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Preface to “Artificial Intelligence in Cancer Diagnosis

and Therapy”

Cancer is the second leading cause of death worldwide. According to the World Health

Organization (WHO), around 10 million people died from cancer globally in 2020. The early detection

of cancer is of utmost importance for the effective treatment and prevention of the spread of cancer

cells to other parts of the body (metastasis). However, this task and assigning effective therapies

in clinical cancer settings are of great complexity due to inter- and intra- tumor heterogeneities.

The detection, diagnosis, and therapy of cancer are challenged by a hidden pattern of seemingly

irregular, chaotic medical events requiring methodologies to capture the complexity of cancer to

design effective diagnostic systems and therapies.

Artificial Intelligence (AI) and machine learning have been revolutionizing discovery, diagnosis,

and treatment designs. It can aid not only in cancer detection but also in cancer therapy design,

identification of new therapeutic targets with accelerating drug discovery, and improving cancer

surveillance when analyzing patient and cancer statistics. AI-guided cancer care could also be

effective in clinical screening and management with better health outcomes. The Machine Learning

(ML) algorithms developed based on biological and computer sciences can significantly help

scientists in facilitating the discovery process of biological systems behind cancer initiation, growth,

and metastasis. They can also be used by physicians and surgeons in the effective diagnosis and

treatment design for different types of cancer and for biotechnology and pharmaceutical industries in

carrying out more efficient drug discovery. AI and machine learning may be defined as the branch of

computer science that is concerned with intelligent behavior. Artificial intelligence techniques learn

about the data they are trained on and, subsequently, learning algorithms are designed to generalize

from those data.

This book covers some significant impacts in the recent research of AI and machine learning

in both the private and public sectors of cancer diagnosis and therapy. The book is divided in

five groups:

The first group is AI in prognosis, grading, and prediction. AI is a powerful tool for prognosis, a

branch of medicine that aims in predicting the future health of patients. It performs well in assisting

cancer prognosis because of its unprecedented accuracy level.

The second group is AI in clinical image analysis. Image-based methods are among the most

powerful applications of AI and recent deep learning methods. AI provides real-time and highly

accurate image analytics to increase the quality and localize the anatomical features (pre/post

processing), facilitate powerful augmented reality and virtual reality applications in the medical

domain, and develop the classification and diagnosis of diseases using the medical images.

The third group is AI models for pathological diagnosis. With the impressive growth in

the application of AI in health and in pathology, the specific role of AI in supporting routine

diagnosis, particularly for patients with cancer, is evident from many published works. AI can

handle the enormous quantity of data created throughout the patient care lifecycle to improve

pathologic diagnosis.

The Fourth group is ML and statistical models for molecular cancer diagnostics and genetics.

Molecular diagnosis involves processing samples of tissue, blood, or other body fluid to look for the

presence of certain genes, proteins, or other molecules. They might be a sign of a disease or condition,

such as cancer. AI methods provide lots of opportunities for the analysis of such detailed and gigantic

data with high accuracy and lead time.
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The fifth group is AI in triage, risk stratification, and screening cancer. Due to the complex and

expensive procedure needed for the treatment of cancer, triage and risk stratification provide the

procedure of assigning levels of priority to patients to determine the most effective order in which

to be treated. The health providers can then identify the right level of care and services for distinct

subgroups of patients. AI enables this prediction to occur rapidly, immediately, and accurately.

This book is aimed at serving researchers, physicians, biomedical engineers, scientists,

engineering graduates, and Ph.D. students of medical, biomedical engineering, and physical science

together with interested individuals in medical, engineering, and general science. This book focuses

on the application of artificial intelligence and machine learning methods in cancer diagnosis and

therapy including prognosis, grading and prediction, clinical image analysis, pathological diagnosis,

molecular cancer diagnostics and genetics, and traige, risk stratification, and screening cancer with

approaches representing a wide variety of disciplines including medical, engineering, and general

science. Throughout the book, great emphasis is placed on medical applications of cancer diagnosis

and therapy, as well as methodologies using artificial intelligence and machine learning. The

significant impact of the recent research that has been selected is of high interest in cancer diagnosis

and therapy as complex systems. An attempt has been made to expose the reading audience of

physicians, engineers, and researchers to a broad range of theoretical and practical topics. The topics

contained in the present book are of specific interest to physicians and engineers who are seeking

expertise in cancer diagnosis and therapy via artificial intelligence methods and machine learning.

The primary audience of this book is researchers, graduate students, and engineers in applications

of AI in CT-scan and X-ray images, computer engineering, and science and medicine disciplines.

In particular, the book can be used for training graduate students as well as senior undergraduate

students to enhance their knowledge by undergoing a graduate or advanced undergraduate course

in the areas of cancer diagnosis and therapy and engineering applications. The covered research

topics are also of interest to researchers in medicine, biomedical engineering, and academia who are

seeking to expand their expertise in these areas.
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Abstract: Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-
protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted
imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is
often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to
analyze the current value of biparametric prostate MRI in combination with methods of machine-
learning and deep learning in the detection, grading, and characterization of prostate cancer; if
available a direct comparison with human radiologist performance was performed. PubMed was
systematically queried and 29 appropriate studies were identified and retrieved. The data show
that detection of clinically significant prostate cancer and differentiation of prostate cancer from
non-cancerous tissue using machine-learning and deep learning is feasible with promising results.
Some techniques of machine-learning and deep-learning currently seem to be equally good as human
radiologists in terms of classification of single lesion according to the PIRADS score.

Keywords: prostate cancer; multiparametric prostate MRI; biparametric prostate MRI; deep-learning;
radiomics; artificial intelligence; cancer detection; PIRADS

1. Introduction

1.1. Prostate Cancer

Prostate cancer (PCA) is the second most common cancer in men worldwide and
it accounts for up to 25% of all malignancies in Europe [1]. It is the third leading cause
of cancer-related death in the United States and Europe [2,3]. The incidence of prostate
cancer increases with rising age of patients, and prostate cancer and its management are
becoming a major public health challenge. PCA aggressiveness can be linked to specific
genes such as BRCA, and behavior such as smoking [4,5]. Accurate and early detection
of prostate cancer is therefore paramount to achieve good overall patient outcomes. The
tools available for assessing and detecting prostate cancer are digital rectal examination
(DRE), PSA screening, transrectal ultrasound, and MRI whereby the latter received the
highest amount of attention in the past decade due to its unprecedented capabilities in
accuracy [6–8].

In contrast to ultrasound and digital rectal examination, MRI offers an operator-
independent tool for objectively assessing the entire prostate gland from base to apex and
from the posterior peripheral zone (PZ) to the anterior fibromuscular stroma (AFMS) that
are barely assessable with DRE [6,9].

Magnetic resonance imaging of the prostate has a long history going back more than
20 years. In the initial phase, high resolution T2-weighted (T2w) imaging and spectroscopy
were mainly used as tools for detecting prostate cancer. Yet, spectroscopy is slow and
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susceptible to artefacts and was not well perceived. In the recent decade, further devel-
opments have taken over including diffusion weighted imaging (DWI), dynamic contrast
enhanced imaging (DCE). The entire prostate exam has been standardized worldwide and
its reporting has been harmonized by the PIRADS (Prostate Imaging Reporting and Data
System) system [10]. This classification system allows to objectively assess the prostate and
potential cancerous zones and standardizes reporting over separate sites so that the overall
performance of MRI is increased and is more reproducible compared to previous periods.
With this development MRI of the prostate follows the trend to standardize the entire radi-
ological procedure from image acquisition to data reporting to achieve a higher reliability,
enhanced reproducibility, and a direct implication for radiology-based treatments as it has
previously successfully demonstrated in breast imaging with BIRADS (Breast Imaging
Reporting and Data System) [11].

The report structuring provided by PIRADS is already a condensation of the imaging
information and standardizes reporting and its output. This is one major step toward a
more automated and operator-independent radiology. Moreover, the image acquisition
parameters, slice orientations, and sequences with its specific sequence characteristics are
governed by PIRADS [12]. This automatically sets the stage for a potential automated image
analysis. In the past decade, artificial intelligence (AI) with its subdivisions of machine
learning (ML), radiomics, and deep learning (DL) has become more prevalent. At this point
in time, ML and DL are still no clinical standards. Radiomics, for example, use quantitative
imaging features that are often unrecognizable to the human eye. Therefore, it is increasing
the number of potential parameters to the multi-parametric approach of prostate MRI and
with potential benefits for PCA detection and grading and beyond. DL techniques such as
convoluted neural networks (CNN) are currently considered gold standard in computer
vision and pattern recognition and hence have potential benefits for PCA detection and
grading. With larger data sets as basis, they have the potential to automatically learn and
deduct conclusions so that PCA recognition based on unperceivable features to the human
eye might be possible. Despite numerous experimental studies which will be discussed
further in this study, there is no standardized approach on how to use and implement DL
and ML for prostate imaging now.

The aim of this study is to elucidate the status of artificial intelligence in prostate
imaging with a focus on the so-called bi-parametric (bp) approach of prostate MRI (bpMRI).

1.2. Prostate Imaging Reporting and Data System

PIRADS was established by key global experts in the field of prostate imaging from
America and Europe (European Society of Urogenital Radiology (ESUR), American College
of Radiology (ACR)) to facilitate and standardize prostate MRI with the aim of assessing
the risk of clinically significant prostate cancer (csPCA). The first version of the PIRADS
recommendations was published in December 2011, the latest and current update was
published in 2019 (PIRADS v2.1) [10,12,13].

Various studies have compared the predictive performance of PI-RADS v1 for the
detection of csPCA compared to image-guided biopsy or radical prostatectomy (RP) speci-
mens as standard of reference. In a 2015 study, Thompson reported multi-parametric MRI
detection of csPCA had sensitivity of 96%, specificity of 36%, negative predictive value
and positive predictive values of 92% and 52%; when PI-RADS was incorporated into a
multivariate analysis (PSA, digital rectal exam, prostate volume, patient age) the area under
the curve (AUC) improved from 0.776 to 0.879, p < 0.001 [14]. A similar paper showed that
PI-RADS v2 correctly identified 94–95% of prostate cancer foci ≥ 0.5 mL but was limited
for the assessment of Gleason Score (GS) ≥ 4 + 3 csPCA ≤ 0.5 mL [15]. An experienced
radiologist using PIRADS v2 is reported to achieve an AUC of 0.83 with 77% sensitivity
and 81% specificity [16].
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1.3. Sequences for Prostate MRI

The initial protocol for MRI of the prostate as provided by PIRADS included high-
resolution multiplanar T2w-imaging, DWI, and DCE after the intravenous administration
of paramagnetic gadolinium chelate contrast agent. This so-called multi parametric prostate
MRI (mpMRI) is considered as the gold standard. T2w-imaging is used to demonstrate
zonal anatomy of the prostate. Tumors can be well delineated, and their relation to the
prostate capsule can be examined. Benign changes such as benign prostate hyperplasia,
post-prostatic changes of the peripheral zone or scars can be identified. T2w-imaging
is considered the gold standard for the transitional zone (TZ) of the prostate gland. In
addition, T2w-imaging can be used to measure the volume of the prostate. The high
anatomic information content of T2w-imaging makes this sequence the perfect roadmap
for image-guided biopsy [12,17].

DWI serves as an indirect measure of cellular density. In case of a malignant tumor
with high cellular density, the ability of water to freely move in the interstitial compartment
is decreased hence the diffusion is impaired. The images with high b-values and even
those with more and more common-interpolated calculated b-values allow quick and
easy depiction of these suspicious areas in the prostate. The calculated ADC maps give
a quantitative measure of cellular density and can be considered as a molecular imaging
tool for tumor aggressiveness. DWI imaging is considered as the reference sequence for the
peripheral zone (PZ) of the prostate [12,17].

Dynamic contrast enhancement (DCE) is considered as the weakest of the three used
approaches for prostate imaging. In contrast to T2w-imaging and DWI, DCE is not being
considered as a dominant sequence for any of the prostate zones. It only serves as a
tiebreaker in very specific questions in the PIRADS system. In addition, it requires the
intravenous administration of contrast agent with the risk of side-effects such as allergies,
nephrogenic systemic fibrosis, or Gadolinium deposition in the body [18–21]. While the
risk of nephrogenic systemic fibrosis is controllable by using little amounts of macrocyclic
Gd-chelates, no harmful consequence for Gd-chelate depositions in the body has been
found [22,23]. Nevertheless, patients often try to avoid contrast agent if feasible. Moreover,
physicians embrace the idea of non-enhanced exams equally, as it speeds up the acquisition
and reduces the number of potential complications. In addition, omitting contrast agent
permits to save money.

1.4. Multiparametric and Biparametric MRI of the Prostate

With this in mind and the knowledge that the performance of DCE often yielded
limited added value to T2w-imaging and DWI in mpMRI of the prostate bi-parametric MRI
(bpMRI) of the prostate is gaining considerable support [15]. Meanwhile, there are several
high-ranked studies such as the PROMIS trial and meta-analyses comparing mpMRI and
bpMRI of the prostate [24–26]. Current data underline the high negative value of bpMRI in
biopsy-naïve patients with a negative predictive value of up to 97% [27,28]. Whether bpMRI
might be slightly less accurate in less-experience readers is not yet clearly proven [29,30].
A currently accepted position is that bpMRI of the prostate seems to be equally good as
mpMRI of the prostate for patients with low and high risk for csPCA but DCE might be
of worth in patients with intermediate risk and PIRADS 3 lesions [25,26,31–35] (Figure 1).
bpMRI of the prostate is also commonly used for computer-based postprocessing using
artificial intelligence. This is due to the fact that DCE contains a fourth dimension (time)
which make those images harder to algin and match with two-dimensional anatomical im-
ages such as T2w-imaging and DWI. Another drawback of DCE is that image information
is not obvious. The image information on contrast media arrival and distribution which is
seen as a surrogate marker for microvascular density have to be extracted using semiquan-
titative or quantitative pharmacokinetic models which adds another layer of complexity on
postprocessing, along with the increase of time necessary to report the exams.
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Figure 1. Overview of the performance of mpMRI and bpMRI based on data from Woo et al. [33] and
Alabousi et al. [25] demonstrating the near equal performance of bpMRI to mpMRI (reprinted with
permission from [17], Copyright 2020 Gland Surgery).

1.5. Artificial Intelligence (AI) for Image Postprocessing

The availability of cheap and high computing power with the additional advent of
postprocessing technologies and artificial intelligence such as machine learning techniques
and deep neural networks has fostered the application of those techniques for radiology
tasks such as tumor detection. The current hierarchical concept of AI is depicted in Figure 2.

Machine-learning (ML) is a subfield of AI in which algorithms are trained to perform
tasks by learning rules from data rather than explicit programming. Radiomics is seen
as a method that extracts large numbers of features from radiological images using data
characterization algorithms such as first order statistics, shape-based, histogram-based
analyses, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Gray Level
Size Zone Matrix, Gray Level Dependence Matrix, Neighboring Gray Tone Difference
Matrix to name a few [36–39]. These features are said to have the potential to uncover
disease characteristics that are hard to be appreciated by the naked eye. The hypothesis
of radiomics is that distinctive imaging features between disease forms may be useful
for detecting changes and potentially predicting prognosis and therapeutic response for
various conditions such as e.g., detection of csPCA. These radiomic features are then
often further analyzed using ML-techniques. An example of a radiomics ML-workflow is
shown in Figure 3. An issue concerning ML-techniques is that it often requires the manual
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placement of a region of interest hence hereby introducing a potential source for errors
and biases.

Figure 2. Hierarchical structure of AI-techniques. Whereas ML requires human feature engineering
as guidance for learning, DL is based on self-learning algorithms that can detect and process simple
and complex image features.
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Figure 3. Sample radiomics workflow (reprinted with permission from [40], Copyright 2019
Springer Nature).

Deep learning (DL) is a subfield of AI in which algorithms are trained to perform
tasks by learning patterns from data rather than explicit programming. The key factors
for the increasing attention that DL attracted in the past years are the availability of large
quantities of labelled data, the inexpensive and powerful computing hardware particularly
graphic-processing units and improvements in training techniques and architectures. DL is
a type of representation learning in which the algorithms learn a composition of features
that reflect the hierarchy of structures in the data. Current state-of-the-art for medical image
recognition using DL techniques are so called convoluted neural networks (CNN). These
networks are characterized by an architecture of connected non-linear functions that learn
multiple levels of representations of the input data thereby extracting possibly millions of
features [41]. Especially CNNs in which a series of convolution of filter layers are exploited
are suitable for image processing [42]. Newer techniques such as transfer learning and
data augmentation, or the application of generative methods help in mitigating existing
limitations of CNN [43]. The entire process of data processing within the multiple layers
of a CNN with convolution filters, pooling, and maximum filtering is beyond the scope
of this study. Largely simplified, one might say that bottom layers of the CNN act as a
feature extractor while the top layers of the CNN act as a classifier. An overview is given in
Figure 4 in which the DL workflow is compared to radiomics or the standard radiology
reading process [44]. The reason that CNN-based approaches are considered superior to
radiomics is that radiomics depend on hand-crafted features which is limited, whereas
CNN can generate features that are most appropriate to the problem itself [45].
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Figure 4. Workflow of standard radiology reporting compared to AI-based methods of radiomic and
DL. The entire complexity of deep learning is only schematically shown. There is an abundance of
different network architectures or CNN which are beyond the scope of this study. This figure only
demonstrates a schematic CNN (reprinted under common creative license 4.0 from [44], Copyright
2021 Springer Nature).

2. Materials and Methods

Literature research for this study took place in August 2021. A PubMed query with
the search terms “prostate” and “magnetic” and “deep learning” or “machine learning”
or “radiomics” was performed. The aim was to retrieve those studies which made use of
ML or DL techniques to facilitate tumor detection and grading. To make sure that only
current techniques were included in the analysis only publications from the year 2019 to
2021 were included. Particularly in the field of CNN the technical improvement is rapidly
evolving so that elder publications might not represent the current state-of-the-art. Total of
95 publications were initially retrieved. Of these, 66 were omitted for several reasons so
that 29 publications were available for analysis (see Figure 5). Clinical data (question to
be answered, number of patients, age, AI-technique, lesion segmentation, MRI-technique,
sensitivity, specificity, accuracy, AUC) were then manually extracted and transferred to
a Microsoft Excel 365 spreadsheet (Microsoft, Redmond, WA, USA). PRISMA guidelines
were followed [46]. An overview of the study according to the PRISMA guidelines can be
found in the Appendix A.
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Figure 5. Literature selection work-flow. ML–machine-learning. DL–deep learning. up–uniarametric.
bp–biparametric. mp–multiparametric.

This paper focuses on bpMRI. The current PIRADS guidelines state: “Given the
limited role of DCE, there is growing interest in performing prostate MRI without DCE, a
procedure termed “biparametric MRI” (bpMRI). A number of studies have reported data
that supports the value of bpMRI for detection of csPCA in biopsy-naïve men and those
with a prior negative biopsy”. The potential benefits of bpMRI include: (1) elimination
of adverse events and gadolinium, (2) faster MRI-exam times, and (3) overall reduced
costs [47]. These factors will potentially make bpMRI easily accessible. Remaining concerns
are that the DCE sequence may serve as backup in case of image degradation of the DWI or
T2w sequence. It seems as if DCE may be of less value for assessment of treatment of naïve
prostate patients but remains essential in assessment for local recurrence following prior
treatment, which however is a setting in which current PI-RADS assessment criteria do not
apply. The conclusion of the PIRADS steering committee therefore advocates the use of
mpMRI particularly in (1) patients with prior negative biopsies with unexplained raised
PSA values, (2) those in active surveillance who are being evaluated for fast PSA doubling
times or changing clinical/pathologic status, (3) men who previously had undergone a
bpMRI exam that did not show findings suspicious for csPCA, and who remain at persistent
suspicion of harboring disease, (4) biopsy-naïve men with strong family history, known
genetic predispositions, elevated urinary genomic scores, and higher than average risk
calculator scores for csPCA, and (5) men with a hip implant or other consideration that will
likely degrade DWI [47].

For this paper bpMRI was selected as most studies dealing with ML or DL techniques
solely relay on T2w-imaging and DWI. DCE data were rarely included. In contrast to T2w-
imaging and DWI the DCE-data must be postprocessed first to generate parameter maps.
This process is not yet standardized as several pharmacokinetic models and hereof derived
software implementations for postprocessing exist. Without generation of parameter maps
a huge number of images would have to be fed into the ML/DL algorithms—a step that
most research groups obviously did not want to undertake.

3. Results

All included studies are listed with an abbreviated overview in Table 1.
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Total of 29 studies were included in this study. Thirteen of them used ML (44.8%),
14 of them used DL-techniques (48.2%), and 2 of them used a combination of ML and DL
(6.9%). The data for 27 of the studies were acquired at 3T (93.1%), 2 of them were acquired
at 1.5 T (6.9%). A total of 7466 patients were analyzed within this data set. Hereby, the
ProstatEx-data set from the Radbound University, The Netherlands was used seven times.
The smallest study had a sample size of 25 patients, the largest study had a sample size of
834 patients. The MRI-technique used for AI-postprocessing most often was T2w-imaging
in combination with ADC map and DWI (15 studies/53.6%). Runner-up were T2w-imaging
and ADC map (8 studies, 28.6%) and T2w-imaging and DWI (2 studies, 7.1%).

3.1. Tumor Detection and Grading

As seen in Table 1, the results (AUC, sensitivities and specificities) were comparable
and no trend clearly favoring ML or DL-approaches in terms of superiority could be
detected. Most studies required manual interaction in which a radiologist had to segment
the region of interest.

Overall, the rate of detection and correct tumor creating using AI-techniques was
comparable to the performance of trained radiologists in most studies. Studies were often
hard to compare as they differed in terms of standard of reference (e.g., Gleason score
(GS) vs. PIRADS vs. National Comprehensive Cancer Network Guidelines vs. ISUP
Guidelines) and different cut-off values within the same grading system (e.g., GS 7 was in
one study considered intermediate grade, in most studies considered high-grade tumor).
Some studies focused on the PZ only, while others accepted the entire gland as target tissue.

In a small study with 33 patients to predict IMRT response, GS prediction and PCA
stage, GS prediction using T2w-radiomic models was found more predictive (mean AUC
0.739) rather than ADC models (mean AUC 0.70), while for stage prediction, ADC models
had higher prediction performance (mean AUC 0.675). For T2w-radiomic models, mean
AUC was obtained as 0.625 [40].

Using T2w-imaging and 12 b-values from diffusion along with Kurtosis analysis and
T2 mapping for differentiation GS ≤ 3 + 3 vs. GS > 3 + 3 an AUC of 0.88 (95% CI 0.82–0.95)
could be reached. This study with 72 patients was the only one to employ T2 mapping
which, after all, was deemed as of little worth [51].

In a stringent ML-Radiomics study, an equally high AUC for tumor grading according
to National Comprehensive Cancer Network guidelines in low-risk vs. high-risk (i.e.,
GS ≥ 8) was found for the PIRADS assessment as well as for the ML-approach (0.73 vs. 0.71,
p > 0.05) [49]. Interestingly, the precision and recall were higher with the ML-approach
compared to the PIRADS assessment (0.57 and 0.86 vs. 0.45 and 0.61). Similar results
were found for the discrimination of ciPCA and csPCA of the PZA using a ML-Radiomics
approach with extreme gradient boosting [62]. In this study performed on the ProstatEx
dataset, an AUC of 0.816 for the detection of csPCA using bpMRI was found. Adding DCE
slightly increased AUC to 0.870, though this was not statistically significant. Based on the
same data set but using optimized CNNs Zong et al. [63] concluded that adding ktrans
from DCE deteriorated sensitivity and specificity when compared to bpMRI alone from
100%/83% to 71%/88%. The optimal reported AUC of this study was 0.84.

Extremely good ML-radiomics results for differentiation ciPCA vs. csPCA with an
AUC of 0.999 were found in a study by Chen et al. They could also show that ML-radiomics
exhibited a higher efficacy in differentiation ciPCA from csPCA than PIRADS. A potential
explanation for this, compared to the other studies, is that outstanding result might be the
study inclusion/exclusion criteria: small lesions <5 mm and lesion not well delineable on
MRI were excluded [52].

Somewhat poorer results were presented in a study by Gong et al. [61]. Their ML-
radiomics approach that was built on T2w-imaging and b800-DWI images yielded an
AUC of 0.787 and an accuracy of 69.9% for the discrimination between ciPCA and csPCA.
Adding clinical data to the MRI-based data slightly degraded the results with an AUC of
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0.780 and an accuracy of 68.1%. A potential reason for this poorer outcome might be a
different set of inclusion parameters.

Zhong et al. compared the performance of DL and Deep Transfer Learning (DTL)
with experienced radiologists. They found that DTL further improves DL. The DTL results
were comparable to radiologist’s performance using PIRADS v2. They concluded that
DTL might serve as an adjunct technique to support non-experienced radiologists [54].
Similar results found a study using a CNN-trained algorithm to automatically attribute
PIRADS scores to suspicions lesions. A performance comparable to a human radiologist
was described [64]. The lowest agreement was found with low PIRADS score, getting better
with higher PIRADS scores. There was no statistically significant difference between the
radiologist-assigned PIRADS score and the AI-assigned PIRADS score with regards to the
presence of csPCA for PIRADS 3–5.

In contrast, for Gleason score prediction one study found better results for AI-based
approaches than radiologists for PZ and TZ [76]. This could be particularly useful in the
context of active surveillance.

A different study looking into aggressiveness prediction (GS > 8) found equal AUCs
for AI and radiologists but higher precision and recall rates for AI than PIRADS mitigating
the problem of inter-reader variability [49].

An uncommon approach was presented in [65]. The authors hereby combined Ra-
diomics and DL-based on bpMRI with DCE and T2w-imaging. No ADC/DWI-images
were used. In few patients they included, promising results with an AUC of 0.96–0.98
for Gleason score prediction were found. No further study used this subset of DCE and
T2w-imaging.

The prospective IMPROD trial also examined if the addition of clinical data and RNA
expression profiles of genes associated with prostate cancer increased the accuracy for
detection of csPCA [58]. In this study the bpMRI based data yielded the highest AUC 0.92.
Adding RNA-based data or clinical data neither improved the results nor yielded better
results by itself.

Cao et al. developed an FocalNet to automatically detect and grade PCA (Figure 6) [72].
A similar work was presented by Schelb et al. [75] where a U-Net was trained to detect,
segment, and grade PCA. In comparison with radiologists’ PIRADS assessment, the U-Net
sensitivities and specificities for detection of PCA at different sensitivity levels (PIRADS ≥ 3
and PIRADS ≥ 4) were comparable.

Positive results for DL-based techniques with a larger number of patients (n = 312)
were found in a DL-Study by Schelb et al. using a U-Net [57]. They reported a sensitiv-
ity/specificity for radiologists using PIRADS for detection of PIRADS lesions ≥ 3 and 4
respectively of 96%/88% and 22%/50% while the U-Net approach yielded 96%/92% and
31%/47% (p > 0.05). In their study the U-Net also autocontoured the prostate and the lesion
with dice-coefficient of 0.89 (very good) and 0.35 (moderate) respectively.

A ML-approach to generate “attention boxes” for the detection of csPCA was pub-
lished by Mehralivand et al. [60]. Their multicentric approach with data from five in-
stitutions showed an AUC of 0.749 for PIRADS assessment of csPCA and a statistically
non-significant AUC of 0.775 for the ML-based approach. For the TZ only, the ML-approach
yielded a higher sensitivity for detection of csPCA than PIRADS (61.8% vs. 50.8%, p = 0.001).
Interestingly, the reading time for the ML-approach was on average 40s longer.

An uncommon approach for CNNs was published by Chen et al. [66]. They used U-
Net CNNs to segment the prostate and intraprostatic lesions hereby segmenting the PZ, TZ,
CZ, and AFMS. Their approach demonstrated impressive results: a Dice coefficient of 63%
and a sensitivity and specificity of 74.1% and 99.9% respectively for correctly segmenting
the prostatic zones and the suspicious lesion. Yet, in contrast to most other studies, no
grading or discrimination of the suspected PCA lesion was performed. As a segmentation
study this study was included in this review as it included segmentation of the prostate
and detection of the tumor within the prostate.
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Figure 6. “Examples of lesion detection. The left two columns show the input T2WI and ADC
map, respectively. The right two columns show the FocalNet-predicted lesion probability map
and detection points (green crosses) with reference lesion annotation (red contours), respectively.
(a) Patient at age 66, with a prostate cancer (PCa) lesion at left anterior peripheral zone with Gleason
Group 5 (Gleason Score 4 + 5). (b) Patient at age 68, with a PCa lesion at left posterolateral peripheral
zone with Gleason Group 2 (Gleason Score 3 + 4). (c) Patient at age 69, with a PCa lesion at right
posterolateral peripheral zone with Gleason Group 3 (Gleason Score 4 + 3). ADC = apparent diffusion
coefficient; T2WI = T2-weighted imaging“(reprinted with permission from [72], Copyright 2021 John
Wiley and Sons).

In a screening study with 3T-bpMRI, Winkel et al. [67] could include and analyze
48 patients, all above 45 years. In a biopsy-correlated reading two human readers and
a commercial prototype DL-algorithm were compared in terms of detection of tumor-
suspicious lesions and grading according to PIRADS. The DL-approach had a sensitivity
and specificity of 87% and 50%. Noteworthy, the DL-analysis required just 14 s.

Different ML-based models were tested and found to be highly accurate for the diagno-
sis of TZ PCA (sensitivity/specificity/AUC): 93.2%/98.4%/0.989) and their discrimination
from BPH-nodules. Reproducibility of segmentation was excellent (DSC 0.84 tumors and
0.87 BPH). Subgroup analyses of TZ PCA vs. stromal BPH (AUC = 0.976) and in <15 mm
lesions (AUC = 0.990) remained highly accurate [48].
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DL-approach for detection of csPCA in patients under active surveillance was brought
up by Arif et al. [68]. Initially 366 patients with low risk were included of which 292 were
included in the final study. Sensitivities and specificities for csPCA segmentation rose with
increasing tumor volume: tumor volumes > 0.03 cc sensitivity 82% 7 specificity of 43%,
AUC 0.65; tumor volume > 0.1 cc sensitivity 85%, specificity of 52%, AUC 0.73. Tumor
volumes > 0.5 sensitivity 94%, specificity 74%, AUC 0.89.

A total of six studies among the included studies compared DL/ML-approach to
human radiologists [52,57,60,64,72,75]. Overall, due to the small number of studies and
because of the different approaches the results cannot be analyzed together. What these
studies had in common however was the finding, that at this point AI-based methods
revealed a performance similar to that of the radiologists’. No study could either show an
advantage of AI-methods of the radiologists or vice versa. An overview about the results
can be seen in Table 2.

Table 2. Display of study results comparing human and AI-based performance.

Reference Year ML DL Metric Human Radiologist AI-Approach

Chen T. et al. [52] 2019 1 0 AUC 0.867 0.999

Schelb P. et al. [57] 2019 0 1 Sensitivity/Specificity 98/17% PIRADS ≥ 3
84/48% PRIADS ≥ 4

99/25% PIRADS ≥ 3
83/55% PIRADS ≥ 4

Mehralivand S. et al. [60] 2020 1 0 AUC
Sensitivity

0.816
89.6%

0.780
87.9%

Sanford T. et al. [64] 2020 0 1 Cancer detection
rates

53% PIRADS 3
61% PRIADS 4
92% PIRADS 5

57%, PIRADS 3
60%, PIRADS 4
89% PIRADS 5

Cao R. et al. [72] 2021 0 1 Sensitivity/Specificity 98/17% PIRADS, ≥3
85/58% PIRADS, ≥4

100/17% PIRADS, ≥3
83/58% PIRADS, ≥4

Schelb P. et al. [75] 2021 0 1 Sensitivity/Specificity 98/17% PIRADS, ≥3
85/55% PIRADS, ≥4

99/24% PIRADS, ≥3
83/55% PIRADS, ≥4

3.2. PIRADS 3 Lesions

Radiomics can detect with high accuracy csPCA in PI-RADS 3 lesions [59,77]. Hou
et al. examined in a ML-Radiomics approach the ability of bpMRI to identify csPCA in
PIRADS 3 lesions in a group of 253 patients with PIRADS 3 lesions in the TZ and PZ of
whom 59 (22.4%) had csPCA [59]. The ML-Radiomics approach including T2w imaging,
DWI and ADC had an AUC of 0.89 (95% CI 0.88–0.90) for predicting the presence of csPCA
in a PIRADS 3 lesion.

3.3. Extracapsular Extension and Biochemical Recurrence

He et al. set up a large study including 459 patients who underwent 3T bpMRI before
prostate biopsy and/or prostatectomy [69]. The aim of the study was first to differentiate
between benign and malignant tissue second to predict extracapsular extension (ECE)
of prostate tumor and third to predict positive surgical margins (PSM) after RP. Using
Radiomics they developed and tested an algorithm that was able to achieve an AUC of
0.905 for the determination of benign and malignant tissue, 0.728 for the prediction of ECE,
and a 0.766 for the prediction of PSM. Similarly, Hout et al. found an identical AUC of 0.728
for the prediction of ECE in a DL-based approach using different CNN-architectures [73].
Hence one can infer from the information derived from prostate imaging not only the
current situation in the gland but can also predict future developments that might take
place under therapy.

Biochemical recurrence (BCR) prediction based on radiomics features was examined in
T2w-images only with higher prediction of BCR (C-index 0.802) than conventional scores,
particularly also higher than the Gleason scoring system (C-index 0.583) [74]. This work
is of particular interest as it first, was one of the few multicentric studies (three centers)
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with a relatively large number of patients (485) and second, demonstrated the ability of
DL-based CNN to look beyond the prostate and infer predictions on the future course of
the disease/patient.

4. Discussion

Prostate cancer is a growing medical condition already now being the second most
common cancer in men in the western world. The detection and grading of prostate
cancer are shifting more toward MRI and is demanding a higher number of MRI-studies
to be performed and read. Currently, prostate MRI is considered a specialized exam and
requires a highly specific experience to be performed and reported with high quality. A
first step toward facilitation of mpMRI prostate acquisition, reading, and reporting was
PIRADS, but surely not the last step [10,12,13]. To put it in a nutshell: prostate MRI is
developing from the holy grail, and only a few radiologists were being able to read it
competently to a commodity in radiology. This is one of the key drivers behind the growing
demand for computer-assisted diagnostic tools, such as tumor detection and grading, to
facilitate the diagnostic interpretation of prostate MRI also for less-trained radiologists.
As the prostate is a densely packed organ with much more information for example as
the sparsely packed lung, simple machine learning tools based on e.g., density differences
cannot be successfully employed. To distinguish the different prostatic tissues, such as
normal transitional and peripheral zones and malignant tissue, higher-developed machine
learning tools are required, often based on radiomics or even deep learning techniques. In
the papers included in this review, most approaches using either ML or DL were similar to
radiologists in their performance [49,54,57,64,75]. For some specific applications, such as
tumor detection in the TZ or detection of clinically significant cancers in PIRADS 3 lesions,
AI-based methods might even be superior to radiologists’ performance [48,59].

These AI-based approaches should enable less well-trained radiologists to read and
report prostate-MRI reports with good quality [57,75]. The literature review showed that
different approaches to tumor grading and characterization either via ML or DL are capable
of differentiating between cancerous and non-cancerous tissue. New approaches are even
able to autonomously segment the prostate and the tumor within the gland overcoming
a limitation of the elder approaches, where radiologists often had to manually segment
the lesions, resulting in a highly time-consuming task [72,75]. Apart from many site-
specific implementations of radiomics, ML and DL, another sign of maturation of AI-based
approaches is that a first commercial tool was already presented [67]. Compared to the other
algorithms, this commercial tool was trained by big data sets for the initial training. This
development underlines again the trend in imaging toward commoditization of imaging
and democratization of information technology enabling every radiologist to perform on a
high-quality imaging.

Yet, there are some obstacles still to overcome. First, MRI is a tricky imaging tool. A
major drawback of MRI is the lack of standard quantification of image intensities. Within
the same image, the intensities for the same material vary as they are affected by bias field
distortions and imaging acquisition parameters, not always perfectly standardized. In ad-
dition, not only do MR images taken on different scanner vary in image intensities, but the
images for the same patient on the same scanner at different times may appear differently
from each other due to a variety of scanner- and patient-dependent variables [45]. There-
fore, the initial step in ML/DL image postprocessing is to normalize the MR intensity [45].
This process could induce errors, however. At last, also the reproducibility of CNNs varies
resulting in interscan differences, though with less impact [78]. Second, most studies rely
on single site source data. Multicentric studies are very rare hence making it harder to
compare results of AI-based algorithms across different vendors and sequence parameters.
Third, the choice of imaging sequences and their specific parameters is variable. This work
focused on bpMRI of the prostate. Even though for a radiologist imaging with T2w-imaging
and DWI imaging would be seen as biparametric, things look different in the world of
AI-based post-postprocessing: sometimes T2w and ADC, sometimes T2w and a single high
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b-value, T2w and multiple b-values or T2, ADC and b-values were used (hereby neglecting
uncommon outlier studies using DCE and T2 or T1 and T2). Even though DWI source date
and ADC are based on the same acquisition, their information content seems different. It
was observed in one study that the use of CHB-DWI led to higher specificity while the use
of ADC led to highest sensitivity, making the choice of sensing modality useful for different
clinical scenarios [79]. For example, maximizing specificity is important for surgery for
removal of prostate where minimizing false positive rates to avoid unnecessary surgeries is
required. On the other hand, for cancer screening, maximizing sensitivity may be useful to
avoid missing cancerous patients [79]. A clear definition what would be considered as truly
bpMRI or standards for AI-postprocessing has not been set up. Yet, there is a first European
initiative on the development and standardization of AI-based tools for prostate MRI [44].
Fourth, DL-based CNNs are notorious for being a “black box” in terms of the how the
decision was achieved. While this may not be entirely true—CNNs can be monitored at any
level at some expense—they might never be as transparent as ML-based approaches hence
scaring some physicians from using them on real patients outside studies. Moreover, here,
commercialization of the techniques might be helpful as larger companies have the means
and money to certify algorithms with the FDA or the EU and thus make them broadly
(commercially) available.

As seven studies made use of the ProstatEx data, it is worth looking at the overall
conclusions the creators of the dataset and initiators of the contest published [80]: the
majority of the 71 methods submitted to the challenge (classifying prostate lesions as
clinically significant or not) the majority of those methods outperformed random guessing.
They conclude that automated classification of clinically significant cancer seems feasible.
While in the second contest (computationally assigning lesions to a Gleason grade group)
only two out 43 methods did marginally better than random guessing. The creators
also conclude that more images and larger data sets with better annotations might be
necessary to draw significant conclusions, which brings up again the question of means
and money. Another conclusion that can be drawn when looking at the included studies
is that 3 T imaging seems to be the standard. This is partly because there is substantial
overlap in the source data (ProstatEx) and that, of course, studies are being conducted
at University Medical Centers which most often have state-of-the-art equipment. For
radiology departments in smaller hospitals or private practices having a 3 T system is
less likely. Regarding how far the results of 3T e.g., DWI can be transferred to 1.5 T and
how the technological improvement of 1.5 T in the field of signal reception and processing
is supportive remain unclear. One might speculate that a state-of-the-art 1.5 T will yield
comparable image quality to an elder 3 T system. Looking at the source data of the
different studies one can roughly estimate that 30% of these were acquired on elder (>14 a)
3 T systems.

There are some unexpected studies with novel approaches to patient care that should
be to highlighted. One was therapy assessment with pre- and post-IMRT T2w-imaging [40]
for “delta radiomics”, using radiomic features extracted from MR images for predicting re-
sponse in prostate cancer patients. While there was only one study with this specific design,
extrapolating ECE or BCR has roughly the same line of thought: could not it be possible
to predict for changes in the future with imaging features measured today [69,73,74]. The
AUC values of these studies were unexpectedly high (0.801–0.905) as well as the number of
included patients.

Limitations

This review has several limitations that need to be mentioned. First, ML and DL are
extremely fast evolving techniques. Data provided in this review simply display a snapshot
of the ongoing development. With the ever more powerful hardware and algorithms, future
improvements seem likely. Most results are based on small feasibility studies, and larger
applications of ML and DL in prostate imaging are not yet available. Whether their results
match the promising initial studies remains unclear. Second, the inclusion criteria were
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narrow so that only 29 studies could be included. With the small sample size, different
targets, and the different foci of the studies no wholistic analysis could be performed.
Opening up the time window for the included studies would have led to inclusion of elder
techniques potentially biasing the results.

5. Conclusions

In summary, this study investigated the current status of bpMRI of the prostate with
postprocessing using ML and DL with a focus and tumor detection and grading. The
presented results are very promising in terms of detection of csPCA and differentiation of
prostate cancer from non-cancerous tissue. ML and DL seem to be equally good in terms of
classification of single lesion according to the PIRADS score. Most approaches however
rely on human interference and contouring the lesions. Only a few newer approaches
automatically segment the entire gland and lesions, along with lesion grading according to
PIRADS. There still exist a large variability and methods and just a few multicentric studies.
No AI-postprocessing technique is considered gold standard at this time while there seems
to be a trend toward CNNs. Regarding the actual MRI-sequences, most studies used
T2w-imaging and either b-values from DWI or the ADC maps from DWI. The application
of ML and DL to bpMRI postprocessing and the assistance in the reading process surely
represent a step into the future of radiology. Currently however, these techniques remain at
an experimental level and are not yet ready or available for a broader clinical application.
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Abbreviations

ACR American College of Radiology
ADC Apparent Diffusion Coefficient
AFMS Anterior Fibromuscular Stroma (of the Prostate)
AI Artificial Intelligence
AS Anterior stroma (of the Prostate)
AUC Area under the Curve
BCR Biochemical Recurrence
bp bi-parametric
BPH Benign Prostate Hyperplasia
ciPCA Clinically Insignificant Prostate Cancer
CNN Convoluted Neural Network
csPCA Clinically Significant Prostate Cancer
CZ Central Zone (of the Prostate)
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DCE Dynamic Contrast-Enhanced Imaging
DL Deep-Learning
DRE Digital Rectal Examination
DWI Diffusion-Weighted Imaging
ECE Extracapsular Extension
ESUR European Society of Urologic Radiology
GS Gleason Score
HBV High b-Value (of DWI)
IMRT Intensity-Modulated Radiation Therapy
ML Machine-Learning
mp multi-parametric
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
nsPCA Non-Significant Prostate Cancer
PZ Peripheral Zone (of the Prostate)
PCA Prostate Cancer
PIRADS Prostate Imaging Reporting and Data System
PSM Positive Surgical Margins
RP Radical Prostatectomy
T2w T2-weighted Imaging
TSE TurboSpinEcho
TZ Transitional Zone (of the Prostate)
up uni-parametric

Appendix A

Table A1. Display of PRISMA items.

PRISMA Item Description

Title Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the
Detection, Grading and Characterization of Prostate Cancer: a systematic review.

Main objective Assessing the current value of deep-learning and machine-learning applied to biparametric MRI of
the prostate

Inclusion and
exclusion criteria

Inclusion criteria:

- Study listed in Pubmed
- Search terms: “prostate” and “magnetic” and either “deep learning” or “machine learning” or

“radiomics”
- Full text access available through University of Heidelberg
- Paper type: original investigation/research
- Focus: Detection or grading of prostate cancer with biparametric prostate MRI
- Language: English or German
- Year of publication 2019–2021

Exclusion criteria:

- No full text access
- Wrong paper type: reviews, meta-analysis
- Wrong focus (e.g., prostate segmentation, radiation therapy planning)
- Wrong technique (uniparametric or multiparametric prostate MRI)

Information source and
access time PubMed query in August 2021

Methods to assess risk of
bias in included studies

No structured program was used to assess bias in study selection. Internal review by the authors and
critical appraisal of the data was performed.

Methods to present and
synthesize results Descriptive statistics, listing in tabular form

Number of studies and
participants included

29 publications included
7466 participants included
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Main outcomes

Very heterogenous data did not allow for a general interpretation of all studies.
Tumor detection and grading with machine-learning and deep-learning techniques is feasible in trials
and shows promising results. Reported values for AUC ranging from 0.71 to 0.999. In studies
comparing human radiologists to deep-learning algorithms comparable, statistically not different
results for tumor detection were found.

Limitations

- No overall statistical analysis feasible due to the heterogeneity of methods and inclusion
criteria reported

- 7 out of 29 studies based on the same dataset (ProstatEx, Radbound Nijmwegen, The Netherlands)
- Heterogenous studies with different inclusion criteria and ground truth (i.e., if Gleason Grade

constitutes high-grade cancer or not)
- Often lacking demographic and statistical data

General interpretation

Detection of clinically significant prostate cancer and differentiation of prostate cancer from
non-cancerous tissue using machine-learning and deep learning is feasible with promising results.
Some techniques of machine-learning and deep-learning currently seem to be equally good as human
radiologists in terms of classification of single lesions according to the PIRADS score.

Primary source
for funding No general funding. Publication costs are covered by the Universtiy of Pisa, Pisa, Italy.

Register name and
registration number No registration
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Simple Summary: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma.
Even with the improvements in the treatment of DLBCL, around a quarter of patients will experience
recurrence. The aim of this single centre retrospective study was to predict which patients would
have recurrence within 2 years of their treatment using machine learning techniques based on
radiomics extracted from the staging PET/CT images. Our study demonstrated that in our dataset of
229 patients (training data = 183, test data = 46) that a combined radiomic and clinical based model
performed better than a simple model based on metabolic tumour volume, and that it had a good
predictive ability which was maintained when tested on an unseen test set.

Abstract: Background: Approximately 30% of patients with diffuse large B-cell lymphoma (DLBCL)
will have recurrence. The aim of this study was to develop a radiomic based model derived from
baseline PET/CT to predict 2-year event free survival (2-EFS). Methods: Patients with DLBCL treated
with R-CHOP chemotherapy undergoing pre-treatment PET/CT between January 2008 and January
2018 were included. The dataset was split into training and internal unseen test sets (ratio 80:20). A
logistic regression model using metabolic tumour volume (MTV) and six different machine learning
classifiers created from clinical and radiomic features derived from the baseline PET/CT were trained
and tuned using four-fold cross validation. The model with the highest mean validation receiver
operator characteristic (ROC) curve area under the curve (AUC) was tested on the unseen test set.
Results: 229 DLBCL patients met the inclusion criteria with 62 (27%) having 2-EFS events. The
training cohort had 183 patients with 46 patients in the unseen test cohort. The model with the
highest mean validation AUC combined clinical and radiomic features in a ridge regression model
with a mean validation AUC of 0.75 ± 0.06 and a test AUC of 0.73. Conclusions: Radiomics based
models demonstrate promise in predicting outcomes in DLBCL patients.

Keywords: diffuse large B-cell lymphoma; lymphoma; predictive modelling; radiomics;
machine learning
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1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the commonest subtype of non-Hodgkin
lymphoma (NHL), accounting for approximately 30–40% of adult cases [1]. The gold stan-
dard treatment is immunochemotherapy with rituximab, cyclophosphamide, doxorubicin
hydrochloride, vincristine (Oncovin) and prednisolone (RCHOP) [2]. Radiotherapy can be
added if there is bulky or residual disease. Prophylactic intrathecal methotrexate or intra-
venous treatment with chemotherapy that crosses the blood-brain barrier may be included if
there is high risk for central nervous system (CNS) involvement [3]. Even with current ther-
apy regimes, approximately 20–30% of patients will recur following treatment [4,5]. Staging
and response assessment is performed using 2-deoxy-2-[fluorine18]-fluoro-D-glucose (FDG)
positron emission tomography/computed tomography (PET/CT). Treatment stratification
based on mid-treatment (interim) PET/CT is commonly used in the management of pa-
tients with Hodgkin lymphoma but is less established in DLBCL due to the reduced ability
to accurately predict treatment outcome in this lymphoma subtype mid-treatment [6,7].
There is increasing interest in the use of PET/CT derived metrics for treatment stratification
at baseline in lymphoma to improve patient outcome. A number of groups have explored
the potential utility of baseline metabolic tumour volume (MTV) for predicting event
free survival (EFS) with promising results, but this has yet to be adopted clinically [8–17].
Others have explored the potential utility of radiomic features extracted from PET/CT for
modelling purposes [8,18]. Initial results are promising, however, the published studies
with relatively small numbers of patients are heterogenous

This aim of this study was to develop and test models combining baseline clinical
information and radiomic features extracted from PET/CT imaging in DLBCL patients to
predict 2-year EFS (2-EFS) using data from our tertiary centre. The secondary aim was to
compare model performance to the predictive ability of baseline MTV.

2. Materials and Methods

The transparent reporting of a multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) guidelines were adhered to as part of this study
(Supplementary Material).

2.1. Patient Selection

Radiological and clinical databases were retrospectively reviewed to identify patients
who underwent baseline PET/CT for DLBCL at our institution between January 2008 and
January 2018. A cut-off of January 2018 was chosen to allow a minimum of 2 years follow
up without interference or confounding factors introduced by the COVID-19 pandemic.
Patients were excluded if they did not have DLBCL, were under 16 years of age, had no
measurable disease on PET/CT, had hepatic involvement, had a concurrent malignancy,
were not treated with R-CHOP or if the images were degraded or incomplete. A 2-EFS
event was defined as disease progression, recurrence or death from any cause within the
2-year follow up period.

2.2. PET/CT Acquisition

All imaging was performed as part of routine clinical practice. Patients fasted for
6 h prior to administration of intravenous Fluorine-18 FDG (4 MBq/kg). PET acquisition
and reconstruction parameters for the four scanners used at our institution are detailed in
Table 1. Attenuation correction was performed using a low-dose unenhanced diagnostic
CT component acquired using the following settings: 3.75 mm slice thickness; pitch 6;
140 kV; 80 mAs.
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Table 1. Reconstruction parameters for the different scanners used.

Scanner Voxel Size in mm (x, y, z) Matrix Reconstruction Scatter Correction Randoms Correction

Philips Gemini TF64 4 × 4 × 4 144 or 169 BLOB-OS-TF SS-Simul DLYD

GE Healthcare
Discovery 690 3.65 × 3.65 × 3.27 192 VPFX Model based Singles

GE Healthcare
Discovery 710 3.65 × 3.65 × 3.27 192 VPFX Model based Singles

GE Healthcare STE 4.6875 × 4.6875 × 3.27 128 OSEM Convolution
subtraction Singles

BLOB-OS-TF = an ordered subset iterative TOF reconstruction algorithm using blobs instead of voxels;
DLYD = delayed event subtraction; OSEM = ordered subsets expectation maximisation; SS-Simul = single-scatter
simulation; VPFX = Vue Point FX (OSEM including point spread function and time of flight).

2.3. Image Segmentation

All PET/CT images were reviewed and contoured using a specialised multimodality
imaging software package (RTx v1.8.2, Mirada Medical, Oxford, UK). FDG-positive disease
segmentation was performed by either a clinical radiologist with six years’ experience
or a research radiographer with two years’ experience. Contours were then reviewed by
dual-certified Radiology and Nuclear Medicine Physicians with >15 years’ experience of
oncological PET/CT interpretation. Any discrepancies were agreed by consensus.

Two different semi-automated segmentation techniques were used. The first applied a
fixed standardised uptake value (SUV) threshold of 4.0, and the second used a threshold
derived from 1.5 times mean liver SUV. The 4.0 SUV threshold was selected based on previ-
ous work assessing different segmentation techniques in a cohort of DLBCL patients by
Burggraaff et al. which found it had a higher interobserver reliability [19] and requires less
adaption than techniques such as 41% SUVmax. The 1.5 times mean liver SUV threshold
was chosen as an adaptive threshold technique which has been used in different cancer
types [20,21], and allows for adaptive thresholding which takes into consideration back-
ground SUV uptake which can vary between individuals. Mean liver SUV was calculated
by placing a 110 cm3 spherical region of interest (ROI) in the right lobe of the liver. The
PET image contour was translated to the CT component of the study with the contours
matched to soft tissue with a value of −10 to 100 Hounsfield units (HU). Contours were
saved and exported as digital imaging and communications in medicine (DICOM) radio-
therapy (RT) structures. Both the images and contours were converted to Neuroimaging
Informatics Technology Initiative (NIfTI) files using the python library Simple ITK (v2.0.2)
(https://simpleitk.org/, accessed on 1 December 2021).

2.4. Feature Extraction

Feature extraction was performed using PyRadiomics (v2.2.0) (https://pyradiomics.
readthedocs.io/en/latest/index.html, accessed on 1 December 2021). Both the CT and
PET images were resampled to a uniform voxel size of 2 mm3. Radiomic features were
extracted from the entire segmented disease for each patient. A fixed bin width of 2.5 HU
was used for the CT component. Two different bin-widths were used when extracting the
radiomic features from the PET component. The first being derived by finding the contour
with the maximum range of SUVs and dividing this by 130, the second being derived by
dividing the maximum range by 64. This methodology was based on previous work by
Orlhac et al. and on PyRadiomics documentation [22]. The first and second order features
were extracted from both the PET and CT components. Further higher order features were
explored by extracting the first and second order features following application of wavelet,
log-sigma, square, square root, logarithm, exponential, gradient and local binary pattern
(lbp)-3D filters to the images. All the features extracted and the filters applied are detailed in
Table S1. The mathematical definition of each of the radiomic features can be found within
the PyRadiomics documentation [23]. PyRadiomics deviates from the image biomarker
standardisation initiative (IBSI) by applying a fixed bin width from 0 and not the minimum
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segmentation value, and the calculation of first order kurtosis being +3 [24,25]. Otherwise,
PyRadiomics adheres to IBSI guidelines. Patient age, disease stage and sex were also
included as clinical features in the models. Disease stage and sex were dummy encoded
using Pandas (v1.2.4) (https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2
.4.html, accessed on 1 December 2021). This resulted in a total of 3935 features extracted
per patient. ComBat harmonisation was applied to account for the different scanners
used within the study (https://github.com/Jfortin1/ComBatHarmonization, accessed on
1 December 2021) [26].

2.5. Machine Learning

The dataset was split into a training and test set stratified around 2-EFS, disease
stage, age and sex with an 80:20 split using scikit-learn (v0.24.2) (https://scikit-learn.org/
stable/whats_new/v0.24.html, accessed on 1 December 2021). Concordance between the
demographics of the training and test groups was assessed using a t-test for continuous
data and a χ2 test for categorical data. A p-value of <0.05 was regarded as significant.
Continuous data was normalised using a standard scaler (scikit-learn v0.24.2) which was
trained and fit on the training set and subsequently applied to the test set. Highly correlated
features were removed from the training and test sets if they had a Pearson coefficient
over 0.8. This reduced the number of features from 3935 down to 130 for each patient.

Six different machine learning (ML) classifiers were used: logistic regression with lasso,
ridge and elasticnet penalties, support vector machine (SVM), random forest and k-nearest
neighbour. A maximum number of five features were included within each model, apart
from in the lasso and elasticnet models where these classifiers determined the optimum
number of features. To avoid false discoveries (Type 1 errors), a maximum number of five
features was chosen guided by the rule of 1 feature per 10 events within the training set.
Feature selection for the remaining models was performed using three different methods:
a forward wrapper method (mlxtend 0.18.0), a univariate analysis method (scikit-learn
v0.24.2), and a recursive feature extraction method (where applicable) (scikitlearn v0.24.2).
Each method was used to create a list of features from two to the maximum five features
which were to be explored in the training phase. The features selected were based on the
highest mean receiver operating characteristic (ROC) curve area under the curve (AUC) in
a four-fold stratified cross validation with 25 repeats.

Training of the ML models and the tuning of hyperparameters was performed using
a grid search with a stratified four-fold cross validation stratified around 2-EFS with
25 repeats. The list of hyperparameters explored within the grid search are detailed in
Table S2. Features and hyperparameters with the highest mean validation AUC which
was within 0.05 of the mean training AUC were selected. A 0.05 cut-off was chosen to
try and minimise selection of an overfitted model. The model which had the highest
mean validation AUC overall was tested once on the unseen test set. The Youden index
was used to discover the optimum cut-off value from the ROC curve and the accuracy,
sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV)
were calculated from this for the unseen test set. The pipeline for patient inclusion, feature
selection and predictive model creation and testing is depicted in Figure 1.

Given the growing evidence surrounding MTV as a predictor of outcome, two further
logistic regression models were derived from the MTVs using the different segmentation. A
comparison between results from the different cross validation splits between the radiomic
model with the mean highest AUC and the MTV model with the mean higher AUC was
performed using a Wilcoxon signed ranked test.
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Figure 1. Pathway for patient inclusion, feature selection and model creation. * = initially applied to
the training data and then to the test data.

3. Results

A total of 229 DLBCL patients met the inclusion criteria (136 male, 93 female) with
62 2-EFS events. There were 183 patients within the training cohort and 46 patients in
the unseen test cohort. No statistically significant differences were identified between the
training and test sets (Table 2).

None of the machine learning models created using elasticnet regression, lasso regres-
sion or k-nearest neighbour algorithms had a mean validation AUC within 0.05 of the mean
training AUC. The remaining model results are presented in Tables 3 and 4.
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Table 2. Demographics of the training and testing groups.

Demographic Training Cohort Test Cohort p-Value

Age 67 (IQR = 17) 65 (IQR = 22.5) 0.35

Sex
Male 107 29

0.69Female 76 36

Radiotherapy
Yes 78 20

0.95No 105 26

Stage
One 42 17

0.26
Two 46 6

Three 31 6
Four 64 17

2-EFS Event
Yes 50 12

0.98No 133 34

2-EFS = 2-year event free survival. The p-values were calculated using a t-test for age and a χ2 test for the
remaining demographic features.

Table 3. Mean training and validation scores for the best performing machine learning models using
the 4.0 SUV threshold segmentation technique.

Machine Learning
Model

Hyperparameters Features
AUC Mean

Training
AUC Mean
Validation

SUVmax/130

Ridge Regression C: 1 × 10−5, penalty: l2,
solver: liblinear

Stage One, PET wavelet-LLH GLSZM Large Area
Emphasis, PET wavelet-HHH GLSZM Grey Level

Non-Uniformity Normalised, PET square 10th
Percentile, PET square GLDM Grey Level

Non-Uniformity

0.75 (0.02) 0.74 (0.07)

Support Vector
Machine

C: 1, gamma:
0.008915428868611115,

kernel: sigmoid

PET wavelet-HHH GLSZM Grey Level
Non-Uniformity Normalised, PET square 10th

Percentile, PET lbp-3D-m1 Interquartile Range, PET
lbp-3D-m1 GLDM Large Dependence Low Grey

Level Emphasis, PET lbp-3D-k 90th Percentile

0.74 (0.02) 0.73 (0.07)

Random Forest

bootstrap: False, max
depth: 1, max features:

log2, min samples leaf: 50,
min samples split: 50, n

estimators: 10

PET original shape Maximum 2D Diameter Column,
MTV, PET original first order Kurtosis, PET original

GLSZM Large Area Emphasis, PET wavelet-LHL
GLCM Correlation, PET wavelet-LHL GLCM Imc2

0.76 (0.02) 0.71 (0.08)

SUVmax/64

Ridge Regression C: 0.001, penalty: l2,
solver: newton-cg

Stage Four, PET original GLSZM Large Area
Emphasis, PET wavelet-HHL GLSZM Small Area
Emphasis, PET wavelet-HHH GLSZM Grey Level

Non-Uniformity Normalised, PET square
10th Percentile

0.77 (0.02) 0.75 (0.06)

Support Vector
Machine

C: 0.1, gamma:
0.07938667031015477,

kernel: rbf

PET original GLDM Large Dependence Low Grey
Level Emphasis, PET wavelet-HHH GLSZM Grey

Level Non-Uniformity Normalised, PET square 10th
Percentile, PET lbp-3D-k 90 Percentile, PET lbp-3D-k

GLSZM Size Zone Non-Uniformity Normalised

0.75 (0.02) 0.72 (0.06)

Random Forest

bootstrap: True, max
depth: 1, max features:

log2, min samples leaf: 44,
min samples split: 6, n

estimators: 243

PET original shape Maximum 2D Diameter Column,
PET original shape Surface Volume Ratio, PET

original 10th Percentile
0.71 (0.02) 0.69 (0.08)

l2 = Ridge regression penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone
matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered image at level 1,
lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level co-occurrence matrix, rbf = radial
basis function.
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Table 4. Mean training and validation scores for the best performing machine learning models using
the 1.5 times mean liver SUV thresholding segmentation technique.

Machine Learning
Model

Hyperparameters Features
AUC Mean

Training
AUC Mean
Validation

SUVmax/130

Ridge Regression C: 1 × 10−5, penalty: l2,
solver: saga

Stage Four, Age, PET original GLDM Large
Dependence Low Grey Level Emphasis, PET

original GLSZM Large Area High Grey
Level Emphasis

0.74 (0.03) 0.71 (0.09)

Support Vector
Machine

C: 1, gamma:
0.43727367418726576,

kernel: rbf

PET square 10th Percentile, PET square first
order Energy 0.78 (0.02) 0.73 (0.07)

Random Forest

bootstrap: True, max
depth: 10, max features:

sqrt, min samples leaf: 33,
min samples split: 5, n

estimators: 90

Age, PET original shape Elongation, PET
original shape Least Axis Length, PET original
shape Major Axis Length, PET original shape
Maximum 2D Diameter Column, PET original

shape Mesh Volume

SUVmax/64

Ridge Regression C: 1.0, penalty: l2, solver:
liblinear

Stage Three, Age, PET wavelet-LHL GLCM
Imc1, PET square GLDM Dependence Variance,

PET square GLSZM Small Area Low Grey
Level Emphasis

0.76 (0.02) 0.73 (0.07)

Support Vector
Machine

C: 1, gamma:
0.43727367418726576,

kernel: rbf

PET square first order 10 Percentile, PET square
first order Energy 0.78 (0.02) 0.73 (0.07)

Random Forest

bootstrap: True, max
depth: 10, max features:

log2, min samples leaf: 42,
min samples split: 6, n

estimators: 237

PET original shape Sphericity, PET original
GLSZM Large Area Emphasis 0.70 (0.02) 0.69 (0.07)

l2 = Ridge regression penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone
matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered image at level 1,
lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level co-occurrence matrix, rbf = radial
basis function.

The model within the highest mean validation ROC AUC was the ridge regression
model created using radiomic features extracted from a fixed threshold of 4.0 SUV segmen-
tation using a bin width of the maximum range of SUVs divided by 64. The mean training
AUC was 0.77 ± 0.02, the mean validation AUC was 0.75 ± 0.06 and the AUC when tested
on the unseen dataset was 0.73 (Figure 2). The features selected with their coefficients and
intercept are presented in Table 5. A threshold of 0.5 was chosen and led to an accuracy of
0.70, sensitivity of 0.44, specificity of 0.86, positive predictive value of 0.67, and a negative
predictive value of 0.71. The confusion matrix is presented in Table 6.

The logistic regression model created solely from MTV using the 4.0 SUV fixed thresh-
old segmentation technique had a mean training AUC of 0.66 ± 0.03 and a mean validation
AUC of 0.66 ± 0.08. The logistic regression model derived from MTV using the 1.5 times
mean liver SUV segmentation technique had a mean training AUC of 0.67 ± 0.03 and a
mean validation AUC of 0.67 ± 0.08. There was a statistically significant difference when
comparing the cross validation AUCs for the 100 splits between the highest performing
MTV-based model and the radiomic-based ridge regression model, p < 0.001 (Figure 3).
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Figure 2. ROC Curve of the training and unseen test data AUCs for the model derived using a
4.0 SUV thresholding segmentation technique with a bin width derived from SUVmax/64.

Table 5. The features selected and their associated coefficients and intercept in the ridge regression
model tested on the unseen test dataset.

Feature Coefficient

Stage Four 0.01153414
PET original GLSZM Large Area Emphasis 0.0161316

PET wavelet-HHL GLSZM Small Area
Emphasis 0.01482446

PET wavelet-HHH GLSZM Grey Level
Non-Uniformity Normalised −0.01923886

PET square 10 Percentile −0.01923886
Intercept −0.01166859

Table 6. Confusion matrix for the threshold of 0.5.

Prediction Negative Positive

Predicted Negative 24 10
Predicted Positive 4 8

Positive = recorded 2-EFS event, Negative = no recorded 2-EFS event, Predicted Positive = predicted to have had
a 2-EFS event, Predicted Negative = predicted to not have had a 2-EFS event.
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Figure 3. Mean ROC Curve of the MTV-based logistic regression model and the radiomic-based
logistic regression model.

4. Discussion

Our study found that a prediction model combining clinical and radiomic features
derived from pretreatment PET/CT using a ridge regression model had the highest mean
validation AUC when predicting 2-EFS in DLBCL patients. This model had significantly
higher validation AUCs than those achieved by a model solely derived from MTV and
achieved an AUC of 0.73 on the unseen test set. The radiomic features used within the model
that led to the highest mean validation AUC were extracted from a segmentation derived
from a fixed threshold of 4.0 SUV using a bin-width calculated from the maximum range of
SUVs divided by 64. The model was formed using five features (Stage Four, PET original
GLSZM large area emphasis, PET wavelet-HHL GLSZM Small Area Emphasis, PET wavelet-
HHH GLSZM Grey Level Non-Uniformity normalised, PET square 10th percentile).

The biological correlate of radiomic features and how these relate to the lesion or
disease process can often be overlooked, and can become more complex when image
filtering is involved [27]. Three of the radiomic features included in the best model were
derived from GLSZM which is a matrix formed by the number of connected voxels with
the same grey level intensity. The first was the PET GLSZM Large Area Emphasis, which
is a measure of distribution of large area size zones, and was extracted from the PET data
without any filter applied. This feature is higher in lesions which have a coarser texture
based on the original image. The other two GLZMs are calculated after applying a wavelet
filter. Wavelet filters highlight or suppress certain spatial frequencies within an image.
In PyRadiomics a combination of high and low filters is passed in each of the different
dimensions, which results in eight different decompositions. PET wavelet-HHL GLSZM
Small Area Emphasis is a measure of the distribution of small size zones, which are higher
in lesions with fine textures following the application of the wavelet filter. PET wavelet-
HHH GLSZM Grey Level Non-Uniformity is a measure of the variability of the grey level
intensity within the image. A lower value indicates a higher number of similar SUVs on the
wavelet filtered image. The last radiomic feature included was PET square 10th percentile
which is the 10th percentile value of the SUV after a square of the image SUVs has been
taken and normalised to the original SUV range. Interestingly, none of the CT-derived
radiomic features were selected as part of the best performing radiomic models. This is
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likely due to the transposition of the segmentations from the PET on to the unenhanced CT
including more areas of non-lymphomatous tissue.

Other studies which have explored the use of radiomic features in outcome prediction
in DLBCL are not always directly comparable [12,28–32]. This is mainly due to differ-
ences in segmentation methodology, modelling techniques and outcome measures between
groups. Aide et al. studied the use of radiomic features in predicting 2-EFS in 132 patients
(training = 105, validation = 27) and found that MTV as well as four second-order met-
rics and five third-order metrics were selected from ROC analyses. However, long-zone
high-grey level emphasis was the only independent predictor when analysed with the
international prognostic index (IPI) and MTV [29]. In our study long-zone high-grey level
emphasis was discarded when checking for multicollinearity. This highlights a potential
issue of radiomic model development when applying a methodology on different datasets.
It may be that the same features would be chosen between the different datasets, but each
method removes the alternate correlated feature and, therefore, appears to create an entirely
new model. Both Zhang et al. and Ceriani et al. used lasso in their cox regression models
to select the most appropriate features [31,32]. Zhang et al. in a study of 152 patients
(training = 100, validation = 52) treated with R-CHOP or R-EPOCH (rituximab, etoposide,
prednisone, vincristine, cyclophosphamide, and doxorubicin) found that a survival model
created with radiomic features and MTV had a validation time dependent ROC AUC of
0.748 (95% CI 0.596–0.886). A model created with radiomic features and metabolic bulk
volume had a validation time dependent ROC AUC 0.759 (95% CI 0.595–0.888). Ceri-
ani et al. reported that a radiomic score derived from a training set of 133 patients and
tested on an external dataset of 107 patients had an AUC of 0.71 in both the test and
validation datasets. The features selected within their cox regression model were GLCM
sum squares, maximum 3D diameter and GLDM grey level variance, GLSZM grey level
non-uniformity normalised.

In our study both lasso and elasticnet methods failed to produce a model that achieved
mean training and validation scores within 0.05 of each other. Even when allowing for
a more generous difference between the training and validation scores, mean validation
scores remained below 0.65. This 0.05 cut-off is arbitrary and was applied to try and
reduce the impact of overfitting on the dataset and allow selection of a potentially more
generalisable model. Despite this, there is still a risk that both training and validation
datasets are overfitted and the model would need external validation on an external dataset.

One of the largest published studies by Decazes et al. in 215 DLBCL patients, explored
use of tumour volume surface ratio and total tumour surface as outcome predictors for
5-year progression free survival (PFS), but found that MTV outperformed both features
with MTV having an AUC of 0.67 [12]. This AUC for MTV is similar to the findings in our
study, with the mean validation AUC for MTV prediction of 2-EFS being 0.66 for the 4.0 SUV
threshold and 0.67 for the 1.5 times liver threshold segmentation techniques, respectively.
Although, there is growing interest in the use of MTV as an imaging biomarker, Adams et al.
reported, in a study of 73 DLBCL patients, that the prognostic ability of MTV does not add
anything to the prognostic ability of the clinical scoring system National Comprehensive
Cancer Network-International Prognostic Index (NCCN-IPI) [33]. Unfortunately, due to
missing clinical data it was not possible to compare IPI performance in our patient cohort.
However, this does highlight the potential impact of confounders on the generalisability of
predictive models. Although, causality is not generally considered in predictive modelling,
its use in future models could allow for greater transparency of a model. The issues of
generalisability may be compounded by learnt biases towards groups of patients in the
training process.

The TRIPOD checklist was completed to increase transparency of model
development [34,35]. However, there are limitations to our study including its retro-
spective nature and uncertainty surrounding the exact timing and recording of recurrence.
Use of 2-EFS partially mitigates against this by allowing a wider window for the relapse to
be recorded, however, it does mean that data which could have been included in a time to
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survival type model is lost. 2-EFS was chosen as the majority of patients relapse within
the first 2 years. Time to event ML models could be used in future studies to reduce the
need to exclude data. The lesions were not re-segmented as part of the study, and therefore,
calculations of inter or intra-reliability, as well as robustness of the features have not been
performed. ComBat harmonization was used to help mitigate against scanner variation
in the extracted feature extraction. However, this limits the ability to apply this model
prospectively to patients not scanned using a protocol used to train the model. Lack of
clinical data surrounding the IPI and cell of origin (COO) information, meant that these
could not be used as direct comparators to radiomic models created.

5. Conclusions

A combined clinical and PET/CT derived radiomics model using ridge regression
demonstrated the highest mean AUC validation (AUC = 0.75) when predicting 2-EFS in
DLBCL patients treated with R-CHOP, which outperformed a model derived solely from
MTV (AUC = 0.67).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14071711/s1, TRIPOD Checklist: Prediction Model Devel-
opment, Table S1: Radiomic features extracted for both the PET and CT components, Table S2: The
hyperparameters explored within the grid search.
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Simple Summary: The increase in adjuvant treatment of melanoma patients makes it necessary
to provide the most accurate prognostic assessment possible, even at early stages of the disease.
Although conventional risk stratification correctly identifies most patients in need of adjuvant
treatment, there are some patients who, despite having a low tumor stage, have poor prognosis
and could therefore benefit from early therapy. To close this gap in prognosis estimation, deep
learning-based image analyses of histological sections could play a central role in the future. The
aim of this study was to investigate whether such an analysis is possible only using basic image
analysis of 831 H&E-stained melanoma sections using Google’s Teachable Machine. Although the
classification obtained does not provide an additional prognostic estimate to conventional melanoma
classification, this study shows that prognostic prediction is possible at the mere cellular image level.

Abstract: Background: The increasing number of melanoma patients makes it necessary to establish
new strategies for prognosis assessment to ensure follow-up care. Deep-learning-based image analysis
of primary melanoma could be a future component of risk stratification. Objectives: To develop a risk
score for overall survival based on image analysis through artificial intelligence (AI) and validate it in
a test cohort. Methods: Hematoxylin and eosin (H&E) stained sections of 831 melanomas, diagnosed
from 2012–2015 were photographed and used to perform deep-learning-based group classification.
For this purpose, the freely available software of Google’s teachable machine was used. Five hundred
patient sections were used as the training cohort, and 331 sections served as the test cohort. Results:
Using Google’s Teachable Machine, a prognosis score for overall survival could be developed that
achieved a statistically significant prognosis estimate with an AUC of 0.694 in a ROC analysis based
solely on image sections of approximately 250 × 250 μm. The prognosis group “low-risk” (n = 230)
showed an overall survival rate of 93%, whereas the prognosis group “high-risk” (n = 101) showed
an overall survival rate of 77.2%. Conclusions: The study supports the possibility of using deep
learning-based classification systems for risk stratification in melanoma. The AI assessment used in
this study provides a significant risk estimate in melanoma, but it does not considerably improve the
existing risk classification based on the TNM classification.

Keywords: melanoma; prognosis; risk score; deep learning; artificial intelligence; Google’s teach-
able machines

1. Introduction

Over the past years and decades, there has been a significant increase in the inci-
dence of malignant melanoma [1]. Despite major advances in the treatment of metastatic
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melanoma, including targeted therapy with BRAF inhibitors or immune checkpoint block-
ade, malignant melanoma remains the skin tumor responsible for the highest number
of skin tumor-associated deaths worldwide, with approximately 55,500 cases [2]. Histo-
logically, different subtypes of malignant melanoma can be distinguished. According to
the currently valid World Health Organization Classification published in 2018, a distinc-
tion is made between melanomas that typically occur in chronically sun-damaged (CSD)
skin and those that typically do not occur in chronically sun-damaged skin. These differ
in the underlying genetic pathways. The most common subtypes, superficial spreading
melanoma (low-CSD) and lentigo maligna melanoma (high-CSD), but also desmoplastic
melanoma, are found in association with sun-damaged skin. Representatives of melanomas
that do not occur in chronically sun-damaged skin (no-CSD) are acral-, mucosal- and
uveal-melanomas, Spitz melanomas, melanomas originating from congenital nevi or blue
nevi. Nodular melanomas, on the other hand, can be found in both groups with different
underlying genetic pathways [3]. Prognosis prediction and staging of melanoma are mainly
based on histologic diagnosis in primary tumors. In this context, tumor thickness (accord-
ing to Breslow) and ulceration are included in the 8th AJCC classification [4]. In the case
of additional histological features, such as regression and mitotic rate, an impact on the
further prognosis is assured [5–7]. Other prognostic factors result from the primary staging
diagnosis, which includes sonography, CT section imaging and sentinel node biopsy de-
pending on the stage [4,8]. With the advent of adjuvant therapy options for patients with
high-risk tumors, the most accurate prognostic prediction possible is already necessary
for the primary tumor. Since adjuvant immune checkpoint therapy has a non-negligible
side effect profile, it is crucial to identify patients who may particularly benefit from such
therapy. Various gene-expression-based assays are in development to distinguish high-risk
patients from those with only low risk of metastasis [9–12]. However, these studies are
cost intensive and therefore cannot yet be widely used. In addition, these examinations
consume tissue that may be needed for further diagnostic workup. The morphology of
melanoma already shows a very high diversity in the H&E section, which goes far beyond
the detection of tumor thickness, ulceration, mitotic rate and regression. A grading, which
is common for most other tumor types, such as cutaneous squamous cell carcinoma, does
not exist for melanoma. With the onset of digitalization in pathology, artificial intelligence
(AI)-based image analysis has created new opportunities in the evaluation of histological
sections. AI is a set of technologies that enables computer systems to acquire intelligent
capabilities. One branch of AI is the concept of machine learning, which gives computers
the ability to learn without being explicitly programmed [13]. Deep learning, which is
popular today, is characterized by greater network depth in terms of multiple layers of
neurons; therefore, it makes it possible to learn and solve even complex tasks. Remarkably,
artificial neural networks make this possible without having to deposit specific rules or in-
structions beforehand [14]. It has been shown that programs based on artificial intelligence
are able to achieve high diagnostic accuracy in diagnosing melanoma from dermatoscopic
images [15–18]. Diagnosis by artificial neuronal networks also seems to lead to very reliable
results for histological sections. For epithelial skin tumors, but especially for melanomas,
programs have been developed that enable robust diagnostics [19–24]. More exciting,
though, is the question of whether image analysis with artificial neural networks can not
only confirm a diagnosis but whether it is conceivable that subvisual structures or patterns
in histological sections can be detected, leading to improved prognosis assessment. First
studies in melanoma have shown that it may be possible to achieve prognosis prediction,
prediction of sentinel positivity and prediction of response to immunotherapy by using ar-
tificial intelligence-assisted image analysis [25–27]. In particular, the work of Kulkarni et al.
was able to make an impressive prognosis prediction based on image analysis; however,
here a complex algorithm was used which, in addition to the mere morphological tumor
cell information, evaluates in part the distribution of inflammatory cells [26]. Since a clear
impact on melanoma prognosis has been well studied, especially for tumor-infiltrating
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lymphocytes, it remains unclear whether a purely morphological image analysis of tumor
cells allows melanoma prognosis [28–30].

The aim of our study was to develop a prognosis score based purely on histological
photographs to predict survival in melanoma. Since our score should be made publicly
available, easy to use and based solely on morphological image information, Google’s
Teachable Machine was used as a deep learning program. This is a pre-trained neural
network for image analysis that allows the classification of images into certain groups after
previous training [31]. Google’s Teachable Machine uses the basic framework of TensorFlow.
This is a platform released in 2015 that was created to make artificial intelligence and its
training accessible to the public. The use of this program has already been investigated in
the first studies for image analysis of medical questions [32].

2. Materials and Methods

2.1. Study Population

All 2223 patients diagnosed with primary melanoma at the University Dermatological
Clinic Tübingen between 1 January 2012 and 31 December 2015 who provided written
informed consent to the nationwide melanoma registry were included in the study. All
831 patients with follow-up data of at least 2 years and histological sections in our archive
were included in the further analysis. The group “dead” consists of all patients that died
due to melanoma during the observation period up to 114 months. The group “alive”
consists of all patients that were alive, lost to follow up or died of another reason. Alive
patients with follow-up for less than 2 years were excluded from the study. The diagnosis
of melanoma was made by at least two experienced, board-certified dermatopathologists
(SF, GM).

2.2. Digitization of HE Sections and AI-Based Evaluation

All H&E sections of primary melanoma were photographed at the site of the highest
tumor thickness according to Breslow using 100× magnification (Figure 1). Pictures were
taken using a Nikon Eclipse 80i microscope mounted with a Nikon Digital Sight DS-
FI2 camera. The program Nikon NIS Elements D Version 4.13.04. was used, and the
exposure time was set to 3 ms. The data were saved in JPG format. Images were analyzed
using Google’s Teachable Machine, a pre-trained neural network [31]. Sixty percent of
the 831 images served as the training cohort, and 40% of the images were subsequently
evaluated as the test cohort. The allocation of the 500 images to the training cohort or the
331 images to the test cohort was random. The training dataset contains images that were
only used for training Google’s Teachable Machine. An analysis of these data was not
performed later. Of these 500 patients, 429 were alive; thus, these images were used for the
training of the “alive” group. Of the 500 patients, 71 were deceased; these were used for
the training of the group “dead”. The training was carried out twice and separately for the
groups “whole images” and “area of interest”. The training curves for accuracy and loss
were obtained for both training groups and are shown in Figures S1 and S2. The model that
emerged from the initial training was used for further assessment. As Google’s Teachable
Machine does not provide a verification function, a separate set of verification data was
not assigned. The remaining 331 patients were used as the test cohort. The images of
these patients were not previously seen by Google’s Teachable Machine. These 331 patient
images were then classified by the program into the categories “dead” and “alive”. Patients
who were classified as “dead” were given the label “high-risk” in the further study, and
patients who were classified as “alive” were given the label “low-risk”.
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Figure 1. H&E section of a malignant melanoma. (a) overview with annotation (star) of the highest
tumor thickness (Breslow). The scale is 500 μm. (b) Magnification of (a) (see square in (a)). The
image represents one picture of the category “whole image”. The scale is 100 μm. (c) Magnification
of (b) (see square in (b)). This image represents one picture of the category “area of interest”. The
scale is 30 μm.

The evaluations of the whole images or the “area of interest” images were performed
separately. During the evaluation of whole images, the uploaded images in landscape
format 4:3 were cut by Google’s Teachable Machine into a square format. To balance the
training groups “alive” and “dead”, the images of the group “dead” were used 6 times.

For the “area of interest” evaluation, representative image sections of about 250 × 250 μm
were selected from the images by a dermatopathologist showing representative tumor areas
(file size from 103 kB to 622 kB). Whenever possible, we selected representative areas from
the dermal tumor compartment. Only in cases with a very small tumor thickness were
areas with an epidermal component included (see Figure 1). To balance the training groups
“alive” and “dead” the images of the group “dead” were cut into 6 representative tumor
areas. In the advanced settings of the “Teachable Machine” the epochs were set to 1000,
the batch size to 16 and the learning rate to 0.001. The 334 images of the test cohort were
uploaded individually, and the group allocation of Google’s Teachable Machine and the
indicated percentage were collected.
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2.3. Statistics

Statistical calculations were performed using IBM SPSS Statistics Version 23.0 (IBM
SPSS, Chicago, IL, USA). Numerical variables were described by mean value and standard
deviation or median values and interquartile range (IQR). Receiver operating characteristic
(ROC) curve analyses and corresponding p-value calculations were performed using the
ROC-Analysis tool in SPSS. p-values in Kaplan–Meier curves were calculated using the
log-rank (Mantel-Cox) test. Throughout the analysis, p values < 0.05 were considered
statistically significant.

3. Results

To create a prognosis score for melanoma, 60% (n = 500) of the images were used as
a training cohort. For this purpose, the images were categorized as “alive” and “dead”,
according to the actual survival of the patients. Google’s Teachable Machine was used to
create an algorithm from these training groups, which was then applied to the test cohort.
The training curves of the models showed an overfitting (see Figure S1); therefore, the
training was repeated with a new randomized training set to avoid possible bias caused
by the grouping (Figure S2). Since the repetition also showed comparable overfitting, the
evaluation was continued with the initial trained model. Subsequently, the remaining 40%
of the images (n = 331) were used as a test of the previously created score. The overall cohort
had a median age of 62 years at diagnosis, a preponderance of 55.6% men versus 44.4%
women, and a median tumor thickness of 1.05 mm. Ulceration was detectable in 21.3% of
the patients. The most common histological subtype was superficial spreading melanoma
with 59.3%, followed by nodular melanoma with 16.1%, lentigo maligna melanoma with
9.1%, acrolentiginous melanoma with 6.0%, other melanomas (5.7%) and melanomas of an
unknown subtype (3.5%). Most melanomas were found on the trunk (41.4%), followed by
melanomas of the lower extremity (26.4%), head and neck (17.7%), and upper extremity
(14.1%). At initial diagnosis, 64.3% of patients were classified as stage I, 21% as stage II,
13.4% as stage III, and 1.3% as stage IV. The staging, subtype classification, and epidemi-
ologic data showed comparable values in the training and test cohorts, confirming the
randomization of the groups (see Table 1).

Table 1. Demographics, tumor parameters, stage of disease (AJCC 2017), tumor subtype and survival
of the cohort.

Demographics and Tumor Parameters All (n = 831) Training Cohort (n = 500) Test Cohort (n = 331)

Age at Diagnosis (years)

Min./Max. 7/93 9/93 7/91

Median (+IQR) 62 (49/72) 63 (50/73) 59 (48/71)

Mean value (±SD) 59.88 (±15.3) 61.06 (±15.0) 58.11 (±15.7)

Sex (n, %)

Male (n, %) 462 (55.6%) 285 (57%) 177 (53.5%)

Female (n, %) 369 (44.4%) 215 (43%) 154 (46.5%)

Primary tumor

Tumor thickness (Breslow, mm), Median (+IQR) 1.05 (0.5/2.4) 1.00 (0.45/2.2) 1.10 (0.55/2.5)

Ulceration (n, %) 177 (21.3%) 103 (20.6%) 74 (22.4%)

Histologic subtype

Superficially spreading melanoma (SSM) (n, %) 493 (59.3%) 303 (60.6%) 190 (57.4%)

Nodular melanoma (NM) (n, %) 134 (16.1%) 75 (15.0%) 59 (17.8%)

Lentigo Maligna melanoma (LMM) (n, %) 76 (9.1%) 52 (10.4%) 24 (7.3%)

Acrolentiginous melanoma (ALM) (n, %) 50 (6.0%) 27 (5.4%) 23 (6.9%)

Others (n, %) 47 (5.7%) 27 (5.4%) 20 (6.0%)

Unknown (n, %) 29 (3.5%) 15 (3.0%) 14 (4.2%)
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Table 1. Cont.

Demographics and Tumor Parameters All (n = 831) Training Cohort (n = 500) Test Cohort (n = 331)

Localisation

Head/neck (n, %) 147 (17.7%) 91 (18.2%) 56 (16.9%)

Trunk (n, %) 344 (41.4%) 224 (44.8%) 120 (36.3%)

Upper Extremities (n, %) 117 (14.1%) 67 (13.4%) 50 (15.1%)

Lower Extremities (n, %) 219 (26.4%) 116 (23.2%) 103 (31.1%)

Others/unknown (n, %) 4 (0.4%) 2 (0.4%) 2 (0.6%)

Stage (AJCC 2017)

IA (n, %) 401 (48.3%) 248 (49.6%) 153 (46.2%)

IB (n, %) 133 (16.0%) 79 (15.8%) 54 (16.3%)

IIA (n, %) 80 (9.6%) 45 (9%) 35 (10.6%)

IIB (n, %) 60 (7.2%) 37 (7.4%) 23 (6.9%)

IIC (n, %) 35 (4.2%) 19 (3.8%) 16 (4.8%)

IIIA (n, %) 24 (2.9%) 14 (2.8%) 10 (3%)

IIIB (n, %) 23 (2.8%) 15 (3%) 8 (2.4%)

IIIC (n, %) 62 (7.5%) 37 (7.4%) 25 (7.6%)

IIID (n, %) 2 (0.2%) 2 (0.4%) 0

IV (n, %) 11 (1.3%) 4 (0.8%) 7 (2.1%)

Figure 1 shows the procedure for photographing the melanoma sections. In many
melanomas, tumors were present in numerous blocks and slides. The H&E section with
the highest tumor thickness according to Breslow was selected (see Figure 1a). Here, an
image was taken at 100× magnification at the site of the highest tumor thickness. This
image was used for the “whole image” analysis. From these “whole images”, small image
sections (about 250 × 250 μm) were selected that showed representative parts of the tumor.
The generation of a prognosis score was initially performed on both groups. These were
compared by ROC analysis (see Figure 2a). We investigated how reliably a prognostic
prediction of overall survival could be made based only on the AI classifier. When analyzing
the “whole images”, no significant result (p = 0.101) could be obtained in the prediction
of overall survival. The classifier showed an AUC of 0.581, which was only slightly better
than a random classification (AUC of 0.5). In contrast, however, a significant prediction
estimate with an AUC of 0.694 (p < 0.001) could be obtained with the analysis of the AOI
images. Therefore, further evaluation was performed using the classifier generated by the
analysis of the area of interest images.

If one only uses the classifier, generated solely by image analysis of a H&E-stained
melanoma section, this already allows a good prognosis estimate of the overall survival. Of
the 331 patients in the test cohort, 230 patients were assigned the AI-classifier “low-risk”
and 101 patients were given the AI-classifier “high-risk”. Malignant melanoma-related
overall survival was 88.2% in the test cohort, with 39 deaths in the observation period up
to 114 months. The AI-classifier “low-risk” group showed a statistically significant better
overall survival of 93% with 16 deaths, compared to a survival of 77.2% and 23 deaths in
the AI-classifier “high-risk” group (p < 0.001). Figure 3a shows the Kaplan–Meyer survival
curves of the total test cohort, related to melanoma-specific overall survival. Considering
recurrence-free survival, there is also a statistically significant distinction by grouping into
AI-classifier “low-risk” and “high-risk” (p < 0.001). Of the 230 patients in the “low-risk”
group, an event such as recurrence, metastasis or death from the disease was recorded
in 43 cases. This leads to a recurrence-free survival rate of 81.3%. In contrast, 37 events
were recorded in the AI-classifier “high-risk” group out of 101 patients, resulting in a
recurrence-free survival of only 63.4% (Figure 3b).
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Figure 2. Average receiver operating characteristic (ROC) curves of overall survival prognosis.
(a) Black line = AI-classifier with “area of interest” analysis. Gray line = AI-classifier with “whole
image” analysis. (b) Black line = pT stage combined with AI-classifier (AOI). Gray line = pT stage
(tumor thickness and presence of ulceration).

Figure 3. Kaplan–Meyer curve of overall survival (a) and relapse-free survival (b). Green line = AI-
classifier “low risk”. Red line = AI-classifier “high risk”.

Next, we questioned whether the AI classifier could complement the existing forecast
prediction with the AJCC 2017 classification. Here, we first performed a ROC analysis.
Comparing the prognosis estimate resulting from the existing T-classification (according to
AJCC 2017) of the primary tumor (tumor thickness according to Breslow and the presence
of an ulceration) (AUC = 0.872) with the prognosis estimate resulting from the addition
of the AI-classifier (AUC = 0.881), only a slightly improved risk stratification was shown
(see Figure 2b). This was also evident in the analysis of the Kaplan–Meyer curves of
overall survival for the individual stages of the AJCC 2017 classification. Looking at AI-
based risk classification in stage I, the following picture emerges: of the 207 patients in

43



Cancers 2022, 14, 2243

Stage I of the test cohort, 163 (79%) received the label AI-classifier “low-risk”. Of these
163 patients, 2 died during the observation period, corresponding to an overall survival
rate of 98.8%. Forty-four patients (21%) were classified as “high-risk”. In this group, there
were also two deaths, which corresponds to an overall survival rate of 95.5%. However,
with a p-value of 0.154, this does not reach statistical significance (Figure 4a). Regarding
stage II, of 74 patients, 39 (53%) were classified as “low-risk,” and 35 patients (47%) were
marked as “high-risk.” There were 8 deaths in the “low-risk” group resulting in an overall
survival of 79.5%. The “high-risk” group had 10 deaths, resulting in an overall survival
of 71.4%. However, this difference did not reach statistical significance with a p-value of
0.378 (Figure 3b). Stage III demonstrated the clearest differences in prognosis estimation.
In our test cohort, there were 43 patients in stage III, of which 11 patients died during
the observation period, resulting in an overall survival of 74.4%. Twenty-five of these
patients (58%) were considered “low-risk”, and in fact, only 4 deaths occurred in this group,
resulting in an overall survival of 84%. Of the 18 patients (42%) designated as “high-risk”
by the AI-classifier, 7 patients died, resulting in an overall survival of only 61.1%. Although
an early and quite clear separation of the Kaplan–Meyer curves is seen in stage III, no
statistically significant difference (p = 0.159) results due to the rather small number of cases
in this group (Figure 4c). Seven patients were found to be stage IV at initial diagnosis. Four
of these were identified as AI-classifier “high-risk” and 3 were classified as “low-risk”.
All patients in the “high-risk” group died during the observation period, resulting in an
overall survival of 0%. In the “low-risk” group, 2 melanoma-specific deaths were recorded,
resulting in a melanoma-specific survival of 33.3%. Patients in the “high-risk” group, in
contrast, survived longer than those in the “low-risk” group. This leads to a statistically
significant difference in the group classification at this stage (p = 0.018) (Figure 4d).

Figure 4. Kaplan–Meyer curves of overall survival in AJCC (2017) substages I (a), II (b), III (c) and IV
(d). Green line = AI-classifier “low-risk”. Red line = AI-classifier “high-risk”.
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4. Discussion

4.1. Results

The present study demonstrates the possibilities offered using deep learning-based
image analysis in the risk stratification of melanoma. Although the program for risk
assessment merely has a tiny image of about 250 × 250 μm at its disposal and no further
information is available, a quite reliable and statistically significant risk stratification can be
achieved. However, the AI classifier used here does not significantly improve the existing
risk classification based on the TNM classification. Nevertheless, it seems possible that such
a classifier may add prognostic value to conventional prognostic factors. In particular, our
survival data in stage III show a tendency toward improved prognosis with the addition of
the AI-classifier, even if this does not reach statistical significance. Further studies with a
larger cohort from this advanced tumor stage are needed to confirm this.

The first published studies have investigated the use of AI-based neural networks in
melanoma. It has been shown that such image analysis can reliably detect melanomas and
differentiate them from benign melanocytic nevi [19–22]. Predicting prognosis, though, is
much more complex than mere diagnostic classification of nevus and melanoma. Hence, a
study by Brinker et al., published in 2021, failed to predict sentinel lymph node status in
malignant melanoma to a clinically meaningful extent using deep learning-based image
analysis [25]. In a 2020 study, Kulkarni et al. created a risk classifier that was significantly
associated with the occurrence of recurrence in melanoma [26]. However, this score includes
other factors for calculation, such as density and distribution of the immune cell infiltrate
and nucleus morphology. Therefore, the impressive AUC values of 0.905 and 0.880 achieved
in this study are not comparable to the results obtained here. Since other information
besides the RGB image had to be included, tumor areas containing lymphocytes in addition
to the tumor cells had to be available and the sections should not be too pigmented to allow
detection of cellular components [26]. Another unique feature of our risk classifier is that it
is a score that can be calculated with an image of only 103 kB to 622 kB in size. There is
still a low availability of so-called whole-slide scanners, which can scan and digitize entire
histological slides in high resolution in just a few minutes. Although this technology has
been established for years, only a few pathological institutes have switched their routine
settings to digital reporting, especially because of the high investment costs. Possibly in the
coming years, the amount of memory and access to whole-slide scanners will no longer be
limiting factors. Currently, a freely available, easy-to-use classifier operating on small data
offers massive advantages when it comes to the question of validating that classifier in a
large multicenter setting.

4.2. Limitations

The present study has several limitations. One potential point of criticism is the choice
of deep learning tool. It is conceivable that an even better prediction of the prognosis could
be made with different programs, although this was not investigated in this study. The
focus of this research lies in the proof-of-concept, which shows that it is possible to make a
prognosis prediction on the histological section with an as simple as possible AI application
and as small as possible amount of data. Due to its straightforward transferability as well
as its user-friendly interface, the publicly available Google’s Teachable Machine was chosen
as a deep learning tool. Overfitting describes learning by memorization of the correct
answers by the AI model instead of the establishment of a generally applicable assignment
rule in the sense of generalization. Such an overfitting was evident in our trained models,
even when repeated with reassigned image groups. It is possible that this overfitting could
be minimized by various fine adjustments in the AI model, especially by adjusting the
number of epochs. However, this was not further investigated in the present study. It is
also conceivable that the pre-trained algorithm of the Teachable Machine is not suitable
for this complex histological challenge and thus represents the limiting factor in model
performance. Further limitations are that the training and test cohorts are retrospective
evaluations and that the number of cases in the groups and especially the number of events
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included (39 deaths in the test cohort) is quite small. Another point of criticism is that all
used sections originate from one and the same pathological institute. Possibly, the results
show only limited transferability to other institutes, as a slightly different staining pattern
in H&E staining may be evident here. In addition, the manual selection of the areas of
interest by the pathologist offers the possibility of an influence. A trade-off must be made
between large datasets and automated selection and manual selection and small data sets.
Additionally, the use of similar images in the “dead” group of the training cohort may
have restricted the learning curve of artificial intelligence. The melanoma treatment of the
patients in our study was not examined. It is possible that changes in treatment regimens
during the study period may have limited the predictive accuracy of AI prognosis. To
obtain more meaningful results, a larger, prospectively designed, multicenter study would
be necessary. One possibility for such studies in the future could be the use of so-called
“swarm learning”. This newly described approach uses blockchain-based peer-to-peer
networking to decentralize the use of machine learning [33].

Another problem with the method used here is the lack of explainability. A program
that offers an explanatory approach implemented in the program would be desirable, so
the black box of the AI could be illuminated. A study by Courtoil et al. from 2019 shows
such a program that not only forecasts the prognosis of mesothelioma but can also show
via a heat map analysis that the decision basis of the AI is to be found in the area of the
tumor stroma [34].

5. Conclusions

Finally, the study presented here must be understood as proof-of-concept. It could
be shown that prognostic information is contained in tiny image sections of a melanoma,
which allows prognosis estimation. To establish a prognosis score that can be used in clinical
practice, it must be clearly shown that such a score complements the current classification
systems and may in the future be an alternative to invasive diagnostic methods, such as
sentinel node biopsy or expensive gene-expression-based prognosis scores.
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Simple Summary: Clear cell renal cell carcinoma (ccRCC) pathologic grade identification is essential to
both monitoring patients’ conditions and constructing individualized subsequent treatment strategies.
However, biopsies are typically used to obtain the pathological grade, entailing tremendous physical and
mental suffering as well as heavy economic burden, not to mention the increased risk of complications.
Our study explores a new way to provide grade assessment of ccRCC on the basis of the individual’s
appearance on CT images. A deep learning (DL) method that includes self-supervised learning is
constructed to identify patients with high grade for ccRCC. We confirmed that our grading network
can accurately differentiate between different grades of CT scans of ccRCC patients using a cohort of
706 patients from West China Hospital. The promising diagnostic performance indicates that our DL
framework is an effective, non-invasive and labor-saving method for decoding CT images, offering a
valuable means for ccRCC grade stratification and individualized patient treatment.

Abstract: This retrospective study aimed to develop and validate deep-learning-based models for
grading clear cell renal cell carcinoma (ccRCC) patients. A cohort enrolling 706 patients (n = 706)
with pathologically verified ccRCC was used in this study. A temporal split was applied to verify
our models: the first 83.9% of the cases (years 2010–2017) for development and the last 16.1% (year
2018–2019) for validation (development cohort: n = 592; validation cohort: n = 114). Here, we
demonstrated a deep learning(DL) framework initialized by a self-supervised pre-training method,
developed with the addition of mixed loss strategy and sample reweighting to identify patients with
high grade for ccRCC. Four types of DL networks were developed separately and further combined
with different weights for better prediction. The single DL model achieved up to an area under
curve (AUC) of 0.864 in the validation cohort, while the ensembled model yielded the best predictive
performance with an AUC of 0.882. These findings confirms that our DL approach performs either
favorably or comparably in terms of grade assessment of ccRCC with biopsies whilst enjoying the
non-invasive and labor-saving property.

Keywords: clear cell renal cell carcinoma; deep learning; tumor grading; self-supervised learning;
label noise; class imbalance

1. Introduction

Renal cell carcinoma (RCC) is one of the most common deadly tumors in the urinary
system, originating from the renal parenchymal urinary tubule epithelial system, account-
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ing for 4% of human malignant tumors [1]. Clear cell renal cell carcinoma (ccRCC) is the
most common subtype of RCC, accounting for about 75% of all RCC cases [2]. The Fuhrman
grading system is highly recognized in the clinical oncology community, and it is widely
used for diagnosing the pathological grade of ccRCC. In the Fuhrman grading system,
the tumor is classified into one of four different grades (I, II, III, and IV) [3], with higher
grades indicating a more serious patient condition. However, to obtain the pathological
grade, the biopsy is most often carried out using a sharp tool to remove a small amount
of tissue. Inevitably, this invasive procedure may entail great pain physically and men-
tally, whilst imposing a heavy economic burden on patients’ families and society. Recent
study [4] also demonstrated that biopsy may increase the risk of complications, including
hemorrhage, infection, even tumor rupture. Furthermore, considering the shortage of
specialized doctors and conceivable poor conditions of equipment in some rural areas,
patients in these areas may be unable to receive timely and appropriate treatment.

In recent years, deep learning (DL) has defined state-of-the-art performance in many
computer vision tasks, such as image classification [5], object detection [6,7], and seg-
mentation [7]. DL models will perform satisfactorily once they have learned enough and
high-quality data [8]. Thus, given sufficient data, the accuracy of a deep-learning-enabled
diagnosis system often matches or even surpasses the level of expert physicians [9,10].
A myriad of studies have validated the utility of DL in various clinical settings through
various experiments, including the reduction of false-positive findings in the interpretation
of breast ultrasound exams [11], the detection of intensive care unit patient mobilization ac-
tivities [12], and the improvement of medical technology [13]. In the same way, DL enables
the ability to non-invasively and automatically assess the pathological grade for ccRCC,
monitor patients’ conditions and construct personalized subsequent treatment strategies.

However, to better apply the DL model, there are a few problematic issues that should
not be lightly dismissed. First, the domain shift problem. In most deep-learning-enabled
medical system, transfer learning is a common practice [14], where researchers use models
pretrained on some other dataset, such as ImageNet [15]. Although ImageNet contains a
large variety of images, they are all based on real-life situations and do not overlap with
medical images in terms of content. The shifts between two datasets represent that the
pattern-recognition abilities acquired from large datasets may not apply well to our medical
task. Second is the noisy label problem [16]. Inevitably, there are always some cancerous
lesions that come from high-grade patients but do not exhibit characteristics sufficient
to discriminate them from low-grade patients, resulting in the mismatch between the
manual labels and the actual labels. Third, the imbalance dataset problem. In most medical
tasks, images for the abnormal class might be challenging to find. Developing on such
an unbalanced dataset can wreak havoc on the utility of the DL model. To combat these
issues, our study explores a new DL framework initialized by a self-supervised pre-training
method, developed with the addition of mixed loss strategy and sample reweighting to
identify patients with high grade for ccRCC.

There are also several studies related to that of ours. Zhu and collaborators [17]
proposed a system that can accurately discriminate between five related classes, including
clear cell RCC, papillary RCC, chromophobe RCC, renal oncocytoma, and normal, based on
digitized surgical resection slides and biopsy slides. Different from this, we only focus on
the ccRCC and try to explore a non-invasive tool to replace biopsy whilst providing grade
assessment. Zheng [18], Cui [19], and Gao [20] had the same intention with us but their
works are mainly based on radiomics, which requires using a high-throughput feature
extraction method and a series of data-mining algorithms [21,22]. By contrast, our work
does not need to use additional procedures, such as feature extraction, which could save
labor to some extent. Most relates to our work is that of [14] which also attempted to use
the deep learning model to predict the Fuhrman grade of ccRCC patients. However, it is
worth nothing that this study still used ImageNet pretraining and did not pay attention
to the noise and imbalance problem that may induce performance degradation in most
of cases, while our framework provides a new solution to these issues with the addition
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of the proposed mixed loss strategy and sample reweighting, providing increased power
to the common practice. To the best of our knowledge, our study is the first attempt to
identify the pathological grades of patients with ccRCC in the context of a large population
whilst dealing with the domain shift problem and the noisy label problem, as well as the
imbalance dataset problem, simultaneously.

The specific objective of this study was to develop and validate a new DL framework
to identify patients with a high grade for ccRCC based on CT images, and the results indi-
cate that it is feasible. In addition to the application of deep learning to ccRCC pathology
grading [14], we focused on the solution of these three problems. To improve the network’s
capabilities, we proposed an innovative self-supervised pre-training methodology, as well
as mixed loss strategy and sample reweighting to address label noise and class imbalance
problems. To develop and validate our framework, we applied a temporal split to teled-
ermatology cases: the first 83.9% of the cases (years 2010–2017) for development and the
last 16.1% (years 2018–2019) for validation as done in [23]. Putting patients with different
years into different groups could help avoid the bias that possibly stems from the machines
and radiologic technologists, thereby being also a good practice to demonstrate the gener-
alization ability of our method. In addition, to improve the model generalization ability,
we combined several excellent single models, which achieved more reliable results. This
project provides a convenient, harmless and accurate opportunity for Fuhrman grading,
which will not only relieve patients from suffering from biopsies, but also assist radiologists
in making diagnostic decisions in routine clinical practice, even for some rural areas.

2. Materials and Methods

The institution’s research ethics board approved our study. The ethics board waived
informed consent because the data were obtained from preexisting institutional or pub-
lic databases.

2.1. Patient Cohort

The patient cases covered in this study are all from West China Hospital, with a total
case load of 759. We excluded 53 patients for the following reasons: (1) the CT images
were incomplete or had poor image quality (n = 24); (2) patients with incomplete indicators
(n = 29). Therefore, 706 patients were finally enrolled in this study. All 706 patients were
admitted to the hospital from April 2010 to January 2019. From the perspective of the time
domain, we assigned a total of 592 patients before year 2018 as the development cohort and
a total of 114 patients after year 2018 (including 2018) as the validation cohort according
to the acquisition date of the CT images. The characteristics of the included patients are
shown in Table 1.

All of the pathological ccRCC patients’ grades were reconfirmed by three independent
pathologists with extensive pathology experience. The labels of CT images in the validation
cohort were verified by professional pathologists. This study employed the Fuhrman
grading system as the benchmark. Grades I and II were assessed as low-grade, and grades
III and IV were assessed as high grade. Usually, low grade has a better prognosis than high
grade [24].

Table 1. Patient characteristics.

Patient Characteristic Development Cohort Validation Cohort

Number 592 114
CT Images 9978 2491

Male 374 (63.2%) 71 (62.3%)
Female 218 (36.8%) 43 (37.7%)

Average Age 54.9 (±12.1) 55.8 (±12.1)
Acquisition Date 2010–2017 2018–2019

Low-grade 354 (59.8%) 76 (66.7%)
High-grade 238 (40.2%) 38 (33.3%)
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2.2. Image Acquisition

All CT scans used in this study were obtained by one of the six different CT scanners.
The PCP, CMP, and NP of the MDCT (multidetector CT) examination were acquired for
each ccRCC patient with strict rules. A total of 70–100 mL contrast agents were injected
into the antecubital vein using a high-pressure injector at a rate of 3.5 mL/s. The PCP is the
precontrast phase. The CMP means that the corticomedullary phase contrast-enhanced scan
starting 30 s after injection. The NP means that the nephrographic phase contrast-enhanced
scan starting 90 s after the injection. Spiral scanning and thinslice reconstruction were used
for all three phases. The CT scanning parameters for the three phases were as follows: the
voltage in the tube was 120 kV; the reconstruction thickness was 1 mm to 5 mm, and the
matrix was 512 × 512. Only the CMP CT images were used as experimental data most of
the time because the CT images are the clearest and most conducive to the analysis of the
patient’s condition. The selection of only CMP CT images as experimental data somewhat
reduces the times of model developing, which may impair the generalization of the model,
but since our dataset includes a large enough number of cases, this operation does not have
any impact.

2.3. Image Preprocessing

The original CT image contains interference information, of which only the tumor
area is really valid for grading, so for each image, the region of interest (ROI) needs to
be delineated. With 706 patients containing more than 12,000 CT images, it is clearly not
desirable to have a radiologist process every image.

We utilized the DL models in target detection and segmentation to segment tumor
regions in the renal CT images. In the detection and segmentation part of the tumor, we
used VGG-16 [25] pre-trained on ImageNet [26] as the backbone for extracting features.
A small number of images for detection and segmentation training were annotated by
experienced doctors. The network was trained for 6000 epochs until its output converged.
We used the trained network to detect and segment the tumors in the overall CT images,
and the results were tested by an experienced radiologist, largely meeting the criteria.
Figure 1 shows the tumor segmentation process. The segmented CT pictures eliminate
interference from other bodily regions, allowing the content to be focused on the tumor area
on the renal. The CT images involved in subsequent experiments (including pre-training
process and developing process) refer to those after detection and segmentation processing.
Since the size of the tumor area varies, the sizes of the CT images obtained by partitioning
are different. We performed Resize or Padding operations before the data were entered
into the network to make the image size uniform to the 224 × 224 × 3.

Figure 1. Segmentation model concentrates the CT image’s content on the tumor.

2.4. Self-Supervised Learning

We used a self-supervised learning (pre-training) method to equip the network with
better awareness of the CT images before developing. In the pre-training and developing
process, we used the RegNetY400MF, RegNetY800MF [27], SE-ResNet50 [28] and ResNet-
101 [29]. Traditional pre-training models are often obtained by developing on ImageNet [15]
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and then using transfer learning to satisfy specific classification tasks. Such an approach
suffers from the problem that there is segmentation between the pre-training and the
actual classification task, with little correlation between the image contents. We used a
simpler and more efficient approach to pre-train the network. The images we used in
the pre-training are the same as those used in the developing, with the difference that
during pre-training, we rotate the input image data clockwise in space in one of four ways
(0◦, 90◦, 180◦, 270◦), and the images are labeled with the number of 90◦of image rotation
(0, 1, 2, 3), while during developing, CT images are labeled with the ccRCC grade of the
relevant patient (0 for low-grade, 1 for high-grade). Such a pre-training method allows the
network to develop feature extraction capability based on the developing images without
revealing the original semantics of the developing images. We pre-trained different deep
learning models using the stochastic gradient descent (SGD) algorithm and the common
cross-entropy loss function. The DL models were finally trained for 60 epochs. The overall
structure of the pre-training network is shown in the top half of Figure 2.

T

T

A A

A A

Figure 2. The overall flow of pre-training and developing. The top part of the figure shows the
pre-training process. In the pre-training process, the original images are expanded into four im-
ages after rotation transformation, and their labels are 0, 1, 2, and 3, representing that they are
obtained by quarter-turning the original image 0, 1, 2, and 3 times, clockwise. The bottom part
shows the developing process. The developing process network is initialized from the pre-training
process network.

2.5. Mixed Loss Strategy

There are two pervasive problems in image classification (including medical image
classification) tasks: one is the presence of label noise, and the other is the imbalanced data
distribution. Both of these problems can be found in the data of our study.
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Some malignant lesions that come from higher-grade patients do not exhibit enough
characteristics to distinguish them from lower-grade patients, resulting in a mismatch
between manual labeling and actual labeling. In simple terms, there are errors in the
labels of CT images of some high-grade patients. To tackle the noise problem, we applied
the mixed loss strategy similar to that in [30]. Suppose the labeled CT images dataset is
D = (xi, yi)

N
i . During developing, the ordinary cross-entropy loss is as follows:

LCE = − 1
N

N

∑
i=1

∑
j∈{0,1}

lijlogpij (1)

where lij = 1 if yi = j, and 0 otherwise. pij is the network output probability that the
ith sample belongs to category j. Since the true labels of some high-grade CT images
were supposed to be low-grade., we add loss LCE_2 to alleviate the effect of noise in the
developing process. Specifically, in the developing phase, under the assumption that the
noise rate is α(0 ≤ α ≤ 1), the loss is as follows:

Ltotal = αLCE_1 + (1 − α)LCE_2 (2)

LCE_1 = − 1
N

N

∑
i=1

∑
j∈{0,1}

lijlogpij (3)

LCE_2 = − 1
N

N

∑
i=1

li0logpi0 (4)

where li0 = 1 if yi = 0, and 0 otherwise. pi0 is the network output probability that the i-th
sample belongs to category 0 (low-grade). The larger the noise rate α, the higher the noise
level. In the experiment, the noise rate was set at 0.4 for the best results, which is probably
closest to the real noise rate of the data. Through the mixed loss strategy, we made the
network learn from the modified data according to a certain probability in the developing
process so as to achieve the effect of countering label noise.

2.6. Sample Reweighting

In terms of class imbalance, it is inevitable. For example, the proportion of mild pa-
tients in the cases of cancer detection is small, because cancer patients usually feel physical
abnormalities in the middle or even late stage of the disease. The sample reweighting
method is used to tackle this problem. In order to account for class imbalance when cal-
culating cross-entropy loss, each class was weighed according to its frequency, with rare
samples contributing more to the loss function [23]. Specifically, we assigned lower weights
to the categories with a larger proportion of sample size. Since we have a bias toward
the low-grade patient sample when dealing with the noise problem, we need to take this
information into account when calculating the percentage of the number of low-grade and
high-grade CT images. Suppose the weight of the low-grade patient sample is λ0, and the
weight of the high-grade patient sample is λ1; the new weighted cross-entropy is

LCE_weight = − 1
N

N

∑
i=1

∑
j∈{0,1}

λjlijlogpij (5)

By Equation (5), we made the network learn more from categories with smaller sample
sizes. Finally, in order to comprehensively solve the problem of label noise and class
imbalance, the overall optimization objective Ltotal_weight is

Ltotal_weight = −α
1
N

N

∑
i=1

∑
j∈{0,1}

λjlijlogpij − (1 − α)
1
N

N

∑
i=1

λ0li0logpi0 (6)
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2.7. Developing

After pre-training, we obtained the DL model with feature extraction capability. Then,
all models were developed iteratively and used to grade CT images of ccRCC patients.

It is worth noting that during the pre-training process, the classifiers of the models of
the four networks are linear, i.e., one fully connected layer (with an avgpooling). During the
developing process, we converted the classifier of the original network into nonlinear
projection, which can perform more complex mapping and make the dimension reduction
of the feature map smoother.

The weights of DL models were initialized from the networks that had been developed
to classify four kinds of picture rotation angles (0◦, 90◦, 180◦, 270◦), except the projection
part. The weights of the projection part are initialized in a common and efficient way [31].
To match the number of classes in our study, the output unit was modified to two (low-grade
and high-grade). The developing process is shown in the bottom half of Figure 2.

After five epochs of warm up, the learning rate was set to 0.1 at the beginning and it
varied as a cosine function. It is worth noting that the pre-trained backbone already has
some feature extraction capability, unlike the untrained projection. Therefore, in the process
of network developing, these two parts of the network should adopt different learning
rates, i.e., a small learning rate for the backbone and a relatively larger learning rate for
the projection. Specifically, we set the learning rate of the backbone to 0.1 times that of the
projection. In addition, a weight decay rate of 0.0001 was set to inhibit overfitting, which
can keep the weights of the neural network from becoming too large. Data augmentation,
including random rotation and horizontal flipping, was performed on the development
cohort to avoid overfitting, which can emulate the diversity of data observed in the real
world. Four NVIDIA Tesla M40 graphics cards with 24 GB of memory were used in
the development process. We used the SGD algorithm and cross-entropy loss defined in
Equation (6) to develop the network. The DL model was finally developed with 100 epochs.
Pytorch (1.0.1) and Python (3.5.7) were the main tools used in our experiments.

2.8. Validation and Statistics Analysis

After the developing phase, we used a validation cohort to check the generalizability
of the developing effect of the model. Since each patient in the experiment contains multiple
images, each image is calculated to obtain a probability vector, so for each patient there
is a set of probability vectors. We statistically computed the group probability vector for
each patient and finally obtained the grade judgment about the patient. When analyzing a
patient’s condition, the focus is usually on the most severe part of the CT images, which
is reasonable because it can accurately identify the patient’s condition. Therefore, in the
statistical calculation for each patient, we used the highest probability of network output
in each patient’s CT image as the judgment basis for grading. Suppose the i-th patient
has M CT images, and the output of the model for each CT image is gj(j = 1, 2, . . . , M).
The grading judgment Gi is

Gi = max(g1, g2, . . . , gM) (7)

During validation process, the accuracy (ACC), sensitivity (SEN) and specificity (SPC)
were calculated to assess the capability of the DL model. In addition, we used the area
under the receiver operating characteristic (ROC) curve (AUC) to show the diagnostic
ability of the DL model in grading ccRCC patients.

2.9. Model Ensemble

Following the developing method described in Section 2.7, we developed a total of
four classes of DL models with different structures in the development cohort. To improve
the reliability of DL models, we combined models with different weights according to
their performance in order to obtain a prediction that works best. During the experiment,
we found that the single model performed close to each other. In order to increase the
diversity of weights of different models in the process of model ensemble, we proposed
an innovative weight calculation method. We used the model’s AUC as a reference for its
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ensemble weight specifically, as all four types of models have the same decile of AUC, and
their ensemble weight is the value of their AUC after decile is removed. Then, for each
patient, we weighted the four models’ outputs by different weights and summed them to
obtain the patient’s final grading judgment. Our weight calculation method can make the
models with relatively good performance occupy a larger weight in the ensemble process,
increasing the difference between the weights of different models and achieving better
ensemble results. Assume the weights of the four models are γ1, γ2, γ3, γ4, and the i-th
patient’s predictions are Gi1, Gi2, Gi3, Gi4. The composite prediction Fi is

Fi =
∑4

k=1 γkGik

∑4
k=1 γk

(8)

3. Results

We divided the CT images of 706 patients into a development cohort and validation co-
hort according to the acquisition date, where the development cohort contains 592 patients
and the validation cohort contains 114 patients.

Four different kinds of networks (including ensemble model) were validated after de-
veloping according to our method, and the relevant metrics were calculated statistically; the
validation results are shown in Table 2. The results show that our developing method
exhibits satisfactory results on different networks, which illustrates the effectiveness of our
method, and in contrast to the subsequent ablation experiments, it can also be seen that our
method can effectively mitigate the label noise and class imbalance problems in the data.
In addition, our ensemble method can effectively improve the prediction accuracy and
enhance the reliability of DL model prediction results. This is like combining the opinions
of multiple specialists in the patient’s diagnosis process to arrive at a more accurate and
reliable judgment about the patient. We selected a model with good performance from
each of the four types of models and recorded their receiver operating characteristic curves
(ROC), as shown in Figure 3. We also recorded the DL model output probability of each
patient in the validation cohort (0 for low-grade, 1 for high-grade), and the results are
shown in Figure 4. For most high-grade patients, they have larger lesion areas and a more
severe condition based on CT images, and are more likely to have a greater probability
of network output. The CT images of some high-grade and low-grade patients are simi-
lar, and the probability of a corresponding network output is not significantly different.
For low-grade patients, they are more likely to have a relatively smaller network output
probability, and their CT images reflect a better condition. The percentage of patients who
were graded as low grade or high grade by the ensemble model based on their Fuhrman
grades (I, II, III, IV) is displayed in Figure 5. Figure 5 shows that the ensemble model can
accurately classify patients in grades I and II as low grade and patients in grades III and
IV as high grade, which is pathologically justified by treating grades I and II as low grade
and grades III and IV as high grade because grades I and II have relatively more similar
characteristics than grades III and IV, thus allowing the network to distinguish between
low-grade and high-grade patients.

Table 2. Results of different network models and ensemble models in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 85.5 ± 6.6 76.3 ± 1.3 82.5 ± 4.0 86.4 ± 0.2
RESNET101 77.6 ± 3.9 76.3 ± 4.0 77.1 ± 1.3 82.2 ± 0.3
REGNET400 82.9 ± 4.0 72.4 ± 1.3 79.4 ± 3.1 83.0 ± 0.1
REGNET800 84.2 ± 7.9 74.3 ± 4.6 81.0 ± 3.7 85.9 ± 0.3
ENSEMBLE 85.5 ± 1.3 75.0 ± 2.6 82.0 ± 0.1 88.2 ± 0.6

ACC = Accuracy; SEN = Sensitivity; SPC = Specificity; AUC = Area under the receiver operating
characteristic curve.
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Figure 3. Receiver operating characteristic (ROC) curve of the four different models and the
ensemble model.

We also performed a series of ablation experiments to illustrate the effectiveness
and necessity of each part of our proposed method. First, we conducted the baseline
experiments, i.e., base model experiments without self-supervised pre-training, mixed loss
strategy and sample reweighting, and the results are shown in Table 3. From Table 3, we can
see that the overall performance of the base model is poor and biased toward the low-grade
patients. The overall poor performance is mainly due to the lack of our self-supervised pre-
training method. The feature extraction ability of the network is insufficient to accurately
identify low-grade and high-grade patients, while the base models are biased toward
low-grade patients because they do not solve the label noise and class imbalance problems.

Without using the mixed loss strategy and sample reweighting approaches, we per-
formed experiments with self-supervised pretraining, and the results are shown in Table 4.
Compared with the baseline, the self-supervised pre-training method effectively improves
the performance of the models, but there is also the problem of excessive bias. Because of
the lack of mixed loss strategy and sample reweighting approaches, the network will be
more influenced by low-grade patients in the development process, i.e., the number of CT
images of low-grade patients is larger than that of high-grade patients, which will make
the network biased to low grade in the development process.

We conducted experiments with the addition of the mixed loss strategy and sample
reweighting methods without the self-supervised pre-training, and the experimental re-
sults are shown in Table 5. From Table 5, we can see that the mixed loss strategy and
sample reweighting can effectively solve the bias problem and improve the performance
of the model, which is consistent with the fact that they can effectively solve the label
noise and class imbalance problems. However, due to the lack of the self-supervised
pre-training method, different networks exhibit a large gap in the integrated level relative
to Table 2, which once again proves that our self-supervised pre-training method can
effectively improve the network feature extraction capability, thus improving the overall
network performance.

To validate the effect of different pre-training methods, we pre-trained the SE-ResNet50
model on ImageNet with other settings consistent with the experiments in Table 2. The ex-
perimental results are shown in Table 6. Compared with the ImageNet-based pre-training
method, our proposed self-supervised pre-training method achieves better experimental
results because the ImageNet dataset contains life-like images that have minimal associ-
ation with the CT images during the developing process, and our proposed pre-training
method allows the network to use the same images in the developing process as in the
pre-training process and does not reveal the original semantics of the images, which makes
the pre-training process and the developing process more relevant and thus allows the
pre-training process to better assist the developing process.

We also conducted experiments to compare our method with different traditional
machine learning methods [32] including support vector machine (SVM) [33–35],
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K-nearest neighbor (KNN), tecision tree [35], random forest [35], and gradient boosting [35].
The degree and tolerance of the SVM were 3 and 0.001. We set the number of neighbors
in KNN to 5. For the decision tree, the minimum numbers of samples required to split an
internal node and be at a leaf node are 2 and 1. The number of trees in random forest was
set to 10. The learning rate of gradient boosting was 0.1, and the number of boosting stages
to perform was 100. The experimental results are shown in Table 7. As we can see, our
method clearly outperforms all the ML methods. It is worth noting that in our experiments,
we did not introduce additional feature extraction methods for the ML methods, saving
labor to a great extent while having reliable accuracy. The poor effect of ML methods may
be due to the inability to deal with the potential noisy and imbalanced problem intrinsically
existing in the data. By contrast, our framework explores a new way to deal with these
issues with the help of the proposed mixed loss strategy and sample reweighting, providing
increased power to the common practice.

Figure 4. Network output probabilities for low-grade and high-grade patients. The left subplot is the
network output probability distribution of low-grade and high-grade patients. The right subplot is
the CT images of low-grade and high-grade patients with different network output probabilities.

Figure 5. The probability matrix of four grades of patients being predicted to low-grade and high-
grade. The subplot in the left is the result in the development cohort. The the subplot on the right is
the result in the validation cohort.
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Table 3. Performance of the four basic models in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 65.8 ± 3.7 86.3 ± 3.4 72.6 ± 2.0 78.0 ± 2.3
RESNET101 54.4 ± 13.0 85.5 ± 12.4 64.8 ± 4.7 72.5 ± 0.6
REGNET400 65.7 ± 6.4 85.1 ± 4.5 72.2 ± 2.9 76.6 ± 0.5
REGNET800 66.4 ± 4.7 79.6 ± 2.4 70.8 ± 2.5 75.8 ± 1.4

Table 4. Performance of four types of self-supervised pre-trained models without mixed loss strategy
and sample reweighting methods in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 63.1 ± 2.1 90.3 ± 2.7 72.2 ± 0.5 81.8 ± 0.8
RESNET101 68.4 ± 2.6 80.3 ± 1.3 73.4 ± 0.3 81.2 ± 0.6
REGNET400 69.3 ± 2.5 79.8 ± 1.6 72.8 ± 1.3 80.8 ± 0.2
REGNET800 62.3 ± 2.5 93.0 ± 2.5 72.5 ± 0.8 82.7 ± 0.2

Table 5. Performance of four types of basic models with mixed loss and sample reweighting methods
in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 76.2 ± 3.6 75.0 ± 1.1 75.9 ± 2.2 79.2 ± 1.1
RESNET101 73.7 ± 2.1 76.8 ± 3.3 74.7 ± 1.1 80.4 ± 0.3
REGNET400 72.8 ± 8.9 73.2 ± 10.6 72.9 ± 2.5 79.4 ± 1.1
REGNET800 75.0 ± 2.3 75.3 ± 3.0 75.1 ± 0.6 80.0 ± 0.7

Table 6. Comparison of the SE-ResNet50 model performance based on different pre-training methods
in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

ImageNet 75.0 ± 1.3 77.3 ± 3.3 75.7 ± 1.2 80.3 ± 0.8
Ours 85.5 ± 6.6 76.3 ± 1.3 82.5 ± 4.0 86.4 ± 0.2

Table 7. Performance of machine learning methods in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SVM 63.2 ± 18.9 63.2 ± 17.8 63.2 ± 6.7 62.5 ± 7.1
KNN 71.2 ± 16.0 54.6 ± 17.9 60.3 ± 7.1 65.2 ± 2.9

DecisionTree 96.1 ± 2.9 12.8 ± 3.4 40.1 ± 1.6 54.4 ± 1.0
RandomForest 61.8 ± 7.8 68.8 ± 5.7 66.4 ± 1.9 68.4 ± 3.1

GradientBoosting 63.8 ± 11.7 75.7 ± 13.0 71.7 ± 5.9 68.7 ± 4.1

Ours-Ensemble 85.5 ± 1.3 75.0 ± 2.6 82.0 ± 0.1 88.2 ± 0.6

4. Discussion

In this work, we proposed a radiologist-level diagnostic model based on DL approach
that is capable of automatically grading ccRCC patients based on CT images. We improved
the network’s capabilities using innovative self-supervised pre-training approaches. Based
on the data in our research, we also proposed solutions to the label noise and class imbalance
problems that exist in real world datasets, and the experimental results demonstrate the
effectiveness and necessity of our work.

Our best-performing DL model has a high reliability with an accuracy of 88.2% AUC,
82.0% ACC, 85.5% SEN, and 75.0% SPEC. These results confirm that our DL method
performs well or equivalent to biopsy in the grade evaluation ccRCC, with the characteris-
tics of noninvasive and labor-saving, which can offer a valuable means for ccRCC grade
stratification and individualized patient treatment.
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There are four major advantages to our research. Above all, we pre-train the model
with the same images (but different labels) as the developing process, in order to provide the
network with a better knowledge of the images before developing. Compared with [36–38]
using pre-trained models based on ImageNet, our method does not suffer from the problem
of small correlation of image contents between the pre-training and developing process,
and it allows the network to develop the same images during pre-training and developing
without revealing the original semantics of the images.

Furthermore, label noise is the common problem in medical image datasets. The label
noise problem degrades the label quality of medical images [39,40], which will make the
medical image mismatch with its real label, and have a negative effect in the development
of DL. Manually filtering all the samples undoubtedly raises labor costs, and it is inefficient
when dealing with large datasets. We have taken the mixed loss strategy for the label
noise, with no labor cost overhead but good results. The satisfactory experimental results
verify that our method can make the DL model biased toward the correct samples in
the development process. Obviously, the actual problem cannot be exactly the same for
different datasets; for example, the noise rate differs in size from one dataset to another.
Different real situations require different approaches, and we believe that our approach to
the two challenges will aid future study in this area.

In addition, class imbalance also occurs frequently in medical image datasets. The class
imbalance problem may negatively affect the performance of ML models [41] and DL mod-
els [42,43], as most classification methods assume an equal occurrence of different classes.
To address this problem, we used the sample reweighting method, which yielded promising
benefits. As can be seen from the experimental results, the sample reweighting method
effectively prevents the DL model from favoring a certain category in the development
process, that is, balance the contribution of samples with different quantity proportions to
the loss function. We also expect that our approach of the topic of class imbalance will aid
future study in this area.

Last but not leastFinally, DL models with different structures have different inde-
pendent parameters and are developed to form different perceptions of the dataset. We
combined the developed network models with various architectures and obtained more
accurate prediction. The model ensemble approach can make up for the shortcomings of
individual models in prediction, enhance the network generalization ability, and improve
the reliability of results.

In terms of practical significance, our design can help patients in remote areas to
further understand their individual conditions, assist doctors to make more accurate
clinical judgments on patients’ conditions, and to a certain extent compensate for the lack of
professional doctors and promote the treatment of patients. With sufficient and noise-free
data and reliable developing, our method can reduce or even replace patient biopsy tests,
giving patients a safer and more convenient way to be tested.

Despite the contributions of our study in grading ccRCC, it has some potential limita-
tions. The one, although we used model ensemble to improve the generalization ability of
the network. For the development of DL models, there are other more DL network architec-
tures that can be utilized, such as VGGNet [25] and GoogleNet [44], but our experiments
demonstrated the effectiveness of applying DL to the pathology grading of ccRCC patients.
Next, although all cases included in our data are confirmed by professional doctors, there
is still a certain human factor, so if our system is to be applied in practice, a large amount
of quality data is needed to improve the model in order to make the results more reliable.
The WHO/ISUP grading system has superseded the Fuhrman grading system in terms of
prognosis assessment and interpretability [45]. Lastly, we take a uniform size operation
(224 × 224 × 3) for tumor images of different sizes, which is necessary for network devel-
oping and validation, however, when such an operation is taken for images of small sizes,
it may affect the original semantics of the images, which is one of the common problems in
the image processing field.However, the intention of using cropped tumor is to exclude the
interference of irrelevant information entailed by other normal region. Such normal regions
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do not contribute positively to the grading of ccRCC. On the contrary, the redundant
information may also include a bias or shortcut that would otherwise enforce the model
solving a problem differently than intended. For example, there is an observation that the
network has learned to detect a metal token that radiology technicians place on the patient
in the corner of the image field of view at the time they capture the image in [46].

For the clinical validation of our method, we also look forward to applying our al-
gorithm to real world practice to protect patients from suffering of biopsies as many as
possible. However, unfortunately, such a method needs special approval from correspond-
ing authorities, which cannot be easily acquired within short notice. We will positively try
this in our future work. In addition, we hope to research a better algorithm to solve the
semantic loss problem caused by fixing all images to a uniform size in DL.

5. Conclusions

In this paper, we proposed a DL model that can effectively discriminate different
grades of ccRCC patients. Based on the innovative self-supervised pre-training method,
different semantics are assigned to the images so that the same images can be used in the pre-
training and development tasks, which allows the network to have certain feature extraction
capabilities before developing and does not make the pre-training task fragmented from
the development task. In addition, we improved the accuracy of the model based on
our proposed self-supervised pre-training method and alleviated the effects of label noise
and class imbalance problems commonly found in the dataset and the necessity and
effectiveness of the proposed method are proved by ablation experiments. With richer and
cleaner samples and sufficient developing, the model may become a routine clinical tool to
reduce the emotional and physical toll of biopsy on patients.
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Simple Summary: Despite their prevalence in research, ML tools that can predict glioma grade from
medical images have yet to be incorporated clinically. The reporting quality of ML glioma grade
prediction studies is below 50% according to TRIPOD—limiting model reproducibility and, thus,
clinical translation—however, current efforts to create ML-specific reporting guidelines and risk of
bias tools may help address this. Several additional deficiencies in the areas of ML model data and
glioma classification hamper widespread clinical use, but promising efforts to overcome current
challenges and encourage implementation are on the horizon.

Abstract: Technological innovation has enabled the development of machine learning (ML) tools
that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-
oncology have expanded significantly, with the pre-operative prediction of glioma grade using
medical imaging as a specific area of interest. We introduce the subject of ML models for glioma
grade prediction by remarking upon the models reported in the literature as well as by describing
their characteristic developmental workflow and widely used classifier algorithms. The challenges
facing these models—including data sources, external validation, and glioma grade classification
methods —are highlighted. We also discuss the quality of how these models are reported, explore
the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the
reporting of prospective works. Finally, this review offers insights into next steps that the field of ML
glioma grade prediction can take to facilitate clinical implementation.

Keywords: artificial intelligence; glioma; machine learning; deep learning; reporting quality

1. Introduction

1.1. Artificial Intelligence, Machine Learning, and Radiomics

Innovations in computation and imaging have rapidly enhanced the potential for
artificial intelligence (AI) to impact diagnostic neuroradiology. Emerging areas of imple-
mentation include AI in stroke (e.g., early diagnosis, detection of large vessel occlusion,
and outcome prediction) [1], AI in spine (fracture detection, and vertebrae segmentation)
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and detection of intracranial aneurysms and hemorrhage [2], among other disciplines.
Machine learning (ML) and its subfield, deep learning (DL), are branches of AI that have
received particular attention. ML algorithms, including DL, decipher patterns in input data
and independently learn to make predictions [3]. The advent of radiomics—which mines
data from images by transforming them into features quantifying tumor phenotypes—has
fueled the application of ML methods to imaging, including radiomics-based ML analysis
of brain tumors [4–6]. Commonly extracted radiomic features include shape and size,
texture, first-order, second-order, higher-order features, etc. (Table 1).

1.2. Machine Learning Applications in Neuro-Oncology

As the most common primary brain tumors, gliomas constitute a major focus of ML
applications to neuro-oncology [7,8]. Prominent domains of glioma ML research include
the image-based classification of tumor grade and prediction of molecular and genetic
characteristics. Genetic information is not only instrumental to tumor diagnosis in the 2021
World Health Organization classification, but also significantly affects survival and under-
pins sensitivity to therapeutic interventions [9,10]. ML-based models for predicting tumor
genotype can therefore guide earlier diagnosis, estimation of prognosis, and treatment-
related decision-making [11,12]. Other significant areas of glioma ML research relevant to
neuroradiologists include automated tumor segmentation on MRI, detection and prediction
of tumor progression, differentiation of pseudo-progression from true progression, glioma
survival prediction and treatment response, distinction of gliomas from other tumors and
non-neoplastic lesions, heterogeneity assessment based on imaging features, and clinical
incorporation of volumetrics [13–15]. Furthermore, ML tools may optimize neuroradiology
workflow by expediting the time to read studies from image review to report genera-
tion [16]. As an image interpretation support tool, ML importantly may improve diagnostic
performance [17,18]. Prior works demonstrate that AI alone can approach the diagnostic
accuracy of neuroradiologists and other sub-specialty radiologists [19–21].

1.3. Image-Based Machine Learning Models for Glioma Grading

This review is concerned with the growing body of studies developing predictive
ML models for image-based glioma grading, a fundamentally heterogeneous area of
literature. While numerous ML models exist to predict high-grade gliomas and low-grade
gliomas, they vary in their definitions of high- and low-grade [22–24]. Other models predict
individual glioma grades (e.g., 2 vs. 3, 3 vs. 4), but few have combined glioma grading with
molecular classification despite the incorporation of both grade and molecular subtype in
2016 World Health Organization central nervous system tumor classification [25,26]. While
studies focus on MRI, they are diverse in the sequences used for prediction, with earlier
publications relying on conventional imaging and increasing incorporation of advanced
MRI sequences throughout the years [27–30]. Finally, studies vary considerably in their
feature extraction and selection methods, datasets, validation techniques, and classification
algorithms [31].

It is our belief that the ML models with potential to support one of the most fundamen-
tal tasks of the neuroradiologist—glioma diagnosis—present obstacles and opportunities
relevant to the radiology community, especially as radiologists endeavor to bring ML
models into clinical practice. In this article, we aim to introduce the subject of developing
ML models for glioma grade prediction, highlight challenges facing these models and
their reporting within the literature, and offer insights into next steps the field can take to
facilitate clinical implementation.

2. Workflow for Developing Prediction Models

Despite their heterogeneity, ML glioma grade prediction studies follow similar steps in
developing their models. The development workflow starts with acquisition, registration,
and pre-processing (if necessary) of multi-modal MR images. Common pre-processing tasks
include data cleaning, normalization, transformation, and dealing with incomplete data,
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among other tasks [32]. An in-depth exploration of pre-processing is beyond the scope of
this review and readers should refer to Kotsiantis et al. for further explanation. Next, tumors
undergo segmentation—the delineation of tumor, necrosis, and edema borders—which can
be a manual, semi-automatic, or fully automatic process. Manual segmentations rely on
an expert delineating and annotating Regions of Interest (ROIs) by hand. Semi-automated
segmentations generate automated ROIs that need to be checked and modified by experts.
Fully automatic segmentations, on the other hand, are DL-generated (most frequently by
convolutional neural networks (CNNs)), which automatically delineate ROIs and omit the
need for manual labor [33]. In general, semi-automated segmentations are considered to
be more reliable and transparent than fully automatic segmentations. However, they are
less time-efficient than automatic segmentations and always require manual input from
experts in the field. Whereas manual segmentation is laborious, time-consuming, and
subject to inter-reader variability, fully automatic deep-learning generated segmentations
may potentially overcome these challenges [34].

Feature extraction is then performed to extract qualitative and quantitative information
from imaging. Commonly extracted data include radiomic features (shape, first-order,
second-order, higher-order features, etc.), clinical features (age, sex, etc.), and tumor-
specific Visually AcceSAble Rembrandt Images (VASARI) features. Feature types and their
explanations are presented in Table 1.

Table 1. Overview of commonly extracted feature types in studies developing ML prediction models.

Feature Type Explanation

Clinical Describe patient demographics, e.g., gender and age.

Deep learning extracted Derived from pre-trained deep neural networks.

First-order
Create a three-dimensional (3D) histogram out of tumor volume

characteristics, from which mean, median, range, skewness,
kurtosis, etc., can be calculated [35].

Higher-order Identify repetitiveness in image patterns, suppress noise, or
highlight details [35].

Qualitative
Describe visible tumor characteristics on imaging using

controlled vocabulary, e.g., VASARI features (tumor location,
side of lesion center, enhancement quality, etc.).

Second-order
Classify texture characteristics, e.g., contrast, correlation,
dissimilarity, maximum probability, grey level run length

features, etc. [35]

Shape and size
Describe the statistical inter-relationships between neighboring

voxels, e.g., total volume or surface area, surface-to-volume
ratio, tumor compactness, sphericity, etc. [35]

Open-source packages such as PyRadiomics have been developed as a reference stan-
dard for radiomic feature extraction [36]. Clinical features are known to be important
markers for predicting glioma grades and molecular subtypes [37]. VASARI features,
developed by The Cancer Imaging Archive (TCIA), are frequently found in studies that
qualitatively describe tumor morphology using visual features and controlled vocabu-
lary/standardized semantics [38].

Current technology permits extraction of over 1000 features per image. As a high
number of features may lead to model overfitting, model developers commonly reduce the
number of features used through feature selection. Feature selection methods, including
Filter, Wrapper, and Embedded methods, remove non-informative features that reduce the
model’s overall performance [39].

The final set of features is fed into a glioma grade classification algorithm(s)—for
example, support vector machine (SVM) and CNN—during the training process. The
classifier performance is then measured through performance metrics such as accuracy, area
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under the curve receiver operating characteristic, sensitivity, specificity, positive predictive
value, negative predictive value, and F1 score. The model is validated internally, usually
through hold-out or cross-validation techniques. Ideally, the model is externally validated
as a final step to ensure reproducibility, generalizability, and reliability in a different setting
(Figure 1).

Figure 1. Characteristic workflow for developing ML glioma grade prediction models.
VASARI = Visually AcceSAble Rembrandt Images, AUC = area under the curve receiver operat-
ing characteristic, CNN = convolutional neural network, ML = machine learning, NPV = negative
predictive value, PPV = positive predictive value, and SVM = support vector machine.

3. Algorithms for Glioma Grade Classification

The most common high-performing ML classifiers for glioma grading in the literature
are SVM and CNN [13]. SVM is a classical ML algorithm that represents objects as points in
an n-dimensional space, with features serving as coordinates. SVMs use a hyperplane, or an
n-1 dimensional subspace, to divide the space into disconnected areas [40]. These distinct
areas represent the different classes that the model can classify. Unlike CNNs, SVMs require
hand-engineered features, such as from radiomics, to serve as inputs. This requirement
may be advantageous for veteran diagnostic imagers, whose knowledge of brain tumor
appearance may enhance feature design and selection. Hand-engineered features also can
undergo feature reduction to mitigate the risks of overfitting, and prior works demonstrate
better performance for glioma grading models using a smaller number of quantitative
features [41]. However, hand-engineered features are limited since they cannot be adjusted
during model training, and it is uncertain if they are optimal features for classification.
Moreover, hand-engineered features may not generalize well beyond the training set and
should be tested extensively prior to usage [42,43].

CNNs are a form of deep learning based on image convolution. Images are the direct
inputs to the neural network, rather than the manually engineered features of classical
ML. Numerous interconnected layers each compute feature representations and pass them
on to subsequent layers [43,44]. Near the network output, features are flattened into a
vector that performs the classification task. CNNs appeared for glioma grading in 2018 and
have risen quickly in prevalence while exhibiting excellent predictive accuracies [45–48].

68



Cancers 2022, 14, 2623

To a greater extent than classical ML, they are suited for working with large amounts of
data, and their architecture can be modified to optimize efficiency and performance [46].
Disadvantages include the opaque “black box” nature of deep learning and associated
difficulty with interpreting model parameters, along with problems that variably apply to
classical ML as well (e.g., high amount of time and data required for training, hardware
costs, and necessary user expertise) [49,50].

In our systematic review of 85 published ML studies developing models for image-
based glioma grading, we found SVM and CNN to have mean accuracies of 90% and 91%,
respectively [51]. Mean accuracies for these algorithms were similar across classification
tasks regardless of whether the classification was binary or multi-class (e.g., 90% for the 24
studies whose best models performed binary classification of grades 1/2 vs. 3/4 compared
to 86% for the 5 studies classifying grade 2 vs. 3 vs. 4). No consensus has been reached
regarding the optimal ML algorithm for image-based glioma classification.

4. Challenges in Image-Based ML Glioma Grading

4.1. Data Sources

Since 2011, a significant number of ML glioma grade prediction studies have used
open-source multi-center datasets to develop their models. BraTS [52] and TCIA [53]
are two prominent public datasets that contain multi-modal MRI images of high- and
low-grade gliomas and patient demographics. BraTS was first made available in 2012,
with the 2021 dataset containing 8000 multi-institutional, multi-parametric MR images of
gliomas [52]. TCIA first went online in 2011 and contains MR images of gliomas collected
across 28 institutions [53]. These datasets were developed with the aim of providing a
unified multi-center resource for glioma research. A variety of predictive models have
been trained and tested on these large datasets since their 2011 release [54]. Despite their
value as public datasets for model development, several limitations should be consid-
ered. Images are collected across multiple institutions with variable protocols and image
quality. Co-registration and imaging pre-processing integrate these images into a single
system. Although these techniques are necessary, they may reduce heterogeneity within the
datasets [52]. Models developed on these datasets may perform well in training and testing.
Nevertheless, the results may not be reproducible in the real-world clinical setting, where
images and tumor presentations are heterogeneous. We strongly support large multi-center
datasets in order to demonstrate model performance across distinct hospital settings. We,
however, recommend such initiatives incorporate images of various diagnostic qualities
into their training datasets, which more closely resemble what is seen in daily practice.

4.2. External Validation

Publications have reported predictive models for glioma grading throughout the
last 20 years with the majority relying on internal validation techniques, of which cross-
validation is the most popular. While internal validation is a well-established method for
measuring how well a model will perform on new cases from the initial dataset, additional
evaluation on a separate dataset (i.e., external validation) is critical to demonstrate model
generalizability. External validation mitigates site bias (differences amongst centers in pro-
tocols, techniques, scanner variability, level of experience, etc.) and sampling/selection bias
(performance only applicable to the specific training set population/demographics) [55].
Not controlling for these two major biases undermines model generalizability, yet few
publications externally validate their models [13]. Therefore, normalizing external valida-
tion is a crucial step in developing glioma grade prediction models that are suitable for
clinical implementation.

4.3. Glioma Grade Classification Systems

The classification of glioma subtypes into high- and low-grade gliomas is continuously
evolving. In 2016, an integrated histological–molecular classification replaced the previous
purely histopathological classification [56]. In 2021, the Consortium to Inform Molecular
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and Practical Approaches to CNS Tumor Taxonomy (cIMPACT NOW) once more accen-
tuated the diagnostic value of molecular markers, such as the isocitrate dehydrogenase
mutation, for glioma classification [57]. As a result of the evolving glioma classification
system, definitions for high- and low-grade gliomas vary across ML glioma grade predic-
tion studies and publication years. This reduces the comparability of models themselves
and grade-labeled datasets used for model development. We recommend future glioma
grade prediction studies focus on both glioma grade and molecular subtypes for more
comprehensive and reliable results over time. Neuropathologic diagnostic emphasis has
shifted from purely based on microscopic histology to one that combines morphologic and
molecular genetic features of tumor including gene mutations, chromosomal copy number
alterations, and gene rearrangements to yield integrated diagnosis. Rapid developments
in next generation sequencing techniques, multimodal molecular analysis, large scale ge-
nomic and epigenomic analyses, and DNA methylation methods promise to fundamentally
transform the pathologic CNS tumor diagnostics including glioma diagnosis and grading
to whole another level of precision and complexity.

Current and future ML methods must keep abreast of the rapid progress in tissue
based integrated diagnostics in order to contribute to and make an impact on the clinical
care of glioma patients (Figure 2).

Figure 2. Challenges for clinical implementation of ML glioma grade prediction models.
ML = machine learning. WHO = World Health Organization.

4.4. Reporting Quality and Risk of Bias
4.4.1. Overview of Current Guidelines and Tools for Assessment

It is critical that studies detailing prediction models, such as those for glioma grading,
exhibit a high caliber of scientific reporting in accordance with consensus standards. Clear
and thorough reporting enables more complete understanding by the reader and unam-
biguous assessment of study generalizability, quality, and reproducibility, encouraging
future researchers to replicate and use models in clinical contexts. Several instruments
have been designed to improve the reporting quality (defined here as the transparency
and thoroughness with which authors share key details of their study to enable proper
interpretation and evaluation) of studies developing models. The Transparent Report-
ing of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)
Statement was created in 2015 as a set of recommendations for studies developing, val-
idating, or updating diagnostic or prognostic models [58]. The TRIPOD Statement is a
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checklist of 22 items considered essential for transparent reporting of a prediction model
study. In 2017, with a concurrent rise in radiomics-based model studies, the radiomics
quality score (RQS) emerged [59]. RQS is an adaptation of the TRIPOD approach geared
toward a radiomics-specific context. The tool has been used throughout the literature
for evaluating the methodological quality of radiomics studies, including applications to
medical imaging [60]. Radiomics-based approaches for interpreting medical images have
evolved to encompass the AI techniques of classical ML and, most recently, deep learning
models. Most recently, in recognition of the growing need for an evaluation tool specific
to AI applications in medical imaging, the Checklist for AI in Medical Imaging (CLAIM)
was published in 2020 [61]. The 42 elements of CLAIM aim to be a best practice guide for
authors presenting their research on applications of AI in medical imaging, ranging from
classification and image reconstruction to text analysis and workflow optimization. Other
tools—the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [62] and
Prediction model Risk Of Bias ASsessment Tool (PROBAST) [63]—importantly evaluate the
risk of bias in studies based on what is reported about their models (Table 2). Bias relates
to systematic limitations or flaws in study design, methods, execution, or analysis that
distort estimates of model performance [62]. High risk of bias discourages adaptation of the
reported model outside of its original research context, and, at a systemic level, undermines
model reproducibility and translation into clinical practice.

Table 2. Overview of major reporting guidelines and bias assessment tools for diagnostic and
prognostic studies.

Guideline/Tool Full Name Year Published Articles Targeted Purpose Specific to ML?

QUADAS-2 4

Quality
Assessment of

Diagnostic
Accuracy Studies

2011 (original
QUADAS 4: 2003)

Diagnostic
accuracy studies

Evaluates study
risk of bias and

applicability

No; QUADAS-AI 4

is in development

TRIPOD 6

Transparent
Reporting of a
multivariable

prediction model
for Individual
Prognosis Or

Diagnosis

2015

Studies
developing,

validating, or
updating a

diagnostic or
prognostic

prediction model

Provides a set of
recommendations
for study reporting

No; TRIPOD-AI 6

is in development

RQS 5 Radiomics quality
score 2017 Radiomic studies

Assesses study
quality (emulating

TRIPOD 6)
No

PROBAST 3
Prediction model

Risk Of Bias
ASsessment Tool

2019

Studies
developing,

validating, or
updating a

diagnostic or
prognostic

prediction model

Evaluates study
risk of bias and

applicability

No; PROBAST-AI 3

is in development

CLAIM 2
Checklist for AI 1

in Medical
Imaging

2020 AI 1 studies in
medical imaging

Guides authors in
presenting (and

aids reviewers in
evaluating) their

research

Yes

1 AI = artificial intelligence, 2 CLAIM = Checklist for AI in Medical Imaging, 3 PROBAST = Prediction model Risk
Of Bias ASsessment Tool, 4 QUADAS-2 = Quality Assessment of Diagnostic Accuracy Studies, 5 RQS = radiomics
quality score, and 6 TRIPOD = Transparent Reporting of a multivariable prediction model for Individual Prognosis
or Diagnosis.
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4.4.2. Reporting Quality and Risk of Bias in Image-Based Glioma Grade Prediction

Assessments of ML-based prediction model studies have demonstrated that risk of
bias is high and reporting quality is inadequate. In their systematic review of prediction
models developed using supervised ML techniques, Navarro et al. found that the high
risk of study bias, as assessed using PROBAST, stems from small study size, poor handling
of missing data, and failure to deal with model overfitting [64]. Similar findings have
been reported for glioma grade prediction literature. In our prior study conducting a
TRIPOD analysis of more than 80 such model development studies, we report a mean
adherence rate to TRIPOD of 44%, indicating poor quality of reporting [51]. Areas for
improvement included reporting of titles and abstracts, justification of sample size, full
model specification and performance, and participant demographics, and missing data.
Sohn et al.’s meta-analysis of radiomics studies differentiating high- and low-grade gliomas
estimated a high risk of bias according to QUADAS-2, attributing this to the fact that all
their analyzed studies were retrospective (and have the potential for bias because patient
outcomes are already known), the lack of control over acquisition factors in the studies
using public imaging data, and unclear study flow and timing due to poor reporting [41].
Readers should refer directly to Navarro et al., Bahar et al. and Sohn et al. for more detailed
discussion of shortcomings in study reporting and risk of bias.

4.4.3. Future of Reporting Guidelines and Risk of Bias Tools for ML Studies

Efforts by authors to refine how they report their studies depend upon existing report-
ing guidelines. In their systematic review, Yao et al. identified substantial limitations to
neuroradiology deep learning reporting standardization and reproducibility [65]. They
recommended that future researchers propose a reporting framework specific to deep learn-
ing studies. This call for an AI-targeted framework parallels contemporary movements to
produce AI extensions of established reporting guidelines. TRIPOD creators have discussed
the challenges with ML not captured in the TRIPOD Statement [66]. The introduction of
more relevant terminology and movement away from regression-based model approaches
will be a part of the forthcoming extension of TRIPOD for studies reporting ML-based
diagnostic or prognostic models (TRIPOD-AI) [66,67]. QUADAS-2 creators also announced
a plan for an AI-extension (QUADAS-AI), noting that their tool similarly does not accom-
modate AI-specific terminology and further documenting sources of AI study bias that are
not signaled by the tool [68]. PROBAST-AI is in development too [66].

4.4.4. Recommendations

Systematic reviews and meta-analyses in the field [41,51,64] reveal various aspects of
reporting and bias risk that need to be addressed in order to promote complete understand-
ing, rigorous assessment, and reproducibility of image-based ML glioma grading studies.
Based on the problems identified in this literature (discussed in 4.4.2), we encourage future
works to closely adhere to the reporting and risk of bias tools and guidelines most relevant
to them, with particular attention to:

• Clearly signifying the development of a prediction model in their titles;
• Increasing the number of participants included in training/testing/validation sets;
• Justifying their choice of sample/sample size (whether that be on practical or logistical

grounds) and approach to handling missing data (e.g., imputation);
• Specifying all components of model development (including data pre-processing and

model calibration) and a full slate of performance metrics (accuracy, area under the
receiver operating characteristic curve (AUC), sensitivity, specificity, positive predic-
tive value, negative predictive value, and F1 score as well as associated confidence
intervals) for training/testing/validation. While accuracy is the most comprehensive
measure of model performance, AUC is more sensitive to performance differences
between classes (e.g., within imbalanced datasets) and should always be reported [69];

• Providing open access to the source code of their algorithms.
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For prediction model studies that involve applications of AI to medical imaging,
CLAIM is the only framework that is specific to AI and able to capture the nuances of their
model reporting—including data preprocessing steps, model layers/connections, software
libraries and packages, initialization of model parameters, performance metrics of models
on all data partitions, and public access to full study protocols. We, therefore, recommend
future studies developing ML models for the prediction of glioma grade from imaging
use CLAIM to guide how they present their work. The authors should remain vigilant
regarding the release of other AI-specific frameworks that may best suit their studies and
seek out AI-specific risk of bias tools to supplement CLAIM once available.

5. Future Directions

ML models present an attractive solution towards overcoming current barriers and
accelerating the transition to patient-tailored treatments and precision medicine. Novel
algorithms combine information derived from multimodal imaging to molecular markers
and clinical information, with the aim of bringing personalized predictions on a patient
level into routine clinical care. Relatedly, multi-omic approaches that integrate a variety of
advanced techniques such as proteomics, transcriptomics, epigenomics, etc., are increas-
ingly gaining importance in understanding cancer biology and will play a key role in the
facilitation of precision medicine [70,71]. The growing presence of ML models in research
settings is indisputable, yet several strategies should be considered to facilitate clinical
implementation: PACS-based image annotation tools, data-sharing and federated learning,
ML fairness, ML transparency, and FDA clearance and real-world use (Figure 3).

Figure 3. Future directions for clinical implementation of ML glioma grade prediction models,
ML = machine learning.

5.1. PACS-Based Image Annotation Tools

Large, annotated datasets that are tailored to the patient populations of individual
hospitals and practices are key to training clinically applicable prediction algorithms. An
end-to-end solution for generation of these datasets, in which all steps of the ML workflow
are performed automatically in clinical picture archiving and communication system (PACS)
as the neuroradiologist reads a study, is considered the “holy grail” of AI workflow in
radiology [72]. A mechanism for achieving this is through automated/semi-automated
segmentation, feature extraction, and prediction algorithms embedded into clinical PACS

73



Cancers 2022, 14, 2623

that provide reports in real-time. The accumulation of saved segmentations through
this workflow could accelerate the generation of large, annotated datasets, in addition
to providing a decision-support tool for neuroradiologists in daily practice. Under these
circumstances, establishing strong academic-industry partnerships for the development of
clinically useful image annotation tools is fundamental.

5.2. Data-Sharing and Federated Learning

Multi-institutional academic partnerships are also critical for maximizing clinical
applications of ML. Data-sharing efforts are under way in order to accelerate the pace of
research [73]. Cross-institutional collaborations not only enrich the quality of the input
that goes into training the model, but also provide datasets for externally validating other
institutions’ models. However, data-sharing across institutions is often hindered by tech-
nical, regulatory, and privacy concerns [74]. A promising solution for this is federated
learning, an up-and-coming collaborative algorithm training effort that does not require
cross-institutional data-sharing. In federated learning, models are trained locally inside
an institution’s firewalls and learned weights or gradients are transferred from partici-
pating institutions for aggregation into a more robust model [75]. This overcomes the
barriers of data-sharing and has been shown to be superior to algorithms trained on single-
center datasets [76]. Federated learning is not without drawbacks, however; it depends
on existing standards for data quality, protocols, and heterogeneity of data distribution.
Researchers do not have access to model training data and may face difficulty interpreting
unexpected results.

5.3. ML Fairness

A common misconception about AI algorithms is that they are not vulnerable to biases
during decision-making. In reality, algorithm unfairness—defined as prejudice or discrimi-
nation that skews decisions toward individuals or groups based on their characteristics—
has been extensively documented across AI applications. A well-known example is the
Correctional Offender Management Profiling for Alternative Sanctions score, which was a
tool that assisted judges with their decision to release an offender or keep them in prison.
The software was found to be biased towards African Americans, judging them to be at
higher risk for recommitting crimes compared to Caucasian individuals [77]. Additional ex-
amples of bias have been demonstrated across widely deployed biobanks [78], clinical trial
accrual populations [79] and ICU mortality and 30-day psychiatric readmission prediction
algorithms [80] among other medical domains. Publicly available tools, including Fairlearn
and AI Fairness 360, assess and correct for algorithm unfairness ranging from allocation
harms and quality of service harms to feature and racial bias [81,82]. These tools have yet
to be applied widely in medical contexts despite their promising utility. Future works on
AI in neuro-oncology should consider implementing evidence-based bias detection and
mitigation tools tailored to their algorithm development setting and target population prior
to clinical integration.

5.4. ML Transparency

The opaqueness of ML models—DL in particular—poses a barrier to their acceptance
and usage. In addition, traditional measures such as software validation are insufficient
for fulfilling legal, compliance, and/or other requirements for ML tool clarification [83,84].
Explainable artificial intelligence (xAI) approaches may address these concerns by explain-
ing particular prediction outputs and overall model behavior in human-understandable
terms [85]. A recent study demonstrates the successful use of state-of-the-art xAI libraries
incorporating visual analytics for glioma classification [83]. Other approaches such as
Grad-CAM generate visual explanations of DL model decisions and, therefore, enhance
algorithm transparency [86]. These tools can support the interpretability of ML model
outputs for future research as well as prime ML for dissemination and acceptance in clinical
neuroradiology. Guidelines for authors, along with reporting quality assessment and risk
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of bias tools, should consider encouraging such approaches to further the transparency of
literature in the field.

Of relevance to ML model transparency are the concepts of usability and causability.
Usability can be defined as the ease of use of a computer system for users, or in other
words, the extent to which a user and a system may communicate through an interface
without misunderstanding [87,88]. Highly usable tools are associated with positive user
satisfaction and performance in the field of human–computer interaction [89]. Causability
is a parallel concept to usability and foundational for human–AI interaction. Causability
reflects the understandability of an AI model (e.g., CNN) to a human as communicated
by an explanation interface [89]. Causability, furthermore, determines relative importance
and justifies what should be explained and how [90]. Embracing causability in the develop-
ment of human–AI interfaces will help people understand the decision-making process
of ML algorithms and improve trust. We believe this will lower the threshold for clinical
ML utilization.

5.5. FDA Clearance and Real-World Use

Thousands of studies pertaining to applications of AI and ML in medical imaging
have been published [15,82]. Yet, few imaging AI/ML algorithms have been cleared by
the FDA as medical products [91], perhaps due in part to the lack of standardization
and transparency in the FDA clearance process [92]. Bridging the gap between AI/ML
research and FDA clearance—as well as FDA clearance and real-world algorithm use—will
streamline the adoption of ML models for glioma grading into clinical settings. To this end,
Lin presents several suggestions [93]. Partnering of the FDA with professional societies
could facilitate the standardization of algorithm development and evaluation. A key focus
would be resolving the split between how results are communicated in the literature (e.g.,
performance metrics) and what is relevant for AI product assessment (e.g., return on
investment, integration and flexibility with PACS, ease of use, etc.). Moreover, reporting of
post-marketing surveillance could help real-world use and algorithm performance drift.

6. Conclusions

ML glioma grade prediction tools are increasingly prevalent in research but have yet
to be incorporated clinically. The reporting quality of ML glioma grade prediction studies
is low, limiting model reproducibility and thus preventing reliable clinical translation.
However, current efforts to create ML-specific reporting guidelines and risk of bias tools
may help address these issues. Future directions for supporting clinical implementation
of ML prediction models include data-sharing, federated learning, and development of
PACS-based image annotation tools for the generation of large image databases, among
other opportunities.
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Simple Summary: In the past, radiomics studies of nasopharyngeal carcinoma (NPC) were only
based on basic MR sequences. Previous studies have shown that radiomics methods based on
T2-weighted imaging and contrast-enhanced T1-weighted imaging have been successfully used to
improve the prognosis of patients with nasopharyngeal carcinoma. The purpose of this study was
to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar
diffusion-weighted imaging (RESOLVE-DWI) which quantitatively reflects the diffusion motion of
water molecules for prognosis evaluation in nasopharyngeal carcinoma. Several prognostic radiomics
models were established by using diffusion-weighted imaging, apparent diffusion coefficient maps,
T2-weighted and contrast-enhanced T1-weighted imaging to predict the risk of recurrence or metasta-
sis of nasopharyngeal carcinoma, and the predictive effects of different models were compared. The
results show that the model based on MRI DWI can successfully predict the prognosis of patients
with nasopharyngeal carcinoma and has higher predictive efficiency than the model based on the
conventional sequence, which suggests MRI DWI-radiomics can provide a useful and alternative
approach for survival estimation.

Abstract: Purpose: This study aimed to explore the predictive efficacy of radiomics analyses based
on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis eval-
uation in nasopharyngeal carcinoma in order to provide further information for clinical decision
making and intervention. Methods: A total of 154 patients with untreated NPC confirmed by patho-
logical examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including
diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging
(T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest
(RF) algorithm selected radiomics features and established the machine-learning models. Five models,
namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4
(DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The
average area under the curve (AUC) of the validation set was determined in order to compare the
predictive efficacy for prognosis evaluation. Results: After adjusting the parameters, the RF machine
learning models based on extracted imaging features from different sequence combinations were
obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80
(95% CI: 0.79–0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95%
CI: 0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74 (95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76), respec-
tively. Conclusion: A radiomics model derived from the MRI DWI of patients with nasopharyngeal
carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model
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based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more
information for clinical decision-making and intervention.

Keywords: radiomics; nasopharyngeal carcinoma; diffusion-weighted imaging; prognostic
prediction; heterogeneity

1. Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with distinctive geo-
graphic distribution [1]. Over 130,000 patients were newly diagnosed with NPC in 2020,
among which more than 70% were located in East and South East Asia [1,2]. Even with
advancements in screening and treatments, approximately 5–15% of patients exhibit local
recurrence, and 15–30% of NPC patients experience metastatic spread after standard treat-
ment [3]. Therefore, identifying the reliable predictive factors associated with prognosis
is necessary. In the last few decades, tumor heterogeneity has continued to be a crucial
factor influencing prognosis [4]. At present, the clinical formulation of treatment primarily
depends on the TNM staging system. However, similar clinical treatment can result in
distinct clinical outcomes for NPC patients with the same TNM stage [5], indicating that
the system merely reflects the anatomic invasion and fails to adequately unmask tumor
heterogeneity.

Moreover, some specific blood metabolites or cellular and genetic parameters are
used to predict the prognosis of nasopharyngeal carcinoma patients, such as EBV-DNA,
LDH, ALP, HOPX, miRNAs, and gene expression, etc. [6–10]. Importantly, EBV-DNA
and several pretreatment inflammatory biomarkers have been considered as independent
prognostic factors for patients with NPC, including lymphocyte and neutrophil counts, and
the neutrophil-to-lymphocyte ratio (NLR), etc. [11]. Nevertheless, the former biomarkers
present instability and non-specificity, whereas the routine application of the latter param-
eter modality is restricted by the expensive cost. Therefore, a low-cost, convenient, and
accurate approach that can evaluate heterogeneity and prognosis is urgently needed.

The radiomics technique has emerged as a promising approach to the conversion of
images into high-dimensional and quantitative features [12]. Radiomics analysis based
on clinical images can provide additional information about tumor heterogeneity steadily
and accurately, and can thus offer clinical support for decision making, thereby improv-
ing tumor treatment with an economic and non-invasive approach [13]. The radiomics
model based on MRI to predict the prognosis of patients with nasopharyngeal carcinoma
has been observed, and has exported great value in risk stratification and prognosis eval-
uation [14–16]. However, related studies only extract image features from basic MRI
sequences. As a functional imaging technique, DWI can quantitatively demonstrate the
diffusion motion of water molecules in the tissue microenvironment, and can detect tissue
cellularity, microstructures, and microvasculature at the sub-voxel level, thereby revealing
additional internal features of the tumor in order to uncover vital prognostic informa-
tion [17]. It has been frequently used in clinical trials to report on differential diagnosis,
staging, therapeutic evaluation, and prognostic prediction in oncology [18].

In the past, DWI images suffered from insufficient image quality, including obvious
artifacts, limited resolution, and blurred images, which may hinder their routine application
in radiomics in the head and neck [19]. However, readout-segmented imaging (RS-EPI)
approaches have now been introduced to perform high-resolution diffusion-weighted
MRI (HR-DWI), and have greatly improved image quality with a higher resolution and
fewer artifacts than the extensively adopted single-shot imaging (SS-EPI) DWI [20]. This
improvement is achieved by shortening the data-acquisition time and dividing the k-space
into multiple interleaved acquisitions in order to diminish the accumulation of phase errors
in the phase-encoding direction. Previous studies have shown that a radiomics model
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based on DWI MRI can accurately reveal the individual prognosis in several cancers, such
as bladder, hepatocellular, and prostate cancers [21–23].

According to the literature searched, whether radiomics based on a DWI sequence
can extract the tumor heterogeneity of nasopharyngeal carcinoma and evaluate the risk of
recurrence and metastasis remains uncertain. Accordingly, we performed the present study
to visualize the heterogeneity and disclose the prognosis of nasopharyngeal carcinoma
through radiomics analyses based on the RESOLVE-DWI sequence. Furthermore, we
sought to compare and combine the radiomics model based on the RESOLVE-DWI sequence
and conventional sequence (T2WI and CE-T1WI) in order to provide more clinical decision-
making and intervention information.

2. Materials and Methods

2.1. Patients

Approval for this retrospective study was obtained from the Ethics Review Committee
of the Fifth Affiliated Hospital of Sun Yat-sen University (ClinicalTrials.gov Identifier:
NCT05112510). The Committee exempted the informed consent concurrently. A total of
154 patients with untreated NPC confirmed by pathological examination between March
2014 and June 2018 were enrolled, including 15 patients with local or regional tumor
recurrence and 28 patients with distant metastasis (1 of the patients had local recurrence
and metastases simultaneously).

The collected clinical features included age, gender, tumor size (T), nodal status (N),
metastases (M), TNM staging, and histological subtypes. The staging was based on the
Eighth American Joint Committee on Cancer TNM staging manual [24]. According to
the criteria from the World Health Organization (WHO), the histological subtypes were
classified into three patterns: keratinizing squamous cell carcinoma (type I), nonkeratinizing
differentiated carcinoma (type II), and nonkeratinizing undifferentiated carcinoma (type
III) [25].

2.2. Inclusion and Exclusion Criteria

The eligibility criteria for patient enrollment were as follows: (1) patients with NPC
confirmed by pathological examination; (2) patients with complete MR images and clinical
data; (3) patients who did not receive chemotherapy, radiotherapy, or surgery before their
MRI scans. Patients were removed by applying the following exclusion criteria: (1) the
periodical follow-up data were incomplete; (2) poor image quality; and (3) patients with a
concomitant or previous history of cancer.

2.3. Endpoints

Failure-free survival (FFS) was defined as the primary endpoint in this study, and
it was considered from the first date of the MR scan, and ended with the progression.
Local recurrence was diagnosed through pathological examinations. If any medical report
indicated distant metastasis, the suspected site of involvement was subjected to extra
histological confirmation. In the case of failed biopsy or no biopsy, regular follow-up was
attempted. Distant metastasis was diagnosed when the enlargement of the lesions was
observed.

2.4. MRI Acquisition

All 154 patients underwent a series of MRI scans. The sequences included axial T2-
weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), axial DWI
(b = 800 s/mm2), and ADC mapping. The MRI scanning was performed on a Magnetom
Trio 3.0T MRI scanner (Siemens Medical, Erlangen, Germany). An eight-channel head and
neck coil was adopted in order to collect the signals. The scanning range was from the skull
base to the subclavian region. The conventional MRI sequence included axial T2WI and
CE-T1WI. The contrast agent was a Gadobutrol injection.
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The following parameters were set for the axial T2WI: TR/TE, 3760 ms/72 ms; field of
view (FOV), 230; matrix size, 320 × 224; layer thickness, 5 mm; interlayer spacing, 1 mm;
bandwidth, 340 Hz; acquisition time, 3 min and 23 s; number of excitations (NEX), 2; and
resolution, 0.7 × 0.7.

The following parameters were set for CE-T1WI: TR/TE, 4660 ms/10 ms; FOV, 230;
matrix size, 320 × 224; layer thickness, 5 mm; interlayer spacing, 1 mm; bandwidth, 347 Hz;
acquisition time, 2 min 49 s; NEX, 3; and resolution, 0.7 × 0.7.

The following parameters were set for RESOLVE-DWI: RS-EPI, TR/TE, 3800 ms/65 ms;
matrix size, 192 × 192; layer thickness, 4 mm; interlayer spacing, 0.6 mm; bandwidth,
521 Hz; acquisition time, 2 min 55 s; segmented readout times, 9; and b = 0, 800 s/mm2.
The ADC maps were automatically generated from the MRI system.

2.5. Segmentation and Feature Extraction

All of the regions of interest (ROIs) of the images were manually segmented in all of
the slices by two radiologists: one with 5 years of clinical experience and the other with
15 years. A total of 5636 features were extracted. Manual segmentation and relative fea-
ture extraction were both conducted in the Radcloud platform (https://mics.radcloud.cn,
accessed: 23 May 2022). The intraclass correlation coefficient (ICC) in 20 patients was calcu-
lated in order to assess the intra- and inter-observer variability for consistency. Features
with an ICC below 0.75 were excluded.

2.6. Radiomics Feature and Model Selection

All of the feature columns with the same numerical values were eliminated, and
normalization processing at the order of magnitude was performed on all of the features.
The extracted features were screened by Random Forest (RF), which creates a decision tree
such that the suboptimal segmentation is performed by introducing randomness; this has
been adopted extensively in radiomics based on its excellent performance in classification
tasks [26]. The workflow for feature selection by Random Forest can be summarized
as follows. First, the differential clinical characteristics were added and set as dummy
variables. The top 100 features were screened according to importance. Then, the top
10 features in terms of improving the model’s predictive power were retained after the
cyclical inclusion of each feature with a forward stepwise approach by the RF method.
Finally, the features of each model were limited to 10. The training set was randomly split
with the k-fold cross-validation method: the training set was divided into five subsets, and
one of the K-fold sample sizes was N = 26 (two-folds: N = 27).

The differences in clinical factors between the two groups were investigated by one-
way analysis of variance in SPSS (version 25.0, IBM Corp, Armonk, NY, USA). The Chi-
square test was used for categorical variables, and the Mann–Whitney U test was used
for continuous variables. Hierarchical variables used the Wilcoxon symbol order and test.
Python software was performed to screen, choose, and build the machine learning models
based on the screened features.

Five of the existing mainstream algorithms (Logistic Regression, kNN, Naive Bayes,
Random Forest, and XGB Classifier) were chosen for training and validation. In order to
obtain a more robust model, we applied five-fold cross-validation to calculate the average
AUC of the training sets and the average AUC of the validation sets. The obtained results
were presented as the average AUC of cross-training set and the average AUC of the cross-
validation set. The major parameters of the corresponding models were adjusted using
GridSearchCV. The model was chosen according to the average AUC of the cross-validation
set [27].

2.7. Prediction Model Building

The selected models mentioned above were trained and validated based on the
screened features from different sequence combinations, and the parameters were ad-
justed. All of the major parameters, such as criterion, max_depth, min_samples_leaf,
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min_samples_split, max_features, and min_impurity decrease, were adjusted within a
large range. The OOB_score was chosen as the evaluation criterion, resulting in the param-
eters of all of the final models.

Models after the parameter adjustment were used for five-fold cross-validation, and
were compared in order to obtain the optimal AUC of different sequence combinations.
Accordingly, the optimal machine learning models based on the extracted imaging features
from different sequence combinations were built, including model 1 (DWI + ADC), model
2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI),
and model 5 (DWI + ADC + T2WI + CE-T1WI). The study workflow is briefly displayed in
Figure 1.

Figure 1. Workflows: (1) MRI acquisition and segmentation; (2) quantitative feature extraction;
(3) radiomic feature and model selection; (4) prediction models built based on the extracted imaging
features from different sequence combinations.

3. Results

3.1. Clinical Characteristics Analysis

In the present study, 154 patients were included, including 43 females (29%) and
111 males (71%), with a median age of 47 years (19–68). The most common histopathological
subtype refers to undifferentiated nonkeratinizing carcinoma (SCC, 80.6%). The relapsed or
metastatic group and the non-relapsed or metastatic group presented significant differences
in the N, M, and TNM stages (p < 0.05). The patient characteristics are presented in Table 1.

Table 1. Clinical characteristics of the patients with NPC in the relapsed or metastatic group and the
non-relapsed or metastatic group.

Characteristics Type Positive (%)
N = 42

Negative (%)
N = 112

p-Value

Gender Male 34 77 0.516
Female 8 35

Age (years) Range 19–68 23–63 0.810

Overall stage

I 0 2 0.026
II 3 20
III 17 56
IVa 17 34
IVb 5 0

T stage
I 2 25 0.915
II 12 22
III 13 37
IV 15 28

N stage
0 1 9 0.034
1 11 48
2 21 45
3 9 10

M stage 0 42 107 0.085
1 0 5

Histology WHO type I 0 1
WHO type II–III 42 111 0.540
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3.2. Machine Learning Model Selection

Five-fold cross-validation was carried out using Logistic Regression, kNN, Naive
Bayes, Random Forest, and XGB Classifier, and the results show that the AUC obtained
using the RF method is the highest among the different sequence combinations. The results
are shown in Figure 2. Therefore, the RF machine learning model was chosen to compare
the predictive performances of the different sequence combination models.

Figure 2. Five existing mainstream algorithms (Logistic Regression, kNN, Naive Bayes, Random For-
est, and XGB Classifier) were chosen for the training and validation, which showed that AUC values
obtained using the RF method are the highest among all of the models of different sequence combina-
tions: (a) DWI + ADC; (b) T2WI + CE-T1WI; (c) DWI + ADC + T2WI; (d) DWI + ADC + CE-T1WI;
(e) DWI + ADC + T2WI + CE-T1WI.

3.3. Prediction Performance of the Models

Concerning the construction and results of different sequence-combination models, the
N and M stages were added according to the dissimilarity tests of the clinical variables, and
they were set as dummy variables. The top 100 features were screened by the importance
of the RF method. Then, the top 10 features in terms of improving the model’s predictive
power were retained after the cyclical inclusion of each feature with a forward stepwise
approach. The selected features and importances are shown in Figure 3. The selected
features were used to construct the RF machine learning prediction model. In order to
obtain a more robust outcome, we applied five-fold cross-validation, and the AUC of the
validation set in the machine learning model was obtained based on different sequence
combinations using the RF method.

86



Cancers 2022, 14, 3201

Figure 3. The importance of selected features derived from different sequence combinations:
(a) DWI + ADC; (b) T2WI + CE-T1WI; (c) DWI + ADC + T2WI; (d) DWI + ADC + CE-T1WI;
(e) DWI + ADC + T2WI + CE-T1WI.

In order to obtain a more robust outcome, we applied five-fold cross-validation
to train and validate the RF machine learning model. After adjusting the parameters,
the average AUC of the validation set in the RF machine learning model was obtained
based on the extracted imaging features from different sequence combinations. The
mean AUCs of the five-fold cross-validation sets of model 1 (DWI + ADC), model 2
(T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI),
and model 5 (DWI + ADC + T2WI + CE-T1WI) were 0.80 (95% CI: 0.79–0.81), 0.72 (95% CI:
0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74(95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76),
respectively. The average AUC of each model in validation set is shown in Figure 4. The
performances of the radiomics models in the validation set are shown in Table 2.

Table 2. The performance metrics for five models in the validation set.

Models AUC Accuracy Specificity Precision

DWI + ADC 0.80 (95% CI: 0.79–0.81) 0.766 0.926 0.620
T2WI + CE-T1WI 0.72 (95% CI: 0.71–0.74) 0.752 0.930 0.520

DWI + ADC + T2WI 0.66 (95% CI: 0.64–0.68) 0.779 0.925 0.689
DWI + ADC + CE-T1WI 0.74(95% CI: 0.73–0.76) 0.766 0.918 0.548

DWI + ADC + T2WI + CE-T1WI 0.75 (95% CI: 0.74–0.76) 0.766 0.923 0.811
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Figure 4. Average AUC values in the validation set of the RF machine learning model based on
selected features of model 1 (a), model 2 (b), model 3 (c), model 4 (d), and model 5 (e).

Based on the results, the RF model based on the extracted features from the DWI and
ADC images has higher prognostic prediction efficacy than the RF model based on T2WI
and T1WI images. Moreover, the RF model based on the extracted features from DWI,
ADC, and T2WI presents better predictive performance for prognosis than the RF model
based on DWI, ADC, and CE-T1WI. Finally, the results indicated that the RF model based
on the extracted features from the multiple-sequence combination of DWI, ADC, T2WI, and
CE-T1WI did not display optimal effects in the prediction of the recurrence and metastasis
of nasopharyngeal carcinoma.

4. Discussion

Radiomics models based on MRI features in nasopharyngeal carcinoma (NPC) can
predict the prognosis and therapeutic responses [28], but these models were constructed
based on basic MR sequences (e.g., T2WI, T1WI, and CE-T1WI). Studies with a radiomics
approach based on DWI images in nasopharyngeal carcinoma remain to be explored.
Considering that the foregoing radiomics research focuses on tumor heterogeneity and
the prognosis of NPC mainly based on T2WI and CE-T1WI [15,16,29–32], we attempted to
compare and combine the radiomics model based on RESOLVE-DWI simultaneously with
T2WI and CE-T1WI. This process aims to determine the optimal machine learning model
for the prognostic prediction of NPC.

Extracted features in various MR sequence combinations were adopted in order to
predict the recurrence and metastasis risks of NPC patients in the present study. The results
show that the average cross-validated AUC of the RF model based on radiomics features
extracted from DWI and ADC sequences reached 0.80, and the AUC of RF models based on
conventional MR sequences was 0.72. The AUC of model 2 (T2WI + CE-T1WI) of this study
in the validation set closely resembled that of Kim et al.’s study [16], which suggests that
the AUC of the radiomics model combining T2WI and CE-T1WI sequences was 0.71 for
the prediction of progression-free survival in patients with NPC. At the same time, no data
from previous studies were comparable to the results of the radiomics model based on
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the DWI sequence of the present study on account of the rare usage of DWI in radiomics.
However, the radiomics features extracted from the DWI and ADC sequences have higher
prediction efficacy in terms of the recurrence and metastasis risks of patients. This finding
was potentially obtained due to the quantitative features of models extracted from the
image, and the DWI can provide more sub-voxel image information about tumor hetero-
geneity, which reflects the limited Brownian motion and microarchitecture in tumors [17,33].
Moreover, the machine learning model based on features extracted from the DWI, ADC,
and CE-T1WI sequences presents a higher forecast performance than the models based on
DWI, ADC, and T2WI sequences. This finding was potentially due to CE-T1WI sequences
being able to reflect the blood supply and angiogenesis of tumors [34], and to unmask the
proliferation state of tumors better than T2WI, making CE-T1WI sequences more relevant
for tumor heterogeneity. Finally, we combined DWI, ADC, T2WI, and CE-T1WI sequences
in NPC and extracted the relative features from this combination in order to establish RF
machine learning models. The average cross-validated AUC of this model was 0.73 for the
prediction of the prognosis of NPC, and this value is not higher than that of the RF model
based on DWI and ADC sequences. This finding can be attributed to the increase in mixing
factors with the increase in sequences.

Notably, high-resolution DWI was applied to extract related features and build the
machine learning model for the prediction of the recurrence and metastasis of nasopha-
ryngeal carcinoma. DWI is a proven non-contrast imaging technology that has become a
mature quantitative measurement approach for the identification of benign and malignant
lesions in routine clinical work [19,35,36]. In malignant tumors, the diffusion of water
molecules is often restricted or limited by the high cell density, which exhibited high sig-
nals on DWI and a low value on ADC maps. DWI technology can provide quantitative
interpretations as well as qualitative interpretations, thereby increasing the specificity of
disease diagnosis [17]. The application in radiomics of a single-shot (SS) EPI-DWI technol-
ogy extensively used to collect DWI images is easily restricted by magnetic susceptibility
artifacts, chemical displacement and geometric distortion, limited spatial resolution, and
relatively thick sections, especially in head and neck tumors, such as nasopharyngeal carci-
noma with artifacts of the skull base [19]. With the improvement in readout-segmented
imaging (RS-EPI) technologies, high-resolution DWI (HR-DWI) was applied to clinical
work. It remarkably improved the abovementioned problems by using the same diffusion
preparation as SS EPI but dividing the K space into several segments in the phase-encoding
direction in order to decrease the echo time [20]. Therefore, readout-segmented imaging
(RS-EPI) has obvious advantages and is irreplaceable for the diagnosis of tumors at the
head and neck compared with (SS) EPI-DWI [19], and the machine learning model based
on DWI collected by RS-EPI is more reliable and robust, providing a good foundation to
promote its clinical applications.

Additionally, the acquisition of HR-DWI does not require a contrast agent, making
it safer than the CE-T1W in daily clinical work. In present practical applications, it has
realized technological advantages of increased speed and decreased artifacts, supporting
its extensive use in clinical practice. Based on the above analysis, the radiomics method
based on RESOLVE-DWI has higher prediction efficacy than the conventional MR sequence
regarding the recurrence and metastasis of NPC. The applications of high-resolution DWI
in radiomics might be complementary to—and might even replace—the currently used se-
quences (T2WI, T1WI, and CE-T1WI) in order to provide more high-specificity information
and support for clinical decisions.

The present study has some limitations. First, this study involved a few cases, and
it was carried out in one hospital. Therefore, a prospective study should be carried out
to support the conclusions. Moreover, minor details are hard to depict, which might
influence the extraction of features. Finally, the relationship between radiomics features
and prognostic outcomes was not explored further in the present study. Relevant data were
collected, and the next step for our research is to discover this relationship and further
perform survival analysis according to the radiomics model based on DWI sequences.
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5. Conclusions

The results confirmed that the machine learning model based on features extracted by
RESOLVE-DWI and corresponding ADC maps could be used as a prognosis detection tool.
These features can help to quantify the heterogeneity of patients with NPC and evaluate
the risk of recurrence and metastasis in order to quickly provide supporting evidence and
thus aid in making a sound clinical decision in clinical practice.
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Simple Summary: Endobronchial ultrasound-guided transbronchial aspiration is a minimally in-
vasive and highly accurate modality for the diagnosis of lymph node metastasis and is useful for
pre-treatment biomarker test sampling in patients with lung cancer. Endobronchial ultrasound image
analysis is useful for predicting nodal metastasis; however, it can only be used as a supplemental
method to tissue sampling. In recent years, deep learning-based computer-aided diagnosis using
artificial intelligence technology has been introduced in research and clinical medicine. This study
investigated the feasibility of computer-aided diagnosis for the prediction of nodal metastasis in
lung cancer using endobronchial ultrasound images. The outcome of this study may help improve
diagnostic efficiency and reduce invasiveness of the procedure.

Abstract: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a valid
modality for nodal lung cancer staging. The sonographic features of EBUS helps determine suspicious
lymph nodes (LNs). To facilitate this use of this method, machine-learning-based computer-aided
diagnosis (CAD) of medical imaging has been introduced in clinical practice. This study investigated
the feasibility of CAD for the prediction of nodal metastasis in lung cancer using endobronchial
ultrasound images. Image data of patients who underwent EBUS-TBNA were collected from a video
clip. Xception was used as a convolutional neural network to predict the nodal metastasis of lung
cancer. The prediction accuracy of nodal metastasis through deep learning (DL) was evaluated using
both the five-fold cross-validation and hold-out methods. Eighty percent of the collected images were
used in five-fold cross-validation, and all the images were used for the hold-out method. Ninety-one
patients (166 LNs) were enrolled in this study. A total of 5255 and 6444 extracted images from the
video clip were analyzed using the five-fold cross-validation and hold-out methods, respectively.
The prediction of LN metastasis by CAD using EBUS images showed high diagnostic accuracy with
high specificity. CAD during EBUS-TBNA may help improve the diagnostic efficiency and reduce
invasiveness of the procedure.

Keywords: EBUS-TBNA; echo B-mode imaging; deep learning-based computer-aided diagnosis;
nodal staging

1. Introduction

Endobronchial ultrasound-guided transbronchial aspiration (EBUS-TBNA) is a mini-
mally invasive and highly accurate modality for the diagnosis of lymph node (LN) metasta-
sis and is useful for pre-treatment biomarker test sampling in patients with lung cancer [1].
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According to the current guidelines for lung cancer staging, EBUS-TBNA is recommended
as the best first test for nodal staging prior to considering surgical procedures [2].

During EBUS-TBNA, multiple LNs are often encountered within the same nodal
station. In this process, selecting the most suspicious LN for sampling is important, consid-
ering the difficulty of sampling all LNs using EBUS-TBNA under conscious sedation. Thus,
EBUS image analysis is useful for predicting nodal metastasis; however, it can only be used
as a supplemental method to tissue sampling [3]. We have previously reported the utility of
six distinctive ultrasound and Doppler features on EBUS ultrasound images for predicting
nodal metastasis [4,5]. However, categorization of image characteristics was not reliable
owing to the fact it was subjective and varied significantly with the operator. Therefore,
we sought an objective method to predict nodal metastasis. Elastography is a potential
solution since it can visualize the relative stiffness of targeted tissues within the region of
interest and helps to predict LN metastases. Moreover, it uses objective parameters such
as a stiff area ratio [6,7]. However, elastography requires additional operations during the
procedure, and its parameters do not reflect real-time values.

In recent years, deep learning (DL)-based computer-aided diagnosis (CAD) using
artificial intelligence (AI) technology has been introduced in research and clinical medicine.
CAD has been used for radiology, primarily in the areas of computed tomography (CT),
positron emission tomography-CT (PET-CT), and ultrasound images, and for the diagnosis
of several tumors, such as breast cancer and gastrointestinal tumors [8–11].

If real-time CAD-based prediction of nodal metastasis during EBUS-TBNA is made
possible, the operator can easily identify the most suspicious node for diagnosis, thereby
reducing the procedure time of EBUS-TBNA. The well-experienced EBUS operator could
predict benign lymph nodes with approximately 90% accuracy by subjective categorization
of EBUS ultrasound characters. The AI-CAD technology might make “the expert level
prediction of nodal diagnosis” possible even for non-experts. The purpose of this study
is to investigate the feasibility of CAD for the prediction of LN metastasis in lung cancer
using endobronchial ultrasound images and DL technology.

2. Materials and Methods

2.1. Participants

Patients with lung cancer or those suspected of suffering from lung cancer who
underwent EBUS-TBNA for the diagnosis of LN metastasis were enrolled in this study.
We prospectively collected clinical information and images related to bronchoscopy since
April 2017 (registry ID: UMIN000026942), and the ethical committee allowed prospective
case accumulation with written consent (ethical committee approval ID: No. 2563, Chiba
University Graduate School of Medicine). The EBUS-TBNA video clips from April 2017
to December 2020 were retrospectively reviewed, and the patient’s clinical information
was obtained from electronic medical records (ethical committee approval ID: No. 3538,
Chiba University Graduate School of Medicine). This was a collaborative study between
the Chiba University Graduate School of Medicine and Olympus Medical Systems Corp.
(Tokyo, Japan). All patient identifiers were deleted, and the image data were sent to the
Olympus Medical Systems Corp.’s laboratory and analyzed using DL technology (ethical
committee approval ID: OLET-2019-008, Olympus Medical Systems Corp.). This study was
conducted in accordance with the principles of the Declaration of Helsinki.

2.2. EBUS-TBNA Procedure

The patients underwent EBUS-TBNA under local anesthesia with moderate conscious
sedation using midazolam and pethidine hydrochloride. OLYMPUS BF-UC290F and EU-
ME1 and EU-ME2 PREMIER PLUS were used to observe LNs. Systematic nodal observation
starting from the N1, N2, and N3 stations using B-mode, Doppler mode, and elastography
was first performed. The size of each LN was measured, and EBUS-TBNA was performed
for LNs > 3 mm along the short axis on the EBUS image. TBNA was initiated at N3, N2, and
N1 stations to avoid overstating. For TBNA, a dedicated 22-gauge or 21-gauge needle (NA-
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201SX-4022, NA-201SX-4021, Olympus Medical Systems Corp., Tokyo, Japan) was used,
and rapid on-site evaluation was performed during the procedure. All EBUS procedures
were performed by skilled operators (T.N. and Y.Sakairi.) or under their supervision.

2.3. Confirmation Diagnosis of EBUS-TBNA

Rapid on-site evaluation by DiffQick staining and conventional cytology by Papanico-
laou staining were performed and diagnosed by a cytopathologist. The histological core
was collected in CytoLyt solution and fixed in 10% neutral buffered formalin. The formalin-
fixed paraffin-embedded specimens were stained with hematoxylin and eosin (H&E) and
subjected to immunohistochemistry. Cytology as well as histology was evaluated by in-
dependent pathologists who provided pathological diagnosis [12]. The referenced final
diagnoses were as follows: (1) malignant cells were proven by EBUS-TBNA, (2) histological
diagnosis was made for surgically resected samples after EBUS-TBNA, (3) clinical follow
up by radiology after 6 months.

2.4. EBUS Image Extraction and Image Data Sets

Ultrasound images were recorded as video clips in the MP4 format; divided into
shorter clips featuring each LN using video editing software, XMedia Recode 3.4.3.0 (Sebas-
tian Dörfler, Eschenbergen, Germany); and subsequently anonymized using the dedicated
software VideoRectFill (Olympus Medical Systems Corp.). All patient information was
manually masked on the software. An anonymized video clip was provided to Olympus
Medical Systems Corp. with diagnostic information linked to each LN.

In this study, we retrospectively and prospectively collected cases and investigated the
detection of LN metastasis in each LN. The evaluation methods are illustrated in Figure 1.
We retrospectively and prospectively collected LNs. We attempted both five-fold cross-
validation and hold-out methods for evaluation. Because the images from the video clips
included different ultrasound processors (EU-ME1 and EU-ME2 PREMIER PLUS) and
different image sizes, these images were allocated equally to each training, validation, and
testing group (Figure S1).

Figure 1. The concept of deep learning algorithm.
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2.5. Adjustment of Images for DL

Prior to image analysis, the videos were decomposed into time-series images, from
which images of different scenes were extracted. The areas in which the B-mode was drawn
were cropped from the images and the cropped images were resized to the same size. To
increase the generalizability of the DL algorithm, data augmentation was applied only
to the training images, and the number of training images was increased. Scaling and
horizontal flipping were used in the data augmentation process.

2.6. DL Algorithm Design

The Convolutional Neural Network (CNN) structure used in this study for LN metas-
tasis detection is shown in Figure S2. The metastasis detection CNN comprises a feature
extraction CNN and detection CNN. The feature extraction CNN comprises multiple stages
with each stage having multiple blocks and one downsampling layer. The final stage did
not include a downsampling layer. We used the Xception block for each block [13]. The
downsampling layer comprises two or more strides of the convolution layer. The detection
CNN comprises two convolution layers: one for classification and another for positioning.

Initially, the ultrasound image was input to the feature CNN, and local features,
such as edges and textures, were extracted from the input image in the first block. As it
progressed through the network, its features were integrated and finally converted into
features useful for detection.

Subsequently, the features useful for metastasis detection were input into the detection
CNN. The detection CNN outputs the probability and bounding box coordinates and sizes
for both metastasis and nonmetastasis. The bounding box with the highest probability was
selected from among all the metastatic and non-metastatic bounding boxes in the sequence.
Finally, the metastasis or non-metastasis parameters, coordinates and size of the bounding
box were obtained as the detection result.

2.7. Five-Fold Cross-Validation Method and the Hold-Out Method

For the five-fold cross-validation method, 80% of all the images were used for training
and validation. The images were divided into five sections: four sections were used for
training, and the last section was used for validation. By changing the validation section,
the training and validation were repeated five times. The prediction yield was calculated
as the average of the results of each validation.

In the hold-out method, all images were used for training and testing. All of the images
comprising the 80% used for the five-fold cross-validation method were used for training.
The remaining 20% of the images that were not used for the five-fold cross-validation
method were used for testing, following which the prediction yield was calculated.

The images of different sizes from the two ultrasound scanners (EU-ME1 and EU-ME2
PREMIER PLUS) were allocated proportionately in each section to avoid selection bias.

2.8. Statistical Analysis

The “Image” represents “per image” basis analysis and the “Lymph node” represents
“per lymph node” basis analysis. The “per image” analysis was based on the accuracy
of nodal metastasis prediction for each image. Due to limited number of still images, we
used the video clips for analysis. However, in this case, multiple images with varying
ultrasound features were included for each targeted lymph node, resulting in variation in
the judgement of the AI-CAD system. Therefore, in addition to “per image” analysis, we
included “per lymph node” analysis in which multiple images were evaluated for each
lymph node. The “per lymph node” analysis included (1) calculation of the ratio between
the number of images judged benign and malignant, (2) predicting as benign or malignant
based on the ratio >50%, (3) analysis of the accuracy of nodal metastasis prediction for each
lymph node.

Sensitivity, specificity, positive predictive value, negative predictive value, and di-
agnostic accuracy were calculated using standard definitions. Statistical analysis was
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performed using Fisher’s exact test and chi-square test for categorical outcomes, and Stu-
dent’s t-test for continuous variables. Data were analyzed using the JMP Pro 15 software
(SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05.

3. Results

Ninety-five cases with a total of 170 LNs were enrolled in the study. Two cases (two
LNs) were excluded because of a history of malignant lymphoma. Cases of large-cell
carcinoma and large-cell neuroendocrine carcinoma (one LN each) were also excluded be-
cause they could not be assigned to both the training and testing sets. Finally, 91 cases and
166 LNs were analyzed in this study (Figure 2). In this cohort, 64 LNs (38.5%) were diag-
nosed as metastatic and 102 LNs (61.5%) as non-metastatic by pathology. The characteristics
of the enrolled patients and LNs are listed in Table 1.

Figure 2. Study cohort flow chart. One hundred sixty-six lymph nodes and 6444 images from
91 patients were enrolled in the final analysis.

Pathological diagnosis including cytology and histology were performed for all lymph
nodes. The success rate of each diagnosis was shown in Table 2. For adenocarcinoma cases,
molecular biomarker testing was performed for selected cases. For non-small cell lung
cancer cases, evaluation for PD-L1 (22C3) immunohistochemistry was done for selected
cases. Each success rate, detection rate, and testing rate was shown in Table 2.
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Table 1. Patients’ and nodal characteristics.

No. of patients 91

Age (y) (median, range) 74 (12–86)

Gender

male 61 (67.0%)
female 30 (33.0%)

No. of lymph nodes 166

Diagnosis

Metastatic lymph nodes 64 (38.5%)
Adenocarcinoma 40 (24.0%)

Squamous cell carcinoma 15 (9.0%)
Small cell carcinoma 9 (5.4%)
Benign lymph nodes 102 (61.5%)

Lymph node station
1 1

2R 13
3p 2

4R/4L 41/25
7 43
8 1

10R/10L 5
11s/11i/11(Lt.) 15/6/4

12 9
13 1

Lymph node size of long axis Average (range), mm

All lymph nodes 12.9 (3.0–29.2)
Metastatic lymph nodes 15.5 (3.0–29.2)

Benign lymph nodes 11.3 (3.5–21.8)

Table 2. Detailed results of pathological diagnosis and biomarker testing in this study.

Metastatic Lymph
Node (n = 64)

Diagnosed by
Cytology

Diagnosed by
Histology

Success Rate of
Molecular Testing

Detection Rate of
Driver Gene
Mutations

Testing for PD-L1
Immunohistochemistry

Adenocarcinoma
(n = 40) 37/40 (92.5%) 37/40 (92.5%) 22/24 (91.7%) 13/22 (59.0%) 22/40 (55.0%)

Squamous cell
carcinoma (n = 15) 13/15 (86.7%) 14/15 (93.3%) N/A N/A 7/15 (46.7%)

Small cell carcinoma
(n = 9) 9/9 (100%) 9/9 (100%) N/A N/A N/A

First, we evaluated the ability of AI-CAD to detect LN metastasis using endobronchial
ultrasound images. A total of 5255 and 6444 extracted images from the video clip were ana-
lyzed using the five-fold cross-validation and the hold-out methods, respectively (Figure 1).
The representative EBUS images judged by AI-CAD in this study are shown in Figure S3.

Using the five-fold cross-validation method, the LN-based diagnostic accuracy, sensi-
tivity, specificity, positive predictive value, and negative predictive value of the AI-CAD
were measured to be 69.9% (95% CI, 32.4–75.2%), 37.3% (95% CI, 27.8–49.1%), 90.2% (95%
CI, 82.9–92.3%), 70.4%, and 69.8%, respectively (Figure 3). However, although the specificity
was high, the sensitivity of this method was low.
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Figure 3. The result of AI-CAD lung cancer lymph node diagnosis accuracy analysis using echo
images by five-fold cross validation method. (a) Diagnostic yield by per image basis and per lymph
node basis. (b) ROC curve.

Using the hold-out method, the LN-based diagnostic accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value of the AI-CAD were measured to
be 87.9% (95% CI, 75.4–94.1%), 76.9% (95% CI, 58.9–92.9%), 95.0% (95% CI, 79.3–100%), and
90.9% and 86.4%, respectively (Figure 4).

Figure 4. The result of AI-CAD lung cancer lymph node diagnosis accuracy analysis using echo
images by hold-out method. (a) Diagnostic yield by per image basis and per lymph node basis.
(b) ROC Curve.

Regarding the diagnostic yield by lung cancer subtypes, the diagnostic accuracy
rates were 90.5% for no malignancy, 76.9% for adenocarcinoma, 61.1% for squamous cell
carcinoma, and 93.9% for small cell lung cancer (Figure 5).
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Figure 5. The accuracy rates of the hold-out method by lung cancer subtype.

4. Discussion

The potential applications of AI technology are rapidly growing in the medical field
and are expected to facilitate the demanding work of medical staff. The concept of AI,
including such systems as machine learning and DL, has been growing in popularity since
the evolution of graphics processing units. AI-CAD is one of the AI applications that
has been actively developed in radiology. Significant work has been done in the area of
combining radiomics and AI-CAD technology, which helps support the diagnosis of benign
and malignant tumors, prediction of histology, stage, genetic mutations, and prediction
of treatment response and recurrence using CT and PET-CT images [14–18]. AI-CAD is
highly useful in analyzing huge amounts of extracted information that includes informa-
tion invisible to humans. AI-CAD produces objective indicators based on the judgment,
knowledge, and experience of experts. During EBUS-TBNA, a highly skilled operator can
select the most suspicious LN to sample, based on a subjective categorization of ultrasound
image characteristics. In contrast, by applying AI-CAD technology in EBUS, even a trainee
can easily select the target LN for sampling, in addition to the dual advantages of a more
efficient and less invasive procedure. In this study, we used the CNN algorithm with
Xception to predict nodal metastasis based on the ultrasound images of LNs. Using the
hold-out method, AI-CAD exhibited a feasible diagnostic accuracy of 84.7%, on average,
per LN basis. In this study, the combination of Xception and the hold-out method resulted
in the highest diagnostic yield.

The comparison between the five-fold cross-validation and the hold-out methods,
demonstrated that the hold-out method exhibited a superior diagnostic yield in this study
setting. First, we evaluated using five-fold cross-validation, and then used hold-out method
as the standard for developing AI-CAD technology. The number of evaluated images was
increased by 20% for the hold-out method compared to five-fold cross-validation. The
increased number of images helped with comprehensive covering of image variation and
contributed toward better AI-CAD accuracy. The images used in this study were obtained
using two different ultrasound image processors (EU-ME1 and EU-ME2 PREMIER PLUS).
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In addition, a certain amount of collected images (approximately 10% of all images) were
of different sizes owing to the different screen sizes of the various video clips. These
variations might affect the diagnostic yield of the five-fold cross-validation and the hold-
out methods. Thus, for the analysis of different-size images the image had to be resized
and then analyzed, which resulted in an adversarial example (AE). An AE is an event in
which AI misrecognizes an image as completely different data owing to the addition of
insignificant noises that are imperceptible to humans. [19] Therefore, in this study, these
problems were solved by allocating images of different sizes in equal proportions for
AI-CAD analysis.

The final diagnostic accuracy and specificity for the prediction of LN metastasis using
AI-CAD in this study were 87.9% and 95.0%, respectively. Previous studies have reported
comparable but lower values. For instance, Ozcelik et al. reported an accuracy rate of
82% and specificity of 72% for the diagnosis of lung cancer LN metastasis in 345 LNs
by CNN using MATLAB [20]. Churchill et al. reported an accuracy rate of 72.8% and a
specificity of 90.7% for the diagnosis of lung cancer LN metastasis in 406 LNs by CNN using
NeuralSeg [21]. It is noteworthy, however, that the specificity of CNN-based diagnosis for
the prediction of nodal metastasis was found to be high, and this might help avoid futile
biopsies and reduce examination time as well as the risk of co-morbidities.

Furthermore, we examined the diagnostic yield of lung cancer subtypes (Figure 5). The
diagnostic yield was highest for small cell lung cancer, while the accuracy rate was relatively
low for squamous cell carcinoma. Squamous cell carcinoma is often accompanied by signs
of coagulation necrosis at the center of the LN, which might affect diagnostic accuracy.

In this study, the prediction rate for squamous cell carcinoma was relatively lower than
other histology. One of the possible reasons of this phenomenon was that the squamous cell
carcinoma often shows various histological characters, such as necrosis and fibrosis, and it
reflects the characters on an EBUS ultrasound image, such as necrosis sign and heterogeneity
of echogram. These various ultrasound image features might cause difficulties for learning
and validation by AI-CAD, resulting in a lower prediction rate. Although better AI-CAD
analysis required more numbers of squamous carcinoma cases for comprehensive coverage
of the image variation of squamous cell carcinoma, the number of actual squamous cell
carcinoma cases were relatively low in this study. If we could increase the number of
squamous cell carcinoma cases, the diagnostic yield could be better in the future.

This study has several limitations. First, the study population was limited, and we
used video clips to overcome the limitations of the small sample size. Some cases underwent
multiple LN assessments, and multiple LN images were obtained from a single case, which
might show similar image characteristics. Second, we used only B-mode images in this
study. Several reports have demonstrated the utility of other imaging modalities such as
Doppler mode imaging and elastography [5,6]. Finally, Xception was used for the CNN in
this study, although there is currently no consensus as to which algorithm should be used to
analyze echo images. To develop the optimal method of AI-CAD for EBUS imaging, a larger
prospective cohort study is required in the future. In addition, AI-CAD diagnosis using
other imaging modalities such as Doppler mode and elastography should be examined to
improve the diagnostic yield of AI-CAD for EBUS imaging.

In this study cohort, the prevalence of nodal metastasis was 38.5%, which was rel-
atively low in comparison with the previous report. Most of the enrolled patients were
referred to the surgical department as resectable lung cancer patients. In real clinical set-
ting, the AI-CAD technology will be useful if the operator cannot decide which one to be
sampled during EBUS-TBNA. The operator would not need the image analysis support
for selecting the target when the lymph node is obviously enlarged. Thus, this study
demonstrated that the AI-CAD can be used to support the nodal staging for surgically
treatable patients.

101



Cancers 2022, 14, 3334

5. Conclusions

In this study, we found that AI-CAD (a combination of Xception and the hold-out
method) for the prediction of LN metastasis using endobronchial ultrasound images is
feasible and exhibits high diagnostic accuracy and specificity. AI-CAD for EBUS may
reduce futile biopsies of LNs, shorten examination time, and make EBUS-TBNA a less
invasive procedure, regardless of operator experience.
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Abstract: The purpose of this multi-centric work was to investigate the relationship between radiomic
features extracted from pre-treatment computed tomography (CT), positron emission tomography
(PET) imaging, and clinical outcomes for stereotactic body radiation therapy (SBRT) in early-stage non-
small cell lung cancer (NSCLC). One-hundred and seventeen patients who received SBRT for early-
stage NSCLC were retrospectively identified from seven Italian centers. The tumor was identified
on pre-treatment free-breathing CT and PET images, from which we extracted 3004 quantitative
radiomic features. The primary outcome was 24-month progression-free-survival (PFS) based on
cancer recurrence (local/non-local) following SBRT. A harmonization technique was proposed for CT
features considering lesion and contralateral healthy lung tissues using the LASSO algorithm as a
feature selector. Models with harmonized CT features (B models) demonstrated better performances
compared to the ones using only original CT features (C models). A linear support vector machine
(SVM) with harmonized CT and PET features (A1 model) showed an area under the curve (AUC) of
0.77 (0.63–0.85) for predicting the primary outcome in an external validation cohort. The addition of
clinical features did not enhance the model performance. This study provided the basis for validating
our novel CT data harmonization strategy, involving delta radiomics. The harmonized radiomic
models demonstrated the capability to properly predict patient prognosis.

Keywords: imaging biomarkers and radiomics; quantitative imaging/analysis; computed tomography (ct);
multi-modality ct-positron emission tomography (pet); machine learning; non-small-cell lung cancer;
stereotactic body radiation therapy (sbrt)
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1. Introduction

Non-small-cell lung cancer (NSCLC) is, overall, the second-most-common cancer and
a leading cause of cancer-related death worldwide, despite recent therapeutic advances [1].
Stage I disease represents approximately 25% of the patients receiving diagnoses of NSCLC
and accounts for the most curable cohort of the population [2]. Surgery is the gold standard
for these patients: lobectomy with hilar and mediastinal lymph node dissection is the
preferred approach, given the Lung Cancer Study Group (LCSG) trial results [3]. Instead,
sublobar resection has shown inferior local control and a trend toward decreased survival.
However, evaluation of sublobar resection in selected patients is currently underway. The
historical standard therapy for unresectable early-stage NSCLC was conventionally fraction-
ated radiation therapy (RT) (e.g., 2 Gy per fraction, for a total dose of 54–60 Gy). However,
the reported long-term local control (LC; 30–70%) and overall survival (OS;15–30%) rates
with this approach are suboptimal [4–6].

Advances in imaging and radiation treatment planning and delivery (e.g., with image
guidance and motion management) made the delivery of “ablative doses” of radiation to
small targets possible with better results in terms of local control [7–11].

Stereotactic Body radiation therapy (SBRT) has proved to be the first therapeutic
option in inoperable stage I NSCLC patients or for those who refuse surgical treatment,
with similar rates of local tumor control and overall clinical outcomes [12,13]. Recently, a
meta-analysis by Li et al. reported a significant superiority in the local control rate and in
3-year and 5-year OS (54.73% and 29.30 % vs. 39.5 and 27.47) in the SBRT group compared
with conventionally fractionated RT [14].

SBRT was reported to have a local control rate in excess of 85% at 3 years [14,15].
Despite consistent clinical outcomes, it is well known that dose fractionation heterogeneity
and technical expertise may influence the outcome with SBRT [16–18]. A recent study
reported that the factors affecting outcomes after SBRT for early-stage NSCLC are Biological
Effective Dose (BED) and tumor size [19].

Radiomics is a recent technique introduced in medicine to describe characteristics of
medical images quantitatively. Radiomics belongs to artificial intelligence (AI) applications,
but it is based on the calculation of features using well-defined mathematical formulas
applied directly to the image pixel values (or to a filtered version of the original images).
The mathematical definitions of radiomic features are based on the distribution and the
relationship between pixels and voxels in the images’ region of interest. The concept behind
this method lies in the fact that the human eye cannot appreciate all the characteristics
of a medical image. Haralick et al. [20] described how the textural features, highlighting
the behavior of gray levels’ dependencies, can identify different areas in an image. Later,
textural information was proposed as an application in medical imaging [21,22]. The
improvement in hardware calculation power made these techniques able to compute a
high number of medical imaging biomarkers in an acceptable span of time; those indices
should help the physician during the treatment decision task, allowing a personalized care
pathway for different patients. However, these biomarkers are not yet ready to be used in
oncology without a robust validation or a demonstration of their reliability [23]. Among
them, radiomic indices and feature signatures are increasingly present in the panorama
of modern scientific literature [24,25]. The main issue and challenge up to date are to
understand how to overcome the limits of this approach [26,27].

To date, in the literature, several studies have investigated the ability of radiomics
features in the tumor-healthy tissue differentiation task, both for computed tomography
(CT) and positron emission tomography (PET) datasets, as described by Chu et al. [28]
that used feature values in a random forest classifier for diagnostic purposes. In another
study [29], healthy tissues’ features were used as additional information for an automatic
segmentation algorithm. More recently, feature-extracted CT images were combined with
BED values to predict tumor response to SBRT [30].

Despite the great work done to date, to our knowledge, there is still no characterization
of the radiomic features’ ability to give specific information about healthy tissue compared
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to the sick one when machine learning models for prognosis are involved. One of the main
challenges in the field of radiomics, which makes its clinical application difficult, is the
harmonization of the features to be analyzed.

Our present multicentric work aims to propose a novel concept of harmonizing the
CT radiomic signal using a combination derived from both the tumor and the healthy
contralateral tissue, to overcome the variability typical in each patient in different condi-
tions (i.e., manufacturer/technical characteristics, acquisition, reconstruction protocol, and
different anatomy).

2. Materials and Methods

2.1. Study Design

This study was a retrospective multicentric work. It was approved by the Area Vasta
Emilia Nord (AVEN) Ethics Committee (ID: 817/2018/OSS*/IRCCSRE). The study was also
approved by the ethics committees of all the participating institutions; it was performed in
accordance with the principles of Good Clinical Practice (GCP) in respect of the ICH GCP
guidelines, the ethical principles contained in the Helsinki declaration and its subsequent
updates. Each patient gave informed consent for joining the study.

2.1.1. Patient Cohort

Patients who underwent SBRT for histologically proven diagnosis of primary early-
stage NSCLC were retrospectively collected from January 2010 to December 2019. A
multicenter research project named “TEXture Analysis of PET/CT in lung cancer patients
treated with Stereotactic body radiation therapy (TEXAS)” was designed to involve seven
Italian Centers.

Inclusion criteria were: (1) histologically proven diagnosis of NSCLC; (2) early-stage
T1–T3N0M0 (TNM 7th edition); (3) patients who underwent SBRT, with treatment biological
effective dose BED10 ≥ 100 Gy; and (4) age > 18 years.

Exclusion criteria were: (1) lung tumor greater than 7 cm; (2) histologically proven di-
agnosis of small cell lung cancer or metastasis; (3) previous thoracic irradiation; (4) presence
of bone, lymph node, or visceral metastatic lesions; (5) patients with secondary pulmonary
nodules from non-NSCLC or NSCLC; (6) past non-NSCLC tumors with evidence of active
disease at the time of SBRT and synchronous non-NSCLC tumors (arising within six months
of SBRT diagnosis of NSCLC) with the exception in both cases of non-melanomatous
skin tumors.

The patient cohort was divided into training (76 patients from three centers) and
external validation (41 patients from the other four centers) datasets. This strategy for the
distribution of centers among datasets was made to balance the two groups according to
the patients’ outcomes as described in the following sections. The external validation step
was a fundamental part of the study in order to confirm the performances obtained in the
training phase.

2.1.2. SBRT Details

Conventional computed tomography (CT) simulation scans were obtained. The radia-
tion oncologist contoured gross tumor volume (GTV) on the CT, as part of the therapeutic
pathway. A 5–10 mm isotropic margin was added to GTV to generate the planning target
volume (PTV). Intensity-modulated radiation therapy (IMRT) was delivered to all patients.
The dose normalization ensured that at least 95% of PTV receives 100% of the prescribed
dose with a homogeneous distribution. For all patients, ipsilateral and contralateral lung,
heart, chest wall, esophagus, spinal cord, and bronchial trees were contoured as organs at
risk (OARs).

2.2. Image Acquisition

All patients included in the study had PET/CT images, previously acquired as part
of their care pathways, and a pre-treatment CT used for planning of SBRT. The planning
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CT acquisition protocols and scanning devices differed among institutions, as reported
in Table 1. PET image sets, corrected for attenuation, were acquired no more than three
months before the start of the treatment. Patients fasted at least 6 h before the injection
18F-FDG tracer and the serum glucose level measured at the injection time was below
160 mg/mL in all patients. PET examinations were performed 60 min after the intravenous
administration of the radiotracer using a specific protocol for each institution shown in
Table 1.

Table 1. Protocol acquisition parameters for simulation CT and PET examinations stratified for
centers. Whenever two scanners were used, a “|” indicated the different configurations.

CT

Center kV mAs (Min–Max) Slice Thickness (mm) Manufacturer (s)
Convolution

Kernel
Recon

Diameter

T
R

A
IN BS 120 191–401 3.0 PHILIPS B 500

RE 120 83–355 3.0 GE STD + 500
PD 120 70–363 2.5 GE BODY FILTER 500

EX
T

VA
L AV 120 108–138 2.5 PHILIPS B 500

NE 120 40–73 3.0 SIEMENS B30f 500
PI 120 27–236 2.0 SIEMENS B30f–B31s 500
PG 120 80–200 2.5–3 GE STD + 500

PET

Center Slice thickness (mm) Manufacturer (s) Recon diameter Recon method

TR
A

IN

BS 3.27 GE 700–815 3D IR/VPFXS
RE 3.27 GE 700–700 3D IR/VPFXS

PD 2–4 PHILIPS|SIEMENS 576–815 3D-RAMLA/BLOB-OS-TF(PHILIPS)|PSF
3i21s/(SIEMENS)

EX
T

VA
L AV 4 PHILIPS|GE 500–700 BLOB-OS-TF/VPFXS

NE 2–5 SIEMENS 576–700 PSF+TOF 3i21s
PI 3.27 GE|PHILIPS 576–700 3D IR (GE)|BLOB-OS-TF(PHILIPS)
PG 3.27 GE|SIEMENS 600–700 OSEM|OSEM 2i8s

2.3. Image Segmentation

Computed tomography and PET image sets were exported in DICOM format into
a dedicated research computer for radiomics analysis. For the present study, gross tu-
mor volume contouring was separately performed on the CT (manually, referred to as
GTVCT) and PET (automatically, hereinafter named GTVPET) images of the pre-treatment
PET/CT studies.

Two radiation oncologists with experience in lung cancer contoured each lesion on ev-
ery sequential slice of the planning CT using standardized window settings for parenchyma
(W = 1600 and L = −600), according to EORTC guidelines [31] for all patients. Regarding
GTVPET delineation, the radiation oncologists placed a region of interest (ROI) on the area
of tumor FDG uptake on PET images and an automatic contour—consisting of the region
encompassed by a given fixed percent intensity level relative to the maximum registered
tumor activity (40% of SUV max)—was generated. We decided to use this approach as
a previous study showed that GTVPET delineation using this fixed threshold was better
correlated with the gross tumor (based on pathologic examination) instead of using as basis
the manually delineated GTVCT [32].

In order to perform radiomic feature harmonization, we used an ROI from the healthy
tissue. This was obtained by copying the GTVCT into a healthy lung region, i.e., the
contralateral lung at the same level of the GTV (named Contra_Lung). The Contra Lung
initial volume was also shifted by 0.6 and 0.3 cm in six directions for a total of 12 shifts,
avoiding the inclusion of surrounding tissues of the healthy lung. These shifts had the aim
of simulating the uncertainty in the positioning of the healthy ROI (for future reproducibility
of the harmonization method). We chose the shifts in accordance with PET image resolution
to account for a likely uncertainty in ROI positioning since PET imaging can be used to
localize the GTV before the treatment.
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An example picture showing the location of the ROIs mentioned above is shown in
Figure 1.

 

Figure 1. Visualization of the CT ROIs in a patient. The contralateral ROI was shifted in 12 different
positions (shown in red).

2.4. Outcome

In this study, PFS was considered as the primary endpoint and was converted into
a binary outcome, which was set to 1 for patients who were alive and without disease
progression at 24 months, 0 otherwise. PFS was defined as the time from the start of the
SBRT to documented relapse or death. The use of the 2-year threshold was chosen because
it could properly describe the treatment effectiveness. In fact, a preliminary analysis of
the Kaplan–Meier curves of PFS after SBRT for our cohort showed that the majority of the
progressions occurred in a period ranging from 2 to 3 years.

2.5. Radiomics Analysis

Our analysis followed the steps defined for our radiomic study (Figure 2), which
included image preprocessing. The first phase consisted of spatial resampling to an isotropic
voxel size to obtain reproducible and rotationally invariant features. Then, image range
re-segmentation updated the ROI voxels according to a chosen intensity range to remove
all voxels for which intensity values fall outside the selected intensity range. Finally, the
images were discretized by intensity, grouping the original intensity values (256) into
specific ranges (bins). The aim was to reduce image noise and computational burden. The
intensity discretization process fixed the width of the re-segmentation interval and the
bin width, defining a new bin for each intensity interval. Selecting the bin width allowed
direct control of the absolute range represented on each bin. The image preprocessing
of intensity and spatial discretization is described in Supplementary Material Table S1.
Intensity discretization parameters were chosen accordingly to the guidelines proposed by
Orlhac et al. [33,34].
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Figure 2. Radiomic pipeline description of the implemented steps in our evaluation process.

2.5.1. Feature Extraction

After the image preprocessing steps, feature calculation and their extraction was
performed. Features (intensity-based, shape-based, and second-order) were extracted
from original images and filtered images (using wavelets, Laplacian of Gaussian (LoG),
and gamma modifier filters) [35]. Radiomic features were calculated using a homemade
software employing the widely used pyRadiomics library in order to apply pre-determined
filters to the original images and compute features from the edited results. The list of the
extracted radiomic features can be found at https://pyradiomics.readthedocs.io/en/latest/
features.html, (accessed on 15 July 2022).

2.5.2. Harmonization Process

The harmonization process consisted of, for our two available image modalities,
calculating features for 14 different ROIs. One of them coincided with GTVCT, the other 13
with the duplicated GTVCT positioned in the healthy region and its shifts, as described
in Section 2.3. This allows us to consider operators’ variability in the positioning of the
healthy ROI. The general idea of employing this harmonization formula was inspired by
another work [36], and it is shown in Equation (1):

fHARM(i) =
fGTV(i)− fHEALTHY(i)

σ(i)
(1)

where: fHARM(i) is the ith harmonized feature, fHEALTHY(i) is the median ith feature value
calculated on the 13 healthy tissue samples for each patient and modality, and σ(i) is the
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difference between the 75th and the 25th percentile of the ith feature distribution. Shape
features were not harmonized. We applied this harmonization only to CT data because
of its intrinsic dependence on the protocol acquisition parameters. Furthermore, CT is
used for a morphologic and anatomical characterization and pixel values are related to a
physical characteristic of the tissue (the linear attenuation coefficient). On the other hand,
PET, being a functional imaging modality, is less sensitive to low signal changes in spatial
coordinates. Especially in this case, for the healthy lung, in PET pixel values, there is no
useful physical information regarding a region where we do not register a signal from the
radiotracer absorption.

2.5.3. Feature Selection

LASSO feature selection was applied, in which the following function is minimized
(Equation (2))

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

∣∣β j
∣∣ (2)

where: yi is the observed value, β j is the LASSO coefficients, and λ ∑
p
j=1

∣∣β j
∣∣ is the shrinkage

penalty [37].
The parameter λ was chosen using 10-fold cross-validation (CV) computing its error.

LASSO penalty brings to zero the weight coefficients (β j) of irrelevant features not pre-
dictive of the chosen outcome. In addition, LASSO handles sets of collinear features by
increasing the weight of one of them while setting the other weights to zero. Because the
considered outcome was binary, we used a binomial function for LASSO regression. In
Table S2 we show the shrinkage penalties for our trained models.

2.5.4. Model Building

The original and harmonized features were used to develop a supervised machine
learning binary classifier. A linear support vector machine (SVM, Model 1) [38] and an
Ensemble Subspace Discriminant (ESD, Model 2) [39] were trained by optimizing their
performance in 10-fold cross-validation in the training dataset.

Linear SVM classifiers provide low generalization error, even with small learning
sample datasets. ESD classifiers are used to decide an explicit discriminant subspace of
low dimension.

The two described model types were applied to five different combinations of input
features: (A) harmonized CT + PET, (B) harmonized CT, (C) original CT, (D) only original
PET, and (E) harmonized CT + PET + selected clinical variables in order to assess the effect
of harmonization on the performance of the predictive models. The interested reader can
find more information in Text S1 in Supplementary Materials.

The clinical variables in method (E) were chosen among the available ones by using
Kaplan–Meier survival curves as described in Section 2.5.5.

2.5.5. Statistical Analysis

For each model, a 95% confidence interval (CI) of the AUCs was calculated for the train-
ing and external validation sets. Furthermore, accuracy (95% CI are reported), precision,
and recall were calculated.

Subsequently, Kaplan–Meier survival curves were computed using the PFS to select
the clinical features. A clinical feature exhibiting a p-value from a log-rank test less than 0.05
was considered significant and included in model E. Matlab R2021b (Mathworks, Natick,
MA) and R (Vienna, Austria), available at https://www.R-project.org (accessed on 15 July
2022), were used to perform the statistical analysis.

The p-values related to statistical differences among the AUC values of each model
were calculated using two-sided DeLong test.
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3. Results

3.1. Clinical Results

One-hundred and seventeen early-stage NSCLC patients met the inclusion criteria.
The baseline characteristics of the patients are summarized in Table 2. The median age
was 78 years and there were more male (72.6%) than female patients. With a median
follow-up of 29.8 months, the median PFS was 24.2 months, and 2-year PFS percentage was
51.2%. Median OS and 2-year OS percentage were 28.5 months and 64%, respectively. The
clinical characteristics, including age, gender, Charlson comorbidity index (CCI), diffusing
capacity of carbon monoxide (DLCO), tumor size, Eastern Cooperative Oncology Group
(ECOG) performance status, and biological equivalent dose to PTV, showed no significant
differences between the training and external validation cohorts (Table 2).

Table 2. Statical analysis of clinical variables. Abbreviations: PS: Performance status according to
ECOG scale, BPCO: chronic obstructive pulmonary disease; ADK: Adenocarcinoma, SCC: squamous
cell carcinoma, Fr: fraction; RT: radiotherapy VMAT: volumetric arc-therapy; IMRT: intensity modu-
lated radiotherapy, TOMO: Tomotherapy, PTV: planning target volume. p-values in bold mean the
statistical significance.

Characteristics
Training Cohort

(N = 76)
External Validation Co#Hort

(N = 41)
p

Gender
Male 61 24

0.04Female 15 17

Age (years) 78 [51–87] 79 [57–88] 0.72

Smoking Status
Yes 50 27

0.22No 26 14

Performance Status
0 37 18

0.751 35 15
2 4 7

BMI 25.2 [16.4–37.1] 24.8 [18.3–44.7] 0.17

Diabetes mellitus
Yes 16 12

0.58No 60 29

BPCO
Yes 43 17

0.54No 19 24

Charlson Comorbidity Index (CCI)
Median 6.5 6

0.55Range [3–13] [4–10]

T diameter
Median 2.35 2.3

0.58Range [0.6–5.5] [0.72–27]

Lesion type
Subsolid 5 4

0.42Solid 71 37

Lung Side
Lung right 42 22

0.006Lung left 34 19
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Table 2. Cont.

Characteristics
Training Cohort

(N = 76)
External Validation Co#Hort

(N = 41)
p

Lobe Site
Upper Lobe 44 23

0.89Lower Lobe 30 15
Middle Lobe 2 1

Lesion Site
Peripheral 55 34

0.92Central 21 7

BED10
Median 115.5 100

0.64Range [100–180] [100–132]

No clinical or treatment-related features were shown to be significantly related to PFS
in the univariate analysis of the whole population, except for gender (p = 0.04 in favor of
female) and lung site (right vs. left in favor of the right one, p = 0.006).

3.2. PFS Models

The PFS predictive performance of the linear SVM and ESD models using radiomic
features and clinical features are reported in Table 3. In Figure 3, all the models are graphi-
cally compared considering their confidential intervals. Models using harmonized features
and PET (A,E) achieved AUCs greater than 0.70, both in training and validation. The
performances of models using CT-only harmonized features (B models) are not confirmed
on the validation dataset (AUC training > 0.75, AUC validation <0.60), while adding PET
features leads to better stability between the training and validation sets. Only C-type
models (original CT-only features) showed a low-mean AUC (< 0.62), both in training
and validation.

Figure 3. Performances (AUC) of the studied models. The boxplot shows the minimum, maximum,
and average values of the bootstrapped 95% CIs.
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Table 3. Models’ results in terms of AUC, accuracy, precision, and recall.

Harmo CT + Original PET Features (A)

Linear SVM (A1)

AUC * Accuracy Precision ** Recall ** p ***

Training dataset 0.77 [0.66–0.87] 0.72 ± 0.02 0.67 0.83 1.0 × 10–4

External validation dataset 0.75 [0.55–0.88] 0.66 ± 0.01 0.68 0.65 0.01

Subspace Discriminant (A2)

AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.79 [0.67–0.87] 0.71 ± 0.01 0.69 0.83 0.02

External validation dataset 0.71 [0.52–0.86] 0.63 ± 0.02 0.68 0.65 0.046

Harmo CT features (B)

Linear SVM (B1)

AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.77 [0.63–0.85] 0.67 ± 0.02 0.74 0.58 1.0 × 10−4

External validation dataset 0.56 [0.39–0.74] 0.58 ± 0.01 0.67 0.52 0.5

Subspace Discriminant (B2)

AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.76 [0.66–0.87] 0.71 ± 0.02 0.73 0.6 0.01

External validation dataset 0.57 [0.4–0.75] 0.58 ± 0.01 0.67 0.52 0.50

Original CT features (C)

Linear SVM (C1)

AUC Accuracy Precision ** Recall **
Training dataset 0.56 [0.42–0.68] 0.52 ± 0.03 0.49 0.45

External validation dataset 0.50 [0.34–0.68] 0.43 ± 0.02 0.54 0.65

Subspace Discriminant (C2)

AUC Accuracy Precision ** Recall **
Training dataset 0.63 [0.48–0.72] 0.56 ± 0.03 0.58 0.56

External validation dataset 0.51 [0.39–0.74] 0.54 ± 0.01 0.58 0.65

PET features only (D)

Linear SVM (D1)

AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.68 [0.53-0.78] 0.64 ± 0.03 0.64 0.80 0.09

External validation dataset 0.65 [0.43-0.82] 0.64 ± 0.01 0.67 0.78 0.18

Subspace Discriminant (D2)

AUC Accuracy Precision ** Recall ** p ***
Training dataset 0.71 [0.59–0.82] 0.69 ± 0.01 0.67 0.8 0.10

External validation dataset 0.68 [0.51–0.84] 0.60 ± 0.01 0.67 0.61 0.08

Harmo CT + Original PET + Clinical features (E)

Linear SVM (E1)

AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.79 [0.67–0.87] 0.73 ± 0.02 0.72 0.83 6.0 × 10−5

External validation dataset 0.73 [0.54–0.87] 0.73 ± 0.01 0.77 0.74 0.02

Subspace Discriminant (E2)

AUC * Accuracy Precision ** Recall ** p ***
Training dataset 0.76 [0.65–0.86] 0.74 ± 0.01 0.72 0.83 0.01

External validation dataset 0.75 [0.54–0.88] 0.68 ± 0.02 0.73 0.70 0.02
* AUCs in square brackets are their bootstrapped 95% CIs. ** Precision and recall are presented for class 1.
*** p-values are calculated with respect to the conditions C1 and C2 for linear SVM and ESD models, respectively.
Values in bold mean the statistical significance.

It is worth noting that both A1 and A2 models significantly outperformed C1 and
C2 models, both in the training and external validation datasets (p = 0.0001, p = 0.01 and
p = 0.02, p = 0.046, respectively, for linear SVM and subspace discriminant models), likewise
for E and C models (E1: p < 0.0001, and p = 0.02, and E2: p = 0.01, and p = 0.02, respectively,
for training and external validation datasets). C models outperformed B models, but only
in the training dataset (p < 0.0001 and p = 0.01, respectively, for linear SVM and subspace
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discriminant models) and D and C models had the same performance metrics. In summary,
models using clinical information (E models) do not add a significant improvement to A
models. This effect is also appreciable in Figure 4, where all the p-values among the models
are represented.

Figure 4. p-values calculated using the two-sided DeLong test. Numbers in bold mean the
statistical significance.

4. Discussion

In this work, a multi-centric cohort of early-stage NSCLC patients treated with SBRT
was used to build and validate predictive models of PFS greater than 24 months using
radiomic features from CT and PET exams and clinical information. Several existing works
in the literature [40] describe acquisition protocol variabilities in multi-centric studies,
which could affect the performance of radiomic models. Since radiomics computes features
from the pixel values in the images, differences in acquisition protocol can lead to biased
results. The rationale behind our harmonization method lies in the fact that retrospective
multicenter radiomic studies are challenging but necessary, as gathering data from several
centers for a centralized analysis is complex for legal, ethical, administrative, and technical
reasons. Most of the time, the different centers involved do not follow standardized ac-
quisition and reconstruction protocols; therefore, the collected data suffer from intra-, and
inter-variability, making radiomic features sensitive to multicenter variability. Our novel
harmonization technique aims to reduce the bias caused by the absence of standardized
protocols. Generally, feature analysis is performed by calculating them inside an ROI that
coincides with the lesion target. Our study aims to tackle this issue by attempting to reduce
this effect using the healthy region of the patient as the baseline from which to harmonize
the radiomic data computed from the lesion. From our results, the harmonization improves
models’ performance when it is used on CT image sets. On the other hand, we expected
that for PET-only images, the harmonization method is not easily applicable due to the func-
tional aim of this imaging modality. In such a modality, several healthy tissues (i.e., lungs)
are not 18-FDG-avid, while a harmonization based on healthy radiotracer accumulation, to
our knowledge, has yet to be studied. Our work investigated and evaluated the feasibility
of this technique, which could be employed and better analyzed in future studies.

When using original feature values, PET features were preferred over CT during
feature selection, resulting in an only PET-based model. Furthermore, in A models, two
features from CT were included in the final prediction score (Log_Sigma30mm_GLDM_Small-
Dependence-High-Gray-Level-Emphasis (SDHGLE) and Wavelet_LHH_NGTDM_Busyness),
which were also selected in B models. In the same way, a subset of selected features in the A
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method (Log_sigma10mm_GLSZM_Size-Zone-Low-Gray-Level-Zone-Emphasis (LGLZE),
Exponential_FIRST ORDER_Median, Square_GLSZM_ZoneEntropy (ZE)) is also present
among the selected features in the PET-only-based method. This could mean that our
approach, also given the higher performance metric of the A method, was able to merge
the information hidden in the CT and PET image sets in a multi-centric cohort of patients,
highlighting the importance of properly handling hybrid imaging in radiomic models.

Other harmonization techniques were previously described in the literature [41].
Among these, the ComBat harmonization method, which removes batch effects, mostly
based on an empirical Bayes framework, is one of the most used. Conversely, the ComBat
method has some limitations: for instance, the dimension of the homogeneous group
cannot be too few (in our study, it would have not been applicable as most of the centers
provided less than 15 patients). Indeed, recently, some methods have been proposed to
overcome these limitations, e.g., using bootstrap and Monte Carlo technique to improve
robustness in the estimation [42].

Even if Monte Carlo and bootstrap strategies aimed at overcoming the cohort size
limitations, the objective of this method still focuses on removing differences in radiomic
feature distributions among different labels (corresponding to different centers). Com-
Bat, thus, relies on the individual distributions and changes made to feature values are
dependent on a group of patients. While we know that there are data supporting the
effectiveness of this method (especially in making the feature distributions uniform), we
wanted to tackle the multicenter studies issue from a different angle, which is to account
for the individual patients’ differences (caused both by the scanner/institution protocols
and their anatomy) taken directly from the lesion imaging. This renders the method easier,
both computationally and for cohort eligibility reasons (which, in the ComBat method, is
needed for representing the single center in terms of homogeneity being an assumption of
the method). In fact, if validated further, our method can be applied even in heterogenous
cohorts since it uses only the single image set of the patient.

Our approach aimed to use all the information present in the CT data, both from
cancer lesions and the contralateral healthy tissue, simulating the radiologists’ skill in
subjectively evaluating a lesion and adding this information in quantifiable and statistical
terms (through the radiomic features).

In our work, the well-known and studied concept of delta radiomics was implemented
not in a temporal sense but spatially (cancer vs. healthy tissue), which is an approach
that, to our knowledge, was not applied in other prognostic oncological works. Traditional
radiomics uses absolute values extracted from regions of interest to predict a clinical
outcome. On the other hand, delta radiomics predicts a clinical outcome through the
combination of radiomic values computed from image sets acquired at different time points
(i.e., radiographs to monitor follow-ups or differences between basal PET and interim PET),
which is a rationale also used in clinical practice to assess lesion progression (i.e., PERCIST).
In our manuscript, we decided to apply delta radiomics not between different time points
but between different anatomic locations (healthy vs. tumor tissues). The assumption
behind this use of delta radiomics is that each patient can have an intrinsic “baseline” value
for a certain radiomic feature (caused by individual anatomy and institution protocols) that
needs to be accounted for when building predictive models. Comparison between normal
and tumor tissue behavior (even in terms of pixel values) is also common in clinical practice
(i.e., SUV values typical of physiological metabolism or HU/density values of healthy
tissue). Some authors [43–45] explain that delta radiomics—which is the use of textural
indices associated with different time points or anatomical regions—is more successful
than traditional radiomics. Our work aims to provide the basis for a framework where the
study of simple absolute feature values can make room for the analysis of their relationship
to a reference, used as a threshold or as a comparison.

There are several limitations to the current work. Our study suffered a restricted
number of patients selected retrospectively. Nonetheless, the patients’ number seemed
reasonable at the current phase of our study. It assures the homogeneity in terms of patholo-
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gies, as including only NSCLC lesions prevented possible biases created by evaluating
different diseases, even in the lung anatomical district. Our study highlighted the necessity
to monitor and carefully use features related to pixel values and their relationships. In this
case, we can assume that the importance of the radiomic features is not only held in their
numerical value but also in the intrinsic relationship among those values. The textural
indices’ ability to perform more complex clinical tasks (i.e., predicting toxicity and its grade)
could be further examined in the next phase of our work or in a prospective study design,
which could also assess the robustness of our method. We believe that a prospective study
will be able to validate these models within a cohort gathered with a better strategy.

Interestingly enough, we found that the improved performance in models employing
harmonized features in the training phase was also confirmed in the validation dataset; the
use of an external dataset is becoming more and more crucial to radiomics studies to assure
and facilitate their introduction in clinical practice.

In our study, no clinical or treatment-related features were shown to be significantly
related to PFS, except for gender and lung site. It is well known in the literature that
gender is a prognostic factor for PFS [46–48]. Due to the size of our cohort, we did not
find significant correlations between PFS and other studied clinical prognostic variables,
such as age or histology (also due to the inclusion criteria). To our knowledge, we did not
find any other study reporting a significant correlation between PFS and tumor laterality;
thus, we will investigate this finding together with our model generalization power in
a future prospective study. Indeed, in the literature, many studies showed a significant
correlation between some clinical or treatment-related characteristics and outcomes (PFS
and OS) and some created predictive models. Among the various statistical prediction
models, nomograms can be accurate and feasible prognostic instruments with high utility in
estimating individual patient risk and may, thus, help guide treatment decisions in clinical
practice. At present, there are some nomograms, based on clinical features, developed
for early-stage NSCLC treated with SBRT [49–51], but there is still need for validation of
the clinical variables found in those studies and their experimental results in more robust
cohorts, such as prospective ones. Therefore, a need exists for a robust recurrence-related
prediction model to help select high-risk candidates who may benefit from additional
systemic therapies.

In this scenario, a predictive model based on radiomics and clinical and treatment-
related characteristics can improve the prediction of clinical outcomes, as already demon-
strated by other works. We also found out that clinical variables did not improve the
radiomics models, but only the proposed harmonization process statistically significantly
improves the model’s performance.

As previously stated, our future aim is to apply our method to a prospective multi-
centric cohort to further validate the framework’s stability. In addition, other anatomical
regions should be explored to generalize the harmonization, even when the healthy area is
not so easily defined as in the lung case. Regarding the employment of this method also in
PET datasets, it could be interesting to explore the feasibility of applying our harmonization
to 18F-FDG-avid anatomical regions, such as the liver or the brain, which are, however, not
related to a pathologic response. Such a method could be especially useful where CT-PET
is the only exam included in the care pathway of the patient.

5. Conclusions

A novel strategy of CT data harmonization involving delta radiomics, considering
both cancer and healthy tissue in the contralateral lung, was tested and externally validated
in a multi-centric study for NSCLC patients, to initially assess its feasibility.

The radiomics models with harmonized features can predict better the selected patient
outcome in our cohort, providing valuable additional information to the clinician.
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Simple Summary: Assessing follow-up computed tomography(CT) series is of great importance
in clinical practice for lung nodule diagnosis. Deep learning is a thriving data mining method in
medical imaging and has obtained surprising results. However, previous studies mostly focused on
the analysis of single static time points instead of the entire follow-up series and required regular
intervals between CT examinations. In the current study, we propose a new deep learning framework,
named ViSTA, that can better evaluate tumor invasiveness using irregularly serial follow-up CT
images to avoid aggressive procedures or delay diagnosis in clinical practice. ViSTA provides a
new solution for irregularly sampled data. ViSTA delivers superior performance compared with
other static or serial deep learning models. The proposed ViSTA framework is capable of improving
performance close to the human level in the prediction of invasiveness of lung adenocarcinoma while
being transferrable to other tasks analyzing serial medical data.

Abstract: To investigate the value of the deep learning method in predicting the invasiveness of early
lung adenocarcinoma based on irregularly sampled follow-up computed tomography (CT) scans.
In total, 351 nodules were enrolled in the study. A new deep learning network based on temporal
attention, named Visual Simple Temporal Attention (ViSTA), was proposed to process irregularly
sampled follow-up CT scans. We conducted substantial experiments to investigate the supplemental
value in predicting the invasiveness using serial CTs. A test set composed of 69 lung nodules was
reviewed by three radiologists. The performance of the model and radiologists were compared and
analyzed. We also performed a visual investigation to explore the inherent growth pattern of the early
adenocarcinomas. Among counterpart models, ViSTA showed the best performance (AUC: 86.4% vs.
60.6%, 75.9%, 66.9%, 73.9%, 76.5%, 78.3%). ViSTA also outperformed the model based on Volume
Doubling Time (AUC: 60.6%). ViSTA scored higher than two junior radiologists (accuracy of 81.2%
vs. 75.4% and 71.0%) and came close to the senior radiologist (85.5%). Our proposed model using
irregularly sampled follow-up CT scans achieved promising accuracy in evaluating the invasiveness
of the early stage lung adenocarcinoma. Its performance is comparable with senior experts and better
than junior experts and traditional deep learning models. With further validation, it can potentially
be applied in clinical practice.
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1. Introduction

Low-dose computed tomography (LDCT) is recommended for lung cancer screening
in high-risk populations based on the National Lung Cancer Screening Trial (NLST) report,
which is now included in US screening guidelines [1]. Owing to LDCT, more and more
early stage lung adenocarcinomas are diagnosed and treated. In clinical practice, most
people require follow-up CT scans due to the indeterminate diagnosis or low probability of
malignancy on baseline CT. Assessing the changes in size, CT value, and other imaging
features can substantially help the diagnosis and invasiveness evaluation of early stage lung
adenocarcinomas. However, the evaluation process is tedious and lacks objectivity, which
means that radiologists could be overwhelmed by numerous serial CT image evaluations.
Moreover, the features indicating malignancy may not be present in the early stages of lung
adenocarcinoma. As we know, biological changes may precede morphological changes.
Therefore, an efficient tool for objectively evaluating the changes and mining the internal
patterns of lung nodules on serial CTs is of great importance.

Deep learning is a thriving data mining method in medical imaging and has obtained
surprising results [2–4]. It can efficiently and automatically process medical images and
has achieved promising performances on par with clinicians on various clinical tasks,
including disease classification, medical image registration, and organ segmentation [5–9].
Previous studies have shown that deep learning could aid clinical decision-making for
early lung cancer in disease management and invasiveness prediction [10–14]. However,
most prior studies only included single-time CT scan images, while serial CT scan images
were not fully investigated. Several powerful deep learning methods have been invented
to process serial data, e.g., Long Short-term Memory, Gated Recurrent Unit Network, and
Transformer [15–17]. Equipped with the aforementioned tools, a deep learning system
can include serial images, better evaluate the biological behavior and changes, and then
better predict different clinical events, such as prognosis, therapeutic effect, and subsequent
growth patterns [18].

Serial deep learning models have achieved great success in serial data domains, in-
cluding natural language processing, video classification, and speech recognition [15,19,20].
Nonetheless, it is important to notice that medical serial data such as electronic health
records [21] or medical examinations are almost always sampled irregularly in time, sepa-
rating them from the aforementioned modalities. Since the progression of the disease is
strongly correlated with the time intervals between two time points, the asynchronous (sam-
pled irregularly) nature of medical data requires special treatment. For example, by limiting
sampling time intervals to 1, 3, and 6 months, deep learning methods proved effective in
integrating multiple time points and improving the prediction of lung cancer treatment
response [22]. However, this restriction on time intervals still limits the usage of the deep
learning method in processing clinical serial data, epically for irregularly serial data.

In this article, we propose ViSTA (Visual Simple Temporal Attention), a deep learning
framework capable of predicting the tumor invasiveness of pulmonary adenocarcinomas
from Follow-up CT Series. The main contributions are three-fold: First, by introducing a
simple temporal attention mechanism, we propose a new deep learning network, named
ViSTA, to evaluate the invasiveness of early stage lung adenocarcinoma using irregularly
serial CT scans images. ViSTA is able to gather information throughout the entire series
and improve the prediction performance. Compared with serial analysis using traditional
recurrent neural networks [22], ViSTA is not limited by different time intervals and can
process completely irregularly sampled serial data. ViSTA was trained and validated on
a dataset of 1121 CT scans from 282 follow-up series and evaluated on a hold-out test set
of 113 CT scans from 69 follow-up series. Second, ViSTA delivers superior performances
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compared with other static or serial deep learning models. ViSTA also outperforms size-
based predictive methods (Volume Doubling Time [23]) by a large margin. Third, ViSTA
was proven to achieve higher scores than two junior radiologists and came close to one
senior radiologist in the observer study. Our results prove ViSTA’s superiority in terms
of processing irregularly sampled series and its great potential of being put into clinical
practice in reality. Additionally, ViSTA is completely transferrable to other medical imaging
tasks where analyzing serial data should yield better performances.

2. Materials and Methods

2.1. Data Collection

From January 2011 to October 2017, a search of the electronic medical records and
the radiology information systems of the hospital was performed by one author (Yingli
Sun). The inclusion criteria are as follows: (1) two or more available CT examinations with
thin-slice (≤1.5 mm) images before resection. If there were only two CT examinations,
the interval between two scans should be over 30 or more days. (2) Complete pathologic
reports. The exclusion criteria for this analysis were: (1) prior treatment before surgery;
(2) poor quality CT images; (3) lesions that were difficult to clearly delineate. Finally, a total
of 351 nodules from 347 patients (mean age, 58.41 years ±11.79 (SD); range, 22–84 years)
were enrolled in the study. Among the 351 lung nodules, 191 nodules were pathologically
identified as preinvasive lesions, including 1 atypical adenomatous hyperplasia (AAH),
39 adenocarcinomas in situ (AIS), and 151 minimally invasive adenocarcinoma (MIA);
whereas 160 nodules were identified as invasive adenocarcinoma (IA). In total, 1234 serials
CT scans of the 351 nodules were enrolled in this study. The median interval between the
first and the last CT examinations was 366 ± 500 days (range, 30–2813 days; interquar-
tile range, 165–852 days). The 351 nodules were randomly separated into a training set
(245 nodules), validation set (37 nodules), and test set (69 nodules) (see Table 1).

Table 1. Number of CT scans/nodules in training, validation, and test set.

Pathological Type
No. CT Scans/Nodules

Training Validation Test Total

Non-IA

AAH 5/1 0/0 0/0 5/1
AIS 98/29 9/4 19/6 126/39
MIA 383/104 40/16 114/31 537/151
Total 486/134 49/20 133/37 668/191

IA 398/111 64/17 104/32 566/160
Total 884/245 113/37 237/69 1234/351

2.2. CT Scanning Parameters

Preoperative chest CT in our department was performed using the following four
scanners: GE Discovery CT750 HD, 64-slice LightSpeed VCT (GE Medical Systems, Chicago,
IL, USA); Somatom Definition flash, Somatom Sensation-16 (Siemens Medical Solutions,
Erlangen, Germany) with the following parameters: 120 kVp; 100–200 mAs; pitch, 0.75–1.5;
and collimation, 1–1.5 mm, respectively. All imaging data were reconstructed using a
medium sharp reconstruction algorithm with a thickness of 1–1.5 mm.

2.3. Nodule Labeling, Segmentation and Imaging Preprocessing

A medical image processing and navigation software 3D Slicer (v4.8.0, Brigham and
Women’s Hospital, Boston, MA, USA) was used to manually delineate the volume of
interest (VOI) of the included nodules at the voxel level by one radiologist (Yingli Sun, with
5 years of experience in chest CT interpretation), then the VOI was confirmed by another
radiologist (Ming Li, with 12 years of experience in chest CT interpretation). Large vessels
and bronchioles were excluded as much as possible from the volume of the nodule. The
lung CT DICOM (Digital Imaging and Communications in Medicine) format images were
imported into the software for delineation, and then the images with VOI information were
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extracted with NII format for next step analysis. Each segmented nodule was attributed
a specific pathological label (AAH, AIS, MIA, IA), according to the detailed pathological
report. Two steps were performed to preprocess CT images before path extraction. First,
the whole-volume CT image was resampled to the spacing of 1 mm in all three dimensions
to guarantee isotropy. Second, HU values were clipped to the range of (−1000, 400)
and normalized to (0, 1) using minimum–maximum normalization. Normalization can
accelerate the convergence in the training of the deep learning model and improve its
generalization ability.

2.4. Development of the Deep Learning Model

We developed a deep learning model named ViSTA to classify IA/non-IA lung nodules.
The overall architecture of ViSTA is presented in Figure 1. ViSTA first extracts features from
CT image patches using a CNN backbone and then integrates information from time series
using a lightweight attention module named SimTA [24], which is designed specifically
for analyzing asynchronous time series. Details regarding the architecture of ViSTA are
provided in Supplementary Section S1, and a single SimTA layer was shown in Figure
S1. To avoid overoptimization, we did not heavily tune the hyperparameters of our deep
learning model and simply adopted common settings. ViSTA and all its counterparts are
trained end-to-end for 100 epochs using the AdamW optimizer [25]. We used a cosine
decay learning schedule from 10−3 to 10−6. The batch size of each update was 32. The
drop-out probability and weight decay were set at 0.2 and 0.01 to avoid overfitting.

Figure 1. The model overview of the proposed ViSTA. It consists of a CNN backbone followed by the
SimTA module made up of several SimTA layers.

2.5. Counterpart Methods

For comparison with ViSTA, we conducted experiments on a few of its counterparts:

– VDT (Volume Doubling Time). VDT is an important volumetric indicator used in
follow-up examinations. It represents the time it takes for a nodule to double its
volume. The formula of VDT is provided in Supplementary Section S1. Nodules with
VDT < 400 days are considered fast-growing and are more likely to be malignant [23].
In this research, we evaluated VDT’s metrics under two different thresholds: 400 days
and the cutoff that provides the best Youden index on the validation set. Youden
index’s formula is presented in Supplementary Section S1;

– CNN (Convolutional Neural Network): To compare ViSTA against static models, we
introduced CNN as a counterpart. We conducted the following experiments to further
investigate the source of performance difference between ViSTA and CNN;
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– CNN-last: This experiment was conducted to train and validate CNN only on the
last time point of each follow-up series. It is obvious that the last time point is most
relevant to the final diagnosis;

– CNN-first: This experiment was conducted to train and validate CNN only on the
first time point of each follow-up series. In this experiment, the first steps were treated
as if they had the same label as the last one. This setting was used to confirm that
earlier time points convey less information than later ones;

– CNN-all: This experiment was conducted to train CNN on all time points of each
follow-up series and validate it on the first and last time point separately (named
CNN-all-first and CNN-all-last, respectively). This was used is to investigate if ViSTA’s
superior performance only comes from the larger data size it enjoys;

– CNN+LSTM (Long Short-term Memory) [16]: LSTM is a subtype of RNN (Recurrent
Neural Network) designed to analyze serial data and capture long-term relations.
This setting is quite similar to previous research which combined CNN and RNN to
predict lung cancer treatment response [22]. However, we did not limit time intervals
to specific values so that we could fairly compare ViSTA and RNN-based methods.
One major difference between CNN+LSTM and ViSTA is that CNN+LSTM treats all
time points as if they had the same interval (synchronous). By comparing the previous
two methods, we would like to see if ViSTA is more suitable for analyzing irregularly
sampled time series.

2.6. Evaluation and Statistical Analysis

We evaluated the proposed ViSTA model both quantitatively and qualitatively. To
evaluate each method’s performance, we used a variety of metrics, including accuracy,
precision, sensitivity, F1 score, and AUC. Formulas of evaluation metrics are presented in
Supplementary Section S1.

To explore the visual representation and interpretability of ViSTA, we followed Si-
monyan, K. et al. [26] and plotted our model’s saliency maps through backpropagation,
and investigated the mechanism under ViSTA and where it directed its attention.

2.7. Observer Study

To further evaluate the performance of ViSTA, we conducted an observer study to
compare the performance of radiologists in the same task against other models. In the
observer study, all 69 CT series in the test set were evaluated by three radiologists. One is
a senior radiologist with 22 years of experience, and the other two are junior radiologists
with 5 and 3 years of experience, respectively. Radiologists gave the results based on the
evaluation of all available serials CTs. The reviewed results were analyzed and compared
with the performance of our proposed model. Radiologists’ performances were evaluated
using accuracy, sensitivity, precision, and F1 score.

3. Results

3.1. Performance of Deep Learning Models in Predicting the Invasiveness of Early
Lung Adenocarcinoma

To validate the effectiveness of ViSTA in predicting IA/non-IA nodules, we evaluated
its performance using a variety of metrics against its counterparts: VDT (cutoff value set at
best Youden index or 400 days), CNN (including CNN-last, CNN-first, CNN-all-first and
CNN-all-last), and CNN+LSTM.

Tables S1 and S2 show their performances on the training dataset and validation
dataset. Figure 2 provide the ROC curves of all models on the test dataset. Our proposed
model outperformed all deep learning models and VDT-based methods in every metric
by considerable margins (best among models are highlighted with an underscore). It
is worth noting that VDT is far from effective in terms of invasiveness classification. It
underperformed almost all deep learning models in terms of AUC, accuracy, and F1 score.
Secondly, sequential models (ViSTA and CNN+LSTM) delivered better performances
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than CNN models that utilize static data points. ViSTA outperformed CNN+LSTM by
considerable margins in all metrics. This performance gap can be attributed to ViSTA’s
suitability to analyze asynchronous time series. Unlike CNN+LSTM, which treats all time
points as if they were regularly sampled, ViSTA takes time intervals into account and is
better at processing follow-up series. Furthermore, we trained CNN on all time points
(CNN all-first and CNN all-last) to investigate if sequential models gain superiority over
larger training datasets. It turned out that ViSTA and CNN+LSTM still outperformed CNN
even when it was trained on all data.

Figure 2. ROC curves of different models compared with performances of radiologists. The gray
dotted line indicates the performance of a random classifier with no predictive ability.

3.2. Performance Comparison against Radiologists

In the observer study, we compared the performances of ViSTA and its counterparts
against three radiologists (Table 2). One is a senior radiologist with 22 years of experience,
and the other two are junior radiologists with 5 and 3 years of experience, respectively. All
69 follow-up series from the test set were included in the observer study. We evaluated
radiologists’ performances using accuracy, sensitivity and precision, and F1 score and
compared them against the proposed model. In terms of metrics that require specifying
threshold, we chose the threshold that delivers the best Youden Index on the validation set
as the cutoff value. Figure 2 plot deep learning models’ ROC curves against radiologists’
metrics. In terms of accuracy and F1 score, ViSTA scored higher than the two junior
radiologists (accuracy of 81.2% vs. 75.4% and 71.0%; F1 score of 81.7% vs. 73.0% and 65.5%)
and came close to the senior radiologist (accuracy of 81.2% vs. 85.5%; F1 score of 81.7%
vs. 84.8%).

3.3. Visual Presentation Investigation

To investigate the mechanism of ViSTA, we used a neural network visualization
technique [26] to visualize the attention heatmap of the model, which was mostly attributed
to the predicted results and potentially correlated to the biological behavior (Figure 3).
We took the absolute value of the raw heatmap and clipped it to the range of (0, 0.01) for
better visualization and interpretation. In view of the created heatmaps, we can see that
the “attention” of the deep learning system was mostly focused on the nodule. Areas
surrounding the nodule draw the attention of ViSTA as well, meaning that they also carry
valuable information as the nodule does (Figure 3A,B). Figure 3A show a long follow-up
series of 11 time points. We observed that heatmaps stay blank in the first half of the

126



Cancers 2022, 14, 3675

series, during which both nodule volume and IA probability remain relatively stable. In
the latter half, heatmaps begin to show along with significant increases in nodule volume
and IA probability. Heatmaps are sometimes only lit up at the last time point (Figure 3B).
We contribute this to the sudden increase of nodule volume between the third and the
fourth time point, which provides sufficient information for the model. This argument
is supported by the spike of IA probability at the fourth time point. In some rare cases,
heatmaps on all time points are close to invisible (Figure 3C). We conjecture that this is
because the lung nodule had almost no progression, which was proven by the fact that both
nodule volume and IA probability stayed almost unchanged throughout the entire series.

Table 2. The performance of different models and radiologists on the test dataset. The highest among
all is highlighted in bold, and the highest among models and VDT (Volume Doubling Time)-based
methods is highlighted with an underscore.

AUC Acc. Prec. Sens. F1

Senior - 85.5% 82.4% 87.5% 84.8%
Junior 1 - 75.4% 74.2% 71.9% 73.0%
Junior 2 - 71.0% 73.1% 59.4% 65.5%

1/VDT (best Youden index) 60.6% 62.3% 56.3% 84.4% 67.5%
1/VDT (400 days) 60.6% 58.0% 71.4% 15.6% 25.6%

CNN last only 75.9% 72.5% 72.4% 65.6% 68.9%
CNN first only 66.9% 65.2% 70.0% 43.8% 64.3%
CNN all-first 73.9% 65.2% 60.5% 71.9% 65.7%
CNN all-last 76.5% 73.9% 71.9% 71.9% 71.9%
CNN+LSTM 78.3% 76.8% 73.5% 78.1% 75.8%

ViSTA 86.4% 81.2% 74.4% 90.6% 81.7%

Figure 3. Visualization investigation of ViSTA. The top row shows CT slices of each time point in the
follow-up series. The middle row shows attention heatmaps extracted using the technique proposed
by Simonyan, K. et al. [26]. The bottom row masks heatmaps on top of CT slices. (A) Attention
gradually grew along with the nodule volume and IA probability as the nodule progressed to the end
of the series. (B) The heatmap only lit up at the last time point as it is considered the one carrying
valuable information. (C) All time points are allocated with little to no attention, which may be
caused by the slow progress of the nodule.
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4. Discussion

In the current study, we proposed a deep learning framework named ViSTA to predict
the invasiveness of lung adenocarcinomas using serial CT images. Our results showed that
models fed with serial CT images substantially and consistently outperformed models fed
with single CT images. Moreover, our proposed model can effectively process asynchronous
time series and outperform the traditional serial network, i.e., LSTM. Our models achieved
an AUC of 86.4% and an F1 score of 81.7% in the test dataset, which were higher than those
of all its counterparts. In the observer study, ViSTA achieved higher accuracy and F1 scores
than two junior radiologists (accuracy of 81.2% vs. 75.4% and 71.0%, F1 score of 81.7%
vs. 73.0% and 65.5%). When compared with the senior radiologist, our proposed model
delivered close performance (accuracy of 81.2% vs. 85.5%, F1 score of 81.7% vs. 84.8%).

Timely and accurately assessing the biological behavior of early stage lung adenocarci-
nomas has been a continuous focus of attention in clinical practice. In contrast to traditional
radiographic features and handcraft features, deeper and higher dimension level features
mined by the deep learning method present promising advantages in many tasks, including
predicting the invasiveness of the early lung adenocarcinoma. Kim et al. performed a
comparison study and revealed that the predictive accuracy of the deep learning method
was superior to those of the size-based logistic model [11]. We also analyzed the predictive
value of VDT [27], a size-based key parameter in the differentiation of aggressive tumors
from slow-growing tumors in clinical practice [24]. Not surprisingly, the performance of
our proposed model substantially exceeded that of the VDT-based methods. It indirectly
verified the conjecture that a deep learning system could extract and learn deeper and more
valuable features, then better discover the biological behavior of the tumors and predict
the invasiveness of early stage lung adenocarcinoma.

Although the deep learning method can obtain better performance, most previous
studies only used single CT scan data prior to the surgery for training and extracting fea-
tures, which cannot reveal and learn the internal growth pattern of the nodules. In clinical
scenarios, internal growth is a vital component of Lung-RADS, a guideline to standardize
image interpretation by radiologists and dictate management recommendations. Including
serial CTs can facilitate medical tasks, such as differentiating benign tumors from malignant
ones [28] and monitoring and predicting treatment response [22,29]. The discovery of our
study supports this. By modelling serial CTs, the predictive performance of ViSTA substan-
tially surpassed its counterparts in analyzing static data. In clinical practice, sequential
medical data is generally sampled irregularly, i.e., with different follow-up time intervals.
To address the irregular sampling issue, we adopted SimTA in our proposed model to
process irregularly sampled time series. This lightweight module enables modeling sequen-
tial information in an efficient way. It turned out that the proposed ViSTA significantly
outperformed the standard serial framework, i.e., CNN+LSTM, with considerably fewer
parameters and less computation and memory footprint. ViSTA can better take advantage
of the complete information of all time point CTs by modelling simple yet effective expo-
nentially decay attention in time series. This was proved by our experiments comparing
ViSTA, CNN+LSTM, and pure CNN models trained with all time point CTs (CNN-all).
ViSTA’s superiority over CNN-all proved that its performance gain does not come from a
larger training dataset.

In the visualization analysis, we found that ViSTA can drive its attention on the nodule
and the surrounding tissue and drop more attention when the probability of invasiveness
increases. It can partly explain the mechanism of the deep learning system. We also found
some cases where the model appeared to use features close to the nodule, such as the
vasculature and parenchyma surrounding the nodule. In fact, peritumoral tissue may
possess valuable information, such as tumor-infiltrating status. Features extracted from the
peritumoral tissues can improve the efficiency of intramodular radiomic analysis [30,31].
However, we still cannot fully interpret whether the model incorporates other abnormalities
such as background emphysema in its predictions. Further investigation using more
comprehensive model attribution techniques may allow clinicians to take advantage of the
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same visual features used by the model to assess the biological status of tumors. It is worth
noting that some of the heatmaps in the time series are completely blue, meaning that the
deep learning model allocated close to zero attention to these time points. Though this
phenomenon is not completely interpretable, we argue that it can be attributed to these two
facts: these time points are too far from the current one, and they lack findings informative
for the deep learning model.

Even though the proposed ViSTA proved effective in processing irregularly sampled
CT series in our experiments, there are several limitations left untouched. First, due to the
difficulty of collecting complete lung nodule follow-up series, we only included data from
a single center in this study. In clinical practice, it is preferable if the proposed method
generalizes to multiple data domains. Furthermore, it is possible that a single follow-up
series contains CT scans from different centers, which would be an important challenge to
solve if the proposed model were to be put into clinical usage. In future studies, we will
include CT series from external centers to validate the generalization performance of ViSTA.
Second, the SimTA module in ViSTA models a simple temporal attention mechanism that
monotonically increases weights as the time point gets closer to the current time. However,
it is viable to model more complicated attention relations using deep learning models such
as Transformeror Informer [15,32]. These temporal models enable capturing non-monotonic
and dynamic temporal attention that could be useful in predicting invasiveness. Last but
not least, even though we conducted a visual investigation on ViSTA, the interpretation
of deep learning model predictions still remains a major challenge. Additionally, the final
clinical decision is still up to clinicians to date. In our future research, we will further
investigate the underlying mechanism of ViSTA or other similar attention mechanisms.

5. Conclusions

To summarize, we designed a deep learning model processing irregularly sampled CT
series to predict the invasiveness of early stage lung adenocarcinoma from follow-up CT
scans. The model achieved promising accuracy comparable with senior experts and better
than junior experts and its counterparts. With further validation, the proposed model could
better evaluate the invasiveness of early stage lung adenocarcinoma, avoiding aggressive
procedures or delayed diagnosis and helping precise management in clinical practice.
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Simple Summary: Previous survival-prediction studies have had several limitations, such as a lack
of comprehensive clinical data types, testing only in limited machine-learning algorithms, or a lack
of a sufficient external testing set. This lung-cancer-survival-prediction model is based on multiple
data types, multiple novel machine-learning algorithms, and external testing. This predicted model
demonstrated a higher performance (ANN, AUC, 0.89; accuracy, 0.82; precision, 0.91) than previous
similar studies.

Abstract: A well-established lung-cancer-survival-prediction model that relies on multiple data types,
multiple novel machine-learning algorithms, and external testing is absent in the literature. This study
aims to address this gap and determine the critical factors of lung cancer survival. We selected non-
small-cell lung cancer patients from a retrospective dataset of the Taipei Medical University Clinical
Research Database and Taiwan Cancer Registry between January 2008 and December 2018. All
patients were monitored from the index date of cancer diagnosis until the event of death. Variables,
including demographics, comorbidities, medications, laboratories, and patient gene tests, were
used. Nine machine-learning algorithms with various modes were used. The performance of the
algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total,
3714 patients were included. The best performance of the artificial neural network (ANN) model was
achieved when integrating all variables with the AUC, accuracy, precision, recall, and F1-score of
0.89, 0.82, 0.91, 0.75, and 0.65, respectively. The most important features were cancer stage, cancer
size, age of diagnosis, smoking, drinking status, EGFR gene, and body mass index. Overall, the ANN
model improved predictive performance when integrating different data types.

Keywords: lung cancer; survival; prediction models; real-world data; artificial intelligence;
machine learning
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1. Introduction

Lung cancer is the leading cause of cancer deaths worldwide [1]. Globally, there
were around 2.21 million new cases of lung cancer and 1.80 million fatalities in 2020 [2].
One study reported that lung cancer incidence and mortality rates were 22.2 and 18.0 per
100,000 people in 2020, respectively [3,4]. Lung cancer can be divided clinically into two
types based on histological features: non-small-cell lung cancer (NSCLC) and small-cell
lung cancer (SCLC). NSCLC is the most common among them, accounting for 80–90% of
lung cancers [5]. Cell deterioration and metastasis are slower in NSCLC than in SCLC.
Around 70% of patients are diagnosed at an advanced stage, making surgical resection and
complete treatment challenging [6,7].

Artificial intelligence (AI) has been increasingly used in medical research and clinical
practice [8,9]. The accurate prediction of disease prognosis and the outcome of drug
treatment, which may serve as a reference for treatment decision-making and drug selection,
has become an essential topic in the clinical medicine [9,10]. Developing disease-risk and
prognosis-prediction models using machine-learning or deep-learning algorithms with big
data is a major area of AI-based academic research in the medical field [10,11]. Studies
have used machine-learning and/or deep-learning algorithms to develop lung cancer risk
and prognosis-prediction models [12–15]. Among them, Lai et al. [16] used 15 biomarkers
with clinical data (including gene expression) from 614 patients to develop a deep neural
network to predict the five-year overall survival of NSCLC patients.

This study aimed to develop survival-prediction models for lung cancer patients using
a large number of samples, different data types, various machine-learning algorithms, and
external testing. In addition to the basic clinical data (including demographic informa-
tion, disease condition, comorbidity, and current medication), we examined the role of
laboratory and genomic test results, which are generally not easy to obtain in predicting
lung cancer survival. Moreover, we also explored the important predictors for developing
prediction models.

2. Methods

2.1. Study Design and Data Source

We conducted a retrospective study in which we obtained data from the Taiwan Can-
cer Registry (TCR) database and the Taipei Medical University Clinical Research Database
(TMUCRD). The TCR database was established in 1979 and is managed by Taiwan’s Health
Promotion Administration, Ministry of Health and Welfare. It covers 98% of Taiwanese can-
cer patients and includes diagnosis and other related information. The TMUCRD retrieved
data from various electronic medical records (EHR) of three hospitals, Taipei Medical Uni-
versity Hospital (TMUH), Wan-Fang Hospital (WFH), and Shuang-Ho Hospital (SHH). The
database contains the electronic medical record data of 3.8 million people from 1998 to 2020,
including structured data (e.g., basic information of patients, medical information, test
reports, diagnosis results, treatment process, surgery, and medication history) and unstruc-
tured data (e.g., progress notes, pathology reports, and medical imaging reports) [17]. This
study has been approved by the Joint Institute Review Board of Taipei Medical University
(TMU-JIRB), Taipei, Taiwan (approval number N202101080). All the data were anonymous
before conducting analysis.

2.2. Cohort Selection

This study selected patients with lung cancer (ICD-O-3 code: C33, C34) from 2008
to 2018 in the TCR database. Exclusion criteria included individuals under 20 years old,
SCLC patients, and patients who did not have any medical history in the three hospitals
(TMUH, WFH, SHH). Thus, a total of 3714 patients were included in this study, including
960 patients from TMUH, 1320 from WFH, and 1434 from SHH (Figure S1 in the
Supplementary Materials).
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2.3. Outcome Measurement

We ascertained the study outcomes using TMUCRD EHR and vital status data from
the Taiwan Death Registry (TDR) [18]. We used the diagnosis date of NSCLC as the index
date, and the outcome of this study was death within two years following diagnosis. Data
were censored at the date of death or loss to follow-up, insurance termination, or the study’s
end on 31 December 2018.

2.4. Feature Selection

Based on a literature review and consultation with clinicians, we selected features that
may lead to the mortality of NSCLC patients to build prediction models. These features
consisted of:

1. Demographic information: age, gender, body mass index (BMI), smoking, drinking;
2. Cancer conditions: tumor size and cancer stage;
3. Comorbidities: cardiovascular problems (i.e., myocardial infarction (MI), congestive

heart failure (CHF), peripheral vascular disease (PVD), and cardiovascular disease
(CVD)), dementia, chronic obstructive pulmonary disease (COPD), rheumatic disease,
peptic ulcer disease (PUD), renal disease, liver disease, diabetes, anemia, depression,
hyperlipidemia, hypertension, Parkinson’s disease, and Charlson Comorbidity Index
(CCI) score. These conditions were considered if they were diagnosed in at least two
outpatient claims or one hospitalization over a year before the cancer diagnosis date.

4. Medications: alimentary tract and metabolism, blood and blood-forming organs,
cardiovascular system, genitourinary system and hormones, musculoskeletal system,
nervous system, and respiratory system. We measured patients who had used med-
ications by receiving them for more than a month (i.e., 30 days) during a year (i.e.,
360 days) before the index date.

5. Laboratory tests: basophil, blood urea nitrogen (BUN), calcium, cholesterol, chloride,
creatinine, eosinophil, ferritin, glucose AC, HbA1c, HCT, HGB, potassium, lym-
phocyte, MCH, MCHC, MCV, monocyte, sodium, neutrophil, platelet (PLT), RBC,
triglyceride, and WBC. We only selected laboratory tests with a missing rate of less
than 70% values a year before or a month after the index date.

6. Genomic tests: ALK, EGFR, KRAS, PDL1, and ROS1. We collected genomic tests if
patients had ever taken one a month after the cancer diagnosis date.

2.5. Development of the Algorithms

This study established prediction models based on four modes and different algorithms:

• The primary mode (e.g., Mode 1) included demographic information, cancer condi-
tions, comorbidities, and medications.

• The second mode (Mode 2) included the data from Mode 1 and the laboratory tests.
• The third mode (Mode 3) included the data from Mode 1 and genomic tests.
• The fourth mode (Mode 4) considered all the above features.

This study aims to predict the survival of lung cancer patients; therefore, the problem
can be formulated as a classification model as it could occur in the same patients. We
used possible machine-learning techniques such as logistic regression (LR), linear discrimi-
nant analysis (LDA), light gradient-boosting machine (LGBM), gradient-boosting machine
(GBM), extreme gradient boosting (XGBoost), random forest (RF), AdaBoost, support
vector machine (SVC), and artificial neural network (ANN). These methods are briefly
introduced below.

Logistic Regression (LR): This is a discrete choice model that models the relationship
between a response and multiple explanatory variables and is based on the concept of
probability [19]. It is widely used and more practical in fields such as biostatistics, clinical
medicine, and quantitative psychology. Its Equation (1) is:

y =
e(b0+b1X)

1 + e(b0+b1X)
(1)
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where x is the input value, y is the predicted output, b0 is the bias or intercept term, and b1
is the coefficient for input (x). In this study, we used the LR function with the parameter C
(inverse of regularization strength) of 0.0001 to reduce the model’s overfitting.

Linear Discriminant Analysis (LDA): This is generally used to classify patterns be-
tween two classes; however, it can be extended to multiple patterns. LDA assumes that
all classes are linearly separable, and according to the multiple linear discrimination func-
tions representing several hyperplanes in the feature space are created to distinguish the
classes [20]. In this study, we set the parameters’ shrinkage to ‘0’ and the solver to ‘lsqr’ to
improve estimation and classification accuracy.

Light Gradient-Boosting Machine (LGBM): This is a gradient-boosting framework
that uses tree-based learning algorithms. It is designed to be distributed and efficient
with the following advantages: faster training speed and higher efficiency; lower memory
usage; better accuracy; support of parallel, distributed, and GPU learning; and capability
to handle large-scale data [21]. The model’s class_weight parameter was set as ‘balanced’,
which uses the output’s value to automatically adjust weights inversely proportional to
class frequencies in the input data. The learning_rate, l1 regularization—reg_alpha, and
l2 regularization—reg_lambda parameters were set as 0.05, 0.1, and 0.1, respectively.

Gradient-Boosting Machine (GBM): Gradient-boosting regression trees produce com-
petitive, highly robust, and interpretable procedures for regression and classification. The
ability of TreeBoost procedures to give a quick indication of potential predictability, coupled
with their extreme robustness, makes them a useful preprocessing tool that can be applied
to imperfect data [22]. The default parameters were used in this model.

Extreme Gradient Boosting (XGBoost): XGBoost, an efficient and scalable implementa-
tion of the gradient-boosting framework, is a machine-learning system for tree boosting.
The scalability of XGBoost is attributed to several critical systems and algorithmic optimiza-
tions. These innovations include a novel tree-learning algorithm for handling sparse data;
a theoretically justified weighted quantile sketch procedure allows the handling of instance
weights in approximate tree learning [23]. The default parameters were used in this model.

Random Forest (RF): RF is an ensemble-learning method that operates by constructing
many small scales of classification modules (most often decision trees) at the training time.
The model outputs the class that combines the result of the individual modules based on
some voting algorithms [24]. In this study, we set the parameters as follows: n_estimators
(the number of trees) of 500, max_depth of 10, min_samples_split of 400, and class_weight of
0.5 for each class.

AdaBoost: The AdaBoost algorithm is an iterative procedure that combines several
weak classifiers to approximate the Bayes classifier C∗(x). AdaBoost builds a classifier, e.g.,
a classification tree that produces class labels, starting with the unweighted training sample.
If a training data point is misclassified, the weight of that data point is increased (boosted).
A second classifier is built using the new weights, which are no longer equal. Again,
misclassified training data have their weights boosted, and the procedure is repeated [25].
The number of estimators (n_estimators) used was 100.

Support Vector Machine (SVC): This is a machine-learning algorithm that can be ap-
plied to linear and nonlinear data. SVC transforms the original data to a higher dimension,
from which it can use the super vectors in the training data set to find the hyperplane for
categorizing the data. An SVC mainly identifies the hyperplane with the most significant
margin, e.g., the maximum marginal hyperplane, to achieve higher accuracy [26]. The SVC
can be represented by the following Equation (2):

f (x) =
N

∑
i=1

(α∗i − αi)K(x, xi) + B (2)

where K(x, xi) is the kernel function, αi, α∗i ≥ 0 are the Lagrange multipliers, and B is a bias
term. In this study, we used a linear kernel for computations.
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Artificial Neural Network (ANN): This is a learning algorithm vaguely inspired by
biological neural networks. Computations are structured in terms of an interconnected
group of artificial neurons, and these neutrons process information using a connectionist
approach to computation. They are usually used to model complex relationships between
inputs and outputs, find patterns in data, or capture the statistical structure [27]. The
number of hidden layers with the number of neurons in each layer was set at 3 and 16,
respectively. Additionally, for each layer, the l2 regularization of 0.01 and the ‘relu’ activation
were used in the study. We set the ‘softmax’ activation for the output layer. We also
used the ‘Adam’ optimizer, a highly performant stochastic gradient descent algorithm, and
‘binary_crossentropy’ as the binary classification outcome for the loss function.

2.6. Evaluating the Algorithms

The training dataset contained the data of patients from TMUH and WFH. The strati-
fied 5-fold cross-validation was applied in the training set to assess the different machine-
learning models’ performance and general errors. In other words, patients in the training
set were divided into five groups, each used repeatedly as the internal validation set. We
recruited data from SHH and used it for the external testing dataset to generalize the model.

The performance of the algorithms was measured by the area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity (recall), specificity, positive
predictive value (PPV, precision), negative predictive value (NPV), and F1-score. We
defined the best model using the highest AUC by comparing various models based on the
external testing set. Furthermore, we analyzed the feature’s contribution (i.e., the feature’s
importance) of the best model using SHAP values (SHapley Additive exPlanations) [28].

All the data processing was performed using MSSQL server 2017 (Redmond, WA,
USA), and the model training and testing were performed using Python version 3.8 (Wilm-
ington, DE, USA) with scikit-learn version 1.1 (Paris, France) [29].

3. Results

3.1. Baseline Characteristics of Patients

We identified 3714 eligible lung cancer patients diagnosed for the first time and regis-
tered at the TCR. Among those patients, 2280 patients were included in the training dataset,
whereas 1434 were in the testing dataset. Demographic characteristics, comorbidities,
tumor size, tumor stage, genomic tests, medication uses, and laboratory tests are presented
in Table 1. The mean (standard deviation, SD) ages and BMI of cohort patients were
68 (13.7) and 23.4 (4.33), respectively. Most of the patients were male (57.5%) with late-stage
lung cancer (i.e., stage IV, 54.8%), and patients were less likely to smoke (26.7%) or drink
(11%). The cohort of patients had comorbidities related to hypertension (19.8%), hyper-
lipidemia (13.9%), COPD (16.1%), and CVD problems (11.6%). The follow-up durations
for the cohort patients were a mean (SD) of 2.25 (2.47) years and a median (interquartile
range (IQR)) of 1.41 [0.46–3.04] years. Detailed information is shown in Table S1 in the
Supplementary Materials.

Table 1. Basic Characteristics of the Study Cohort.

Features
Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Male, N (%) 2136 (57.5) 1258 (55.2) 878 (61.2)
Age, Mean (SD), yrs. 68.0 (13.7) 67.9 (13.8) 68.0 (13.4)

BMI, Mean (SD), kg/m2 23.4 (4.33) 23.4 (3.93) 23.4 (4.81)
Smoking, N (%)

No 1170 (31.5) 710 (31.1) 460 (32.1)
Yes 993 (26.7) 523 (22.9) 470 (32.8)

Unknown 1551 (41.8) 1047 (45.9) 504 (35.1)
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Table 1. Cont.

Features
Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Drinking, N (%)
No 1750 (47.1) 983 (43.1) 767 (53.5)
Yes 408 (11.0) 247 (10.8) 161 (11.2)

Unknown 1556 (41.9) 1050 (46.1) 506 (35.3)
Tumor size, cm

Mean (SD) 4.23 (2.45) 4.11 (2.39) 4.46 (2.55)
Median [IQR] 3.8 [2.4–5.5] 3.6 [2.3–5.5] 4.0 [2.5–5.7]

Cancer stage, N (%)
0 11 (0.3) 10 (0.4) 1 (0.1)
I 533 (14.4) 348 (15.3) 185 (12.9)
II 139 (3.7) 88 (3.9) 51 (3.6)
III 527 (14.1) 330 (14.5) 197 (13.7)
IV 2034 (54.8) 1207 (52.9) 827 (57.7)

Missing 470 (12.7) 297 (13.0) 173 (12.1)
Genomic Test
ALK, N (%)

Negative 681 (18.3) 457 (20.0) 224 (15.6)
Positive 39 (1.1) 21 (0.9) 18 (1.3)

Unknown 2994 (80.6) 1802 (79.0) 1192 (83.1)
EGFR, N (%)

Negative 842 (22.7) 473 (20.7) 369 (25.7)
Positive 787 (21.2) 467 (20.5) 320 (22.3)

Unknown 2085 (56.1) 1340 (58.8) 745 (52.0)
KRAS, N (%)

Negative 45 (1.2) 32 (1.4) 13 (0.9)
Positive 5 (0.1) 2 (0.1) 3 (0.2)

Unknown 3664 (98.7) 2246 (98.5) 1418 (98.9)
PDL1, N (%)

Negative 269 (7.2) 149 (6.5) 120 (8.4)
Positive 66 (1.8) 42 (1.8) 24 (1.7)

Unknown 3379 (91.0) 2089 (91.6) 1290 (90.0)
ROS1, N (%)

Negative 288 (7.8) 287 (12.6) 1 (0.1)
Positive 29 (0.8) 27 (1.2) 2 (0.1)

Unknown 3397 (91.4) 1966 (86.2) 1431 (99.8)
Comorbidity, N (%)

CVD problems 432 (11.6) 296 (13.0) 136 (9.5)
Dementia 124 (3.3) 71 (3.1) 53 (3.7)

COPD 599 (16.1) 391 (17.1) 208 (14.5)
Rheumatic disease 28 (0.75) 16 (0.7) 12 (0.8)

PUD 365 (9.8) 246 (10.8) 119 (8.3)
Renal disease 128 (3.4) 92 (4.0) 31 (2.2)
Liver disease 211 (5.7) 147 (6.4) 64 (4.5)

DM 372 (10.0) 248 (10.9) 124 (8.6)
Anemia 107 (2.9) 76 (3.3) 31 (2.2)

Depression 245 (6.6) 175 (7.7) 70 (4.9)
Hyperlipidemia 516 (13.9) 385 (16.9) 131 (9.1)

Hypertension 736 (19.8) 503 (22.1) 233 (16.2)
Parkinson’s disease 50 (1.3) 29 (1.3) 21 (1.5)

Charlson Comorbidity Index (CCI)
Mean (SD) 3.08 (2.07) 3.13 (2.19) 2.97 (1.86)

Median [IQR] 3.0 [2.0–4.0] 3.0 [2.0–4.0] 3.0 [2.0–4.0]
Follow-up, yrs.

Mean (SD) 2.25 (2.47) 2.44 (2.61) 1.96 (2.19)
Median [IQR] 1.41 [0.46–3.04] 1.51 [0.53–3.36] 1.24 [0.38–2.64]
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Table 1. Cont.

Features
Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Medications, N (%)
Alimentary tract and metabolism 591 (15.9) 394 (17.3) 197 (14.7)
Blood and blood-forming organs 446 (12.0) 293 (12.9) 153 (11.3)

Cardiovascular system 675 (18.2) 448 (19.6) 227 (16.9)
Genitourinary system and hormones 132 (3.6) 74 (3.2) 58 (4.3)

Musculoskeletal system 252 (6.8) 141 (6.2) 111 (8.3)
Nervous system 391 (10.5) 254 (11.1) 137 (10.2)

Respiratory system 319 (8.6) 226 (9.9) 93 (6.9)
Laboratory Test, Mean (SD)

Basophil 0.50 (0.40) 0.53 (0.42) 0.48 (0.39)
BUN 19.4 (14.9) 18.8 (13.1) 20.5 (17.6)

Creatinine 1.05 (0.98) 1.02 (0.90) 1.10 (1.07)
Eosinophil 1.89 (2.31) 2.03 (2.59) 1.76 (1.97)

HCT 38.3 (5.69) 38.5 (5.61) 37.9 (5.80)
HGB 12.9 (1.97) 13.0 (1.91) 12.7 (2.05)

K 3.99 (0.56) 4.02 (0.53) 3.95 (0.60)
Lymphocyte 18.7 (9.98) 19.6 (9.55) 17.8 (10.3)

MCH 29.9 (3.02) 29.9 (3.03) 29.8 (3.00)
MCHC 33.6 (0.95) 33.7 (0.96) 33.6 (0.94)
MCV 88.6 (7.61) 88.5 (7.64) 88.7 (7.57)

Monocyte 7.45 (2.90) 7.42 (2.93) 7.48 (2.87)
Na 137 (4.46) 137 (4.39) 137 (4.53)

Neutrophil 71.3 (11.9) 70.2 (11.4) 72.3 (12.2)
PLT 263 (109) 258 (100) 269 (121)
RBC 4.35 (0.68) 4.38 (0.67) 4.29 (0.69)
WBC 9.72 (5.38) 9.16 (4.16) 10.6 (6.80)

Note: SD, Standard deviation; yrs., Years; IQR, Interquartile Range; BMI, Body mass index; COPD, Chronic
obstructive pulmonary disease; PUD, Peptic ulcer disease; CVD, Cardiovascular; DM, Diabetes; BUN, Blood urea
nitrogen; HCT, Hematocrit; HGB, Hemoglobin; K, Potassium; MCH, Mean corpuscular hemoglobin; MCHC,
Mean corpuscular hemoglobin concentration; MCV, Mean corpuscular volume; Na, Sodium; PLT, Platelet; RBC,
Red blood count; WBC, White blood count; a The training set included the data from Taipei Medical University
and Wan-Fang hospitals; b The testing set included the data from Shuang Ho hospital.

3.2. The Performances of Different Prediction Models

The performances of different prediction models are shown in Table 2. In Mode 1,
the highest AUC of 0.88 was observed for the ANN model (i.e., accuracy, 0.82; preci-
sion, 0.90; recall, 0.75; and F1-score, 0.64), followed by the GBM and RF models with an
AUC of 0.83 and 0.82, respectively. In Mode 3, the best performance was found with
an AUC of 0.89 for the ANN model (i.e., accuracy, 0.83; precision, 0.89; recall, 0.81; and
F1-score, 0.64). The following AUCs were observed 0.85 for LGBM, GBM, and 0.84 for
RF models. Moreover, when considering all features in Mode 4, we found that the best
model was the ANN model with an AUC of 0.89 (i.e., accuracy, 0.82; precision, 0.91;
recall, 0.75; and F1-score, 0.65). Figures 1 and 2 show the ROC curves of different predic-
tion models in four modes. Detailed information on the various models’ measurements
(i.e., sensitivity, specificity, PPV, NPV, accuracy, and F1-score) is shown in Table S2 in the
Supplementary Materials.
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Table 2. Performance of various Prediction Models by Modes.

Modes Models
AUC

Training
AUC

Testing
Accuracy Precision Recall F1-score

Mode 1

LR 0.70 0.72 0.65 0.88 0.64 0.75
LDA 0.78 0.78 0.71 0.90 0.70 0.80

LGBM 0.98 0.81 0.73 0.92 0.72 0.81
GBM 0.96 0.83 0.75 0.91 0.76 0.84

XGBoost 0.99 0.80 0.75 0.90 0.77 0.84
RF 0.90 0.82 0.72 0.92 0.70 0.80

AdaBoost 0.94 0.81 0.73 0.91 0.72 0.81
SVC 0.78 0.78 0.71 0.89 0.72 0.79

ANN * 0.89 0.88 0.82 0.90 0.75 0.64

Mode 2

LR 0.74 0.75 0.60 0.93 0.53 0.67
LDA 0.81 0.79 0.71 0.90 0.70 0.80

LGBM 0.99 0.83 0.78 0.91 0.79 0.86
GBM 0.96 0.84 0.78 0.91 0.80 0.87

XGBoost 1.00 0.81 0.78 0.90 0.81 0.86
RF 0.92 0.83 0.69 0.94 0.64 0.76

AdaBoost 0.95 0.80 0.74 0.90 0.76 0.83
SVC 0.81 0.79 0.70 0.91 0.68 0.78

ANN * 0.89 0.89 0.80 0.91 0.75 0.64

Mode 3

LR 0.70 0.73 0.65 0.88 0.63 0.74
LDA 0.80 0.81 0.75 0.91 0.76 0.83

LGBM 0.98 0.85 0.80 0.92 0.81 0.87
GBM 0.96 0.85 0.79 0.92 0.79 0.86

XGBoost 1.00 0.83 0.79 0.91 0.80 0.86
RF 0.91 0.84 0.72 0.93 0.69 0.80

AdaBoost 0.95 0.83 0.79 0.91 0.80 0.86
SVC 0.80 0.81 0.75 0.90 0.75 0.83

ANN * 0.89 0.89 0.83 0.89 0.81 0.64

Mode 4

LR 0.74 0.75 0.61 0.93 0.53 0.67
LDA 0.83 0.82 0.76 0.90 0.77 0.84

LGBM 0.99 0.86 0.81 0.92 0.83 0.88
GBM 0.97 0.85 0.79 0.92 0.81 0.87

XGBoost 1.00 0.84 0.77 0.92 0.77 0.85
RF 0.93 0.85 0.75 0.93 0.73 0.82

AdaBoost 0.96 0.83 0.76 0.92 0.75 0.83
SVC 0.83 0.81 0.75 0.90 0.76 0.84

ANN * 0.89 0.89 0.82 0.91 0.75 0.65

Note: LR, Logistic Regression; LDA, Linear Discriminant Analysis; LGBM, Light Gradient Boosting Machine;
GBM, Gradient Boosting Machine; XGBoost, Extreme Gradient Boosting; RF, Random Forest; SVC, Support Vector
Machine; ANN, Artificial Neural Network; *, Best model based on AUC values.

Figure 3 shows the top 20 important features of the ANN model in Mode 4. The most
important features were the cancer stage, size, age of diagnosis, smoking, and EGFR gene.
In other words, patients with advanced cancer stage, large cancer size, older age, and
smoking behavior had a higher risk of death within two years. The SHAP value presented
the important features of the GBM model in Mode 4 and was consistent with the ANN
model, such as cancer stage, age at diagnosis, cancer size, and smoking status (Figure S2 in
the Supplementary Materials).
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Figure 1. The Performance of the Prediction Models in the Testing dataset by different Modes.
Note: (A), Mode 1; (B), Mode 2; (C), Mode 3; (D), Mode 4.

Figure 2. Cont.
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Figure 2. The Performance of the ANN Prediction Models in the Testing dataset by different Modes.
Note: (A), Mode 1; (B), Mode 2; (C), Mode 3; (D), Mode 4.

 

Figure 3. Feature Importance of the ANN Prediction Model in Mode 4. Note: BMI, Body mass index;
EGFR, Epidermal growth factor receptor; WBC, White blood cell; PD-L1, Programmed death-ligand
1; COPD, Chronic obstructive pulmonary disease; CCI, Charlson comorbidity index.
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4. Discussion

In recent years, the prediction of cancer patients’ survival has attracted the medical
community’s attention in various countries because it can facilitate medical decision mak-
ing, strengthen the relationship between doctors and patients, and improve the quality of
medical care. Rapid progress in the development of AI based on machine learning has led
to more diversified applications of AI in the field of precision medicine. Based on previ-
ously published studies on machine-learning algorithms to build prediction models for the
survival of lung cancer patients [12,14–16], this study further compared the performance of
various novel machine-learning algorithms. In addition, we also analyzed the relationship
between the diversity of features and the accuracy of prediction results and determined the
most important features affecting lung cancer survival.

Studies using multiple data types and multiple novel machine-learning algorithms
simultaneously are limited. In previous studies on lung cancer prediction, most of them
used a single machine-learning (e.g., RF [30]) or deep-learning (e.g., NN [14–16]) algorithm
or a few basic machine-learning algorithms (e.g., LR, SVM, decision tree, RF, GBM [12,31])
to develop prediction models. Our results showed that the ANN model had the high-
est AUC value (it was the most suitable tool for survival prediction). In contrast, the
AUC value of the traditional LR algorithm exhibited the lowest performance (it had the
lowest predictive ability). Lai Y.H. et al. [16] presented a deep neural network to predict
the overall survival of NSCLC patients. They obtained a good predictive performance
(AUC = 0.82, accuracy = 75.4%) by integrating microarray and clinical data. While only
using basic clinical data (demographics, comorbidities, and medications), our predicted
model demonstrated a higher performance (ANN, AUC, 0.88; accuracy, 0.82; precision,
0.90, recall, 0.75, and F1-score, 0.64). Furthermore, when combining other variables, such
as laboratory and genomic tests, the AUC values of the predicted model were better
(based on the external testing, the AUCs of the ANN model in Mode 1 and Mode 4 were
0.88 and 0.89, respectively; the AUCs of LGBM model in Mode 1 and Mode 4 were 0.81
and 0.86, respectively; the AUCs of the RF model in Mode 1 and Mode 4 were 0.82 and
0.85, respectively).

In this study, we explored the variables that might affect the predictive performance
of the survival model. As expected, these variables were highly correlated to the mortality
of lung cancer patients, such as advanced cancer stage, tumor size, age at diagnosis, and
smoking and drinking status [32]. Our findings also showed that lymphocytes, platelets,
and neutrophils tests were associated with the likelihood of lung cancer survival [33]. Thus,
lymphocytes play an essential role in producing cytokines, inhibiting the proliferation of
cancer cells, and provoking cytotoxic cell death [34]. In words, a decrease in lymphocyte
count may predict worse survival in cancer patients. Neutrophils are recruited with
cytokines released by the tumor microenvironment, enhancing carcinogenesis and cancer
progression [35]. Platelets modulate the tumor microenvironment by releasing factors
contributing to tumor growth, invasion, and angiogenesis [36]. Another study by Wang J.
et al. [37] reported that lung cancer patients with a higher BMI have prolonged survival
compared to those with a lower BMI. The same was true for our study’s results, which
may be due to the poor nutrition and weight loss caused by respiratory diseases [38], such
as COPD.

There are limitations to this study. First, although the study used data from various
clinical settings (e.g., TMUH and WFH for establishing the prediction model and SHH for
conducting an external test) located in the north of Taiwan, the results may not directly
apply to lung cancer patients in other regions. Future studies may need to consider
validating the model using data from other areas. Second, this study used retrospective
data for development and validation. Further experiments with a prospective study design
in clinical settings are needed. Third, to obtain a highly accurate prediction, we developed
the machine-learning algorithms with binary outcomes (i.e., survival and death) rather than
expected continuous outcomes (i.e., length of survival) for the NSCLC patients. Further
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studies should be conducted with larger sample sizes to deal with continuous outcomes for
lung cancer survival.

5. Conclusions

In summary, to observe the expected survival of NSCLC patients during a two-year
period, we designed an artificial neural network model with high AUC, precision, and recall.
Moreover, integrating different data types (especially laboratory and genomic data) led to
better predictive performance. Further research is necessary to determine the feasibility of
applying the algorithm in the clinical setting and explore whether this tool could improve
care and outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225562/s1, Figure S1: Cohort Selection Process; Figure S2:
Feature Importance of the GBM Prediction Model of Mode 4; Table S1: Detailed Demographic
Characteristics of Cohort Patients; Table S2: Detailed Performance of various Prediction Models
by Modes.

Author Contributions: T.-H.C., P.-A.N. and J.C.H. conceptualized and designed the study. P.-A.N.,
P.T.P. and T.-C.L. collected the data, performed the analysis, and drafted the manuscript. C.-Y.C. and
T.-H.C. provided suggestions for the research design and article content. M.-H.H., M.-S.H., N.Q.K.L.,
C.-T.C. and J.C.H. reviewed all data and revised the manuscript critically for intellectual content. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by Taiwan Ministry of Science and Technology grants (grant
numbers: MOST109-2321-B-038-004; MOST110-2321-B-038-004). The funders had no role in the study
design, data collection and analysis, publication decision, or manuscript preparation.

Institutional Review Board Statement: This study has been approved by the TMU-Joint Institutional
Review Board (Project number: TMU-JIRB N202101080).

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors obtained data from the Taiwan Cancer Registry (TCR)
database and the Taipei Medical University Clinical Research Database (TMUCRD).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
AI Artificial intelligence
TCR Taiwan Cancer Registry
TDR Taiwan Death Registry
TMUCRD Taipei Medical University Clinical Research Database
TMUH Taipei Medical University Hospital
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LGBM Light gradient boosting machine
GBM Gradient boosting machine
XGBoost Extreme gradient boosting
RF Random forest
SVC Support vector machine
ANN Artificial neural network
AUC The area under the receiver operating characteristic curve
PPV Positive predictive value
NPV Negative predictive value
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Simple Summary: Survival prediction is an important aspect of oncology and palliative care. Mea-
sures of night-time relative to daytime activity, derived from a motion sensor, have shown promise in
patients receiving chemotherapy. Measuring rest-activity and sleep may, therefore, result in improved
prognostication in advanced cancer patients. Fifty adult outpatients with advanced cancer were
recruited, and rest-activity, sleep, and routine clinical variables were collected just over a one week
period, and used in machine learning models. Our findings confirmed the importance of some
well-established survival predictors and identified new ones. We found that sleep-wake parame-
ters may be useful in prognostication in advanced cancer patients when combined with routinely
collected data.

Abstract: Survival prediction is integral to oncology and palliative care, yet robust prognostic models
remain elusive. We assessed the feasibility of combining actigraphy, sleep diary data, and routine
clinical parameters to prognosticate. Fifty adult outpatients with advanced cancer and estimated
prognosis of <1 year were recruited. Patients were required to wear an Actiwatch® (wrist actigraph)
for 8 days, and complete a sleep diary. Univariate and regularised multivariate regression methods
were used to identify predictors from 66 variables and construct predictive models of survival. A
total of 49 patients completed the study, and 34 patients died within 1 year. Forty-two patients had
disrupted rest-activity rhythms (dichotomy index (I < O ≤ 97.5%) but I < O did not have prognostic
value in univariate analyses. The Lasso regularised derived algorithm was optimal and able to
differentiate participants with shorter/longer survival (log rank p < 0.0001). Predictors associated
with increased survival time were: time of awakening sleep efficiency, subjective sleep quality,
clinician’s estimate of survival and global health status score, and haemoglobin. A shorter survival
time was associated with self-reported sleep disturbance, neutrophil count, serum urea, creatinine,
and C-reactive protein. Applying machine learning to actigraphy and sleep data combined with
routine clinical data is a promising approach for the development of prognostic tools.

Keywords: biomarkers; circadian; machine learning; palliative care; prognosis; survival

1. Introduction

Prognostication (i.e., estimation of survival) is an important aspect of the management
of patients with cancer. It is of particular importance in advanced cancer where it has
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immediate implications for clinicians’ decisions about the treatment of the cancer, treatment
of co-morbidities, so-called “ceilings of care”, and referral to palliative care services [1,2].
Furthermore, it has implications for patients (and families) in terms of current decision-
making, advance care planning, and “getting one’s affairs in order”.

Healthcare professionals are inaccurate prognosticators, often overestimating sur-
vival [3], and the accuracy of estimates is inversely related to survival [2]. Healthcare
professionals are relatively good at predicting if patients will die within a couple of days,
but not so good at predicting if patients will live for a couple of months or longer.

Various prognostic tools/algorithms have been developed to improve prognostication
in patients with cancer [2,4]: these tools vary in their content (e.g., objective items only; sub-
jective items only; objective and subjective items). However, none of these tools have been
shown to be consistently better than clinicians’ predictions of survival [2]. Current prognos-
tication tools often include measures such as performance status, symptoms, venous blood
sample data, and clinician-predicted survival [2,5]. The integration of other physiological
and behavioural parameters, such as rest-activity rhythms (“diurnal or circadian”) and
sleep parameters are yet to be considered in prognostic models. (The term ‘circadian’ is
meant to refer to rhythms that persist in constant conditions. Rhythms assessed in the
presence of environmental rhythms, as in the present study, are referred to as diurnal or
24 h rhythms, although increasingly these rhythms are also referred to as ‘circadian’)

Sleep-wake cycles and circadian rhythms have a key role in sustaining normal body
function and homeostasis [6]. Deterioration of rest-activity rhythmicity (loss of rhythmicity)
and fragmentation of the sleep-wake cycle may be a marker of deterioration of health and,
indeed, a predictor of illness including cancer, as well as cancer survival [7–9].

Several studies in cancer patients have incorporated actigraphy to objectively assess
daytime activity, 24 h variation in rest-activity, as well as nocturnal and daytime sleep [7]. A
number of actigraphy-derived parameters have been used to quantify rest-activity rhythms
in this population including acrophase (time of peak activity), amplitude (peak to nadir
difference, i.e., height of activity rhythm peak), mesor (average activity over a 24 h period),
and the “dichotomy index” (I < O). Of these parameters, the I < O is one of the most
commonly studied rest-activity measures in cancer studies. The I < O has been identified
as an independent prognostic biomarker for overall survival, particularly in patients with
metastatic colorectal cancer [10,11]. The I < O is defined as the percentage of the activity
counts measured when the patient is in bed that are inferior to the median of the activity
counts measured when the patient is out of bed [12]. An I < O of ≤97.5% is indicative of
a disrupted rest-activity circadian rhythm (i.e., increased fragmented sleep and reduced
daytime activity patterns) [7]. However, the I < O has not been used to prognosticate per se,
either alone or in combination with other items. Furthermore, few studies have explored
the potential of actigraphy-derived sleep parameters as prognostic markers in advanced
cancer patients [13].

The first aim of this study was to investigate the feasibility of using I < O and other
actigraphy-derived parameters as stand-alone items, to prognosticate in patients with
advanced cancer. The second aim of the study was to determine whether the I < O and
other actigraphy and sleep parameters should be combined with established prognostic
indicators, e.g., Eastern Cooperative Oncology Group performance status (ECOG-PS),
modified version of the Glasgow Prognostic Score (mGPS), Prognosis in Palliative Care
Study (PiPS) –B, as well as putative prognostic variables from routine clinical data derived
from blood samples, to improve prognostic accuracy. To achieve this second aim we
deployed regularised regression, a supervised machine learning approach which overcomes
some of the limitations of classical multiple regression, to identify effective prognostic
indicators and develop more robust prognostic algorithms [14].
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2. Materials and Methods

2.1. Study Design and Setting

The study was a prospective observational study conducted in a medium-sized district
general hospital/cancer centre in the United Kingdom. The study was sponsored by the
Royal Surrey County Hospital and received ethical approval from the London–Bromley
REC (reference number—16/LO/0243). The study was registered on the CancerTrials.gov
registry (reference number—NCT03283683). The study was funded by the Palliative Care
Research Fund (Prof. Davies—Royal Surrey County Hospital), including an unrestricted
donation from the family of Mr. John Spencer.

2.2. Study Participants

Participants were recruited from outpatients at the study site. All patients that met
the criteria for the study were eligible for entry into the study (convenience sampling,
consecutive recruitment). The inclusion criteria were: (a) age ≥ 18 years; (b) diagnosis of
locally advanced/metastatic cancer; (c) clinician estimated prognosis of more than 2 weeks
but less than 1 year; and (d) known to a specialist palliative care team. The exclusion
criteria were: (a) cognitive impairment; (b) physical disability that affected general activity;
and (c) physical disability that affected non-dominant arm movement.

Patients were diagnosed with locally advanced/metastatic cancer according to NHS
guidelines, which consider TNM staging. All patients who met the inclusion criteria were
deemed eligible for entry into the study. Potentially eligible patients were identified by the
clinical team and approached by a member of the research team and invited to participate
in the study. Any patient referred to the specialist palliative care team was expected to die
within the next twelve months (as per the General Medical Council definition for end-of-life
care [14]).

2.3. Routine Data Collection

Written informed consent was obtained from participants prior to entry into the study.
The initial review (day 0) involved a collection of routine clinical data: patient demograph-
ics, information about cancer diagnosis/treatment, information about co-morbidities/ med-
ication, assessment of Eastern Cooperative Oncology Group performance status (ECOG-PS)
(by clinician and patient) [15], and completion of the Abbreviated Mental Test Score [16],
the Memorial Symptom Assessment Scale—Short Form (MSAS-SF) [17], and the Global
Health Status question from the PiPS-B algorithm [18]. The participant’s pulse was mea-
sured (as part of the PiPS), and a venous blood sample was taken to measure haemoglobin,
white blood cell count (WBC), neutrophil count, lymphocyte count, platelet count, sodium,
potassium, urea, creatinine, albumin, alanine aminotransferase (ALT), alkaline phosphatase
(ALP), and C-reactive protein (CRP). The final review (day 8) involved further assessment
of ECOG-PS (by clinician and patient), completion of the MSAS-SF, the Pittsburgh Sleep
Quality Index (PSQI) [19], and a patient acceptability questionnaire. The blood test results
were used to complete the PiPS-B scoring algorithm, and serum CRP and albumin were
used to calculate the mGPS [20].

2.4. Wrist Actigraphy and Consensus Sleep Diary

Wrist actigraphy was used to measure physical activity and standard sleep measures.
Participants were fitted with the Actiwatch Spectrum Plus® (Philips Respironics, Bend,
OR, USA) on the non-dominant arm after the initial review (day 0) and were instructed
to wear the device for eight consecutive 24 h periods. The Actiwatch Spectrum Plus® is a
CE-marked device with an accelerometer (i.e., motion sensor) that samples movement at
32 Hz [21] with a sensitivity of 0.025 G (at 2 count level). Participants were also given a
Consensus Sleep Dairy in order to provide confirmatory information about specific sleep
parameters (e.g., number of awakenings, time of final awakening) [22]: the “diary” was
completed for eight consecutive sleep periods. The Actiwatches were configured and data
were retrieved using device-specific software (Actiware version 6.0.9: Philips Respironics,
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Bend, OR, USA). The Actiwatches were adjusted to provide an epoch length (sampling
interval) of one minute, which is the most common epoch length used in studies of cancer
patients [23]. The Consensus Sleep Diary was used in conjunction with the Actiwatch to
assist in actigraphy data interpretation (i.e., determine the major sleep/wake periods) [24].

The data from the Actiwatches was downloaded into an Excel spreadsheet, and the
following rest-activity parameters were calculated using a study specific SAS programme
(SAS® Version 9.4 Statistical Analysis Software, SAS Institute, Cary, NC, USA): I < O, r24 (an
autocorrelation coefficient at 24 h, that is “a measure of the regularity and reproducibility of
the activity pattern over a 24 h period from one day to the next”) [25], mean daily activity
(MDA), and mean activity during daytime wakefulness. MDA was calculated as the
average number of wrist movements per minute throughout the recording time [25], and
the mean duration of activity during wakefulness was calculated as the mean activity score
(counts/minute) during the time period between two major sleep period intervals [26].
In addition, the following sleep parameters were calculated both automatically from the
Actiwatches (using the Actiware sleep scoring algorithm) and manually from the sleep
diary [27]: bedtime (BT), get-up time (GUT), time in bed (TIB), sleep onset latency (SOL),
total sleep time (TST), sleep efficiency (SE), wake after sleep onset (WASO), and number of
awake episodes (NA). The sleep parameters derived manually solely from the sleep diary
were: time tried to sleep, time of final awakening and terminal awakening (TWAK) [22].
See Table 1 for definitions of the sleep parameters.

Table 1. Definitions of actigraphy-derived sleep/consensus sleep diary parameters [22,26,28].

Sleep Parameter Definition

Actigraphy and sleep diary

Bed-time (BT) (hh:mm) Clock time attempted to fall asleep based on
actigraphy event marker or sleep diary

Get-up time (GUT) (hh:mm) Clock time attempted to rise from bed for the final
time based on actigraphy event marker or sleep diary

Time in bed (TIB) (hh:mm) Duration between reported BT and GUT (reported in
hours and minutes) or as self-reported in sleep diary

Sleep onset latency (SOL) (min) Duration between reported BT and actigraph scored
sleep onset time or as self-reported in sleep diary

Total sleep time (TST) (hh:mm) Duration of sleep during the major sleep period
calculated by Actiware;

Sleep diary manual calculation: TIB minus (SOL plus
WASO plus TWAK)

Sleep efficiency (SE) (%)
Proportion of time the patient is asleep out of the
total time in bed (reported as a percentage)
calculated by Actiware;

Sleep diary manual calculation: TST divided by TIB
× 100

Wake after sleep onset (WASO) (min)
Sum of wake times from sleep onset to the final
awakening calculated by Actiware or as self-reported
in sleep diary

Number of awake episodes (NA)
Number of continuous blocks of wake during the
major sleep period calculated by Actiware or as
self-reported in sleep diary

Sleep Diary

Time tried to sleep (hh:mm) Self-reported time participant began ‘trying’ to fall
asleep

Time of final awakening (hh:mm) Self-reported time participant last woke up in the
morning

Terminal awakening (TWAK) (hh:mm) GUT minus time of final awakening
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2.5. Follow-Up

During the study period (from time of first patient recruited to six months after last
patient recruited), participants’ survival status (and date of death, if applicable) was deter-
mined every three months by reviewing the hospital clinical records, and/or contacting the
general practitioner.

3. Statistical Analyses

The sample size for the study (n = 50) was derived from guidance on sample sizes for
feasibility studies (and represents the upper range) [29]. Statistical support was provided
by statisticians, within the Research Design Service South-East (based in the Clinical Trials
Unit at the University of Surrey). Descriptive statistics were used to explain much of
the data (e.g., mean and standard error; median and range). The Intraclass Correlation
Coefficient (ICC) was used to assess the robustness of I < O as a marker of the rest-
activity rhythm, and its stability throughout the actigraphy recording. The Spearman’s
Rank correlation coefficient was used to measure the association between I < O and other
actigraphy-derived parameters. The Spearman’s rank correlation ‘r’ values were defined
as follows: 0 ≤ r < 0.3 indicated a negligible correlation, 0.3 ≤ r < 0.5 a low correlation,
0.5 ≤ r < 0.7 a moderate correlation, 0.7 ≤ r < 0.9 a high correlation, and 0.9 ≤ r ≤ 1 a very
high correlation [30]. Kaplan–Meier plots, a non-parametric statistical method, were used
to estimate the probability of survival past a given time point along with the log rank test
to compare the survival distribution of two groups. Statistical significance was evaluated
at 5%.

The “per protocol set” refers to participants that wore the Actiwatch for the eight
consecutive 24 h periods with the corresponding sleep diary, whilst the “full analysis set”
refers to participants that wore the Actiwatch for at least three consecutive 24 h periods
(i.e., 72 h) and completed the corresponding sleep diary for the actigraphy rest-activity and
sleep analysis, or for at least three consecutive or non-consecutive nights in the sleep diary
for the subjective sleep analysis (i.e., calculation of the sleep diary parameters).

4. Machine Learning Methods and Data Analysis

Cox regression has been the standard approach to survival analysis in oncology.
However, Cox regression has a number of limitations. In particular, it is not an adequate
approach for situations in which the number of predictors is high relative to the number
of observations, as is the case in this feasibility study. We therefore opted to use simple
alternative methods that can (1) adequately deal with situations in which the number of
predictors is large relative to the number of observations and (2) yield models that are
interpretable, i.e., are not ‘black box models’. Penalised (Regularised) regression models
represent such an approach.

A supervised machine learning algorithm was used to develop a predictive model,
where the collated subjective and objective parameters (i.e., routine clinical data and
actigraphy-derived rest-activity and sleep parameters) were individual predictor variables
and survival was the ‘response’ variable [31]. Sixty-six predictor variables were tested
for potential predictive value (Appendix A, see Table A1 for descriptive statistics of the
numerical predictor variables). Overall survival was defined as the time from initial review
(day 0) to death or until 14 May 2020 for patients that remained alive until the end of
the study.

4.1. Machine Learning Dataset

All patients recruited into the study (n = 50) were used for the machine learning
analysis. The predictor variables were classified into the relevant variable type (e.g., binary,
categorical_nominal, etc.) and entered into a .csvfile in Excel. Binary variables, such as ‘use
of opioid analgesia’ were transformed into dummy variables (0 or 1). Categorical_ordinal
variables with a numerical ranking, such as ECOG-PS were labelled using the ‘LabelEn-
coder’ approach, where the output integer value from the LabelEncoder function was
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used to reflect the ordering of the original integer. Categorical_ordinal variables with
non-numerical values, such as PSQI sleep disturbance, were assigned a numerical ranking.
Numerical_continuous variables involving sleep/wake times were entered in the 24 h
format. Missing data values were imputed with the average of the group or with the corre-
sponding subjective/objective data from the same participant. Missing data accounted for
<4% of the dataset.

4.2. Regularised Regression Methods

Regularised regression was used to reduce “overfitting” and aid the generalisability
of the model. ‘Regularisation’ corresponds to a penalty that limits the overall weight that
can be assigned across all predictor variables in the model, which reduces model com-
plexity (compared to traditional multivariate regression). For some regularised regression
approaches, the penalty can drive the weight of a variable to zero, effectively selecting the
optimal combination of predictor variables that can be used to predict the given outcome.

Here, three regularised multivariate regression methods were applied and compared:
ridge regression, least absolute shrinkage and selection operator (Lasso) and elastic net. The
ridge regression algorithm includes all the predictor variables, shrinking the coefficients
towards (but not set at) zero in a continuous manner [32]. The Lasso-derived algorithm
combines the method of shrinkage with the sub-selection of predictor variables, using a
penalty ‘L1 norm’ [32,33], creating a ‘sparse’ model (i.e., selecting only a few variables
from the dataset) [32]. The elastic net algorithm is broadly a combination of the ridge
and Lasso [34]. This method simultaneously performs continuous shrinkage and feature
selection, selecting groups of correlated variables, using a penalty of ‘L1 norm’ and ‘L2
norm’ [34]. Highly correlated predictor variables are averaged and entered into the model
to remove any deviances caused by extreme correlations [35]. Since survival data are
censored, i.e., at the end of the observation period some participants may still be alive, we
applied regularised Cox regression using the glmnet package in R.

4.3. Model Development

The models were validated using a k-fold (10 folds used) cross-validation approach [32].
For each of the 50 individuals, the predicted survival was based on a model which was
constructed on ‘k − 1′ subjects, i.e., the model was blind to the participant and the partici-
pant did not contribute to the estimation of the prediction. All analyses were carried out
within the statistical computing environment R (version 3.6.2). For machine learning, ridge,
Lasso and elastic net (alpha = 0.5) regression the package glmnet (version 2.0) was used.
Here, an exhaustive search for lambda able to produce the minimum Mean Cross-Validated
Error (CVM) was performed. All subjects were used as the training set to build a final
model, then k-fold cross-validation for performances (CVM) was performed. Analyses
were performed with different settings of elastic net mixing parameter (alpha), which were
elastic net (alpha = 0.5), Lasso (alpha = 0.99) and ridge (alpha = 0.01). The models generated
a predicted hazard, which was compared to the actual survival in days using Pearson’s
correlation coefficient. To estimate the intra-variable variation in their contribution to
the predictor, we computed the mean cross-validated error of the weights of each of the
variables that were consistently identified in all 50 participants.

5. Results

A total of 50 patients were recruited to the study, and 49 participants completed the
study (Figure 1): the full analysis set consisted of 44 participants, whilst the per protocol
set consisted of 37 participants. See Table 2 for characteristics of the participants. A total of
46 participants were followed up for 12 months (40 in the full analysis set, 33 in the per
protocol set), and 34 died within this time period (28 in the full analysis set, 22 in the per
protocol set). Unless otherwise stated, the following results relate to the full analysis set.
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Figure 1. Study flow chart.

Table 2. Participant characteristics.

Characteristic All Participants (n = 50) “Full Analysis Set” (n = 40)

Age Median—63 yr Median—66 yr
(range 40–81 yr) (range 43–81 yr)

Sex Female—21 (42%) Female–17 (39%)
Male—29 (58%) Male—27 (61%)
Cancer diagnosis Breast—6 (12%) Breast—6 (14%)

Endocrine—1 (2%) Endocrine—1 (2%)
Gastrointestinal—16 (32%) Gastrointestinal—14 (32%)
Gynaecological—6 (12%) Gynaecological—4 (9%)
Haematological—2 (4%) Haematological—2 (5%)
Head and Neck—3 (6%) Head and Neck—2 (5%)
Lung—6 (12%) Lung—6 (14%)
Skin—2 (4%) Skin—2 (5%)
Urological—8 (16%) Urological—7 (16%)

ECOG-PS 0–0 (0%) 0–0 (0%)
(Physician-assessed 1–26 (52%) 1–24 (55%)
at baseline) 2–13 (26%) 2–10 (23%)

3–11 (22%) 3–10 (23%)
4–0 (0%) 4–0 (0%)

Note: Percentages may not sum to 100 due to rounding.

5.1. Acceptability of Actigraphy and Sleep Diary Acceptability

Actigraphy data were missing from one participant due to a technical problem. Forty-
two (84%) participants reported that the Actiwatch was “comfortable to wear”, and only
four (8%) reported that the Actiwatch interfered with their normal activities. No adverse
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effects were reported from using the Actiwatch. Fourteen (28%) participants reported that
the Consensus Sleep Diary was difficult to complete, and two (4%) subjects reported that
the diary interfered with their normal activities.

5.2. Univariate Analyses of Actigraphy Parameters
5.2.1. Characteristics of the Dichotomy Index (I < O) and Correlation with Other
Actigraphy and Sleep Parameters

Table 3 shows the results for the I < O. Forty-two (95%) participants had an I < O
of ≤97.5%, indicating a disrupted rest-activity circadian rhythm [7]. The I < O can be
considered a stable variable since the intraclass correlation coefficient for values obtained
over eight days using the per protocol set, was 0.93 (95% CI: 0.88–1.00; p < 0.0005), which is
considered an “excellent” correlation [36]. In fact, there was a “high” positive correlation
between the I < O for the first three days (72 h) and for the full eight days (Spearman’s
correlation: r = 0.82; p < 0.0005) [31]. Moreover, there was a “high” positive correlation
between the I < O on weekdays and on the weekend (Spearman’s correlation: r = 0.76;
p < 0.0005). Additionally, there was a “very high” positive correlation between the I < O
calculated using 24 h of data, and the I < O calculated using 20 h of data, i.e., excluding the
one-hour periods before/after going to bed, and the one-hour periods before/after getting
out of bed (Spearman’s correlation: r = 0.98; p < 0.0005).

Table 3. Dichotomy Index (I < O) data.

I < O Parameter Full Analysis Set (n = 44) Per Protocol Set (n = 37)

Mean 88.90% 89.90%
(+/− standard error) (+/− 1.04) (+/− 0.97)
Minimum 70.90% 70.90%
25th Centile 86.90% 87.40%
Median 90.40% 90.80%
75th Centile 93.60% 93.60%
Maximum 98.10% 97.60%
Distribution Non-normal Non-normal

(Shapiro-Wilk (Shapiro-Wilk
test: p = 0.001) test: p = 0.001)

There was a “moderate” positive correlation between the I < O and the r24 (Spearman’s
correlation: r = 0.66; p < 0.0005), and the mean activity during wakefulness (Spearman’s
correlation: r = 0.51; p < 0.0005). However, there was only a “low” positive correlation
between the I < O and the mean daily activity (Spearman’s correlation: r = 0.43; p = 0.003).
Other standard actigraphy parameters correlated with the I < O were SE, i.e., number
of minutes of sleep divided by total number of minutes in bed (Spearman’s correlation:
r = 0.47, “low” correlation; p = 0.001), and WASO, i.e., number of minutes awake after
sleep onset during sleep period (Spearman’s correlation: r = −0.51, “moderate” correlation;
p < 0.0005).

5.2.2. I < O: Predictor of Survival and Correlation with ECOG-PS

Amongst participants that completed one year of follow-up (n = 40), there was no
significant difference in overall survival between those separated into two groups (based
on the median I < O; log rank test, p = 0.917), or four groups (based on the quartiles of the
I < O; log rank test, p = 0.838). However, I < O had a “moderate” negative correlation with
the physician assessed ECOG-PS (Spearman rank correlation: r = −0.63; p < 0.0005). The
ECOG-PS was an independent prognostic indicator in this cohort of patients (log rank test,
p < 0.0005). The median survival for participants with an ECOG-PS of 1 (end of study) was
141 days, ECOG-PS of 2 was 135 days, ECOG-PS of 3 was 57 days, and ECOG-PS of 4 was
17 days.
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5.2.3. Autocorrelation Coefficient at 24 h (r24)

The median r24 was 0.16 (range 0.04–0.37). Amongst participants that completed one
year of follow-up (n = 40), there was no significant difference in overall survival between
those separated into two groups (based on the median r24; log rank test, p = 0.318), or four
groups (based on the quartiles of the r24; log rank test, p = 0.800).

5.2.4. Other Actigraphy Parameters

None of the other actigraphy-derived sleep parameters were associated with a de-
creased overall survival: (a) TIB (log rank, p = 0.574: based on group median of 9 h 29 min);
(b) TST (log rank, p = 0.147: based on normative cut-off value of ≥6.5 h [28]; (c) SOL (log
rank, p = 0.283: based on normative cut-off value of ≤30 min [28]; (d) SE log rank, p = 0.224:
based on normative cut-off value of ≥85% [28]; (e) WASO (log rank, p = 0.549: based on
normative cut-off value of >30 min [28]; and (f) NA (log rank, p = 0.972: based on group
median of 23 episodes).

5.3. Multivariate Predictors of Survival: Machine Learning Results

In the machine learning dataset, 46 participants had died within the specified time
period of follow-up (i.e., by 14 May 2020). The Lasso model selected 22 predictor variables,
with 14 variables consistently selected in all 50 participants during the process of validation
(Figure 2). These involved eight predictor variables associated with greater survival time
and six predictor variables, associated with a reduced survival time. The predictor variables
associated with increased survival time, i.e., smaller hazard (in order of the coefficient
associated with the predictor variable) were: later sleep diary time of final awakening,
later actigraphy get up time, longer PiPS-B clinician’s estimate of survival, better PSQI
subjective sleep quality, greater PiPS-B global health status score (indicating better health),
better actigraphy sleep efficiency, and higher haemoglobin values. The variables associated
with reduced survival time were more frequent PSQI sleep disturbance wake middle of
the night/early morning, higher neutrophil count, higher serum urea, serum creatinine,
and serum C-reactive protein. On the contrary, a larger MSAS-SF total symptom distress
was associated with a lower risk of death and a higher I < O was associated with a
worse prognosis. The predicted median hazard was 0.00052, and the model was able to
successfully differentiate between participants with a shorter/longer overall survival (log
rank p < 0.0001) (Figure 3). Figure A1 shows the correlation between the actual survival
and predicted hazard (Pearson’s correlation coefficient r = −0.5; p = 0.0002).

The ridge model consistently identified 28 predictor variables in all 50 participants
(Figure 4). During the process of validation, the top 10 variables consistently selected
involved seven predictors associated with longer survival time and three predictors asso-
ciated with shorter survival time. The seven predictor variables associated with longer
survival time (in order of the coefficient associated with the predictor variable) were: actig-
raphy get-up time, sleep diary time of final awakening, sleep diary get-up time and PSQI
usual get-up time; PiPS-B clinician’s estimate of survival, PSQI subjective sleep quality and
PiPS-B global health status score. The 3 predictor variables associated with shorter survival
time were: use of opioid analgesia, modified Glasgow Prognostic Score and physician-
assessed ECOG-PS day 8. The predicted median hazard was 0.44; however, there was
no significant difference in overall survival when a median split was applied (log rank,
p = 0.0914) (Figure 5). Figure A2 shows the correlation between the actual survival and
predicted hazard (Pearson’s correlation coefficient r = −0.5; p = 0.0002).
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Figure 2. The mean cross—validated error (CVM) of predictor variables for hazard selected by the
Lasso model.

 

Figure 3. Kaplan–Meier curve comparing survival probability predicted by the Lasso-derived
algorithm (log rank, p < 0.0001).
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Figure 4. The mean cross—validated error (CVM) of predictor variables for hazard selected by the
ridge model.

 

Figure 5. Kaplan–Meier curve comparing survival probability predicted by the ridge-derived algo-
rithm (log rank, p = 0.0914).

The elastic net model selected 10 predictor variables, with 6 variables being consis-
tently selected during the process of validation: the two consistently selected predictor
variables associated with longer survival time were (in order of the coefficient associated
with the predictor variable): later actigraphy get-up time and greater PiPS-B global health
status score; the 4 consistently selected predictor variables associated with shorter survival
time were: higher serum urea, neutrophil count, serum C-reactive protein, and serum
creatinine (Figure A3). The predicted median hazard was 0.408, but there was no signif-
icant difference in overall survival (log rank, p = 0.9877) (Figure A4). Figure A5 shows
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the correlation between the actual survival and predicted hazard (Pearson’s correlation
coefficient r = −0.08; p = 0.5808).

6. Discussion

The results of this study show that univariate approaches to survival prediction,
based on, for example, the I < O, are not very powerful; whereas, multivariate approaches
appear to hold promise. To the best of our knowledge, this is the first study describ-
ing the application of supervised machine learning methods, involving a combination
of actigraphy-derived rest-activity and sleep parameters, and data collected in routine
clinical practice (i.e., simple questionnaires such as the MSAS-SF, ECOG-PS, PSQI, venous
blood sampling) to prognosticate patients with advanced cancer, receiving supportive
and palliative care [37]. Our study confirmed certain established novel predictors and
identified some for survival in this group of patients and points to the importance of sleep
characteristics for prognostication. The results of the study also confirm that clinicians are
inaccurate prognosticators [3], since 11 (24%) participants were still alive at 1 year (despite
the inclusion criteria of clinician estimated prognosis of more than 2 weeks but less than
1 year).

The literature had suggested that actigraphy-derived parameters, and the I < O index
in particular, could be used as predictors because a low I < O is associated with increased
morbidity (worse symptoms, worse quality of life), and with decreased survival [7]. At the
outset of this study, we therefore focused on the I < O and other parameters describing the
robustness of the rest-activity. We indeed observed a very high prevalence (i.e., 95%) of
disrupted rest-activity rhythms in these advanced cancer patients, which is much higher
than the reported prevalence of 19.1–54.9% [7]. This disparity undoubtedly reflects different
populations, with our population having more advanced disease (and worse performance
status) than previous studies [11,38]. However, in the univariate analyses of the data
in our study there was no direct association between I < O and survival. Furthermore,
other actigraphy-derived parameters, when used in isolation, are also not very accurate in
the population.

However, the results of the study suggest that novel models developed through
machine learning can facilitate improvements in prognostication. Penalised regression
methods implement a feature selection strategy, providing a combination of subjective and
objective predictor variables of survival that are ranked based on their contribution to the
model. The models manage collinearity within the dataset, which is particularly useful in
datasets involving terminal cancer patients, where often the number of features exceeds
the relative sample size. The best performing method was Lasso regression which reduces
the coefficients of variables with a minor contribution to zero and thereby creates a simple
‘model’ with only a few variables. Sleep parameters were amongst the most important
variables, not only in the Lasso model but also in the more complex elastic net and ridge
models. These measures primarily represented positive predictors of survival. Sleep diary
final awakening (lasso and ridge) and actigraphy-derived GUT (all models) were found
to have particular prognostic relevance in our study, suggesting that a later sleep diary
determined ‘time of final awakening’ and a later actigraphy-derived ‘get-up time’ are
associated with a lower risk of death and improved survival. Furthermore, actigraphy-
derived SE, which may be considered an objective measure of sleep quality, was selected
as a positive predictor of survival in the lasso model (i.e., greater sleep efficiency was
associated with enhanced survival) for our population. Whilst actigraphy-derived sleep
quality, as opposed to sleep quantity, has been reported to have prognostic significance in
advanced breast cancer patients [13], we identified quantitative sleep measures as important
contributors to survival prediction.

Studies have reported actigraphy-derived circadian disruption [10,12,39] and frag-
mented sleep [13] to have prognostic implications in cancer patients, yet little is known
about the prognostic impact of subjective sleep measures. A recent study identified the
PSQI sleep duration component as a prognostic indicator in a cohort of advanced hepato-
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biliary/pancreatic cancer patients [40], yet a novel finding in our study was the selection of
other sleep parameters from the PSQI: (1) usual get up time and (2) subjective sleep quality,
where a later get up time and very good sleep quality are associated with longer overall
survival, and (3) PSQI sleep disturbance components—pain, cannot breathe comfortably
and wake up in the middle of the night or early morning—were associated with poorer
survival. Furthermore, subjective sleep parameters, as opposed to actigraphy-derived sleep
parameters, were more commonly identified in all participants in the ridge model.

Venous blood sample measurements were also significant contributors to predicting
survival in our study. Previous studies have reported moderate evidence for the prognostic
significance of an elevated C-reactive protein (CRP) and leucocytosis being associated with
a shorter survival [1,5,18,41]. Whilst our study was able to echo these findings, we were
able to further identify novel biomarkers, such as an elevated urea and serum creatinine,
that may also be associated with a poorer survival, and raised haemoglobin that may be
associated with a lower risk of death. Blood sampling is generally deemed ‘inappropriate’
when patients are in their last days/weeks of life [42], regardless only one of the 94 patients
screened for our study, declined participation. Our findings endorse further evaluation
of biological parameters from venous blood sample data, as they may be beneficial to
improving prognostication in these patients.

Although our multivariate findings controversially imply that a higher I < O is asso-
ciated with a shorter predicted survival time, all participants in our population had poor
health, i.e., an I < O of <99%, which has recently been identified as an optimal cut-off for
distinguishing between healthy controls and patients with advanced cancer [43]. Further
inspection of our data identified that all our participants, whether they had shorter or
longer survival had disrupted rest-activity rhythms, equally both groups had moderate
symptom distress as measured by TMSAS, inevitably expected in an advanced cancer
population. Therefore, whilst it may be a simple way of quantifying rest-activity rhythms,
I < O may be a more meaningful prognostic indicator during the earlier trajectories of
cancer, as opposed to the progressive stages.

In summary, our data suggests that subjective sleep parameters, measured using
the consensus sleep diary and the PSQI, and actigraphy-derived sleep parameters may
be especially useful when combined with routine clinical data using machine learning
approaches, with no substantial additional costs or burden to the health service. Thus,
further investigation of these parameters as prognostic indicators is warranted. Indeed, we
plan to undertake a larger (definitive) study in the near future. Sleep-wake disturbances
and circadian dysregulation are deemed to have a reciprocal relationship [43,44] and our
findings are suggestive of sleep/circadian rhythm parameters as potential prognostic indi-
cators. Whether improving the patient’s sleep disturbance may improve overall survival
remains an open question. Rehabilitation of the circadian system by means of behavioural
and pharmacological strategies, to re-synchronise the circadian system, may ultimately
improve circadian function and sleep, as well as overall survival [44,45].

The Lasso model was the only model able to successfully differentiate between long
and short survival in our study, and the correlation between observed and predicted hazard
was only significant for the Lasso and ridge models. The Lasso model is ‘sparse’ (i.e., only
a few variables from the dataset are selected) [32] and therefore may be favourable if a
consolidated model were needed to aid prognostication. However, the Lasso selects at
most ‘n’ variables before it saturates; therefore, the number of predictors is restricted by
the number of observations [32]. The ridge model, therefore, may be beneficial due to the
greater inclusivity of variables, at the expense of an increased risk of overfitting. Indeed,
the absence of significant results cannot be overlooked with the small sample size in this
feasibility study. In the definitive study, all three supervised machine learning methods
would be deployed after the recruitment of a larger sample size as well as the inclusion
of additional variables that may be clinically relevant (e.g., stage of disease, number of
comorbidities, nutritional status, presence of specific symptoms/problems) [1,2], More data
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would enable robustness of the predictive ability of the models to be assessed as well as
enable generalisability of our findings with further confidence in our observations.

Interestingly, a recent systematic review described the prediction of survival to be a
process as opposed to an event, and that predictors of survival may develop as the disease
progresses [5]. Therefore, there may be added value in predicting the trajectory of death,
as opposed to the time of death in future studies. Machine learning approaches would
be particularly valuable in such cases, where relevant predictor variables may be identi-
fied as the disease trajectory evolves only to ultimately enhance our true understanding
of prognostication.

A few limitations need consideration. Firstly, our small sample size is unlikely to
capture the true variance of the population. Secondly, the Lasso and elastic net models
involve only a subset of predictors and the value of the coefficient associated with each of
these predictor variables is dependent on the presence of the other (non-zero) predictor
variables in the model. Our results are essentially correlational and demonstrate that
the relevant predictor variables (above non-zero coefficient value) may be associated in a
positive or negative way with the risk of death. Thirdly, imputation of missing data values
with the sample population average may not have been a true reflection of the individual
sample’s actual score nor using subjective data to impute objective values, particularly if
the tools were measuring different timeframes, i.e., actigraphy (over a one-week duration)
versus the PSQI questionnaire (measures on average over the previous one month). The
K-fold cross-validation approach also has some limitations. As it is executed ‘k’ times
(where ‘k’ is the number of subsets of observations), this approach may not be resourceful
in a small dataset. Furthermore, K-fold cross-validation is likely to have a high variance as
well as a higher bias, given the small size of the training set from a small dataset. Therefore,
the number ‘k’ highly influences the estimation of the prediction error, and the presence of
outliers can lead to a higher variation. Indeed, it can be a challenge to find the appropriate
‘k’ number to reach a good ‘bias-variance’ trade-off. In future studies, it will be essential to
include an independent validation set.

7. Conclusions

This study suggests that subjective sleep parameters, measured using the consensus
sleep diary and the PSQI, and actigraphy-derived sleep parameters may be useful for
prognostication in patients with advanced cancer, and that it may be especially useful when
combined with routine clinical data and machine learning approaches.
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Appendix A. Prognostic Parameters for Machine Learning

1. Medication: Use of opioid analgesia
2. ECOG-PS at baseline: Physician-assessed
3. ECOG-PS at baseline: Patient-assessed
4. ECOG-PS Day 8: Physician-assessed
5. ECOG-PS Day 8: Patient-assessed
6. MSAS-SF: Number of symptoms
7. MSAS-SF: Physical symptom subscale score (MSASPHYS)
8. MSAS-SF: Psychological symptom subscale score (MSASPSYCH)
9. MSAS-SF: Total symptom distress score (TMSAS)
10. MSAS-SF: Global Distress Index (GDI)
11. PSQI: Usual Bedtime (BT)
12. PSQI: Time to fall asleep (SOL)
13. PSQI: Usual getting up time (GUT)
14. PSQI: Hours of sleep per night (TST)
15. PSQI: Sleep disturbance—Cannot get to sleep within 30 min
16. PSQI: Sleep disturbance—Wake up in the middle of the night or early morning
17. PSQI: Sleep disturbance—Have to get up to use bathroom
18. PSQI Sleep disturbance—Cannot breathe comfortably
19. PSQI Sleep disturbance—Cough or snore loudly
20. PSQI Sleep disturbance—Feel too cold
21. PSQI Sleep disturbance—Feel too hot
22. PSQI: Sleep disturbance—Had bad dreams
23. PSQI: Sleep disturbance—Have pain
24. PSQI: Subjective sleep quality
25. PSQI: Use of medication for sleep
26. PSQI: Daytime dysfunction: Trouble staying awake
27. PSQI: Keep up enough enthusiasm to get things done
28. PSQI: Presence of bed partner or roommate
29. PiPS-B algorithm: Abbreviated Mental Test Score (out of 10)
30. PiPS-B algorithm: Patient’s pulse rate
31. PiPS-B algorithm: Global Health Status Score (1 = extremely poor health; 7 = normal health)
32. PiPS-B algorithm: Clinician’s estimate of survival (Days/Weeks/Months+)
33. Modified Glasgow Prognostic Score (mGPS)
34. Bloods: Haemoglobin (g/L) (130–180)
35. Bloods: White Blood Count (109/L) (4–11)
36. Bloods: Neutrophils (109/L) (2.0–7.5)
37. Bloods: Lymphocytes (109/L) (1.0–4.0)
38. Bloods: Platelets (109/L) (150–450)
39. Bloods: Sodium (mmol/L) (133–146)
40. Bloods: Potassium (mmol/L) (3.5–5.3)
41. Bloods: Urea (mmol/L) (2.5–7.8)
42. Bloods: Creatinine (μmol/L) (64–104)
43. Bloods: ALP (IU/L) (30–130)
44. Bloods: ALT (IU/L) (<50)
45. Bloods: Albumin (g/L) (35–50)
46. Bloods: C-reactive protein (CRP) (mg/L) (<10)
47. Wrist actigraphy: Rest-activity parameter—Dichotomy Index (I < O) at least 72 h
48. Wrist actigraphy: Rest-activity parameter—r24 (autocorrelation coefficient) at least 72 h
49. Wrist actigraphy: Activity parameters—Mean activity during wakefulness at least 72 h
50. Wrist actigraphy: Activity parameters—Mean daily activity (MDA) at least 72 h
51. Wrist actigraphy: Sleep parameter—Bedtime (BT)
52. Wrist actigraphy: Sleep parameter—Get up time (GUT)
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53. Wrist actigraphy: Sleep parameter—Time in bed (TIB)
54. Wrist actigraphy: Sleep parameter—Total sleep time (TST)
55. Wrist actigraphy: Sleep parameter—Sleep onset latency (SOL)
56. Wrist actigraphy: Sleep parameter—Sleep Efficiency (%)
57. Wrist actigraphy: Sleep parameter—Wake after sleep onset (WASO)
58. Wrist actigraphy: Sleep parameter—Number of awake episodes (NA)
59. Consensus Sleep Diary: Time in bed (BT)
60. Consensus Sleep Diary: Time of final awakening
61. Consensus Sleep Diary: Time out of bed (GUT)
62. Consensus Sleep Diary: Time tried to go to sleep
63. Consensus Sleep Diary: Time to fall asleep (SOL)
64. Consensus Sleep Diary: Quality of Sleep
65. Consensus Sleep Diary: Total amount of time awakenings lasted (WASO)
66. Consensus Sleep Diary: Number of times awakened in the night (NA)

Table A1. Mean and standard deviation for prognostic parameters for machine learning.

Numerical Prognostic Parameter (n = 42) Mean Standard Deviation

MSAS-SF: Number of symptoms 11.9 5.2
MSAS-SF: Physical Symptom Subscale Score (MSASPHYS) 2.3 0.7
MSAS-SF: Psychological Symptom Subscale Score
(MSASPSYCH) 1.9 0.8

MSAS-SF: Total symptom distress score (TMSAS) 2.2 0.6
MSAS-SF: Global Distress Index (GDI) 2.3 0.6
PSQI: Usual Bedtime (BT) (hh:mm) 22:28 1:13
PSQI: Time to fall asleep (SOL) (min) 28.3 38.3
PSQI: Usual getting up time (GUT) (hh:mm) 07:51 1:11
PSQI: Hours of sleep per night (TST) (h) 6.7 1.8
PiPS-B algorithm: Patient’s pulse rate (beats per min) 84 16
Bloods: Haemoglobin (g/L) 111.5 20.8
Bloods: White Blood Count (109/L) 7.8 4.3
Bloods: Neutrophils (109/L) 5.7 4.1
Bloods: Lymphocytes (109/L) 1.3 1.2
Bloods: Platelets (109/L) 315.3 166.7
Bloods: Sodium (mmol/L) 138.5 4.0
Bloods: Potassium (mmol/L) 4.3 0.6
Bloods: Urea (mmol/L) 6.2 2.7
Bloods: Creatinine (μmol/L) 71.4 26.1
Bloods: ALP (IU/L) 284.9 436.0
Bloods: ALT (IU/L) 59.4 149.3
Bloods: Albumin (g/L) 37.4 4.3
Bloods: C-reactive protein (CRP) (mg/L) 45.2 48.5
Wrist actigraphy: (I < O) at least 72 h (%) 89.0 6.5
Wrist actigraphy: r24 at least 72 h
(autocorrelation coefficient) 0.17 0.1

Wrist actigraphy: Mean activity during wakefulness at least
72 h (number of accelerations per min) 143.7 62.1

Wrist actigraphy: Mean daily activity (MDA) at least 72 h
(number of accelerations per min) 96.8 39.8

Wrist actigraphy: Bedtime (BT) (hh:mm) 22:41 1:07
Wrist actigraphy: Get up time (GUT) (hh:mm) 08:03 1:01
Wrist actigraphy: Time in bed (TIB) (hh:mm) 09:22 1:33
Wrist actigraphy: Total sleep time (TST) (hh:mm) 7:18 1:39
Wrist actigraphy: Sleep onset latency (SOL) (min) 21.7 21.6
Wrist actigraphy: Sleep efficiency (SE) (%) 78.2 12.0
Wrist actigraphy: Wake after sleep onset (WASO) (min) 68.4 31.6
Wrist actigraphy: Number of awake episodes (NA) 22.4 10.1
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Table A1. Cont.

Numerical Prognostic Parameter (n = 42) Mean Standard Deviation

Consensus Sleep Diary: Time in bed (BT) (hh:mm) 22:35 1:06
Consensus Sleep Diary: Time of final awakening (hh:mm) 07:08 1:05
Consensus Sleep Diary: Time out of bed (GUT) (hh:mm) 08:03 1:01
Consensus Sleep Diary: Time tried to go to sleep (hh:mm) 22:58 1:02
Consensus Sleep Diary: Time to fall asleep (SOL) (min) 32.4 32.7
Consensus Sleep Diary: Total amount of time awakenings
lasted (WASO) (min) 37.7 37.6

Consensus Sleep Diary: Number of times awakened in the
night (NA) 2.5 1.3

Figure A1. Scatterplot showing correlation between actual survival and predicted hazard using the
lasso model.

Figure A2. Scatterplot showing correlation between actual survival and predicted hazard using the
ridge regression model.
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Figure A3. The mean cross—validated error (CVM) of predictor variables for hazard selected by the
elastic net model.

 

Figure A4. Kaplan–Meier curve comparing survival probability predicted by the elastic net-derived
algorithm (log rank, p = 0.9877).
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Figure A5. Scatterplot showing correlation between actual survival and predicted hazard using the
elastic net model.
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Abstract: Acquisition time and injected activity of 18F-fluorodeoxyglucose (18F-FDG) PET should
ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the
diagnostic value of these PET scans. In addition, 89Zr-antibody PET is known to have a low SNR.
To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising
method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for
low-count 18F-FDG and 89Zr-antibody PET. Super-low-count, low-count and full-count 18F-FDG
PET scans from 60 primary lung cancer patients and full-count 89Zr-rituximab PET scans from five
patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and
to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were
evaluated. The performance of the denoising approaches was assessed based on the tumour recovery
coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two
nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and
BF and was also the preferred method of the two observers for both 18F-FDG and 89Zr-rituximab PET.
The CNNs improved the SNR of low-count 18F-FDG and 89Zr-rituximab PET, with almost similar or
better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed
better performance than GS and BF.

Keywords: low-count; CNN; denoising; 18F-FDG; 89Zr-antibody

1. Introduction
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is essential

in staging of a broad spectrum of malignancies [1–3]. Currently, a whole-body 18F-FDG
PET scan is acquired using a scan duration of 2 min per bed position and an injected
activity of 3.7 MBq/kg. A shorter scan duration per bed position could ideally decrease
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the total scan duration, and therefore, minimize movement artefacts and increase patient
comfort and throughput. A reduction of injected activity would decrease the radiation
burden for the patient, and therefore makes it possible to perform more frequent 18F-FDG
PET scans per patient for restaging and therapy-response assessments, in case of scanning
children and/or for non-oncological cases. However, a shorter scan duration and lower
injected activity would result in a lower signal-to-noise ratio (SNR). Poor scan quality due
to low-count (LC) is also observed for 89Zr-antibody PET scans, which are obtained after
relatively low injected activity imposed by the radiation burden of 89Zr [4]. Therefore,
denoising LC whole-body 18F-FDG and 89Zr-antibody PET scans is of interest for improving
image quality.

Traditionally, Gaussian smoothing (GS) has been used to denoise PET images [5].
However, GS reduces the spatial resolution of the images, and therefore, could impair
detectability and quantification of small (tumour) lesions [6]. Bilateral filtering (BF) exhibits
superior properties in comparison to the more commonly used GS for noise reduction in
PET [7]. BF reduces the noise of PET scans, while preserving spatial information (e.g., edges).
However, BF parameters are difficult to optimize in a generic way because both an opti-
mized intensity and spatial parameter need to be determined, which depend on both the
tracer and site of interest. Therefore, another adaptive/data-driven denoising method with
high accuracy is warranted.

Convolutional Neural Networks (CNN) are a specialized type of Neural Networks
that use convolution to extract features from the PET scan. This is done by convolution
filters which assign importance/weights to (learnable) features present in the PET scan. It
can therefore learn and detect features such as PET intensities, edges, shapes, etc. Therefore,
CNNs are highly beneficial in various medical image processing/segmentation tasks [8–11].
A CNN-based deep-learning algorithm may also be superior in denoising tasks since it can
learn non-linear latent/hidden (not observable by humans) features (which you want to
preserve) from LC PET scans and increase the SNR [12–18]. Therefore, denoising LC whole-
body 18F-FDG and 89Zr-antibody PET scans using a CNN may be performed to improve
the SNR and thus their diagnostic value. In previous studies [12–14,17,19] a successful
application of CNNs for improving 18F-FDG PET scans has been presented. However, these
studies were performed in a small (oncology) patient cohort, were based on unsupervised
deep learning networks and on improving full-count (FC) 18F-FDG PET scans or a longer
scan duration per bed position.

Therefore, the aim of this study was to develop, train, and extensively evaluate the
performance of CNNs to denoise LC whole-body 18F-FDG and 89Zr-antibody PET scans. A
secondary aim was to compare the diagnostic value of the CNNs to that of GS and BF.

2. Materials and Methods

2.1. Participants

We included PET scans of 60 patients with stage I–IV non-small-cell lung carcinoma
(NSCLC) (40 patients from Limburg PET-Center Hasselt Belgium (LPC) [20], and 20 patients
from Amsterdam UMC, location VUmc), of which five patients with diffuse large B cell
lymphoma (DLBCL) non-Hodgkin lymphoma (Amsterdam UMC, location VUmc) [21]
(Table 1). The study at LPC was registered at clinical trials.gov, NCT02024113. The data
from the patients with lung cancer at Amsterdam UMC were retrospectively obtained
from medical records, with a waiver for informed consent from the Medical Ethics Review
Committee of Amsterdam UMC, location VUmc. This study was registered as IRB2018.029.
The patients with non-Hodgkin lymphoma were included as part of studies performed
by Jauw et al. These patients provided written informed consent, and the studies were
approved by the Medical Ethics Review Committee of Amsterdam UMC, location VUmc.
This study was registered at Dutch Trial Register http://www.trialregister.nl (accessed on
19 January 2022), NTR3392.
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Table 1. The patients characteristics included in this study from Amsterdam UMC.

18F-FDG (n = 20)
NSCLC–Amsterdam UMC

18F-FDG (n = 40)
NSCLC–LPC

89Zr-Rituximab
(n = 5) Non-Hodgkin Lymphoma

Male/female (n) 11/9 25/15 3/2
Injected dose (MBq) 259.4 ± 43.8 298.2 ± 49.4 73.7 ± 0.3
Tumour volume (cubic centimeter (cc))–Test data 29.2 ± 54.3 - 25.6 ± 51.3

2.2. Data Acquisition

Whole-body 18F-FDG PET scans in LPC were acquired with a Gemini Big Bore TF
PET/CT scanner, and in Amsterdam UMC with an Ingenuity TF PET/CT and Vereos
Digital PET/CT scanners (Philips Medical Systems, Best, The Netherlands). 89Zr-rituximab
PET scans (patients with non-Hodgkin lymphoma) were acquired with an Ingenuity TF
PET/CT. For 18F-FDG PET scans, 60 min after 259.4 ± 43.8 MBq tracer injection, a low-
dose computed tomography (LDCT) scan was performed for attenuation correction and
anatomical localisation, and subsequently a 20 min static (exact time depends on patient
length) whole-body 18F-FDG PET scan was acquired (2 min per bed position). Six days
after the injection of 73.7 ± 0.3 MBq 89Zr-rituximab, an LDCT scan was obtained, directly
followed by a 60 min static whole-body PET scan (5 min per bed position). Corrections for
decay, dead time, normalization (detector sensitivities), attenuation, random coincidences
and scatter were applied.

Amsterdam UMC 18F-FDG PET data were reconstructed with a 10 s (super-low-count
(SLC), 92% scan time reduction), 30 s (low-count (LC), 75% scan time reduction) and 2 min
(full-count (FC)) scan duration per bed-position. The (S)LC PET scans were reconstructed
using multiple time points/delays, which was later used for data augmentation during
training. These scans were reconstructed using the blob-basis function ordered-subsets
time of flight (BLOB-OS-TF) for the Ingenuity TF PET/CT scanner and the novel ordered
subset expectation maximization (OSEM 3i15s, 1i6r-PSF, 4 mm FWHM GAUSS, OSEM
3i15s, 3 mm FWHM GAUSS) for the Vereos Digital PET/CT scanner. The 89Zr-rituximab
scans, and the 18F-FDG PET data from LPC were reconstructed with a FC 5 min and 2 min
scan duration per bed position only using BLOB-OS-TF, respectively.

The 18F-FDG and 89Zr-rituximab PET scans from Amsterdam UMC were reconstructed
according to current European Association of Nuclear Medicine Research Ltd. (Vienna,
Austria) EARL1 standards and settings associated with EARL accreditation [22], respec-
tively. Matrix and voxels sizes were 144 × 144 and 4 mm in all directions, respectively.
18F-FDG PET scans from LPC were reconstructed according to EARL1 standards, with
matrix and voxel sizes of 169 × 169 and 4 mm, respectively.

2.3. Image Processing

For each FC whole-body 18F-FDG PET scan from LPC, SLC PET, scans were simu-
lated using the SiMulAtion and ReconsTruction (SMART)-PET package [23]. Simulation-
reconstruction settings were chosen so that the simulated noisy 18F-FDG PET scans from
LPC showed an almost similar coefficient of variation as the SLC-reconstructed 18F-FDG
PET scans from Amsterdam UMC. The simulated PET images were used to initially train
the CNN, while parts of the actual reconstructed images were used for further fine-training
of the CNN, details are explained later.

2.4. Model Architecture

A supervised U-Net based [11] 3D-CNN (Figure 1 and Appendix B) was used to
denoise the (S)LC 18F-FDG PET scans while maintaining their diagnostic value. However,
instead of the max-pooling layer that is traditionally used, in this study the down sampling
layers consisted of convolution layers with a stride of two [24]. Although the convolution
layer compresses the feature image just as is the case for a max-pooling layer, it does not
exclude voxels by only looking at the maximum values. It therefore, not only reduces
computation time (although less than max-pooling), but most importantly increases the
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model its ability to learn [24]. Additionally, in contrast to conventional CNNs, a kernel size
of 6 × 6 × 6 instead of 3 × 3 × 3 was applied to learn inter-slice morphological features [25].

Figure 1. Architecture of the U-net shaped 3D-CNN used in the study. It consists of an encoding and
decoding path, which are connected with concatenation layers at each resolution block.

2.5. Model Performance
2.5.1. Quantitative Performance

The simulated SLC whole-body 18F-FDG PET scans from LPC were used to pre-train a
3D-CNN. Next, the reconstructed SLC and LC 18F-FDG PET data from Amsterdam UMC
were used for fine-training (transfer-learning) the pre-trained model, which generated two
additional models (SLC-CNN and LC-CNN) that are tailored to manage low or super low
count/quality images. These two models were subsequently used for further evaluation.
Training of the CNN model on the simulated noisy LPC 18F-FDG data was performed
to avoid overfitting due to the small dataset. Noise characteristics of 89Zr-rituximab
and LC 18F-FDG PET scans were almost similar. However, we used the SLC-CNN to
denoise the 89Zr-rituximab PET scans instead of the LC-CNN, because of the higher level
of noise reduction.

The 18F-FDG PET data from LPC was split into a training (80%, n = 32) and a validation
(20%, n = 8) set. Thereafter, for further refinement, validation and testing, the two CNN
models, 18F-FDG and 89Zr-rituximab data from Amsterdam UMC, were used. During this
training, the data were split into a training (32%, n = 8), a validation (8%, n = 2) and an
independent test (60%, n = 15) set. The training and validation set from Amsterdam UMC
consisted of only 18F-FDG PET scans from the Ingenuity TF PET/CT scanner. The test set,
however, consisted both of 18F-FDG PET scans from the Ingenuity TF PET/CT scanner,
the Vereos Digital PET/CT scanner, and 89Zr-rituximab PET scans from the Ingenuity TF
PET/CT scanner. PET data augmentation was applied during each training epoch (train-
data only) by randomly sampling the different (time points/delays) (S)LC 18F-FDG PET
scans for each patient during training. In other words, instead of traditional augmentation
(shifts, zoom, translation, rotation, etc.), in each training epoch, minor differences in noise
characteristics were present.

To compare the performance of the CNNs with other denoising methods, the (S)LC
test PET scans were also denoised using traditional GS (18F-FDG) and more advanced
BF [17] (18F-FDG and 89Zr-rituximab) denoising methods (Table 2). A Mann–Whitney U
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test (p < 0.05) was used to compare tumour recovery coefficients (TRC) and levels of noise
in the images after applying the denoising methods.

Table 2. Gaussian smoothing (GS) and Bilateral Filtering (BF) settings evaluated for the denoising of
the low-count whole-body PET scans.

GS (FWHM) BF (FWHM; SUV)

18F-FDG PET
SLC 8 mm, 10 mm and 12 mm 4 mm and 5 mm; SUV2.5
LC 4 mm, 6 mm and 8 mm 3 mm and 4 mm; SUV2.5

89Zr-rituximab PET 6 mm, 8 mm and 10 mm 2 mm, 3 mm and 4 mm; SUV2.5

We calculated TRC for the 18F-FDG and 89Zr-rituximab PET scans (test data) using
Equation (1). TRC was computed for the test data post-processed with a 3D-CNN, GS, or
BF denoising method and compared this to the FC data. PET uptake features from the
tumour volumes were extracted (UX, X = average, maximum and 3Dpeak) for both the
denoised (UX denoised) as the FC (UX FC) PET scans, using the in-house built and open-
access ACCURATE tool (quAntitative onCology moleCUlaR Analyses SuiTE) [26,27]. From
the 18F-FDG scans, only the primary lung tumour was extracted using a 50% SUV3Dpeak
isocontour (Table 1 and Figure A1). For the 89Zr-rituximab PET scans, tumours were
extracted using manual delineation (Table 1 and Figure A1). For patients with non-Hodgkin
lymphoma with more than three tumours, bootstrapping was applied to randomly choose
three tumours for analysis.

TRC =
UX denoised

UX FC
(1)

The level of noise was presented as the coefficient of variance (COV; Equation (2)).
Four spherical volume of interest (VOIs) were drawn in the liver (because the liver showed
homogeneous tracer uptake in this cohort, and therefore, could be used to reliably assess
the level of noise). Average standard deviation

(
σ liver

)
and average uptake

(
Uavg liver

)
were extracted using these four VOIs.

COV =
σ liver

Uavg liver
(2)

2.5.2. Qualitative Performance

For a qualitative assessment of the denoising methods (CNN and BF), the images after
denoising were independently evaluated by two experienced nuclear medicine physicians
(BZ and OH). GS was not included in this assessment due to a mostly significant (p < 0.05)
lower quantitative performance in comparison to the CNNs and BF. The questionnaire was
drafted to assess the reliability and effectiveness of the denoising methods. The assessment
was blinded, i.e., the scans presented to the physicians were a random combination (without
labels) of the FC, SLC, LC (with and without denoising) PET scans per patient. The 18F-FDG
and 89Zr-rituximab PET scans were scored per patient (1–5: low to high) based on the
level of noise, tumour detectability, overall scan quality, clinical acceptability (yes/no), and
overall best performance (1st/2nd/3rd/4th/(5th)). A Mann–Whitney U test (p < 0.05) was
used to compare the performance of the denoising methods.

3. Results

3.1. Quantitative Assessment

3.1.1. 18F-FDG

The BF and the proposed CNN (SLC- and LC-CNN) denoised PET scans have an
overall higher TRC and more similar COV to the FC PET scans than GS (Figure 2 and
Table A1). In contrast with BF, the SLC-CNN denoised PET scans showed a higher average
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uptake TRC, a higher 3Dpeak uptake TRC, but a lower maximum uptake TRC. With regard
to the LC scans, the LC-CNN denoised PET scans showed a trend (0.05 < p < 0.1) of a
higher TRC than the BF denoised PET scans for the average uptake, and 3Dpeak uptake.
Additionally, the LC-CNN showed a higher but not significant maximum uptake TRC than
the BF. In addition, the LC-CNN denoised PET scans showed a similar COV as the FC PET
scans. The SLC-CNN had the second closest COV to the FC PET scans.

Figure 2. The performance of the denoising methods for low-count 18F-FDG PET. The (A) average,
(B) maximum, (C) 3Dpeak TRC of the SLC-CNN, GS (8 mm, 10 mm and 12 mm) and BF (4 mm and
5 mm) denoising methods of the SLC 18F-FDG PET from the Ingenuity TF PET/CT and the Vereos
Digital PET/CT scanner. The (D) average, (E) maximum, (F) 3Dpeak TRC of the LC-CNN, GS (4 mm,
6 mm and 8 mm) and BF (3 mm and 4 mm) denoising methods of the LC 18F-FDG PET from the
Ingenuity TF PET/CT and the Vereos Digital PET/CT scanner.

3.1.2. 89Zr-Rituximab

The SLC-CNN denoised PET scans showed a predominant trend of a TRC higher than
the 3 mm and 4 mm BF (Figure 3 and Table A2). The SLC-CNN even showed a significantly
(p < 0.05) higher average uptake TRC than the 3 mm and 4 mm BF. The 3 mm and 4 mm BF
presented a comparable COV as the SLC-CNN. The 2 mm BF had a significantly (p < 0.05)
higher COV than the 3 mm and 4 mm BF and the SLC-CNN.
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Figure 3. The performance of the denoising methods for low-count 89Zr-rituximab PET. The (A) aver-
age, (B) maximum, (C) 3Dpeak TRC of the SLC-CNN and BF (2 mm, 3 mm and 4 mm) denoising
methods of the FC 89Zr-rituximab PET from the Ingenuity TF PET/CT scanner.

3.2. Qualitative Assessment

For the 18F-FDG scans, the observers found lower levels of noise, better tumour
detectability, better overall scan quality and higher clinical acceptability for all the CNN
models in comparison to the BF denoising methods (Figures 4 and A2, Table 3), with the
only exception being SLC-CNN in terms of noise levels and tumour detectability.

Figure 4. Illustration of a (A) FC, (B) SLC, (C) SLC-CNN, (D) BF 4 mm, (E) GS 10 mm denoised
18F-FDG PET scan (axial orientation) from the Ingenuity TF PET/CT scanner. Illustration of a (F) LC,
(G) LC-CNN, (H) BF 4 mm, (I) GS 6 mm denoised 18F-FDG PET scan (axial orientation) from the
Ingenuity TF PET/CT scanner.
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Table 3. Scores provided by the Nuclear Medicine Physicians as part of qualitative assessment of the
denoised 18F-FDG PET scans. The best performing method is indicated in bold based on the average
score of both physicians.

SLC LC FC

Metrics
[1–5: Low–High]

SLC-CNN BF-4 mm BF-5 mm LC-CNN BF-3 mm BF-4 mm

Level of noise 3.0–3.2 4.0–4.0 * 3.6–4.0 * 1.8–2.0 2.6–2.0 ** 2.2–3.8 * 1–1 *

Tumour detectability 2.0–3.0 2.2–3.0 2.0–3.0 4.0–4.0 3.6–4.0 2.8–3.0 * 5–5 *

Overall scan quality 2.4–2.6 1.6–2.0 * 1.8–2.0 * 4.4–4.0 3.8–4.0 2.8–2.2 * 5–5 *

Clinically acceptable? [%] 0–80 0–0 * 0–0 * 100–100 80–100 20–0 * 100–100

Best scan (1/2/3/4) 2–2 3–3 4–4 2–3 3–2 4–4 1–1

* significant (p < 0.05) higher/lower than (S)LC-CNN. ** trend (p < 0.1).

For the 89Zr-rituximab scans, the observers found a comparable level of noise, but sim-
ilar/better tumour detectability, better overall scan quality and higher clinical acceptability
for the SLC-CNN in comparison to the BF denoising methods (Figure 5 and Table 4).

Figure 5. Illustration of a (A) FC, (B) SLC-CNN, (C) BF 3 mm, (D) BF 4 mm, (E) BF 5 mm denoised
89Zr-rituximab PET scan (coronal orientation) from the Ingenuity TF PET/CT scanner.

Table 4. Qualitative assessment of the 89Zr-rituximab PET scans. Scores were given for the PET scans
with (SLC-CNN and BF) and without (FC) denoising by both Nuclear Medicine Physicians. In bold
the best performing method (or scan) is indicated based on the average score of both physicians.

Metrics [1–5: Low–High] SLC-CNN BF-2 mm BF-3 mm BF-4 mm FC

Level of noise 2.4–2.6 3.8–4.6 * 2.8–2.6 1.4–1.2 * 4.6–4.8 *

Tumour detectability 3.4–3.8 4.4–4.0 * 2.4–2.4 * 1.4–1.4 * 4.6–4.2 *

Overall scan quality 3.8–3.8 3.6–3.8 3.4–3.0 * 2.0–1.4 * 3.4–3.0 *

Clinical acceptable? [%] 100–100 100–100 80–80 0–0 * 80–80

Best scan (1/2/3/4/5) 1–1 3–2 2–4 4–5 3–3
* significant (p < 0.05) higher/lower than SLC-CNN.

4. Discussion

CNN models to denoise (S)LC 18F-FDG and 89Zr-rituximab PET scans were trained and
extensively evaluated. Overall, the CNN models performed better than the conventional
GS and the more advanced BF denoising methods for both the 18F-FDG and 89Zr-rituximab
PET scans. As such, the CNN models show promise for reducing the acquisition time and
injected activity of 18F-FDG PET scans and increasing the image quality of 89Zr-rituximab
PET scans.
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In this study, we trained noise-specific CNN models, to address the difference in
noise levels seen for different scan acquisition times and injected activity in 18F-FDG PET
scans. However, in case of PET tracers such as 89Zr-antibody PET, training a noise specific
CNN model was not feasible. Due to the dose limits of 89Zr, the overall image quality
was impaired (low SNR), and therefore, no high quality 89Zr-antibody PET images were
available for training a CNN. So, the only possible solution was to directly apply the
SLC-CNN (trained using SLC 18F-FDG PET scans) to the 89Zr-rituximab PET scans and
test its performance. The main advantage of this approach is that this validation is the
ultimate way of externally testing the CNN on data that are obtained with a different tracer.
Although the SLC-CNN is not trained on 89Zr-rituximab PET scans, it obtained a higher
TRC than the 3 mm and 4 mm BF denoising methods (Figure 3 and Table A2).

With regard to 18F-FDG PET scans with a low injected tracer activity, such as scans with
shorter scan duration, a lower SNR will be observed, which impairs both the quantitative
and qualitative value of these scans. The CNNs could therefore also be useful to maintain a
good image quality when reducing injected 18F-FDG activity in whole-body 18F-FDG PET
studies, and therefore, reduce radiation burden for the patient, but maintain diagnostic
value. However, further assessment is necessary to evaluate the performance of CNNs
when used for a reduction in the injected activity for whole-body 18F-FDG PET acquisitions.

The qualitative assessment also showed that the proposed CNNs were preferred over
BF. However, the CNN denoised (S)LC 18F-FDG PET scans did show an overall lower
qualitative performance than the FC 18F-FDG PET scans. Yet, the LC-CNN denoised LC
18F-FDG PET scans obtained a similar clinical acceptability score as the FC 18F-FDG PET
scans (Table 3), while for 89Zr-rituximab PET scans, the SLC-CNN increased the overall
image quality of the FC 89Zr-rituximab PET scans (Table 4). The observers preferred the
SLC-CNN denoised 89Zr-rituximab PET scans over both the BF denoised and FC 89Zr-
rituximab PET scans. This can be explained by a higher ratio between tumour signal and
background signal present in the SLC-CNN denoised 89Zr-rituximab PET scans (Figure 5).
This indicates that the SLC-CNN shows promise for establishing an optimal denoising
setup for 89Zr-antibody PET scans.

In this study, several strategies to prevent overfitting were applied. First, data aug-
mentation was applied by randomly sampling the different (S)LC 18F-FDG PET scans for
each patient. By using traditional augmentation, interpolation may be different between
the training data ((S)LC) and training labels (FC), and therefore, this was not applied in
this study. Another method by which overfitting was reduced is by using the symmetric
connections in the U-Net based 3D-CNN [28]. As shown in previous studies [12,13], train-
ing a model using a small dataset could result in overfitting. Since acquiring sufficient real
(S)LC 18F-FDG PET data were not feasible, SLC 18F-FDG PET data were generated using
the already available LPC data. SLC 18F-FDG PET data from LPC were simulated using
SMART, which facilitated the development of a pre-trained model familiar with morpho-
logical features. This resulted in a shorter learning time, lower probability of overfitting,
and a more accurate and robust model. Even though pre-training of the model was only
performed on SLC 18F-FDG PET data from LPC, the fine-trained LC-CNN showed a higher
performance than a LC-CNN without a pre-trained model.

The main limitation of this study is the size of the patient cohort. Small-sized tumours
in the (S)LC PET scans are more prone to being underestimated by the proposed CNNs.
This is because the training data were devoid of small tumours. Therefore, it could be that
the model specifies this signal as noise rather than a tumour-specific signal [29]. However,
the proposed CNNs showed better correspondence with the FC PET scans than GS and BF.
So, although small tumours were present in a small number in the training data, by using
the proposed CNNs, more quantitative information was retained in comparison to GS and
BF. Even though the differences in performance between the proposed CNNs and BF were
small, contrary to BF, a CNN still has the ability to learn and improve by incorporating more
patients. Thus, further evaluation in a larger and more heterogeneous cohort could further
improve CNNs performances. However, although the proposed method showed promising

177



Diagnostics 2022, 12, 596

results for denoising low-count 18F-FDG PET scans, obtaining a similar quantitative and
qualitative value as the FC 18F-FDG PET scans may not be fully feasible and we therefore
foresee that the main applications of the CNNs are denoising and improving image quality
of 89Zr-antibody PET studies.

5. Conclusions

The 3D-CNNs used in this study to denoise (S)LC whole body 18F-FDG and 89Zr-
rituximab PET scans were constructed and tested. The CNN denoised (S)LC 18F-FDG
and 89Zr-rituximab PET scans showed almost similar or better clinical performance than
the FC scans, respectively. Therefore, the proposed CNNs show promise for reducing
PET scan duration or lowering injected activity of whole-body 18F-FDG PET scans but
are particularly useful to increase the quantitative and qualitative image quality of 89Zr-
rituximab PET scans.
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Appendix A

Figure A1. Volume (cc) and SUVBW distribution of the tumours in the 18F-FDG PET and the 89Zr-
rituximab PET scans (test data).
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Figure A2. Illustration of a (A) FC, (B) SLC, (C) SLC-CNN, (D) BF 4 mm, (E) BF 5 mm, (F) GS 10 mm
denoised 18F-FDG PET scan (coronal orientation) from the Ingenuity TF PET/CT scanner. Illustration
of a (G) LC, (H) LC-CNN, (I) BF 3 mm, (J) BF 4 mm, (K) GS 6 mm denoised 18F-FDG PET scan
(coronal orientation) from the Ingenuity TF PET/CT scanner.

Table A1. Overview of the performance of the GS, the BF and the proposed CNNs denoising methods
using the external test 18F-FDG PET scans from the Ingenuity TF PET/CT and Vereos Digital PET/CT
scanners. For the FC (green), SLC and LC (with (blue) and without (orange) post-processing) PET
scans, the TRC and COV values are shown in each column.

TRC–Average TRC–Maximum TRC–3DPeak COV

FC 0.09
SLC 0.99 1.11 1.03 0.29

GS (12; 10; 8 mm) [0.69 *; 0.74 *; 0.81 **] [0.59 *; 0.66 *; 0.74] [0.68 *; 0.74 *; 0.80] [0.09; 0.11; 0.14]
BF (5; 4 mm) [0.79; 0.82] [0.85; 0.87] [0.82; 0.84] [0.01; 0.11]

SLC-CNN 0.86 0.85 0.87 0.10
LC 0.98 1.02 0.99 0.17

GS (8; 6; 4 mm) [0.80 *; 0.85 **; 0.90] [0.71 *; 0.79 *; 0.86 *] [0.79 *; 0.84 *; 0.90 *] [0.09; 0.11; 0.13]
BF (4; 3 mm) [0.81 **; 0.88] [0.78; 0.87] [0.82 **; 0.89] [0.07; 0.11]

LC-CNN 0.95 0.94 0.96 0.10

* significant (p < 0.05) higher/lower than (S)LC-CNN. ** trend (0.05 < p < 0.1).

Table A2. Overview of the performance of the BF and the SLC-CNN on the external test 89Zr-
rituximab PET scans from the Ingenuity TF PET/CT scanner. For the FC (orange), and post-processed
(blue) PET scans, the TRC and COV values are shown in each column.

TRC–Average TRC–Maximum TRC–3Dpeak COV

FC 0.14
BF (4; 3; 2 mm) [0.88 *; 0.94 *; 0.98] [0.78 **; 0.86; 0.94 *] [0.84 **; 0.92 **; 0.97 *] [0.07; 0.10; 0.13]

SLC-CNN 0.96 0.88 0.94 0.10

* significant (p < 0.05) higher/lower than SLC-CNN. ** trend (0.05 < p < 0.1).

Appendix B

Appendix B.1. Image Processing

Matrix dimension of the PET scans varied between centre, scanner, and patients.
Therefore, EARL1 scans from the Ingenuity TF PET/CT, the Vereos Digital PET/CT and
the Gemini Big Bore TF PET/CT scanner were zero-padded to a uniform matrix size of
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192 × 192 × 320. The EARL2 scans from the Vereos Digital PET/CT scanner were zero-
padded to a uniform matrix size of 384 × 384 × 640. Next to overcome capacity limitations
of the computer system, all the PET scans were rebinned to a matrix size of 192 × 192 × 80
with a voxel size of 4 mm for EARL1 and 2 mm for EARL2 scans in all directions.

Appendix B.2. CNN Architecture

Noise reduction inevitably degrades some of the quantitative features of the PET image.
To repress this, the network uses symmetric connections (concatenate two layers) while
decoding (upsampling) to alleviate the loss of details during encoding (downsampling).
So, the decoding layers use the features from the previous layer (encoded scans) but also
the retained details from the downsampling layers (uncompressed scans). This results in a
network that increases the SNR of the PET scans, and simultaneously retain the quantitative
and qualitative features of the scan.

The proposed model was implemented with the Keras library (v2.2) in Python (v3.6),
which is based on Tensorflow (v.1.13.1) as backend. The model was trained, validated, and
tested on two NV-linked Nvidia 11GB RTX 2080Ti GPUs. For optimisation of the weights,
an Adam optimizer was used with a low learning rate of 1 × 10−5 with a decay of 1 × 10−6.
The batch size for training the CNNs was set to 2.

Box A1. Python code of the architecture of the U-Net

kernel_size = (6,6,6)
inputShape = (192,192,80,1)
inputs = Input(inputShape)
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(inputs)
model = Activation(‘relu’)(model)
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(model)
model_1 = Activation(‘relu’)(model)
model = Convolution3D(32,kernel_size,strides = 2,padding = ‘same’)(model_1)
model = Activation(‘relu’)(model)
model = Convolution3D(32,kernel_size,strides = 1,padding = ‘same’)(model)
model_2 = Activation(‘relu’)(model)
model = Convolution3D(64,kernel_size,strides = 2,padding = ‘same’)(model_2)
model = Activation(‘relu’)(model)
model = Convolution3D(64,kernel_size,strides = 1,padding = ‘same’)(model)
model_3 = Activation(‘relu’)(model)
model = Convolution3D(128,kernel_size,strides = 2,padding = ‘same’)(model_3)
model = Activation(‘relu’)(model)
model = Convolution3D(128,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_3,model])
model = Convolution3D(64,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_2,model])
model = Convolution3D(32,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = UpSampling3D((2,2,2))(model)
model = concatenate([model_1,model])
model = Convolution3D(16,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)
model = Convolution3D(1,kernel_size,strides = 1,padding = ‘same’)(model)
model = Activation(‘relu’)(model)

Appendix B.3. Model Performance

For training and validation, the model performance of the CNNs was measured using
structural similarity (SSIM) and peak-signal-to-noise ratio (PSNR) [30]. The PSNR represent
the peak signal error, whereas the SSIM is a measure of the similarity between two scans,
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which have been proven to be consistent with human-eye perception. Based on these two
metrics the optimal (highest PSNR and SSIM) trained SLC-CNN and LC-CNN weights
were chosen for further assessment using the test PET scans.
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Simple Summary: We report the first clinical use of Endosight, a new guidance system for per-
cutaneous interventional procedures based on augmented reality, to guide percutaneous thermal
ablations. The new system was demonstrated to be precise and reliable, with a targeting accuracy of
3.4 mm. Clinically acceptable, rapid setup and procedural times can be achieved.

Abstract: Background: Over the last two decades, augmented reality (AR) has been used as a
visualization tool in many medical fields in order to increase precision, limit the radiation dose, and
decrease the variability among operators. Here, we report the first in vivo study of a novel AR system
for the guidance of percutaneous interventional oncology procedures. Methods: Eight patients with
15 liver tumors (0.7–3.0 cm, mean 1.56 + 0.55) underwent percutaneous thermal ablations using AR
guidance (i.e., the Endosight system). Prior to the intervention, the patients were evaluated with
US and CT. The targeted nodules were segmented and three-dimensionally (3D) reconstructed from
CT images, and the probe trajectory to the target was defined. The procedures were guided solely
by AR, with the position of the probe tip was subsequently confirmed by conventional imaging.
The primary endpoints were the targeting accuracy, the system setup time, and targeting time
(i.e., from the target visualization to the correct needle insertion). The technical success was also
evaluated and validated by co-registration software. Upon completion, the operators were assessed
for cybersickness or other symptoms related to the use of AR. Results: Rapid system setup and
procedural targeting times were noted (mean 14.3 min; 12.0–17.2 min; 4.3 min, 3.2–5.7 min, mean,
respectively). The high targeting accuracy (3.4 mm; 2.6–4.2 mm, mean) was accompanied by technical
success in all 15 lesions (i.e., the complete ablation of the tumor and 13/15 lesions with a >90%
5-mm periablational margin). No intra/periprocedural complications or operator cybersickness were
observed. Conclusions: AR guidance is highly accurate, and allows for the confident performance of
percutaneous thermal ablations.

Keywords: augmented reality; three-dimensional (3D) reconstruction; interventional oncology;
computed tomography; liver

1. Introduction

Precision and targeting accuracy are key for the success of all image-guided interven-
tional procedures. Over the last 20 years, several new navigational tools have been added
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to conventional imaging modalities (ultrasound, CT, MRI) with the purpose of increasing
precision, favouring dose reduction, decreasing variability among operators, and thus
promoting the diffusion of diagnostic and therapeutic interventional procedures based
on ever-increasing reliability. Image fusion platforms based on electromagnetic or optical
devices [1–4], CT with laser marker systems [5], CT fluoroscopy [6], cone-beam CT [7,8],
CT with electromagnetic tracking [9], and robotic systems [10] have been incorporated into
clinical practice in many centers. However, these tools still have some limitations, such
as the inability to provide a real, live, 3D visualization of the target and the surrounding
structures, the need for the operator to alternate their gaze between the interventional field
and the instrumentation screen(s), a steep learning curve, and, for CT-guided procedures,
potentially substantial radiation doses to patients and operators [11]. Recently, spatial
computing technology has allowed the development of simulated reality environments,
virtual reality (VR) and augmented reality (AR), which enable real-time interaction by the
user. VR completely immerses the user in an artificial, digitally created 3D world through
head-mounted displays (HMDs), with the user having no direct interaction with the real
world. Therefore, in the medical field, VR can be used for surgical planning and simulation,
but not for the direct guidance of interventional procedures [11,12]. To the contrary, AR
overlays digital content onto the visualized real world through an external device [12–14],
enhancing reality with superimposed information, using optical see-through head-mounted
displays (HMDs or “goggles”), screens, smartphones, tablets and videoprojectors, such that
digital and physical objects are visualized simultaneously. This permits their interaction
with each other, thus allowing guidance of interventional procedures. The capability for
computers to enhance visibility and navigate through 3D coordinates during minimally
invasive interventional procedures was first noted in 1997 [15]. Since then, AR has been
clinically applied as a visualization tool to augment anatomical [16] and pathological struc-
tures in neurosurgery [17–19] and vascular [20,21], orthopedic [22,23], urologic [24–26],
plastic [27], and abdominal surgery [28,29]. This was achieved by creating 3D anatomic
volumes from cross-sectional scans or angiographic images, and manually overlapping
them over patients positioned in the real operating field [3] through electromagnetic or
optical tracking systems and computer vision algorithms. In Interventional Oncology, AR
was initially tested on phantoms to assist with percutaneous biopsies [30,31], and subse-
quently for the assessment of its potential role for the augmentation of minimally invasive
surgery for the accurate localization of organ, or the guidance of radiofrequency ablation
(RFA) or irreversible electroporation (IRE) electrodes on phantoms [32,33], but not for the
direct guidance of interventional procedures in humans. To our knowledge, this is the first
report of the targeting and ablation of small hepatic malignancies in human patients using
AR as the sole modality of guidance.

2. Materials and Methods

This study was performed at two tertiary referral centres for liver diseases (Humanitas
Research Hospital and IRCCS Policlinico Universitario A. Gemelli), with the approval of
the local Institutional Ethics Committees. Written informed consent was obtained from all
of the subjects involved in the study.

2.1. Patient Population

Fifteen hepatic malignancies (9 hepatocellular carcinomas (HCCs), 3 metastases from
breast carcinoma, and 3 from pancreatic adenocarcinoma) in eight patients (5 males and
3 females, median age 72.5 years, range 56–83) underwent AR-guided percutaneous ther-
mal ablation. The treated nodule size ranged from 0.7 to 3.0 cm (mean 1.56 + 0.55).

For all of the cases, the treatment decision was determined by the consensus of an
Institutional Multidisciplinary Liver Team. According to the BCLC classification, the nine
HCCs in five patients were either very early (8/9 cases) or early stage (1/9), in a subset of
HCV-related early stage cirrhosis (Child-Pugh A, ECOG PS 0) [34]. These were located in
segments VIII (n = 4), V (n = 2), II (n = 2) and VI (n = 1); the sizes ranged from 1.2 to 3.0 cm
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(mean 1.69 + 0.53). One patient had four HCCs, and one two HCCs. All of the nodules were
treated in the same session. The other three patients had only one HCC. All of the HCCs
were diagnosed through a non-invasive radiological work-up, following the European
Association of the Study of the Liver (EASL) 2018 clinical practice guidelines [35].

The six metastases in the three patients ranged from 0.7 to 2.1 cm (mean 1.35 cm + 0.56)
in size, and were diagnosed by percutaneous US-guided biopsies using 20 G Menghini-
modified needles (Sterylab, Milan, Italy).

2.2. Pre-Treatment Diagnostic Assessment

All of the patients were initially evaluated with a baseline ultrasound of the liver which
included contrast enhanced ultrasound (CEUS) after the intravenous administration of
2.4 to 4.8 mL second-generation contrast agent (SonoVue, Bracco, Milan, Italy) (Figure 1A),
and an abdominal contrast enhanced computed tomography (CECT) in the arterial, portal,
and late phases (Figure 1B). In order to achieve registration for the orientation reference of
the AR display, twenty radiopaque markers with no repetitive pattern were applied to the
abdominal skin in the right hypochondrium surrounding the area of interest (Figure 1C)
immediately prior to the treatment. A new CECT in the arterial and portal phases was
acquired during free breathing (i.e., normal respiration), paying particular attention to
include all of the markers within the scanning area. In 14 of the 15 patients, CT scans
were acquired with two different machines (Ingenuity, Philips Healthcare, Cleveland, OH,
USA for 4 patients, and Revolution EVO, General Electric, Boston, MA, USA for 3 patients)
following the injection of Iopamidol (Iopamiro 370, Bracco, Milan, Italy) at 4 mL/s, using a
2-mm slice thickness, a matrix of 512 × 512 pixels, an in-plane pixel size of 0.48–0.78 mm,
1:1 pitch, 120 kVp and 180 mA. In the last patient, 70 mL Iomeprol (Iomeron 400 mg/mL,
Bracco, Milan, Italy) was injected at 3 mL/s using Lightspeed VCT 64 (General Electric,
Boston, MA, USA) using a 2.5-mm slice thickness, a matrix of 512 × 512 pixels, an in-plane
pixel size of 0.48–0.78 mm, 1:1 pitch, 120 kVp and 180 mA.

2.3. Augmented Reality Settings

The AR set-up comprised a proprietary augmented reality system (Endosight, R.A.W.
Srl, Milan, Italy) that features a 27” medical display (ACL, Leipzig, Germany), a laptop
(Dell Technologies, Round Rock, TX, USA) with installed proprietary image processing and
augmented reality software, and a commercially available head-mounted display (HMD)
(Oculus Rift-S, Facebook Technologies, Menlo Park, CA, USA) paired with a binocular
camera (Zed Mini, Stereolabs, San Francisco, CA, USA) (Figure 2).

The binocular camera viewed the patient from two different angles in order to register
the patient model in the camera frame using the markers visible in both video images while
tracking the ablation applicator. The software enabled the 3D reconstruction (from CT
scans to 3D volumes), co-registration, and AR intervention. Specifically, after uploading the
CECT scans into the system, followed by the automatic segmentation and 3D reconstruction
of the liver, spleen, bones, liver blood vessels and radiopaque markers, the semi-automatic
segmentation of the target lesions occurred using proprietary reconstruction algorithms.
In addition, the most suitable trajectory path from the skin to the target was defined.
Subsequently, by moving the HMD around the patient, the system software co-registered
(matched) all of the radiopaque markers segmented on the CT scans with all of the real
markers applied to the patient’s skin. This allowed for the simultaneous visualization of
the patient’s surface and internal anatomy, the target lesion, and the trajectory path to the
target in 3D, by superimposing—in real-time—virtual images on the operator’s real field of
sight (Figure 1D). Next, in order to allow the visualization of the probe position during the
procedure, a clip with five markers with no repetitive pattern was attached to either a 14 G
(for 14 ablations) or a 11 G (for one ablation) coaxial needle, 7.8 cm in length (Bard Inc.,
Murray Hill, New York, NY, USA), that was used as a coaxial ablation device introducer
(Figure 1E).
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(a) (b) 
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Figure 1. Augmented reality guided ablation: a 1.5-cm pancreatic carcinoma metastasis at segment
VIII, poorly visible on B-mode US and clearly seen by CEUS (a), and seen on pre-ablation CT scan
(arrow) (b). Radiopaque markers with no repetitive pattern applied to the patient’s skin (c). View
through the operator’s HMD: ribs (in white), major hepatic blood vessels (light blue), liver (red), and
target lesion (green, in a yellow circle) (d). View through the HMD, showing that the operator can see
the virtual needle (blue line) and the line that connects the tip of the needle to the center of the target
(in green) (e). Following the trajectory line permits successful tumor targeting with AR guidance
alone (f). The 5.4-mm distance between the tip of the coaxial needle and the target center by US (g).
Subsequently, the microwave antenna is inserted into the coaxial needle (h). On a post-ablation CT
scan, a large ablation volume completely surrounds the metastasis (i). Using ablation confirmation
software (Ablation-fitTM), the technical success achieved was precisely demonstrated. The margins of
the target tumor are shown in orange, the 5-mm ablation margin is shown in green, and the margins
of the necrosis volume are shown in blue. Complete tumor ablation with only 5.4% of the safety
margin out of the necrosis volume was achieved (j).
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Figure 2. Endosight system overview: cart, medical display, laptop, and Oculus Rift-S paired with a
Zed Mini camera.
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2.4. Treatment Procedure

All of the procedures were performed by three interventional radiologists with more
than 15 years of experience in percutaneous thermal ablations. In 14 of the 15 patients,
the ablations were performed in the CT room coupled with real-time ultrasound, under
assisted ventilation, during short-acting anaesthesia using propofol (AstraZeneca, Cam-
bridge, UK) (10 mg/mL) and alfentanil (Hameln Pharma, Gloucester, UK) (0.5 mg/mL),
with continuous hemodynamic monitoring throughout the procedure. In the remaining
patient, the ablation was performed under direct CT control (Lightspeed VCT 64) after
local anesthesia and deep sedation with 0.2 mg Fentanyl (Janssen-Cilag, Beerse, Belgium)
without additional ultrasound guidance. Using AR guidance alone, the coaxial needle was
inserted following the predefined trajectory line planned during the setup (Figure 1F). This
was facilitated by color coding, in that when the predefined trajectory line overlapped the
virtual needle line, this path turned from blue to green in the AR visual field, highlighting
and denoting the correct alignment. The insertion was conducted during the patient’s
free breathing (as in the pre-ablation acquisition of the CT scans) in order to minimize the
organ displacement caused by breathing. The depth from the entry point (i.e., the skin)
to the target centre was measured in real-time by the software, and was visualized on the
operator’s HMD. Before the introduction of the ablation device into the coaxial needle, the
position of the coaxial needle and its correspondence with the real location of the target
nodule was verified using real-time US when the target nodule was visible with US, or
with CT when the target was invisible on US. In order to assess the precision of the AR,
the distance from the real target centre visualized on the US or CT and the virtual target
centre shown by the trajectory line starting from the tip of the coaxial needle was measured
(Figure 1G). The ablation probe was then inserted, positioning its tip 5–7 mm beyond the
deep margin of the target in order to achieve sufficient ablative margins (Figure 1H). Then,
the coaxial needle was partly retracted while maintaining the positioning of the ablation
device in order to achieve the complete exposition of the active tip. Microwave ablations
(MWA) were performed with 13 G, 15 cm-long antennae (Medtronic, Dublin, Ireland) for
three malignancies of three patients, and 14 G, 15 cm-long antennae (HS Hospital Service,
Aprilia, Italy) for eleven nodules of five patients. The remaining patient recieved RFA
performed with a 14 G, 15 cm-long electrode with a 3-cm exposed tip (RF Medical, Seoul,
Korea). The treatment power and duration, and the total amount of energy delivered
were selected based upon the size and location of each nodule, according to the device
manufacturer’s technical recommendation and operator experience. Figure 3 shows the
complete treatment procedure workflow.

2.5. Post-Procedural Assessment

The CECT was performed immediately after withdrawing the ablation device
(Figure 1I). A proprietary ablation-confirmation software (Ablation-fitTM, R.A.W. Srl, Milan,
Italy) [36]—whichl enables the automatic segmentation of the liver and intrahepatic blood
vessels, and semi-automatically co-registers the target nodules on pre-ablation CT scans
with the volumes of necrosis achieved on post-ablation scans using a non-rigid registration
tool—was used in order to assess the precision and completeness of the ablation volume
achieved (Figure 1J). Using a 3D model, the software verified whether the volume of ab-
lative necrosis included entirely or partially the tumor and a pre-defined ablative margin
(5-mm thick, in these cases), as well as quantifying, as a percentage, the amount of tumor
and ablative margin (if any) external to the ablation volume, thus allowing us to assess
the technical success of the procedure [37,38]. After the ablation, all of the operators were
interviewed regarding the need for manual adjustments of the HMDs and the occurrence
of eye fatigue, dizziness, or cybersickness.
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Figure 3. Workflow of the AR-guided thermal ablations.
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2.6. Statistical Analysis

The primary endpoints evaluated included the time required to set up the system and
to position the antenna tip inside the nodule, the mean depth of the target centre from
the needle entry point on the skin, and the deployment accuracy, defined as the mean
distance between the geometric center of the target and the ablation device tip measured
on unenhanced CT or US. Secondary endpoints included the technical success, i.e., the
complete ablation of the entire tumor and the achievement of an >90% 5-mm periablational
margin ablation [36], complications, and operator sensations regarding the procedure. The
data were analyzed with statistical software (SPSS, version 17.0), and were reported as the
mean ± standard deviation (SD), or as the mean and range.

3. Results

The time required to set up the system ranged from 12.0 to 17.2 min (12.3 ± 2.1 min),
and the time required to perform each insertion and tumor targeting ranged from 3.2 to
5.7 min (4.3 ± 0.9 min). In 7 of the 15 (46.7%) cases, the target nodule was visible on the
US, and the real location of the target nodule and the position of the coaxial needle tip in
respect to the target centre were verified using real-time US. In the remaining 8 of the 15
(53.3%) cases, unenhanced CT was employed for verification. The mean depth of the target
centre from the needle entry point on the skin was 76.0 ± 28.2 mm. The distance between
the geometric center of the target and the ablation device tip measured on unenhanced CT
or US ranged from 2.1 to 4.5 mm (3.2 ± 0.7 mm). Table 1 shows—for each target—the size,
the distance of the interventional device tip from the tumor center, the time taken to reach
the target, and the modality used for the verification.

Table 1. Sizes of the targets, the distance of the interventional device tip from the center of each target
tumor, the time needed to reach the target, and the modality used for the distance measurement.

Size [mm]
Distance from Target

Center [mm]
Time to Reach Target [min]

Modality Used for
Measurement

Patient 1—Target 1 1.8 3.1 3.3 US

Patient2—Target 1 1.8 3.8 4.1 US

Patient 3—Target 1 1.5 2.1 5.7 CT

Patient 3—Target 2 1.7 2.4 3.2 CT

Patient 3—Target 3 1.4 3.6 4.9 CT

Patient 3—Target 4 1.2 2.7 4.2 CT

Patient 4—Target 1 1.4 3.9 5.3 US

Patient 4—Target 2 1.4 2.9 3.4 US

Patient 5—Target 1 2.1 3.6 5.3 CT

Patient 6—Target 1 1.8 2.4 4.0 CT

Patient 6—Target 2 0.8 2,2 4.2 CT

Patient 7—Target 1 3.0 4.5 5.2 CT

Patient 8—Target 1 1.5 4.1 3.3 US

Patient 8—Target 2 1.2 3.1 3.6 US

Patient 8—Target 3 0.7 3.4 4.9 US

Overall: 1.56 ± 0.55 mm 3.2 ± 0.7 mm 4.3 ± 0.9

For the MWA, the power delivered ranged from 50 to 60 W, with a treatment duration
of 5 min in four HCCs, and 6 min in the remaining five HCCs and the five metastases. For
the case of radiofrequency ablation (RFA), the power delivered was 1500 mA for 12 min. A
single ablation device insertion was performed for each target tumor. Technical success
was achieved in each case. After the automatic coregistration of the 3D volumes of the
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pre-ablation tumors and post-ablation necrotic changes, achieved with the Ablation-fitTM

software, the complete ablation of the tumors (i.e., no residual unablated portion of the
target tumors) was found. The residual 5-mm ablative margin percentage ranged from 0 to
14.1 % (5.5 ± 4.3%), with 13 of the 15 (86.7%) patients showing >90% ablation of this margin.
Table 2 shows the residual 5-mm safety margin (in percentage) of each target lesion.

Table 2. Residual 5-mm safety margin (as a percentage) of each target tumor, calculated by the
Ablation-fitTM software.

Residual 5 mm Safety Margin [%]

Patient 1—Target 1 5.4

Patient 2—Target 1 2.8

Patient 3—Target 1 3.1

Patient 3—Target 2 9.2

Patient 3—Target 3 12.1

Patient 3—Target 4 1.9

Patient 4—Target 1 0

Patient 4—Target 2 4.9

Patient 5—Target 1 8.1

Patient 6—Target 1 14.1

Patient 6—Target 2 10.1

Patient 7—Target 1 4.1

Patient 8—Target 1 3.3

Patient 8—Target 2 3.1

Patient 8—Target 3 0

No intra- or periprocedural adverse events occurred. No user-dependent calibration
and adjustment for the HMD was needed, and no significant eye fatigue or “cybersickness”
was reported by any of the users.

4. Discussion

Modern imaging modalities enable the visualization of increasingly small target
lesions, often in difficult-to-target locations, which is particularly suitable for local, image-
guided treatments (IGTs). Consequently, the requests for image-guided therapy, accom-
panied by expectations of favorable outcomes, are constantly increasing. However, some
problems still remain unsolved. First of all, the learning curve for the use of these technolo-
gies is often long, and this limits the diffusion of interventional procedures, particularly
among young operators and/or in low-referral centers. The lack of the real, live, 3D vi-
sualization of targets, and the poor working ergonomics (the need to check many screens
simultaneously, restricted line-of-sight to screens, and the need to alternate the operator’s
gaze between the interventional field and the instrumentation screens) are additional impor-
tant limitations. The mental registration of the target position seen in the reference image
(US, CT, MRI) with the corresponding position in patients is often challenging, particularly
for liver dome lesions requiring non-orthogonal or out-of-plane approaches, even when CT
guidance is used. The difficulty and subjectivity of this process may also increase the risks
for patients. Thus, the need for a technically easy combination of “real-world” visualization
with virtual objects precisely superimposed upon the scene is increasingly desired. This
can be achieved with AR technology in the actual interventional field, where the operator
can visualize and interact simultaneously with the real world (patient, interventional in-
strumentation) and virtual objects (hidden organs and targets, surrounding structures seen
on CT and MRI, etc.) based on the superimposition of the “two worlds”, as displayed on
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HMD, smartphones, tablets, screens or videoprojectors. Moreover, HMDs can be relatively
advantageous compared to the direct line of sight through the lens display [39].

The most critical issue for the use of AR in medical applications is the superimposition
precision, i.e., the registration accuracy. Multiple studies on phantoms, animal models,
and human cadavers have primarily focused upon the assessment of registration accu-
racy, either for AR navigation [40] or the AR guidance of needles [19,31–33,41,42]. Hecht
et al. [41] reported a smartphone-based AR system for needle trajectory planning and
real-time guidance on phantoms. In their first experiment, the mean error of the needle
insertion was 2.69 + 2.61 mm, which was 78% lower than the CT-guided freehand pro-
cedure. In their second experiment, the operators successfully navigated the needle tip
within 5 mm on each first attempt under the guidance of the AR system, which eliminated
the need for further needle adjustments. In addition, the procedural time was 66% lower
than the CT-guided freehand procedure. Long et al. [42] compared the accuracy and the
placement time needed by five interventional radiologists and a resident with a range of
clinical experience (3–25 years) to place biopsy needles on millimetric targets positioned in
an anthropomorphic abdominal phantom at different depths, using cone-beam CT (CBCT)-
guided fluoroscopy, and smartphone- and smartglasses-based AR navigation platforms.
The placement error was extremely small and virtually identical for all of the three modal-
ities (4–5 mm), and the placement time was significantly shorter for smartphones and
HMDs (38% and 55% respectively) than for CBCT. Additionally, the results were achieved
by AR without intra-procedural radiation, and with a learning curve of only 15 min.

Using the same system employed for the present study, Solbiati et al. recently pub-
lished a proof-of-concept study on phantoms, animal models, and human cadavers targeted
with AR guidance. In the rigid phantom, sub–5-mm accuracy (2.0 + 1.5 mm) (mean + stan-
dard deviation) was achieved. In a porcine model with small (2 × 1 mm) metallic targets
embedded, the accuracy was 3.9 + 0.4 mm when the targeting was performed with respira-
tion suspended at maximum expiration, as in the initial CT scan, and 8.0 + 0.5 mm when
the procedure was performed without breathing control. In a human cadaver attached to a
ventilator to induce simulated respirations, two liver metastases (1.8 cm and 3.0 cm) were
targeted with an accuracy of 2.5 mm and 2.8 mm, respectively [43].

Here, we note the similar accuracy of 3.4 mm in living, breathing patients. Regard-
ing AR-guided needle insertions in human patients, De Paolis et al. [32] reported their
preliminary experience in locating a focal liver lesion in the operating room just before
open surgery. The surgeon was able to determine the correct position of the real tumor by
touching it and applying the ablation applicator to it in order to verify the correct overlap
between the virtual and the real tumor. Although an excellent accuracy of 2 mm was
reported, problems of depth perception and instrument visibility occurred whenever the
surgeon’s body was located between the tracker and the instrument, both of which related
to the use of the optical tracker.

The AR system used for our current report is specifically designed to guide percu-
taneous biopsies and ablation procedures. It is based on disposable markers with no
repetitive pattern affixed to the patient’s abdominal skin before performing the CT scans.
The associated software enables us to visualize and segment the markers on the patient
(virtual objects) and the target tumor, to automatically register and superimpose virtual
and real images in real-time, to define the safe and accurate trajectory line to the target
center, to depict the guided movements of the interventional device without the need for
additional imaging, and to show the whole procedure on a display, HMD, or screen [43,44].
The main advantage of HMD is the 3D visualization, which tops the 2D visualization of
smartphones and tablets. The results achieved were very promising: the accuracy of the
antenna tip with respect to the center of the target was well below the 5-mm threshold (with
a mean of 3.2 + 0.7 mm), and technical success of the ablation was achieved in all cases. The
mean times required to set up the system and to perform each insertion were 14.3 min and
4.3 min, respectively, and were independent of the type of ablation system used. This is not
substantially different from the time usually required to perform CT-guided procedures
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by expert radiologists, even after a long learning curve. Moreover, the software for the
assessment and quantification of the tumor ablation margins in 3D was integrated into the
AR system, enabling the immediate and accurate evaluation of the technical success [36].

In recent years, two issues have been raised regarding the technology of HMDs used
for AR, i.e., the field of view (FOV) and the need for calibration [39]. The binocular FOV
of human eyes is naturally about 200 o in the horizontal plane and 135 o in the vertical
plane, while commercially available HMDs had initial FOVs ranging around 30–40 o. This
limitation has recently increased to 90 o both horizontally and vertically. Nevertheless, the
calibration of HMDs is needed to tailor projections to the user’s interpupillary distance.
Given that most HMDs have fixed focal planes, when the calibration is inaccurate, the
eyes can focus and converge at separate distances, causing distorted depth perception, eye
fatigue and “cybersickness” due to discrepancies between the visual and vestibular senses.
Nowadays, commercially available HMDs are provided with two videocameras, which
has eliminated the need for user-dependent calibration and adjustment. This has limited
the common occurrence of the cybersickness which was reported previously, as noted in
our study.

The patient’s respiratory movement and motion remain one of the largest technical
and practical hurdles, as AR guidance systems are currently unable to follow respiratory
excursions in mobile organs with real-time corrections, bearing a risk of the shifting of the
intended target relative to the expected location. Other target-related limitations arise from
the abilities of lesions to warp or move within their environments. Respiratory motion
tracking and the monitoring of respiration during deep sedation or general anesthesia seem
to offer the best solutions to date. The guiding information is provided regularly at the
point of the breathing that matches the respiratory phase during which the preoperative
CT image was acquired (the middle respiratory or expiratory phase). In this time interval
window, the operator can move the needle toward the target as rapidly as possible. In
our study, the insertion was conducted during the patient’s free breathing (as in the pre-
ablation acquisition of the CT scans) in order to minimize the organ displacement caused
by breathing. Given that this was the initial study of AR-guided thermal ablation, we
selected only tumors which were visible on US or on CT in order to be able to check the
position of the device tip after its insertion, before starting the ablation. Probe repositioning
was never required, as the position achieved with AR guidance was always sufficiently
accurate. Nevertheless, we acknowledge that this will not always be invariable, and note
that—should minor placement corrections be needed—the virtual system will potentially
save a substantial amount of radiation exposure compared to fully CT-guided procedures,
be they CT-guided freehand, cone-beam CT, or CT fluoroscopy guidance [20]. Indeed,
in the experimental study conducted by Park et al. [39] comparing a HoloLens-based 3D
AR-assisted navigation system with CT-guided simulations, the AR system reduced the
radiation dose by 41%.

An additional potential challenge of AR-guided interventional procedures is needle
bending during the insertion, exacerbated by increased applied pressure or the use of
thinner needles. The solution we successfully utilized was the use of a rigid coaxial needle
to maintain the interventional device fixed in 3D space during its advancement, minimizing
the bending of the ablation device inserted into the coaxial needle. We further demonstrated
that the attachment of a clip with markers with no repetitive pattern to the coaxial needle
permits precise monitoring by AR of the probe advancement towards the target, and the
interventional device subsequently inserted into the coaxial needle can easily hit the target
center. Coaxial needles have been used for interventional procedures for decades, and do
not appreciably increase the risk of bleeding because their construction is engineered to
result in an ultimate size only 1–2 G larger than that of ablation devices or biopsy needles.

With respect to other navigation systems, AR guidance offers an ergonomic advantage
that the overlay of treatment information (anatomy, target, trajectory line, etc.) is shown
directly in the procedural environment, and not on a display screen away from the patient
on a monitor, as occurs with CT- or CBCT-guided fluoroscopy. Additional advantages of
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AR guidance are the ease of use, the reduced procedural time compared to more traditional
guidance systems, and the short learning curve (compared to that of CT-guided procedures),
which is particularly useful for young operators with limited experience, who perform
equally or even better than senior operators with long experience. Furthermore, AR guid-
ance systems are significantly less expensive than all of the other needle guidance systems.
This may favour the diffusion of AR, and consequently of image-guided procedures in
small centers, and in developing countries that cannot afford to buy complex and expensive
guidance technologies (the so called “democratization” of interventional procedures).

With AR, the same images seen by the operator can also be visualized on monitors
inside and outside the interventional room, and can be broadcast on a larger scale, allowing
interventional radiologists to visualize live or recorded procedures performed by experts.
AR can provide not only an excellent opportunity for physician training and education but
also a very useful tool to exchange collaborative experiences among various centers for
remote real-time instruction or expert assistance [12,45].

We acknowledge that this study has some limitations, most notably the small number
of patients within the cohort, and the non-randomized type of lesions treated, all of which
visible on both US and CT despite their small size. Nonetheless, we believe that it will
encourage new prospective studies, and will work as the basis for the development of AR
technology in the clinical field.

5. Conclusions

In this retrospective study, we obtained high standards of targeting accuracy, technical
efficacy, procedural time, and radiation dose reduction using AR as the sole guidance
method for percutaneous thermal ablation, without encountering any complications. In
spite of the small cohort analyzed, we propose that our preliminary data demonstrate the
potential for AR, with further validation, to become a leading and low-cost modality for
the guidance of interventional procedures worldwide.
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Simple Summary: Skin cancer is one of the most common cancers in humans. This study aims to
create a system for recognizing pigmented skin lesions by analyzing heterogeneous data based on a
multimodal neural network. Fusing patient statistics and multidimensional visual data allows for
finding additional links between dermoscopic images and medical diagnostic results, significantly
improving neural network classification accuracy. The use by specialists of the proposed system
of neural network recognition of pigmented skin lesions will enhance the efficiency of diagnosis
compared to visual diagnostic methods.

Abstract: Today, skin cancer is one of the most common malignant neoplasms in the human body.
Diagnosis of pigmented lesions is challenging even for experienced dermatologists due to the wide
range of morphological manifestations. Artificial intelligence technologies are capable of equaling
and even surpassing the capabilities of a dermatologist in terms of efficiency. The main problem of
implementing intellectual analysis systems is low accuracy. One of the possible ways to increase
this indicator is using stages of preliminary processing of visual data and the use of heterogeneous
data. The article proposes a multimodal neural network system for identifying pigmented skin
lesions with a preliminary identification, and removing hair from dermatoscopic images. The novelty
of the proposed system lies in the joint use of the stage of preliminary cleaning of hair structures
and a multimodal neural network system for the analysis of heterogeneous data. The accuracy of
pigmented skin lesions recognition in 10 diagnostically significant categories in the proposed system
was 83.6%. The use of the proposed system by dermatologists as an auxiliary diagnostic method
will minimize the impact of the human factor, assist in making medical decisions, and expand the
possibilities of early detection of skin cancer.

Keywords: digital image processing; pattern recognition; convolutional neural networks; multimodal
neural networks; heterogeneous data; metadata; dermatoscopic images; pigmented skin lesions; hair
removal; melanoma

1. Introduction

According to World Health Organization statistics, non-melanoma and melanoma skin
cancer incidence has significantly increased over the past decade [1]. Up to three million
cases of non-melanoma skin cancer [2] and about 140,000 cases of melanoma skin cancer
are recorded annually [3]. According to the Skin Cancer Foundation Statistics [4], every
third case of cancer diagnostics is caused by skin cancer, making it one of the most common
types of malignant lesions in the body [5]. This is because the bulk of the population
of the countries of the Northern Hemisphere of the Earth are owners of I and II skin
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phototypes according to Fitzpatrick’s classification [6]. A feature of these phototypes is
the genetic inability to increase the level of Ultraviolet radiation (UV) [7] and the greatest
tendency to develop melanoma [8]. In modern conditions of decreasing the thickness of
the atmosphere’s ozone layer, UV directly affects the skin, a factor in the activation of
oncogenes. It is estimated that a 10% decrease in the ozone layer will lead to an additional
300,000 non-melanoma and 4500 melanoma skin cancers [9]. In regions with high sun
exposure, skin cancer is preceded by solar keratosis, the diagnosis of which can help
prevent the transformation of pigmented skin lesions into a cancer-positive form [10].

Rapid and highly accurate early diagnosis of skin cancer can reduce patients’ risk of
death [11]. When detected early, the 5-year survival rate for patients with melanoma is 99%.
In the later stages of diagnosis, when the disease reaches the lymph nodes and metastasizes
to distant organs, the survival rate in patients is only 27% [3]. Dermatoscopy is the most
common method for diagnosing pigmented skin lesions visually [12]. This method is based
on the visual acuity and experience of the practitioner and can only be effectively used by
qualified professionals [13]. With the help of dermatoscopy, an experienced dermatologist
can achieve an average accuracy in the classification of pigmented skin lesions that ranges
from 65% to 75% [14]. The early manifestations of malignant and benign neoplasms are
visually indistinguishable [15].

Today medicine is considered one of the strategic and promising areas for the effective
implementation of systems based on artificial intelligence [16]. There is an improvement in
mathematical models and methods, as well as an increase in the amount of digital informa-
tion in various fields of medicine due to the accumulation of data from electronic medical
records, the results of laboratory and instrumental studies, mobile devices for monitoring
human physiological functions, etc. [17]. The development of artificial intelligence tech-
nologies allowed algorithms for computer analysis of data to be equal to inefficiency, and
some tasks surpass human capabilities [18]. A comparison of the classification accuracy of
pigmented skin lesions in dermatologists with different levels of experience and a computer
program using an artificial intelligence algorithm is presented in articles such as [19–21].
Studies show that artificial intelligence can outperform 136 out of 157 dermatologists and
achieve higher accuracy in recognizing pigmented lesions. Despite the higher quality of
recognition in artificial intelligence systems than visual diagnostics in physicians, the prob-
lem of low accuracy in general in neural network classification systems remains relevant.
One of the possible ways to improve recognition accuracy is using the image pre-processing
stage [22].

There are many methods for pre-processing dermoscopic images to improve and
visually highlight diagnostically significant features. One of these methods is segmentation
to highlight pigmented skin lesions’ contours. Segmentation can be performed using
a biorthogonal two-dimensional wavelet transform and the Otsu algorithm [23]. Edge
extraction can be done using Gaussian contrast enhancement and edge extraction using
the saliency map construction [24]. Saliency maps use inner and outer non-overlapping
windows, making the foreground and background distinct. A significant disadvantage of
segmentation methods using filters is the lack of versatility in selecting contours in images
of different quality. Illumination, skin color, and sharpness of the contours of a pigmented
skin lesion significantly reduce the accuracy of these algorithms. Another way to highlight
contours on dermoscopic images is contrast stretching with further detection using Faster
Region-Based Convolutional Neural Network (Faster R-CNN) [25,26]. Segmentation based
on neural network algorithms makes it possible to accurately identify the contours of
pigmented skin lesions, separate a pigmented neoplasm from a skin area, and exclude the
influence of skin color type when recognized by artificial intelligence. At the same time,
the problem of the presence of hair structures remains, which can be perceived by both
neural network algorithms and filter-based algorithms as part of a pigmented skin lesion.

The presence of hair in dermatoscopic images can drastically change the size, shape,
color, and texture of the lesion, which significantly affects the automatic analysis of the
neural network [27]. Removing hair from images during digital pre-processing is an
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important step in improving the accuracy of automated diagnostic systems [28]. Today,
several methods are designed for pre-processing dermatoscopic images of pigmented
skin lesions to remove hair or other noise elements [29]. For example, the essence of the
DullRazor process [30] is to use the morphological operation of closing. A significant
drawback of DullRazor is the distortion of the dark areas of pigmented lesions, which can
change diagnostic signs and have a substantial impact on the quality of recognition. In [31],
another hair removal method on dermatoscopic images is presented based on non-linear
Partial Differential Equation diffusion (PDE-diffusion). The algorithm is designed to fill
linear hair structures by diffusion. This method is also used in [32,33].

Another way to improve the accuracy of intelligent classification systems is to combine
heterogeneous data and further analyze them to find additional relationships. In database
dermatology, heterogeneous data mining makes it possible to combine patient statistical
metadata and dermoscopic images, greatly improving the recognition of pigmented skin
lesions. The use of multimodal neural network systems [34–37], as well as methods for
combining metadata and multidimensional visual data [38], has significantly improved the
accuracy in recognizing pigmented skin lesions.

Despite significant progress in implementing artificial intelligence technologies to
analyze dermatological data, developing neural network systems of varying complexity is
relevant to achieving higher recognition accuracy. The main hypothesis of the manuscript
is a potential increase in the quality of neural network systems for analyzing medical data
due to the emerging synergy when using various methods to improve recognition accuracy
together. This study aims to develop and model a multimodal neural network system for
analyzing dermatological data through the preliminary cleaning of hair structures from
images. The proposed system makes it possible to achieve higher recognition accuracy
levels than similar neural network systems due to the preliminary cleaning of hair structures
from dermoscopic images. The use of the proposed system by dermatologists as an
auxiliary diagnostic method will minimize the impact of the human factor in making
medical decisions.

The rest of the work is structured as follows. Section 2 is divided into several sub-
section. In Section 2.1 a description of a method for identifying and cleaning hair structures
as pre-processing dermatoscopic images of pigmented skin lesions is proposed. In Sec-
tion 2.2 a description of the method for pre-processing statistical metadata about patients
has been made. In Section 2.3 the definition of a multimodal neural network system for
processing statistical data and dermatoscopic images of pigmented skin lesions is presented.
Section 3 presents practical modeling of the proposed multimodal neural network system to
classify pigmentary neoplasms with a preliminary stage of hair removal on dermatoscopic
images. Section 4 discusses the results obtained and their comparison with known works
in neural network classification of dermatoscopic skin images. In conclusion, the results of
the work are summed up.

2. Materials and Methods

The paper proposes a multimodal neural network system for recognizing pigmented
skin lesions with a stage of preliminary processing of dermatoscopic images. The proposed
multimodal neural network system for analysis and classification combines heterogeneous
diagnostic data represented by multivariate visual data and patient statistics. The scheme
of a multimodal neural network system for the classification of dermatoscopic images of
pigmented skin lesions with preliminary processing of heterogeneous data is shown in
Figure 1.
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Figure 1. Multimodal neural network system for the classification of dermatoscopic images of
pigmented skin lesions with preliminary heterogeneous data processing.

The multidimensional visual data undergoes a pre-processing stage, which identifies
and cleans hair structures from dermatoscopic images of pigmented skin lesions. Patient
statistics also undergo a one-hot encoding process to generate a feature vector. The mul-
timodal neural network system for recognizing pigmented lesions in the skin consists of
two neural network architectures. Dermatoscopic images are processed using the specified
Convolutional Neural Network (CNN) architecture. Statistical metadata is processed using
a linear multilayer neural network. The resulting feature vector at the CNN output and the
output signal of the linear neural network are combined on the concatenation layer. The
combined signal is fed to the layer for classification. The output signal from the proposed
multimodal neural network system for recognizing pigmented skin lesions is the percentage
of 10 diagnostically significant categories, including a recognized dermatoscopic image.

2.1. Hair Removal

The main diagnostic method in the field of dermatology is visual analysis. Today,
many imaging approaches have been developed to help dermatologists overcome the
problems caused by the apperception of tiny skin lesions. The most widely used imaging
technique in dermatology is dermatoscopy, a non-invasive technique for imaging the skin
surface using a light magnifying device and immersion fluid [39]. Statistics show that
dermatoscopy has increased the efficiency of diagnosing malignant neoplasms by 50% [40].
A significant problem when working with this method is the possible presence of hair on
the area of the pigmented lesion, which causes occlusion.

The presence of such noisy structures as hair significantly complicates the work of
dermatologists and specialists. It can also cause errors in recognizing pigmented skin
lesions in automatic analysis systems. Hair violates the geometric properties of the pig-
mented lesion areas, which negatively affects the diagnostic accuracy [41]. Figure 2 shows
dermatoscopic images of pigmented skin lesions with hair structures present that cause
occlusion by altering the size, shape of the lesion, and texture of the image.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Examples of pigmented skin lesions images with hairy structures: (a) vascular lesions;
(b) nevus; (c) solar lentigo; (d) dermatofibroma; (e) seborrheic keratosis; (f) benign keratosis; (g) actinic
keratosis; (h) basal cell carcinoma; (i) squamous cell carcinoma; (j) melanoma.

The most common way to solve the occlusion problem of pigmented skin lesions
is to remove the visible part of the hair with a cutting instrument before performing a
dermatoscopic examination. However, this approach leads to skin irritation. Also, it causes
diffuse changes in the color of the entire pigmented lesion, which distorts diagnostically
significant signs to a greater extent than the presence of hair itself. An alternative solution
is digitalizing dermatoscopic visual data to remove hair structures. The essence of the hair
pre-cleaning methods is to identify each pixel of the image as a pixel-hair or pixel-skin
and then replace the pixels of the hair structures with skin pixels [42]. Preliminary digital
processing of dermatoscopic images using morphological operations is one of the possible
methods for identifying and replacing pixels of hair structures.

This paper proposes a method for digital pre-processing dermoscopic images using
morphological operations on multidimensional visual data. A step-by-step scheme of the
proposed method is shown in Figure 3.

Figure 3. Scheme of the proposed method of identification and hair removal from dermatoscopic
images of pigmented skin lesions.
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Image processing of pigmented skin lesions consists of four main stages. At the first
stage, the RGB image is decomposed into color components. The second step is to locate
the locations of the hair structures. At the third stage, the hair pixels are replaced with
neighboring pixels. The fourth step is to reverse engineer an RGB color dermatoscopic
image.

The input of the proposed method is RGB dermatoscopic images of pigmented neo-
plasms of the skin P(x,y). The color components PR, PG, and PB are extracted from the image.
The following processing steps are performed separately for each color component. The
variables L1 and L2 are defined as follows:

L1,2 = {(x, y) : ρ(T, (x, y)) ≤ r} (1)

where ρ is the distance from the center T of the set L1,2 by the chosen metric, and r is the
radius of the set specified by the user. The next stage is a morphological closure operation
using the L1 element to determine the location of hair structures on dermatoscopic images:

HCC
3 = PCC · L1 = (PCC ⊕ L1)	 L1 (2)

where CC stands for the color channel, CC ∈ {R, G, B}, ⊕ is the operation of dilatation
of the set P along L1 and 	 is the operation erosion by element L1. The closure operation
smooths out the contours of the hair structures in dermatoscopic images, eliminates voids,
and fills in narrow gaps and long small-width depressions.

At the next stage, the original image PCC is subtracted from the image obtained as a
result of the HCC

3 close operation:

HCC
2 = HCC

3 − PCC (3)

The operator of zeroing the pixels δ of the image P(x,y) for further operations is defined
as follows:

δ
(

P(x,y)

)
=

{
P(x,y), if P(x,y) > K

0, if P(x,y) ≤ K
(4)

where K is the user-defined threshold of pixel intensity values. The next stage is the
threshold zeroing of the pixels of the detected hair structures. For this, the entered zeroing
operator δ is applied to the resulting dermatoscopic image HCC

2:

HCC
1 = δ(HCC

2) (5)

After the operation of threshold zeroing of pixels, a morphological operation of
dilatation with the L2 element is performed to expand the boundaries of the hair structures:

HCC = HCC
1 ⊕ L2 (6)

The next step is to replace the pixels of the hair structure with neighboring pixels.
Using the Laplace equation, pixels are interpolated from the area’s border of the selected
hair structures. In this case, the pixels from the border of the hair structures cannot be
changed. The last step is the reverse construction of the RGB color image from the extracted
color components. For this, the color channels PR

∗, PG
∗, and PB

∗ are combined.
An example of the step-by-step work of the proposed method for identifying and

cleaning hair structures from dermatoscopic images of pigmented skin lesions is shown
in Figure 4. To improve the visual perception of the intermediate results of each method
stage, Figure 4d–f were inverted.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Images obtained as a result of passing each stage of the method of identification and
hair removal: (a) input RGB image PRGB; (b) the color component PR, presented in shades of gray;
(c) the result of the HR

3 closing operation; (d) the result of the subtraction operation HR
2 (inverted

image); (e) the result of zeroing pixels HR
1 (inverted image); (f) the result of the HR dilatation

operation (inverted image); (g) pixel interpolation result PR
∗; (h) output RGB image PRGB

∗. Scale bar
or magnification.

2.2. Metadata Pre-Processing

Today, in medicine, there is an increase in the volume of digital information due to
the accumulation of data from electronic medical records, the results of laboratory and
instrumental studies, mobile devices for monitoring human physiological functions, and
others [17]. Patient biomedical statistics are structured data that describe the characteristics
of research subjects. Statistical data includes gender, age, race, predisposition to various
diseases, bad habits, etc. Such information facilitates the search for connections between
research objects and the analysis result.

Metadata pre-processing is converting statistical data into the format required by
the selected data mining method. Since the proposed multimodal system for recognizing
pigmented skin lesions is a fully connected neural network, it must encode the data as
a vector of features. A corresponding metadata information vector is generated for each
image in the dataset, which depends on the amount and type of statistical information.
One-hot encoding can sometimes outperform complex encoding systems [43]. All multi-
categorical variables (discrete variables with more than two categories) are converted to a
new set of binary variables for one-hot encoding. For example, the categorical variable to
denote a pigmented lesion on the patient’s body will be replaced by 8 dummy variables
indicating whether the pigmented lesion is located on the anterior torso, head/neck, lateral
torso, lower extremity, oral/genital, palms/soles, posterior torso, or upper extremity.

Suppose the M metadata includes various statistics M = {M1, M2, . . . , Mn} with
Mn ∈ mn, where mn is a pointer to a specific patient parameter. If mn is a pointer to the
gender of the patient, then M1 = {male, f emale}. For each set Mn, which is one of the
patient’s indicators, its power μn = |Mn| is calculated. For metadata pre-processing, an

→
m

feature vector of ∑n μn the dimension is generated. The first coordinate of the
→
m metadata

vector of the μ1 the dimension will encode the statistical data m1. The next coordinate of
the μ2 the dimension will encode the m2 statistical data, and so on.

One-hot encoding is used to encode the statistic mn ∈ Mn as follows. For the set of Mn,
the ordering is performed in an arbitrary fixed way for all considered cases. After that, the
binary code 1000 . . . 0︸ ︷︷ ︸

μn

is reserved for the first element of the set Mn. For the second element

of the set Mn, the binary code 0100 . . . 0︸ ︷︷ ︸
μn

is reserved, and so on. The statistical metadata

pre-processing scheme is shown in Figure 5.
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M

Figure 5. Metadata pre-processing scheme.

2.3. Multimodal Neural Network

In deep learning, multimodal fusion or heterogeneous synthesis combines different
data types obtained from various sources [44]. In the field of diagnosis of pigmented skin
lesions, the most common types of data are dermatoscopic images and patient statistics
such as age, sex, and location of the pigmented lesion on the patient’s body. Combining
visual data, signals, and multidimensional statistical data about patients allows you to
create heterogeneous medical information databases that can be used to build intelligent
systems for diagnostics and decision support for specialists, doctors, and clinicians [45].
The rationale for using heterogeneous databases is that the fusion of heterogeneous data can
provide additional information and increase the efficiency of neural network analysis and
classification systems [46]. The use of heterogeneous data in training multimodal neural
network systems will improve the accuracy of diagnostics by searching for connections
between visual objects of research and statistical metadata [47].

For the recognition of multidimensional visual data, the most optimal neural network
architecture is CNN [48]. The input of the proposed multimodal system for neural network
classification of pigmented skin lesions is supplied with dermatoscopic images of P(img), pre-

processed metadata in the vector form of
→
m = (m1, m2, . . . , mn) and tags with a diagnosis

of l ∈ {1, . . . , Nlab}, where Nlab is the number of diagnostic categories.
The dermatoscopic image includes R rows, C columns, and D color components. In

this case, for the RGB format = 3, the color components are represented by the levels of red,
green, and blue colors of the image pixels. The input of the convolutional layer receives
a dermatoscopic P(img) image, while the input is a three-dimensional function P(x, y, z),
where 0 ≤ x < R, 0 ≤ y < C and 0 ≤ z < D are spatial coordinates, and the amplitude P
at any point with coordinates (x, y, z) is the intensity of the pixels at a given point. Then
the procedure for obtaining feature maps in the convolutional layer is as follows:

Pf (x, y) = g + ∑
w−1

2
i=−w−1

2
∑

w−1
2

j=−w−1
2

∑D−1
k=0 w(1)

ijk P(x + i, y + j, k), (7)

where Pf is a feature map; w(1)
ijk is the coefficient of a filter of size w × w for processing D

arrays; g is offset.
The concatenation layer at the input receives the feature map, which was obtained on

the last layer intended for processing dermatoscopic images Pf , and the metadata vector
→
m. The Pf feature map contains a set of xijk, where i is the height coordinate, j is the width
coordinate, k is the number of the map obtained on the last layer from the set of layers
that were intended for processing dermatoscopic images. The operation of combining
heterogeneous data on the concatenation layer can be represented as follows:

fl = ∑i ∑j ∑k xijkw(2)
ijkl + ∑n

i=1 miw
(3)
il , (8)

where w(2)
ijkl is a set of weights for processing feature maps of dermatoscopic images; w(3)

il is
a set of weights for processing metadata vectors.
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The activation of the last layer of the multimodal neural network is displayed through
the so f tmax function with the distribution P(y|x, θ) and has the form:

P(y|x, θ) = so f tmax(x; θ) =
exp

(
wn

l
)Txn

l + gn
l

∑K
k=1 exp

(
wn

l
)Txn

l + gn
l

, (9)

where wn
l is the weight vector leading to the output node that is associated with class l.

The proposed multimodal system for recognizing pigmented skin lesions based on CNN
AlexNet is shown in Figure 6.

nn.Linear(28,100)
nn.Linear(100,28)

actinic keratosis (0.04)
basal cell carcinoma (0.01)

benign keratosis (0.01)

dermatofibroma (0.02)

melanoma (0.07)

nevus (0.72)

seborrheic keratosis (0.02)

solar lentigo (0.01)

squamous cell carcinoma (0.06)

vascular lesions (0.04)

Softmax

Figure 6. Neural network architecture for multimodal classification of pigmented skin lesions based
on CNN AlexNet. Scale bar or magnification.

3. Results

Data from the open archive of The International Skin Imaging Collaboration (ISIC),
which is the largest available set of confidential data in dermatology, was used for the
simulations [49]. The main clinical goal of the ISIC project is to support efforts to reduce
mortality associated with melanoma and reduce biopsies by improving the accuracy and ef-
ficiency of early detection of melanoma. ISIC develops proposed digital imaging standards
and engages the dermatological and bioinformatics communities to improve diagnostic
accuracy using artificial intelligence. While the initial focus in the ISIC collaboration is
on melanoma, diagnosing non-melanoma skin cancer and inflammatory dermatoses is
equally important. ISIC has developed an open-source platform for hosting images of
skin lesions under Creative Commons licenses. Dermatoscopic photos are associated
with reliable diagnoses and other clinical metadata and are available for public use. The
ISIC archive contains 41,725 dermatoscopic photographs of various sizes, representing a
database of digital representative images of the 10 most important diagnostic categories.
Most of the photographs are digitized transparencies of the Roffendal Skin Cancer Clinic
in Queensland, Australia, and the Department of Dermatology at the Medical University
of Vienna, Austria [50]. The dataset also contains statistical meta-information about the
patient’s age group (in five-year increments), anatomical site (eight possible sites), and
gender (male/female). Figure 7 shows a diagram of the distribution of dermatoscopic
images for 10 diagnostically significant categories. Diagnostically significant categories are
divided into groups “benign” and “malignant”, and are also arranged in order of increasing
risk and severity of the course of the disease. Since actinic keratosis can be considered as
intraepithelial dysplasia of keratinocytes and, therefore, as a “precancerous” skin lesion,
or as in situ squamous cell carcinoma, this category was therefore assigned to the group
of “malignant” pigmented neoplasms [51–53]. The diagram shows how unbalanced the
available images of pigmented skin lesions are towards the “nevus” category. Figure 8
shows diagrams of the distribution of the base of dermatoscopic images according to the
statistical data of patients. The database is dominated by male patients and patients aged
15 to 20 years. At the same time, in patients, pigmented skin lesions were most often found
on the back (posterior torso).
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Figure 7. Diagram of the distribution of the number of dermatoscopic images in 10 diagnostically
significant categories.

(a) (b)

(c)

Figure 8. Diagrams of the distribution of the base of dermatoscopic images according to the statistical
data of patients: (a) by gender; (b) by age; (c) by the location of the pigmented lesion on the body.

The modeling was performed using the high-level programming language Python
3.8.8. All calculations were performed on a PC with an Intel (R) Core (TM) i5-8500 CPU
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@ 3.00 GHz 3.00 GHz with 16 GB of RAM and a 64-bit Windows 10 operating system.
Multimodal CNN training was carried out using a graphics processing unit (GPU) based
on an NVIDIA video chipset GeForce GTX 1050TI.

Preliminary heterogeneous data processing was carried out at the first stage of the
proposed multimodal classification system. Dermatoscopic image pre-processing consisted
of stepwise hair removal and image resizing. The removal of hair structures was carried out
using the developed method based on morphological operations, presented in Section 2.1.
An empirical analysis of the application of Formula (1) showed that the best result of
identification and cleaning of hair structures is achieved at r = 5 for the element L1 and
at r = 3 for the element L2. In the calculations, the Euclidean norm (L2) was used as a
metric. It was also empirically found that the optimal threshold value in Formula (4) is
K = 40. Examples of pre-cleaning dermatoscopic images are shown in Figure 9. Figure 9b
was inverted to improve the visual perception of the results of the stage of hair extraction
in the pictures.

(a) (b) (c)

Figure 9. Examples of identification and cleaning of hair structures from dermatoscopic images of
pigmented skin lesions using the proposed method: (a) original dermatoscopic image; (b) the result
of extracting hair in the image (inverted image); (c) dermatoscopic image cleared of hair structures.
Scale bar or magnification.

The pre-processing of patient metadata consisted of one-hot encoding to convert the
vector format required for further mining. The coding tables for each patient metadata
index are presented in Tables 1–3. An example of pre-processing statistical patient metadata
using one-hot encoding is shown in Figure 10.

Table 1. A coding table for patient gender metadata.

Patient Gender (Sex) One-Hot Code

male 0 1
female 1 0
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Table 2. A coding table for localization of pigmented lesion on the patient body.

Localization of Pigmented Lesion
on the Patient Body (Anatomloc)

One-Hot Code

anterior torso 1 0 0 0 0 0 0 0
head/neck 0 1 0 0 0 0 0 0
lateral torso 0 0 1 0 0 0 0 0

lower extremity 0 0 0 1 0 0 0 0
oral/genital 0 0 0 0 1 0 0 0
palms/soles 0 0 0 0 0 1 0 0

posterior torso 0 0 0 0 0 0 1 0
upper extremity 0 0 0 0 0 0 0 1

Table 3. A coding table for patient age metadata.

The Age of the Patient (Age) One-Hot Code

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 10. An example of pre-processing statistical patient metadata using one-hot encoding.
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CNN AlexNet [54], SqueezeNet [55], and ResNet-101 [56] were selected to simulate a
multimodal neural network system for recognizing pigmented skin lesions, which were
pre-trained on a set on a set of natural images ImageNet. The most common size of der-
matoscopic images in the ISIC database is 450 × 600 × 3, where 3 is the color channels. For
neural network architectures AlexNet and SqueezeNet, the images were transformed to a
size of 227 × 227 × 3. For CNN ResNet-101, the images were converted to 224 × 224 × 3.
For further modeling, the base of dermatoscopic photographs was divided into images
for training and images for validation in a percentage ratio of 80 to 20. Since the ISIC der-
matoscopic image base is strongly unbalanced towards the “nevus” category, the training
images were augmented using affine transformations.

Large volumes of training data make it possible to increase the classification accu-
racy of automated systems for neural network recognition of dermatoscopic images of
pigmented skin lesions. Creating large-scale medical imaging datasets is costly and time-
consuming because diagnosis and further labeling require specialized equipment and
trained practitioners. It also requires the consent of patients to process and provides per-
sonal data. Existing training datasets for the intelligent analysis of pigmented skin lesions,
including the ISIC open archive, are imbalanced across benign lesion classes. All of this
leads to inaccurate classification results due to CNN overfitting.

Affine transformations are one of the main methods for increasing and balancing the
amount of multidimensional visual data in each class. The possible affine transformations
are rotation, displacement, reflection, scaling, etc. The selected dermatoscopic images of
pigmented skin lesions include multidimensional visual data of various sizes. Different
CNN architectures require input images of a certain size. Scaling using affine transfor-
mations transforms visual data into a set of images of the same size. Scaling is usually
combined with cropping to achieve the desired image size.

Augmentation of dermatoscopic images of pigmented skin lesions included all of the
above methods of affinity transformations, examples of which are shown in Figure 11.

(a) (b) (c) (d) (e)

Figure 11. Images obtained as a result of affine transformations: (a) original image; (b) image after
the operation of rotation by a given angle; (c) image after shift operation; (d) image after the scaling
operation; (e) image after the reflection operation. Scale bar or magnification.

New multidimensional visual data were created from existing ones using augmen-
tation for more effective training. This allowed us to increase the number of training
images. Training data augmentation has proven effective enough to improve accuracy in
neural network recognition systems for medical data [57]. When trained, neural network
classifiers tend to lean towards classes containing the largest number of images [58]. The
use of data augmentation made it possible to minimize the imbalance and achieve uniform
learning across all diagnostically significant classes presented. An example of transformed
dermatoscopic images from the database for training a multimodal neural network for
recognizing pigmented skin lesions is shown in Figure 12.
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Figure 12. Examples of dermatoscopic training images that have been previously cleaned and
enlarged using affinity transformations. Scale bar or magnification.

Pre-processed images of pigmented skin lesions were fed into CNN architectures. The
vector of pre-processed metadata was provided to the input of a linear neural network,
which consisted of several linear layers and ReLu activation layers. After passing the
different input signals through the CNN and the linear neural network, the heterogeneous
data passed fusion on the concatenation layer. The combined data was fed to the softmax
layer for classification. Figures A1–A3 from Appendix A show graphs of the learning
outcomes of a multimodal neural network system for recognizing pigmented skin lesions
based on various CNNs.

Table 4 presents the results of assessing the recognition accuracy of dermatoscopic
images of pigmented skin lesions. The highest indicator of the accuracy of recognition
of pigmented skin lesions was achieved using a multimodal neural network system for
recognizing pigmented skin lesions with a stage of preliminary hair cleaning with a pre-
trained AlexNet architecture [54] and amounted to 83.56%. When training each multimodal
neural network architecture using the method of preliminary identification and cleaning
of hair structures, the obtained percentage of recognition accuracy was higher than when
training original CNNs without a preliminary processing stage. The increase in recognition
accuracy during training of multimodal neural network recognition systems for pigmented
skin lesions with a stage of preliminary hair cleaning was 4.93–6.28%, depending on the
CNN architecture. The best indicator of improving the recognition accuracy was obtained
when training a multimodal neural network classification system with a preliminary hair
cleaning stage with a pre-trained ResNet-101 [56] architecture amounted to 6.28%. The
smallest result of an increase in recognition accuracy of 4.93% was shown by a multimodal
system based on AlexNet [54]. Adding each of the components to the system improves
the accuracy by 2.18–4.11%. As a result of modeling the original CNN architecture with
the stage of preliminary cleaning of hair structures based on SqueezeNet, the increase in
recognition accuracy was 2.13%. At the same time, adding the stage of neural network
analysis of statistical data made it possible to increase the accuracy by another 4.11%. For
the AlexNet neural network architecture, this increase was 2.18% and 2.75%, respectively.
For the ResNet-101 neural network architecture, recognition accuracy increased by 3.17%
and 3.11%, respectively. The results obtained indicate that the combined use of various
methods for improving the accuracy of recognition can significantly increase the accuracy
of neural network data analysis.
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Table 4. Results of modeling a multimodal neural network classification system for dermatoscopic
images of pigmented skin lesions. Bold font indicates the best result in each column of the table.

CNN
Architecture

Results of Recognition

Original CNN
Architecture, %

Original CNN
Architecture with a

Stage of Preliminary
Hair Removal, %

Proposed Multimodal
Neural Network

System with a Stage
of Preliminary Hair

Removal, %

Different in
Recognition Accuracy
between Original and

Proposed Neural
Network Systems, %

AlexNet [54] 78.63 80.81 83.56 4.93
SqueezeNet [55] 71.63 73.76 77.87 6.24
ResNet-101 [56] 76.75 79.92 83.03 6.28

The results predicted by the multimodal neural network from the test sample were
converted to a binary form to construct the Receiver Operating Characteristic curve (ROC
curve). Each predicted class label consisted of a combination of two characters with a length
of 10 characters. The ROC curve represents the number of correctly classified positive
values on incorrectly classified negative values.

TPR =
TP

TP + FN
× 100% (10)

FPR =
FP

TN + FP
× 100%, (11)

where TP is true positive cases; TN is true negative cases; FN is false-negative cases; FP is
false positives cases. The ROC curve is plotted so that the x-axis is the proportion of false
positives FPR, and the y-axis is the proportion of true positive TPR cases. The AUC is the
area under the ROC curve and is calculated as follows:

AUC =
∫ 1

0
TPR d(FPR). (12)

Table 5 shows the results of testing the proposed multimodal neural network system
for recognizing pigmented lesions with a stage of preliminary cleaning from hair structures.
Figures 13–15 show confusion matrices resulting from testing multimodal neural network
systems for identifying pigmented skin lesions based on various CNNs.

Table 5. Testing results of the proposed multimodal neural network system to recognize pigmented
lesions. Bold font indicates the best result in each column of the table.

CNN Architecture Recognition Accuracy, % Loss Function AUC

AlexNet [54] 83.56 0.47 0.90
SqueezeNet [55] 77.87 0.67 0.88
ResNet-101 [56] 83.03 0.66 0.93
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Figure 13. Confusion matrix in the testing results in a multimodal neural network system for
recognizing pigmented skin lesions based on CNN AlexNet.

Figure 14. Confusion matrix in the testing results in a multimodal neural network system for
recognizing pigmented skin lesions based on CNN SqueezeNet.
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Figure 15. Confusion matrix in the testing results in a multimodal neural network system for
recognizing pigmented skin lesions based on CNN ResNet-101.

Following the analysis of the confusion matrices in Figures 13–15, it can be concluded
that the most frequently erroneous prediction results concern the different categories of
malignant skin neoplasms (see percentages at the top of the columns). As summarized in
Figure 16, part of these errors are benign lesions predicted as malignant (i.e. false positives).
In addition, the malignant categories of “basal cell carcinoma” and “melanoma” are often
predicted as pigmented neoplasms of benign categories. Based on the lines of the confusion
matrices in Figure 16, malignant pigmented neoplasms are falsely recognized as benign in
an average of 19.6% of cases.

The χ2 McNemar statistic was calculated as follows:

χ2 =
(b − c)2

b + c
(13)

where b is the value when the proposed multimodal system incorrectly predicted the
images and the results of the original CNN were correct; c is the value when the results of
the original CNN were incorrect and the results of the multimodal system were correct.

The results of the analysis of the McNemar test from Figure 17 show that the proposed
multimodal neural network system made it possible to correctly recognize pigmented
neoplasms in 825–1238 images that were incorrectly classified by the original CNN with a
pre-cleaning step for oatmeal structures; in 86–181 the image was misclassified, in contrast
to the results of the original CNN with a pre-cleaning step for oat structures. Based on the
results of the McNemar test, the proposed multimodal neural network system correctly
classifies images of pigmented neoplasms on average, 12% of the time, compared to the
original convolutional neural network architectures with a hair pre-cleaning step.
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(a) (b)

(c)

Figure 16. The confusion matrix of the test results of the proposed multimodal neural network system
based on CNN is divided into two groups: (a) AlexNet; (b) SqueezeNet; (c) ResNet-101.

(a) (b)

(c)

Figure 17. Classification table neural network systems for recognizing pigmented skin lesions for
analysis McNemar based on CNN: (a) AlexNet; (b) SqueezeNet; (c) ResNet-101.
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Even though the proposed multimodal neural network system with the stage of pre-
liminary cleaning of hair structures shows higher results in recognition accuracy compared
to existing similar systems, as well as compared to visual diagnostic methods for physicians
in the field of dermatology, the use of the proposed system as an independent diagnostic
tool is impossible due to the presence of a false-negative response in cases of malignant
neoplasms. This system can only be used as a high-precision auxiliary tool for physicians
and specialists.

Figure 18 shows the ROC curve when testing a multimodal neural network system to
identify pigmented skin lesions based on various CNNs.

(a) (b)

(c)

Figure 18. Receiver operative characteristics (ROC) curve when testing a multimodal neural network
system for recognizing pigmented lesions and skin based on CNN: (a) AlexNet; (b) SqueezeNet;
(c) ResNet-101.

AlexNet deep neural network architecture is superior to other architectures in the
following ways: it does not require specialized hardware and works well with limited
GPU; learning AlexNet is faster than other deeper architectures; more filters are used
on each layer; a pooling layer follows each convolutional layer; ReLU is used as the
activation function, which is more biological and reduces the likelihood of the gradient
disappearing [59]. The listed characteristics substantiate the best result of training a
multimodal neural network to recognize pigmented skin lesions based on the AlexNet
neural network architecture.

4. Discussion

As a result of modeling the proposed multimodal neural network system, the best
recognition accuracy was 83.6%. The preliminary cleaning of hair structures and the
analysis of heterogeneous data made it possible to significantly exceed the classification
accuracy compared to simple neural network architectures to recognize dermoscopic
images. In [20] CNN GoogleNet Inception v3 was trained based on dermoscopic images,
consisting of nine diagnostically significant categories. The recognition accuracy of CNN
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GoogleNet Inception v3 was 72.1%, which is 11.46% lower than modeling the multimodal
neural network system proposed in this paper; in [21], the authors present CNN ResNet50
training based on benign and malignant pigmented skin lesions. The trained ResNet50
CNN achieved 82.3% accuracy, which is 1.26% lower than the recognition accuracy of the
proposed system with the hair pre-cleaning step. The superior recognition accuracy of
the multimodal neural network system proposed in this paper compared to the results of
pre-trained CNNs is explained by different data processing methods, which, when used
together, enter into synergy.

In [60], preliminary hair cleaning is performed using the DullRazor method, and
the skin lesion image classification using a neural network classifier. The best result of
recognition accuracy was 78.2%. The analysis of heterogeneous data using the proposed
multimodal neural network system made it possible to increase the recognition accuracy
by 5.4% compared to recognition using a neural network classifier; [61] presents a skin
cancer detection system. The preliminary cleaning of dermatoscopic images from hair was
performed at the first stage using the DullRazor method. Neural network classification
was performed using the K-Nearest Neighbor (KNN). The system’s accuracy was 82.3%,
which is 1.3% lower than the recognition accuracy of the proposed multimodal neural
network system with the stage of preliminary cleaning of hair structures. The authors
of [62] proposed a neural network system for classifying benign and malignant pigmented
skin lesions with the stage of preliminary hair removal. This approach made it possible
to achieve a classification accuracy of 79.1%, which is 4.5% lower than the recognition
accuracy of the proposed multimodal neural network system. Combining and analyzing
heterogeneous dermatological data allows the multimodal neural network algorithm to
find additional links between images and metadata and improve recognition accuracy
compared to the classification accuracy of visual data only by neural network algorithms.

A comparison of the recognition accuracy of various multimodal neural network
systems for recognizing pigmented lesions and skin with the proposed system is presented
in Table 6.

Table 6. Results of recognition accuracy of various multimodal neural network systems for recogniz-
ing pigmented lesions and skin.

Multimodal Neural Network Systems for the Classification
of Skin Pigmentation Lesions

Accuracy of Detection of
Pigmented Skin Lesions, %

Known neural network
systems

[34] 63.4
[35] 72.0
[36] 72.9
[38] 79.0

Proposed neural network system 83.6

In [34], the authors solved two problems for neural network classification of pigmented
skin lesions. The modeling was carried out based on the open archive ISIC 2019, which is
currently the most suitable for research in this area since it contains the largest amount of
visual and statistical data. The authors selected 25,331 dermatoscopic images for modeling,
divided into eight diagnostically significant categories. The authors used various CNNs to
classify dermatoscopic images for the first task. For the second task, statistical metadata
about patients was also used along with the photos. The multimodal neural network
system for the second task consisted of CNN for dermatoscopic imaging and a dense neural
network for metadata. In the first step, the authors trained CNN only on visual multivariate
data, then fixed the CNN weights and connected a neural network with metadata. The core
architecture of CNN was a pre-trained EfficientNets consisting of eight different models.
Pre-trained SENet154 and ResNext were also used for modeling variability. The images
were cropped to the required size 224 × 224 × 3 and augmented as a pre-processing stage.
Metadata pre-processing consisted of simple numeric coding. In this case, the missing
values were coded as “−5”. Most of the training was done on an NVIDIA GTX 1080TI
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graphics card. The use of metadata has improved the accuracy by 1–2%. At the same time,
the increase was observed mainly on smaller models. On the test set, the accuracy of the
neural network recognition system in the first task was 63.4%. For the second task using
metadata, the accuracy on the test set was 63.4%. At the same time, the most optimal results
were 72.5 ± 1.7 and 74.2 ± 1.1 for the first and second tasks, respectively.

Identical conditions for modeling, hardware resources, image base, and many diag-
nostic categories used make it possible to compare the results obtained with the proposed
multimodal neural network system with the stage of preliminary hair removal with the
results from work. The recognition accuracy of the proposed multimodal system with
the stage of preliminary hair removal on the test set was 83.6%, which is about 20.2%
higher than the results of testing the system from [34]. The main difference between the
multimodal neural network system proposed in the work is the use of the hair removal
method at the stage of preliminary processing of visual data, which significantly increased
the accuracy.

In [35], a multimodal convolutional neural network (IM-CNN) is presented, a model
for the multiclass classification of dermatoscopic images and patient metadata as input
for diagnosing pigmented skin lesions. The modeling was carried out on the open dataset
HAM10,000 (“Human versus machine with 10,000 training images”), part of the ISIC
Melanoma Project open database, and consists of seven diagnostic categories. This set
includes statistical metadata about patients such as age, gender, location of pigmented
lesions, and diagnosis. The pre-trained DenseNet and ResNet architectures were used
as CNNs to classify dermatoscopic images. The best test result for the proposed model
was 72% recognition accuracy. That is about 11.6% lower than the proposed multimodal
system with a stage of preliminary hair removal. The main differences in the operation of
the proposed multimodal system for the recognition of pigmented lesions of the skin are,
firstly, the stage of preliminary hair removal, and, secondly, the use of a larger number of
diagnostically significant recognition classes and a more substantial amount of data for
training. These distinctive features made it possible to improve the visual quality of diag-
nostically significant signs on dermatoscopic images due to the removal of hair structures
and improve the correctness and balance of the training of the neural network system.

The authors of [36] presented a method combining visual data and patient metadata to
improve the efficiency of automatic diagnosis of pigmented skin lesions. The modeling was
carried out on the ISIC Melanoma Project database, which consisted of 2917 dermatoscopic
images of five classes (nevi, melanoma, basal cell carcinoma, squamous cell carcinoma,
pigmented benign keratoses). For image recognition, a modified CNN architecture, ResNet-
50, was used. Simulation results have shown that the combination of dermatoscopic images
and metadata can improve the accuracy of the classification of skin lesions. The best average
recognition accuracy (mAP) using metadata on the test set was 72.9%. This result is 10.7%
lower than the recognition accuracy of the proposed multimodal system for recognizing
pigmented skin lesions with a stage of preliminary removal of hair structures. A small
variation in the database of dermatoscopic examples for training in [36] can significantly
affect the reliability of the neural network classification system.

In [38] proposed two methods for classifying pigmented skin lesions. The first method
was to use CNN to recognize dermatoscopic images. The authors selected 1000 images from
the International Skin Imaging Collaboration (ISIC) archive, divided into two categories
(benign and melanoma). The result of recognition accuracy in two categories on the basis
for validation was 82.2%. The second method used 600 images from the ISIC archive and
patient metadata. Metadata has been added to the dermatoscopic image pixel matrix in
each RGB layer at the bottom. After repeatedly adding metadata, a colored bar appeared
on the images. The accuracy of CNN recognition and the metadata on the validation set
was 79.0%, which is 4.6% lower than the recognition accuracy of the proposed multimodal
neural network system. Although adding metadata directly to the image matrix allowed
the authors from [38] to improve the classification accuracy, using a separate full-fledged
classifier for statistical data is a more rational solution. Convolutional layers in CNN
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highlight such features on dermatoscopic images as contour, color, size. The metadata
added to the pixel matrix of each dermatoscopic image does not require feature extraction.

The main limitation in using the proposed multimodal neural network system for
recognizing pigmented lesions in the skin is that specialists can only use the system as
an additional diagnostic tool. The proposed system is not a medical device and cannot
independently diagnose patients. Since the major dermatoscopic training databases are
biased towards benign image classifications, misclassification is possible. The use of
augmentation based on affine transformations makes it possible to minimize this factor but
not completely exclude it.

A promising direction for further research is constructing more complex multimodal
systems for neural network classification of pigmented skin neoplasms. The use of segmen-
tation and preliminary cleaning of the hair’s visual data will help highlight the contour of
the pigmented skin lesion. Distortion of the shapes of the skin neoplasm is an important
diagnostic sign that may indicate the malignancy of this lesion.

5. Conclusions

The article presents a multimodal neural network system for recognizing pigmented
skin lesions with a stage of preliminary cleaning from hair structures. The fusion of dissim-
ilar data made it possible to increase the recognition accuracy by 4.93–6.28%, depending on
the CNN architecture. The best recognition accuracy for 10 diagnostically significant cate-
gories was 83.56% when using the AlexNet pre-trained CNN architecture. At the same time,
the best indicator of improving the accuracy was obtained using the pre-trained ResNet-101
architecture and amounted to 6.28%. The use of the stage of preliminary processing of
visual data made it possible to prepare dermatoscopic images for further analysis and
improve the quality of diagnostically important visual information. At the same time, the
fusion of patient statistics and visual data made it possible to find additional links between
dermatoscopic images and the results of medical diagnostics, which significantly increased
the accuracy of the classification of neural networks.

Creating systems for automatically recognizing the state of pigmented lesions of
patients’ skin can be a good incentive for cognitive medical monitoring systems. This
can reduce the consumption of financial and labor resources involved in the medical
industry. At the same time, the creation of mobile monitoring systems to monitor potentially
dangerous skin neoplasms will automatically receive feedback on the condition of patients.
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Appendix A

Appendix A shows the training and testing graphs of the proposed multimodal
neural network systems based on various CNN architectures with preliminary cleaning of
hair structures.

(a) (b)

Figure A1. Graph of learning outcomes of a multimodal neural network system for classifying
dermatoscopic images of pigmented skin lesions based on CNN AlexNet: (a) loss function; (b) recog-
nition accuracy.

(a) (b)

Figure A2. Graph of learning outcomes of a multimodal neural network system for classifying
dermatoscopic images of pigmented skin lesions based on CNN SqueezeNet: (a) loss function;
(b) recognition accuracy.
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(a) (b)

Figure A3. Graph of learning outcomes of a multimodal neural network system for classifying
dermatoscopic images of pigmented skin lesions based on CNN ResNet-101: (a) loss function;
(b) recognition accuracy.
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Simple Summary: To the best of our knowledge, this is the first review aiming to assess the impact
of VR on the rehabilitation care of cancer survivors. We conducted a general review of the current
evidence on the efficacy of virtual reality rehabilitation (VRR) systems on cancer-related impairments
as retrieved through a systematic search of the main research databases. VRR systems may improve
adherence to rehabilitation training programs and be better tailored to cancer patients’ needs, but
more data is needed.

Abstract: Rehabilitation plays a crucial role in cancer care, as the functioning of cancer survivors
is frequently compromised by impairments that can result from the disease itself but also from
the long-term sequelae of the treatment. Nevertheless, the current literature shows that only a
minority of patients receive physical and/or cognitive rehabilitation. This lack of rehabilitative
care is a consequence of many factors, one of which includes the transportation issues linked to
disability that limit the patient’s access to rehabilitation facilities. The recent COVID-19 pandemic has
further shown the benefits of improving telemedicine and home-based rehabilitative interventions
to facilitate the delivery of rehabilitation programs when attendance at healthcare facilities is an
obstacle. In recent years, researchers have been investigating the benefits of the application of virtual
reality to rehabilitation. Virtual reality is shown to improve adherence and training intensity through
gamification, allow the replication of real-life scenarios, and stimulate patients in a multimodal
manner. In our present work, we offer an overview of the present literature on virtual reality-
implemented cancer rehabilitation. The existence of wide margins for technological development
allows us to expect further improvements, but more randomized controlled trials are needed to
confirm the hypothesis that VRR may improve adherence rates and facilitate telerehabilitation.

Keywords: virtual; reality; cancer; rehabilitation; disability; robotics; lymphedema; pain; fatigue;
telemedicine
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1. Introduction

Cancer ranks as a leading healthcare issue, striking 19.3 million new cases worldwide
in just 2020 and with an estimated projection of 28.4 million new cases for 2040 [1]. Contem-
porarily to this increase in incidence, mainly explainable by the world population’s growth
and aging, cancer mortality rates have been steadily decreasing by 1% per year, both in
high- and low-income countries and for both sexes [2]. Thanks to both diagnostic and
therapeutic advancements, the 5-year survival rate of cancer patients has indeed increased
from 49% in 1979 to roughly 67% in the US in 2015 [3,4]. As a consequence of these trends,
the population of individuals who have received a cancer diagnosis in their life is set to
increase rapidly, with the latest projections showing an increase from 16.9 million in the US
to 26.1 million people in 2040 [5]. “Cancer survivors” is a term generally used to define
anyone living with the physical and or psychological consequences of a recent or past
cancer diagnosis and its treatment, with some researchers even advocating for the inclusion
of even cancer patients’ caregivers and family members under the term [6]. These conse-
quences have a long and significant impact on the physical functioning of this population,
as both the disease, the long-term toxicity of chemotherapeutic drugs and radiotherapy, as
well as surgical procedures can result in chronic symptoms and long-standing physical and
cognitive impairment.

Pain is by far one of the most common chronic symptoms cancer survivors experience,
with prevalence rates of 55.0% during anticancer treatment, 39.3% after curative treat-
ment, and 66.4% in advanced, metastatic, or terminal disease [7]. Persistent pain not only
significantly undermines quality of life but also causes functional limitations and hence
disability. Cancer-related fatigue (CRF) is another extremely common symptom in cancer
patients, with a prevalence ranging from 25% to 99% depending on the specific disease,
the treatment, and age [8]. Lymphedema is an extremely frequent consequence of cancer
treatment, as it can be secondary to the surgical removal of lymph nodes, radiation therapy,
chemotherapy, or a combination of such [9]. The condition may severely impact patients’
lives, as it causes both pain and function limitations. Its incidence is influenced by both
the cancer and the intervention type: rates range from 75% of breast cancer patients after
axillary nodes removal to between 14.5 and 41.4% after chest and breast radiation therapy
depending on the extension of the area involved, to 50% for melanoma patients and a
16% incidence for genitourinary cancers [10,11]. Many cancer survivors experience not only
physical but also cognitive impairment, in particular in areas such as memory, attention
span, word-finding, and speed of processing and execution. This impairment is sometimes
colloquially referred to as “chemo brain”, referring to the well-known neurotoxicity of
many chemotherapeutic drugs [12]. However, recent findings on the existence of mild
cognitive impairment already existing before chemo treatment pose doubts on the true
cause(s) of this condition [13]. Chemotherapy-induced peripheral neuropathy (CIPN) is a
severe collateral effect of chemotherapy. Many chemotherapeutic drugs can indeed cause
different types of nerve damage depending on the exact chemical compound [14]. Its inci-
dence also varies depending on the treatment, ranging from 19% to 85%. Clinically, CIPN
usually manifests itself mainly as a distal sensory deficit, with symptoms of dysesthesia,
paresthesia, pain symptoms, or complete anesthesia. Motor symptoms occur less frequently
and also usually involve distal limbs, causing balance and gait problems as well. CIPN
usually gradually develops months after chemotherapeutic treatment and may affect the
patient for years.

These conditions have been shown to benefit from rehabilitation, and in the last years,
many systematic reviews and guidelines have contributed to the establishment of specific
recommendations for the prescription of specific exercise programs for different cancer
types [15–19]. Despite this indication, many studies have shown how just a minority of
cancer survivors are referred to rehabilitation programs. Reporting data collected from
163 breast cancer survivors, Cheville et al. found that 91% of women had physical impair-
ments, but only 30% were receiving proper rehabilitative care [20]. Concordantly, a study
by Hansen et al. examining a cohort of 3439 cancer survivors reported a total of 60% of
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patients referring to the unmet need for either physical or psychological rehabilitation [21].
In a more recent 20-year follow-up of pediatric brain cancer survivors in Norway, the
percentage rose to as high as 86% [22]. Through a non-systematic review of the previous
literature, Cheville attempted to explain the lack of proper rehabilitative care, mentioning
as possible causes the insidious and gradual genesis of these impairments as well as the
incapability of the cancer care system to deliver the early detection of the impairing symp-
toms [23]. However, even when the program is initiated, it is often discontinued as early as
within the first twelve months, mainly as a result of the difficulty of traditional training
programs in motivating the patients’ adherence [24]. In addition, the recent pandemic has
very well exposed another cause of this underutilization of rehabilitative cancer care, which
is the inadequacy of the present rehabilitative care system in delivering home-based inter-
ventions [25,26]. Indeed, many cancer survivors suffer from disabilities or transportation
issues which may limit their attendance at rehabilitation facilities. Therefore, in the last
years, many studies have been investigating the role of telerehabilitation in the rehabil-
itative care of cancer survivors to improve adherence and as a safe and more accessible
alternative to traditional rehabilitation [27–29]. One of the latest technologies proposed to
remotely connect patients and rehabilitation professionals is Virtual Reality (VR) [26,30–34].
Virtual Reality Rehabilitation (VRR) has been tested in various clinical conditions, such
as stroke-related deficits [35], spinal cord injuries [36], multiple sclerosis [37], Parkinson’s
disease [32], cerebral palsy [38–40], and cancer rehabilitation. Many studies have argued
that VRR may improve both adherence rates and training intensity thanks to its entertaining
and game-like nature [41–43].

The purpose of the present narrative review is to contribute to the investigation of
whether VR may be a useful implementation in the cancer rehabilitation field and to give
an overview of the current evidence on this application. At the moment, the scientific
literature registers either attempts to evaluate the advantages of VR implementation in
the rehabilitation field in general [41,44] or to review the implementation of VR in pal-
liative care for single cancer symptoms, mainly during acute cancer care, as highlighted
by Zeng et al. [45,46]. From our perspective, the former fails to assess the advantages of
VR-integrated rehabilitation when applied to the specifics of cancer survivor disabilities,
which often result from the slow and insidious accrual of more symptoms and physical
impairments [20]. The latter, on the other hand, does not examine the potential applica-
tion of VR technology to cancer survivors with chronic symptoms and their role in an
impairment-driven rehabilitation of disabilities resulting from a cancer history. Hence, to
the best of our knowledge, this is the first review aiming to assess the impact of VR on the
rehabilitation care of cancer survivors.

2. Methods

Database Search

The main online databases (PubMed, Scopus) were searched from inception until May
2022. The query string was the following: Cancer Survivor*” OR “cancer” OR “cancer
patient*” AND “Lymphedema” OR “cancer-related fatigue” OR “Fatigue” OR “Chronic
Pain” OR “Cancer Pain” OR “cognitive” OR “motor” OR “symptom management” OR
“peripheral neuropathy” AND “Rehabilitation” OR “Telerehabilitation” OR “Exercise” OR
“physical therapy” OR “sensorimotor rehabilitation” OR “exercise training” OR “postural
balance” OR “sensorimotor” AND “Virtual Reality” OR “body sensors” OR “avatar*”. The
first author performed the literature search. The first and second authors independently
screened titles and abstracts as well as full texts’ reference lists against eligibility criteria.
The final selection of articles was discussed by the first and second authors. Study eligibility
was assessed using the PICOS tool [47]: to be included, studies had to fulfill the following
inclusion criteria: (1) population: individuals with a history of cancer; (2) intervention:
Virtual Reality-based rehabilitation; (3) comparison for RCCTs: standard physiotherapy;
(4) outcomes for clinical trials: functional parameters, pain, lymphedema volume, cancer-
related fatigue, program adherence, exercise performance; and (5) study design: RCT with
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or without control, perspective studies, comparative studies, feasibility studies. Studies
published in English, Spanish, or Italian were all considered.

3. Results

The search of the main databases (PubMed, Scopus) produced a total of 7733 results.
Duplicate detection led to the elimination of 149 results. After screening through eligibility
criteria, a total of nine studies were selected for our review (Figure 1). We will here,
therefore, review the design of the included studies, summarized in Table 1.

Figure 1. Prisma flowchart of the study selection.
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Table 1. Features of the included studies.

Included Study
Study

Design
VRR System Considered

Impairment
Outcome Conclusions

Atef et al., 2020
[48]

Comparative
study Nintendo Wii games Post-mastectomy

lymphedema
Upper limb function

(quickDASH); arm volume

VR training was not inferior to
regular proprioceptive

neuromuscular facilitation in
improving functioning and

reducing volume.

Axenie et al.,
2020 [49]

Perspective
study

Virtual reality
avatar-based

kinematics assessment
and sensorimotor

training

Chemotherapy-
induced

polyneuropathy
Not applicable

Virtual reality software
allowed for simultaneous

kinematics assessment and
multimodal sensorimotor

stimulation. In addition, it may
facilitate motion training

through the use of avatars.

Basha et al.,
2021 [50]

Comparative
study

Xbox Kinect with
games involving

upper limb movement

Breast
cancer-related
lymphedema

Pain (VAS), upper limb
function (DASH), shoulder and

elbow ROM, hand grip
strength, quality of life

VR training was superior to
resistance exercises for pain,

upper limb function, and
shoulder ROM outcomes.

Feyzioğlu et al.,
2019 [51]

Comparative
study Xbox Kinect

Post-mastectomy
arm and shoulder

impairment

Pain (VAS), grip strength,
functionality (disabilities of the

arm, shoulder, and hand
questionnaire), muscle

strength, ROM
and fear of movement (TKS)

Both standardized therapy and
VRR resulted in significant

changes in pain, ROM, muscle
strength, grip strength,

functionality, and TKS scores,
without any significant

differences between groups.
Fear of movement was

significantly improved in the
VRR group but the standard

physiotherapy group
displayed more improvement

in functionality.

Hoffman et al.,
2014 [52]

Randomized
non-

controlled trial
Nintendo Wii Fit Plus Post-thoracotomy

cancer-related fatigue

Levels of adherence (days of
training), exercise performance,

cancer-related fatigue (0–10
scale), perceived self-efficacy
for fatigue self-management

(0–10 scale), perceived
self-efficacy for walking

30 min (%)

Non-immersive virtual reality
improved both CRF and
perceived self-efficacy.

House et al.,
2016 [53]

Feasibility
study

BrightArm Duo:
robotic rehabilitation
table, computerized
forearm supports,

and display

Post-mastectomy
arm impairment,

depression in
cancer survivors

Pain (NRS); arm function
(FMA, upper extremity

section); bimanual function
(CAHAI-9); hand function

(JHFT); upper arm autonomy
in ADL (UEFI-20); depression

(BDI-II); cognitive function
(NAB, HVLT-R, BVM-T, TMT);

VR rehabilitation significantly
improved 10/11 cognitive
parameters and depression

scores. In addition, it improved
arm function as well.

Reynolds et al.,
2022 [54]

Randomized
non-

controlled trial
Immersive VR headset

(Pico Goblin)

Pain, fatigue,
depression, anxiety,

and stress in
metastatic breast
cancer patients

Pain (BPI), quality of life
(EQ-5D-5L scale), fatigue

(FACIT-Fatigue), depression,
anxiety, and stress
levels, (DASS-SF)

VRR scenarios had significant
effects on all considered

outcomes. VRR scenarios did
not significantly differ in

any outcome

Schwenk et al.,
2015 [55]

Randomized
con-

trolled trial

Non-immersive
Virtual Reality

software connected to
triaxial accelerometers,

gyroscopes, and
magnetometers

Chemotherapy-
induced

polyneuropathy

Balance (sway of hip, sway of
ankle, center of mass

movement), gait speed, fear of
falling (FES-I score)

Virtual reality improved
balance through

patient-tailored, sensor-based
exercise but did not improve
gait speed and fear of falling

Tsuda et al.,
2016 [56]

Randomized
non-

controlled trial
Nintendo Wii Fit

Physical
performance

worsening related to
chemotherapy and

hematological
malignancies

Levels of adherence, physical
performance (Barthel index),

muscle strength, emotive state
(hospital anxiety and

depression scale)

Virtual reality exercise
programs showed good

adherence rates (66.5%) and
helped maintain physical

performance in
hospitalized patients.

* Table 1: Features of the included studies. VR: Virtual reality; VAS: visual analogue scale; DASH: disability
of the arm, hand, and shoulder questionnaire; ROM: range of motion; TKS: Tampa Kinesiophobia Scale; CRF:
cancer-related fatigue; NRS: numeric rating scale; FMA: Fulg-Meyer assessment; CAHAI-9: Chedokee arm and
hand activity inventory; JHFT: Jebsen hand function test; ADL: activities of daily living; UEFI-20: upper extremity
function index; BDI-II: Beck Depression Inventory, Second Edition; NAB: Neuropsychological Assessment Battery;
HVLT-R: Hopkins Verbal Learning Test; BVMT-R: the Brief Visuospatial Memory Test, Revised; TMT: Trail Making
Test; FES-I: Falls efficacy scale—international; pain, measured by BPI: (Brief Pain Inventory scale) (BPI); quality of
life, measured through the EQ-5D-5L scale; fatigue, measured through the Functional Assessment of Chronic
Illness Therapy Fatigue scale (FACIT-Fatigue); and depression, anxiety, and stress levels, measured through the
short version of the Depression, Anxiety, and Stress Scales (DASS-SF).
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Atef et al. conducted a quasi-randomized clinical trial comparing the efficacy of VRR
and proprioceptive neuromuscular facilitation (PNF) on post-mastectomy lymphedema
upper-arm exceeding volume and upper arm function recovery, measured through the
QuickDASH-9 scale [48]. The experimental procedure consisted of a 30 min exercise
program using a Wii Fit non-immersive VR game. Both the VRR and the PNF procedures
were conducted two times per week for a total of 4 weeks. During these sessions, both
groups, consisting of 15 women each, also received a procedure of pneumatic compression
for the treatment of lymphedema.

Axenie and Kurz conducted a prospective study on the combination of Virtual Reality
avatars and Machine Learning to drive patient-tailored CIPN-related motor deficit com-
pensation [49]. They proposed a closed-loop system based on wearable devices designed
to precisely assess the kinematics of the sensorimotor deficits. Furthermore, they concep-
tualized a VR avatar designed to reproduce the patient’s movements and to display the
discrepancies between the desired movement and the measured/executed one, so as to
trigger deficit compensation.

Basha et al. conducted a randomized clinical trial comparing the therapeutic efficiency
of non-immersive VR training and resistance exercise training on breast cancer-related
lymphedema [50]. The experimental protocol consisted of an exercise program conducted
through Xbox Kinect games involving upper arm motion. Both rehabilitation groups,
consisting of 30 patients each, received five rehabilitation sessions per week for 8 weeks.
The outcome measures included excessive limb volume and pain, measured through
the visual analog scale (VAS); the impairment of the upper arm, measured through the
Disability of the Arm, Shoulder, and Hand (DASH) questionnaire; shoulder range of motion
(ROM); shoulder muscle strength; and hand grip strength.

Feyzioğlu et al., 2019 presented a prospective randomized controlled trial comparing
the efficacy of a non-immersive VRR intervention with standard physiotherapy on breast
cancer survivors who had undergone surgery with axillary dissection [51]. The experi-
mental and control groups, both consisting of 20 individuals, both received the treatment
for 45 min per session and two times a week for 6 weeks. The experimental intervention
consisted of playing Xbox Kinect games involving upper arm motion in the presence of
a trained physiotherapist. However, the intervention group also received a scar tissue
massage for 5 min and passive shoulder joint mobilization for 5 min, performed by the
same physiotherapist assisting them. The outcomes considered were pain (VAS), grip
strength, functionality (assessed through the DASH questionnaire), muscle strength, ROM,
and fear of movement, measured through the Tampa Kinesiophobia Scale (TKS).

Hoffman et al. (2014) conducted a non-controlled trial investigating the feasibil-
ity of a home-based VRR intervention on seven lung cancer patients who had received
thoracotomy [52]. The home-based rehabilitation program, divided into two phases of
5 and 10 weeks, respectively, consisted of playing Nintendo Wii Fit Plus exergames of grad-
ually increasing intensity and duration 5 days a week. The VRR sessions did not require
the presence of rehabilitation professionals. The outcomes considered were the levels of
adherence, measured as the days of actual training, exercise performance, cancer-related
fatigue (0–10 scale), perceived self-efficacy for fatigue self-management (0–10 scale), and
perceived self-efficacy for walking 30 min (%).

House et al. conducted a trial on a sample of six patients to investigate the feasibility of
a rehabilitative intervention based on a novel technology, named BrightArm Duo, on breast
cancer survivors with post-surgical pain and depression [53]. The novel technological
tool tested consisted of a combination of a robotic table for forearm rehabilitation and a
computer executing non-immersive VR rehabilitation games. The rehabilitation program
consisted of training sessions lasting 20 to 50 min of training twice a week for a period of
8 weeks. The outcomes considered were pain, measured through the Numeric Rating Scale
(NRS); arm, hand, and bimanual function measured through the Fulg-Meyer assessment,
the Chedokee arm and hand activity inventory, and the Jebsen hand function test; upper
arm autonomy in the activities of daily living, measured through the Upper extremity
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function index (UEFI-20); depression, measured through the Beck Depression Inventory
(BDI-II); and cognitive function, measured through the Neuropsychological Assessment
Battery (NAB), the Hopkins Verbal Learning Test (HVLT-R), the Brief Visuospatial Memory
Test (BVMT-R), and the Trail Making Test (TMT).

Reynolds et al. conducted a pilot study to evaluate the efficacy of two different VRR
interventions on pain, CRF, and quality of life [54]. The study involved two groups of
19 and 20 women with metastatic breast cancer who were asked to participate in an im-
mersive home-based VR intervention. The technology involved consisted of a Pico Goblin
VR headset playing two different relaxing scenarios. The outcomes considered were pain,
measured through the Brief Pain Inventory scale (BPI); quality of life, measured through the
EQ-5D-5L scale; fatigue, measured through the Functional Assessment of Chronic Illness
Therapy Fatigue scale (FACIT-Fatigue); and depression, anxiety, and stress levels, measured
through the short version of the Depression, Anxiety, and Stress Scales (DASS-SF).

Schwenk and colleagues conducted a randomized trial on VR-based balance train-
ing [55]. The authors used inertial sensors equipped with gyroscopes and accelerometers
on the lower limbs to assess positions and joint angles and a multi-step balance retraining
virtual game based on the inputs of the sensors. In particular, the intervention group, con-
sisting of 11 individuals with chemotherapy-induced polyneuropathy, conducted exercises
and balance retraining tasks while receiving visual and auditory feedback on their motor
errors. The outcomes measured were the sway of the hip, the sway of the ankle, the center
of mass movement, gait speed, and fear of falling, measured through the Falls Efficacy
Scale (FES-I).

Tsuda et al. conducted a preliminary study on a VR-based exercise program on over
60-year-old hospitalized patients with hematological malignancies receiving chemother-
apy [56]. The virtual reality exercise program involved Nintendo Wii Fit games, which were
played for 20 min a day, five times a week until hospital discharge. The primary outcomes
were adherence rates, physical performance (measured through the Barthel index), muscle
strength, and emotive state (hospital anxiety and depression scale).

In summary, eight of the considered studies were clinical trials, with one study con-
ducting a preclinical investigation [49]. Of the clinical trials, four compared VRR to a
standard rehabilitation program [48,50,51,55]. One study involved an immersive VR pro-
gram [54], while the remaining eight studies used non-immersive VR technology. As for
the population considered by the clinical trials, five of the included studies involved breast
cancer survivors [48,50,51,53,54]. As for the outcomes considered, four of the retrieved
studies tested VRR on more than one physical impairment [50,51,53,54]. Overall, we found
four studies testing the efficacy of VRR on chronic pain [50,51,53,54], two studies on cancer
fatigue [52,54], two studies on lymphedema-related excessive arm volume [48,50], one on
cognitive function [53], four on motor performance impairment [48,50,51,53], and two on
chemotherapy-induced polyneuropathy [49,55]. Finally, we here report the results of the
two included studies considering adherence rates as an outcome [52,56].

3.1. Pain

Feyzioğlu et al. did not find a statistical difference in pain [51]. The study, however,
found significant differences in the decreased fear of movement as calculated through the
Tampa Kinesiophobia Scale. Moreover, House et al. reported a 20% decrease in pain after
treatment (p = 0.1) [53]. Basha and colleagues, comparing non-immersive VR exercise with
regular resistance exercise in patients with breast cancer-related lymphedema, found signif-
icant differences in pain intensity (p = 0.002) between groups [50]. Reynolds et al. found
that both scenarios significantly reduced pain (mean difference = −6.01, p = 0.004) [54]. To
summarize, four of the included studies considered pain as their outcome, but only two
found a statistically significant effect.
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3.2. Fatigue

Hoffman et al. reported statistically significant improvements in both CRF severity
and perceived self-efficacy for walking [52]. Reynolds et al. found a statistical difference
in pain and at follow-up compared to before the intervention (mean difference −5.00,
p < 0.001) [54]. To summarize, two of the included studies found statistically significant
effects of VR on cancer-related fatigue.

3.3. Lymphedema

Atef et al. found that both VR and PNF exercise reduced edema, with no significant
differences (p = 0.902) [48]. Basha et al.’s trial showed no significant differences among
groups for lymphedema-related excessive shoulder volume (mean difference = −11.1 mL,
p = 0.15) [50]. In conclusion, none of the included studies found statistically significant
evidence in favor of a VRR intervention compared to standard rehabilitation.

3.4. Cognitive Impairment

House et al.’s study on VR rehabilitation found it effective on cognitive function, with
10 out of 11 parameters improved (p = 0.004) [53].

3.5. Motor Performance

The Feyzioğlu trial on arm rehabilitation following mastectomy recorded improve-
ments in range of motion, grip strength, and arm muscle strength but did not find any
significant differences with the control group [51]. House et al.’s study, also considering
arm rehabilitation in breast cancer patients following surgery, reported a significant im-
provement of the affected shoulder in 17 of 18 range-of-motion metrics (p < 0.01), of which
five were above the Minimal Clinically Important Difference [53]. The study also reported
a recovery in 13 out of 15 strength and function metrics (p = 0.02). Basha et al.’s trial also
found statistical differences in physical and motility outcomes (shoulder flexion strength,
external rotation strength, abduction strength, and handgrip strength) in favor of the con-
trol group, who performed regular resistance exercises [50]. The trial also reported that
VRR was, however, significantly superior to standard rehabilitation for the range of motion
outcome (p < 0.001). Lastly, the Atef et al. trial reported statistically significant differences
among the VRR group and the control group regarding the functional improvements of
the arm following mastectomy (p = 0.045) [48]. To summarize, four trials considered motor
impairment as their outcome, but only two reported a statistically significant effect of
VRR, while one trial found it inferior compared to standard rehabilitation on some of the
considered outcomes.

3.6. Chemotherapy-Induced Peripheral Neuropathy

Schwenk et al. reported how the sway of the hip, ankle, and center of mass while
standing with eyes opened and in a semi-tandem position was significantly reduced in
the intervention group compared to the control (p = 0.010–0.022 and p = 0.008–0.035,
respectively, for the two positions) [55]. No significant effects were found for balance with
eyes closed, gait speed, and fear of falling (p > 0.05).

3.7. Adherence to Rehabilitation Programs

Tsuda et al. recorded an adherence rate of 66.5% in 88 sessions among 16 hospitalized
patients and noted the maintenance of physical performance [56]. The Hoffman et al.
study reported a mean adherence rate at the end of Phase I of 96.6% (SD: 3.4%) and of
87.6% (SD: 12.2%) at the end of phase II [52]. To summarize, two studies considered
adherence rates as an outcome, but none of the two compared it to standard rehabilitation
adherence rates.

In summary, VRR was found to be significantly effective for cancer-related fatigue,
cognitive impairment, and CIPN-related balance impairment. VRR was found to be
effective for cancer survivors’ pain, but only two studies found it significantly superior
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to standard rehabilitation. The included studies showed mixed results for the motor
impairment outcome, with two studies reporting statistically significant data in favor of
VRR and one study reporting statistically significant results in favor of the control group for
some of the motor performance outcomes. None of the included studies found a statistically
significant effect on lymphedema.

4. Discussion

The present review aimed to offer an overview of the present evidence regarding the
benefits of the integration of VR for the rehabilitation of the chronic symptoms and impair-
ments of a specific population, cancer survivors. As previously discussed, the impairments
and chronic symptoms considered by the present review are indications for and can be
treated through rehabilitation programs [15–17]. The studies retrieved by our database
search found VRR effective on cancer survivors’ pain, accordantly with previous reviews
which found VR interventions effective not only for acute but also for chronic pain [57–59].
However, only two of the included studies found VRR significantly superior to standard
rehabilitation for cancer survivors, so more studies will need to address this comparison.
Two of the included studies found statistically significant effects of VR on cancer-related
fatigue. This is consistent with the previous literature, which found VRR effective for
the treatment of chronic fatigue in other conditions, such as multiple sclerosis [60]. Re-
garding specifically cancer-related fatigue, however, the previous studies have focused on
testing the effects of VR on acute cancer fatigue, for example during procedures such as
chemotherapy infusions. Indeed, a 2020 systematic review concluded that VR had a statisti-
cally significant beneficial effect on cancer-related fatigue immediately after VR-assisted
chemotherapy infusions [61]. Consequently, it must be concluded that more studies are
needed to confirm the efficacy of VRR for the long-term treatment of chronic cancer-related
fatigue. One study found VRR effective for the treatment of CIPN-related balance impair-
ment, coherently with the results of previous studies on the use of VRR for the treatment of
balance impairment secondary to other conditions such as diabetic neuropathy, stroke, and
senility [62–64]. Two of the included studies considered lymphedema-related excessive
arm volume as an outcome, but none found statistically significant evidence in favor of a
VRR intervention compared to standard rehabilitation. The included studies also showed
mixed results for the motor impairment outcome, with two studies reporting statistically
significant data in favor of VRR and one study reporting statistically significant results in
favor of the control group for some motor performance outcomes. This result is inconsistent
with previous studies showing the efficacy of VRR compared to regular exercise for motor
performance and strength outcomes in different conditions, such as cerebral palsy, senility,
and after stroke [65–67]. One study found VRR effective for the treatment of cognitive
impairment in cancer survivors, consistent with the previous literature stating the efficacy
of VRR interventions for cognitive impairment [68–72].

Among the included studies, three conducted a home-based intervention [51,52,54].
This area of research is particularly crucial for cancer survivors: as previously discussed,
one of the factors contributing to the limited access that cancer patients have to rehabilita-
tive care seems to be represented by the transportation issues resulting from the patients’
disability [16,23,73]. For this reason, many studies have been investigating the potential role
of telerehabilitation in improving cancer patients’ access to rehabilitative care [29]. Further-
more, the previous literature has addressed how virtual reality may more generally improve
and facilitate remote-assisted and home-based healthcare interventions [26,33,74,75]. Con-
sidering more particularly the studies included in our review, Hoffman et al. employed
a Wii Fit device to deliver a rehabilitative program of increasing intensity. The program
involved only two home visits by a rehabilitation professional, one of which was before
the start of the training program to set up the device, later involving only remote phone
assistance. The study showed promising results in terms of adherence rates; however, its
single-arm design did not allow the authors to conclude whether the VR-implemented
program actually improved adherence rates compared to standard facility-based or home-
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based training programs. Reynolds and colleagues also reported the results of a VRR
home-based intervention that did not require assistance from a rehabilitation professional
but did not report adherence rates. However, discussing the acceptability of their inter-
vention, they reported a feedback comment which may be found suggestive, although of
course far from acceptable as evidence:

“With my lack of mobility that’s resulted from my illness, I really enjoyed the VR
as it made me feel like I’m not house bound . . . ”

Feyzioğlu et al., on the other hand, conducted a randomized controlled trial, comparing
two home-based interventions, an Xbox 360 Kinect-based intervention and a standard
physiotherapy intervention. However, the experimental intervention involved a combi-
nation of standard physiotherapy and VRR, as it consisted of a phase of active training
through a VRR gaming session and passive mobilization and scar tissue massaging, both
performed by the trained physiotherapist. As such, this home-based intervention required
the constant physical presence of a rehabilitation professional rather than involving remote
assistance. So it must be concluded that more studies are needed to examine whether the
VR implementation would facilitate remote supervision and whether the implementation
of this technology in home-based interventions would improve the cancer survivors’ adher-
ence. A possible limitation emerging from the overview of the included studies is, however,
the compatibility of some applied VRR systems and especially some of their more complex
additional devices with home-based interventions in terms of both costs and usability.
However, other included studies did test the application of VR devices currently already
commercially available, mainly for entertainment and gaming purposes, and which may
even be already present in the patients’ houses [48,50,51,54,56]. As previously reported,
two of the included trials considered adherence as an outcome [52,56]. However, both
consisted of single-arm studies, so more studies are needed to confirm the hypothesis that
VRR may actually improve adherence in cancer patients compared to traditional rehabil-
itation. This result would be consistent with previous studies reporting how VRR may
benefit both adherence rates and training intensity [41–43,62,76]. More evidence on this
subject would be very significant, as many studies highlighted how cancer survivors often
discontinue rehabilitation programs as early as within the first 12 months [24]. One of
the contributing factors to these statistics seems to be represented by the patient’s lack
of confidence and motivation, as standard rehabilitation programs typically require high
numbers of repetitions of exercises, which are found to be tiring and boring, when not
very frustrating [77]. On this subject, it has been theorized how VRR may increase the
patients’ enjoyment and excitement about the rehabilitation task administered, which many
researchers argue may benefit both adherence rates and training intensity [41–43]. Part
of the excitement added by the VR implementation may be explained by the novelty of
interacting with a virtual world or even simply wearing an HMD instead of using standard
training tools. However, part of its potential in terms of increased engagement seems to
derive from the possibility of adding game-like features, rules, and designs to the training
tasks, a process named gamification [34,78–80]. Indeed, the virtually unlimited possibilities
of the virtual scenario design allow adding positive feedback and an exciting narrative to
the training activities through the setting of goals, challenges, and competition elements
such as score points and badges [79,81–83]. In addition, VR scenarios can replicate real-life
tasks and situations with the result of greater physical and cognitive fidelity of the trained
task to the everyday task the patient needs to reacquire. So, it may be argued that VRR may
improve motivation by structuring a more goal-oriented training program compared to the
execution of physical exercises in the context of a rehabilitation facility.

Another possible advantage of VRR comes from the multisensorial nature of VR expe-
riences, which allow the stimulation of the patient in a multimodal manner [74]. This is
particularly important when it comes to cancer-related disabilities, which, as previously
discussed, often derive from the sum of more than one impairment. On this subject, we
aim to stress how four of the retrieved studies tested VRR on more than one physical
impairment [50,51,53,54]. In addition, three of the included studies considered the effects
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of VRR on both psychological and physical outcomes [53,54,56], with one also considering
cognitive outcomes [53]. Furthermore, we would also like to note how two of the included
studies tested VRR systems integrating VR with other technologies [53,55]. In particu-
lar, House et al. tested a system consisting of a low-friction robotic rehabilitation table,
computerized forearm supports, and a display delivering the non-immersive VR scenario.
Schwenk et al. used inertial sensors equipped with gyroscopes and accelerometers on the
lower limbs connected to the VRR software, to deliver error-based retraining in the motor
tasks required. Many previous studies also integrated VR with other technologies, utilizing
the VR software to process the data sent live from different digital rehabilitation tools in-
cluding treadmills [40,84–88], data gloves [89–91], and robotically-assisted orthoses [92–96].
So, regarding this subject, we aim to stress how VR software can represent an integration
platform for the function of many devices currently being tested or already clinically used
in the rehabilitation field and for cancer survivors.

5. Conclusions

The included studies and the previous literature suggest that VRR may be better
tailored to cancer survivors’ needs, such as the need for home-based rehabilitation, the need
for incentives for adherence and motivation, and the need for a multimodal approach. More
randomized controlled trials are needed to produce evidence on the possible advantages of
VRR compared to standard rehabilitative care. In particular, it would be crucial to confirm
the hypothesis that VRR may improve adherence rates thanks to its more entertaining
nature and multimodal stimulation. Lastly, we wish to encourage the development of new
VRR systems and VRR training programs structured to support remote connections in
order to allow patients to more easily reach the assistance of healthcare and rehabilitation
professionals. Nonetheless, the existence of wide margins for technological development
allows us to expect further improvements in the clinical efficacy and usability of VRR
systems as well as a reduction in their prices.
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Simple Summary: With the recent advances in the field of artificial intelligence, it has been possible
to develop robust and accurate methodologies that can deliver noticeable results in different health-
related areas, where the oncology is one the hottest research areas nowadays, as it is now possible
to fuse information that the images have with the patient medical records in order to offer a more
accurate diagnosis. In this sense, understanding the process of how an AI-based methodology is
developed can offer a helpful insight to develop such methodologies. In this review, we compre-
hensively guide the reader on the steps required to develop such methodology, starting from the
image formation to its processing and interpretation using a wide variety of methods; further, some
techniques that can be used in the next-generation diagnostic strategies are also presented. We believe
this helpful insight will provide deeper comprehension to students and researchers in the related
areas, of the advantages and disadvantages of every method.

Abstract: Breast cancer is one the main death causes for women worldwide, as 16% of the diagnosed
malignant lesions worldwide are its consequence. In this sense, it is of paramount importance to
diagnose these lesions in the earliest stage possible, in order to have the highest chances of survival.
While there are several works that present selected topics in this area, none of them present a complete
panorama, that is, from the image generation to its interpretation. This work presents a comprehensive
state-of-the-art review of the image generation and processing techniques to detect Breast Cancer,
where potential candidates for the image generation and processing are presented and discussed.
Novel methodologies should consider the adroit integration of artificial intelligence-concepts and the
categorical data to generate modern alternatives that can have the accuracy, precision and reliability
expected to mitigate the misclassifications.

Keywords: breast cancer; mammography; magnetic resonance; ultrasound; thermography; image
processing; artificial intelligence

1. Introduction

According to the World Health Organization, Breast Cancer (BC) represents around
16% of the malignant tumors diagnosed worldwide [1]. In Mexico, BC is the leading death
cause for cancer in the female population [2]. BC develops when any lump begins an
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angiogenesis process, that is, the process that causes the development of new blood vessels
and capillaries from the existent vasculature [3]. Unfortunately, BC has a mortality rate
of 69% in emergent countries, which is greater than the one in developed countries [1].
This increase is explained as the cancer is detected in a later stage, making the treatment a
financial obstacle as its price increases, especially if the disease is detected in an advanced
stage [4]. Hence, the development of strategies that can perform an early detection of BC is
a priority topic for governments, as an early detection increases the survival chances and
lowers the financial burden the disease imposes to families and health systems [4].

A methodology for the BC detection can be composed of 4 steps: (1) image acqui-
sition, (2) Segmentation and preprocessing, (3) feature extraction, and (4) classification.
An illustration of the abovementioned concepts is described in Figure 1.

 

Figure 1. BC detection using image processing strategies.

From this figure, it can be seen that the first step uses the different technologies
available to acquire the internal tissue dynamics of the breast, so they can be expressed in
an image; the second step is used to execute algorithms that perform basic tasks on the
images (for instance, correcting the color scale), so the segmentation, which is the detection
of Region-of-interest (ROI), can be done; then, the third step quantifies the differences
between images that have abnormalities from the ones that do not have; finally, once the
differences are quantified, it is necessary to classify them to provide a diagnosis. With the
rapid development of novel technologies that can capture more accurately the dynamics
of the breast tissues, numerous advances have been done in all the aforementioned fields;
in this sense, the goal of detecting all the abnormalities without generating false alarms
is still a highly desirable feature for all the proposals [5,6]. Recently, some articles have
reviewed some proposals regarding the feature classification and its interpretation [6–9];
yet, an article that presents the main technologies used to form the breast image as well as
the processing stages required to provide a diagnosis is still missing. This article presents
a state-of-the-art review of both the technologies used to create the breast image as well
as the strategies employed to perform the image processing and classification. The article
is organized as follows: Section 2 describes the main technologies used for the image
generation; Section 3 describes the methods used to perform the segmentation, feature
extraction, as well as the interpretation; next, Sections 4 and 5 present some emerging
techniques that can be used to improve the image formation and the algorithms used for
the interpretation. The article ends with some concluding remarks.

2. Technologies Used to Obtain Breast Tissue Images

One of the steps require to develop a diagnose system is the representation of the
breast tissue dynamics. In this sense, there are several technologies that are commonly
used to represent the tissue by means of images. This section presents the most used ones.

2.1. Mammography

Mammography is a study used to screen the breast tissue in order to detect abnormali-
ties that could indicate the prescience of cancer or other breast diseases [10]. This technique
has a sensibility of up to 85% in the recommended population. Essentially, mammography
uses low doses of X-ray to form a picture of the breast internal tissues [11]. To form the
picture, the breasts are compressed by two plates with the aim of mitigating the dispersion
of the rays, allowing to obtain a better picture without using an X-ray high-dose [11], where
the tissue changes might appear as white zones on a grey contrast [11]. On average, the
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total radiation dose for a typical mammogram with 2 views for each breast is about 0.4 [11].
Figure 2 illustrates the mammography procedure.

 

Figure 2. Mammography procedure.

Several works have focused on the processing of the digital mammographies to detect
the most common symptoms that could indicate the presence of cancer: calcifications or
masses [12]. Traditionally, the specialist looks for zones that have a different appearance
(size, shape, contrast, edges, or bright spots) than the normal tissue. With the employment
of segmentation algorithms [13–15], the automatization of this task has been proposed,
where some attempts using neural networks have done [12,16,17], delivering encourag-
ing results.

Recently, the utilization of the Breast tomosynthesis (BT) and the Contrast-Enhanced
Mammography (CEM) [10] have been proposed as improvements to the traditional digital
mammography. The former is a 3D breast reconstruction that allows to further improve the
image resolution whereas the latter improves the image resolution injecting a contrast agent;
in this way, the anatomic and vascularity definition of the abnormalities is exposed. In this
sense, some improvements when dealing with breast-dense tissue patients are obtained;
yet, the detection of clustered micro calcifications is still an issue [10]; on the other hand,
additional screening tests are required to determine if the abnormality detected by CEM is
cancer or not, besides of requiring more expensive equipment.

2.2. Ultrasound

Ultrasound is a non-invasive and non-irradiating technique that uses sound waves to
create images from organs, in this case the breasts, to detect changes in their form. To create
the images, a transducer sends high-frequency sound waves (>20 kHz) and measures the
reflected ones [10]. The image is formed using the wave sound reflected from the internal
tissues. This procedure is depicted in Figure 3.

Ultrasound is used for three purposes: (1) assessing and determining the abnormality
condition, that is, to help doctors if the abnormal mass is solid, which might require further
examination, is fluid-filled, or has both features; (2) as an auxiliary screen tool, which is used
when the patient has dense breasts and the mammography is not the reliable enough, (3) or
as a guide to develop a biopsy in the suspected abnormality [10]. Several computer-aided
diagnose (CAD) systems that analyze ultrasound images have been proposed [18]. One of
the points they note it is necessary to improve is the resolution of the images [19] using
specific-designed filters. Another modification proposed is the utilization of micro-bubbles
that are injected into the abnormalities detected at first sight [20].
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Figure 3. Ultrasound procedure.

It should be noticed that the mass tends to stay in its position when compressed, i.e.,
they do not displace. Elastography is the technique that is employed to measure the tumor
displacement when compressed using a special transducer [21]. These developments have
led to discover masses that usually require performing a biopsy to determine the mass
nature, which delay the diagnosis confirmation [10,21]; moreover, the image interpretation
requires a well-trained specialist, which is not always available to perform all the studies.

2.3. Magnetic Resonance Imagining (MRI)

Breast MRI (BMRI) uses a magnetic field and radio waves to create a detailed image
from the breast. Usually, a 1.5 T magnet is used along with a contrast, usually gadolinium,
to generate the images of both breasts [22]. To acquire the images, the patient is located in a
prone position, in order to minimize the respiration movement and to allow the expansion
of the breast tissue [10,22]. When the magnet is turned on, the magnetic field temporary
realigns the water molecules; thus, when radio waves are applied, the emitted radiation is
captured using specific-designed coils, located at the breast positions, which transforms the
captured radiation in electrical signals. The coils position must ensure an appropriate field-
of-vision from the clavicle to the infra-mammary fold, including axilla [10]. An illustration
of the patient position is depicted in Figure 4.

 
Figure 4. BMRI procedure.

The main objective of getting the images is to assess for the breast symmetry and the
possible changes in the parenchymal tissue, since those changes might indicate the presence
of lesions that can be malignant. In general, malignant lesions have irregular margins (or
asymmetry), whereas the benign ones usually have a round or oval geometrical shape with
well-defined margins (symmetry). To deliver the best possible result, it is necessary to
remove the homogenous fat around the breast and parenchyma since fat can render images
that can be uninterpretable, specially to detect subtle lesions [10,22].
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On the other hand, one of the problems that BMRI has is the false-positive (specificity)
rate, as the technique can detect low-size masses (lesions whose size is less than 5 mm)
that are benign [10,22]. To mitigate the aforementioned issue, nanomaterials have been
developed, so they stick to the cancer masses but not to the benign ones [23] as well as
contrast agents [24]. Recently, it has been proposed that a multiparametric approach has
been suggested as a strategy to improve the specificity rate [10].

2.4. Other Approaches

Recently, microwave radiation has been employed as an alternative to obtain infor-
mation about the breast tissue. The microwaves, whose frequency range varies from 1
to 20 GHz, are applied to the breast and the reflected waves are measured using specific-
designed antennas. To have the best possible results, some works propose that the tissue
must be immersed in a liquid [25]. In this sense, some works have proposed acquisition
systems that deal with this issue [26–29].

When it is necessary to perform a biopsy to confirm, images from the cells that form
the abnormalities are obtained using among other techniques, the fine needle aspiration
citology (FNAC), core or excisional biopsy. Once the cell images are captured, an image
processing technique is applied in order to detect the differences between normal and ma-
lignant cells, which are classified using modern strategies [30–32] such as neural networks,
probabilistic-based algorithms and association rules coupled with neural networks.

It should be pointed out that other alternatives for imaging are employed such as
Computed Tomography (CT) or Positron Emission Tomography (PET). The former employ
X-rays to form images from the chest using different angles; using image processing and
reconstruction algorithms, a 3D image of the chest (including the breasts) is obtained [33,34];
on the other hand, the latter uses a small amount of tracer, that is a specific-designed sugar
with radioactive properties known as fluorodeoxyglucose-18. The main idea of using this
type of sugar is that cancer cells have an increased consume of glucose compared with the
normal cells; in this sense, the tracer sticks in the zones where there is an increased glucose
consume [35,36]. It is worth noticing that these techniques are recommended to determine
the cancer stage rather than first-line diagnosis scheme [10,37]. In this way, they comple-
ment the three main techniques to provide more information from the tissues surrounding
the breasts [37]. Table 1 presents a table that summarizes the abovementioned methods.

Table 1. Summary of the used breast image generation technologies.

Imagining Technique Advantages Disadvantages
Recommended

Population
Some Types of

Cancer Detected
Sensitivity and/

or Specificity

Mammography

1. Equipment is widely
available worldwide.
2. Methods, such as
tomosynthesis, can

improve the specificity
and sensibility of the

technique with patients
that have dense

breasts [10]

1. The rate of both false
positive and false

negatives increases
since there is no

possibility to determine
if the masses are benign
2. The procedure used
to obtain the images
could be bothersome.

3. Dense breasts or
young patients are not

indicated to use this
imaging technique.

Women whose age is
greater than 40 years,

have low-dense breast
and an average risk of

contracting the disease.

1. Ductal Carcinoma
in Situ

2. Invasive
Breast Cancer.

Sensitivity up to 85%.

Ultrasound

1. Can be used in young
patients or have

dense breast.
2. The equipment used
is available in most of

the hospitals

1. Calcifications could
not be detected.

2. Sensitivity depends
on the operator ability
to interpret the images

3. False-positivity rate is
an issue.

Women with
heterogeneously or

extremely dense breast
tissue [38,39].

Women that are
pregnant or

lactating [40].

1. Ductal Carcinoma
in Situ.

2. Invasive
ductal carcinoma

Sensitivity ranging
between 40–75% in
younger high-risk

women [40].
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Table 1. Cont.

Imagining Technique Advantages Disadvantages
Recommended

Population
Some Types of

Cancer Detected
Sensitivity and/

or Specificity

Magnetic
Resonance Imaging

1. Effective for detecting
suspicious masses in

high-risk
population [10].

2. The breast tissue
density is no longer an

issue [38–40].
3. Multifocal lesions can

be detected [10,41]

1. Equipment is only
available in

specialized hospitals.
2. Expensive

3. False positive
findings are an

important concern [41]

1. Women that may
carry mutation in ATM,

BRCA1, BRCA2,
CHEK2, PALB2, PTEN,

TP53 genes.
2. Women that had

radiation therapy in the
chest zone during

the childhood.

1. Ductal in
situ carcinomas

2. Invasive
ductal carcinomas.

3. Invasive
lobular carcinomas

4. Invasive mammary
carcinomas with mixed

ductal and lobular
features [24]

Sensitivity ranging from
83 to 100% [42–44].

As it is seen in Table 1, numerous advances for imagining techniques have been
achieved in the last years; still, there is a necessity of developing strategies that can allow
obtaining sharp images, even for dense breast tissues. In this sense, the obtained images
can be used to perform a focused surveillance on the patients that have a higher risk for
developing the disease, allowing to achieve the cancer detection in the earliest possible stage.
On the other hand, these novel imagining techniques should be able to operate without
requiring additional requirements, such as specific electrical or mechanical conditions, so
they can be easily adopted in hospitals, or in an ambulatory area.

3. Image Processing and Classification Strategies

3.1. ROI Estimation

Once the image is acquired, the next step required is its interpretation. To this purpose,
it is necessary to identify the suspicious regions that might contain masses or calcifica-
tions, where model, region, or counter-based algorithms for the image segmentation are
employed [45]. It should be noticed that these approaches often rely on the manual entries
to refine the segmentation zones, which limits the applicability of the proposals on different
datasets [45], making necessary to develop novel strategies that can automatically detect
all the interest zones. Recently, Sha et al. [46] proposed a convolutional neural network
(CNN)-based method for segmentation. The authors develop an optimization scheme
to determine the best parameters for the CNN in order to segment the suspicious zones.
The results presented show the proposal has a reasonable sensitivity and specificity (89%
and 88%, respectively) to determine if a mammograph presents cancerous tumors or not.
Wang et al. [47] present a CNN-based strategy. They modify the convolutional layer to
increase the detection of multiple suspicious zones. Heidari et al. [48] employ a Gaussian
bandpass filter to detect suspicious zones using local properties of the image. On the other
hand, Suresh et al. [49] and Sapate et al. [50] employ a fuzzy-based strategy to cluster all
the pixels with similar features in order to detect all the zones that have differences. Other
strategies involve the utilization of mathematical morphology [51–55], image contrast and
intensity [56,57], geometrical features [58,59], correlation and convolution [60,61], non-
linear filtering [62,63], texture features [64], deep learning [65–69], entropy [70,71], among
other strategies. It is worth noticing that from the diversity of the employed strategies, some
of them still require an initial guidance to detect the suspicious zones, either by manually
selecting pixels inside of the zone or using the radiologist notes about the localization.
An effective approach for the automatic detection should employ a denoising stage in order
to remove residual noise generated during the acquisition and equalization, so the intensity
pixel disparities associated to the environment light can be mitigated as much as possible.

3.2. Feature Extraction

After the suspicious zones are detected and segmented, it is necessary to extract
features from them to generate the necessary information to classify the detected lesions
as cancer or benign. To this purpose, Fourier Transform-based methods [48,72], wavelet
transform-based strategies [73–76], geometric features [77,78], information theory algo-
rithms [79], co-occurrence matrix features [47,80–82], histogram-based values [46,83–85],
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morphology [86,87], among others. On the other hand, with the increased capabilities
(the number of simultaneous operations that can be done) of the new-generation graphical
processor units, it is now possible to execute high-load computational algorithms faster
than in a multicore processor [88]; in consequence, novel neural networks algorithms that
perform the feature extraction and quantification are now being proposed. For instance,
Xu et al. [89], use a CNN to extract and classify ultrasound images with suspicious areas
in four categories: skin, glandular tissue, masses, and fat. They modify the convolutional
filters to speed up the process. Arora et al. [90] also use an ensemble of CNN architectures
to extract directly the suspicious zones. They only modify the final layers to speed up the
training process. Gao et al. [91] use a deep neural network to generate the features from
mammograms. They employ a modified architecture where the outputs and inputs of the
network are used to update the model parameters during its training. Similar approaches
are described in [92–95].

It should be pointed out that a reduction of the estimated features is often used to
reduce the amount of computational resources used in the training scheme and to mit-
igate the overfitting problem, which reduce the algorithm efficacy. This step is known
as dimensionality reduction [45] and the most employed algorithms are the principal
component analysis (PCA) and linear discriminant analysis (LDA). PCA use eigenvalue-
based algorithms to determine the features that are unrelated between them, that is, they
have the maximum variance between them as this will indicate the maximum variation
of the information contained, whereas LDA perform a projection of the samples to find
out the distance between the classes’ mean. In this sense, the greater the distance between
the means, the more unrelated the features are [96]. Nevertheless, these algorithms use
global properties of the values which might cause to deliver suboptimal results [96]. For
these reasons, hybrid strategies are proposed such as neurofuzzy algorithms [97,98], dif-
fusion maps [99], deep learning [100–102], independent component analysis (ICA) [103],
clustering-based approaches [104], multidimensional scaling [105], among other strategies.
It should be pointed out that hybrid approaches, as abovementioned ones, are particularly
effective when a non-linear relationship between the features exists.

To the best of the authors’ knowledge, there are no papers that compare some of the
abovementioned techniques using the same database to compare the techniques efficacy.
In this sense, it is an interesting research topic, since the results of this comparison can
provide some guidelines about the image used (mammogram, ultrasound, or MRI) and the
technique that has the best performance.

3.3. Classifiers

The last step of this stage is the classification of the extracted features to make a diag-
nosis. Broadly speaking, a classifier uses the input data to find out relationships that can be
used to determine the class where the input data belongs to. The evaluation of the classifier
is done using three basic measurements: accuracy, specificity, and sensitivity [106,107].
Accuracy refers to the percentage of images that are correctly classified in their correspond-
ing classes; sensitivity is the percentage of classified images as malignant that truly are
specificity is the percentage of classified images as benign that truly are, and the area under
the curve is a parameter that allows choosing the optimal models. It takes a value between
0 and 1, being a good classifier the one that has a value close to 1 [108]. In this sense,
depending on the training algorithm required by the strategy, classifiers can be divided in
unsupervised or supervised [45,106,107].

3.3.1. Unsupervised Classifiers

An unsupervised classifier aims to find the underlying structures that the input data
has without making explicit the class the input data belongs to [109]. In this sense, input
data that has similar values is assigned to the same class [109]. Dubey et al. [110] studied
the effects that the selection scheme for the size of the number of clusters in the K-means
algorithm has. To this purpose, the random and foggy methods were employed. They
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note that foggy initialization method and the Euclidean-type distances produced the best
results, as a 92%-accuracy is obtained. K-means and K-nearest neighbor classifiers have
been also employed by Singh et al. [58] and Hernandez-Capistran et al. [111]. This family
of classifiers is effective when the distance between the clusters is reasonable; but, when
the aforementioned concept is not possible, the accuracy rate is highly degraded. For this
reason, Onan [112] introduced the concepts of the fuzzy logic to measure the distance
between the set of features used as input and the clusters, where the mutual information,
an information theory algorithm, is the chosen to measure the aforementioned distance.
The author reports an accuracy of 99%, and a specificity and sensitivity of 99% and 100%,
respectively. Similar results are achieved using the fuzzy c-means algorithm [113,114],
fuzzy-based classifier for time-series [115], fuzzy rule classifier [116,117], among others.
Other clustering-based approaches employed for classification are hierarchical cluster-
ing [118] and Unsupervised Test Vector Optimization [119]. It should be pointed out
that unsupervised classifiers require a careful selection of the features used to train the
algorithm, since an incorrect mix of features will degrade the performance of the classifier.

3.3.2. Supervised Classifiers

Supervised classifiers require to know a-priori the class of which the input data be-
longs to, that is, the input data must be labeled. The Decision Tree (DT) is an algorithm
that uses a set of rules to determine the class of the data input. DT has been employed
by Mughal et al. [71], where they perform the detection of masses in mammograms using
texture features in the region of interest. Using a DT, they obtain an accuracy, specificity,
and sensibility of 89%, 89% and 88.5%, respectively. Shan et al. [120] employ geometrical
features to classify abnormalities detected in ultrasound images. The obtained results
show an accuracy, sensitivity, and specificity of 77.7%, 74.0%, and 82.0%, respectively.
An improvement of DT is the Random Forest (RF). During the training stage, RF uses
several DT, where the ones that have the lowest error are chosen; in this way, the accuracy
is enhanced. RF are considered as ensemble classifiers, where some applications have been
reported [121–124]. The accuracy, specificity, and sensitivity reported show an improve-
ment. Another type of ensemble classifier is the Adaptive Boosting (AdaBoost) algorithm.
It consists in the utilization of weak classifiers, which are usually features that can generate
a classification accuracy greater than 50% by themselves; thus, using them in an ensemble
way, the outliers that the features value have are used, improving the classifier accuracy.
AdaBoost applications have been reported [125–127], achieving good results (the accuracy,
specificity, and sensitivity values are greater than 90%); yet, the authors note that extensive
investigation is still required to ensure that these results can be obtained with different
types of images (mammograms, ultrasound, and MRI).

Another classification algorithm widely used for BC detection is the support vector
machine (SVM). SVM finds the hyperplane that divides the zones where the values of
the input features are located. In this regard, Liu et al. [52] use the morphological and
edge features combined with a SVM classifier with a linear kernel, to detect benign and
malignant masses in ultrasound images. They obtain an accuracy, sensitivity, and specificity
of 82.6%, 66.67%, and 93.55%, respectively. It should be noted that most of the revised works
use the term malignant to describe masses or lesions that are cancer regardless its type. To
improve the aforementioned results, Sharma and Khanna [128] use the Zernike moments
as features and a SVM classifier using a non-linear function as a kernel. The authors obtain
a specificity and sensitivity of 99%. Similar approaches have been reported [87,129–133]. It
is worth noticing that if the features have a strong nonlinear relationship, other classifiers
could deliver better results.

3.4. Artificial Intelligence-Based Classifiers

Artificial Intelligence (AI) is the section of the computer science that develops al-
gorithms to perform complex tasks that previously are solved with the human knowl-
edge [134]. Evidently, since classification is a task usually solved by the physician, AI
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can provide automated solutions. In this sense, Artificial Neural Networks (ANN) are a
type of AI algorithms employed to perform the classification in different classes. ANN are
brain-inspired algorithms that store the knowledge that the input data using a training
process [135]. An ANN consists in a three-layer scheme: input, hidden, and output, as
depicted in Figure 5.

Figure 5. Artificial Neural Network.

The training process takes the information contained in the input variables and adjust
the values of the variables (weights) that connect all the layers in order to match the input
with its respecting class; in this way, the hidden pattern that share all the input and their
corresponding class is detected and stored. Consequently, it is necessary to use a sufficient
database, with representative scenarios, to train the ANN. Beura et al. [136] present a
methodology that employs mammograms to detect masses (benign and malignant) using
the two-dimension discrete wavelet transform (2D-DWT) with normalized gray-level
co-occurrence matrices (NGLCM). The images are segmented using a cropping-based
strategy to obtain the ROI, which are analyzed with the symmetric biorthogonal 4.4 wavelet
mother and a decomposition level of 2. All the frequency bands are processed to obtain
the features (NGLCM), where the t-test is selected to perform the optimal choice of the
most discriminant features. The obtained results show that the proposal achieves an
accuracy, sensitivity, and specificity of 94.2%, 100%, and 90% respectively, using the ANN
classifier, whereas a RF classifier, using the same database, obtains an 82.4%-accuracy.
Mohammed et al. [137] uses fractal dimension values as features to classify ultrasound
breast images in benign and malignant. They obtain the ROIs using a cropping-based
algorithm, which are processed to obtain multifractal dimension features. They obtain
an accuracy, sensitivity, and specificity of 82.04%, 79.4%, and 84.76% respectively using
an ANN classifier. They point out that the ROI extraction algorithm must be improved.
Gallego-Ortiz and Martel [138] classifies MRI breast images using graph-based features,
the Deep Embedded Clustering algorithm to select the most relevant features and an ANN
classifier. The ROIs are obtained using a graph model, where they obtain an area under the
curve, which is another feature to measure the classifier effectiveness, of 0.80 (the closer to
1, the better). ANN classifiers have been also used in [139–142].

Deep neural networks (DNN) are a specific type of AI algorithms based on the ar-
chitecture of an ANN [134]. DNN resembles how the brain stores, in multiple layers, the
acquired knowledge to solve a specific task [8]. The Convolutional Neural Network (CNN)
is a DNN that emulates the visual processing cortex to determine the class that an image
belongs to [8,134]. A CNN typical scheme is depicted in Figure 6.
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Figure 6. Convolutional Neural Network.

From the figure, it is seen that a CNN consists of a kernel, pooling and fully connected
layers. The purpose of the kernel layer is to detect and extract spatial features that the image
has, which is usually done with the convolution operator. The output of this layer, known
as feature map, might contain negative values that might cause numerical instabilities in
the training stage; thus, map is processed using a function to avoid the negative values.
Once the feature map is processed, the pooling layer reduces the amount of information
contained in order to eliminate redundant information; finally, the output of the pooling
layer goes to the fully connected layer to be classified. In this sense, several works [143–148],
have been employed CNN to detect benign and malignant tissues in either mammography
or MRI images. They note that the depth of the network, i.e., the number of layers, the
fine-tuning of some of the kernel or pooling layers, as well as the number of images, affect
the classifier performance.

Ribli et al. [149] add an additional layer to implement specific-designed filters for
mammograms. The CNN they employ has 16-layers and classifies the detected lesions
in benign or malignant, obtaining an area under the curve of 0.85. A similar approach is
proposed in [150]. The modification they propose is that a fully connected layer is placed
as the first layer of the CNN so when the images are noise-corrupted, the feature extraction
process is not degraded. They obtain an accuracy, sensitivity, and specificity of 98.7%,
98.65%, and 99.57% for the detection of benign and malignant lesions in mammograms.
Zhang et al. [151] carry out a test to find out the specific-suited process for the pooling
layer. They found out that rank-based stochastic process is the best-suited algorithm, ob-
taining an accuracy, sensibility, and specificity of 94.0%, 93.4%, and 94.6%, respectively, for
classifying lesions for normal or abnormal using mammograms. Similar approaches have
been proposed [152–155]. Table 2 presents a summary of the classifiers above discussed.
It should be noted that a mix of images from mammograms, ultrasound, MRI are usually
employed. These images usually came from private databases.

From the data shown in Table 2, it can be seen that it is necessary to standardize
the minimum requirements regarding the number of images that the databases must
have. In this way, the performance metrics that are employed, i.e., accuracy, specificity, and
sensitivity, can be compared in a better way. Moreover, even when the presented approaches
show interesting results, one thing they found out is the necessity of having a considerable
database that contain significant labeled images to obtain the best possible results, which
in many real-life scenarios is not always possible. For these reasons, algorithms that can
work with both labeled and unlabeled images are still a necessity.
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4. Recent Image Generation Techniques

Infrared Thermography (IRT) Applied to Breast Cancer

Temperature has been documented as an indicator of health [156]. Specifically speak-
ing of breast cancer, when a tumor exists, it makes use of nutrients for its growth (angio-
genesis), resulting in an increase in metabolism, thus the temperature around the tumor
will increase in all directions [157]. To detect the temperature changes, IRT has been used
as it measures the intensity of the thermal radiation (in the form of energy) that bodies
emit, converting it into temperature [158]. The emitted energy can be visualized in the
electromagnetic spectrum, as shown in Figure 7, where it is seen that the infrared (IR)
wave ranges from 0.76 to 1000 μm and in turn is divided into Near-IR, Mid-IR and Far-IR.
The available technology to measure IR allows performing the aforementioned task us-
ing non-invasive, contactless, safe, and painless equipment [159–161], making a suitable
proposal for developing scanning technologies.

Figure 7. Electromagnetic spectrum.

To obtain the best possible images, there are mainly three factors that influence ther-
mographic imaging in humans [162,163]

1. Individual factors: everything that has to do with the patient’s conditions, such as
age, sex, height, medical history, among others. As well as the inclusion and exclusion
criteria. An aspect of vital importance is the emissivity of humans, which is 0.98 [164].

2. Technical factors: it has to do with everything related to the technology used during
the study, such as the thermal imager (considering the distance from the lens to the
patient), the protocol, the processing of the medical thermal images obtained, as well
such as feature extraction and subsequent analysis.

3. Environmental factors: room position (it should be located in the area of the lowest
possible incidence of light), temperature, relative humidity of the space where the
thermographic images are to be taken, as well as the patient’s air conditioning time.

Considering the all the above discussed aspects, a suitable location for developing a
controlled scenario to acquire thermographic images focused on breast cancer is depicted
in Figure 8.

 

Figure 8. Proposed experimental set up for the breast thermal images acquisition.
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Once the room is conditioned for obtaining the thermographic images, the acqui-
sition can be done. The reported results make use of the previously discussed image
processing and classification algorithms. Table 3 shows a brief resume of the most recent
proposed works.

Table 3. Summary of the breast lesions detection using infrared thermography.

Authors
Number

of Patients
IR System

Image Processing and
Classification Algorithms Accuracy (%)

Room
Temperature (◦C)

Acclimation
Time (min)

Features Classification

Ekici and Jawzal [165] 140 FLIR SC-620
Bio-data, image

analysis, and
image statistics

CNNs optimized
by Bayes algorithm 98.95 17–24 15

AlFayez et al. [166] Public dataset DMR-IR Geometrical and
textural features

Extreme Learning
Machine (ELM)
and Multilayer

Perceptron (MLP)

ELM—100
MLP—82.2 Public dataset DMR-IR

Rani et al. [167] 60 FLIR
T650SC

Temperature
and intensity

SVM with
Radial basis

function kernel
83.22 20–24 15

Saxena et al. [168] 32 FLIR A320 ROI thermal Cut-off value 88 22 ± 0.5 Not
specified

Tello-Mijares [169] 63 FLIR SC-620
Shape, colour, texture,

and left and right
breast relation

CNN 100 20–22 15

Garduño-Ramón
et al. [170] 454 FLIR A300 Temperature Difference of

temperature 79.60 18–22 15

Raghavendra
et al. [171] 50 Thermo

TVS200

Student’s t-test
based feature

selection algorithm
Decision Tree 98 20–22 15

Lashkari et al. [172] 67 Thermoteknix
VisIR 640

23 features, including
statistical,

morphological,
frequency domain,

histogram and
Gray Level

Co-occurrence Matrix

Adaboost, SVM,
kNN, Naive, PNN

85.33 and
87.42 18–23 ice test:

20 min

Francis et al. [173] 22 med2000™
IRIS

Statistical and texture
features are extracted
from thermograms in
the curvelet domain

SVM 90.91 25 15

Milosevic et al. [174] 40 images VARIOSCAN
3021 ST

Texture measures
derived from the

Gray Level
Co-occurrence Matrix

K-Nearest
Neighbor 92.5 20–23 Few

minutes

Araujo et al. [175] 50 FLIR
S45

Thermal interval for
each breast

Linear
discriminant

classifier, minimum
distance classifier,

and
Parzen window

- 24–28 At least
10 min

Recently, dynamic infrared thermography (DIT) has been proposed as an alternative
to further improve the image quality and sharpness [64]. DIT is a sequence of thermograms
captured after stimulating the breasts by means of a cold stressor [176]. The objective
of this stressor is to generate a contrast between areas with abnormal vascularity and
metabolic activity with areas free of abnormalities. Therefore, it is possible to analyze the
sinus response after removing this stimulus. In this way, the image sharpness is enhanced.
Silva et al. [177] proposed a technology that analyzes the information from the DIT to
indicate patients at risk of breast cancer, where they segment the area of interest (breast)
and analyze the changes in temperature through the different thermograms acquired.
Saniei et al. [178] proposed a system that segments both breasts to obtain the branching
point of the vascular network, which represents the pattern of the veins; finally, these
patterns are classified to obtain the diagnosis. As it can be seen, the DIT requires robust
systems that allow the analysis of the acquired thermograms over time, which should be
considered in order to generate the next generation of equipment that can allow the early
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detection of the angiogenesis process. By doing this, patients can be properly monitored so
the changes in the patterns of the angiogenesis process be detected.

5. Recent Classification Algorithms

As pointed out in the Classifiers subsection, it is necessary to overcome the lack of a
large database of images (mammograms, ultrasound or BRMI) that have been diagnosed
to generate robust and efficient classifiers. In this sense, semi-supervised methods can
be an attractive choice to explore. They usually combine an unsupervised algorithm
to cluster the images available, so a representation of the dataset is obtained; then, the
supervised classifier assigns the classes that images have [109,179]. The data that is used in
the unsupervised algorithm assumes the unlabeled images are close to the labeled ones in
their input space, so their labels are the same [109]. Some of the most recent developments
that could be applied in the breast cancer detection are presented.

5.1. Autoencoders

An autoencoder is a neural network that has one or more hidden layers that is used to
reconstruct the input compactly, as the hidden layers have few neurons. The autoencoder
is depicted in Figure 9.

 
Figure 9. Autoencoder structure.

From the figure, it is seen that it has two parts: the encoder, that represents the input
into its compact representation, and the decoder, which performs the inverse operation,
that is, use the compact representation to recover the original data. The most common
training scheme consists in employing a loss function that aims to reduce the error between
the original and reconstructed data. For breast cancer detection, autoencoders can be used
feature extraction stages, as the encoder part obtains the compact representation or features
of the input image, that are followed by a supervised classifier. Recently, this approach has
been explored [79,94,180–183] showing promising results to generate robust methodologies,
where accuracies values above 95% are obtained.

5.2. Deep Belief Networks (DBF)

They are based on the usage of restricted Boltzmann machines (RBMs). RBMs only
use two layers: input and hidden, to represent, as in the case of the autoencoders, the
most important features that can represent the input data but in a stochastic way [99]. This
ensure that the outliers do not affect the network performance. Detailed information can be
found in [184,185]. The main idea in employing DBF is that the image segmentation can be
done without external guidance; thus, a totally automated methodology can be proposed.
Recent works have been explored this idea to perform the liver segmentation [186], lung
lesions detection [187], and fusion of medical images [188]. Its use could deliver promising
results to detect BC.
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5.3. Ladder Networks

Ladder Neural Network, proposed by Rasmus et al. [189], uses an autoencoder as
the first part of a feedforward network to denoise the inputs; further, by determining the
minimum features that represent the inputs, the classification can be done using simple
algorithms. The network uses a penalization term in the training algorithm to ensure the
maximum similarity between the original and reconstructed inputs.

5.4. Deep Neural Network (DNN)-Based Algorithms

Recently, DNN-based classification strategies have been proposed to maximize the
accuracy that the classifiers achieve while reducing the computational resources required
to perform its training and execution, being the physics-informed neural network or more
recently, the Deep Kronecker neural network [190] are one of the most recent algorithms
that have been proposed. In particular, these NNs are designed to take full advantage of
the adaptive activation functions. Traditional activation functions, such as the unipolar
and bipolar sigmoid and the ReLU, might have problem when dealing with low-amplitude
features as the training algorithm fails to achieve the lowest point in the error surface, thus
generating classifiers prone to have generalization issues [190].

In this sense, by introducing a parameter into the activation function equations that
can be modified during the training process, it can be avoided that the gradient function
does not stall in a local minimum on the error surface [191]; thus, the highest accuracy can
be obtained since the global minimum is reached [192]. The results presented [190–192]
suggest that the utilization of this type of activation function might increase the classifier
accuracy without increasing the computational burden required to train the network as the
geometrical shape that the activation function defines can be adapted during the training
time to the boundary decision zone where classification is required. It should be noted that
the proposed Rowdy family of activation functions could be an interesting research topic
for designing classification algorithms, as the presented results demonstrate that the lowest
error is achieved in a prediction task.

6. Concluding Remarks

This paper presents a state-of-the-art review of the technologies used to acquire
images from the breast and the algorithms used to detect BC. To the best of the author’s
knowledge, this is the first review article that deals with all the required steps to propose a
reliable methodology for the BC detection. This is important as the earliest detection of the
disease can save a considerable amount of money in the required treatments, and the most
important, potentially saving numerous lives.

The analyzed papers are focused on the research on the processing of images obtained
using non-invasive methods: X-ray, ultrasound, or magnetic resonance, as they are the
most accessible technologies in hospitals. The strategy used in most of the papers has
4 steps: image acquisition, ROI estimation, feature extraction, and interpretation. For the
ROI estimation, the strategies proposed are based on radiologist annotations or require
external help in order to be executed. This is an opportunity area to develop automatic
algorithms that can detect the abnormalities. The feature estimation is used to quantify the
detected zones in numerical values. In this sense, texture-based and geometrical-based
features are by far, the most employed due to its estimation simplicity; still, frequency or
spatial features have recently begun to be explored and can lead to detect minimal changes
that might increase the sensitivity required to further improve the classification accuracy.
It should be noticed that feature reduction strategies are commonly employed in order to
reduce the training time or avoid potential misclassifications, where the most popular are
LDA and PCA. On the other hand, classification strategies employ either supervised or
unsupervised algorithms. The selection of the type of classifier heavily depends on the
nature of the features extracted. If they are highly discriminant between them, then an
unsupervised classifier is usually selected. On the other hand, when the features used
have an overlap zone, then it is necessary to employ a supervised classifier. It should be
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noticed that AI-based algorithms, especially those based on deep learning, have the edge
in terms of the performance they get at the expense of being very expensive in terms of the
computational resources employed.

Emerging imaging technologies such as the microwave and thermography are being
explored recently. In particular, the latter has recently obtained the attention of researchers
as it is easy-to-use, and, with a proper cooling protocol, can reach an interesting level
of accuracy to detect, at least, suspected masses that might evolved into malignant ones.
With the development of semi-supervised strategies, some of the stages employed can be
integrated into one, allowing the development of effective feature extraction, selection and
classification strategies that have the same performance of supervised classifier, with lower
computational resources employed, even in the presence of limited labeled images, which
is a major obstacle to the training of the classifiers.

Modern BC detection strategies should rely using artificial intelligence(AI)-based
algorithms that can use both on the information of the images acquired and categori-
cal data [193–195], i.e., information about the daily life of the patients, with the aim of
proposing algorithms that can determine if the patient has malignant lesions with a higher
certainty and with the lowest false alarm at the earliest stage possible in order to get an
effective treatment that can prevent the disease propagation. To achieve this goal, it is
necessary to develop a database that contains the aforementioned features and whose size
can reflect the main scenarios that can be found in real-life. Further, having algorithms that
can deal with the aforementioned information, it can be possible to design personalized
surveillance and clinical screening strategies that could offer the best health outcome for
every patient.
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Simple Summary: Early detection of oral cancer is important to increase the survival rate and reduce
morbidity. For the past few years, the early detection of oral cancer using artificial intelligence
(AI) technology based on autofluorescence imaging, photographic imaging, and optical coherence
tomography imaging has been an important research area. In this study, diagnostic values including
sensitivity and specificity data were comprehensively confirmed in various studies that performed AI
analysis of images. The diagnostic sensitivity of AI-assisted screening was 0.92. In subgroup analysis,
there was no statistically significant difference in the diagnostic rate according to each image tool. AI
shows good diagnostic performance with high sensitivity for oral cancer. Image analysis using AI
is expected to be used as a clinical tool for early detection and evaluation of treatment efficacy for
oral cancer.

Abstract: The accuracy of artificial intelligence (AI)-assisted discrimination of oral cancerous lesions
from normal mucosa based on mucosal images was evaluated. Two authors independently reviewed
the database until June 2022. Oral mucosal disorder, as recorded by photographic images, autoflu-
orescence, and optical coherence tomography (OCT), was compared with the reference results by
histology findings. True-positive, true-negative, false-positive, and false-negative data were extracted.
Seven studies were included for discriminating oral cancerous lesions from normal mucosa. The
diagnostic odds ratio (DOR) of AI-assisted screening was 121.66 (95% confidence interval [CI], 29.60;
500.05). Twelve studies were included for discriminating all oral precancerous lesions from normal
mucosa. The DOR of screening was 63.02 (95% CI, 40.32; 98.49). Subgroup analysis showed that
OCT was more diagnostically accurate (324.33 vs. 66.81 and 27.63) and more negatively predictive
(0.94 vs. 0.93 and 0.84) than photographic images and autofluorescence on the screening for all oral
precancerous lesions from normal mucosa. Automated detection of oral cancerous lesions by AI
would be a rapid, non-invasive diagnostic tool that could provide immediate results on the diagnostic
work-up of oral cancer. This method has the potential to be used as a clinical tool for the early
diagnosis of pathological lesions.

Keywords: mouth neoplasms; imaging; optical image; precancerous conditions; artificial intelligence;
screening

1. Introduction

Oral cancer accounts for 4% of all malignancies and is the most common type of head
and neck cancer [1]. The diagnosis of oral cancer is often delayed, resulting in a poor
prognosis. It has been reported that early diagnosis increases the 5-year survival rate to
83%, but if a diagnosis is delayed and metastasis occurs, the survival rate drops to less than
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30% [2]. Therefore, there is an urgent need for early and accurate detection of oral lesions
and for distinguishing precancerous and cancerous tissues from normal tissues.

The conventional screening method for oral cancer is visual examination and palpation
of the oral cavity. However, the accuracy of this method is highly dependent on the
subjective judgment of the clinician. Diagnostic methods such as toluidine blue staining,
autofluorescence, optical coherence tomography (OCT), and photographic imaging were
useful as adjunctive methods for oral cancer screening [3–6].

Over the past decade, studies have increasingly showed that artificial intelligence (AI)
technology is consistent with or even superior to human experts in identifying abnormal
lesions in additional images of various organs [7–11]. These results give us hope for the
potential of AI in the screening of oral cancer. However, large-scale statistical approaches
to diagnostic power for using oral imaging with AI are lacking. Therefore, in this study, the
sensitivity and specificity were analyzed through meta-analysis to evaluate the accuracy
of detecting oral precancerous and cancerous lesions in AI-assisted oral mucosa images.
We also performed subgroup analysis to determine whether accuracy differs between
imaging tools.

2. Materials and Methods

2.1. Literature Search

Searches were performed in six databases: PubMed, Embase, Web of Science, SCOPUS,
Cochrane Central Register of Controlled Trials, and Google Scholar. The search terms
were: “artificial intelligence”, “photo”, “optical image”, “dysplasia”, “oral precancer”,
“oral cancer”, and “oral carcinoma”. The search period was set to June 2022, and data
written in English were reviewed. Two independent reviewers reviewed all abstracts and
titles of candidate studies. Among studies diagnosing oral cancer using images, studies
that did not deal with AI were excluded.

2.2. Selection Criteria

The inclusion criteria were: (1) use of AI; (2) prospective or retrospective study proto-
col; (3) comparison of AI-assisted screening of oral mucosal lesions with the reference test
(histology); and (4) sensitivity and specificity analyses. The exclusion criteria were: (1) case
report format; (2) review article format; (3) diagnosis of other tumors (laryngeal cancer or
nasal cavity tumors); and (4) lack of diagnostic AI data. The search strategy is summarized
in Figure 1.

2.3. Data Extraction and Risk of Bias Assessment

All data were collected using standardized forms. As diagnostic accuracy, diagnostic
odds ratio (DOR), areas under the curve (AUC), and summary receiver operating character-
istic (SROC) were identified. The diagnostic performance was compared with histological
examination results.

A random-effect model was used in this study. DOR represents the effectiveness of a
diagnostic test. DOR is mathematically defined as (true positive/false positive)/(false nega-
tive/true negative). When DOR is greater than 1, higher values indicate better performance
of the diagnostic method. A value of 1 means that the presence or absence of a disease
cannot be determined and that the method cannot provide diagnostic information. To
obtain an approximately normal distribution, we calculated the logarithm of each DOR and
then calculated 95% confidence intervals [12]. SROC is a statistical technique used when
performing a meta-analysis of studies that report both sensitivity and specificity. As the
diagnostic ability of the test increases, the SROC curve shifts towards the upper-left corner
of the ROC space, where both sensitivity and specificity are 1. AUC ranges from 0 to 1, with
higher values indicating better diagnostic performance. We collected data on the number
of patients, true-positive, true-negative, false-positive, and false-negative values in all
included studies, and calculated AUCs and DORs from these values. The methodological
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quality of the included studies was evaluated using the Quality Assessment of Diagnostic
Accuracy Study (QUADAS-2) tool.

Figure 1. Summary of the search strategy.

2.4. Statistical Analysis and Outcome Measurements

R statistical software (R Foundation for Statistical Computing, Vienna, Austria) was
used to conduct a meta-analysis of the studies. Homogeneity analyses were then performed
using the Q statistic. Forest plots were drawn for the sensitivity, specificity, and negative
predictive values, and for the SROC curves. A meta-regression analysis was performed to
determine the potential influence of imaging tools on AI-based diagnostic accuracy for all
premalignant lesions.

3. Results

This analysis included 14 studies [6,13–25]. Table 1 presents the assessment of bias.
The characteristics of the studies are attached in Table S1.

3.1. Diagnostic Accuracy of AI-Assisted Screening of Oral Mucosal Cancerous Lesions

Seven prospective and retrospective studies were included for discriminating oral can-
cerous lesions from normal mucosa. The diagnostic odds ratio (DOR) of AI-assisted screen-
ing was 121.6609 (95% confidence interval [CI], 29.5996; 500.0534, I2 = 93.5%) (Figure 2A).
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Table 1. Methodological quality of all included studies.

Reference

Risk of Bias Concerns about Application

Patient
Selection

Index Test
Reference
Standard

Flow and
Timing

Patient
Selection

Index Test
Reference
Standard

Nayak 2006 [13] Unclear Low Unclear Unclear Low Low Low
Heidari 2018 [14] Low Low Low Low Low Low Low
Song 2018 [15] Low Low Low Low Low Low Low
Fu 2020 [6] high Low Low Low Low Low Low
Duran-Sierra 2021 [16] Unclear Low Unclear Unclear Low Low Low
James 2021 [17] Low Low Unclear Low Low Low Low
Jubair 2021 [18] Unclear Low Low Low Low Low Low
Lin 2021 [19] Unclear Low Unclear Low Low Low Low
Song 2021 [20] Low Low Low Low Low Low Low
Tanriver 2021 [21] Low Low Low Low Low Low Low
Warin 2021 [22] Low Low Low Low Low Low Low
Yang 2021 [23] Low Low Low Low Low Low Low
Warin 2022 [24] Low Low Low Unclear Low Low Low
Yuan 2022 [25] Low Low Low Low Low Low Low

Figure 2. Forest plot of the diagnostic odds ratios for (A) screening only oral cancerous lesions [13,16,
17,21–23,25] and (B) screening all premalignant mucosal lesions [13–21,23,24].

The area under the summary receiver operating characteristic curve was 0.948, sug-
gesting excellent diagnostic accuracy (Figure 3A).

The correlation between the sensitivity and the false-positive rate was 0.437, indicating
the absence of heterogeneity. AI-assisted screening exhibited good sensitivity (0.9232
[0.8686; 0.9562]; I2 = 81.9%), specificity (0.9494 [0.7850; 0.9897], I2 = 98.3%), and negative
predictive value (0.9405 [0.8947; 0.9671]. I2 = 83.6%) (Figure 4). The Begg’s funnel plot
(Supplementary Figure S1) shows that a source of bias was not evident in the included
studies. The Egger’s test result (p > 0.05) also shows that the possibility of publication bias
is low.
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Figure 3. Area under the summary receiver operating characteristic for (A) screening only the oral
cancerous lesions and (B) screening all premalignant mucosal lesions. SROC; summary receiver
operating characteristic, CI; confidence interval.

Subgroup analyses were performed to determine which image tool assisted by AI had
higher discriminating power between oral cancer lesions and normal mucosa. This analysis
showed that that there were no significant differences between the photographic image,
autofluorescence, and OCT in AI based on the screening for oral cancer lesion (Table 2).

Table 2. Subgroup analysis regarding image tool in discriminating oral cancerous lesions from normal
mucosa.

Subgroup Study (n) DOR [95% CIs] Sensitivity [95% CIs] Specificity [95% CIs] NPV [95% CIs] AUC

7 121.6609 [29.5996;
500.0534]; I2 = 93.5%

0.9232 [0.8686; 0.9562];
I2 = 81.9%

0.9494 [0.7850; 0.9897];
I2 = 98.3%

0.9405 [0.8947;
0.9671]; I2 = 83.6% 0.948

Image tool

Autofluorescence 2 25.9083 [ 6.3059;
106.4464]; I2 = 68.0%

0.8972 [0.8262; 0.9413];
I2 = 63.5%

0.8213 [0.4430; 0.9637];
94.0%

0.9041 [0.8263;
0.9492]; 23.9%

Optical coherense
tomography 3 261.9981 [14.7102;

4666.3521]; I2 = 96.3%
0.9419 [0.8544; 0.9781];

I2 = 84.4%
0.9461 [0.7931; 0.9877];

94.6%
0.9625 [0.9106;
0.9848]; 81.9%

Photographic
image 2 431.6524 [ 4.0037;

46537.4743]; I2 = 93.0%
0.9149 [0.7475; 0.9750];

I2 = 87.4%
0.9983 [0.2906; 1.0000];

94.9%
0.9381 [0.8109;
0.9816]; 87.5%

0.2332 0.5910 0.2907 0.2291

DOR; diagnostic odds ratio, AUC; area under the curve, NPV; negative predictive value.

3.2. Diagnostic Accuracy of AI-Assisted Screening of Oral Mucosal Precancerous and
Cancerous Lesions

Twelve prospective and retrospective studies were included for discriminating oral
precancerous and cancerous lesions from normal mucosa. The diagnostic odds ratio
(DOR) of AI-assisted screening was 63.0193 (95% confidence interval [CI], 40.3234; 98.4896,
I2 = 88.2%) (Figure 2B). The area under the summary receiver operating characteristic curve
was 0.943, suggesting excellent diagnostic accuracy (Figure 3B). The correlation between the
sensitivity and the false-positive rate was 0.337, indicating the absence of heterogeneity. AI-
assisted screening exhibited good sensitivity (0.9094 [0.8725; 0.9364]; I2 = 92.3%), specificity
(0.8848 [0.8400; 0.9183], I2 = 93.8%), and negative predictive value (0.9169 [0.8815; 0.9424],
I2 = 92.8%) (Figure 5).

267



Cancers 2022, 14, 3499

Figure 4. Forest plots of (A) sensitivity, (B) specificity, and (C) negative predictive values for screening
oral cancerous lesions [13,16,17,21–23,25].

The Egger’s test results of sensitivity (p = 0.02025) and negative predictive value
(p < 0.001) also show that the possibility of publication bias is high. To compensate for the
publication bias using statistical methods, trim-and-fill methods (trimfill) were applied to
the outcomes. After implementation of trimfill, sensitivity dropped from 0.9094 [0.8725;
0.9364] to 0.8504 [0.7889; 0.8963] and NPV also dropped from 0.9169 [0.8815; 0.9424] to
0.7815 [0.6577; 0.8694]. These results could mean that the diagnostic power of AI-assisted
screening of precancerous and cancerous lesions would be overestimated and clinicians
would need to be careful when interpreting these outcomes.

Subgroup analyses were performed to determine which image tool assisted by AI had
higher discriminating power of oral mucosal cancerous lesions including precancerous
lesions. Subgroup analysis showed that OCT was more diagnostically accurate (324.3335
vs. 66.8107 and 27.6313) and more negatively predictive (0.9399 vs. 0.9311 and 0.8405)
than photographic images and autofluorescence in AI based on the screening for oral
precancerous and cancerous lesions from normal mucosa (Table 3). Meta-regression of AI
diagnostic accuracy for oral precancerous and cancerous lesions on the basis of imaging
tool revealed the significant correlations (p = 0.0050).
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Figure 5. Forest plots of (A) sensitivity, (B) specificity, and (C) negative predictive values for screening
all premalignant mucosal lesions [6,13–21,23,24].
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Table 3. Subgroup analysis regarding image tool in discriminating oral precancerous and cancerous
lesions from normal mucosa.

Subgroup Study (n) DOR [95% CIs] Sensitivity [95% CIs] Specificity [95% CIs] NPV [95% CIs] AUC

12 63.0193 [40.3234;
98.4896]; I2 = 88.2%

0.9094 [0.8725; 0.9364];
I2 = 92.3%

0.8848 [0.8400; 0.9183];
I2 = 93.8%

0.9169 [0.8815;
0.9424]; I2 = 92.8% 0.943

Image tool

Autofluorescence 4 27.6313 [17.2272;
44.3186]; I2 = 69.3%

0.8562 [0.8002; 0.8985];
I2 = 69.6%

0.8356 [0.7591; 0.8913];
86.8%

0.8405 [0.7487;
0.9031]; 91.1%

Optical coherense
tomography 3 324.3335 [10.2511;

10261.6006]; I2 = 95.6%
0.9424 [0.8000; 0.9853];

I2 = 88.3%
0.9653 [0.8737; 0.9911];

79.8%
0.9399 [0.8565;
0.9762]; 75.7%

Photographic
image 5 66.8107 [38.0216;

117.3983]; I2 = 81.7%
0.9123 [0.8683; 0.9426];

I2 = 79.5%
0.8779 [0.8322; 0.9125];

87.4%
0.9311 [0.9196;
0.9410]; 0.0%

0.0312 0.1120 0.0659 0.0073

DOR; diagnostic odds ratio, AUC; area under the curve, NPV; negative predictive value.

4. Discussion

Oral cancer is a malignant disease with high disease-related morbidity and mortality
due to its advanced loco-regional status at diagnosis. Early detection of oral cancer is the
most effective means to increase the survival rate and reduce morbidity, but a significant
number of patients experience delays between noticing the first symptoms and receiving a
diagnosis from a clinician [26]. In clinical practice, a conventional visual examination is not a
strong predictor of oral cancer diagnosis, and a quantitatively validated diagnostic method
is needed [27]. Radiographic imaging, such as magnetic resonance imaging and computed
tomography, can help determine the size and extent of oral cancer before treatment, but
these techniques are not sensitive enough to distinguish precancerous lesions. Accordingly,
various adjunct clinical imaging techniques such as autofluorescence and OCT have been
used [28].

AI has been introduced in various industries, including healthcare, to increase effi-
ciency and reduce costs, and the performance of AI models is improving day by day [29].
For the past few years, the early detection of oral cancer using AI technology based on
autofluorescence imaging, photographic imaging, and OCT imaging has been an important
research area. In this study, diagnostic values including sensitivity and specificity data were
comprehensively confirmed in various studies that performed AI analysis of images. The
diagnostic sensitivity of oral cancer analyzed by AI was as high as 0.92, and the analysis
including precancerous lesions was slightly lower than the diagnostic sensitivity for cancer,
but this also exceeded 90%. In subgroup analysis, there was no statistically significant
difference in the diagnostic rate according to each image tool. In particular, the sensitivity
of OCT to all precancerous lesions was found to be very high at 0.94.

Autofluorescence images are created using the characteristic that autofluorescence
naturally occurring from collagen, elastin, and other endogenous fluorophores such as
nicotinamide adenine dinucleotide in mucosal tissues by blue light or ultraviolet light is
expressed differently in cancerous lesions [30,31]. Although it has been used widely in the
dental field for the purpose of screening abnormal lesions in the oral cavity, it has been
reported that the accuracy is low, with a sensitivity of only 30–50% [32,33]. It has been noted
that autofluorescence images have a low diagnostic rate when used in oral cancer screening.
Most of the previous clinical studies on autofluorescence-obtained images used differences
in spectral fluorescence signals between normal and diseased tissues. Recently, time-
resolved autofluorescence measurements using the characteristics of different fluorescence
lifetimes of endogenous fluorophores have been used to solve the problem of broadly
overlapping spectra of fluorophores, improving image accuracy [34]. Using various AI
algorithms for advanced autofluorescence images, the diagnostic sensitivity of precancerous
and cancerous lesions was reported to be as high as 94% [15]. As confirmed in our study,
AI diagnosis sensitivity using autofluorescence images was confirmed to be 85% in all
precancerous lesions. It showed relatively low diagnostic accuracy when compared to other
imaging tools in this study. However, autofluorescence imaging is of sufficient value as
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an adjunct diagnostic tool. Efforts are also being made to improve the diagnostic accuracy
for oral cancer by using AI to analyze images obtained using other tools along with the
autofluorescence image [19].

The photographic image is a fast and convenient method with high accessibility com-
pared to other adjunct methods. However, there is a disadvantage in that the image quality
varies greatly depending on the camera, lighting, and resolution used while obtaining the
image. Unlike external skin lesions, the oral cavity is surrounded by a complex, three-
dimensional structure including the lips, teeth, and buccal mucosa, which may decrease
the image accuracy [6]. In a recent study introducing a smartphone-based device, it was
reported that the problem of the image itself was solved through a probe that can easily
access the inside of the mouth and increasing images pixel [35]. Image diagnosis using a
smartphone is very accessible in the current era of billions of phone subscribers worldwide,
and in particular, it is expected that accurate and efficient screening will be possible by
diagnosing a vast number of these images with AI. According to our analysis, AI-aided
diagnosis from photographic images was confirmed to have a diagnostic sensitivity of over
91% for precancerous and cancerous lesions.

OCT is a medical technology that images tissues using the difference in physical prop-
erties between the reference light path and the sample light path reflected after interaction
in the tissue [13]. OCT is non-invasive and uses infrared light, unlike other radiology tests
that use X-rays. It is also a good diagnostic method that allows real-time image verification.
Since its introduction in 1991 [36], OCT has been developed to provide high-resolution
images at a faster speed and has played an important role in the biomedical field. In an AI
analysis study of OCT images published by Yang et al., it was reported that the sensitivity
and specificity of oral cancer diagnosis was 98% or more [22]. In our study, OCT images
were found to be the most accurate diagnostic test, with sensitivity of 94% in AI diagnosis
compared to other image tools (sensitivity of autofluorescence and photographic images of
89% and 91%, respectively). Therefore, AI diagnosis using OCT images is considered to be
of sufficient value as a screening method for oral lesions. Each image tool included in our
study has its own pros and cons to be considered when using it in actual clinical practice.
In addition, accessibility of equipment or systems that can be performed on patients in
actual outpatient treatment will be an important factor.

Based on our results, AI analysis of images in cancer diagnosis is thought to be helpful
in making fast decisions regarding further examination and treatment. The accuracy of
discriminating between precancerous lesions and normal tissues showed a high sensitivity
of over 90%, showing good accuracy as a screening method. Although the question of
whether AI can replace experts still exists, it is expected that oral cancer diagnosis using
AI will sufficiently improve mortality and morbidity due to disease in low- and middle-
income countries with poor health care systems. Acquisition of large-scale image datasets
to improve AI analysis accuracy will be a clinically important key.

Our study has several limitations. First, our results include data from multiple imaging
tools analyzed at once. This created heterogeneity in the results. Therefore, the sensitivity
of each imaging tool was checked separately. The study is meaningful as it is the first
meta-analysis to judge the accuracy of AI-based image analysis. Second, even with the same
imaging tool, differences in the quality of the devices used in each study and differences
between techniques may affect the accuracy of diagnosis. The images used to train the AI
algorithm may not fully represent the diversity of oral lesions. Third, there is a limit to
the interpretation of the results due to the absolute lack of prospective studies between
the conventional examination and AI imaging diagnosis. It is our task to study this in
various clinical fields in order to prepare for a future in which AI-assisted healthcare will
be successful

5. Conclusions

AI shows good diagnostic performance with high sensitivity for oral cancer. Through
the development of image acquisition devices and the grafting of various AI algorithms,
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the diagnostic accuracy is expected to increase. As new studies in this field are published
frequently, a comprehensive review of the clinical implications of AI in oral cancer will be
necessary again in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14143499/s1, Figure S1: Begg’s funnel plot; Table S1:
Study characteristics.
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Simple Summary: Tumor segmentation is a key step in oncologic imaging processing and is a time-
consuming process usually performed manually by radiologists. To facilitate it, there is growing
interest in applying deep-learning segmentation algorithms. Thus, we explore the variability between
two observers performing manual segmentation and use the state-of-the-art deep learning architecture
nnU-Net to develop a model to detect and segment neuroblastic tumors on MR images. We were
able to show that the variability between nnU-Net and manual segmentation is similar to the inter-
observer variability in manual segmentation. Furthermore, we compared the time needed to manually
segment the tumors from scratch with the time required for the automatic model to segment the same
cases, with posterior human validation with manual adjustment when needed.

Abstract: Tumor segmentation is one of the key steps in imaging processing. The goals of this study
were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to
analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution
to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with
neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver
Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more
metrics were elaborated to understand the direction of the errors: the modified version of False
Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors
and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into
five balanced folds to perform cross-validation. The five resulting models were used as an ensemble
solution to measure training (n = 106) and validation (n = 26) performance, independently. The
time needed by the model to automatically segment 20 cases was compared to the time required
for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR).
The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model
achieved a better performance regarding the FPRm. MR images segmentation variability is similar
between radiologists and nnU-Net. Time leverage when using the automatic model with posterior
visual validation and manual adjustment corresponds to 92.8%.
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1. Introduction

Neuroblastic tumors are the most frequent extracranial solid cancers in children. They
comprise ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Ganglioneuroma is
composed of gangliocytes and mature stroma and is the most benign. Ganglioneuroblas-
toma is formed by mature gangliocytes and immature neuroblasts and has an intermediate
malignant potential [1]. The most frequent type is neuroblastoma, which is more immature
and undifferentiated. It is a heterogeneous neoplasm that shows different behavior based
on biological, clinical and prognostic features, some tumors undergo spontaneous regres-
sion, while others progress with fatal outcomes despite therapy [2]. Neuroblastic tumors
show a wide range of variability in their position. The most common sites of origin of
neuroblastic tumors are the adrenal region (48%), extra-adrenal retroperitoneum (25%) and
the chest (16%), followed by the neck (3%) and the pelvis (3%) [3]. Furthermore, they show
high variability in their size, shape and boundaries, resulting in a common challenging task
to differentiate them from the neighboring structures.

Tumor diagnosis, prognosis and the decision on respective treatment/disease man-
agement are mainly based on information obtained from imaging, including magnetic
resonance (MR) [4]. Additionally, multiparametric data, radiomic features and imaging
biomarkers, can provide the clinician with relevant information for disease diagnosis,
characterization, and evaluation of aggressiveness and treatment response [5].

In order to ensure the best usability of imaging, it is essential to develop a robust
and reproducible imaging processing pipeline. One of the most relevant steps involves
segmentation, which consists of placing a Region of Interest (ROI) on a specific area (e.g., a
tumor), with the assignment and labeling of voxels in the image that correspond to the ROI.
Tumor segmentation can be performed in three different ways: manual, semiautomatic and
automatic. Manual segmentation is usually performed by an experienced radiologist. This
is usually done slice-by-slice, but is also possible in 3D, with the expert either encircling
the tumor or annotating the voxels of interest. This is a reliable but time-consuming
method that hinders the radiologists’ workflow, especially in cases of mass data processing.
However, manual segmentation is observer-dependent and may show wide inter and
intra-observer variability [6,7]. This variability is influenced by some objective factors, such
as organ/tumor characteristics or contour, and by some subjective factors related to the
observer, such as their expertise or coordination skills [6].

Semiautomatic segmentation tries to solve some of the problems related to manual
segmentation [8]. By assisting the segmentation with algorithms, for example, by growing
the segmentation over a region or expanding the segmentation to other slices to eliminate
the need for a slice-by-slice segmentation, the effort and time required from the user can
be reduced. However, inter-observer variability is still present, as the manual part of the
segmentation and the settings of the algorithm influence the result.

In the case of neuroblastic tumors, several studies have explored the development of
semiautomatic segmentation algorithms. They have been performed on Computed Tomog-
raphy (CT) or MR images, making use of mathematical morphology, fuzzy connectivity and
other imaging processing tools [9–11]. However, they have included a very low number of
cases and the findings show little improvement with respect to manual approaches. To the
best of our knowledge, a robust and generalizable solution for neuroblastoma segmentation
has not been yet devised.

Nowadays, most advanced tools are built to be used as automatic segmentation
methods, which, by definition, do not rely on user interaction. These solutions are built
with deep-learning segmentation algorithms [12], usually based on convolutional neural
networks (CNNs). CNNs use several sequential convolution and pooling operations in
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which images are processed to extract features and recognize patterns using the image
itself to be trained during the learning process [13]. One of the most commonly used is the
U-Net architecture, consisting of a contracting path to capture context and a symmetric
expanding path that enables precise localization, which achieves very good performance in
segmentation of different types of cancer [14,15]. Nevertheless, its applicability to specific
image analysis and its reproducibility in different structures or lesions has been observed
to be limited [16].

Recently, a new solution based on CNNs algorithms called nnU-Net has been proposed.
It consists of an automatic deep learning-based segmentation framework that automati-
cally configures itself, including preprocessing, network architecture, training and post-
processing, and adapts to any new dataset, surpassing most existing approaches [16,17].

The aim of this study was to assess the inter-observer variability in manual and
automatic segmentation of neuroblastic tumors. We hypothesize that the state-of-the-
art deep learning framework nnU-Net can be used to automatically detect and segment
neuroblastic tumors on MR images, providing a more robust, universal and error-free
solution than that obtained by the manual segmentation process. This comparison is
performed by evaluating the inter-observer variability between two radiologists. The
automatic segmentation model is trained, fine-tuned and validated with cases from different
European institutions and then compared to manual segmentation. Previous expert tumor
delineation is performed as there does not exist an open-access annotated data set dedicated
to this specific tumor.

The automatic segmentation model is then applied to a group of patients from the
training set. The time needed for the automatic segmentation (with manual adjustment
when necessary) is compared to the time required to manually segment the same cases
from scratch.

2. Materials and Methods

2.1. Participants

A retrospective multicenter and international collection of 132 pediatric patients with
neuroblastic tumors who had undergone a diagnostic MR examination was conducted.

All patients had received a diagnosis of neuroblastic tumor with pathological confir-
mation between 2002 and 2021. Patients and MR data were retrospectively obtained from
3 centers in Spain (n = 73, La Fe University and Polytechnic Hospital, including 21 cases
from European Low and Intermediate Risk Neuroblastoma Protocol clinical trial (LINES)),
Austria (n = 57, Children’s Cancer Research Institute from SIOPEN High Risk Neuroblas-
toma Study (HR-NBL1/SIOPEN) current accrual over 3000 patients from 12 countries),
and Italy (n = 4, Pisa University Hospital). The study had the corresponding institutional
Ethics Committee approvals from all involved institutions. This data set was collected
within the scope of PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer
personalized diaGnosis and prognosis, empowered by imaging biomarkers) project [5].
Age at first diagnosis was 37.6 ± 39.3 months (mean ± standard deviation, range 0 to
252 months, median of 24.5 months ± 54 interquartile range (IQR)), with a slight female
predominance (70 females, 62 males).

Histology of the tumor was neuroblastoma (104 cases), ganglioneuroblastoma (18 cases)
and ganglioneuroma (10 cases). Tumor location was classified as abdominopelvic (105 cases,
59 of them from the adrenal gland, 32 with abdominal non-adrenal location and 14 with a
pelvic location) or cervicothoracic (27 cases, 18 of them thoracic, 2 with an exclusive cervical
location and 7 affecting both thoracic and cervical regions).

Imaging data from SIOPEN clinical trials (HR-NBL1 and LINES) were collected and
centrally stored on an Image Management Server maintained by the Austrian Institute
of Technology (AIT) in order to be properly pseudonymized with the European Unified
Patient Identity Management (EUPID) [18] system enabling a privacy-preserving record
linkage and a secure data transition to the PRIMAGE context. Other imaging data not
coming from a SIOPEN trial received a EUPID pseudonym through the direct upload to
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the PRIMAGE platform. All collected images have been stored in the PRIMAGE platform
to be used for further investigation.

The MR images accounted for a high data acquisition variability, including different
scanners, vendors and protocols, from the different institutions. MR images were acquired
with either a 1.5 T (n = 116) or 3 T (n = 16) scanner, manufactured by either General
Electric Healthcare (Signa Excite HDxt, Signa Explorer) (n = 51), Siemens Medical (Aera,
Skyra, Symphony, Avanto) (n = 54) or Philips Healthcare (Intera, Achieva, Ingenia) (n = 27).
The MR protocol varied among the institutions. Essentially, MR studies consisted of
T1-weighted (T1W), T2- weighted (T2w) and/or T2w with fat suppression (T2w fat-sat),
Diffusion-weighted (DW) and Dynamic Contrast-enhanced (CET). Chest images were
acquired with respiratory synchronization. Mean FOV size was 410 mm, and median FOV
was 440 mm (range of 225 to 500 mm).

2.2. Manual Image Labeling

Tumor segmentation was performed on the transversal T2w fat-sat images as they
yield the maximum contrast between the tumor and the surrounding organs (48 cases). T2w
images were used when T2w fat-sat images were not available (84 cases). All images were
obtained in DICOM format. The open source ITK-SNAP (version 3.8.0) (www.itksnap.org)
tool [19] was used for the manual tumor segmentation by two radiologists (with 30 (Ra-
diologist 1) and 5 (Radiologist 2) years of experience in pediatric radiology, respectively)
with prior experience with manual segmentation tools. All the tumors (132 cases) were
manually segmented by Radiologist 2. For the inter-observer variability study, 46 cases
were independently segmented by both radiologists after agreement on the best tumor
definition criteria. To increase reproducibility, a restrictive segmentation methodology was
established, excluding doubtful peripheral areas. If the tumor contacted or encased a vessel,
the vessel was excluded from the segmentation. When the tumor infiltrated neighboring
organs with ill-defined margins, the DWI and CE images were reviewed to exclude non-
tumoral areas. Lymph nodes separated from the tumor and metastases were also excluded.
Each of the readers performed a blinded annotation of all the cases independently. Finally,
the obtained segmentation masks were exported in NIfTI format (nii) and were considered
the ground truth ROIs.

Tumor volume was obtained from the 132 masks performed by Radiologist 2. The
median volume of all the masks was 116,518 mm3 (±219,084 IQR) and the mean volume
was 193,634 mm3.

2.3. Study Design and Data Partitioning

Our study consisted of two parts (Figure 1). Firstly, the inter-observer variability in
manual MR segmentation was analyzed by comparing the performance of two radiologists
in 46 cases of neuroblastic tumor. Secondly, the training and validation of the automatic
segmentation model based on nnU-Net architecture were performed, dividing the dataset
into two cohorts: training-tuning and validation. A balanced and stratified split of the
cases from both cohorts was implemented to eliminate sampling bias and to guarantee the
heterogeneity of both datasets in order to construct a reproducible and universal model.
Stratified sampling with the scikit-learn library [20] was used, considering four variables:
manufacturer (Siemens/Philips/GE), magnetic field strength (1.5 T/3 T), tumor location
(abdominopelvic/cervicothoracic) and segmented sequence (T2w/T2w fat-sat). (Table 1).

A first cohort (80% of cases, n = 106) was selected to train and fine-tune the model
with a 5-fold cross-validation approach. A second cohort (20% of patients, n = 26) was used
for validation.

2.4. Convolutional Neural Network Architecture

The automatic segmentation model was developed using the state-of-the-art, self-
configuring framework for medical segmentation, nnU-Net [16]. All the images were
resampled with a new voxel spacing: [z, x, y] = [8, 0.695, 0.695], corresponding to the
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average values within the training data set. The model training was performed along
1000 epochs with 250 iterations each and a batch size of 2. The loss function to optimize
each iteration was based on the Dice Similarity Coefficient (DSC). A z-score normalization
was applied to the images.

Figure 1. Study design. The first part consisted of manual segmentation variability, comparing the
performance of two radiologists (n = 46). The second part included the training and validation of the
nnU-Net using 132 cases manually segmented by Radiologist 2. Training-tuning with cross-validation
was performed. The 5 resulting segmentation models obtained with the cross-validation method
were used as an ensemble solution to test all the cases of the training-tuning (n = 106) and the
validation (n = 26) data sets in order to measure training and validation performance independently.
The previous split of the cases into balanced groups considering vendor, magnetic field strength,
location and segmented sequence was performed.

The model employed a 3D net and was trained with a cross-validation strategy,
which is a statistical technique frequently used to estimate the skill of a machine learning
model on unseen data [21]. The training-tuning dataset (n = 106) was partitioned into
5 subsets or folds of 21 or 22 non-overlapping cases each. Each of the 5 folds was given
an opportunity to be used as a held-back test set, whilst all other folds collectively were
used as a training dataset. A total of 5 models were fit and evaluated on the 5 hold-out
test sets and performance metrics were reported (median and IQR were reported as the
distribution of the results was not normal in all the cases. Confidence interval (CI) was
also calculated).

Additionally, the 5 resulting segmentation models obtained using the cross-validation
method were used as an ensemble solution to test all the cases of the training-tuning
(n = 106) and the validation (n = 26) data sets in order to measure training and validation
performance independently.
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Table 1. Composition of validation dataset (20% of cases, n = 26), considering four variables for a
balanced split: vendor, magnetic field strength, location and segmented sequence.

Validation Set (n = 26)

Sequence Equipment Field Strength Location

T2 Philips 1.5 Abdominopelvic
T2 Siemens 1.5 Abdominopelvic
T2 Philips 1.5 Abdominopelvic
T2 GE 1.5 Abdominopelvic
T2 GE 1.5 Cervicothoracic
T2 Philips 1.5 Abdominopelvic
T2 Siemens 1.5 Abdominopelvic
T2 Philips 1.5 Cervicothoracic
T2 Siemens 1.5 Abdominopelvic

T2 fat sat GE 1.5 Abdominopelvic
T2 Siemens 3 Abdominopelvic
T2 GE 1.5 Abdominopelvic
T2 GE 1.5 Cervicothoracic
T2 Philips 1.5 Abdominopelvic

T2 fat sat Philips 1.5 Abdominopelvic
T2 Siemens 3 Abdominopelvic
T2 Siemens 1.5 Abdominopelvic

T2 fat sat Siemens 1.5 Abdominopelvic
T2 fat sat GE 1.5 Cervicothoracic
T2 fat sat GE 1.5 Abdominopelvic
T2 fat sat GE 1.5 Abdominopelvic
T2 fat sat Siemens 1.5 Abdominopelvic

T2 GE 1.5 Cervicothoracic
T2 fat sat Siemens 1.5 Abdominopelvic
T2 fat sat Siemens 3 Abdominopelvic
T2 fat sat GE 1.5 Cervicothoracic

2.5. Analysis and Metrics

To compare segmentation results, different metrics have been described in the liter-
ature. The main metric used in this study for the evaluation of results was the DSC [22],
a spatial overlap index and a reproducibility validation metric [23]. Its value can range
from 0 (meaning no spatial overlap between two sets) to 1 (indicating complete overlap).
DSC index has been widely used to calculate the overlap metric between the results of
segmentation and ground truth, and is defined as [24,25]:

DSC =
2TP

2TP + FP + FN

The ROC AUC metric was also calculated. The ROC curve, as a plot of sensitivity
against 1-specificity, normally assumes more than one measurement. For the case where a
test segmentation is compared to a ground truth segmentation, we consider a definition of
the AUC as [26]:

AUC = 1 − 1
2

(
FP

FP + TN
+

FN
FN + TP

)
Since metrics have different properties, selecting a suitable one is not a trivial task,

and therefore a wide range of metrics have been previously developed and implemented
to approach 3D image segmentation [26]. For our study, two spatial overlap-based metrics
were specifically designed to gain a deeper understanding of the direction of the errors
encountered: the false positive (FP) and false negative (FN) rates, independently, with
respect to the ground truth, which consisted of the manual segmentation performed by
Radiologist 2 (Figure 2).
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Figure 2. The ground truth (true positive and false negative voxels) corresponds to the manual
segmentation performed by Radiologist 2, which was compared firstly to the manual segmentation
performed by Radiologist 1 and then to the automatic segmentation obtained by the automatic
segmentation model (non-ground truth mask, true positive and false positive voxels). The FPRm
considered those voxels that were identified by the model as tumor but corresponded to other
structures, divided by the voxels that actually corresponded to the ground truth mask. The FNR
measured those voxels belonging to the tumor that the model did not include as such, divided by the
ground truth voxels.

The rate of FP of the automatic segmentation to the ground truth (modified version of
FPR) considered those voxels that were identified by the net as tumor but corresponded
to other structures, divided by the voxels that actually corresponded to the ground truth
mask (TP + FN voxels). This definition differs from the FPR used in standard statistical
problems in the exclusion of the true negative (TN) term from the mathematical expression,
as the TN voxels correspond to the image background in a segmentation task and not to
the segmentation masks intended to be compared.

FPRm =
FP

TP + FN

The rate of FN of the automatic segmentation to the ground truth (FNR) measured
voxels belonging to the tumor that the net did not include as such, divided by the ground
truth voxels.

FNR =
FN

TP + FN
= 1 − Sensitivity or Recall

For consistency reasons and to facilitate the understanding of the results, the FPRm and
FNR metrics are reported as 1-self, resulting in a maximum of 1 for a complete voxel-wise
agreement and a minimum of 0 for a null similitude.

2.6. Time Sparing

For comparing the time leverage, the final automatic segmentation model was applied
to 20 cases from the training set, corresponding to 4 cases per fold to account for the
heterogeneity of the data set. Cases were independently segmented manually from scratch
by Radiologist 2, and the mean time (in minutes) necessary to perform that task was
compared to the mean time required to obtain the masks with the automatic model. As
some variability may exist in the final automatic masks, a human-based validation by
Radiologist 2 was performed, and the mean time required to visually validate and manually
edit the resulting automatic masks (when needed) was compared to the time necessary to
manually segment them from scratch. To remove a potential software-related bias, the open
source ITK-SNAP tool [19] was used for both manual and automatic correction approaches.

3. Results

3.1. Inter-Observer Comparison for Manual Segmentation

The segmentation results obtained by Radiologist 1 were compared to those of Ra-
diologist 2 to measure inter-observer variability (Table 2). The median DSC was found
to be 0.969 (±0.032 IQR). The median FPRm was 0.939 (±0.063 IQR), resulting in a high
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concordance between both radiologists according to the non-tumor included voxels. The
median FNR was 0.998 (±0.008 IQR), meaning that Radiologist 1 did not miss tumor during
the segmentation. AUC ROC was 0.998 (Figure 3).

Table 2. Inter-observer variability. Performance metrics for inter-observer comparison for manual
segmentation, considering DSC, AUC ROC, 1-FPRm and 1-FNR.

DSC AUC ROC 1-FPRm 1-FNR

Median 0.969 0.998 0.939 0.998
IQR 0.032 0.004 0.063 0.008
CI 0.042 0.021 0.044 0.042

Figure 3. Comparison of two cases segmented by Radiologist 1 (red label) and Radiologist 2 (pink
label) and mask superposition and comparison. Case 1 was segmented in T2w while case 2 was
segmented in T2w fat-sat. In both cases, DSC was 0.957.

3.2. Comparison between Radiologist and nnU-Net

As the 106 cases of the training group were divided into five folds of 21 or 22 cases to
perform cross-validation, each fold achieved different DSC results (Table 3) (Figures 4 and 5).

Table 3. Performance metrics for comparison between nnU-Net and Radiologist 2. Cases were divided
into 5 folds to perform cross-validation. DSC, AUC ROC, 1-FPRm and 1-FNR for each fold are described.

Fold Metric DSC AUC ROC 1-FPRm 1-FNR

Fold 0
Median 0.895 0.940 0.922 0.882

IQR 0.121 0.116 0.082 0.233
CI 0.146 0.117 0.074 0.148

Fold 1
Median 0.873 0.926 0.944 0.856

IQR 0.110 0.100 0.100 0.100
CI 0.127 0.066 0.088 0.132

Fold 2
Median 0.899 0.936 0.935 0.875

IQR 0.131 0.064 0.133 0.133
CI 0.123 0.062 0.125 0.124

Fold 3
Median 0.901 0.948 0.949 0.897

IQR 0.122 0.062 0.088 0.124
CI 0.046 0.030 0.090 0.061

Fold 4
Median 0.874 0.927 0.958 0.856

IQR 0.134 0.110 0.033 0.221
CI 0.141 0.071 0.032 0.142
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Figure 4. Original transversal and coronal MR images and examples of three cases automatically
segmented by nnU-Net (blue labeled) and Radiologist 2 (pink labeled), with mask superposition for
comparison. Case 1 was segmented in T2w fat-sat with a DSC of 0.869. Case 2 was segmented on
T2w and the DSC obtained was 0.954. Case 3 was segmented with a DSC of 0.617.

Figure 5. Box plots depicting the whole set of DSC for each fold of the training group and valida-
tion set.

Of the 106 cases, 27 had a DSC value <0.8: folds 0, 2 and 4 had 6 cases each; folds 1 and
3 had 5 cases each. The mean age for these cases was 32.7 ± 30.3 months and the median
age was 19.8 months. They had a median volume of 75,733 mm3 (±42,882 IQR).
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From these 27 cases, 8 had a DSC from 0 to 0.19, being in all the cases < 0.01; 3 cases
had a DSC ≥ 0.2 to 0.39; 1 case had a DSC ≥ 0.4 to 0.59; and 11 cases had a DSC ≥ 0.6 to 0.8.
Cases showing high variability (DSC < 0.8) after automatic segmentation were analyzed
by Radiologist 2 to identify the reasons for the low level of agreement. Regarding the
eight cases with DSC < 0.01, the net had segmented extensive lymph nodes instead of the
primary tumor in three cases. In another two cases, the net segmented other structures
instead of the tumor (gallbladder or left kidney). In another three cases, the net did not
identify any structure from the original DICOM and thus did not perform any mask.

Of the remaining 19 cases with a DSC < 0.8, 18 cases showed differences as the net
localized the tumor well but did not completely segment it or presented variability in the
borders, especially in cases with surrounding lymph nodes. One case had bilateral tumors
and the net only detected one of them.

Posteriorly, the five resulting segmentation models obtained using the cross-validation
method were used as an ensemble solution to test all the cases of the training-tuning
(n = 106). We obtained a median DSC of 0.965 (±0.018 IQR) and AUC ROC of 0.981. The
FPRm for this ensemble solution was 0.968, and FNR was 0.963. For comparing means of
DSC attending to the effects of location (abdominopelvic or cervicothoracic) and magnetic
field strength (1.5 or 3 T) (Table 4), an ANOVA test was performed, showing that there
were no differences in DSC mean values for the location and magnetic field factors, and the
results repeated after considering atypical values and removing them.

Table 4. The 5 resulting segmentation models obtained using the cross-validation method were used
as an ensemble solution to test all the cases of the training-tuning (n = 106). Performance metrics
for the final results are described. Results are detailed according to location (abdominopelvic or
cervicothoracic) and magnetic field strength (1.5 T or 3 T).

DSC AUC ROC 1-FPRm 1-FNR

Median 0.965 0.981 0.968 0.963
IQR 0.018 0.010 0.015 0.021
CI 0.031 0.015 0.025 0.031

Cervicothoracic (n = 21)

Median 0.956 0.975 0.962 0.950
IQR 0.024 0.012 0.015 0.024
CI 0.036 0.018 0.037 0.036

Abdominopelvic (n = 85)

Median 0.966 0.982 0.969 0.645
IQR 0.015 0.009 0.014 0.019
CI 0.037 0.018 0.030 0.038

1.5 T (n = 93)

Median 0.965 0.981 0.969 0.963
IQR 0.018 0.011 0.016 0.021
CI 0.029 0.014 0.021 0.029

3 T (n = 13)

Median 0.964 0.982 0.967 0.964
IQR 0.013 0.005 0.007 0.010
CI 0.145 0.073 0.138 0.145

When introducing age and volume as corrective factors in the evaluation of the effects
of location and magnetic field in the DICE, no differences were observed in the results of
the analyses. Age and volume have no significant effect and do not show any trend in the
DICE (p-value = 0.052 for age and 0.169 for volume). Therefore, the effects of location and
magnetic field, as well as their interaction, continue to be insignificant when the correction
for age and volume is introduced.
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Focusing on the direction of the errors between both sets (ground truth vs. automatic
segmentation), the median FPRm is 0.968 (±0.015 IQR), meaning that the mask is including
as tumor 3.2% of voxels that are not included in the ground truth. The median FNR is
0.963 (±0.021 IQR), so the automatic tool does not include 3.7% of the voxels included in
the ground truth mask.

3.3. Validation

The validation was performed at the end of the model development to test for model
overfitting which could result in an overestimation of the model performance. The median
DSC result for validation was 0.918 (±0.067 IQR) and AUC ROC was 0.968 (Table 5)
(Figure 5).

Table 5. Performance metrics for the validation cohort results (n = 26) considering DSC, AUC ROC,
1-FPRm and 1-FNR. Results for Radiologist 2 vs. automatic model are shown. To compare these
results to inter-radiologist agreement, Radiologist 1 segmented the 26 cases from the validation
dataset and comparisons with Radiologist 2 and to the automatic model were made.

DSC AUC ROC 1-FPRm 1-FNR

Radiologist 2 vs. automatic model

Median 0.918 0.968 0.943 0.938
IQR 0.080 0.051 0.088 0.104
CI 0.059 0.473 0.134 0.063

Radiologist 1 vs. Radiologist 2

Median 0.920 0.950 0.929 0.930
IQR 0.090 0.192 0.015 0.024
CI 0.038 0.053 0.166 0.058

Radiologist 1 vs. automatic model

Median 0.915 0.950 0.915 0.912
IQR 0.443 0.122 0.436 0.189
CI 0.114 0.054 0.161 0.104

Of the 26 cases in the validation dataset, 4 had a DSC value < 0.8: 3 cases had a
DSC ≥ 0.4 to 0.59; and 1 case had a DSC ≥ 0.6 to 0.8. These cases were analyzed by
Radiologist 2 to identify the reasons for the low level of agreement. Regarding the three
cases with DSC <0.6, the net had segmented extensive lymph nodes besides the primary
tumor in two cases, and identified only a part of the tumor in one case. In the case with a
DSC ≥ 0.6 to 0.8, the net segmented lymph nodes besides the primary tumor.

To compare the validation results to the inter-radiologist agreement, Radiologist 1
manually segmented the cases from the validation dataset. We compared the segmentation
of Radiologist 1 to the segmentations of Radiologist 2 and the automatic model (Table 5).

For comparing the time leverage, we performed a comparison of the mean time needed
to manually segment 20 cases (418 slices) from scratch with the mean time required by
the automatic model to segment them. Cases segmented manually required a mean time
of 56 min per case, while the mean time needed to obtain each mask with the automatic
model was 10 s (0.167 min), resulting in a time reduction of 99.7%.

As some variability may exist in the final automatic masks, a human-based visual
validation of the masks was performed. All the segmentations were visually validated,
and manual editing and adjustment of the automatic masks were performed when
needed (12 cases were edited, including 92 slices). The mean time to perform these
processes was 4.08 min (±2.35 SD) and the median time was 4 min. This was compared
to the time necessary to manually segment the masks from scratch, showing a time
reduction of 92.8%.
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4. Discussion

The inter-observer variability when performing manual segmentation of neuroblastic
tumors in T2w MR images indicates that there is a high concordance between observers
(median DSC overlap index of 0.969 (±0.032 IQR)). The discrepancies between observers
may be due to the heterogeneous nature of the neuroblastic tumors and to the intrinsic
variability of the manual segmentation related to individual skills and level of attention to
detail. In our study, both radiologists are pediatric radiologists with previous experience in
segmentation tasks. Radiologist 2 was considered the ground truth for practical reasons, as
the segmentation of the whole dataset had been performed by this observer. Nevertheless,
the manual ground truth mask may itself have some errors that are intrinsically associated
with the human-based segmentation methodology. Joskowicz et al [6] investigated the
variability in manual delineations on CT for liver tumors, lung tumors, kidney contours
and brain hematomas between 11 observers, and concluded that inter-observer variability
is large and even two or three observers may not be sufficient to establish the full range of
inter-observer variability. Montagne et al [27] compared the inter-observer variability for
prostate segmentation on MR performed by seven observers and concluded that variability
is influenced by changes in prostate morphology. Therefore, delineation volume overlap
variability for different structures and observers is large [28].

In our study, expert tumor delineation performed as the best (although not perfect)
approach to truth. The evaluation of the voxel-wise similarity between the ground truth
and the automatically segmented mask demonstrates that the state-of-the-art deep learning
architecture nnU-Net can be used to detect and segment neuroblastic tumors on MR
images, with a median DSC of 0.965 (±0.018 IQR), achieving a strong performance and
surpassing the methods and results obtained in previous studies that approached the
problem of neuroblastoma segmentation [9–11]. However, no previous literature has
demonstrated the performance of a CNN-based solution in neuroblastic tumor. nnU-Net
sets a new state-of-the-art in various semantic segmentation challenges and displays strong
generalization characteristics for other structures [16,17]. Our results suggest that this
automatic segmentation tool introduces a variability equivalent to that observed in the
manual segmentation process in neuroblastic tumors. Previous studies related to breast
tumors showed that segmentation algorithms may improve manual variability [29].

When analyzing the direction of the errors in a tumor segmentation problem, our
recommendation is to give more relevance to the FPRm, aiming to minimize the included
FP voxels with respect to the ground truth, as this metric represents those voxels that belong
to adjacent organs or structures, which could introduce a strong bias in the extraction of
quantitative imaging features for the development of radiomics models. The influence of
FN in radiomics models seems less important, as it may not have a significant impact if
some peripheral tumor voxels are missed. The effect of manual inter-observer segmentation
variability on MR-based radiomics feature robustness has been described previously in
other tumors such as breast cancer [30].

When assessing the FPRm and FNR between the manual segmentations performed
by the two radiologists, the median FPRm is 0.939 (±0.063 IQR), indicating that 6.1%
of the voxels were misclassified as tumor, while the median FNR is 0.998 (±0.008 IQR),
therefore, the manual segmentation of Radiologist 1 did not include 0.2% of voxels included
in the ground truth mask. Regarding manual ground truth vs. automatic segmentation, we
observe that the median FPRm is 0.968 (±0.015 IQR). Therefore, the automatic segmentation
tool generates masks with an average of 3.2% non-tumoral voxels. The median FNR
corresponds to a value of 0.963 (±0.021 IQR), therefore, the automatic tool fails to include
3.7% of tumoral voxels. The results obtained demonstrate that the automatic segmentation
model achieves a better performance regarding the FPRm, which is a great advantage in
segmentation tasks for the posterior extraction of quantitative imaging features.

With regards to the time required for the segmentation process, an average time
reduction of 99.7% was obtained when comparing the automatic model with the manual
segmentation methodology. As some errors and variability may exist in the final automatic
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masks, this result is over-optimistic, as in practice the reader has to visually validate the
quality of all the segmentations provided by the automatic tool before introducing some
corrections, if needed. A human-based visual validation of the masks is recommended
to edit and adjust the automatic masks. In our study, this process of validation and
correction of the automatic masks that needed adjustment reduced the time required for
segmentation from scratch by 92.8%. Correction time was influenced by the intrinsic
difficulty of segmentation of each tumor, as there were tumors easier to segment (e.g., more
homogeneous, with sharper margins, without lymph nodes) that did not need corrections
or required slight adjustments, while there were more challenging tumors with contrast
variations close to organ borders and of similar appearance to surrounding structures that
required more time to be corrected. Overall, the application of the automatic model results
in a great leverage of the time required to perform the segmentation process, facilitating
the workflow for radiologists.

In addition, the human-based analysis of the masks performed by the net is useful
to gain insights and correct for potential human mistakes and biases/outliers within the
data set, which could be used to retrain the model, increasing the model’s overall accuracy
and robustness.

There are some limitations to this study. Segmentations were performed only by two
observers, so it may only represent a fraction of the full range of inter-observer variability
and may not be enough to establish a reference standard. Furthermore, both were experi-
enced radiologists, as previous medical knowledge and expertise are assumed to contour
highly heterogeneous neuroblastic tumors. Therefore, manual segmentations performed
by other users (less experienced radiologists, other clinical users, non-medical staff) are
expected to encounter higher inter-observer variability. Another potential limitation is that
tumors may associate extensive lymph nodes or can present contact with them, making
their differentiation difficult in some cases, which, as we have proved, can lead to errors
in the segmentation performed by the net. Finally, as has been pointed out, the mask
that is considered to be the ground truth may itself have some errors that are associated
intrinsically with the manual segmentation process, and the comparison of the nnU-Net
results was performed with the segmentations done by a single radiologist.

5. Conclusions

MR image segmentation accuracy of neuroblastic tumors is observed to be comparable
between radiologists and the state-of-the-art deep learning architecture nnU-Net. The
automatic segmentation model achieves a better performance regarding the FPRm, which is
a great advantage in segmentation tasks for the posterior extraction of quantitative imaging
features. Moreover, the time leverage when using the automatic model corresponds to
99.7%. A human-based validation based on manual editing of the automatic masks is
recommended and corresponds to a reduction of time of 92.8% compared to the fully
manual approach, reducing the radiologist’s involvement in this task.
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Abstract: Uterine cervical and endometrial cancers have different subtypes with different clinical
outcomes. Therefore, cancer subtyping is essential for proper treatment decisions. Furthermore, an
endometrial and endocervical origin for an adenocarcinoma should also be distinguished. Although
the discrimination can be helped with various immunohistochemical markers, there is no definitive
marker. Therefore, we tested the feasibility of deep learning (DL)-based classification for the subtypes
of cervical and endometrial cancers and the site of origin of adenocarcinomas from whole slide images
(WSIs) of tissue slides. WSIs were split into 360 × 360-pixel image patches at 20× magnification for
classification. Then, the average of patch classification results was used for the final classification. The
area under the receiver operating characteristic curves (AUROCs) for the cervical and endometrial
cancer classifiers were 0.977 and 0.944, respectively. The classifier for the origin of an adenocarcinoma
yielded an AUROC of 0.939. These results clearly demonstrated the feasibility of DL-based classifiers
for the discrimination of cancers from the cervix and uterus. We expect that the performance of
the classifiers will be much enhanced with an accumulation of WSI data. Then, the information
from the classifiers can be integrated with other data for more precise discrimination of cervical and
endometrial cancers.

Keywords: computational pathology; computer-aided diagnosis; convolutional neural network;
digital pathology

1. Introduction

Uterine cervical and endometrial cancers are two major cancer types threatening
women’s health worldwide [1]. Although they originate from the same organ, i.e., uterus, cer-
vical and endometrial cancers have different subtypes with different clinical outcomes [2–6].
The main histologic subtypes of cervical cancers are squamous cell carcinoma and en-
docervical adenocarcinoma. The two major histologic subtypes of endometrial cancers
are endometrioid adenocarcinoma and serous adenocarcinoma. Because management
and prognosis are different between the subtypes, differential diagnosis is crucial for
proper treatment decisions. Furthermore, an endometrial and endocervical origin for
an adenocarcinoma should be distinguished considering the marked differences in their
management [7]. The first step for the discrimination of the subtypes of these cancers is to in-
vestigate hematoxylin and eosin (H&E)-stained tissue slides by pathologists. However, the
visual discrimination of subtypes is not always clear because some morphologic features are
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overlapping [7,8]. Furthermore, there is considerable inter- and intra-observer variations
in the histological subtyping by pathologists [8]. Although various immunohistochemical
markers can help distinguish the subtypes, there is no definitive marker [7,8]. Therefore, an-
cillary methods for the discrimination of the subtypes of cervical and endometrial cancers,
and also the origin of the cancers are necessary to improve treatment decisions.

Because whole-slide images (WSIs) were approved for primary diagnostic purposes,
many pathologic laboratories have been adopting digitized diagnosis processes [9]. The
digitization enabled computer-aided analysis of pathologic tissues. Computer-aided analy-
sis of H&E-stained WSIs could provide valuable information in a cost- and time-effective
manner, considering the wide availability of H&E-stained pathologic tissue slides for most
cancer patients. Recently, deep learning (DL) has been widely applied for various analysis
tasks on H&E-stained WSIs [10]. DL usually performs better than many previous ma-
chine learning methods because it can automatically learn the most discriminative features
directly from large datasets [11]. Many studies showed that DL can correctly diagnose
various cancers from WSIs [12]. Furthermore, DL can even detect molecular alterations of
cancer tissues from H&E-stained WSIs [13]. Therefore, DL has tremendous potential to
improve the precision of pathologic diagnosis with minimal additional cost.

In the present study, we applied sequential DL models for the subtyping of cervical
and endometrial cancers. First, cervical and endometrial cancer regions were automatically
selected with DL models. Then, two separate DL models were trained to discriminate
cervical and endometrial cancers into cervical squamous cell carcinoma and endocer-
vical adenocarcinoma, and into endometrioid endometrial adenocarcinoma and serous
endometrial adenocarcinoma, respectively. Furthermore, we trained an additional DL
model to discriminate whether an adenocarcinoma has an endocervical or endometrial
origin. The three models showed excellent performance proving the potential of DL for the
discrimination of subtypes in gynecologic tumors.

2. Materials and Methods

2.1. Datasets

Classifiers for the subtypes of cervical and endometrial cancers and the origin of
adenocarcinomas were trained with the WSIs provided by The Cancer Genome Atlas
(TCGA) program. From the TCGA cervical (TCGA-CESC) and endometrial (TCGA-UCEC)
datasets, we collected formalin-fixed paraffin-embedded (FFPE) slides after the basic slide
quality reviews. The TCGA-CESC dataset provided slides from 255 patients for cervical
squamous cell carcinoma and from 47 patients for endocervical adenocarcinoma. From the
TCGA-UCEC dataset, tissue slides of 399 and 109 patients were obtained for endometri-
oid endometrial adenocarcinoma and serous endometrial adenocarcinoma, respectively.
When there are huge differences in the numbers of data between the classes, performance
evaluation can be skewed by the majority class. Therefore, we randomly selected 70 and
160 patients for cervical squamous cell carcinoma and endometrioid endometrial adeno-
carcinoma, respectively, to make the differences between the major and minor classes
under 1.5-fold.

The performance of the classifier for the subtypes of endometrial carcinoma was also
evaluated on The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) endometrial cancer dataset (CPTAC-UCEC). There were 83 patients for endometrioid
endometrial adenocarcinoma and 12 patients for serous endometrial adenocarcinoma.

2.2. Deep Learning Model

To fully automate the classification tasks, we sequentially applied different DL-
based classifiers to the WSIs (Figure 1). The WSIs were divided into non-overlapping,
360 × 360-pixel image patches at 20× magnification because a WSI is too big to be ana-
lyzed by a current DL-system as a whole. In a WSI, various artifacts can exist including
air bubbles, blurring, compression artifacts, pen markings, and tissue folding. Patches
with these artifacts should be discarded because they can interfere with proper learning
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of relevant features. In our previous study for gastric cancer subtyping, we trained a
simple DL classifier that can discriminate various artifacts and white backgrounds all at
once [14]. The DL network consisted of three convolution layers with 12 [5 × 5] filters,
24 [5 × 5] filters and 24 [5 × 5] filters, each followed by a [2 × 2] max-pooling layer. We
reused the classifier and only proper tissue image patches were selected for the next steps
(Figure 1a).

 
Figure 1. Classification procedure. (a) Sequential application of tissue/non-tissue and normal/tumor
classifiers can discriminate proper tumor tissues. (b) Three separate classifiers for subtypes of cervical
cancers, subtypes of endometrial cancers, and site of origin for adenocarcinomas were trained from
tumor tissue image patches.

Cancer subtype classifiers should be trained on the cancer tissues. Therefore, nor-
mal and tumor tissue classifiers are prerequisites for cancer subtyping. To train the nor-
mal/tumor classifiers, two pathologists (S.I. and S.H.L.) annotated normal and tumor
regions for cervical and endometrial cancer tissue slides (Figure 2 left panels). Then, normal
and tumor tissue image patches were collected based on the annotation. From these patches,
classifiers to discriminate normal and tumor tissues for cervical and endometrial cancers
were trained separately for each cancer type.

Next, we trained classifiers for the subtypes of cervical and endometrial cancers,
and the origin of adenocarcinomas on prominent tumor tissue patches selected by the
normal/tumor classifiers. To evaluate the general performance of the classifiers for the
TCGA-CESC and -UCEC datasets, 5-fold cross validation was adopted. Therefore, the WSIs
were split into 5 non-overlapping patient-level subsets and classifiers were trained and
evaluated for each subset. As we noted, 70 and 160 patients for cervical squamous cell
carcinoma and endometrioid endometrial adenocarcinoma were selected for evaluation.
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However, performance can be enhanced when the classifiers were exposed to more various
tissue images during training. Therefore, we randomly sampled tumor image patches from
all cervical squamous cell carcinoma and endometrioid endometrial adenocarcinoma WSIs
other than the test sets to match the 1.5-fold data ratio of major/minor class tissue patches
for training, as this strategy could include a greater variety of tissue images. Therefore,
we included sampled data from all patients other than the test sets during training and
selected patients for the testing to avoid skewed test results. For the selection of the
samples, we made a random selection to avoid selection biases from human selectors. The
numbers of image patches used for the training of the classifiers were summarized in
Supplementary Table S1.

 
Figure 2. Normal/tumor classification results for (a) cervical and (b) endometrial cancers. Left
panels: annotation made by pathologists. Middle panels: classification results of the normal/tumor
classifiers. Right panels: Receiver operating characteristic curves for normal/tumor classification
results. AUC: area under the curve.

Inception-v3 model was adopted for the normal/tumor, cancer subtypes, and origin
classifiers because the Inception-v3 model yielded good results for normal/tumor classification
or tissue subtype classification in our previous studies [14,15]. The models were implemented
using the Tensorflow deep learning library version 1.15 (http://tensorflow.org (accessed on
22 January 2022)). The overall structure of the model is presented in Supplementary Figure S1.
RMSPropOptimizer was adopted to optimize the model and the hyperparameters were
as follows: initial learning rate 0.1, number of epochs per decay 10.0, learning rate decay
factor 0.16, RMSPROP decay 0.9, RMSPROP_MOMENTUM 0.9, RMSPROP_EPSILON 1.0.
Tissue images were color normalized before the training and testing. During training, data
augmentation techniques such as random rotation by 90◦ and random horizontal/vertical
flipping were applied to the tissue patches. Four computer systems equipped with an Intel
Core i9-12900K Processor (Intel Corporation, Santa Clara, CA, USA) and dual NVIDIA RTX
3090 GPUs (NVIDIA corporation, Santa Clara, CA, USA) were used for the training and
testing of the models.
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2.3. Visualization and Statistics

To visualize the distribution of different tissue types, heatmaps of classification results
of tissue patches were overlaid on the WSIs with specific colors demonstrated in Figure 1. To
obtain the overall classification result of a WSI, patch classification results were averaged to
obtain the result for the WSI. Receiver operating characteristic (ROC) curves and area under
the curves for the ROC curves (AUROCs) were presented to demonstrate the performance
of each classifier. For 5-fold cross validated datasets, ROC curves for the folds with the
lowest and highest AUROCs and for the concatenated results of all 5 folds were provided for
more precise evaluation of the performance of the classifiers. For the concatenated results
of all 5 folds, 95% confidence intervals (CIs) were presented. To obtain accuracy, sensitivity,
specificity and F1 score of the classification results, cutoff values yielding maximal Youden
index (sensitivity + specificity − 1) were adopted.

When a comparison between the ROC curves is necessary, Venkatraman’s permutation
test with 1000 iterations was applied [16]. A p-value < 0.05 was considered significant.

2.4. Ethical Statement

Informed consent of patients in the TCGA cohorts was acquired by the TCGA con-
sortium [17]. The Institutional Review Board of the College of Medicine at The Catholic
University of Korea approved this study (XC21ENDI0031K).

3. Results

3.1. Normal/Tumor Classification

To classify the subtypes of cancer tissues, proper cancer tissue image patches should
be selected (Figure 1). First, we removed image patches containing various artifacts and
white background with a tissue/non-tissue classifier from our previous study [14]. Then,
normal/tumor classifiers for cervical and endometrial cancers were trained based on
pathologists’ annotation (Figure 2). Pathologists annotated 100 slides for each cervical
and endometrial cancer. The normal/tumor classifiers were trained with 80 slides and
tested on the remaining 20 slides. The representative WSIs in Figure 2 are the cervical and
endometrial cancer WSIs from the test sets. The classification results of the normal/tumor
classifiers matched well with the pathologists’ annotation. The AUROCs for the patch-level
classification results of the normal/tumor classifiers are 0.982 and 0.999 for cervical and
endometrial cancers, respectively.

3.2. Cervical Cancer Subtypes Classification

With the tissue/non-tissue and normal/tumor classifiers, we can collect proper tumor
patches for the training of the cancer subtype classifiers. First, we trained classifiers for the
cervical cancer subtypes. The patches from a WSI are labeled as either cervical squamous
cell carcinoma or endocervical adenocarcinoma based on the information obtained from
cBioPortal for Cancer Genomics (https://www.cbioportal.org/ (accessed on 12 March
2022)). Then, separate classifiers were trained to distinguish the subtypes for each 5-fold.
For each fold, four classifiers were trained repeatedly and a classifier yielding the best
AUROC was used to present the results. The classification results of cervical squamous cell
carcinoma and endocervical adenocarcinoma are presented in Figure 3. The upper panels
show the representative WSIs of clear cervical squamous cell carcinoma, clear endocervical
adenocarcinoma, and confusing case with mixed classification results. The ROC curves
of slide-level classification results for folds with the lowest and highest AUROCs and
concatenated results of all 5-folds are presented in the lower panels. The AUROCs were
0.979 and 1.000 for the folds with the lowest and highest AUROCs, respectively. The
AUROC for the concatenated results was 0.977 (95% CI, 0.957–0.998).
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Figure 3. Classification results for cervical cancer subtypes. Upper panels: the representative whole
slide images of clear cervical squamous cell carcinoma, clear endocervical adenocarcinoma, and
confusing case with mixed classification results. Lower panels: the receiver operating characteristic
curves of slide-level classification results for folds with the lowest and highest area under the curve
(AUC) and concatenated results of all 5-folds.

3.3. Endometrial Cancer Subtypes Classification

Next, we trained other classifiers for the endometrial cancer subtypes. The patches
from a WSI are labeled as either endometrioid endometrial adenocarcinoma or serous
endometrial adenocarcinoma based on the information obtained also from the cBioPortal.
The classification results are presented in Figure 4a. The representative WSIs of clear
endometrioid endometrial adenocarcinoma, clear serous endometrial adenocarcinoma,
and confusing case with mixed classification results are presented in the upper panels.
The AUROCs were 0.923 and 0.982 for the folds with the lowest and highest AUROCs,
respectively. The AUROC for the concatenated results was 0.944 (95% CI, 0.916–0.969).

It is of interest whether the classifiers trained on the TCGA datasets work well or not
on other datasets. Therefore, we tested the classifier on the CPTAC-UCEC dataset. CPTAC-
UCEC provides multiple WSIs for a patient with pure normal tissue WSIs (Figure 5a). We
discarded normal WSIs and selected all WSIs with more than 30% of tumor tissue regions
for the testing. The classification results are presented in Figure 4b. The AUROC was
0.826 (95% CI, 0.727–0.925), much poorer compared to the AUROC for the TCGA dataset
(p < 0.05 between CPTAC and TCGA by Venkatraman’s permutation test).
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Figure 4. Classification results for endometrial cancer subtypes. (a) Results for the TCGA-UCEC
dataset. Upper panels: the representative whole slide images (WSIs) of clear endometrioid endome-
trial adenocarcinoma, clear serous endometrial adenocarcinoma, and confusing case with mixed
classification results. Lower panels: the receiver operating characteristic (ROC) curves of slide-level
classification results for folds with the lowest and highest area under the curve (AUC) and con-
catenated results of all 5-folds. (b) The classification results of the CPTAC-UCEC dataset by the
classifier trained with the TCGA-UCEC dataset. Left two representative WSIs demonstrate clear
endometrioid endometrial adenocarcinoma and clear serous endometrial adenocarcinoma. The ROC
curve is obtained from all CPTAC-UCEC tissues with more than 30% of tumor tissue regions.
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Figure 5. Characteristics of CPTAC-UCEC tissues. Examples of tissues from six patients indicated
by IDs. (a) Patients with both pure tumor and pure normal tissue samples. (b) Patients with frozen
tissue samples. (c) Patients with small curettage tissue samples.

3.4. Tumor Origin Classification

Lastly, we trained classifiers to distinguish the origin of adenocarcinomas: endocer-
vical adenocarcinoma vs. endometrioid endometrial adenocarcinoma. The classification
results are presented in Figure 6. The upper panels show the representative WSIs of clear
endocervical adenocarcinoma, clear endometrioid endometrial adenocarcinoma, and con-
fusing case with mixed classification results. The AUROCs were 0.904 and 0.987 for the
folds with the lowest and highest AUROCs, respectively. The AUROC for the concatenated
results was 0.939 (95% CI, 0.896–0.982).
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Figure 6. Classification results for the origin of adenocarcinomas. Upper panels: the representative
whole slide images of clear endocervical adenocarcinoma, clear endometrioid endometrial adenocar-
cinoma, and confusing case with mixed classification results. Lower panels: the receiver operating
characteristic curves of slide-level classification results for folds with the lowest and highest area
under the curve (AUC) and concatenated results of all 5-folds.

In Table 1, accuracy, sensitivity, specificity, and F1 score of the classification results
for these classifiers were presented with cutoff values yielding maximal Youden index
(sensitivity + specificity − 1).

Table 1. Accuracy, sensitivity, specificity, and F1 score of the classification results. The measures were
obtained with cutoff values yielding maximal Youden index (sensitivity + specificity − 1).

Accuracy Sensitivity Specificity F1 Score

TCGA-CESC
cervical squamous cell carcinoma/

endocervical adenocarcinoma
0.917 0.912 0.927 0.932

TCGA-UCEC
endometrioid endometrial adenocarcinoma/

serous endometrial adenocarcinoma
0.899 0.846 0.939 0.876

CPTAC-UCEC endometrioid endometrial
adenocarcinoma/

serous endometrial adenocarcinoma
0.757 0.8 0.733 0.702

TCGA-CESC/UCEC
endocervical adenocarcinoma/

endometrioid endometrial adenocarcinoma
0.888 0.933 0.805 0.915

4. Discussion

In the present study, we investigated the feasibility of DL-based classification for the
subtypes of cervical and endometrial cancers and the site of origin of adenocarcinomas.
Although the performance of the classifiers was not perfect, high AUROCs of all the
classifiers revealed the potential of DL-based classification of H&E-stained tissue slides of

299



Diagnostics 2022, 12, 2623

cervical and uterine cancers. The performance can be much enhanced when more WSI data
can be collected for the training of the classifiers.

The DL-based classifiers for cervical cancer showed the best performance among the
classifiers in the study. Pure adenocarcinoma and squamous cell carcinoma of the cervix
can be relatively clearly separable because their morphologies have many differences [5].
However, there are also confusing cases including adenosquamous carcinoma which is
defined as a tumor with both glandular and squamous components. This explains why
the classifier could not accomplish perfection. In clinical practice, tissue slides with mixed
classification results need more careful attention by pathologists when a DL-based assistant
system for tissue slides is adopted.

Serous endometrial adenocarcinoma represents only about 10% of endometrial carci-
nomas. However, it is responsible for almost 40% of cancer deaths [8,18]. The distinction
between endometrioid and serous endometrial adenocarcinoma is not very clear. Although
serous carcinoma typically shows a predominant papillary growth pattern, which is also
found in some endometrioid carcinomas. Antibodies for p53, p16, IMP2, and IMP3 can help
to distinguish serous endometrial adenocarcinoma, but the markers are not definitive [19].
Therefore, there is an opportunity for DL-based classifiers to improve the diagnostic accu-
racy of subtypes of endometrial cancers.

One of the important issues of DL application is the generalizability of trained clas-
sifiers for external datasets. The TCGA-trained classifiers did not perform well on the
CPTAC dataset in the present study. There can be various reasons for the decreased per-
formance. First, the quality of H&E-stained tissue slides can vary between TCGA and
CPTAC datasets because of the differences in tissue processing including tissue cutting,
fixation, dye concentration, and staining time [20]. Furthermore, the differences in the
settings of the slide scanners can also affect the color features of the WSIs. Although we
normalized color, it may not be able to overcome the innate differences in the datasets. In
addition, there are many other differences between TCGA and CPTAC datasets. CPTAC
dataset contains not only FFPE tissues but also frozen tissue sections (Figure 5b). In our
previous study, we clearly demonstrated that the classifiers trained on either frozen or FFPE
tissue did not perform well on another tissue type [21]. Therefore, the classifiers trained
on the TCGA-UCEC FFPE tissues cannot perform properly on the CPTAC frozen tissues.
Furthermore, the CPTAC dataset also contains small tissue samples such as biopsy or
small curettage specimens (Figure 5c). The dilatation and curettage may be able to deform
tissue morphology. In addition, because biopsy samples have fundamental limitations in
reflecting the overall contour of tumor histomorphology, the classifiers trained on resection
specimens may not perform well on biopsy or small curettage tissues. Whatever the reason,
the limited generalizability suggests that the TCGA dataset is not enough to train a classi-
fier performing generally well on real-world problems. More data from various institutes
should be collected to establish high generalizability. Recently, many countries started to
construct large datasets of pathologic tissue slides [22,23]. Therefore, the performance and
generalizability of DL-based tissue classifiers will be much enhanced with the accumulation
of more training data in the near future.

The distinction of the site of origin between cervical adenocarcinomas and endometrial
adenocarcinomas is important for clinical decisions especially for tumors involving both
the endometrium and the endocervix or for tumors with multiple lesions [7]. The decision
can be supported by immunohistochemistry for ER, p16, CEA, and vimentin or HPV in
situ hybridization [5]. However, there is no decisive marker and additional methods are
necessary to support the distinction. It is strongly recommended that various information
including clinicopathologic, immunohistochemical, and molecular data should be inte-
grated for proper differentiation of these cancers. We suggest that information from the
DL-based classifier can also be integrated into these data for more accurate decisions.

In the present study, we applied DL to classify H&E-stained tissues of cervical and
endometrial cancers. There have been other studies applying DL to assist the analysis of
gynecologic tumors. Many studies tried to improve cervical cancer screening results based
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on cervical cytology tests [24–26]. In these studies, DL can discriminate normal/cancer cells
from conventional Pap smear or liquid-based cytology. Grades of cervical intraepithelial
neoplasia can be determined by DL from either colposcopy images [27,28] or histology
images [29]. DL can also analyze hysteroscopy images to discriminate different types
of endometrial legions [30,31]. Normal endometrium, endometrial polyp, endometrial
hyperplasia, and endometrial adenocarcinoma can be discriminated by DL from H&E-
stained histopathologic slides [32]. Molecular profiles such as molecular subtypes or
microsatellite instability status of endometrial cancers can be predicted by DL directly
from H&E-stained WSIs [33]. These studies indicate that DL has tremendous potential to
support the assessment of patients with gynecologic tumors.

However, there are also limitations of DL. First, it is almost impossible for human
interpreters to understand how DL reaches to the classification results. This “black-box”
nature is one of the most important hurdles for the adoption of DL in clinical practice [34].
The effort to enhance the interpretability of DL is actively ongoing [35]. Second, DL cannot
perform well in inexperienced settings although the difference is not tremendous. For
example, a classifier trained on FFPE tissues has limited performance on frozen tissues
although the difference is not limiting to human. Therefore, separate DL models should be
trained for slightly different settings. Otherwise, a huge dataset covering every variation
should be used to train a widely available model.

In the present study, we demonstrated the feasibility of DL-based classifiers for the
subtypes of cervical and endometrial cancers and the site of origin of adenocarcinomas.
Although there is still room for improvement, our results showed that DL can capture
selective features for the discrimination of cancer tissues. We believe the performance
will be much enhanced with an accumulation of training data in the near future. The
classification results of DL can be integrated with other clinical information for a more
precise analysis of cervical and endometrial cancers.
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Simple Summary: Pancreatic cancer poses a grave threat to mankind, due to its poor prognosis and
aggressive nature. An accurate diagnosis is critical for implementing a successful treatment plan
given the risk of exacerbation. The diagnosis of pancreatic cancer relies on medical imaging, which
provides inaccurate information about the prognosis of the patient and makes it difficult for clini-
cians to select the optimal treatment. Data derived from medical imaging has been integrated with
artificial intelligence, an emerging technology, to facilitate clinical decision making. This review ex-
plores the implementation of artificial intelligence for various imaging modalities to obtain a precise
cancer diagnosis.

Abstract: Pancreatic cancer is among the most challenging forms of cancer to treat, owing to its
late diagnosis and aggressive nature that reduces the survival rate drastically. Pancreatic cancer
diagnosis has been primarily based on imaging, but the current state-of-the-art imaging provides a
poor prognosis, thus limiting clinicians treatment options. The advancement of a cancer diagnosis
has been enhanced through the integration of artificial intelligence and imaging modalities to make
better clinical decisions. In this review, we examine how AI models can improve the diagnosis
of pancreatic cancer using different imaging modalities along with a discussion on the emerging
trends in an AI-driven diagnosis, based on cytopathology and serological markers. Ethical concerns
regarding the use of these tools have also been discussed.

Keywords: pancreatic cancer; artificial intelligence; deep learning; cancer imaging; risk prediction

1. Introduction

Pancreatic cancer (PC) is among the most fatal and invasive tumors of the digestive
system [1]. It has been referred to as the king of cancer, due to its aggressiveness, invasive-
ness and rapid metastasis, poor survival, and poor prognosis [2]. Recent decades have wit-
nessed a surge in the incidence of pancreatic cancer across the globe that has been largely
linked to ageing, alcohol consumption, smoking, sedentary lifestyle, obesity, chronic pan-
creatitis, diabetes, hereditary factors, long-term exposure to air and water pollutants, un-
healthy lifestyle, and diet [1,3,4]. Surgery has been the main therapeutic intervention for
these patients. However, several factors, including the absence of specific clinical man-
ifestations and molecular markers, have resulted in the detection of the disease only at
advanced stages, thereby making surgical options ineffective. Therefore, an early diag-
nosis and accurate stratification of pancreatic cancer stages are important for improved
therapeutic outcomes. Pancreatic cancer diagnosis is challenging because the pancreas
is a deep-seated retro-peritoneal organ with complex surrounding structures. The highly
vascularized environment surrounding the pancreas facilitates rapid metastasis of the can-
cer that makes pancreatic cancer highly aggressive. The common symptoms of pancreatic

Cancers 2022, 14, 5382. https://doi.org/10.3390/cancers14215382 https://www.mdpi.com/journal/cancers
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cancer include abdominal pain, changes in the consistency of faeces, nausea, bloated body,
co-morbidities, such as diabetes and jaundice, abnormal liver function parameters, loss
of weight, etc. [5]. These symptoms usually become prominent only during the advanced
stage of the disease and are often missed during the early stages. Further, serological mark-
ers for pancreatic cancer, such as CA-19-9 (Carbohydrate antigen), are not highly specific
and indicate only the advanced stage of the disease, thereby increasing the mortality risk
of the affected individual. Several imaging tools, including magnetic resonance imaging
(MRI), computed tomography (CT), endoscopic ultrasound (EUS), etc., have also been
explored for the diagnosis of pancreatic cancer. Due to rapid advances in recent years,
imaging technology has emerged in the forefront for the diagnosis, staging, and prognosis
of pancreatic cancer [6]. However, distinction of a cancerous lesion from other pancreatic
disorders, such as pancreatitis, a chronic inflammation of the pancreas, remains a major
roadblock in the accurate and early diagnosis of pancreatic cancer. Despite the existence
of advanced imaging equipment, confirmation of pancreatic cancer is confirmed through
biopsy after imaging. Not only is this time-consuming, but it also increases the probability
of mortality in the affected individual, due to the inordinate delay. A study had reported
that nearly 90% of the misdiagnosis of pancreatic cancer was due to the inability to iden-
tify the vascular invasion and the difficulty in spotting the underlying tumour mass, due
to the inflammation [7]. Table 1 lists some of the common imaging techniques used for the
clinical diagnosis of pancreatic cancer, along with their merits and limitations.

Table 1. Major imaging techniques employed for the diagnosis of pancreatic cancer and their limita-
tions.

Technique Merit(s) Demerit(s)

Multidetector computed
tomography (MDCT)

• High sensitivity and specificity for the
detection of the vascular invasion;

• Short acquisition time;
• 3D image processing aids in the staging

of the cancer;
• Obtaining thin collimation images with

a high spatial and temporal resolution.

• Nephrotoxicity;
• Tissue/organ damage due to the

radiation exposure;
• Lack of an attenuation gradient between

the cancer tissue and pancreatic
parenchyma, leading to
erroneous predictions.

Magnetic resonance imaging (MRI)

• Low risk of ionizing radiation;
• Better sensitivity, specificity, and

accuracy when compared to CT
techniques;

• Non-invasive imaging of the
pancreato-biliary system by magnetic
resonance
cholangio-pancreatography (MRCP).

• Expensive;
• Limited availability;
• Problems associated with individuals

having metal implants.

Endoscopic ultrasound (EUS) with or without
fine needle aspiration (FNA)

• Can detect small cancerous lesions
2–5 mm in dimension;

• Highest diagnostic accuracy;
• Highly specific;
• Loco-regional staging can be detected.

• Cannot detect extra-abdominal
metastasis;

• Limited availability;
• Requires a trained operator.

Positron emission tomography (PET) • Useful in detecting metastasis.

• Staging of pancreatic cancer cannot be
conclusively determined;

• Expensive;
• Exposure to radiation.

Several approaches to improve the sensitivity and prediction accuracy of these imag-
ing techniques have been reported in the literature. These include the use of image con-
trast agents to improve the resolution and sensitivity and the use of image processing
software for a better diagnostic accuracy. In recent years, the emergence of artificial in-
telligence and deep learning has transformed the landscape of an image-driven diagnosis
of pancreatic cancer with a dramatic improvement in the prediction accuracy. The vari-
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ous attempts to integrate artificial intelligence for the diagnosis of pancreatic cancer are
discussed in the following sections.

2. Artificial Intelligence for Diagnostic Applications

The advances in computer technology, witnessed in the recent decades, coupled with
the development of effective image processing strategies, have ushered in a new era of dig-
ital medicine. As a result, clinical personnel can avoid the laborious medical image analy-
sis performed manually, thus saving time as well as overcome errors in diagnosis arising,
due to the differences in expertise and clinical exposure [8]. The 21st century has witnessed
the widespread use of artificial intelligence (AI) that employs computer programs to per-
form tasks associated with human intelligence, such as learning and problem-solving. The
phrase artificial intelligence was first coined by John McCarthy in the mid-1950s, and has
since evolved from a set of if-then commands to more complex algorithms that mimic the
human brain in some aspects [9,10]. The application of AI tools has resulted in the emer-
gence of a new field of clinical diagnosis, namely, precision oncology that uses a large
volume of data from genomics, proteomics, and metabolomics [11]. AI-based cancer di-
agnosis is mainly driven by machine learning (ML) and deep learning (DL) techniques.
Machine learning uses computational methods to analyse large volumes of data and iden-
tify patterns for prediction [12]. ML can be supervised where it uses data from previous
trials/measurements for the identification of patterns or trends for making predictions.
Thus, for a pancreatic cancer diagnosis, CT or PET scans, ultrasonographs, and MRI data
can be used to train the system to identify abnormalities that can be classified as pancreatic
cancer. The prediction accuracy can be better if large numbers of dataset are used for the
training. Different mathematical models and algorithms can be iteratively used during the
training period to identify the most efficient model, the accuracy of which can be validated
using a testing dataset. The advantage of such supervised ML models is that they can ex-
tract meaningful features and identify patterns or subtle changes that could be missed by
human personnel, due to oversight or exhaustion. Hence, the prediction accuracy of ML
for a cancer diagnosis is higher. ML can also be unsupervised where it can discern patterns
and trends from unclassified data. However, the accuracy of the prediction is slightly com-
promised when compared to the supervised models [13]. The 3D reconstruction of images
has also been realized by the ML models for a superior diagnostic accuracy [6].

Another type of ML that is yet to be applied for cancer diagnosis, is reinforcement
learning where the algorithm uses the data to understand and respond to the environment
predominantly by a trial-and-error process [14]. In other words, reinforcement learning
is an advanced concept that could also facilitate decision-making, in addition to predic-
tion [15]. Thus, apart from a diagnosis of pancreatic cancer, reinforcement learning could
be used to alert clinicians in remote locations or trigger actuators for releasing a therapeu-
tic agent. These concepts, though attractive, are yet to be realized, but could very well
represent the diagnostic technology of the future. Deep learning is another sub-type of AI
that uses large data sets and complex algorithms that mimic the human brain to enable
prediction, forecasting, and decision-making [16,17]. Most of the DL is supervised and
uses data for training for the decision-making process, unlike reinforcement learning that
is a dynamic process which relies on a trial-and-error method for the same. Both DL and
reinforcement learning are advanced concepts that require a longer duration for training
and testing [18]. DL employs convolutional neural networks (CNNs) and artificial neural
networks (ANNs) extensively for decision-making [19].

A plethora of supervised and unsupervised ML and DL models continue to be devel-
oped and explored for improving the accuracy of a pancreatic cancer diagnosis at the early
stage which could be invaluable in enhancing the survival of the affected individual [20].
The complexity of the algorithms will reflect the type of functions they can perform rang-
ing from feature extraction, simple clustering or segregation of data, classification of data,
prediction, forecasting, and decision-making [21]. Algorithms such as Naive–Bayes, sup-
port vector machine, linear regression analysis, ensemble methods, decision tree, K-mode,
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hidden Markov model, hierarchical, Gaussian mixture, and neural networks have all been
explored with different imaging data sets for distinguishing cancerous tissue from non-
cancerous tissues [22]. The work flow in the detection of cancer using ML is depicted in
Figure 1.

Figure 1. Work-flow of the stages during the training of the ML models for the diagnosis of
cancer lesions.

The classification of images for diagnosis using various AI models can be broadly
divided into one-stage and two-stage methods. The one-stage method segments the med-
ical image into grids and applies the model for classification while the two-stage method
demarcates several candidate zones that are used for classification during the training.
Though time-consuming, the two-stage object method identifies and screens regions of
interest resulting in more accurate predictions. Region-based convolution network (R-
CNN), Fast R-CNN, and Faster R-CNN have been employed in the two-stage method as
an integrated network for discriminative feature extraction, segmentation, and classifica-
tion for an improved cancer detection without compromising the spatial structures [6].

3. AI Models for the Diagnosis of Pancreatic Cancer

Medical imaging has been widely used for locating and diagnosing cancerous tissue
in the gastrointestinal tract. Current analysis is largely dependent upon the expertise and
experience of the clinician. The quality of the images also influences the diagnosis through
conventional methods [23]. The field of digital pathology continues to evolve from the first
generation of image processing that involved the use of image processing tools to analyse
a single slide, to much more advanced second-generation tools that could scan, analyse,
and store records of whole tissue samples. The current paradigm in digital pathology
involves the use of AI-based algorithms to analyse images, diagnose the condition with
a high accuracy, and even predict the possibility of developing the disease even before
the onset of the disease [24]. The development of AI-based tools has enabled the rapid
and high precision diagnosis of cancer using different medical images [25]. In the context
of pancreatic cancer, AI-based diagnostic tools have been employed for risk prediction,
survival prediction, and the distinction of cancer masses from other pancreatic lesions as
well as for the evaluation of the response post-therapy.

Machine learning tools, such as the K-nearest neighbour (k-NN), ANN, and SVM,
have been extensively investigated for their ability to extract unique signatures from med-

308



Cancers 2022, 14, 5382

ical images that could be used for the identification of abnormalities [26] in different types
of digestive system cancers that also includes pancreatic cancer [27]. The k-NN algorithm,
first introduced in 1967 by Cover and Hart, calculates and predicts the distance between
the values of the specified features in the sample data and training data. Based on the
calculated distance, the sample data is grouped with its nearest neighbour class [28]. The
k-NN concept was employed by Kilicet al. [29] to identify colonic polyps using region
covariance in CT-colonography images as the distinguishing features. In another report
employing k-NN [30], the gray level co-occurrence matrix was employed as the classifying
feature in medical images of the brain and pancreatic cancers. However, k-NN is limited
by issues pertaining to local structure sensitivity and the possibility of over-fitting, leading
to errors.

Artificial Neural Networks (ANNs), the concept of which was first proposed in the
early 1940s by McCulloch and Pitts, attempt to mimic the human neuronal network. The
input layer receives the input signal that is then passed on to each of the inner hidden
layers that understands and transforms them and passes it on to the next layers, until
it reaches the final output layer [31], as shown in Figure 2. Unlike k-NN models that
can only handle limited data, the ANN model is adaptive and can be trained using large
volumes of data to become more robust and accurate. The progress in ANNs has been
accelerated, due to advances in big data, affordable graphics processing units (GPUs) and
the development of novel algorithms [32]. The ANN method used in diagnosing digestive
cancers is the back-propagating (BP) network that was first introduced in 1986 by Rumel-
hart [33]. This strategy enables the error correction as the output is sent back to the inner
layers if found erroneous, to refine the output parameters during the training period. This
iterative process ensures the minimization of errors and the improved accuracy. In the
context of a pancreatic cancer diagnosis, Săftoiu et al. [34] successfully employed ANNs
to differentiate chronic pancreatitis and pancreatic adenocarcinoma, using endoscopic ul-
trasound images with a sensitivity of 94%. The ANN method has advantages of being
able to handle large data sets and predict all types of interactions and inter-relationships
between dependent and independent variables [35]. However, ANN algorithms are slow
when large numbers of inputs are provided during the training period and require a large
computational load, apart from adopting a black-box approach that makes it challenging
for achieving accuracy in multi-layer networks [36].

To overcome some of the limitations of ANNs, Vapnik et al. [37] developed a super-
vised learning algorithm, in 1995, known as the support vector machine (SVM) algorithm,
that defines the boundaries known as support vectors to construct a hyperplane, which is
used to classify data [38]. The negative and positive boundaries and the maximum margin
are defined, based upon the training set of data fed as inputs. The SVM is capable of pat-
tern recognition and regression analysis in addition to the classification of data [39]. Zhang
et al. [40] had effectively applied the SVM to identify pancreatic cancers from EUS images,
by classifying textural features to achieve a detection accuracy of 99.07%. Though SVM
models display a high accuracy and can work with remarkable efficiency when there is a
clear demarcation of the data classes, its efficiency reduces when the size of the data set in-
creases or when there is extensive overlap of the data. In addition, despite being memory
efficient, SVM algorithms are slow, both during the training, as well as the testing phases.
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Figure 2. Schematic representation of the process flow in a sample ANN model for the diagnosis of
pancreatic cancer.

Deep learning networks exhibit superior diagnostic abilities when compared to ML
models as they could extract all features rather than selected ones from the medical images,
as in the case of ML. As a result, DL models are preferred for the detection of digestive
cancers and image segmentation [41]. Convolutional neural networks (CNNs) are among
the most extensively employed supervised DL techniques. These consist of input layers
where different clusters of nodes, each for a specific feature, interact with the hidden layers
that have the same weightage and bias and perform convolutional operations on these in-
puts. These are then pooled and transformed to give the final output [42]. A typical CNN
network comprises the input, convolutional, activating, pooling, fully connected, and out-
put layers [43]. CNNs are computationally efficient but consume lots of computational
power and are slow. CNNs provide a probabilistic depiction of the complete image that
can be preferably employed for the image classification, rather than the segmentation [44].
Among the various types of CNNs, U-Net algorithms that use fewer convolutional layers
have also been commonly employed for the diagnosis of digestive cancers, including pan-
creatic cancer, by classifying and segmenting specific features in the medical images [45].
The LeNet, proposed by Lecunet al. [46] in 1989, is considered the basic structure of CNNs.
Several other variants, such as AlexNet, VGGNet (visual geometry group), Inception Net,
and ResNet, have been introduced, between 2012 and 2015, that vary in the number of con-
volutional and pooling layers employed [47]. In the context of digestive cancers, Sharma
et al. [48] classified and detected necrosis in medical images of gastric carcinoma using the
AlexNet architecture with a classification accuracy of 69.9% and a detection accuracy of
81%. Colonic polyps were automatically detected by Shin et al. [49] from colonoscopy im-
ages using the Inception-Resnet network. Long et al. [50] proposed a fully convolutional
network (FCN) model, in 2015, for the semantic segmentation where each pixel is classi-
fied as an image. As the final fully connected layer is substituted by a convolutional layer
in the FCN, resulting in the superior segmentation effects, it has been extensively studied
for the diagnosis of digestive cancers. Oda et al. [51] employed a three-dimensional FCN
model to segment the pancreas automatically using CT images and an average Dice score
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of 89.7 ± 3.8, was obtained. The Dice score indicates the precision of the segmentation
model employed by eliminating false positives and is computed as follows:

Dicescore = 2 × areao f overlapbetweentwoimagesets
totalnumbero f pixelsinbothimages

(1)

Generally, a Dice score above 88% is considered highly precise. In another study, Guo
et al. [52] employed a Gaussian mixture model and used morphological operations on a
three-dimensional U-Net segmentation technique, to achieve an improved segmentation
accuracy with a Dice score of 83.2 ± 7.8%. It is also evident from the various reports, that
the type of AI tool employed will be different for various imaging techniques. The follow-
ing sections highlight some recent AI-based strategies for different imaging modalities.

4. Endoscopic Ultrasound (EUS)

Endoscopic ultrasound (EUS) employs high-frequency ultrasound (US) for the visu-
alization of the size and location of the primary tumor in the pancreas. The ultrasound
probe can be maneuvered close to the pancreas for acquiring images of the entire pancreas
or the specific locations of suspicious masses or lesions [53]. Advances in the transducer
design and the advent of colour Doppler techniques, have contributed to an improved di-
agnosis and staging of pancreatic cancer. Currently, the sensitivity of EUS, for identifying
cancerous lesions in the pancreas, lie in the range 85–99%, that is comparatively superior
to CT techniques. Specifically, EUS can detect small lesions in the range of 2–3 mm [54].
For instance, the accuracy of diagnosis for pancreatic tumors with a diameter of 3 cm was
reported to be 93% for EUS images, which was significantly superior to CT (53%) and MRI
(67%) techniques [55]. Though several literature reports have highlighted the effectiveness
of EUS over other medical imaging techniques for the diagnosis of pancreatic cancer and
its staging, the resectability has been found to be better predicted only using a combina-
tion of CT and EUS images [56,57]. The EUS-driven fine needle aspiration (EUS-FNA)
technique has enabled tissue sampling and the evaluation of the primary tumour site, as
well as the neighbouring lymph nodes with nearly 100% specificity, that otherwise pose
a challenge for detection, using other imaging modalities [58]. The EUS-FNA combina-
tion achieved diagnostic accuracies of up to 85%, that are a significant improvement over
the 50% accuracy obtained using a CT-assisted diagnosis [59]. However, the EUS-FNA
combination is not available in many healthcare institutions. Additionally, the combina-
tion requires experienced operators for the precise insertion of the needle that has a major
bearing on the diagnostic outcomes [60].

One of the major challenges for clinicians is to distinguish cancerous lesions in the
presence of chronic pancreatitis (CP), as the neoplastic features are masked by the inflam-
mation [61]. Norton et al. in 2001 [62], employed neural network models to analyse EUS
images for differentiating pancreatic ductal adenocarcinoma (PDAC) and CP, using four
different image parameters. Though a high sensitivity was achieved, this strategy resulted
in a poor specificity of only 50%. In another attempt, Zhu et al. [63] employed a support
vector machine model to extract features from EUS images recorded for 262 individuals
affected with pancreatic cancer and 126 individuals with CP. The model extracted 105 dis-
tinctive features out of which 16 were selected to differentiate pancreatic cancer and CP
with a 94% sensitivity. Similarly, the SVM was used by Zhang et al. [40] to differentiate
PDAC and normal tissue using29 features identified in EUS images with a sensitivity of
97.98%. In another attempt, Das et al. [64] employed a combination of image analysis
and ANNs to demarcate the cancerous zones in EUS images, acquired from individuals
affected with pancreatic cancer with a high accuracy of 93%. In another effort employing
multilayer perceptron neural networks (MNNs), a type of ANN, Ozkan et al. [65] catego-
rized EUS images of non-malignant and malignant tissues, based upon various age groups
of the patients namely, <40 y, 40–60 y, and >60 y. The MNNs employ a visible layer that
receives an input that is passed onto inner units that are denoted as hidden layers, as they
do not directly receive the input. The final hidden layer turns out the output. The error is
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calculated, based on the deviations from the expected output and these are used to modify
the layers to reduce the error during the training period. In another study [66], both one
and two hidden layers were employed that exhibited a 97% accuracy with the training
data set and a 95% accuracy with the testing data set for discriminating the malignant and
non-malignant samples in the different age categories. The high accuracy was achieved
for the data sets that were initially segregated into different age groups when compared
to their uncategorized counterparts.

Yet another independent study employed MNNs for identifying pancreatic cancer
from images of cell clusters, obtained from individuals using fine needle aspiration (FNA).
Post-training, the MNN model was found to match the accuracy of an experienced cy-
topathologist. Additionally, the MNN model was able to predict accurately even incon-
clusive images, with 80% sensitivity, clearly demonstrating the promise of this tool for
the screening of FNA specimens for pancreatic cancer with a conclusive diagnosis, espe-
cially those that are deemed inconclusive by cytopathologists. In an interesting study,
a computer-assisted diagnosis (CAD) system was developed to analyse EUS images, us-
ing deep learning models (EUS-CAD) to identify PDAC, CP, and a normal pancreas (NP).
The training set used 920 EUS images and the testing set used 470 EUS images. The detec-
tion efficiency was 92% and 94% in the validation and testing phases, respectively. Errors
in diagnosis were identified only using the multivariate analysis of non-PDAC cases that
was attributed to mass formation resulting in an over diagnosis of tumours [67].

EUS images of intraductal papillary mucinous neoplasms (IPMNs), that are precur-
sors of PDAC, were analysed using deep learning algorithms to predict malignancy, using
EUS images of patients acquired before a pancreatectomy. A total of 3970 images were
used for the study and the malignant probability was calculated. The probability of the
deep learning algorithm to diagnose malignant IPMN was 0.98 (p < 0.001) with a sensitiv-
ity, specificity, and accuracy of calculated to be 95.7%, 92.6%, and 94.0%, respectively. The
accuracy was significantly superior to the corresponding human diagnosis (56.0%) [68].
A comparison of the literature on pancreatic cancer discrimination from EUS images using
AI tools revealed that deep learning and ANN techniques exhibited the greatest accuracy,
followed by CNNs and the SVM. However, the literature reports chosen for the study had
used images that compared normal and pancreatic cancer while some had tried to differen-
tiate pancreatic cancer with CP. Similarly, the size of the cancerous tissues varied between
the studies [69]. Therefore, additional studies are required to address if these differences
could reflect in the prediction accuracy of the AI tool employed.

5. MRI

MRI is used to visualise the thinned slices of two-dimensional or three-dimensional
soft tissues, due to the presence of water molecules in our body. The shift in the pre-
cessional frequency and alignment of the nuclei of the protons in the water molecule, in
the presence of an external applied magnetic field and radiofrequency, is used for acquir-
ing the image. The technique measures the relaxation times, T1 and T2 that denote the
spin-lattice and spin-spin relaxation, respectively, to reach the original equilibrium posi-
tion [70]. Relaxitivities (r1 and r2), which are the inverse of the respective relaxation times
are also measured. Most of the cases employ positive or negative contrast agents, such as
gadolinium-based chelates or iron oxide, respectively, to significantly enhance the ratio of
the relaxivities for an improved resolution and sensitivity [71].

Early detection of pancreatic cancer is essential to provide the affected individual
with a fair chance of survival beyond five years. However, most imaging techniques, in-
cluding MRI, fail to identify conclusively subtle changes observed in the pre-malignant
stages, such as the pancreatic intraepithelial neoplasia, which is commonly associated
with the tumorigenesis of PDAC [72]. Even an individual with stage I (localized) pancre-
atic cancer has only a 39% survival rate over a five-year period [73]. In a typical example
of the use of AI for diagnosis using MRI images, a supervised machine learning (ML) algo-
rithm was developed to predict the overall survival rates in PDAC affected patients, using
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a cohort of 102 MRI images during training and a further 30 images during the testing pe-
riod [74]. The algorithm was used to segment the images extract features. The sensitivity
of the ML algorithm was 87%, while the specificity was determined to be 80%. The consid-
erable overlap between the clinical histopathological conclusions and the ML-driven pre-
dictions indicates the promise of this strategy for classifying pancreatic cancer sub-types
and diagnosis.

Another study [75] had investigated the ability of deep learning to distinguish be-
tween different pancreatic diseases from magnetic resonance (MR) images that were
contrast-enhanced, using the T1 contrast agent gadopentetate dimeglumine. The gener-
ative adversarial network (GAN) form of machine learning can generate new sets of data
which resemble/mimic the data used for training. GAN was employed to generate syn-
thetic images that augmented the T1 contrast enhanced MRI data of 398 subjects within
the age range of 16 and 85 years, acquired before the commencement of any treatment
from a single hospital centre. The Inception-V4 network, a type of CNN with multiple
hidden layers, was trained on the GAN augmented data set. Following the training, the
MRI images acquired from two different hospital centres, comprising 50 images from sub-
jects in the age group 24–85 years, and 56 images from patients aged between 26–80 years,
were used for validating the performance of the Inception-V4 network towards the disease
classification. The results were compared with the predictions made by the radiologist.

To augment the diagnostic accuracy of MRI on paediatric pancreatic cancer, Zhang
et al. [76] used a quantum genetic algorithm to optimize the parameters of a traditional
SVM classification model, for the improved prediction accuracy. In addition, this study ac-
quired test samples from real life cases, and assessed the image processing performance of
the algorithm for an efficient detection. The results revealed that the model distinguished
clearly the cancer features with a high accuracy when compared with the conventional de-
tection algorithm. Another study had employed a robust and intelligent method of ANNs
combined with the SVM for the classification of pancreatic cancer to improve the diagnos-
tic process, in terms of both accuracy and time [77]. Here, features of the MR images of the
pancreas were extracted using the GLCM (gray-level co-occurrence matrix) method, a sec-
ond order image texture analysis technique, that defines the spatial relationships among
pixels in the region of interest. The best features extracted, using the JAFER algorithm,
were analysed using five classification techniques: ANN BP (back propagation ANN),
ANN RBF (radial basis function ANN), SVM Linear, SVM Poly (polynomial kernel), and
SVM RBF (radial basis function SVM). The two best features selected, using the ANN BP
techniques were used for the classification of pancreatic cancer with a 98% accuracy.

Corral et al. [78] employed a deep learning tool to identify neoplasia in intraductal
papillary mucinous neoplasia (IPMN), using CNNs for the classification of the MRI scans
of the pancreas. The classification was based on the guidelines issued by the American
Gastroenterology Association, as well as the Fukuoka guidelines. When tested in 139 MRI
scans of individuals, among which 22% were of a normal pancreas, 34% had a low-grade
dysplasia while 14% were diagnosed with a high-grade dysplasia and the remaining 29%
had adenocarcinoma, the model exhibited a detection sensitivity of 92% and a specificity
of 52% for the detection of dysplasia. The deep learning technique exhibited an accuracy
of 78%, in comparison to the 76% obtained by the classification using the American Gas-
troenterology Association guidelines.

For improving the accuracy, reliability, and efficiency of diagnosis, Chen et al. [79]
developed an automated deep learning model (ALAMO) for the segmentation of multi-
ple organs-at-risk (OARs) from the clinical MR images of the abdomen. The model had
included training procedures, such as Multiview, deep connection, and auxiliary supervi-
sion. The model used multislice MR images as the input and generated segmented images
as the output. The model was investigated using ten different OARs, such as the pancreas,
liver, spleen, stomach, duodenum, small intestine, kidneys, spinal cord, and vertebral
bodies. The results from the model correlated well with those obtained using the manual
techniques. However, further studies integrating AI-based algorithms with these ALAMO
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generated segmented MR images of the pancreas are required for the extraction of features
to confirm the onset or progression of PC.

6. Computed Tomography

A computed tomography (CT) scan is a non-invasive clinical imaging technique that
employs X-rays to obtain images at different angles. The resultant images are processed
using customized software to obtain a reconstructed 3D image, which provides valuable
anatomical information [80]. This technique is widely employed in healthcare centres for
the diagnosis of tumours or internal injuries [81,82]. Despite its merits, CT scan images
pose a challenge to clinicians for the accurate diagnosis of cancers, owing to irregular con-
tours presented by regions with lesions, vasculature, bony structures, and soft tissues that
display a mosaic of densities and intensities [83]. Additional challenges involved in the
precise prediction of the disease from the CT scans are associated with fuzzy and noisy im-
ages that lack adequate contrast [84]. AI-driven methods that enable image segmentation,
contour identification, and disease classification, therefore will be invaluable in improving
the prediction efficiency for pancreatic diseases from CT images [85]. The currently em-
ployed conventional image segmentation models consume considerable computational
time and power, as they perform every operation for each pixel in the image [86]. Further,
the resultant processed image quality also lacks quality, thereby necessitating the develop-
ment of more robust tools for AI-driven tools for image segmentation and processing that
may provide a better diagnostic accuracy [87]. In an interesting study [88], about 19,500
non-contrast CT scan images, acquired from 469 scans, were segmented using CNNs and
the mean pancreatic tissue density, in terms of the Hounsfield unit (HU), as well as the pan-
creatic volume, were computed using the CNN algorithm. The comparison of the results
of the pre-diagnostic scans from individuals who later developed PDAC and those that
remained cancer-free, revealed that there was a significant reduction in the mean whole
gland pancreatic HU of 0.2 vs. 7.8 in individuals who developed PDAC. This suggests
that the attenuation of the HU intensity in the CT images of the pancreas could imply
a risk of PDAC. This study has opened new avenues for employing CNNs as a tool for the
pre-diagnosis/very early diagnosis of PDAC from CT scan images.

In another attempt to classify PDAC, a regular CNN algorithm with four hidden
layers was trained using CT images obtained from 222 affected individuals and 190 non-
cancerous individuals. Though a diagnostic accuracy of 95% was achieved using CNNs,
it was not superior to the predictions made by human experts indicating the need for an
appropriate AI architecture for the classification of pancreatic cancer [89]. Zhang et al. [90]
employed feature pyramid networks with a recurrent CNN (R-CNN) that could identify
the sequential patterns and predict the subsequent patterns of a given data set for classi-
fying PDAC from CT scan images. A dataset of 2890 CT images was employed for train-
ing the network to achieve a classification accuracy of about 94.5%. Though this method
proved to be superior to the existing methods, it was limited by the input uncertainty
that is generally associated with closed-source data. This drawback could be eliminated
by using a public data set for training. In a more advanced variant, a 16-layer VGG16
CNN model was employed along with R-CNN to diagnose PDAC from 6084 enhanced
CT scans obtained from 338 PDAC-affected individuals. The combination of VGG16 and
R-CNN exhibited a high prediction accuracy of about 96%. Each CT image was processed
by the R-CNN within 0.2 s that was considerably faster than a clinical imaging expert [6].
Additionally, a deep learning algorithm has been developed by Chen et al. [91] for detect-
ing pancreatic cancer that is smaller than 2 cm on CT scans. The study result showed that
the CNN was effective in distinguishing patients with pancreatic cancer from normal pan-
creatic individuals, achieving an 89.7% sensitivity and a 92.8% specificity. It also showed a
higher sensitivity of 74.7% for the identification of pancreatic cancer malignancies, smaller
than 2 cm.

An attempt to employ CNN models to distinguish different kinds of pancreatic cysts
was made using CT images from 206 patients. Among these individuals, 64 suffered from
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intraductal papillary mucinous neoplasms (IPMNs), 66 had been diagnosed with serous
cystic neoplasms (SCN), 35 had mucinous cystic neoplasms (MCNs) while 41 individuals
suffered from solid pseudopapillary epithelial neoplasms (SPENs). The feature extraction
from the CT images and classification of the type of pancreatic cyst, was accomplished
using densely connected convolutional network (Dense-Net) architecture that uses dense
layers which receives inputs from all neurons/nodes and dense blocks connecting all lay-
ers by the shortest route. The Dense-Net algorithm performed better than the conven-
tional CNN model in discriminating between the different types of cysts with the highest
accuracy of 81.3% observed for IPMNs followed by 75.8% for the SCNs and 61% for the
SPENs [92]. Though the Dense-Net model outperformed the CNNs in all categories, the
study lacked information on the tumour size and failed to provide reasons for the positive
and negative errors encountered in the identification of the type of pancreatic cysts. The
model needs to be tested rigorously with a wider range of cysts to understand its capabil-
ity for discriminating between different types of pancreatic cysts if it is to be adopted in
the clinics.

7. Positron Emission Tomography (PET)

Positron emission tomography (PET) employs short-lived radioisotope tracers that
emit positrons. These positrons destructively interact with an electron to generate pho-
tons, which are recorded for generating the PET image. The tracer can be differentially
localized in various tissues by conjugating with a biomolecule for a better target speci-
ficity [93,94]. The PET scans provide additional information about the functioning of an or-
gan. Commonly employed tracers include 18F, 15O, 13N, and 11C, that have half-lives of
109.74 min, 122.24 s, 9.97 min, and 20.38 min, respectively [95]. PET imaging has been
also used to diagnose the recurrence of pancreatic cancer as well as to understand the re-
sponse of the cancer tissue to different therapeutic interventions. Despite several studies
that have shown the diagnostic efficiency of PET scans towards pancreatic cancers with
a sensitivity in the range of 85% and above [96], several factors, such as the dysregulated
glucose metabolism and inflammation interfere with the sensitivity of the diagnosis from
PET images, resulting in false positives [97]. PET scans are also ineffective in diagnosing
pancreatic cancers when the tumour mass has a diameter below 2 cm [98]. This necessi-
tates the use of advanced AI-aided algorithms for the discrimination and classification of
cancerous masses from the PET scan images.

For imaging cancers, 18F substituted glucose or fluorodeoxyglucose (FDG) has been
frequently used, due to the high consumption of glucose by cancer cells to meet its metabolic
requirements [97]. PET scans have been employed frequently in conjunction with MRI or
non-contrast CT, owing to their poor spatial resolution for the diagnosis of cancers, includ-
ing their staging [99]. To overcome challenges in discriminating cancerous lesions from
non-contrast CT images, 18F- FDG PET/CT imaging of pancreatic cancers was used by Li
et al. [100], in conjunction with a SVM algorithm. The region of interest (ROI) identified
in the CT image of the pancreas was initially segmented, using a simple linear iterative
clustering (SLIC) followed by the feature extraction using the dual threshold principal
component analysis (DT-PCA). Finally, a hybrid feedback-SVM-random forest algorithm
(HFP-SVM-RF) was used to classify the pancreatic cancerous lesions. The random forest
model is a type of supervised machine learning model that is widely used for classification
and decision making. The hybrid model exhibited an accuracy of 96.5% when tested using
the PET/CT images of 40 patients with pancreatic cancer and 40 non-cancer individuals.
The hybrid algorithm when tested using 82 public PET/CT scans exhibited a similarity
score of 78.9% and 65.4%, when compared with the ground-truth contours using the Dice
coefficient and Jaccard index, respectively, suggesting there is scope for further improve-
ment in the diagnostic performance.

Radiomics is a feature extraction method that has been widely used in image pro-
cessing tools. A combination of radiomics with machine learning was employed for the
prognostic prediction of the survival rate from 18F-FDG-PET scans of 138 patients with
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pancreatic cancer. A random forest model was used for the classification of 42 features
extracted from the PET images. The model revealed that the gray-level zone length ma-
trix (GLZLM), the gray-level non-uniformity (GLNU) in the images as the top factor that
influenced the one year survival, while the total lesion glycolysis ranked second. This in-
formation was used to stratify individuals into poor prognosis groups with a high risk of
mortality [101].

It is thus evident that every imaging technique will require customized robust algo-
rithms to extract the subtle but distinctive features of pancreatic cancer for the accurate
identification and stratification. The evolution of new ML algorithms continues to im-
prove the sensitivity and selectivity of the diagnosis of pancreatic cancer at an early stage,
thereby improving the survival chances of the affected individual. Table 2 lists some of
the major studies, using various AI driven models for the diagnosis of pancreatic cancer.

Table 2. Summary of the AI driven models for the pancreatic cancer diagnosis.

Modality AI Model
Study

Population
Purpose Sensitivity Specificity Accuracy Reference

CT CNN 27

Pancreatic
cystic

neoplasm
malignancy
prediction

- - 92.9 Watson et al.,
2021 [102]

CT Naïve Bayer
classifier 72 PDAC

identification - - 86 Ahamed et al.,
2022 [103]

CT CNN 1006 Pancreas
segmentation - - - Lim et al.,

2022 [104]

CT CNN 68
Serum tumor

marker
analysis

89.31 92.31 - Qiao et al.,
2022 [105]

CT CNN 513

Pancreatico
enteric

Anastomotic
Fistulas

prediction
after a

pancreatoduo-
denectomy

86.7 87.3 87.1 Mu et al.,
2020 [106]

CT ANN 62
Acute

pancreatitis
risk prediction

- - - Keogan et al.,
2002 [107]

CT Support vector
machine 56

PDAC
histopathologi-

cal grade
discrimination

78 95 86 Qiu et al.,
2019 [108]

CT CNN 370 patients,
320 controls PC detection 97.3 (Test set 1)

99 (Test set 2)
100 (Test set 1)
98.9 (Test set 2)

98.6(Test set 1)
98.9 (Test set 2)

Liu et al.,
2020 [109]

CT Deep learning 750 patients
575 controls

PDAC
detection - - 87.8 Chu et al.,

2019 [110]

CT CNN 222 patients
190 controls PC diagnosis 91.58 98.27 95.47 Ma et al., 2020 [89]

CT DCNN 2890 CT
images

Pancreatic
cancer

detection
83.76 91.79 94 Zhang et al.,

2020 [90]

CT Deep learning 319

Preoperative
pancreatic

cancer
diagnosis

86.8 69.5 87.1 Si et al., 2021 [111]
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Table 2. Cont.

Modality AI Model
Study

Population
Purpose Sensitivity Specificity Accuracy Reference

CT ANN 898 Cancer risk
prediction 80.7 80.7 - Muhammad et al.,

2019 [112]

CT CNN 669 patients
804 controls

PC
differentiation 89.7 92.8 - Chen et al.,

2022 [91]

MRI CNN 139

Identification
of intraductal

papillary
mucinous
neoplasia

75 78 - Juan et al.,
2019 [78]

MRI CNN 27
Automatic

image
segmentation

- - - Liang et al.,
2020 [113]

MRI ANN 168 PDAC
differentiation - - 96 Devi et al.,

2018 [114]

EUS CNN 583
Autoimmune
pancreatitis
from PDAC

90 85 - Marya et al.,
2021 [115]

EUS CAD
920

(Validation)
+470 (test)

PDAC
detection - - - Tonozuka et al.,

2021 [67]

EUS ANN
202 (cancerous)

& 130 (Non-
cancerous)

Computer-
aided

pancreatic
cancer

diagnosis
using image
processing

83.3 93.3 87.5 Ozkan et al.,
2019 [65]

EUS ANN 258
Pancreatic

lesion charac-
terization

- - 91 Saftoiu et al.,
2012 [34]

EUS ANN 388 PDAC and CP
differentiation 96 93 94 Zhu et al., 2013

[63]

EUS ANN 167 PDAC and CP
differentiation 94 94 - Saftoiu et al.,

2015 [116]

EUS ANN 56
Normal, CP
and PDAC

differentiation
- - 93 Das et al., 2008 [64]

EUS ANN 21 PDAC and CP
differentiation - - 89 Norton et al.,

2001 [62]

PET/CT SVM 80
Pancreatic

cancer
segmentation

95.23 97.51 96.47 Li et al., 2018 [100]

8. Pancreatic Cancer Risk Prediction Using AI

Since pancreatic cancer is a highly aggressive form of cancer that is largely asymp-
tomatic in the early stages and has a tendency to spread rapidly, leading to poor survival
duration post-diagnosis, the AI-based prediction of the risk of developing pancreatic can-
cer could be an immensely useful strategy for improving the prognosis for an individual.
Muhammad et al. [112] had successfully employed ANNs from personal health data to
predict and stratify the pancreatic cancer risk as a low, medium, or high risk ,with a sensi-
tivity and specificity of 80.7%.This study highlights the ability of the AI-based predictive
tools for the effective management of the pancreatic cancer risk even before the manifes-
tation of symptoms. Similarly, Corral et al. [78] had employed an AI algorithm to identify
pancreatic cysts that pose a high risk of transforming into cancerous lesions. Such a pre-
diagnosis could help clinicians in designing adequate preventive interventions to save
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lives. The detection of subtle textural and morphological changes in CT and MRI scans
of the pancreas could also be facilitated through customized AI algorithms [117]. Several
attempts have also been reported to employ AI tools to predict the risk of developing
pancreatic cancer from biomarker measurements, as well as abdominal scans to discern
pre-cancerous abnormalities [117].

9. AI-Driven Diagnosis Based on Cancer Biomarkers

The serological detection of PC is based on the quantification of a biomarker whose
levels are altered in cancerous conditions. However, a single marker could not accurately
diagnose a specific type of cancer as there are several other conditions that could modu-
late the levels of said biomarker. Hence, multiple biomarkers need to be analysed, to accu-
rately diagnose PC. In an earlier work, protein markers from the serum of 27 normal and
27 individuals diagnosed with pancreatic cancer, were profiled using surface-enhanced
laser desorption ionization (SELDI), and were classified using a decision tree algorithm,
based on which six serum proteins were identified as pancreatic cancer biomarkers [118].
Carbohydrate antigen 19-9(CA19-9) is the most extensively explored protein biomarker of
pancreatic cancer. However, several studies have indicated that CA19-9, by itself, could
not be an effective predictor of pancreatic cancer and hence the search for additional diag-
nostic protein markers in serum are underway [119]. Analysis of datasets from microarray
and the next generation sequencing of samples for the gene expression or serum protein
expressions using deep learning and machine learning algorithms, could aid in identify-
ing the most promising protein biomarkers that aid in the early detection of pancreatic
cancer. For instance, the SVM based algorithm, in combination with the recursive fea-
ture elimination (RFE), was employed to screen the gene expression datasets of 78 sam-
ples, for additional pancreatic cancer biomarkers. Seven gene targets were short-listed
among the genes encoding for the proteins FOS that encodes for the leucine zipper pro-
tein, MMP7 (matrix metalloproteinase-7), and A2M (alpha-2-macroglobulin), were pre-
dicted to be more accurate diagnostic markers for pancreatic cancer, not only in serum,
but also in urine samples [120]. Similarly, ANN-based methods have been employed to
analyse the levels of key serum biomarkers implicated in PC, such as CA19-9, CA125, and
carcinoembryonic antigen (CEA), from 913 samples obtained from individuals with a nor-
mal and a cancerous pancreas. The results showed an improved detection accuracy when
compared with a single marker-based prediction, clearly highlighting the benefits of an
AI-integrated multi-analyte diagnosis [121]. Exosomes, which are vesicular structures con-
taining miRNA, specific to the source cells, are gaining importance for the disease diagno-
sis. Several exosome entrapped miRNA have been identified in PC, such as miR-16, miR-
20a, miR-21, miR-21-5p, miR-24, miR25, miR99a, miR-133a, miR185, miR191, miR-196a,
miR-223, miR-642b-3p, miR-663a, miR-1290, miR-1246, miR-5100, and miR-8073 [122]. In
a seminal work, the exosomes obtained from a panel of mouse and human origin PC cell
lines, were captured using antibodies against the surface expressed EpCAM (epithelial
cell adhesion molecule). The RNA cargo was isolated from the exosomes and the miRNA
was identified using qPCR. The cancer miRNA signatures were identified using a custom-
developed machine learning algorithm. The system was validated using samples isolated
from individuals with a normal pancreas and those with pancreatic cancer, with a good
prediction accuracy [123]. In another study, a neural network algorithm was employed to
screen 140 datasets of individuals diagnosed with pancreatic cancer, for gene biomarkers
in urine samples, namely REG1A/1B, LYVE1, TFF1, and CA19-9. Following the train-
ing, the neural network algorithm predicted REG1A/1B as the most important biomarker
in the urine samples with an importance ratio exceeding 80% [124]. With the discovery
of new circulating markers, such as glycoproteins and genetic markers, such a machine
learning-based diagnosis could herald in the rapid and accurate detection of PC.

The histological analysis or tissue biopsies have been conventionally employed for
the identification and stratification of cancers. However, this is a time-consuming process.
Further, there is a constant increase in the number of samples that are sent for analysis to
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the anatomical pathological laboratory and this, coupled with insufficient skilled pathol-
ogists, leads to long turn-around-times [125]. Additionally, cytopathology requires the
accurate slide preparation and optimal staining of the tissue slices. However, the staining
intensity of biopsy slides exhibit analyst-based, sample thickness-based and laboratory
protocol-based variations in the intensity [125]. In this context, deep learning algorithms,
such as VGG, DenseNet, ResNet etc., and machine learning algorithms, based on SVM
and the random forest, can be employed to extract specific tumour features from the tis-
sue slices to improve the speed of detection and reduce the burden on the clinical pathol-
ogists. Similarly, the use of algorithms, such as SA-GAN (stain acclimatization genera-
tive adversarial network) that employs a generator that imports the input source image
and generates a target image that incorporates the features of the input sample and the
colour intensity of a training sample. Two discriminators are also incorporated into this
deep learning model, which ensure that the colour intensity of the desired training image
and textural features of the source image are maintained in the generated image, thus en-
suring the stain colour normalization across the different images [126]. Such approaches
have been attempted, to identify various types of gastrointestinal and breast cancer, using
mammograms and tissue biopsies [127]. Using a similar concept, a deep learning-based
spiral algorithm was employed to transform 3D MRI images of the pancreatic tissue into
2D images without compromising then original image texture and edge parameters. The
CNN-based models were employed for the feature extraction and the bilinear pooling
module was used to improve the prediction accuracy. Parameters, such as size, shape,
volume, texture, and intensity, were employed to classify the image as pancreatic can-
cer with TP53 gene mutation or otherwise. The prediction results agreed well with the
actual mutation status. This approach overcomes the drawback of the need for painful
biopsies for classifying a tumour as TP53 positive. In addition, this novel method offers a
non-invasive approach for predicting gene mutations, using AI-driven cytopathology that
may also be extended for other forms of cancer or gene mutations [128]. Similarly, ResNet
and DenseNet models have been employed to identify Helicobacter pylori, a key causative
pathogen in different gastric cancers from stained tissue biopsy specimens [129]. The ad-
vantage of using machine learning models in this case over conventional cytopathology,
is the ability of the model to identify even small numbers of the bacteria, which is very
tedious and time-consuming in the conventional mode. Abnormal goblet cells have been
identified with an 86% accuracy in tissue samples of individuals with Barretts esophagus,
using VGG algorithms [130]. AI-driven algorithms can be useful in detecting microsatel-
lite instabilities in the biopsy samples, that area hallmark of many forms of cancers [125].
These studies clearly demonstrate that the integration of machine learning in cytopathol-
ogy can be useful for the faster, efficient, and early diagnosis of pancreatic cancer. This
field is slowly gaining prominence and may soon lead to the establishment of a digital
cytopathology as a mainstay in the detection and stratification of cancers.

10. Ethics of Using AI for Diagnosis

Though AI offers a plethora of benefits in improving the detection and stratification
of PC, there are several ethical concerns that have emerged among a section of the soci-
ety, on the extensive use of AI-based diagnostics. Since AI tools require large datasets for
training and validation, concerns on data privacy and confidentiality have been raised.
Additionally, data security and safety issues have also been associated with use of an AI-
based diagnosis [131]. There exists a regulatory vacuum in the realm of AI-based tool de-
velopment and no structured white document is available on the data collection, storage,
processing and sharing. Furthermore, frequent comparisons between expert predictions
by clinicians and the AI algorithm, have given rise to the theory of inadequate training or
de-skilling of clinicians, in future, owing to the over-dependence of AI-based detections.
A lack of patient-doctor connect, or dissolution of the trust factor are additional issues that
have been associated with the deployment of AI-driven technologies in healthcare [132].
Accountability and professional responsibility issues, in the case of a wrong diagnosis by
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AI-based tools, that may result in disastrous consequences, is another facet that is being
debated as a negative aspect of all AI-driven cancer diagnoses.

11. Concluding Remarks

The use of AI for cancer detection and biomarker discovery, is expected to be the
target of several research studies involving AI over the next decade. Several studies in
this direction have clearly demonstrated the benefits of the AI-driven detection of pancre-
atic cancer, especially those employing imaging tools. However, the widespread clinical
deployment of this technology is yet to be realized, owing to lack of large datasets to con-
vincingly train and validate the developed algorithms. Most AI-based models have been
developed in a black box mode and as a result, the clinicians are unable to understand
or explain the basis of identification or stratification, thereby leading to a reticence in em-
ploying this technology. Additional ethical issues concerning data privacy and security
further have slowed down the translation of an AI-based diagnosis in clinics. However,
the exponential growth, witnessed in computing resources, including open-source tools,
has triggered an avalanche of studies focused on developing more robust algorithms for
the accurate, rapid, and early diagnosis of PC. As this field continues to grow, new regu-
latory policies concerning its use and deployment will emerge so that the benefits of this
technology can be harnessed to save lives.
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Simple Summary: When treating patients with head-and-neck cancer (HNC), in addition to the
primary tumour, commonly involved lymph node (LN) levels are often electively irradiated. This
requires the definition of the elective LN target volume. Because the LN levels that will be included
in the target depend on the clinical situation, and because manual contouring is a laborious task that
can also introduce inter- and intra-observer variation, being able to automate the segmentation of
individual LN levels would reduce the clinical burden and would allow use of contours regardless
of the primary tumor location. We trained and evaluated three patch- and/or voxel-based deep
learning frameworks to segment elective LN levels. Our results suggest that accurate segmentations
can be obtained using an ensemble of patch-based UNets and that this result can be further refined
by sequentially applying a 2.5D, multi-view voxel classification network.

Abstract: Depending on the clinical situation, different combinations of lymph node (LN) levels
define the elective LN target volume in head-and-neck cancer (HNC) radiotherapy. The accurate
auto-contouring of individual LN levels could reduce the burden and variability of manual seg-
mentation and be used regardless of the primary tumor location. We evaluated three deep learning
approaches for the segmenting individual LN levels I–V, which were manually contoured on CT scans
from 70 HNC patients. The networks were trained and evaluated using five-fold cross-validation
and ensemble learning for 60 patients with (1) 3D patch-based UNets, (2) multi-view (MV) voxel
classification networks and (3) sequential UNet+MV. The performances were evaluated using Dice
similarity coefficients (DSC) for automated and manual segmentations for individual levels, and
the planning target volumes were extrapolated from the combined levels I–V and II–IV, both for
the cross-validation and for an independent test set of 10 patients. The median DSC were 0.80, 0.66
and 0.82 for UNet, MV and UNet+MV, respectively. Overall, UNet+MV significantly (p < 0.0001)
outperformed other arrangements and yielded DSC = 0.87, 0.85, 0.86, 0.82, 0.77, 0.77 for the combined
and individual level I–V structures, respectively. Both PTVs were also significantly (p < 0.0001)
more accurate with UNet+MV, with DSC = 0.91 and 0.90, respectively. The accurate segmentation of
individual LN levels I–V can be achieved using an ensemble of UNets. UNet+MV can further refine
this result.

Keywords: computed tomography; deep learning; head-and-neck cancer; lymph nodes; radiation
oncology; auto-contouring

1. Introduction

Head-and-neck cancer (HNC) radiotherapy (RT) planning frequently includes the
contouring of neck lymph nodes (LN) as a part of the elective RT target volume. However,
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the manual delineation of the elective target volume is a labour-intensive task that is prone
to inter-observer variation [1], despite the availability of delineation guidelines [2], making
automated methods attractive, as an alternative to manual segmentation.

Over the last few years, developments in deep learning approaches have shown im-
pressive results for automated segmentation of organs at risk (OAR) by using convolutional
neural networks (CNN) [3–6] and for pathology detection [7], including the deep learning-
based delineation of elective targets such as the combinations of neck LN levels, which has
only more recently been investigated [8]. Most studies that demonstrated automated LN
segmentation with deep learning, incorporated all LN levels or all of those levels relevant
to the primary HNC location in one structure, rather than focusing on individual LN
levels [7–11]. The methods that segment multiple lymph levels in one structure, however,
are not generalizable to all primary HNC locations and tumour stages and require separate
networks for contouring different combinations of lymph node levels. Therefore, it would
be desirable to have a more general and flexible approach that concurrently and accurately
contours individual LN levels and hence can be used for all HNC patients regardless of the
subtype and the specific lymph levels required for RT treatment planning.

The automated segmentation of the LN levels is a challenging task because of anatom-
ical limitations in the manual reference. The guidelines prescribe delineation based on
anatomical markers in axial slices and assume that no voxels of levels II, III and IV can exist
in the same axial plane, irrespective of the curvature and pitch of the neck. In addition, the
LN target volumes do not encompass anatomical structures, but rather the expansions of
groups of LNs.

In this work, three combinations of deep learning networks were investigated to
segment individual LN levels I–V as separate structures. To do this, we evaluated the per-
formance of two CNNs, alone and in combination. First, since UNet is a widely established
CNN that is used for a variety of imaging-related problems [12] and since it was used in two
other studies for combined lymph structure segmentation [9,13], we included a patch-based
UNet variant as a baseline model configuration. Other works have suggested the use of
voxel-classification methods for individual LN level segmentation using a 3D multi-scale
network [14], as well as 2.5D (multi-view; MV) networks for several segmentation chal-
lenges (multiple sclerosis [15], ocular structures [16], abdominal lymph structures [17],
head-and-neck tumors [18]). Because 2.5D networks may more effectively learn features
in the presence of little data [19] and because voxel classification may better resolve local
ambiguities near level transitions, a multi-view convolutional neural network (MV-CNN)
was included as our second configuration. This method, however, appears limited by a
systematic over-estimation of foreground classes [18]. Therefore, as our third configuration,
UNet was used for foreground segmentation, and subsequently MV was used for classi-
fying the foreground voxels into individual LN levels. This way, the over-estimation of
foreground classes seen in MV models was effectively eliminated.

This work expands the existing literature by demonstrating the feasibility of deep
learning for auto-segmentation for the target definition of individual LN levels I–V towards
a flexible RT planning for locally advanced HNC. Based on earlier work, we estimate that
accurate performance levels are attained for the segmentation of individual LN levels I–V
with Dice similarity coefficient (DSC) of at least 0.8 [9,13,14] and we hypothesize that the
contours can be obtained with such accuracy levels for the majority of patients, using one
or more of the proposed deep learning configurations.

2. Materials and Methods

2.1. Data Acquisition

This retrospective study was exempted from requiring participants’ informed consent
by the medical ethics committee and was performed using the three-dimensional (3D)
planning computed tomography (CT) scans (GE Discovery 590RT, helically scanned) of
70 patients treated between 2019 and 2022 with (chemo-)radiotherapy for locally advanced
HNC, of which 60 were used for training and testing, and 10 were retained for an inde-
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pendent test set. We used isotropic, in-plane acquisition resolutions of [0.92–1.56] mm and
a 2.5 mm slice thickness, except for two cases in which the slice thickness was 1.25 mm.
The CT acquisition dimensions were 512 × 512 × (147 − 361) voxels. Patient-specific
radiotherapy head-and-neck moulds and immobilisation masks were used to position the
patients in a neutral position. Ground truth contours were created for the specific purpose
of this study by manual contouring of individual LN levels I–V according to contouring
guidelines [1], by two experienced radiation oncologists (GJB, MRV). During contouring,
levels IV and V are regarded as the combinations of IVa, IVb and Va, Vb, respectively. No
HNC disease stages or patients with positive LNs were excluded, provided that they had
elective LN levels contoured for at least one side. In patients with only one side contoured,
the LN level contours of the side that contained no diagnosed disease were added, such
that all patients had all individual levels at both sides contoured.

2.2. Pre-Processing

For all patients, planning CTs and structure sets were initially interpolated to the
same isotropic 1.25 mm3 voxel spacing by 3rd-order and nearest-neighbour interpolation,
respectively. This spacing was chosen to minimize image interpolations, whilst making
sure the network’s filters were of equal size in each orthogonal plane for all patients.

2.3. Experimental Outline

We investigated the performance of three model configurations, i.e., UNet (Figure 1),
MV (Figure 1) and UNet+MV (Figure 1). As a baseline reference, we investigated a multi-
class, patch-based UNet, which concurrently classifies all lymph levels as separate classes
in a single step. This was compared to a per-voxel classification approach that uses an MV-
CNN, which is a 2.5D network that uses multiple resolutions of orthogonal views to classify
the voxel where the planes cross. In the interest of time, this model used a preconstructed
mask to provide the network with the information on which voxels it should consider for
segmentation (cyan in Figure 1). Lastly, we investigated a two-step approach, which is
essentially a combination of UNet and MV: we used a single-class UNet for segmenting the
combined structure of LN levels I–V in an initial step, after which MV was applied only to
the detected foreground voxels and classified each voxel in the combined structure into
individual lymph levels UNet+MV. Schematic representations of the used UNet and MV
networks are displayed in the blue and red boxes in Figures 1 and 2, respectively.

2.4. Model Training

Model training, validation and evaluation were performed on four NVIDIA-GeForce
GTX 2080 TI graphics processor units (GPUs), a 64 GB RAM system with an Intel® Core™
i9-9900KF CPU @3.6 GHz processor, using the GPU version of TensorFlow (Version 2.2.0)
with Cuda 10.1 and Python (Version 3.8.10). The TensorBoard (Version 2.2.2) callback was
used for tracking the training and validation scores, whilst only the best model in terms
of DSC was saved. The models were trained using the Adam optimizer [20]. All models
were trained using standard values in Keras, with an initial learning rate of 0.001, β1 = 0.9,
β2 = 0.999 and ε = 1 × 10−7 To reduce the divergence of the model weights at later stages of
training, an exponential learning rate decay scheduler was used to decrease the learning rate
by 5% with every epoch, up to a minimum of 0.0001. Dropout was switched off at test time.
All models were trained using 5-fold cross-validation, with a train\test split of 48\12 cases
every fold. To minimize the training variation, we used ensemble learning [9,21–23], where
the highest cumulated in-class segmentation probability of 5 sequentially trained networks
decided the final segmentation map. The training and evaluation times were saved.
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Figure 1. Schematic overview of the experimental outline. UNet (blue boxes) and MV (red boxes) were
used to make three model configurations. In the first configuration, a patch-based UNet segments
the background and LN levels I–V directly from the planning CT. In the second configuration, MV
classifies the background and LN levels I–V voxels from within a preconstructed mask (cyan). In
UNet+MV, a patch-based UNet first segments the combined structure of LN levels I–V. This is
subsequently used as a mask (cyan) for MV to subsequently classify positive voxels into individual
levels I–V. The details of both models are given in Figure 2. Abbreviations: MV: multi-view; CT:
computed tomography.(Also shows in Figure S2).

2.4.1. UNet

The network that was used is an adaptation of a vanilla UNet [12], where residual
blocks were added to reduce the effect from vanishing gradients in deeper layers of the
model [24,25], similar to those used by Millerari et al. [26] Batch normalization was per-
formed after every (3 × 3 × 3) 3D convolution, before the non-linear activation function.
We used patch-based training of the 3D UNet to ensure the network fitted on our video
card [27,28]. During training, patches of 64 × 64 × 64 voxels were sampled randomly from
two pre-defined, unilateral regions of interest (ROI) of 280 × 200 × 280 mm3 in volume that
were known to contain the combined structure of LN levels I–V for every patient on each
side. Binary and multi-class dice loss functions were used for optimization. The multi-class
DSC loss was defined as the sum of individual foreground class losses (Equation (1)):

DSCloss =
M

∑
m=1

Wm · DLm (1)

Here, Wm are the class weights that are calculated using the Python’s scikit-learn
module [29], m ranges from 1 to M and denotes class indices, where M is the number of
classes. DL is the DSC loss, defined as 1 minus the DSC score (Equation (2)):

DLm = 1 − 2 · |Am ∩ Bm|
|Am|+ |Bm| (2)
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Figure 2. Schematic overview of the UNet (blue box) and MV (red box) networks. UNet consists
of an encoder (left) and a decoder (right) pathway that generates binary segmentation maps from
64 cubed voxel patches sampled from planning CTs. MV uses three multi-view branches that build
up to each anatomical plane within a scale block, the output of which is concatenated and used
as the input for the multi-scale branched architecture. The thickness of the convolutional blocks
corresponded with the number of filters used. The number of output classes (M) was six for UNet in
the UNet-only configuration and two for UNet in the UNet+MV configuration. M was six for MV in
the MV-only configuration and five in the UNet+MV configuration. Abbreviations: MV: multi-view;
ch: number of channels; BN: batch normalization; ReLu: rectified linear unit; f: number of output
filters; M: number of output classes; K: convolution kernel size; S: convolution stride; BN: batch
normalization; p: dropout fraction: CT: computed tomography.

Here, Am and Bm denote the predicted and manual reference binary sets of class m,
respectively. In the case of binary segmentation, DSCloss is reduced to the latter loss function.
For patches that contain a limited amount of foreground voxels, DSCloss becomes ill-defined
(the denominator in DLm is not constrained to values larger than 0). To ameliorate this, we
used a Gaussian sampling method, where the mean and standard deviation of the x, y and
z coordinates are calculated from the centre of mass of the combined, binary structure of LN
levels I–V of all patients. Subsequently, we used a truncated normal distribution to sample
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patches, such that they were constrained to be entirely within the region of interest. The
weights were initialized using the standard initialization method in Keras (glorot uniform
initialization). The models were optimized for 100 epochs. However, it should be noted
that the use of an epoch in a patch-based setting is arbitrary, because patch sampling is
perfrmed at random, and thus a different sub-set of all data is seen by the network in each
epoch. The number of training pairs seen by the network per epoch was set to 4096, which
corresponded to roughly 34 training patches per side per patient.

2.4.2. Multi-View

MV-CNN is a voxel-wise classification method, for which we predefined which voxels
to classify. For C2, this information was provided by a pre-constructed mask, indicated in
cyan in Figure 1, which was constructed by a uniform expansion of the manual reference
by a margin of 15 mm. This margin was chosen as a balance such that no foreground voxels
would be segmented at the border of this mask, while also minimizing the training and
evaluation times. In contrast, for C3, the pre-constructed mask was determined by the
foreground segmentation result of UNet. Our multi-view network was adapted from a
previous classification study [16]. Batch normalization was applied after every (3 × 3) 2D
convolution layer, before the non-linear activation function. Three context pyramid scales,
0, 1 and 2, were included to incorporate multi-view information from 4, 8 and 16 cm around
the query voxel, respectively. This was done by sampling every, every other and every
fourth voxel for scales 0, 1 and 2, respectively, for each view. Fewer pyramid scales yielded
inferior results, and more pyramid scales would cause the field of view to fall far outside
the ROI. The loss function used for voxel classification was categorical cross-entropy (CCE;
Equation (3)):

H(p, q) = −
M

∑
m=1

A

∑
a=1

p(a, m) log(q(a, m)) (3)

where p(a,m) represents a reference distribution of a ∈ A, given by the manual annotations,
q(a,m) is a query distribution, A is a set of observations, m denotes class indices and
ranges from 1 to M, and M is the number of classes. The network was optimized for
1000 epochs (batch size = 32). In every epoch, a different random sub-set of at maximum
20% of all training pairs was sampled to allow for varied training and validation. Random
over-sampling of minority classes was applied to reduce the effects of class imbalance.

2.4.3. Data Augmentation

Data augmentations were the same for all models and were performed on the fly.
Augmentation involved random flipping, rotation and contrast adaptation, with chances
of each augmentation occurring being 50%, 40% and 40%, respectively. Flipping was
carried out in the left–right direction. Rotation was applied in either the sagittal or the
transversal plane, with an angle that was uniformly sampled from [−5, +5 degrees]. Rotated
images were acquired by 3rd order spline interpolation for the CT image and by nearest-
neighbour interpolation for the corresponding segmentation maps. The default window
level center (CC) [width (CW)] was 0 [700], as was previously used for lymph structure
segmentation [9]. If contrast adaptation was applied, alternative window level center, and
width were sampled from normal distributions, with μC = 0; σC = 3% × 700 and μW = 700;
σW = 3% × 700, respectively.

2.5. Post-Processing

In all segmentation maps, the combined structure of LN levels I–V was post-processed
with hole filling and by subsequently removing all but the largest connected components.
To investigate the agreement in the resulting planning target volumes (PTV), the resulting
segmentations of combined structures of LN levels I–V and II-IV were expanded by a
margin of 4 mm and were denoted as PI–PV and PII–PIV. These two PTVs were chosen
because they were used for planning the majority of HNC sub-types.
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2.6. Evaluation and Statistical Analysis

The evaluation of a full 3D image by UNet was achieved by sliding the 64 × 64 × 64
UNet field of view over the image with stride 32 and subsequently only evaluating the
central 32 × 32 × 32 voxels. By doing this, we ensured that the network had sufficient
context for reliable inferences, while also making sure that each voxel was classified exactly
once. The spatial performance of all models was measured by using DSC, Hausdorff
distance (HD) and mean surface distance (MSD) between predictions and manual contours
and between the PTVs that resulted from the predictions and manual contours. Because
the measures were not normally distributed upon histogram inspection and omnibus
test of normality [30], the differences in spatial performance were evaluated by a two-
sided Wilcoxon signed-rank test. Bonferroni correction was applied for each model and
spatial metric separately to account for multiple comparisons. The volumetric agreement was
assessed with intra-class correlation [31] (ICC; two-way mixed effects, single measurement,
consistency) coefficients and volume outside of the manual contour. Finally, cases with a
median DSC in the lowest quartile of the UNet+MV configuration were qualitatively reviewed
by GJB. Cases from each quartile (Q1–Q3), as well as several informative examples, were
chosen for display, such as one patient who underwent laryngectomy surgery. This case
was included during training to maximize the number of training samples but was omitted
from the calculations of the model performance metrics, because the anatomical landmarks
normally required for manual contouring were not present in this patient’s anatomy.

2.7. Independent Validation

To assess the model generalizability, the two best performing models (UNet and
UNet+MV) were tested on the independent test set of 10 patients. These were unique sam-
ples that were not seen or used during the model development. For this independent test-
ing, the UNet and UNet+MV models were re-trained using the complete cross-validation
dataset (60 patients) as the training data. All training and evaluation settings were identical
to the cross-validation setting.

3. Results

In the cross-validation set, the mean age ± standard deviation was 64.0 ± 10.4 (N = 49)
and 58.5 ± 4.9 (N = 11) for males and females, respectively. UNet and UNet+MV showed
better agreement with the manual reference than MV for the complete LN structure, all
individual LN levels and both PTVs (Table 1). UNet+MV typically showed the better
segmentation performance of the combined LN structure, individual levels II–IV and both
PTV structures (Figures 3–6; Table 1). In addition, UNet+MV showed the highest volumetric
agreement with the manual reference for all structures (Figure 4). Overall, UNet+MV signifi-
cantly (p < 0.0001) outperformed the other models, with the DSCs (median [interquartile range
(Q1–Q3)]) of all individual LN structures present in the dataset being 0.804 [0.763–0.814], 0.658
[0.616–0.678] and 0.821 [0.769–0.831] for the models UNet, MV and UNet+MV, respectively.
Even with some deformation, e.g., patient not aligned straight in the mask, median-level DSC
results were attained (e.g., Figure 3, second column). MV often (Figure 3, Ax. 1 and Cor.
1 rows) overestimated the segmented combined LN volume medially.

UNet+MV showed significantly higher DSCs for the complete LN level I–V structure,
individual levels II–IV and both PTV structures (Figure 5, p-values in figure). However,
UNet showed higher spatial agreement with the manual reference for LN level I. The
transitions of LN levels II–III by UNet+MV typically agreed most strongly with the manual
reference. All models commonly disagreed with the manual reference on the caudal and
cranial ends of LN level V. In addition, there existed a substantial disagreement on the
lateral and dorsal ends of this structure in the model predictions. The models benefitted
marginally from ensembling all model configurations for all classes, as the results from the
model ensembles were more consistent (Table 1). The models were optimized for a median
[range] of 10.3 [9.6–10.9] h, except for MV–only, which was optimized for 19.8 [18.7–21.2] h.
The inference time for all UNet models was 2.1 [1.8–2.4] minutes, whereas the MV inference
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time, which is proportional to the size of the input mask, was 6.0 [5.4–7.0] and 1.0 [0.8–1.3]
minutes per patient for the MV–only and UNet+MV configurations, respectively.

Table 1. The reported values denote the range of median DSCs produced by five individual models
and ensemble model combinations of UNet, MV and UNet+MV configurations after post-processing.
Ensemble results that showed higher spatial agreement than the most accurate individual model
are denoted in bold. Ensembles increased result consistency and typically outperformed any of
the standalone models for all configurations. Abbreviations: MV: multi-view; Ind. individual; Ens:
ensemble; LN: lymph node.

Cross-Validation Independent Test

UNet MV UNet+MV UNet UNet+MV

Ind. Ens. Ind. Ens. Ind. Ens. Ens. Ens.

LN I–V [0.850–0.852] 0.857 [0.692–0.706] 0.708 [0.860–0.862] 0.867 0.846 0.865

LN I [0.849–0.855] 0.860 [0.682–0.695] 0.700 [0.851–0.856] 0.857 0.856 0.852

LN II [0.827–0.834] 0.840 [0.702–0.720] 0.726 [0.856–0.858] 0.862 0.824 0.850

LN III [0.771–0.781] 0.781 [0.628–0.653] 0.656 [0.802–0.812] 0.810 0.755 0.825

LN IV [0.714–0.746] 0.748 [0.559–0.585] 0.583 [0.757–0.764] 0.764 0.743 0.724

LN V [0.738–0.751] 0.754 [0.572–0.604] 0.610 [0.753–0.761] 0.763 0.697 0.707

PI–PV [0.897–0.898] 0.899 [0.779–0.788] 0.798 [0.899–0.900] 0.908 0.892 0.904

PII–PIV [0.887–0.891] 0.892 [0.768–0.782] 0.788 [0.899–0.900] 0.902 0.893 0.892

By visually comparing the model and manual reference contour pairs in the worst-
performing quartile (N = 15), several trends were observed. First, the manual reference
was judged to be suboptimal (i.e., not according to the contouring guidelines; Figure 6A–E)
for at least one level in 6/15 cases. In these six patients, one, four, two, one and three
inaccuracies were found in each respective LN level I–V. Second, the level II–III transitions
predicted by UNet+MV were typically more accurate than those obtained from the manual
reference, and UNet+MV also often outperformed UNet at this transition (Figure 6F–I).
Third, the predictions of LN level II by UNet and UNet+MV were visually more accurate
than those of the manual reference at the cranial limit (Figure 6J). Fourth, the automated
methods showed a large variation in disagreement with the manual reference for LN
level V (Figure 6A,E,H,I,L). In cases where the automated methods showed considerable
disagreement with the manual reference, pitch, rotation and/or tilt were often underlying
confounders (Figure 6K–M), especially for LN level V (Figure 6M), or there were anatomical
variations such as malnourishment (Figure 6F) and laryngectomy (with fewer anatomical
landmarks available; Figure 6N–O)). Cases with a coronal tilt showed disagreement in
contralateral structures of the same level (Figure 6M). Among cases of the first quartile,
there were no particularities in the manual reference.

In the independent test, the mean age ± standard deviation was 66.3 ± 10.1 (N = 7)
and 64.3 ± 13.6 (N = 3) years for males and females, respectively. The median [interquartile
range (Q1–Q3)] DSCs of all individual LN level structures were 0.769 [0.703–0.834] and
0.809 [0.729–0.852] by the UNet and UNet+MV configurations, respectively, and differed
significantly (p < 0.0001). UNet+MV showed significantly higher DSCs for the complete
I–V structure, LN levels II and III, as well as both extrapolated PTVs (Table 1; Figure 7). For
reference, volumetric performances of the independent test set are included in Figure S1.
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Figure 3. Example segmentations selected from the first (Q1), second (Q2) and third (Q3) quartile in
terms of DSC averaged over individual LN levels I–V. The filled region is the manual reference. The
solid, dashed and dotted lines correspond to the predictions of the model configurations of UNet,
MV and UNet+MV, respectively. LN levels I–V are indicated in pink, blue, green, red and yellow,
respectively. The low average DSC in Q1 was in part attributed to an error in the manual reference
level III–IV transition. Abbreviations: DSC: dice similarity coefficient; LN: lymph node.
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Figure 4. Predicted and manual reference volumes for all structures. Abbreviations: ICC: intra-class
correlation (two-way mixed, single measures, consistency).

Figure 5. Cont.
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Figure 5. Spatial performances of UNet, MV and UNet+MV model configurations for DSC, HD
and MSD measures. Statistical significance marking of the MV configuration was omitted because
differences between MV and other model configurations were always significant. Structures for which
differences between UNet and UNet+MV were statistically significant are denoted by significance
bars. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; Abbreviations: DSC: dice similarity
coefficient; MV: multi-view; HD: Hausdorff distance; MSD: mean surface distance.
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Figure 6. Examples from the worst-performing quartile samples in terms of DSC averaged over
individual LN levels I–V. The filled region is the manual reference. The solid, dashed and dotted lines
correspond to the predictions of the UNet, MV and UNet+MV model configurations, respectively.
LN levels I–V are indicated in pink, blue, green, red and yellow, respectively. Arrows indicate specific
locations of interest. Abbreviations: DSC: dice similarity coefficient; LN: lymph node.
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Figure 7. UNet and UNet+MV spatial model performances in the independent test. Structures
for which differences between model configurations were statistically significant are denoted by
significance bars. ***: p < 0.001; ****: p < 0.0001; Abbreviations: DSC: Dice similarity coefficient; MV:
multi-view.

4. Discussion

Our results suggest that accurate contours of individual LN levels I–V can be obtained
using UNet (complete I–V structure median DSC = 0.859; individual structure DSC = 0.804),
and that these results can be further refined by using a UNet+MV sequential model (complete
I–V structure DSC = 0.866; individual structure DSC = 0.821). Despite a limited gain compared
to UNet, UNet+MV exhibited a significantly better spatial performance for the complete I–V
structure, individual levels II–IV and both PTV structures, and better volumetric performance
for all structures. Comparable results were achieved using an independent test set for the
model configurations UNet and UNet+MV, suggesting that the models have the ability to
generalize beyond the data used for model training and development.

These results, however, should be interpreted with some care. A review of patients
with a median DSC in the lowest quartile (N = 15) highlighted cases where the automated
methods were factually closer to the truth than the manual reference, due to inconsistencies
in the manual reference that arose from patient angulation and anatomical limitations
in contouring guidelines (Figure 6A–M). In addition, all models were considerably less
accurate for levels IV and V. Several factors may have contributed to this. First, it is known
that DSC is dependent on the structure size [32]; therefore, the small volumes of the levels
IV–V likely negatively influenced DSC, which was especially true for malnourished patients
(Figure 6M). Such a case was observed in the independent test, where LN level V had
a manual reference volume below the typical range (5 mL) and was almost completely
missed (Figure 7; Figure S1-LN level V). Second, despite the measures that were taken to
prevent most patient angulation during scanning, considerable patient angulation was
sometimes seen. This could be due to anatomical variations and to some patients’ inability
to lie with their head down. This may also have contributed to a larger variation in
the manual reference and may have led to disagreements between the predictions and
the manual reference. This problem has recently been addressed in another study by
Weissmann et al. [13]. Because the contouring guidelines do not take into account the
curvature of the neck and the patient’s pitch, tilt and rotation, it can be argued that the
predictions may be more factually “correct” than the manual reference when this is the
case. Alternatively, if the goal of DL methods is to emulate the contouring guidelines,
the networks could be trained using explicit information of slice orientation. Variations
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in slice plane orientation are especially problematic for level V, because, for example, the
lower axial end of this structure contour in the manual reference is defined by the “plane
just below the transverse cervical vessel” [2,33]. This caused larger inconsistencies in the
manual reference for LN-level V highly pitched patients, compared to patients with other
levels. The same holds for the contralateral structures from the same level for patients with
a coronal tilt. The current guidelines prescribe level contours of both sides starting at the
same axial slice clinically, even though the tilt leads to different predictions for either side
for the automated methods. Similarly, although predictions generally show disagreement
in the caudal end of level IV and both axial ends and dorsal borders of level V, it should
not be concluded that predictions are inaccurate for these regions. Rather, the way that
the contouring guidelines were set up can cause peculiarities for patients with large pitch
and/or tilt when comparing with more standardized, automated methods. Although it
could seem like the rational step to take, it is not a given fact that redefining contouring
guidelines to be less dependent on anatomical landmarks in a certain slice and patient
angulation would be better for the clinical practice. Such guidelines would be more labour-
intense for the clinician, which will need to consider more strongly the 3D information of
the patient. However, such an approach may result in more accurate data, which in the
long run, will be more informative to the network and result in more consistent contours.

To put the results of this study into perspective, we compared our results to others in
the relevant literature on automated lymph level segmentation of combined lymph levels,
which reported a mean DSC range of 0.64–0.82 [34] Commercially available contouring soft-
ware (Limbus Contour build 1.0.22) was evaluated for the neck lymph nodal structures [11],
but it was reported that the performance could still be improved (mean DSC = 0.75). Car-
denas et al. reported an accurate segmentation performance of the combined LN level
I–V and II-IV clinical target volumes (CTV; both DSC = 0.90) [9], but it should be noted
that an inspection of example segmentations suggested that these structures more closely
resembled PTV structures from our institute. We believe that our finding of PTV overlap of
UNet and UNet+MV (PTV I–V and II–IV DSCs = 0.91, 0.90, respectively) is in line with,
if not better than, the segmented structures reported by Cardenas et al. To the best of our
knowledge, the work of Van der Veen et al. [14] was the first to involve the automated
segmentation of individual levels I and V and reported segmentation accuracies (without
expert intervention) of DSC = 0.73, 0.61 and 0.79 for levels I and V and the combined
II–IV structure, respectively. Interestingly, however, these results seem to more closely
resemble the results obtained with our second configuration (level I, V DSCs = 0.70, 0.61,
respectively). This is not unexpected, because the MV configuration involves a direct voxel
classification method that uses multiple scales, similar to the proposed method by Van der
Veen et al., but differs in the 2.5D convolution kernel, whereas Van der Veen et al. used a
fully 3D kernel.

The model application times are sufficient for clinical use, but can still be improved.
Typical whole-image full segmentation by UNet takes time in the order of seconds, but since
this UNet was trained in a patch-based fashion, it required application to all parts of the
image, such that each part of the image was seen by the 32 × 32 × 32 center patch exactly
once. This procedure was not optimized for speed and could likely still be accelerated
considerably. Similarly, the MV models were not optimized for speed. For example, when
processing neighbouring voxels, there existed much overlap between the extracted patches,
even though each patch was extracted separately in the current implementation.

Our research has some limitations. First, we only indirectly investigated the implica-
tions of model predictions for RT treatment planning by investigating the overlap of the
two predicted PTVs with the manual reference. Future work may investigate whether the
predicted volumes lead to improved dose–volume histograms in OARs and target volumes
when using them in a treatment planning system. Second, we did not include LN levels VI
and VII because these are less frequently clinically used. Since these are central levels and
require a larger region of interest to be considered for learning, deep learning frameworks
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aiming to include these structures may focus on patch-based training with sampling from
both sides simultaneously or by defining two left/right and one central ROI.

5. Conclusions

We demonstrated that a UNet can accurately (DSC > 0.8) segment individual LN levels
I–V for the majority of patients and that this result can be further refined by using a UNet
for the segmentation of foreground structures, followed by a sequential voxel classification
network. With this generalized approach, any set of lymph levels can be combined to
define patient-specific LN level target structures. When dealing with angulated patients,
one should be aware that the current contouring guidelines can lead to situations where
the LN level contours may become inconsistent, which may be prevented by using more
standardized, automated deep learning methods. Future work should investigate whether
clinically acceptable RT plans can be obtained using predicted contours.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225501/s1, Figure S1: Predicted and manual reference
volumes for all structures resulting from the independent test set. Abbreviations: ICC: intra-class
correlation (two-way mixed, single measures, consistency). Figure S2: Graphical representation of
the summary of this work.
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Abstract: Dual-energy computed tomography (DECT) is an advanced CT computed tomography
scanning technique enabling material characterization not possible with conventional CT scans.
It allows the reconstruction of energy decay curves at each 3D image voxel, representing varied
image attenuation at different effective scanning energy levels. In this paper, we develop novel
unsupervised learning techniques based on mixture models and functional data analysis models to
the clustering of DECT images. We design functional mixture models that integrate spatial image
context in mixture weights, with mixture component densities being constructed upon the DECT
energy decay curves as functional observations. We develop dedicated expectation–maximization
algorithms for the maximum likelihood estimation of the model parameters. To our knowledge, this
is the first article to develop statistical functional data analysis and model-based clustering techniques
to take advantage of the full spectral information provided by DECT. We evaluate the application of
DECT to head and neck squamous cell carcinoma. Current image-based evaluation of these tumors
in clinical practice is largely qualitative, based on a visual assessment of tumor anatomic extent and
basic one- or two-dimensional tumor size measurements. We evaluate our methods on 91 head and
neck cancer DECT scans and compare our unsupervised clustering results to tumor contours traced
manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability
even among experts at delineating head and neck tumors, and given the potential importance of
tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add
value in downstream machine learning applications for clinical outcome prediction based on DECT
data in head and neck cancer.

Keywords: spectral image clustering; dual-energy CT imaging; mixture models; functional data
analysis; HNSCC cancer

1. Introduction

Computed tomography (CT) has been one of the most common and widespread imag-
ing techniques used in the clinic for the last few decades. There is increasing interest in a
more advanced CT technique known as dual-energy CT (DECT) or spectral CT that enables
additional material or tissue characterization beyond what is possible with conventional CT.
In conventional CT, X-rays are emitted at a certain level of energy, whereas in DECT, they
are emitted at two separate energy levels, which brings important benefits as compared to
standard CT. First, since different materials can have different attenuation coefficients at
different energy levels, DECT allows for the separation of materials with different atomic
numbers. In particular, DECT enables the computation of image attenuation levels at
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multiple effective energy levels. This results in the association of a decay curve with each
reconstructed image voxel, representing energy-dependent changes in attenuation at that
body location. Conventional CT imaging is the first-line modality for the clinical evaluation
of many different types of known or suspected cancers in adults [1]. However, because of
the properties described above, there has been an increased interest in the use of DECT in
oncology in recent years, as it provides a new and exciting way of characterizing tumors as
well as their surrounding tissues.

Current expert evaluation of CT scans of head and neck cancer patients in clinical
practice is largely based on qualitative image evaluation for the delineation of the tumor
anatomic extent and basic two- or three-dimensional measurements. However, an increas-
ing body of evidence suggests that quantitative texture or radiomic features extracted from
CT images can be used to enhance diagnostic evaluation, including the prediction of tumor
molecular phenotypes, prediction of therapy response, and outcome prediction [2–5]. The
typical radiomic approach for tumor evaluation can be separated into two steps: (i) iden-
tification and segmentation of the tumor in the image; and (ii) prediction of a clinical
endpoint of interest based on features extracted from the segmented image region. As
such, the ability of the segmentation algorithm to correctly target the tumor region is
the first essential step in this process. If performed by an expert, manual processing is
prohibitively time-consuming and prone to intra- and inter-observer variability. This step is
ideally suited for computerized analysis to make these types of analyses feasible and more
reproducible. When conventional single-energy CT (SECT) scans represent a 3D image of
a patient, DECT scans may be viewed as a 4D image: a 3D body volume over a range of
spectral attenuation levels. The latter dimension provides, for each voxel, a decay curve
representing energy-dependent changes in attenuation, enabling tissue characterization
beyond what is possible with conventional CT [6,7].

DECT has been shown to improve qualitative image interpretation for the eval-
uation of head and neck cancer and preliminary results also suggest that the energy-
dependent curves associated with each image voxel can be used to improve predictions
using radiomic approaches [8–12]. However, there is currently no widely accepted
method for the use of spectral data from DECT scans for radiomic type studies. In this
study, we propose a clustering method that incorporates the spectral tissue attenuation
curves as a fourth dimension of the 3D representation of tissue voxels in head and
neck DECT scans. We demonstrate that by combining spectral information from the
voxel-associated curves and spatial information from the voxel coordinates, we can
create a segmentation map with high concordance with tumoral tissue voxels. The
proposed model provides a clustering of high qualitative aspect, that can act as the basis
for identifying tumor or peritumoral regions to be used in subsequent radiomic studies
on DECT scans.

In this paper, we evaluate the application of DECT to head and neck squamous cell
carcinoma (HNSCC). Current image-based evaluation of HNSCC tumors in clinical practice
is largely qualitative, based on a visual assessment of tumor anatomic extent and basic one-
or two-dimensional tumor size measurements. However, the frequently complex shape
of mucosal head and neck cancers and at times poorly defined boundaries and potential
adjacent tissue reactions can result in a high inter-observer variability in defining the extent
of the tumor [13–16], especially among radiologists without sub-specialty expertise in head
and neck imaging. Furthermore, there is strong evidence that alterations of gene expression
and protein–protein interactions in the peri-tumoral tissue or normal adjacent tissue may
play a critical role in the evolution and risk of recurrence of HNSCC tumors (e.g., [17,18]).
Yet these adjacent regions may not be obviously salient upon visual image examination.
For all these reasons, the accurate and consistent determination of a predictive region
around the tumor is essential, both for conventional staging which determines patient
management and for future automated quantitative image-based predictive algorithms
based on machine learning. Such a predictive region may include the tumor itself, but also
surrounding tissues of biological relevance.
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With these considerations in mind, DECT provides new and unexplored opportu-
nities to answer an important question: what can be learned from DECT about tumor
heterogeneity and its associations with surrounding tissues? As a first step toward an-
swering this question, in this paper, we adapt functional data analysis (FDA) techniques
to DECT data in order to explore underlying patterns of association in and around the
tumor. FDA is a classical branch of statistics dedicated to the analysis of functional
data, in situations where each data object is considered a function. This is particularly
appropriate for DECT image data, as each 3D image voxel is associated with a curve
of image intensity decay over multiple reconstructed energy levels (more details are
provided below in Section 2.1). Thus, we adapt FDA statistical models for the clustering
of 3D image voxels based on the full functional information provided by the decay
curves associated with each voxel. More specifically, the architecture underpinning our
proposed method is a functional mixture model, where the mixture component densities
are built upon functional approximation of the spectral decay curves at each image voxel,
and the mixture weights are constructed to integrate spatial constraints. We then derive
an expectation–maximization (EM) algorithm to the maximum likelihood estimation
(MLE) of the model parameters.

To our knowledge, this is the first article to propose spatial clustering utilizing the
full spectral information available in DECT data, based on an appropriate FDA statistical
framework. Existing methods for automatic tumor delineation in DECT (reviewed in
detail in Section 2.2) are mostly based on deep learning techniques and utilize only a small
subset of the available information, due to the sheer amount of 4D (spatial + spectral) data
available in a single DECT scan.

We apply the proposed methodology on 91 DECT scans of HNSCC tumors, and we
compare our results to manually traced tumor contours performed by an experienced
expert radiologist. We also compare to other baseline clustering methods. However,
tumor segmentation on its own is not a clinical outcome. A full demonstration of the
clinical utility of our method necessitates an analysis of its ability to predict actual
clinical outcomes, and how this prediction performance compares to the performance in
the case of manually drawn contours, or contours drawn using alternative automatic
methods. We leave this prediction analysis for a subsequent paper. As the first article to
adapt FDA statistical tools to DECT data, the main focus of the present paper is on the
statistical methodology and on algorithm development. As such, we can summarize our
contributions as follows:

1. We extend the statistical framework of mixture models to the spatio-spectral heteroge-
neous DECT data. In particular, DECT energy decay curves observed at each image
voxel are modeled as spatially distributed functional observations;

2. We develop unsupervised learning algorithms for clustering by incorporating full
spectral information from DECT data;

3. To our knowledge, this is the first time that these models are applied to DECT;
4. The source codes of our algorithms are publicly available https://github.com/fchamroukhi/

DECT-CLUST (accessed on 28 October 2022), free of charge.

The rest of this paper is organized as follows; First, as a background, we describe in
Section 2 related work on dual-energy CT and dedicated segmentation methods. Then, in
Section 3, we introduce the proposed methodology and present the developed algorithms.
Section 4 is dedicated to the experimental study and the obtained quantitative results are
provided in Section 5. Finally, in Section 6, we discuss the proposed approach and the
obtained results.

2. Background and Related Work

2.1. Dual-Energy CT

The use of DECT techniques has very recently attracted interest in different clinical
applications, including diagnostics; for example using DECT for the improved detection of
portal vein thrombosis via virtual monoenergetic reconstructions [19], for reducing visceral-
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motion-related artifacts on the liver by comparing different CT scanner techniques [20], or
also using DECT of the heart to the study of coronary artery disease [21].

DECT data may be viewed as a 4D image of a patient: a 3D body volume over
a range of energy levels. The dual-energy image acquisition using two X-ray energy
peaks at the source provides enough attenuation information to be combined and to be
able to reconstruct a curve at multiple “virtual monochromatic" energy levels. These
simulate what the attenuation (in Hounsfield units; HU) would be if the study was
acquired with a monochromatic X-ray beam at that energy value (in kilo-electron-Volt;
keV). The reconstructed curve of attenuation numbers over each energy level translates
the energy-dependent changes and is commonly called the spectral Hounsfield unit
attenuation curve, or an energy decay curve [7]. In our method, we will make use of this
spectral information through functional approximations, and thus consider the curves as
functional observations. An energy decay curve is calculated for each image voxel, and
thus, a DECT scan is represented as a 4D image with 3 dimensions for X, Y and Z spatial
coordinates and 1 dimension for energy level coordinates. The virtual monochromatic
image (VMI) is the 3D image representation at a given energy level. See Figure 1 (left)
for examples of a 2D slice from different VMIs and Figure 1 (right) for examples of decay
curves for different tissue characteristics.

Figure 1. (Left) 2D slices of VMIs at 40,65,140 keV with tumor contour in red. At lower energy
levels, VMIs are more constrated; at higher levels, VMIs are less noisy. A VMI at 65 keV is similar to a
standard CT scan. (Right) Examples of decay curves for different body locations. A blue (resp. red,
green) curve represents attenuation information stored at one voxel within bone (resp. tumor, tissue).

2.2. Segmentation of Dual-Energy CT Data

Segmentation is a process of delineating an image region of interest. For example,
radiation oncologists usually manually segment tumors for radiation planning. Automatic
tumor segmentation has a long history of developments: from knowledge-driven early
techniques to data-driven newer techniques, algorithms aim to extract image features to
make a decision on region boundaries [22]. However, this process remains challenging in
medical imaging due to the heterogeneity over the image or the acquisition process; most
of the current algorithms need manual adjustments on the result [23].

In head and neck CT imaging, the difficulty to contour precisely a tumor region
results in large inter-observer variability in the segmentation results, even among trained
radiation oncologists. A study among radiologists from 14 different institutions obtained
a median Dice similarity score (DSC) ranging from 0.51 to 0.82 [15], depending on the
delineation criteria used. Another study assessing the same variability among 3 experienced
radiologists over 10 tumors obtained a mean DSC of 0.57 [16].

To the best of our knowledge, only a few studies have focused on DECT segmenta-
tion. These employ deep learning approaches [24–26]. The four dimensions of the data
required workarounds in order to apply neural networks. For example, using two VMIs
sampled from the energy level spectrum, one at a low- and one at a high-energy level,
Chen et al. in [24] merged the two VMIs in a layer connected to a U-Net architecture [27].
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Wang et al. in [26] learned features from two pyramid networks on the two VMIs in-
dependently and combined them through deep attention into a mask-scoring regional
convolutional neural network (R-CNN). They achieved good performance in segment-
ing large-sized organs (DSC larger than 0.8), and performance was less impressive for
small-sized organs (DSC between 0.5 and 0.8). Deep learning techniques have indeed
revolutionized the world and are very popular in many domains. However, despite
what they can provide as good results in practice, we note that as a mixture model-based
approach, our proposed approach is not necessarily as complex as a deep learning one
can be and is not regarded as a black box. It also enjoys interpretability and relies on
the statistical sound background of mixture models and the desirable properties of the
EM algorithm, in particular, the fact of monotonically improving the loglikelihood as a
loss-function. It is also user-friendly, which can be useful in particular for clinical use,
and its implementation is also quite simple.

2.3. Decay Curve Clustering via Functional Data Analysis

FDA aims to represent infinite-dimensional functional data into a finite-dimensional
vector of coefficients [28]. To achieve this, FDA consists in expanding functional data into
function bases. One approach relies on projection on bases which consist in projecting
functional data onto finite dimensional function bases (e.g., splines, B-splines, polynomials,
Fourier, and wavelet). It associates a finite vector of projection coefficients. This is what we
use in this paper. Analogously another common approach would be to run a functional
principal component analysis (fPCA) to obtain a basis of eigenfunctions of the covariance
of the process describing our functional data. It associates a (truncated) projection vector of
PCA coefficients.

Our objective is to partition our data, modeled with FDA, in different groups of voxels
having similar decay curve characteristics. Among the available clustering approaches
(e.g., centroid-based clustering, such as k-means; connectivity-based clustering, such as
hierarchical clustering; density-based clustering, such as DBSCAN [29]; and distribution-
based clustering with model-based methods), since we have a model for each decay curve,
a model-based approach is preferred.

Model-based clustering is a thoroughly developed field [30,31], particularly for
multivariate analysis. Model-based clustering approaches rely on the finite mixture
modeling framework [32] to represent the density of a set of independent multivariate
observations and on an optimization algorithm to automatically find a partition into
groups of such observations.

To represent different groups of data, mixture models assume each datum to follow
a known distribution (e.g., Gaussian), and build a mean representation (i.e., model) for
each group of data. The mixture model calculates, for each data point, a value defined by
the sum over k = {1 . . . #groups}, of the probability distribution function (pdf) that this
point belongs to group k model, emphasized by a weight giving a higher or lower chance
of belonging to this group (derived in Section 3.1). Mixture models have the advantage of
being interpretable, parametric, thus well-understood, and flexible, as the pdf modeling
the data in each cluster can be chosen explicitly.

The expectation–maximization (EM) algorithm [33] is a popular and adapted tool
with desirable properties that can be used to conduct an iterative estimation of the mixture
model parameters and thus the cluster membership probabilities.

Mixture models for clustering have been applied and adapted to different kind
of data, including time-series data [34], gene expression data [35], 3D noisy medical
images [36], or spatio-temporal data (non image data) [37]. They also have been recently
investigated for functional data [38], and thus provide an avenue to model the spectral
decay curves, but in this context of spectral images, we also need to incorporate the
spatial information into the clustering.

A related idea was proposed in [39] to develop a spatio-temporal mixture of hidden
process models for fMRI analysis. The authors built a temporal probabilistic model, and
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reshaped the prior probability with spatial constraints to determine a “region of influence”
for the temporal model. A specification of our model covers this approach, and our
model goes further in generalizing it via the construction of more flexible Gaussian-
mixture weights around the spatial coordinates. The resulting model enjoys better
numerical learning properties with faster convergence due to closed-form updating rules
for the spatial weights parameters. Alternative constructions of the proposed mixture
model are also presented in order to validate the method and to accommodate potential
user specifications.

3. Methodology

3.1. Generative Modeling Framework

We adopt the framework of generative modeling for image clustering using different
families of extended mixture distributions. The general form of the generative model for
the image assumes that the ith datum (i.e., pixel and voxel) in the image has the general
semi-parametric mixture density:

fi(θ) =
K

∑
k=1

πik fi(θk) , (1)

which is a convex combination of K component densities, fi(θk), k ∈ [K] = {1, · · · , K},
weighted by non-negative mixture weights πik that sum to one, that is ∑K

k=1 πik = 1 for all i,
i ∈ [n]. The unknown parameter vector θ of density (1) is composed of the set of component
density parameters {θk} and their associated weights {πik}, i.e., θ = {πik, θk}K

k=1.
From the perspective of model-based clustering of the image, each component den-

sity can be associated with a cluster, and hence the clustering problem becomes one of
parametric density estimation. Suppose that the image has K segments and let Zi ∈ [K]
be the random variable representing the unknown segment label of the ith observation in
the image. Suppose that the distribution of the data within each segment k ∈ [K] is f (θk),
i.e, fiZi=k(θ) = fi(θk). Then, from a generative point of view, model (1) is equivalent to
(i) sampling a segment label according to the discrete distribution with parameters being
the mixture weights π = {π1, · · · , πK}, then (ii) sampling an observation Imi from the
conditional distribution f (θk). Given a model of the form (1) represented by θ̂, typically
fitted by maximum likelihood estimation (MLE) from the n observations composing the
image Imn, as

θ̂ ∈ arg max
θ∈Θ

log L(θImn) (2)

where L(θImn) is the likelihood of θ given the image data Imn, then, the segment labels
can be determined via the Bayes’ allocation rule,

Ẑi = arg max
k∈[K]

P(Zi = kIm(i); θ̂) , (3)

which consists of maximizing the conditional probabilities

P(Zi = kIm(i); θ̂) =
π̂ik fi(θ̂k)

fi(θ̂)
· (4)

that the ith observation originates from segment k, k ∈ [K], given the image data and the
fitted model.

Model (1) has many different specifications in the literature, depending on the nature
of the data generative process, resulting in a multitude of choices for the mixture weights
and for the component densities. Mixtures of multivariate distributions [32] are in particular
more popular in model-based clustering of vectorial data using multivariate mixtures. These
include multivariate Gaussian mixtures [30,31], where πik = πk, ∀i are constant mixture
weights, and the component densities fi(θk) = φi(μk, Σk) are multivariate Gaussians with
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means μk and covariance matrices Σk. Mixtures of regression models, introduced in [40],
are common in the modeling and clustering of regression-type data. For example, in the
widely used Gaussian regression mixture model [41], we have constant mixing proportions,
i.e., πik = πk, and the mixture components fi(θk)’s are Gaussian regressors φ(·, β

k xi, σ2
k ) with

typically linear means β
k xi and variances σ2

k in the case of a univariate response.
In this paper, we consider a more flexible mixture of regressions model in which

both the mixture weights and the mixture components are covariate-dependent, and
are constructed upon flexible semi-parametric functions. More specifically, in this full
conditional mixture model, the mixture weights πik are constructed upon parametric
functions πik = πk(·, xi; α) of some covariates xi represented by a parameter vector α,
and the regression functions fi(θk) are Gaussian regressors φ(·, μ(xi; βk), σ2

k ) with semi-
parametric (non-)linear mean functions μ(xi; βk). This flexible modeling allows us to
better capture more non-linear relationships in the functional data via the semi-parametric
mean functions. Heterogeneity is accommodated via the mixture distribution, and spatial
organization can be captured via spatial-dependent mixture weights.

3.2. Spatial Mixture of Functional Regressions for Dual-Energy CT Images

We propose a spatialized mixture of functional regressions model, adapted to the given
type of image data, for the model-based clustering of dual-energy CT scans. The images we
analyze include spectral curves for each 3D voxel. Each image, denoted Im, is represented
as a sample of n observations, Im = {vi, xi, yi}n

i=1 where vi = (vi1, vi2, vi3) is the ith
voxel 3D spatial coordinates.The ith voxel is represented by the curve (xi, yi) composed
of HU attenuation values yi = (yi1, . . . , yim) measured at energy levels (covariates) xi =
(xi1, . . . , xim), with m being the number of energy levels.

To accommodate the spatial organization of the image together with the functional
nature of each of its voxels, we propose spatialized conditional extensions of the general
family of model (1), in which we model the ith voxel observation of the image using
the conditional density f (yixi, vi; θ) that relates the attenuation curve levels yi, given the
associated energy levels xi, and spatial location vi via a convex combination of (non-)linear
(semi-)parametric functional regressors f (yixi; θk) with spatial weights πk(vi; α), that is,

f (yixi, vi; θ) =
K

∑
k=1

πk(vi; α) f (yixi; θk) . (5)

To this purpose, we consider two different spatial constructions of the mixing
weights (gating functions) πk(vi ; α): (i) softmax gates; and (ii) normalized Gaussian
gates. The latter is an appropriate choice if more approximation quality is needed, and
facilitates the computations in the learning process. We also consider different families
to model the functional regressors, including spline and B-spline regression functions
that enjoy better curve approximation capabilities, compared to linear or polynomial
regression functions.

3.2.1. Functional Regression Components

We have a 3D image volume over a range of energy levels that provide, for each voxel
i, an attenuation curve (xi, yi) which represents energy-dependent changes in attenuation,
which enables a better characterization of the tissue at voxel i. We therefore model the
component densities f (yixi; θk) as functional regression models constructed upon the
attenuation curves as functional observations. This allows us to accommodate the spectral
curve nature of the data. More specifically, in the case of univariate energy levels, we use
smooth functional approximations to model, for the ith voxel, the mean spectral curve of the
kth component μ(xi; βk) = Eθ[Y iZi = k, xi], that is, μ(xi; βk) = (μ(xi1; βk), . . . , μ(xim; βk))
using polynomial or (B)-spline functions, whose coefficients are βk.

The conditional density model for each regression is then modeled as a functional
Gaussian regressor defined by f (yixi; θk) = φm

(
yi; μ(xi; βk), σ2

k I
)
, with μ(xi; βk) = B(xi)βk
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being the function approximation onto polynomial or (B-)spline bases B(xi), and the matrix
form of the functional regression model is then given by

f (yixi; θk) = φm(yi; B(xi)βk, σ2
k I) , (6)

where θk = (β
k , σ2

k )
 ∈ R

p+q+2 is the unknown parameter vector of regression k.

3.2.2. Spatial Gating Functions

The constructed functional mixture of regressions model (5) specifically integrates the
spatial constraints in the mixture weights πk(vi; α) via functions of the spatial locations vi
parametrized by vectors of coefficients α. We investigate two choices to this end. The first
proposed model is a spatial softmax-gated functional mixture of regression and is defined
by (5) with a softmax gating function:

πk(vi; α) =
exp (α

k vi)

1 + ∑K−1
k′=1 exp (α

k′ vi)
, (7)

where α = (α
1 , . . . , α

K )
 is the unknown parameter vector of the gating functions. We will

refer to this model, defined by (5)–(7), as the spatial softmax-gated mixture of functional
regressions, abbreviated as SsMFR. The softmax modeling of the mixture weights is a
standard choice known in the mixtures-of-experts community. However, its optimiza-
tion performed at the M step of the EM algorithm, is not analytic and requires numerical
Newton–Raphson optimization. This can become costly, especially in larger image applica-
tions, such as the one we address.

In the second proposed model, we use a spatial Gaussian-gated functional mixture of
regressions, defined by (5) with a Gaussian-gated function:

πk(vi; α) =
wkφ3(vi; μk, Rk)

∑K
�=1 w�φ3(vi; μ�, R�)

, (8)

in which wk are non-negative weights that sum to one, φd(vi; μk, Rk) is the density func-
tion of a multivariate Gaussian vector of dimension d with mean μk and covariance
matrix Σk, and α = (α

1 , . . . , α
K )

 is the parameter vector of the gating functions with
αk = (wk, μ

k , vech(Rk)
).

We will refer to this model, defined by (5), (6) and (8), as the spatial Gaussian-gated
mixture of functional regressions, abbreviated as SgMFR. This Gaussian gating function
was introduced in [42] to bypass the need for an additional numerical optimization in the
inner loop of the EM algorithm. We obtain a closed form updating formula at the M-Step,
that is detailed in the next section presenting the derived EM algorithm.

3.2.3. MLE of the SgMFR Model via the EM Algorithm

Based on Equations (5), (6) and (8), the SgMFR joint density f (yi, xi, vi; θ) is then
derived and the joint log-likelihood we maximize via EM is

log L(θ) =
n

∑
i=1

log f (yi, xi, vi; θ) =
n

∑
i=1

log
K

∑
k=1

wkφ3(vi; μk, Rk)φm(yi; B(xi)βk, σ2
k I)· (9)

The complete-data log-likelihood, upon which the EM algorithm is constructed, is

log Lc(θ) =
n

∑
i=1

K

∑
k=1

Zik log
[
wkφ3(vi; μk, Rk)φm(yi; B(xi)βk, σ2

k I)
]
, (10)

where Zik is an indicator variable such that Zik = 1 if Zi = k (i.e., if the ith pair (xi, yi) is
generated from the kth regression component) and Zik = 0, otherwise. The EM algorithm,
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after starting with an initial solution θ(0), alternates between the E and M steps until
convergence (when there is no longer a significant change in the log-likelihood).

The E-step: Compute the conditional expectation of the complete-data log-likelihood (10),
given the image Imn and the current estimate θ(t):

Q(θ; θ(t)) = E

[
Lc(θ)|Imn; θ(t)

]
=

n

∑
i=1

K

∑
k=1

τ
(t)
ik log

[
αkφ3(vi; μk, Rk)φm(yi; B(xi)βk, σ2

k I)
]
, (11)

where τ
(t)
ik = P(Zi = kyi, xi, vi; θ(t)) given by

τ
(t)
ik =

w(t)
k φ3(vi; μ

(t)
k , R

(t)
k )φm(yi; B(xi)β

(t)
k , σ2

k
(t)

I)

f (vi, xi, yi; θ(t))
(12)

is the posterior probability that the observed pair (xi, yi) is generated by the kth regressor.
This step therefore only requires the computation of the posterior component membership
probabilities τ

(t)
ik (i = 1, . . . , n), for k = 1, . . . , K.

The M-step: Calculate the parameter vector update θ(t+1) by maximizing the Q-
function (11), i.e., θ(t+1) = arg maxθ Q(θ; θ(t)). By decomposing the Q−function as

Q(θ; θ(t)) =
K

∑
k=1

Q(αk; θ(t)) + Q(θk; θ(t)) , (13)

with Q(αk; θ(t)) = ∑n
i=1 τ

(t)
ik log[wkφ3(vi; μk, Rk)] and Q(θk; θ(t)) = ∑n

i=1 τ
(t)
ik log[φm(yi; B(xi)βk, σ2

k I)],
the maximization can then be performed by K separate maximizations with respect to the
parameters of the gating and the regression functions.

Updating the gating functions parameters: Maximizing (13) with respect to αk’s corre-
sponds to the M step of a Gaussian mixture model [32]. The closed-form expressions for
updating the parameters are given by

w(t+1)
k =

n

∑
i=1

τ
(t)
ik

/
n, (14)

μ
(t+1)
k =

n

∑
i=1

τ
(t)
ik vi

/ n

∑
i=1

τ
(t)
ik , (15)

R
(t+1)
k =

n

∑
i=1

τ
(t)
ik (vi − μ

(t+1)
k )(vi − μ

(t+1)
k )

/ n

∑
i=1

τ
(t)
ik · (16)

Updating the regression functions parameters: Maximizing (13) with respect to θk corre-
sponds to the M step of standard mixtures of experts with univariate Gaussian regressions.
The closed-form updating formulas are given by

β
(t+1)
k =

[ n

∑
i=1

τ
(t)
ik B(xi)B(xi)

]−1 n

∑
i=1

τ
(t)
ik B(xi)

yi , (17)

σ2
k
(t+1)

=
n

∑
i=1

τ
(t)
ik (yi − B(xi)β

(t+1)
k )2

/ n

∑
i=1

τ
(t)
ik mi · (18)

3.3. Alternative Two-Fold Approaches

We also investigate an alternative approach to the one derived before, which consists
of a two-fold approach, rather than a simultaneous functional approximation and model
estimation for segmentation. We first construct approximations of the functional data onto
polynomial or (B-)splines bases B(xi) via MLE (ordinary least squares in this case) to obtain

β̂i =
[
B(xi)

B(xi)
]−1

B(xi)
yi. (19)
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Then, we model the density of the resulting coefficient vectors β̂i, which is regarded
as the ith curve representative, by a mixture density with spatial weights of the form

f (β̂i, vi, θ) =
K

∑
k=1

πk(vi; α)φd(β̂i; mk, Ck) , (20)

where mk and Ck are the mean and the covariance matrix of each component. The spatial
weights πk(vi; α) are normalized Gaussians as in (8) or softmax as in (7). We will refer
to these methods as spatial Gaussian-gated (resp. softmax-gated) mixtures of vectorized
functional regressions, SgMVFR (resp. SsMVFR).

The EM algorithm for fitting this mixture of spatial mixtures, constructed upon pre-
computed polynomial or (B-)spline coefficients with its two variants for modeling the spatial
weights, takes a similar form to the previously presented algorithm, and is summarized as
follows. The conditional memberships of the E step are given for the softmax-gated model by

τ
(t)
ik =

πk(vi; α(t))φd(β̂i; m(t)
k , C

(t)
k )

f (β̂ivi; θ(t))
, (21)

and for the Gaussian-gated model by

τ
(t)
ik =

w(t)
k φ3(vi; μ

(t)
k , R

(t)
k )φd(β̂i; m(t)

k , C
(t)
k )

f (vi, β̂i; θ(t))
. (22)

The latter has the same advantage as explained above. In the M step, the gating
functions parameter updates are given by (14)–(16) for the Gaussian-gated model, or
through a Newton–Raphson optimization algorithm for the softmax-gated model. The
component parameter updates are those of classical multivariate Gaussian mixtures

m(t+1)
k =

n

∑
i=1

τ
(t)
ik β̂i

/ n

∑
i=1

τ
(t)
ik , (23)

C
(t+1)
k =

n

∑
i=1

τ
(t)
ik (β̂i − m(t+1)

k )(β̂i − m(t+1)
k )

/ n

∑
i=1

τ
(t)
ik · (24)

In a nutshell, to compute a clustering of the image, the label of voxel i, given the
fitted parameters θ̂, is calculated by the Bayes’ allocation rule (3), in which Im(i) is the
spatial coordinates of voxel i with either its direct spectral curve representative (xi, yi) or
its pre-calculated functional approximation coefficients β̂i given by (19).

Appendix A contains the pseudo-codes summarizing the proposed method.

3.4. Time Complexity of the Proposed Algorithms

In this subsection we investigate the time complexity of the proposed algorithms.
The time complexity of the E-step of the proposed EM algorithms for the SgMFR and the
SsMFR models is of O(Kd2 pnm), with n being the number of voxels, m the number of
energy levels, d is the number of spatial coordinates (2 or 3), p the number of the number
of regression coefficients, and K the number of clusters. For the M step, the SgMFR and the
SgMVFR have closed-form updates; The SgMFR requires the calculation of the regression
coefficients via weighted least squares with a complexity of O(Kp2nm). The SgMVFR
models require the calculations of the Gaussian means and covariance matrices as in
multivariate Gaussian mixtures, and have a complexity of O(Kp2n). However, the SsMFR
and SsMVFR algorithms require at each iteration inside the M step of the EM algorithm
an IRLS loop and the inversion of the Hessian matrix which is of dimension d(K − 1).
Therefore, the complexity of the IRLS is approximately of O(IIRLSd2K2), where IRLS is
the average number of iterations required by the internal IRLS algorithm. The complexity
here can therefore be an issue for a large number of clusters, and the SgMFR and SgMVFR
algorithms can be preferred.
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4. Experimental Study

In this section, we describe the evaluation of different versions of our method: mixtures
of B-spline and polynomial functional regressions with spatial Gaussian gates (resp. SgMFR-
Bspl and SgMFR-poly), mixture of B-spline regressions with softmax gates (SsMFR-Bspl),
and mixture of vectorized B-spline regressions with Gaussian gates (SgMVFR-Bspl).

4.1. Data

In total, 91 head and neck DECT scans were evaluated, consisting of HNSCC tumors
of different sizes and stages from different primary sites. In our dataset, 34% of tumors are
located in the oral cavity, 26% in the oropharynx, 21% in the larynx, 8% in the hypopharynx
and 11% in other locations. The tumors’ T-stage [43] ranges from T1 to T4. Of the patients,
75% were coming for a first diagnostic while 25% were recurrent patients. Institutional
review board approval was obtained for this study with a waiver of informed consent.
Tumors were contoured by an expert head and neck radiologist. All scans were acquired
using a fast kVp switching DECT scanner (GE Healthcare) after administration of IV
contrast and reconstructed into 1.25 mm sections of axial slices with a resolution of 0.61 mm,
as previously described [11]. Multienergy VMIs were reconstructed at energy levels from
40 to 140 keV in 5 keV increments at the GE Advantage workstation (4.6; GE Healthcare).

In each DECT scan, we crop volumes of interest (VOIs) of size 150*150*6 containing a
tumor, along with the 21-point-spectral curve associated to each selected voxel, in order
to reduce the computational demands for an exploratory study, and to exclude regions
containing a majority of air voxels around the body. A pre-processing step is also applied
to mask any remaining air voxels in the VOI to focus the clustering on tissues.

4.2. Regularization Parameter

In our study, we augmented the statistical estimator in Equation (16) of the covariance
matrix of the spatial coordinates within cluster k, with a regularization parameter λ ∈ (0, 1],
which controls the amount of spatial dispersion (neighborhood) taken into account in the
spatial mixture weights, by

R̃
(t+1)
k = λR

(t+1)
k . (25)

By doing so, we can numerically control the amount of data within cluster k (i.e., its
volume). Indeed, if we decompose Ck = λDADT where A is the Ck eigenvectors matrix,
and D is a diagonal matrix whose diagonal elements are the eigenvalues in decreasing
order, then λ is the volume of cluster k. Since the tumor cluster has in general no strong
spatial dispersion, then in practice, we take small values of order 0.1.

4.3. Parameter Initialization

For the sake of reproducibility, we start by initializing the regression mixture and
weight parameters of the EM algorithm with a coarse clustering solution given by a
Voronoi diagram. We build up Voronoi tiles over the selected voxels in the VOI (a square
region where air voxels are deleted) with the k-means algorithm applied only on spatial
coordinates. Then to fix the number of clusters K, and to fix the spatio-spectral hyper-
parameter λ, we assess on a small training set (10 patients) the three metrics described in
Section 4.5. In our experiments, K is taken to be large enough, say 20, 30 or 40, so that we
do not have to perform a full grid search which could be computationally demanding,
and the value λ around 0.075 works very well. The process is run similarly for both
methods of mixtures of functional regressions and mixtures of vectorized functional
regressions. The range of search values is adapted for each method, and 5 search values
are taken in each range. In the end, we use the mean of optimal values over the patients
in the train set.
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4.4. Baselines

We compare the quantitative and qualitative performance of our methodology
with three baseline algorithms. First, we implement a Gaussian mixture model (GMM)
with the iterative EM algorithm, using the standard non-reshaped algorithm [32] to
cluster the spectral curves, thus leading to not include spatial coordinates. Because
several clusters can become empty through the optimization, we fix an initial number
of clusters (K = 150) that ends up providing, on average, the same resulting number
of clusters for our method (i.e., K = 40). Second, we implement k-means clustering,
using all vector information available, that is, the input vector is built with spectral
information (i.e., the energy decay curve points) concatenated to a vector of spatial
information (i.e., the 3D coordinates). The number of clusters is picked to be also
K = 40, the number of clusters being stable throughout the optimization. We use the
Matlab k-means implementation for images with a reproducible initialization through
the built-in ‘imsegkmeans’ function. Third and last, we implement selective search, a
machine learning graph-based segmentation method for object recognition. Using a
region merging hierarchical approach with an SVM classifier to select the hierarchical
rank of the resulting regions, the authors published an open-source code [44]. We apply
selective search on low-, intermediate- and high-energy levels (resp. 40, 65 and 140 keV).
These energy levels are used instead of the three RGB image channels. We note that
selective search does not predetermine the number of clusters, but specifies a cluster
minimum size or favors smaller or larger cluster sizes.

4.5. Metrics

Our clustering methods, as well as the baseline clustering algorithms, are all evaluated
using the following three metrics:

1. A cluster separation index, Davies–Bouldin index (DB), computed on spatial content
and on spectral content.

2. A clustering separation index focused only on the relationship between tumor clusters
and other clusters, Davies–Bouldin index on tumor (DBt), an adaptation of DB, computed
on spatial and on spectral content.

3. A segmentation score computed on tumor clusters versus ground truth region, the
Dice similarity score, that can be computed only on spatial content.

To define tumor clusters, we select the cluster(s) which best cover the tumor, i.e., the
ones that give the best Dice score when merged together. Several clusters segmenting the
tumor area can indeed represent different tumor subparts, but we only know the tumor
primary site contour as the ground truth.

When C is the ensemble of clusters, d(·, ·) is the Euclidean distance operator, ck is the
centroid of cluster ck, the Davies–Bouldin index is defined as

DB(C)=1/C ∑ck∈C maxcl∈C\ck
(S(ck) + S(cl))/d(ck, cl) (26)

where S(ck) = 1/ck ∑xi∈ck
d(xi, ck). The ‘tumor’ Davies–Bouldin index is adapted as

DBt(C)=maxcl∈C\ctum
(S(ctum) + S(cl))/d(ctum, cl)), (27)

where ctum is the region of the merged tumor clusters. The Dice score is defined as

Dice(ctum, ctruth) = 2 ∗ ctum ∩ ctruth/(ctum + ctruth) , (28)

where ctruth is the ground truth region. We summarize the distribution of these index
values across the population by computing the mean, median and interquartile range.

5. Results

Figure 2 shows an overview of our results for one tumor example. We visualize the
results on a 2D slice when the model has been run on the 3D VOI containing this slice.
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(a) Original slice

(b) GMM: Dice = 0.221,
DB = 3.7

/
1.8, DBt = 20.7

/
4.2,

time = 101 s

(c) k-means: Dice = 0.409,
DB = 3.8

/
15.3, DBt = 2.2

/
17.9,

time = 3.47 s

(d) S.Search: Dice = 0.523,
DB = 1.1

/
16.1, DBt = 2.7

/
15.8,

time = 0.08 s

(e) SgMFR-Bspl: Dice = 0.809,
DB = 1.4

/
7.6, DBt = 4.3

/
5.6,

time = 1521 s

(f) SgMFR-poly: Dice = 0.838,
DB = 1.2

/
6.5, DBt = 1.8

/
3.6,

time = 603 s

(g) SgMVFR-Bspl: Dice =
0.761,
DB = 1.3

/
9.0, DBt = 2.0

/
6.2,

time = 199 s

Figure 2. Clustering results for each approach in one tumor (DB(t) = spatial/spectral index). Our
proposed approaches are on the bottom row. One random color is assigned per cluster, ground truth
tumor contour is in blue (a) or white (b–g).

The top row shows the performance of the baseline algorithms, whereas the bottom
row shows our proposed methods. While the baseline approaches attribute a high number
of clusters to bone regions containing big spectral variations and miss smaller variations in
tissue regions, our methods with Gaussian gates in Figure 2e–g are able to adapt to relative
variations and split the image with more spatial coherence. The results also demonstrate
that our method is able to capture tissue characteristics invisible in Figure 2b–d,h. Note
that DB and DBt scores depend on the number of clusters and SsMFR in Figure 2h has a
very low number of clusters (softmax having vanishing clusters in the optimization). GMM
and selective search in Figure 2b,d have around 40 clusters (varying number as explained
in Section 4.4). The results in Figure 2c,e–g were obtained with 40 clusters.

Table 1 and Figure 3 present the quantitative results obtained with the three clustering
metrics defined in Section 4.5. Among the three proposed methods that outperform the
baseline methods in terms of Dice score (SgMFR-Bspl, SgMFR-poly, and SgMVFR-Bspl),
we compared the Dice score distribution obtained with SgMFR-poly (which has the lowest
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median Dice score among the three) to that obtained with the k-means-like baseline (which
has the highest median Dice score) with a two-sample t-test, obtaining p=0.0014.

Figure 4 showcases the clustering results obtained when varying the tuning of λ. Here,
we understand that a smaller λ gives a higher preference to the spatial information: clusters
are compact and define well-separated areas. On the other hand, a larger λ gives a higher
priority to the spectral information: clusters more closely match tissue characteristics, but
one cluster can be split into tiny voxel groups spread all over the image. The ideal λ
choice would be a λ that prioritizes spectral information, but still achieves some cluster
spatial compactness. We assess this through metrics calculated on spectral and spatial
content as explained in Section 4.5. The general tuning of λ = 0.075 is determined to be,
on average, the optimal hyper-parameter. However, we can see strong improvements in
tumor separation, on a case by case basis, with small variation of λ. As shown in Figure 4e,f,
the Dice score increases from 0.36 to 0.64. This shows an example out of several results
belonging to the lower quartile in the boxplot of Dice scores in Figure 3 that could be
highly improved simply with a specific tuning. Some other examples of results in the lower
quartile could be due to small tumors (size inferior to 1cm), although half of these small
tumors are actually well-separated with our method, reaching a Dice score as high as 0.84
in the best case (see in Figure 5).

The proposed algorithms clearly outperform the investigated standard clustering
algorithms in terms of the considered metrics, such as the Dice score. In particular, the
two approaches based on Gaussian-gating mixture weights, whenever they are directly
built upon a functional mixture model (SgMFR), or used with a prior functional data
representation of the energy curves (SgMVFR), enjoy both high segmentation capabilities
while being computationally effective. The two proposed alternative approaches based
on the use of softmax-gating mixture weights (SsMFR and SsMVFR), can, however, be
computationally expensive, given that they use, at each EM iteration, a Newton–Raphson
optimization; they may lead in some situations to less precise segmentation, typically
due to a numerical convergence issue, as compared to the proposed Gaussian-gating-
based approaches. As a result, we can suggest to the interested users prioritize the use
of the SgMFR and SgMVF approaches when investigating our proposed techniques for
DECT clustering. This being said, in order to investigate the statistical significance of the
differences in the results of the proposed family of algorithms, it is interesting to perform a
statistical study with appropriate statistical testing.

Figure 3. Boxplots for each metric per method. Note that SsMFR-Bspl method gives few outliers out
of reach (order of 1013) on the DB spectral index, and one outlier of 135 for tumor DB spatial index.
These values are shifted in the displayed range and exhibit a top arrow.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Clustering results for our SgMFR method with different λ tuning. (a) Original slice.
(b) λ= 0.075, Dice = 0.79, DB = 1.68/7.29, DBt = 1.47/6.79. (c) λ= 0.100, Dice = 0.39, DB = 2.59/4.27,
DBt = 3.34/3.74. (d) Original slice. (e) λ= 0.075, Dice = 0.36, DB = 1.75/6.70, DBt = 1.28/23.71.
(f) λ= 0.080, Dice = 0.64, DB = 1.87/6.57, DBt = 1.78/2.93. One random color is assigned per cluster,
ground truth tumor contour is in blue (a,d) or white (b,c,e,f).

(a) (b)

Figure 5. Clustering results with our SgMFR for a small tumor. Note the robustness of the result in
the presence of a metallic artifact in the right-hand side of the anatomical image. (a) Original slice.
(b) Dice = 0.84, DB = 1.64/6.92, DBt = 1.98/7.22, λ = 0.075.
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6. Discussion and Conclusions

In this paper, we developed a statistical methodology to cluster intensity attenuation
curves in DECT scans. We applied our proposed methods, together with other alternative
clustering algorithms used as baselines, to a set of 91 DECT scans of HNSCC tumors. The
classical manner of evaluating algorithms for clustering/segmentation is via measures of
overlap (such as the Dice score) with a ground truth segmentation. However, as mentioned
in the Introduction above, the manual segmentations of HNSCC tumors that are used as
“ground truth” can suffer from large inter-rater variability, and do not incorporate in any
systematic manner regions immediately adjacent to the tumor that may be biologically
important for determining the course of evolution of the tumor. Because of this inherent
uncertainty in the appropriate contours of an HNSCC tumor, the main objective in our
paper was to compare our clustering results to the manual contouring, but also to explore
associations between voxels within the ground truth tumor contour and voxels in the
surrounding tissue areas.

Compared to the baseline algorithms, it is clear both visually and quantitatively
that our methods using Gaussian gates (SgM(V)FR) produce results that match better
the manual segmentation contours. Our method using softmax gates (SsMFR) is less
flexible compared to the one with Gaussian gating functions, and thus sometimes leads
to non-satisfactory results. Although in terms of qualitative assessment, clusters of
SsMFR-Bspl are indeed more spatially compact, quantitative performance in some
situations stays similar to GMM baseline. Thus, this variant of the algorithm does
not appear to perform well in practice. Using Gaussian gates, however, Dice score
distributions are significantly better than the k-means-like algorithm, the best of our
baseline methods.

That being said, it is also clear that with Dice scores ranging from nearly 0 to nearly 1,
our proposed methods do not recover the “ground truth” segmentations in a reliable and
consistent manner. Several reasons may explain this finding. First, our clinical dataset of
DECT scans is not uniform, i.e., it includes tumors of highly variable characteristics, in
highly variable sizes, locations and environments, which makes it particularly challenging.
Moreover, as seen in Figure 4, changes in parameter tuning can lead to substantial im-
provement in Dice scores for some tumors. Finally, because of their intricate morphology
and often small sizes, HNSCC tumors are inherently difficult to segment. In a recent
international challenge, Dice scores of head and neck tumor segmentation ranged across
different competition entries between 0.56 and 0.76 [45].

Most importantly, as argued throughout this paper, the clinical value of recovering
the manual segmentations of HNSCC tumors as an objective criterion for evaluating
the algorithm is also not clear. In fact, it was recently argued in the clinical literature
that AI methods in medical imaging would be more meaningful if evaluated against
clinical outcomes, as opposed to an evaluation against radiologists’ performance, due to
inherent subjectivity and variability of the latter [46]. For all the reasons, the objective
of this paper was moved away from reproducing the manual contours produced by
the radiologist, and was focused instead on developing tools that discover patterns of
association in the DECT data.

Our study has several limitations. As discussed above, in our view, the appropriate
way of evaluating the methodology’s clinical utility is not by computing Dice scores
relative to manually drawn contours. Rather, a more clinically informative evaluation
would determine the performance of the recovered clusters in predicting clinical out-
come in a machine learning setting, compared to the same predictive algorithm applied
with the manual tumor segmentations. Such an evaluation is missing from the present
paper; it will be part of a subsequent paper in future work. Another limitation stems
from the lack of an automated identification of those clusters that are associated with
the tumor region. Right now, we choose those clusters that maximize overlap with
the manually segmented tumor region. Ideally, however, the abnormal tumor clusters
should be identified automatically, by selecting those clusters that have the highest

361



Diagnostics 2022, 12, 3072

association with clinical outcomes. In this manner, the automated cluster identifica-
tion can be naturally made part of a single machine learning pipeline for predicting
clinical outcomes. Yet another limitation comes from the very small size of the subset
of tumors (n = 10) over which we estimated the algorithm parameters (λ and number
of clusters), before applying the algorithm to the remaining 81 tumors in our dataset.
A larger dataset, together with additional patient-specific tuning will help tune the
algorithm’s performance.

The need for the improvements described above is clear, and they will be made part
of a subsequent publication. In the present article, we chose to focus on the theoretical and
algorithmic developments. As mentioned in the Introduction, this is the first time to our
knowledge that statistical tools from the functional data analysis field are put into practice
with DECT data. As such, the present paper remains an inherently exploratory one in its
experimental framework.

Nevertheless, we believe that we provide several important technical and method-
ological contributions. We constructed a functional regression mixture model that
integrates spatial content into the mixture weights, and we developed a dedicated
EM algorithm to estimate the optimal model parameters. Our mixture-based model
is a highly flexible statistical approach allowing for many choices of the parametric
form of the component densities. We proposed two candidate designs for the mixture
weights, normalized Gaussian gates and softmax gates. The Gaussian-gate closed-form
solution for spatial mixture weight updates considerably reduces the computation
time while also providing solutions with better clustering index values, compared to
the Newton–Raphson optimization algorithm needed at each update of the softmax-
gating parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

DECT Dual-energy computed tomography
DSC Dice similarity score
EM Expectation–maximization
FDA Functional data analysis
fPCA Functional PCA
HNSCC Head and neck squamous cell carcinoma
MLE Maximum likelihood estimation
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PCA Principal component analysis
R-CNN Regional convolutional neural network
SgMFR Spatial Gaussian-gated mixtures of functional regressions
SgMVFR Spatial Gaussian-gated mixtures of vectorized functional regressions
SsMFR Spatial softmax-gated mixtures of functional regressions
SsMVFR Spatial softmax-gated mixtures of vectorized functional regressions
VOI Volumes of interest
VMI Virtual monochromatic image

Appendix A. Pseudo-Codes for the Proposed Methods

Algorithm A1 Pseudo code of DECT-CLUST with SsMFR and SgMFR models.

Inputs: 4D-image (n curves (vi, xi, yi)
n
i=1), # clusters K, degree p (and # knots q)

1: Initialization: θ(0) = (α(0), θ
(0)
1 , . . . , θ

(0)
K ); set t ← 0

2: while increment in log-likelihood > ε (e.g., 1e−6) do
3: E-Step: % Conditional memberships :

4: for k = 1, . . . , K do

5: compute τ
(t)
ik for i = 1, . . . , n using (12) for SgMFR or the standard one for SsMFR

6: end for
7: M-Step: %a. Spatial Mixture Weights

8: if SgMFR model is used: then
9: %Update Spatial Gaussian-Gating Functions:

10: for k = 1, . . . , K do

11: compute w(t+1)
k (14), μ

(t+1)
k (15), and R

(t+1)
k (16)

12: end for
13: end if
14: if SsMFR model is used: then
15: % Update Spatial Softmax-Gating Functions:
16: IRLS Algorithm:
17: Initialize: α(s) ← α(t) and s ← 0 (IRLS iteration)
18: while increment in Qα(α, θ(t)) > δ (eg. 1e-6) do

19: compute α(s+1) using IRLS
20: s ← s + 1
21: end while
22: α(t+1) ← α(s)

23: end if
24: %b. Update Functional Mixture Components:
25: for k = 1, . . . , K do

26: compute β
(t+1)
k using (17) and σ

2(t+1)
k using (18)

27: end for
28: % Convergence test
29: Compute the joint log-likelihood (9) for SgMFR or the standard marginal log-likelihood

for SsMFR.
30: t ← t + 1
31: end while

Outputs: θ̂ = (α(t), θ
(t)
1 , . . . θ

(t)
K ) the MLE of θ and the conditional probabilities τ

(t)
ik
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Algorithm A2 Pseudo code of DECT-CLUST with alternative SgMVFR and SsMVFR
models.

Inputs: 4D-image (n curves (vi, xi, yi)
n
i=1), # clusters K, degree p (and # knots q)

1: for i = 1, . . . , n do
2: Compute the functional data representations β̂i by (19)
3: end for
4: Initialization: θ(0) = (α(0), θ

(0)
1 , . . . , θ

(0)
K ); set t ← 0 (EM iteration)

5: while increment in log-likelihood > ε (eg. 1e-6) do
6: E-Step: % Conditional memberships :

7: for k = 1, . . . , K do

8: compute τ
(t)
ik for i = 1, . . . , n using (21) for SsMVFR or using (22) for SgMVFR

9: end for
10: M-Step: %(a) Update Spatial Weights:

11: if SgMVFR model is used: then
12: %Update Spatial Gaussian-Gating Functions:
13: for k = 1, . . . , K do

14: compute w(t+1)
k using (14), μ

(t+1)
k using (15), and R

(t+1)
k using (16)

15: end for
16: end if
17: if SsMVFR model is used: then
18: % Update Spatial Softmax-Gating Functions:
19: α(t+1) ← is returned by IRLS:
20: end if
21: %(b) Update Multivariate Mixture Components:
22: for k = 1, . . . , K do

23: compute m(t+1)
k using (23) and C

(t+1)
k using (24)

24: end for
25: % Convergence test
26: Compute the joint log-likelihood (9) for SsMVFR or the standard marginal one for

SgMVFR.
27: t ← t + 1
28: end while

Outputs: θ̂ = (α(t), θ
(t)
1 , . . . θ

(t)
K ) the MLE of θ and the conditional probabilities τ

(t)
ik
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Abstract: (1) Objective: To evaluate the performance of ultrasound-based radiomics in the preopera-
tive prediction of human epidermal growth factor receptor 2-positive (HER2+) and HER2− breast
carcinoma. (2) Methods: Ultrasound images from 309 patients (86 HER2+ cases and 223 HER2−
cases) were retrospectively analyzed, of which 216 patients belonged to the training set and 93 pa-
tients assigned to the time-independent validation set. The region of interest of the tumors was
delineated, and the radiomics features were extracted. Radiomics features underwent dimensionality
reduction analyses using the intra-class correlation coefficient (ICC), Mann–Whitney U test, and the
least absolute shrinkage and selection operator (LASSO) algorithm. The radiomics score (Rad-score)
for each patient was calculated through a linear combination of the nonzero coefficient features. The
support vector machine (SVM), K nearest neighbors (KNN), logistic regression (LR), decision tree
(DT), random forest (RF), naive Bayes (NB) and XGBoost (XGB) machine learning classifiers were
trained to establish prediction models based on the Rad-score. A clinical model based on significant
clinical features was also established. In addition, the logistic regression method was used to integrate
Rad-score and clinical features to generate the nomogram model. The leave-one-out cross validation
(LOOCV) method was used to validate the reliability and stability of the model. (3) Results: Among
the seven classifier models, the LR achieved the best performance in the validation set, with an area
under the receiver operating characteristic curve (AUC) of 0.786, and was obtained as the Rad-score
model, while the RF performed the worst. Tumor size showed a statistical difference between the
HER2+ and HER2− groups (p = 0.028). The nomogram model had a slightly higher AUC than
the Rad-score model (AUC, 0.788 vs. 0.786), but no statistical difference (Delong test, p = 0.919).
The LOOCV method yielded a high median AUC of 0.790 in the validation set. (4) Conclusion:
The Rad-score model performs best among the seven classifiers. The nomogram model based on
Rad-score and tumor size has slightly better predictive performance than the Rad-score model, and it
has the potential to be utilized as a routine modality for preoperatively determining HER2 status in
BC patients non-invasively.

Keywords: ultrasound; HER2; breast carcinoma; radiomics

1. Introduction

Breast carcinoma (BC) is the most common malignancy and the most frequent cause
of carcinoma mortality in women worldwide [1], and it is a complex and heterogeneous
disease [2–4]. Currently, BC is mainly classified into hormone-receptor-positive, human
epidermal growth factor receptor 2-positive (HER2+), and triple-negative BC on the basis
of histopathological characteristics [5,6].

HER2+ BC, in which the cells do not express estrogen receptors and progesterone
receptors, accounts for about 15% of all BC cases and presents a high rate of recurrence and
poor prognosis compared with hormone-receptor-positive BC [7–9]. Nevertheless, over
the last two decades, as agents that target HER2, including trastuzumab and pertuzumab,
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are extensively applied in clinical practice, significant advances have been made in the
treatment of HER2+ BC and overall survival has improved [10–12]. Hence, the status of
HER2 is one of the most significant and decisive factors in the treatment decision and
prognosis for breast carcinoma patients.

So far, the evaluation of HER2 status in breast carcinoma patients mainly relies on
immunohistochemistry (IHC) examination after surgical tumor excision or biopsy [13],
whereas both biopsy and surgery are invasive procedures and may lead to an increased risk
of complications such as seroma, local pain, and infection [14,15]. Moreover, the evaluation
results of a few tissue biopsies do not necessarily represent HER2 status of the whole
tumor [16]. In addition, in our center, routine histopathological findings are analyzed, but
patients still need to spend extra to get results from IHC. Therefore, it is urgent to develop
an economical, non-invasive, and precise pretreatment technology to predict HER2 status
in breast carcinoma patients.

Radiomics is a new research field on the basis of quantitative imaging methods, which
are mainly adopted to extract and analyze a large number of imaging features hardly
perceived by radiologists to reflect tissue information [17,18]. Recent studies demonstrate
that radiomics features extracted from magnetic resonance imaging (MRI) and computed
tomography (CT) images have been widely used in diagnosis, prediction of tumor stage
and histological subtype, as well as prognostic evaluation [19–22]. MRI and CT are limited
by economic cost and/or equipment availability. Compared with the above imaging
technologies, ultrasound, recognized as a radiation-free, convenient, and reasonably priced
technology, is universally used for breast carcinoma screening and diagnosis [23]. A number
of researchers have extended radiomics to ultrasound imaging [24,25]. Prior ultrasound
radiomics studies have shown that molecular subtypes of BC are related to qualitative
imaging characteristics and histopathologic features [26,27].

To the best of our knowledge, there are still relatively few studies to predict HER2 sta-
tus of breast carcinoma using the method of ultrasound-based radiomics. We hypothesized
that ultrasound radiomics features might provide guidance for predicting HER2 status
in patients with breast carcinoma and would like to develop and validate an ultrasound
radiomics model that could predict HER2 status.

2. Materials and Methods

2.1. Patient Cohorts

The institutional review board approved this retrospective study, and the requirement
for written informed consent was waived.

In total, 522 female patients confirmed as primary BC based on pathology examination
by means of biopsy or surgical excision and examined by ultrasound before treatment at
our institution from March 2019 to November 2021 were retrospectively collected.

Exclusion criteria were as follows: (a) ultrasound images not suitable for radiomics
study because of poor quality, artifacts, calcifications, or cystic changes (n = 48); (b) tu-
mors larger than 50 mm in diameter (incompletely displayed in a single plane) (n = 27);
(c) patients who underwent biopsy, radiotherapy, and/or chemotherapy before ultrasound
examination (n = 65); (d) patients with multifocal lesions or non-mass BC (n = 4040);
and (e) patients with missing clinical characteristics and/or postoperative histopathology
(n = 32); Finally, there were 309 eligible patients with BC, of whom those from March 2019
to November 2020 served as the training set (n = 216), while the remaining patients formed
the time-independent validation set (n = 93). The flowchart of patient selection is shown
in Figure 1.

2.2. Pathological Assessment

IHC is the leading clinical technology for immunostaining, which can precisely de-
termine the molecular subtypes of BC with high specificity. The estrogen receptor (ER)
and progesterone receptor (PR) status was considered positive if ≥1% of tumor cells had
positively stained nuclei [28]. For HER2 status identification, an IHC score 3+ of HER2 was
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considered as positive, while an IHC score 0 or 1+ of HER2 was considered as negative. An
IHC score of 2+ was considered indeterminate, and then fluorescence in situ hybridization
(FISH) was carried out to assess gene amplification, and HER2 was classified as positive
if the ratio was ≥2.0 [6]. For Ki-67 status, tumors with greater than 14% positive nuclei
were considered to have high expression, while other cases were considered to have low
expression [29].

Figure 1. The patient enrollment process for this study.

2.3. Clinical Characteristics

Clinical data such as age, tumor size, and tumor location were obtained from patients’
medical records. Status of ER, PR, and HER2, Ki-67 levels, molecular subtype, lymph
node metastasis, and histological type of tumor were obtained by reviewing patients’
pathology reports.

2.4. Image Acqusition and Segmentation

Breast ultrasound examinations were carried out by sonographers with more than
5 years of experience in breast ultrasound imaging, within 2 weeks before surgical resection.
Ultrasound was performed using the LOGIQ E9 ultrasound system with a 6–15 L linear
array probe and the Siemens Acuson S2000 with a 6–18 L linear array probe with radial,
transverse, and longitudinal scanning on both breasts. The imaging parameters were
consistent among patients: gain was about 50%; image depth was about 3.0 cm to 5.0 cm;
and focus paralleled the lesion. The ultrasound image was 1164 × 873 pixels and 1024 × 768
pixels in size on the LOGIQ E9 and Siemens Acuson S2000 devices, respectively. The image
of the largest section of the breast tumor with the clearest imaging was saved in the format
of Digital Imaging and Communications in Medicine to maximize the preservation of the
image information. Manual segmentation was performed on gray-scale ultrasound images
of breast lesions. Sonographer 1 (with more than 5 years of experience in breast ultrasound
imaging) with no information about the patient’s clinical history selected the largest plane
of each breast lesion and drew an outline of the region of interest (ROI) by using ITK-SNAP
software (version 3.4.0).

2.5. Radiomic Feature Extraction

A total of 788 radiomics features, consisting of shape, statistics, texture, and wavelet
features, were extracted. Radiomics features were extracted using the “pyradiomics”
package of Python (version 3.7.11). These ultrasound radiomic features were divided into
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four categories, including 14 two-dimension shape-based features, 18 first-order statistics
features, 22 gray-level co-occurrence matrix (GLCM) features, 16 gray-level run length
matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features, 14 gray-level
dependence matrix (GLDM) features, and 688 features derived from first-order GLCM,
GLRLM, GLSZM, and GLDM features using wavelet filter images. Supplementary Material
Data S1 contains details on the ultrasound radiomics extraction settings.

2.6. Evaluation of Inter- and Intra-Class Correlation Coefficient

The inter- and intra-class correlation coefficients (ICCs) were adopted to test the
reproducibility of feature extraction. Sonographers 1 and 2 (both with more than 5 years of
experience in breast ultrasound imaging) drew ROIs on the same ultrasound images from
the 50 randomly selected patients and extracted the radiomics features. Two weeks later,
sonographer 1 repeated ROI segmentation on the same ultrasound images and extracted
the radiomics features to assess the intra-observer reproducibility. An ICC greater than 0.75
suggested a good agreement for the feature extraction.

2.7. Radiomics Feature Selection

All the radiomics features were standardized by the z-score algorithm to ensure that
the scale of feature value was uniform and improve the comparability between features,
which was realized in the proportional scaling of the original data. The features with ICCs
less than 0.75 were excluded.

In the training set, the Kolmogorov-Smirnov test was first performed to assess whether
variances were normally distributed, and Levene’s test was used to assess the equality of
variance. An independent sample t test was used for variables with a normal distribution
and homogeneity of variance. Otherwise, the Mann–Whitney U test was used. The
radiomics features that showed no significant differences were excluded. The remaining
radiomics features were further screened by using penalized logistic regression with a least
absolute shrinkage and selection operator (LASSO) algorithm. An optimal lambda was
selected through 10-fold stratified cross-validation, which was tuned to achieve minimum
mean square error. Thus, features with a non-zero coefficient in the model were regarded
as the most representative features.

2.8. Development and Validation of the Prediction Model

The radiomics score (Rad-score) was calculated for each lesion using LASSO regression
and a linear combination of the values of the selected features weighted by their respective
non-zero coefficients. Based on the Rad-score, seven machine learning classifiers consisting
of decision tree (DT), K nearest neighbors (KNN), random forest (RF), support vector
machine (SVM), logistic regression (LR), naive Bayes (NB), and XGBoost were used to
construct the prediction model in the training set. The classifier with the highest AUC
value in the validation set was obtained as the Rad-score model.

2.9. Clinical Model and Nomogram Model

Clinical features that showed a statistical difference between the HER2+ and HER2−
BC in the training set were adopted to develop the clinical model by using the logistic
regression method. In addition, the nomogram model combining significant clinical factors
and the Rad-score was constructed for personalized HER2 status prediction.

We evaluated the performances of all the models in the time-independent validation
set in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy, and the area under the receiver operating characteristic (ROC) curve
(AUC). To verify the robustness of the nomogram model, the calibration curve [25] was
plotted. Furthermore, decision curve analysis (DCA) [26] was also utilized to select the
model that maximized patient benefits. The flowchart of this research is shown in Figure 2.
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Figure 2. Schematic representation of the radiomics analysis steps.

2.10. Statistical Analysis

R version 3.5.1 software was used for statistical analysis and figure plotting. Radiomics
features were extracted from each ROI using the “pyradiomics” package of Python (version
3.7.11). The continuous variables with normal distribution and homogeneity of variance
were shown as the mean (standard deviation) and tested by an independent sample
t test; otherwise, the data were analyzed by the Mann–Whitney U test and expressed
as the median (interquartile range). For categorical variables, the chi-square analysis or
Fisher’s exact tests were applied to compare the results. A two-tailed p < 0.05 indicated a
significant difference.

3. Results

3.1. Clinical and Pathological Characteristics

The clinical and pathological characteristics of the training and validation sets were
compared, and there was no statistically significant difference found (p > 0.05) (Table 1).
This suggested that the training and validation sets were harmonious in these clinical and
pathological characteristics.

Table 1. The baseline characteristics of the enrolled patients in the training and validation sets.

Characteristic
Total Set
(n = 309)

Training Set
(n = 216)

Validation Set
(n = 93)

p-Value

Age (year, mean ± SD) 52.88 ± 10.96 53.61 ± 10.98 51.18 ± 10.76 0.073

Size (mm, mean ± SD) 24.58 ± 11.06 25.25 ± 11.03 23.02 ± 11.03 0.106

Tumor location 0.480

Right lobe 165 112 53

Left lobe 144 104 40

BI-RADS 0.297

4A 46 29 17

4B 116 79 37

4C 81 63 18

5 66 45 21
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Table 1. Cont.

Characteristic
Total Set
(n = 309)

Training Set
(n = 216)

Validation Set
(n = 93)

p-Value

ER 0.973

Positive 228 160 68

Negative 91 56 25

PR 0.597

Positive 188 134 54

Negative 121 82 39

HER2 1.000

Positive 86 60 26

Negative 223 156 67

Histologic type 0.581

Invasive ductal 259 184 75

Invasive lobular 14 9 5

Other 36 23 13

Ultrasound equipment 0.636

Siemens Acuson S2000 246 174 72

LOGIQ E9 63 42 21

US-reported LN 0.875

Metastasis positive 130 92 38

Metastasis negative 179 124 55

Pathology-reported LN 0.868

Metastasis positive 170 120 50

Metastasis negative 139 96 43

Ki-67 (%, mean ± SD) 28.52 ± 22.16 28.16 ± 21.96 29.38 ± 22.72 0.663

Radiomics score (median, IQR) −0.0097
(−0.0975, 0.0794)

−0.0099
(−0.1030, 0.0787)

−0.0029
(−0.0883, 0.0808) 0.678

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, standard
deviation; IQR, interquartile range; LN, lymph node; US, ultrasound; BI-RADS, Breast Imaging Reporting and
Data System.

3.2. Radiomics Feature Extraction and Selection

A total of 788 radiomics features were extracted from the ultrasound images of each
patient. The reproducibility of ultrasound radiomics features extraction was assessed. The
intra-observer correlation coefficient of sonographer 1 in two extractions was between 0.296
and 0.996, while the inter-observer correlation coefficient of extraction by sonographer 1
and sonographer 2 was between 0.323 and 0.989. Finally, 23 radiomics features (ICC < 0.75)
were excluded. The ICC evaluation results are shown in Figure 3. The morphological
characteristics of the randomly selected lesions for ICC assessment are provided as Sup-
plementary Material Data S2. All of the following analyses were based on the radiomics
features extracted by sonographer 1.

In the training set, after evaluating the differences of radiomics features by the Mann–
Whitney U test, 321 radiomics features were used for further analysis. Then, the optimum
Lambda (Lambda = 0.027464741148160516) was determined for the LASSO regression, and
12 radiomics features with nonzero coefficients were selected to differentiate HER2+ from
HER2− BC (Figure 4).
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Figure 3. Bar plots of intra- and inter-observer ICC. Upper: inter-rater agreement; Lower: intra-rater
agreement. ICC: intra-class correlation coefficient.

Figure 4. Feature selection and Rad-score building by LASSO. (A) A 10-fold cross validation was
used to predict mean square error of the Rad-score building by different Lambda values. (B) The
coefficient profiles of the radiomics features determined by different Lambda values.

Detailed information on the HER2+ BC-related features is shown in Table 2, and the
nonzero coefficients of the selected features based on the LASSO regression are shown in
Figure 5A. Moreover, the Pearson correlation coefficient between any pair of selected fea-
tures was computed, and the correlation coefficient matrix heatmap is shown in Figure 5B.

Table 2. List of features with nonzero coefficients.

Image Type Feature Class Feature Name Coefficient

original shape Elongation −0.011322

original glszm SmallAreaEmphasis −0.076092

wavelet-LHL glcm Idn 0.047259

wavelet-LHL glszm SmallAreaLowGrayLevelEmphasis −0.013013

wavelet-LHH glszm HighGrayLevelZoneEmphasis 0.008385

wavelet-LHH glszm SizeZoneNonUniformityNormalized 0.005098

wavelet-HLL firstorder 90Percentile −0.020703

wavelet-HLL glcm JointEntropy 0.020412

wavelet-HLL glszm GrayLevelNonUniformityNormalized −0.010225

wavelet-HLL gldm DependenceNonUniformityNormalized −0.033653

wavelet-HLH firstorder Mean −0.00703

wavelet-HHH firstorder Median 0.010776
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Figure 5. (A) The coefficients of radiomics features to construct the Rad-score; (B) a Pearson correla-
tion coefficient heatmap of the selected features for predicting HER2 status. Green color denotes a
positive correlation, the red color denotes a negative correlation, and the shade of the color indicates
the degree of correlation.

3.3. Radiomics Score Calculation

The radiomics score (Rad-score) for each patient in the training and validation sets
was calculated through a linear combination of the nonzero coefficient features based on
the LASSO regression, as shown in Figure 6A,B. The corresponding fitting formula is listed
in Supplementary Material Data S3. In the training set, the medians of Rad-score showed a
statistical difference between the HER2+ and HER2− BC (0.0838 vs. −0.0546, p < 0.001),
and the same results were achieved in the validation set (0.0936 vs. −0.0518, p < 0.001)
(Figure 6C,D, Table 3).

 
Figure 6. Radiomics score for each breast carcinoma patient in the training (A) and validation sets
(B); Distribution of radiomics score values of the HER2+ and HER2− groups in the training (C) and
validation sets (D).
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Table 3. Rad-score for the training and validation sets.

Rad-Score
HER2−

(Median, IQR)
HER2+

(Median, IQR) p-Value

Training set −0.0546
(−0.1303, 0.0338)

0.0838
(0.0336, 0.1523) <0.001

Validation set −0.0518
(−0.0985, 0.0394)

0.0936
(0.0185, 0.1623) <0.001

IQR, interquartile range.

3.4. Construction and Evaluation of Machine Learning Classifier

Seven machine learning classifiers (KNN, DT, RF, SVM, LR, NB, and XGBoost) were
then adopted to develop the prediction model based on the Rad-score. The sensitivity,
specificity, accuracy, PPV, NPV, and AUC values of the seven machine learning classifiers
are shown in Table 4.

Table 4. Diagnostic performance of seven machine learning classifiers in training and validation sets.

Training Set Time-Independent Validation Set

Model AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

LR 0.804 (0.742–0.865) 80.0% 70.5% 73.1% 0.786 (0.683–0.890) 69.2% 79.1% 76.3%

SVM 0.691 (0.622–0.760) 51.7% 86.5% 76.9% 0.702 (0.596–0.808) 53.8% 86.6% 77.4%

KNN 0.708 (0.641–0.776) 50.0% 91.7% 80.1% 0.699 (0.592–0.806) 57.7% 82.1% 75.3%

RF 1.000 (1.000–1.000) 100.0% 100.0% 100.0% 0.593 (0.480–0.706) 50.0% 68.7% 63.4%

DT 0.747 (0.680–0.814) 66.7% 82.7% 78.2% 0.742 (0.639–0.845) 69.2% 79.1% 76.3%

XGB 0.917 (0.872–0.963) 86.7% 96.8% 94.0% 0.627 (0.516–0.739) 53.8% 71.6% 66.7%

NB 0.655 (0.589–0.722) 40.0% 91.0% 76.9% 0.667 (0.564–0.770) 42.3% 91.0% 77.4%

DT, decision tree; RF, random forest; SVM, support vector machine; LR, logistic regression; NB, naive Bayes;
KNN, K nearest neighbors; XGB, XGBboost; AUC, area under the curve; SEN, sensitivity; SPE, specificity;
ACC, accuracy.

Among the classifiers, the general accuracies of the RF and XGBoost were 100.0%
and 94.0% in the training set and 63.4% and 66.7% in the validation set, which suggested
overfitting. The accuracy was 63.4% in the RF classifier and 77.4% in the SVM and NB
classifiers; the AUC values of the seven machine learning classifiers ranged from 0.593 to
0.786 in the validation set, with the LR classifier performing the best and the RF classifier
performing the worst. The LR classifier with the highest AUC value was selected as the
Rad-score model. In addition, a comparison of the ROC curves of the seven machine
learning classifiers in the training set and validation set is shown in Figure 7. Furthermore,
the AUC values between any pair of the classifiers were compared, and the p values were
obtained by DeLong test, which are shown in Table 5.

Figure 7. Receiver operating characteristic curves of seven machine learning classifiers predicting
HER2+ status in training (A) and validation sets (B).

375



Diagnostics 2022, 12, 3130

Table 5. P values for AUC comparison between any pair of models tested by the DeLong method in
the validation set.

Model
(AUC Value)

LR
(0.786)

SVM
(0.702)

KNN
(0.699)

RF
(0.593)

DT
(0.742)

XGB
(0.627)

NB
(0.667)

LR (0.786) 1 - - - - - -

SVM (0.702) 0.023 1 - - - - -

KNN (0.699) 0.054 0.955 1 - - - -

RF (0.593) 0.004 0.164 0.101 1 - - -

DT (0.742) 0.124 0.317 0.225 0.021 1 - -

XGB (0.627) 0.042 0.344 0.367 0.674 0.142 1 -

NB (0.667) 0.006 0.305 0.574 0.329 0.124 0.612 1
LR, logistic regression; KNN, K nearest neighbors; DT, decision tree; RF, random forest; SVM, support vector
machine; NB, naive Bayes; XGB, XGBboost; AUC, area under the curve. The bold numbers (<0.05) mean
statistical difference.

3.5. Clinical Model and Nomogram Model

Comparison of the clinical features between the HER2+ and the HER2− BC in the
training set was performed. Tumor size (p = 0.028) and Rad-score (p < 0.001) were the
significant factors to distinguish the HER2+ from HER2− BC. Other clinical features such
as age, tumor location, ultrasound equipment, and ultrasound-reported lymph node status
were not identified as potential factors for predicting the HER2+ type (Table 6). Then, the
clinical model based on tumor size was constructed using logistic regression. At the same
time, the nomogram model was established by combining the tumor size and Rad-score
(Figure 8).

Table 6. Comparison of the clinical features between the HER2+ and HER2− BC groups in the
training set.

Training Set (n = 216)

Clinical Feature
HER2−
(n = 156)

HER2+
(n = 60)

p-Value

Age (year, mean ± SD) 54.04 ± 11.78 52.47 ± 8.55 0.279

Tumor location 0.673

Right 79 33

Left 77 27

Tumor size (mm, mean ± SD) 24.21 ± 10.90 27.93 ± 11.02 0.028

US equipment 0.064

Siemens Acuson S2000 131 43

LOGIQ E9 25 17

US-reported LN 0.550

Metastasis positive 64 28

Metastasis negative 92 31

Rad-score (median, IQR) −0.0546
(−0.1303, 0.0338)

0.0838
(0.0336, 0.1523) p < 0.001

SD, standard deviation; LN, lymph node; US, ultrasound; IQR, interquartile range.
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Figure 8. Nomogram based on the combination of the tumor size and Rad-score was developed
using logistic regression analysis.

Moreover, the predictive abilities of the clinical, Rad-score and nomogram models
were compared. The results for each model are summarized in Table 7. The ROC curves of
the three models to predict the HER2+ type are shown in Figure 9. In the time-independent
validation set, the AUC value of the nomogram was significantly higher than that of the
clinical model (AUC, 0.788 vs. 0.618; DeLong test, p = 0.016). Although the nomogram
model performed slightly better than the Rad-score model, there was no statistically
significant difference between them (AUC, 0.788 vs. 0.786; DeLong test, p = 0.919).

Table 7. Predictive performances of the models identifying HER2+ status in patients with BC.

Training Set Time-Independent Validation Set

Model AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

Clinical 0.594
(0.509–0.679) 48.3% 69.9% 63.9% 0.618

(0.485–0.751) 61.5% 62.7% 62.4%

Rad-
score

0.804
(0.742–0.865) 80.0% 70.5% 73.1% 0.786

(0.683–0.890) 69.2% 79.1% 76.3%

Nomogram 0.804
(0.742–0.866) 81.7% 71.8% 74.5% 0.788

(0.685–0.891) 73.1% 80.6% 78.5%

AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.

Figure 9. Receiver operating characteristic curves of the three models predicting HER2+ type in the
training (A) and validation sets (B).
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The LOOCV algorithm was carried out to validate the reliability and stability of the
results, which yielded a high median AUC (0.790 in the validation set), indicating that the
predictive performance of the nomogram model was reliable and stable.

3.6. Model Performance Evaluation

The predictive performances of the nine models, including seven machine learning
classifiers, a clinical model, and a nomogram model, in the validation set are shown in
Figure 10. The nomogram model has the highest AUC value (0.788), sensitivity (73.1%),
and accuracy (78.5%), and NB has the highest specificity (91.0%). To sum up, the overall
discrimination performance of the nomogram model was better than that of other models.

Figure 10. Bar plot of the performances of the nine prediction models in the validation set.

3.7. Clinical Application of the Prediction Models

The calibration curve for the nomogram was tested using the Hosmer-Lemeshow test
and yielded nonsignificant results due to both p values > 0.05 in the training and validation
sets, showing good agreements between the observed and predicted results (Figure 11).

Figure 11. Calibration curves of the nomogram model in the training (A) and validation sets (B).

Decision curve analysis of the clinical, Rad-score and nomogram models is shown in
Figure 12. The gray line represents the assumption that all lesions were HER2+ type. The
black line represents the assumption that all lesions were HER2− type. If the threshold
probability was less than 56.9%, using the nomogram would add more benefit (red line).
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Figure 12. Decision curves of the models. If the risk threshold is less than 56.9%, the nomogram
model will obtain more benefit than all treatment (assuming all breast cancer patients were HER2+)
or no treatment (assuming all breast cancer patients were HER2−).

4. Discussion

Mineable data can be extracted from digital medical images by radiomics and analyzed
to improve detection, diagnosis, staging, and prognosis prediction [20–22,24]. Ultrasound
radiomics might be helpful to answer questions like what the molecular subtype of BC is,
and this might affect the treatment strategy in patients with BC.

In our study, seven machine learning classifiers, such as KNN, LR, SVM, DT, NB, RF,
and XGBoost, were established based on the Rad-score in the training set and tested in the
time-independent validation set. Among them, the LR classifier with the AUC value of
0.786 performed the best, which might be that complex classifiers needed more training
samples. Then the LR classifier was selected as the Rad-score model. The results indicated
that the ultrasound-related Rad-score could predict the HER2+ status of patients with
breast carcinoma. In addition, by establishing a nomogram model combining the Rad-score
with clinical risk factors, we found that the nomogram model had significantly improved
predictive performance compared with the model only involving clinical risk factors (AUC,
0.788 vs. 0.618, in the validation set) and slightly improved the ability compared with the
Rad-score model (AUC, 0.788 vs. 0.786, in the validation set). The consistency between
the nomogram model’s predicted probability of HER2 status and the actual results were
evaluated by the calibration curve, and p-values in the training and validation sets were all
> 0.05, which suggested that the stability of the model is fine. In addition, patients with
BC could obtain a pronounced net benefit from the nomogram model when the threshold
probability is less than 56.9%, which is shown in the decision curve analysis, demonstrating
the good clinical utility of this model. The nomogram model could be potentially utilized as
a routine tool to assist clinicians in preoperatively predicting HER2 status non-invasively.

In recent years, radiomics studies have mainly been carried out based on computer
tomography or magnetic resonance imaging [19–22], demonstrating that radiomics features
could reflect the heterogeneity of tumors and have become a reliable potential biomarker
for improving diagnosis and treatment decisions. In recent radiomics studies on breast
ultrasound imaging, researchers have mainly focused on the differential diagnosis of
benign and malignant breast tumors [27,30,31], prediction of preoperative axillary lymph
node metastasis [26,32,33], and prediction of molecular subtypes [28], with mixed findings
that might be due to the heterogeneity of ultrasound machines, algorithms, and extracted
features. The results of our study facilitate a possible clinical role for the nomogram model
in the identification of HER2 status in BC, in accordance with the mentioned studies above
carried out by ultrasound radiomics.

379



Diagnostics 2022, 12, 3130

In the present study, the ultrasound images of breast carcinomas were analyzed by
radiomics, and finally 12 features were screened out to calculate the radiomics score. A
majority of the selected ultrasound radiomics features were wavelet-based features that
were supposed to redisplay tumor characteristics hidden behind the speckle and show
discriminative ability [32,34]. Among the 12 features, original_glszm_SmallAreaEmphasis
revealed the strongest correlation with HER2+, while wavelet-LHL_glcm_Idn and wavelet-
HLL_gldm_DependenceNonUniformityNormalized also showed a strong correlation. The
relationship between the combinations of gray levels in the image parameters is calculated
by glcm texture features, which have been widely used in many texture analysis applica-
tions and can reflect the internal spatial heterogeneity of the tumor lesions [35,36]. In the
present study, glcm features extracted from an ultrasound image of BC were correlated
with HER2 status. Radiomics features extracted from ultrasound image of BC could detect
the invisible heterogeneity of tumors and were available to predict HER2 status in patients
with BC.

Generally, one feature selection method is adopted in conventional radiomics analysis.
In the study by Xu et al. [37], six features based on ultrasound radiomics were selected by
the recursive feature elimination, and a random forest model including 90 trees was built for
prediction of HER2 status, with the AUC of 0.780 and 0.740 in the training and validation
sets. In order to reduce overfitting effectively, we used the ICC and Mann–Whitney U
test for feature selection in the first step and LASSO regression in the second step, and we
achieved better predictive performance with the LR classifier than the study by Xu et al.,
with AUC values of 0.804 and 0.786 in the training and validation sets, respectively. In
addition, the statistical power of our study might be more robust because the sample size
in our study was significantly larger than theirs (309 vs. 114).

A prior study by Wu et al. based on ultrasound radiomics developed models to predict
the expression of molecular biomarkers of the mass type of breast ductal carcinoma in situ
(DCIS) [29]. Based on 41 ultrasound radiomics features, they generated a model predictive
of HER2+ type in BC patients with AUC values of 0.940 in the training set and 0.740 in
the validation set. As the significantly reduced AUC value in the validation set and 41
ultrasound radiomics features (much more than 10% of the sample size of the training set)
were selected to establish the model, we speculated that the overfitting problem should
be taken into account. Moreover, in their study, only patients with a mass type of DCIS
were enrolled, whereas in this study, tumors such as invasive ductal carcinoma, invasive
lobular carcinoma, and mucinous breast carcinoma were included, which expanded the
range of tumor types. Furthermore, the sample size of their retrospective study was much
smaller than ours (116 vs. 309). Hence, compared with the study by Wu et al., a major
highlight in our study was the larger sample size and diversity of tumor types, which
might increase the universality of the nomogram model. We obtained a higher AUC value
compared to the aforementioned studies with regards to prediction of HER2 status by
using radiomics and a machine-learning algorithm [29,37]. The most probable explanation
for this is that we adopted seven machine learning classifiers to develop seven prediction
models and selected the one with the highest AUC value. Furthermore, the nomogram
model combining the Rad-score with the clinical risk factor of tumor size was constructed
and achieved better predictive performance than the LR classifier.

Despite the significance of the present research, there are several shortcomings in our
study. Firstly, the prediction model based on ultrasound radiomics features was established
and tested for identifying between HER2+ and HER2− BC in a single hospital with only
216 patients in the training set and 93 patients in the validation set. In addition, as all
data was collected retrospectively and limited to Chinese patients, bias was inevitable.
Therefore, further prospective studies need to involve a larger patient population and
perform multicenter external validation. Secondly, in our study, the extraction of radiomics
features required time-consuming tumor boundary segmentation and human-defined
features, and we believe that a deep learning algorithm might accurately and automati-
cally detect, segment, and achieve more objective results [38,39]. Thirdly, only gray-scale
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ultrasound images were adopted to develop the radiomics model, and other types of
images like elastosonography or color Doppler ultrasound might be taken into account for
multi-modal imaging to improve the predictive performance. Finally, radiomics studies
based on gray-scale ultrasound images still lack reproducibility, as researchers always select
different ultrasound images of the same lesion for radiomics analysis. Three-dimensional
ultrasound images for feature extraction might be more objective than the conventional
two-dimensional images, which could be considered in future studies.

5. Conclusions

In summary, the Rad-score model performs best among the seven classifiers. The
nomogram model based on Rad-score and tumor size has slightly better predictive per-
formance than the Rad-score model, and it has the potential to be utilized as a routine
modality for preoperatively determining HER2 status in BC patients non-invasively. How-
ever, further studies with a prospective design and a larger population are required to
validate the conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12123130/s1. Data S1: The ultrasound radiomics
extraction settings; Data S2: The morphological characteristics of the randomly selected 50 lesions for
ICC assessment; Data S3: The corresponding fitting formula for calculating the Rad-score.
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Simple Summary: An “intelligent agent” based on deep learning solutions is proposed to detect and
non-invasively characterize lung lesions on computed tomography (CT) scans. Our retrospective
study aimed to assess the effectiveness of Retina U-Net and the convolutional neural network for
computer-aided detection (CADe) and computer-aided diagnosis (CADx) purposes. CADe and
CADx were trained, validated, and tested on the publicly available LUNA challenge dataset and two
local low-dose CT datasets from the IRCCS Humanitas Research Hospital.

Abstract: (1) Background: Once lung lesions are identified on CT scans, they must be characterized
by assessing the risk of malignancy. Despite the promising performance of computer-aided systems,
some limitations related to the study design and technical issues undermine these tools’ efficiency; an
“intelligent agent” to detect and non-invasively characterize lung lesions on CT scans is proposed.
(2) Methods: Two main modules tackled the detection of lung nodules on CT scans and the diag-
nosis of each nodule into benign and malignant categories. Computer-aided detection (CADe) and
computer aided-diagnosis (CADx) modules relied on deep learning techniques such as Retina U-Net
and the convolutional neural network; (3) Results: Tests were conducted on one publicly available
dataset and two local datasets featuring CT scans acquired with different devices to reveal deep
learning performances in “real-world” clinical scenarios. The CADe module reached an accuracy
rate of 78%, while the CADx’s accuracy, specificity, and sensitivity stand at 80%, 73%, and 85.7%,
respectively; (4) Conclusions: Two different deep learning techniques have been adapted for CADe
and CADx purposes in both publicly available and private CT scan datasets. Experiments have
shown adequate performance in both detection and diagnosis tasks. Nevertheless, some drawbacks
still characterize the supervised learning paradigm employed in networks such as CNN and Retina
U-Net in real-world clinical scenarios, with CT scans from different devices with different sensors’
fingerprints and spatial resolution. Continuous reassessment of CADe and CADx’s performance is
needed during their implementation in clinical practice.

Keywords: CT scans; lung nodules; artificial intelligence; deep learning

1. Introduction

Lung lesions are common. The overall incidence of lung nodules has increased 10-fold
from 1959 to 2015 [1], but–fortunately—the diagnosis of lung cancer has not risen accord-
ingly [2]. The increasing use of “modern” imaging techniques, the higher adherence to
screening programs, and the regular follow-up of patients suffering from other cancers

Cancers 2023, 15, 357. https://doi.org/10.3390/cancers15020357 https://www.mdpi.com/journal/cancers
385



Cancers 2023, 15, 357

result in a more significant number of lung lesions being incidentally detected in asymp-
tomatic people [2]. Several factors should be considered dealing with the first diagnosis
of lung nodules, including the patient’s pre-test probability of malignancy (e.g., smok-
ing habits and familiar or previous history of lung cancer), and the lesion’s characteristics
(e.g., size, spiculation, and pleura indentation) [2]. Based on these risk assessments, patients
are assigned to a class of risk and are managed accordingly [2]. The workup of patients
with incidentally detected pulmonary lesions comprises actions from no further steps
to computed tomography (CT) surveillance, to [18F]FDG positron emission tomography
(PET)/CT, to invasive procedures (biopsy, surgery, radiation therapy, or interventional
radiology treatment). From a practical point of view, once identified, lung lesions must be
characterized by assessing the risk of malignancy. Several qualitative CT features have been
reported to be associated with malignancy (e.g., size and attenuation characteristics) [2,3],
and standardized criteria to describe pulmonary nodules have been proposed (number,
size, and pattern) [3]. Nonetheless, there are still several hurdles to be overcome concerning
the applicability and reproducibility of these criteria (i.e., inter-operator and intra-operator
variability due to misinterpretation and different experiences and expertise), ultimately
affecting the management of patients diagnosed with lung nodule(s).

In recent years, artificial intelligence, acting as “another pair of eyes”, has gained
popularity. Computer-aided detection (CADe) and computer-aided diagnosis (CADx)
systems have been recently developed [4–6] to support imagers in both lung lesion detection
and diagnosis tasks. A number of models have been developed for the purpose of lung
nodule detection and segmentation [7,8]. Many lung nodule segmentation algorithms
based on either general or multiview neural network architecture have been proposed.
Most studies adopting multiview neural networks have introduced new architectures
by taking multiple lung nodule views. Subsequently, they use those views as inputs to
the neural networks. On the contrary, the general neural-network-based methods rely
primarily on U-Net architecture. Moreover, different lung nodule segmentation methods
can be used for different types of lung nodules. Additionally, many techniques have
been proposed for the classification of lung nodules (e.g., whether they are benign or
malignant) focused on supervised, as opposed to semi-supervised, learning [7,8]. Despite
the promising performance of these computer-aided systems, there are still limitations
related to the study design (e.g., retrospective trial), technical issues (e.g., the manual
labeling of images and high cost) and the efficiency (e.g., low calculation efficiency) of
these tools.

The study presented in this paper aimed to develop an “intelligent agent” to detect
and non-invasively characterize lung lesions on CT scans. Our goal was to apply CNN for
lung cancer identification on the CT scans inspired by the available literature, but more
importantly we aimed to test the tool in a “real-world” setting. In greater detail, the project
involved two main modules: the first one addressed the detection of lung nodules on
CT scans; the second dealt with the diagnosis (CADx) of each nodule into benign and
malignant categories. The “intelligent agent” relied on deep learning techniques, which are
described in the following sections.

2. Materials and Methods

2.1. Study Design

The study was a retrospective, single-institution trial.
We used public and local datasets to develop the CADe-CADx. CADe and CADx were

independently developed. The study was approved by the institutional Ethics Committee.

2.2. Datasets and Image Analysis

This subsection provides details for both publicly available and local datasets for our
CADe-CADx. Tables 1–3 set out lung abnormalities within the LUNA challenge dataset,
CT scans used for CADs’ development, and the number of nodules used for CADx.
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Table 1. Lung abnormalities annotated within the LUNA challenge dataset.

Nodule ≥ 3 mm
Complete region of interest (ROI) boundary (>1 point)

Nodule characteristics (e.g., roundness, sharpness of the margin,
internal structure, etc.)

Nodule < 3 mm The approximate centroid of the nodule
No characteristics

Non nodule > 3 mm The approximate centroid of the nodule
No characteristics

Table 2. CT series datasets used for the CADs’ development.

Dataset Training Validation Test Total

LUNA 603 202 - 805

ICH_s1 764 191 234 1189

ICH_s2 54 19 19 92

Total 1421 412 253 2086

Table 3. The number of lung nodules included in each dataset used for the CADx development.

Final Diagnosis Training Validation Test Total

Benign nodule 381 192 59 632

Malignant nodule 439 198 77 714

Total 820 390 136 1346

2.2.1. LUNA Challenge Dataset

The open-source LUNA challenge dataset [9] and the local ICH_s1 and ICH_s2 datasets
were used for the detection task.

The LUNA dataset consists of 805 series of diagnostic and lung cancer screening chest
CT scans along with XML annotation files. Lung abnormalities have been annotated by
four thoracic radiologists. Each abnormality is classified as a nodule or not, and annotated
according to size, as detailed in Table 1.

The mask of the region of interest (ROI) for nodules of at least 3 mm was based on a
50% consensus criterion on four radiologists’ segmentations.

2.2.2. Local Datasets—ICH_s1 and ICH_s2

ICH_s1 is a local dataset consisting of 1189 low-dose CT series. The images were
independently analyzed by two expert chest radiologists, and all of the nodules were
segmented on non-contrast-enhanced images regardless of size. ICH_s2 consisted of
92 annotated lesions close to the mediastinum. The “ground truth” for the CADe was the
segmentation performed by imagers (full concordance between radiologists). Collectively,
local datasets included 1281 CT scans (441 with at least one nodule). The above-mentioned
datasets were split into three subsets (training, validation, and test), as detailed in Table 2.
Therefore, test set images for both ICH_s1 and ICH_s2 were used neither for training nor
validation purposes.

The 234-test series from the ICH_s1 dataset comprises 104 nodules. One nodule per
series is present in the 19-test series from the ICH_s2 dataset. Image segmentation and
labelling were performed using a dedicated plug-in implemented for the 3D-slicer software
tool (version 4.10.2, Slicer.org, Boston, MA, USA) [8].

2.2.3. CADx—Datasets and Image Analysis

The local datasets, ICH_x1 and ICH_x2, were used for classification tasks. The ICH_x1
subset comprised 349 low-dose CT images with nodules, with 29 confirmed to be malig-
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nant. The images were analyzed by an expert chest radiologist (CT), and all of the nodules
were segmented on non-contrast-enhanced images regardless of size. There was a partial
overlap between the series included in ICH_s1 and ICH_x1. The ICH_x2 subset consists
of 957 CT scans (all with at least one nodule) annotated by marking the lesion centroid.
ICH_x2 samples were annotated on non-contrast-enhanced images by experienced im-
agers (CT and MS). ICH_x2 comprises any type of CT scan acquired at our institution,
including co-registered images of PET/CT (n = 301), biopsy-guiding CT scans (n = 305),
and diagnostic CT scans (n = 351, respectively). Collectively, 1346 nodules in 1306 CT
scans were segmented and labelled. Radiological follow-up and pathology were used as
reference standards in 350/1346 and 996/1346 cases, respectively (Table 3). Specifically,
complete resolution of lung lesions was used as a radiological reference standard to define
a nodule as benign. The final radiological diagnosis was used to classify 567/632 benign
nodules. In the other 65/632 cases, benign nodules were pathologically confirmed. All ma-
lignant nodules were pathologically confirmed. Malignancy included primary lung cancer
(adenocarcinoma = 392/714, squamous cell carcinoma = 113/714, carcinoid tumor = 31/714,
and other = 35/714) and lung metastases (n = 133/714). In ten patients, the primary lung
tumor subtype was not specified. The final diagnosis was collected from electronic medical
records. Image segmentation and labelling were performed using a dedicated plug-in
implemented with the 3D slicer tool.

2.3. CADe and CADx Architectures

As briefly mentioned in the previous sections, deep learning paradigms are behind
the proposed CADe and CADx systems. One of the main challenges in our work was
to test the effectiveness of deep learning architectures in real scenarios accounting for
several variables, such as different CT devices, images with different spatial resolutions,
and device fingerprints.

Due to the different nature of detection and diagnosis tasks, we opted for two different
deep neural network architectures. CADe relies on pixel-wise segmentation to reveal
whether a pixel is part of a lung lesion. To this end, it is necessary to obtain a full-resolution
output binary mask to retrieve both the coordinates and the region of the lung lesion.

Conversely, CADx focuses on the final diagnosis of a given lung lesion. The system is
meant to return a label indicating ‘benign nodule’ or ‘malignant nodule’. Then, it is not
necessary to make the system to return a full-resolution output mask while only an output
label is needed. The following two subsections provide further technicalities regarding the
two different architectures for CADe and CADx.

Furthermore, it is necessary to point out that deep learning networks must ingest
many images to deliver a model with knowledge inference and generalization that can
accomplish a specific domain task. The biomedical image analysis scenario is afflicted by a
dimensionality problem due to the lack of manually annotated data. To be more accurate,
the dimensionality issue refers to the size of hand-labelled data, which is not reasonably
big enough to have a deep neural network trained from scratch.

That is where data augmentation comes into play; applying image transformations
without altering the meaningful content of the image itself makes a given dataset bigger in
size by generating new samples. Examples of primary data augmentation are the following:
flipping, mirroring, rotation, translation, and scaling.

In the following two subsections, a further description of the deep learning techniques
for CADe and CADx tasks is given.

2.3.1. CADe Architecture and Development

The main goal of a CADe system is to return a full-resolution mask highlighting
the suggested regions of interest for a given input image. That is why we opted for
the fully convolutional neural network (FCNN) architecture. CADe tasks are, therefore,
accomplished in a pixel-wise manner to extract information related to both the ROI (region
of interest) and the corresponding targets. FCNN allows for return of a full-resolution
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mask for a given input image. In simpler terms, an FCNN ingests an input image with size
M × N and returns an output mask with the exact dimensions. The latter makes it suitable
for critical biomedical image analysis tasks, such as segmentation and detection.

One of the most popular and cited FCNNs for biomedical image segmentation is the
so-called U-Net [10] which owes its name to the U-shape of the network architecture. In
this section, we provide readers with the overall description of U-Net, including the main
layers and operations throughout the network. For the sake of clarity, we do not address
the most complex mathematical concepts, and instead point the readers toward to the
reference articles for further details [10].

The overall U-Net architecture is depicted in Figure 1. The encoder is responsible for
extracting hidden information within the pixel domain. The latter is achieved with a stack
of filters that down-sample input images in the first place. In simpler terms, the network
architecture is organized in levels, with each level consisting of two Conv (convolutional
layers) followed by a ReLU (rectified linear unit), a max pooling layer characterized by a
parameter, namely ‘stride’, tuning the down-sampling factor for the input image.

Figure 1. U-Net architecture.

All of the encoder levels are meant to extract the most meaningful features from the
input images all the way to the network bottom level. Each level returns outputs through
feature maps (or channels). They represent intermediate stages of the network layers
that feed the following level in the stack. From a graphical viewpoint, blue rectangles
indicate the input, feature maps, and output of the network. Going through consecutive
layers through the encoder, it is noticeable how rectangles change in size, turning into
shorter but wider blue rectangles. This is a descriptive representation showing what
happens inside the network: convolutional layers work as image feature extractors; ReLU
is an activation function whose primary role is to give neural networks non-linearity
representation capabilities to represent results with more accuracy. Max pooling is a
“pooling” operator extracting the max value from image patches and bringing down down-
sampled patches.

Purple downward arrows in Figure 1 show max pooling coming into play, while or-
ange arrows represent the sequence Conv + ReLU. The encoder is responsible for extracting
“what” is in the images, while the decoder deals with the “where”.

The features extracted by the contracting path are then progressively reconstructed by
the expanding path (decoder) with layers consisting of transpose convolution (deconvo-
lution), Conv + ReLU and Final Conv. Transpose convolution allows upsampling of the
feature maps out of the previous layers; Conv + ReLU are then applied in combination with
skip connections to refine the results in each level. Skip connections help to retrieve missing
information from the encoder feature maps standing on the same level. The top left corner
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of the network returns a segmentation map by adopting a one-dimensional convolutional
layer. The latter can return labels in a pixel-wise fashion.

The network employed for our CADe, namely, Retina U-Net [11], is a variant of two
pre-existing networks, Retina Net [12] and U-Net [10].

2.3.2. Retina U-Net

Retina U-Net [11] integrates elements from Retina Net and U-Net to combine object
detection and semantic segmentation. Taking after most of the state-of-the-art object detec-
tors, Retina U-Net complements U-Net architecture by introducing object-level predictions
through feature pyramid networks (FPNs) [13]. FPNs are feature extractors with bottom-up
and top-down paths. The overall Retina U-Net architecture is graphically represented in
Figure 2. The overall pipeline is mainly characterized by FPNs, coarse features detectors,
skip connections, Conv + Softmax, Conv + ReLu + MaxPool.

Figure 2. Architecture of the U-Net neural network used to segment lung nodules in CT scans. The
number left on each layer represents the number of output channels.

Coarse feature detectors, indicated by red rectangles in Figure 2, are responsible for
detecting small-sized objects using sub-network operations such as the so-called bounding
box regressor (a well-known object detection technique) [14]. Skip connections support the
network in retrieving missing information from the encoder feature maps standing on the
same level. The Conv + ReLU + MaxPool stack consists of convolutional filter, a rectified
linear unit function, and a max pooling filter. They are key to the contracting path of the
FCNN as Conv filters and MaxPool filters down-sample the input feature map while ReLU
allows for generalization and inference of knowledge from a non-linear input (as it is a
piecewise linear function).

Conv + SoftMax consists of a sequence of a convolutional filter and a SoftMax function
returning a probability map for every possible class to be detected in the images. The
Up-pool and Deconv layers are responsible for the image reconstruction starting from the
network bottleneck (the bottom layer in the U-shaped architecture).

In this work, the Retina U-Net was implemented to segment lung nodules. It sums up
6 layers in the contracting path (see Figure 2), 18 feature maps in the first layer and 576 in
the deeper one. In the expansive path, on the other hand, the number of channels is half
the ones in the first 4 layers, starting from 576, but then it is kept to 18 in the last 2 upper
layers, consistently with the contracting path.

2.3.3. CADx Architecture and Development

The neural network architecture adopted to classify lung nodules is a convolutional
neural network (CNN) adapted from [15] (Figure 3).
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Figure 3. Architecture of the convolutional neural network used to classify lung nodules as benign or
malignant. The number in each layer represents the number of output channels in that layer.

CNN consists of several layers responsible for feature extraction steps (four convo-
lutional blocks) and classification (three fully connected layers and a SoftMax layer). The
SoftMax function returns probability values for a given lung lesion, which is then classified
as benign or malignant.

In Figure 3, the CNN layers are grouped into three blocks: the convolutional block,
linear block, and SoftMax layer.

The convolution block consists of a convolutional layer, ReLU (rectified linear unit),
and 2D dropout. Unlike FCNN, CNN does not account for an expanding path because
it is not designed to return full-resolution images; its output labels are related to the
classification task. As noticeable in Figure 3, a stack of convolution blocks allows for down-
sampling of the input image (CT scan) into feature maps that are subsequently ingested by
a linear block. The latter consists of fully connected layers paramount to the classification
task and ingests high-level features out of down-sampled feature maps from the previous
layers. The last layer is characterized by the SoftMax function returning probability values
for the input belonging to the category of interest.

Training was performed using an equally balanced cross-entropy loss and Adam
optimizer. Each series was preprocessed to extract the pixels belonging to lung nodules;
indeed, the series was multiplied by the binary segmentation of each nodule.

As a result, any pixel not belonging to lung nodules is considered a background pixel.
In the inference phase, the binary mask of each nodule is the result of the segmentation
network described in the previous section, followed by the CNN.

The input volumes are centrally cropped around the lesion to a target size of eight
slices, with a 100 × 100-pixel mask. During training, image augmentation is performed by
applying random rotations, flipping, and brightness variation. The latter step is to increase
the size of the training set to prevent the output model from being prone to overfitting.

As can be noticed in Figure 3 the latest layer from the network stack is a SoftMax
function, which is responsible for returning probability values. The likelihood value is then
adopted to extract the classification target, which is the network output.

The following section focuses on the system infrastructure and depicts the healthcare
scenario we adopted in this study.

3. System Infrastructure

DICOM series identified from the institutional PACS as chest CT scan acquired and
stored according to good clinical practice were downloaded and retrieved from the PACS
AI Invariant. Data were anonymously stored in this layer to address privacy requirements
compliance. Each series retrieved from the PACS AI Invariant was added daily to a DICOM
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series queue preprocessed in a cascade by the neural networks previously described. The
Invariant AI Runtime module (Figure 4) was used to run the models. The results were
then re-transferred to PACS AI Invariant to be processed, consulted, and envisaged on
radiological workstations. The model results and manual annotations performed using the
3D-slicer plugin were stored in PACS AI Invariant and a data warehouse.

Figure 4. System infrastructure components: PACS Humanitas; PACS AI Invariant, Invariant AI
Runtime; Data Warehouse; Radiomix Station, Radiological Workstation.

4. Metrics

The detection rate, accuracy, specificity, and sensitivity were computed to evaluate
the performance of the CADs and the CADx, respectively. Specifically, the “ground truth”
for the CADs was the segmentation performed by the imagers (complete concordance
between the imagers). The detection rate was calculated as the number of nodules correctly
identified by the CADe and the total number of nodules segmented by the imagers. The
Dice score was calculated to compare CADe’s and imager’s segmentation. The final
diagnosis (radiological follow-up or pathology) represented the reference standard to
evaluate CADx’s performance. Accordingly, each CADx prediction was classified as true
positive, true negative, false positive, or false negative. The confidence analysis was used
to evaluate the distribution of the probability values of each predicted nodule to belong to
its class. The abovementioned metrics were calculated for training, validation, and test sets.

5. Results

As mentioned above, CADe and CADx were independently developed, trained, and
tested. The results of CADx (i.e., classification) were not related to the CADe’s prediction
(i.e., segmentation). We reported the results of the performance obtained in the test set.

5.1. CADe

CADe correctly identified 96/123 nodules (78%) and missed 27/123 nodules. Specif-
ically, 90/104 and 6/19 nodules of the ICH_s1 and ICH_s2 datasets, respectively, were
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detected correctly. Failures were relayed mainly on ground glass opacity (n = 6) and very
small or very large nodules close to vessels, pleura (Figure 5), and/or mediastinum (n = 6,
n = 9, and n = 4, respectively).

Figure 5. Example of a nodule close to pleura in the right lung correctly predicted by the CADe and
of a small nodule, near to the previous one, missed by the CADe. Left panel: axial CT slice with
prediction (yellow) and/or mask (pink); right panel: original CT image.

An average of 10.84 nodules per series were falsely identified. The number of false
positives was reduced to 6.5 nodules per series when excluding nodules smaller than 3 mm.

5.2. CADx

CADx correctly classified 109/136 nodules (43 true negatives and 66 true positives). The
CADx failed in classifying 27 nodules (11 false negatives and 16 false positives, Figures 6 and 7).
The size of nodules wrongly classified was between 3 and 6 mm in 7/27 cases (6/7 solid and
all falsely classified as benign), greater than 6 mm but smaller than 8 mm in 5/27 cases (3/5
solid and 2/5 falsely classified as malignant), between 8 and 10 mm in 2/27 cases (both ground
glass opacity resulted false positive), bigger than 10 mm but less than 15 mm in 2/27 cases
(both solid, one resulted in a false negative and one resulted in a false positive), between 15 and
25 mm in 9/27 cases, and greater than 25 mm in the remaining 2/27 cases. Specifically, false
negative nodules were small nodules with a median size of 4.85 mm (range 3–11.3 mm)
and solid in the majority of the cases (8/11). Considering only solid nodules, the median
size of lesions falsely classified as negative was 4.7 mm (range 3–11.2 mm). Three round
glass opacities (median size of 7 mm, range 3.3–7) were wrongly classified as benign. False
positive nodules were quite big nodules with a median size of 20 mm (range 7.2–55 mm).
Nodules wrongly classified as malignant were mainly solid (10/16) with a median size
of 22 mm (range 7.2–55 mm). Considering only this class (i.e., solid nodules resulted in
false positives), a consistent number of nodules (7/10) were bigger than 15 mm. Other false
positive results accounted for ground glass opacity (n = 3/16) and part-solid nodules (3/16)
with a median size of 10 mm (range 9–15 mm) and 23 mm (range 20–23 mm), respectively.

Our CADx system achieved an 80% accuracy rate. The sensitivity and specificity rates
were equal to 85.7% and 73%, respectively.

The graphs in Figure 8 show the probability of each predicted nodule belonging to
its class being similar for correctly classified lesions and nodules misclassified as benign
(mean = 0.84 and standard deviation = 0.09 and mean = 0.84 and standard deviation = 0.10,
respectively). In contrast, the confidence mean of the CAD in incorrectly predicted malig-
nant lung lesions was lower (mean = 0.72 and standard deviation = 0.08, Figure 7).
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Figure 6. Example of a solid nodule of 6.3 mm (inside the red box) wrongly predicted as benign by
the CADx.

Figure 7. Example of a lesion of 55 mm (in yellow) wrongly predicted as malignant by the CADx.

Figure 8. Confidence mean and standard deviation for correct classifications, false benign nodules
and false malignant nodules.

6. Discussion

We developed an “intelligent agent” to detect and non-invasively characterize lung
lesions using any type of CT scan. Big nodules detected incidentally are typically not a
challenge for clinicians since the size and radiological characteristics rarely leave room for
doubt. In contrast, nodules of less than 1 cm may be uncertain and difficult to characterize.
In this setting, based on patient risk assessment (low versus high), number (solitary versus
multiple), pattern (solid, part-solid, and ground glass), and the size of the nodule, radio-
logical follow-up, [18F]FDG PET/CT and biopsy are recommended [3]. However, these
actions might be not feasible and/or can result in inconclusive results. Therefore, a tool able
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to correctly classify at least small nodule (3–8 mm) as benign or malignant is actually an
unmet clinical need. As mentioned, our CADe missed some nodules (22%), mainly ground
glass opacity or nodules close to vessels, pleura, or mediastinum. Notably, all nodules of
15 mm or greater were wrongly classified as false positives, while the majority of nodules
smaller than 10 mm (77%) resulted in false negatives. Collectively, our CADx was more
sensitive than specific and wrongly classified 20% of nodules (8% as false negatives and
12% as false positives).

Performant algorithms capable of detecting lung lesions and discriminating benign
from malignant nodules with great accuracy have been described [4,6]. Our CADe and
CADx exhibited lower accuracy for both detection and classification (78% and 80%, re-
spectively) tasks than those achieved by the algorithms reported in the literature (up to
95% [6] and 96% [4], respectively). Our CADe missed some ground glass opacities and
close-to-vessel nodules, pleura, and/or mediastinum. Similar failures have been reported
for deep learning-based algorithms in the literature [16]. Nonetheless, our CADs-CADx
benefitted in some respects. Firstly, they were developed and tested using a local dataset
from real-scenario data including different types of CT images (co-registered CT from
PET/CT = 23%, biopsy-guiding CT scans = 23%, low-dose CT = 27%, and fully diagnostic
CT = 27%). The performance achieved in highly selected and homogeneous datasets may
lead to overestimated model reliability. Therefore, continuous “real-world” re-validation is
necessary for clinical implementation of DL-based tools.

Secondly, our dataset consists of well-balanced classes of benign and malignant nod-
ules (47% and 53%, respectively). Thirdly, the final diagnosis does not rely on subjective
interpretative criteria to assess malignancy risks.

Conversely, we used pathology or a rigorous radiological criterion to determine
whether a nodule was benign or malignant (approximately 60% and 40% of cases, respec-
tively). Several deep-learning-based algorithms developed to detect and classify lung
nodules relied on public datasets consisting of low-dose CT images collected within lung
screening programs [4,6], which dealt with a low prevalence of relatively small nodules.
Many publicly available databases see the risk of malignancy assessment by expert im-
agers as the “ground truth” [17–19]. Nonetheless, the latter has been recently shown to
affect CADx’s reliability and performance [16]. Moreover, in many experiments, malignant
nodules accounted for approximately one-third of the total number of nodules [20–22],
potentially causing overfitting and ultimately affecting the model’s reliability. Lastly, malig-
nancy in our datasets comprised primary lung tumors and lung metastases (81% and 19%,
respectively). The pattern recognition out of CNN has shown similarities to typical image-
feature-based learning [23]. Still, different imaging-based features in primary lung tumors
and metastases have been reported [24], suggesting specific histology-based descriptors.

On one hand, all these factors, although theoretically positive, generated a widely
heterogenous dataset which was analyzed using the gold standard as a reference, which
possibly explains why our tool was less performant than those reported in the literature.
On the other hand, with the dataset being more heterogeneous, it positively impacted
the overfitting and the generalizability of the CADs-CADx in the “real world”. Therefore,
we can realistically consider our CADx as a tool—albeit to be further improved—for a
“virtual biopsy”. It could result in several worthwhile circumstances, including, among
others, lung nodules of undetermined significance. Giles et al. [25] reported that lung
nodules of unknown significance were malignant in 86% of cases. Notably, in this series
of 500 surgically treated patients, the percentage of lung metastases was not negligible
concerning the total number of malignant lesions (22% metastases versus 78% primary
lung tumors) [25], thus underlying the potential additional value of our CADx. Moreover,
synchronous and metachronous tumors incidentally detected during staging or follow-up
examinations have increased [26], making it imperative to exclude malignancy in a patient
with a newly diagnosed lung nodule and a history of cancer.

Despite the abovementioned positive aspects, this study also presented some limita-
tions. Firstly, the CADs-CADx were independently developed, and the presented results
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refer to the detection and classification tasks separately. The next step will be to test the
end-to-end tool on independent data. Furthermore, the algorithms’ architectures used for
the CADs-CADx were modified from pre-existing neural networks. That is common for real
scenario-oriented deep learning, with fewer methodological and theoretical contributions
than new, application-oriented results; the novelty is often represented by the employment
of pre-existing deep learning techniques applied in new scenarios and research fields
through context-based modifications.

The consideration above paves the way to a crucial point in the reliability of so-called
supervised deep learning for some specific tasks. Two main questions arise from our
experimental results: Can CNNs and FCNNs be considered as reliable tools for CADe and
CADx? Is the supervised learning paradigm gradually going to be left behind in favor of
semi-self-supervised deep learning architectures?

The paradigm adopted might not be the most suitable for a scenario with several
constraints: images with different spatial resolutions and various sensors’ fingerprints. The
latest progress in AI sees new architectures reliant on self-supervised learning, which move
toward AGI (artificial general intelligence) capable of inferring hidden properties from
input data to be fine-tuned over a specific target with only a limited number of annotated
samples. The results bring up some other aspects that deserve further investigation. For ex-
ample, our experimental campaign ran essential data augmentation to prevent lung lesion
shape distortion. Nonetheless, more advanced augmentation techniques based on genera-
tive deep learning, such as GANs (generative adversarial networks), appear to be promising
to provide datasets with many more samples to be re-utilized for training purposes.

All that said, as for other domains of image patter recognition (e.g., animal photos) [27],
we are convinced that sophisticated algorithms are insufficient in the setting of “real-world”
data, and a huge number of observations (A million? A billion?) are needed to reach
satisfactory results in terms of sensitivity and specificity. Moreover, we should keep in
mind that our final goal is to develop a tool able to reach 100% accuracy, since even only
one misclassified case is a misdiagnosed patient.

7. Conclusions

We have presented a specific case study on the detection and classification of lung
lesions on CT scans to test the effectiveness of two of the most popular deep learning
architectures, FCNN and CNN. To this end, we employed data from datasets with different
features and specs. The first one was the LUNA 16 Challenge dataset; the second one
consisted of images locally acquired and labelled. Furthermore, CT scans were acquired
with different scanners making the case study close to real scenarios with the probability
of unknown information about the sensors generating the images undergoing CADe and
CADx checks. The experimental campaign confirmed the promise of these approaches
in automated lung nodule assessment on CT, alongside with some drawbacks of the su-
pervised learning paradigm employed in networks such as CNN and Retina U-Net in
real-world clinical scenarios, with CT scans from different devices with different sensors’
fingerprints. Collectively, we proved that these tools, although promising, are not “ma-
ture” enough to successfully analyze “real-world” data and to be finally implemented in
clinical practice.
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Simple Summary: The pathological complete response (pCR) after neoadjuvant chemoradiotherapy
(CCRT) is an independent prognostic factor for progression-free and overall survival in non-small cell
lung cancer (NSCLC). 18F-FDG PET/CT has been performed for initial staging work-up, treatment
response, and follow-up in patients with NSCLC. Machine learning (ML) as an empirical data science
has become relevant to nuclear medicine. We investigated the predictive performance of 18F-FDG
PET/CT using an ML model to assess the treatment response to neoadjuvant CCRT in patients
with stage III NSCLC, and compared the performance of the ML model predictions to predictions
from conventional PET parameters and from physicians. The predictions from the ML model using
radiomic features of 18F-FDG PET/CT provided better accuracy than predictions from conventional
PET parameters and from physicians for the neoadjuvant CCRT response of stage III non-small cell
lung cancer.

Abstract: We investigated predictions from 18F-FDG PET/CT using machine learning (ML) to assess
the neoadjuvant CCRT response of patients with stage III non-small cell lung cancer (NSCLC)
and compared them with predictions from conventional PET parameters and from physicians. A
retrospective study was conducted of 430 patients. They underwent 18F-FDG PET/CT before initial
treatment and after neoadjuvant CCRT followed by curative surgery. We analyzed texture features
from segmented tumors and reviewed the pathologic response. The ML model employed a random
forest and was used to classify the binary outcome of the pathological complete response (pCR). The
predictive accuracy of the ML model for the pCR was 93.4%. The accuracy of predicting pCR using
the conventional PET parameters was up to 70.9%, and the accuracy of the physicians’ assessment
was 80.5%. The accuracy of the prediction from the ML model was significantly higher than those
derived from conventional PET parameters and provided by physicians (p < 0.05). The ML model is
useful for predicting pCR after neoadjuvant CCRT, which showed a higher predictive accuracy than
those achieved from conventional PET parameters and from physicians.
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1. Introduction

Lung cancer is the most common malignant tumor and remains the leading cause of
cancer-related death worldwide in spite of major advances in prevention and multimodal
treatment [1]. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung
cancers and about 30% of NSCLC present with locally advanced disease in stage III [2].
Patients with stage III NSCLC are usually considered as inoperable. Neoadjuvant con-
current chemoradiotherapy (CCRT) followed by surgery has been established as being
able to improve the overall outcome by reducing the rate of local failures and distant
metastasis [3,4].

In patients receiving neoadjuvant CCRT for stage III NSCLC, surgical resection allows
for the identification of the histopathologic tumor response to determine the prognosis
and to evaluate postoperative therapeutic options. According to previous studies, the
pathologic complete response (pCR) after neoadjuvant CCRT is an independent prognostic
factor for progression-free and overall survival in NSCLC [5,6]. Although several papers
have reported a wide range of pCR values of 16–27%, it is clear that the pCR is highly
correlated with patient survival [7–10].

18F-fluorodeoxyglucose positron emission tomography/computed tomography
(18F-FDG PET/CT) has been performed for initial staging work-up, treatment response, and
follow-up in patients with NSCLC. It has also been viewed as appropriate for the precise
investigation of treatment response after CCRT [11,12]. Previous studies have focused on
the comparison of quantitative PET parameters such as the standard uptake value (SUV)
after neoadjuvant treatment and histopathologic findings after surgery [13,14]. Moreover,
the application of the PET response criteria in solid tumors (PERCIST 1.0) as an evaluation
for 18F-FDG PET/CT has been performed to enhance the limitation of anatomic tumor
response metrics [15,16]. The role of 18F-FDG PET/CT still needs to be explored because
possible misinterpretations due to radiation-induced inflammation such as pneumonitis
can cause problems in 18F-FDG PET/CT images [17,18].

Machine learning (ML) as an empirical data science, which can learn patterns or
characteristics from one set of given data and use them to evaluate new data, has become
relevant to nuclear medicine. Our previous study demonstrated that ML is well suited
to performing analyses of high dimensionality radiomic feature extraction from 18F-FDG
PET/CT, and ML analysis provided better diagnostic performance than physicians for
evaluating metastatic mediastinal lymph nodes in NSCLC [19]. Although assessing the
radiomic features of a tumor in clinical practice has some challenges because of the time,
effort, and skill involved, we have shown that ML can improve the diagnostic accuracy and
its availability in NSCLC. However, there is still no study that has evaluated the predictive
performance of ML for the neoadjuvant CCRT response using the radiomic features of
18F-FDG PET/CT.

Therefore, we investigated the predictive performance of 18F-FDG PET/CT using an
ML model to assess the treatment response to neoadjuvant CCRT in patients with stage III
NSCLC, and compared the performance of the ML model predictions to predictions from
conventional PET parameters and from physicians.

2. Materials and Methods

2.1. Subjects

We retrospectively reviewed the medical records of all patients newly diagnosed
with stage III NSCLC through imaging studies such as chest X-ray, enhanced chest CT,
and 18F-FDG PET/CT, as well as pathologic studies including endobronchial ultrasound-
guided transbronchial needle aspiration, mediastinoscopic biopsy, or thoracotomy, between
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November 2008 and October 2020. To be included in the study population, patients needed
to complete a planned neoadjuvant CCRT and undergo curative-intent surgical treatment
for stage III NSCLC according to the 7th edition of the TNM classification [20], and undergo
a second 18F-FDG PET/CT within approximately 3 weeks following the completion of
neoadjuvant CCRT for restaging work-up. Patients in poor cardiopulmonary condition
that precluded surgery or who had previously been treated because of another malignant
disease were excluded from the study population. Patients who received neoadjuvant
chemotherapy or radiotherapy alone were also excluded.

This study was approved by the institutional review board of our institution (IRB
No. 2020-09-185), and the requirement for informed patient consent was waived due to its
retrospective design.

2.2. Neoadjuvant CCRT and Histopathologic Evaluation

The neoadjuvant CCRT consisted of chemotherapy and concurrent thoracic radio-
therapy. Thoracic radiotherapy was delivered to patients with a total dose of 45 Gy
with 1.8 Gy/fraction over 5 weeks from November 2008 to October 2009 or 44 Gy with
2.0 Gy/fraction over 4.5 weeks using 10-MV X-rays from October 2009 and thereafter. The
radiotherapy target volume included the known gross and clinical disease plus adequate
peripheral margins. The chemotherapy regimens mostly consisted of intravenous adminis-
tration of paclitaxel (50 mg/m2 per week) or docetaxel (20 mg/m2 per week) plus either
cisplatin (25 mg/m2 per week) or carboplatin (AUC, 1.5/week) for 5 weeks. The first dose
of chemotherapy was delivered on the first day of thoracic radiotherapy [3,4,21].

Surgical procedures were planned for 4~6 weeks following the completion of neoad-
juvant CCRT and comprised resection of the affected lung plus mediastinal lymph nodes
dissection, depending on the clinical stage. Pulmonary resection included lobectomy,
bilobectomy, pneumonectomy, or lobectomy with en bloc wedge resection according to
the extent of the primary tumor. After surgical resection, the specimens were examined
by pathologists for residual tumors based on hematoxylin and eosin-stained slides. They
reported the percentage of residual tumor, which was determined by comparing the es-
timated cross-sectional area of the viable tumor foci with the estimated cross-sectional
areas of necrosis, fibrosis, and inflammation on each slide. The absolute viable tumor
extent was also assessed based on their calculation, and pathologic complete response
(pCR) was defined as no residual viable tumor remaining in the post-therapy pathology
specimen [22,23].

2.3. 18F-FDG PET/CT Analysis

All patients fasted for at least 6 h before 18F-FDG PET/CT was performed to keep their
blood glucose level below 200 mg/dL. Torso PET and unenhanced CT images were acquired
using a dedicated PET/CT scanner (Discovery STe, GE Healthcare, Waukesha, WI, USA)
approximately 60 min after intravenous injection of 5.5 MBq/kg of 18F-FDG. CT images
were obtained using a 16-slice helical CT with the following settings: 140 keV, 30–170 mAs
with Auto A mode, and a slice section of 3.75 mm. PET images were acquired from head
to thigh and attenuation-corrected PET images (voxel size, 3.9 × 3.9 × 3.3 mm3) were
reconstructed using a 3D ordered-subset expectation-maximization algorithm (20 subsets,
2 iterations).

For quantitative analysis, the volume of interest (VOI) from the primary tumor was
delineated using the gradient-based segmentation method (PET Edge) in MIM version 6.4
(MIM Software Inc., Cleveland, OH, USA) [19]. These VOIs were saved as a DICOM-RT
structure that was imported into the Chang-Gung Image Texture Analysis toolbox (CGITA,
http://code.google.com/p/cgita, accessed on 1 March 2020) facilitated by MATLAB soft-
ware (version 2014b; MathWorks, Inc., Natick, MA, USA) to extract the radiomic features
from the PET images (Supplemental Table S1) as well as conventional PET parameters,
including the maximum SUV (SUVmax), mean SUV (SUVmean), metabolic tumor volume
(MTV), and total lesion glycolysis (TLG). We also calculated the differences of these con-
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ventional parameters between PET1 and PET2 by subtracting PET2 parameters from those
of PET1 and dividing by those of PET1.

Two nuclear medicine physicians (J.Y.C. and B.T.K) with more than 15 years of expe-
rience in PET/CT interpretation assessed the neoadjuvant treatment response according
to PERCIST 1.0 [16] by means of a baseline 18F-FDG PET/CT (PET1) and second PET/CT
(PET2) undertaken before surgery. They categorized all patients into four response criteria:
complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic
disease (SMD), and progressive metabolic disease (PMD). After that, the accuracy of the
predicted CMR results were compared to histopathologic pCR.

2.4. Machine Learning (ML) Model

The ML model was developed as a binary classification. First, data were partitioned
into a training dataset (70%) for model building and an independent testing dataset (30%)
for internal validation. We developed an ML tree-based boosting model for pCR prediction
using a random forest (RF) algorithm, which consisted of a multitude of decision trees
and used an ensemble method to decide the outcome. Our model was trained with the
bagging method to predict the pCR. Different numbers of trees were used to classify the
binary decision of the result to achieve the best performance score. The Gini impurity was
measured to the quality of a split. The maximum depth of the tree was 5, and the square
root of the number of the features was considered for the max. number of features to look
for the best split of the model. We applied a random grid search method to determine the
optimal hyperparameter of the RF model [24–27]. A 10-fold cross-validation in the training
dataset, a technique for reducing the bias that can occur as a result of using a single training
set, was applied for method validation. All ML statistical analyses were performed using
Python (version 3.8.3).

In classic oversampling techniques, the minority data are simply replicated from
the minority data population. The ML model does not reflect on variation from the
oversampling data. Therefore, we tried to use SMOTE (Synthetic Minority Oversampling
Technique) to deal with this class problem. This technique helped with unbalanced data
by creating new synthetic data to provide balance in the distribution. SMOTE starts by
choosing random data from the minority class. Then it uses a K-Nearest Neighbor (KNN)
algorithm to set new points of the data. Next, new synthetic data are created between
the random data and new point, which is derived from KNN algorithm. This process is
repeated until the minority class reaches the same size as the majority class. Therefore, we
added 322 more participants from the existing raw data. A total of 752 participants were
analyzed using this oversampling technique.

Several useful scaling techniques (Min–Max scaler, Normalization, Standardization)
prevent overflow and underflow of the data. They help to compare dimensional data
more efficiently through a scaling process. The process reduces the conditional number of
covariance matrices from the independent variables. This reduction enhances the speed of
conversion and stability of the model during the optimization process. We used a standard
scaler, which removes the mean and helps to scale the value’s unit variance. To adjust for
the different scales of the features, standardization of the variables is necessary for the
preprocessing steps.

For feature selection, top 10, 20, and 30 variables among 144 variables were selected
according to the importance of the variables based on the mean decrease impurity (MDI).
MDI or Gini importance was calculated as the decrease in node impurity weighted by the
probability of reaching the node. The sum over the number of splits decided the variable
importance of the model. The higher value of MDI meant the critical feature in the model.

2.5. Statistical Analysis

The association between conventional PET parameters and pCR was determined by
an independent t-test or the Mann–Whitney test according to the Kolmogorov–Smirnov
test. Receiver operating characteristic (ROC) curve analysis was performed to assess
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optimal cutoff values of continuous variables using the MedCalc software package (Ver. 9.5,
MedCalc Software, Mariakerke, Belgium). The predictive performance of conventional
PET parameters and physicians’ diagnostic results were reported using sensitivity (Sen),
specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), and
accuracy (ACC).

For predictive performance of the ML model, we measured the areas under curve
(AUCs), ACC, F1 score, precision (also called PPV), and recall (also known as Sen). We
compared the measured values with those of predictions from conventional PET parameters
and from physicians by using a McNemar test or Fisher’s exact test. A p-value of less than
0.05 was considered statistically significant.

3. Results

3.1. Subject Characteristics

Among 484 consecutive patients, 430 patients were enrolled in this study. Fifty-
four patients were excluded from the analysis due to a lack of surgical treatment after
completion of neoadjuvant CCRT (Figure 1). The clinical characteristics of the 430 patients
are summarized in Table 1. The patients were predominantly male (71.9%), and there was a
high prevalence (67.2%) of adenocarcinoma among the patients. After neoadjuvant CCRT
followed by surgery, the mean percentage of viable tumor in the pathologic specimen was
28.8% (range 0–95%). The pCR was observed in 54 patients (12.6%). According to PERCIST
criteria, 16.7% of patients had CMR (n = 72).

Figure 1. Flowchart of the inclusion and exclusion criteria for the patients.

3.2. Predictive Performance of ML Model for pCR

The radiomic feature importance was obtained using a Gini index representing the
coefficient of the attributes on the prediction model, as listed in Figure 2. The overall
prediction performance of the ML model was compared by calculating each of the PET1
and PET2 features separately, and all variables from both PET1 and PET2 (PET3) were
analyzed (Table 2). The AUCs determined by the ML model were 0.934 in PET1, 0.975
in PET2, and 0.977 in PET3. For comparison ROC curve analysis (Figure 3), the AUCs of
PET2 and PET3 were significantly higher than that of PET1 (p = 0.009, p = 0.006, respec-
tively). However, there was no significant difference between the AUCs of PET2 and PET3
(p = 0.805). According to other indices, PET3 revealed a better predictive performance than
those results with either PET1 or PET2 variables.
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Table 1. Subjects’ characteristics.

Characteristics No.

Sex Male 309 (71.9%)
Female 121 (28.1%)

Age (years) Mean (range) 61.8 (31.1–79.5)
Tumor pathology Adenocarcinoma 289 (67.2%)

Squamous cell carcinoma 125 (29.1%)
Others 16 (3.7%)

Stage (AJCC 7th) IIIa 415 (96.5%)
IIIb 15 (3.5%)

Type of surgery Lobectomy 339 (78.8%)
Bilobectomy 32 (7.4%)

Pneumonectomy 23 (5.4%)
Lobectomy with en bloc wedge resection 36 (8.4%)

Viable tumor on pathologic specimen Mean % (range) 28.8 (0–95.0)
Pathologic response pCR 54 (12.6%)

Non-pCR 376 (87.4%)
Response by PERCIST CMR 72 (16.7%)

PMR 281 (65.4%)
SMD 72 (16.7%)
PMD 5 (1.2%)

pCR, pathologic complete response; PERCIST, PET response criteria in solid tumors; CMR, complete metabolic
response; PMR, partial metabolic response; SMD, stable metabolic disease; PMD, progressive metabolic disease.

Figure 2. The top 30 important radiomic features from 18F-FDG PET/CT for pCR prediction after
neoadjuvant CCRT.
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Table 2. Comparisons in predictive performance of the ML models using a random forest algorithm
for pCR prediction with the included PET data.

ML Model AUC ACC F1 Precision Recall

PET1 0.934 *,† 0.827 *,† 0.853 *,† 0.802 *,† 0.912 †

PET2 0.975 * 0.902 *,‡ 0.912 *,‡ 0.905 *,‡ 0.920
PET3 0.977 † 0.934 †,‡ 0.940 †,‡ 0.937 †,‡ 0.944 †

AUC, area under curve; ACC, accuracy; PET3, combining PET1 and PET2; *, †, ‡, p < 0.05.

Figure 3. Comparisons of the ROC curves of the ML models according to the included PET data. It
showed that the AUC of ML using PET/CT data obtained after neoadjuvant CCRT was significantly
higher than that of using only baseline PET/CT data (p < 0.05).

Additionally, we investigated the predictive results from the ML model using four fea-
ture subsets with the top 10, 20, 30, and all features from PET3 (Supplemental Table S2 and
Supplemental Figure S1). The ML model outperformed other methods when all features
were selected (AUC = 0.977, ACC = 0.934, F1 = 0.940, Precision = 0.937, Recall = 0.944).

3.3. Predictive Performances of Conventional PET Parameters and Physicians for pCR Prediction

In conventional PET parameters, the SUVmax, SUVmean, MTV, and TLG of PET1 and
the SUVmax and SUVmean of PET2 were significantly associated with the pCR (p < 0.05).
The difference between PET1 and PET2 of the SUVmax (p < 0.001), SUVmean (p < 0.001),
MTV (p = 0.003), and TLG (p < 0.001) were also significantly associated with the pCR. In
contrast, the MTV and TLG of PET2 were not statistically associated with the pCR (Table 3).
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Table 3. Comparisons in conventional PET parameters according to the presence of pCR.

Pathologic Response p-Value
pCR Non-pCR

PET1

SUVmax Median 13.59 11.58 0.029 *
IQR 10.01–17.47 8.35–15.53

SUVmean Median 5.91 5.28 0.037 *
IQR 4.86–7.48 3.97–6.69

MTV (cm3) Median 42.96 21.13 0.003 *
IQR 16.02–74.89 7.38–47.48

TLG Median 223.26 113.63 0.001 *
IQR 96.29–436.26 30.77–279.36

PET2

SUVmax Median 3.17 4.57 <0.001 *
IQR 2.22–4.13 2.92–6.98

SUVmean Median 1.69 2.35 <0.001 *
IQR 1.43–2.15 1.74–3.33

MTV (cm3) Median 10.40 8.71 0.327
IQR 3.64–27.11 3.64–19.46

TLG Median 19.42 22.00 0.475
IQR 6.32–47.35 8.61–56.52

Delta PET
parameters (%)

dSUVmax Median 74.68 58.14 <0.001 *
IQR 64.25–84.25 36.07–74.20

dSUVmean Median 70.17 50.79 <0.001 *
IQR 54.34–78.57 31.58–66.28

dMTV (cm3) Median 68.63 48.18 0.003 *
IQR 42.81–82.49 14.76–71.75

dTLG Median 89.52 73.68 <0.001 *
IQR 79.40–95.47 50.80–88.83

pCR, pathologic complete response; PET, positron emission tomography; SUV, standard uptake value; MTV,
metabolic tumor volume; TLG, total lesion glycolysis; IQR, interquartile range; *, p < 0.05.

The optimal cutoff values that allowed significant association with the pCR were
PET1-SUVmax = 13.15, PET1-SUVmean = 4.70, PET1-MTV = 41.11, PET1-TLG = 142.97,
PET2-SUVmax = 3.97, PET2-SUVmean = 1.83, dSUVmax = 56.5%, dSUVmean = 43.9%,
dMTV = 55.4%, and dTLG = 86.2%. Using these cutoff values, the predictive performance
of the PET parameters are listed in Table 4. The predictive performance of the physicians
based on their diagnostic result are also presented in Table 4.

Table 4. Comparisons of predictive performance from conventional PET parameters, from physicians
and from the ML model.

Cutoff AUC Sen (%) Spe (%) PPV (%) NPV (%) ACC (%)

PET1-SUVmax >13.15 0.592 57.4 61.7 17.7 90.9 61.2
PET1-SUVmean >4.70 0.588 79.6 39.1 15.8 93.0 44.2
PET1-MTV (cm3) >41.11 0.627 53.7 70.2 20.6 91.3 68.1

PET1-TLG >142.97 0.635 68.5 57.1 18.9 92.7 59.1
PET2-SUVmax ≤3.97 0.687 74.1 58.8 20.5 94.0 60.7

PET2-SUVmean ≤1.83 0.726 66.7 71.5 25.2 93.7 70.9
dSUVmax >56.5% 0.737 88.9 48.7 19.9 96.8 53.7

dSUVmean >43.9% 0.745 94.4 42.8 19.2 98.2 49.3
dMTV (cm3) >55.4% 0.625 68.5 56.6 18.5 92.6 58.1

dTLG >86.2% 0.703 68.5 69.1 24.2 93.9 69.1
Physicians 33.9 86.4 29.2 90.8 80.5
ML model 0.977 94.4 92.2 93.7 93.1 93.4

AUC, area under curve; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive
value; ACC, accuracy.

3.4. Comparisons of the ML Model with Conventional PET Parameters and Physicians

A comparison of the predictive performances between conventional PET parameters,
physicians, and the ML model are shown in Table 4. First, the performance of the ML
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model for pCR prediction was compared with those of conventional PET parameters by
analyzing the AUCs. The ML model revealed higher AUC values than all of the single PET
parameters (p < 0.001). When the pCR was predicted with the conventional single PET
parameter, the AUC was only 0.588 to 0.745. By applying the ML model using variable
radiomic features, however, the AUC improved to 0.977. In terms of predictive performance,
the ML model showed significantly higher performance in Spe, PPV, and ACC than was
achieved with any of the conventional PET parameters (p < 0.001). When comparing the
predictive performances of physicians and of the ML model, the ACC of the ML model
was significantly higher than that of physicians (93.4 vs. 80.5%, p < 0.001). Not only ACC,
but also Sen, Spe, and PPV showed that the ML model significantly increased the results
of physicians (94.4 vs. 33.9%, p < 0.001; 92.2 vs. 86.4%, p = 0.001; 93.7 vs. 29.2%, p < 0.001;
respectively). NPV was the only case where there was no significant difference between
the ML model and prediction by physicians (93.1 vs. 90.8%, p = 0.155).

4. Discussion

We have demonstrated that the ML model using an RF algorithm could be robust
and useful in determining the pCR following neoadjuvant CCRT by radiomic features of
18F-FDG PET/CT. Although several studies evaluating ML for treatment response have
been published recently [28–31], they mainly conducted research with multiparametric MRI
features and not with 18F-FDG PET/CT. Only a few studies have used 18F-FDG PET/CT
features to assess neoadjuvant treatment response in breast and rectal cancer using ML
models [26,27]. To the best of our knowledge, this is the first study to predict the response
to neoadjuvant CCRT in patients with NSCLC using an ML model.

The response to neoadjuvant CCRT is critical because it affects postoperative treatment
and individual prognosis. Furthermore, the correct prediction of the pCR can determine
which patients will require more or less aggressive adjuvant treatment to reduce the risk of
complications. Despite improvements in therapeutic modalities of neoadjuvant CCRT, the
pCR rate still remains with a variety of outcomes. The gold standard for assessing the pCR
is based on postoperative histopathologic findings, which could be inefficient to implement
in all patients with advanced NSCLC. Therefore, it is necessary to develop a method of
improving the predictive significance of non-invasive imaging modalities for establishing a
personalized therapeutic strategy.

Radiomics is an emerging field where various imaging modalities are performed to
extract features that may reflect changes in human tissues at the cellular levels and estimate
detailed information on tumor biology and microenvironment in nuclear medicine [32,33].
The radiomic features delineated on PET/CT images can represent tumor heterogeneity
including fractal dimension, tumor shape, and proliferation [34]. In our experiments, voxel
statistics of radiomic features were highly ranked in the prediction for the pCR, followed
by texture spectrum and co-occurrence matrix. Although there are differences in the feature
importance of many radiomic variables, the ML model using them demonstrated better
predictive performance for the pCR than the single conventional PET/CT parameters.
Conventional PET parameters and their changes in FDG uptake before and after CCRT
have been previously evaluated in determining the treatment response in patients with
NSCLC [11]. We also performed these analyses; however, the ACC of the predictive perfor-
mance using them was only shown to be 44.2–70.9%. Therefore, it seemed unfavorable to
evaluate the predictive performance using single PET parameters even though they were
statistically significantly correlated with the pCR.

The ML model significantly outperformed the physicians in terms of Sen, Spe, PPV,
and ACC. The outcomes of conducting the ML model with PET2 data revealed higher
predictive performance than those of the ML model with PET1 data. It appears that ra-
diomic features obtained from PET/CT after neoadjuvant CCRT have more relevant clinical
value in the prediction of the pCR. Compared to the results of the ML model with only the
variables from each time of PET/CT images, the predictive performance also increased by
inputting all variables from both PET1 and PET2. We assumed that the improvement in
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performance is probably because of the feature importance for predicting the pCR, which
is somewhat different between radiomics of PET1 and PET2. If more significant variables
were input into the ML model, the predictive performance may be further improved. The
PET-based radiomics can provide the potential to characterize intratumoral heterogeneity
indicating resistance to neoadjuvant CCRT. Therefore, it is clinically important to evalu-
ate treatment response not only to obtain baseline PET/CT images but also to examine
PET/CT after neoadjuvant CCRT. As the current study demonstrated, the use of ML with
radiomics features could be predictive of treatment response and thus help to select a more
aggressive treatment for those with high-risk factors after curative surgery in patients with
stage III NSCLC.

This study had several limitations. First, this study was conducted in a retrospective
manner with a limited sample size from a single center. Because radiomic features can be
highly dependent on reconstruction methods and imaging parameters [35], it is planned to
obtain a prospective multicenter trial to be more generalizable in the future. Second, the
study population was composed of patients with different therapeutic schemes. Although
we addressed a homogeneous population of patients with stage III NSCLC, it is also
needed to select patients with a more uniform therapeutic modality based on the consistent
guideline. Third, various pulmonary side effects can arise after radiotherapy, such as
pneumonitis or fibrosis, which may challenge the response assessment, although we tried
our best to exclude the possibility of treatment-induced inflammatory changes based on the
relative intensity and distribution of FDG uptake in the lung parenchyma and automatically
generated tumor VOI [36]. Finally, although the proposed ML model was analyzed using
a 10-fold cross-validation for minimizing overfitting instead of splitting the dataset into
training and test sets, external validation using an independent dataset is necessary to
verify the clinical significance using a larger cohort.

5. Conclusions

In conclusion, the developed ML model using an RF algorithm and 18F-FDG PET/CT
radiomics features was useful for predicting the pCR after neoadjuvant CCRT in NSCLC.
The predictions of the ML model had higher accuracy than predictions from conventional
PET parameters and from physicians. The ML model using radiomics features can be used
to facilitate the preoperative individualized prediction for the pCR. Our findings further
highlight the potential, non-invasive, and effective clinical significance of an ML model
to predict the pCR in patients with stage III NSCLC who had received neoadjuvant CCRT
followed by surgery.
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mdpi.com/article/10.3390/cancers14081987/s1, Figure S1: Comparison of ROC curves from random
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features from CGITA; Table S2: Predictive performance of random forest according to ranking-based
feature selection
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Simple Summary: While diagnosing a case of small cell neuroendocrine carcinoma (SCNEC) in the
urinary tract, we found that the previous biopsy had been misdiagnosed as urothelial carcinoma (UC)
because only chromogranin and synaptophysin were tested to define neuroendocrine differentiation
and both tests were negative. This case led us to conduct this present study to define a panel of
neuroendocrine markers to ensure the diagnosis of traditional neuroendocrine marker-negative
SCNEC. We employed a decision tree classifier algorithm to analyze the expression of 17 immunohis-
tochemical markers and found that the extent of synaptophysin (>5%) and CD117 (>20%) and the
intensity of GATA3 (negative or weak) are major parameters. Since SCNEC is an aggressive tumor
type and requires therapeutic approaches that differ from those used for UC, an accurate diagnosis of
SCNEC is critical and this model may help pathologists accurately diagnose SCNEC in daily practice.

Abstract: Although SCNEC is based on its characteristic histology, immunohistochemistry (IHC) is
commonly employed to confirm neuroendocrine differentiation (NED). The challenge here is that
SCNEC may yield negative results for traditional neuroendocrine markers. To establish an IHC panel
for NED, 17 neuronal, basal, and luminal markers were examined on a tissue microarray construct
generated from 47 cases of 34 patients with SCNEC as a discovery cohort. A decision tree algorithm
was employed to analyze the extent and intensity of immunoreactivity and to develop a diagnostic
model. An external cohort of eight cases and transmission electron microscopy (TEM) were used to
validate the model. Among the 17 markers, the decision tree diagnostic model selected 3 markers to
classify NED with 98.4% accuracy in classification. The extent of synaptophysin (>5%) was selected
as the initial parameter, the extent of CD117 (>20%) as the second, and then the intensity of GATA3
(≤1.5, negative or weak immunoreactivity) as the third for NED. The importance of each variable
was 0.758, 0.213, and 0.029, respectively. The model was validated by the TEM and using the external
cohort. The decision tree model using synaptophysin, CD117, and GATA3 may help confirm NED of
traditional marker-negative SCNEC.

Keywords: carcinoma; neuroendocrine; urinary bladder; decision trees; immunohistochemistry;
synaptophysin; negative results
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1. Introduction

Small cell neuroendocrine carcinoma (SCNEC) is a rare entity in the urinary tract,
representing 0.5–1% of urinary bladder cancers [1,2]. It usually presents as a high stage
tumor with frequent muscularis propria invasion and metastasis compared to conventional
urothelial carcinoma (UC) [3]. SCNEC requires an aggressive clinical course, and its 5-year
survival rate is as low as 8% [4]. A recently reported combined therapeutic approach
included neoadjuvant chemotherapy with cisplatin and etoposide, followed by either
radiation therapy or cystectomy if no systemic disease is present; the overall survival was
higher in patients who received the neoadjuvant chemotherapy than in those who did
not receive it [5,6]. Therefore, accurate diagnosis of SCNEC is critical because of its poor
prognosis and therapeutic approaches differing from those used for UC.

SCNEC is defined by its characteristic histology: sheets and large nests of relatively
small cells with scant cytoplasm, speckled nuclei, and indistinct nucleoli. In the urinary
bladder, SCNEC presents as a pure form or more frequently as a component of combined
SCNEC and non-SCNEC [4,7]. The non-SCNEC component includes UC, invasive or in situ,
and other divergent differentiation and histologic variants such as squamous, glandular,
nested, plasmacytoid, sarcomatoid, and trophoblastic.

The diagnosis of SCNEC is classically based on the histologic features, but immuno-
histochemical (IHC) staining is commonly employed to confirm the diagnosis or to exclude
an alternative diagnosis in cases with ambiguous histology. Similar to its more com-
mon counterpart in the lungs, synaptophysin, chromogranin, and CD56 are widely used
neuroendocrine (NE) markers in a panel to compensate the suboptimal sensitivity and
specificity of each marker [8]. Synaptophysin has a relatively reliable diagnostic potential;
chromogranin is less sensitive with weak and focal positivity; and CD56 is most sensitive
but less specific [8,9]. However, SCNEC may yield negative results for all three of these
markers [10]. In fact, up to two-thirds of small cell lung cancer could provide negative
results for the relatively specific NE markers synaptophysin and chromogranin A [10,11].
The challenge is that SCNEC may have ambiguous or overlapping features with UC, es-
pecially in cases of combined SCNEC and UC [5]. In such cases, it might be difficult to
accurately diagnose SCNEC, and when the traditional NE markers are negative, it could
result in misdiagnosis as UC.

Follow-up biopsies are scheduled for bladder cancer patients to estimate treatment
response and detect tumor recurrence. While diagnosing a case of SCNEC in the urinary
bladder, we found that the previous bladder biopsy had been misdiagnosed as UC because
only chromogranin and synaptophysin were tested to define NE differentiation and both
tests were negative. This case led us to conduct this present study to define a panel of NE
markers to ensure the diagnosis of traditional NE marker-negative SCNEC. We employed
a decision tree classifier algorithm to analyze the expression of 17 IHC markers and finally
propose a decision tree model using three markers synaptophysin, CD117, and GATA3.

2. Materials and Methods

2.1. Study Samples

This retrospective study was approved by the Asan Medical Center Institutional
Review Board (2013–0107). Initially, the cohort consisted of 47 patients who were diagnosed
with SCNEC of the urinary tract (urinary bladder and ureter) as a pure form or combined
with UC between May 2002 and October 2020 at Asan Medical Center, Seoul, Republic of
Korea. The diagnosis of SCNEC was based on histologic features only or IHC expression
analysis of NSE, CD56, chromogranin, and synaptophysin (alone or in combination).
After exclusion of 13 patients for which glass slides or paraffin blocks were not available,
34 patients of SCNEC were included in the discovery cohort. Among the 34 patients,
23 patients were biopsied once and accounted for one case each. Nine patients were
biopsied twice (accounting for two cases each), and two patients were biopsied thrice
(accounting for three cases each). Among the 11 patients who had been biopsied more than
once, six patients had specimens diagnosed with UC during the period. The UC cases of
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these patients were also included in the analysis to compare their immunoprofile with that
of SCNEC. Therefore, 34 patients and their 47 cases (40 cases of pure and combined SCNEC
and 7 cases of UC) were finally included in the discovery cohort.

For an external validation of the diagnostic model, data for eight patients were re-
trieved at the Kyung Hee University Medical Center (KHMC), Seoul, Republic of Korea
from 2000 to 2020. They had a confirmed or suspected diagnosis of SCNEC of the urinary
bladder based on the IHC staining of NE markers.

Patients’ clinicopathological information was obtained from electronic medical records
and surgical pathology reports. Pathologic materials of both discovery and external vali-
dation cohorts were reassessed according to the 2016 World Health Organization Tumor
Classification criteria and staged according to the American Joint Committee on Cancer
Staging System, 8th edition.

2.2. Tissue Microarray Construction

Tissue microarray blocks with 2-mm-diameter cores were constructed from 10% neu-
trally buffered formalin-fixed, paraffin-embedded urinary bladder tumor blocks using a
tissue microarrayer (Quick-Ray, Unitma Co. Ltd., Seoul, Republic of Korea). In general,
three representative cores from each case were generated while trying to exclude necrotic
and degenerative areas and to maximize tumor cell content. In cases showing histologically
divergent or variant features of UC, each representative area was included, resulting in up
to 11 cores generated for one case. As a result, a total of 211 cores were generated.

2.3. IHC

IHC analysis was performed using NE, basal, and luminal markers of bladder can-
cer [11]. The NE markers included in the present study were CD56, CD117, chromogranin,
insulinoma-associated protein 1 (INSM1), neuron specific enolase (NSE), SRY (sex determin-
ing region Y)-box 2 (SOX2), synaptophysin, somatostatin receptor 2 (SSTR2), and tubulin
beta 2B class IIB (TUBB2B). The loss of retinoblastoma-associated protein (Rb) and p53
was reported in bladder cancers with NE differentiation [11–14]. The basal markers were
cytokeratin 5/6 (CK5/6) and cytokeratin 14 (CK14). High expression of epidermal growth
factor receptor (EGFR) was reported in the basal subtype of bladder cancer [15]. Luminal
markers were cytokeratin 20 (CK20), GATA binding protein 3 (GATA3), and forkhead
box A1 (FOXA1) [11,16]. The primary antibodies used in this study, their dilutions, and
the subcellular location of each antigen are summarized in Supplementary Table S1. IHC
staining was performed using an automated staining system (BenchMark XT, Ventana
Medical Systems, Tucson, AZ, USA). The nuclei were counterstained with hematoxylin.

The IHC staining results were assessed in a semiquantitative manner by two patholo-
gists (G.H.K. and S.U.J). The immunoreactivity of the markers was evaluated according to
the intensity (negative (0), weak (1), moderate (2), or strong (3)) and the extent of positive
tumor cells (percentage). A diffuse expression in a core was defined as immunoreactivity
in more than half of tumor cells. The intensity and extent of marker expression were
independently assessed in the decision tree analysis.

2.4. Establishment of the Decision Tree Model

All 17 IHC markers were included as variables and analyzed for their intensity and ex-
tent to classify the cases as neuroendocrine differentiation (NED) and non-neuroendocrine
differentiation (non-NED). NED was defined as immunoreactivity to one or more NE
markers in cores with SCNEC histology [11]. Based on histologic features and IHC results,
the 211 cores were classified into 146 NED cores and 65 non-NED cores. In an attempt to
overcome the small number of cases, each core type was analyzed separately to represent
NED and non-NED. In cores with simultaneous expression of NE markers with luminal
or basal markers, the core was classified as NED when it showed histologic features of
SCNEC.
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A decision tree model was constructed using a decision tree classifier algorithm on
python-3.8, sklearn-1.0.2, and dtreeviz-1.3.2. The algorithm randomly selected 147 cores for
the training set and 64 cores for the validation set at odds of 7 to 3. To select a diagnostic
IHC panel for NED using the intensity and extent of immunoreactivity of 17 markers, the
algorithm repeatedly classified all cores into NED and non-NED to minimize incorrect
classifications [17]. A decision tree-derived diagnostic model was visualized after the
training procedure was finished. The finally classified cores are colored yellow for NED
and green for non-NED in all plots.

2.5. Transmission Electron Microscopy (TEM) Analysis

TEM analysis was performed using standard techniques. The submitted tissues were
retrieved from paraffin blocks, deparaffinized, post-fixed in 1% buffered osmium tetroxide,
dehydrated, and embedded in Epon. Ultrathin sections (1 μm) were stained with uranyl
acetate-lead citrate and examined using a JEOL 1200 EX-II TEM (Jeol, Tokyo, Japan) [18].

3. Results

3.1. Patients’ Characteristics

The clinicopathological features of the 47 cases from the 34 patients are summarized
in Table 1. The median age at the initial diagnosis of bladder cancer of the 34 patients was
66 years (range, 31–86 years) with a 6:1 male to female ratio. Most cases were diagnosed
by transurethral resection (34 cases, 72.3%) and followed by partial or radical cystectomy
(10 cases, 21.3%), ureterectomy (2 cases, 4.3%), and cystoscopic biopsy (1 case, 2.1%). The
mean tumor size was 4.36 cm in its greatest dimension (range, 1.0–11.4 cm).

Table 1. Clinicopathological features of the discovery cohort.

Features Value

Patients (n = 34)
Age at initial diagnosis (years) 66.1 (31–86)

Sex
Male 29 (85.3)

Female 5 (14.7)

All cases (n = 47)
Tumor size (cm) 4.36 (1.0–11.4)

Location Urinary bladder 45 (95.7)
Ureter 2 (4.3)

Procedure

Cystoscopic biopsy 1 (2.1)
Transurethral resection 34 (72.3)

Partial cystectomy 2 (4.3)
Radical cystectomy/ureterectomy 10 (21.3)

Histology
Pure NEC 29 (61.7)

Mixed NEC and non-NEC 15 (31.9)
Non-NEC 3 (6.4)

Invasion depth

Non-invasive 0 (0.0)
Subepithelial connective tissue 9 (19.1)

Muscularis propria 28 (59.6)
Perivesical tissue 9 (19.1)

Other organs * 1 (2.1)

Lymphovascular invasion Present 25 (53.2)
Absent 22 (46.8)

Cystectomy cases (n = 10)
pT2 1 (10.0)
pT3 8 (80.0)
pT4 1 (10.0)

N stage NX 1 (10.0)
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Table 1. Cont.

Features Value

Tumor stage

pT1 0 (0.0)
N0 4 (40.0)

N1-3 5 (50.0)

* Other organs: prostate, both seminal vesicles, and right vas deferens.

During the reassessment of the cases, we noted that four SCNEC cases from four
patients had been misdiagnosed as UC. In three cases, the SCNEC histology was not
recognized and IHC for NE markers was not performed. In the remaining case, the SCNEC
with ambiguous histology was recognized but chromogranin and synaptophysin staining
were negative (Figure 1).

Figure 1. Representative H&E and immunohistochemical images of small cell neuroendocrine
carcinoma (SCNEC) of classic histology (A–E) and with ambiguous histology (F–J). SCNEC shows
sheets of relatively small cells with scant cytoplasm, speckled nuclei, and indistinct nucleoli (A). It is
typically immunoreactive for synaptophysin (B), chromogranin (C), and CD117 (D) and negative
for GATA3 (E). SCNEC with ambiguous histology shows sheets of cells with small to medium
nuclei, relatively abundant cytoplasm, mild pleomorphism and occasional nucleoli (F). Although
this case is immunonegative for synaptophysin (G) and chromogranin (H), the tumor is diffusely
immunoreactive for CD117 (I) and negative for GATA3 (J). (Original magnification: A–I, ×400).

After the reassessment of H&E slides and immune-stained slides, the cases were
classified as pure SCNEC (29 cases, 61.7%), combined SCNEC and UC (15 cases, 31.9%),
and UC (3 cases, 6.4%). Divergent differentiation and variant histology were frequently
noted and included glandular (6 cases, 12.7%) and squamous (3 cases, 6.4%) differentiation
and micropapillary (4 cases, 8.5%), rhabdoid (1 case, 2.1%), and giant cell (1 case, 2.1%)
variants. Tumor invasion into the muscularis propria was noted in 38 cases (80.9%). Twenty-
five patients were treated with chemotherapy. Among the 10 cases involving partial or
radical cystectomy, most were of high pathologic stages with pT3 (8 cases, 80%) and pT4
(1 case, 10%), and half of the patients had lymph node metastasis (5 patients, 50.0%).

3.2. Expression of NE, Luminal, and Basal Markers in the Discovery Cohort

The expression profile of 17 IHC markers in the 146 NED cores and 65 non-NED
cores is summarized in Table 2. Detailed information on the IHC markers is presented
in Supplementary Table S1. Representative IHC images are presented in Supplementary
Figure S1.
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Table 2. Immunoprofile of neuroendocrine cores and non-neuroendocrine cores from small cell
neuroendocrine carcinomas of the urinary tract.

Neuroendocrine Cores (n = 146) Non-Neuroendocrine Cores (n = 65)
Intensity Extent Intensity Extent

0 and 1 2 and 3 ≤5% >5–≤50% >50% 0 and 1 2 and 3 ≤5% >5–≤50% >50%
SYP 29 (19.9) 117 (80.1) 12 (8.2) 18 (12.3) 116 (79.5) 65 (100) 0 (0.0) 65 (100) 0 (0.0) 0 (0.0)
CGA 84 (57.5) 62 (42.5) 89 (61.0) 27 (18.5) 30 (20.5) 65 (100) 0 (0.0) 65 (100) 0 (0.0) 0 (0.0)
CD56 47 (32.2) 99 (67.8) 32 (21.9) 25 (17.1) 89 (61.0) 63 (96.9) 2 (3.1) 64 (98.5) 0 (0.0) 1 (1.5)
CD117 74 (50.7) 72 (49.3) 38 (26.0) 23 (15.8) 85 (58.2) 61 (93.8) 4 (6.2) 62 (95.4) 3 (4.6) 0 (0.0)
INSM1 43 (29.5) 103 (70.5) 33 (22.6) 49 (33.6) 64 (43.8) 65 (100) 0 (0.0) 64 (98.5) 1 (1.5) 0 (0.0)
NSE 35 (24.0) 111 (76.0) 20 (13.7) 15 (10.3) 111 (76.0) 45 (69.2) 20 (30.8) 37 (56.9) 19 (29.2) 9 (13.8)
SOX2 25 (17.1) 121 (82.9) 30 (20.5) 16 (11.0) 100 (68.5) 27 (41.5) 38 (58.5) 36 (55.4) 21 (32.3) 8 (12.3)
TUBB2B 78 (53.4) 68 (46.6) 68 (46.6) 27 (18.5) 51 (34.9) 54 (83.1) 11 (16.9) 56 (86.2) 8 (12.3) 1 (1.5)
SSTR2 78 (53.4) 68 (46.6) 81 (55.5) 23 (15.8) 42 (28.8) 62 (95.4) 3 (4.6) 63 (96.9) 2 (3.1) 0 (0.0)
p53 17 (11.6) 129 (88.4) 26 (17.8) 9 (6.2) 111 (76.0) 15 (23.1) 50 (76.9) 9 (13.8) 0 (0.0) 56 (86.2)
Rb 131 (89.7) 15 (10.3) 130 (89.0) 8 (5.5) 8 (5.5) 65 (100) 0 (0.0) 65 (100) 0 (0.0) 0 (0.0)

EGFR 95 (65.1) 51 (34.9) 81 (55.5) 19 (13.0) 46 (31.5) 10 (15.4) 55 (84.6) 6 (9.2) 11 (16.9) 48 (73.8)
CK5/6 138 (94.5) 8 (5.5) 142 (97.3) 4 (2.7) 0 (0.0) 41 (63.1) 24 (36.9) 46 (70.8) 11 (16.9) 8 (12.3)
CK14 137 (93.8) 9 (6.2) 143 (97.9) 3 (2.1) 0 (0.0) 43 (66.2) 22 (33.8) 50 (76.9) 9 (13.8) 6 (9.2)
CK20 119 (81.5) 27 (18.5) 135 (92.5) 4 (2.7) 7 (4.8) 17 (26.2) 48 (73.8) 21 (32.3) 22 (33.8) 22 (33.8)
FOXA1 39 (26.7) 107 (73.3) 18 (12.3) 23 (15.8) 105 (71.9) 23 (35.4) 42 (64.6) 14 (21.5) 15 (23.1) 36 (55.4)
GATA3 131 (89.7) 15 (10.3) 134 (91.8) 8 (5.5) 4 (2.7) 8 (12.3) 57 (87.7) 9 (13.8) 4 (6.2) 52 (80.0)

Data are expressed as number (%). Abbreviations: SYP, synaptophysin; CGA, chromogranin; INSM1, insulinoma-
associated protein 1; NSE, neuron specific enolase; SOX2, SRY (sex determining region Y)-box 2; TUBB2B, tubulin
beta 2B class IIb, SSTR2, somatostatin receptor 2; p53, tumor protein p53; Rb, retinoblastoma-associated protein;
EGFR, epidermal growth factor receptor; CK5/6, cytokeratin 5/6; CK14, cytokeratin 14; CK20, cytokeratin 20;
FOXA1, forkhead box A1; GATA3, GATA binding protein 3.

In the NED cores, synaptophysin was the most strongly and widely expressed NE
marker, and approximately 80% of NED cores showed diffuse expression. CD56 and CD117
were also diffusely expressed in 61.0% and 58.2% of NED cores, respectively. However,
a subset of NED cores was negative for the NE markers synaptophysin (12 cores, 8.2%),
CD56 (30 cores, 20.5%), and CD117 (38 cores, 26.0%). Chromogranin and INSM1were
expressed less widely, and their diffuse expression was noted in 20.5% and 43.8% of NED
cores, respectively. As expected, the expression of luminal (CK20 and GATA3) and basal
(CK5/6 and CK14) markers was negative or weak in ≤5% NED cores. However, EGFR and
FOXA1 were expressed in a significant number of NED cores and immunoreactive in 31.5%
and 71.9% of NED cores, respectively, with varying intensities.

In the non-NED cores, most of the NE markers such as synaptophysin, chromogranin,
CD56, INSM1, SSTR2, and CD117 were negative or weakly expressed (≤5%) in more
than 95% of such cores. NSE, SOX2, and TUBB2 were immunoreactive in a significant
extent (>5%) of non-NED cores (43.0%, 44.6%, and 13.8%, respectively) with varying
intensities, although they were expressed as such in most NED cores (86.3%, 79.5%, 53.4%,
respectively). GATA3 and EGFR showed diffuse expression in 80.0% and 73.9% of non-NED
cores, respectively.

3.3. Decision Tree-Based Diagnostic NE IHC Model

Given the lack of expression of NE markers in a significant number of NED cores, the
decision tree classifier algorithm was employed to define a diagnostic IHC panel for NED.
Among multiple models suggested by the algorithm, this model was selected because it
was relatively simple, highly reproducible, and easy to apply in routine clinical practice. It
consisted of three markers synaptophysin (cutoff >5% immunoreactive area), CD117 (cutoff
>20% immunoreactive area), and GATA3 (cutoff of negative/weak intensity to be classified
as NED) and applied in that order. The relative importance of the markers was 0.758 for
synaptophysin, 0.213 for CD117, and 0.029 for GATA3 in the model.

An overview of the decision tree model using 147 cores of the training set is shown
in Figure 2. The synaptophysin immunoreactivity was noted in >5% tumor area in
94 cores and was classified as NED (64.0%). Among 53 cores with ≤5% synaptophysin-
immunoreactive area, 43 cores were of CD117-immunoreactive area ≤20% and classified
as non-NED (81.1%). In cores with the CD117-immunoreactive area >20%, the intensity
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of GATA3 immunoreactivity was considered, being classified as NED in 9 cores with neg-
ative/weak intensity (90.0%) and non-NED in 1 core with moderate to strong intensity
(10.0%) (Supplementary Figure S2). The overall accuracy and area under the receiver
operating characteristic curve were 98.4% and 98.8% according to the internal validation.

Figure 2. Decision tree model of the discovery cohort. Diagnostic flow of the training set is demon-
strated with cutoff values (bold red arrow) and distribution plots of NED and non-NED cores. Each
distribution plot stands for a split-by-condition node. The x-axis and y-axis represent the extent or
intensity of the corresponding IHC marker and the number of NED or non-NED cores, respectively.
The finally classified cores are colored yellow for NED and green for non-NED. The degrees of
intensity of GATA3 are represented as follows: 0, negative; 1, weak; 2, moderate; 3, strong.

The distribution of expression and association of each marker in all cores of the
discovery cohort are presented in Figure 3. When the decision tree model was applied to
all 211 cores, 11 cores with ≤5% of synaptophysin-immunoreactive area were classified
as NED. They expressed one or more NE markers such as CD117 (11/11 cores, 100%),
CD56 (9/11 cores; 81.8%), TUBB2B (6/11 cores, 54.6%), SOX2 (9/11 cores, 81.8%), NSE
(7/11 cores, 63.6%), SSTR2 (5/11 cores, 45.5%), and INSM1 (3/11 cores, 27.3%). According
to the model, CD117 expression was identified in all NED cores with ≤5% of synaptophysin-
immunoreactive area and showed a weak relationship with synaptophysin compared to
other NE markers.
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Figure 3. Distribution of the expression of 17 markers in NED and non-NED cores. Heatmap of
17 markers is presented. The white to red shades show increasing immunoreactivity from 5% to
100%, and the blue color represents less than 5% immunoreactivity of IHC markers including no
expression. See color scale.

3.4. Application of the Diagnostic NE IHC Model on an External Cohort

Six SCNEC cases and two UC cases from the external cohort were immunostained
for synaptophysin, CD117, and GATA3 using whole tumor sections in our institution.
According to the model, five SCNEC cases were immunoreactive for synaptophysin in
more than 20% of tumor cells and classified as NED. The remaining SCNEC case was
negative for synaptophysin but immunoreactive for CD117 in more than 90% of tumor cells,
being classified as NED. The two UC cases were immunonegative for all three markers and
classified as non-NED. These results were consistent with the original diagnosis.

3.5. Ultrastructural Validation of NE Differentiation

TEM was performed on samples from five SCNEC cases (four cases in the discovery
cohort from which the 11 cores with ≤ 5% of synaptophysin-immunoreactive area were
derived and one such case from the external cohort). Two SCNEC cases with diffuse
synaptophysin expression and two UC cases were also included as positive and negative
controls, respectively.
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All five cases showed varied numbers of electron dense neurosecretory granules in
the cytoplasm of the tumor cells, similar to those of SCNEC (Figure 4). They ranged from
144.5 to 582.2 nm. The granules were round with a dense core, although the delimiting
outer membrane and peripheral halos were not clearly observed probably due to the
deparaffinization process. There were no neurosecretory granules in the two UC cases
(data not shown).

Figure 4. Transmission electron microscopy image of synaptophysin-negative SCNEC. Arrows
indicate neurosecretory granules (218.31–275.16 nm). (Original magnification, ×20,000).

4. Discussion

Herein, we propose a decision tree-based IHC model consisting of two inclusion
markers synaptophysin and CD117 and one exclusion marker GATA3 for the diagnosis of
SCNEC of the urinary bladder. It could detect NED of not only NE marker-positive SCNEC
but also traditional marker-negative SCNEC. The model was validated using an external
cohort and by TEM analysis.

Through this study, we emphasize the following points for the diagnosis of SCNEC.
First, it is crucial to be familiar with the histological features of SCNEC. In cases with
ambiguous histological features that are difficult to differentiate from UC, IHC for NE
markers should be performed with a low threshold. Second, even focal (>5%) and weak
synaptophysin immunoreactivity would be sufficient for the diagnosis of SCNEC. Third, in
synaptophysin-negative cases, CD117 and GATA3 may be helpful to distinguish between
SCNEC and non-SCNEC.

SCNEC is mainly diagnosed based on histology and may not require IHC confirmation.
As reported previously, most of our cases including traditional NE marker-negative cases
showed classic histological features of SCNEC. The tumor presented as solid sheets, nests,
or trabeculae of small cells. Tumor cells have sparse cytoplasm, nuclear molding, finely
granular stippled chromatin, inconspicuous nucleoli, high mitotic count, and frequent
individual and geographic necrosis [4]. However, ambiguous histological features such as
relatively abundant cytoplasm and the presence of nucleoli albeit inconspicuous were noted
as shown in Figure 1. In such cases, IHC for NE markers might be useful to confirm NED.

Synaptophysin, chromogranin, and CD56 are widely used clinically in a diagnostic
panel because of their suboptimal sensitivity and specificity as individual markers [9]. In
the more common counterpart lung cancer, synaptophysin is expressed in 41–75% of small
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cell lung carcinoma (SCLC) and 58–85% of large cell neuroendocrine carcinomas (LCNEC).
Chromogranin may show weak and focal positivity and less sensitivity, being expressed in
only 23–58% of SCLC and 42–69% of LCNEC. CD56 is expressed in most SCLC (72–99%)
and LCNEC (72–94%) cases but at the cost of relatively low specificity (72%). As expected
synaptophysin was chosen as the most important NE marker in our model.

CD117 was chosen as the second most important marker for the diagnosis of SCNEC
in preference to other traditional or emerging NE markers. This could be explained, at least
in part, by the fact that other NE markers were often expressed simultaneously whereas
CD117 was expressed in those NE marker-negative SCNEC cases. CD117 expression
has been reported in SCNEC of various organs such as the lung, uterine cervix, and
esophagus [19–21]. CD117 expression was also noted in 27% cases of SCNEC in the urinary
bladder [22]. The mechanisms of CD117 expression in NE carcinoma are largely unknown,
but an autocrine growth loop has been suggested in SCLC cell lines [23]. As a member of
the type III receptor tyrosine kinase family, CD117 activates several signaling pathways,
such as the JAK/STAT, RAS/MAP kinase pathway, PI3 kinase, PLCγ pathway, and SRC
pathway [24]. Consequently, it plays an important role in the proliferation, survival,
differentiation, apoptosis, and migration of tumor cells [24]. Another hypothesis is that
CD117 may increase cancer stem cell phenotype in SCNEC since it plays a key role in
maintaining the stemness of cancer stem cells [24]. Because both UC and SCNEC arise from
common multipotential cancer stem cells, SCNEC frequently coexists with conventional
UC [25]. Therefore, CD117 expression may represent a marker of aggressive biologic
behavior of SCNEC instead of NED in the model.

According to previous reports, a novel pan-NE marker INSM1 was superior to tradi-
tional NE markers with high sensitivity (93.9%) and specificity (97.4%) in the SCNEC of
the genitourinary tract [26,27]. In our cases, INSM1 showed relatively lower sensitivity
(78.1%) but similar high specificity (96.9%) compared to the previous report. Neverthe-
less, this novel marker was not selected in our model. The decision tree model suggests
variables based on the causal relationship and selects the best one if multiple variables are
correlated. As shown in Figure 3, when there is a strong relationship between INSM1 and
synaptophysin immunoreactivity, synaptophysin might be selected in the model.

Among non-NE markers employed in the present study, GATA3 immunoreactivity
was selected as an exclusion marker for NE differentiation probably because of its relatively
higher specificity than that of the other non-NE markers. The basal markers CK5/6 and
CK14 were not only negative in most NE cores (94.5% and 93.8%, respectively) but also
not expressed in more than half of non-NE cores (63.1% and 66.2%, respectively). The
luminal marker FOXA1 was expressed similarly in NE cores and non-NE cores (88.4% and
83.1%, respectively). In the remaining luminal markers, GATA3 was negative in more NE
cores than CK20 (89.7% and 81.5%, respectively) and had stronger immunoreactivity in
the non-NE cores (moderate to strong immunoreactivity in 89.3% and 75.3%, respectively).
Therefore, basal markers CK5/6 and CK14 and luminal marker FOXA1 might offer subop-
timal distinguishing power between NE cores and non-NE cores, and GATA3 might be a
better exclusion marker than CK20.

Although the demand for TEM has decreased due to the development of IHC staining
and molecular pathology, this technique is still used for accurate diagnosis. TEM is partic-
ularly useful for the differential diagnosis between malignant mesothelioma and serous
carcinoma, whereas immunostaining results alone cannot achieve an accurate diagnosis [28].
In the present study, neurosecretory granules were found in all synaptophysin-negative and
inconspicuous (≤5%) cases and were useful for confirming NED in those cases, although
the number of granules was fewer than that in classic SCNEC cases.

Genomic analyses of bladder cancer have been used for the molecular characterization
of variant histologic subtypes. The Cancer Genome Atlas (TCGA) and a report by Lund
et al. have identified neuronal subtype or small cell/neuroendocrine (SC/NE) consensus
cluster, accounting for 3–15% of bladder cancer by RNA-sequencing analysis [16,29,30]. A
TCGA report has shown that tumors representing NED at the molecular level were not
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similar in histology to SCNEC in 85% of cases (17/20) [16]. A report by Lund et al. showed
that only half of the SC/NE consensus cluster represented the enriched expression of
neuronal markers such as synaptophysin, chromogranin, and CD56 [29]. Phenotypical UC
with the absence of NE histology may also reveal transcriptomic patterns of NE carcinoma
and be defined as neuroendocrine-like (NE-like) tumors [11]. These reports suggest that
histological, molecular, and IHC results of SCNEC may not agree completely with each
other. Combining our findings with previous results, continuous efforts should be made
to define the diagnostic criteria for aggressive NE carcinoma that requires therapeutic
approaches different from those used for UC.

The present study has limitations. Although the performance of the decision tree
diagnostic model was excellent, the possibility of overfitting cannot be excluded. Since
we performed core-based analysis to compensate for the small number of SCNEC cases,
this model needs to be validated with larger numbers of SCNEC cases, preferably in a
multicenter study.

5. Conclusions

Our study demonstrated that the decision tree model using synaptophysin, CD117,
and GATA3 may help confirm NED of not only NE marker-positive SCNEC but also
traditional marker-negative SCNEC.
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Abstract: Tumor mutation burdens (TMBs) act as an indicator of immunotherapeutic responsiveness
in various tumors. However, the relationship between TMBs and immune cell infiltrates in hepatocel-
lular carcinoma (HCC) is still obscure. The present study aimed to explore the potential diagnostic
markers of TMBs for HCC and analyze the role of immune cell infiltration in this pathology. We used
OA datasets from The Cancer Genome Atlas database. First, the “maftools” package was used to
screen the highest mutation frequency in all samples. R software was used to identify differentially
expressed genes (DEGs) according to mutation frequency and perform functional correlation analysis.
Then, the gene ontology (GO) enrichment analysis was performed with “clusterProfiler”, “enrich-
plot”, and “ggplot2” packages. Finally, the correlations between diagnostic markers and infiltrating
immune cells were analyzed, and CIBERSORT was used to evaluate the infiltration of immune cells
in HCC tissues. As a result, we identified a total of 359 DEGs in this study. These DEGs may affect
HCC prognosis by regulating fatty acid metabolism, hypoxia, and the P53 pathway. The top 15 genes
were selected as the hub genes through PPI network analysis. SRSF1, SNRPA1, and SRSF3 showed
strong similarities in biological effects, NCBP2 was demonstrated as a diagnostic marker of HCC,
and high NCBP2 expression was significantly correlated with poor over survival (OS) in HCC. In
addition, NCBP2 expression was correlated with the infiltration of B cells (r = 0.364, p = 3.30 × 10−12),
CD8+ T cells (r = 0.295, p = 2.71 × 10−8), CD4+ T cells, (r = 0.484, p = 1.37 × 10−21), macrophages
(r = 0.551, p = 1.97 × 10−28), neutrophils (r = 0.457, p = 3.26 × 10−19), and dendritic cells (r = 0.453,
p = 1.97 × 10−18). Immune cell infiltration analysis revealed that the degree of central memory T-cell
(Tcm) infiltration may be correlated with the HCC process. In conclusion, NCBP2 can be used as
diagnostic markers of HCC, and immune cell infiltration plays an important role in the occurrence
and progression of HCC.

Keywords: hepatocellular carcinoma; tumor mutation burden; immune cells; The Cancer Genome
Atlas; CIBERSORT

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common and aggressive malignan-
cies in the digestive system and contributes to a severe global disease burden worldwide [1].
It ranked sixth in global incidence (4.7%) and was the third leading cause of cancer-related
deaths (8.3%) in 2020, according to a recent study [2]. The prognosis of patients is usually
driven by the tumor stage. The 5-year survival rates for local disease exceed 70%; however,
the median survival time of advanced-stage HCC patients is only 1 year [3]. Although the
survival situation has improved, benefiting from advancements in medical treatments [4],
approximately 2/3 of HCC patients are diagnosed at advanced stages, and the median
overall survival rate remains at a low level [5]. Therefore, there is an urgent need to explore
the potential molecular mechanisms of tumor progression to develop better therapeutic
strategies and investigate the potential benefits of adjuvant systemic therapies.

The molecular mechanisms contributing to the development of HCC are extremely
complex and involve various genetic abnormalities, such as the dysregulation of signaling
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pathways, genomic instability, single-nucleotide polymorphisms (SNPs), and somatic
mutations [6,7]. The somatic mutations were reported frequently among HCC patients,
and the landscape was complicated, including somatic mutations that occur in multitudes
of genes accompanied by the changes of multiple signaling pathways [8], which contribute
to various molecular heterogeneities that remain poorly understood. With the rise of
high-throughput sequencing technology, a large number of databases based on TCGA
(The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets have emerged,
making it convenient for us to investigate the complex relationships between HCC and the
underlying oncogenic somatic mutation molecular mechanisms. Our results may provide
new insight into novel diagnostic and prognostic values for HCC.

In addition, recent studies have demonstrated that TMB(Tumor mutation burden)
was correlated with immune cell infiltration and subtypes [9,10]. TMB is defined as
the frequency of gene mutations (total count of variants/the whole length of exons),
including translocation, deletion, and insertion mutations, in addition to other mutations
that appear in the somatic-gene-coding region, with an average 1 Mb-base range for
the tumor genome, and it is used as a biomarker to predict the sensitivity, efficacy, and
treatment outcomes of immune checkpoint inhibitors (ICPIs) [11,12]. The tumor cell carries
new antigens generated by somatic mutations on the cell surface that may be recognized by
the immune system, further making the tumor cell a target for activated immune cells [13].
To date, there have been numerous studies focusing on the relationship between TMB and
immunotherapy in diverse cancers [14–16], and accumulating evidence indicates that a
high tumor mutation burden confers an increased immune reaction to tumors and a better
response to ICPI treatment [17]. However, the prognostic value of TMB in HCC has not yet
been clearly determined.

In the present study, we downloaded The Cancer Genome Atlas HCC data sets using
R software package and other online databases to investigate the association of genes
bearing important mutations contributing to TMBs with clinical and genomic features in
HCC patients. We performed gene ontology (GO) term enrichment and protein–protein
interaction (PPI) analysis and constructed functional networks related to NCBP2 in HCC.
Finally, the relationship between NCBP2 and immune cell infiltration in the HCC was also
analyzed. The findings from the present study suggest that NCBP2 influences the prognosis
of HCC patients via its interaction with infiltrating immune cells.

2. Materials and Methods

2.1. Data Download

The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) (accessed on
1 March 2021) database provides publicly available cancer genome datasets. TCGA database
contains 369 cases of LICH tissue samples. We used R language RTCGToolbox package
from TCGA database (https://portal.gdc.cancer.gov/) (accessed on 1 March 2021) to down-
load Liver Cancer (LIHC) gene expression spectrum and clinical data as the training sets.
We included a total of 364 cases of LIHC samples in the present study. We used the maftools
package to screen the 20 genes with the highest mutation frequencies in all samples, and we
visualized the mutation situations and frequencies of all samples. We grouped all samples
according to the genes with the highest mutation frequencies.

2.2. Data Preprocessing and Differentially Expressed Gene (DEG) Screening

We used affy package (R version 3.6.3; TUNA Team, Tsinghua University, Beijing,
China) to perform background correction and data normalization, and we screened differ-
entially expressed genes (DEGs) by using limma software package. The screening criteria
were: |log2 fold change (log2FC)| > 1, adjust p < 0.05. We used univariate Cox regression
to screen out prognostic Genes. We used the intersection Search Tool (http://string-db.org;
Version: 11.0) (accessed on 1 March 2021) for the Retrieval of Separated Genes (STRING)
to predict the protein–protein interaction (PPI) network. We used Cytoscape to visualize
complex networks and integrate them with data of any attribute type. Gene ontology (GO)
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is a common method used to annotate genes and their products. This method is often used
to annotate large-scale genes, determining molecular function (MF) and biological process
(BP). We used cellular components (CCs) for a GO analysis of intersecting genes.

2.3. GSEA and GSVA Analysis

We performed GSEA and GSVA analysis to explore the important pathway of enrich-
ment between the two groups. The reference gene set was H.all.v.7.1.symbols.gmt. We
replaced 1000 genomes to achieve standardized enrichment scores for each analysis. We
considered a nominal p < 0.05 and a false discovery rate < 0.05 as significant results. We used
clusterProfiler and GSVA packages for GSVA analysis, and we considered adj.p value < 0.05
as a meaningful pathway.

2.4. Verification of Differential Expression of NCBP2

We used GEPIA2 (http://gepia2.cancer-pku.cn/) (accessed on 1 March 2021) to verify
the differential expression between liver cancer and other cancer and paracancer samples
in the database. We applied the box plot module of the GEPIA2 database to explore the
expression level of NCBP2 in various cancer datasets, including the GTEx and TCGA
databases, and we also analyzed the expression levels of NCBP2 in different stages of liver
cancer through a Stage Plot module. Then, we used the Survival Map module to investigate
the overall survival (OS) rates in liver and other cancers. Significance level is 0.05.

2.5. Prognostic Analysis

The Kaplan–Meier mapping platform is able to assess the effects of more than 50,000 genes
on survival in 21 cancer types. The primary purpose of this tool is the discovery and
validation of survival biomarkers based on meta-analysis. We explored the correlation
between NCBP2 and prognosis of liver cancer in Kaplan–Meier mapping platform to verify
the relationship between NCBP2 and liver cancer prognosis.

2.6. Expression Verification of NCBP2 in Cells and Tissues

The Human Protein Atlas is an open-access database used to map all human proteins
in organ tissues and cells, and integrates various omics techniques. We detected the mRNA
expression of NCBP2 in organ tissues and large tumors using the Human Protein Atlas
and TIMER database. We used this database to preliminarily verify the expression levels of
NCBP2 in cells and tissues.

2.7. Correlation Analysis between NCBP2 and Immunity

We applied “corrplot package” to further investigate the infiltration conditions of
immune cells and the relationship between NCBP2 and immune cells in liver cancer. We
constructed a correlation heatmap to visualize the correlation of 22 types of infiltrating
immune cells in liver cancer. Then, we performed Spearman correlation analyses
using “ggstatsplot” package (https://github.com/IndrajeetPatil/ggstatsplot) (accessed
on 1 March 2021) to investigate the relationship between the levels of NCBP2 and
immune cells.

3. Results

3.1. Landscape of Gene Mutation Files in LIHC

To investigate the mutation profile among the TCGA-LIHC cohort, we used the
RTCGToolbox package of R language to acquire the LIHC gene expression spectrum and
clinical data as the training set from TCGA database (https://portal.gdc.cancer.gov/)
(accessed on 1 March 2021). The maftools package was used to screen the top 20 genes with
high mutation frequencies in all samples, and waterfall plots were utilized to visualize the
mutation landscapes of the genes. The results of the somatic mutation profiles in 364 cases
of LIHC samples included in the present study showed that around 312 (85.71%) samples
possessed somatic mutations. As for the top 20 mutated genes shown in Figure 1, we
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discovered that gene TP53 mutated most frequently, approximately accounting for 28% of
mutations, followed by TTN (25%), CTNNB1 (24%), MUC16 (16%), ALB (11%), PCLO (11%),
MUC4 (10%), RYR2 (10%), ABCA13 (9%) and APOB (9%), CSMD3 (8%), FLG (8%), LRP1B
(8%), OBSCN (8%), AXIN1 (8%), XIRP2 (8%), ARID1A (7%), HMCN1 (7%), CACNA1E (7%),
and SPTA1 (7%). Missense mutations were the most frequent among these alterations.

Figure 1. Landscape profile of top 20 mutated genes in 364 LIHC from TCGA database. Mutations of
each gene in each sample are shown in waterfall plot. Each column presents specific sample, each
line presents mutated gene, and name is listed on left. Different forms of somatic mutations and
percentages of gene mutation types are shown on right (color version of figure is available online).
LIHC: Liver Cancer; TCGA: The Cancer Genome Atlas.

3.2. Data Preprocessing and Screening of DEGs

All samples obtained from above were divided into high- and low-TMB groups
according to the median TMB threshold, and we further evaluated the missing data and
normalization for data preprocessing. The box chart results showed that similar levels of
data points were achieved after correcting the mean value of the gene expression, and the
data homogenization was credible (Figure 2A,B). The gene expression matrix was then
merged for further normalization. The PCA results indicated that the clustering of samples
was more obvious between the two groups after homogenization (Figure 2C,D), and the
results suggested that the sample data source included in the present study was reliable
and could be used for further analysis. After data preprocessing, we identified 2171 DEGs
between high- and low-TMB groups with |Log FC| > 1 and p value < 0.05 through the
limma package of R software. The result was presented via a volcano map (Figure 2E), in
which green dots represent downregulated genes, red dots represent upregulated genes,
and black dots represent unchanged genes.
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Figure 2. Data preprocessing and differential expression analysis. (A,B) Box chart of gene expression
among high- and low-TMB groups. Black dots represent mean values of gene expression after sample
normalization before (A) and after (B) sample normalization. (C,D) before (C) and after (D) principal
component analyses (PCA) of gene expression between high- and low-TMB groups. (E) Volcano map
of DEGs; red represents upregulated differential genes, green represents downregulated differential
genes, and grey represents no-significant-difference genes. TMB: Tumor Mutation Burden.

3.3. Joint Screening of Genes, PPI Network Construction, Hub Genes Screening, and Similarities

In order to explore more accurate genes related to the prognosis of patients with HCC,
intersection analysis was conducted on the identified differentially expressed genes between
the high- and low-TMB groups, and the prognosis-related genes with p values < 0.05 in
univariate Cox analysis were obtained from TCGA database. The combined results revealed
that a total of 359 differentially expressed genes were identified following the intersection
of 2171 DEGs between high- and low-TMB groups, with 2250 genes related to prognosis
and survival (Figure 3A). Search Tool for the Retrieval of Interacting Genes (STRING)
(http://string db.org; Version: 11.0) (accessed on 1 March 2021) is an online tool for
predicting protein–protein interaction (PPI) networks. An analysis of functional interactions
between proteins can provide more information into the mechanisms of disease occurrence
or development. Through Cytoscape and its plug-in cytoHubba, we constructed the PPI
network of DEGs related to prognosis obtained above (Figure 3B). The top 15 genes were
selected as the hub genes through the MCC cytoHubba plugin with the highest correlation
scores in this PPI network: USP39, RBM22, SNRPD1, CPSF3, SRSF1, SRSF3, HSPA8,
HNRNPU, SRSF4, CWC27, EFTUD2, ALYREF, NCBP2, SNRPA1, and POLR2D (Figure 3C).
To further explore the closeness of the correlation between hub DEGs, which were ranked
on the basis of average functional similarity, the results suggested that SRSF1, SNRPA1,
SRSF3, SRSF4, ALYREF, NCBP2, SNRPD1, and EFTUD2 were found to be hub genes with
cut-off values greater than 0.7, and SRSF1, SNRPA1, and SRSF3 showed a strong similarity
in biological effects (Figure 3D).
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Figure 3. Joint screening of DEGs, Protein–protein interaction (PPI), hub DEGs, and functional
similarity analysis of DEGs. (A) Venn diagram of DEGs between high- and low-TMB groups and the
prognosis-related genes with p value less than 0.05 in Cox univariate analysis obtained from TCGA.
Middle part represents overlap of two groups of data. (B) Gene interaction network of 359 prognosis-
related DEGs visualized with PPI network. (C) Interaction network of 15 DEGs scored by maximum
correlation coefficient; the darker the color, the higher the MCC algorithm score. (D) Functional
similarities of 11 hub genes—dashed line represents cut-off value of similarity. DEGs: Differentially
Expressed Genes; TCGA: The Cancer Genome Atlas; MCC: Matthews correlation coefficient.

3.4. Functional Correlation Analysis

A total of 359 differentially expressed genes related to prognosis in HCC samples
were further subjected to GO analysis. The results suggested that in the biological
process (BP) category, these prognosis-related differentially expressed genes were mainly
correlated with RNA localization and the transport and export of components in the
nucleus (Figure 4A). In order to explore the important pathway of enrichment between
the two groups, the gene set enrichment analysis (GSEA) of gene expression profiles was
used to identify differentially enriched signaling pathways between patients in high-
and low-TMB groups. The results suggested that the enriched functions and pathways
in the high-TMB group mainly involved fatty acid metabolism, hypoxia, and the P53
pathway (Figure 4B). The results of gene set variation analysis (GSVA) revealed that
androgen response, coagulation, bile acid metabolism, angiogenesis, pancreas beta cells,
fatty acid metabolism, TNFA signaling via NFKB and adipogenesis were enriched in the
high-TMB group (Figure 4C).
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Figure 4. GO, GSEA, and GSVA analyses. (A) Significantly enriched gene ontology terms in
categories BP. (B) GSEA analysis based on h.all.v7.1.symbols.gmt. (C) GSVA analysis based on
h.all.v7.1.symbols.gmt. GO: Gene ontology; GSEA: gene set enrichment analysis; GSVA: gene set
variation analysis.

3.5. The mRNA Expression Level of NCBP2 in Hepatocellular Carcinoma

To further explore the mRNA expression level of NCBP2 in hepatocellular car-
cinoma, we performed a verification to investigate the differential mRNA expres-
sion between HCC tumor samples and adjacent normal samples in the GEPIA2 (http:
//gepia2.cancer-pku.cn/) (accessed on 1 March 2021) and TIMER databases (https:
//cistrome.shinyapps.io/timer/) (accessed on 1 March 2021). As a result, the GEPIA-
based analysis indicated that NCBP2 was upregulated in 17 of 33 cancer types, in-
cluding hepatocellular carcinoma, which was computed in the form of transcripts per
million compared with adjacent tissues (Figure 5A). In addition, the mRNA expression
of NCBP2 was significantly different among different stages of HCC (F value = 0.53,
Pr(>F) = 0.0014) (Figure 5B). Finally, we evaluated the NCBP2 mRNA expression us-
ing the RNA-seq data in TIMER database. The result also indicated that the mRNA
expression of NCBP2 was overexpressed in hepatocellular carcinoma tissues com-
pared with adjacent tissues, and NCBP2 mRNA expression was also overexpressed
in other cancer types, such as BLCA (bladder urothelial carcinoma), BRCA (breast
invasive carcinoma), CHOL (cholangiocarcinoma), COAD (colon adenocarcinoma),
ESCA (esophageal carcinoma), GBM (glioblastoma multiforme), HNSC (head and
neck squamous cell carcinoma), KIRP (kidney renal papillary cell carcinoma), LUAD
(lung adenocarcinoma), LUSC (lung squamous cell carcinoma), PRAD (prostate adeno-
carcinoma), READ (rectum adenocarcinoma), STAD (stomach adenocarcinoma), and
UCEC (uterine corpus endometrial carcinoma), but downregulated in KICH (kidney
chromophobe) and KIRC (kidney renal clear cell carcinoma) (Figure 5C). In summary,
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all these results indicate that the mRNA expression level of NCBP2 is significantly
overexpressed in HCC.

Figure 5. NCBP2 expression levels in HCC. (A) Expression patterns of NCBP2 in 33 cancer types
and paired non-tumor samples. (B) Violin plots reveal relationship between NCBP2 expression and
LIHC staging. (C) Human NCBP2 expression levels in different tumor types determined by TIMER
(* p < 0.05, ** p < 0.01, *** p < 0.001). TIMER: Tumor Immune Estimation Resource.

3.6. Correlations between the mRNA Expression Level of NCBP2 and Survival in HCC Patients

To further investigate the relationship of the mRNA expression level of NCBP2 with
the survival situation in HCC patients, the Kaplan–Meier Plotter, which is based on the
transcriptome data mainly extracted from GEO, EGA, and TCGA, was used to assess the
NCBP2-related survival rate. As a result, we firstly identified NCBP2 as a detrimental prog-
nostic factor in LIHC (Overall Survival (OS): HR = 1.86, 95% CI from 1.31 to 2.63, log-rank
p = 4 × 104) (Figure 6A). Then, we further investigated the prognostic value of NCBP2
expression for pan-cancer in another database. The correlation between NCBP2 expression
and the prognosis of each cancer were investigated, and the result suggested that NCBP2
expression was significantly related to a total of six cancer types, including KICH, KIRP,
LICH, LUAD, PAAD, and PRAD (Figure 6B), and the expression level of NCBP2 was nega-
tively correlated with over survival. Among those cancers, NCBP2 played a detrimental
role in LIHC according to the GEPIA2 database (OS: total number = 364, HR = 1.9, log-rank
p = 0.00026) (Figure 6C). In summary, we identified NCBP2 as a detrimental biomarker for
the survival prognosis of HCC.
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Figure 6. Kaplan–Meier survival curves comparing high and low expressions of NCBP2 in different
databases. (A) Kaplan–Meier survival curves of LIHC in PrognoScan. (B) Relationship between
NCBP2 expression and survival prognosis of each cancer in TCGA. (C) Kaplan–Meier survival curves
of LIHC in Kaplan–Meier Plotter. Number at risk represent number of people exposed to outcome
risk at each time point.

3.7. Protein Expression Level of NCBP2 in Human Tissue and Cell Lines

After investigating the mRNA expression pattern of NCBP2 in various databases,
we further explored the protein expression pattern of NCBU2 in cell lines and human
tissue in The Human Protein Atlas database (THPA), including tumor samples and normal
adjacent specimens. The results confirmed that the protein level of NCBP2 was expressed
moderately less in normal liver tissues compared with other normal tissues (Figure 7A),
and the immunohistochemical analysis demonstrated that NCBP2 was overexpressed in
HCC tissue relative to the normal adjacent sample (Figure 7B). The expression level of
NCBP2 in liver cancer cell lines was analyzed using the CCLE online platform, and the
result showed that the liver cancer cell lines with the highest expression of NCBP2 was
from the HEP3B cell, and the lowest was from the JHH6 cell (Figure 7C).

Figure 7. NCBP2 protein expression in human tissues and cell lines. (A) NCBP2 protein expression
in normal human tissues based on The Human Protein Atlas (THPA). (B) NCBP2 expression assessed
using immunohistochemistry in normal and liver cancer tissues. (C) NCBP2 gene expression profiles
of 19 liver cancer cell lines based on Cancer Cell Line Encyclopedia (CCLE) database.
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3.8. Relationship between the NCBP2 Expression and TP53 Mutation with Immune Makers

Immune infiltration was involved with hepatocellular carcinoma progression. Since
NCBP2 expression was related to the prognostic of hepatocellular carcinoma, the relation-
ship between 22 infiltrating immune cells and the NCBP2 expression was investigated
by the TIMER database. The results suggested that, after adjustments for tumor pu-
rity, the NCBP2 expression was positively associated with all immune cells, including
B cells (r = 0.364, p = 3.30 × 10−12), CD8+ T cells (r = 0.295, p = 2.71 × 10−8), CD4+ T
cells, (r = 0.484, p = 1.37 × 10−21), macrophages (r = 0.551, p = 1.97 × 10−28), neutrophils
(r = 0.457, p = 3.26 × 10−19), and dendritic cells (r = 0.453, p = 1.97 × 10−18) (Figure 8A).
Intriguingly, we also found that the expression of NCBP2 was positively associated with
TP53 (Figure 8B). After the prognosis of hepatocellular carcinoma related to the genetic
mutations, among which TP53 represented a primary concern, we further investigated the
relationship between the TP53 mutation and immune infiltration. The results showed that
B cells and macrophages were significantly higher in the TP53 mutant than the wildtype;
however, the rest of the immune cells, including CD8+ T cells, CD4+ T cells, neutrophils,
and dendritic cells, were not statistically significant with TP53 (Figure 8C). We further
analyzed the relationship between NCBP2 expression with macrophages and CD4+ T
cell infiltration levels in diverse cancer types using the TIMER 2.0 database. The results
indicated that NCBP2 expression was positively correlated with the immune infiltration
levels of macrophages (Figure 9A) and CD4+ T cells (Figure 9B) across most tumor types,
with the highest correlation shown in LIHC. Univariate and multivariate COX regression
also showed that the stage of HCC, CD8+ T cells, and the expression of NCBP2 were the
independent indicators for predicting the prognosis of OS patients (Table 1).

Figure 8. Correlation of NCBP2 expression and TP53 mutation with immune infiltration levels in
LIHC. (A) Relationship of NCBP2 expression with immune infiltration. (B) Relationship of NCBP2
expression with TP53. (C) Correlation between TP53 mutation and immune infiltration.
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Figure 9. Relationship of NCBP2 expression with immune infiltration level in diverse cancer types
(TIMER 2.0). (A) Macrophage immune infiltration level. (B) CD4+ T-cell immune infiltration level.

Table 1. Univariate and multivariate Cox regressions on clinicopathological characteristics and
NCBP2 expression signature.

Variables
Univariate Cox Multivariate Cox

HR (95% CI) p Value HR (95% CI) p Value

stage2 1.576 0.345 1.367 0.215
stage3 2.205 0.001 ** 2.205 0.001 **
stage4 4.575 0.005 * 4.575 0.015 *

Gender male 0.907 0.789 0.907 0.632
B_cell 0.008 0.235 0.008 0.182

CD8+ _ T cell 0.005 0.045 * 0.005 0.037 *
CD4+ _ T cell 0.014 0.34 0.014 0.22

NCBP2 1.467 0.006 ** 1.437 0.046 *
* p < 0.05; ** p < 0.01; CI: Confidence Interval; HR Hazard Ratio.

3.9. Immune Cell Infiltration Analysis in LIHC

Finally, we evaluated the infiltration of immune cells in LIHC. The results of the
correlation heatmap between the 22 types of immune cells revealed that T cells had a
significant positive correlation with cytotoxic cells and type 1 T-helper cells (Th1), and the
macrophages and immature dendritic cells (iDC) also had a positive correlation. Type 2
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T-helper cells (Th2) had a significant negative correlation with dendritic cells (DCs) and
neutrophils, and the T-helper cells also had a negative correlation with DCs (Figure 10A).
The immune cell interaction network results suggested that neutrophils, T cells, and
follicular helper T cells (TFH) have strong relationships with other immune cells, but that
regulatory cells (TReg) and plasmacytoid dendritic cells (pDC) have a weak relationship
with other immune cells (Figure 10B). The violin plot of the immune cell infiltration results
revealed that the degree of central memory T-cell (Tcm) infiltration was higher than in the
low mutation frequencies of the TP53 samples (p < 0.05) (Figure 10C).

Figure 10. Correlation plots of immune cell infiltration analysis in LIHC. (A) Correlation heat map
of 22 immune cells. Blue indicates positive correlation, red indicates negative correlation. Size of
colored squares indicates strength of correlation. (B) Network diagram of 24 immune cell types. The
circle size indicates the strength of interaction. (C) Violin diagram shows the difference of 24 types of
immune cell infiltration in high mutation frequency of TP53 versus low mutation frequency of TP53.

4. Discussion

HCC is one of the most common malignant tumors. According to Global Cancer
Statistics 2020, there were 906,000 new cases of HCC worldwide each year, causing about
830,000 deaths [2]. The main risk factors for HCC are chronic infection with the hepatitis B
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(HBV) or C virus (HCV), alcoholic cirrhosis, aflatoxin-contaminated foods, and excess body
weight [18,19]. Due to early detection and a systemic therapy of surgery combined with
adjuvant chemotherapy, targeted treatment, or immunotherapy, the mortality rate of HCC
has declined in the last three decades [4]. However, the 5-year survival rate of patients
with advanced HCC is still low, which is mainly due to tumor advances [20]. Therefore,
it is important to understand the molecular mechanisms underlying HCC to identify an
effective target for prevention and treatment. Recent studies have focused on the rela-
tionships between HCC, TMBs, and immunity and have confirmed that HCC with a high
tumor mutation burden (TMB-H) may generate immunogenic neoantigens. The increased
production of neoantigens is positively related to the infiltration of immune cells, especially
for the count of macrophages and CD4+ and central memory T cells [21,22]. The infiltra-
tion changes of immune cells are the basis for a good response to immunotherapy [23].
However, none of these have been applied clinically; therefore, we used bioinformatics
tools to analyze HCC-associated TMBs and to identify potential immune biomarkers for
the diagnosis and prognosis of HCC.

In the present study, we performed a comprehensive biological analysis on the relation-
ship between tumor somatic mutational profiles and immunity for HCC. To understand the
functions and associations of these TMB-associated DEGs, GO analyses were performed.
The result showed that DEGs are mainly enriched in nucleocytoplasmic and nuclear trans-
port, and previous studies have confirmed that nucleocytoplasmic and nuclear transport
are closely associated with the development of tumorigenesis [24,25]. Further studies
have confirmed that nucleocytoplasmic and nuclear transport are closely related to HCC
metastasis [26]. These studies suggested that the DEGs of TMBs may be closely correlated
with the metastasis of HCC. By constructing a PPI network, we found that USP39, RBM22,
SNRPD1, CPSF3, SRSF1, SRSF3, HSPA8, HNRNPU, SRSF4, CWC27, EFTUD2, ALYREF,
NCBP2, SNRPA1, and POLR2D may play pivotal roles in the development of HCC. There
was no research to investigate the relationship between HCC and the genes of RBM22,
SRSF4, CWC27, and POLR2D, which would provide us a new research direction. In ad-
dition, we further used GO annotation semantics to investigate the functional similarity
of key DEGs, and a strong biological functional similarity was found between SRSF1,
SNRPA1, SRSF3, SRSF4, and ALYREF. SNRPA1 was reported to promote HCC proliferation
through activating the mTOR-signaling pathway [27], and the phosphorylation of SRSF3 by
PPM1G could result in the proliferation, invasion, and metastasis of HCC [28]; furthermore,
ALYREF was significantly correlated to both advanced tumor-node-metastasis stages and
poor HCC prognosis [29], which is similar to our results. However, we have not found any
reports focused on the effects of NCBP2 in HCC, which may have helped us to find new
immunotherapy targets in HCC; however, it is worth considering for further investigation
in future studies. In addition, the pathway enriched by GSEA mainly involved fatty acid
metabolism, hypoxia, and the P53 pathway. Fatty acid metabolism was reported to be
correlated with the advance of HCC and simultaneously influenced the infiltration of
immune cells [30]. Both hypoxia and the mutation of P53 were also reported to lead to the
metastasis of HCC [31,32]. The above studies are similar to our results, suggesting that the
conclusions of the present study are accurate.

NCBP2, also known as CBP20 or NIP1, can bind to the monomethylated 5′ cap of
nascent pre-mRNA. NCBP2 has an RNP domain usually found in RNA-binding proteins
and contains the cap-binding activity [33,34]. It has been reported that NCBP2 regulates pro-
liferation, metastasis, and apoptosis in multiple cancers [35,36], and accumulating evidence
suggests that NCBP2 may serve as a biomarker for carcinogenesis and cancer progression.
For example, NCBP2 was upregulated in an acute lymphoblastic leukemia rearrangement
child patient (r ALL) compared with non-r ALL patients. Childhood ALL patients with high
expressions of NCBP2 had significantly poorer overall survival rates [37]. The latest study
revealed that NCBP2 was overexpressed in the high-risk group of acute myeloid leukemia
(AML) and was negatively correlated with survival [38]. In the present study, the results
showed that NCBP2 was upregulated in multiple cancers and played a detrimental role at
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the LIHC stage, and NCBP2 expression was significantly related to another five cancers,
including KICH, KIRP, LUAD, PAAD, and PRAD, and was negatively correlated with the
over survival of those cancers. Moreover, the present study revealed that the expression
of NCBP2 was significantly upregulated in HCC compared with adjacent liver tissues
according to the Human Protein Atlas database, and NCBP2 played a detrimental role in
the OS of HCC patients. The antisense gene protein NCBP2-AS2 (transcribed from the
antisense DNA strand of the gene NCBP2) also plays an important role in multiple tumors.
A study has revealed that NCBP2-AS2 was overexpressed in hypoxic-cancer-associated
fibroblasts, and it can promote the secretion of pro-angiogenic factor VEGFA, consequently
reducing VEGF/VEGFR downstream signaling, which leads to tumor metastasis and re-
duces the efficacy of therapy [39]. Furthermore, LncRNA NCBP2-AS2 was upregulated in
lung squamous cell carcinoma samples compared with lung adenocarcinoma samples and
adjacent tissues and promoted cell proliferation and metastasis, as well as the invasive and
inhibited apoptosis of SCC cells via the TAp63/ZEB1-regulating pathway [40]. LncRNA
NCBP2-AS2 also could promote HCC cell growth and proliferation through regulating
KRASIM [41]. In conclusion, NCBP2 is overexpressed in multiple cancers compared with
adjacent normal tissues, and high expressions of NCBP2 were significantly correlated with
poor OS in HCC. However, further research is needed to establish diagnostic accuracy and
treatment with NCBP2 in liver cancer.

To further investigate the role of immune cell infiltration in HCC, TIMER database anal-
ysis revealed that the NCBP2 expression was most positively correlated with macrophages
(r = 0.551, p = 1.97 × 10−28) and CD4+ T cells (r = 0.484, p = 1.37 × 10−21). Studies
have demonstrated that by infiltrating tumor-associated macrophages (TAMs) at a high
level in HCC, target TAM infiltration results in tumor growth inhibition in a mouse HCC
model [42,43]. Higher infiltrating fractions of activated memory CD4+ T cells were also
found in high-risk groups of HCC patients [44,45]. These results showed that the expression
level of NCBP2 may be associated with the immune response to the tumor microenviron-
ment of HCC, especially with CD4+ T cells and macrophages. In addition, our study
investigates the details of 22 types of immune cell infiltrations in HCC, and the results
showed that T cells were closely related to follicular helper T cells (TFH), whereas reg-
ulatory cells (TReg) showed the weakest interactions with plasmacytoid dendritic cells
(pDC), which provided ideas for further investigations regarding the regulation mecha-
nisms of HCC in immune cells, for which no research currently exists. The degree of central
memory T cell (Tcm) infiltration was higher in the high-mutation-frequency TP53 samples.
Accumulating research has demonstrated that the infiltration of Tcm may help to discover
novel treatments for more effective cancer immunotherapies [46,47]. Tcm are functionally
and phenotypically distinct monitoring points in the liver, capable of long-lived retention,
and well positioned for rapid and potent front-line immunosurveillance [48]. The above
studies, combined with our research, have shown that immune cells, especially CD4+ T
cells, macrophages, and central memory T cells, play important roles in HCC and should
be the focus of further studies.

In summary, comprehensive bioinformatic analyses were performed to analyze the
predictive value of TMB in HCC prognosis and identified that the expression of NCBP2 was
strongly correlated to HCC prognosis. Moreover, immune cell infiltration investigations
also suggested that immune cells, especially CD4+ T cells, macrophages, and central
memory T cells, play important roles in HCC. It is noteworthy that the systematic analysis
of TMB-status hub genes in the present study will facilitate an understanding of the role
played by TMBs in HCC and contribute to accurate immunotherapeutic treatment. Our
findings may serve as a potential guide for targeted immunotherapy and provide ideas for
the further development of new immunotherapies. Notwithstanding, more clinical studies
and experimental research are needed to verify our findings and explore the molecular
mechanisms of TMBs in HCC.
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Simple Summary: The soaring demand for endometrial cancer screening has exposed a huge
shortage of cytopathologists worldwide. Deep learning algorithms, based on convolutional neural
networks, have been successfully applied to the classification and segmentation of medical images.
The aim was to establish an artificial intelligence system that automatically recognizes and diagnoses
pathological images of endometrial cell clumps (ECCs). Total 39,000 ECCs (26,880 for training,
11,520 for testing and 600 malignant for verification) patches were obtained by the segmentation
network. The training set reached 100% accuracy, the testing set gained 93.5% accuracy, 92.2%
specificity, and 92.0% sensitivity. Therefore, an artificial intelligence system was successfully built to
classify malignant and benign ECCs for reducing pathologists’ workload, providing decision-making
assistance and promoting the development of endometrial cancer screening.

Abstract: Objectives: The soaring demand for endometrial cancer screening has exposed a huge
shortage of cytopathologists worldwide. To address this problem, our study set out to establish
an artificial intelligence system that automatically recognizes and diagnoses pathological images
of endometrial cell clumps (ECCs). Methods: We used Li Brush to acquire endometrial cells from
patients. Liquid-based cytology technology was used to provide slides. The slides were scanned
and divided into malignant and benign groups. We proposed two (a U-net segmentation and a
DenseNet classification) networks to identify images. Another four classification networks were used
for comparison tests. Results: A total of 113 (42 malignant and 71 benign) endometrial samples were
collected, and a dataset containing 15,913 images was constructed. A total of 39,000 ECCs patches
were obtained by the segmentation network. Then, 26,880 and 11,520 patches were used for training
and testing, respectively. On the premise that the training set reached 100%, the testing set gained
93.5% accuracy, 92.2% specificity, and 92.0% sensitivity. The remaining 600 malignant patches were
used for verification. Conclusions: An artificial intelligence system was successfully built to classify
malignant and benign ECCs.

Keywords: endometrial cancer; deep learning; screening; pathological diagnosis system; cell clumps
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1. Introduction

Endometrial cancer (EC) has become the second most common malignant tumor in
the female reproductive system, with about 378,400 new cases in 2018 worldwide [1]. With
increasing life expectancy and altered living habits, the incidence of EC is on the rise, and
patients tend to be younger [2,3]. The 5-year survival rate with appropriate treatment is
more than 85% for localized, 49% to 71% for regional, and less than 17% for distant stages
of EC [4]. Women exposed to high risks have been recommended to be screened. Screening
for EC and precancerous changes has been strongly suggested for early diagnosis and to
reduce morbidity and mortality [5].

Researchers on the early detection of EC focus on minimally invasive histopathologic
and cytopathologic procedures [6]. An endometrial cytologic test (ECT) has been carried
out in many countries, including Italy, the United States, and Japan. ECT was added into
Japanese Law on health care for the elderly in 1987. The mortality from EC among Japanese
high-risk women fell from 20% in 1950 to 8% in 1999 [7]. In the past 20 years, academics
from different regions have put forward the invention and improvement of endometrial
samplers and have recommended diagnosis systems for endometrial cytopathology [8–10].
Confirmed by diagnostic curettage, the sensitivity, specificity, and coincidence rate of a
well-designed endometrial sampling device, Li Brush, were 92.73%, 98.15%, and 92.73%,
respectively [11]. On the other hand, a large number of endometrial cytopathological slides
need to be identified, which exposes the lack of pathologists.

With the development of artificial intelligence (AI) technology and the improvement
of hardware computing power in recent years, deep learning (DL) in medical analysis is
considered as a third eye for doctors [12]. DL algorithms, based on deep convolutional neu-
ral networks (CNNs), have been proven to strongly boost the development of biomedical
image analysis [13,14]. CNNs are becoming a reference tool for pathologists and have been
successfully applied to the classification and segmentation of medical images, reducing the
workload of pathologists and providing decision-making assistance [15–17].

AI has been successfully used in recognizing pathologic images and identifying malig-
nant and benign tumors. However, there are relatively few studies on EC recognition. In
one study, a computer-aided morphology program was established to distinguish benign
and malignant cells. Geometric and densitometric nuclear features were measured for
analysis. However, the typical three-dimensional shape (crowded and overlapping nuclei)
of the endometrium increased miscalculation [18]. In another experiment, an endometrial
histopathological AI recognition system was built, though it had a relatively high false-
negative rate because a few subtle features were undetectable at the cellular level [19].
Inspired by these studies, we developed a recognition system based on CNNs to automati-
cally identify benign and malignant endometrial cell clumps (ECCs). The shortcomings of
the two above studies will be overcome by analyzing the cellular clump’s structure and
cytological characteristics.

2. Materials and Methods

2.1. Ethics Statement and Patients

The patients, who underwent curettage or hysterectomy, were recruited in the First
Affiliated Hospital of Xi’an Jiaotong University from July 2015 to July 2020. This study
was approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong
University (XJTU1AHCR2014-007), and all patients signed written informed consent. The
protocols were in compliance with the ethical principles for research that involves human
subjects of the Helsinki Declaration for medical research [20].

Patients were excluded who had been diagnosed with suspected pregnancy or preg-
nancy, acute inflammation of the reproductive system, cervical cancer, or dysfunctional
clotting diseases. Women with body temperature at or more than 37.5 ◦C were also excluded
after being measured twice a day.
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2.2. Preparation of Pathological Slides

We chose Li Brush (20152660054, Xi’an Meijiajia Medical Technology Co., Ltd., China)
for endometrial cytological sampling (Figure 1a). Liquid-based cytology combined with
Hematoxylin and Eosin staining was used for pathological slides of endometrial cells. The
sampling, pathological slide, and staining procedures were described by Lu Han et al. [11].
Based on the endometrial cytological diagnostic criteria proposed by Chinese Expert Con-
sensus [21], two experienced pathological professors (H.H. and G.S., with over 20 years
of endometrial cytopathology experience) labeled all cytopathological slides and divided
them into two classes: malignant (atypical cells of undetermined significance, suspected
malignant tumor cells, and malignant tumor cells), and benign (non-malignant tumor
cells). Slides with fewer than 10 or 5 ECCs were judged to be “unsatisfactory for evalu-
ation” for premenopausal or postmenopausal women, respectively. Only a few isolated
atypical or cancerous cells present were considered as satisfactory [22]. Histopathological
diagnosis, acquired from the endometrium by curettage or hysterectomy, was regarded
as the gold standard. Normal endometrium and endometrial hyperplasia without atypia
were considered as benign; endometrial atypical hyperplasia and endometrial cancer were
malignant. Only when consistent classification was reached between histology and the two
pathologists’ cytology on a sample was the sample considered for the study. Otherwise, it
was suspended [22].

Figure 1. The process of obtaining images and recognition. (a) Sampling procedure; (b) cytological
slides diagnosis; (c) classification using endometrial cytological images feature.

2.3. Cytopathological Image Acquisition

We used a MOTIC digital biopsy scanner (EasyScan 60, 20192220065, Motic, Xiamen,
China) to scan cytopathological slides (Figure 1b), using a lens with 200 times magnification
(20×) to obtain whole slide images. A counterclockwise spiral scan was performed with
a camera exposure time of 0.65 s per slide and automatic focal adjustment. Each scanned
slide image was segmented into 1360 small images (1816 × 1519 pixels) (Figure 1b).
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2.4. ECCs Image Annotation

Adobe Photoshop CC (2019 v20.0.2.30, Adobe Inc., San Jose, CA, USA) was engaged
to sketch the edge of the ECCs. There is no doubt that ECCs from negative slides were all
negative, but some ECCs were negative in positive slides. Thus, the two pathologists voted
on the labels of each ECC again; when discordant voting results happened, they would
have a discussion. If the discussion failed to conclude with an accurate diagnosis, the ECC
was discarded. A benign diagnosis was defined as cell clumps with neat edges, nuclei with
oval or spindle shape, and evenly distributed, finely granular chromatin [23,24]. Malig-
nant diagnosis referred to a three-dimensional appearance, irregular (including dilated,
branched, protruding, and papillotubular) edge, with the nucleus poloidal disordering or
disappearing (including megakaryocyte appearance, nuclear membrane thickness, and
coarse granular or coarse block chromatin) [23,25].

2.5. Segmentation Networks

The U-Net with jumping connection structure was selected to eliminate the interference
of neutrophils and single cells, facilitating ECC extraction from each image. Figure 2 shows
the U-Net architecture based on full convolutional networks. The U-Net architecture
combined a down-sampling path to capture context and an up-sampling path to achieve
precise localization. We calculated the probability that each pixel belonged to the cell
clumps and normalized it. The collection of a detected cell clumps image was automatically
marked as a region of interest (ROI) area. A total of 1000 images and their corresponding
masks marked by pathologists were randomly selected for training. In order to describe
the effect of the U-Net, we selected the Dice coefficient (a verification index of image
segmentation accuracy) for evaluation.

Figure 2. Segmentation network. The blue box represents the feature map. The yellow arrow
represents 3 × 3 convolution and striding of 1 used for feature extraction; we set the padding as
1 to ensure that the size of the convolutional image at the same steps was stable. The gray arrow
indicates skip-connection, which is used for feature fusion, and pure up-sampling will cause the loss
of information. The red arrow indicates the 2 × 2 maximum pooling, which is used to reduce the
dimensionality. The green arrow indicates up-sampling, which is used to restore the dimension. The
cyan arrow indicates the convolution plus activation function, which is used to output the result.

Dice =
2|A ∩ B|

A + B
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The Dice coefficient is at the pixel level; A represents the area where the real target
appears, and B signifies the target area that showed the predicted result (Figure 3a).

The segmented mask often has small holes and residues (Figure 3b). We used morpho-
logical operations (first corrosion and then expansion) to eliminate small holes. The ROI set
was input into a subsequent neural network for endometrial cytopathological screening.

Figure 3. The effect of segmentation. (a) Variation of segmentation accuracy with training epochs.
Compared with the ground truth (mask was manually marked by the physician), the red areas were
not predicted in the mask of the model training; compared with the ground truth, the green areas
represent other predicted areas in the mask of model training. (b) The process of ECC acquisition.

2.6. Data Preprocessing

We input the cytopathologic images into a trained U-Net to obtain the patch set of
cell clumps. The segmentation results were first obtained by the U-Net, and background
images (free single cells and white cells) were removed. Then, we extracted all the cell
clumps using the minimum outer rectangle. The size of all cell clusters was uniformly
resized to 256 × 256 by filling the surrounding area with pixels of value 0.

2.7. Classification Network

The CNNs were used to capture the characteristics of ECCs: nuclear heterogeneity,
nuclear size, ratio between nucleus and plasma, chromatin homogeneity, cell polarity,
isolation and aggregation of cell clumps, regularity of cell clump’s edge, etc. We constructed
a DL model with DenseNet201 being the backbone to classify malignant and benign cell
communities. The training set was annotated by two cytopathologists. The final fully
connected layer of DenseNet201 was replaced by a global average pooling layer, then a
single fully connected layer. The specific architecture is shown in Figure 4, and the output
results were classified into two categories (Figure 1c). Then, the classification network was
pre-trained on ImageNet. Several groups were carried out for comparative experiments to
find the best patch input size and iteration time. The iteration was set to be 50, 100, 150,
and 500 epochs in the training process. The results showed that the network converged at
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100 epochs, and a longer training time was not necessary (Figure 5a). We changed the size
of the input patch to 32 × 32, 64 × 64, 128 × 128, and 256 × 256, respectively (Figure 5b).
When the input patch size was 256 × 256, the best result was achieved.

Figure 4. The recognition network architecture for classifying endometrial cell clusters. The size of the
input image is 256 × 256, and each 3 × 3 convolution is preceded by a 1 × 1 convolution operation.

 

Figure 5. The performance of our model and four other common DL models on the same validation
set. (a) Description of the AUC corresponding to the network with different numbers of iterations.
(b) Description of the AUC corresponding to the network with different image input sizes. (c) The
confusion matrix of different networks under the same hyperparameter conditions. The horizontal
axis was a true label, the vertical axis was the predicted label, and the lower false-negative rate
was preferred. (d) The ROC curves of different models. (e) The precision, accuracy, sensitivity, and
specificity of different models.
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2.8. Network Evaluation

We conducted comparative experiments on four CNNs (VGG16, InceptionV3, ResNet,
and DenseNet) and one Support Vector Machine (SVM). The hyperparameters, all kept
consistent, were as follows: Loss function (Binary Cross-Entropy), Initial learning rate
(0.0001), Learning rate delay (0.5), Batch-size (8), and Adam optimizer. In addition, the
SVM classifier used a radial basic function kernel with parameters of 0.0078 and 2. DenseNet
gained the best result due to its advantage of featured graph jump connection (Figure 5c–e).

All experiments were performed on a personal computer equipped with a GeForce
GTX2080 super (NVIDIA) graphics processing unit. Python programming language 3.6.12
(Python Software Foundation, Wilmington, DE, USA) with keras 2.4.3 (Google Brain,
Mountain View, CA, USA) and Tensor Flow 2.2.0 (Google Brain, Mountain View, CA, USA)
for neural networks was used for the training.

2.9. Statistical Analysis

The following indexes were calculated by the four-lattice paired hypothesis test for sta-
tistical analysis: accuracy (Acc), sensitivity (Se), and specificity (Sp). The confusion matrix
and receiver operating characteristic (ROC) curve were used to visualize the classification
effect. The definition criteria were as follows:

Acc =
(TP + TN)

(TP + FP + TN + FN)

Se =
TP

(TP + FN)

Sp =
TN

(TN + FP)

2.10. Plots and Charts

All the drawings were performed using the matplotlib package in Python and Matlab.
The ROC curve of model performance was shown with specificity being the X axis and
sensitivity being the Y axis. We used a bar chart to show the predictions from different
CNNs and SVM. Line graphs were drawn to illustrate the results and compare performance
between different groups.

3. Results

3.1. Baseline Characteristics

A total of 113 patients who met the criteria were enrolled for final analysis, among
which 42 were malignant and 71 were benign. Table 1 lists the demographic data of
these patients.

3.2. Dataset

A total of 15,913 annotated cell clump images were segmented on ×20 magnification
digital slides. The average image size was 1816 × 1519 pixels by width and height. We used
a trained U-Net to extract ECC patches from the 15,913 images and obtained 39,000 ECC
patches. Divided in 7:3, 26,880 and 11,520 patches were used for training and testing. The
remaining 300 benign patches and 300 malignant patches were included in a verification set.

3.3. Verification Set and Test Set

The prediction results of ECC patches were completely in accordance with the labels
given by the pathologists. We randomly exhibit the results of eight (three malignant and
five benign) validation patches (Figure 6A).
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Table 1. Patients characteristics.

Characteristics n

Source
Inpatient Department 66

Outpatient Department 47
Age

<40 years old 13
≥40 years old 100

Menstrual Status
Premenopausal 51
Postmenopausal 66

Abnormal uterine bleeding 35
Other Disease
Ovarian cancer 0
Hypertension 10

Diabetes 4
Hormone replacement therapy 1

Figure 6. Presentation of true and false results. (A) A 100% consistency of results was achieved in
the training set. Patches (a–c) showed the true positive, and patches (d–h) showed the true negative.
(B) Analysis of false results in test set. The two false-positive (over diagnosis) patches (a,b) are exhib-
ited. The six false-negative patches included one well-differentiated endometrial adenocarcinoma (c),
three atypical hyperplasia (d–f), and two poorly differentiated adenocarcinomas (g,h).

In the test set, the accuracy and specificity of the classifier were 93.5% and 92.2%,
respectively. The DenseNet achieved a 95.1% area under the curve score (AUC). In addition,
we compared the results with four other common classification models (Figure 5c–e).
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3.4. False Results

DenseNet obtained a 5% false-positive rate and an 8% false-negative rate in the test
set (Figure 5c). We randomly listed eight common failure patches in the test set. The six
false-negative (missed diagnosis) patches included one well-differentiated endometrial
adenocarcinoma, three endometrial atypical hyperplasia, and two poorly differentiated
endometrial adenocarcinomas. In addition, two over-diagnoses occurred (Figure 6B).

3.5. Data Supporting

The results of this study are available from the corresponding authors (Qiling Li and
Dexing Zhong). Because of hospital policy, the data cannot be made public.

4. Discussion

Principal Findings

For the first time, we introduced two neural networks based on deep convolution,
namely U-Net and DenseNet, to segment ECC images and recognize patches, respectively.
The DenseNet achieved 93.5% accuracy and 92.2% specificity. At the same time, this system
was developed for screening, and the sensitivity of our algorithm was better than that of all
the comparison ones, reaching 92.0%. The results indicated that the neural network has
great feasibility and potentiality in endometrial pathological image recognition.

5. Results

It is well-known that a large amount of labeled data is often required to train a high-
quality machine learning classifier through DL to complete a specific cancer classification
task [26]. Due to the high amount of time and effort required for image annotation work,
as well as the protection of patients’ privacy, there are currently few endometrial image
datasets available to the public. Despite the limited dataset, our classifier performed well
in the 10-fold cross-validation and in the external validation of 15,913 images.

5.1. Clinical Implications

At the beginning of the experiment, we considered that DL was able to automatically
learn cancer’s information from pathological images [27]. We put the unlabeled benign and
malignant images into the network for recognition and obtained 40–70% specificity (data
not shown) from multiple networks, proving the method to be a failure. ECCs are quite
different from non-cellular clumps in ecological appearance, cell morphological structure,
and other pathological characteristics. U-net combines low-resolution information (to
provide the basis for object category recognition) and high-resolution information (to
provide the basis for precise segmentation and positioning), which is perfectly suitable
for medical image segmentation. Combined with the pathological features in patients
with ECCs, we chose the U-Net as the segmentation network to analyze and calculate
the probability that each pixel belonged to the cell clumps. The detected cell clump
images were automatically marked as ROI areas. The obtained ROI set was processed by a
traditional image-processing algorithm to eliminate small holes. The ROI set was input
into a subsequent neural network for cytopathological screening of the endometrium. We
built a DL model with DenseNet201 as the backbone. The DL model was trained by the
dataset annotated by cytopathologists, and the model was built to classify malignant and
benign cell clumps. It turned out that our model alleviated the vanishing gradient problem,
strengthened feature propagation, encouraged feature reuse, and outperformed ResNet50
with the same number of parameters. In order to compare the prediction performance of
various DL algorithms on an experimental dataset, four commonly used CNNs were used
to train different classifiers, namely VGG16, Inception-v3, ResNet, and DenseNet. The SVM
classifier, which used features extracted by the CNN as input, had a better performance
than the end-to-end CNN classifier [28,29]. Therefore, on the basis of previous experiments,
the DenseNet had the best performance in extracting sample features to train the SVM
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classifier. In addition, a group of comparative experiments were also performed with
traditional PCA + SVM machine learning method.

The results of the test set showed that the false-negative rate was twice as high as the
false-positive rate. We analyzed all the missed and over-diagnosis images and randomly
selected eight patches to illustrate the common error that occurred. There were two false
positives: one patch of secretory phase endometrium and one patch of complex hyperplasia.
One reason for this was that the endometrial cells were clustered and seriously overlapped.
It was difficult to distinguish well-differentiated EC from the proliferative endometrium,
and it was difficult to distinguish complex hyperplasia from atypical hyperplasia. Another
reason was that the dysplasia coincidence rate between the cytological and histological
pathological diagnosis was relatively low, which was 56% in some studies [30]. This was
the main reason for their miscalculation.

5.2. Research Implications

Due to the development of liquid-based cytology and endometrial cell sampling
in recent years, ECT has been gradually accepted as a simple, rapid, and economical
endometrial screening method [31]. Moreover, AI can be applied to the pathological
recognition of endometrial cells to promote screening. AI works steadily and indefatigably,
and can quickly screen out suspicious malignant results, allowing pathologists to focus on
the malignant results and improve the accuracy and efficiency of diagnosis [32].

5.3. Strengths and Limitations

This study had some limitations. First, although our images were labeled in a ran-
domized and blind way, and histological diagnosis was used as control, and the two
pathologists’ diagnoses were still somehow subjective. We hope that more recommenda-
tions from pathologists in different treatment centers will be included in follow-up studies
regarding the proposed diagnostic system. Second, liquid endometrial cytological smear
was used in our diagnostic system. At present, cell block technology can prepare slides
with cell clumps and micro tissues, which is expected to further refine the diagnostic results
and provide better diagnosis and treatment suggestions for clinical work [33]. We will
focus on improving the performance of the classifier by training it with more samples,
aiming at subdividing endometrial pathological types in future research.

6. Conclusions

This study confirmed that the recognition of DL has similar specificity and sensitivity
to manual diagnosis. At the same time, the DL saves time and manpower. Therefore,
the use of endometrial liquid-based cytology in combination with AI to identify ECC is
reliable for EC screening and is able to reduce pathologists’ workload. By carrying out this
form of screening work, cross-population, big data will be rapidly established, and the
participation of scholars from different regions will greatly promote the development of
precision medicine.
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Simple Summary: Colorectal cancer is one of the most common malignancies and the third leading
cause of cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and
MSI status are closely related to the individualized therapeutic judgment and oncologic prognosis
of CRC patients. In this study, we introduced a cascaded network framework with an average
voting ensemble strategy to sequentially identify the tumor regions and predict gene mutations &
MSI status from whole-slide H&E images. Experiments on a colorectal cancer dataset indicated
that the proposed method can achieve high fidelity in both gene mutation prediction and MSI
status estimation. In our testing set, the AUCs for KRAS, NRAS, BRAF, and MSI were ranged from
0.794 to 0.897. The results suggested that the deep convolutional networks have the potential to assist
pathologists in prediction of gene mutation & MSI status in colorectal cancer.

Abstract: Colorectal cancer is one of the most common malignancies and the third leading cause of
cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and estimating
MSI status is closely related to the individualized therapeutic judgment and oncologic prognosis of
CRC patients. In this study, we introduce a cascaded network framework with an average voting
ensemble strategy to sequentially identify the tumor regions and predict gene mutations & MSI status
from whole-slide H&E images. Experiments on a colorectal cancer dataset indicate that the proposed
method can achieve higher fidelity in both gene mutation prediction and MSI status estimation. In
the testing set, our method achieves 0.792, 0.886, 0.897, and 0.764 AUCs for KRAS, NRAS, BRAF, and
MSI, respectively. The results suggest that the deep convolutional networks have the potential to
provide diagnostic insight and clinical guidance directly from pathological H&E slides

Keywords: deep convolutional network; H&E slice; gene mutation prediction; microsatellite instability;
colon carcinoma

1. Introduction

Colorectal cancer (CRC) is one of the most common lower gastrointestinal malignan-
cies and is currently the third leading cause of cancer-related mortality worldwide [1,2].
Despite the over survival rate of colorectal cancer has increased in recent years due to
the improved treatment strategies [3], distant metastasis is still a significant cause of high
morbidity and mortality for CRC patients [4]. So far, various predominant environmental
risk factors for the development of CRC have been identified, including diet, obesity, lack
of physical activity, and inflammatory bowel disease [5]. However, a module formed by
the interaction of multiple genetic alterations determines individual differences and tumor
progression in CRC patients.

In the past decades, a deep understanding of molecular profiles has been more signifi-
cant for selecting appropriate therapies for metastatic CRC patients [6]. Numerous frequent
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genetic mutations have been identified as critical drivers responsible for comprehensive
therapeutic judgment and oncologic prognosis [7]. Mutations of RAS (i.e., exon 2, 3, and 4
of KRAS, exon 2 and 3 of NRAS) are considered negative predictors for targeted therapy
with anti-EGFR monoclonal antibodies (e.g., cetuximab and panitumumab) [8,9]. Mutation
of BRAF V600E is a worse prognostic biomarker. Patients with BRAF V600E mutation
will be less likely to respond to treatment with cetuximab and panitumumab unless com-
bined with a BRAF inhibitor [10,11]. Moreover, the microsatellite instability (MSI) status of
CRC patients is also an important marker closely related to the assessment of prognosis,
the efficacy of chemotherapeutic and immunity therapy [12,13]. Therefore, all metastatic
CRC patients are suggested to detect the KRAS, NRAS, and BRAF mutations and MSI
status according to the National Comprehensive Cancer Network (NCCN) clinical practice
guidelines in oncology (Colon Cancer, Version 2.2021) [14].

The general diagnosis procedure of molecular pathology includes Sanger sequencing,
Next-Generation Sequencing (NGS), ARMS-PCR, and digital PCR , etc. [15]. In recent
years, the accuracy and sensitivity of those methods have been significantly improved.
However, molecular detection remains limited by various factors such as sample quality,
mutated gene abundance, and laboratory conditions. Moreover, in a short period of time,
high testing prices are also a heavy burden for most families.

With the development of big data and deep convolutional network, artificial intelligence
(AI)-assisted pathological diagnosis has attracted more and more attention. In 2018, Coudray
et al. trained a deep convolutional neural network on Whole-Side Images (WSIs) to predict
the cancer subtype and gene mutations in lung cancer [16]. Later, MSI status estimation
of CRC from H&E histology was reported [17,18]. Furthermore, Skrede et al. exhibited
a promising result in the survival risk interpretation of tumor patients based on artificial
intelligence [19]. These methods have significantly extended the application capability of
deep convolutional networks. However, genetic mutation prediction from H&E slices in
CRC, which has more clinical significance in precision diagnosis, is still very challenging. To
fulfill this demand and further explore the potential of H&E slides, we propose a cascaded
deep convolutional framework to simultaneously generate gene mutation predicting and
MSI status estimation using WSIs in colorectal cancer. The proposed method consists of two
tumor region classification models, gene mutation& MSI status estimation models, and an
average voting ensemble strategy. The effectiveness of the proposed method is demonstrated
by a CRC dataset collected from GDC Data Portal and Eighth Affiliated Hospital, Sun Yat-
sen University (see Section 2.1). In qualitative and quantitative evaluation, the proposed
method reveals promising accuracy in tumor classification (0.939–0.976 AUC), gene mutation
prediction (0.792–0.897 AUC), and MSI status estimation (0.764 AUC).

The main contributions of this study can be summarized as follows:

• We proposed a cascaded deep convolutional framework to simultaneously generate
gene mutation prediction and MSI status estimation in colorectal cancer.

• We introduced a simple yet efficient average voting ensemble strategy to produce high
fidelity gene mutation prediction and MSI status estimation of the WSI.

• We further analyzed the effectiveness of the number of features selected for model
ensembling to understand its effects on the performances of deep CNN models.

The rest of the paper is organized as follows: Firstly, we present the datasets and
methods used for this research in Section 2. Then, we illustrate the quantitative and
qualitative results in Section 3. Finally, discussion and conclusion are presented in the
Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Data

To explore the possibility of estimating somatic mutations and microsatellite instability
(MSI) using Hematoxylin-Eosin(H&E) stained whole-slide image (WSI), we downloaded
diagnostic slides and corresponding clinical data of the TCGA-COAD cohort from GDC
Data Portal (https://portal.gdc.cancer.gov/projects/TCGA-COAD, accessed at 20 Febru-
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ary 2022). The pre-compiled somatic mutation data and MSI status data were acquired
from UCSC Xena (https://xenabrowser.net/datapages/, accessed at 10 March 2022) and
MSIsensor-pro [20], respectively. The original WSIs were formated in a magnification
ratio of either 20× or 40×. Prior to performing our experiments, we manually resize the
40× images to 20× using libvips (https://github.com/libvips/libvips) (see Figure 1A–D).
There were 292 WSIs with corresponding somatic mutations and MSI statuses in the TCGA-
COAD dataset. To achieve better generalization, we also collected the SYSU8H dataset
with the cooperation of The Eighth Affiliated Hospital, Sun Yat-sen University. The selected
pathological specimens were fixed in formalin, embedded in paraffin wax block, and cut
by several consecutive slices in 3–5 um by a Leica HistoCore Autocut. Later, the slices were
used for Hematoxylin-Eosin (H&E) staining, IHC staining, or gene sequencing, separately.
Compared with the scanned H&E slices, the tumor areas for the sequencing slices are
in micron-level drifts that tumor genomic heterogeneity among these slices is negligible.
There were total 104 WSIs captured with 20× magnification ratio by PANNORAMIC 1000,
3DHISTECH Ltd.(see Figure 1E–H). Unlike next-generation sequencing (NGS) of TCGA-
COAD, in the SYSU8H dataset, the genetic information was obtained by sanger sequencing.
The binary masks of tumor areas of the WSIs were carefully annotated by experienced
pathologists using QGIS (v3.22.7 LTR, https://qgis.org/).

As shown in Table 1, the 396 WSIs samples were randomly divided into training,
validation, and testing groups with the ratios of 70%(278), 15%(59), and 15%(59), respec-
tively. At 5× magnification WSIs, there were 283,126, 49,988, and 55,787 tiles within the
corresponding training, validating, and testing set. At 10× magnification WSIs, 1,152,481,
203,183, and 2,275,595 tiles were within the corresponding training, validating, and testing
set. In our experiment, the size of each tile was set to 512 × 512 pixels.

Table 1. Distribution of patients and whole-side images samples.

WSIs

Train (n = 278) Val (n = 59) Test (n = 59) Overall (n = 396)

Age(year) Min. 22 29 36 22
Max. 90 90 90 90

Median 65.5 67 68 66

Gender Male 138 30 33 201
Female 140 29 26 195

KRAS W.T. 162 24 35 221
M.T 116 35 24 175

NRAS W.T. 267 57 57 381
M.T 11 2 2 15

BRAF W.T. 251 51 51 353
M.T. 27 8 8 43

MSI MSI-H 236 49 52 337
MSS/MSI-

L 42 10 7 59

Tiles 5× Mag. 283,126 49,988 55,787 388,901
10× Mag. 1,152,481 203,183 227,595 1,583,259
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A                                                                     B                                                              C                                                               D  

E                                                                     F                                                              G                                                               H  

Figure 1. Representative H&E stained whole-side images (WSIs) from SYSU8H and TCGA-COAD
dataset. The (A–D) and (E–H) samples are randomly selected from SYSU8H and TCGA-COAD
datasets, respectively.

2.2. Methodology

In this study, we proposed a cascaded network framework to directly estimate somatic
gene mutation and microsatellite instability status from the H&E stained whole-side image.

As shown in Figure 2, at the training stage, WSIs and corresponding binary masks
of the training and validation set were partitioned into 5× or 10× tiles for training and
validating the tumor classifier. The annotated tumor tiles and their somatic gene mutations
or microsatellite instability (MSI) were used for training a binary classifier to discriminate
wild type (i.e., W.T.) vs. mutant type (i.e., M.T.) of the gene or MSI-H vs. MSS/MSI-L,
respectively. The top N highest probabilities of all tiles within a WSI were used to generate
the final prediction for the patient.
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Figure 2. Experimental workflow for estimating somatic gene mutation and microsatellite instability
with H&E stained whole-side images. The 5× or 10× tiles from WSIs will be accessed by a tumor
classifier, a gene&MSI classifier, and a TopN ensemble classifier.

Through several cycles of training and validation, the hyperparameters, including
batch size, the number of iterations, and learning rate, were optimized with the Adam
stochastic optimizer [21]. Subsequently, the predictions generated by the optimized models
were evaluated using the WSIs of the test set (see details in Table 1). For performance
evaluations, we carefully measured the area under the receiver operator characteristic
(ROC) curve [22] and its confidence interval (CI) [23].
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2.2.1. Data Preprocessing

At first, the 396 pairs of whole-side images (WSIs) and their corresponding clinical
records were shuffled and partitioned into three groups: training (70%), validating (15%),
and testing (15%). Within each pair, a binary tumor mask of WSI was generated through
polygon rasterization of its manually created tumor annotation. Later, a square window of
512 × 512 pixels was applied to the whole-side image and the corresponding tumor mask
to extract paired tiles of WSI and mask. Then, each tile of WSI was labeled according to
the positive ratio of pixels of the tumor mask. To focus on the tumor regions, tiles with
positive ratios less than 80% were marked as 0. Otherwise, tiles were marked as 1. There
were 388,901 and 1,583,259 tiles extracted from 5× and 10× magnification. As shown
in Table 1, at 5× magnification, there were 283,126, 49,988, and 55,787 tiles within the
training, validating, and testing set. While at 10× magnification, the number of tiles used
for training, validation, and testing was 1,152,481, 203,183, and 2,275,595, respectively.

2.2.2. Network Architectures

For simplicity and efficiency, we adopted an advanced convolutional neural net-
work (CNN) architecture, i.e., EfficientNet [24], as a backbone for tumor classification and
gene&MSI classification.

In 1998, Lecun et al. introduced the classic CNN architecture, LetNet-5 [25], which
consists of two sets of convolutional & pooling layers, a flattening convolutional layer,
and two fully-connected layers. The CNN reveals two important concepts, sparse con-
nectivity and shared weights, significantly reducing memory occupation and promoting
computational efficiency. With the growing complexity of the dataset and rapid develop-
ment of computational capacity, computer scientists have proposed more advanced CNN
architectures for better generalization capacity and computational efficiency [26]. These
architectures significantly promote CNN performance by introducing well-designed novel
strategies, such as network in network (i.e., NIN) [27], residual learning (i.e., ResNet) [28],
inception architecture [29], and dense connection (i.e., DenseNet) [30]. Differ from the
above-mentioned models, which mainly focus on model accuracy, the EfficientNet architec-
ture is designed to get a present accuracy level with limited computational operations. The
EfficientNet introduces a uniformed scaling method that scales all dimensions of depth,
width, and resolution with a set of fixed scaling coefficients [24].

In our experiments, we chose an ImageNet-1K [31] pretrained EfficientNet B0 (https:
//pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html, ac-
cessed at 4 March 2022) as the backbone for both tumor classification and Gene&MSI classification.
As shown in Table 2, we introduced a dropout layer (p = 0.5) [32] to prevent overfitting. Then,
we replaced the dimensions of fully-connected (FC) layer from 1280 × 1000 to 1280 × 1.

Subsequently, the activation function was changed from softmax to sigmoid.

zi = b +
c

∑
j=1

wj × xi,j

pi =
1

1 + e−zi

(1)

The w ∈ Rc and b ∈ R1 denote the weights and bias, respectively. The range of
prediction pi is limited to [0, 1].

Instead of binary cross entropy [33], we adopted focal loss [34] as our object function
to focus learning on hard misclassified examples and address class imbalance. The equation
can be formulated as:

pt =

{
pi, if yi = 1
1 − pi, if yi = 0

Loss f ocal = −(1 − pt)
γlog(pt)

(2)
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where pi and yi is the ith prediction and corresponding ground truth. The value of pt
is pi if the observation is in class 1; otherwise, the value is 1 − pi. The γ (≥ 0) is a
tunable focusing parameter which reduces the relative loss for well-classified examples
(i.e., pt > 0.5) and puts more focus on hard, misclassified examples.

Table 2. The backbone network for both tumor classification and Gene&MSI classification. Each row
describes the stage, operation, input resolution, output channel, and the number of layers.

Stage Operator Resolution Channels Layers

0 512 × 512 3 0
1 Conv3 × 3 512 × 512 32 1
2 MBConv1, k3 × 3 256 × 256 16 1
3 MBConv6, k3 × 3 256 × 256 24 2
4 MBConv6, k5 × 5 128 × 128 40 2
5 MBConv6, k3 × 3 64 × 64 80 3
6 MBConv6, k5 × 5 32 × 32 112 3
7 MBConv6, k5 × 5 32 × 32 192 4
8 MBConv6, k3 × 3 16 × 16 320 1
9 Conv1 × 1&Pooling 16 × 16 1280 1

10 Dropout&FC 1280 × 1 1 1

With all of the above layers being trained by mini-batch stochastic gradient descent
(SGD) [35] to minimize the focal loss, the model learns how to map from the input
512 × 512 RGB image to a binary prediction.

2.2.3. Model Ensemble

To make a decisive conclusion on the whole-slide-image (WSIs) using the separated
predictions of 5× and 10× tiles, we introduced a simple yet efficient average voting strategy
using the top N number of features to ensemble models. To ensure the high fidelity of
selected features, a high threshold (i.e., 0.8) was used to filter out tiles with a low probability
of being a tumor region. Later, tiles with a high probability of being tumor regions were
passed to corresponding gene&MSI classification models to generate predictions of 5× tiles
(Px5) and 10× tiles (Px10). Then, the top N highest probabilities of predictions from both 5×
and 10× tiles were selected for the final estimation of the WSI (Pwsi). Finally, the Pwsi and
corresponding ground truth (Ywsi) were used to calculate the area under the curve (AUC)
for performance estimation.

PtopN = max([Px5, Px10], N)

Pwsi =
1
N

N

∑
i=1

PtopN
(3)

3. Results

A total of 396 colorectal cancer (CRC) patients with various gene mutations and MSI
status from the SYSU8H and TCGA-COAD datasets were recruited in this study. The
collected WSIs were randomly split into three sets: training, validation, and testing with
the ratio of 70%, 15%, and 15%, respectively. The tiles extracted from the training and
validation set wereused for training and optimizing hyperparameters of the proposed
classification models. In order to estimate the performance of the proposed classification
models, we have conducted heavy quantitative and qualitative comparisons on the testing
set. All experiments were performed on the same dataset and processing platform.

3.1. Tumor Classification

The tumor regions annotated by the pathologist and probability maps generated by
the tumor classification models using 5× and 10× tiles of WSIs are presented in Figure 3.
Both 5× and 10× models display high fidelity in tumor recognition compared to manual
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annotations. Compared with the 5× model, the model trained with 10× tiles shows fewer
false positives (e.g., orange and red patches outside the blue dashed curve of A, B, and C),
fewer false negatives (e.g., blue and green patches inside the blue dashed curve of E and
F), and better boundaries (e.g., around the blue dashed curve of A, B, and D). We selected
5 tiles from each of the four randomly selected whole slide images in the testing set, which
present the highest probabilities to be the tumor regions according to our trained 5× or 10×
tumor classification models (Figures 4 and 5). The selected tiles show high consensus with
the annotations by the pathologist. The receiver operator characteristic (ROC) curve and
area under the curve (AUC), are used to evaluate the performance of tumor classification
models using 5× and 10× tiles of the WSIs (Figure 6). The AUCs of 5× classification model
have achieved 0.939 (95% CI of 0.937–0.940), 0.910 (95% CI of 0.905–0.914), and 0.959 (95%
CI of 0.957–0.961) for training, validating, and testing set, respectively. Slightly better than
the 5× model, the AUCs of 10× classification model are up to 0.971 (95% CI of 0.971–0.972),
0.973 (95% CI of 0.972–0.973), and 0.976 (95% CI of 0.975–0.977) for training, validating, and
testing set, respectively. These values are consistent with our observation in Figures 3–5.

                       Annotation                        Tumor Classification (5x Tiles)         Tumor Classification (10x Tiles)            Probability 
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B 
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D 
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F 
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0.4 – 0.6
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Figure 3. Probability maps of tumor classification using 5× and 10× tiles of the whole slide images
(WSIs). The annotations created by the pathologist are marked with the blue dashed curve. The
probability values are categorized into five groups with different color representations. The (A–C) and
(D–F) samples are randomly selected from the testing set of TCGA-COAD and SYSU8H, respectively.
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                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 
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D 

Figure 4. Representative tiles of tumor classification using 5× tiles of the whole slide images (WSIs).
The (A–D) samples are randomly selected from the testing set. In each row, tiles 1–5 are patches from
the same WSI.

                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 
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B 
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D 

Figure 5. Representative tiles of tumor classification using 10× tiles of the whole slide images (WSIs).
The (A–D) samples are randomly selected from the testing set. In each row, tiles 1–5 are patches from
the same WSI.
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A                                                                                                                       B 

Figure 6. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of tumor
classification using 5× and 10× tiles of the whole slide images (WSIs). (A) The curves of training, validating,
and testing set using 5× tiles. (B) The curves of training, validating, and testing set using 10× tiles.

3.2. Gene&MSI Classification

After model ensembling, the proposed method generates probabilities of gene muta-
tions (i.e., KRAS, NRAS, and BRAF) and MSI status of every WSI.

As shown in Figure 7a–c, in the testing set, the proposed method reaches 0.792 (95%
CI of 0.669–0.914), 0.886 (95% CI of 0.688–1.00), and 0.897 (95% CI of 0.800–0.994) AUCs
for gene mutation predictions of KRAS, NRAS, and BRAF, respectively. In Figure 7d,
our method shows high accuracy (i.e., 0.764 AUC, 95% CI 0.563–0.965) on the MSI status
estimating in colorectal cancer.

(A) KRAS                                                                                                                         (B) NRAS  

(C) BRAF                                                                                                                           (D) MSI

Figure 7. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of
Gene&MSI classification using 5&10× tiles of the whole slide images (WSIs). (A) The curves of KRAS
gene mutation classification. (B) The curves of NRAS gene mutation classification. (C) The curves of
BRAF gene mutation classification. (D) The curves of MSI status classification.
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To investigate the effect of the selected number of features (i.e., topN) used for model
ensembling, we conducted a comparison experiment on the testing set using sequential
values (i.e., [1, 3, 5, 7, 9]) of topN. Figure 8 shows the trend of the AUC values under
sequential values of topN in the testing set. Among all values, the proposed method
achieves the highest KRAS, NRAS, and BRAF gene mutation prediction accuracy while
topN equals 7. In gene mutation predictions, as the value of topN increases, the AUC
value will firstly increase and then decrease. In MSI status estimation, the AUC increases
gradually as the value of topN increases. As the value of topN passes 7, the increment of
AUC narrows down.

Figure 9 shows the top weighted tiles of whole slide images (WSIs) in gene mutation
prediction and MSI status estimation by the proposed models.

(A) KRAS                                                                                                                         (B) NRAS  

(C) BRAF                                                                                                                           (D) MSI

Figure 8. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of
Gene&MSI classification using sequential values of topN. (A) The trend of KRAS gene mutation
classification. (B) The trend of NRAS gene mutation classification. (C) The trend of BRAF gene
mutation classification. (D) The trend of MSI status classification.
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                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 
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Figure 9. Top weighted tiles of whole slide images (WSIs) in gene mutation and MSI status estimation.
In each row, tiles 1–5 are either 5× or 10× tiles extracted from the same WSI.

4. Discussion

4.1. Regarding the Cascaded Framework

In recent years, deep convolutional networks have demonstrated their potential in
computer-aided cancer identification using clinical images such as CT scan [36], ultrasonic [37],
and MRI images [38]. Other than tumor recognization, a growing number of researches
are trying to look deeper into microsatellite instability estimation [39,40], gene mutation
prediction [41] or survival risk evaluation [19], which are vital for precision pathological
diagnosis and treatment.

To the best of our knowledge, the proposed cascaded framework is the first end-to-end
method that simultaneously generates gene mutation prediction and MSI status estimation
using the whole slide image (WSI) in colorectal cancer. Our method can produce high-
fidelity gene mutation prediction and MSI status estimation for each WSI through a simple
yet efficient average voting strategy to ensemble models. Predicting the gene mutations
(KRAS, NRAS, and BRAF) and MSI status from deep convolutional networks provides
pathologists with a more convenient way to evaluate prognosis and guide medication. For
example, advanced metastatic CRC patients with KRAS and NRAS mutations are not rec-
ommended to choose anti-EGFR monoclonal drugs (cetuximab and panimab) for treatment.
The evaluation of BRAF mutation can stratify the prognosis and guide clinical treatment.
Patients with BRAF genetic mutation are unlikely to respond to the treatment of cetuximab
or panimab. MSI is a predictor of the efficacy of immune checkpoint inhibitors, CRC
patients with MSI-H are more likely to benefit from the treatment of immune checkpoint
inhibitors (e.g., pabolizumab). Qualitative and quantitative results of the experiment data
demonstrated the effectiveness of our proposed framework. These results suggest that the
deep learning models have the potential to provide diagnostic insight and clinical guidance
directly from pathological H&E slides. Additionally, as the gene mutation prediction and
MSI status estimation are directly computed from histopathology H&E slides, in principle,
the proposed method should apply not only to colorectal cancer but also to other malignant
cancers (e.g., lung, breast, and liver cancer).
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4.2. Accuracies, Uncertainties, and Limitations

The proposed framework revealed high values of area under the curve (AUC) in both
tumor classification and gene&MSI classification tasks. In tumor classification,the 5× and
10× classification models achieved 0.959 (95% CI of 0.957–0.961) and 0.976 (95% CI of
0.975–0.977) AUCs in the testing set, respectively. The values show a very close judgment
between the pathologist and the proposed method, which suggest that the AI-algorithm can
potentially serve as a pre-screening tool. The performance will be further evaluated using a
larger dataset with multiple tissue samples collected from varied pathology departments.

In gene mutation prediction, the proposed method achieved 0.792 (95% CI of
0.669–0.914), 0.886 (95% CI of 0.688–1.00), and 0.897 (95% CI of 0.800–0.994) AUCs for
gene mutation predictions of KRAS, NRAS, and BRAF, respectively. Because of the ex-
tremely biased ratio of mutant type / wild type distribution (i.e., 15 vs. 381 of NRAS, 43 vs.
353 of BRAF), the value of AUCs fluctuates in a large range within 95% confidence interval
(see details in Figure 7). In terms of MSI status estimation, recent researches [39,40] had
reported higher performance than ours(i.e., 0.764 AUC, 95% CI 0.563–0.965). Compared
with these methods, our method is able to simultaneously generate gene mutation predic-
tion (KRAS, NRAS, and BRAF) and MSI status estimation, which are all mandatory for
metastatic CRC patients. As for future clinical application, improving the accuracy level of
our algorithm remains one of the main future goals.

With the current cascaded classification-based scheme, the models are trained to gen-
erate tile-to-label predictions using features extracted from sequential convolutional layers.
The lack of internal connectivity with adjacent tiles within the same WSI might lead to
partial misclassification (e.g., red patches outside the blue dashed curve and green patches
within the blue dashed curve in Figure 1B,D). Since the models are trained and optimized
separately, the proposed framework requires extra computational time and storage for
training and saving checkpoints of multiple models. Considering the computational effi-
ciency, a unified model with shared parameters and object functions should be explored in
further work.

Considering the type of H&E used for staining, varied types of hematoxylin have
certain differences in stability, durability, and dyeing time, which may lead to distinct
visual patterns. In the SYSU8H dataset, the H&E slices were stained using an identical form
of hematoxylin (i.e., Harris hematoxylin) to make sure both the nucleus and cytoplasm
can be clearly visible and discriminated. Due to the fact that the TCGA-COAD dataset
was collected from multiple centers, the forms of hematoxylin used for staining were very
likely to be different. However, as shown in Figure 3, in tumor classification, prediction
accuracies among slices were not so significant. The result indicates that our method can
be adapted to different forms of H&E staining approaches.

Another issue that should not be ignored is the tumor heterogenity of the primary
and metastatic lesions. Clinically, whether it is pathological diagnosis or target gene
detection, the tumor specimen of the primary lesion is the first choice. However, there
may be discrepancies in the gene mutation between the primary and metastatic tumor.
For advanced metastatic tumors,when the target gene mutation of the primary tumor is
negative, the target gene detection of the metastatic tumor can be carried out if conditions
permitted, which can increase the opportunity for patients to receive one more targeted
drug treatment. In this study, limited by the publicly available clinical samples attached
with the gene mutation information of the primary tumor and the corresponding metastases,
our method focused exclusively on primary tumors. Further evaluation is still necessary to
clarify the reliability and generalization of our model performance.

5. Conclusions

For colon carcinoma, we design a cascaded deep convolutional framework to simul-
taneously generate gene mutation predicting and MSI status estimation based on the
whole-slide images. The proposed method introduces a simple yet efficient average voting
ensemble strategy to produce a high-fidelity prediction of the WSI. In gene mutation&MSI
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status classification task, the proposed method achieves 0.792 (95% CI of 0.669–0.914), 0.886
(95% CI of 0.688–1.00), 0.897 (95% CI of 0.800–0.994), and 0.764 (95% CI 0.563–0.965) AUCs
for KRAS, NRAS, BRAF, and MSI, respectively. These results suggest that the deep learning
models have the potential to provide diagnostic insight and clinical guidance directly from
pathological H&E slides. We plan to improve the architecture of the framework and apply
it to other data sources to achieve better generalization capacity and diagnostic reliability.
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Abstract: Pretherapeutic serological parameters play a predictive role in pathologic risk factors
(PRF), which correlate with treatment and prognosis in cervical cancer (CC). However, the method of
pre-operative prediction to PRF is limited and the clinical availability of machine learning methods
remains unknown in CC. Overall, 1260 early-stage CC patients treated with radical hysterectomy (RH)
were randomly split into training and test cohorts. Six machine learning classifiers, including Gradient
Boosting Machine, Support Vector Machine with Gaussian kernel, Random Forest, Conditional
Random Forest, Naive Bayes, and Elastic Net, were used to derive diagnostic information from
nine clinical factors and 75 parameters readily available from pretreatment peripheral blood tests.
The best results were obtained by RF in deep stromal infiltration prediction with an accuracy of 70.8%
and AUC of 0.767. The highest accuracy and AUC for predicting lymphatic metastasis with Cforest
were 64.3% and 0.620, respectively. The highest accuracy of prediction for lymphavascular space
invasion with EN was 59.7% and the AUC was 0.628. Blood markers, including D-dimer and uric acid,
were associated with PRF. Machine learning methods can provide critical diagnostic prediction on
PRF in CC before surgical intervention. The use of predictive algorithms may facilitate individualized
treatment options through diagnostic stratification.

Keywords: blood biomarker; cervical cancer; deep stromal infiltration; lymph node metastasis;
lymph-vascular space invasion; machine learning methods

1. Introduction

Cervical cancer remains one of the most frequent malignant tumors in women [1].
With the widespread application of human papillomavirus (HPV) vaccination and the
popularity of screening, patients diagnosed at early stages have accounted for the majority.
Radical hysterectomy (RH) is the standard-of-care treatment for these patients [2]. The
unavoidable problem after surgery is whether adjuvant treatment is required, which
is judged in accordance with postoperative pathological risk factors. The likelihood of
risk factors that increase the risk of recurrence is high, especially in stage IB3-IIA2 (the
2018 International Federation of Gynecology and Obstetrics, FIGO) due to large tumor
bulk [2]. Previous studies have illustrated that neoadjuvant chemotherapy (NACT) plus
surgery inhibited micro-metastasis and distant metastasis of tumors, and was associated
with a declined incidence of pathologic risk factors [3]. However, despite the fact that NACT
reduces the rate of adjuvant therapy after surgery, patients treated with NACT cannot be
thoroughly free from radiotherapy and the adverse effects that radiotherapy brings.

In addition, concurrent chemoradiotherapy (CCRT) is also an alternative initial treat-
ment for early-stage cervical cancer, particularly for locally advanced cervical cancer. As for
a patient with several pathologic risk factors, conformed to the adjuvant therapy standard,

Curr. Oncol. 2022, 29, 9613–9629. https://doi.org/10.3390/curroncol29120755 https://www.mdpi.com/journal/curroncol
471



Curr. Oncol. 2022, 29

CCRT should be considered as the initial therapy but not RH, which shortens the treatment
process for the same effect and reduces treatment costs [4]. With regard to patients staged
IB-IIA, according to the National Comprehensive Cancer Network (NCCN) guidelines,
concurrent chemoradiation and RH both serve as alternative primary treatment options,
sharing nearly therapeutic equivalence. However, increased morbidity and complications
have been specifically illustrated when surgery and radiotherapy are combined [5,6]. This
multimodal treatment modality has caused them to bear a double treatment burden and
increased medical cost. In addition, the successive therapeutic process also prolongs the
treatment period, aggregates their side effects and affects quality of life in the long run.
Accordingly, it is necessary to construct a model to predict pathologic risk factors before
primary treatment, which will help select those for whom it is more appropriate to receive
direct chemoradiation therapy rather than RH. Additionally, the development of model
to predict postoperative pathologic risk factors is an important element for individual
prognosis stratification and personalized medicine.

Pathologic risk factors in cervical cancer include lymph node metastasis (LNM),
parametria infiltration, positive surgical margins, lymph-vascular space invasion (LVSI),
tumor size >4 cm and deep stromal infiltration (DSI) [2]. Previous studies illustrated that
many clinicopathologic factors were related to pathologic risk factors by common statistical
methods, but these methods were not suited to handle more complex data [7–9]. Machine
learning is a branch of artificial intelligence (AI) technology that allows the computer to con-
clude potential rules from complicated data of retrospective examples. AI technology has
been widely used to analyze clinical material to construct a model to predict clinicopatho-
logical factors and treatment outcome, acquiring a properly higher accuracy compared
with traditional statistical methods [10–12]. Therefore, it is feasible and reasonable to apply
machine learning to the prediction of postoperative pathologic risk factors.

Based on the successful application of AI technology and the discovery of related fac-
tors with pathologic risk factors, we hypothesized that pretreatment of clinicopathological
factors would be effective in the prediction of postoperative pathologic risk factors by ma-
chine learning analysis in FIGO stage IB-IIA cervical cancer. In addition, because of the low
incidence rate of positive margins and parametria infiltration in primary cohorts and pre-
operative confirmation of tumor size via clinical palpation, this study’s outcome contained
a prediction of other pathologic risk factors. Therefore, in the present study, we aimed to
explore the construction of a model for predicting LNM, LVSI and DSI through machine
learning combing of clinicopathological biomarkers and explore unreported significant
parameters associated with these factors.

2. Materials and Methods

2.1. Patients and Considered Features

This was a retrospective cohort study of 1260 patients with FIGO stage (2003) IB
and IIA cervical cancer who were treated with RH with retroperitoneal lymphadenectomy
between 2003 and 2017 in our institution (National Cancer Center/Cancer Hospital, Chinese
Academy of Medical Sciences; CICAMS). We retrospectively collected clinicopathological
parameters, including age at diagnosis, body mass index (BMI), menopausal status, clinical
FIGO stage, gross type, histologic grade, clinical tumor diameter, 75 preoperative peripheral
blood biomarkers, etc. (Table 1 and Table S1). Tumor diameter was obtained via clinical
palpation before surgical intervention.
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Table 1. Clinical and pathologic characteristics of 1260 patients with cervical cancer.

Variables
All

Patients
(n = 1260)

Training
Cohort

(n = 630)

Test
Cohort

(n = 630)
p Value

Age (years) 45 (18–74) 45 (18–74) 45 (21–73) 0.777
BMI (kg/m2) 23.6 (16.0–42.7) 23.6 (16.0–47.5) 23.7 (16.5–42.7) 0.453
Menopausal

status
Yes 353 (28.0%) 446 (70.8%) 461 (73.2%) 0.347
No 907 (72.0%) 184 (29.2%) 169 (26.8%)

Clinical tumor
diameter (cm) 3.5 (0.5–8.0) 3.5 (0.5–10.0) 3.5 (0.5–8.0) 0.211

Histology
Squamous
carcinoma 1053 (83.6%) 525 (83.3%) 528 (83.8%) 0.82

Adenocarcinoma 133 (10.6%) 69 (11.0%) 64 (10.2%) 0.647
Others 74 (5.8%) 36 (5.7%) 38 (6.0%) 0.811

FIGO stage
(2003)

IB1 707 (56.1%) 361 (57.3%) 346 (54.9%) 0.394
IB2 289 (22.9%) 142 (22.5%) 147 (23.3%) 0.738

IIA1 135 (10.7%) 60 (9.5%) 75 (11.9%) 0.172
IIA2 129 (10.3%) 67 (10.6%) 62 (9.8%) 0.642

Gross type
Exophytic 1163 (92.3%) 587 (93.2%) 576 (91.4%) 0.245

Endophytic 97 (7.7%) 43 (6.8%) 54 (8.6%)
Previous

abdominal
surgery

Yes 255 (20.2%) 133 (21.1%) 122 (19.4%) 0.441
No 1005 (79.8%) 497 (78.9%) 508 (80.6%)

Histologic grade
Good 87 (6.9%) 43 (6.8%) 44 (7.0%) 0.912

Moderate 506 (40.2%) 256 (40.6%) 250 (39.7%) 0.73
Poor 667 (52.9%) 331 (52.5%) 336 (53.3%) 0.778

Deep stromal
infiltration
Negative 653 (51.8%) 335 (53.2%) 318 (50.5%) 0.338
Positive 607 (48.2%) 295 (46.8%) 312 (49.5%)

Lymph-vascular
space invasion

Negative 829 (65.8%) 415 (65.9%) 414 (65.7%) 0.953
Positive 431 (34.2%) 215 (34.1%) 216 (34.3%)

Lymph node
metastasis
Negative 1017 (80.7%) 496 (78.7%) 521 (82.7%) 0.074
Positive 243 (19.3%) 134 (21.3%) 109 (17.3%)

2.2. Data Splitting

We obtained 1260 samples after preliminary preprocessing: removing medically im-
possible data (containing obvious record error), removing the features with 10% missing
values and the samples with missing values. Variables of age, BMI, menopausal status,
clinical tumor diameter, histology, FIGO stage, gross type, previous abdominal surgery, his-
tologic grade (obtained via cervical biopsy preoperatively) and 75 pretreatment peripheral
blood markers were all incorporated into the model construction. We started to handle the
features: the continuous features were normalized and categorical features were one-hot
coded, and LinearSVC method with L1 penalty was used to choose features.

The dataset was split into training and test cohorts according to a ratio of 1:1 by
repeated random sampling until there was no significant difference (p value > 0.05) between
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the two cohorts with respect to the three tasks (Table 1). The p values were calculated
using Chi-square or Fisher exact test for categorical variables, and the student’s t-test or the
Mann–Whitney U test were conducted for analyzing normally distributed or non-normally
distributed continuous variables. This resulted in the training cohort and the test cohort
both having 630 patients.

2.3. Supervised Machine Learning Classifiers

In this study, we evaluated six types of supervised machine learning classifiers, in-
cluding GBM (Gradient Boosting Machine) [13,14], SVMRadial (Support Vector Machine
with Gaussian kernel) [15], RF (Random Forest) [16], Cforest (Conditional Random For-
est) [17], NB (Naive Bayes) [18] and EN (Elastic Net) [19]. In addition, a logistic regression
classifier was used as a baseline. R software version 4.2.1 with R package caret was used to
implement all classifiers. One hundred independent training sets were conducted using
different random seeds in order to calculate variable importance for prediction. We used the
median of variable importance acquired from each training as a representative value. The
importance of each variable was calculated using the varImp function of the caret package.
A RF classifier combines two machine learning techniques: bagging and random feature
selection consisting of a group of decision trees. Cforest is an algorithm using conditional
inference trees as base learners, implementing both the random forest and the bagging
ensemble algorithm. EN is a logistic regression classifier trained by using a regularized
method that linearly combines the L1 and L2 penalties of the lasso and ridge methods.

2.4. Model Assessment

To assess the performance of different models, we computed the accuracy (ACC)
and the area under the ROC curve (AUC) on the test cohort as our evaluation metrics.
Here, ACC was obtained by setting the threshold corresponding to the top left point of the
ROC curve. As the AUC is independent of the chosen threshold, we used it as the main
evaluation metric.

2.5. Confidence of Prediction and Shannon’s Information Gain

Shannon’s information gain was used to assess the prediction confidence [20]. If a
patient, i, is lacking the information concerning the class that the patient is included in
(k-class), the Shannon’s information entropy representing uncertainty is expressed with:

H(i) = log2 k

If a classifier provides prediction probabilities for each class, the entropy will be:

Hc(i) =
k

∑
j=1

pj(i) log2(pj(i))

Here, pj(i) is the predicted probability that the patient i is included in class j. Thus,
we obtain the information gain, i.e., information gained by the prediction:

IG(i) = H(i)− Hc(i)

The individual information gain for each class is given by:

IGj(i) = pj(i)× IG(i)

3. Results

3.1. Prediction of Deep Stromal Infiltration of Cervical Cancer Based on Multiple Preoperative
Blood Markers Using Machine Learning Methods

Depth of stromal invasion was evaluated by an experienced pathologist and was
recognized as significant, with more than one millimeter of invasion in the depth of the
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stroma in a microscopic examination. The status of the depth of stromal infiltration was
classified into two groups: “non-deep” and “deep”. The “deep” group referred to patients
who had an invasive carcinoma with greater than one-third stromal invasion according
to the pathologic findings. “Non-deep” indicated a carcinoma infiltrating no more than
one third of the cervical stroma. The values for the highest ACC of the prediction and
the AUC were 70.8% and 0.767 with RF classifier, which achieved a 5.4% higher score
than the traditional method of multiple logistic regression analysis in AUC (Figure 1A;
Supplemental Table S2). It is notable that the best two classifiers, RF and GBM, both used
ensemble methods that combine weak decision trees.

Next, we focused on the best model, RF, and understood the variables. The relative
importance of each variable for segregating deep stromal infiltration patients from non-
deep infiltration ones was calculated for RF (Figure 1B). We identified the top eight factors,
including SCC, D-D, tumor diameter, URIC, age, neut%, ALP and TP, as important RF
predictors for distinguishing deep infiltration from non-deep infiltration. Standard box
plots that presented the distribution of each variable between deep and non-deep samples
are shown in Figure 1C.

Interestingly, we found that D-D was a critical variable, in addition to SCC. From
the confusion matrix (Figure 1D), RF predicted 81 patients with deep infiltration as ones
with non-deep infiltration and predicted 108 patients with non-deep infiltration as ones
with deep infiltration. When we considered the Shannon gain to represent the confidence
of predictions and chose those patients with certain higher confidence of predictions,
the predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 21 mispredictions out of 148 instances (Figure 1E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-deep,
this was right at a rate of 1 − 7/52 = 86.5%.
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Figure 1. Prediction of deep stromal infiltration of cervical cancer based on multiple preoperative
blood markers using machine learning methods. (A) ROC curves derived from logistic regression for
predicting deep stromal infiltration of cervical cancer based on all 75 peripheral blood markers using
machine learning methods compared with logistic regression. (B) Relative importance of variables
for prediction of deep stromal infiltration calculated in the RF. Variable importance is represented as
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a percentage of the highest value. (C) Box and jitter plots representing the distribution of top
eight important parameters for distinguishing infiltration from non-infiltration. (D,E), Confusion
matrix indicating the prediction quality of the RF classification for all predictions (D) and for those
predictions with high (>0.2 bits) confidence (E). Notes: SCC, squamous cell carcinoma antigen; D-
D, D-dimer; URIC, uric acid; ALP, alkaline phosphatase; TP, total protein; IgA, immunoglobulin
A; LDH, lactate dehydrogenase; TT, thrombin time; PT(A), plasma prothrombin time ratio (A);
MONO%, percentage of monocytes; HCT, hematocrit; HGB, hemoglobin; CK-MB, creatine kinase-MB
isoenzyme; b1-G, beta 1 globulin; PT(r), plasma prothrombin time ratio (r).

3.2. Differentiation of Lymph Node Metastasis of Cervical Cancer with Machine Learning Methods

The status of lymph node metastasis was classified into two groups: “metastasis” and
“non-metastasis”. We found that Cforest showed the best prediction performance with an
ACC of 64.3% and an AUC of 0.620 (Figure 2A; Supplemental Table S2), which achieved a
5.8% higher score than LR in AUC.

Next, the relative importance of a variable for segregating metastatic patients from
non-metastatic ones was calculated for Cforest (Figure 2B). We identified the top eight
factors, including SCC, IB2, IB1, MONO%, diameter, PT(A), HCT and TT, as important
Cforest predictors for distinguishing metastatic patients from non-metastatic ones. It
should be noted that as the clinical stage progresses, SCC and tumor diameter can increase.
Standard box plots that presented the distribution of each variable between metastatic and
non-metastatic samples are shown in Figure 2C.

Interestingly, we found that SCC was a critical variable. From the confusion matrix
(Figure 2D), RF predictions had 105 false negative samples and 13 false positive samples.
However, predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 29 misprediction out of 230 instances (Figure 3E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-
metastasis, this was right at a rate of 1 − 29/230 = 87.4%.
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Figure 2. Differentiation of lymph node metastasis of cervical cancer with machine learning methods.
(A) ROC curves derived from logistic regression for predicting lymph node metastasis of cervical
cancer based on all 75 peripheral blood markers using machine learning methods compared with
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logistic regression. (B) Relative importance of variables for prediction of lymph node metastasis calcu-
lated in the Cforest. Variable importance is represented as a percentage of the highest value. (C) Box
and jitter plots representing the distribution of top eight important parameters for distinguishing
metastasis from non-metastasis. (D,E), Confusion matrix indicating the prediction quality of the
Cforest classification for all predictions (D) and for those predictions with high (>0.2 bits) confidence
(E). Notes: SCC, squamous cell carcinoma antigen; MONO%, percentage of monocytes; PT(A), plasma
prothrombin time ratio (A); HCT, hematocrit; TT, thrombin time; LDH, lactate dehydrogenase; D-D,
D-dimer; PT(r), plasma prothrombin time ratio (r); HGB, hemoglobin; ALP, alkaline phosphatase;
TP, total protein; URIC, uric acid; neut%, percentage of neutrophils; b1-G, beta 1 globulin; CK-MB,
creatine kinase-MB isoenzyme; IgA, immunoglobulin A.

3.3. Prediction of Lymph-Vascular Space Invasion of Cervical Cancer Based on Preoperative Blood
Markers Using Machine Learning Methods

In the task of lymph-vascular space invasion, patients were labeled as “invasion” or
“non-invasion”. LVSI refers to the presence of epithelial tumor cells in the lumen of vessels.
“Invasion” indicated positive pathologic findings of LVSI and “non-invasion” indicated no
pathologic proof of LVSI. We found that EN showed the best prediction performance, with
ACC of 59.7% and AUC of 0.628, and the traditional method of multiple logistic regression
analysis was comparative with ACC of 59.5% and AUC of 0.627 (Figure 3A; Supplemental
Table S2).

Next, the relative importance of each variable for segregating invasion from non-
invasion was calculated for EN (Figure 3B). We identified the top eight factors, including
RDW-SD, CK-MB, PCT, A/G, PT(A), IB1, TT and TBIL, as important EN predictors for
distinguishing invasion patients from non-invasion ones. Standard box plots that present
the distribution of each variable between invasion and non-invasion are shown in Figure 3C.

Interestingly, we found that RDW-SD was a critical variable. From the confusion matrix
(Figure 3D), EN predictions had 180 false negative samples and 36 false positive samples.
However, predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 15 misprediction out of 98 instances (Figure 3D,E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-
invasion, it was right at a rate of 1 − 15/98 = 84.7%.
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Figure 3. Prediction of lymph-vascular space invasion of cervical cancer based on preoperative
blood markers using machine learning methods. (A) ROC curves derived from logistic regression for
predicting lymph-vascular space invasion of cervical cancer based on all 75 peripheral blood markers
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using machine learning methods compared with logistic regression. (B) Relative importance of
variables for prediction of lymph-vascular space invasion calculated in the EN. Variable importance
is represented as a percentage of the highest value. (C) Box and jitter plots representing the distri-
bution of top eight important blood markers for distinguishing invasion from non-invasion. (D,E)
Confusion matrix indicating the prediction quality of the EN classification for all predictions (D) and
for those predictions with high (>0.2 bits) confidence (E). Notes: RDW-SD, standard deviation of
red blood cell distribution width; CK-MB, creatine kinase-MB isoenzyme; PCT, plateletcrit; A/G,
albumin to globulin ratio; PT(A), plasma prothrombin time ratio (A); TT, thrombin time; TBIL, total
bilirubin; TP, total protein; TBA, total bile acid; MCV, mean corpuscular volume; abdo_surgery_0.0,
previous abdominal surgery; MONO%, percentage of monocytes; LDL-CHO, low density lipoprotein
cholesterol; D-D, D-dimer; b2-MG, beta 2 microglobulin.

4. Discussion

In recent years, machine learning algorithms based on AI technology have been widely
accepted and extensively utilized for diagnostic and prognostic assessment of various types
of cancers in the context of precision medicine [11,21,22]. This innovative approach, serving
as an important tool with high accuracy and efficient ability to process complex data, can
explore the key related factors to effectively assist in the clinical decision making of cervi-
cal cancer treatment. More importantly, hidden and embedded patterns within familiar
clinical data can be revealed with the aid of AI models. However, so far, no studies have
been conducted on integrating readily accessible clinical blood markers into the model
construction of predicting pathologic risk factors in cervical cancer based on AI technology.
Our study allowed for the comparison of various machine learning algorithms with the
traditional logistic regression analysis to identify the approach with the most favorable
performance and explore the serologic biomarkers with potential diagnostic potency. In
cervical cancer with FIGO stage IB-IIA, radical hysterectomy followed by tailored adju-
vant radiotherapy and concurrent chemoradiotherapy are both recommended for suitable
treatment modalities [21]. Postoperative adjuvant radiotherapy is warranted for women
with histopathologically verified risk factors, such as LVSI, LNM, DSI, etc., to improve
prognosis [22–24], which led to an increase in the risk of higher morbidity [25–27]. It is
beneficial and meaningful to predict pathologic risk factors so as to identify those more
likely to receive postoperative adjuvant radiotherapy to avoid compounding treatment-
related morbidity. Currently, the lack of ability to accurately identify those with a higher
chance to receive postoperative radiotherapy and achieve individualized medical man-
agement instead of a “one-size fits all” approach has been a primary clinical limitation.
Therefore, predicting pathologic risk factors by comprehensive utility of laboratory blood
tests and other pretreatment information is a fundamental way toward individualized
optimal medical care. In this study, we explored the ability of multiple machine learning
methods to predict pathologic risk factors of patients with cervical cancer by incorporating
readily available blood biomarkers. We found that three ensemble classifiers, RF, Cforest
and EN, were able to predict pathologic risk factors of early-stage cervical cancer, in which
RF showed the best predictive performance with an appreciable accuracy of 70.8% and
AUC of 0.767 for DSI. Cforest showed the most accurate predictive value for LNM (64.3%
accuracy and 0.620 AUC), and EN for LVSI (59.7% accuracy and 0.628 AUC). Compared to
the traditional approach of logistic regression analysis, the RF classifier achieved a 5.4%
higher score of AUC in DSI prediction, Cforest achieved a 3.4% higher score of AUC in
LNM prediction and EN showed almost the same performance in LVSI prediction. The
underperformance of these classifiers with regard to LNM and LVSI may be attributable to
the lack of particularly strong distinctions of cervical cancer at the level of an early stage
based on serum biomarkers. Nevertheless, the results indicate that AI technology can pro-
vide valuable predictive information before primary treatment to facilitate individualized
medical strategy. In addition, based on the optimal results of machine learning algorithms,
this study may offer useful clinical information concerning variables that are of most
importance for identification of pathologic risk factors, like DSI, in early-stage patients.
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Previous evidence has suggested that cancer is a metabolic disease associated with in-
flammation [28]. Cervical cancer harbors a unique collection of inflammatory and metabolic
molecules in the serum [29]. In early-stage cervical cancer, local inflammatory processes
may be at an initial state in which the peritumoral microenvironment perhaps alters the
most, while distant and systemic metabolic features and cancer-target responses are im-
munosuppressed [30], leading to the slight distinction of cancer invasiveness, which was
obscured in serum markers. Understandably, as tumor debulk progresses, tumor burden
aggravates, leading to cancer invasiveness. In this study, we found that squamous cell
carcinoma antigen (SCC), D-dimer and uric acid (UA) levels were the top five significant
plasma biomarkers for predicting DSI. SCC has been considered as the most important
diagnostic and prognostic tumor marker in cervical cancer. Many studies demonstrated
that an elevated level of pretreatment serum SCC was closely associated with disease
progression and recurrence [31,32]. UA is a powerful antioxidant and considered as a
protective factor against cancer [33]. It has been reported that an elevated level of UA
was associated with cancer risk, aggressiveness and poor oncologic outcomes in various
cancer types [34–36], but few studies have focused on gynecologic cancer. Interestingly,
previous studies have also shown a prooxidant role of UA [37] and lower levels of UA were
associated with elevated risk of cancer-related mortality compared with high levels [38].
The precise relation of UA with cancer, especially cervical cancer, needs further study.
D-dimer serves as a valuable marker of activation of coagulation and fibrinolysis, and is
also known as a biomarker of cancer prognosis, especially in metastasized patients [39–41].
The pretreatment prediction model of DSI in cervical cancer performed well and revealed
potential meaningful serum biomarkers that were readily available in clinical settings,
which is also consistent with previous studies. This study’s findings suggest that the
supervised machine learning analysis serves as a feasible and effective approach that can
aid in discovering more meaningful biomarkers that are correlated with PRF in cervical
cancer and are not identified by conventional multiple regression analysis.

Identification of reliable pretreatment blood markers associated with pathologic risk
factors helps clinicians in clinical decision making [42]. In this study, we found some
serologic indicators, such as RDW-SD and other indicators, that had scarcely been found
to be related to the diagnosis and prognosis of cervical cancer in previous studies. We
found that RDW was the top predictive indicator for LVSI. RDW is a routinely measured
hematological index, primarily reflecting the degree of anisocytosis. It has been reported
that this simple and inexpensive parameter is a strong and independent risk factor for
death in the general population [43]. Research has demonstrated that an aberrant elevation
level of RDW leads to poor survival outcomes in most tumor types and stages, independent
of age, gender or region [44]. However, little is known about RDW in cervical cancer.
One recent study indicated that RDW was associated with worse prognosis in cervical
cancer [45]. Excessive oxidative stress, inflammation, and cell senescence were proposed as
the conditions that RDW associates closely with mortality [46,47]. More dataset analysis is
still needed to confirm the predictive ability of these factors. Based on the high efficiency of
pretreatment blood markers, the dynamic detection of serological indicators in multiple
time periods may be more powerful in prediction. As the dynamic analysis of serological
indicators is more complex, future studies should develop the use of artificial intelligence-
based machine learning algorithms to identify the predictive features of preoperative
blood variable time series, which might significantly facilitate the accuracy of clinical
characteristics prediction and deserve further study.

As tumors progress over time, the signal transduction and correlation between
the tumor and its microenvironment, including fibroblasts, tumor-related immune cells
and endothelial cells, will become increasingly closer [48]. The changes of peripheral
blood parameters before surgery were inherently a combination of tumor-specific and
microenvironment-specific factors and the result of the interaction between tumor and mi-
croenvironment. Given the importance of tumor microenvironment in the process of tumor
development, clinicians should make full use of preoperative peripheral blood indicators
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for treatment decision making, cancer progression evaluation and prognosis assessment. In
previous studies, clinicians often ignored the reflection of regular blood biomarkers on the
biological characteristics of tumors and relied almost exclusively on tumor-specific factors
as included indicators for assessment, which was also a common problem in previous
retrospective analysis of tumors. In this study, we identified a series of blood indicators that
were readily available and necessary for preoperative evaluation related to pathologic risk
factors by machine learning methods, such as UA, D-dimer, thrombin time, AST, MONO%,
RDW-SD, etc. These parameters have the potential to be related to the microenvironment
in cancer progression or metastasis, and their changes will also influence treatment timing
and selection.

There have been a few previous studies exploring the use of serologic biomarkers to
predict PRF. One study [49] in 2016 incorporated clinical factors and three blood markers
derived from pretreatment blood routine examination to predict LNM, patients’ overall
survival and recurrence-free survival. They found platelet/lymphocyte ratio were signifi-
cantly associated with LNM. Another study [50] in 2020 found that pretreatment albumin
to fibrinogen ratio was significantly related to lymph node metastasis, depth of stromal
infiltration, etc. Many studies focused on prediction for survival outcomes or a single PRF
of cervical cancer based on clinical factors [51–53] and/or radiomic parameters [54,55].
However, no studies have made an attempt to predict three PRFs based on a series of
clinically readily available blood markers. In addition to critical data analysis methods
based on clinical factors, there are still many studies exploring new approaches of post-
operative pathologic risk factors prediction. It is clear that the diagnosis of pathologic
risk factors could only be accurately judged from the postoperative report of cervical can-
cer. Identification of reliable approaches that are able to predict pathologic risk factors
in advance would facilitate the identification of more accurate diagnostic stratification
and a more appropriate treatment strategy. A previous study indicated that DSI can be
determined by combining the 2D or 3D ultrasound with clinical variables before treatment,
with over 70% accuracy and AUC [56]. However, this diagnostic approach depended more
on subjective judgment rather than objective parameters based on relatively few cases. It
was reported that the assessment of cervical cancer with full-thickness stromal invasion by
MRI examination was limited [57]. In Bidus’s study, the conical method combined with
clinical factors to determine DSI and LVSI before treatment also achieved good accuracy
but this method is a destructive examination and may easily interfere with the complete
resection of radical surgery [58]. In the study of LNM diagnosis, sentinel node staining is
currently the most commonly developed method, but it is only used to determine whether
complete lymph node resection is performed before surgery [59,60]. In this study, LNM
was associated closely with primary tumor size as staging and tumor diameter were among
the top five predictors for LNM. Results indicated that imaging materials, such as MRI,
reflecting the visual size of the tumor itself and enlarged lymph nodes would potentially
provide more accurate predictive information preoperatively. However, previous studies
also used magnetic resonance imaging (MRI) and ultrasound to determine lymph node
metastasis, but imaging data could only determine lymphadenectasis rather than tumor
cell metastases in most cases, which leads to the unsatisfactory accuracy of the prediction
model [56,61]. This is a reminder that traditional data analysis on simple integration of
imaging information is not adequate enough to achieve LNM prediction. It is promising
to achieve more comprehensive and precise prediction by virtue of effective integration
of high-throughput extraction of a large amount of information from images based on AI
technology, which will be the focus of our subsequent research. As the approach used
in this study did not consider any information from pretreatment biopsies or imaging
studies, there may be a limitation of the ability to predict pathologic risk factors before
initial treatment; indeed, more independent datasets from other institutions are required to
investigate how pretreatment blood signatures can be utilized for more accurate assessment
of pathologic risk factors. Manipulation of high-throughput sequencing analysis, such as
RNA sequencing, of pretreatment peripheral blood may improve predictive performance,
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however, from another perspective, it may become more complicated and expensive to
incorporate RNA analysis information into the process of preoperative assessment in the
current context of clinical settings. Further comprehensive investigation is needed in the
hope of achieving the best clinical and socioeconomic benefits.

Our study has some limitations. Firstly, this study was a single-center retrospective
study. The retrospective nature may result in inherent bias. Secondly, results from our
database should be supplemented with external and prospective validation for prevention
of overfitting as well as further spread of application in clinical practice. Thirdly, other
machine learning approaches should be undertaken to manage the missing data in future
work. Fourthly, our assessment of diagnostic ability to predict pathological risk factors
was preliminary, and further study is warranted to better validate the accuracy of blood
biomarkers. At present, our model is not sufficiently powerful and accurate to predict LVSI
and LNM, but some blood biomarkers have been revealed for the first time that may be
potentially useful predictors from a large number of variables. However, a positive predic-
tion is not trivial; compared with traditional methods, the machine learning algorithms
could serve as a feasible tool for clinicians to predict oncologic outcomes based solely on
pretherapeutic information.

5. Conclusions

This study indicates that AI-based algorithms are useful tools that may aid in providing
critical information for diagnostic evaluation of pathologic risk factors in patients with
cervical cancer before initial treatment. The use of predictive algorithms may facilitate
personalized treatment selection through pretherapeutic assessment.
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Simple Summary: HER2 expression is important for target therapy in breast cancer patients, how-
ever, accurate evaluation of HER2 expression is challenging for pathologists owing to the ambiguities
and subjectivities of manual scoring. We proposed a deep learning framework using a Whole Slide
gray value map and convolutional neural network model to predict HER2 expression level on im-
munohistochemistry (IHC) assay and predict HER2 gene status on fluorescence in situ hybridization
(FISH) assay. Our results indicated that the proposed model is feasible for predicting HER2 expression
and gene amplification and achieved high consistency with the experienced pathologists’ assessment.
This unique HER2 scoring model did not rely on challenging manual intervention and proved to be a
simple and robust tool for pathologists to improve the accuracy of HER2 interpretation and provided
a clinical aid to target therapy in breast cancer patients.

Abstract: Accurate detection of HER2 expression through immunohistochemistry (IHC) is of great
clinical significance in the treatment of breast cancer. However, manual interpretation of HER2 is
challenging, due to the interobserver variability among pathologists. We sought to explore a deep
learning method to predict HER2 expression level and gene status based on a Whole Slide Image (WSI)
of the HER2 IHC section. When applied to 228 invasive breast carcinoma of no special type (IBC-NST)
DAB-stained slides, our GrayMap+ convolutional neural network (CNN) model accurately classified
HER2 IHC level with mean accuracy 0.952 ± 0.029 and predicted HER2 FISH status with mean
accuracy 0.921 ± 0.029. Our result also demonstrated strong consistency in HER2 expression score
between our system and experienced pathologists (intraclass correlation coefficient (ICC) = 0.903,
Cohen’s κ = 0.875). The discordant cases were found to be largely caused by high intra-tumor staining
heterogeneity in the HER2 IHC group and low copy number in the HER2 FISH group.

Keywords: breast cancer; HER2; artificial intelligence; deep learning; immunohistochemical (IHC)
scoring

1. Introduction

Breast cancer is the most diagnosed cancer that seriously threatens the life and health
of women all over the world, with high morbidity and mortality rates of 24.5% and 15.5%,
respectively [1]. The HER2 (human epidermal growth factor receptor-2) gene, located
at chromosome 17q12–212, plays an important role in the development of breast cancer.
Fifteen to twenty percent of breast cancer patients are HER2 positive, including HER2
gene amplification and/or overexpression. HER2-positive breast cancer has poor clinical
outcomes [2,3], but fortunately, there is a targeted drug-Trastuzumab (Herceptin), which
can effectively improve the prognosis [4,5]. HER2 gene amplification assessed by in situ
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hybridization (ISH) or protein overexpression assessed by IHC remains the primary predic-
tor of responsiveness to HER2- targeted therapies and a key prognostic biomarker in breast
cancer [6]. According to the latest American Society of Clinical Oncology (ASCO)/College
of American Pathologists (CAP) guideline [6], all newly diagnosed patients with breast
cancer must have a HER2 test performed. In routine clinical practice, the IHC test is first
performed. The IHC test gives a score of 0, 1+, 2+, or 3+ that measures the amount of
HER2 receptor protein on the surface of cells in a breast cancer tissue sample. The 3+ is the
strongest staining, with which the patient must be diagnosed as HER2 positive. 2+ is also
known as the equivocal level. Fluorescence in situ hybridization (FISH) must be performed
to further decide the HER2 status for patients with IHC 2+ score. Therefore, accurate
and efficient HER2 IHC evaluation is important for the diagnosis and treatment of breast
cancer patients. In the HER2 IHC test, the HER2-receptor protein is commonly stained
with 3,3′-diaminobenzidine (DAB), which has a brown color, meanwhile, hematoxylin
staining which has blue color is also applied to visualize the cell nuclei. The stained slide
is manually accessed by pathologists under the microscope. Although many countries
have implemented national testing guidelines to standardize testing procedures and make
results more accurate, the procedure is subjective and semi-quantitative and quite often
leads to high inter- and intra-observer variation [7–9]. Therefore, there is an urgent need
for an objective and consistent HER2 evaluation system.

Many researchers are devoted to developing computer-aided solutions, semi-automatically
or fully automatically, to address the ambiguities and subjectivities of manual scoring. Compared
to manual scoring, the computer-aided solution can decrease human error, increase the accuracy
of diagnosis, reduce the workload of pathologists, and standardize the scoring systems [10,11].
The pathology whole slide images (WSI) have trillions of pixels, which are too large to process
in a single-shot end-to-end way, i.e., processing WSI as a traditional image, even on modern
computers. Usually, the fully automatic methods have the following three steps: WSI is first
split into small size, i.e., 512 × 512, image patches; then information of single patch image are
extracted; and at last single patch information are summarized to conclude the WSI level result.
While the semiautomatic methods need pathologists to manually select regions of interest in the
WSI. Masmoudi, et al. [12] presented a method for automated assessment of HER2 IHC staining.
They first used a linear classification model on the color information of pixels to discriminate
the membrane pixels and nuclei pixels, then watershed algorithm and adaptive ellipse fitting
were applied to segment the nuclei and cell membrane. At last, slides were classified into one
of the three scoring groups based on features describing the membrane staining intensity and
completeness. In contrast to Masmoudi et al. work, HER2CONNECT found the distribution of
the area of the connected brown color components (the stained membranes) in the core invasive
cancer region had a good correlation with the HER2 expression level, therefore can be used
to predict HER2 score. Their method reached 92.3% between the software and the score by
the pathologist [13]. Ruifrok et al. [14] proposed a color deconvolution method to deconvolute
and quantify the contributions of each staining in the histochemical slide. Motivated by the
color convolution method, many researchers were devoted to quantifying the gray level of the
HER2 IHC slide. ImmunoMembrane, a web-based application, utilized color deconvolution to
separate stained membranes and then designed the IM-score, which is the sum of membrane
completeness score and membrane intensity score to classify HER2 scores [15]. Kabakci et al. [16]
characterized the cell membrane staining intensity in a comprehensive way using the so call
Membrane Intensity Histogram (MIH) method which described the distribution of the staining
intensity in different directions.

Deep Learning (DL) models are increasingly being used in various application areas
such as computer vision, natural language processing, text or image classification, sentiment
analysis, recommender systems, user profiling, etc. [17,18]. Compared to handcraft feature
engineering, one of the major advantages of the DL model is the automatic learning feature
representation and high representability, which bring the DL model much more versatility
when dealing with large datasets and complex problems. Saha et al. [11] developed a
cell segmentation model using Trapezoidal LSTM units and HER2 scoring based on the
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segmented membranes. However, Saha uses 2048 × 2048 patches, rather than the entire
WSI. Qaiser et al. [19] also achieved patch-level HER2 scoring with the help of reinforcement
learning. Zhen Chen, et al. [20] proposed a Focal-Aware Module to estimate diagnosis-
related regions and a Relevance-enhanced Graph Convolutional Network to summarize
information extracted from different levels of the original WSI.

Recently DL models are attracting increasing attention to predicting gene expression
status using the WSI image [21–24]. The diagnosis label is usually provided at the WSI level,
which cannot be treated as a cluster label of the inputs of the underline model. Therefore,
multiple instance learning (MIL) is often implemented to overcome the issue. In this paper,
we propose a new artificial intelligence (AI) method to predict HER2 protein expression
level and gene status using the WSIs. Instead of using a manual strong label of patch level
image or using MIL on the slide-level labeled dataset, we first calculate the unsupervised
feature for each patch image, i.e., the gray level, the gray level area fraction, and generate
a slide-level feature map using the patch-level feature to represent each patch. In this
way, we can reduce the input size of the original slide. Then we build a multi-task deep
learning model to predict HER2 protein expression level and gene amplification status
simultaneously.

2. Material and Methods

Figure 1 shows the workflow of our study.

Figure 1. The workflow of our study includes the main steps for preprocessing slides and training
the deep learning model. The numbers below the model block give the channel number respectively.

2.1. Human Subjects

We selected 228 biopsy cases of IBC-NST with both IHC and FISH information which
were collected between 2010 and 2021 from the department of pathology, Peking University
Cancer Hospital & Institute. All subjects were female. Our study obtained permission from
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the Peking University Cancer Hospital Institutional Review Board and Ethics Committee
(Grant: 2022KT15).

2.2. ImmunohistoChemical Staining

Commercially available primary antibody HER2 (4B5, Roche Ventana) was applied.
Immunohistochemical stains were performed on Ventana Benchmark automated immune-
Stainer (Tucson, Arizona), following the vendor’s protocol. The appropriate positive and
negative controls were included for each run. HER2 immunoexpressing was evaluated
as 0, 1+, 2+, and 3+ based on the 2018 ASCO/CAP guideline [6] by three experienced
pathologists (Q.Y., D.N., and Y.B.). To prevent intra-rater variability, three pathologists were
blind to the initial manual evaluation and AI-based scores, and all the cases were reviewed
a second time after a 4-week washout period. The discrepant cases were reviewed again to
get the final score.

2.3. Fluorescence In Situ Hybridization

HER2 FISH was carried out using the Path Vysion HER2 DNA Probe Kit (Abbott
Molecular, Abbott Park, Illinois) and followed the manufacturer’s instructions. Two experi-
enced pathologists (DFN and Y.B.) evaluated the HER2 copy number, CEP17 copy number,
and their ratios of 20 tumor cells independently and blinded to IHC results. FISH results
were recorded as negative and positive according to the 2018 ASCO/CAP guideline. In
detail, HER2 FISH results were designated into five groups: group one (G1, HER2/CEP17
ratio ≥ 2.0; average HER2 copy number ≥ 4.0/cell); group two (G2, HER2/CEP17 ratio
≥ 2.0; average HER2 copy number < 4.0/cell); group three (G3, HER2/CEP17 ratio < 2.0;
average HER2 copy number ≥ 6.0/cell); group four (G4, HER2/CEP17 ratio < 2.0; 4.0
≤ average HER2 copy number < 6.0/cell); and group five (G5, HER2/CEP17 ratio < 2.0;
average HER2 copy number < 4.0/cell) [6]. G1 was considered FISH positive and G5 was
FISH negative. However, G2 and G4 should evaluate the HER2 IHC results in addition, if
not 3+, then those cases should be considered HER2 negative. In G3 cases, when concurrent
IHC results are negative (0 or 1+), it is recommended that the specimen be considered
HER2 negative.

2.4. Image Processing

The digitized whole-slide images (WSIs) were acquired using a Leica Aperio Versa
pathologic scanner (Aperio, Leica Biosystems Imaging, Inc.) viewed at 400× magnification
using Leica ImageScope software. The order of magnitude of pixels was 109 ∼ 1010.

Figure 1 shows the flowchart of the method. The whole slide image was first parti-
tioned into 512 × 512 patches. Then for each small patch image, we segment the membrane
pixels using color deconvolution and the k-means method (k-means parameters: number
of clusters is 3, the maximum number of iterations is 50, number of redos is 10). After
the membrane segmentation, we evaluate the gray value and membrane pixels fraction of
each patch. The original WSI is profiled into three maps. In the following, we describe the
procedure in detail.

2.5. Membrane Segmentation

The DAB signal is mainly located at the membrane. In the following, we introduce the
membrane segmentation method which is based on the color deconvolution and k-means
method. Ruifrok etc. applied the Beer-Lambert law to model the stained slide image and
proposed the color deconvolution method to separate and quantify immunohistochemical
staining [14]. According to the Beer-Lambert law,

Ic = I0,c10−ACc (1)

where Ic is the intensity of light detected after passing the specimen, I0,c is the intensity
of light entering the specimen and A is the amount of the stain with absorption factor C.
The subscript c indicates the detection channel. By assuming a linear relation between
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stain concentration and absorbance, Ruifrok proposed the following color deconvolution
method,

A = − log 10
(

I
I0

)
× OD−1 (2)

where A is a vector representing the amount of different stains, I is the transmitted light
intensity, i.e., the detected slide image, OD is the normalized optical density matrix, which
can be measured experimentally. In the analysis of the HER2 IHC slide, because there are
only two kinds of stains, we use the following normalized OD matrix

OD =

⎛⎝0.650 0.704 0.286
0.268 0.570 0.776
0.636 −0.710 0.302

⎞⎠ (3)

where the first two row vectors correspond to the OD vectors of hematoxylin and DAB14

and the last row vector is the normalized cross product of hematoxylin and DAB OD vectors.
Following the convention of color deconvolution code given in the Color Deconvolution 2

ImageJ plugin, we use A = − log 10
(

I
255

)
× OD−1 to deconvolute the original slide

image.
After color deconvolution, the value of the 2nd channel corresponds to the intensity

of the DAB stain. We then apply the k-means method to the original image. The image is
first converted from RGB to Luv color to get better perceptual uniformity which is more
suitable for clustering analysis. Define the distance between pixels p, q:

D(p, q) =
√(

Lp − Lq
)2

+
(
up − uq

)2
+
(
vp − vq

)2 (4)

where
(

Lp, up, vp
)

and
(

Lq, uq, vq
)

are Luv values of pixel p and q, respectively. Based on
the distance D(p, q), we use the k-means algorithm to cluster the pixels in the slice into
three clusters, which correspond to the stained cell membrane region, the nuclei region,
and the complementary region respectively. At last, we calculate the mean gray values of
each pixel group according to the DAB channel calculated previously. We select the group
with the highest mean gray value as the cell membrane. Figure 2A–D gives an illustration
of the cell membrane segmentation.

2.6. Gray Value Map

In this section, we describe the gray value map which integrates patch-level gray
value information to get slide-level gray value information. After segmentation of the cell
membrane of each patch image, we calculate the mean gray value and membrane pixel
fraction of each patch image. We find that the value of the DAB channel cannot reflect
well when the visual gray value is greater than 8, as shown in Figure 2E. By checking the
RGB channel value of the membrane pixels, we find that this effect is partially caused by
the saturation of the blue channel. It is unclear whether this is truly caused by the stain
absorbing all blue light or whether there are some other effects of the hardware device. We
notice that the Lightness channel of Luv color space generally reflects the visual gray level
except the low gray value range. Therefore, we add the Lightness channel value to the gray
value map and build the model to automatically fuse the information. In summary, the gray
value A, membrane pixel fraction F, and Lightness value L at patch level are defined as:

A = meani Ai where mean is over all pixels in the membrane cluster,
F =

number of pixels in membrane cluster
total number of pixels ,

L = meaniLi where mean is over all pixels in the membrane cluster.
Figure 3 shows the gray value map of IHC HER2 expression 0/1+, 2+, and 3+ cases.
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Figure 2. Cell membrane segmentation and the schematic of Graymap. (A) raw section of HER2
3+ and HER2 0/1+. (B–D) are three groups of K-Means output. The gray values are labeled on the
images respectively. (E) The mean RGB value of different gray value membrane pixels. The bottom
color bar is an RGB color map of different gray values.

Figure 3. Examples of GrayMap of HER2 IHC expression. Typical examples of HER2 0/1+, 2+, 3+
cases in IBC-NST. From top to bottom: HER2 IHC raw images, magnified images, cell membrane
segmentation, and pixels’ gray value’s distribution of the images.
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2.7. Multitask Convolutional Neural Network (CNN)

After getting the gray value map of the whole slide, we further utilize a multi-task
CNN model to classify the IHC HER2 expression level and the FISH status simultaneously.
We use Resnet18 with base channel number 64 as our backbone network. After the backbone
network, we concatenate two task branches corresponding to the IHC HER2 expression
classification and the FISH status classification respectively. For each task branch, we use
the sigmoid cross-entropy loss as the classification loss and add the dropout layer before
the last fully connected layer. All Relu activations are replaced with PRelu to avoid the
Relu blow-up issue due to a lack of pretrained weight initialization.

Data augment techniques and manually synthesized images are used to overcome
the overfit issue due to the lack of training data samples. We add random rotation (−180,
+180), random crop (512, 512) (raw training input size is (680, 680)), random horizontal flip,
and random vertical flip data augmentations. We also manually synthesize the image for
each original data sample by first manually drawing a mask of a random sample that has
the same FISH status, and the same fold-id, but a lower HER2 expression level of the target
sample, and then paste the masked part of the selected sample into the target sample’s
blank space. In this way, we partially increase our training dataset.

The model is implemented in Pytorch using the MMDetection framework and trained
with the Adam optimizer with Cosine learning rate policy (learning rate parameters:
base learning rate is 0.001, the minimum learning rate is 1.0 × 10−8). We utilized the
5-fold cross-validation method to evaluate the model. The mean and standard deviation
were calculated using prediction on each fold to demonstrate the model performance and
stability. Evaluation metrics including precision, recall, F1-score, Jaccard Index, specificity,
accuracy, and Area Under Curve of receiver operating characteristic curve (ROC) (AUC)
were calculated for binary FISH status prediction. Evaluation metrics including accuracy,
F1-score, Cohen’s kappa coefficient (κ), and Matthews correlation coefficient (MCC) were
calculated for multiclass IHC prediction using macro average mode.

3. Results

3.1. HER2 IHC Status Classification Using GrayMax Model

In the first step, we obtained the manual results of HER2 IHC and HER2 FISH. HER2
IHC was evaluated by three experienced pathologists. We used the median score of three
pathologists to further reduce the inter-observer variability, which meant if there was a
difference between the three scores, we used the median value of three scores. The details
of the HER2 status including IHC and FISH results are shown in Table 1. According to the
2018 ASCO/CAP clinical practice guideline, the cutoff of HER2 IHC staining is 10%, which
means the 10% strongest staining of HER2 IHC can be chosen as the represent score of the
whole slice. So, we first use the maximum gray value of all patches to represent the gray
value of WSI. Then we compared the GrayMax model with the median HER2 scores of
pathologists. However, after utilization of the 5-fold cross-validation method, the GrayMax
model showed relatively inferior performance with an average accuracy of 0.842 ± 0.023,
F1-score of 0.665 ± 0.078, Cohen’s κ of 0.640 ± 0.063 and MCC of 0.663 ± 0.058 (Table 2). We
analysed the details of our model and found the errors in the cases with a heterogeneity
of staining, nonspecific cytoplasmic staining, and in cases with invasive micropapillary
carcinoma component, mucinous carcinoma component and ductal carcinoma in situ (DCIS)
component and interference by necrosis region.

Table 1. Summary of the cohort of the different HER2 statuses.

HER2 Expression Score

Fish Status n 0 1+ 2+ 3+
Negative 128 5 19 104 0
Positive 100 0 2 53 45
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Table 2. Performance comparison of GrayMax and GrayMap + CNN methods by cross-validation
classification.

Method Fold Accuracy F1 Kappa MCC

GrayMax 0 84.78% 69.71% 67.83% 68.51%
1 84.78% 70.79% 60.92% 67.47%
2 86.96% 76.87% 72.23% 73.87%
3 80.00% 55.38% 53.71% 56.18%
4 84.44% 59.93% 65.27% 65.49%

Avg. 84.19% 66.54% 63.99% 66.30%
Std. 2.28% 7.78% 6.31% 5.77%

GrayMap +
CNN 0 93.48% 63.63% 83.13% 84.38%

1 91.30% 84.65% 80.55% 82.54%
2 95.65% 94.13% 91.54% 91.96%
3 100.00% 100.00% 100.00% 100.00%
4 95.56% 87.81% 90.36% 90.36%

Avg. 95.20% 86.04% 89.12% 89.85%
Std. 2.88% 12.39% 6.86% 6.18%

Abbreviation: Avg, Average value; Std, Standard deviation.

3.2. HER2 IHC Status Classification Using GrayMap + CNN Model

To solve the issues of the GrayMax model, we developed a new method to classify
the HER2 IHC status. The main issue of the GrayMax model is that a single maximum
gray value cannot represent the information of the whole slide. Therefore, we first used
the GrayMap of the original whole slide, which contained the gray value information
of all the patches, as described in the materials and methods section. Figure 2 showed
the segmentation of the cell membrane and the schematic of GrayMap. Figure 3 showed
typical examples of GrayMap in a subgroup of 0/1+, 2+, and 3+. Next, we utilized a
multi-task CNN model to classify the IHC HER2 expression level as described in the
material and methods section (Figure 1). We evaluated the model through a 5-fold cross-
validation method and compared the results with three experienced pathologists. The
experiment results show that the GrayMap model has much better performance than
the GrayMax model with an average accuracy of 0.952 ± 0.029, F1-score of 0.860 ± 0.12,
Cohen’s κ of 0.891 ± 0.069 and MCC of 0.899 ± 0.062 (Table 2). Parameters of evaluation
metrics on a subgroup of 0/1+, 2+, and 3+ showed in Figure 4A and Table S1. We further
analyzed the intraclass correlation coefficient (ICC) among pathologists and found the ICC
value was 0.791 (95% confidence interval [CI], 0.749–0.829) (Figure 4B). It indicated the
presence of inter-observer variability and suggested that manual interpretation by the single
pathologist may face a high risk of misdiagnosis. Then HER2-AI and HER2-pathologists
were compared to show consistency between the AI system and pathologists. The median
variables of HER2 pathologists were used in the comparison. The results showed a high
consistency between the HER2-AI and HER2-pathologists (ICC = 0.903) (Figure 4C).

3.3. HER2 Gene Status Prediction Using GrayMap+ CNN Model

Since HER2 IHC expression largely represents the HER2 gene amplification status [25].
We also utilized the GrayMap model to predict HER2 gene status and compared the data
with the FISH results. Our system demonstrated high performance in predicting HER2
gene status with an accuracy of 0.921, specificity of 0.945, precision of 0.927, recall of 0.89,
F1-score of 0.908, and Jaccard Index of 0.832 (Figure 5A and Table S2) and AUC value
of 0.936 in the ROC curve which presented the high quality in FISH classification via
5-fold cross-validation method (Figure 5B). This data further confirmed our model as a
robust high-performance system not only in HER2 IHC classification but also in HER2 gene
status prediction.
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Figure 4. Consistency of the pathologists and the AI system on HER2 IHC classification.
(A) Histograms of GrayMap model performance in a subgroup of 0/1+, 2+, and 3+. (B) The in-
traclass consistency of HER2 IHC scores in pathologists. (C) Consistency of HER2 between AI system
(IHC score-AI) and median IHC score in pathologists (median IHC score).

Figure 5. Performance of AI system on HER2 FISH classification. (A) Histograms of GrayMap model
performance. (B) ROC curve of HER2 FISH status classification by cross-validation classification.
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3.4. The Analysis of Discordant Cases

The proposed system correctly classified most of the WSIs. However, there were
several discordant cases with false positive and negative samples (Figure 6A). We further
analyzed the difference between AI systems and pathologists. As for the HER2 IHC results,
13 (13/228, 5.70%) cases were discordant between AI and pathologists. We investigated each
case to identify the causes of the variability. Intra-tumor cell heterogeneity of HER2 staining
was detected in six cases (6/13, 46.15%) (Figure 6B). Nonspecific cytoplasmic staining was
found in four cases (Figure 6C). Another one was due to the nonspecific staining in DCIS
(Figure 6D). Our result provided that HER2 staining heterogeneity was identified as the
main driver of disagreement between AI and pathologists. Furthermore, the cytoplastic
staining can interfere with the machine’s extraction of cell membrane staining, resulting
in misinterpretation. The nonspecific HER2 expression on DCIS will also lead to error,
especially on biopsy tissue with a substantial amount of DCIS. HER2 validation is supposed
to be performed only in the IBC-NST component. Since we did not annotate the IBC-NST
region on WSIs, we calculated the DCIS component and found 75 cases (75/228, 32.89%) of
samples had a DCIS component with a ratio of 5–35%. Only one case (1/75, 1.33%) was
included in discordant cases, thus, our model had the ability to resolve the hidden trouble
of DCIS. Only two cases could not find a clear explanation for discordance. According
to HER2 FISH status, there were 18 (18/228, 7.89%) discordant cases. Five cases were
identified intra-tumor cell heterogeneity of dual-color probes. For example, one case with
only 2% tumor cells HER2 amplification and one case with 5%. Seven cases have low
HER2 copy numbers (average copy number range 4–6 signals/cell). Three cases that were
manually evaluated as negative belonged to the G2 and G4 groups, which were the new
FISH group according to the 2018 ASCO/CAP guideline. Though the seven low-copy
number cases were evaluated as positive and the new FISH group was regarded as negative,
the efficacy of HER2-targeted therapy on these groups still needs to be investigated because
of the limited evidence with a small subset of cases [6]. Only five cases were left without any
explanation for discordance. Our results indicated that AI-based classification guaranteed
high diagnostic accuracy and enabled us to reduce misinterpretation.

Figure 6. HER2 scoring discordance between pathologists and AI system and the possible causes of
the variability. (A) Top 2 lines: Comparison between GrayMap model and the pathologist assessment;
Bottom 4 lines: The possible causes of the variability; Left: The discordant cases on HER2 IHC
classification; Right: The discordant cases on HER2 FISH classification. Vertical bars represent
single cases and the representation of different colors are listed at the bottom. The typical image
of (B) HER2 staining heterogeneity, (C) nonspecific cytoplasmic staining, (D) nonspecific staining in
ductal carcinoma in situ (DCIS) with negative staining of the invasive component.
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4. Discussion

In this paper, we proposed a new AI method to tackle the subjectivity and inter-
observer disagreement issues of manual interpretation of HER2 IHC slides. The ex-
periments’ results showed that the new method could accurately predict HER2 pro-
tein expression level (Accuracy 0.95 ± 0.029, Cohen’s κ 0.891 ± 0.069) and FISH status
(AUC 0.936 ± 0.030). The test of concordance with the three pathologists’ interpretation
showed that the new method has the highest ICC (ICC 0.903, 95%-Confidence Interval
0.875 ∼ 0.924). Breast cancer (BC) has become the most common cancer diagnosed in
women. Personalized medicine, especially drugs focused on target genes in BC, such as
trastuzumab, has greatly improved survival. HER2 protein expression level and gene am-
plification status are the most important indicators for the targeted therapy of BC. However,
traditional manual interpretation of HER2 slide has been criticized for subjectivity and
inter-observer disagreement among pathologists. This is not only caused by the subjective
decision that needs clinic pathologists to take, such as completeness of the membrane stain-
ing, intensity of staining, and percentage of positive cells, according to the ASCO/CAP
guideline, but also caused by the heterogeneity of BC. AI-based methods, because of the
nature of the parametrized model and deterministic behavior, are a prospective approach
to solving the pool reproducibility issue of manual interpretation. However, on one hand,
the whole slide image is too large to be processed by a single model directly, on the other
hand, a single patch-level image of WSI is not able to capture the heterogeneity property of
BC. Currently, there are several approaches to solving this issue. The first approach predicts
the HER2 expression of each patch and uses the statistical average method to summarize
the patch-level results. Compared to this approach, the method proposed in this work
adopts a deep learning model to do slide-level predictions, which are more flexible and
powerful than the simple statistical average method. Another approach generally follows
the ASCO/CAP guideline, making predicting at the cell level. This approach needs consid-
erable human labeling which is not only tedious but also prone to label error, especially for
weak staining samples. The weakly Supervised Learning (WSL) method is an attractive
method to alleviate patch-level labeling [26]. However, WSL needs a considerable amount
of slide-level data. Currently, the performance of WSL on a large HER2 IHC dataset is
unclear yet. The method proposed in this work could be another prospective approach to
do slide-level predictions.

The proposed AI system can be applied in our actual work in the pathology depart-
ment. After uploading the WSIs into the system, our model can automatically process
patches splitting, cell segmentation, gray value map information extraction, and HER2
IHC and FISH results prediction. The system assists pathologists by pre-reading HER2
IHC slides and presenting calculated results as second opinions to pathologists, especially
those with equivocal results as 2+. Our system will significantly mitigate the interobserver
discrepancy and contribute to the efficacy and safety of HER2-targeted therapies on BC.
At present, a new HER2-low subtype was defined by a score of IHC 1 +or IHC 2+/FISH
−, who may benefit from the new HER2-ADC drugs, such as trastuzumab deruxtecan
(T-DXd) [27]. The current system has the potential to recognize HER2-low cases with an
accurate prediction of both IHC and FISH status.

In our study, compared to the former GrayMax algorithm, the upgraded GrayMap
+ CNN model can get rid of the most nonspecific and heterogeneous staining problem
as well as the special staining pattern of specific breast cancer subtypes in HER2 IHC
classification. However, inconsistency between AI systems and pathologists still exists.
Consistent with the previous study, HER2 staining heterogeneity was identified as the main
driver of disagreement [28]. Intratumoral heterogeneity of HER2 may be due to intrinsic the
characteristics of BC, defined as regional heterogeneity and genetic heterogeneity [29]. It
may also be caused by IHC procedures, tissue collection, and processing, or slide scanning
procedure. In our dataset, most heterogeneity staining cases of the discordant cohort were
weak staining thus our model need to improve its capability in dealing with weak HER2
staining. As for HER2 FISH classification, in addition to heterogeneity, a low copy number
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(average copy number range 4–6 signals/cell) was the most common cause of inconsistency.
According to the 2018 guideline, an average HER2 copy number ≥4 signal/cell is regarded
as FISH positive. However, the study showed a clear difference on HER2 copy levels
using droplet digital PCR (ddPCR) and targeted next-generation sequencing (NGS) method
between the 4–6 copy number groups and ≥6 groups. However, it remains unclear if
patients of the 4–6 copy number group derive the same level of benefit as the≥6 groups in
HER2-targeted therapy [30]. Futhermore, there were three cases belonging to G2 and G4
groups according to the 2018 guideline, which was the new FISH and should be recognized
as FISH negative. However, the researcher showed the G2 group represents a biologically
heterogeneous subset, which is different from those in G1 (FISH positive) and G5 (FISH
negative) [31]. The G4 group was also proved to be a distinct group with intermediate
levels of RNA/protein expression, close to positive/negative cut points [32]. Additional
outcome information after HER2-targeted treatment is needed for the new FISH groups.

To improve the accurate, precise, and reproducible interpretation of HER2 IHC results
for BC, where quantitative image analysis (QIA) is applied, The College of American
Pathologists (CAP) developed the guideline with eleven recommendations [33]. The recom-
mendations suggested that QIA and procedures must be validated before implementation,
followed by regular maintenance and ongoing evaluation of quality control and quality
assurance. In addition, HER2 QIA performance, interpretation, and reporting should be
supervised by pathologists with expertise in QIA. We studied the detailed description of
the guideline and found our AI model and procedures met most of the criteria, which
suggested the present model is a promising tool for HER2 interpretation. However, this
study still had some limitations. First, this work uses the k-means method to segment
the cell membrane. It may wrongly classify the cytoplasmic pixels into membrane when
the cell is weakly stained or cytoplastic immunohistochemical staining. For most of the
weakly stained cases, the method is still able to do correct predictions, because the intensity
and percentage of positive cells are major discrimination factors. However, for cytoplastic
staining cases, as also demonstrated in the analysis of discordant cases section (four out
of 13 total error cases), more local features are needed to discriminate the wrong cases.
Secondly, we did not segment the invasive carcinoma region first. The current method
relies on the deep learning model to automatically learn features from the data. In future
works, we will collect more data and investigate the performance difference between the
current method and model which makes predictions only rely on carcinoma region. Third,
the completeness of the cell membrane is not represented in the current method. 2018
ASCO/CAP guidelines lay more emphasis on the completeness of cell membrane staining
on HER2 2+ and 3+ cases in order to reduce the confusion of pathologists and allow greater
discrimination between positive and negative results [6]. Our AI system promised high
performance without calculating membrane completeness, however, a feature still needed
to be found to represent the completeness of cell membrane staining according to the
ASCO/CAP guideline to get a better result.

In conclusion, experimental results indicated that the proposed AI model is feasible
for predicting HER2 expression score and HER2 gene amplification using IHC WSI and
achieved high consistency with the experienced pathologists’ assessments. This unique
HER2 scoring model does not rely on challenging manual intervention and is proven to be
a simple and robust tool for pathologists to improve the accuracy of HER2 interpretation
and provides a clinical aid to target therapy in BC patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14246233/s1, Table S1: HER2 IHC classification performance
of GrayMap methods by cross-validation classification in the subgroup of 0/1+, 2+, and 3+. Table S2:
HER2 FISH prediction performance of GrayMap methods on the subgroup of 0/1+, 2+, and 3+.
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Simple Summary: Perineural invasion (PNI) is present in 17–75% of prostate cancer patients and is an
important mechanism for cancer progression, leading to poor prognoses. An optimized preoperative
technique is needed to detect PNI in prostate cancer patients and administer the best treatment. The
aim of our retrospective study was to develop a model based on high-throughput radiomic features
of bi-parametric MRI combined with clinical factors that can predict PNI status in high-grade prostate
cancers. In total, 183 high-grade PCa patients were included in this retrospective study, and the
radiomics model based on 13 selected features of bi-parametric MRI showed better discrimination
than did the conventional model in the test cohort (area under the curve (AUC): 0.908). Discrimination
efficiency improved when the radiomics and clinical models were combined (AUC: 0.947). This
improved model may help predict PNI in prostate cancer patients and allow more personalized
clinical decision-making.

Abstract: Purpose: To explore the role of bi-parametric MRI radiomics features in identifying PNI in
high-grade PCa and to further develop a combined nomogram with clinical information. Methods:
183 high-grade PCa patients were included in this retrospective study. Tumor regions of interest
(ROIs) were manually delineated on T2WI and DWI images. Radiomics features were extracted
from lesion area segmented images obtained. Univariate logistic regression analysis and the least
absolute shrinkage and selection operator (LASSO) method were used for feature selection. A clinical
model, a radiomics model, and a combined model were developed to predict PNI positive. Predictive
performance was estimated using receiver operating characteristic (ROC) curves, calibration curves,
and decision curves. Results: The differential diagnostic efficiency of the clinical model had no
statistical difference compared with the radiomics model (area under the curve (AUC) values were
0.766 and 0.823 in the train and test group, respectively). The radiomics model showed better
discrimination in both the train cohort and test cohort (train AUC: 0.879 and test AUC: 0.908)
than each subcategory image (T2WI train AUC: 0.813 and test AUC: 0.827; DWI train AUC: 0.749
and test AUC: 0.734). The discrimination efficiency improved when combining the radiomics and
clinical models (train AUC: 0.906 and test AUC: 0.947). Conclusion: The model including radiomics
signatures and clinical factors can accurately predict PNI positive in high-grade PCa patients.

Keywords: prostate cancer; PNI; bi-parametric MRI; radiomics; nomogram
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1. Introduction

Prostate cancer (PCa) is the most frequent malignant tumor in 105 countries worldwide
and the first leading cause of cancer-related death in 46 countries among males [1]. Often,
there are significant differences in the prognosis of patients with the same stratification
who adopt the same treatment plan [2]. In addition, many localized PCa cases, especially
high-grade cases, are not truly localized tumors when they are diagnosed. The reasons
for this situation are that cancer cells have already spread beyond the scope of surgery or
radiotherapy, and these patients are prone to developing biochemical recurrence [3]. It is
widely accepted that prostate-specific antigen (PSA), Gleason score (GS), and T stage are the
main variables for evaluating the prognosis of localized PCa. Among the factors causing
tumor spread, perineural invasion (PNI), which is invasion along or around nerves within
the perineural space, also plays an important role in cancer [4]. PNI can be evaluated in a
biopsy specimen or radical prostatectomy specimen, and it is present in 17–75% of prostate
cancer patients [5]. The College of American Pathologists published a consensus statement
on prognostic factors for PCa in which PNI was identified as a potential prognostic factor
(category III) that needed additional study [6]. Therefore, identifying the PNI status of
high-grade PCa is an urgent problem to be solved.

At present, magnetic resonance imaging (MRI) is widely used for diagnosing PCa
and can help detect several prognostic factors; it has been used to increase T staging
accuracy and predict positive surgical margins (PSMs) by detecting and localizing extra-
capsular extension (ECE) [7,8]. Radiomics, as an extension concept of texture analysis,
can convert medical images into high-dimensional mineable and quantitative features by
using high-throughput extraction algorithms of these characterizations. In recent years,
qualitative analysis of prostate MRI images by means of radiomics plays a crucial role
at the pretreatment staging step and is increasingly applied to determine invasion and
prognosis for prostate cancer [9,10]. PNI is a pathological feature that can only be detected
after an invasive biopsy or prostatectomy. This form of metastasis can affect peri-prostatic
neurovascular fibers, the lumbosacral plexus, and the sciatic nerve, and MRI can visualize
involvement of these nerve fibers as direct evidence of cancer cell spreading [11,12]. In the
age of high-resolution imaging, developing a method based on radiomics to accurately
assess the PNI status of PCa is urgently needed.

In this study, we evaluated the relationship between MRI radiomics signature, as well
as other clinical and pathological factors, and PNI in high-grade PCa. We hypothesized that
the MRI radiomics signature may provide effective information and established a model
for preoperatively predicting the probability of PNI in high-grade PCa patients.

2. Materials and Methods

2.1. Patients

This retrospective study received Institutional Review Board approval of the First
Hospital of Shanxi Medical University, ethic code: (K131). We retrospectively selected PCa
patients with clinical and imaging data from January 2016 to May 2021 who underwent
prostate MR examination before systematic prostate biopsy or radical prostatectomy (RP).
Clinical data, including age, PSA level, prostate volume, prostate-specific antigen density
(PSAD), GS, grading groups (GGs), and tumor location in the prostate, were collected from
patient medical records. The study inclusion criteria were as follows: (a) high-grade PCa
patients who underwent prostate MRI examination; and (b) tumor perineural invasion
status obtained on histopathology by biopsy or RP. The following exclusion criteria were
applied: (a) PCa patients who received other treatments before MRI examination, such
as androgen suppression therapy or any previous transurethral surgery; (b) poor image
quality due to artifacts; (c) incomplete MR sequence; and (d) incomplete clinical data
collection; (e) the lesions were too small for segmentation and analysis (maximum diameter
<3 mm). A total of 208 high-grade prostate cancer patients’ data were collected. According
to the exclusion criteria, 25 patients were excluded. Ultimately, 183 high-grade PCa patients
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were enrolled in the study. The patients were randomly divided into training and test
groups at a ratio of 7 to 3 (training group: 128 patients, test group: 55 patients).

2.2. MR Image Data

The prostate MRI examination was performed according to PI-RADS v2.1 protocol
and the process was as follows. We utilized a 3.0-T scanner (GE Signa HDxt) with an
8-channel array coil to acquire the images of multiplanar T2-weighted imaging (T2WI) and
diffusion-weighted imaging (DWI), which were obtained with a turbo spin-echo sequence
and the following parameters: repetition time/echo time (TR/TE): 3360/68.16 ms; field of
view (FOV): 220 × 220 mm; matrix: 320 × 256; slice thickness: 5 mm; and spacing between
slices: 5.5 mm. A single-shot echo-planar sequence with four b-values was also acquired: 0
and 1500 s/mm (TR/TE: 5250/78.6 ms; FOV: 100 × 100 mm; matrix: 128 × 160; and slice
thickness: 5 mm).

2.3. Histopathologic Analysis

All patients underwent transrectal ultrasound-guided 12-core systematic prostate
biopsy or RP after prostate MRI examination. The specimen pathological diagnosis was
made by two pathologists with more than three years of experience in diagnosis of prostate
diseases. The GS was updated according to the 2014 International Society of Urological
Pathology criteria. PNI was diagnosed when PCa infiltration was identified in any layer of
the nerve sheath or tumor invasion involved at least one-third of the nerve circumference.
Pathologic information was collected, and, according to the outcomes, all patients were
divided into two groups: one group had positive prostate cancer cell PNI and the other
group had negative prostate cancer cell PNI (Figure 1).

Figure 1. Preoperative MRI images, ROI delineation, and pathological comparison of prostate cancer
with and without PNI, as indicated by the arrow.

2.4. Tumor Segmentation

All MR images were manually delineated by two independent readers with more
than 5 years’ experience in reading prostate MR images. ITK-SNAP software was used
to process T2WI and high-b-value (b = 1500) DWI images. Tumors were targeted as the
regions of interest (ROIs), defined as hypointense signal areas compared with the normal
prostate area on T2WI and a higher signal intensity than that of the normal prostate area
on DWI. For consistency between ROIs in both T2WI and DWI images, all depicted ROIs
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were strictly delineated with the same criteria and visually validated by the same expert.
The ROIs were manually delineated layer-by-layer along the lesion boundary, obtaining
three-dimensional data (Figure 1).

2.5. Extraction of Radiomic Features

Software of FAE (FAE version is 0.5.2 and PyRadiomics version is 3.0.1. The software
was soured from East China Normal University, Shanghai, China. https://github.com/
salan668/FAE accessed on 16 December 2022), which was developed based on the PyRa-
diomics package (https://github.com/Radiomics/pyradiomics, accessed on 2 June 2022),
was used to extract features from the T2WI ROIs and DWI ROIs. The parameters of fea-
ture extraction were: first order statistics, shape-based, GLCM, GLRLM, GLSZM, GLDM,
NGTDM. A total of 1702 features were extracted from the MRI data and 851 features each
from T2WI and DWI, including 14 shape features, 18 first-order features, 24 gray level
co-occurrence matrix (GLCM) features, 16 gray level run length matrix (GLRLM) features,
16 gray level size zone matrix (GLSZM) features, 5 neighboring gray tone difference matrix
(NGTDM) features, and 14 gray level dependence matrix (GLDM) features and 744 wavelet
features [13].

2.6. Feature Selection and Model Building

The process of feature selection was based on training set. Thirty patients were
randomly selected for a double-blinded comparison of manual segmentations by two
radiologists. Inter- and intraclass correlation coefficients (ICCs) between groups and
within groups were calculated to select features with high stability and reproducibility,
and ICCs greater than or equal to 0.75 were considered to have good agreement. To
remove the imbalance of the training dataset, we used the synthetic minority oversampling
technique (SMOTE) to balance the positive/negative samples. Before feature selection,
we subtracted by the mean value and divided by the standard deviation to normalize the
feature matrix for each feature vector. Next, the feature selection process was divided into
two steps. In the first step, the features with statistical significance for identifying PNI
positivity were selected by univariate logistic regression analysis. In addition, the first
stage of dimensionality reduction of the data was achieved to ensure that each feature
had a significant effect on the outcome. In the second step, least absolute shrinkage and
selection operator (LASSO) regression analysis was used for further data dimensionality
reduction, and the best features were determined for establishment of the radiomics model.
The hyperparameter lambda value and the number of selected features were determined
by tenfold cross-validation. After the radiomics model was established, each feature was
multiplied by its corresponding coefficient, and an intercept value was added to calculate
the radiomics score (Rad-score) for each patient, which was establishment of the radiomics
signature (Appendix A).

For clinical features, we used the univariate analysis method, and the features with
statistical significance for the results were selected to construct a clinical model. Finally,
the combined model of clinical and radiomics features was established by multiple logistic
regression analysis method.

2.7. Model Evaluation

After the models were built, their performance was evaluated using receiver operating
characteristic (ROC) curve analysis. The area under the ROC curve (AUC) was calculated
for quantification of the performance. The accuracy, sensitivity, and specificity were also
calculated at a cutoff value that maximized the value of the Youden index. A radiomic
nomogram combining the Rad-score derived from T2WI and DWI scans and clinical
factors was developed for predicting PNI. The calibration curves measured the consistency
between the predicted probability of PNI and the actual probability of PNI. Decision curve
analysis was applied to measure the clinical utility of the nomogram.
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2.8. Statistical Analysis

Demographic data were compared by chi-squared test, Mann-Whitney test, or t-test.
Continuous variables are expressed as mean ± standard deviation, and categorical variables
are expressed as median (25 quantile, 75 quantile). A value of p < 0.05 was considered
statistically significant. Statistical analyses were performed using SPSS v22.0 (IBM SPSS
Statistics, IBM Corp., Armonk, NY, USA) and R software (R is a language and environment
for statistical computing and graphics. It is a GNU project which is similar to the S language
and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues, version 4.1.2; http://www.Rproject.org,
accessed on 17 December 2022).

3. Results

3.1. Patient Characteristics

PNI was diagnosed histologically based on RP or biopsy specimen tissues. In total,
183 patients were then divided into the PNI positive [PNI (+)] group and the PNI negative
[PNI (−)] group. The PNI (+) group contained 54 patients (29.51%), while the PNI (−)
group contained 129 patients (70.49%). In the PNI positive group, 42 were detected on RP
and 12 on biopsy. Twenty-seven of the forty-two cases were confirmed PNI positive both
on preoperative biopsy and RP; eight of the forty-two cases had no PNI positive results
on biopsy, but the RP outcomes were determinative; seven of the forty-two cases obtained
a biopsy at another center, and we only had PNI positive results after RP in our center.
Twelve PNI positive cases confirmed by biopsy did not undergo RP after biopsy in our
center. The concordance rate of PNI positive results between biopsy and RP was 64.29%. In
the PNI negative group, 98 cases were diagnosed as PNI negative both on preoperative
biopsy and RP; 31 cases obtained a biopsy at another center; we only had their PNI negative
outcomes of RP in our center. The concordance rate was 75.97%. The average ages were
69.7 ± 8.2 years and 72.0 ± 9.0 years in the two respective groups. The PSA levels were
15.9 ng/mL and 17.4 ng/mL in the two respective groups. In the PNI (+) group, the GS
proportions were distributed as follows: 22.2% of patients (12/54) had a score of 8, 42.6%
(23/54) had a score of 9, and 11.1% (6/54) had a score of 10. In the PNI (−) group, the
GS proportions were distributed as follows: 41.1% of patients (53/129) had a score of 8,
39.5% (51/129) had a score of 9, and 19.4% (25/129) had a score of 10. The radiological
and other clinical characteristics of the two groups are summarized in Table 3. There were
no significant differences between these two groups in terms of age, PSA level, PSAD, or
tumor location. However, there were significant differences in prostate volume, GS, and
GG (p < 0.05). There were no significant differences between the training and test cohorts
in terms of all clinical characteristics, which are summarized in Table 2 (p > 0.05).

Table 1. Patient clinic radiological characteristics between groups of PNI (+) and PNI (−).

Characteristics
PNI (+)
(N = 54)

PNI (−)
(N = 129)

p Value

Age (years) 69.7 ± 8.2 72.0 ± 9.0 0.121
PSA level (ng/mL) 15.9 (10–23) 17.4 (11.4–25.7) 0.406

Prostate volume (mL) 43.7 (31.3–59.7) 53.7 (38.1–87.7) 0.006
Foot–head (FH) (cm) 4.4 (3.6–5.1) 4.7 (3.9–5.8) 0.02
Right–left (RL) (cm) 4.7 (4–5) 5.1 (4.5–5.9) <0.001

Anterior–posterior (AP) (cm) 4.1 (3.6–4.9) 4.3 (3.7–5.2) 0.247
PSAD (ng/mL/cm3) 0.4 (0.2–0.5) 0.3 (0.2–0.5) 0.176
Gleason Score (GS) 9.13 (9–10) 8.78 (8–9) 0.005

Grading Groups (GG) <0.001
Grade 1 0.0% (0/54) 0.0% (0/129)
Grade 2 0.0% (0/54) 0.0% (0/129)
Grade 3 0.0% (0/54) 0.0% (0/129)
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Table 1. Cont.

Characteristics
PNI (+)
(N = 54)

PNI (−)
(N = 129)

p Value

Grade 4 22.2% (12/54) 41.1% (53/129)
Grade 5 77.8% (42/54) 58.9% (76/129)
Location 0.196

Central zone 1.9% (1/54) 2.3% (3/129)
Transition zone 13.0% (7/54) 7.0% (9/129)
Peripheral zone 25.9% (14/54) 17.1% (22/129)
Multiple zone 59.3% (32/54) 73.6% (95/129)

Rad-score 1.52 ± 2.649 −1.815 ± 2.065 <0.001

Table 2. Patient clinic radiological characteristics between training and test cohort.

Characteristics
Training
(N = 128)

Test
(N = 55)

p Value

Age (years) 72.0 ± 8.6 69.8 ± 9.1 0.117
PSA level (ng/mL) 42.4 (14.3–138.6) 49.8 (13.9–169) 0.716

Prostate volume (mL) 48.6 (35.2–77.4) 52.9 (36.6–71.0) 0.797
Foot–head (FH) (cm) 4.7 (3.8–5.7) 4.6 (3.8–5.3) 0.484
Right–left (RL) (cm) 4.9 (4.4–5.5) 4.9 (4.2–5.5) 0.796

Anterior–posterior (AP) (cm) 4.3 (3.7–5.2) 4.1 (3.4–4.9) 0.157
PSAD (ng/mL/cm3) 0.9 (0.3–2.9) 0.9 (0.3–2.8) 0.861
Gleason Score (GS) 9.0 (8–9) 9.0 (8–9) 0.092

Location 0.193
Central zone 1.6% (2/128) 3.6% (2/55)

Transition zone 10.9% (14/128) 3.6% (2/55)
Peripheral zone 21.1% (27/128) 14.5% (8/55)
Multiple zone 66.4% (85/128) 78.2% (43/55)

Rad-score −0.542 ± 2.518 −1.503 ± 3.046 0.052
PSA: prostate-specific antigen. Prostate volume: foot–head (FH) length × right–left (RL) length × anterior–
posterior (AP) length × π/6. PSAD: prostate-specific antigen density, PSA value divided by MRI-estimated
prostate volume. Grading groups (GG): GG1: Gleason scores ≤ 6; GG2: Gleason scores 3 + 4; GG3: Gleason scores
4 + 3; GG4: Gleason scores 4 + 4, 3 + 5, 5 + 3; GG5: Gleason scores 4 + 5, 5 + 4, 5 + 5. p < 0.05 indicates a statistically
significant difference.

3.2. Feature Selection and Comparison of Models

Further, 1193 stable features with ICCs ≥ 0.75 were retained (611 features from T2WI,
and 582 features from DWI). The T2WI sequence selected 10 features when the λ1se was
equal to 0.06478 and obtained the highest AUC on the testing dataset. The AUC and
accuracy of the model were 0.827 (95% CI 0.707–0.947) and 0.818, respectively. The DWI
sequence selected four features when the λ1se was equal to 0.11225 and obtained the highest
AUC on the testing dataset. The AUC and accuracy of the model were 0.734 (95% CI
0.593–0.975) and 0.746, respectively. The T2WI + DWI sequence selected 13 features when
the λ1se was equal to 0.06787 and obtained the highest AUC on the validation dataset. The
AUC and accuracy of the model were 0.908 (95% CI 0.821–0.996) and 0.855, respectively.
Thirteen features were found to have high stability for prediction of PNI and were chosen
to construct the final model. The details of feature selection and comparison of models
were shown in Figures 2 and 3 and Tables 3 and 4.

The clinical model based on features including FH, RL, prostate volume, and GS
obtained the highest AUC on the test dataset. The AUC and accuracy of the model were
0.823 (95% CI 0.712–0.933) and 0.673, respectively, on the testing dataset (Figures 2 and 3
and Table 4).
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Figure 2. The lasso plots for radiomics feature selection: (a,b) for T2WI, 10 features were selected
when the λ1se = 0.06478, (c,d) for DWI, 4 features were selected when the λ1se = 0.11225, and (e,f) for
T2WI + DWI sequences, 13 features were selected when the λ1se = 0.06787.

 
Figure 3. The AUCs of different models in the training (a) and test (b), respectively.

Table 3. The selected radiomics features of T2WI, DWI, and T2WI + DWI models.

Radiomics Features Coefficient Odds Ratio (95% CI) p-Value

T2WI

T2_wavelet.HHH_glrlm_RunPercentage −0.220 0.802 (0.533–1.236) 0.298
T2_wavelet.HHH_ngtdm_Coarseness 1.471 4.355 (0.800–29.392) 0.106

T2_wavelet.HLH_gldm_
SmallDependenceHighGrayLevelEmphasis −5.081 0.006 (5.54 × 10−6–0.687) 0.080

T2_wavelet.HLH_glrlm_RunPercentage 1.443 4.235 (1.481–26.510) 0.045
T2_wavelet.HLL_ngtdm_Coarseness −1.294 0.274 (0.043–1.324) 0.134

T2_wavelet.LHH_gldm_
DependenceNonUniformityNormalized 5.107 1.652 (1.358–4.033) 0.104

T2_wavelet.LHH_glszm_
SizeZoneNonUniformityNormalized 0.860 2.362 (1.187–5.205) 0.022

T2_wavelet.LHH_ngtdm_Contrast 0.722 2.058 (1.291–3.564) 0.005
T2_wavelet.LHL_firstorder_RootMeanSquared 0.270 1.310 (0.808–2.146) 0.268

T2_wavelet.LLL_gldm_
SmallDependenceLowGrayLevelEmphasis 0.025 1.025 (0.637–1.626) 0.916

509



Cancers 2023, 15, 86

Table 3. Cont.

Radiomics Features Coefficient Odds Ratio (95% CI) p-Value

DWI

DWI_original_glszm_SizeZoneNonUniformityNormalized 0.378 1.460 (1.0109–2.229) 0.061
DWI_original_shape_SurfaceArea −0.443 0.642 (0.257–1.511) 0.324

DWI_wavelet.HLH_glcm_MaximumProbability −0.731 0.481 (0.272–0.763) 0.005
DWI_wavelet.LLL_glrlm_RunLengthNonUniformity −0.700 0.496 (0.200–1.136) 0.109

T2WI + DWI

T2_wavelet.HLH_gldm_
SmallDependenceHighGrayLevelEmphasis 0.947 2.579 (1.255–7.864) 0.030

T2_wavelet.HLH_glrlm_RunPercentage −0.509 0.601 (0.278–1.236) 0.176
T2_wavelet.HLL_ngtdm_Coarseness 0.703 2.020 (0.844–6.290) 0.181

T2_wavelet.LHH_gldm_
DependenceNonUniformityNormalized 0.834 2.303 (1.171–5.080) 0.023

T2_wavelet.LHH_glszm_
SizeZoneNonUniformityNormalized 0.537 1.710 (1.059–2.955) 0.039

T2_wavelet.LHH_ngtdm_Contrast 0.304 1.355 (0.808–2.315) 0.249
T2_wavelet.LHL_firstorder_RootMeanSquared 0.343 1.409 (0.859–2.375) 0.180

DWI_original_glszm_SizeZoneNonUniformityNormalized 0.271 1.311 (0.829–2.266) 0.289
DWI_original_shape_SurfaceArea −0.896 0.408 (0.162–0.896) 0.039

DWI_wavelet.HHH_glcm_DifferenceEntropy 0.687 1.988 (1.010–4.306) 0.064
DWI_wavelet.HLH_glcm_MaximumProbability −0.494 0.610 (0.299–1.178) 0.151

DWI_wavelet.HLL_gldm_
LargeDependenceLowGrayLevelEmphasis 0.377 1.457 (0.873–2.460) 0.152

DWI_wavelet.LHH_glszm_ZoneEntropy −0.127 0.881 (0.463–1.668) 0.697

Table 4. The diagnostic performance of models.

Model Train Test

AUC Sensitivity Specificity P AUC Sensitivity Specificity P

Clinical 0.766
(0.698–0.834) 0.890 0.522 0.823

(0.712–0.933) 1 0.514

T2WI 0.813
(0.753–0.873) 0.868 0.609 0.276 0.827

(0.707–0.947) 0.611 0.919 0.959

DWI 0.749
(0.678–0.819) 0.802 0.598 0.709 0.734

(0.593–0.975) 0.556 0.838 0.269

T2WI + DWI 0.879
(0.832–0.926) 0.736 0.870 0.003 0.908

(0.821–0.996) 0.944 0.811 0.197

Combined 0.906
(0.866–0.947) 0.780 0.870 <0.01 0.947

(0.884–1) 0.944 0.865 0.01

P: AUC value of T2WI model, DWI model, T2WI + DWI model, and radiomic combined clinical model, respectively,
compared to AUC value of clinical model.

3.3. Development of the Clinical–Radiomics Predictive Model

After the independently associated risk factors of FH, RL, volume, and GS were
selected, we combined them with the Rad-score of the 13 features to form a PNI predictive
nomogram. This nomogram had better performance in predicting PNI: the AUCs were
0.906 (95% CI 0.866–0.947) in the training group and 0.947 (95% CI 0.884–1) in the test group
(Figure 4 and Table 4).
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Figure 4. Nomogram developed for prediction of PNI. Radiomic nomogram combining the Rad-
score derived from T2WI and DWI scans and clinical–radiological factors for predicting PNI. PNI:
perineural invasion.

3.4. Validation of the Clinical–Radiomics Predictive Nomogram

The calibration charts showed that the actual probability of PNI occurrence was
consistent with the predicted probability, and the Hosmer-Leme show test yielded P values
of 0.907 and 0.689 in the training and test cohorts, respectively. As shown in Figure 5,
decision curve analysis indicated that the PNI predictive nomogram model was the best
method across the full range of reasonable threshold probabilities. In the training group, the
net reclassification index (NRI) was 1.1252 (0.8659–1.3644, p < 0.01) comparing the clinical
model and combined model, while the NRI was 0.886 (0.6271–1.449, p < 0.01) comparing the
radiomic model and combined model. In the test group, the NRI was 1.2312 (0.7796–1.6829,
p < 0.01) comparing the clinical model and combined model, while the NRI was 1.0691
(0.5958–1.5424, p < 0.01) comparing the radiomic model and combined model (Figure 6).

Figure 5. Calibration curve of the nomogram in the training (a) and test (b) groups.
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Figure 6. Decision curve analysis.

4. Discussion

PNI is a histological phenomenon in which cancer cells surround and invade nerves
in the tumor microenvironment and play a role in development and regeneration of cancer
cells. Nerves and cancer cells communicate bidirectionally to each other, providing a
mechanism that could induce cancer invasion and spread. Studies have shown that the
sympathetic nervous system in cancer can regulate pathological gene expression, leading
to DNA damage repair inhibition and oncogene activation to increase cancer cell metastasis
and tumorigenesis [14,15]. On the other hand, cancer cells can secrete neurotrophic growth
factors or chemokines, such as CCL2 and CXCL12, to promote development of neural
progenitors, causing nerve growth [16,17]. PNI in cancer is associated with poor prognosis,
likely because neoplastic cells hidden in the perineural space cannot be removed during
tumor resection and cause recurrence.

In 1999, the College of American Pathologists published a consensus statement on
prognostic factors for PCa in which PNI was classified as category III for risk of recur-
rence and needed additional study [6]. In multivariate analysis, PNI on biopsy showed
significance for recurrence. The presence of PNI on target-biopsy associated with worse
histopathologic features on RP and poorer outcomes might thus be useful for risk stratifica-
tion [18]. As primary treatment decisions are often based on biopsy results, the additional
PNI information may be relevant for optimal patient care [19]. PNI found on prostate
biopsies has been shown to be an independent predictor of high-grade disease associated
with a higher mean PSA, adverse pathologic features of higher GS, and extra-prostatic
extension [20,21]. In our study, 54 PNI (+) patients among 183 high-grade PCa patients had
higher GG and GS than PNI (−) patients, and the outcome was consistent with these stud-
ies. PCa patients with PNI positivity showed an increased risk of biochemical recurrence
after prostatectomy or radiotherapy and worse survival outcomes, which have important
implications for treatment decision-making and management of PCa [22–24].

The slowly progressive nature of nerve involvement can often make PNI difficult to
diagnose, and PNI is always detected based on the pathological results of the biopsy and
prostatectomy specimens of PCa patients. As not all PCa cases are diagnosed at the initial
biopsy, PNI as an independent prognostic factor remains difficult to quantitatively measure
in pathological samples because of its heterogenous presentations and the multifocal nature
of RP specimens [25]. Recent research has shown that the distribution of nerves within
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the tumor-infiltrating microenvironment is not homogeneous. The neural density was
significantly higher in the cancer periphery close to cancer infiltration than in the cancer
core area, which suggests that nerves may drive tumor progression and invasion [26].
Many factors may influence the true pathological positive rate of PNI, such as the needle
core number of biopsy and the processing method of RP specimen tissues [27]. Thus, the
prognostic value of PNI evaluation in pathological analysis should be further assessed
and a better method should be developed to provide a detailed spatial representation
of heterogeneity.

MRI is a noninvasive diagnostic tool that can acquire entire anatomical images of the
prostate for cancer staging, such as extra-prostatic extension. This is important for urologists
to determine a treatment plan before surgery, such as preservation of the neurovascular
bundle (NVB) [28]. In the era of high-resolution imaging, extra-prostatic extension on
MR images already has a better ability to predict locally advanced-stage PCa than PNI
positivity on biopsy [29]. Whether PNI, as a predominant mechanism and a predictor of
PCa progression to an advanced stage, can be directly assessed on imaging measures needs
further study to develop a visualization method. Jonathan J. Stone retrospectively reviewed
the data of 3733 PCa patients from a medical database who had undergone both MRI and
PET before surgery to identify direct radiological evidence of PNI. Fifteen patients who had
perineural spread found on MRI presented enlargement of the spinal nerves, lumbosacral
plexus, sciatic nerve on T1-weighted sequences, hyperintensity on T2-weighted sequences,
and/or abnormal nerve enhancement after gadolinium administration [30]. Salvatore
Siracusano evaluated a new MRI modality called diffusion tensor imaging (DTI), which
can provide sharp depiction of peripheral nervous fibers to detect changes in peri-prostatic
neuro-vasculature (PNF) before and after RP. DTI was able to detect quantitative changes
in the number, length, and fractional anisotropy values of the PNF, and they observed that
the fiber number in MRI images can serve as a recovery indicator of erectile dysfunction
in nerve-sparing prostatectomy [31]. However, PNI is a microscopic-level finding in PCa.
Huijuan You combined MRI and magnetic particle imaging involving superparamagnetic
iron oxide nanoparticles to precisely distinguish high and low nerve densities of the PCa
tissue microenvironment in a mouse model. Their method could visualize the nerve
density, and they observed a positive correlation with the aggressiveness of PCa cancer
cells, which can be a novel strategy for discovering biomarkers for neural tissue and tumor
aggressiveness in PCa [32].

Although MR plays an important role in detecting and accurately evaluating PCa,
image outcome reporting depends on the subjective judgment of radiologists, which causes
high inter-reader variability. Recently, the quantitative analysis method based on machine
learning techniques called radiomics was shown to automatically obtain high-throughput
imaging features to overcome the above limitations and assess tumor biology characteristics.
Several studies have reported use of MR-based radiomics to detect clinically significant
PCa and assess aggressiveness and tumor staging [33]. Shuai Ma developed and validated
a radiomics model that contains 17 stable radiomics features extracted from 1619 features
based on T2WI to predict ECE in PCa. The AUC was 0.883 in the validation cohort, and
the model was more sensitive than the radiologists’ interpretations, especially for apical
tumors, which would influence a nerve-sparing surgical plan [34]. PNI is a predominant
mechanism of ECE in PCa; to the best of our knowledge, there is no radiomics model based
on MRI for preoperatively predicting this histopathological phenomenon.

In our study, we constructed a model derived from clinical and imaging data, in-
cluding radiomic features from T2WI and DWI, based on computer-aided analysis to
evaluate the PNI status in high-grade PCa. Our best radiomics model contained three
GLDM features, one GLRLM feature, two NGTDM features, three GLSZM features, two
GLCM features, one first-order feature, and one shape feature from T2WI and DWI im-
ages, which have the best predictive ability for PNI status in high-grade PCa. Our results
demonstrated that the NGTDM feature had the greatest weight of the features in the T2WI
model, while, in the DWI model, it was the GLCM feature, which is associated with tu-
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mor invasion and is a predictor of PCa aggressiveness, consistent with recently published
findings concerning risk stratification for Pca. This finding suggests that invading nerves
in the tumor microenvironment may affect the homogeneous texture features and that
these radiomics features associated with PNI positivity may provide some additional in-
formation related to Pca aggressiveness, as previous studies reported [35,36]. The feature
with the greatest weight in the T2WI + DWI model was the higher-order feature GLDM;
this feature describes the gray level intensity within the ROI between the PNI positive
and PNI negative groups and is used to highlight local heterogeneity information. This
texture feature was rarely mentioned in previous radiomics studies for Pca, but, for other
tumors, such as rectal cancer and cervical cancer, GLDM was thought to be associated with
locally advanced tumors and poor prognosis in recent studies [37,38]. Similar to those
in nontumor tissues, the GLDM metrics were found to be significantly different among
peritumoral fat between high-grade and low-grade clear cell renal carcinoma and urothelial
carcinoma [39,40]. Therefore, whether radiomics feature GLDM could be a biomarker for
predicting the heterogeneity of interstitial composition in urologic cancers requires more
research. Similar to the study of B. De Santi, which showed that a difference in voxel
intensity distribution could distinguish cancerous and normal prostatic tissues [41], our
model led to the conclusion that differences in heterogeneity between PNI positive and PNI
negative samples can be detected and, therefore, can help depict the tissue microstructure
as PNI positive or PNI negative before surgery.

Our clinical–radiomics prediction model, which integrates clinical characteristics
and the Rad-score derived from MRI, had good sensitivity (0.944) and good specificity
(0.865) in the test cohort, indicating that it is superior to all the above-mentioned models
for predicting PNI status. Comparing the AUC values in the independent test cohort,
our clinical–radiomics prediction model (AUC 0.947; 95% CI 0.884–1) performed better
than the radiomics model alone (AUC 0.908; 95% CI 0.821–0.996) and the clinical model
alone (AUC 0.823; 95% CI 0.712–0.933). Decision curve analysis showed that the clinical–
radiomics model had a better ability to predict PNI than the other two models at any
given threshold probability. This finding confirms that assessment of PNI with clinical or
radiomic information alone will not be comprehensive.

Several limitations should be noted when considering this study. First, we included
GGs of high-grade patients only; those with GS ≤ 7 patterns were excluded, especially
patients with GS 4 + 3 who have a much worse prognosis, and their PNI status was not
assessed. Second, some GS values were based on biopsy rather than on RP in our study,
possibly causing sampling error. Third, there was a lack of spatial co-registration of the
histopathology slides and MR images, which may cause a mismatch in delineating the ROIs
directly on the T2WI and DWI images. Fourth, FAE software can be used conveniently for
binary classification, but it has not yet provided an integrated UI for multilabel classification
and regression problems. Fifth, this study was a single-institutional retrospective study
design without external validation.

5. Conclusions

In our study, the results showed that MRI-derived radiomic features can be indepen-
dent predictors of PNI in high-grade PCa. The combination of radiomic features extracted
from T2WI and DWI maps produced higher diagnostic power to predict PNI than a single
pattern. Additionally, our clinical–radiomics model was superior to a single radiomics
model and a clinical model, suggesting that, combined, the radiomic features and clini-
cal pathology information may have considerable value in predicting PNI in high-grade
PCa, which can aid clinicians in choosing appropriate treatment options and estimating
prognoses for such patients.
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Appendix A

Rad-score = −0.6252 + T2_wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis × 0.9473 +
T2_wavelet.HLH_glrlm_RunPercentage × (−0.5091) + T2_wavelet.HLL_ngtdm_Coarseness × 0.7033 +

T2_wavelet.LHH_gldm_DependenceNonUniformityNormalized × 0.8344 +
T2_wavelet.LHH_glszm_SizeZoneNonUniformityNormalized × 0.5365 +

T2_wavelet.LHH_ngtdm_Contrast × 0.3040 + T2_wavelet.LHL_firstorder_RootMeanSquared × 0.3430 +
DWI_original_glszm_SizeZoneNonUniformityNormalized × 0.2708 +

DWI_original_shape_SurfaceArea × (−0.8964) + DWI_wavelet.HHH_glcm_DifferenceEntropy × 0.6870 +
DWI_wavelet.HLH_glcm_MaximumProbability × (−0.4943) +

DWI_wavelet.HLL_gldm_LargeDependenceLowGrayLevelEmphasis × 0.3766 +
DWI_wavelet.LHH_glszm_ZoneEntropy × (−0.1266)
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Abstract: Through a multitude of studies, the gut microbiota has been recognized as a significant in-
fluencer of both homeostasis and pathophysiology. Certain microbial taxa can even affect treatments
such as cancer immunotherapies, including the immune checkpoint blockade. These taxa can impact
such processes both individually as well as collectively through mechanisms from quorum sensing to
metabolite production. Due to this overarching presence of the gut microbiota in many physiological
processes distal to the GI tract, we hypothesized that mice bearing tumors at extraintestinal sites
would display a distinct intestinal microbial signature from non-tumor-bearing mice, and that such a
signature would involve taxa that collectively shift with tumor presence. Microbial OTUs were deter-
mined from 16S rRNA genes isolated from the fecal samples of C57BL/6 mice challenged with either
B16-F10 melanoma cells or PBS control and analyzed using QIIME. Relative proportions of bacteria
were determined for each mouse and, using machine-learning approaches, significantly altered taxa
and co-occurrence patterns between tumor- and non-tumor-bearing mice were found. Mice with a
tumor had elevated proportions of Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae, as
well as significant information gains and ReliefF weights for Bacteroidales.f__S24.7, Ruminococcaceae,
Clostridiales, and Erysipelotrichaceae. Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales were also
implicated through shifting co-occurrences and PCA values. Using these seven taxa as a melanoma
signature, a neural network reached an 80% tumor detection accuracy in a 10-fold stratified random
sampling validation. These results indicated gut microbial proportions as a biosensor for tumor
detection, and that shifting co-occurrences could be used to reveal relevant taxa.

Keywords: gut microbiota; machine learning; statistical algorithms; co-occurrence patterns; melanoma

1. Introduction

The gastrointestinal microbiota contains a diverse and dense collection of symbiotic or-
ganisms that contribute to intestinal homeostasis. Nutrient digestion, synthesis of vitamins,
protection against pathologic organisms, and production of neurotransmitters are just a few
of the biological functions that these organisms provide [1–3]. The host’s immune system
plays an essential role in controlling microbial growth and development in the microbiome
to ensure that a mutual relationship is maintained between the host and organism.
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At the same time, the microbiota plays a role in adapting the host’s immune system
to various stressors [4]. In fact, evidence is accumulating that the intestinal microflora
can respond to changes in host health status by sensing soluble host elements and local
micro-environmental cues [5]. For this reason, the gastrointestinal microbiota is affected by
the pathological immune responses derived from diseases such as diabetes mellitus, cancer,
obesity, and inflammatory diseases, which impacts the body’s immune response against
disease [2,6,7].

It is increasingly being recognized that the gut microbiome composition differs sig-
nificantly between healthy individuals and those with various pathological conditions.
Dongmei et al. found that healthy individuals have a more diverse gut flora than those with
colorectal cancer. In addition, certain bacterial populations were more likely to co-occur
in patients with colorectal cancer than in healthy individuals [3]. While alterations in
microbiome composition can be seen in pathologic conditions such as cancer, it is unclear
whether these changes are a cause or a consequence of the disease [6]. Multiple studies
that analyzed the composition of the gut microbiota in colorectal cancer patients suggested
the presence of both “driver bacteria”, or those that promote cancer growth, and “passen-
ger bacteria”, or those that solely flourish in the proinflammatory environment, but do
not impact tumor progression. Geng et al. found that in their colorectal cancer patients,
members of the Enterobacteriaceae family promoted cancer growth, whereas members of the
Streptococcaceae family merely flourished in a proinflammatory environment [7].

The presence of these microbial mechanisms in which bacterial taxa have a certain
level of dependency have wide implications for their use in modeling respective patho-
logical conditions. Typically, connectivity and dependency between variables such as
bacterial taxa in the context of predictive modeling has typically been a hindrance to model
performance [8–10]. It is widely understood with many kinds of algorithms that, in various
circumstances, variables with some manner of co-occurrence provide a certain level of
redundant information, and therefore reduce the variability explained in models [8]. This
presence of redundant information decreases the model’s fit to the training dataset, as well
as its prediction accuracy in the testing dataset [10–12].

Despite these limitations, co-occurrences in the context of pathological prediction with
microbial taxa may still hold significance in the application of diagnostic signatures [8,13].
When co-occurrences shift between conditions, so does the direction of variability rep-
resented by relevant taxa in planes of higher dimensionality [9,10,14]. These shifts are
reflected in principal component analysis, in which each principal component represents
a different proportion of the total variability present [8,13]. They are also represented in
ReliefF and information gain values, in which microbial taxa with these differences in
variability have increased reliability as predictors [11,15]. Therefore, the identification of
these shifts in co-occurrences in pathological conditions such as cancer is optimal for the
implementation of gut microbial diagnostic signatures.

The implementation of machine-learning algorithms for the prediction of the presence
of various cancers using the gut microbiome has been widely studied [16–18]. However, to
date, relatively little work has been done regarding the use of the gut microbiome to predict
the presence of melanoma. In addition, one of the challenges of predicting the presence
of a specific disease with the gut microbiota is the variability in relative proportions of
specific gut bacteria that can exist between patients and populations [12]. Through our
analyses, we have indicated shifts in microbial co-occurrences as a potential method in
accounting for such variability. Therefore, we hypothesized that models based on gut
microbial proportion profiles of taxa involved in co-occurrence shifts could form a distinct
diagnostic signature that effectively differentiated mice bearing mouse melanoma tumors
from non-tumor-bearing mice. This implies that the intestinal microflora may function as a
biosensor for the presence of cancer, and that its manipulation may alter cancer prognoses.
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2. Results

2.1. Shifts in Microbial Taxon Proportions of Melanoma-Bearing Mice

Mice bearing melanoma tumors displayed significant shifts in gut microbial propor-
tions compared to non-tumor-bearing mice, which: (1) implicated consistency in changes
in gut microbiota data with tumors in the skin, distal to the gut; and (2) implied that such
changes could be used by an algorithm to detect the presence of cancer. We compared
the microbial composition of fecal samples of melanoma-bearing and tumor-free mice
by terminal restriction fragment length polymorphism (T-RFLP) analysis [14,16]. This
technique is commonly used to study complex microbial communities based on 16S rRNA
gene variation, and has been applied in the study of microbial communities in soil and
sludge systems [19]. T-RFLP analysis was carried out in a blinded fashion as previously
described [4]. It was readily seen for the two mouse experiments (Figure 1) that the co-
occurrences of relative taxon proportions shifted in the presence of B16 melanoma. In
addition, Peptococcaceae.g_rc4.4 was significantly increased (Wilcoxon p < 0.05) in both
groups of mice (Figure 1). These data demonstrated that the intestinal flora developed
detectable changes that discriminated a tumor-bearing from a tumor-free host. In order to
more fully determine the extent to which these results distinguished between hosts that
had a tumor and those that did not, the two mouse groups were combined and further
analyzed as a single dataset (n = 56).

 
 

Figure 1. Shifted co-occurrences of microbial taxa and increased Peptococcaceae.g_rc4.4 characterize
tumor presence. (A) C57BL/6 (B6) male mice were injected with either 105 B16 melanoma cells (n = 19)
or PBS (n = 16). After 10 days, fecal samples were collected and 16S rRNA genes were analyzed
using terminal restriction fragment length polymorphism (T-RFLP) analysis. From individual taxon
proportion and co-occurrence patterns, it could be seen that such patterns shifted with melanoma
presence, and Peptococcaceae.g_rc4.4 levels increased. (B) B6 male mice were injected with either 105

B16 melanoma cells (n = 11) or PBS (n = 10). After 16 days, fecal samples were collected and 16S rRNA
genes were analyzed using terminal restriction fragment length polymorphism (T-RFLP) analysis.
The results of these data directly corresponded with the mice in (A).

521



Diagnostics 2022, 12, 958

2.2. Co-Occurrence between Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae
Proportions in Mouse Melanoma

Seeking to identify the specific bacterial co-occurrences that were altered in the pres-
ence of a tumor, we first used Cytoscape to map them in the B16-melanoma- and PBS-
treated mice. From these diagrams (Figure 2A,B), it was found that the co-occurrences of
Bacteroidales.f__S24.7 greatly differed between the two treatments. When looking further
into this taxon, it was found that its co-occurrences with Clostridiales and Ruminococcaceae
had changed the most between tumor and nontumor/PBS (Figure 2C,D), with Pearson
correlation values of approximately −0.9 and −0.8 for tumor, as well as −0.15 and −0.13
for nontumor, respectively. Interestingly, however, when looking at the individual relative
amounts of these taxa, the only one that was significantly different between tumor and
nontumor was Ruminococcaceae (Wilcoxon p < 0.05, T-test p < 0.05; Figure 2E). Thus, we
concluded that the potential for these taxa to predict tumor presence relied heavily on the
extent to which their co-occurrences shifted in that condition, rather than changes in their
individual relative amounts.

 

Figure 2. Cont.
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Figure 2. Co-occurrence changes between Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae
occur with tumor presence. (A,B) Pearson correlation matrices were determined for microbiotas
from tumor and nontumor mice and displayed using Cytoscape. From these visualizations, Bac-
teroidales.f__S24.7 co-occurrences greatly changed with tumor presence. (C,D) Using the R program-
ming language, it was found that the most dramatic shifts of Bacteroidales.f__S24.7 were in conjunction
with Clostridiales and Ruminococcaceae. (E) When comparing each taxon individually between tumor
and nontumor, only Ruminococcaceae was significantly different.

2.3. Differences in Principal Components between Tumor and Nontumor

Considering our results for both individual microbial taxa and co-occurrence shifts,
we wanted to assess the relevance of each taxon in the context of predictive modeling.
Thus, we calculated the information gains and ReliefF weights for each taxon (Figure 3A,B).
In the scoring for information gains, Ruminococcaceae, Peptococcaceae.g_rc4.4, and Chris-
tensenellaceae consistently scored higher than the majority of taxa (Figure 3A). For the
ReliefF algorithm, Bacteroidales.f__S24.7 had a fairly high weight, along with Peptococ-
caceae.g_rc4.4 and Christensenellaceae (Figure 3A). Further, Christensenellaceae was found to
be significantly different between tumor and nontumor (Wilcoxon p < 0.05, Figure 3A,B).
Considering that Bacteroidales.f__S24.7 shifted its co-occurrences and its ReliefF weight
indicated variable importance, we performed a principal component analysis (PCA) using
this taxon (Figure 3C,D). Two PCAs were performed, one with Clostridiales and the other
with Ruminococcaceae (Figure 3C,D). After performing the PCAs, we compared the resulting
principal component coordinates between tumor and nontumor mice. From this compar-
ison, we found that, although the first principal components did not differ between the
two groups (Figure 3C), the second ones did (Wilcoxon p < 0.05, T-test p < 0.05; Figure 3D).
These results indicated that the coordinates of these second principal components could be
implemented in predictive modeling.
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Figure 3. Significant predictors of tumor presence include the second principal components involving
Bacteroidales.f__S24.7, Clostridiales, and Ruminococcaceae. (A,B) Using the CORElearn package in the R
programming language, the information gains and ReliefF weights were calculated for each taxon.
(A) Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae were found significantly altered
with tumor presence and having high information gains. (B) Along with Peptococcaceae.g_rc4.4 and
Christensenellaceae, Bacteroidales.f__S24.7 and Erysipelotrichaceae had high ReliefF weights. (C,D) Two
PCAs using Bacteroidales.f__S24.7, one with Ruminococcaceae and the other with Clostridiales, were
conducted using R. While their first principal components did not change with tumor, their second
ones did (Wilcoxon p < 0.05, T-test p < 0.05 (D)).

2.4. Prediction of Tumor Presence Using Microbial Taxa Involved in Altered Co-Occurrences

Since the second principal components involving Bacteroidales.f__S24.7, Ruminococ-
caceae, and Clostridiales were found to significantly differ with tumor presence, the pro-
portions of those taxa, along with those of Peptococcaceae.g_rc4.4, Christensenellaceae, and
Erysipelotrichaceae, were implemented as a mouse melanoma signature (Figure 4A,B). The 10-
fold stratified random sampling used to obtain melanoma prediction results with machine-
learning algorithms was performed by randomly selecting 90% of the mouse samples to
train the algorithms and then testing them with the remaining 10% of samples (Figure 4A).
This process was repeated 10 times, and the prediction results were averaged over those re-
peats (Figure 4A). Using this protocol, the highest percent accuracy in melanoma prediction
was achieved by the neural network, with 80% (Figure 4A,B). Thus, the implementation of
microbial taxa indicated by the second principal components in the prediction signature
allowed for the identification of melanoma presence.

 
(A) 

Figure 4. Cont.
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Model AUC CA F1 Precision Recall 

Figure 4. Implementation of microbial taxa implicated in second principal components accurately
predict tumor presence. (A) Using Orange3, 10-fold stratified shuffle splits were performed. (B) Using
a prediction signature which included Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales, impli-
cated in the second principal components, resulted in an average accuracy of 80% achieved with a
Neural Network classifier. AUC, area under the curve; CA, classification accuracy; F1, F1 score).

3. Discussion

Our findings demonstrated that the presence of a mouse melanoma tumor can be
detected through the altered gut microbial proportions using classification algorithms. By
using the gut microbial taxa to model tumor presence, it became apparent that such a
condition manifested in more ways than just changes in individual amounts of certain
taxa. Indeed, one of the main implications of this study is that considering gut microbial
taxa co-occurrences and dependencies in predictive modeling can significantly increase
predictive power in melanoma, more so than analyzing only statistical significance between
groups. This concept of intertaxa correlations in modeling microbial-based conditions has
wide applications in the interpretation of the gut microbiota, as it suggests that the role
of an individual taxon in manifesting a biological phenotype is not solely attributed to its
unique characteristics [17,18]. Rather, this role also depends on the extent to which a single
taxon can communicate and affect other taxa through various mechanisms, from quorum
sensing to metabolite production [20–23].

Despite this apparent, predictive relationship between murine melanoma and the gut
microbiota, certain experimental limitations still existed. The primary limitation for consid-
eration was the external validity of these results. It is often the case that gut microbiota data
do not directly correspond between murine and human subjects, with various mechanisms
implicated, from general differences in GI physiology to lifestyle, epigenetics, and immune
responses [24–26]. Thus, in order for gut microbial associations to be implemented in
clinical cancer diagnoses, further work needs to be done to elucidate pertinent taxa in
a variety of human populations and pathophysiological states, including cancer, as well
as the interaction between shifts in gut microbial content and certain factors such as diet
and lifestyle. Most pertinent to patient treatment is the level of interaction between host
immune responses and the gut microbiota, as antitumor immunity and immunotherapies
may affect prediction outcomes [27,28]. These studies would also need to consider the
correlation between patient stool sampling and gut microbial content with cancer presence,
as sampling variation may be a confound [24]. Finally, since our gut microbiota data had a
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certain level of variation, other parameters should be considered in the future predictive
modeling of human melanoma, such as biochemical and clinical observations [29].

In the statistical analysis of gut microbial taxa, algorithms have been developed to
accurately detect the presence of these intertaxa co-occurrences [30–32]. Such algorithms
for the detection of microbial “co-occurrence networks” include Sparse Inverse Covariance
Estimation for Ecological Association Inference (SPEIC-EASI) and Sparse Correlations for
Compositional Data (SparCC) [31–33]. However, despite these advances in the statistical
detection of these interactions, there has not been as much work to determine their efficacy
in different types of classification algorithms in conditions such as melanoma. In fact, their
presence in predictive models has generally been discouraged, as the collinearity they create
have been shown to compromise the performance of many model types [34–36]. Further,
even for models that can more readily account for collinearity, the use of such interactions
in these models does not consistently increase the performance of those models [34–36].
Thus, there is a necessity for a new statistical interpretation of intertaxa co-occurrences
in order for them to be optimally utilized in a predictive model. Perhaps new insights
into such interpretations can be eventually made when taxa indicated by shifts in co-
occurrence networks are further tested in more architecturally complex algorithms such as
deep-learning neural networks.

Traditionally, one of the most common procedures in dealing with collinearity between
variables such as microbial taxa is the use of principal components in principal component
analysis (PCA) [34–37]. By definition, the resulting principal components do not signifi-
cantly correlate with each other, and are thus used in various model types [34–37]. These
components are not usually interpretable from the perspective of the original data because
they are linear transformations of that data [34–37]. However, if a small number of variables
(e.g., two or three) is used, the principal components can be more easily interpreted [34–37].
In this study, PCA analysis was able to differentiate the two groups of mice successfully;
however, much work still needs to be done to characterize the significance of individual
PCs in different situations, such as in other clinically relevant tumor types.

4. Methods

4.1. Cell Culture

B16-F10 cells (ATCC) were cultured in RPMI 1640 plus 10% heat-inactivated fetal
bovine serum (Atlanta Biologicals, Flowery Branch, GA, USA), 2 mM L-glutamine (Mediat-
ech, Manassas, VA, USA), and 1% penicillin/streptomycin (Mediatech).

4.2. Mouse Experiments

C57BL/6 mice (B6; no. 00664; Jackson Laboratory) were housed in a specific pathogen-
free facility at the Rutgers Cancer Institute of New Jersey. Experiments involving animals
were carried out in accordance with respective Institutional Animal Care and Use Commit-
tee (IACUC) and Institutional Biosafety Committee (IBC) guidelines.

In the first experiment, 35 B6 male mice, aged 6 to 8 weeks old from the Jackson
Laboratory were intradermally challenged in the right flank with 105 cells of the highly
aggressive and poorly immunogenic melanoma B16 cell line (n = 19) [17] or phosphate
buffered saline (PBS) (n = 16) under isoflurane anesthesia. Mice were fed regular chow
according to animal care institutional guidelines. Fecal sample collection to compare
tumor-bearing to non-tumor-bearing mice was carried out on day 10, when tumors were
approximately 25–50 mm2. Samples were stored immediately at −80 ◦C until DNA extrac-
tion [38] and sequencing.

The second experiment at this facility followed the identical protocol, using 21 B6
male mice aged 6 to 8 weeks old that were intradermally challenged in the right flank
with 105 cells of the highly aggressive and poorly immunogenic melanoma B16 cell line
(n = 11) [17] or phosphate buffered saline (PBS) (n = 10) under isoflurane anesthesia. Fecal
sample collection to compare tumor-bearing to non-tumor-bearing mice was carried out on
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day 16, when tumors were approximately 25–50 mm2 in diameter. Samples were stored
immediately at −80 ◦C until DNA extraction [38] and sequencing.

4.3. DNA Extraction

Fecal pellets were homogenized and extracted using the QIAamp PowerFecal DNA
Extraction kit following the manufacturer’s protocols [39].

4.4. 16S rRNA Gene Sequencing and Data Analysis

The 16S rRNA genes were amplified from purified DNA using PCR primers specific to
the V3–V4 region of the 16S rRNA gene and sequenced by Illumina MiSeq in a 2 × 150 bp
configuration at the Rutgers New Jersey Medical School Genomics Core. Quantitative
Insights Into Microbial Ecology (QIIME) software was used for open-reference operational
taxonomic unit (OTU) classification with OTU clustering at 0.97, followed by rarefaction
and taxonomic classification of de novo OTUs [40].

4.5. qPCR for Bacterial Load and Taxa Assays

Bacterial loads of extracted fecal DNA were determined by qPCR. DNA were quan-
tified against a standard curve, and the results were normalized to the weight of fecal
samples [40].

4.6. Taxon Comparisons, Analyses, and Statistical Modeling

Using the R programming language, microbial taxa between tumor-bearing and PBS
control mice were compared using Welch’s t-test as well as the Mann–Whitney U test (a
p-value of <0.05 was considered to denote statistically significant differences). Between
these two groups of mice, general taxa and comparison attributes were determined using
the Orange3 v3.27.1 data-mining program and the CORElearn package in CRAN. PCA
analysis and principal components were determined using the prcomp function in R.
General machine-learning model analyses and cross-validation procedures were performed
using the Orange3 program with these settings:

The neural network was a 100-neuron single hidden layer that used the ReLu activation
function and the Adam solver.

The support vector machine (SVM) used a radial basis function (RBF) kernel with a
cost of 1.0 and a regression loss epsilon of 0.1.

The AdaBoost used a SAMME.R classification algorithm with a linear regression loss
function, 50 estimators, and learning rate of 1.0.

The CN2 rule inducer used entropy as the evaluation measure, a beam width of 5, and
a maximum rule length of 5.

The random forest used a 12-tree ensemble with subsets split no smaller than 5.
The k-nearest neighbor (kNN) used 5 neighbors and considered the Euclidean distance

and uniform weights.
For the naïve Bayes, the attributes were not weighted.
Tree used a maximal tree depth of 100 and subsets not split smaller than 5.
In the logistic regression, a ridge regularization was implemented.
Quality parameters for this model were determined using an internal 10-fold stratified

shuffle split, with 90% of the samples selected for training and the remaining 10% for
testing in Orange3. Results were graphed using the ggplot2, ggrepel, and ggpubr packages
in CRAN, as well as Orange3 and Cytoscape v3.7.2. Heatmaps were generated using
the ComplexHeatmap package in CRAN. Tables were formatted using the sjPlot package
in CRAN.
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Abstract: Isocitrate dehydrogenase (IDH) mutation status is an important factor for surgical decision-
making: patients with IDH-mutated tumors are more likely to have a good long-term prognosis,
and thus favor aggressive resection with more survival benefit to gain. Patients with IDH wild-type
tumors have generally poorer prognosis and, therefore, conservative resection to avoid neurological
deficit is favored. Current histopathological analysis with frozen sections is unable to identify IDH
mutation status intraoperatively, and more advanced methods are therefore needed. We examined a
novel method suitable for intraoperative IDH mutation identification that is based on the differential
mobility spectrometry (DMS) analysis of the tumor. We prospectively obtained tumor samples
from 22 patients, including 11 IDH-mutated and 11 IDH wild-type tumors. The tumors were
cut in 88 smaller specimens that were analyzed with DMS. With a linear discriminant analysis
(LDA) algorithm, the DMS was able to classify tumor samples with 86% classification accuracy,
86% sensitivity, and 85% specificity. Our results show that DMS is able to differentiate IDH-mutated
and IDH wild-type tumors with good accuracy in a setting suitable for intraoperative use, which
makes it a promising novel solution for neurosurgical practice.

Keywords: differential mobility spectrometry; neuro-oncology; neurosurgery; glioma; classification;
isocitrate dehydrogenase (IDH)

1. Introduction

Gliomas represent the most clinically important group of primary brain tumors. Tra-
ditionally, they have been classified into WHO groups I–IV to evaluate their malignant
potential by analysis of their morphological features. However, the past decades of research
have led to the discovery of many molecular alterations in gliomas that have a great impact
on the tumor’s malignancy and, accordingly, to the patient’s prognosis [1]. Among such
alterations, the mutation of isocitrate dehydrogenase (IDH) enzymes 1 or 2 is highly corre-
lated with the patient’s overall survival, and the effect is present regardless of the tumor’s
histopathological WHO grade [2–5]. IDH mutation also seems to play a pivotal role in the
carcinogenesis of other solid tumors, such as cholangiocarcinoma, where it is also a major
target for medical therapy [6–8].
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Normally, IDH enzymes catalyze the oxidative decarboxylation of isocitrate to form
a-ketoglutarate (aKG) in the Krebs cycle. IDH1 and IDH2 localize differently in the cell
but share the same function; hence, they are hereafter referred to collectively as IDH.
The mutation of IDH confers a neomorphic enzyme activity that catalyzes the reduction of
aKG into the putative oncometabolite D-2-hydroxyglutarate (D2HG) [9]. The accumulation
of D2HG is further associated with the hypermethylation of DNA and chromatin, which is
thought to dysregulate cell epigenetics [10,11].

IDH mutation status is an important factor for surgical decision-making: patients
with IDH-mutated tumors are more likely to have a good long-term prognosis, and thus
favor aggressive gross total resection with more survival benefit to gain. Patients with IDH
wild-type tumors have a generally poorer prognosis and, therefore, conservative resection
to avoid neurological deficit is favored [12–14]. The effect of gross total resection on survival
remains also in recurrent diseases [15,16]. Current histopathological analysis based on
frozen sections is unable to identify molecular characteristics, including IDH mutation,
within the time frame of surgery [17], thus creating an imminent need for new solutions.

We have previously shown that differential mobility spectrometry (DMS) is able
to identify different brain tumors ex vivo [18]. DMS characterizes substances based on
the mobility differences of ionized particles in high-frequency electrical fields, resulting
in a substance-specific dispersion spectrum, or “smell fingerprint” [19]. The simplicity,
quickness and cost-effectiveness of DMS makes it a compelling emerging technology for
clinical applications [18]. In this study, we demonstrate the rapid, preparation-free analysis
of a tumor’s IDH mutation status with DMS.

2. Materials and Methods

We prospectively obtained tumor samples from 22 patients who had neurosurgical op-
erations at Tampere University Hospital between the years 2018 and 2021, and at Helsinki
University Hospital in 2020. Patient recruitment was continued until we had a sufficient
number of IDH-mutated tumors, which are rarer. To make balanced classes, an equal num-
ber of IDH wild-type tumors were randomly selected for the experiment. Eventually, we
had 11 IDH-mutated tumors and 11 IDH wild-type tumors. IDH-mutated tumors included
5 WHO gr. II–III astrocytomas, 3 gr. II–III oligodendrogliomas, and 3 gr. IV glioblastomas
(GBM). IDH wild-type tumors included 1 gr. III astrocytoma and 10 GBMs. Diagnoses
were made by an experienced neuropathologist and IDH mutation was identified with
immunohistochemistry. The study was approved by the ethics review board of Pirkanmaa
Hospital District, Finland. The patients gave their written consent for the study.

All samples were stored in a freezer at −70 ◦C. The samples were carefully cut into 88
(44 IDH-mutated and 44 IDH wild-type) smaller specimens of macroscopically equal sizes.
Blood, if macroscopically visible, was carefully rinsed from the samples before the analysis.
The samples were randomly placed in a plastic well plate with each well containing 0.18 mL
of agar in the bottom. Each sample was incised with a custom-built, computer-controlled,
40 W, 10.6 μm CO2 laser evaporator four times in a quadratic manner, with 1 mm gaps
between the incisions. The total number of incisions was 352. The laser sampling was
controlled by a graphical user interface. To provide a clean and controlled supply of carrier
gas for the analyte gas, purified and humidified pressurized air was introduced to the
sampling stage via a sampling nozzle. The sampling nozzle provided a protective stream
of carrier gas around the sampling area and, after sample vaporization, transported the
sample gas to the DMS inlet. The DMS used in the study was a commercial IonVision
instrument (Olfactomics Oy, Finland). The measurement parameters for the DMS spectrum
were: separation voltage (Usv), 200–1000 V with 20 increments; compensation voltage
(Ucv), −2–10 V with 60 increments; separation field frequency, 1 MHz; and duty cycle of
the field, 22%. With these parameters, the DMS measurement produced a total of 1200 data
points and the duration of the measurement was approximately 13 s, during which 250
2 ms laser pulses were used to provide a sample stream of vaporized tissue to the DMS.
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A gross appearance of the setup (A–D) and examples of the dispersion spectra (G) are
presented in Figure 1.

Figure 1. The setup: (A) humidifier; (B) sampling unit; (C) DMS analyzer (D); graphical user interface;
(E) computing unit for data analytics; (F) workflow of the algorithm; (G) examples of IDH−positive
and −negative dispersion spectra. Vc = compensation voltage; Vrf = peak-to-peak amplitude of the
radiofrequency waveform voltage.

We evaluated the accuracy of several machine learning algorithms for the detection
of differences in dispersion spectra and the classification of the analyzed samples. Linear
discriminant analysis (LDA) was found to be the best performing algorithm. The main idea
of training an LDA algorithm is the projection of data points to a lower dimensional space so
that the between-class distance of class centers is maximized, and the within-class distance
of data points is minimized, defining a decision boundary between the classes that is used
to classify new samples. The other algorithms tested were K-nearest neighbors (KNN),
random forest (RF), decision tree (DT), support vector machines (SVM) and XGBoost (XGB).

3. Results

The data set revealed a temperature rise, which caused baseline drift during the
measurement of one well plate, making the data biased. Thus, a necessary preprocessing
method was to remove the dimension-wise linear trend which belonged the well plate
from each part of the data set. This preprocessing step improved the classification results
compared to the classification of the raw data. The data set contained 352 samples taken
from 22 patients. Group cross-validation was utilised to estimate the classification perfor-
mance. Group cross-validation is implemented so that, at every iteration, it leaves one
group of samples only for testing. The other groups are used for training. In this case,
the nested group cross-validation technique was used. This algorithm leaves one group for
testing and the other groups are used for training and validating. For the next iteration,
the second group is used for testing and the others for training and validating, and so on.
This approach ensures that there are no data leakages into the training phase. With the
nested group cross-validation training, the LDA algorithm reached a classification accuracy
of 86%, with 86% sensitivity and 85% specificity (Table 1). The workflow of the LDA
algorithm is presented in Figure 1F. Further details of the cross-validation and classification
results reached with other algorithms are presented in the Supplementary File.

In terms of the samples, out of the original 22 tumor samples (352 incisions), 8 samples
had all their incisions correctly classified. In five samples, less than 10% of incisions were
erroneous. In four samples, 10–20% were wrong. In five samples, 20–50% of the incisions
were incorrectly classified. The tumors that had incorrectly clustered incisions included
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eight IDH wild-type tumors and six IDH-mutated tumors. The most difficult tumor type
for the classifier was gr. IV GBM.

Table 1. Cross tabulation of the classification results (LDA).

IDH Mutation
− 150 26

+ 25 151

− +
Classification result

Sens. 0.85 Spec. 0.85

4. Discussion

Our results show that the smoke generated from the IDH-mutated and IDH wild-
type gliomas had distinct DMS profiles, and the DMS could differentiate them with good
sensitivity and specificity. The laser evaporator platform is compact enough to be placed in
the operating room and used for intermittent analysis of the tumor samples during surgery.
The duration of measurement was approximately 13 s, so the DMS operates in almost real
time. The DMS is also simpler and more economical than conventional mass spectrometer-
based solutions. Conventional frozen section analysis is unable to identify molecular
alterations in tumors, such as IDH mutation. In the latest WHO tumor classification, these
alterations have become ever more prominent. This creates an increasing need for novel
tumor identification methods in neurosurgical departments worldwide.

Recently, Raman spectroscopy has also been used for genotyping unprocessed glioma
samples [20]. Raman spectroscopy is a modality that gives spectral tissue characteristics
based on molecular signatures resulting from the inelastic scattering of incident light. Our
results equal those achieved with Raman spectroscopy, and the workflow in DMS is at least
as fast and straightforward.

Our tumor sample set included both IDH-mutated and IDH wild-type gr. IV GBMs
and gr. III malignant astrocytomas. Out of the tumors with an unusual IDH mutation
status given their histology, one GBM had 25% (9 out of 36) of the incisions erroneously
classified, but all the other tumors (two IDH-mutated gr. IV GBMs and one IDH wild-type
gr. III astrocytoma) had all their incisions correct classified, even though the opposite
cluster had multiple histologically similar tumors. This indirectly indicates that the divisive
features in the classification process were actually due to the cellular metabolic changes
driven by an IDH mutation. The phospholipid content of tissue has previously been
identified as a key distinguishing factor in DMS analysis [18]. The metabolic changes
associated with an IDH mutation include aberrations in phospholipid composition [10],
which constitutes a plausible theoretical basis for the detection of IDH mutation by DMS.

A potential source of error in DMS analysis is intratumoral heterogeneity. This is
especially true in GBMs, which vary in terms of cellular density, nuclear pleomorphism,
necrosis, histologic architecture, vasculature, mitoses, and multifaceted microenviron-
ments [21,22]. This can cause variance in tissue impedance and disturb the classifier [23].
An additional confounding factor in our study was 5-ALA, which was used only in the
resections of tumors that radiologically appeared as malignant. However, all three IDH-
mutated GBMs were resected with 5-ALA guidance, and still the classifier was able to
classify them correctly.

Our study was limited by a relatively small number of samples that we multiplied into
smaller specimens. In order to achieve a setup resembling actual intraoperative use, we
only minimally prepared the tumor samples for the analysis. This inevitably caused spatial
variance in the specimens that affected the DMS signal strength, thus creating an additional
confounding factor to the classifier. This issue could be addressed in future studies by
processing the samples into a more homogeneous cell suspension by a centrifuge before
the analysis. The suspension could then be pipetted into the well plate to obtain precisely
equal sample sizes. We also used frozen samples instead of fresh tumors. In our earlier
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unpublished experiments, freezing of the samples was not found to affect the classification
results. However, this should be verified in peer-reviewed studies in the future.

5. Conclusions

Our results show that the DMS is able to differentiate IDH-mutated and IDH wild-
type tumors with good accuracy in a setting suitable for intraoperative use. The role
of molecular alterations in classifying brain tumors and evaluating their prognosis is
increasing. Additionally, the degree of survival benefit achieved with a gross-total resection
varies even in histologically similar tumors based on their IDH mutation status, which is
impossible to identify with conventional frozen section analysis. This makes the DMS a
promising novel tool for neurosurgical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol29050265/s1. The work includes a supplementary
file; detailed description of data analysis and classification results achieved with other algorithms.
Figure S1: Nested cross-validation.
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Simple Summary: Artificial intelligence (AI) is a field that combines computer science with robust
datasets to solve problems. AI in medicine uses machine learning and deep learning to analyze
medical data and gain insight into the pathogenesis of diseases. This study summarizes and inte-
grates our previous research and advances the analyses of macrophages. We used artificial neural
networks and several types of machine learning to analyze the gene expression and protein levels by
immunohistochemistry of several hematological neoplasia and pan-cancer series. As a result, the
patients’ survival and disease subtype classification were achieved with high accuracy. Additionally,
a review of the literature on the latest progress made by AI in the hematopathology field and future
perspectives are given.

Abstract: Artificial intelligence (AI) can identify actionable oncology biomarkers. This research
integrates our previous analyses of non-Hodgkin lymphoma. We used gene expression and immuno-
histochemical data, focusing on the immune checkpoint, and added a new analysis of macrophages,
including 3D rendering. The AI comprised machine learning (C5, Bayesian network, C&R, CHAID,
discriminant analysis, KNN, logistic regression, LSVM, Quest, random forest, random trees, SVM,
tree-AS, and XGBoost linear and tree) and artificial neural networks (multilayer perceptron and radial
basis function). The series included chronic lymphocytic leukemia, mantle cell lymphoma, follicular
lymphoma, Burkitt, diffuse large B-cell lymphoma, marginal zone lymphoma, and multiple myeloma,
as well as acute myeloid leukemia and pan-cancer series. AI classified lymphoma subtypes and pre-
dicted overall survival accurately. Oncogenes and tumor suppressor genes were highlighted (MYC,
BCL2, and TP53), along with immune microenvironment markers of tumor-associated macrophages
(M2-like TAMs), T-cells and regulatory T lymphocytes (Tregs) (CD68, CD163, MARCO, CSF1R,
CSF1, PD-L1/CD274, SIRPA, CD85A/LILRB3, CD47, IL10, TNFRSF14/HVEM, TNFAIP8, IKAROS,
STAT3, NFKB, MAPK, PD-1/PDCD1, BTLA, and FOXP3), apoptosis (BCL2, CASP3, CASP8, PARP,
and pathway-related MDM2, E2F1, CDK6, MYB, and LMO2), and metabolism (ENO3, GGA3). In
conclusion, AI with immuno-oncology markers is a powerful predictive tool. Additionally, a review
of recent literature was made.

Keywords: non-Hodgkin lymphoma; mature B-cell neoplasms; immune checkpoint; immuno-
oncology; immune microenvironment; 3D macrophages; artificial intelligence; machine learning;
artificial neural networks; deep learning
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1. Introduction

Lymphoid neoplasms are tumors of the hematopoietic system derived from immature
and mature B lymphocytes, T lymphocytes, and natural killer (NK) cells that evoke the
normal stages of cell differentiation. Nevertheless, some neoplasms (such as hairy cell
leukemia) show lineage heterogeneity and plasticity, and their normal counterparts cannot
be found [1–7]. The 2016 revision of the World Health Organization (WHO) classification of
lymphoid neoplasms [3] and the International Consensus Classification (ICC) [6] describe
around 45 different subtypes of mature lymphoid neoplasms [3,6,7]. In this research, we
analyzed the gene expression of some of the most relevant and frequent ones.

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) develops
from small mature CD5+ and CD23+ B-cells with mutated or unmutated IGHV genes [3,8].

Follicular lymphoma (FL) is a neoplasia of the germinal centers of follicles (centrocytes
and centroblasts), with a follicular (nodular) pattern, and is frequently associated with the
IGH/BCL2 translocation (t14;18)(q32;q21) that occurs in the bone marrow [3,9,10].

Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is an
extranodal lymphoma (MALT lymphoma) composed of a heterogeneous population of
small B-cells [3]. It originates in the marginal zones, but it extends into the interfollicular and
follicular regions and infiltrates the epithelium, forming the lymphoepithelial lesions [3,11].

Mantle cell lymphoma (MCL) is characterized by monomorphic small to medium-
sized lymphoid cells with irregular nuclei and the CCND1 translocation, originating from
peripheral B lymphocytes of the inner mantle zone, CD5+, and SOX11+ in the classical
form [3,12,13].

Diffuse large B-cell lymphoma (DLBCL) is a neoplasm of medium or large B lymphoid
cells that originate from the germinal center in the germinal center B-cell-like type, or from
the post-germinal center in the activated B-cell-like type [3,14,15]. According to the clinical,
morphological, and biological features, DLBCL can be subdivided into different subtypes;
the remaining ones are not otherwise specified (NOS).

Burkitt lymphoma is a highly aggressive but curable lymphoma that often appears at
extranodal sites or as acute leukemia. It is characterized by a monomorphic proliferation of
medium-size B-cells, mitotic figures, and the MYC translocation to the immunoglobulin
(IG) locus. It originates from the germinal centers. There are three epidemiological vari-
ants, with variable association with the Epstein-Barr virus (EBV): endemic, sporadic, and
immunodeficiency-associated [3,16–18].

Figure 1 shows the stages of the B-lymphocyte differentiation, and the relationship
with the different lymphoma subtypes [19].

Nowadays, there has been rapid advance in the field of artificial intelligence (AI), and
its role in medicine is gaining relevance. AI integrates computer science and datasets to
make predictions or classifications based on input data.

There are two types of artificial intelligence, weak and strong AI. Weak AI, also known
as narrow AI (NAI), is trained to perform specific tasks. Conversely, strong AI includes
artificial general intelligence (AGI) or artificial super intelligence (ASI), and it is expected
to surpass human abilities in the future [20–26].

In this research, we used weak artificial intelligence to predict the prognosis of the pa-
tients and to classify several subtypes of mature B-cell neoplasms (output). Gene expression
(transcriptomics) and protein immunohistochemical data were used as predictors (input
data). The research focused on artificial neural networks (mainly multilayer perceptron),
but also used other neural networks such as the radial basis function and other machine
learning techniques. Regarding the neural networks, “basic” but robust and reliable archi-
tectures were chosen as an elemental part of the analysis. Then, the “basic” networks were
combined in more complex, multivariate analysis algorithms. Figure 2 describes the basic
structure of the neural network.
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Figure 1. Postulated cell of origin of the non-Hodgkin lymphoma subtypes. In the current theory of
the pathogenesis of hematopoietic and lymphoid tissues, B-cell neoplasms correspond to various
stages of B-cell differentiation. For example, follicular lymphoma, Burkitt lymphoma, and diffuse
large B-cell lymphoma develop (or have a stage of differentiation) from mature B lymphocytes
from the germinal centers of follicles of peripheral lymphoid tissues. Of note, follicular lymphoma
is characterized by the IGH/BCL2 translocation (t14;18)(q32;q21) that occurs in the bone marrow.
Nevertheless, this genetic alteration is not sufficient to generate lymphoma, and additional cumulative
changes are necessary.

The immune checkpoints are regulators of the immune system that belong to the
self-tolerance pathways. Without them, the immune system would attach to cells indiscrim-
inately. Cancer uses several mechanisms to proliferate, including evading the host immune
response using immune checkpoint molecules. There are two types of immune checkpoint
molecules: stimulatory and inhibitory. Inhibitory checkpoint molecules inhibit the immune
response and include several markers such as B7-H3 (CD276), BTLA, CTLA-4, LAG3, PD-1,
TIM-3, and VISTA. Nowadays, immune checkpoints are important because they are the
basis of cancer immunotherapy. Currently approved checkpoint inhibitors are anti CTLA-4,
PD-1, and PD-L1 [19,27–35]. In this research, artificial intelligence was used to classify and
to predict the overall survival of different lymphoma subtypes using gene expression data,
all the genes of the arrays, and specific panels of the immune checkpoint.

This manuscript integrates our previous publications to provide a general view of the
results and adds new analysis on tumor-associated macrophages (TAMs).
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Figure 2. The basic structure of a neural network. The network is a function of predictors (also called
inputs or independent variables) that minimize the prediction error of target variables (outputs). In
the case of a multilayer perceptron, it is a feed-forward architecture because the connections flow
from the input to the output layer without loops. Here, four genes predict the overall survival of
patients. The input layer contains these genes. The hidden layer contains the unobservable nodes
(units). The output layer contains the responses; the overall survival is a categorical variable (dead
vs alive).

2. Materials and Methods

2.1. Machine Learning and Neural Networks

This research integrates all the previous analyses that were obtained using conven-
tional biostatistics, machine learning, and artificial neural networks. Machine learning
included Bayesian network, C&R tree, C5 tree, CHAID tree, discriminant analysis, KNN al-
gorithm, logistic regression, LSVM, Quest tree, random forest, random trees, SVM, tree-AS,
XGBoost linear, and XGBoost tree. Two types of artificial neural networks were used: the
multilayer perceptron and radial basis function. The digital image quantification of markers
was performed using the Waikato Environment for Knowledge Analysis (Weka), and the
training of the classifier included fast random forest. All the materials and methods were
thoroughly described in the previous publications [19,27–35].

2.2. Multilayer Perceptron Artificial Neural Network

The multilayer perceptron architecture was chosen in most cases. Several parameters
were chosen to optimize the neural network. The predictors were included in the input
layer, the unobservable nodes or units in the hidden layer, and the responses in the output
layer. Scale-dependent variables and covariates were rescaled to improve network training.
The method for rescaling of covariates was standardized: subtract the mean and divide by
the standard deviation, (x−mean)/s.

The series of cases were randomly partitioned into training (70%) and testing (30%)
datasets. The best performance was found using one hidden layer. The activation function
linked the weighted sums of units in a layer to the values of units in the succeeding layer.
The hyperbolic tangent was usually used. This function has the form γ(c) = tanh(c) = (ec

–e–c)/(ec +e−c). It takes real-valued arguments and transforms them into the range (–1, 1).
When automatic architecture selection is used, this is the activation function for all units in
the hidden layers. The number of units in each hidden layer was determined automatically
by an estimation algorithm.

The output layer contained the target (dependent) variables and the activation function
was softmax. This function has the form: γ(ck) = exp(ck)/Σjexp(cj). It takes a vector of
real-valued arguments and transforms it into a vector whose elements fall in the range (0,1)
and sum to 1. Softmax is available only if all dependent variables are categorical.
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The training type determines how the network processes the records; the training type
was batch. The training options were initial lambda (0.0000005), initial sigma (0.00005),
interval center (0), and interval offset (+/−0.5). The network performance was assessed by
the classification results, receiver operating characteristic (ROC) curve, cumulative gains chart,
lift chart, predicted by observed chart, and residual by predicted chart. Using a sensitivity
analysis, the independent variables were ranked according to their importance for predicting
the dependent variable and in determining the neural network (Figure 3).

Figure 3. Sensitivity analysis. Using a sensitivity analysis, the independent variables were ranked
according to their importance for predicting the dependent variable and in determining the neu-
ral network.

The general architecture for a multilayer perceptron is as follows [34]:
Input layer: J0 = P units, a0:1, . . . , a0:J0; with a0:j = xj.

Hidden layer: Ji units, ai:1, . . . , ai:Ji; with ai:k = γi(ci:k) and ci:k = ∑Ji−1
j=0 wi:j,kai_1:j where

.ai−1:0 = 1
Output layer: JI = R units, aI:1, . . . , aI:Ji; with aI:k = γI(cI:k) and cI:k = ∑J1

j=0 wI:j,kai_ 1:j

where .ai−1:0 = 1
Notation [34]:

I Number of layers, discounting the input layer.
Ji Number of units in layer i. J0 = P,Ji = R, discounting the bias unit.
wi:j,k Weight leading from layer i–1, unit j to layer i, unit k. No weights connect am

i−1:j and
the bias am

i−j:0; that is, there is no wi:j,0 for any j.
γi(c) Activation function for layer i.
w Weight vector containing all weights (w1:0,1, w1:0,2, . . . , wI:JI−1,JI).

2.3. Differential Gene Expression Using the GEOR2 Software

The GEO2R 1.0 software was used to compare the differential gene expression between
subtypes simply. The Benjamini–Hochberg false discovery rate was applied to adjust the
p values. Log transformation was applied if necessary. Limma precision weights and
force normalization were not applied. The data were visualized using volcano and mean
difference (MA) plots, contrasted with a level of cut-off significance set a priori at 0.05.
This software runs in R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, limma 3.26.8. Webpage:
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html (accessed on 23 July 2022).
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2.4. Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) was used to determine if a pathway of
interest was associated with a particular biological state (for example, dead vs alive) [36,37].
The pathways were obtained from the Molecular Signatures Database (MSigDB 7.0 and
greater) or designed in-house. The software GSEA v4.2.3 was downloaded from the webpage
of UC San Diego, Broad Institute: http://www.gsea-msigdb.org/gsea/index.jsp (accessed
on 23 July 2022).

2.5. Conventional Statistical Analyses

Comparisons between groups were performed using crosstabulation with Pearson
Chi-Square and Fisher’s exact tests, and with nonparametric Mann–Whitney U (2 groups)
and Kruskal-Wallis H (≥3 groups) tests. Survival analyses used the Kaplan–Meier and
Log-rank tests, and the univariate and multivariate Cox Regression. The criteria of survival
and response were the standard [38]. Overall survival was calculated from the time of
diagnosis to the last contact with the patient (event recorded as alive vs dead).

2.6. Risk Groups

Risk groups were created using the risk score (prognostic index), which was calculated
by multiplying the beta coefficients of the Cox model by the gene expression values (Risk
score = B1X1 + B2X2 + . . . + BpXp, where xi is the expression value and BI is the beta value
of the Cox table). In the Cox, all the genes are included in a unique model [39].

2.7. Hardware

The analyses were performed on a desktop equipped with an AMD Ryzen 5 1600 and
NVIDIA GeForce GTX 1050 Ti [27], Ryzen 7 3700X and GeForce GTX 1650 [30,33,34], and a
Ryzen 9 5900X and GeForce GTX 3060 Ti [35], all with 16.0 GB of RAM.

Appendix A describes all the software that was used to perform the biostatistical
analyses, including machine learning and artificial neural networks [19,27–35].

2.8. Datasets and Immunohistochemical Procedures

We used publicly available datasets downloaded from the Gene Expression Omnibus
(GEO) repository, webpage: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 23 July
2022) (Appendix B Table A1) [40–57], and own Tokai University Hospital gene expression
(transcriptomic) and immunohistochemical (proteomic) datasets for this research.

Several of the markers that were highlighted in the AI analyses (both machine learning
and artificial neural network) were validated by immunohistochemistry at the protein
level. The cases were selected from the lymphoma series of Tokai University Hospital.
The series of cases ranged from 100 to 293 cases, depending on the project. Immuno-
histochemistry was performed using a Leica Bond Max autostainer following the man-
ufacturer’s instructions (Leica K.K., Tokyo, Japan). Table 1 details the primary antibod-
ies that were used. The review section was made on the basis of PRISMA guidelines:
https://prisma-statement.org/ (accessed on 29 September 2022), Carreras, J. (20 October
2022). Systematic review. https://doi.org/10.17605/OSF.IO/436JQ. The manuscripts were
selected in PubMed using the keywords “lymphoma” and “artificial intelligence”, and
were organized according to the type of input data as PET/CT scan, histological images,
immunophenotype, clinicopathological variables, and gene expression, mutational, and
integrative analysis-based artificial intelligence.
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Table 1. Immunohistochemical markers used in lymphoma cases of Tokai University, School of
Medicine.

Marker Target/Pathway Primary Antibody Company

BCL2 Apoptosis bcl2/100/D5 Novocastra
BCL6 Germinal center LN22 Novocastra

cCASP3 Apoptosis Asp175, #9661 Cell Signaling
CASP8 Apoptosis active subunit p18, 11B6 Novocastra

CD3 T lymphocytes CD3 epsilon, LN10 Novocastra
CD5 T lymphocytes 4C7 Novocastra
CD10 Germinal center 56C6 Novocastra
CD16 M1-like macrophages 2H7 Novocastra
CD20 B lymphocytes L26 Novocastra
CD47 B lymphocytes D3O7P Cell Signaling
CD68 Pan-macrophages 514H12 Novocastra

CD85A/LILRB3 M2-like macrophages FRAS92B CNIO
CD163 M2-like macrophages 10D6 Novocastra
CDK6 Cell cycle 98D CNIO
CSF1 CSF1R pathway 2D10 LSBio

CSF1R M2-like macrophages 2D10 LSBio
Cyclin D1 Cell cycle P2D11F11 Novocastra

E2F1 Cell cycle Agro368V CNIO
EBER Epstein-Barr virus #PB0589, #AR0833 Novocastra

IKAROS Cytokine signaling D6N9Y Cell Signaling
IL10 M2c-like macrophages LS-B7432 Lifespan Bioscience
Ki67 Cell cycle MM1 Novocastra

LMO2 Proto-oncogene 299B CNIO
MARCO Macrophages HPA063793 Atlas antibodies
MDM2 p53 signaling IF2 Invitrogen
MITF M2-like macrophages C5/D5/MAB10775 Abnova

MUM1 Plasma cells IRF4, EAU32 Novocastra
MYC Proto-oncogene Y69 Abcam

NFKB p105/p50 NFKB pathway #3035 Cell Signaling
cPARP Apoptosis Asp214, D64E10 Cell Signaling
PD-L1 Immune checkpoint E1J2J Cell Signaling

p-p44/42 MAPK MAPK pathway Thr202/Tyr204, #4370 Cell Signaling
pSTAT3 STAT3 pathway Tyr705, D3A7 Cell Signaling

PTX3 M2c-like macrophages PPZ1228 Perseus Proteomics
RGS1 Signal transduction Rabbit polyclonal Thermo Fisher
SIRPA M2-like macrophages D6I3M Cell Signaling

TNFAIP8 Apoptosis #14559-MM01 Sino Biological
TP53 Cell cycle, apoptosis DO-7 Novocastra
RGS1 Signal transduction Rabbit polyclonal Thermo Fisher

CNIO, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Center).

3. Results

The different subtypes of hematological neoplasia (mainly non-Hodgkin lymphomas)
were predicted using artificial neural networks, machine learning, and conventional bio-
statistics. The analysis used transcriptomic data and protein levels assessed by immunohis-
tochemistry. The results are summarized as a bulleted list.

3.1. Predictive Classification of Non-Hodgkin Lymphomas

• Using the whole array of 20,863 and a cancer transcriptome panel, the lymphoma
subtypes were predicted by a neural network with high accuracy [19].

• A set of 30 genes derived from the neural network also predicted the overall survival
of an independent series of diffuse large B-cell lymphoma, and a pan-cancer series of
7441 cases of The Cancer Genome Atlas (TCGA) [19] (Figure 4).
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3.2. Follicular Lymphoma, Immune Response, and Microenvironment

• An algorithm combined two types of neural networks (multilayer perceptron and ra-
dial basis function) to predict the overall survival, in combination with other clinically
relevant variables [29].

• These variables were more than 60 years, the number of extranodal sites > 1, LDH-level
ratio > 1, stage > 2, IPI score 2−3, with translocation (14;18) positive, immune response
ratio 2:1 high (≥0.97), and overall survival up to 5 years vs alive from 10 years [29].

• As a result, new poor and favorable prognostic genes were identified, and were corre-
lated with the immune microenvironment (M2-like tumor-associated macrophages) [29]
(Figures 5 and 6).

 
Figure 5. Prediction of the overall survival of follicular lymphoma using an algorithm based on
neural networks. The algorithm combined multilayer perceptron (MLP), radial basis function (RBF),
and COX regression to highlight 43 genes with prognostic relevance; finally, a correlation with
immuno-oncology genes was also performed. This figure shows the algorithm (method) that was
used to analyze the gene expression data of follicular lymphoma using artificial neural networks.
From an initial set of 22,215 genes, a strategy of dimensionality reduction highlighted 43 genes, of
which 18 were associated with poor and 25 with good overall survival of the patients. The first step
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consisted of several independent artificial neural networks. The network architecture included the
22,215 genes as predictors (inputs), a hidden layer, and an output layer with the predicted variable.
The predicted variables were the overall survival of the patients (outcome dead vs alive), and other
relevant clinicopathological variables of follicular lymphoma. The result of the neural network
ranked all the genes according to their normalized importance for predicting the target variable. The
results of the independent multiple neural networks were pooled resulting in 1005 genes, and the
most relevant ones were highlighted using univariate and multivariate Cox regression analyses. The
relevance of these genes was confirmed using gene set enrichment analysis (GSEA). Finally, these
genes were also correlated with several immuno-oncology genes. The 43 genes were the following: 18
were associated with a poor prognosis (FRYL, KIAA0100, CDC40, MED8, PTP4A2, BNIP2, TMEM70,
MED6, SLC24A2, KLK10, RANBP9, PRB1, EVA1B, CBFA2T2, ALDH1L1, KRT19, BTN2A3P, and TRPM4)
and 25 were associated with a good prognosis of the patients (HSF2, ATPAF2, SLC7A11, PTAFR,
TTLL3, TCP10L, DNAAF1, PRH1, NSDHL, TAF12, TSPAN3, AKIRIN1, ITK, TDRD12, LPP, BTD, SIRT5,
ZNF230, ABHD6, TOP2B, ARPC2, ASAP2, IDH3A, PSMF1, and ARFGEF1) (Supplementary Tables
S1–S5). LDH, lactate dehydrogenase; IPI, international prognostic index; IR ratio, immune response
ratio; 5-y, five years; MLP, multilayer perceptron; RBF, radial basis function.

Figure 6. Prediction of the overall survival of follicular lymphoma using an algorithm based on neural
networks. This figure shows the GSEA results of Figure 4 in detail. Gene set enrichment analysis (GSEA)
was performed to confirm the results of the multivariate Cox regression for the overall survival analysis.
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The set of 43 was used in addition to genes of the immune response as well as oncogenes and tumor
suppressor genes related to the pathogenesis of follicular lymphoma. Of note, genes related to
macrophages were highlighted, such as CD163. NOM p–val, nominal p value (the nominal p value
estimates the statistical significance of the enrichment score for a single gene set); FDR q–val, false
discovery rate.

• Tridimensional (3D) analysis of tumor-associated macrophages (TAMs) of follicular
lymphoma and transformation to diffuse large B-cell lymphoma was associated with
increased numbers of TAMs, which created a network-like structure (Figure 7).

 
Figure 7. Tridimensional analysis of tumor-associated macrophages (TAMs) in follicular lymphoma.
The analysis of M2-like TAMs in follicular lymphoma showed that the progression from low grade to
high grade, and the transformation to diffuse large B-cell lymphoma, were associated with increased
numbers of TAMs, which created a physical network-like structure. This result points out that
TAMs may contribute to the disease pathogenesis. In this figure, the macrophages are highlighted in
pale blue (right) and green (left). B and T lymphocytes are in dark blue and red. The images were
obtained using a LSM 700 laser scanning confocal microscope from Carl Zeiss (Carl-Zeiss-Strasse 22,
73447 Oberkochen, Germany), and Imaris software (version 8.4, Oxford Instruments, Belfast, United
Kingdom). FL, follicular lymphoma; DLBCL, diffuse large B-cell lymphoma.

3.3. Follicular Lymphoma, Random Number Generator-Based Strategy

• The random number generation created 120 independent multilayer perceptron so-
lutions and 22,215 gene probes were ranked according to their averaged normalized
importance for predicting the overall survival [35].
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• The analysis identified new predictor genes, which were related to cell adhesion and
migration, cell signaling, and metabolism. These genes were also correlated to the
immuno-oncology markers of CD163, CSF1R, FOXP3, PDCD1 (PD-1), TNFRSF14
(HVEM), and IL10 [35].

• A comparison with other machine learning techniques was also performed. Machine
learning included the following techniques: Bayesian network, C&R tree, C5 tree,
CHAID tree, discriminant analysis, KNN algorithms, logistic regression, LSVM, Quest
tree, random forest, random trees, SVM, tree-AS, XGBoost linear, and XGBoost tree.
A neural network analysis was also made [35] (Figure 8).

Figure 8. Prediction of the overall survival of follicular lymphoma taking advantage of the random
number generator. (A) By using the random generator, 120 independent and different neural network
solutions were calculated, and the averaged normalized importance of each gene for predicting the
overall survival was recorded. Then, the minimal number of genes of a neural network with sufficient
performance was selected, and a final neural network with 17 genes was defined. (B) This neural
network (multilayer perceptron type) included 17 genes in the input layer, a hidden layer of 7 nodes,
and an output layer of 2 nodes (overall survival, death vs alive). (C) A new neural network was
created with the highlighted 17 genes and known immuno-oncology genes. The resulting model had
an acceptable accuracy, with an area under the curve (AUC) of 0.89. The predictors (inputs) were
ranked according to their normalized importance in predicting the overall survival.

3.4. Mantle Cell Lymphoma, Use of Immuno-Oncology Panels to Predict Survival

• An analysis algorithm included several analysis techniques such as neural networks
(both the multilayer perceptron artificial and radial basis function), GSEA, and con-
ventional statistics. In this analysis, 20,862 genes were correlated with 28 prognostic
genes of mantle cell lymphoma. After dimensionality reduction, the patients’ overall
survival was predicted, and new markers were highlighted (Figure 9) [34].
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Figure 9. Cont.
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Figure 9. Prediction of the overall survival of mantle cell lymphoma using an algorithm based on
neural networks. Two methods (A and B algorithms) were designed. Method 1 used as input 20,862
genes to predict the overall survival outcome (dead vs. alive) and other prognostic markers; because
of dimensionality reduction, a final set of 19 genes were highlighted. The analysis also included
testing the final 19 genes with other machine learning analysis, and conventional overall survival
with log-rank test. Method 2 used as input several gene panels to predict the overall survival. As
a result, 125 pan-cancer and immuno-oncology genes were highlighted. The association with the
patients overall survival was confirmed by GSEA and conventional overall survival with log-rank
test. OS, overall survival; MLP, multilayer perceptron; RBF, radial basis function; GSEA, gene set
enrichment analysis; D/A, dead/Alive; AUC, area under the curve; NI, normalized importance.
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• The highlighted genes were related to the cell cycle, apoptosis, and metabolism. The genes
not only predicted the survival of mantle cell lymphoma, but also of diffuse large
B-cell lymphoma and a large pan-cancer series of the TCGA [34].

• A neural network algorithm that combined 10 oncology and immuno-oncology panels
predicted overall survival (Figure 9) [34].

• Other machine learning techniques were used. Additionally, a correlation with the
MCL35 proliferation assay, which was created by the Lymphoma/Leukemia Molecular
Profiling Project, was made [34] (Figure 9).

3.5. Diffuse Large B-Cell Lymphoma, Identification of the 25 Genes Set

• A multilayer perceptron analysis predicted the overall survival of 100 cases using as
input 54,614 gene probes, and highlighted 25 genes with prognostic value [27].

• Correlation with known diffuse large B-cell lymphoma markers showed that high expres-
sion of MYC, BCL2, and ENO3 was associated with worse outcome [27] (Figures 10 and 11).

Figure 10. A neural network predicted the overall survival of diffuse large B-cell lymphoma using
gene expression data. (A) A multilayer perceptron predicted the overall survival and highlighted the
most important 25 genes. (B) Using a risk score formula and the gene expression of the 25 genes, two
groups of patients with different overall survival were found; this figure shows the different gene
expression of the 25 genes between the two risk groups. (C) The two risk groups had different overall
survival. (D) Among the 25 genes, ENO3, MYC, and BCL2 were the most important, and only with
these 3 genes the survival of the patients could be determined.
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Figure 11. Immunohistochemical staining of ENO3, MYC, and BCL2 in diffuse large B-cell lymphoma.
This figure shows six different lymphoma cases, with high or low expression of the 3 markers. Original
magnification: 400× (scale bar = 50 um).

3.6. Diffuse Large B-Cell Lymphoma, Prognostic Value of the 25 Genes in Hematological Neoplasia,
and TNFAIP8 Validation

• The previously identified set of 25 genes not only predicted the prognosis of 741 cases
of diffuse large B-cell lymphoma, but also predicted other hematological neoplasia,
including chronic lymphocytic leukemia (n = 308), mantle cell lymphoma (n = 92), fol-
licular lymphoma (n = 180), multiple myeloma (n = 559), and acute myeloid leukemia
(n = 149) [28].

• The TNFAIP8 marker was highlighted in this analysis. Because of TNFAIP8’s impor-
tance in the apoptotic pathway, it was validated by immunohistochemistry (i.e., at
protein level) in an independent series of 97 cases from Tokai University. Digital image
quantification of TNFAIP8 was performed using an AI-based method. Correlations
with the prognosis of the patients showed that high TNFAIP8 is associated with poor
survival [28].

• TNFAIP8 correlated positively with high M2-like CD163-positive tumor-associated
macrophages (TAMs) and non-GCB cell of origin phenotype [28] (Figure 12).
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Figure 12. Cont.
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Figure 12. A set of 25 genes derived from a neural network predicted the overall survival of several
lymphoma subtypes and acute myeloid leukemia, and high protein expression of TNFAIP8 correlated
with poor survival of diffuse large B-cell lymphoma patients. (A) Using the gene expression values
of 25 genes, previously identified using artificial neural networks, and a risk score formula, it was
possible to predict the overall survival of several hematological neoplasia (lymphomas and acute
myeloid leukemia). All Kaplan–Meier analyses with log-rank tests were statistically significant and
had a p < 0.001. (B) Although all 25 genes were relevant, the strength and direction of the association
was different in each subtype of hematological neoplasia. For example, TNFAIP8 was more relevant
for the overall survival of diffuse large B-cell lymphoma and chronic lymphocytic leukemia, but less
relevant for acute myeloid leukemia and multiple myeloma. Nevertheless, TNFAIP8 contributed to
the survival of all these hematological neoplasia. (C) High TNFAIP8 protein expression, evaluated
by immunohistochemistry using both conventional digital image analysis and AI-based methods,
correlated with poor overall survival of diffuse large B-cell lymphoma patients. This figure shows
two cases of diffuse large B-cell lymphoma. The figure at the top express low TNFAIP8. On the
left, the hematoxylin (dark blue) and DAB-based (brown) immunohistochemical image is shown.
As shown in the inset, the TNFAIP8 staining was cytoplasmic. On the right, the AI-based digital
image analysis is shown for the same case and area. TNFAIP8 is highlighted in red, cellular structures
(B lymphocytes of the lymphoma, T lymphocytes, and macrophages) in pink, and intercellular
tissue in green. The figure at the bottom is characterized by high TNFAIP8 expression. After staining
procedures, the immunohistochemical slides were digitalized and visualized (NanoZoomer S360
scanner and NDP.view2 viewing software, Hamamatsu KK.). Original magnification: 200×. High
TNFAIP8 correlated with age > 60 years, high serum IL2RA, non-GCB phenotype, and high infiltration
of CD163+ M2-like tumor-associated macrophages (CD163+TAMs). TNFAIP8 also moderately
correlated with MYC (Spearman’s correlation coefficient 0.389, p = 0.009) and Ki67 (proliferation
index; Spearman’s correlation coefficient 0.48, p = 0.001). High TNFAIP8 was also associated (trend)
with worse progression-free survival (p = 0.052). Finally, a multivariate COX analysis between
TNFAIP8 (high vs low) and the international prognostic index (IPI) (low+low/intermediate vs
high/intermediate + high) showed that only TNFAIP8 retained the prognostic value (HR = 3.5,
p = 0.040). CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular
lymphoma; MM, multiple myeloma; MCL, mantle cell lymphoma; AML, acute myeloid leukemia.
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3.7. Diffuse Large B-Cell Lymphoma, Prediction of Survival by Caspase-8

• The protein expression of caspase-8 (which is inhibited by TNFAIP8) was analyzed by
immunohistochemistry in a series of 97 cases of diffuse large B-cell lymphoma, and
high expression correlated with a favorable overall and progression-free survival [31].

• Based on an immunohistochemical analysis, caspase-8 was correlated with other
markers of its pathway, including BCL2, caspase-3, CDK6, cleaved PARP, E2F1, Ki67,
LMO2, MDM2, MYB, MYC, TNFAIP8, and TP53 [31].

• The caspase-8 protein expression was also modeled using several machine learning
and artificial neural networks [31] (Figures 13 and 14).

Figure 13. High caspase-8 correlated with favorable survival of diffuse large B-cell lymphoma
patients. The protein levels of caspase-8 (CASP8) were evaluated by immunohistochemistry, and
later correlated with the survival of the patients. Two types of immunohistochemical staining were
observed, low and high. In diffuse large B-cell lymphoma, high caspase-8 expression is associated
with a favorable overall survival (p = 0.005). Additionally, other markers of the capsase-8 pathway,
including caspase-3, cleaved PARP, BCL2, TP53, MDM2, MYC, Ki67, E2F1, CDK6, MYB, LMO2, and
TNFAIP8, were evaluated by immunohistochemistry and quantified using digital image analysis.
Caspase-8 was successfully predicted by the pathway markers, both using conventional statistics and
several machine learning techniques and artificial neural networks. Of note, after staining procedures,
the immunohistochemical slides were digitalized and visualized (NanoZoomer S360 scanner and
NDP.view2 viewing software, Hamamatsu KK.). Original magnification: 400× (scale bar = 50 um).
OS, overall survival; ROC curve, the receiver operating characteristic curve.
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Figure 14. High caspase-8 correlated with favorable survival of diffuse large B-cell lymphoma patients.
This figure shows the immunohistochemical expression of active subunit p18 casp-8 (CASP8), which
correlated with good prognosis of the patients when high. Other related markers, as shown in the
protein–protein interaction analysis, were also analyzed by immunohistochemistry. After staining
procedures, the immunohistochemical slides were digitalized and visualized (NanoZoomer S360
scanner and NDP.view2 viewing software, Hamamatsu KK.). All the markers were quantified using
digital image analysis. This figure shows examples of low and high expressions for each marker.
Original magnification: 400× (scale bar = 50 um).

3.8. Diffuse Large B-Cell Lymphoma, CD274 (PD-L1) and IKAROS

• An algorithm included multilayer perceptron, radial basis function, GSEA, COX regres-
sion, and several machine learning techniques to predict the overall survival of 414 cases
of diffuse large B-cell lymphoma [30].

• The machine learning techniques were Bayesian network, C5.0 algorithm, chi-squared
automatic interaction detection CHAID tree, classification and regression (C&R) tree,
discriminant analysis, logistic regression, Quest tree, random trees, and tree-AS. The
neural network was the multilayer perceptron [30].

• The association of PD-L1 (CD274) and IKAROS with the overall survival was validated
in an independent series of 113 cases by immunohistochemistry. The quantification
included an AI-based method [30] (Figure 15).
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3.9. Diffuse Large B-Cell Lymphoma, CSF1R

• The protein expression of CSF1R was analyzed by immunohistochemistry in 198 cases
of diffuse large B-cell lymphoma, and it was found that high CSF1R-positive TAMs
were associated with poor progression-free survival (Figure 16) [32].

Figure 16. Role of CSF1R in the prognosis of diffuse large B-cell lymphoma. CSF1R was analyzed by
immunohistochemistry in a series of 198 cases, and two histological patterns were found. A CSF1R-
positive B-cell pattern was characterized by favorable progression-free survival; this pattern was
less frequent (around 30% of the cases). Conversely, the most frequent pattern was of CSF1R-
positive tumor-associated macrophages (TAMs) and was associated with an unfavorable outcome.
Additionally, the prediction of the immunohistochemical expression of CSF1R by other CSF1R-related
markers was performed using neural networks. The CSF1R-related markers were CSF1, STAT3, NFKB,
MYC, and Ki67. All markers were quantified using digital image analysis. Of note, the multilayer
perceptron network analyses were performed to predict both the TAM and the B-cell patterns. Our
data suggested that the use of a CSF1R inhibitor such as Pexidartinib could be used in the CSF1R +
TAM pattern. CSF1R, macrophage colony-stimulating factor 1 receptor; DLBCL, diffuse large B-cell
lymphoma; TAM, tumor-associated macrophage, PFS, progression-free survival.
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• Using a neural network, CSF1R protein expression was predicted by 10 CSF1R-related
markers (CSF1, STAT3, NFKB1, Ki67, MYC, PD-L1, TNFAIP8, IKAROS, CD163, and
CD68) (Figure 16) [32].

• The gene expression of CSF1R was predicted by all the genes, and by an immuno-
oncology pattern, and correlated with SIRPA and CD47 [32] (Figures 17 and 18).

. 

Figure 17. Correlation between expression levels of CSF1R and SIRPA/CD47 in diffuse large B-cell
lymphoma. The immunohistochemical pattern of CSF1R-positive tumor-associated macrophages
(TAMs) suggested a relationship with other makers such as SIRPA. SIRPA is a relevant immune
checkpoint marker that mediates negative regulation of phagocytosis. The histological pattern of
SIRPA was of TAMs, similar to PD-L1, CD85A, and MARCO. A ligand for SIRPA is CD47. In our
series, the histological pattern of CD47 was of B lymphocytes of the diffuse large B-cell lymphoma.

Figure 18. Gene expression analysis of CD47 and SIRPA in the diffuse large B-cell lymphoma. In the
series of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP), when analyzing only the
cases with R-CHOP-like treatment, high CD47 but low SIRPA correlated with poor overall survival of
the patients, and SIRPA positively correlated with CSF1R. CD47 is a ligand for SIRPA (SIRPα), a protein
expressed by macrophages and dendritic cells. These two markers belong to the immune checkpoint
pathway, and mediate a negative regulation of phagocytosis. R-CHOP, rituximab, cyclophosphamide,
doxorubicin hydrochloride, vincristine, and prednisolone; LLMPP, Lymphoma/Leukemia Molecular
Profiling Project; OS, overall survival.
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3.10. Diffuse Large B-Cell Lymphoma, Pan-Cancer Immuno-Oncology Panel

• An immuno-oncology panel of 730 genes predicted the overall survival and cell-of-
origin phenotype (Lymph2Cx assay) of a series of 106 diffuse large B-cell lymphoma
cases, using artificial neural networks and machine learning [33].

• The association of MAPK3 with the GCB phenotype was confirmed by immunohisto-
chemistry [33] (Figure 19).

Figure 19. An artificial neural network predicted the overall survival of the diffuse large B-cell lym-
phoma patients, and the cell of origin subtype using a pan-cancer immuno-oncology gene expression
panel. The analysis consisted of the multilayer perceptron. The cell of origin characterization was
assessed with the NanoString Lymph2Cx assay. The performance of the network was high, 0.89 for
overall survival and 0.99 for the cell of origin phenotype. GSEA analysis confirmed enrichment to-
ward the survival outcome of the dead and the cell of origin subtype of activated (ABC) + unspecified.
Using a risk score formula, with 7 genes it was possible to predict the survival of diffuse large B-cell
lymphoma. The association of phospho-MAPK with the germinal center B-cell (GCB) phenotype
was also noted and confirmed by immunohistochemistry. GSEA, gene set enrichment analysis. ABC,
activated B-cell type; GCB, germinal center B-cell type.
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3.11. Diffuse Large B-Cell Lymphoma, Integrative Analysis of Macrophage Markers

Gene expression profiling of 233 DLBCL patients treated with chemotherapy plus
Rituximab was obtained from the series GSE10846, present in the NCBI Gene Expression
Omnibus database. The prognostic value for overall survival of the gene expression of
CD163 was first tested and 100 representative cases were selected, which contained high-risk
(i.e., high CD163) and low-risk cases (i.e., low CD163) (Figure 20).

Figure 20. Analysis of macrophages in diffuse large B-cell lymphoma. The overall survival of
diffuse large B-cell lymphoma was assessed based on the expression of CD163, which is an M2-like
macrophage marker. High expression was associated with a poor prognosis of the patients. Then,
a protein–protein functional network association analysis was performed using the macrophage
markers of CD68 (pan-macrophages), CD16 (M1-like macrophages), CD163 (M2-like), PTX3 (M2c-
like), and MITF (M2-like), and the regulatory T lymphocytes (Tregs) marker of FOXP3. The network
created a macrophage pathway that was subsequently applied to a gene set enrichment analysis
(GSEA). The GSEA confirmed the association of the macrophage pathway with the high-risk group,
which was characterized by poor overall survival and high CD163-positive macrophages.
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A functional protein association network was created using the five macrophage and
one regulatory T lymphocyte (Treg) markers: CD68, CD16, CD163, PTX3, MITF, and FOXP3
as the initial nodes (identifies). Then, the resulting network (i.e., pathway) that contained 57
markers was tested for GSEA analysis in the GSE10846 series of gene expression of diffuse
large B-cell lymphoma. We identified the most relevant pathological markers (i.e., genes)
that are associated with the prognosis of the patients as follows: high-risk (bad prognosis,
and with high CD163 expression) vs low-risk (good prognosis, low CD163). We found
that this pathway was enriched in the high-risk phenotype with a NOM p-val < 0.001 and
FDR q-val < 0.001. In the enrichment score, we could identify the markers: CD163 (2nd in
the list with a rank metric score of 0.515), CD16 (FCGR3B, 4th), CD68 (10th), PTX3 (15th),
and MITF (23rd). Of note, FOXP3 was outside the enrichment set of genes so it was not
associated with the high-risk group. Importantly, at fifth position, IL10, was identified.
GSEA with markers belonging to the immune regulatory M2c-like TAM pathway was also
tested with similar results (Figure 20).

The macrophage markers were analyzed at protein level by immunohistochemistry in
the series of Tokai University (n = 132) (Figure 21). The distribution of the markers in the
normal reactive tonsil was also evaluated.

 

Figure 21. Immunohistochemical staining of macrophage markers and regulatory T lymphocytes
(Tregs) in diffuse large B-cell lymphoma. The expression of macrophage markers and Tregs was
evaluated using immunohistochemical procedures. The staining confirmed that when macrophages
are present at a high concentration in the tissues, their shape is more elongated and dendriform-like.
CD68 is a pan-macrophage marker, CD16 is macrophage polarization M1-like, and CD163, PTX3, and
MITF are M2-like. FOXP3 is a specific marker of Tregs. Original magnification: 400×.

The histological analysis in reactive tonsil, a secondary lymphoid organ, showed a dif-
ferent distribution of the different markers. CD68-positive and MITF-positive macrophages
were widely distributed in all areas. CD16-positive cells were scarce and only identified in
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the lympho-epithelium, the epithelial barrier. CD163-positive macrophages were mainly
present in the interfollicular regions and infrequently in the germinal centers of the follicles.
PTX3-positive cells were of macrophage morphology in all areas and in the germinal centers
PTX3-positive cells also had a morphology of B lymphocytes (mainly centroblasts). IL10-
positive macrophages were scarce but present in all areas. Double IHC showed mutually
exclusive distribution between CD163 and CD16 and partially exclusive with MITF.

The multilayer perceptron (MLP) procedure was performed to produce a predictive
model for one target variable, using the values of several predictors. The target was the dead or
alive variable for overall survival. The predictors were the same categorical variables used in
the COX multivariate analysis: CD163, PTX3 Total, MITF, FOXP3, and IL10. The independent
variables normalized importance were as follows: PTX3 Total (100%), IL10 (95.9%), FOXP3
(48.9%), MITF (35.8%), and CD163 (6.3%) (Figure 22). This result is compatible with COX.
The same procedure was performed to predict the Hans classifier and the importance
was IL10 (100%), PTX3 Total (67.1%), FOXP3 (44.8%), CD163 (39.8%), and MITF (32.8%)
(Figure 22).

Additional analysis consisted of validation the macrophage markers in an independent
series of cases of diffuse large B-cell lymphoma, from the Lymphoma/Leukemia Molecular
Profiling Project (LLMPP), the GSE10846 (webpage: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE10846, accessed on 21 September 2022). Only the cases treated
with R-CHOP-like therapy were selected (n = 233). Several machine learning and artificial
neural networks (multilayer perceptron) were used. The dependent (target) variable was
the overall survival (outcome dead vs alive). As predictors, the macrophage genes of CD163,
CSF1R, PTX3, CD274 (PD-L1), and IL10 were used. Additional immuno-oncology predictors
were markers previously highlighted in the analyses, including MYC, BCL2, TP53, FOXP3,
CSF1, IL34, PDCD1 (PD-1), TNFRSF14, TNFAIP8, IKZF1, STAT3, NFKB1, MYD88, RELA,
CASP8, CASP3, PARP1, BCL2, MKI67, ENO3, and GGA3. In total, 25 genes were analyzed
and the overall survival was successfully predicted. Table 2 shows the machine learning
and neural network models, the number of predictors used in the models, and the overall
accuracy. Figure 16 shows the most relevant models and the most relevant genes. The
models confirmed the importance of the immuno-oncology markers (Figure 23).

Table 2. Machine learning and artificial neural network analysis using gene expression data.

Model No. of Predictors Overall Accuracy (%)

XGBoost Tree 25 100
Random Forest 25 98.3
Random Trees 25 97.1

Bayesian Network 25 89.3
SVM 25 84.5

KNN Algorithm 25 81.9
CHAID 6 79.8
LSVM 25 78.5

Logistic Regression 25 78.1
C5 Tree 3 75.9
Tree-AS 2 74.3

XGBoost Linear 25 74.3
Quest 25 74.3

C&R Tree 25 74.3
Neural Net 25 74.3

Discriminant 25 72.9
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Figure 22. Prediction of the overall survival of diffuse large B-cell lymphoma by M2c-like macrophages
using an artificial neural network. The overall survival of the patients was predicted using an artificial
neural network using the histochemical data of the tissue samples. The network confirmed that the
most relevant markers were PTX3 and IL10, which characterized the immune regulatory M2c-like
macrophages. A conventional survival analysis using the Kaplan–Meier with log-rank test confirmed
the association of high M2c-like macrophages with poor overall and progression-free survival of the
patients. Original magnification: 400×.
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Figure 23. Prediction of the overall survival of diffuse large B-cell lymphoma using immune check-
point and immuno-oncology markers. Using gene expression data of the GSE10846 dataset, the
association of markers of immune regulatory M2c-like tumor-associated macrophages and other
immune checkpoint markers was assessed. The methodology included several machine learning and
artificial neural networks. The overall accuracy of each method is shown in Table 2.

Using the random forest, the markers were ranked according to their significance
for predicting the patients’ overall survival. The random forest uses a tree model and a
bagging method.

The Bayesian network is a graphical model that shows variables (nodes) in a dataset
and the probabilistic, or conditional, independences between them. It constructs a probabil-
ity model by combining observed and recorded evidence. The network’s links (arcs) do not
always depict cause and effect.

The LSVM method permits the classification of data using a linear support vector
machine. With large datasets, or ones with numerous predictor fields, LSVM is an especially
adequate method. In this LSVM analysis, the predictors were ranked in order of relevance.

Nearest Neighbor Analysis classifies the cases based on the resemblance to others and
patterns; this chart is a lower-dimensional projection of the predictor space, which contains
25 predictors (genes).
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4. Discussion

Artificial intelligence (AI) is a recently developed field that integrates computer science
with datasets to perform out calculations. In medicine, both machine learning and deep
learning analyze medical data and gain insights on diseases. Artificial intelligence has many
applications, including diagnosis, disease classification, image analysis, etc. [20–24].

Machine learning is a specialty in artificial intelligence. By using statistics, algorithms
are trained to make classifications or predictions [20–23]. An algorithm of machine learning
is composed of three parts:

(1) Decision process. Based on the labeled or unlabeled input data, an estimated pattern
is produced by the algorithm.

(2) Error function, which evaluates the prediction of the model.
(3) Model optimization process. During the fitting, the weights are adjusted to reduce

discrepancy between the known and the estimates, and weights are updated au-
tonomously until a threshold of accuracy is met.

There are three categories of machine learning models:

(1) Supervised, which use labeled datasets, such as linear regression, logistic regression,
random forest, and support vector machine (SVM).

(2) Unsupervised, which use unlabeled datasets and discover hidden patterns or data
groupings without the need of human intervention, such as principal component
analysis (PCA), singular value decomposition (SVD), and k-means clustering.

A linear regression algorithm is used to predict numerical values based on a linear
relationship between predictors. Logistic regression is a type of supervised learning that predicts
a categorical variable (binary). The clustering analysis uses unsupervised learning and
identifies patterns to group the cases. Decision trees can be used to predict numerical values
or to classify the data into categories; they use a branching sequence of link decisions that
are represented in a tree diagram. Random forests predict a value or category by combining
the results of decision trees [20].Artificial neural networks (ANNs) are algorithms that,
in essence, mimic the human brain. Many data mining applications use neural networks
because they are flexible and powerful for complex processes [25].

A neural network is composed of an input layer, multiple hidden layers (deep neural
network), and an output layer. Most neural networks are feed-forward, which means that
the flow moves in one direction from the input to the output [20–24]. The “deep” term
refers to the number of layers (inclusive of input, hidden, and output layer); more than
three layers can be considered in a deep learning algorithm [21]. The multilayer perceptron
(MLP) and radial basis function (RBF) are used in predictive applications, and are supervised
because the results can be compared with the known values of the target variables [20–26].
The input layer contains the predictors (for example, the genes). The hidden layer contains
unobservable nodes (units). The value of each hidden unit is some function of the predictors.
The output layer contains the responses (Figure 2).

This research predicted the prognosis (mainly the overall survival) and classified
the different subtypes of mature B-cell neoplasms (non-Hodgkin lymphomas) with high
accuracy. Therefore, machine learning and artificial neural networks are useful biostatistical
tools in biomedical research, and it is expected that the importance of artificial intelligence
in medicine will increase in the future.

This research used basic types of neural networks to obtain reliable results. The single
neural networks created the basis for more complex algorithms, making the analysis similar
to a classical multivariate analysis. The neural networks were also complemented with other
conventional biostatistical analyses, such as gene set enrichment analysis (GSEA) and Cox
regression. Additionally, other machine learning techniques were used to complement the
results. Each type of machine learning has special uses, and in the results, the information
that is provided was complementary.

In the different algorithms, the input data comprised all the genes of the array or
specific panels. The panels that were used were carefully selected, and included cancer tran-
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scriptome, pan-cancer, cancer progression, and metabolic pathways that incorporate many
oncogenes and tumor suppressor genes, but also immune-related panels such as immune
exhaustion, human inflammation, host response, autoimmune, and immuno-oncology.
Nowadays, immuno-oncology panels are particularly relevant. This research highlighted
many important immuno-oncology markers such as CD163, CSF1R, CSF1, PD-L1, IL10, TN-
FRSF14, TNFAIP8, PD-1, and FOXP3 which are markers of tumor-associated macrophages
(TAMs), T lymphocytes, and regulatory T lymphocytes (Tregs). A complete discussion can
be found in the previous publications [19,27–35]. Most of these markers can be targeted
using inhibitors. In diffuse large B-cell lymphoma, the use of immunomodulatory drugs
and immune checkpoint inhibitors is a new and promising field for treating the patients
beyond the classical R-CHOP [58] (Table 3).

Table 3. Immuno-oncology and pathway-related markers that were highlighted in this research.

Marker Target Cell/Pathway Function/Prognostic Association

FOXP3 Tregs Immune tolerance and homeostasis of the immune system. High frequency associated
with a favorable prognosis of DLBCL.

PD-1 T lymphocytes Co-inhibition
BTLA B and T lymphocytes Co-inhibition
CD163 M2-like TAMs Pro-tumoral. High frequency is associated with poor prognosis of DLBCL and FL.

CSF1R M2-like TAMs Pro-tumoral. High CSF1R + TAMs associated with poor prognosis, but high CSF1R +
B-cells of DLBCL with favorable prognosis.

CSF1 B lymphocytes Ligand of CSF1R

PD-L1 M2c-like TAMs Pro-tumoral, immune regulatory macrophages (M2c-like). High expression associated
with poor prognosis of DLBCL.

SIRPA M2-like TAMs Limit phagocytosis
CD47 B lymphocytes Limit phagocytosis

IL10 M2c-like TAMs Pro-tumoral, immune regulatory macrophages (M2c-like). High expression associated
with poor prognosis of DLBCL and FL.

TNFRSF14 Antigen-presenting cells Ligand of BTLA, co-inhibitory pathway

IKAROS Pathway-related Transcription factor, chromatin remodeling, hemolymphopoietic system. High
expression associated with a favorable prognosis of DLBCL.

STAT3 Pathway-related Cell growth and apoptosis

NFKB1 Pathway-related
Activated by cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or

viral products. Activated NFKB translocates into the nucleus and stimulates
expression multiple genes of wide variety of biological functions.

MAPK Pathway-related p44/42 MAPK (Erk1/2) signaling pathway. High expression associated with GCB
phenotype of DLBCL (and a favorable prognosis).

TNFAIP8 Pathway-related Anti-apoptosis. High expression associated with poor prognosis of DLBCL.
BCL2 Pathway-related Anti-apoptosis

CASP8 Pathway-related Pro-apoptosis. High expression associated with a favorable prognosis of DLBCL.
CASP3 Pathway-related Pro-apoptosis
PARP Pathway-related Pro-apoptosis

MDM2 Pathway-related TP53 in inhibitor
E2F1 Pathway-related Transcription factor, cell cycle, tumor suppressor

CDK6 Pathway-related Cell cycle
MYB Germinal center B-cells Transcriptional transactivator

LMO2 Germinal center B-cells Hematopoietic development

ENO3 Pathway-related Glycolysis and glycosaminoglycan metabolism. High expression associated with a
poor prognosis of DLBCL.

GGA3 Pathway-related Positive regulation of protein catabolic processes

Tregs, regulatory T lymphocytes; TAMs, tumor-associated macrophages; DLBCL, diffuse large B-cell lymphoma;
FL, follicular lymphoma. Information based on UniProt and GeneCards, and our results.

Interestingly, some of the identified markers were also relevant for the prognosis of
nonhematological neoplasia, which suggests that there are common pathogenic mecha-
nisms in all types of neoplasia.

AI analysis combined neural networks such as multilayer perceptron and radial basis
function, and several machine learning techniques such as Bayesian network, C&R tree,
C5 tree, CHAID tree, discriminant analysis, KNN algorithm, logistic regression, LSVM,
Quest tree, random forest, random trees, SVM, tree-AS, XGBoost linear, XGBoost tree. It is
impossible to decide which the best technique is because each method has some strengths
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and weaknesses, and its applicability depends on the type of data, number of cases, and
number of variables (inputs).

The term neural network refers to a family of loosely related models that are charac-
terized by large parameter spaces and flexible structures, derived from the study of brain
function. Neural networks are the tools of choice in many data mining applications because
of their power and flexibility, especially if the underlying process is complex [28].

Artificial neural networks used in prediction applications, such as multilayer perceptron
(MLP) and radial basis function (RBF) networks, are supervised in the sense that the results
predicted by the model are compared to known values of target variables. The choice between
the MLP and RBF methods depends on the type of data and the level of complexity of the
problem. The MLP method can find more complex relationships, while RBF is generally
faster [30]. Deep neural networks have been criticized for being opaque because their
predictions are incomprehensible to humans; their multi-layered nonlinear structure is a
“black box model” [31].

We recently modeled celiac disease and ulcerative colitis using AI [59,60]. In the case of
ulcerative colitis, we analyzed a series of 43 cases, including 13 healthy controls, 8 inactive
ulcerative colitis, 7 non-involved active ulcerative colitis, and 15 involved active ulcerative
colitis. As input, 734 genes were included. A total of 16 models were used to predict
ulcerative colitis. The overall accuracy was as follows: C5 decision tree (100%, 2 fields
used); logistic regression, discriminant analysis, LSVM, SVM, XGBoost linear, XGBoost tree,
and neural network (100%, 734 fields); CHAID (97.7%, 2 fields); random forest (97.7%, 734);
KNN algorithm (95.4%, 734); C&R tree (95.4%, 12); Quest (83.7%, 6); Bayesian network
(65.1%, 734); random trees (0%, 734). In this research, most of the machine learning methods
and neural networks had accuracy above 85%. Nevertheless, the number of fields that
were used was variable. As also observed in the data of mature B-cell neoplasms, decision
trees have difficulties in handling a large set of variables. Bayesian networks provide
acceptable results, but are not superior to neural networks. Logistic regression accuracy is
usually high and uses many variables. In the end, the most practical strategy is to test all
methods and select the ones that predict better. In Table 2, the same 16 models are applied
to our data of diffuse large B-cell lymphoma. Generally, the machine learning methods
successfully predicted the overall survival of patients with diffuse large B-cell lymphoma
using immuno-oncology and immune checkpoint markers. In this particular experiment,
neural networks did not have high accuracy.

In conclusion, artificial intelligence analysis is a useful tool for analyzing the prognosis
and classification of non-Hodgkin lymphomas.

5. Review of the Literature and Future Perspective in Hematological Neoplasia
Using AI

Other groups have also used artificial intelligence in the field of hematopathology
research. Table 4 provides precise updates on the latest progress made in hematological
malignancies using machine learning and neural networks. The manuscripts were selected in
PubMed using the keywords “lymphoma” and “artificial intelligence”. Among all articles
that were found within the past 3–4 years, a selection of the most recent research was made.
Because of limited space, not all relevant manuscripts are included in Table 4.

571



C
an

ce
rs

2
0

2
2

,1
4,

53
18

T
a

b
le

4
.

U
pd

at
e

on
th

e
la

te
st

pr
og

re
ss

m
ad

e
in

he
m

at
ol

og
ic

al
m

al
ig

na
nc

ie
s

us
in

g
ar

ti
fic

ia
li

nt
el

lig
en

ce
.

A
u

th
o

rs
(Y

e
a

r)
Jo

u
rn

a
l

R
e

se
a

rc
h

T
it

le
S

u
m

m
a

ry
T

e
ch

n
iq

u
e

U
se

d
R

e
fe

re
n

ce

(1
)P

ET
/C

T
sc

an
-b

as
ed

A
I

Li
ss

on
C

S
et

al
.(

20
22

)
C

an
ce

rs
(B

as
el

)

D
ee

p
ne

ur
al

ne
tw

or
ks

an
d

m
ac

hi
ne

le
ar

ni
ng

ra
di

om
ic

s
m

od
el

in
g

fo
r

th
e

pr
ed

ic
ti

on
of

re
la

ps
e

in
m

an
tl

e
ce

ll
ly

m
ph

om
a

Th
is

re
se

ar
ch

pr
ed

ic
te

d
th

e
re

la
ps

e
of

m
an

tl
e

ce
ll

ly
m

ph
om

a
(M

C
L)

us
in

g
ba

se
lin

e
C

T
sc

an
s.

T
he

ac
cu

ra
ci

es
of

pr
ed

ic
ti

on
s

ra
ng

ed
fr

om
64

%
to

70
%

.

3D
SE

R
es

N
et

50
,3

D
D

en
se

N
et

,
op

ti
m

iz
ed

3D
C

N
N

,K
-n

ea
re

st
N

ei
gh

bo
r

(K
N

N
),

an
d

R
an

do
m

Fo
re

st
(R

F)

[6
1]

Sa
di

k
M

et
al

.(
20

21
)

Sc
iR

ep
.

A
rt

ifi
ci

al
in

te
lli

ge
nc

e
co

ul
d

al
er

tf
or

fo
ca

ls
ke

le
to

n/
bo

ne
m

ar
ro

w
up

ta
ke

in
pa

ti
en

ts
w

it
h

H
od

gk
in

’s
ly

m
ph

om
a

st
ag

ed
w

it
h

FD
G

-P
ET

/C
T

D
et

ec
ti

on
of

fo
ca

ls
ke

le
to

n/
bo

ne
m

ar
ro

w
up

ta
ke

(B
M

U
)i

n
pa

ti
en

ts
w

it
h

H
od

gk
in

’s
ly

m
ph

om
a

(H
L)

un
de

rg
oi

ng
st

ag
in

g
w

ith
FD

G
-P

ET
/C

T.
Tr

ai
ni

ng
se

t,
n

=
15

3;
va

lid
at

io
n

se
t,

n
=

48
.

C
on

vo
lu

ti
on

al
ne

ur
al

ne
tw

or
k

(C
N

N
)

[6
2]

W
an

g
Y

Je
ta

l.
(2

02
1)

Eu
r

JN
uc

lM
ed

M
ol

Im
ag

in
g

A
rt

ifi
ci

al
in

te
lli

ge
nc

e
en

ab
le

s
w

ho
le

-b
od

y
po

si
tr

on
em

is
si

on
to

m
og

ra
ph

y
sc

an
s

w
it

h
m

in
im

al
ra

di
at

io
n

ex
po

su
re

Th
ir

ty
-t

hr
ee

di
ag

no
st

ic
18

F-
FD

G
PE

T
im

ag
es

of
pa

ti
en

ts
w

it
h

pe
di

at
ri

c
ca

nc
er

w
er

e
ge

ne
ra

te
d

fr
om

ul
tr

a-
lo

w
do

se
18

F-
FD

G
PE

T
in

pu
ti

m
ag

es
us

in
g

an
A

Ia
lg

or
it

hm
.T

he
n,

th
e

A
I-

ge
ne

ra
te

d
PE

T
sc

an
s

w
er

e
co

m
pa

re
d

w
it

h
cl

in
ic

al
st

an
da

rd
PE

T
sc

an
s.

C
on

vo
lu

ti
on

al
ne

ur
al

ne
tw

or
k

(C
N

N
)

[6
3]

Pi
no

ch
et

P
et

al
.(

20
21

)
Fr

on
tM

ed
(L

au
sa

nn
e)

Ev
al

ua
ti

on
of

an
au

to
m

at
ic

cl
as

si
fic

at
io

n
al

go
ri

th
m

us
in

g
co

nv
ol

ut
io

na
ln

eu
ra

ln
et

w
or

ks
in

on
co

lo
gi

ca
lp

os
it

ro
n

em
is

si
on

to
m

og
ra

ph
y

Th
is

re
se

ar
ch

m
ea

su
re

d
th

e
ef

fic
ie

nc
y

an
d

pe
rf

or
m

an
ce

in
bo

th
cl

in
ic

al
an

d
re

se
ar

ch
en

vi
ro

nm
en

ts
of

a
sy

st
em

ca
lle

d
po

si
tr

on
em

is
si

on
to

m
og

ra
ph

y
(P

ET
)-

as
si

st
ed

re
po

rt
in

g
sy

st
em

(P
A

R
S)

(S
ie

m
en

s
H

ea
lth

in
ee

rs
).

Th
e

m
et

ho
d

w
as

ba
se

d
on

a
co

nv
ol

ut
io

na
ln

eu
ra

ln
et

w
or

k
(C

N
N

)t
ha

ti
de

nt
ifi

ed
su

sp
ec

te
d

ca
nc

er
si

te
s

in
flu

or
in

e-
18

flu
or

od
eo

xy
gl

uc
os

e
(1

8F
-F

D
G

)P
ET

/c
om

pu
te

d
to

m
og

ra
ph

y.
Th

es
e

da
ta

w
er

e
co

rr
el

at
ed

w
it

h
th

e
su

rv
iv

al
of

th
e

pa
ti

en
ts

.T
w

o
co

ho
rt

s
w

er
e

ev
al

ua
te

d:
11

9
ca

se
s

of
D

LB
C

L,
an

d
43

0
ca

se
s

of
D

LB
C

L
an

d
ot

he
r

tu
m

or
s.

D
ic

e
sc

or
e

[6
4]

(2
)H

is
to

lo
gi

ca
li

m
ag

es
-b

as
ed

A
I

El
H

us
se

in
S

et
al

.(
20

22
)

JP
at

ho
l.

A
rt

ifi
ci

al
in

te
lli

ge
nc

e
st

ra
te

gy
in

te
gr

at
in

g
m

or
ph

ol
og

ic
an

d
ar

ch
ite

ct
ur

al
bi

om
ar

ke
rs

pr
ov

id
e

ro
bu

st
di

ag
no

st
ic

ac
cu

ra
cy

fo
r

di
se

as
e

pr
og

re
ss

io
n

in
ch

ro
ni

c
ly

m
ph

oc
yt

ic
le

uk
em

ia

C
yt

ol
og

ic
an

d
ar

ch
it

ec
tu

ra
lf

ea
tu

re
s

ob
ta

in
ed

fr
om

w
ho

le
-s

lid
es

im
ag

es
w

er
e

us
ed

to
cl

as
si

fy
12

5
sa

m
pl

es
in

to
th

re
e

su
bt

yp
es

:c
hr

on
ic

ly
m

ph
oc

yt
ic

le
uk

em
ia

(C
LL

,n
=

69
),

pr
og

re
ss

io
n

to
ac

ce
le

ra
te

d
C

LL
(a

C
LL

,n
=

44
),

an
d

tr
an

sf
or

m
at

io
n

to
di

ff
us

e
la

rg
e

B-
ce

ll
ly

m
ph

om
a

(R
ic

ht
er

tr
an

sf
or

m
at

io
n;

R
T,

n
=

80
).

H
ov

er
-N

et
[6

5]

Sw
id

er
sk

a-
C

ha
da

jZ
et

al
.

(2
02

1)
V

ir
ch

ow
s

A
rc

h.
A

rt
ifi

ci
al

in
te

lli
ge

nc
e

to
de

te
ct

M
Y

C
tr

an
sl

oc
at

io
n

in
sl

id
es

of
di

ff
us

e
la

rg
e

B-
ce

ll
ly

m
ph

om
a

Th
e

H
&

E
sl

id
es

of
28

7
ca

se
s

w
er

e
ev

al
ua

te
d

us
in

g
a

de
ep

le
ar

ni
ng

al
go

ri
th

m
to

id
en

ti
fy

M
Y

C
re

ar
ra

ng
em

en
tb

y
D

N
A

in
si

tu
hy

br
id

iz
at

io
n

(F
IS

H
).

D
ee

p
le

ar
ni

ng
ne

ur
al

ne
tw

or
k

(U
-N

et
)a

nd
cl

as
si

ca
lm

ac
hi

ne
le

ar
ni

ng
(r

an
do

m
fo

re
st

cl
as

si
fic

at
io

n)

[6
6]

572



C
an

ce
rs

2
0

2
2

,1
4,

53
18

T
a

b
le

4
.

C
on

t.

A
u

th
o

rs
(Y

e
a

r)
Jo

u
rn

a
l

R
e

se
a

rc
h

T
it

le
S

u
m

m
a

ry
T

e
ch

n
iq

u
e

U
se

d
R

e
fe

re
n

ce

St
ei

nb
us

s
G

et
al

.(
20

21
)

C
an

ce
rs

(B
as

el
)

D
ee

p
le

ar
ni

ng
fo

r
th

e
cl

as
si

fic
at

io
n

of
no

n-
H

od
gk

in
ly

m
ph

om
a

on
hi

st
op

at
ho

lo
gi

ca
li

m
ag

es

In
th

is
re

se
ar

ch
,t

he
tr

ai
ni

ng
se

ti
nc

lu
de

d
84

,1
39

im
ag

e
pa

tc
he

s
fr

om
62

9
pa

tie
nt

s
th

at
w

er
e

cl
as

si
fie

d
as

re
ac

ti
ve

ly
m

ph
no

de
s,

no
da

ls
m

al
ll

ym
ph

oc
yt

ic
ly

m
ph

om
a/

ch
ro

ni
c

ly
m

ph
oc

yt
ic

le
uk

em
ia

,a
nd

no
da

ld
iff

us
e

la
rg

e
B-

ce
ll

ly
m

ph
om

a.
Th

e
va

lid
at

io
n

se
ti

nc
lu

de
d

16
,9

60
im

ag
e

pa
tc

he
s

fr
om

12
5

pa
tie

nt
s.

Th
e

fin
al

m
od

el
ha

d
an

ac
cu

ra
cy

of
96

%
.

Ef
fic

ie
nt

N
et

co
nv

ol
ut

io
na

l
ne

ur
on

al
ne

tw
or

k
(C

N
N

)
[6

7]

Z
ha

ng
X

et
al

.(
20

21
)

Te
ch

no
lH

ea
lth

C
ar

e
R

es
ea

rc
h

on
th

e
cl

as
si

fic
at

io
n

of
ly

m
ph

om
a

pa
th

ol
og

ic
al

im
ag

es
-b

as
ed

on
de

ep
re

si
du

al
ne

ur
al

ne
tw

or
ks

Th
e

an
al

ys
is

us
ed

37
4

pa
th

ol
og

ic
al

im
ag

es
,

in
cl

ud
in

g
ch

ro
ni

c
ly

m
ph

oc
yt

ic
le

uk
em

ia
,f

ol
lic

ul
ar

ly
m

ph
om

a,
an

d
m

an
tl

e
ce

ll
ly

m
ph

om
a.

BP
ne

ur
al

ne
tw

or
k

an
d

BP
ne

ur
al

ne
tw

or
k

op
ti

m
iz

ed
by

ge
ne

ti
c

al
go

ri
th

m
(G

A
-B

P)
,d

ee
p

re
si

du
al

ne
ur

al
ne

tw
or

k
m

od
el

(R
es

N
et

50
),

so
ft

m
ax

la
ye

r

[6
8]

Ta
ng

G
et

al
.(

20
21

)
A

ct
a

C
yt

ol
.

A
m

ac
hi

ne
le

ar
ni

ng
to

ol
us

in
g

di
gi

ta
l

m
ic

ro
sc

op
y

(M
or

ph
og

o)
fo

r
th

e
id

en
tifi

ca
tio

n
of

ab
no

rm
al

ly
m

ph
oc

yt
es

in
th

e
bo

ne
m

ar
ro

w

M
or

ph
ol

og
ic

al
di

ff
er

en
ti

at
io

n
of

ab
no

rm
al

ly
m

ph
oc

yt
es

in
bo

ne
m

ar
ro

w
w

as
ev

al
ua

te
d

in
53

ca
se

s
of

di
ff

er
en

ts
ub

ty
pe

s
of

B-
ce

ll
ly

m
ph

om
as

,
us

in
g

au
to

m
at

ed
di

gi
ta

li
m

ag
es

.

“M
or

ph
og

o”
sy

st
em

[6
9]

Yu
W

H
et

al
.(

20
21

)
C

an
ce

rs
(B

as
el

)

M
ac

hi
ne

le
ar

ni
ng

ba
se

d
on

m
or

ph
ol

og
ic

al
fe

at
ur

es
en

ab
le

s
th

e
cl

as
si

fic
at

io
n

of
pr

im
ar

y
in

te
st

in
al

T-
ce

ll
ly

m
ph

om
as

.

A
to

ta
lo

f4
0

pr
im

ar
y

in
te

st
in

al
T-

ce
ll

ly
m

ph
om

as
(P

IT
L)

,i
nc

lu
di

ng
26

m
on

om
or

ph
ic

ep
it

he
lio

tr
op

ic
in

te
st

in
al

T-
ce

ll
ly

m
ph

om
a

(M
EI

T
L)

,1
0

in
te

st
in

al
T-

ce
ll

ly
m

ph
om

a,
no

to
th

er
w

is
e

sp
ec

ifi
ed

(I
TC

L-
N

O
S)

,a
nd

4
bo

rd
er

lin
e

ca
se

s
w

er
e

an
al

yz
ed

.
Th

e
in

pu
ts

w
er

e
th

e
m

or
ph

ol
og

ic
al

fe
at

ur
es

an
d

th
e

im
m

un
op

he
no

ty
pe

s
(C

D
8

an
d

C
D

56
).

X
G

Bo
os

ta
nd

C
N

N
(H

T
C

-R
C

N
N

w
it

h
R

es
N

et
50

)
[7

0]

Z
ho

u
M

et
al

.(
20

21
)

Fr
on

tP
ed

ia
tr

.
D

ev
el

op
m

en
ta

nd
ev

al
ua

ti
on

of
a

le
uk

em
ia

di
ag

no
si

s
sy

st
em

us
in

g
de

ep
le

ar
ni

ng
in

re
al

cl
in

ic
al

sc
en

ar
io

s

A
to

ta
lo

f1
73

2
bo

ne
m

ar
ro

w
,r

aw
im

ag
es

of
89

ch
ild

re
n

w
it

h
le

uk
em

ia
w

er
e

an
al

yz
ed

w
it

h
co

nv
ol

ut
io

na
ln

eu
ra

ln
et

w
or

ks
,w

it
h

a
pe

rf
or

m
an

ce
ac

cu
ra

cy
of

89
%

.A
pa

rt
fr

om
de

te
ct

in
g

le
uk

oc
yt

es
,

th
e

sy
st

em
al

so
de

te
ct

ed
bo

ne
m

ar
ro

w
m

et
as

ta
si

s
of

ly
m

ph
om

a
an

d
ne

ur
ob

la
st

om
as

.

R
et

in
aN

et
,V

G
G

,F
ea

tu
re

Py
ra

m
id

N
et

w
or

k,
R

es
N

et
,

co
nv

ol
ut

io
na

ln
eu

ra
ln

et
w

or
k

(C
N

N
)

[7
1]

Z
ha

ng
Je

ta
l.

(2
02

0)
M

ed
Ph

ys
.

C
la

ss
ifi

ca
ti

on
of

di
gi

ta
lp

at
ho

lo
gi

ca
l

im
ag

es
of

no
n-

H
od

gk
in

’s
ly

m
ph

om
a

su
bt

yp
es

ba
se

d
on

th
e

fu
si

on
of

tr
an

sf
er

le
ar

ni
ng

an
d

pr
in

ci
pa

lc
om

po
ne

nt
an

al
ys

is

D
ig

it
al

pa
th

ol
og

y
im

ag
es

of
no

n-
H

od
gk

in
ly

m
ph

om
a,

in
cl

ud
in

g
ch

ro
ni

c
ly

m
ph

oc
yt

ic
le

uk
em

ia
(C

LL
),

fo
lli

cu
la

r
ly

m
ph

om
a

(F
L)

,a
nd

m
an

tl
e

ce
ll

ly
m

ph
om

a
(M

C
L)

tu
m

or
w

er
e

an
al

yz
ed

an
d

cl
as

si
fie

d.
Th

e
m

od
el

ha
d

an
ov

er
al

la
cc

ur
ac

y
of

98
.9

%
.

Tr
an

sf
er

le
ar

ni
ng

(T
L)

an
d

pr
in

ci
pa

lc
om

po
ne

nt
an

al
ys

is
(P

C
A

)
[7

2]

M
oh

lm
an

JS
et

al
.(

20
20

)
A

m
JC

lin
Pa

th
ol

.

Im
pr

ov
in

g
au

gm
en

te
d

hu
m

an
in

te
lli

ge
nc

e
to

di
st

in
gu

is
h

Bu
rk

it
t

ly
m

ph
om

a
fr

om
di

ff
us

e
la

rg
e

B-
ce

ll
ly

m
ph

om
a

ca
se

s

A
to

ta
lo

f1
0,

81
8

H
&

E
im

ag
es

fr
om

34
ca

se
s

of
Bu

rk
it

tl
ym

ph
om

a
an

d
36

ca
se

s
of

di
ff

us
e

la
rg

e
B-

ce
ll

ly
m

ph
om

a
w

er
e

us
ed

to
tr

ai
n

an
d

di
ff

er
en

ti
at

e
th

e
tw

o
ly

m
ph

om
a

su
bt

yp
es

.

C
on

vo
lu

ti
on

al
ne

ur
al

ne
tw

or
k

(C
N

N
)

[7
3]

573



C
an

ce
rs

2
0

2
2

,1
4,

53
18

T
a

b
le

4
.

C
on

t.

A
u

th
o

rs
(Y

e
a

r)
Jo

u
rn

a
l

R
e

se
a

rc
h

T
it

le
S

u
m

m
a

ry
T

e
ch

n
iq

u
e

U
se

d
R

e
fe

re
n

ce

Li
D

et
al

.(
20

20
)

N
at

C
om

m
un

.
A

de
ep

le
ar

ni
ng

di
ag

no
st

ic
pl

at
fo

rm
fo

r
di

ff
us

e
la

rg
e

B-
ce

ll
ly

m
ph

om
a

w
it

h
hi

gh
ac

cu
ra

cy
ac

ro
ss

m
ul

ti
pl

e
ho

sp
it

al
s

Th
is

re
se

ar
ch

us
ed

hi
st

ol
og

ic
al

im
ag

es
of

H
&

E
to

cl
as

si
fy

di
ff

us
e

la
rg

e
B-

ce
ll

ly
m

ph
om

a
(D

LB
C

L)
vs

no
n-

D
LB

C
L.

N
on

-D
LB

C
L

in
cl

ud
ed

m
et

as
ta

ti
c

ca
rc

in
om

a,
m

el
an

om
a,

an
d

ot
he

r
ly

m
ph

om
as

in
cl

ud
in

g
sm

al
ll

ym
ph

oc
yt

ic
ly

m
ph

om
a/

ch
ro

ni
c

ly
m

ph
oc

yt
ic

le
uk

em
ia

,m
an

tl
e

ce
ll

ly
m

ph
om

a,
fo

lli
cu

la
r

ly
m

ph
om

a,
an

d
cl

as
si

ca
lH

od
gk

in
ly

m
ph

om
a.

Th
e

G
O

TD
P-

M
P-

C
N

N
s

(w
ith

co
m

bi
ne

d
17

C
N

N
s)

m
od

el
ha

d
an

ac
cu

ra
cy

of
99

.7
%

to
10

0%
.

17
ty

pe
s

of
C

N
N

:A
le

xN
et

,
G

oo
gL

eN
et

(I
m

ag
eN

et
),

G
oo

gL
eN

et
(P

la
ce

s3
65

),
R

es
N

et
18

,R
es

N
et

50
,R

es
N

et
10

1,
V

gg
16

,V
gg

19
,I

nc
ep

ti
on

v3
,

In
ce

pt
io

nR
es

N
et

v2
,S

qu
ee

ze
N

et
,

D
en

se
N

et
20

1,
M

ob
ile

N
et

v2
,

Sh
uf

fle
N

et
,X

ce
pt

io
n,

N
as

N
et

m
ob

ile
,N

as
ne

tl
ar

ge

[7
4]

M
iy

os
hi

H
et

al
.(

20
20

)
La

b
In

ve
st

.
D

ee
p

le
ar

ni
ng

sh
ow

s
th

e
ca

pa
bi

lit
y

of
hi

gh
-l

ev
el

co
m

pu
te

r-
ai

de
d

di
ag

no
si

s
of

m
al

ig
na

nt
ly

m
ph

om
a.

Th
e

H
&

E
im

ag
es

of
38

8
ca

se
s,

in
cl

ud
in

g
25

9
w

it
h

di
ff

us
e

la
rg

e
B-

ce
ll

ly
m

ph
om

a,
89

w
it

h
fo

lli
cu

la
r

ly
m

ph
om

a,
an

d
40

w
it

h
re

ac
ti

ve
ly

m
ph

oi
d

hy
pe

rp
la

si
a,

w
er

e
an

al
yz

ed
us

in
g

de
ep

le
ar

ni
ng

.
Th

e
ac

cu
ra

cy
of

th
e

m
od

el
w

as
97

%
.

C
on

vo
lu

ti
on

al
ne

ur
al

ne
tw

or
k

(C
N

N
)

[7
5]

Z
or

m
an

M
et

al
.(

20
11

)
W

ie
n

K
lin

W
oc

he
ns

ch
r.

C
la

ss
ifi

ca
ti

on
of

fo
lli

cu
la

r
ly

m
ph

om
a

im
ag

es
:a

ho
lis

ti
c

ap
pr

oa
ch

w
it

h
sy

m
bo

l-
ba

se
d

m
ac

hi
ne

le
ar

ni
ng

m
et

ho
ds

.

A
na

ly
si

s
of

fo
lli

cu
la

r
ly

m
ph

om
a

im
ag

es
,f

oc
us

in
g

on
th

e
id

en
ti

fic
at

io
n

of
fo

lli
cl

es
.

D
ec

is
io

n
tr

ee
s

(M
tD

ec
iT

3.
1,

R
SE

S
2.

2,
an

d
W

ek
a

3)
an

d
ar

ti
fic

ia
ln

eu
ra

ln
et

w
or

ks
(m

ul
ti

la
ye

r
pe

rc
ep

tr
on

)

[7
6]

(3
)I

m
m

un
op

he
no

ty
pe

-b
as

ed
A

I

Z
ha

o
M

et
al

.(
20

20
)

C
yt

om
et

ry
A

.

H
em

at
ol

og
is

t-
le

ve
lc

la
ss

ifi
ca

ti
on

of
m

at
ur

e
B-

ce
ll

ne
op

la
sm

s
us

in
g

de
ep

le
ar

ni
ng

on
m

ul
ti

pa
ra

m
et

er
flo

w
cy

to
m

et
ry

da
ta

In
fo

rm
at

io
n

ca
pt

ur
ed

by
m

ul
ti

pa
ra

m
et

er
flo

w
cy

to
m

et
ry

(M
FC

)o
f1

8,
27

4
ca

se
s,

in
cl

ud
in

g
ch

ro
ni

c
ly

m
ph

oc
yt

ic
le

uk
em

ia
an

d
its

pr
ec

ur
so

r
m

on
oc

lo
na

l
B-

ce
ll

ly
m

ph
oc

yt
os

is
,m

ar
gi

na
lz

on
e

ly
m

ph
om

a,
m

an
tl

e
ce

ll
ly

m
ph

om
a,

pr
ol

ym
ph

oc
yt

ic
le

uk
em

ia
,

fo
lli

cu
la

r
ly

m
ph

om
a,

ha
ir

y
ce

ll
le

uk
em

ia
,

ly
m

ph
op

la
sm

ac
yt

ic
ly

m
ph

om
a

w
er

e
an

al
yz

ed
;t

he
m

od
el

w
as

te
st

ed
on

a
se

to
f2

34
6

ca
se

s.
T

he
m

od
el

pe
rf

or
m

an
ce

ha
d

an
F1

sc
or

e
of

0.
94

.

Se
lf

-o
rg

an
iz

in
g

m
ap

s
an

d
co

nv
ol

ut
io

na
ln

eu
ra

ln
et

w
or

ks
[7

7]

G
ai

da
no

V
et

al
.(

20
20

)
C

an
ce

rs
(B

as
el

)

A
cl

in
ic

al
ly

ap
pl

ic
ab

le
ap

pr
oa

ch
to

th
e

cl
as

si
fic

at
io

n
of

B-
ce

ll
no

n-
H

od
gk

in
ly

m
ph

om
as

w
it

h
flo

w
cy

to
m

et
ry

an
d

m
ac

hi
ne

le
ar

ni
ng

Th
e

im
m

un
op

he
no

ty
pe

da
ta

fr
om

flo
w

cy
to

m
et

ry
of

14
65

B-
ce

ll
no

n-
H

od
gk

in
ly

m
ph

om
a

(N
H

L)
ca

se
s

w
er

e
an

al
yz

ed
.T

he
ca

se
s

in
cl

ud
ed

ch
ro

ni
c

ly
m

ph
oc

yt
ic

le
uk

em
ia

(C
LL

),
di

ff
us

e
la

rg
e

B-
ce

ll
ly

m
ph

om
a

(D
LB

C
L)

,B
ur

ki
tt

ly
m

ph
om

a
(B

L)
,

fo
lli

cu
la

r
ce

ll
ly

m
ph

om
a

(F
C

L)
,h

ai
ry

ce
ll

le
uk

em
ia

(H
C

L)
,s

pl
en

ic
ly

m
ph

om
a

(S
L)

,m
an

tl
e

ce
ll

ly
m

ph
om

a
(M

C
L)

,m
ar

gi
na

lz
on

e
ly

m
ph

om
a

(M
Z

L)
,

an
d

ly
m

ph
op

la
sm

ac
yt

ic
ly

m
ph

om
a

(L
PL

).
T

he
ac

cu
ra

cy
of

th
e

cl
as

si
fic

at
io

n
ra

ng
ed

fr
om

92
%

to
10

0%
.

C
la

ss
ifi

ca
ti

on
tr

ee
s

[7
8]

574



C
an

ce
rs

2
0

2
2

,1
4,

53
18

T
a

b
le

4
.

C
on

t.

A
u

th
o

rs
(Y

e
a

r)
Jo

u
rn

a
l

R
e

se
a

rc
h

T
it

le
S

u
m

m
a

ry
T

e
ch

n
iq

u
e

U
se

d
R

e
fe

re
n

ce

(4
)C

lin
ic

op
at

ho
lo

gi
ca

lv
ar

ia
bl

es
-b

as
ed

A
I

Z
ha

n
M

et
al

.(
20

21
)

Le
uk

Ly
m

ph
om

a

M
ac

hi
ne

le
ar

ni
ng

to
pr

ed
ic

th
ig

h-
do

se
m

et
ho

tr
ex

at
e-

re
la

te
d

ne
ut

ro
pe

ni
a

an
d

fe
ve

r
in

ch
ild

re
n

w
it

h
B-

ce
ll

ac
ut

e
ly

m
ph

ob
la

st
ic

le
uk

em
ia

A
m

od
el

in
cl

ud
ed

57
SN

Ps
of

16
ge

ne
s

an
d

cl
in

ic
al

va
ri

ab
le

s
to

pr
ed

ic
tn

eu
tr

op
en

ia
an

d
fe

ve
r

in
13

9
pe

di
at

ri
c

ca
se

s
of

ac
ut

e
ly

m
ph

ob
la

st
ic

le
uk

em
ia

tr
ea

te
d

w
it

h
hi

gh
-d

os
e

m
et

ho
tr

ex
at

e
(M

T
X

).

R
an

do
m

fo
re

st
[7

9]

Bu
ci

ńs
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The manuscripts were organized according to the type of input data, i.e., PET/CT scan,
histological images, immunophenotype, clinicopathological variables, and gene expression,
mutational, and integrative analysis-based artificial intelligence [61–84].

Worth mentioning is the work of Schmitz R et al. published in the New England Journal
of Medicine in 2018. The genetics and pathogenesis of diffuse large B-cell lymphoma were
analyzed using random forest. The input data from 574 diffuse large B-cell lymphoma
cases included exome and transcriptome sequencing, whole-genome copy-number array-
based DNA analysis, and targeted amplicon resequencing of 372 genes to identify genetic
subtypes [84].

A similar work was published by Xu-Monette ZY et al. in 2020 in Blood Advances. Based
on targeted next-generation sequencing (NGS), a correlation with the cell of origin subtypes
was made using AI in diffuse large B-cell lymphoma. The series of 418 cases included
immunohistochemical, gene expression, DNA in situ hybridization, array CGH, and NGS
sequencing. Using autoencoders and CPH models, the cases were classified according to the
cell of origin and the patients’ survival (overall survival and progression-free survival) [81].

Li D et al. reported in 2020 in Nature Communications a deep learning diagnostic
platform for diffuse large B-cell lymphoma. The method included data from multiple
hospitals. This research used histological images of H&E to classify diffuse large B-cell
lymphoma (DLBCL) vs non-DLBCL. Non-DLBCL included cases of metastatic carcinoma,
melanoma, and other lymphomas. The lymphoma subtypes were chronic lymphocytic
leukemia, mantle cell lymphoma, follicular lymphoma, and classical Hodgkin lymphoma.
Seventeen types of convolutional neural networks were used, and the model had an
accuracy of 99.7–100% [74].

In the past five years, there has been a significant increase in the use of artificial
intelligence in cancer research, and many applications in hematological neoplasia have
been published [85]. Many studies have used convolutional neural networks to classify
digitalized histological images. Machine learning and artificial neural networks have also
been used to analyze gene expression and mutational data. It is expected that in the future,
artificial intelligence techniques will become a standard part of the biostatistical analysis,
and complementary to “conventional” bioinformatics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215318/s1, Table S1: Multilayer perceptron analysis
(MLP). Table S2: Radial basis function analysis (RBF). Table S3: Genes associated to poor prognosis
in the multivariate Cox survival analysis. Table S4: Genes associated to good prognosis in the multi-
variate Cox survival analysis. Table S5: Clinicopathological correlations with the final set of seven
prognostic genes.
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Appendix A

The analyses used several software applications, including EditPad Lite (version 8.4.0
x64, Just Great Software Co. Ltd.); Fiji (version ImageJ 1.53u, NIH); GSEA (version 4.3.2, Broad
Institute); GIMP (version 2.10.8, GNU); IBM SPSS 25 to 27; IBM modeler 18 (IBM); JMP Pro 14
(JMP Statistical Discovery LLC, SAS); Microsoft excel 2016 (version 16.0.5317.1000, Microsoft
Corporation); Minitab (version 21.1.0, Minitab, LLC); Morpheus matrix visualization and
analysis software (version 1, https://github.com/cmap/morpheus.js, Broad Institute)
(accessed date 25 October 2022); NSolver (version 4.0, NanoString); RapidMiner Studio
(version 9.10.011, RapidMiner); R (version 4.2.1) (http://cran.r-project.org) (accessed date
25 October 2022); RStudio (version 2022.07.2, Build 576, RStudio, PBC); STRING protein–
protein interaction networks (version 11.5, STRING Consortium 2022); and Xlstat (Premium
2018.1, Build 49320 x64, multilingual, Addinsoft).

Appendix B

Table A1. Publicly available datasets used in addition to the Tokai University series.

Diagnosis Dataset No. of Cases Reference

Non-Hodgkin lymphomas

GSE132929

290

[40]

Follicular lymphoma 65
Mantle cell lymphoma 43

Diffuse large B-cell lymphoma 100
Burkitt lymphoma 59

Marginal zone lymphoma 23

Chronic lymphocytic leukemia GSE22762 107 [41,42]
ICGC CLLE-ES 201

Diffuse large B-cell lymphoma

GSE10846 414 [43,44]
GSE23501 69 [45]
GSE4475 159 [46,47]

TCGA-DLBCL v.2016 47
E-TABM-346 52 [48]

Follicular lymphoma GSE16131 180 [49]

Mantle cell lymphoma LLMPP Rosenwald 2003 92 [50]
GSE93291 123 [51]

Multiple myeloma GSE2658 559 [52–57]
Acute Myeloid Leukemia TCGA-AML v.2016 149

Appendix C. Comments and Analysis Of breast Cancer Detection Using Deep

Neural Networks

Breast cancer is the second most frequent type of cancer in women, just before skin
cancer. Worldwide, breast cancer represents the 30% of all female cancers, and it has a mor-
tality of about 15%, but in emergent countries can reach up to 70% [86,87]. The worldwide
incidence ranges from 27 to 97 cases for 100,000 [87], and in about 10% of the cases, there is
a genetic predisposition or family history [87]. The most frequently associated germline
mutations affect the BRCA1 and BRCA2 genes [88,89].

The development of strategies for the early detection of breast cancer is necessary
to improve access to treatment and reduce the mortality rate. As described by Basurto-
Hurtado JA et al. [90], breast cancer detection includes four steps: image acquisition,
segmentation and pre-processing, feature extraction, and classification [90].

Image acquisition can be obtained through several methods, such as mammogra-
phy, ultrasound, magnetic resonance imaging (MRI), and other approaches, including
microwave, computed tomography (TC), and positron emission tomography (PET) [90].

The image processing and classification strategies include several steps: region of
interest (ROI) estimation, and feature extraction. The classifiers can be both unsupervised
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and supervised. Examples of unsupervised classifiers include K-means and hierarchical
clustering. Examples of supervised classifiers are decision trees, random forests, AdaBoost,
support vector machines, artificial neural networks, and convolutional neural networks [90].
Recently, new image generation techniques have developed, such as infrared thermography
(IRT). This technique has been successfully applied to breast cancer; the classification
methods included several machine learning and artificial neural networks, and the accuracy
ranged from 90% to 100% [90–101].

Recently, new classification algorithms have been developed, including autoencoders,
deep belief networks, ladder networks, and deep neural network (DNN)-based algorithms
such as the deep Kronecker neural network [90,102].

Gene expression profiling is a useful tool in medical research, both for diagnosis and
for the elucidation of the disease pathogenesis. Artificial neural networks can handle
gene expression profiling data successfully, and we recently described their usability in
hematological neoplasia [27–35]. In our research, we used conventional machine learning
techniques and artificial neural networks because the aim was to identify prognostic factors
in a reliable and systematic manner instead of developing new advanced mathematical
algorithms. Nevertheless, the performance of the artificial neural networks can be improved
with the use of adaptive activation functions (AAFs). Kronecker neural networks (KNNs)
are a new type of neural network with adaptive activation functions described by Jagtap
AD et al. [103]. Unlike the traditional neural network architecture, in a KNN, the output
of the neuron passes to more than one activation function [103]. The use of the Kronecker
product in the KNN made the network wide, while at the same time, the number of
trainable parameters remained low [103]. Recently, a multi-level KNN approach was used
in the analysis of MRI images of brain tumors (glioma) to develop an automated glioma
segmentation system [104].

The research in this manuscript focuses on immuno-oncology markers, as we have
recently described [85]. In relation to breast cancer, we tested the prognostic value of a set of
718 genes from a pan-cancer immune profiling panel on the overall survival of the patients.
A series of 1215 breast cancer patients from The Cancer Genome Atlas (TCGA) was selected.
Unfortunately, in this model, a multilayer perceptron analysis failed to properly predict the
overall survival of the patients (83.7% overall percent of correct classification, AUC = 0.61).
Next, the input was narrowed to 16 genes: macrophage markers (CD68, CSF1R, CD163,
CSF1R, CSF1, IL10, CD274 (PD-L1), and TNFAIP8), T helper cells (PDCD1/PD-1), Tregs
(FOXP3), apoptosis (BCL2, CASP3, and CASP8), NFKB pathway (STAT3), and metabolism
(ENO3, GGA3). The overall survival of breast cancer was predicted using 16 models,
namely C5, logistic regression, Bayesian network, discriminant analysis, KNN algorithm,
LSVM, random trees, SVM, tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R
tree, random forest, and neural network (multilayer perceptron). Among all models, only
random forest provided suitable modeling (input = 16 fields, overall accuracy 98.4%). The
order of predictor importance was CD274, FOXP3, ENO3, IL10, CSF1R, CSF1, BCL2, GGA3,
TNFAIP8, CASP8, PDCD1, CASP3, CD163, TNFRSF14, CD68, and STAT3.

Noteworthy, further analysis was performed in the breast series of the TCGA and
the pan-cancer immune profiling panel. In addition to the overall survival, other survival
variables were tested, including the disease-specific survival, disease-free interval, and
progression-free interval. The multilayer perceptron analysis also failed to predict the sur-
vival of the patients with good performance. Additional analyses were performed. Different
types of training were tested: batch, online, and mini-batch. Two types of optimization algo-
rithms were also tested: scaled conjugate gradient, and gradient descent. The training options
for the scaled conjugate gradient were the following: initial lambda (0.0000005), initial sigma
(0.00005), interval center (0), and interval offset (±0.5). The training options for the gradient
descent were initial learning rate (0.4), momentum (0.9), interval center (0), and the interval
offset (±0.5). Of note, batch training can use both a scaled conjugate gradient and gradient
descent. However, online and mini-batch are restricted to gradient descent. The training
options of gradient descent in case of online and mini-batch were initial learning rate (0.4),
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lower boundary of learning rate (0.001), learning rate reduction, in epochs (10), momen-
tum (0.9), interval center (0), and interval offset (±0.5). We tried improving the network
performance by changing all the training parameters, but no significant improvement in
performance was achieved.
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Simple Summary: Molecular network pathways are activated or inactivated under various condi-
tions. Previously, we revealed that epithelial–mesenchymal transition (EMT) is a feature of diffuse-
type gastric cancer. Here, we modeled the activation states of EMT in the development pathway using
molecular pathway images and artificial intelligence (AI). The regulation of EMT in the development
pathway was activated in diffuse-type gastric cancer (GC) and inactivated in intestinal-type GC. AI
modeling with molecular pathway images generated a highly accurate Elastic-Net Classifier models
that was validated with 10 additional activated and 10 inactivated pathway images.

Abstract: Because activity of the epithelial–mesenchymal transition (EMT) is involved in anti-cancer
drug resistance, cancer malignancy, and shares some characteristics with cancer stem cells (CSCs),
we used artificial intelligence (AI) modeling to identify the cancer-related activity of the EMT-
related pathway in datasets of gene expression. We generated images of gene expression overlayed
onto molecular pathways with Ingenuity Pathway Analysis (IPA). A dataset of 50 activated and
50 inactivated pathway images of EMT regulation in the development pathway was then modeled
by the DataRobot Automated Machine Learning platform. The most accurate models were based
on the Elastic-Net Classifier algorithm. The model was validated with 10 additional activated and
10 additional inactivated pathway images. The generated models had false-positive and false-negative
results. These images had significant features of opposite labels, and the original data were related to
Parkinson’s disease. This approach reliably identified cancer phenotypes and treatments where EMT
regulation in the development pathway was activated or inactivated thereby identifying conditions
where therapeutics might be applied or developed. As there are a wide variety of cancer phenotypes
and CSC targets that provide novel insights into the mechanism of CSCs’ drug resistance and cancer
metastasis, our approach holds promise for modeling and simulating cellular phenotype transition,
as well as predicting molecular-induced responses.

Keywords: artificial intelligence; epithelial–mesenchymal transition; Ingenuity Pathway Analysis;
machine learning; molecular pathway network
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1. Introduction

Molecular network pathways are activated or inactivated under many different condi-
tions. Previously, we found that diffuse-type gastric cancer (GC) has a feature of epithelial–
mesenchymal transition (EMT) [1–3]. EMT is involved in anti-cancer drug resistance,
cancer malignancy, metastasis, and cancer stem cells (CSCs) [4–7]. Experiments in anti-
cancer drug-resistant cancer cell lines indicate that EMT is involved in cancer cell drug
resistance [8], highlighting the significance of EMT targeting in cancer treatment [6].

Several signaling pathways involved in EMT contribute to drug resistance [6]. Tu-
mor growth factor beta (TGFβ) signaling activates SMAD2/3, which then complexes with
SMAD4 to form a trimetric SMAD complex, leading to the transcription of EMT transcrip-
tion factors [9]. Wnt/β-catenin signaling activates Snail transcription to induce EMT [6,10].
Recent studies have also revealed the role of EMT in autophagy and CSCs during metas-
tasis [11,12]. However, the relationship between the EMT pathway activation state and
therapeutic responsiveness is not fully understood.

Understanding the activity state of the EMT pathway in cancer cells may be an impor-
tant clue for identifying therapeutic targets in malignant cancers. To effectively predict EMT
activity and potential therapeutic responsiveness, molecular pathway images were used to
capture activity of EMT-related pathways of datasets in Ingenuity Pathway Analysis (IPA),
followed by artificial intelligence (AI) modeling with images of gene expression activity in
the pathway.

2. Materials and Methods

2.1. Data Analysis of Diffuse- and Intestinal-Type GC

We used RNA sequencing data of diffuse- and intestinal-type GC, which are publicly
available in The Cancer Genome Atlas (TCGA) of the cBioPortal for Cancer Genomics
database at the National Cancer Institute (NCI) Genomic Data Commons (GDC) data
portal [13–17]. Publicly available data on stomach adenocarcinoma in the TCGA, Stomach
Adenocarcinoma (TCGA, PanCancer Atlas), [13–16] were compared between diffuse-type
GC, which is genomically stable (n = 50), and intestinal GC, which has a feature of chro-
mosomal instability (n = 223), in TCGA Research Network publications, as previously
described [1,14,18].

2.2. Network Analysis

Data on intestinal- and diffuse-type GC from the TCGA cBioPortal for Cancer Ge-
nomics were uploaded and analyzed using IPA (Qiagen, CA, USA) [19,20]. The datasets
of gene expression in diseases were searched in IPA, and datasets with absolute values in
z-score in the top 60 for activated state and inactivated state (total of 120) in regulation of
EMT in the development pathway were extracted for AI prediction modeling and evalu-
ation. Among 120 analyses in the activity plot of regulation of EMT in the development
pathway, 50 activated and 50 inactivated analyses (total of 100) were used to generate AI
models and 10 activated and 10 inactivated analyses (total of 20) were withheld for use in
validating the generated model. The 100 analyses (50 activated and 50 inactivated states)
found in the database of IPA and newly used to generate AI-based models are summarized
in Table 1.
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Table 1. Analyses in the regulation of EMT in the development pathway for AI prediction modeling.

Analysis Name Disease State Target Gene Treatment EMT

996-Breast ductal carcinoma torin 2 28190 Breast ductal carcinoma Mtor Torin 2 TRUE

16332-Fibrocystic breast disease neratinib 7038 Fibrocystic breast disease Her2; egfr Neratinib TRUE

16885-Fibrocystic breast disease erlotinib 7651 Fibrocystic breast disease Egfr Erlotinib TRUE

116-Bone osteosarcoma (OS) MK2206 2727 Bone osteosarcoma (OS) MK2206 TRUE

1766-Breast ductal carcinoma brivanib 8512 Breast ductal carcinoma Vegfr; fgfr Brivanib TRUE

47-Huntington’s disease (HD) haloperidol 12804 Huntington’s disease (HD) Haloperidol TRUE

4874-Melanoma crizotinib 22540 Melanoma Alk and ros1 Crizotinib TRUE

6785-Non-small cell lung carcinoma ZSTK474 24663 Non-small cell lung carcinoma PI3K ZSTK474 TRUE

7-Normal control differentiation medium 10230 Normal control Differentiation
medium TRUE

13972-Prostate adenocarcinoma (PRAD) PI103 4415 Prostate adenocarcinoma (PRAD) PI3K PI103 TRUE

16046-Prostate adenocarcinoma (PRAD) MK2206 6720 Prostate adenocarcinoma (PRAD) AKT MK2206 TRUE

7063-Breast adenocarcinoma linifanib 24973 Breast adenocarcinoma Rtk; vegf; pdgf Linifanib TRUE

7923-Breast adenocarcinoma PF3758309 25928 Breast adenocarcinoma PAK4 PF3758309 TRUE

2-Breast carcinoma beta-estradiol (E2) 3915 Breast carcinoma B-estradiol (E2) TRUE

10974-Breast ductal carcinoma KIN001-043 1084 Breast ductal carcinoma GSK3β KIN001-043 TRUE

1116-Breast ductal carcinoma QL-X-138 1291 Breast ductal carcinoma BTK; MNK QL-X-138 TRUE

29-Colon cancer GSK525762A; trametinib 3009 Colon cancer GSK525762A;
trametinib TRUE

35-Colon cancer active JQ1 1658 Colon cancer Active JQ1 TRUE

13176-Colorectal adenocarcinoma BGJ398 3531 Colorectal adenocarcinoma FGFR BGJ398 TRUE

12948-Colorectal adenocarcinoma AZ628 3277 Colorectal adenocarcinoma
BRAF;
BRAFV600E;
C-RAF-1

AZ628 TRUE

12715-Colorectal adenocarcinoma AT7519 3019 Colorectal adenocarcinoma CDK AT7519 TRUE

6-Disease control IL-1 beta 15814 Disease control IL-1β TRUE

17104-Fibrocystic breast disease canertinib 7896 Fibrocystic breast disease Egfr; her2; erbb4 Canertinib TRUE

17239-Fibrocystic breast disease torin 1 8045 Fibrocystic breast disease Mtor Torin 1 TRUE

16449-Fibrocystic breast disease AZD8330 7167 Fibrocystic breast disease MEK AZD8330 TRUE

17590-Fibrocystic breast disease mitoxantrone 8435 Fibrocystic breast disease Topoisomerase Mitoxantrone TRUE

7-Fibrosis DMSO 7394 Fibrosis DMSO TRUE

20894-Hepatocellular carcinoma (LIHC) chelerythrine
chloride 12106 Hepatocellular carcinoma (LIHC) PKC Chelerythrine

chloride TRUE

59-Huntington’s disease (HD) nortriptyline 12817 Huntington’s disease (HD) Nortriptyline TRUE

2-Lung adenocarcinoma (LUAD) Transfection_HOXC6
631 Lung adenocarcinoma (LUAD) Transfection_HOXC6 TRUE

3-Major depressive disorder differentiation medium
3130 Major depressive disorder Differentiation

medium TRUE

5612-Melanoma AT7867 23361 Melanoma AKT1/2/3;
p70s6k/PKA AT7867 TRUE

5173-Melanoma lapatinib 22873 Melanoma Her2; egfr Lapatinib TRUE

91-Non-small cell lung carcinoma BGT226 27235 Non-small cell lung carcinoma PI3K; mtor BGT226 TRUE

14456-Normal control WYE125132 4953 Normal control Mtor WYE125132 TRUE

28175-Normal control glesatinib 20196 Normal control C-met; tek; vegfr;
ron Glesatinib TRUE

60-Normal control 567 Normal control TRUE

2-Normal control culture medium 1187 Normal control Culture medium TRUE
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Table 1. Cont.

Analysis Name Disease State Target Gene Treatment EMT

9914-Normal control EX527 28140 Normal control SIRT1 EX527 TRUE

4-Normal control suberoylanilide hydroxamic acid
(SAHA) 2204 Normal control

Suberoylanilide
hydroxamic acid
(SAHA)

TRUE

27560-Normal control BMS509744 19513 Normal control ITK BMS509744 TRUE

14256-Normal control AZD8055 4731 Normal control Mtor AZD8055 TRUE

19-Normal control no serum 3447 Normal control No serum TRUE

5-Parkinson’s disease (PD) differentiation medium 4389 Parkinson’s disease (PD) Differentiation
medium TRUE

23661-Prostate adenocarcinoma (PRAD) AZD5438
15181 Prostate adenocarcinoma (PRAD) CDK AZD5438 TRUE

25661-Breast adenocarcinoma omipalisib 17403 Breast adenocarcinoma Pi3k Omipalisib TRUE

90-Prostate adenocarcinoma (PRAD) monolayer culture
4346 Prostate adenocarcinoma (PRAD) Monolayer

culture TRUE

8-Normal control lipopolysaccharide (LPS) 4907 Normal control Lipopolysaccharide
(LPS) TRUE

2-Acute myeloid leukemia (LAML) lipopolysaccharide
(LPS) 9357 Acute myeloid leukemia (LAML) Lipopolysaccharide

(LPS) TRUE

25084-Breast adenocarcinoma CGP60474 16762 Breast adenocarcinoma CDK1; CDK2 CGP60474 TRUE

20-Non-small cell lung carcinoma IFN gamma 13421 Non-small cell lung carcinoma Ifnγ FALSE

7-Normal control co-culture 3087 Normal control Co-culture FALSE

5-Normal control hypoxia 13911 Normal control Hypoxia FALSE

1-Normal control IFN alpha 4636 Normal control Ifnα FALSE

11-Normal control differentiation medium 10205 Normal control Differentiation
medium FALSE

3-Normal control Infection_human betaherpesvirus 5
(HHV5) 15858 Normal control

Infection_human
betaherpesvirus 5
(HHV5)

FALSE

31-Bone osteosarcoma (OS) 1,9-pyrazoloanthrone 2804 Bone osteosarcoma (OS) 1,9-
pyrazoloanthrone FALSE

57-Coronavirus disease 2019 (COVID-19) 96 Coronavirus disease 2019
(COVID-19) FALSE

17503-Fibrocystic breast disease HG6-64-1 8339 Fibrocystic breast disease B-RAF HG6-64-1 FALSE

11-Genetic disease 444 Genetic disease FALSE

4-Glioblastoma (GBM) differentiation medium 6303 Glioblastoma (GBM) Differentiation
medium FALSE

23448-Hepatocellular carcinoma (LIHC) imatinib 14944 Hepatocellular carcinoma (LIHC) BCR-ABL Imatinib FALSE

86-Huntington’s disease (HD) sodium butyrate 12847 Huntington’s disease (HD) Sodium butyrate FALSE

21-Mantle cell lymphoma DMSO 3032 Mantle cell lymphoma DMSO FALSE

5-Non-alcoholic steatohepatitis (NASH) none 11484 Non-alcoholic steatohepatitis
(NASH) None FALSE

10431-Normal control RAF265 482 Normal control C-RAF; B-RAF;
B-RAFV600E RAF265 FALSE

11-Normal control differentiation medium 4490 Normal control Differentiation
medium FALSE

14744-Normal control dasatinib 5273 Normal control Src family Dasatinib FALSE

65-Normal control IL-3 17225 Normal control IL-3 FALSE

14639-Normal control saracatinib 5156 Normal control Src; bcr-abl Saracatinib FALSE

3-Normal control DHA-5-HT 4554 Normal control DHA-5-HT FALSE
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Table 1. Cont.

Analysis Name Disease State Target Gene Treatment EMT

28-Prostatic intraepithelial neoplasia
(PIN) plumbagin 49

Prostatic intraepithelial
neoplasia (PIN) Plumbagin FALSE

4-Normal control differentiation medium 3415 Normal control Differentiation
medium FALSE

9-Huntington’s disease (HD) meclizine 12851 Huntington’s disease (HD) Meclizine FALSE

6-Normal control culture medium 593 Normal control Culture medium FALSE

22597-Normal control GSK429286A 13998 Normal control ROCK1; ROCK2 GSK429286A FALSE

8-Normal control 3-D culture; co-culture;
differentiation 3017 Normal control

3D culture;
co-culture;
differentiation
medium

FALSE

110-Normal control 109 Normal control FALSE

26-Bone osteosarcoma (OS) nilotinib 2798 Bone osteosarcoma (OS) Nilotinib FALSE

26025-Breast adenocarcinoma saracatinib 17808 Breast adenocarcinoma Src; bcr-abl Saracatinib FALSE

11577-Breast ductal carcinoma crizotinib 1754 Breast ductal carcinoma Alk and ros1 Crizotinib FALSE

17316-Fibrocystic breast disease KIN001-043 8131 Fibrocystic breast disease GSK3β KIN001-043 FALSE

2-Fibrosis SB525334 7389 Fibrosis SB525334 FALSE

52-Huntington’s disease (HD) meclizine 12810 Huntington’s disease (HD) Meclizine FALSE

1-Normal control culture medium 1186 Normal control Culture medium FALSE

17-Normal control differentiation medium 4496 Normal control Differentiation
medium FALSE

6-Normal control hypoxia 13912 Normal control Hypoxia FALSE

2-Major depressive disorder
differentiation medium 3129 Major depressive disorder Differentiation

medium FALSE

11-Disease control none 4051 Disease control None FALSE

10-Normal control 3-D culture; co-culture;
differentiation 2995 Normal control

3D culture;
co-culture;
differentiation
medium

FALSE

5-Normal control lipopolysaccharide (LPS) 15704 Normal control Lipopolysaccharide
(LPS) FALSE

1-Normal control differentiation medium 1246 Normal control Differentiation
medium FALSE

6-Normal control 151 Normal control 3d culture; none FALSE

10-Normal control differentiation medium 4489 Normal control Differentiation
medium FALSE

13-Normal control co-culture 3079 Normal control Co-culture FALSE

13051-Colorectal adenocarcinoma BMS777607 3393 Colorectal adenocarcinoma C-MET; AXL;
RON; TYRO3 BMS777607 FALSE

27-Huntington’s disease (HD) meclizine 12782 Huntington’s disease (HD) Meclizine FALSE

8-Normal control GW3965 10098 Normal control GW3965 FALSE

11-Normal control 368 Normal control FALSE

6-Normal control culture medium 1191 Normal control Culture medium FALSE

2.3. AI Prediction Modeling

To create a prediction model using multi-modal data including images and text descrip-
tions of molecular networks, an enterprise AI platform (DataRobot Automated Machine
Learning version 7.2; DataRobot Inc. (Boston, MA, USA) was used. For the modeling,
the 100 molecular networks on the regulation of EMT in the development pathway were
collected and input as image data in the DataRobot (50 images in the activated state and
50 images in the inactivated state), which automatically created and tuned prediction
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models using various machine-learning algorithms (e.g., eXtreme gradient-boosted trees,
random forest, regularized regression such as Elastic Net, Neural Networks) [21–23]. Fi-
nally, the AI model with the highest predictive accuracy on DataRobot was identified, and
various insights (such as Permutation Importance or Partial Dependence Plot) obtained
from the model were reviewed. To calculate the accuracy of the model, 20 additional image
data (10 images in the activated state and 10 images in the inactivated state) that were not
used as training data for the AI model creation were added for validation.

2.4. Statistical Analysis

The RNA sequencing data on diffuse- and intestinal-type GC was analyzed via Stu-
dent’s t-test. The z-scores of intestinal- and diffuse-type GC samples were compared, and
the difference was considered significant at p < 0.00001, following previous reports [1,18].
The activation z-score in each pathway was calculated in IPA to show the level of activation.

3. Results

3.1. Regulation of the EMT in Development Pathway in Diffuse- and Intestinal-Type GC
3.1.1. Gene Expression Mapping in Regulation of the EMT in the Development Pathway in
Diffuse- and Intestinal-Type GC

Alterations in gene expression in diffuse- and intestinal-type GC was mapped to a
canonical pathway, “Regulation of the EMT in development pathway” (Figure 1) based on
the previous gene expression analysis results [1]. Red or green color indicates upregulated
or downregulated genes, respectively. In the regulation of EMT in the development
pathway, frizzled and adenomatous polyposis coli regulator of the WNT signaling pathway
(APC) was upregulated, while SUFU negative regulator of hedgehog signaling (SUFU),
pygopus family PHD finger 2 (PYGO2), and BRCA1 was downregulated in diffuse-type
GC compared to intestinal-type GC. APC encodes a tumor suppressor protein that acts
as an antagonist of the Wnt signaling pathway. APC is also involved in other processes,
including cell migration and adhesion, transcriptional activation, and apoptosis. SUFU is
associated with β-catenin binding, protein kinase binding, and transcription regulation.

  
(a) (b) 

Figure 1. Regulation of the epithelial–mesenchymal transition (EMT) in development pathway in
diffuse- and intestinal-type gastric cancer (GC). (a) Gene expression alteration in diffuse-type GC in
regulation of the EMT in development pathway; (b) Gene expression alteration in intestinal-type GC
in regulation of the EMT in development pathway. Red or green color indicates upregulated or down-
regulated genes, respectively. The intensity of colors indicates the degree of up- or downregulation.
A solid or dashed line indicates direct or indirect interaction, respectively.
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3.1.2. Molecular Activity Prediction in Regulation of the EMT in Development Pathway in
Diffuse- and Intestinal-Type GC

The prediction of molecular activity in the regulation of the EMT in the development
pathway in diffuse- and intestinal-type GC was mapped (Figure 2). GSK3β, SNAI1, NFκB,
LOX, and EMT are activated, whereas SNAI2 and E-cadherin are inactivated in diffuse-type
GC compared to intestinal-type GC. Notch receptor 1 (NOTCH1) intracellular domain
(NOTCHIC) was predicted to be activated in the CSL-HIF1A-MAML1-NICD complex,
which consists of hypoxia-inducible factor 1 subunit alpha (HIF1A), mastermind-like
transcriptional coactivator 1 (MAML1), NOTCH1, and recombination signal binding for
immunoglobulin kappa J region (RBPJ) in the nucleus, and β-catenin (CTNNB1) was
predicted to be activated in β-catenin-APC-AXIN-GSK3β complex in the cytoplasm in
diffuse-type GC compared to intestinal-type GC.

 
 

(a) (b) 

Figure 2. Molecular activity prediction in regulation of the EMT in development pathway in diffuse-
and intestinal-type GC. (a) Molecular activity prediction in diffuse-type GC; (b) molecular activity
prediction in intestinal-type GC. Red or green color indicates upregulated or downregulated genes,
respectively. The intensity of colors indicates the degree of up- or downregulation. A solid or
dashed line indicates direct or indirect interaction, respectively. Orange or blue color indicates
predicted activation or inhibition, respectively. The intensity of colors indicates the confidence level of
the prediction.

3.2. Activity Plot of Regulation of the EMT in Development Pathway

In total, 6216 analyses were found to be involved in the regulation of the EMT in
the development pathway (as of September 2021) (Figure 3). In subsequent AI model-
ing analyses, samples with “NA” in the case treatment and blank in the disease state
were excluded.
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Figure 3. Activity plot of regulation of EMT in development pathway (6216 analyses, as of
September 2021).

3.3. AI Modeling and Validation of the Prediction Model

The activation state of regulation of EMT in the development pathway was modeled
by machine learning, including deep learning, using 50 activated and 50 inactivated images
of the regulation of EMT in development pathway (Figure 4). DataRobot was used for
machine-learning modeling and 34 models were automatically created, including an Elastic-
Net Classifier (L2/Binomial Deviance) model. DataRobot also highlighted the parts of the
image data critical to the prediction accuracy of the model in an activation map (Figure 4).

 

Figure 4. Activation map of AI modeling (DataRobot).

To validate the ElasticNet Classifier model, predictions were made using data on 10
activated and 10 inactivated pathway images that were not used to train the model (Table 2).
The results showed that the prediction accuracy for the additional 20 images was 100%
(AUC = 1.0).
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Table 2. Validation of the model ElasticNet_Classifier_(L2/Binomial_Deviance).

Analysis Name
Disease

State
Target Gene Tissue Treatment EMT Prediction Label

18092-Breast
adenocarcinoma
CP466722 8993

breast adeno-
carcinoma ATM Breast Cp466722 TRUE 0.9693884 1

25525-Breast
adenocarcinoma
celastrol 17252

breast adeno-
carcinoma multiple targets Breast Celastrol TRUE 0.99966132 1

25083-Breast
adenocarcinoma
CGP60474 16761

breast adeno-
carcinoma CDK1; CDK2 Breast Cgp60474 TRUE 0.99881416 1

18267-Breast
adenocarcinoma
AZD8055 9187

breast adeno-
carcinoma mTOR Breast Azd8055 TRUE 0.99731849 1

7513-Breast
adenocarcinoma
OTSSP167 25473

breast adeno-
carcinoma MELK Breast Otssp167 TRUE 0.9991679 1

18469-Breast
adenocarcinoma
HG6-64-1 9411

breast adeno-
carcinoma B-RAF Breast Hg6-64-1 TRUE 0.99314697 1

25636-Breast
adenocarcinoma
HG6-64-1 17375

breast adeno-
carcinoma B-RAF Breast Hg6-64-1 TRUE 0.99867832 1

14-Breast carcinoma
estradiol 1431

breast
carcinoma Breast Estradiol TRUE 0.99207239 1

895-Breast ductal
carcinoma

GSK1059615 27068

breast ductal
carcinoma PI3K; mTOR Breast Gsk1059615 TRUE 0.98180702 1

1263-Breast ductal
carcinoma

lapatinib 2924

breast ductal
carcinoma HER2; EGFR Breast Lapatinib TRUE 0.99916824 1

9-Normal control
olive pollen

extract 16317

Normal
control

Peripheral
blood

Olive
pollen
extract

FALSE 0.00276633 0

37-Normal
control 257

Normal
control Lung FALSE 0.00027655 0

21926-Normal
control

rebastinib 13253

Normal
control BCR-ABL Kidney Rebastinib FALSE 0.08588748 0

4-Normal control
mock 16535

Normal
control Bone marrow Mock FALSE 0.00030339 0

15884-Normal
control

withaferin A 6539

Normal
control IKKβ Breast Withaferin A FALSE 0.00271459 0
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Table 2. Cont.

Analysis Name
Disease

State
Target Gene Tissue Treatment EMT Prediction Label

4-Normal control
lipopolysaccharide

(LPS) 15703

Normal
control Embryo

Lipopoly
saccharide

(LPS)
FALSE 0.00194256 0

10-Normal control
co-culture 3076

Normal
control

Peripheral
blood Co-culture FALSE 0.00115878 0

6-Normal control
actinomycin D 4750

Normal
control Fetal kidney Actinomycin

D FALSE 0.01263976 0

2-Melanoma 35 Melanoma Skin FALSE 0.02006465 0

490-MYD88
deficiency

lipopolysaccharide
(LPS);

polymyxin 12583

MYD88
deficiency

Peripheral
blood

Lipopoly
saccharide

(LPS);
polymyxin B

FALSE 0.03955118 0

3.4. Regulation of EMT in the Development Pathway in Other Diseases Than Cancer

The results of the modeling of regulation of EMT in the development pathway found
one false-positive and one false-negative result in the model Elastic-Net Classifier in the
process of the model generation (Figure 5). The analysis of the false-negative result was
Parkinson’s disease with a z-score of 3 (Figure 5a). The analysis of the false-positive result
was a genetic disease with a z-score of −2.646 (Figure 5b).

  
(a) (b) 

Figure 5. Regulation of EMT in development pathway in diseases. (a) Parkinson’s disease (PD) (skin)
differentiation medium 4389, p value = 1.89 × 10−2, z-score = 3; Gene identifiers marked with an asterisk
(*) indicate that multiple identifiers in the dataset file map to a single gene in the Global Molecular
Network. (b) genetic disease (midbrain) 444, p value = 4.75 × 10−2, z-score = −2.646.

4. Discussion

Our result demonstrates that the canonical pathway of regulation of the EMT in the
development pathway was activated in diffuse-type GC but not in intestinal-type GC.
Specifically, the pathway mapping of gene expression revealed that Frizzled and APC were
upregulated, while SUFU, PYGO2, and BRCA1 were downregulated in diffuse-type GC
compared to intestinal-type GC. Frizzled proteins are a family of Wnt receptors involved
in carcinogenesis [24]. It was previously shown that Frizzled-7 affected stemness and
chemotherapeutic resistance in GC [25]. Accordingly, targeting inhibition of Frizzled-7

594



Onco 2023, 3

attenuated spheroid formation and stemness, as well as the resistance to cisplatin, an
anti-cancer drug, in GC cells may have a therapeutic effect [25]. Besides Frizzled-7, the
expression of Frizzled-10 was shown to have interesting correlation with cancer evolution.
Importantly, as Frizzled-10 is not expressed in fully proliferative healthy tissue, but is
highly expressed in certain cancerous tissue, it has the potential to be used as a prospective
receptor molecule for targeted therapy. Intriguingly, it was found that while in GC, a
decrease in cytoplasmic expression of Frizzled-10 is associated with increasing malignancy,
while in colon cancer, the opposite is true; increased cytoplasmic expression of Frizzled-10
is crucial for the late stages of colon cancer progression and metastasis [24]. The co-localized
expression of Frizzled family in different sub-types of cancer would confer progressive
features on cancer.

APC is essential as a tumor suppressor protein in colorectal cancer and for its de-
struction complex functions, though its specific molecular activity has not been fully
resolved [26]. The modeling or simulation of the cellular phenotype transition in EMT and
diseases and predicting the molecular-induced responses in diseases would be useful for
future investigation.

SUFU, PYGO2, and BRCA1 were downregulated in diffuse-type GC compared to
intestinal-type GC. Previous findings have reported that SUFU, a regulator of Wnt signaling,
was downregulated in GC and inhibited by miRNA-324-5p [27]. It was suggested that
miRNA-324-5p induces EMT by inhibiting SUFU in GC [27]. PYGO2 was reported to
be increased in human breast cancer [28]. The expression of PYGO2 was also assessed
in glioma tissue samples and the results showed a positive correlation between tumor
grade and PYGO2 overexpression [29]. The expression of PYGO2 was overexpressed in
drug-resistant cell lines of GC and GC tissue after neoadjuvant chemotherapy [30]. It may
be possible that PYGO2 has a different expression profile in diffuse-type GC compared
to intestinal-type GC. BRCA1 was also downregulated in diffuse-type GC compared to
intestinal-type GC. We have previously shown that the role of BRCA1 in the DNA damage
response pathway was activated in intestinal-type GC compared to diffuse-type GC [18].
Accordingly, BRCA1 is rather important to intestinal-type GC.

The current study successfully generated AI-based models using 50 activated and 50
inactivated images of EMT gene regulation in the development pathway. The analyses
in the database were selected based on the diseases and the treatment (Tables 1 and 2).
Diseases in activated states of EMT regulation in the development pathway included
bone osteosarcoma [31], breast carcinoma [32], and colon cancer [33]. AI application in
gastrointestinal diseases would be a promising approach [34].

An interesting point of our current study is that the machine-learning modeling
revealed that an IPA analysis of Parkinson’s disease had a false-negative prediction result
(Figure 5a). The color of the picture seems to be inactivated, which is in accordance with
the prediction result as inactivated. Furthermore, it seems that EMT activation in the
WNT pathway via SNAI2 resulted in the prediction being activated, whereas CSL-HIF1A-
MAML1-NICD complex-induced EMT via SNAI1 was predicted as inactivated. In addition
to Parkinson’s disease, the machine-learning modeling revealed that an analysis of another
unrelated genetic disease had a false-positive prediction result (Figure 5b). On the other
hand, based on the analysis, GSK3β and SNAI1 were predicted as activated, while SNAI2
was inactivated (Figure 5b). The activation of GSK3β could be associated with the mediator
role of GSK3β in the cross-talk of EMT signaling pathways [35].

5. Conclusions

The regulation of EMT in the development pathway was activated in diffuse-type GC
and inactivated in intestinal-type GC. AI modeling with molecular pathway images gener-
ated the Elastic-Net Classifier model. The validation with 10 activated and 10 inactivated
new pathway images, which were not used for the modeling, resulted in high accuracy.
The modeling of the cellular phenotype transition in EMT and diseases will be studied in
the near future.
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Simple Summary: Endoscopic resection (ER) is a treatment option for clinically T1a early gastric
cancer (EGC) without suspicion of lymph node metastasis (LNM). In patients with non-curative
resection after ER, additional surgery is recommended owing to the LNM risk. However, of those
patients treated with additional surgery after ER, the actual rate of LNM was about 5–10%; that is, the
other patients underwent unnecessary surgeries. Therefore, it is crucial to estimate LNM risk in EGC
patients to determine additional management after ER. We derived a machine learning (ML) model
to stratify the LNM risk in EGC patients and validate its performance. The constructed ML model,
which showed good performance with an area under the receiver operating characteristic of 0.85 or
higher, could stratify LNM risk into very low (<1%), low (<3%), intermediate (<7%), and high (≥7%)
risk categories. These findings suggest that the ML model can stratify the LNM risk in EGC patients.

Abstract: Stratification of the risk of lymph node metastasis (LNM) in patients with non-curative
resection after endoscopic resection (ER) for early gastric cancer (EGC) is crucial in determining
additional treatment strategies and preventing unnecessary surgery. Hence, we developed a machine
learning (ML) model and validated its performance for the stratification of LNM risk in patients
with EGC. We enrolled patients who underwent primary surgery or additional surgery after ER for
EGC between May 2005 and March 2021. Additionally, patients who underwent ER alone for EGC
between May 2005 and March 2016 and were followed up for at least 5 years were included. The ML
model was built based on a development set (70%) using logistic regression, random forest (RF), and
support vector machine (SVM) analyses and assessed in a validation set (30%). In the validation set,
LNM was found in 337 of 4428 patients (7.6%). Among the total patients, the area under the receiver
operating characteristic (AUROC) for predicting LNM risk was 0.86 in the logistic regression, 0.85 in
RF, and 0.86 in SVM analyses; in patients with initial ER, AUROC for predicting LNM risk was 0.90
in the logistic regression, 0.88 in RF, and 0.89 in SVM analyses. The ML model could stratify the LNM
risk into very low (<1%), low (<3%), intermediate (<7%), and high (≥7%) risk categories, which was
comparable with actual LNM rates. We demonstrate that the ML model can be used to identify LNM
risk. However, this tool requires further validation in EGC patients with non-curative resection after
ER for actual application.

Keywords: early gastric cancer; machine learning model; risk stratification; lymph node metastasis
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1. Introduction

Early gastric cancer (EGC) describes a gastric tumor confined to the submucosa with
or without lymph node metastasis (LNM). Endoscopic resection (ER) is recommended as a
minimally invasive treatment for clinically mucosal EGC without suspicion of LNM [1–4].
In cases of non-curative resection after ER that do not satisfy the expanded criteria of
curative resection, additional surgery is recommended, considering the risk of LNM [5,6];
however, LNM is found in only 5–10% of those patients after surgery [7–10]. Therefore,
overtreatment is a concern. To address this, the recently revised guidelines excluded
piecemeal resection and a positive lateral margin from the factors of non-curative resection
after ER for which additional surgery is primarily recommended [1,4,11].

Furthermore, in Japan, patients who have non-curative resection after ER, excluding
piecemeal resection and a positive lateral margin, are classified as “endoscopic curability
(eCura) C-2”; patients in the eCura C-2 category are further stratified into low (2.5%),
intermediate (6.7%), and high (22.7%) LNM risk categories based on the eCura scoring
system [2,12,13]. In the low-risk category, there is no difference in cancer recurrence or
cancer-specific mortality between patients who undergo no additional treatment and those
who undergo additional surgery [14]. Hence, this LNM risk stratification system suggests
that additional surgery after non-curative resection may be determined on an individual
basis, considering the LNM risk, the patient’s condition, and the benefits and limitations of
additional surgery [11,12,14].

Another area of concern is that some patients who were confirmed non-curative
resection after ER without actual LNM may be unnecessarily exposed to surgery-related
risks. The rates of postoperative complications and overall mortality after gastric cancer
surgery are 10–26% and 0.3–2.3%, respectively, and comorbidities, body mass index, and
lymph node dissection have been reported as risk factors [15–21]. In addition, the potential
for long-term health problems after gastric cancer surgery, such as reflux, gastroparesis,
gallstone, and osteoporosis, must be considered [22,23]. Therefore, it is clinically significant
to predict the LNM risk among EGC patients who undergo non-curative resection after ER
to prevent unnecessary surgery.

To stratify the LNM risk in EGC patients, we created a machine learning (ML) model
for predicting LNM risk and validated its performance.

2. Materials and Methods

2.1. Patients

We included patients who underwent surgery for EGC between May 2005 and March
2021 at Samsung Medical Center. Additionally, patients who underwent additional surgery
after ER owing to complications or non-curative resection were included. Moreover, pa-
tients who underwent ER alone for EGC without surgery between May 2005 and March
2016 were included and followed up for at least 5 years. After excluding patients with
missing data, a total of 14,760 patients who underwent surgery (n = 12,631) or ER alone
(n = 2129) were included (Figure 1). The patients were randomly divided into the develop-
ment set (70%) and validation set (30%).

2.2. Definition, Outcome, Data Sources, and Study Variables

LNM was defined based on surgical specimens of patients who underwent surgery.
In patients who underwent ER alone, regional LN recurrence was determined based on
computed tomography scans during follow-up.

The outcome consisted of establishing the ML model for predicting LNM risk in EGC
patients and validating its performance. We divided the entire cohort into a development
set (70%) for derivation of the ML model and a validation set (30%) for validation. Since
the actual target participants were patients treated with ER for EGC, the performance
of the ML model was evaluated for total patients and initial ER patients, respectively,
using three methods in the development set and validation set. First, the area under the
receiver operating characteristic (AUROC), sensitivity, and specificity of the ML model
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were analyzed. Second, we assessed whether the ML model could stratify the risk of
LNM into very low-, low-, intermediate-, and high-risk categories. In the development
set, we listed the predicted values calculated by the ML model and selected cutoffs at the
points where the actual LNM rates were 1%, 3%, and 7%. An actual LNM rate <1% was
allocated into the very low-, <3% into the low-, <7% into the intermediate-, and ≥7% into
the high-risk categories. The 3% and 7% criteria for the low-, intermediate-, and high-risk
categories were based on the previous literature [12]. Additionally, we set a very-low risk
category of predicted LNM risk with <1%. This ML model for stratifying LNM risk was
applied to the total patients and patients with initial ER in the validation set. Third, we
evaluated the ability of the ML model to discriminate patients with negligible risk of LNM
at a high-sensitivity cutoff of 100% to predict LNM. From a clinical perspective, the utility
of a risk score depends on its ability to discriminate patients at low risk for LNM, i.e., it is
ideal to identify patients who do not need surgery and those who need surgery.

Figure 1. Diagram of patient selection.

Non-curative resection was defined as not satisfying an expanded criterion for curative
resection. The expanded criteria for curative resection were en bloc resection, negative
horizontal and vertical margins, absence of lymphovascular invasion, and one of the
following: (a) differentiated mucosal cancer without ulcerative lesions, regardless of the
tumor size; (b) differentiated mucosal cancer with ulcerative lesions that were ≤3 cm in
size; (c) undifferentiated mucosal cancer without ulcerative lesions that were ≤2 cm in
size; or (d) differentiated cancer invasion to the submucosa <500 μm from the muscularis
mucosa that was ≤3 cm in size.

Data were collected retrospectively from the electronic medical records, including
age, sex, number of tumors, tumor location (upper third, middle third, and lower third),
size (mm), gross type (non-depressed and depressed), differentiation (well, moderate,
signet, and poor), Lauren classification (intestinal, diffuse, and mixed), depth of invasion
(lamina propria, muscularis mucosa, submucosal invasion <500 μm from the muscularis
mucosa (SM1), and submucosal invasion ≥500 μm from the muscularis mucosa (SM2/3)),
lymphatic invasion, venous invasion, and perineural invasion.

2.3. Establishment of the Machine Learning Model

The ML model was implemented using 3 methods to produce an optimal model based
on the development set (70%): logistic regression, support vector machine (SVM), and ran-
dom forest (RF). We constructed the ML model in the cohort of total patients and patients
with initial ER, respectively. This design considered our actual target as EGC patients who
were feasible ER. A randomized search algorithm with fivefold nested cross-validation
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in the development set was conducted for hyperparameter optimization of each method.
The algorithm was optimized by randomly searching the given hyperparameter space
1000 times using the development set (Table S1). We selected this search algorithm rather
than grid or Bayesian search algorithms because these three methods are fast enough to
search all given spaces and have relatively few hyperparameters. The best hyperparameters
in a model were chosen when the model had the highest AUROC. The performance of the
models with the best hyperparameters was evaluated in the validation set (30%). We de-
fined the weighted factors of 14.0 through the imbalanced rate of the classes. We confirmed
the feature importance as permutating a specific variable 100 times. We publicly opened
the codes and models at https://github.com/YeongChanLee/Predict-LNM (accessed on
21 February 2022).

2.4. Statistical Analysis

Baseline characteristics were compared between the development and validation sets
and presented as means (standard deviation) and frequencies (%) for continuous and
categorical variables, respectively. The performance of the ML model was evaluated using
AUROC, sensitivity, and specificity. The sensitivity and specificity were derived using
Youden’s index. The risk probability was calculated for the stratification of LNM risk based
on the logistic regression, RF, and SVM analyses in the development set. Predicted LNM
risk was classified into very low-, low-, intermediate-, and high-risk categories according
to the actual LNM rate with a cutoff <1%, <3%, and <7%. We analyzed whether the
categories of predicted LNM risk correlated with the real LNM rate. As a subanalysis, the
performance of the ML model was compared with the eCura system as a clinical model
in cases defined as non-curative resection after ER for EGC in the validation set, using
AUROC, net reclassification improvement (NRI), and specificity at a high-sensitivity cutoff
of 95%. The ML model was developed using Scikit-learn 0.24.1 and Python 3.8.5. Statistical
analyses were performed using R (version 3.5.1, Vienna, Austria).

3. Results

3.1. Baseline Characteristics

A total of 14,760 patients were eligible for analysis; 10,332 patients were randomly
sorted into the development set and 4428 into the validation set. LNM was found in
794 of 10,332 patients (7.7%) in the development set and 337 of 4428 patients (7.6%) in
the validation set. The baseline characteristics of the development and validation sets are
shown in Table 1. They were comparable in most variables, including age, sex, number of
tumors, size, gross type, differentiation, Lauren classification, depth of invasion, lymphatic
invasion, venous invasion, and perineural invasion. However, the middle-third of the
stomach was the most frequent tumor location in the development set whereas the lower-
third of the stomach was the most frequent tumor location in the validation set (p = 0.013).
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Table 1. Baseline characteristics of the development set and validation set.

Variable
Development

(n = 10,332)
Validation
(n = 4428)

p Value a

Age † 58 ± 11 58 ± 11 0.413
Gender 0.789

Male 6697 (65) 2881 (65)
Female 3635 (35) 1547 (35)

tumors 512 (5) 201 (5)
Location 0.013

Upper 1083 (11) 483 (11)
Middle 4773 (46) 1929 (44)
Lower 4476 (43) 2016 (45)

Size (mm) † 27 ± 18 27 ± 18 0.645
Gross type 0.823

Non-depressed 2568 (25) 1109 (25)
Depressed 7764 (75) 3319 (75)

Differentiation 0.999
Well 1214 (12) 523 (12)
Moderate 4053 (39) 1741 (39)
Signet 2315 (22) 989 (22)
Poorly 2750 (27) 1175 (27)

Histologic type by
Lauren 0.122

Intestinal 5198 (50) 2271 (51)
Diffuse 3867 (38) 1666 (38)
Mixed 1267 (12) 491 (11)

Depth of invasion 0.983
Lamina propria 2568 (25) 1114 (25)
Muscularis mucosa 3767 (37) 1612 (37)
SM1 1069 (10) 455 (10)
SM2/3 2928 (28) 1247 (28)

Lymphatic invasion,
present 1571 (15) 682 (15) 0.780

Venous invasion,
present 154 (2) 72 (2) 0.588

Perineural invasion,
present 232 (2) 96 (2) 0.817

† Mean ± standard deviation presented for continuous variables. Values are expressed as n (%); unless otherwise
specified. a p-value calculated using Student’s t-test for continuous variables or Pearson’s chi-square test for
categorical variables for overall data. SM1: submucosal invasion <500 μm from the muscularis mucosa; SM2/3:
submucosal invasion ≥500 μm from the muscularis mucosa.

3.2. Derivation of the Machine Learning Model

In the development set, LNM was found in 794 of 10,332 patients (7.7%) in the total
patients, and in 42 of 2320 patients (1.8%) in patients with initial ER. The derivatated
ML model showed good to excellent performance in the development set; in the total
patients, logistic regression was AUROC (95% CI), 0.86 (0.85–0.88); sensitivity, 0.80; and
specificity, 0.76; RF was AUROC (95% CI), 0.95 (0.94–0.95); sensitivity, 0.91; and specificity,
0.86; and SVM was AUROC (95% CI), 0.87 (0.85–0.88); sensitivity, 0.79; and specificity,
0.78. In patients with initial ER, logistic regression was AUROC (95% CI), 0.88 (0.83–0.92);
sensitivity, 0.86; and specificity 0.82; RF was AUROC (95% CI), 0.95 (0.93–0.97); sensitivity,
0.93; and specificity, 0.88; and SVM was AUROC (95% CI), 0.88 (0.83–0.92); sensitivity, 0.93;
and specificity, 0.73 (Figure 2).
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Figure 2. AUROC of the ML model for the prediction of LNM in the development set (total
number = 10,332, number of patients with initial ER = 2320).

In the development set, LNM risk was predicted using the ML model (logistic re-
gression, RF, and SVM), and the cutoff for the categories of very low, low, intermediate,
and high risk was set as the value of the actual LNM rate of <1%, <3%, and <7% in the
total patients and initial ER patients, respectively (Table 2). As an example, in the total
patients, LNM risk was stratified using logistic regression into very low (<1%)-, low (<3%)-,
intermediate (<7%)-, and high (≥7%)-risk categories, and the cutoff was determined by the
actual LNM rate. Each category showed a real LNM rate of 0.2%, 1.4%, 4.1%, and 18.4%
(Table 2).

Table 2. Determination of the cutoff for stratification of LNM risk based on the predictive value of the
ML model and actual LNM rate in the development set. (A) Total patients. (B) Patients with initial ER.

(A) Total Patients (n = 10,332) and LNM (n = 794)

Logistic regression

n of patients n of LNM Rate (%) Risk probability Risk category

1863 3 0.2 <1% Very low
3105 42 1.4 ≥1% to <3% Low
1656 67 4.1 ≥3% to <7% Intermediate
3708 682 18.4 ≥7% High

Random forest

n of patients n of LNM Rate (%) Risk probability Risk category

5589 2 <0.1 <1% Very low
1859 24 1.3 ≥1% to <3% Low
412 18 4.4 ≥3% to <7% Intermediate

2472 750 30.3 ≥7% High

Support vector machine

n of patients n of LNM Rate (%) Risk probability Risk category

2277 5 0.2 <1% Very low
2691 35 1.3 ≥1% to <3% Low
1656 65 3.9 ≥3% to <7% Intermediate
3708 689 18.6 ≥7% High

604



Cancers 2022, 14, 1121

Table 2. Cont.

(B) Initial ER(n = 2320) and LNM (n = 42)

Logistic regression

n of patients n of LNM Rate (%) Risk probability Risk category

1492 1 0.1 <1% Very low
368 5 1.4 ≥1% to <3% Low
92 3 3.3 ≥3% to <7% Intermediate

368 33 9.0 ≥7% High

Random forest

n of patients n of LNM Rate (%) Risk probability Risk category

1722 0 0 <1% Very low
322 4 1.2 ≥1% to <3% Low
46 2 4.4 ≥3% to <7% Intermediate

230 36 15.7 ≥7% High

Support vector machine

n of patients n of LNM Rate (%) Risk probability Risk category

1491 1 0.1 <1% Very low
136 2 1.5 ≥1% to <3% Low
445 15 3.3 ≥3% to <7% Intermediate
206 24 10.4 ≥7% High

LNM, lymph node metastasis.

3.3. Validation of the Machine Learning Model

In the validation set, LNM was found in 337 of 4428 patients (7.6%) in the total patients,
and in 24 of 1016 patients (2.4%) in patients with initial ER. In the validation set, the ML
model showed a good performance in the total patients and patients with initial ER. In total
patients, logistic regression was AUROC (95% CI), 0.86 (0.84–0.88); sensitivity, 0.80; and
specificity, 0.75; RF was AUROC (95% CI), 0.85 (0.83–0.87); sensitivity, 0.82; and specificity,
0.72; and SVM was AUROC (95% CI), 0.86 (0.84–0.88); sensitivity, 0.69; and specificity,
0.85. In patients with initial ER, logistic regression was AUROC (95% CI), 0.90 (0.86–0.94);
sensitivity, 0.92; and specificity, 0.77; RF was AUROC (95% CI), 0.88 (0.82–0.92); sensitivity,
0.92; and specificity, 0.74; and SVM was AUROC (95% CI), 0.89 (0.85–0.93); sensitivity, 0.92;
and specificity, 0.78 (Figure 3).

In the validation set, logistic regression and SVM showed the possibility of stratifying
the risk of LNM for total patients and patients with initial ER. The predicted LNM risk was
correlated with the actual LNM rate. In the total patients, the actual LNM rate according to
the very low-, low-, intermediate-, and high-risk categories was 0.1%, 1.6%, 4.8%, and 17.7%
based on logistic regression and 0.1%, 1.6%, 4.2%, and 18.1% based on SVM, respectively. In
patients with initial ER, the actual LNM rate according to the very low-, low-, intermediate-,
and high-risk categories was 0.2%, 2.5%, 0.0%, and 11.9% based on logistic regression
and 0.2%, 1.7%, 4.5%, and 13.0% based on SVM, respectively. In contrast, in the analysis
using RF, the actual LNM rate was 1.3%, 6.3%, 7.4%, and 23.1% of the total patients and
0.4%, 5.0%, 10.0%, and 12.0% of patients with initial ER, which was higher than that of the
predicted category of LNM risk (Table 3).

605



Cancers 2022, 14, 1121

Figure 3. AUROC of the ML model for the prediction of LNM in the validation set (total number = 4428,
number with initial ER = 1016).

Table 3. Risk stratification of LNM by the ML model and the actual rate in the validation set. (A)
Total patients. (B) Patients with initial ER.

(A) Total Patients (n = 4428) and LNM (n = 337)

Logistic regression

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 801 1 0.1
≥1% to <3% Low 1335 21 1.6
≥3% to <7% Intermediate 708 34 4.8

≥7% High 1584 281 17.7

Random forest

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 2403 30 1.3
≥1% to <3% Low 793 50 6.3
≥3% to <7% Intermediate 176 13 7.4

≥7% High 1056 244 23.1

Support vector machine

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 978 1 0.1
≥1% to <3% Low 1138 19 1.6
≥3% to <7% Intermediate 678 30 4.2

≥7% High 1297 287 18.1

(B) Patients with Initial ER (n = 1016) and LNM (n = 24)

Logistic regression

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 656 1 0.2
≥1% to <3% Low 160 4 2.5
≥3% to <7% Intermediate 40 0 0

≥7% High 160 19 11.9
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Table 3. Cont.

(B) Patients with Initial ER (n = 1016) and LNM (n = 24)

Random forest

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 756 3 0.4
≥1% to <3% Low 140 7 5.0
≥3% to <7% Intermediate 20 2 10.0

≥7% High 100 12 12.0

Support vector machine

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 655 1 0.2
≥1% to <3% Low 59 1 1.7
≥3% to <7% Intermediate 191 9 4.5

≥7% High 87 13 13.0

In the total patients in the validation set, the specificities of the ML model at the
high-sensitivity cutoff of 100% were 49%, 46%, and 49% in the logistic regression, RF, and
SVM analyses, respectively. In patients with initial ER, the specificities of the ML model at
the high-sensitivity cutoff of 100% were 71%, 57%, and 70% in the logistic regression, RF,
and SVM analyses, respectively (Figure 4).

Figure 4. Identification of patients with negligible risk of lymph node metastasis at the high-sensitivity
cutoff in the validation set.

In the validation set, as a subanalysis in the patients with non-curative resection after
ER for EGC, LNM was found in 21 of 362 patients (5.8%). The AUROC of the ML model
was 0.76, 0.73, and 0.75 in the logistic regression, RF, and SVM analyses, respectively, and
the AUROC of the eCura system was 0.72. Logistic regression (NRI, 0.46) and SMV (NRI,
0.21) improved the performance compared to the eCura system. The specificities of the
ML model at the high-sensitivity cutoff of 95% were 39%, 38%, and 38% in the logistic
regression, RF, and SVM analyses, respectively, which were higher than the specificity of
9% for the eCura system (Figure S1).

4. Discussion

Here, we demonstrated the utility of an ML model for predicting the LNM risk in EGC
patients. In the validation set, the AUROC of each ML model showed a good performance,
ranging from 0.85 to 0.90. Furthermore, each ML model could stratify the LNM risk as very
low, low, intermediate, and high risk, and those stratified groups showed a consistent actual
LNM rate. In addition, these showed specificities of about 0.50 or higher at a matched
sensitivity of 100%, indicating that it could discriminate patients with negligible risk of
LNM while identifying the patients who needed surgery owing to the LNM risk with 100%
sensitivity. This tool can easily be applied in clinical practice to categorize the LNM risk and
identify patients with negligible LNM risk under the assumption of maximum sensitivity.
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Non-curative resection after ER for EGC patients is a clinical concern. Physicians
determine further strategies under careful consideration, accounting for the patient’s co-
morbidities associated with surgical risk and individual preference, and the characteristics
of the tumor and surgical procedure. Despite additional surgery owing to non-curative
resection after ER, the rate of LNM is only 5–10%; hence, among the patients with non-
curative resection, it is clinically significant to identify patients at low risk of LNM to
prevent unnecessary surgery. The current guidelines have been revised to address these
issues and recommend a more detailed strategy after non-curative resection [1,2,4,11]. In
the JGCA guidelines (5th edition), among the factors of non-curative resection, piecemeal
resection or a positive lateral margin is defined as eCura C-1, and other factors are described
as eCura C-2. Based on these classifications, physicians can determine the appropriate
therapeutic options, such as additional ER or coagulation for patients in eCura C-1. For
eCura C-2, the eCura scoring system was built based on large-scale data and stratifies LNM
risk as low (0–1 point), intermediate (2–4 points), or high (5–7 points) [11,12]. In patients
with the low-risk category, there is no difference in cancer recurrence or cancer-specific
mortality between patients who receive no additional treatment and those who undergo
additional surgery [14]. Similarly, reports that investigated LNM risk in patients with early
colon cancer after ER were conducted to prevent unnecessary surgery or excess treatment
using the AI system and clinical guidelines [24–27]. This reflects the necessity for detailed
guidance on additional strategies through the stratification of LNM risk in EGC patients
with non-curative resection after ER; therefore, this study has clinical significance.

The strength of this study is that it is the first to develop an ML model to predict LNM
in patients with EGC and validate its good performance. Furthermore, our study was based
on a large sample size and investigated three models (logistic regression, RF, and SVM) to
develop an optimal ML model. Considering that the target participants were patients who
underwent ER for EGC, the performance of the ML model was verified not only for the
total patients but also the patients who received ER as the initial treatment for EGC. In our
study, the very low-risk group had an LNM rate of <1%. This is a stricter category than
the classifications of previous reports that defined a low risk of LNM as <3%, including
nomograms and the eCura system for predicting LNM in EGC patients [11,28]. In addition
to the variables included in the nomogram and the eCura system, our ML model was
constructed based on various variables, including the number of tumors, tumor location,
Lauren classification, perineural invasion, age, sex, gross type, tumor size, differentiation,
depth of invasion, lymphatic invasion, and venous invasion [12,28]. Moreover, we utilized
the ability of the ML model to comprehensively interpret various factors by subdividing
the data of the variables assessed in previous reports [12,28]. For example, the depth of
invasion was subdivided into the lamina propria, muscularis mucosae, SM1, and SM2/3.

We evaluated the performance of the ML model using clinically relevant outcomes. In
estimating LNM risk in patients with non-curative resection after ER for EGC, achieving a
high sensitivity to predict LNM is essential for long-term outcomes. Furthermore, there is
a need to identify patients at low risk for LNM to prevent unnecessary surgery. Our ML
model showed specificities of 49% in the total patients and 71% in the patients with initial
ER at the high-sensitivity cutoff of 100%. When examining only patients with non-curative
resection after ER, our ML model showed specificities ranging from 38% to 39% at the
high-sensitivity cutoff of 95%, which is significantly increased compared to the specificity
of 9% for the eCura system. The sensitivity of 95% was set based on the highest sensitivity
achieved by the eCura system. Therefore, the ML model has great clinical potential in that
it had better specificity than the eCura system at a high-sensitivity cutoff, despite there
being no significant difference in the value of AUROC.

This study had several limitations. First, there may be selection bias due to the exclu-
sion of missing data and the study’s retrospective nature; however, this study was designed
to develop the ML model, including major factors without missing data. Second, this was a
single-center study, and the results need to be validated in other institutions. In addition,
it is necessary to validate the performance of the ML model in patients undergoing non-
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curative resection after ER for EGC. Through this additional validation, we can anticipate
the improved version of the ML model by reinforcement learning and suggest that the ML
model can be a valuable tool in clinical applications. Third, most of the variables included
in our ML model are based on the pathology after ER. For estimation of LNM risk, several
major variables, such as lymphatic invasion, vertical margin, and the depth of invasion,
could not be assessed by endoscopy alone. Fourth, the comparison of long-term survival
was not analyzed according to the stratification of LNM risk, as there were some cases with
insufficient follow-up because the follow-up ended in March 2021.

In conclusion, the ML model showed good performance in the prediction and strat-
ification of LNM risk in patients with EGC. Based on this finding, we suggest that the
ML model has the potential to be a clinically useful tool for estimating LNM risk among
patients with non-curative resection after ER.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051121/s1, Figure S1: Performance of the ML model
and eCura system for predicting LNM in patients with non-curative resection after ER. AUROC,
area under the receiver operating characteristic; NRI, net reclassification index. Table S1: Best
hyperparameters selected from the search algorithm.
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Abstract: The present study evaluated the effectiveness of computer-aided detection (CAD) system
in screening automated breast ultrasound (ABUS) and analyzed the characteristics of CAD marks and
the causes of false-positive marks. A total of 846 women who underwent ABUS for screening from
January 2017 to December 2017 were included. Commercial CAD was used in all ABUS examinations,
and its diagnostic performance and efficacy in shortening the reading time (RT) were evaluated. In
addition, we analyzed the characteristics of CAD marks and the causes of false-positive marks. A
total of 1032 CAD marks were displayed based on the patient and 534 CAD marks on the lesion. Five
cases of breast cancer were diagnosed. The sensitivity, specificity, PPV, and NPV of CAD were 60.0%,
59.0%, 0.9%, and 99.6% for 846 patients. In the case of a negative study, it was less time-consuming
and easier to make a decision. Among 530 false-positive marks, 459 were identified clearly for
pseudo-lesions; the most common cause was marginal shadowing, followed by Cooper’s ligament
shadowing, peri-areolar shadowing, rib, and skin lesions. Even though CAD does not improve the
performance of ABUS and a large number of false-positive marks were detected, the addition of CAD
reduces RT, especially in the case of negative screening ultrasound.

Keywords: computer-aided detection; automated breast ultrasound; breast

1. Introduction

Mammographic screening has reduced the rate of breast cancer mortality [1]. Recent
guidelines for screening of breast cancer recommend mammography starting at age 45 or
50 years [2,3]. Although the incidence of breast cancer in Asian women is still lower than in
Western countries, morbidity and mortality continue to increase in Asian countries [4]. The
peak age of breast cancer in Asian countries is 40–49 years, whereas in Western countries
the peak is around 60 to 70 years [5]. Asian women tend to have breasts with higher density
compared with Western women [6]. Further, dense breast is an independent risk factor for
developing breast cancer [7].

Real-time B-mode ultrasonography has emerged as an alternative imaging technique
for breast cancer screening [8]. Ultrasound elastography can quantify stiffness distribution
of tissue lesions and complements conventional B-mode ultrasonography. The development
of computer-aided diagnosis has improved the reliability of the system, whilst the inception
of machine learning, such as deep learning, has further extended its power by facilitating
automated segmentation and tumor classification [9].

Automated breast ultrasonography (ABUS) was proposed as a supplementary screen-
ing modality recently, for increased cancer detection combined with digital mammography
(DM), especially in dense breasts [10–12]. In addition, ABUS has been proposed in the
diagnostic setting in a few recent studies [13].

However, due to the large number of images in a single scan, the reading time (RT) of a
full ABUS examination can be prolonged and cancers may be easily overlooked [14]. For this
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reason, computer-aided detection (CAD) software for ABUS has been developed to facilitate
the radiological interpretation of ABUS examinations [15]. Few studies investigated the effect
of commercially available CAD systems for ABUS on the RT and screening performance
of breast radiologists [16]. However, before using the CAD system clinically, it is necessary
to analyze the characteristics of CAD marks. It could be useful for radiologists to have
knowledge about the characteristics of CAD marks and the causes of false-positive marks.

In this study, we evaluated the effectiveness of computer-aided detection (CAD)
system in screening automated breast ultrasound (ABUS) through diagnostic performance
and reading time (RT). We also investigated and analyzed the characteristics of CAD marks
and the causes of false-positive marks, to distinguish between true and false marks.

2. Materials and Methods

This retrospective study was approved by the institutional review board (IRB) of our
institution. The need for informed consent was waived by the ethics committee due to the
retrospective design. All procedures involving human participants were in accordance with
the ethical standards of IRB issued by our institution, and assessments were carried out in
accordance with the tenets of the Declaration of Helsinki of 1975, and its revision in 2013.

2.1. ABUS Acquisitions

The ABUS examinations were performed with the ACUSON S2000 Automated Breast
Volume Scanner system (Siemens, Erlangen, Germany). This ABUS system acquires 3D B-
mode ultrasound volumes over an area of 15.4 × 16.8 × 6 cm3 volume data sets of the breast
in one sweep using a mechanically driven linear array transducer (14L5). Adequate depth
and focus can be obtained using predefined settings for different breast cup sizes. All ABUS
examinations were performed by a single trained radiographer. To ensure coverage of the
entire breast, three overlapping acquisitions including antero-posterior, medial, and lateral
views were performed. The scan thickness was displayed at 1 mm intervals without overlap.
A dedicated ABUS workstation was used to reconstruct the transverse slices into a 3D volume
that can be read in a multiplanar hanging, with sagittal and coronal reconstructions.

2.2. CAD System

A prototype workstation was designed and developed specifically for high-throughput
ABUS screening in this observer study (MeVis Medical Solutions, Bremen, Germany). In this
prototype, each user action was logged with timestamps, which were subsequently used
to estimate the time spent per case. The workstation was integrated with a commercially
developed CAD software (QVCAD, Qview Medical Inc., Los Altos, CA, USA), which is
designed to detect suspicious candidate regions in an ABUS volume highlighted with the
so-called CAD marks (Figure 1).

In addition, the QVCAD software provides an “intelligent” minimum intensity projec-
tion (MinIP) of the breast tissue in a 3D ABUS volume that can be used for rapid navigation
through ABUS scans for enhancement of the possible suspicious regions. The CAD-based
MinIP integrated with a multiplanar hanging protocol for ABUS displays the conventional
ABUS planes. By clicking on the dark spot, the 3D multiplanar hanging automatically snaps
to the corresponding 3D location. The crosshair is focused on a breast lesion that is marked
by the CAD software with a green circular marker. The same lesion is also enhanced and
visualized as a dark spot in the MinIP. A screenshot of the CAD-aided reading environment
is presented in Figure 1.
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(a) (b) 

Figure 1. Screening automated breast ultrasound (ABUS) of a 44-year-old woman shows a true-
positive mark. (a) Computer-aided detection (CAD)-based minimum intensity projection (MinIP) of
an ABUS scan of the antero-posterior (AP), medial, and lateral sides of the left breast. There is one
dark spot (arrows) with a green circle. (b) The lesion showing a dark spot with a green circle laterally
on the left breast confirms invasive ductal carcinoma.

The number of CAD markers displayed per ABUS volume could be adjusted by
changing the values of the false-positive rate (FPR) in the configuration setting of the CAD
software. According to the manual from the manufacturer, FPR was defined as the total
number of false-positive CAD markers in non-cancer volumes divided by the total number
of non-cancer volumes. In this study, we set the FPR to 0.2 (i.e., 1 false-positive CAD
marker in non-cancer volume per 5 non-cancer volumes), which was its default setting as
in previous studies [16–18].

2.3. Study Design

The study included a total of 846 women aged 40–49 years who underwent ABUS
screening from January 2017 to December 2017. The CAD (QVCADTM) system was used
in all ABUS examinations and its diagnostic performance was evaluated retrospectively.

We evaluated glandular tissue component (GTC), which was classified as minimal
(<25% of the fibroglandular tissue (FGT)), mild (25–49% of the FGT), moderate (50–74% of
the FGT), or marked (≥75% of the FGT) in each woman based on bilateral breast images [19].

We analyzed whether CAD addition shortened the RT. The RT was determined by the
expert breast radiologists based on their subjective perception in each of the following cases: (1)
CAD with ABUS = ABUS only, (2) CAD with ABUS > ABUS only, (3) CAD with ABUS < ABUS
only. We defined there is a difference when RT was shortened by more than 1 min.

Furthermore, we analyzed the characteristics of CAD marks including the size of the
marked lesion, lesion type (mass or non-mass), tissue composition under ultrasound, and
the causes of false-positive marks. The false-positive mark was defined as the mark located
on the typical benign lesion or pseudo-lesions that require no additional studies following
ABUS. The number of marks per patient and per lesion and the frequency of false-positive
marks were also evaluated.

Two board-certified expert breast radiologists determined the characteristics of CAD
marks based on consensus. In addition, the pseudo-lesions were also evaluated by two
expert breast radiologists with consensus. The characteristics of pseudo-lesions were
analyzed including the number, size, and location (right or left; antero-posterior, medial or
lateral; upper, mid, or lower; inner, mid, or outer).
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All women with suspicious lesions were recalled and US-guided 14G core-needle
biopsy was performed. Patients who were not disease-positive were followed up in 2 years
with radiologic examination using mammography or ultrasonography.

3. Results

A total of 846 women participated in the study, and the median age at enrollment was
44 years (mean age ± standard deviation = 43.9 ± 3.0 years). Based on ABUS screening,
five breast cancers were diagnosed pathologically over a two-year follow-up (Figure 1).
The sensitivity, specificity, PPV, NPV, and accuracy of CAD for cancer detection were 60.0%,
59.0%, 0.9%, 99.6% and 59.0%, respectively, for 846 patients, while those values for 1032
CAD marks were 60.0%, 48.3%, 0.6%, 99.6%, and 48.4%, respectively.

Based on the lesion type detected, the large mass lesions were more than the non-mass
lesions (60 vs. 11). Based on tissue composition under ultrasound, the number of minimal-
to-mild cases in GTC was higher than moderate-to-marked cases (668 vs. 178). The rate of
CAD positivity in moderate-to-marked lesions was higher than in minimal-to-mild. Table 1
summarizes the screening performance of CAD for ABUS per patient and per lesion.

Table 1. Sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value
(NPV), and accuracy per patient and per computer aided detection (CAD) mark.

Total (n = 846) Benign Malig SEN SPE PPV NPV Accuracy p-Value

CAD
CAD (−) 496 2

60 59 0.9 99.6 59 0.407CAD (+) 345 3
Mark No. 1 # 324 2
Mark No. 2 20 -
Mark No. 3 1 1

ABUS Category
<4 827 0

100 98.3 26.3 100 0.6 <0.0001=>4 14 5

Lesion type
non-mass 10 1

mass 56 4

Non-mass (n = 11)
CAD (−) 3 1 - 30 - 75 27.3 0.364CAD (+) 7 0

Mark No. 1 6 -
Mark No. 2 1 -
Mark No. 3 - -

Mass (n = 60)
CAD (−) 27 1

75 48.2 9.4 96.4 50 0.616CAD (+) 29 3
Mark No. 1 23 2
Mark No. 2 5 -
Mark No. 3 1 1

Tissue Composition
1–2 665 3

40 79.1 1.1 99.6 78.8 0.2843–4 176 2

Tissue Composition
(1–2, n = 668)

CAD (−) 409 1
66.7 61.5 0.8 99.8 61.5 0.563CAD (+) 256 2

Mark No. 1 241 1
Mark No. 2 14 -
Mark No. 3 1 1
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Table 1. Cont.

Total (n = 846) Benign Malig SEN SPE PPV NPV Accuracy p-Value

Tissue Composition
(3–4, n = 178)

CAD (−) 87 1
50 49.4 1.1 98.9 49.4 1CAD (+) 89 1

Mark No. 1 83 1
Mark No. 2 6 -
Mark No. 3 - -

Total (n = 1032)
CAD (−) 496 2

60 48.3 0.6 99.6 48.4 1CAD (+) 531 3
Mark Number 1 € 220 3
Mark Number 2 79 -
Mark Number 3 36 -
Mark Number 4 6 -
Mark Number 5 3 -
Mark Number 6 1 -

# Mark No. denotes the number of CAD marks per lesion. € Mark Number indicates the number of CAD marks
per patient.

In the absence of the CAD mark, the readers determined that the reading time for CAD
with ABUS was less than for ABUS only and easier to make a decision (Table 2). Table 2
summarizes the number and characteristics of CAD marks per patient.

Table 2. Characteristics of number for computer-aided detection (CAD) marks per patient and
reading time (RT).

Mark No. #

0 1 2, 3 Total (1,2,3) p-Value *

Size 0.702
mean ± SD 12.2 ± 7.6 11.5 ± 6.3 18.9 ± 17.6 13 ± 9.9

median(IQR) 10 (7, 14.5) 10 (7, 13) 15 (8, 20) 10 (7, 14)

Mass type 0.743
non-mass 28 (87.5) 25 (80.7) 7 (87.5) 32 (82)

mass 4 (12.5) 6 (19.4) 1 (12.5) 7 (18)

Tissue composition 0.004
1, 2 410 (82.3) 242 (74.2) 16 (72.7) 258 (74.1)
3, 4 88 (17.7) 84 (25.8) 6 (27.3) 90 (25.9)

Reading time <0.0001
CAD with ABUS = ABUS 16 (3.2) 39 (12.1) 10 (50) 49 (14.3)
CAD with ABUS > ABUS - 279 (86.4) 10 (50) 289 (84.3)
CAD with ABUS < ABUS 482 (96.8) 5 (1.6) - 5 (1.5)

Values are expressed as numbers (percentages) for categorical variables and means (SD), median (IQR) others. *
p-value was calculated between 0 with total (1,2,3) using Chi-square test, Fisher’s exact test, or t-test. # Mark No.
indicates the number of CAD marks per lesion.

Of 846 patients, 1032 CAD marks were marked in 534 lesions of 348 patients with
a mean CAD mark per person of 0.8 (SD ± 1) (range 0–6) (Table 3). No CAD mark was
detected in 498 patients (48.3%).

The characteristic CAD marks were determined by two reviewers by consensus as
suspicious malignant lesions (0.8%, n = 4), benign lesions (13.3%. n = 71), and clear
pseudo-lesions (86%, n = 459).

Among 530 false-positive marks, 459 marks were marked on the clear pseudolesions
(Figures 2–4); the most common cause was marginal shadowing (209, 39.1%), followed by
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Cooper’s ligament shadowing (143, 26.8%), peri-areolar shadowing (64, 12%), rib (37, 6.9
%), and skin lesions (6, 1.1%).

Table 3. Number and characteristics of computer-aided detection (CAD) mark.

Characteristics of All CAD Mark
(n = 1032)

Mean and median No. of CAD marks
per patient

mean ± SD 0.8 ± 1
median (IQR) 1 (0, 1)

No. of CAD mark per patient n %

0 (498) 498 48.3
1 (1 × 223) 223 21.6
2 (2 × 79) 158 15.3
3 (3 × 36) 108 10.5
4 (4 × 6) 24 2.3
5 (5 × 3) 15 1.5
6 (6 × 1) 6 0.6

Characteristics of CAD marks per
lesion (n = 534)

n %

Suspicious 4 0.8

Benign 71 13.3

Fat 35 6.6
Benign mass 19 3.6

Cyst 9 1.7
Fibrosis/heterogenous parenchyma 8 1.5

False-positive marks for pseudolesions 459 86

Marginal shadowing 209 39.1
Cooper’s ligament shadowing 143 26.8

Periareolar shadowing 64 12
Rib 37 6.9

Skin lesion 6 1.1
Values are expressed as numbers (percentages) for categorical variables and means (SD), median (IQR) others.
Values are expressed as numbers (percentages) for categorical variables.

(a) (b) 

Figure 2. Cont.
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(c) (d) 

Figure 2. Screening automated breast ultrasound (ABUS) of a 45-year-old woman reveals false-positive
marks due to shadowing. (a) CAD-based minimum intensity projection (MinIP) of an ABUS scan of
the AP, medial, and lateral sides of both breasts. There are three dark spots with green circles. (b) The
lesion showing a dark spot with a green circle on AP side of the right breast confirms the pseudolesion
due to periareolar shadowing in the transverse scan. (c,d) The lesion showing a dark spot with a green
circle on AP side of the left breast confirms the pseudolesion due to Cooper’s ligament shadowing in the
transverse scan. The lesion showing a dark spot with a green circle laterally on the left breast confirms
the pseudolesion due to marginal shadowing in the transverse scan.

  
(a) (b) 

  
(c) (d) 

Figure 3. Screening automated breast ultrasound (ABUS) of a 42-year-old woman shows false-
positive marks due to rib. (a) CAD-based minimum-intensity projection (MinIP) of an ABUS scan in
the AP, medial, and lateral sides of both breasts. There are four dark spots with green circles. (b–d)
The lesions showing dark spots with green circles in both AP and right medial sides of both breasts
confirm pseudolesions due to ribs in the transverse scan.
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(a) (b) 

Figure 4. Screening automated breast ultrasound (ABUS) of a 48-year-old woman reveals false-
positive marks due to skin lesions. (a) CAD-based minimum intensity projection (MinIP) of an ABUS
scan in the AP, medial, and lateral sides of both breasts. There is a dark spot with a green circle.
(b) The lesion showing a dark spot with a green circle on the AP side of the left breast confirms the
pseudolesion due to a skin lesion in the transverse scan.

The false-positive marks on pseudo-lesions were frequently detected in the upper
portion than in the mid-to-lower portion, and in the outer portion than in the mid-to-inner
portion of breast (Table 4). There were more marks in the lateral view than in AP or medial
views (Table 4).

Table 4. Characteristics of false-positive marks associated with pseudolesions (n = 459).

Mark No. #

All 1 2, 3 p-Value p-Value *

Mark Location 0.337 0.002
right 262 (57.1) 251 (56.7) 11 (68.8)
left 197 (42.9) 192 (43.3) 5 (31.3)

Mark Location 0.806 0.026
antero-posterior 142 (29.9) 131 (29.6) 11 (34.4)

medial 147 (31) 137 (30.9) 10 (31.3)
lateral 186 (39.2) 175 (39.5) 11 (34.4)

Mark Site 0.674 <0.0001
upper 377 (82.1) 362 (81.7) 15 (93.8)
mid 30 (6.5) 30 (6.8) -

lower 52 (11.3) 51 (11.5) 1 (6.3)

Mark Site 0.572 <0.0001
inner 101 (22) 96 (21.7) 5 (31.3)
mid 139 (30.3) 134 (30.3) 5 (31.3)

outer 219 (47.7) 213 (48.1) 6 (37.5)

Tissue Composition 0.843 <0.0001
1, 2 305 (66.5) 294 (66.4) 11 (68.8)
3, 4 154 (33.6) 149 (33.6) 5 (31.3)

Values represent numbers (percentages) for categorical variables. p-value was calculated between MarkNo1 with
MarkNo2,3 using Chi-square test. * p-value was calculated only in a group using Chi-square test. # Mark No.
indicates the number of CAD marks per lesion.

4. Discussion

In this study, we evaluated the effectiveness of computer-aided detection (CAD)
system in screening automated breast ultrasound (ABUS) through diagnostic performance
and reading time (RT). A total of 846 patients displayed 1032 CAD marks and 534 CAD
marks based on lesions. The sensitivity, specificity, PPV, NPV, and accuracy of CAD were
60.0%, 59.0%, 0.9%, 99.6% and 59.0% for 846 patients, respectively, while those of 1032 CAD
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marks were 60.0%, 48.3%, 0.6%, 99.6%, and 48.4%, respectively. The relatively higher NPV
compared with other parameters indicates that the exam can be concluded with a negative
study if no CAD mark is detected on ABUS. The presence of marks in multiple views
did not suggest malignancy in this study. In the absence of the CAD mark, the readers
determined that the reading time for CAD with ABUS was less than for ABUS only and
easier to make a decision.

Several studies have reported that the performance of ABUS was comparable to
that of hand-held ultrasound [20–22]. In addition, four prospective studies using ABUS
demonstrated an increased cancer detection of 1.9–7.7 per 1000 examinations similar to
hand-held ultrasound [10,11,14,23].

However, while the ABUS can yield standardized and structured images regardless
of the experience of the operator, it takes much more time and effort to interpret the
exams [24]. For this reason, the CAD system has been suggested as a supplementary
method for interpreting ABUS results. However, the CAD system showed a high negative
predictive value, and there were many false-positive CAD marks, which implied typical
benign or pseudo-lesions that do not require further investigation. Usually, the false-
positive imaging results can affect the recall rate of the screening modality. The recall rate
varied from 8.8% in the J-START study to 10.7% in the American College of Radiology
Imaging Network (ACRIN) study [25,26]. However, few studies reported the characteristics
of the causes of false-positive marks.

In addition to the diagnostic performance of CAD on ABUS, the previous studies
evaluated the RT of CAD on ABUS [27–29]. Yang et al. reported that using CAD in the
concurrent-reading mode, all readers saved 32% (16 s per 50 s per volume) in RT with a
higher area under the receiver operating characteristic curve values compared with non-
CAD mode [28]. Jiang et al. reported that although not all studies were interpreted faster
with the CAD system, on average the savings were approximately 1 min per case [29]. In
our study, it was less time-consuming and easier to make a clinical decision, especially in
the case of a negative study.

In this study, we investigated and analyzed the characteristics of CAD marks and
the causes of false-positive marks, to distinguish between true and false marks. Among
530 false-positive marks, 459 were identified clearly for pseudo-lesions; the most common
cause was marginal shadowing, followed by Cooper’s ligament shadowing, peri-areolar
shadowing, rib, and skin lesions, all of which were easily distinguishable radiologically.
The false marks for pseudo-lesions were detected more frequently in the upper rather
than in the mid-to-lower portion and in the outer rather than in the mid-to-inner portion,
probably because of bulkiness and flexibility of the upper and outer portion of the breast.

ABUS is a standardized examination with multiple advantages in both screening and
diagnostic settings, including increased detection of breast cancer, improved workflow,
and reduced examination time. However, ABUS has disadvantages and even some lim-
itations. Disadvantages regarding image acquisition are the inability to assess the axilla,
vascularization, and lesion elasticity. The limitations of interpretation include motion- or
lesion-related artifacts due to poor positioning and the lack of contact [30]. In the review
article about the pros and cons of ABUS by Ioana Boca et al., marginal shadowing and
Cooper’s ligament shadowing were defined as artifacts due to insufficient compression [30].
Peri-areolar shadowing is defined as a nipple artifact [30]. Despite the promising detection
rate with CAD software in breast cancer, radiologists should determine whether a CAD
software-marked lesion is a true- or false-positive lesion, given its positive predictive value
and high false-positive rate [17]. The knowledge of these artifacts improves the diagnostic
performance of radiologists.

There are several limitations to this study. First, we used only image data obtained
with equipment from a single vendor, with a small number of participants. In addition, this
study was performed only in academic institutions by a limited number of users, board-
certified expert breast radiologists, and does not represent varying clinical environments.
Second, the absence of the numerical result of RT is the limitation of this study. The RT was
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determined by the expert breast radiologists based on their subjective perception. Finally,
in our study, the expert radiologists’ decision was a gold standard for suspicious lesions
or pseudo-lesions. However, a large number of marks await the radiologist’s rational
judgment. Therefore, CAD users should be familiar with marks in various situations before
using them, and the review summarizes the characteristics of CAD marks only without
radiological evaluation. The knowledge of the characteristics of CAD marks and the causes
of false-positive marks could improve the diagnostic performance of radiologists.

5. Conclusions

In conclusion, even though CAD addition does not improve the performance of
screening ABUS and is associated with a large number of false-positive marks, CAD
addition improves the negative predictive value and reduces RT, especially for negative
screening ultrasound.
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Simple Summary: Lung cancer screening with low-dose CT (LDCT) has been shown to significantly
reduce cancer-related mortality and is recommended by the United States Preventive Services Task
Force (USPSTF). With pending recommendation in Europe and millions of patients enrolling in the
program, deep learning algorithms could reduce the number of false positive and negative findings.
Therefore, we evaluated the cost-effectiveness of using an AI algorithm for the initial screening
scan using a Markov simulation. We found that AI support at initial screening is a cost-effective
strategy up to a cost of USD 1240 per patient screening, given a willingness-to-pay of USD 100,000
per quality-adjusted life years (QALYs).

Abstract: Background: Lung cancer screening is already implemented in the USA and strongly rec-
ommended by European Radiological and Thoracic societies as well. Upon implementation, the total
number of thoracic computed tomographies (CT) is likely to rise significantly. As shown in previous
studies, modern artificial intelligence-based algorithms are on-par or even exceed radiologist’s perfor-
mance in lung nodule detection and classification. Therefore, the aim of this study was to evaluate the
cost-effectiveness of an AI-based system in the context of baseline lung cancer screening. Methods: In
this retrospective study, a decision model based on Markov simulation was developed to estimate
the quality-adjusted life-years (QALYs) and lifetime costs of the diagnostic modalities. Literature
research was performed to determine model input parameters. Model uncertainty and possible costs
of the AI-system were assessed using deterministic and probabilistic sensitivity analysis. Results: In
the base case scenario CT + AI resulted in a negative incremental cost-effectiveness ratio (ICER) as
compared to CT only, showing lower costs and higher effectiveness. Threshold analysis showed that
the ICER remained negative up to a threshold of USD 68 for the AI support. The willingness-to-pay of
USD 100,000 was crossed at a value of USD 1240. Deterministic and probabilistic sensitivity analysis
showed model robustness for varying input parameters. Conclusion: Based on our results, the use of
an AI-based system in the initial low-dose CT scan of lung cancer screening is a feasible diagnostic
strategy from a cost-effectiveness perspective.

Keywords: lung cancer screening; deep learning; cost-effectiveness analysis; AI-support system

1. Introduction

Based on the findings of the national lung screening trial (NLST), in 2014 the United
States Preventive Service task force recommended the annual lung cancer screening of
patients between 55 and 80 years with 20 pack years of smoking history [1,2]. In contrast
to the high and further increasing incidence of lung cancer globally, the incidence of
lung cancer was relatively low in the NLST. Nonetheless, the NLST was able to show a
significant reduction in lung cancer related mortality due to the annual screening with low-
dose computed tomography (CT). Consequently, a European Position Statement followed

Cancers 2022, 14, 1729. https://doi.org/10.3390/cancers14071729 https://www.mdpi.com/journal/cancers
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in 2017, strongly recommending the CT-based lung cancer screening as well [3]. This
recommendation is further supported by the Dutch-Belgian lung-cancer screening trial
(Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON)), which also showed a
significant reduction in lung cancer mortality for high-risk patients who participated in the
screening [4]. With several ongoing pilot projects in Europe, the widespread introduction
of lung cancer screening seems to be only a matter of time.

Nevertheless, the benefits of lung cancer screening are limited by false negative and
false positive findings, which not only result in high costs but also affect clinical outcome
and quality of life [2,5,6]. Currently, low dose CT-scans in the screening setting are evaluated
based on standardized systems like Lung-RADS (Lung imaging reporting and data system),
which improve the diagnostic accuracy for radiologists and reduces costs by decreasing the
need for further diagnostic tests [7,8]. Even after a recent revision of the reporting system,
observer variability will remain a relevant limitation [9,10].

The rapid development of artificial intelligence (AI) in the medical field has shown
promising results for cancer screening and recent AI-models may achieve or exceed the
diagnostic performance of sub-specialized experts, for example in breast cancer screen-
ing [11]. While long-standing CAD (computer aided diagnosis/detection) systems show
mixed results for lung cancer detection [12–14], novel neural networks, convolutional
neural networks (CNN) in particular, seem to have a positive effect on the diagnostic perfor-
mance of radiologists [15]. Ardila et al. showed that a 3D-CNN outperformed radiologists
in low-dose CT screening scans when no prior scans were available, indicating a favorable
benefit for screening initiation.

Among other constraints, the health economic impact of AI systems is an important
factor in the decision to implement models in routine clinical practice. Despite the imminent
deployment of lung cancer screening and the promising results of AI-systems, no study
has been performed to evaluate the utilization of neural networks in lung cancer screening
compared to the stand-alone low dose CT-scan from an economic point of view. Therefore,
the aim of our study was to evaluate the cost effectiveness of an AI-system for the initial
scan of annual lung cancer screening and present the first results on identifying a cost
margin for a clinical integration.

2. Materials and Methods

2.1. Model Structure

A decision model including the diagnostic strategies of conventional CT and CT
augmented by AI was created and used as a decision tree, as shown in Figure 1.

Figure 1. Markov model with possible states of disease and transition probabilities between states.
BC = bronchial cancer; LT = life tables.
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For calculation of costs and benefits in the different iterations a Markov transition state
model was created. The model included the stages:

• No BC (patients without BC = true negative);
• No BC, Suspicious nodule (patients without BC but suspicious nodule = false positive);
• BC undetected (patients with undetected BC = false negative);
• BC after resection (patients with BC after resection);
• BC palliative (patients with BC which is unresectable/palliative);
• Dead.

Additionally, for better simulation and understanding of the model, the states “BC
delayed detection” and “BC early detection” were created, which only served for transi-
tion. The Markov model reflects the different states a patient can be assigned to. Taking
into account transition probabilities between the states as well as costs and effectiveness
(displayed in Quality of Life) in those states during several iterations, cumulative costs and
cumulative effectiveness within a defined time horizon can be calculated by adding those
up throughout the iterations.

Analysis of the model was performed using a dedicated decision analysis software
(TreeAge Pro Version 19.1.1, Williamstown, MA, USA).

2.2. Input Parameters

There was no requirement for an ethical approval for this analysis based on commonly
available data. Model input parameters were based on current literature. Age-specific
risk of death was derived from the US life tables [16]. Age at the diagnostic procedure
was set to 60 years and willingness-to-pay was set to USD 100,000 per quality adjusted
life year (QALY) at a discount rate of 3%, as reported previously [17,18]. The discount
rate reflects the loss in economic value or effectiveness when there is a delay in realizing
a benefit or incurring costs. The pre-test probability of BC was set to 2.635% for the risk
group consisting of female and male smokers risk for an interval of 30 years, according to
published data from Jacob et al. [19]. All input parameters and corresponding references
are listed in Table 1.

Table 1. Input parameters.

Pre-test-Probability of BC 2.635 Jacob et al. [19]

Age at diagnostic procedure 60 years US Preventive Services Task Force [1]
Assumed WTP USD 100,000,00 Assumption
Discount rate 3.00% Assumption

Markov model time 20 years Assumption

Diagnostic Test Performances
Sensitivity for BC CT 77.9% Ardila et al. [15]
Specificity for BC CT 87.7% Ardila et al. [15]

Sensitivity for BC CT + AI 97.7% Ardila et al. [15]
Specificity for BC CT + AI 98.4% Ardila et al. [15]

Costs (Acute)
CT USD 161.00 Medicare (71,250) [20]

Costs (Long Term)
No BC USD 0.00

Follow up if false positive USD 2256.00 ten Haaf et al. [21]
Curative therapy BC/resection cost USD 36,305.00 Cowper et al. [22]

BC undetected USD 0 Assumption
BC after resection USD 4283.00 ten Haaf et al. [21]

Therapy BC, palliative USD 60,000.00 ten Haaf et al. [21]
Dead USD 0 Assumption
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Table 1. Cont.

Utilities
No BC 1 Assumption

Follow up if false positive 0.98 Gareen et al. [23]
Curative therapy BC/resection 0.79 Grutters et al. [24]

BC undetected 1 Assumption
BC after resection 0.933 Möller et al. [25]

BC palliative 0.63 Doyle et al. [26]
Dead 0 Assumption

Transition Probabilities
Verification of suspicious nodule as no BC 100% Assumption

Death if no BC but suspicious nodule 0.001 (invasive diagnostics) + life tables The National Lung Screening Trial
Research Team [2]

Resection rate of BC after early detection 75% The National Lung Screening Trial
Research Team [2]

Death after curative resection 4.70% Green et al./Toker et al. [27,28]
Recurrence after resection 9.80% Lou et al. [29]

Detection of initially undetected BC 15% 1st, 40% 2nd, 100% 3rd year Scholten et al. [30]
Death with undetected BC life tables

Resection rate of BC after delayed
detection 26% Hunbogi et al. [31]

Death with palliative care 36% Cancer Stat Facts: Lung and Bronchus
Cancer, National Cancer Institute [32]

Death without BC life tables

AI = artificial intelligence; BC = bronchial cancer; CT = computed tomography; QALY = quality adjusted life year;
WTP = willingness-to-pay.

2.3. Diagnostic Test Performances

Sensitivity and specificity values for CT detection of BC with and without AI were
derived from the literature (Table 1).

2.4. Costs

From a United States (US) healthcare perspective, costs were estimated based on
Medicare data and available literature (Table 1). The long-term costs of the follow up in
case of false positive was estimated at USD 2256 including the costs for a follow up CT
examination and a possible bronchoscopy and biopsy [21]. The resection costs of BC were
set to USD 36,305, according to Cowper et al. [22]. annual costs of palliative BC patients
were estimated at USD 60,000 [21].

2.5. Utilities

Utility is measured in the additional quality-adjusted life years (QALY) which are
gained through each diagnostic procedure. According to previous studies, quality of life
(QOL) for curative BC patients was set to 0.79 for the first year after resection and 0.933
for the following years [24,25]. In accordance with the literature, QOL for palliative BC
patients was set to 0.63 [26]. These values were then used for calculations in a Markov
model specifically designed as mentioned above.

2.6. Transition Probabilities

Transition probabilities were derived from a systematic review of the recent literature
and are shown in Table 1. Probability of successful resection of (early) detected BC was
estimated at 75%, according to the national lung screening trial research team [2]. Risk
of secondary occurrence of cancer/metastases after resection of the primary tumor was
assumed to be 9.80% [29]. Annual mortality rate of curative patients was set to 4.7% and to
36.0% for palliative patients [28,32,33].
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2.7. Cost-Effectiveness Analysis

The cost-effectiveness analysis was performed based on Markov simulations with a
run time of 20 years (20 iterations) after initial diagnostic procedure. The discount rate was
set to 3.0% and willingness-to-pay was set to USD 100,000 per QALY according to current
recommendations [18].

In the base-case scenario, cost-effectiveness was determined with costs of CT + AI
identical to costs of CT only, meaning costs of USD 0 for additional use of AI. Based on these
results, maximum costs for AI were calculated for several willingness-to-pay thresholds.
For evaluation of model uncertainty and influence of alteration of each variable on the
model, a deterministic sensitivity analysis was performed. Results were visualized in a
tornado diagram.

Based on the Markov model, Monte-Carlo simulations were used to perform a proba-
bilistic sensitivity analysis with a total of 30,000 iterations. This method is used to account
for the variation of input-parameters among different individuals.

3. Results

3.1. Cost-Effectiveness Analysis

Simulations of a time horizon of 20 years resulted in average cumulative costs of USD
4310.82 for CT + AI and USD 4378.44 for CT if additional diagnostic costs for the use of AI
were set to USD 0 in the base case scenario. In this scenario, average cumulative effective-
ness was at 13.76 QALYs for CT + AI and at 13.75 QALYs for CT. To better understand the
impact of input parameters on the model, costs and effectiveness as well as distribution
of the different outcomes are shown in Figure 2. Different overall costs and effectiveness
derive from different distribution of the outcomes “true positive”, “false negative”, “true
negative”, and “false positive” based on different sensitivity and specificity of the two
methods. The incremental cost-effectiveness ratio in the base case scenario was negative,
meaning both, lower cost and higher effectiveness for CT + AI.

Figure 2. Roll-back of the economic model showing costs and effectiveness of the different outcomes.
Distributions leading to overall costs and effectiveness are different for CT and CT + AI depending on
sensitivity and specificity of the two methods and indicated as probabilities. BC = bronchial cancer;
CT = computed tomography; TP = true positive; TN = true negative; FP = false positive; FN = false
negative; Prob = probability.
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3.2. Sensitivity Analysis

Probabilistic sensitivity analysis and Monte Carlo simulation was performed to de-
termine the distribution of the resulting ICER-values and is visualized in Figure 3. Monte
Carlo simulation reflects the difference between costs (=incremental costs) and effectiveness
(=incremental effectiveness) for a certain amount of notional scenarios/iterations. All
iterations with an ICER-value below the willingness-to-pay of USD 100,000 per QALY were
considered cost-effective.

Figure 3. Probabilistic sensitivity analysis utilizing Monte-Carlo simulations (30,000 iterations).
Incremental cost-effectiveness scatter plot for CT + AI vs. CT. iterations with an ICER-value below the
willingness-to-pay of USD 100,000 per QALY are shown as green crosses. WTP = willingness-to-pay.

Deterministic sensitivity analysis was performed to account for variability of input
parameters in the base case scenario. Results are displayed as a tornado diagram in
Figure 4A.

Applying wide ranges of variation for the different input parameters, ICER stayed
below USD 0/QALY for the sensitivities of the diagnostic modalities and the probabilities of
resectability in early and delayed diagnosis. Although ICER turned positive when varying
the specificity of CT and CT + AI, the willingness-to-pay threshold of USD 100,000/QALY
was not crossed in any of the cases.

3.3. Threshold Analysis

To determine the maximum possible costs for the use of AI at a willingness-to-pay
of USD 100,000/QALY, a threshold analysis was performed. As shown in Figure 5, ICER
remained negative until costs of AI were raised to USD 68.

628



Cancers 2022, 14, 1729

Figure 4. (A) Tornado diagram showing the impact of input parameters on incremental cost-
effectiveness ratio (ICER) in the base case scenario. Assuming a willingness-to-pay threshold of USD
100,000 per QALY, CT + AI remained cost-effective in all cases. (B) Tornado diagram showing the
impact of input parameters on incremental cost-effectiveness ratio (ICER) when costs of AI were
set to USD 1240 with an expected value of USD 100,000 per QALY. Blue bars show changes when
decreasing the value of an input parameter as compared to the base case scenario and red bars when
increasing the respective value. Sens = sensitivity; Spec = specificity; CT = computed tomography;
AI = artificial intelligence; P = probability.

Figure 5. One-way sensitivity analysis for costs of AI (USD) and the corresponding incremental cost
effectiveness ratio (ICER in USD/QALY). Thresholds indicate values at an ICER of USD 0/QALY
and USD 100,000/QALY. ICER = incremental cost-effectiveness ratio; AI = artificial intelligence;
QALY = quality adjusted life year.
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Raising costs of AI further, the assumed willingness-to-pay threshold of USD 100,000/
QALY is only crossed at a value USD 1240. Influence in different input parameters in
this second base case scenario setting costs of AI to USD 1240 are shown in Figure 4B. To
account for possible variation of the willingness-to-pay, Table 2 displays possible costs for
AI depending on different willingness-to-pay thresholds. Due to the cost’s dependency
on the ICER, the cost for AI directly is further influenced by the systems performance,
resulting in a higher price for a better system due to the increased ICER.

Table 2. Cost of AI at different WTP-thresholds.

WTP (USD/QALY) 0 20,000 40,000 60,000 80,000 100,000 120,000 150,000 200,000

Cost of AI (USD) 68 302 537 771 1006 1240 1475 1826 2412

4. Discussion

The widespread integration of lung cancer screening is proving to be a complex and
challenging undertaking. Nevertheless, lung cancer screening is a cost-effective method
to reduce lung cancer mortality. AI-models for cancer detection and classification have
proved to be of benefit in lung cancer screening in several studies [15,34].

In the present study, we show that a state-of-the-art AI-model (3D-convolutional neural
network according to Ardila et al.) is a cost-effective method for the baseline screening
scan [15]. Despite promising results of AI in the health care sector, studies evaluating the
economic impact and cost effectiveness remain sparse [35]. To our knowledge, no study
has been conducted to investigate the cost-effectiveness of an AI-system in lung cancer
screening. Based on the superior performance of the AI-model without prior imaging, we
simulated an implementation for the initial screening scan using input parameters derived
from published screening cohorts [2,15,36,37], to ensure comparability to the standard
screening setting.

Our base case estimate for screening with an AI system compared to current low-
dose CT screening yielded a negative ICER up to costs of USD 68 for the AI system,
indicating that using an AI system in the screening setting results in lower cost and higher
effectiveness up to these costs per patient scan. Furthermore, the ICER remained below
the applied willingness-to-pay up to costs of USD 1240. To account for variations in input
parameters, we performed a deterministic sensitivity analysis for the base case scenario and
the maximum cost-effective costs (USD 1240). The specificity of the diagnostic strategy had
the greatest influence for both scenarios, due to the low lung cancer rate in screening cohorts.
For the base case scenario all input variations resulted in an ICER below the willingness-to-
pay by a large margin, indicating robust cost-effectiveness. Adding AI support showed
a reduced number of false-positives and an increased number of true negatives in our
simulation. In particular, the reduction of false-positives highly impacts the value of a
screening method, as not only costs in the form of unnecessary follow-up examination and
possibly further, partly invasive examinations are reduced, but also patients do not have
to experience the psychological distress of a possible cancer diagnosis [38]. Additionally,
the false positive rates and the frequency of invasive diagnostic procedures were more
frequent at the baseline CT, ranging from 7.9% to 49.3% for the false positive rate and 3.7%
for additional invasive procedures [2,39], further emphasizing the benefit of AI support for
the initial screening. As shown by Audelan et al., the sensitivity and specificity of AI in
lung cancer screening can further be improved, consequently allowing for an additional
reduction of costs and increased effectiveness [40].

Despite promising results, our study underlies several limitations. First, the cost-
effectiveness was only evaluated for the initial scan in the lung cancer screening. This is
due to published literature, focusing on the superiority of AI lung nodule detection and
classification in initial CT of the thorax without prior imaging for comparison. According to
Ardila et al., deep-learning algorithms are superior to radiologists in lung cancer screening
detection, when no prior imaging is available for comparison, but is on-par as soon as
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previous examinations are available for the reader. Consequently, further research has to be
conducted to evaluate the cost-effectiveness of AI-based computer-aided diagnosis systems
in longitudinal screening, beyond the initial scan [15]. Further, our evaluation is focused
on the sole AI system performance in comparison to the human reader—the radiologist.
However, several studies have shown promising results for the collaboration of both, often
referred to as the “Centaur model” [33]. Such systems were shown not only to be beneficial
in patient care but cost-effective as well [41]. Despite dealing with different challenges
compared to lung cancer, for thyroid nodule detection, AI systems outperform thyroid
cancer specialized radiologists in nodule classification, but the combination of specialized
radiologists with AI-support showed an even higher specificity and positive predictive
value when compared to the AI system alone [42]. Therefore, further research is needed
to evaluate the combination of AI models and specialized thorax radiologists in lung
cancer detection and its cost-effectiveness. Lastly, cost-effectiveness analysis with decision-
based models is highly dependent on the input parameters, while deterministic sensitivity
analysis may incorporate parameter variation to a certain degree, and recommendations
for each individual case cannot be derived from the model.

5. Conclusions

To conclude, in our study we show that screening with an AI-model in the initial
screening scan is a cost-effective strategy in low-dose CT lung cancer screening with
robustness to variation of input parameters. Defining thresholds for cost of AI results might
help faster translate AI systems into clinical use.
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Simple Summary: With the advancement of artificial intelligence, including machine learning, the
field of oncology has seen promising results in cancer detection and classification, epigenetics, drug
discovery, and prognostication. In this review, we describe what artificial intelligence is and its
function, as well as comprehensively summarize its evolution and role in breast, colorectal, and
central nervous system cancers. Understanding the origin and current accomplishments might
be essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of
artificial intelligence models that can be used in worldwide clinical practice. Students and researchers
in the medical field will benefit from a deeper understanding of how to use integrative AI in oncology
for innovation and research.

Abstract: Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide
clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML
has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mam-
mography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML
techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based
tumor imaging analysis is independent of the experience level of evaluating physicians, and the
results are expected to be more standardized and accurate. One of the biggest challenges is its
generalizability worldwide. The current detection and screening methods for colon polyps and breast
cancer have a vast amount of data, so they are ideal areas for studying the global standardization of
artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on
current management standards. ML offers the prospect of unraveling undiscovered features from
routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring,
and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types,
standard management methods may be improved by augmenting personalized/precision medicine.
This review aims to provide clinicians and medical researchers with a basic understanding of how
ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and
metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are
crucial in advancing the use of AI in oncology.

Keywords: artificial intelligence; machine learning; deep learning; convolutional neural networks;
support vector machine; breast oncology; brain tumors; colon cancer
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1. Introduction

Artificial intelligence (AI) is a field in which computers are programmed to mimic hu-
man intelligence. The abundance of data in the field of medicine makes it a good candidate
for problem solving using machine learning (ML). In oncology, ML can be used to diagnose
and classify tumors, detect early-stage tumors, gather genetic and histopathological data,
assist in pre- and post-operative planning, and predict overall survival outcomes [1]. Deep
Learning (DL), a type of ML, has proven to be effective in automating time-consuming
steps such as detection and segmentation of lesions [2–4].

AI-based models have demonstrated excellent accuracy rates of cancer detection
on screening mammography and breast cancer (BC) prediction based on genetics and
hormonal factors [5–7]. AI plays a crucial role in early detection, classification, histopatho-
logical aspects, genetics, and molecular markers detection in colorectal cancer (CRC) [8–10].
As a result of extensive data in present-day screening and improvements in life expectancy
caused by early detection of breast and colon cancer, we review the potential of AI-based
diagnostics and therapeutics. Because mammograms and colonoscopies are widely used
in the general population worldwide, AI can be used extensively in future studies on
cancer screening to build generalizable AI systems [11]. AI has made its way into other
cancer types, which we do not review here. For instance, lung cancer screening is reserved
for smokers, and the United States Preventive Services Task Force (USPSTF) approved
low-dose chest computed tomography (CT) scans in 2013, and prostate cancer screening
has not yet been approved universally [11,12]. CNS cancers are relatively rare and have a
poor prognosis. Studying AI in such rare tumors can provide a scope of precision of AI
integration in improving the current standard management. In the area of central nervous
system (CNS) tumors, AI and radiomics have notably enhanced detection rates and reduced
several time-consuming steps in glioma grading, pre- and intraoperative planning, and
postoperative follow-up [13–15].

This review article outlines how AI works in simple terminology that medical profes-
sionals can understand, how it has improved breast cancer screening, colon polyp detection,
and colorectal cancer screening, as well as the implications it has in the management of
CNS tumors. A literature search was conducted on PubMed, Google Scholar, arXiv, and
Scopus. This is not a systematic review but a narrative review of the literature. We conclude
with existing obstacles and future speculations of standardizing AI screening in oncology,
as well as proposals for integrating AI basics into medical school curricula.

2. How Does Artificial Intelligence Work?

AI is a broad concept that aims to simulate human cognitive ability. ML, an approach to
AI, is the study of how computer systems can learn to perform a task or predict an outcome
without being explicitly programmed [16]. Mitchell et al. (1997) succinctly defines this
learning process as follows: A computer program is said to learn from experience (E) with
respect to some class of tasks (T) and performance measure (P), if its performance at tasks
in T, as measured by P, improves with experience E. A simple example of such a task is the
classification of suspicious abnormality on a screening mammogram as probable malignant
or benign [17]. To learn to perform this task, a computer program would experience a
dataset containing examples of correctly classified cases of benign and malignant breast
lesions and come up with a model that can generalize beyond these data. Its ability to then
classify previously unseen examples of breast lesions correctly would be evaluated through
a quantitative measure of its performance, such as accuracy, sensitivity, and specificity.

2.1. Subtypes of Machine Learning

Algorithms for ML are typically categorized into supervised, unsupervised, or rein-
forcement learning. Supervised learning algorithms experience a dataset that contains a
label (or correct answer) for each data point. Examples of supervised learning algorithms
include support vector machine (SVM) [18,19], linear regression, logistic regression, and
k-nearest neighbors [20,21]. In contrast, unsupervised algorithms such as k-means clus-

636



Cancers 2022, 14, 1349

tering [22,23], affinity propagation [24], and gaussian mixture model [25] study a dataset
that does not contain labels and learn to derive structure from the given data. A reinforce-
ment learning system trains an agent to behave in an environment by assigning it with
a reward for desired behaviors or penalizing it for undesired ones. The overall objective
of an ML algorithm can be interpreted as learning an approximate function of the data.
This function should take as input a set of features that describe the data and output a
prediction corresponding to the learning task. Classical ML algorithms are generally good
at approximating linear or simple non-linear functions [13,26].

2.2. Deep Learning

DL is a type of ML that enables the learning of complex non-linear functions of the
data. Most modern DL methods use neural networks as their learning model, which are
loosely inspired by neuroscience [27]. The fundamental computational unit of a neural
network is called a neuron. It computes a weighted sum of its inputs and then applies
a non-linear operation (often called the activation function) to the sum to compute the
output (See Figure 1a). Common activation functions include sigmoid, tanh, and rectified
linear activation unit (ReLU) functions. A neural network comprises one or more layers of
neurons, with each layer feeding on the outputs of the previous layer. Information flows
forward through the network from the input, through a series of intermediate layers (called
hidden layers) and finally to the output (see Figure 1b). As the number of layers and units
within a layer increase, a neural network can represent functions of increasing complexity.
This architecture gives neural networks the ability to learn their own complex features
instead of being constrained to the hand-picked features provided as input to the model.

Figure 1. (a): Neuron, the fundamental computational unit of a neural network, computes the
weighted sum of its inputs (X1, X2, X3) and applies a non-linear operation to give output (Y). (b): An
example of a feedforward neural network with two hidden layers, with five and four neurons,
respectively. (c): An example of a convolutional neural network (CNN) applied to the classification
of a screening mammogram as probable malignant or benign.
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During training, the parameters of the neural network are learned in order to fit the
dataset for a given task. This corresponds to minimizing some notion of a cost function,
which measures the model’s performance on the task. After each forward pass through the
network, the cost function is used to compute the error between the predicted and expected
output. An algorithm called backpropagation allows this cost information to flow backward
through the neural network while adjusting the network parameters. Backpropagation
computes the gradients of the cost function with respect to the network parameters, which
determine the level of adjustment to be made to the parameters in each iteration [28]. These
gradients are then used to update the network parameters using an optimization algorithm
such as stochastic gradient descent (SGD) [29,30].

Apart from the simple feed-forward model discussed above, there are other specialized
architectures of neural networks suited for specific tasks. For instance, convolutional neural
networks (CNNs) have a grid-like topology and are well suited to process two or three-
dimensional inputs such as images [31]. CNNs are designed to capture spatial context and
learn correlations between local features, due to which they yield superior performance
on image tasks, such as the classification of breast lesions in a screening mammogram as
probable malignant or benign (See Figure 1c). CNN-based architectures have also been
applied to biomedical segmentation applications [32]. However, CNNs face computational
and memory efficiency limitations in three-dimensional (3D) segmentation tasks. More
efficient methods have been proposed for the segmentation of 3D data, such as magnetic
resonance imaging (MRI) volumes [33]. A recent architecture, occupancy networks for
semantic segmentation (OSS-Net) [34], is built upon occupancy networks (O-Net) and
contains efficient representations for 3D geometry, which allows for more accurate and
faster 3D segmentation [35].

Another family of neural networks, called recurrent neural networks (RNNs), are de-
signed to operate on sequential data. RNNs are well equipped to process sequential inputs
of variable lengths for tasks such as machine translation and language modeling. Long
Short Term Memory networks (LSTMs) are a special kind of RNNs capable of learning long-
term dependencies between inputs [36]. Another technique called attention allows a model
to selectively focus on parts of the input data as needed by enhancing specific parts of the
input and diminishing others [37]. Recently, a network architecture called the Transformer
has achieved state-of-the-art performance in a number of machine learning tasks [38].
Transformers discard recurrence and convolutions entirely, instead relying exclusively on
attention mechanisms. Attention-based transformers have demonstrated state-of-the-art
segmentation performance and may prove relevance to the field of oncology [39].

3. Breast Cancer

BC is the most prevalent cancer originally reported in National Cancer Institute Statis-
tics, 2020 [40]. BC is a major cause of cancer-related mortality after lung cancer [41]. The
death rates of BC have decreased annually from 1989 to 2017, attributed to the advance-
ments in screening and therapies [41]. AI has shown enormous benefits in screening
mammograms, BC predictive tools formulation, and drug development [5,6,42–44].

3.1. Screening Mammogram

A screening mammogram is one of the most widely performed screening tests,
but these mammograms have limitations of very high false positive and false negative
rates [14,42]. The AI models reduced the workload and resulted in a 69% reduction in
false positive rates and a higher sensitivity rate in screening mammograms [2,42]. AI
in BC screening has good accuracy rates with some methodological issues and evidence
gaps [14,45].

In the context of mammography, DL algorithms such as CNNs are principally used;
the mechanism of the algorithm is illustrated in Figure 1c. The performance of AI is
measured by sensitivity, specificity, the area under the curve (AUC), and computation
time [46]. Different DL models have been studied with various classification systems
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to identify abnormalities in mammograms, with overall sensitivity rates ranging from
88% to 96% [47–49]. Detection rates are augmented by the positive reinforcement of an
AUC over 0.96 after biopsy confirmation [50]. A new AI model from Transpara 1.4.0
screenpoint medical BV, Nijmegen, the Netherlands, expedites interpretation and reduces
workload by 20–50% by excluding mammograms with a low likelihood of cancer, allowing
radiologists to concentrate on challenging cases [2,51]. The detection performance of
radiologists using AI-aided systems was compared to radiologists using conventional
systems. Radiologists with AI-aided systems achieved higher AUC rates, sensitivity, and
classification performance [52,53].

Conventional computer-aided detection (CADe) in mammograms is hampered by
high false positive and false negative rates. AI-based CAD systems have proven to reduce
false positive rates by 69% and increase in sensitivity ranging from 84% to 91% [42,54].
The concept of double readers (mammogram read by two radiologists independently
or together) is used in Europe to reduce false positives and false negatives. The use of
AI in place of the second reader maintained a non-inferior performance and reduced
the workload by 88% in a simulation study [55]. In another study, a single radiologist
assessment was combined with an AI algorithm achieved higher interpretative accuracy
with a specificity of 92% vs. 85.9% of a single radiologist’s interpretation. However,
any single AI algorithm did not outperform radiologists’ accuracy rates [14]. Double
readers are not a standard practice in the United States, but a prospect of cost-effective
AI integration with radiologists can increase overall sensitivity. However, the acceptable
miss rate threshold should be carefully considered. Another study used the breast imaging
reporting and data system (BI-RADS) to incorporate radiologists’ subjective thresholds
while using evidence-based data to train AI. The study showed a reduction in false positives
by 47.3% and a slight increase in false negatives by 26.7% [56]. AI also has the advantage
of not increasing the interpretation time. AI CADe takes 20% less time than traditional
CADe, but the same amount of time as radiologists [57]. Although further studies are
required to assess the exact costs of AI mammography, the overall reduction in false
positives could make it cost-effective [57]. DL models are being incorporated into digital
breast tomosynthesis, and contrast-enhanced digital mammography datasets for volumetric
assessment of breasts in three dimensions to further increase detection accuracy and reduce
workload by 70% [7,58,59]. Radiomics is an approach to extract relevant quantitative
properties, also known as features, from clinical, histopathological, and radiological data. It
has been applied to breast imaging to further improve accuracy rates [60]. A more detailed
description of radiomics is described in Section 5.2.

3.2. Genetics and Hormonal Aspects in Breast Cancer Prediction

Artificial neural networks (ANNs) achieved remarkable accuracy, measured by AUC
of 0.909, 0.886, and 0.883, when assessed for their ability to predict 5-, 10-, 15-year BC-
related survival rates, respectively, based on factors such as age, tumor size, axillary
nodal status, histological type, mitotic count, nuclear pleomorphism, and axillary nodal
status [61]. Hybrid-DL models incorporate genetics, histopathology, and radiology data,
which outperform traditional models such as Gail (which calculates BC risk in the next
five years based on medical and reproductive history, not takes into account BRCA gene
association) and Tyrer–Cuzick models (calculates the likelihood of carrying BRCA1 or
BRCA2 mutations based on personal and familial historical data) [5,6].

4. Colonic Polyps and Colorectal Cancer

CRC is the third most common cancer in the United States, with the incidence of
approximately 147,950 new cases in the year 2020. AI has shown great success in screening,
diagnosis, and treatment of CRC. AI is bringing about a new era for CRC screening and
detection with computer-assisted techniques for adenoma detection and characterization,
computer-aided drug delivery techniques, and robotic surgery. Other benefits of AI include
the incorporation of ANN to effectively screen with personal health data [62].
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4.1. Colorectal Cancer Screening

By detecting adenomas and preventing progression to carcinoma, screening has signifi-
cantly reduced the incidence of CRC over the past decade. This has resulted in recommenda-
tions for routine screening starting at age 45 [63]. The current screening methods for CRCs
include invasive procedures (colonoscopy (gold standard) and flexible sigmoidoscopy),
minimally invasive procedures (capsular endoscopy), and non-invasive procedures (CT
colonography or virtual colonoscopy, stool for occult blood, fecal immunochemical test,
and multitarget stool DNA).

A few AI models have been tested to predict the risk of CRC and high-risk colonic
polyps (CPs) from historical data and complete blood counts (CBCs). One such software,
ColonFLag, predicts polyps and CRCs according to age, sex, CBC, and demographic infor-
mation. Scores were compared to gold standard colonoscopy and converted to percentiles,
then categories were made, such as CRC, high-risk polyps, and benign polyps [64]. Another
retrospective study (MeScore, Calgary, Alberta, Canada) compared CBC results 3–6 months
before colonoscopy with those from colonoscopy in two unrelated groups (Israeli and the
UK). AUC for CRC diagnosis was 0.82 ± 0.01. Specificity for 50% detection was 87 ± 2%
a year before diagnosis and 85 ± 2% for localized cancers [65]. Study results point to the
possibility of an early and noninvasive preliminary screening that can be integrated into
electronic medical records to flag high-risk patients who can then be aggressively screened
to balance the risks and benefits of colonoscopy in young people. Another ANN model
designed to screen a large population based only on personal health information from big
data also achieved optimal results [62]. However, these models are not currently practiced
and require further validation for generalizability.

4.2. Colonic Polyps Detection

Colonoscopy is the gold standard invasive testing for the detection of colonic adenoma
and CRC. An adenoma is the most common precancerous lesion. Adenoma detection rate
(ADR) measures a gastroenterologist’s ability to detect an adenoma. ADR is inversely
related to the adenoma miss rate and the risk of post-colonoscopy CRC. ADR ranges from
7% to 53%, while AMRs vary from 6% to 27% based on healthcare facilities. Several factors
have been postulated to explain these differences, including quality of preprocedural bowel
preparation, time of withdrawal, operator experience and training, procedure sedation,
cecal intubation rate, visualization of flexures (blind spots), and use of image enhanced en-
doscopy and presence of flat or diminutive (less than 5 mm) and small (<10 mm but >5 mm)
polyps. Studies show that endoscopists with higher ADR during screening colonoscopy
are more effective in preventing subsequent CRC risk for patients [66,67].

In recent years, CADe and computer-aided diagnosis (CADx) systems have been
developed to automate polyp detection during colonoscopy and further characterize them.
Because of its ability to detect diminutive polyps, real-time AI-aided colonoscopy has
a greater ADR than colonoscopy (OR 1.53, 95% CI 1.32–1.77; p < 0.001), derived from
a metanalysis data [4,68,69]. An AI system, GI Genius, uses green squares to highlight
suspicious lesions during a colonoscopy by generating a sound for each marker and
displaying it as a video of the endoscopy. Several meta-analyses demonstrate excellent
detection rates for polyp detection using AI-assisted algorithms with AUC 0.90, sensitivity
95%, and specificity 88% [8].

4.3. Colon Polyps Classification

AI-based classification of CP into cancerous vs. non-cancerous lesions on CT colonogra-
phy and capsular endoscopy is a fascinating discovery. CT colonography differentiation by
texture analysis based on gradient and curvature of high-order images and random forest
models significantly improved the accuracy of the classification of CPs [70,71]. AI-assisted
CAD model revealed an inverse correlation of CP sphericity with adenoma detection sensi-
tivity and a direct correlation with adenoma detection accuracy. This model can effectively
detect flat colonic lesions and CRCs on CT colonography [72]. Capsule endoscopy is another

640



Cancers 2022, 14, 1349

noninvasive diagnostic tool for gastrointestinal tract inspection, but it is a time-consuming
process to process a large amount of data. Stack sparse autoencoding with image manifold
constraint, a DL-based AI, is utilized to correctly identify capsular polyps from capsular
endoscopic images with a rate of 98% accuracy and time effectiveness [73]. An ANN model
with logistic regression showed a predictive risk of distant metastasis in CRC patients
based on several clinical factors, such as pathologic stage grouping, first treatment, sex,
age at diagnosis, ethnicity, marital status, and high-risk behavior variables [74]. With DL
models, tumors can be segmented and delineated more accurately, and faster region-based
CNNs are trained to read MRI images, enabling faster and more accurate diagnosis of CRC
metastasis [75,76].

4.4. Histopathological Aspects, Genetics, and Molecular Marker Detection

Histopathological characterization is the gold standard for the classification of
polyps [77]. However, one of the biggest challenges is the significant intra- and inter-
observer variability. The use of DL and CNN models to automate image analysis can
allow pathologists to classify CPs with an overall accuracy of 95% or more [10]. These DL
models analyze whole slides and hematoxylin- and eosin-stained slides to identify four
different stages, including normal mucosa, early preneoplastic lesions, adenomas, and
cancer [9,10,78].

AI-based models were used to identify gene expressions, gene profiling, and non-
coding micro-ribonucleotides (mi-RNAs) for diagnosis, prognosis, and targeted therapy
planning [79–81]. The use of near-infrared (NIR) spectroscopy and counter propagation
artificial neural networks (CP-ANNs) in the determination of mutant vs. wild B-rapidly
accelerated fibrosarcoma (BRAF) gene mutations were shown to be highly accurate, specific,
and sensitive [79]. Mutant BRAF is associated with a poor prognosis, and this AI model
can assist in prognosticating and managing these patients aggressively. Backpropagation
and learning vector quantization (LVQ) neural networks demonstrate a remarkable role in
assessing the genetic profiling database from the cancer genome atlas (TCGA) in improving
CRC diagnosis [81]. Several neural networks, including S-Kohonen, backpropagation,
and SVM, were compared for predicting the risk of relapse after surgery. The S-Kohonen
neural network was found to be the most accurate [82]. Non-coding mi-RNA plays an
important role in tumorigenesis and progression of cancer by interfering with various
cell signaling pathways, including, WNT/beta-catenin, phosphoinositide-3-kinase (PI3
K)/protein kinase B (Akt), epidermal growth factor receptor (EGFR), NOTCH1, mechanistic
target of rapamycin (mTOR), and TP53. The identification of miRNAs through AI models
aids in the diagnosis, prognosis, and targeted treatment of CRCs [80,83–86].

In the early detection of CRC, ML-based AI can help isolate circulating tumor cells
in peripheral smear and analyze serum specific biomarkers, such as leucine-rich alpha-2-
glycoprotein 1 (LRG1), EGFR, inter-alpha trypsin inhibitor heavy chain family member 4
(ITIH4), hemopexin (HPX), and superoxide dismutase 3 (SOD3) [87,88].

5. Central Nervous System Cancers

In the United States, primary brain tumors have an annual incidence of 14.8 per
100,000 people and have a male predominance. Despite significant advances in imaging
modalities, surgical techniques, chemotherapy, radiotherapy, and radiosurgery, primary
brain tumors such as glioblastoma multiforme (GBM) remains challenging to manage [89].
GBM is one of the primary intracranial neoplasms and accounts for nearly 60% of all
primary brain tumors worldwide. Primary or metastatic CNS cancers are challenging to
manage because of their rapid proliferation, prominent neovascularization, invasion to
distant sites, and poor response to chemotherapy due to the blood–brain barrier. Clinical
management includes initial observation, grading, accessing the depth of infiltration,
segmentation and location of the tumor, histopathological evaluation, and identification
of molecular markers. As a result, clinicians have to manually compile all the data for
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validation in order to formulate a treatment plan. In this regard, AI has proven to be useful
in the diagnosis and management of CNS malignancies [26].

5.1. Central Nervous System Neoplasm Detection

AI has made significant advances in the diagnosis and classification of brain tumors
in recent years. MRI is currently the gold standard tool for tumor detection and char-
acterization [90]. Conventional MRI methods such as T1 and T2 weighted imaging and
fluid-attenuated inversion recovery (FLAIR) sequences have the disadvantage of nonspe-
cific contrast enhancement and a high likelihood of missing tumor foci infiltration. In
order to enhance detection chances, perfusion MRI with dynamic susceptibility-weighted
contrast material enhancement, dynamic contrast enhancement, and arterial spin labeling
are also used to evaluate the neoangiogenic properties of brain tumors such as GBM. In
addition to identifying tissue microstructure, diffusion-weighted imaging shows neoplastic
infiltration in areas of the brain that appear normal on conventional magnetic resonance
(MR) images. The use of MR spectroscopy can also be used to identify chemical metabolites
such as choline, creatine, and N-acetyl aspartate, which are useful for glioma grading and
identifying tumor infiltrated regions [91]. By automating these steps, AI has enhanced
detection rates and efficiency of radiologists, which, in turn, has reduced the amount of
time traditionally spent in diagnosing a disease. CNN-based DL can also detect millimeter-
sized brain tumors and can distinguish GBMs from metastatic brain lesions [3,92]. MRI
technologies provide structured anatomical information on tumors, but tumor differentia-
tion is always based on histopathological evaluation, which is invasive, time-consuming,
and expensive. It remains challenging to identify low-grade gliomas from high-grade
gliomas on imaging, even with AI systems. Attention-based transformers are currently
being investigated for the first time in glioma classification, and their use may offer a
breakthrough [39,93].

5.2. Radiomics

A comprehensive analysis of clinical, histopathological, and radiological data com-
bined with ML/DL image processing has paved the way for a new translational field
in neuro-oncology called radiomics [60,94,95]. AI-based radiomics provides enhanced
noninvasive tumor characterization by enabling histopathologic classification/grading
within minutes even at surgery time, prognostication, monitoring, and treatment response
evaluation [96,97]. AI algorithms are able to analyze these images at the pixel level, so
they can provide information not visible to the human eye and allow for more accurate
grading [3]. Radiomics involves a set of the complex multi-step processes with manual,
automatic, and semi-automatic segmentations. Two main types of radiomics are described:
feature-based and DL-based. Both provide more accurate and reliable results than human
readers. The feature-based radiomics algorithms evaluate subsets of specific features from
segmented regions and volumes of interest (VOI) into mathematical representations. This
multistep process includes image pre-processing (noise reduction, spatial resampling, and
intensity modification), precise tumor segmentation (manual vs. DL-based techniques),
feature extraction (histogram-based, textural, and higher-order statistics features), feature
selection (filter methods, wrapper approaches, and embedded techniques), and model
generation and evaluation (neural networks, SVM, decision trees/ random forests, linear
regression, and logistic regression models) [95,98]. DL radiomics use CNNs, in which the
model learns in a cascading fashion without any prior description of features and requires
a large amount of data in the learning process. The cascading technique processes data to
obtain useful information, removes redundancies, and prevents overfitting [27,31,98].

5.3. Histopathological Aspects, Genetics, and Molecular Marker Detection

Traditional histopathological evaluation of cranial tumors identifies the microscopic
features with areas of neovascularization, central necrosis, endothelial hyperplasia, and
regions of infiltration. These are sometimes overlapping and could lead to false-positive
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results [99]. To overcome this complexity, digital slide scanners are now used to convert
microscopic slides into image files interpreted by AI-based algorithms such as SVM and de-
cision trees. SVMs have shown higher precision rates [98]. The AI-based algorithms analyze
pathological specimens of gliomas and predict outcomes based on genetic and molecular
markers, including isocitrate dehydrogenase (IDH) mutation status, 1 p/19 co-deletion
status, O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, epidermal
growth factor receptor splice variant III (EGFRvIII), Ki-67 marker expression, prediction of
p53 status in gliomas, prediction of mutations in BRAF, and catenin β-1 in craniopharyn-
giomas [96,98,100–103]. IDH mutation leads to the accumulation of an oncometabolite
called D-2 hydroxyglutarate. This mutation is an important prognosticator in GBM. CNN-
based AI has detected this biomarker from conventional MRI modalities [100]. O-6-MGMT
promoter hypermethylation (encoding for DNA repair protein), which is exhibited in about
33%–57% diffuse gliomas, is a better prognostic factor owing to increased sensitivity to
alkylating agents such as temozolomide [98,101,104]. AI types such as supervised machine
learning combined with texture features have been found to detect this methylation status.
Performing principal component analysis on the final layer of CNN indicated that features,
such as nodular and heterogeneous enhancement and “masslike FLAIR edema”, predicted
MGMT methylation status with up to 83% accuracy [105]. EGFRvIII mutation is found in
about 40% of GBM. Tumors with this mutation have been found to exhibit deep peritumoral
infiltration, which is consistent with a more aggressive phenotype. EGFR mutation is also
associated with increased neovascularization and cell density [106]. 1 p/19 codeletion
status has been shown to have a protective effect on the prognosis. This codeletion is
observed in oligodendrogliomas [102]. CNN-based AI can be employed to detect this
codeletion. Ki-67 marker expression indicates tumor cell proliferation. Traditionally, this
marker is detected via immunohistochemical studies on the extracted tumor sample. This
method is invasive and time-consuming. Identifying this marker is essential in making a
differential diagnosis and treatment plan. AI-based radiomics has been developed to detect
this marker from fluorodeoxyglucose positron emission tomography (FDG PET) and MRI
images [107].

5.4. AI in Pre- and Intra-Operative Planning, Postoperative Follow-Up, and Metastasis
5.4.1. Preoperative Assessment

Segmentation, volumetric assessment, and differentiating the tumor from healthy
brain tissue and peripheral edema, quantitative measurements such as risk stratification,
treatment response, and outcome prognosis are essential elements in the treatment planning
of CNS tumors [108,109]. In traditional radiographic imaging, contrast-enhanced radio-
graphic images are used to estimate tumor volume or burden; however, single-dimension
imaging may not be as accurate in the volumetric assessment of nonuniform tumors, such
as high-grade tumors including GBMs. Another challenge is differentiating tumor borders
from surrounding edema [110]. AI algorithms such as the random forest, CNN, and SVM
have been applied to the tumor segments to overcome these challenges, and they have been
shown to provide precise and accurate localization of the tumor. A two-step protocol with
CNN and transfer learning models led to precise and accurate localization of glioma [111].
3D-U-Net CNN on 18 -fluoroethyl-tyrosine-PET, when used for automated segmentation
of gliomas, showed 88% sensitivity, 78% positive prediction, 99% negative prediction, and
99% specificity [32,112].

5.4.2. Intraoperative Modalities

High-grade tumors such as GBM have a rapid proliferation rate and invade the
surrounding regions beyond the enhancing regions on the radiological images, and excision
of these areas could be missed [26,113]. AI-based DL algorithms have been developed to
facilitate the surgeons to remove maximum tumor regions and less of the normal healthy
brain tissue simultaneously. Three-dimensional CNNs have shown promising results in
aiding stereotactic radiation therapy planning. It is often difficult to differentiate among
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primary brain tumors, primary CNS lymphoma, and brain metastases in some situations.
However, AI-based algorithms such as decision tree and multivariate logistic regression
models have been developed to differentiate among these entities by using diffusion tensor
imaging and dynamic susceptibility-weighted contrast-enhanced MRI [114–116].

5.4.3. Postoperative Surveillance

MRI with gadolinium contrast is the standard for determining postoperative tumor
growth and tumor response [117]. CNN-based AI algorithm techniques determine accurate
tumor size compared to linear methods. The ability of CNN models to differentiate the true
progression from pseudo-progression and ML algorithms to differentiate radiation necrosis
from tumor recurrence is revolutionary [109,110,118]. Additionally, CNN and SVM create
a superior model to predict the treatment response and survival outcomes from clinical,
imaging, genetic, and molecular marker data [26].

6. Precision and Personalized Medicine

AI has moved towards an era of personalized treatment in oncology with remarkable
aid in oncologic drug development, clinical decision support systems, chemotherapy, im-
munotherapy, and radiation therapy [43]. AI algorithms have been developed to assess
several factors such as oncogenetic mutation profile and drug sensitivity prediction show-
ing overall expected prognosis, efficacy, and adverse effects with a particular treatment
option in a patient with particular cancer [43,119]. In a study, an ML algorithm was de-
signed to predict the effects of chemotherapy drugs, including gemcitabine and taxols, in
correlation to patients’ genetic signatures [120]. In another study, an AI-based screening
system based on homologous recombination (HR) deficiency was developed to detect
cancer cells with HR defects can further narrow patients who would benefit from poly
ADP-ribose polymerase (PARP) inhibitors in BC patients [44]. A DL algorithm was used to
identify anticancer drugs that inhibit PI3K alpha and tankyrase, promising targets for CRC
treatment [121]. An ML-based drug specificity detection by examining protein–protein
interactions of anticancer drug and S100A9, a calcium-binding protein, may represent a
potential therapeutic target for CRC [122]. These avenues of discovery of new anticancer
targeted therapy by ML models is a fascinating step towards much effective therapeutic
options. ML models can also be trained to interpret screening data to predict responses
to new drugs or combinational therapies [123]. An ability to synthesize and assess a large
amount of chemical data also plays a role in cancer drug development by narrowing the
prediction towards a specific formula; beyond the traditional experimental methods in
which DL systems are currently being explored [124,125]. Learning clinical big data of
cancer patients with AI can generate personalized treatment options based on DL assessed
factors, including clinical, genetic, cancer-type, and stage of cancer of a patient [126]. More-
over, AI application in radiotherapy is quite distinct. AI can help radiologists plan radiation
treatment regimens with automation software as effective as conventional treatment layouts
in a robust, time-effective manner [127,128]. With the upcoming role of immunotherapy
in managing various cancers, ML-based platforms are trained to predict the therapeutic
response of immunotherapy effects in programmed cell death protein 1 (PD-1) sensitive
advanced solid tumors [129,130]. AI can thus support and even surpass the capability
of humans in anticancer drug development and aid in personalized treatment plans in a
time-effective manner.

7. Generalizing Artificial Intelligence, Barriers, and Future Directions

A number of factors challenge the generalizability of AI systems, including possible
bias, external validation of AI performance, the requirement for heterogeneous data and
standardized techniques [46].
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7.1. AI Performance Interpretation

In order for AI to perform in clinical practice, it must be both internally and externally
validated. In internal validation, the accuracy of AI is compared to expected results when
AI algorithms are tested by using previously used questions [131]. Internal validation
performance tools rely on sensitivity, specificity, and AUC. The problem with interpreting
AUC is that it does not consider the clinical context. For instance, different sensitivity and
specificity can provide similar AUCs. In order to measure AI performance, studies should
report AUC along with sensitivities and specificities at clinically relevant thresholds, this
is referred to as “net benefit” [132]. As an example, high false-positive and false-negative
rates continue to be a challenge in DL screening mammograms, for which balancing the
net benefit would be important [42]. Thus, prior to concluding that an AI system can
outperform a human reader, it is important to carefully interpret its diagnostic performance.
Furthermore, the sensitivity, specificity, and accuracy of diagnostic tests are independent
of real-life prevalence. As a result, robust clinical diagnostic, and predictive performance
verification of AI for clinical applicability requires external validation. For external val-
idation, a representative patient population and prospectively collected data would be
necessary to train AI algorithms [131]. Moreover, internal validation poses the challenge of
overestimating AI performance by familiarizing itself too much with training data, known
as overfitting [131]. By separating unused training datasets, including newly recruited
patients, and comparing results with those of independent investigators at different sites, it
is possible to improve generalizability and minimize overfitting [131]. In a recent study, cu-
rated large mammogram screening datasets from the UK and the US revealed a promising
path to generalizing AI performance [55].

7.2. Standardization of Techniques

An AI model that could be universally applicable must be taught a large amount of
heterogeneous clinical data in order to become generalizable [3,54,107]. AI-based infras-
tructure and data storage systems are not available at all institutes, which is one of the
biggest barriers [133]. There is also a lack of standardization of staining reagents, protocols,
and section thicknesses of radiologic images, which can further hinder the generalizability
of AI in clinical practice worldwide [1,54]. A number of automated CNN-based tools
such as HistoQC, Deep Focus, and GAN-based image generators are being developed by
societies such as the American College of Radiology Data Science Institute to standardize
image sections [1,91]. In the field of radiomics, another challenge involves compliance
with appropriate quality controls, ranging from image processing to feature extraction and
from mechanics and feature extraction to algorithms for making predictions [134]. There
are several emerging initiatives using DLs and CNNs to normalize or standardize images,
including, “image biomarker standardization technique” [134,135]. ML algorithms are
treated as a “black box” because of a lack of understanding of its inner working. This can
pose a challenge when dealing with regulated healthcare data. This necessitates trans-
parent AI algorithms and the interpretation of AI-based results to ensure no mistakes are
made [26,136]. A few recently developed methods, such as saliency maps and principal
component analysis, are helping interpret the workings of these algorithms [105,137].

7.3. Bias in Artificial Intelligence

Quality and quantity of data are key factors that determine the performance and
objectivity of an ML system. AI can be biased in a number of ways—from assumptions
made by engineers who develop AI to bias in the data used to train it. When training data
are derived from a homogenous population, they may be poorly generalizable, which can
potentially exacerbate racial/ethnic disparities, for example [138]. Thus, when training
the AI, it is important to include diverse ethnic, age, and sex groups, as well as examples
of benign and malignant tumors. Similarly, to integrate precision medicine and AI in
real-world clinical settings, it is necessary to consider environmental factors, limitations of
care in resource-poor locations, and co-morbidities [139]. There is also the possibility of
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bias introduced when radiologists’ opinion is regarded as the “gold standard” rather than
the actual ground truth or the absolute outcome of the case, benign or malignant [46]. As
an example, several AI models in screening mammography are compared with radiologists
instead of the gold standard biopsy results, introducing bias [46]. In order to overcome this
problem, including interval cancers in testing sets and relying on reports from experienced
radiologists might be helpful.

7.4. Ethical and Legal Perspectives

Creating future models that address the ethical issues and challenges of incorporating
AI into preexisting systems requires an awareness of these issues. Few societies, such as the
Department of Health and Social Care, the US Food and Drug Administration, and other
global partnerships, oversee and regulate the use of AI in medicine [46,140]. The National
Health Service (NHS) Trusts in the United Kingdom regulate the use of patient care data
in AI in an anonymized format for research purposes [46]. In order for AI in oncology to
achieve global standardization, more international organizations must be formed that can
oversee future AI studies within ethical and legal boundaries to protect patient privacy.

8. Integrative Training of Computer Science and Medical Professionals

In order for AI to be effectively integrated into healthcare in general, as well as oncol-
ogy, formal training of medical professionals and researchers would be critical. Numerous
societies and reviews have recommended formal training, but current medical education
and health informatics standards do not include mandatory AI education, and competency
standards have yet to be established [141,142]. There have been efforts in the radiology
community to determine students’ opinions about AI applications in radiology in order
to develop formal training tools. A few of these are frameworks for teaching, principles
for regulating the use of AI tools, special training for evaluating AI technology, and in-
tegrating computer science, health informatics, and statistics curriculum during medical
school [143–145]. Few institutes in the United States have proposed initiatives for AI in
medical education, which were originally submitted by the American Medical Association.
Among these initiatives are medical students working with data specialists, radiology
residents working with technology base companies to develop computer-aided detection
in mammography, offering a summer course by scientists or engineers to update new
technologies, and involving medical students in engineering labs to create innovative
ideas in health care [136]. Another framework would provide AI training for students
in various fields, including medical students, health informatics students, and computer
science students [142]. In order to improve patient care, medical students should become
proficient in interpreting AI technologies, comparing efficiency in patient care and dis-
cussing ethical issues related to using AI tools [142]. Furthermore, medical professionals
should understand the limitations and barriers of AI in clinical applications, as well as
the distinction between correct and incorrect information [146,147]. In health informatics,
students should be taught how to apply appropriate ML algorithms to analyze complicated
medical data, integrate data analytics, and formulate questions to visualize large data sets.
Students studying computer science should be trained in Python, R, and SQL programming
in order to solve complex medical problems [142]. Education tools that integrate medical
professionals, health informatics students, and computer science students can pave the
way for further developments in the fields of medicine and oncology.

9. Conclusions

Computer systems are capable of learning tasks and predicting outcomes without
being explicitly programmed through AI. DL, a subset of ML, utilizes neural networks and
enables learning complex, non-linear functions from data. CNNs are well suited to process
two- to three-dimensional inputs such as images, while RNNs can handle sequential inputs
of variable length such as textual data. Recently developed attention-based DL systems
are capable of selectively focusing on data, resulting in better accuracy in cancer detection
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rates. AI has shown promising results in oncology in several areas, including detection and
classification, molecular characterization of tumors, cancer genetics, drug discovery, pre-
dicting treatment outcomes and survival rates, and moving the trend towards personalized
medicine. In screening mammography, various DL models have demonstrated non-inferior
cancer detection performance, with overall sensitivity rates of 88–96%. Radiologists with
AI-assisted systems have achieved higher AUC rates and have reduced their workloads.
Different real time CADe and CADx AI systems have demonstrated a higher ADR by
automating polyp detection and detecting diminutive polyps during colonoscopy. The
use of machines to improve cancer detection at an early stage on screening mammograms
and colonoscopies has the potential to be tested for application across the globe for more
efficient patient care. Several AI-based cancer detection methods have been developed for
other cancer types, including lung, prostate, and cervical cancer. It is possible to pursue
future objectives to implement AI worldwide in all cancer types.

CNS tumors such as GBM continue to have a poor prognosis. AI-based radiomics
allows for the identification of tumors without invasive methods, by allowing for the
classification and grading of tumors within minutes. Radiomics is largely used in CNS
tumors identification and grading. State-of-the-art attention-based transformers are cur-
rently being studied to improve glioma classification. Analyzing histopathological, genetic,
or molecular markers can be made easier with AI. With the advancement of AI, oncology
has moved to a more personalized era. AI has revolutionized drug development, clinical
decision support systems, chemotherapy, immunotherapy, and radiotherapy.

A better understanding of the ethical implications of the use of AI, including its
performance interpretation, standardization of techniques, and the identification and
correction of bias, is required for more reliable, accurate, and generalizable AI models.
Global organizations must be formed to provide guidance and regulation of AI in oncology.
Formal integrated training for medical, health informatics, and computer science students
could drive further advances of AI in medicine and oncology.
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