical
equipment and proprietary protocols.

E. Aboah Boateng et al., 2022 [17], set up a testbed based on open-source software to
compare the performance of the ML one-class neural network (OCNN) training algorithm
on a Modbus/TCP network against previous works aimed at developing automated IDS for
ICS. Those last employed one-class support vector machine (OCSVM) and isolation forest
(IF) ML algorithms to detect PLC operation anomalies. The authors made the fortunate
decision to implement the traffic light operation program; originally developed for the
Siemens S&-1212C PLCs, in the open-source soft PLC OpenPLC instead. The human-
machine interface (HMI) was also chosen to be provided by the free supervisory system
ScadaBR. Despite this, we consider the simplicity employed for the network, consisting
only of Modbus communication occurring between the HMI and the Soft PLC, to be overly
limiting. This could explain why the anomalous scenarios described in the article were
not really emulated, but only imagined. Moreover, the physical process of low complexity
controlled by exclusively binary variables would hardly occur in real situations involving
critical industrial subsystems.

In contrast to the works listed above, our proposal is intended to be both close to indus-
trial practice and financially effective. We resort to a complex simulation of a nuclear power
plant. This is in turn monitored and controlled by a supervisory system and PLC, based on
opensource software and low-cost microcontroller, actually used for factory operations and
remote monitoring by certain companies. The emulated network environment allows both
the reproduction of communications by the popular industrial protocol Modbus, and the
reproduction of cyber-attacks actually developed to be used against real ICS.

3. Proposed Testbed for Cybersecurity Analysis of Nuclear Power Plants

In this section, we present the requirements considered in building up the proposed
testbed, and we discuss the idea that guided the validation of our design. Then, the testbed
components are detailed and discussed. The followed methodological process can be seen
in the flowchart depicted in Figure 1.

286



Appl. Sci. 2022, 12, 7942

Figure 1. Methodological flowchart.

The requirements that guided the assembly of our testbed were as follows:

• Choice of a NPP simulator faithful to the physical processes associated with its operation;
• Use of the Modbus/TCP protocol;
• Employment of a realistic network simulator;
• Selection of open-source software for the OT and IT elements to be incorporated;
• Have the ability to perform cyber-attacks against the testbed elements;
• Having the capability to monitor and log events to record historical data.

We consider this testbed capable of emulating a variety of cyber-attacks against
Modbus/TCP-based nuclear power plant simulated ICS. In order to validate this hy-
pothesis, we planned to use it to perform an insider cyber-attack. This consisted in simulta-
neously: (a) replacing a local PLC by a Rogue PLC (Level 1 of the ANSI/ISA-95 model [16]),
to modify the values of the registers used to control an actuator critical to the NPP operation
(Level 0); and (b) interpose and modify the communication between Levels 1 and 2, so
that the SCADA shows a normal situation in relation to the physical process, effectively
blinding the system to the attack in progress (men-in-the-middle attack or MITM). The
described levels and their respective roles can be seen in Figure 2.
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Figure 2. MITM Attack against the nuclear testbed.

This testbed also allows the application of the IAEA concepts of defensive computer
security architecture (DCSA) [18,19] (not part of this study), a practical technique to protect
facility functions that support safety and security that make use of, depend on, or are
supported by digital technologies. Therefore, a researcher can implement the concepts of
computer security levels (implementing a graded approach) and computer security zones
(delivering defense in depth) and develop cyber-attack scenarios to assess ways in which
an adversary could exploit vulnerabilities in systems performing facility functions.

The requirements and envisioned cyber-attack in turn guided the choice of the compo-
nents shown in Table 1 below.

Table 1. Nuclear testbed. List of components.

Role Performed Component

NPP Simulator Asherah NPP Simulator (ANS) 1

Communications Protocol Modbus/TCP
Modbus Simulator ModRSsim2 [20]
Network Simulator GNS3 2 [21]
Software Router VyOS (GNS3 Appliance) [22]
Software PLC and Ladder Program Editor OpenPLC 1.3 (Editor and Runtime) 3 [23]
Arduino PLC ESP8266 NodeMCU v1.0 ESP-12E
SCADA/HMI ScadaBR 1.2 [24]
Cyber-attack Plataform Kali Linux [25]
MITM Tool Ettercap [26]
Historian MySQL Workbench 4 [27]
Network protocol analyzer Wireshark [28]

1 Note: running inside Simulink/MATLAB on a Windows 10 (64-bit) VM., 2 Note: VMware Workstation Player [29]
and Oracle VirtualBox [30] used as hypervisors for the GNS3 appliances and VMs., 3 Note: installed on an
Ubuntu 20.04 VM., 4 Note: visual tool to manage the open-source MySQL Community Edition [31] database,
utilized by ScadaBR.

In what follows, we briefly explain the capabilities and justify the selection of the
above listed components. We also describe the adjustments made in order to integrate
them into the testbed and enable the proposed cyber-attack.

3.1. Modbus/TCP Protocol and the Modbus Simulator

Modbus is a protocol for industrial communications that was created more than
40 years ago (by PLC manufacturer Modicon, now Schneider Electric) and still enjoys great
popularity for real world SCADA/ICS implementations. There are several reasons for
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this: it is an open standard that is easy to implement and optionally available for almost
all commercial automation equipment. This allows the same plant to easily integrate
equipment from different manufacturers into its operations.

The protocol is also a favorite for cybersecurity studies, since in its standard form it
has no mechanisms to ensure confidentiality or data integrity, among other vulnerabilities.
It is also possible use search engines for Internet connected devices, like Shodan [32],
to locate and remotely attack Modbus systems. Furthermore, since different brands of
PLC accept the protocol as an option and it responds to external commands regardless of
authentication, they can easily be victimized by injection attacks [33,34].

Last but not least, the open-source software chosen to build our testbed; specifically,
ScadaBR and OpenPLC, both support the Modbus protocol. It should be noted that
commercial PLC brands in general feature their own proprietary protocols and in some
cases accompanying simulation software, also proprietary.

Modbus/TCP is one of three variants of the protocol and allows communication over
Ethernet networks on standard port 502 (the other two being Modbus ASCII and Modbus
RTU). It uses the client-server architecture and its communications are based on exchanging
Ethernet Request and Response frames, as can be seen in Figure 3.

Figure 3. Modbus/TCP client-server communication.

Figure 4 shows how the Modbus TCP packet is encapsulated in the data section of
the conventional Ethernet Frame. It is structured as follows: MBAP (Modbus Application
Protocol) header followed by the PDU (Protocol Data Unit) section. This last section
contains the message itself, consisting of: (a) function code, which indicates the desired
operation (such as read and write); and (b) data, related to the operation defined in the
previous field, such as addresses or values to write. Table 2 shows common Modbus
function codes.

Figure 4. Modbus TCP packet structure.
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Table 2. Common Modbus function codes.

Function Code (Decimal)
Function Code
(Hexadecimal)

Description

01 0 × 01 Read Coil Status
02 0 × 02 Read Input Status
03 0 × 03 Read Holding Registers
04 0 × 04 Read Input Registers
05 0 × 05 Write Single Coil
06 0 × 06 Write Single Register
15 0 × 0F Write Multiple Coils
16 0 × 10 Write Multiple Registers

The protocol has a particular addressing scheme that consists in dividing its memory
area into four sections; for discrete (Boolean) and analog values (Coils and Registers),
read-only or read-write, as can be seen in Table 3. Each of these addresses can store
data types of up to 16 bits. Therefore, to use 32-bit data types, it is necessary to use two
consecutive addresses for each of these values. In the particular implementation of our
testbed, characterized by simulated physical processes of mainly continuous nature, we
chose to use only the Holding Registers section of Modbus memory. There, all values
simulated by the ANS, Boolean or analog, were saved in FLOAT 32-bit format.

Table 3. Modbus addressing scheme.

Section Designation Read Write Address Range

Coils YES YES 00001–09999
Discrete Inputs YES NO 10001–19999
Input Registers YES NO 30001–39999

Holding Registers YES YES 40001–49999

The Modbus simulator chosen to enable communication between the different modules
of the testbed was ModRSsim2 [20]. This program behaves as a server that responds to
requests from Modbus clients located at different IP addresses; through port 502 of the VM
where it is installed. Thus, it was used as the ANS’s Modbus memory, which could then be
remotely accessed by ScadaBR and OpenPLC.

3.2. Asherah NPP Simulator (ANS) and Its Adapted Modbus Communications Interface

The Asherah NPP Simulator (ANS) was specially developed for cybersecurity assess-
ments, by the University of Sao Paulo, Brazil [4,7]; in the framework of an international
cooperation project sponsored by the International Atomic Energy Agency (IAEA). It has
a core design that mathematically simulates the nuclear physics of the Three Mile Island
(TMI) reactor, the 2772 MWt Pressurized Water Reactor (PWR) Babcock and Wilcox (B&W).
In addition to the core, it also simulates the various instrumentation and control (IC) mod-
ules required to operate the several subsystems commonly found in a real nuclear power
plant [4].

Its unique features and the absence of similar research software availability determined
the choice of ANS for our testbed. The high degree of complexity and realism of ANS
could only be achieved by the developing work [35,36], and the verification and validation
activities [4] performed by the developers with the support of experts involved in the IAEA
CRP Enhancing Computer Security Incident Analysis at Nuclear Facilities. The proprietary
software Simulink/MATLAB provided the adequate environment for the development of
the ANS’ 3200 blocks and more than 250 scripts. Simulink/MATLAB is the one of the two
proprietary software used in our setup (the other being the OS Windows 10). In spite of
this, the Simulink/MATLAB software is widely available in university laboratories around
the world. ANS itself can be provided to IAEA member states upon formal request at [6].
In its current version, ANS can be deployed without the need of Matlab/Simulink, as a
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runtime standalone version or in a docker/container [37] application (also without the
need of any proprietary software).

In Figure 5, we can see a general view of the ANS subsystems, divided into three
subsections. The two above, from left to right, show: (a) the control loops and protection
system; and (b) primary and secondary loops. The bottom subsection shows the external
interface, comprised mainly by the Comm Module and Matlab Historian.

Figure 5. General View of the ANS subsystems.

In the version used (Windows—Release 14 dec 20), ANS was specially prepared to
communicate via the OPC UA protocol (Open Platform Communications Unified Architec-
ture). Thus, in order to enable a new Modbus communications interface, it was necessary
to implement the following superficial modifications to the program: (a) map the sensor
and controller variables to new areas of the Modbus server ModRSsim2 (Holding Registers
Area only—two registers for each variable since they must be written as 32-bit FLOAT), as
can be seen in Figure 6; (b) create a new initialization script for the new Modbus command
variables (ans_load), which must be run in the Matlab Command Window; and (c) dis-
able the original OPC UA communication modules and create and activate new Modbus
modules by means of scripts based on Modbus read and write functions from MATLAB
Instrument Control Toolbox, as shown in Figure 7.

Note that both applications, the Modbus server and the ANS, were installed on
the same machine and therefore shared the same IP. The operating system used was
Windows 10. From this point on, we could have chosen to install the rest of the testbed
components on other physical machines connected by a hardware switch. Instead, we
elected to build the entire testbed on a single machine by means of OS virtualization
technology.

291



Appl. Sci. 2022, 12, 7942

Figure 6. Mapped holding registers area of ModRSsim2.

Figure 7. ANS Modbus communications interface.

3.3. GNS3 Topology

The open-source program GNS3 (Graphical Network Simulator-3) [21] was used
to create a simple TCP/IP network topology needed to set up the testbed and carry
out the planned insider cyber-attack. This program allows emulation and simulation of
various network equipment, such as routers, switches, and firewalls; besides OS VMs. It
supports several free hypervisors such as VirtualBox and VMware Workstation Player.
The elements used to build the topologies are called appliances. The main elements used
in our implementation, all free, were the following: VyOS Router; 2 Ubuntu 20.04 VMs
(ScadaBR and OpenPLC), and; Kali Linux. Another facility provided by GNS3 is its simple
integration with the well-known communication protocol analyzer software Wireshark [28],
which in turn is able to analyze Modbus traffic. Several such units can be inserted into the
topology segments at the same time.

In essence, our testbed was assembled to study and manipulate the Modbus/TCP
communication in an industrial subnet between the PLCs of a nuclear power plant and its
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supervisory system. As intervening elements, inserted in the system by the Insider, we
have: (a) a computer with the OS Kali Linux distribution installed, a well-known platform
used for pen test (penetration testing) and equipped with several libraries for cyberattacks;
and (b) a “Rogue” PLC whose function is to substitute an internal control of the plant,
previously neutralized by the malicious agent. All mentioned elements were installed in
VMs whose IP and MAC addresses were fixed, and are in turn interconnected through
Ethernet via a simple switch.

This configuration is sufficient to carry out insider attacks between the ANS and
the HMI, since it is assumed that the subnet is segregated from the Internet in critical
infrastructures such as NPP (Air Gap). However, the VyOS router [22] was also added and
configured in the topology to allow access to the internet of the test environment and thus
facilitate the installation and configuration of the programs and also allow for HIL testing
(Arduino Wi-Fi). The resulting GNS3 topology is shown in Figure 8 and its IP scheme in
Table 4 below.

Figure 8. GNS3 nuclear testbed topology.

Table 4. Nuclear testbed IP addressing.

Roles
Main

Applications
OS IP MAC

SCADA,
Historian

ScadaBR, MSQL
Workbench Ubuntu 20.04 10.0.0.4/8 0c:fd:ed:11:0b:00

NPP Simulator,
Modbus Server

ANS,
ModRSsim2 Windows 10 10.0.0.2/8 08:00:27:44:d6:ef

Cyber-attack
Plataform Kali Linux Debian 10.0.0.5/8 08:00:27:5c:65:26

“Rogue” PLC OpenPLC Ubuntu 20.04 10.0.0.3/8 0c:fd:ed:28:84:00

Router VyOS GNS3 Appliance 10.0.0.1/8 (eth1),
dhcp (eth0, eth2) 0c:fd:ed:2f:d8:01
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3.4. ScadaBR HMI and Historian

ScadaBR [24] is an open-source supervisory system that presents several features
expected by our testbed in order to reproduce a situation close to the industry practice
in a virtual environment. In particular: visualization of automation data in real time;
construction of graphical screens; and continuous recording of variable changing values
in a database. This last function, also called Historian or Datalogger, is provided by
the relational database management system (RDBMS) linked to the main program. It is
fundamental to enable deeper studies based on the analysis of data captured over long
periods of time, such as, for example, the creation of datasets for IDS automation research
through the training of ML algorithms. In the version we used, the supervisory links to an
Apache Derby RDBMS by default. However, most ScadaBR users migrate the application to
use the MySQL [31] manager instead, which would provide performance and stability gains
to the Historian in real applications. We repeated the procedure in our testbed and, in order
to facilitate the manipulation of this database, we also installed the MySQL Workbench [27]
graphical tool in the same VM.

Regarding the choice of variables to be monitored by ScadaBR, it is important to
recognize that the version of ANS that was employed continuously provides the values of
153 different input and output (IO) variables (sensors, actuators, setpoints, and commands).
These are grouped into 19 subsystems distributed among the three main circuits found
in PWR reactors (primary, secondary, and tertiary). Thus, any practical study involving
cyber-attacks against the ANS and evaluation of its impacts must commence by selecting a
relevant subset of this universe.

Besides the desired participation of the nuclear reactor (RX) and its reactivity control
variables, our choice of subsystems of ANS to be included in the ScadaBR HMI was
guided by their close relationship to those that are likely to be mostly affected in the
cyber-attack scenario planned as a validation test for the proposed framework. To this
end, we determined that the attack would primarily involve the condenser cooling pump
(CCP). This system in the tertiary circuit is responsible for controlling the balance between
steam and water in the condenser (CD) linked to the output of the power plant’s electrical
generator driving turbine (TB). Its improper operation could, in the extreme, cause the
interruption of the turbine (TB) operation, and indirectly of the nuclear reactor. Another
feature that makes this subsystem attractive for an insider is that it is usually physically
located outside the nuclear island.

These considerations led to the development of a HMI consisting in the numerical and
graphical screens shown in Figures 9 and 10. In those, we have just linked the variables
associated with the chosen subsystems: main control; condenser cooling (CC); condenser
(CD); turbine (TB); and reactor (RX). Their characteristics are described in greater detail in
the experimental section of this paper.
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Figure 9. ScadaBR HMI—Synoptic Panel 1 (Numerical and Main Control).

Figure 10. ScadaBR HMI—Synoptic Panel 2 (Graphical).

4. Conducting the Cyber-Attack Scenario and Evaluating the Results

As mentioned before, our cyber-attack scenario consisted in the replacement of an
internal ANS control by a malicious external one that tampered with a critical variable value,
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while simultaneously a real-time value-changing MITM attack prevented the anomalous
activity from being detected by the HMI.

In more specific terms, the attack consisted of using the Rogue PLC to set the value of
CC_PumpSpeedCmd to 75, while the HMI instead showed its normal value around 100, for
main control power output of 100%. In the absence of manipulation, this variable adjusts
the condenser cooling pump (CCP) speed to keep the condenser (CD) vapor pressure close
to a reference value (5200 Pa), as can be seen in Figure 11.

Figure 11. CD Press CTRL.

Thus, it was expected that the artificially imposed slightly lower fixed value would
not be easily noticed and would gradually increase that condenser pressure, eventually
reproducing the damaging effects described above. To do this in practice in our testbed, we
followed these steps:

1. Disabled the internal ANS control module (CD Press CTRL) that provides the value
to be manipulated (CC_PumpSpeedCmd);

2. Programmed the Rogue PLC so that it could provide the new value of
CC_PumpSpeedCmd that would be externally supplied and accepted by the ANS as
if it were internally generated. In addition, it was necessary to provide the control
variable that keeps the pump turned on, and that was originally provided by the
disabled internal module (CC_PumpOnOffCmd);

3. Used the attacker platform to perform a MITM attack that was able to intercept and
modify the Modbus/TCP communication between the ANS and ScadaBR.

4.1. ANS Preparation

The procedure for disabling internal ANS modules in Simulink/MATLAB involves
commenting them out and at the same time enabling the necessary command connectors in
the communications section. Specifically, Figure 12 shows how we disabled the CD Press
CTRL module and the internal variables CC_PumpSpeedCmd and CC_PumpOnOffCmd.
Figure 13 shows how we activated these same variables in the communications area, so
that they can be controlled externally. The physical equivalent of this operation would be
the replacement of the legitimate PLC or its control programming for another version. We
assume that the malicious agent would have the ability to make this physical modification,
in a real situation.
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Figure 12. CD Press CTRL module commented out.

Figure 13. CC control variables communications activated.

4.2. Rogue PLC

The Rogue PLC has been implemented in the open-source program OpenPLC [23].
The software was developed according to the IEC 61131-3 standard [38], which defines the
5 PLC programming languages (Ladder Logic—LD, Structured Text—ST, Instruction List—
IL, Function Block Diagram—FBD, and Sequential Function Chart—SFC). It is divided into
two main parts: the Editor and the Runtime. The Editor is where programs are created. The
Runtime can be embedded in low-cost microcontrollers such as the ones of the Arduino
family, or in a generic target like a Soft-PLC (Windows or Linux). In addition, there is a
web-based platform to define, monitor, and manage the program to be executed and the
various PLCs in use.

A ladder program was designed in the OpenPLC Editor that enabled manual control
of the cyber-attack, via simple circuitry based on the Arduino board ESP8266 NodeMCU
v1.0 ESP-12E (button PB1 ON—attack activated; button PB2 ON—attack interrupted).
This Arduino board was connected to the Wi-Fi network of the test environment [39].
To link the variables defined in the program to the Modbus memory IO target variables;
to manipulate only the desired Holding Registers in it, without messing with the other
addressing areas, and to have access to more analog outputs, we followed the OpenPLC
addressing conventions and created 3 slaves (one of Device Type ESP8266 and two of
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Device Type Generic TCP), as can be seen in Figure 14 and according to the settings shown
in Table 5.

Figure 14. ESP8266 NodeMCU v1.0 OpenPLC address mapping.

Table 5. OpenPLC slave configuration parameters.

ESP8266 NodeMCU v1.0
(physical control)

Rogue PLC 1
(CC_PumpSpeedCmd)

Rogue PLC 2
(CC_PumpOnOffCmd)

Device Type: ESP8266 Device Type: Generic Modbus
TCP Device

Device Type: Generic Modbus
TCP Device

Slave ID: 0 Slave ID: 1 Slave ID: 2
IP Address: 192.168.1.165 IP Address: 10.0.0.2 IP Address: 10.0.0.2
IP Port: 502 IP Port: 502 IP Port: 502

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Input Registers (%IW100)
Start Address: 0 Size: 1

Input Registers (%IW100)
Start Address: 0 Size: 1

Input Registers (%IW100)
Start Address: 0 Size: 1

Holding Registers—Read
(%IW100) Start Address: 0
Size: 0

Holding Registers-Read
(%IW100) Start Address: 0
Size: 0

Holding Registers—Read
(%IW100) Start Address: 0
Size: 0

Holding Registers—Write
(%Q100) Start Address: 00
Size: 1

Holding Registers—Write
(%Q100) Start Address: 224 1

Size: 2

Holding Registers—Write
(%Q100) Start Address: 284 1

Size: 2
1 Note: these are the offsets pointing to the beginning of the variables in the Holding Registers area of ModRSsim2.

The ladder program logic is as follows. When the attack is triggered (the normally open
button PB1 is physically pressed on the arduino board), the consecutive Holding Registers
corresponding to CC_PumpSpeedCmd (Hccpspeedcmd at 400,225 and Lccpspeedcmd
at 400,226) are written with the values 17,046 and 0000 (FLOAT 7.5E+01, or 75) on the
ModRSsim2 Server. When the attack is stopped, the CC_PumpSpeedCmd registers are
written with the values 17096 and 0000 (FLOAT 1.0E+02, or 100). The registers related to
CC_PumpOnOffCmd (Hccponoffcmd at 400,285 and Lccponoffcmd at 400,286) are kept at
16,256 and 0000 (FLOAT 1.0E+00, or 1) throughout the operation. The MOVE instruction
was used to transfer the content of the operand at input IN to the operand at output
OUT when the Input EN is ON. The local variables used are shown in Table 6 and the
implemented ladder program in OpenPLC Editor is shown in Figure 15.
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Figure 15. Rogue PLC ladder program in OpenPLC Editor.

Table 6. Rogue PLC ladder program local variables.

Name Class Type Location Description

PB1 Local BOOL %IX100.0 Push button (attack ON)
PB2 Local BOOL %IX100.1 Push button (attack OFF)

LAMP Local BOOL %QX100.0 Warning LED (attack ON)
Hccpspeedcmd Local UINT %QW101 CC_PumpSpeedCmd (Higher Byte)
Lccpspeedcmd Local UINT %QW102 CC_PumpSpeedCmd (Lower Byte)
Hccponoffcmd Local UINT %QW103 CC_PumpOnOffCmd (Higher Byte)
Lccponoffcmd Local UINT %QW104 CC_PumpOnOffCmd (Lower Byte)

4.3. Attack Platform

Kali Linux [25] distribution was chosen to unleash the value-changing MITM attack.
This platform allows for performing cyber-attack scenarios with the purpose of assessing its
consequences. It offers a wide range of tools for information security and ethical hacking-
related tasks, such as penetration testing, computer forensics and reverse engineering. In
its inventory there are tools tailored exclusively for cyber-attacks against SCADA/ICS.
For example, the Metasploit framework, which comes pre-installed by default on Kali,
offers modules that can be used to find Modbus servers and clients; and read and write
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Modbus registers [40]. For some equipment, it is even possible to upload, analyze, and
then download and replace the PLC ladder logic (modicon_stux_transfer module) [41].

These Metasploit modules in particular, or exploits, as they are called, could have been
used in our testbed to write constant values to the ModRSSim2 server registers and thus
achieve the same results as those obtained by the simple Rogue PLC logic just described.
As can be seen by the sequence of commands shown in Figure 16, it is possible to employ
the “modbusclient exploit” to write the values 17,046 and 0000 (value 75) for the two bytes
after the 224 address offset (variable CC_PumpSpeedCmd) of the ModRSsim2 Server at IP
10.0.0.2 (ANS VM).

Figure 16. Metasploit Modbus injection attack example (CC_PumpSpeedCmd = 75).

Instead, we preferred to demonstrate the HIL implementation capabilities of our
testbed, and emphasized its potential for increased programming complexity, and scal-
ability provided by the use of soft PLCs; which allows the developing of cyber-attacks
that require a greater knowledge of the plant control system (not addressed in this study).
For example, by the external cloning the logic of the internal controller being replaced, it
would be possible to enable more subtle attacks to be carried out, with greater control of
the manipulated variables and eventual return to normal control whenever desired. In
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principle, a well-informed Insider would know the implementation details necessary to
perform this procedure. In any case, this point demonstrates the flexibility of the testbed
and illustrates an alternative way to perform the same Modbus injection cyber-attack.

As for the MITM attack itself, the specific tool used was Ettercap (also present by
default on Kali Linux distributions) [26]. It allows us to snoop live TCP/IP connections
and to filter content on the fly. In the validation experiment we performed the in-transit
change of Modbus response packets from ANS to ScadaBR. This was done in two steps.
First, Ettercap applied the ARP poisoning technique (sending unsolicited ARP replies
simultaneously to both of its targets) to make ANS (10.0.0.2) believe that the ScabaBR
(10.0.0.4) was located in the Kali VM IP address (10.0.0.5); and to make ScabaBR believe
that ANS was in Kali address, as shown in Figure 17. Ettercap could now eavesdrop and
pass on these packets in both directions.

Figure 17. Ettercap ARP poisoning (ANS and ScadaBR).

The second step consisted in filtering and changing the ANS responses to Modbus
READ requests made by ScadaBR. Among the various values contained in these response
packets, we wanted to change in transit only the ones corresponding to CC_PumpSpeedCmd
(to its normal value of 100, regardless of the actual value being transmitted by ANS). As
Ettercap filtering was not designed with the Modbus protocol in mind, it was necessary
to design a script that took into account: (a) Ettercap’s filter syntax and offset addressing
rules; (b) the specifics of the HMI implementation; and (c) ScadaBR’s execution routines.

Ettercap filter offsets (pointed to by DATA.data + OFFSET = “value”) start at the
beginning of the DATA section of the Ethernet frame, which coincides with the beginning
of the Modbus TCP packet section for the Modbus TCP protocol. On the other hand, for
the set of variables chosen to be monitored by the HMI, ScadaBR performed 3 sequential
requests whose responses had fixed length and thus could be used as identifiers (Length:
251 [ 00 fb ] Registers 8–131; Length: 243 [ 00 f3 ] Registers 132–251; Length: 113 [ 00 43 ]
Registers 280–311). We also knew that we must change only the contiguous registers
located at 224 and 225, to the value 0X42C80000 = 100 DEC. With these considerations
taken into account, it was possible to write the appropriate filter script, shown in Figure 18
and capable of changing only the desired packets and registers.
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Figure 18. Ettercap MITM changing values filter script.

It is understood that different configurations in the HMI would require adaptations
to the presented script. Once again, we assume that the Insider has in-depth knowledge
of the control architecture. It should be noted that in a real situation, we would also have
several SlaveIDs for different PLCs, which in ANS correspond to internal control modules,
all gathered under a single SlaveID.

4.4. Combined Cyber-Attack

The planned cyber-attack was successful and able to: (a) block the internal control of
CC_PumpSpeedCmd; (b) inject an arbitrary constant value of 75 into CC_PumpSpeedCmd;
and (c) show the normal value of CC_PumpSpeedCmd = 100 on the HMI, during the attack.
Figure 19 shows the Arduino board ESP8266 NodeMCU v1.0 breadboard circuit and the
OpenPLC web interface monitoring page for the implemented Rogue PLC ladder program.
All the programmed variable values are displayed in real time. Additionally, while the
attack is occurring, the Ettercap filter script continuously outputs the message that indicates
that the MITM is in progress, as show in Figure 20. Next, in Figure 21, we can see the local
value for CC_PumpSpeedCmd in the Matlab ANS interface is indeed modified to 75 by the
Rogue PLC, and at the same time, the false value of 100 is presented in the ScadaBR HMI.

Figure 22 below shows another way to visualize the same cyber-attack; this time from
inside the GNS3 topology with the help of two Wireshark instances. The lower one in the
figure, located between the ANS VM and the Switch in the topology, captures the NPP
response packets to the supervisory before the real-time modification performed by the
Kali/Ettercap MITM. The upper one, between the ScadaBR VM and the Switch, captures the
same packets after the modification. Since each response corresponds to the same Modbus
transaction value, it is possible to check the results by reading the fields corresponding to
records 224 and 225; which show 75 for the lower one and 100 for the higher one.
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Figure 19. Attack ON—Rogue PLC.

Figure 20. Ettercap MITM (CC_PumpSpeedCmd transmitted as 100).
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Figure 21. ANS and HMI under attack.

Figure 22. Attack with Wireshark packet analysis example.

304



Appl. Sci. 2022, 12, 7942

4.5. Impact Assessment

To evaluate the impact of the proposed cyber-attack on ANS’ subsystems, we based
ourselves on the following aspects:

• Possibility of a domino effect impacting the main reactor;
• Affected variables values distance from their nominal operating values;
• The eventual triggering of the reactor protection system.

Contrary to our original expectations, setting the value of CC_PumpSpeed to 75
(through the variable CC_PumpSpeedCmd) did not significantly affect the nuclear reactor
operational variables. In these circumstances, the most impacted variables were the con-
denser vapor pressure (CD_Press) and the turbine outlet pressure (TB_OutSteamPress). So,
we repeated the attack for several different values of CC_PumpSpeed, varying it in steps of
5 units, between 75 and 15; and assessed the variables’ equilibrium values in comparison
with their rated values (which can be obtained from the ANS manual).

While proceeding in this way, it is important to consider the operational limits imposed
by the simulator itself. The ANS has a reactor protection system (RPS) that triggers the so-
called reactor´s SCRAM (emergency shutdown) whenever certain thresholds are exceeded.
Figure 23 shows how its logic is implemented.

Figure 23. ANS reactor protection system (RPS).

For the subsystems monitored in the setup, whenever any of the following variables
exceeds its respective threshold, the OR gate depicted propagates the ON (1) signal to the
SCRAM Output (CR_ScramCmd): CD_Level > CD Overflow = 1.5 (m); CD_Press > CD
OverPress = 6760 (Pa); mod (RX_OutCoolTemp − RX_InCoolTemp) > RX OverTempDiff
= 40 (k); and 0.5 * (RX_OutCoolTemp − RX_InCoolTemp) > RX OverTemp = 580 (K). The
only one of these parameters that varied for the different scenarios was the CD_Press,
whose maximum threshold was reached with CC_PumpSpeed between 55 and 50. We
have disabled the triggering of this protection system in order to proceed with tests for
CC_PumpSpeed values below 50. However, states very far from the operating limits may
lose its physical meaning for the simulation or be impossible to achieve in real equipment.

After completing these rounds of attacks, it was verified that the final results for the
monitored variables at the various levels followed essentially the same pattern as revealed
by the initial attack, with regard to the main variables affected; except that the condenser
vapor pressure and the turbine outlet pressure increased more and more with the decrease
of the condenser cooling pump speed.

In the following tables, we have applied color-coding to visually differentiate the
degree of deviation of the measured values from the operating values under normal
conditions. Rated values are represented in green. Values just below the rated (up to less
than 10%) are in light blue, and below 10% in dark blue. Values just above the rated (up to
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10%) are in orange, and above 10% in red. The tables also show other relevant information
such as the original labels, ranges, units and descriptions, as defined by the ANS developers
(Figures 24–27).

Figure 24. Simulated results (CC—Condenser Cooling).

Figure 25. Simulated results (CD—Condenser).

Figure 26. Simulated results (TB–Turbine).

Figure 27. Simulated results (RX—Reactor).

From the experiments performed, it was possible to arrive at the following conclusions
about the cyber-attack against the condenser cooling pump speed, especially for values
below 50:

• The plant’s protection system may be triggered, resulting in the interruption of its
power generation and consequently in financial losses;

• The significant increase in vapor pressure in the condenser and turbine outlet, to values
far above their operating range, could result in physical damage to the equipment,
with risks to worker safety. This could also represent a significant financial loss, since
in addition to the funds needed to repair or replace the equipment, it would extend
the time needed to restore the NPP to its normal activities.

5. Intrusion Detection and Defensive Capabilities

Besides demonstrating the ability of the testbed to access realistic cyber-attacks against
a nuclear power plant simulator, we would also like to emphasize its potential for con-
ducting studies for the development of intrusion detection techniques and for the possible
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automation of this process. Since ICS are deterministic systems, we believe that, for
cyber-attacks similar to the one employed, their detection could be done mainly by joint
monitoring [42]: network parameters; and operational variables.

To illustrate the network monitoring approach, we have chosen the “Time from request”
network parameter in Modbus TCP packets destined for ScadaBR (10.0.0.4). This value
measures the response time between the request from the supervisor and the response
from the ANS, and can be easily captured by Wireshark, as shown in Figure 28. Next, we
extracted about 2000 of these packets, at the point between the supervisor and the Switch
(HMI_ScadaBR Ethernet0 to Switch eth3); and used this data for graphical comparison
between normal operation and under MITM attack, as depicted in Figures 29 and 30. The
approximate average delay (shown in these pictures as colored lines) of about 0.01 seconds
is noticeable when we compare the normal response time with the situation under attack.

Figure 28. Time from request—Wireshark snapshot.

Figure 29. TFR comparison—normal.
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Figure 30. TFR comparison—MITM.

To demonstrate the operational variables approach, and guided by the experimental
results above described, we chose to relate the variables CC_PumpSpeed and CD_Press. If
a pattern for their simultaneous values in a nominal operation situation could be found,
this in principle would allow the detection of elaborate cyber-attacks against one of them;
such as replay attacks, where the value shown in the HMI corresponds to the oscillations of
that variable values in a previous period.

In normal operation with the Main Reactor (RX) power at 100%, the variable
CC_PumpSpeed, held at the constant value of 100 by our cyber-attacks, actually oscillates
with values close to 102. This can be seen most clearly in the graphs in Figure 31, where the
first 1000 or so measurements after the start of normal reactor operation are shown. The
graph depicted on the left shows the values for each observation and the graph on the right
shows the density or frequency of values associated with the various measurements, for
the same data set.

Figure 31. CC_PumpSpeed nominal oscillations (around 102).

Furthermore, small operation transients, even in normal operation, are expected and
were observed during the simulations. Therefore, we used MySQL Workbench to extract
a sample of 600 observations where one of these transients were present, as shown in
Figure 32, and thereafter studied the relationship between the values of CC_PumpSpeed
and CD_Press in this range.
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Figure 32. CC_PumpSpeed and CD_Press simultaneous transients.

After normalizing these values between 0 and 1, as shown in Figure 33 (a standard
preparatory procedure necessary to employ various ML algorithms), we determined the
linear correlation between the variables to be very low (−0.1925). However, the respective
scatter plot clearly displays the formation of an underlying non-linear pattern, as seen in
Figure 34. This found locus could presumably be used to detect anomalies. Although mere
visual inspection will be insufficient to detect non-linear relationship patterns for more than
two chosen variables or features, appropriate mathematical and computational techniques
can be employed instead. The same procedures could be expanded in order to train ML
algorithms, by including new variables and enlarging the dataset.

Besides the possibility of studying anomaly detection techniques, this testbed also
allows the application of a graded approach and defense in depth, by implementing com-
puter security levels and computer security zones, and assessing the technical computer
security measures needed to protect facility functions. One example of practical implemen-
tation of a defensive computer security architecture (not part of this study), would be the
use of a decoupling mechanism between computer security zones containing the PLCs and
the supervisory.

Figure 33. CC_PumpSpeed and CD_Press—data normalization.

309



Appl. Sci. 2022, 12, 7942

Figure 34. CC_PumpSpeed and CD_Press Data—scatter plot.

6. Conclusions

In this work, we developed and validated a testbed for conducting cybersecurity
assessment in nuclear power plants. The main advantages of this setup are its realism,
flexibility, and low cost. It allows the simulation of several cyber-attack scenarios against
a simulated NPP communicating with its supervisory system (SCADA/HMI), through
the Modbus TCP protocol. It is worth mentioning that this study was carried out based
on a simulator of a hypothetical power plant (Asherah NPP) and that vulnerabilities that
could lead to a similar attack on existing plants were not exploited. We also showed
how it is possible to use this environment to generate the datasets needed for intrusion
detection studies, and stated that it allows for implementation of defensive computer
security architecture.

For the proposed cyber-attack scenario, the performance of several simulations al-
lowed to demonstrated how to force condenser cooling pump parameters against their
nominal operating values is detrimental to the continuous operation of PWR-type NPPs.
In particular, the impact assessment points to the risk that cyber-attacks against the con-
denser cooling pump speed control could result in material and financial damage to the
NPP. The situation described also highlights the danger posed by Insiders, endowed with
specific knowledge about the inner workings of the NPP ICS and acting within the Air Gap
protected area.

We realized that an important limitation of this testbed is the substantial memory load
imposed by the employment of several virtual machines in the GNS3 topology, especially
in terms of RAM. Thus, more modest computing environments could experience problems
when trying to reproduce or expand the conditions described. However, it was possible to
perform all the above procedures with a personal computer equipped with an AMD Ryzen
7 3700X 8-Core Processor 3.60 GHz and 32.0 GB of RAM installed. The RAM memories
defined in the topology were: 6 GB for the Windows/ANS VM; and 2 GB for each of the
Linux VMs.

Several possibilities for future studies are envisioned. Such as:

• Modification of the proposed topology, as by the inclusion of new independent PLCs or
network equipment like firewalls, including for the testing of decoupling mechanisms
between security zones;

• Choice of different ANS subsystems, for reproducing similar cyber-attack to the one
performed in this work;

• Demonstration of different cyber-attacks like DoS and Replay;
• Production of datasets for ML algorithm training, with the goal of developing auto-

mated IDS, among others.
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Abbreviations

The following abbreviations are used in this manuscript:

ANS Asherah Nuclear Power Plant Simulator
CC Condenser Cooling (ANS subsystem)
CD Condenser (ANS subsystem)
CRP Coordinated Research Project
DCSA defensive computer security architecture
DoS Denial of Service (type of cyber-attack)
FBD Function Block Diagram (PLC programming language)
HIL hardware-in-the-loop
HMI human-machine interface
IAEA International Atomic Energy Agency
IC instrumentation and control
ICS industrial control systems
IDS intrusion detection systems
IF isolation forest (machine learning algorithm)
IL Instruction List (PLC programming language)
IO input and output
IT information technology
LD Ladder Logic (PLC programming language)
MBAP Modbus Application Protocol
MITM men-in-the-middle (type of cyber-attack)
ML Machine Learning
NPP nuclear power plant
OCNN one-class neural network (machine learning algorithm)
OCSVM one-class support vector machine (machine learning algorithm)
OPC UA Open Platform Communications Unified Architecture
OS operating system
OT operational technology
PDU Protocol Data Unit
PLC programmable logic controllers
PWR Pressurized Water Reactor
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RDBMS relational database management system
RPS Reactor Protection System
RX Main Nuclear Reactor (ANS subsystem)
SCADA supervisory control and data acquisition system
SCRAM emergency shutdown
SFC Sequential Function Chart (PLC programming language)
ST Structured Text (PLC programming language)
TB Turbine (ANS subsystem)
TLS Transport Layer Security
VM virtual machines
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