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Preface to ”Artificial Intelligence and Sustainable

Energy Systems”

The problems that affect humanity are numerous and occur in different areas. Energy

sustainability, climate change, and the effects derived from pollutants and viruses are some of the

most relevant problems. The main objective of researchers is to provide solutions to these and other

problems.

In recent years, the use of artificial intelligence has increased considerably. Artificial intelligence

is used in different areas: energy, sustainability, medicine, health, mobility, industry, etc. Therefore, it

is necessary to continue advancing in the application of artificial intelligence to the aforementioned

problems. Energy is a precious commodity, and it is increasingly difficult to dispose of it

in a sustainable way. In this sense, renewable energy sources are essential, although the use

of conventional energy cannot be forgotten. Therefore, sustainable energy systems, integrating

renewable and non-renewable energy sources, smart systems, and new business models, are crucial.

Therefore, in this book, the best accepted and published articles on the topic ”Artificial

Intelligence and Sustainable Energy Systems” are presented. All articles refer to the themes indicated

above.

Luis Hernández-Callejo, Sergio Nesmachnow , and Sara Gallardo Saavedra

Editors
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Abstract: Affordable and clean energy is one of the Sustainable Development Goals (SDG). SDG
compliance and economic crises have boosted investment in solar energy as an important source of
renewable generation. Nevertheless, the complex maintenance of solar plants is behind the increasing
trend to use advanced artificial intelligence techniques, which critically depend on big amounts of
data. In this work, a model based on Deep Convolutional Generative Adversarial Neural Networks
(DCGANs) was trained in order to generate a synthetic dataset made of 10,000 electroluminescence
images of photovoltaic cells, which extends a smaller dataset of experimentally acquired images.
The energy output of the virtual cells associated with the synthetic dataset is predicted using a
Random Forest regression model trained from real IV curves measured on real cells during the image
acquisition process. The assessment of the resulting synthetic dataset gives an Inception Score of
2.3 and a Fréchet Inception Distance of 15.8 to the real original images, which ensures the excellent
quality of the generated images. The final dataset can thus be later used to improve machine learning
algorithms or to analyze patterns of solar cell defects.

Keywords: generative adversarial neural networks; photovoltaics; artificial intelligence; synthetic
data; electroluminescence

1. Introduction

A number of factors (energy crisis, wars, climate change, etc.) are causing a rise in
renewable energies use. Solar energy can be easily and affordably converted either into
thermal energy by means of thermal panels or into electrical energy, using photovoltaic
panels (PV) [1]. Industrial plants generating electricity from solar energy, commonly known
as solar farms, are generally composed of a high number of photovoltaic (PV) panels made
of PV cells. As the number of installations increases, the maintenance of solar farms
becomes a nontrivial problem [2]. The energy produced depends on different conditions,
such as the state of the panels, the climate, or the time of year. Solar panels are also
vulnerable to phenomena that can reduce or nullify their performance. These issues make
necessary a system to control and optimize production, since manual human labor is not
enough as the number of panels gets higher.

Artificial intelligence is usually applied to solve difficult control and optimization
problems. When applied to PV systems, different AI methods such as fuzzy logic, meta-

Sustainability 2023, 15, 7175. https://doi.org/10.3390/su15097175 https://www.mdpi.com/journal/sustainability1
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heuristics, or neural networks have been used to solve problems [3]. The most important
problems include [4] max power point tracking, output power forecasting, parameter
estimation, and defect detection.

Defect detection is one of the most interesting problems and researched topics in PV
systems [5,6]. It is usually tackled with different kinds of neural networks, since they have
great performance, although, as an important drawback, they need high amounts of data to
perform better than other machine learning methods [7]. This could be a major impossibility
for problems where it is difficult to harvest new data. Most of the approaches to detect
the state of PV panels use electroluminescence images of the cells as an input, which is an
invasive method that makes it difficult to carry out measurements and gather data.

Data augmentation is the most common method to deal with image data scarcity
by means of the introduction of slight modifications (rotations, flips, and minor deforma-
tions) to the original images in order to create new images [8–10]. More recent papers
promote the use of more complex AI techniques, such as Generative Adversarial Networks
(GANs), to generate synthetic images [11,12]. GANs are state-of-the-art algorithms for
data generation [13]. They have also been applied to PV systems for solving different
problems [14].

The generation of synthetic EL images of PV cells using GANs has also been proposed
in other works [11,12]. These works present synthetic datasets created with different GAN
architectures trained with EL images of cells with different kinds of defects. Although the
datasets in these works have not been made public, from their work, it can be deduced
that the synthetic images are just labeled from visual inspection in order to train standard
defect/normal classifiers, ignoring the output energy output performance of synthetic cells,
since they cannot be measured.

In this paper, we present a new approach to deal with the image data scarcity prob-
lem. Starting from a small set of electroluminescence images of PV cells obtained under
experimental conditions to be described, a synthetic dataset of images was created using
Generative Adversarial Networks (GANs). For each synthetic image, a scalar value that
represents the performance of their energy production is associated using machine learning
techniques trained with the energy production of the original PV cells. It is also a continua-
tion of the paper presented in [15], where we augmented and improved the dataset and
applied new metrics to ensure the appropriate quality of the generated data.

To ensure reproducibility, the resulting dataset was made publicly available, so it can
be used to improve the performance of AI models, to analyze the characteristics, properties,
and defects of the cells, or to compare with other methods of generation of synthetic images.

This paper is structured as follows: Section 2 briefly reviews the Generative Adver-
sarial Networks, Section 3 presents the methodology that was followed to generate the
dataset, in Section 4, the synthetic dataset is described, and finally, the conclusions of the
paper are presented in Section 5.

2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [16] are one of the most important and
popular technologies nowadays and have been applied to different fields [17]. They can
be applied to semisupervised and unsupervised learning. A GAN is usually defined as a
pair of neural networks that are competing against each other. The network known as the
Generator is the one designed with the job of trying realistic new data to try to deceive the
other network, known as the Discriminator. This network has to decide if the data that it
receives were forged.

The Generator does not have access to the real data, which is an important feature of
these algorithms. The Generator has to learn how to create the data based on the feedback
from the Discriminator. The Discriminator has access to both kinds of data, but it does not
know which kind of data is an image before carrying out the prediction. The networks
change their weights depending on the results of the deception; the Generator uses them to

2
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improve the forgeries, while the Discriminator tries to improve its recognition of forgeries.
Figure 1 shows a diagram of the behavior of the algorithm.

Figure 1. Diagram of a GAN.

The basic principle of operation of a GAN can be expressed as a two-player minimax
game played between D and G, with a value function VGAN(G, D) given by the following
mathematical expression [16], a binary cross-entropy function, commonly used in binary
classification problems:

min
G

max
D

VGAN(G, D) = Ex∼pdata(x)
[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]. (1)

The first term in (1) represents the expected value of entropy given by the Discriminator
over the real data and the second is the entropy given by the Generator over the fake
data obtained.

GANs are usually composed of Deep Feed-forward Networks, but more complex
architectures can be used in order to improve the generative capacities of the algorithm
and the quality of the forged data. One of the most used architectures are Convolutional
Neural Networks.

Deep Convolutional GAN

Research on GANs has led to new interesting architectures which substantially im-
prove the performance of the networks and the quality of the forged data [18]. For this
paper, we implemented the architecture known as Deep Convolutional GAN [19]. This ar-
chitecture is based on convolutional layers, but it also provides a set of constraints in order
to provide more stabilized training and better quality in the output. The most important
guidelines are the following:

• Use of batch normalization in the Generator and the Discriminator.
• Removal of fully connected hidden layers in both networks.
• Usage of convolutional transposed layers instead of the stridden convolutional layers.

This is only applied in the Generator network.

3. Methodology

The correct preparation of the real and synthetic image datasets is a complex process
which requires several steps to complete. In this section, we present the methodology that
was followed in this research, which implies four relevant stages: manual acquisition of
real EL images of PV cells beside their electrical characteristics (IV curves); data prepro-
cessing to prepare for synthetic image generation using GAN; maximum power output
assignment to synthetic cells from regression models trained with real images; and model
and result validation.

3



Sustainability 2023, 15, 7175

3.1. Real Images Acquisition

Data availability is one of the most critical issues when using deep learning techniques.
For precise PV cell characterization, we need two different kinds of data: the electrolu-
minescence (EL) images of the photovoltaic cells and their corresponding IV curves. For
the first, there are some public datasets available in the bibliography [20], but they do
not include information about the IV curve, since it is not easy to measure the individual
curve of a single PV cell. To solve this problem, we had to obtain the data using a specific
technique developed previously [21] and following a manual process in the laboratory.

The capturing of the EL images was performed using a Hamamatsu InGaAs Camera
C12741-03. The cell was isolated from external light in other to avoid the light produced by
other kinds of radiations. Figure 2a presents the camera for taking the pictures. EL was
chosen as the image capture technique, since it is widely used for detecting defects on PV
modules [22] and it is the most used technique in other related works with PV systems. In
order to test the different levels of luminous emission of the cell, various values of current
were used to power the LED array when obtaining the IV curve and to the PV cell when
capturing the EL image.

To measure the IV curve, we used a device specifically designed to measure the values
of current and voltage of a single cell [21]. This device (Figure 2b) provided voltage and
current values to build the IV curve of the cells. The IV curves can be used to calculate
the max power point and the performance of the cells. Figure 2c shows the setting used
for taking the IV curves. The original paper for this device validates the accuracy of
the measurements.

(a) (b) (c)
Figure 2. Devices used to obtain the data: (a) InGaAs Camera; (b) IV curve tracer; and (c) setting to
measure the IV curves.

The number of damaged cells was extremely limited in quantity and variety. The so-
lution for this issue was to create artificial shadows in order to improve the amount and
variety of images. The different shadows were created taking into account the most impor-
tant defects found in solar farms. Figure 3 presents a representative image of each kind of
artificial shadow that was used.

The final acquired dataset was composed of 602 different EL images with their cor-
responding IV curves. In order to allow the repeatability of the experiments, the dataset
was made publicly available (The dataset can be downloaded from https://github.com/
hectorfelipe98/Synthetic-PV-cell-dataset. The repository includes the original images,
the synthetic dataset, and a CSV file that maps each image with its relative power and
its class).

4
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. Shadows and defects used to create the dataset: (a) shadow/defect 0: original image;
(b) shadow/defect 1: long horizontal line; (c) shadow/defect 2: long vertical line; (d) shadow/defect
3: big central circle; (e) shadow/defect 4: small central circle; (f) shadow/defect 5: two small circles
in the corners; (g) shadow/defect 6: big circle in one corner; and (h) shadow/defect 7: other defects.

3.2. Image Preprocessing

The captured EL images were not suitable to be directly used with machine learning
algorithms, since there were factors affecting image quality to be addressed first. For this
reason, some algorithms were used to improve both the quality and normalization of
the images. This section explains how the different problems found in image quality
were solved.

• Dead pixels and luminous noise: The insulation of the system when capturing the
images was not perfect. Some leaks could be found in some cases. This produced
luminous noise when the image was taken. Another problem could be found in the
camera. Due to its extended use, the camera had some dead pixels. Even though these
phenomena are not easily visible to the human eye, they degenerate the quality of the
obtained images. In order to solve these two problems, an image was taken before the
real measure and without turning on the lights from the LED array. This provided
information about the luminous noise and the dead pixel of the camera. Having this
information, it is possible to perform a subtraction of the noise from the original image.
This process was performed for each of the EL images.

• Images with poor lighting: The scale of the histograms of the images can produce
problems in some libraries or programs which cannot recognize which values corre-
spond with the white color. Figure 4a,b shows how the values are distributed in only
a small fraction of the possible values, which makes the image look extremely dark.
The solution to this problem corresponds to performing a min–max normalization,
subtracting the minimum values of the image, and dividing it by the maximum value.
The resulting image can be found in Figure 4c,d.

• Black surrounding contours: Figure 4c shows how images are surrounded by a black
area. The reason for this phenomenon is caused by a limited focusing of the camera,
which is capturing part of the walls of the insulated area. The solution to this issue
consisted of performing a change in perspective. The first step consisted of applying
different filters in order to delete the details, obtaining the maximum contour polygon
of the cell. The next step consisted of performing a Hough transform to find the
corners of the cells, using the polygon calculated previously as the base. In some cells,
it was necessary to make some tweaks manually, as they presented strange defects
that notably changed the aspect of the cell. The results of the transformation can be
found in Figure 5.

5
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(a) (b)

(c) (d)
Figure 4. Image before and after applying color normalization: (a) original image; (b) original
histogram; (c) image after the min–max normalization; and (d) histogram after the normalization.

Figure 5. Cell after removing the surrounding image contour corresponding to wall portions.

3.3. Generation of the Synthetic Images

As announced, a Deep Convolutional Generative Adversarial Network was chosen to
generate extra images from the original recorded set. The model is composed of two differ-
ent networks: the Generator and the Discriminator. This section explains the architecture
and parameters of both networks and the process of training.

3.3.1. Generative Network

The generative network was created following the principles of the DCGN. It has 3
different Convolutional Transpose Layers (Deconvolutional) in order to generate patterns.
The use of these layers in combination with batch normalization [23] improves the gen-
erative capacities of the network and improves the stability of the training, The network
uses Leaky Relu [24] as an activation function, since it usually outperforms the standard
Relu. The architecture of this networks is represented in Figure 6. The input to the network

6
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(Figure 7a) is a random noise array from a normal distribution. The output is a 200 × 200
image (Figure 7b. This size was chosen in order to reduce the computation cost of the
algorithm while still obtaining images with a large amount of information. Other important
hyperparameters can be found in Table 1.

Figure 6. Architecture of the generative network.

(a) (b)
Figure 7. GAN’s output images before and after training. (a) Output image before training. (b) Output
image after training.

Table 1. Hyperparameters for both networks

Activation Function Loss Function Learning Rate Epochs Batch Size Output Size

Leaky Relu Cross Entropy 5 × 10−5 800 4 200 × 200

3.3.2. Discriminator Network

The Discriminator network also followed the principles of DCGAN. The network uses
different Convolutional Neural Networks to find patterns from the images. The typical
feed-forward part of the network was also removed, with only the output layer remaining.
The use of dropout layers and batch normalization improves the generalization capacity
of the networks and stabilizes the training. The architecture is represented in Figure 8.
The input corresponds to a 200 × 200 image and the output to a binary value that determines
if the image is a real cell or a forgery. The other important hyperparameters were the same
as the Generator, so they can be found in Table 1.
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Figure 8. Architecture of the Discriminator network.

3.3.3. Training the GAN

The training was performed simultaneously in both networks with all the available
samples (602). The training loop starts with the creation of synthetic images by the Gen-
erator using random seeds. After that, the Discriminator is provided with a mix of real
and synthetic images. That input data are used to train the network, the loss is computed
for each of the networks, based on the results of the Discriminator. Figure 9 shows the
evolution of the loss for both networks. In the first epochs, the loss of the Discriminator
network is quite high. It has not learned the patterns of the original images, so it cannot
identify which images are real or forgered, even if the forged images are extremely similar
to noise. After a while, the Discriminator reduces its loss since it can differentiate which
images are real; this provokes an increase in the loss of the Generator. After that, the loss
of the Generator steadily decreases its value since it starts to learn the patterns to create
images similar to the original ones. Until epoch 400, it continues to learn when it obtains
its lowest value. At the same time, the Discriminator is unable to identify which images
are real, making its loss its maximum value. After epoch 400, the values have almost no
change, so it can be concluded that the training should end at this point.

Figure 9. Evolution of the Generator and Discriminator loss.

The training was performed with a CPU AMD Ryzen 7 5800H, 16 GB of RAM, and a
GPU Nvidia Geforce GTX 1650. It took 2 h and 41 min to complete the training.

After completing the training, the Generator network was used to generate the syn-
thetic dataset. A total of 10,000 different images were created using 10,000 different random
seeds. Figure 10 presents a selection of some generated images.
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Figure 10. Samples of the synthetic images generated by our GAN-based method.

3.4. Assigning Maximum Power to Cells

The labeling of the images was not a trivial process, since it required associating each
image (real or synthetic) with an output maximum power value, which represents the
performance of the cell. This section explains how this association was made both for
original and GAN-generated images.

3.4.1. Original Images

As explained before, each EL image has an associated IV curve. The IV curve provides
information about the performance of the cell, which can only be obtained after taking the
following steps:

• Compute the power–voltage curve of each cell from its IV curve.
• The maximum value of the curve is saved as the max power point (MPP).
• We gather the cells into 6 groups, in terms of the irradiance used to excite the cell

before emission, since the MPP depends on the amount of light projected onto the cell.
• For each group, the 5 highest values of MPP are considered, and their mean is calculated.
• This average of the maximum values is understood as the expected MPP of a cell

without any defects or shadows in that group.
• The MPP of each cell is divided by the averge MPP of the cell group it belongs to.

The resulting value will measure the relative performance of the cell, normalizing its
MPP with the maximum value of the cells of the same group. This maximum is the mean of
the 5 highest values, since it reduces the effects of potential incorrect measurement. Values
of relative power near 1 will correspond with cells in good condition, with only a few or no
defects. Low values correspond with underperforming cells, mostly due to their defects.

3.4.2. Synthetic Images

The labeling of the synthetic dataset was a completely different problem. As explained,
the values of the original images were calculated based on their IV curve. This process
cannot be replicated in the synthetic images, since they are not real cells; so, they cannot
be measured.
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To solve this problem, we formulated it as a regression problem that can be solved us-
ing a machine learning model. The model is trained with the full dataset of original images,
together with their normalized power (MPP) calculated from IV curves, as explained in
the previous subsection (602 samples). The chosen model is Random Forest [25], since it
provided a low error in the original dataset and showed excellent generalization power
to associate the MPP to the synthetic images. The implementation of the algorithm in the
Sklearn library [26] was used for this work. The tuning of the hyperparameters of the RF
model was carried out using the Grid Search method in the Sklearn library (GridSearchCV),
obtaining the optimal values shown in Table 2.

Table 2. Estimation of Random Forest hyperparameters using GridSearchCV.

Parameter Range Optimum Value

n_estimators [20, 500] 200

max_depth [0, 10] 10

min_samples_split [1, 10] 1

min_samples_leaf [1, 10] 1

min_weight_fraction_leaf [0, 0.8] 0

Since Random Forest is not suitable to work directly on raw images, some features
were extracted from the images. The features are based on typical statistics (mean, standard
deviation, etc.) and other characteristics directly extracted from the histogram (amounts
peaks, peaks width, peaks height, amount of colors, etc.) A complete list can be found in
Table 3. Feature selection (FS) is an important step in the preparation of machine learning
models. We used correlation-based FS. As depicted in Figure 11, the cross-correlation
between all the original sets of features shows that almost no feature is highly correlated
with the others, except for the standard deviation and the variance, which are completely
dependent on each other, meaning one of them can thus be safely removed from the final
set of features.

The dataset was split into two sets: training (67%) and validation (33%). We decided
to only use two due to our data limitation. The target variable was the relative power of
each cell, standardized between 0 and 1.

Table 3. Features for Random Forest Regressor.

Mean Median Mode Variance Std

roughness blacks burned whites others peaks_number

peaks distance peak 0 height peak 0 width peak 1 height peak 1 width

The model obtained a Mean Absolute Error (MAE) of 0.041 and a Mean Squared Error
(MSE) of 0.0038 in the validation dataset. The distribution of the predictions of the model
can be found in Figure 12. The low error and the similarity in the distribution confirm the
validity of the model. The distribution of the prediction for the synthetic dataset can also
be observed. Finally, the images were divided into two groups according to their predicted
power (class 0 > 0.8 and class 1 <= 0.8). In total, 6963 images were classified as class 0 and
3037 as class 1.
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Figure 11. Correlation heatmap of the initial set of features.

Figure 12. Histograms of real and predicted normalized power of the original and generated dataset.

4. Results

The resulting dataset was divided into two different folders, one for each class: Class
0 (6963 samples, Figure 13a) represented the images whose relative power is at least 0.8,
and the images in that class can be considered as functional PV cells. Class 1 (3037 samples,
Figure 13b) represented the images with a power of less than 0.8, and the images in that
class can be considered as underperforming PV cells.
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(a) (b)

Figure 13. Sample of images of both classes. (a) Sample of images of class 0. (b) Sample of images of
class 1.

4.1. Visual Analysis

For ensuring the quality and similarity of the images, we propose two different
methods: in this section, an analysis based on visual characteristics and histogram, and in
the next section, an analysis based on different metrics.

As can be observed in Figure 13, the generated images present a similar structure while
presenting new patterns of shadows different from the original ones (Figure 3). This is an
interesting feature produced by the generative capacity of the GAN, since it can combine
the different kinds of shadows presented in the original images in order to create new kinds
of patterns. This improves the variety of shadows presented in the dataset.

Figure 14 presents the distribution of the features selected previously for labeling
(Table 3). For each feature, the relationship between the values of the feature and the
relative power of the cell is presented. Synthetic images are represented with orange dots,
and the original images are represented with blue dots. In most features, the original
dataset images appear as a subset of the synthetic dataset, with some exceptions caused
mostly by underrepresented cases. This means that synthetic images not only present the
characteristics of the original images, but they also present new cases of defects or shadows
while maintaining the most important characteristics. This is mostly produced by the
generative properties of the GAN, which can create new patterns combining the patterns
of the input data; these new patterns improve the diversity of the dataset. This can lead
to an improvement in performance in the machine learning methods that use this dataset.
Another interesting finding is that the most underrepresented cases in the original data do
not appear in the synthetic data; this is also provoked by the properties of the GAN, since
it needs a considerable amount of samples to find patterns.

4.2. Histogram Analysis

The histogram of the images gives a lot of information about them. Figure 15a presents
the mean histogram of all images of class 0 of the original dataset and the mean for all of
the pictures of class 0 of the synthetic one. It can be seen that the images in this class present
a large amount of light gray–white pixels (Values near 200), but they also can present some
minor defects or shadows, as can be seen by the number of black pixels (values near 0).
A difference between both datasets can be seen: the synthetic dataset images have higher
but narrower peaks and are sometimes a bit moved to the left.
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Figure 14. Distribution of the relative power generated by a cell as a function of the value of
each of the sixteen features used to characterize the images: orange dots—synthetic images; blue
dots—original images.

Figure 15a presents the same information for the images in class 1. The images in this
class present a large number of dark pixels due to their defects and shadows. The amount
of lighter pixels is considerably lower. In the synthetic images, the peak of black pixels is
higher, but its width is narrower. The light pixels are extremely similar to the original ones.

(a) Histogram of the images of class 0 (b) Histogram of the images of class 1

Figure 15. Different generated images of both classes.
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As shown, the aspect of the histograms of both datasets is quite similar. The minor
differences are mostly produced due to the augmented variety of patterns of defects
and shadows.

Figure 16 presents two different cells of class 1: one original and one synthetic with
similar aspects. Visual inspection of both histograms shows that they have a similar
structure, presenting the same amount of peaks and even placed in a similar position.
Nevertheless, synthetic images tend to show a more symmetrical histogram and a shift
from maximum to lower intensities, since the extreme intensity values are less frequent
than in real images.

(a) A defective synthetic cell with its histogram

(b) A defective original cell with its histogram

Figure 16. Comparison of a defective synthetic cell and a defective original cell.

Figure 17 presents the same for two images of class 0. Both images have almost no
apparent defects. Their histograms have similar shapes, as can be seen by the number of
peaks and their placement.
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(a) A defective synthetic cell with its histogram

(b) A defective original cell with its histogram

Figure 17. Comparison of a defective synthetic cell and a defective original cell.

Figure 18a presents a comparison of the histograms of the position of the maximum,
found in the right half of the histograms (gray/white colors); it can be seen that both
histograms have a similar shape. Figure 18b presents the histograms of the number of
pixels that have low values (up to 10% of the maximum values); it can be seen how the
synthetic images do not completely imitate the original ones. A similar case can be seen
in Figure 18c, which represents the histograms of the number of pixels in the last decile;
it shows how even if the shapes are pretty similar, there is a shift to the left. It seems this
GAN method has some flaws when finding the patterns around the most extreme values.
This issue is not critical but shows that this method still has some room to improve.
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(a) (b)

(c)
Figure 18. Comparison of the different aspects of the histograms of both original and synthetic images:
(a) histogram of the position of the peak of gray/white colors for both original and synthetic images;
(b) histogram of the number of dark pixels (first decile) for both original and synthetic images; and
(c) histogram of the number of white pixels (last decile) for both original and synthetic images.

4.3. Image Quality Metrics

Previous works related to the synthetic generation of EL images of PV cells have not
addressed the issue of ensuring the quality of their data by providing objective metrics.
The Inception Score (IS) and the Fréchet Inception Distance (FID) are the most important
metrics to ensure the quality of synthetic images. In the next paragraphs, both metrics are
explained and used. A summary of the results of these metrics can be found in Table 4.

Table 4. Metrics for ensuring the quality of the synthetic dataset (Original: O, Synthetic: S, and Noise: N).

Metric Mean Score Std.

IS (O) 2.144 0.055
IS (S) 2.341 0.407
IS (N) 1.050 0.002

FID (O-O) 0.431 0.095
FID (S-S) 0.150 0.025

FID (N-N) 2.511 0.016
FID (O-S) 15.80 0.075
FID (O-N) 293.8 0.366
FID (S-N) 296.7 0.735

4.3.1. Inception Score

This metric was first proposed in 2016 [27] for evaluating the quality of generated
artificial images. The score is computed based on the results of a pretrained InceptionV3
model [28] applied to the generated images. This score is maximized when two conditions
are met: The value of the labels is the same for each image, in other words, the entropy of
the distribution is minimized. The other condition is that the images are diverse, meaning
that the labels are evenly distributed across all possible labels.
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For our problem, we used a custom implementation of the metric based on Python
and Tensorflow. We compared the results of three different datasets: the original dataset,
the synthetic dataset, and a dataset composed only of noise. For each experiment, we
split the evaluated dataset into 10 subsets and computed the IS of each one; after that, we
computed the mean and the standard deviation. This process reduces the memory cost of
the algorithm and the effects of randomness.

The original dataset obtained a mean score of 2.1440 with a standard deviation of
0.0559, the synthetic dataset obtained a mean score of 2.3418 with a standard deviation of
0.4079, and the noise dataset obtained a mean score of 1.0506 with a standard deviation of
0.0026. The results show that both datasets do not obtain a great result with this metric,
but their results are better than the results of the noise. This is provoked mostly by the
fact that Inceptionv3 was not trained to deal with EL images. It can also be observed that
the results of both datasets are similar, with an error of 9.2%. The fact that [26] produced
similar IS values for both shows that they have a high similarity. This proves the quality of
the synthetic dataset but also shows that it has some room to improve.

4.3.2. Fréchet Inception Distance

This metric was first proposed in 2017 [29] to evaluate the quality of synthetic images.
In contrast to the IS, this metric compares the distribution of the synthetic data with the
distribution of the original data, measuring the similarity between the two datasets.

As in the other case, we used a custom implementation based on Python and Tensor-
flow. We compared the same three datasets as in the other metric. To compare each dataset
with itself, we divided the datasets into two halves after shuffling them. We repeated the
process five times in order to reduce the effects of the randomization. The results show that
the values of the datasets with themselves were near 0 (0.43118 originals, 0.15095 synthetics,
and 2.5117 noise).

We also compared the distance between the three datasets: 15.808 between originals
and synthetics, 293.82 between originals and noise, and 296.77 between synthetics and
noise. It can be seen that both originals and synthetics are considerably far from noise.
It is true that the distance between them is not a value near 0, but it is still a low value,
which shows that the difference between both datasets is not high. This is reinforced
when this difference is compared with the difference between the noise and both datasets.
The difference from 0 is mostly provoked due to the new patterns of shadows and defects
that are generated due to the combinations of the different shadows of the original images,
thanks to the generative capacity of the DCGAN models.

5. Conclusions and Future Work

The creation of synthetic electroluminescence images of photovoltaic cells is not a
trivial problem. Different factors need to be taken into account in order to create high-
quality images. The gathering of data is by its nature a manual process, requiring the EL
image and its IV curve. The IV curve was measured individually for each cell, which is
an innovation from other papers in the bibliography. The obtained images need proper
preprocessing in order to perform well in the models. The labeling of the generated data
is also a complex problem, since it is not possible to measure the output power or the IV
curve of a not-real cell; so, we designed a model to assign a value of performance. This
model was trained with the values of the real images, and its low error values show its
good performance.

The algorithm used for creating the new images, DCGAN, has shown great perfor-
mance, not only creating images that are very similar to the originals but also creating
new patterns of defects and shadows. This similarity between the original images and
the synthetics images was proved using different methods: A visual inspection of the
cells shows that they present the characteristics of a real PV cell, and the histogram also
proves their similarity, since they share the most important aspects of its shape. Image
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quality metrics such as Inspection Score (2.3) and French Inception Distance (15.8) also
prove their similarity.

The results of this paper prove the quality of the synthetic images, but the dataset
can be improved. The most direct way of improving the dataset would be increasing
the amount of data. The inclusion of new kinds of defects and shadows would improve
the generative capacities of the GAN. Another interesting option would be trying to use
different kinds of PV cells, such as monocrystalline PV cells, since our dataset only consists
of polycrystalline PV cells. This would improve the usefulness of the dataset in machine
learning problems that use other kinds of PV cells.

Another way of improving the quality of the dataset would be increasing the size of
the networks. The size of the current networks are based on the limitations in hardware
and budget. Bigger networks could reduce the amount of epochs and improve the quality
of the generated images. The use of the most innovative architectures could also improve
the dataset.
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The following abbreviations are used in this manuscript:

EL Electroluminescence
PV Photovoltaic
GAN Generative Adversarial Network
DCGAN Deep Convolutional Generative Adversarial Network
IV Intensity–Voltage
LED Light-Emitting Diode
MPP Max Power Point
MAE Mean Absolute Error
MSE Mean Squared Error
IS Inception Score
FID Fréchet Inception Distance
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Abstract: Accurate wind power prediction can increase the utilization rate of wind power generation
and maintain the stability of the power system. At present, a large number of wind power prediction
studies are based on the mean square error (MSE) loss function, which generates many errors when
predicting original data with random fluctuation and non-stationarity. Therefore, a hybrid model for
wind power prediction named IVMD-FE-Ad-Informer, which is based on Informer with an adaptive
loss function and combines improved variational mode decomposition (IVMD) and fuzzy entropy
(FE), is proposed. Firstly, the original data are decomposed into K subsequences by IVMD, which
possess distinct frequency domain characteristics. Secondly, the sub-series are reconstructed into
new elements using FE. Then, the adaptive and robust Ad-Informer model predicts new elements
and the predicted values of each element are superimposed to obtain the final results of wind power.
Finally, the model is analyzed and evaluated on two real datasets collected from wind farms in
China and Spain. The results demonstrate that the proposed model is superior to other models in the
performance and accuracy on different datasets, and this model can effectively meet the demand for
actual wind power prediction.

Keywords: wind power prediction; improved variational mode decomposition; fuzzy entropy;
adaptive loss function; Informer

1. Introduction

The global energy-shortage problem is becoming more and more serious, and it is
essential to accelerate the pace of energy structure transformation based on the increasing
proportion of renewable energy. Wind power, as an economical and environmentally
friendly emerging renewable energy source, has been vigorously developed by various
countries, and its application prospects are promising [1,2]. However, with the random
fluctuation of wind power, it has strong uncontrollability, resulting in a decrease in the
dispatching efficiency of the power grid and an imbalance between energy supply and
demand [3]. Therefore, achieving high-accuracy and high-reliability prediction of wind
power in practical applications can minimize energy loss and make the power grid operate
more stably and safely.

In recent years, a large number of scholars have studied wind power prediction
models, which can be mainly divided into physical models [4], statistical models [5],
artificial intelligence (AI) models [6], and hybrid models [7]. The physical models are
based on the method of fluid mechanics, which uses numerical weather prediction data
to calculate the wind turbine output curve and then calculate wind power from it [8].
However, the fluid mechanics method has the disadvantages of the high complexity of
building the model and massive computational cost. The statistical models are based on the
mapping relationship between historical data and future data [9,10]. Rajagopalan et al. [11]
proposed an autoregressive moving average (ARMA) model for ultra-short-term wind
power forecasting and achieved superior results. The autoregressive integrated moving
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average (ARIMA) model is a widely used statistical model that is based on ARMA with
the addition of difference operation [12,13]. However, this method requires a large-scale
dataset, making it difficult to mine the nonlinear relationship of complex data.

AI models are current technical trends and are widely used in the field of large-
scale and multi-dimensional data prediction [14]. AI models are mainly divided into
machine-learning models and deep-learning models [15]. For example, an echo state
network (ESN) [16] was applied to wind speed forecasting and improved the prediction
performance. Khan et al. [17] used the Naive Bayes Tree (NB) to extract the probabilities
of each feature of wind power, successfully predicting wind power values from hours
to years. Machine-learning methods are based on rigorous mathematical theories that
enable rapid computation in high-dimensional spaces. Owing to weak generalization
ability, machine-learning methods are prone to overfitting, and it is difficult to achieve
good prediction effects. In contrast, deep-learning models unify feature-learning tasks and
prediction tasks into one model, making them more suitable than shallow machine-learning
models to solve wind power prediction problems in complicated uncertainty scenarios [18].
Tian et al. [19] used a model based on the attention mechanism and demonstrated its
efficacy in wind power prediction. Liu et al. [20] presented a novel deep convolutional
neural network (CNN) capable of automatically extracting hidden information from multi-
dimensional data and efficiently implementing multi-step prediction. Hu et al. [21] applied
a model integrated with a deep-learning framework and basic ESN network for energy
prediction, which enhanced the model’s memory capacity with a stacked hierarchy of
reservoirs. Although these methods have achieved some success in wind power prediction,
the fact that a single model cannot fully exploit the time series information leads to limited
prediction performance [22].

Hybrid models are created by multiple intelligent algorithms or prediction models
that combine the advantages of different models to achieve an improvement in prediction
accuracy. Hybrid prediction models consist of combined multiple models and stacking
models based on data processing [23,24]. Chen et al. [25] designed a weighted combination
prediction composed of six long short-term memory networks (LSTM), and its prediction
effect is better than that of a single prediction model. Xiong et al. [26] proposed a multi-
scale hybrid prediction model that combines attention mechanism, CNN, and LSTM to
adequately capture the high-dimensional features in wind farm data. Zheng et al. [27] es-
tablished a hybrid model combining bidirectional long-short-term memory (Bi-LSTM) and
CNN, which adopted a unique feature extraction method of space and then time. Although
the combined prediction method of multiple models exhibits high prediction accuracy, it
suffers low computational efficiency and narrow application scenarios [28]. Considering
the nonlinear implicit relationship in the time series of wind power data, the stacking model
based on data processing is proposed to improve the prediction accuracy by mining deep
features through data decomposition. For example, Wu et al. [29] proposed a multi-step
prediction method using variational modal decomposition (VMD) and chain ESN, which
achieved multi-steps prediction at multiple time scales. Yang et al. [30] employed the
VMD method to decompose the wind speed data, which was then utilized as input for an
optimized LSTM network to perform predictions. Ren et al. [31] proposed a hybrid model
of empirical-mode decomposition (EMD) and support-vector regression (SVR) for wind
power prediction. Lv et al. [32] decomposed wind speed data into 3-dimensional input
features using singular spectrum analysis (SSA) and fed them into a convolutional long-
short-term memory (ConvLSTM) network, which effectively enhanced the local correlation
between multivariate data. Khazaei and Ehsan [33] used prediction methods combining
wavelet transform (WT) decomposition with the AI model, and the results showed that the
model has high accuracy. Hybrid models based on data processing have a simple structure
and strong feasibility, but the accuracy of the prediction greatly depends on the effectiveness
of data decomposition. Over-decomposition of data can result in redundant components
and reduce the efficiency of calculation, while the insufficient decomposition of data can
lead to mode mixing, which fails to meet the needs of high-precision prediction [34].
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Most prediction models use mean square error (MSE) as a loss function, which needs
to meet the condition that prediction errors obey a Gaussian distribution. However, the
use of MSE as a loss function in models that are insensitive to outliers in wind power
data with high randomness may result in large errors [35]. In response to this issue,
some researchers have improved the loss function of the model to minimize the impact
of errors on the prediction results. Hu et al. [36] proposed a loss function without fixed
distribution, which effectively solves the problem of prediction-gradient descent at wind
power intervals. Duan et al. [35] designed a loss function with non-Gaussian distributed
errors and combined it with an LSTM model to predict wind power. The loss function is
significantly important in the wind power prediction process as it determines the training
direction and accuracy of the model [37]. Although these improved loss functions have
positive effects on wind power prediction, the models still exhibit limitations in terms of
their adaptability and robustness.

Based on the above analysis, a robust and adaptive IVMD-FE-Ad-Informer hybrid
model for wind power prediction is proposed in this paper, which aims to improve the
precision of data decomposition and the predictive performance of non-stationary wind
power data. The main contributions of this paper are outlined as follows: (1) Consider-
ing the difficulty in selecting the number of VMD, the IVMD algorithm improved by the
maximum information coefficient (MIC) decomposes the original wind power data into
K optimal sub-series, which effectively reduces the difficulty of wind power prediction.
(2) fuzzy entropy (FE) is used to reconstruct sub-series into new elements of similar com-
plexity together, alleviating the burden of model operation. (3) An adaptive loss function
is innovatively introduced into the Informer network to solve the problem of traditional
MSE’s insensitivity to randomly fluctuating wind power data. This novel model can reduce
the impact of outliers in non-smooth wind power data. (4) Ablation experiments and
comparative experiments are performed on datasets collected from both different wind
farms to verify the effectiveness and stability of the model. The prediction results show that
the proposed model framework is reasonable, and it exhibits significantly better prediction
performance and accuracy compared to other models.

The specific contents of this paper are as follows: Section 2 specifically describes the
basic methodologies of hybrid models; Section 3 presents the construction framework
and evaluation indicators of the IVMD-FE-Ad-Informer model; Section 4 constructs four
experiments to verify the accuracy and validity of the proposed model; and finally, this
paper is summarized in Section 5.

2. Methodologies

2.1. Variational Mode Decomposition

VMD [38] is a commonly used data decomposition method that converts wind power
sequences from the time domain to the frequency domain and subsequently decomposes
them into K intrinsic mode functions (IMFs). Firstly, build the variational constraint equation:⎧⎪⎪⎨⎪⎪⎩

min
{

K
∑

K=1
‖∂t

[(
δ(t) + i

πt

)
∗ uK(t)

]
e−iwKt‖2

2

}
s.t.

K
∑

K=1
uK = x(t)

(1)

where ∗ is the convolution calculation symbol, x(t) is the wind power sequence, wK and
uK are the central frequency and band components of the kth IMF value, δ(t) is the impulse
function, and ∂t is used to denote the derivative of the function.

To simplify the variational constraint equation to a simple unconstrained problem, the
Lagrange function λ(t) and the penalty factor α are introduced:

L({uK}, {wK}, λ) = α
K
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Then the optimal solution of the unconstrained problem is solved using the alternating
direction method of multiplication with the following iterative procedure:

ûn+1
K (w) =

x̂(w)− ∑
i �=K

ûj(w) + (λ̂(w)/2)

1 + 2α(w − wK)
2 (3)

wn+1
K =

∫ ∞
0 w

∣∣∣ûn+1
K (w)

∣∣∣2dw∫ ∞
0

∣∣∣ûn+1
K (w)

∣∣∣2dw
(4)

Finally, after applying the above process, the original wind power series is decomposed
into the K sub-series.

2.2. Fuzzy Entropy

Fuzzy entropy (FE) [39] is a dynamical method for analyzing the complexity of time
series. The FE value changes smoothly with changes in the set parameters, which makes
it more robust to noise and more resistant to interference. Firstly, for time series with the
length of n, the FE algorithm is introduced into the fuzzy membership function, and the
specific formula is as follows:

D(x) = exp
[
− ln(2)

( x
r

)2
]

(5)

where r is the similarity tolerance, x = dm
ij , dm

ij is the distance between vectors that reconstruct
the time series into m-dimensional phase space, and i, j = 1,2..., n – m + 1, i �= j.

Averaging over each i in Dm
ij yields, the average similarity function is as follows:

φm(r) =
1

N − m + 1

N−m+1

∑
i=1

(
1

N − m

N−m+1

∑
j=1,j �=i

Dm
ij

)
(6)

Therefore, the FE expression is as follows:

FuzzyEn(m, r, n) = ln φm(r)− ln φm+1(r) (7)

2.3. Informer

The Informer network is a variant of the Transformer that effectively addresses the
long-sequence prediction problem [40]. Improvements of the Informer include: using
a probsparse self-attention mechanism to reduce the complexity of matrix computation;
introducing a self-attention distillation mechanism to extract the main features of time
series, which effectively reduces memory usage; using a decoder to directly output the
predicted values generatively to achieve the purpose of long-series prediction. The structure
of the Informer model is shown in Figure 1.

The traditional self-attention mechanism consists of query, key, and value, and the
expression is as follows:

fA(Q, K, V) = softmax

(
QK�
√

d

)
V (8)

where QεRLQ×d, KεRLK×d, VεRLV×d, d is the input dimension.
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Figure 1. The structure of the Informer.

As the matrix multiplication involved in Equation (8) is computationally huge, the
probsparse self-attention mechanism is introduced to select the important elements in Q to
calculate the attention values.

fA(Q, K, V) = softmax

(
QK�
√

d

)
V (9)

where Q is obtained through probabilistic sparsity of Q and controlled by a constant
sampling factor c and the number of Q is c ∗ ln LK.

Therefore, the similarity and importance between query and key are measured by
Kullback–Leibler divergence, as follows:

k(qi, kj) = ln
LK

∑
l=1

e
qik�j√

d − 1
LK

LK

∑
j=1

qik�j√
d

− ln LK (10)

where the relevance of qi to kj is proportional to the magnitude of k(qi, kj). If p(kj
∣∣qi)

is close to a uniform distribution, i.e., p(kj
∣∣qi) = 1/LK , indicating that qi has the same

similarity to all kj, then qi is deemed as a redundant vector and can be dropped.
Based on this, the sparsity evaluation formula that defines the i-th query is:

M(qi, K) = ln
LK

∑
l=1

e
qik�l√

d − 1
LK

LK

∑
j=1

qik�j√
d

(11)

The self-attentive distillation mechanism is introduced in the encoder. The width of
the feature map is reduced to half its length after the distillation layer, which can reduce
the overall memory usage and effectively solve the problem of long input. The concrete
representation is as follows:

Xt
j+1 = fMP

(
ELU

(
fConv

([
Xt

j

]
AB

)))
(12)

where f MP represents the maximum pooling layer function, f Conv denotes the convolutional
layer function, and [·]AB is the attention unit.
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The input of the decoder uses the time shield technique, and its input vector is
as follows:

Xin
dec = fConcat (Xtoken , X0) ∈ R

(Ltoken +Lp)×dmodel (13)

where Xtoken ∈ R
Ltoken ×dmodel is the input start token, Ltoken is the length of the start token,

X0 ∈ R
Lp×dmodel is the 0-value matrix, and Lp is the length of the part to be predicted.

2.4. Adaptive Loss Function

The adaptive loss function [41] obtains a generalized loss function by introducing
robustness as a continuous parameter. During the training process, the adaptive loss
function automatically adjusts the robustness parameters around the minimization loss
algorithm, thereby enhancing the prediction accuracy. The generalized loss function
formula is as follows:

f (z, β, c) =
|β − 2|

β

⎛⎝( (z/c)2

|β − 2| + 1

)β/2

− 1

⎞⎠ (14)

where z is the difference between the true value and the predicted value, c > 0 serves as a
scale factor that controls the curvature of the quadratic function at x = 0, and β is a variable
parameter that controls the robustness.

By analyzing Equation (14), the adaptive loss function changes with the change of β.
For different β, the adaptive loss function formula is as follows:

L(z, β, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (z/c)2 if β = 2

log
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1
2 (z/c)2 + 1

)
if β = 0√

(z/c)2 + 1 − 1 if β = 1

1 − exp
(
− 1

2 (z/c)2
)

if β = −∞

|β−2|
β

((
(z/c)2

|β−2| + 1
)α/2

− 1

)
otherwise

(15)

It can be seen that the adaptive loss function can be a variety of loss functions, such as
the MSE, Cauchy, Charbonnier, and Welsch loss functions, by adjusting the value of the
variable parameter β.

3. Proposed Model

3.1. Improved VMD

With a solid mathematical theoretical foundation, VMD can effectively separate the
components of complex signals and greatly suppress mode mixing. However, the decom-
position parameter of VMD is given in advance, which limits the performance of data
decomposition. In order to overcome the shortcomings of VMD in a parameter setting, this
paper proposes the incorporation of the decomposition method and MIC [42] to determine
the most suitable number of decompositions K. The degree of decomposition is determined
by calculating the MIC value between the original sequence y and the reconstructed se-
quence y′, and the MICyy′ value is positively correlated with the number of decomposition
numbers K. The closer MICyy′ value is to 1, the less information is lost during VMD
decomposition, indicating a more adequate decomposition.

3.2. IVMD-FE-Ad-Informer Model Framework

In consideration of the high volatility of wind power data, this paper introduces the
improved VMD and FE methods to the Informer network with adaptive loss function,
and the framework is shown in Figure 2. In the data processing stage, the original data
are decomposed into K IMFs by IVMD. Next, FE is used to calculate the complexity of
each IMFs, and the IMFs with similar values are reconstructed into new elements. In
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the model-building stage, the input variables for the model are obtained through feature
selection using the MIC algorithm and then input into a robust Ad-Informer prediction
model. In the results analysis stage, the wind power forecasting results are obtained by
linearly superposing the predicted values of each element, followed by visualizing the
forecasting curve.

Figure 2. The framework of IVMD-FE-Ad-Informer model.

3.3. Evaluation Indexes

The mean absolute error (MAE), root mean square error (RMSE), and coefficient of
determination (R2) are used as evaluation indicators for the prediction performance of
IVMD-FE-Informer and other benchmark models. The mathematical formula is as follows:

MAE =
1
N

N

∑
∣∣∣qtrue (t)− qpred (t)

∣∣∣ (16)
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RMSE =

√√√√ 1
N

N
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qtrue (t)− qpred (t)

)2
(17)

R2 = 1 −

N
∑

t=1

(
qtrue (t)− qpred (t)

)2

N
∑

t=1
(qtrue (t)− q)2

(18)

where qtrue (t) and qpred (t) denote the true and predicted values of wind power at time t,
respectively, q is the mean value of qtrue , and N is the number of samples in the dataset.

4. Experiment and Analysis

In this section, four sets of experiments are conducted on datasets with different
sampling intervals, capacities, and regions. Experiment 1 aims to describe the specific
details of the data processing. Experiment 2 is designed as an ablation experiment to verify
the prediction performance of the hybrid model. Experiment 3 mainly aims to design a
comparative experiment to verify the viability and superiority of each module. Experiment
4 aims to verify the applicability and stability of the proposed model on different datasets.
All experiments are run in Python 3.7 and Pytorch environment with Intel(R) Core (TM)
i5-12500H CPU @ 4.50 GHz, 12 Cores, NVIDIA GeForce RTX 3050 GPU, a memory capacity
of 16 Gb, and Windows 11 operating system.

4.1. Data Description

The experiments are mainly conducted on two complete datasets without missing
values in this paper. Dataset A is based on a wind farm in Gansu, China, which was selected
from 1 July to 30 September 2019, with a sampling interval of 15 min. Dataset A contains
wind power, wind speeds at different heights (10 m, 30 m, 50 m, 70 m, and hub height),
air temperature, air pressure, and humidity features. Dataset B was collected from the
Sotavento Galicia wind farm in Spain from 18 January to 12 March 2020, with a sampling
interval of 10 min. Dataset B contains only wind power, wind speed, and wind direction
features. The wind power curves from different datasets are show in Figure 3.

The prediction process is the same for different datasets; in fact, dataset A is used
for Experiments 1 to 3, and dataset B is used for Experiment 4. The datasets are divided
into the training set, validation set, and test set in a ratio of 7:2:1, and the results of each
experiment are obtained by taking the average of 10 iterations. The characteristics of the
datasets, including number, maximum value (Max), minimum value (Min), mean, standard
deviation (Std), and coefficient of variation (COV), are shown in Table 1.

Table 1. The characteristics of datasets.

Dataset Number Max (MW) Min (MW) Mean (MW) Std (MW) COV

Dataset A 8832 120.43 0 23.51 24.74 1.0523
Dataset B 7920 2.803 0 0.8976 0.7885 0.8784

4.2. Experiment 1: The Specific Details of Data Processing

The data processing part mainly includes data decomposition, new elements recon-
struction, and feature selection, and in this part, the operation process and the selection of
parameters for data processing will be specifically discussed.
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Figure 3. The curve of datasets.

4.2.1. Data Decomposition

The IVMD algorithm solves the traditional VMD problem of K selection by calculating
the MICyy′ value. The original wind power data are fed into the IVMD model, which is
decomposed into K IMFs. Based on the results of MICyy′ corresponding to different values
of K as indicated in Figure 4, it can be observed that the value of MICyy′ remains stable
and constant for K = 16. The IMFs curve after IVMD decomposition and its corresponding
spectrum diagram are shown in Figure 5. By observing the principal frequencies of different
IMFs from Figure 5, it can be concluded that the IVMD algorithm proposed in this paper
can effectively separate each IMF accurately.

Figure 4. The curve of MICyy′ vs. K.
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Figure 5. The results of the IVMD algorithm. The IMFs curves are shown (left), and the spectral
densities corresponding to the IMFs are shown (right).
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4.2.2. New Elements Reconstruction

The original wind power data are decomposed into 16 IMFs, and if all the sub-series
are directly fed into the prediction model, it will increase the operational burden of the
prediction model. Therefore, the complexity of these IMFs will be evaluated by FE, and
then the IMFs with similar complexity will be reconstructed into new elements. After
conducting extensive experiments, the values of m = 2 and r = 0.25std are found to be the
optimal settings for achieving the best accuracy and running time of the model. The FE
values of each IMF are shown in Figure 6, and the reconstructed new elements based on
these FE values are shown in Table 2.

Figure 6. The FE value of each IMF.

Table 2. New elements reconstruction.

Reconstruction Elements IMFs

Element 1 IMF1, IMF2
Element 2 IMF3, IMF4, IMF16
Element 3 IMF5, IMF6, IMF7, IMF8, IMF15
Element 4 IMF9, IMF10, IMF13, IMF14
Element 5 IMF11, IMF12

4.2.3. Feature Selection

The computational efficiency and generalization ability of the model can be improved
by removing some irrelevant or redundant features from the original dataset. Therefore,
MIC is used to analyze the correlation between meteorological features and each element
and extract typical features reflecting each element through MIC value. The confusion
matrix of MIC is given in Figure 7. It can be found from Figure 7 that the influence
characteristics of each element are different, reflecting the overall correlation and local
characteristics, respectively. In order to select the features with the highest relevance to
build the input variables, the MIC thresholds of each element are set to 0.5. The input
feature selection results are shown in Table 3.
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Figure 7. The confusion matrix of MIC.

Table 3. The feature selection results.

Element Input Variables

Element 1 Element 1, 10 m, 30 m, 50 m, wheel height wind speed
Element 2 Element 2, 10 m, 50 m, wheel height wind speed
Element 3 Element 3, 30 m, 50 m, wheel height wind speed
Element 4 Element 4
Element 5 Element 5

4.3. Experiment 2: Ablation Experiment

The purpose of conducting ablation experiments is to verify whether the complex
hybrid model has improved the prediction accuracy as compared to simple combinatorial
models and single models. The selected benchmark models are IVMD-FE-Ad-Informer,
Ad-Informer, and Informer, of which the Informer model uses the MSE loss function.
The parameters of AD-Informer are obtained using the grid search method, where the
robustness parameter β is adaptively adjusted using the Adam optimizer. The specific
parameters are shown in Table 4. The input size of the encoder and decoder is equal to the
number of input variables of the model. The prediction curve results of each sub-mode
after the training of the IVMD-FE-Ad-Informer model are shown in Figure 8, and the wind
power prediction results can be obtained by superimposing them. The final forecasting
curves of the ablation experiment are shown in Figure 9, and forecasting errors are shown
in Table 5. Figure 9 not only portrays the overall trend of the test set but also amplifies the
values from position 300 to 480 in order to offer an in-depth analysis of the predicted results.
The main reason is that the wind power data within the test set from the 300th to the 480th
position displays more sudden changes and a wider range of variation, thus providing a
more comprehensive evaluation of the predictive performance of the proposed model.
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Table 4. Parameter setting of the Ad-Informer.

Parameters Values

Input sequence length 96
Start token length 24–96

Prediction sequence length 24–96
Num of encoder layers 3
Num of decoder layers 2
Input size of encoder 5-1
Input size of decoder 5-1

Decoder output 1
Num of heads 8

Dimension of model 512
Probsparse attention factor 5

Early stopping patience 5
Learning rate 0.0001

Dropout 0.05
Epochs 100

Scale factor 1.2
Optimizer Adam

Gpu Cuda0

From Figure 9, it can be seen that the Ad-Informer model is significantly closer
to the true value than the Informer model at the inflection point, indicating that the
proposed adaptive function can effectively mitigate the impact of errors at the abrupt
points. Compared with the Ad-Informer model, the IVMD-FE-Ad-Informer model is closer
to the real value, indicating that the data processing method can reduce the time delay in
the process of prediction. According to Table 5, the Ad-Informer model requires less time
than the Informer model, mainly attributed to the automatic adjustment of the adaptive loss
function, which enables the model to obtain the optimal loss during the training process
and enhance its robustness. The hybrid model proposed in this paper shows significant
improvements over the AD-Informer and Informer models, with a decrease of 45.09% and
59.67% in MAE, 44.4% and 55.44% in RMSE, and an increase of 11.42% and 22.72% in
R2, respectively. By comparing the considered models, it can be seen that IVMD-FE-Ad-
Informer decomposes the original wind power data into finer granularity, which can better
explore the internal features of wind power, resulting in a significant improvement in both
prediction accuracy and performance.

Table 5. Forecasting errors of ablation experiment.

Model MAE (MW) RMSE (MW) R2 Time (s)

IVMD-FE-Ad-
Informer 3.19 4.67 0.956 1633.21

Ad-Informer 5.81 8.40 0.858 177.13
Informer 7.91 10.48 0.779 165.559

4.4. Experiment 3: Comparative Experiment

To verify the superiority of each module, EMD-FE-Ad-Informer, IVMD-FE-Informer,
IVMD-FE-LSTM, LSTM, and ANN are used as benchmark models in the comparison
experiments, and the parameter settings of ANN and LSTM are the same as [19,43]. EMD
decomposes wind power data into 11 IMFs by trail-and-error method, and then these IMFs
are reconstructed into three new components (IMF1~IMF3, IMF4~IMF6, and IMF7~IMF11)
using FE. The forecasting curves of different models are shown in Figure 10. The forecasting
errors are shown in Table 6. The boxplots of the forecasting errors for each model are given
in Figure 11.
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(a) (b)

(c) (d)

(e)

Figure 8. The prediction curve results of each sub-mode. (a) Element 1 prediction curve; (b) Element 2
prediction curve; (c) Element 3 prediction curve; (d) Element 4 prediction curve; (e) Element 5
prediction curve.
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Figure 9. The forecasting curves of the ablation experiment. The overall forecasting trends are shown
at the (top), and the local enlargement is shown at the (bottom).

Table 6. Forecasting errors of different models.

Model MAE (MW) RMSE (MW) R2 Time (s)

IVMD-FE-Ad-Informer 3.19 4.67 0.956 1633.21
EMD-FE-Ad-Informer 4.96 7.31 0.905 1362.47

IVMD-FE-Informer 5.81 8.40 0.889 1878.63
IVMD-FE-LSTM 6.63 9.79 0.808 1732.57

LSTM 7.86 10.95 0.759 305.11
ANN 8.04 11.58 0.731 81.02

Based on the results in Table 6, the IVMD-FE-Ad-Informer model outperforms the
single prediction model and the other hybrid models across all evaluation metrics. It
can be concluded that MAE decreased by about 35.68–60.32%, RMSE decreased by about
36.11–59.67%, and R2 increased by about 5.64–30.78%. According to Table 6 and Figure 10, it
can be inferred that the IVMD algorithm has superior data decomposition ability compared
to the traditional EMD algorithm under similar data processing. This improved ability
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enables the IVMD algorithm to more effectively reduce non-smooth features in the original
data, resulting in smoother data and improved wind power prediction accuracy. Further-
more, the prediction accuracy of Ad-Informer is much higher than that of Informer and
LSTM for the same data processing method, with R2 of 0.925, 0.889, and 0.808, respectively.
While IVMD-FE-Ad-Informer is relatively time-consuming due to the implementation of
the Ad-Informer prediction module five times after the IVMD-FE data preprocessing, it
demonstrates a closer resemblance to the actual curve and produces the smallest forecasting
errors. It can be indicated that the model proposed in this paper is an optimal combined
model with high prediction performance.

Figure 10. The forecasting curves of different models. The overall forecasting trends are shown at the
(top), and the local enlargement is shown at the (bottom).
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Figure 11. The boxplots of different models.

4.5. Experiment 4: The Stability of IVMD-FE-Ad-Informer Forecasting

The experimental results demonstrate that IVMD-FE-Ad-Informer outperforms other
benchmark models on dataset A and exhibits considerable wind power prediction ability.
However, the statistical distributions of wind power data vary across different time inter-
vals, regions, and capacities, which may lead to the phenomenon of unstable forecasting.
Therefore, the stability and applicability of the model still need further discussion. In this
section, EMD-FE-Ad-Informer, Ad-Informer, LSTM, and ANN are used as benchmark
models on dataset B, which are collected from the Sotavento Galicia wind farm in Spain at
10 min sampling intervals. The parameter-setting method of this experiment is the same as
Experiment 3, and the specific parameter settings of each algorithm are shown in Table A1,
Appendix A. The forecasting curves of dataset B are shown in Figure 12, and the forecasting
errors are shown in Table 7.

Table 7. Forecasting errors of different datasets.

Model MAE (kW) RMSE (kW) R2 Time (s)

IVMD-FE-Ad-Informer 83.01 60.43 0.962 1076.34
EMD-FE-Ad-Informer 115.89 70.75 0.914 671.47

Ad-Informer 144.51 105.46 0.866 156.91
LSTM 186.63 131.04 0.762 228.88
ANN 197.16 140.62 0.746 62.15

According to Figure 12 and Table 7, the results obtained from dataset B are comparable
to those from dataset A, indicating that the model proposed in this paper has high stability
and generalization ability on different datasets. From Figure 12, IVMD-FE-Ad-Informer
exhibited the closest fit to the true values among all the considered models, with the EMD-
FE-Ad-Informer following closely behind. It can also be seen from Table 7 that the IVMD-
FE-Ad-Informer has the best prediction performance with regard to MAE, RMSE, and R2,
which are 83.01 kW, 60.43 kW, and 0.962, respectively. The results further confirm that the
IVMD algorithm is a superior and effective method for wind power data decomposition.

Based on the experimental results of the two different datasets, it is apparent that the
IVMD-FE-Ad-Informer outperforms other benchmark models in terms of all evaluation
metrics and has the closest fit of prediction curves to the true values. Meanwhile, the COV
value is introduced for further analysis of the influence of prediction accuracy on different
datasets. This value is a typical indicator of the degree of data fluctuation, with more
volatile data having a higher COV value [44]. It also can be concluded that the accuracy
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of the proposed model prediction is inversely related to the degree of fluctuation in the
original data. For example, when using Ad-Informer to forecast wind power on dataset
A, the R2 is 0.866, whereas, on dataset B with a higher COV, R2 is slightly lower at 0.858.
Furthermore, the superiority of the proposed model in terms of prediction performance
becomes more prominent as the original wind power sequence contains more nonlinear
features. The outstanding contribution is the development of an adaptive loss function,
which can accurately identify and predict violent changes in wind power, thereby effectively
mitigating the impact of outliers.

Figure 12. The forecasting curves of different datasets. The overall forecasting trends are shown at
the (top), and the local enlargement is shown at the (bottom).

5. Conclusions

The actual operation of wind farms is influenced by various factors such as weather
conditions, season variation, and atmospheric circulation, which can lead to numerous
outliers and non-smooth features in the wind power data. The presence of such factors
brings many obstacles to achieving the further improvement of accuracy and performance
of wind power prediction. Thus, an adaptive hybrid model for wind power prediction
based on improved VMD, FE, and Informer in conjunction with adaptive loss function is
proposed in this paper. The IVMD-FE-Ad-Informer model is a promising hybrid model
that enables adaptive forecasting of stochastically fluctuating wind power data, and its
main advantages are summarized as follows:
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1. The IVMD-FE-Ad-Informer is a hybrid model that demonstrates high accuracy and
better robustness by integrating the advantages of multiple technologies, outperform-
ing the basic EMD- FE-Ad-Informer, Ad-Informer, LSTM, and ANN. The results of
the proposed model obtained from the Spanish and Chinese datasets demonstrate a
significant improvement compared to benchmark models, with a maximum reduction
of 57.89% in MAE, 57.03% in RMSE, and a maximum increase of 30.78% in R2;

2. Compared with traditional data decomposition methods, VMD improved by MIC can
better mine the nonlinear features of the original data, which effectively improves the
data quality and reduces the difficulty of prediction;

3. Based on a comprehensive analysis of experimental results, the adaptive loss function
has a rapid response to non-Gaussian distributed wind power data, which can react
quickly to outliers and predict variation trends;

4. By prediction experiments on wind farm datasets with different sampling intervals,
capacities, and regions, the proposed model shows the best prediction results and
closest proximity to the true value. It can be demonstrated that IVMD-FE-Ad-Informer
has remarkable generalization ability and broad prospects in wind power prediction.

As can be seen from the above, the hybrid wind power prediction model that combines
the advantages of several algorithms has higher prediction accuracy and better robustness.
However, there are some problems in this study that need to be improved in the future.
Firstly, in this paper, only the correlation factor is considered in feature selection, while
F-score and sensitivity factors are not taken into account. In future work, the analysis of
the relationship between other variables and wind power using F-score and sensitivity will
be conducted to reduce the redundancy of massive data. Then, the parameter selection
in this paper may not be precise enough, and to address this issue, the optimization
algorithm will be introduced to overcome the sensitive defect of deep-learning network-
parameter selection.
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Appendix A

Table A1. The parameter settings of each algorithm on dataset B.

Algorithms Parameters Values

IVMD K 17

FE m
r

2
0.25std

IVMD-FE New mode

4(mode1 = IMF1, IMF2, IMF17;
mode2 = IMF3, IMF4, IMF15, IMF16;

mode3 = IMF5, IMF12~IMF14;
mode4 = IMF6~IMF11)
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Table A1. Cont.

Algorithms Parameters Values

EMD K 11

EMD-FE New mode
3(mode1 = IMF1, IMF6, IMF7;

mode2 = IMF2~IMF5;
mode3 = IMF8~IMF11)
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Abstract: Detecting and locating faults in electrical cables has been a permanent concern regarding
electrical power distribution systems. Over time, several techniques have been developed aiming
to manage these faulty situations in an efficient way. These techniques must be fast, accurate, but,
above all, efficient. This paper develops a new approach for detecting, locating, classifying, and
predicting faults, particularly in different types of short-circuits in electrical cables, based on a robust
artificial neural network technique. The novelty of this approach lies in the ability of the method
to predict fault’s location and type. The proposed method uses the Matlab and Simulink platform
and comprises four consecutive stages. The first one is devoted to the development of the Simulink
model. The second one implies a large number of simulations in order to generate the necessary
dataset for training and testing the artificial neural network model (ANN). The following stage uses
the ANN to classify the location and the type of potential faults. Finally, the fourth stage consists of
predicting the location and the type of future faults. In order to reduce the time and the resources of
the simulation process, a virtual machine is used. The study reveals the efficiency of the method, and
its ability to successfully predict faults in real-world electrical power systems.

Keywords: electrical cables; detecting, locating and predicting faults; artificial neural network;
Classification Learner app

1. Introduction

Today, people’s lives are entirely dependent on the sustainability of electrical power
systems. This supposes that the continuity of the supply of the electrical power distribution
systems is mandatory. In this respect, electrical cables have the important role of linking all
components of a power system.

The presented method depicted in the following sections aims to contribute to a higher
degree of sustainability of the distribution power systems, accelerating the maintenance
process in fault cases, due to its accuracy in predicting the location and the type of faults in
the energy cables.

A fault in a cable directly affects the sustainability of the system, and the duration of
a power outage, being crucial to ensure the cables’ integrity during their entire operation
time [1–3]. However, if any defect occurs in a cable, the reaction must be as fast as possible
to reduce to a minimum the duration of its clearing time [4,5].

Methodologies of detecting faults in electrical cables have evolved with the advance-
ments in technology, with several methods being implemented: time domain reflectometry
technique, impedance-based method, knowledge-based method, traveling wave methods
or hybrid methods [6]. Each of them has its benefits and its limitations [7,8]. For instance,
time domain reflectometry can be successfully used in the case of a single cable, being
useless for systems that have more than two branches [7,9,10].

Algorithms based on artificial intelligence (AI) propose solutions that are able to
manage these more complex systems [11–13]. The artificial neural network technique
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(ANN) provides efficient pattern recognition algorithms that can be applied in predicting,
locating and classifying faults [14,15]. The ANN technique is able to solve nonlinear
problems, based on learned experiences, which implies different possible configurations of
the electrical distribution systems [16–20]. At the same time, the main ANN algorithms
features are robustness, generalizability, and noise immunity [21–23].

A complex method of detecting and locating faults in electrical cables should return
their exact type and location [24–26]. For a three-phase electrical power system, the fault
types are interruptions or short-circuits, with the last ones being: single line to ground
fault, line to line fault, double line to ground fault, three-line fault and three line to ground
fault [27–29].

This paper presents an efficient method of detecting, locating, and predicting the
different types of short-circuits in electrical cables. In order to develop this method, a model
of distribution electrical system has been modeled in Simulink, followed by the use of the
ANN technique of the Classification Learner app available in Matlab.

The model selected for analysis contains a three-phase source block of 20 kV and
several distributed parameters line blocks with a total of 22 km of cables. The ANN
technique is based on data generated by the Simulink model of the electrical distribution
system. The method aims to reach a high rate of validation accuracy of the trained model
delivered by the Classification Learner app. After running a large number of simulations,
more precisely 6150 simulations, a 98% rate of validation accuracy was obtained.

The generated data represent the training dataset for the ANN algorithm which has
an important impact over the accuracy of the method, since the performance of the method
increases with the complexity of the dataset. The case presented below highlights the
complexity and advantages of using ANNs methods in predicting, detecting, locating, and
classifying short-circuits in complex distribution electrical power systems.

The article is structured in five sections. The present section is the introductory one,
highlighting the importance of detecting faults in electrical power distributions systems. In the
second one, entitled Materials and Methods, the working principle of the method is presented.
Then, the Results section comprises four consecutive stages. The first stage is devoted to the
development of the Simulink model. The second stage presents a large number of simulations
in order to generate the necessary dataset for training and testing the ANN model. The
third one uses the ANN to classify the location and the type of potential faults. Finally, the
fourth stage consists of predicting the location and the type of future faults. The fourth and
fifth sections are devoted to the discussion, conclusions and further work.

2. Materials and Methods

The need to detect and locate faults in electrical systems has generated different
methods in the attempt to solve these problems. In the present section, a new approach
involving a simulated model of a distribution electrical power system, combined with the
benefits of ANN applications, will be presented.

As mentioned above, the method comprises four consecutive stages. The first one is
devoted to the development of the model, and the second one presents a large number
of simulations in order to generate a dataset necessary for training and testing the ANN
model, while the third stage uses ANN to classify the location and the type of faults. Finally,
the fourth stage consists of predicting the location and the type of potential future faults.

After modeling the distribution electrical system in Simulink (R2022a), several sim-
ulations were performed for different types of short-circuits in different locations of the
cables. The results of all simulations have been saved in a database which became the
training dataset for the Classification Learner app from Matlab (R2022a). The input data
for the Classification Learner app are the measured values of the voltage and current, the
responses being either the location of the faults or both their location and type. Based on
the trained neural network, the location and the type of a further fault can be predicted.

The model was created using the blocks contained in the Simscape (R2022a) electrical
library, a library dedicated to electrical power systems. The developed simulation model

44



Sustainability 2023, 15, 6162

contains a three-phase source block, distributed parameters line blocks, three-phase voltage-
intensity (VI) measurement blocks, three-phase load blocks and a three-phase fault block
able to induce faults in different locations of the cables. The model and these blocks will be
detailed in the next section.

Since the process of simulating the model which provides the training set for the
neural network is a time-consuming one, it had to be automated. The automation consisted
in writing a Matlab code which ran these simulations, and at each simulation, modifying
the parameters and saving the data delivered by the measurement blocks.

Once the database is accessible, the whole set of simulation results is introduced in the
Classification Learner app from Matlab. At this point, the training process may start. In
this last Matlab application, different types of algorithms based on artificial intelligence
are available, such as decision trees, discriminant analysis, naive bayes classifiers, support
vector machines, nearest neighbor classifiers, ensemble and neural network classifiers [30].
The Classification Learner app allows the training of all these algorithms based on the
accuracy of validation, enabling the possibility of choosing the most efficient one. For the
present case, the most accurate algorithm turned out to be the medium neural network
model. This model can be exported into Matlab workspace, being later used in the predic-
tion of the trained model response for another set of measurements, corresponding to a
further fault due to the versatility and complexity of the Matlab and Simulink platform.

The presented method is synthesized in the process diagram in Figure 1.

 

Figure 1. The process diagram of the method presented.

3. Results

As stated above, the case under analysis proposes a method of detecting and locating
faults in electrical systems based on the medium neural network algorithm, which can be
successfully used in solving faults detection, location, and prediction.

3.1. Simulink Model

This first stage of the presented method is devoted to the development of the Simulink
model of a distribution electrical system. The development of the model concept consists of
inserting different types of short-circuits in different locations of the system and observing
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their influence on the measured voltage–current pairs. Based on it, the training dataset
necessary in the third stage will be used.

As mentioned in Section 2, in order to develop the simulation model, the Simscape
electrical library was used. The selected model of the distribution electrical system pre-
sented in Figure 2 contains: a three-phase source block, depicted in green; six subsystems
for the six lines L1 to L6, depicted in dark green, which contains the distributed parameters
line blocks; eight three-phase voltage-intensity VI measurement blocks B1 to B8, depicted
in blue; three-phase load blocks, noncolored; a three-phase fault block, bordered in red;
and powergui, the environment block for Simscape electrical specialized power system
models, set to discrete simulation type with the sample time of 2 × 10−6 s.

Figure 2. Distribution electrical system—Simulink model.

To introduce the fault block in different locations, each line is divided into three or four
sectors of 1 km length, totaling 22 sectors (see Figure 3 and Table 1). From Figure 4, one can
see that the sectors are modeled using three phase distributed parameter line blocks.

Figure 3. Fault block connected to L1—Sector 4.

Table 1. Subsystems of Lines.

Line 1 2 3 4 5 6

Number of Sectors 4 4 4 4 3 3

46



Sustainability 2023, 15, 6162

 

Figure 4. Distributed parameter line block.

The three-phase fault block can be set for twelve types of faults, the fault resistance,
the ground resistances, and the no-fault situation included (see Table 2). The letters a, b,
and c indicate the three power lines, while g indicates the ground plane.

Table 2. Types of faults.

Fault no ag bg cg ab bc ac abg bcg acg abc abcg

The three-phase voltage-intensity VI measurement blocks are mandatory to collect the
values of the voltage–current pairs. As an example, Figure 5 presents the three-phase VI
measurement block B1.

 

Figure 5. Three-phase VI measurement block—B1.
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All measurements collected from the Simulink model are exported into the Matlab data
acquisition workspace. Its workflow is described in the structure depicted in Figure 6a,b.
For the sake of clarity, a cropped detail is presented in Figure 7.

 
(a) 

 
(b) 

Figure 6. Data acquisition from Simulink model. (a) first half of the structure (A-A); (b) second half
of the structure (B-B).
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Figure 7. Data acquisition from Simulink model (cropped detail).

The voltage and current values are passed from the three-phase VI measurement
blocks to the sequence analyzer, and then are exported to the Matlab variables. At each
simulation, data are saved in a table which in the end will become the training dataset for
the artificial intelligence algorithm.

3.2. Simulation Process

After implementing the model of the distribution electrical system, the simulation
process of different types of short-circuits may start for different values of fault and ground
resistances in different locations of the system.

The fault block is moved along the system and is positioned at the end of each sector
of all the six lines, which totals 22 positions. For each of these positions and for 25 situations
of different chosen values for the fault and ground resistances, all the twelve types of
faults are simulated. Performing all these simulations requires that for each simulation the
location of the fault block, the type of fault, the values of fault or ground resistances be
changed. The time needed for running a simulation is approximately two minutes, not
considering the process of changing the parameters. This means that over the course of
an hour, less than 30 simulations can be performed. Due to the large number of necessary
simulations, and the time required to perform them, automation was almost mandatory.

The automation process has been achieved by implementing a Matlab program, which
runs the Simulink model. Consequently, at each run, either the faults block position or the
faults block parameters are automatically changed. Thus, the automation reduces the time
of each simulation to 1.5 min./simulation, having benefits over the duration of the entire
simulation process. Data from the measurement blocks are saved, and used later for the
training algorithm of ANN.

The code of the program is presented in Appendix A.
Once the running process is completed, the 6150 simulations performed led to a

dataset, which represents the input of the Classification Learner app. Examples of these
data can be seen in Tables 3 and 4, which contain examples of the voltage–current values,
provided by the eight measurement blocks along with the faults’ location and type.
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Table 3. Data from simulations—voltage measurements.

V_B1 F_B1 V_B2 F_B2 V_B3 F_B3 V_B4 F_B4 V_B5 F_B5 V_B6 F_B6 V_B7 F_B7 V_B8 F_B8 Fault

27,055.78 21.49 15,580.69 −10.52 15,569.99 −11.19 15,561.13 −11.86 15,571.83 −11.19 15,580.69 −10.52 15,574.22 −11.02 15,580.69 −10.52 normal

18,171.13 16.65 10,185.01 −16.34 10,175.79 −17.06 10,168.00 −17.78 10,177.02 −17.06 10,185.01 −16.34 10,179.12 −16.88 10,185.01 −16.34 L1/S1/ab

21,772.26 17.81 11,901.15 −16.32 11,884.51 −17.03 11,869.45 −17.74 11,885.95 −17.03 11,901.15 −16.32 11,889.87 −16.85 11,901.15 −16.32 L1/S4/abg

18,535.94 17.04 10,107.14 −16.74 10,071.28 −17.43 10,036.67 −18.12 10,072.50 −17.43 10,107.14 −16.74 10,081.27 −17.26 10,107.14 −16.74 L1/S2/abc

18,049.38 17.43 9543.07 −17.40 9507.63 −18.09 9473.39 −18.78 9508.79 −18.09 9543.07 −17.40 9517.47 −17.92 9543.07 −17.40 L1/S3/abcg

26,086.87 19.90 14,907.98 −12.67 14,817.87 −13.79 14,809.03 −14.45 14,899.10 −13.34 14,907.98 −12.67 14,901.49 −13.17 14,907.98 −12.67 L2/S3/ag

22,056.05 22.85 12,037.82 −9.73 11,419.66 −11.16 11,385.26 −11.86 12,007.42 −10.43 12,037.82 −9.73 12,015.14 −10.25 12,037.82 −9.73 L2/S4/bc

24,523.68 20.02 13,801.96 −12.93 13,711.52 −13.84 13,690.30 −14.46 13,781.46 −13.55 13,801.96 −12.93 13,786.77 −13.39 13,801.96 −12.93 L2/S1/ac

23,704.60 19.76 13,229.93 −13.43 13,025.51 −14.78 13,000.68 −15.41 13,206.50 −14.06 13,229.93 −13.43 13,212.52 −13.91 13,229.93 −13.43 L2/S2/acg

24,365.01 21.04 13,688.99 −11.52 13,357.55 −12.78 13,186.54 −13.79 13,674.71 −12.22 13,688.99 −11.52 13,678.42 −12.04 13,688.99 −11.52 L3/S2/bg

25,762.93 21.45 14,670.19 −10.81 14,515.01 −11.80 14,363.95 −12.80 14,653.02 −11.47 14,670.19 −10.81 14,657.48 −11.31 14,670.19 −10.81 L3/S4/cg

21,336.88 22.09 11,538.24 −10.91 10,839.79 −12.85 10,642.02 −13.90 11,509.08 −11.60 11,538.24 −10.91 11,516.48 −11.43 11,538.24 −10.91 L3/S1/bcg

19,859.98 19.21 10,529.43 −15.11 10,520.14 −15.83 10,512.29 −16.54 10,087.15 −17.18 10,529.43 −15.11 10,523.51 −15.65 10,529.43 −15.11 L4/S2/ab

20,159.75 19.86 10,725.32 −14.26 10,693.38 −14.93 10,662.72 −15.61 9922.10 −17.64 10,725.32 −14.26 10,702.41 −14.77 10,725.32 −14.26 L4/S4/abc

23,886.24 20.15 13,352.04 −12.90 13,176.45 −13.44 13,151.85 −14.07 13,328.82 −13.52 13,352.04 −12.90 13,229.38 −14.42 13,352.04 −12.90 L5/S3/ac

19,908.07 18.69 10,574.29 −15.89 10,382.83 −17.06 10,352.96 −17.75 10,545.93 −16.58 10,574.29 −15.89 10,267.29 −17.60 10,574.29 −15.89 L5/S2/abg

18,752.83 18.50 9767.32 −16.67 9722.06 −17.48 9688.60 −18.17 9734.01 −17.36 9767.32 −16.67 9518.96 −18.10 9767.32 −16.67 L5/S1/abcg

25,953.14 19.64 14,816.10 −13.01 14,805.45 −13.68 14,796.51 −14.34 14,807.22 −13.68 14,816.10 −13.01 14,809.61 −13.51 14,816.10 −13.01 L6/S1/ag

26,087.22 18.75 14,955.34 −14.04 14,943.03 −14.74 14,932.66 −15.44 14,944.86 −14.74 14,955.34 −14.04 14,947.64 −14.56 14,955.34 −14.04 L6/S3/ab

20,906.62 21.96 11,237.47 −11.20 11,205.23 −11.89 11,174.43 −12.59 11,206.53 −11.89 11,237.47 −11.20 11,214.37 −11.72 11,237.47 −11.20 L6/S3/bcg

Table 4. Data from simulations—current measurements.

I_B1 FI_B1 I_B2 FI_B2 I_B3 FI_B3 I_B4 FI_B4 I_B5 FI_B5 I_B6 FI_B6 I_B7 FI_B7 I_B8 FI_B8 Fault

467.06 −11.19 467.06 −11.22 155.61 −11.77 155.61 −11.86 155.72 −11.19 155.74 −10.88 155.74 −11.02 0.19 79.48 normal

986.80 −71.99 306.09 −17.09 101.96 −17.68 101.96 −17.77 102.05 −17.05 102.08 −16.72 102.07 −16.87 0.13 72.64 L1/S1/ab

683.43 −63.32 357.35 −17.05 118.99 −17.63 118.98 −17.72 119.15 −17.02 119.20 −16.69 119.19 −16.84 0.15 70.38 L1/S4/abg

1130.02 −77.99 303.45 −17.46 100.87 −18.02 100.83 −18.11 101.19 −17.43 101.33 −17.11 101.27 −17.25 0.13 59.89 L1/S2/abc

1174.33 −78.30 286.58 −18.11 95.25 −18.68 95.21 −18.77 95.56 −18.08 95.71 −17.77 95.65 −17.91 0.12 58.55 L1/S3/abcg

434.18 −31.17 434.26 −31.20 148.20 −14.36 148.20 −14.45 149.09 −13.33 149.11 −13.03 149.11 −13.17 0.18 77.20 L2/S3/ag

755.49 −56.98 755.62 −56.99 114.14 −11.77 114.10 −11.87 120.29 −10.44 120.41 −10.13 120.36 −10.27 0.15 71.03 L2/S4/bc

635.90 −62.07 636.05 −62.08 137.14 −14.38 137.13 −14.46 138.03 −13.55 138.10 −13.27 138.08 −13.40 0.15 72.26 L2/S1/ac

686.53 −64.04 686.68 −64.05 130.30 −15.32 130.28 −15.41 132.32 −14.07 132.41 −13.78 132.38 −13.91 0.15 70.37 L2/S2/acg

552.69 −36.89 552.79 −36.91 325.72 −57.67 131.99 −13.79 136.85 −12.22 136.90 −11.90 136.89 −12.04 0.17 76.22 L3/S2/bg

529.59 −33.87 529.67 −33.89 282.59 −57.47 143.75 −12.80 146.61 −11.47 146.67 −11.17 146.66 −11.31 0.17 76.21 L3/S4/cg

816.81 −61.74 816.95 −61.75 692.95 −76.62 106.72 −13.90 115.34 −11.62 115.46 −11.30 115.41 −11.44 0.14 69.85 L3/S1/bcg

827.00 −69.65 827.15 −69.65 105.38 −16.44 105.38 −16.54 101.14 −17.17 105.49 −15.50 105.49 −15.65 0.13 73.96 L4/S2/ab

920.05 −75.40 920.19 −75.40 107.05 −15.53 107.02 −15.62 99.68 −17.63 107.46 −14.64 107.41 −14.78 0.13 64.71 L4/S4/abc

673.96 −63.11 674.11 −63.13 131.79 −13.99 131.76 −14.08 133.52 −13.53 393.81 −76.21 132.55 −14.41 0.15 71.04 L5/S3/ac

934.87 −73.82 935.01 −73.83 103.97 −17.65 103.94 −17.75 105.85 −16.58 524.97 −82.92 103.09 −17.60 0.13 64.11 L5/S2/abg

1086.03 −77.37 1086.16 −77.38 97.38 −18.07 97.34 −18.17 97.79 −17.36 964.12 −87.53 95.66 −18.08 0.12 59.99 L5/S1/abcg

434.45 −34.11 434.54 −34.13 148.07 −14.25 148.07 −14.34 148.18 −13.68 187.24 −67.36 148.20 −13.51 156.01 −117.51 L6/S1/ag

614.49 −18.20 614.51 −18.22 149.37 −15.32 149.37 −15.42 149.49 −14.72 316.61 −21.34 149.52 −14.54 169.11 −27.41 L6/S3/ab

862.27 −63.42 862.41 −63.43 112.05 −12.51 112.01 −12.60 112.34 −11.91 743.09 −77.07 112.41 −11.73 703.76 −85.42 L6/S3/bcg

Through the sequence analyzer from the data acquisition of the Simulink model, the
magnitude and phase angle of the three-phase signals are obtained. For instance, measure-
ment block B1 provides values of the voltage magnitude V_B1, the voltage phase angle
F_B1, the current magnitude I_B1 and the current phase angle FI_B1 (see also Figure 6a,b).

3.3. Classification Learner App

Once the simulation process is completed, the large amount of obtained data is used in
the Classification Learner App from Matlab to train the artificial intelligence (AI) algorithms.
This application can classify data based on the training dataset and return a single response
for a further situation [30].

To start the training session, it is necessary to set the parameters observed in Figure 8.
The table named “DataTable”, containing the results of 6150 simulations, becomes the dataset
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variable in the Classification Learner App. Data from this table are divided into two types of
data, namely predictors and response. Predictors are represented by the values of voltage–
current pairs measured at each simulation and the response represents the fault location of the
exposed situation. The validation scheme was set as a cross-validation with five folds. After
setting these parameters, the session starts by clicking the Start Session button.

 

Figure 8. Classification Learner app—training dataset.

Simulations have been also performed for the cases in which the response is both the
location and the type of the fault.

In the Classification Learner app, the model of the training algorithm can be set. To
obtain the best accuracy validation values, the option of training all models algorithm may
also be chosen.

After the analysis of several training models, Figure 9 reveals that the most efficient
model sorted in terms of accuracy is the medium neural network algorithm. One can see
that the accuracy validation in the case of fault location was 98% and 94.7% in the case of
both location and type of the fault.

If the response is only the fault location (example L1/S1 for line 1/sector 1), which
implied 23 unique answers, the validation accuracy will be better than in the case where the
response is both the location and the type of the fault (example L1/S1/ab for line1/sector
1/type of fault ab) which implied 243 unique answers. These two cases will be presented
comparatively in the next stage, where the fault location and the fault location and type
based on the trained model are predicted.

In evaluating and observing the performance of a trained model, the analysis of the
confusion matrix and of the receiver operating characteristic (ROC) curve are two useful tools.
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Figure 9. Classification Learner app.

The confusion matrix contains the predicted classes in its columns and the true classes
in its rows; therefore, a 100% validation accuracy assumes a perfect principal diagonal
confusion matrix. Values situated outside the principal diagonal of the matrix indicate
situations that are not well-predicted and need supplementary data training set [30].

In Figures 10 and 11, the validation confusion matrices for the two studied cases
are presented. From Figure 10, which presents the case of 23 unique responses, one can
observed that the only situation with 100% accuracy is the no-fault (normal) situation. In
Figure 11, one can also observe the shape of the principal diagonal in the case of 243 unique
responses. Due to the complexity of the simulation, the values situated outside the principal
diagonal are not visible in the resolution of Figure 11. The 243 classes containing the location
and type of faults are presented in Table 5.

From the confusion matrix depicted in Figure 10, it can be observed that for lines 5
and 6 of the Simulink model, the prediction response is poorer, which is noticeable from
the larger number of values that deviate from the principal diagonal. For the other lines,
the situation is better, with fewer cases where the predicted class does not coincide with
the true class.

Even though some values are far from the principal diagonal, their low values indicate
that the probability of a wrong prediction is unlikely. For instance, for the predicted class
L4/S4, there is a single situation in which the true class is in fact L1/S2.

Unfortunately, the confusion matrix for the case with 243 unique responses is not
useful to indicate the classes that were not well-predicted. This difficulty can be alleviate
using other tools provided by the Classification Learner app, one of them being the ROC
curve, an efficient way of comparing trained models.
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Figure 10. Validation confusion matrix for medium neural network model—accuracy 98.0%—for
location of the fault.

Figure 11. Validation confusion matrix for medium neural network model—accuracy 94.7%—for
location and type of fault.
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Table 5. Location and type of faults.

Location and Type of Faults

L1/S1/ab L1/S3/ab L2/S1/ab L2/S3/ab L3/S1/ab L3/S3/ab L4/S1/ab L4/S3/ab L5/S1/ab L5/S3/ab L6/S2/ab

L1/S1/abc L1/S3/abc L2/S1/abc L2/S3/abc L3/S1/abc L3/S3/abc L4/S1/abc L4/S3/abc L5/S1/abc L5/S3/abc L6/S2/abc

L1/S1/abcg L1/S3/abcg L2/S1/abcg L2/S3/abcg L3/S1/abcg L3/S3/abcg L4/S1/abcg L4/S3/abcg L5/S1/abcg L5/S3/abcg L6/S2/abcg

L1/S1/abg L1/S3/abg L2/S1/abg L2/S3/abg L3/S1/abg L3/S3/abg L4/S1/abg L4/S3/abg L5/S1/abg L5/S3/abg L6/S2/abg

L1/S1/ac L1/S3/ac L2/S1/ac L2/S3/ac L3/S1/ac L3/S3/ac L4/S1/ac L4/S3/ac L5/S1/ac L5/S3/ac L6/S2/ac

L1/S1/acg L1/S3/acg L2/S1/acg L2/S3/acg L3/S1/acg L3/S3/acg L4/S1/acg L4/S3/acg L5/S1/acg L5/S3/acg L6/S2/acg

L1/S1/ag L1/S3/ag L2/S1/ag L2/S3/ag L3/S1/ag L3/S3/ag L4/S1/ag L4/S3/ag L5/S1/ag L5/S3/ag L6/S2/ag

L1/S1/bc L1/S3/bc L2/S1/bc L2/S3/bc L3/S1/bc L3/S3/bc L4/S1/bc L4/S3/bc L5/S1/bc L5/S3/bc L6/S2/bc

L1/S1/bcg L1/S3/bcg L2/S1/bcg L2/S3/bcg L3/S1/bcg L3/S3/bcg L4/S1/bcg L4/S3/bcg L5/S1/bcg L5/S3/bcg L6/S2/bcg

L1/S1/bg L1/S3/bg L2/S1/bg L2/S3/bg L3/S1/bg L3/S3/bg L4/S1/bg L4/S3/bg L5/S1/bg L5/S3/bg L6/S2/bg

L1/S1/cg L1/S3/cg L2/S1/cg L2/S3/cg L3/S1/cg L3/S3/cg L4/S1/cg L4/S3/cg L5/S1/cg L5/S3/cg L6/S2/cg

L1/S2/ab L1/S4/ab L2/S2/ab L2/S4/ab L3/S2/ab L3/S4/ab L4/S2/ab L4/S4/ab L5/S2/ab L6/S1/ab L6/S3/ab

L1/S2/abc L1/S4/abc L2/S2/abc L2/S4/abc L3/S2/abc L3/S4/abc L4/S2/abc L4/S4/abc L5/S2/abc L6/S1/abc L6/S3/abc

L1/S2/abcg L1/S4/abcg L2/S2/abcg L2/S4/abcg L3/S2/abcg L3/S4/abcg L4/S2/abcg L4/S4/abcg L5/S2/abcg L6/S1/abcg L6/S3/abcg

L1/S2/abg L1/S4/abg L2/S2/abg L2/S4/abg L3/S2/abg L3/S4/abg L4/S2/abg L4/S4/abg L5/S2/abg L6/S1/abg L6/S3/abg

L1/S2/ac L1/S4/ac L2/S2/ac L2/S4/ac L3/S2/ac L3/S4/ac L4/S2/ac L4/S4/ac L5/S2/ac L6/S1/ac L6/S3/ac

L1/S2/acg L1/S4/acg L2/S2/acg L2/S4/acg L3/S2/acg L3/S4/acg L4/S2/acg L4/S4/acg L5/S2/acg L6/S1/acg L6/S3/acg

L1/S2/ag L1/S4/ag L2/S2/ag L2/S4/ag L3/S2/ag L3/S4/ag L4/S2/ag L4/S4/ag L5/S2/ag L6/S1/ag L6/S3/ag

L1/S2/bc L1/S4/bc L2/S2/bc L2/S4/bc L3/S2/bc L3/S4/bc L4/S2/bc L4/S4/bc L5/S2/bc L6/S1/bc L6/S3/bc

L1/S2/bcg L1/S4/bcg L2/S2/bcg L2/S4/bcg L3/S2/bcg L3/S4/bcg L4/S2/bcg L4/S4/bcg L5/S2/bcg L6/S1/bcg L6/S3/bcg

L1/S2/bg L1/S4/bg L2/S2/bg L2/S4/bg L3/S2/bg L3/S4/bg L4/S2/bg L4/S4/bg L5/S2/bg L6/S1/bg L6/S3/bg

L1/S2/cg L1/S4/cg L2/S2/cg L2/S4/cg L3/S2/cg L3/S4/cg L4/S2/cg L4/S4/cg L5/S2/cg L6/S1/cg L6/S3/cg

normal

The ROC curve is a plot tool that provides the false positive rate and the true positive
rate of each predicted class. The area under curve (AUC) is an indicator of the quality of
the classifier. The AUC values range between 0 and 1, with a higher value indicating a
better performance of the classifier [30].

In Figures 12 and 13, the ROC curves for some representative cases studied are
presented. Figure 12 presents the ROC curve for the medium neural network model with
an accuracy validation of 98.0% and Figure 13 presents the ROC curve for the medium
neural network model with an accuracy validation of 94.7%. In both figures, the highest
and the lowest values of AUC are shown.

For the model which predicts only the location of the fault, has an accuracy validation
of 98.0%, and encompasses 23 situations, the maximum value of AUC (1.00) is reached
for several classifiers. Figure 12a presents the ROC curve in one of these situations, while
Figure 12b presents the lower value of AUC, which, in this case, is of 0.99 and occurs for
Line 6-Sector 2.

For the model which predicts both location and type of the fault, has an accuracy
validation of 94.7%, and encompasses 243 situations, the maximum value of AUC (1.00)
is also reached for several classifiers. Figure 13a presents the ROC curve in one of these
situations, while Figure 13b presents the lower value of AUC, which, in this case, is of 0.94
and also occurs for Line 6-Sector 2.

Both situations reveal a good accuracy validation prediction.
By analyzing the ROC curves and comparing their results with the ones of the confu-

sion matrices, it is obvious that the two plotting tools offer the same results but in different
ways. Since the confusion matrix presents an overview of all classes, the ROC curve
presents specific results for each class.
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(a) (b) 

Figure 12. ROC curve for medium neural network model—accuracy 98.0% (a) the AUC 1.00 for Line
4-Sector 4, (b) the AUC 0.99 for Line 6-Sector 2.

  
(a) (b) 

Figure 13. ROC curve for medium neural network model accuracy—94.7%—(a) the AUC 1.00 for
Line 4-Sector 4, (b) the AUC 0.94 for Line 6-Sector 2.

3.4. Prediction of Faults Based on the Trained Model

After analyzing the different types of trained models, these can be exported from the
Classification Learner app to the Matlab workspace as a new variable (“trainedModel”).
This variable can be used to predict responses for other faults which may occur in the same
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distribution system, and which have not been considered in the previous training dataset.
As an example, Tables 6 and 7 contain four situations in which different fault and ground
resistances have been used.

Table 6. Data for predictions—voltage measurements.

V_B1 F_B1 V_B2 F_B2 V_B3 F_B3 V_B4 F_B4 V_B5 F_B5 V_B6 F_B6 V_B7 F_B7 V_B8 F_B8 Fault

23,387.39 20.70 13,006.09 −12.14 12,881.25 −13.06 12,864.69 −13.77 12,989.73 −12.85 13,006.09 −12.14 12,993.94 −12.67 13,006.09 −12.14 L2/S1/bg

20,579.33 20.40 11,010.63 −13.41 10,238.55 −16.38 9846.89 −18.38 10,981.53 −14.08 11,010.63 −13.41 10,988.92 −13.91 11,010.63 −13.41 L3/S2/abc

25,874.47 19.42 14,763.31 −13.30 14,752.70 −13.97 14,743.79 −14.63 14,754.46 −13.97 14,763.31 −13.30 14,756.85 −13.80 14,763.31 −13.30 L1/S4/ag

19,363.64 19.39 10,176.50 −15.19 10,143.97 −15.87 10,112.66 −16.55 9503.63 −18.32 10,176.50 −15.19 10,153.10 −15.70 10,176.50 −15.19 L4/S3/abcg

Table 7. Data for predictions—current measurements.

I_B1 FI_B1 I_B2 FI_B2 I_B3 FI_B3 I_B4 FI_B4 I_B5 FI_B5 I_B6 FI_B6 I_B7 FI_B7 I_B8 FI_B8 Fault

23,387.39 20.70 13,006.09 −12.14 12,881.25 −13.06 12,864.69 −13.77 12,989.73 −12.85 13,006.09 −12.14 12,993.94 −12.67 13,006.09 −12.14 L2/S1/bg

20,579.33 20.40 11,010.63 −13.41 10,238.55 −16.38 9846.89 −18.38 10,981.53 −14.08 11,010.63 −13.41 10,988.92 −13.91 11,010.63 −13.41 L3/S2/abc

25,874.47 19.42 14,763.31 −13.30 14,752.70 −13.97 14,743.79 −14.63 14,754.46 −13.97 14,763.31 −13.30 14,756.85 −13.80 14,763.31 −13.30 L1/S4/ag

19,363.64 19.39 10,176.50 −15.19 10,143.97 −15.87 10,112.66 −16.55 9503.63 −18.32 10,176.50 −15.19 10,153.10 −15.70 10,176.50 −15.19 L4/S3/abcg

Measurements generated for the predictions must be introduced in a variable (“Ttest”)
with the same structure as (“DataTable”) as the variable used in the training dataset. After
processing the variable to be tested, using the prediction function for the trained model,
the response based on the trained model will be obtained.

Figures 14 and 15 present the responses of the two cases studied, e.g., for the medium
neural network model with an accuracy of 98.0% and for the medium neural network
model with an accuracy of 94.7%.

Figure 14. Predicted results for test examples (for medium neural network model accuracy 98.0%—for
the fault location).

Figure 15. Predicted results for test examples (for medium neural network model accuracy 94.7%—for
location and type of the fault).

By applying the prediction function to Tables 6 and 7, which contain the voltage
and current measurement data, two cell arrays are created, namely two column vectors
(see Figures 14 and 15).
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It can be observed that in the first case, the response contains only the location of
the fault, and in the second case, the response includes in addition the type of the fault.
By comparing the result of the prediction function with the last column (“Fault”) of the
(“Ttest”) table, one can observe that the trained model operates properly.

4. Discussion

The paper presents a solution for detecting and locating faults in electrical distribution
systems using a Simulink model combined with the ANN algorithms of the Classification
Learner app provided by Matlab.

The high performance of the proposed technique emphasizes the potential of using
this principle for real-world distribution electrical systems.

After the first stage devoted to the development of the simulation model and the
simulations presented in the second stage, in the third stage, it can be observed that the
performance of the trained model is correlated to the training dataset. The larger the
database is, the higher the performance of the trained model is. In order to have a good
accuracy validation value, the number of simulations must be adapted to the complexity of
the analyzed system.

Simulating all the cases which can offer a solid test set for the presented case study
implies the use of high-level hardware and software resources. These needs can be covered
by using local hardware resources; however, much better results can be obtained by using a
virtual machine which can significantly shorten the required simulations time. If several virtual
machines are simultaneously used, the simulation process can be accelerated, and in the end,
the data collected from all of them can be processed and integrated into a single database.

When applying the method presented above for a real-world distribution electrical
system, it is mandatory that the Simulink model must contain its very real components.
This method can also be used in other situations, for instance, in industrial estates, where
the consumers, components of the system and their structure are already well-known.

5. Conclusions

The developed method has a good accuracy and its use in real-world situations is therefore
recommended. The trained model which predicted the location of faults (with 23 possible
responses) had an accuracy validation of 98%, while the trained model which predicted both
location and type of faults (with 243 possible responses) had a slightly lower accuracy validation
(94.7%). Both trained models were based on the same data training set (measurements from
6150 of simulations), which revealed that for obtaining a good accuracy validation value, a
larger number of responses, and of the data training set were needed.

The major advantage of the presented method lies in its good precision in detecting,
locating, and predicting faults. At the same time, running a large number of simulations
could be considered a tedious operation. Clearly, the simulations’ time was closely related
to the complexity of the Simulink model and the number of parameters that needed to be
modified at each simulation. Additionally, the developed Simulink model of the electrical
power system could also decisively contribute by performing different updates of the system
if necessary. It could be used, for example, to simulate the impact of a new structure of the
system or to analyze possible future improvements performed on the electrical system.

Methods of faults detecting, locating, and predicting in electrical power systems, based
on ANN algorithms, could also solve complex problems encountered at electric lines or
branched systems of cables, situations difficult to be managed using classic methods of
detecting faults.

In further research, this method could be improved in the direction of generating
dynamic changes of the loads simulations, and in developing a friendly graphical user
interface to the application.

The presented topic, regarding faults detection and location in electrical systems, was
and remains a main and permanent concern of utility companies, which continuously seek
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to improve and adapt proprietary methods in order to have an optimal operation of their
electrical power systems.
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Appendix A

T = [];
model = 'name_model';
tstop = 0.1;
% 1 2 3 4 5 6
Line.Name = {'L1', 'L2', 'L3', 'L4', 'L5','L6'};
Line.Sectors = [ 4 4 4 4 3 3 ];
Faults = {'0','ag','bg','cg','ab','bc','ac','abg','bcg','acg','abc','abcg'};
nLine = 1:6;
nFault = 1:12;
Faulty.Lines.Name = {Line.Name{nLine}};
Faulty.Sectors = Line.Sectors(nLine);
Type_Faults = {Faults{nFault}};
open_system(model);
for iFaultyLines = 1:length(Faulty.Lines.Name)

for iFaultType = 1:length(Type_Faults)
Fault_Type = Faults(iFaultType);

Faulty.Lines = [model,'/',Faulty.Lines.Name{iFaultyLines}];
open_system(Faulty.Lines);
Nsectors = Faulty.Sectors(iFaultyLines);
FaultBlock = [Faulty.Lines,'/Fault'];
try

addbd = add_block([model,'/Fault'],FaultBlock,'Commented','off','Position', [545
-545 595 -495]);

catch
Position = get_param(FaultBlock,'Position');
delete_block(FaultBlock);
add_block([model,'/Fault'],FaultBlock,'Commented','off','Position',Position + 10);

end
if contains(Fault_Type,'g')

set_param(FaultBlock,'GroundFault','on')
else

set_param(FaultBlock,'GroundFault','off')
end
if contains(Fault_Type,'a')

set_param(FaultBlock,'FaultA','on')
else

58



Sustainability 2023, 15, 6162

set_param(FaultBlock,'FaultA','off')
end
if contains(Fault_Type,'b')

set_param(FaultBlock,'FaultB','on')
else

set_param(FaultBlock,'FaultB','off')
end
if contains(Fault_Type,'c')

set_param(FaultBlock,'FaultC','on')
else

set_param(FaultBlock,'FaultC','off')
end
for iSectors = 1:Nsectors

NameBlock = [Faulty.Lines,'/S',num2str(iSectors)];
hFault = get_param(FaultBlock,'PortHandles');
hBlock = get_param(NameBlock,'PortHandles');
hLines = add_line(Faulty.Lines,hFault.LConn,hBlock.RConn);
Ron = logspace(log10(1e-4),log10(20),5); %FaultResistance
Rg = logspace(log10(1e-4),log10(20),5); %GroundResistance
for iR1 = 1:length(Ron)

set_param(FaultBlock,'FaultResistance',num2str(Ron(iR1)));
for iR2 = 1:length(Rg)

set_param(FaultBlock,'GroundResistance',num2str(Rg(iR2)));
out = sim(model);
cellrow{1,1} = out.yout{9}.Values.V_B1.Data(end,:);
cellrow{1,2} = out.yout{9}.Values.F_B1.Data(end,:);
cellrow{1,3} = out.yout{9}.Values.V_B2.Data(end,:);
cellrow{1,4} = out.yout{9}.Values.F_B2.Data(end,:);
cellrow{1,5} = out.yout{9}.Values.V_B3.Data(end,:);
cellrow{1,6} = out.yout{9}.Values.F_B3.Data(end,:);
cellrow{1,7} = out.yout{9}.Values.V_B4.Data(end,:);
cellrow{1,8} = out.yout{9}.Values.F_B4.Data(end,:);
cellrow{1,9} = out.yout{9}.Values.V_B5.Data(end,:);
cellrow{1,10} = out.yout{9}.Values.F_B5.Data(end,:);
cellrow{1,11} = out.yout{9}.Values.V_B6.Data(end,:);
cellrow{1,12} = out.yout{9}.Values.F_B6.Data(end,:);
cellrow{1,13} = out.yout{9}.Values.V_B7.Data(end,:);
cellrow{1,14} = out.yout{9}.Values.F_B7.Data(end,:);
cellrow{1,15} = out.yout{9}.Values.V_B8.Data(end,:);
cellrow{1,16} = out.yout{9}.Values.F_B8.Data(end,:);
cellrow{1,17} = out.yout{10}.Values.I_B1.Data(end,:);
cellrow{1,18} = out.yout{10}.Values.FI_B1.Data(end,:);
cellrow{1,19} = out.yout{10}.Values.I_B2.Data(end,:);
cellrow{1,20} = out.yout{10}.Values.FI_B2.Data(end,:);
cellrow{1,21} = out.yout{10}.Values.I_B3.Data(end,:);
cellrow{1,22} = out.yout{10}.Values.FI_B3.Data(end,:);
cellrow{1,23} = out.yout{10}.Values.I_B4.Data(end,:);
cellrow{1,24} = out.yout{10}.Values.FI_B4.Data(end,:);
cellrow{1,25} = out.yout{10}.Values.I_B5.Data(end,:);
cellrow{1,26} = out.yout{10}.Values.FI_B5.Data(end,:);
cellrow{1,27} = out.yout{10}.Values.I_B6.Data(end,:);
cellrow{1,28} = out.yout{10}.Values.FI_B6.Data(end,:);
cellrow{1,29} = out.yout{10}.Values.I_B7.Data(end,:);
cellrow{1,30} = out.yout{10}.Values.FI_B7.Data(end,:);
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cellrow{1,31} = out.yout{10}.Values.I_B8.Data(end,:);
cellrow{1,32} = out.yout{10}.Values.FI_B8.Data(end,:);
FaultLocation = [Faulty.Lines.Name{iFaultyLines},'/S',num2str(iSectors)];
StringFaultLocation = convertCharsToStrings(FaultLocation);
if contains (Fault_Type,'0')

cellrow{1,33} = ("normal");
else

cellrow{1,33} = strcat(StringFaultLocation,"/",Fault_Type);
end
cellrow{1,34} = Ron(iR1);
cellrow{1,35} = Rg(iR2);
T1 = cellrow;
T = [T;T1];
save(date);
end

end
delete_line(hLines);

end
end

DataTabel = cell2table(T);
save('data_generation');
end
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Abstract: The temporal data of the power system are expanding with the growth of the power system
and the proliferation of automated equipment. However, data loss may arise during the acquisition,
measurement, transmission, and storage of temporal data. To address the insufficiency of temporal
data in the power system, this study proposes a sequence-to-sequence (Seq2Seq) architecture to
restore power system temporal data. This architecture comprises a radial convolutional neural
unit (CNN) network and a gated recurrent unit (GRU) network. Specifically, to account for the
periodicity and volatility of temporal data, VMD is employed to decompose the time series data
output into components of different frequencies. CNN is utilized to extract the spatial characteristics
of temporal data. At the same time, Seq2Seq is employed to reconstruct each component based on
introducing a feature timing and multi-model combination triple attention mechanism. The feature
attention mechanism calculates the contribution rate of each feature quantity and independently
mines the correlation between the time series data output and each feature value. The temporal
attention mechanism autonomously extracts historical–critical moment information. A multi-model
combination attention mechanism is introduced, and the missing data repair value is obtained after
modeling the combination of data on both sides of the missing data. Recovery experiments are
conducted based on actual data, and the method’s effectiveness is verified by comparison with
other methods.

Keywords: neural networks; VMD; data reconfiguration; attention mechanisms

1. Introduction

Power grid spatial and temporal character is becoming more complicated with the
development of the power system, and the automation equipment rapidly expands with
large-scale power systems [1,2]. At the same time, measuring data are increasing. They
are starting to resemble big data due to the rapid advancement of power system measure-
ment technologies and the ongoing reduction in measurement costs [3]. The transmission,
storage, and analysis of massive amounts of big data for power grids have emerged as a
significant area of research in recent years thanks to the rapid advancement of big data
technology [4,5]. It is possible to estimate the status of the power system and equipment
to a significant extent as well as to optimize operation and accident analysis through the
analysis of massive and multiple types of time series data [6,7].

It goes without saying that obtaining authentic and accurate data is crucial for data
processing. Still, since signal attenuation, interference, and occasionally failing electronic
acquisition equipment cause data to be lost during data acquisition, measurement, trans-
mission, and storage, it is impossible to obtain accurate time series data. In addition to
complicating the analysis of prediction outcomes or trend development based on extensive
data analysis, missing data can also have an impact on system state estimate, stability,
and other critical features based on network data analysis [8,9]. The power system measure-
ment configuration itself has a certain redundancy at the beginning of the design, and for
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some of the missing time series data, under the premise of satisfying the observable state
estimation, it can be replaced by pseudo-measurements or by data that are similar in time
and space without causing an unacceptable impact on the overall system state accuracy. In
addition, the state estimation through the system can be used as a basis for filling in the
missing data [10]. However, when there is a large amount of missing time series data, state
estimation by redundancy is not possible. Then, the missing data need to be repaired by
mathematical or engineering means.

Numerous solutions to the missing data issue have been put forth by domestic and
international researchers. The pre-processing category and the post-assessment category
are the two main categories. On the basis of system timing data and system topology,
the latter primarily builds the system state equation to recover the data. In the litera-
ture [11], a real-time dynamic parameter estimation method based on vector measurement
unit (PMU) data with extended Kalman filtering (EKF) is proposed. In order to reduce the
computational difficulty of this method, the literature [11] uses a model decoupling tech-
nique. However, this method is only applicable to the real-time estimation of the states and
parameters related to electromechanical dynamics. The literature [12] proposes a robust
detection method using temporal correlation and statistical consistency of time series data,
offering three innovative matrices that capture measurement correlation and statistical
consistency by processing predicted states and reliable information inserted from phasor
measurement units. Pre-processing techniques are primarily employed to recover missing
data from known data. The two main categories of preprocessing ideas are: (1) analyzing
the characteristics of the data in the missing data domain to complete the data as described
in the literature [13–16] and (2) analyzing the overall trend and overall structure of the
data and completing the data [17–19]. Ref. [13] used a Lagrangian interpolation polyno-
mial method for adaptive estimation of incomplete and missing data, but this method is
limited to the case where there are few missing data.There are also some scholars who
convert the measured value into a Page matrix and then use low-rank matrix estimation
based on the optimal singular value threshold to reconstruct the original signal [14]. The
literature [15] first proved that the power quality data have the property of approximately
low rank. Based on this, a multi-parametric joint rank optimization model is designed,
and the alternating direction multiplier method is applied to decompose it into several
subproblems for solving separately. At the same time, the optimal selection strategy of
adaptive iteration steps is proposed to speed up the model solution for the problem that the
traditional alternating direction multiplier method solves slowly. Ref. [16] uses the singular
value threshold algorithm to complete the missing data twice and analyzes its error on the
basis of the completion. However, the above two methods are not effective for complex
missing data. According to Ref. [17], a shallow coder is used to learn the data features,
and after processing, the data are supplemented by weighting the data structure. According
to Ref. [18], forward and reverse GRU networks are used separately to learn the existing
data, and their combined results are then weighted to achieve the goal of completing the
data. The above two methods have a large gap in the reconstruction effect of different
types of data. Ref. [19] has constructed an improved generative countermeasure network
learning time series data with complex time and space relations. According to the data’s
redundancy and inherent physical and mathematical relations, the data can be restored to
a considerable extent. However, this method consumes many resources and could be more
conducive to practical use. Table A1 in the Appendix A shows a summary of information
for similar work.

Based on the above background and the time series and multidimensional correlation
characteristics of power system timing data, a method for recovering missing data from
power system measurements based on dual radial gated cyclic units is proposed. The
method learns the spatiotemporal characteristics of the historical data, obtains sufficient
generalization capability for the time series data, constructs a mapping of the existing data
to the missing data, and makes this mapping select the relatively valuable information in
the existing data to repair the missing data in real time through a triple attention mechanism.
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In order to make full use of the existing information, this paper proposes a joint neural
network approach, i.e., to build neural networks on both sides of the missing data separately
and finally to obtain the weighted repair results by combining two neural networks. Finally,
a comparison between simulated and actual data shows that this data-driven method
of repairing missing data in power system measurements, which does not rely on the
power system topology, can maintain a high accuracy rate under different numbers of
absent conditions.

2. Power System Time Series Missing Data Recovery Model Structure

The method of time series data recovery of power systems based on VMD and triple
attention mechanism bi-directional CNN-GRU is shown in Figure 1, which is divided into
four main steps:

Figure 1. Power system timing data recovery model based on improved VMD and double radial
GRU with a triple attention mechanism.

• The mode number k in the VMD technique is ascertained via the dual-threshold
filtration method. Subsequently, the acquired k value and VMD methodology are
employed to disintegrate the time-series data bilaterally, yielding k modal numbers.

• A CNN-GRU forecasting model is erected for each component, incorporating a dual
attention mechanism. The input coding assay incorporates a feature attention mecha-
nism to excavate the correlation between the time series data and the corresponding
feature quantity. On the other hand, the output coding assay integrates a temporal
attention mechanism to unearth the pertinent relationship between temporal data and
missing data on time scales.

• The data of each component are superimposed and reconstructed to complete the data
recovery results on one side.

• The data on either side of the absent data within the power system possess excellent
completeness; hence, both sides of the missing data are individually modeled. Subse-
quently, the ultimate data restoration outcome is attained by incorporating the data
restoration results of one side through adaptive weight allocation. The results are
then scrutinized.
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3. Decomposition of Quantitative Time Series Data Based on Improved VMD

VMD is an adaptive, quasi-orthogonal decomposition method as well as a more
cutting-edge signal processing method that was proposed in 2014. The essence of the
algorithm is Wiener filtering for noise reduction [20]. The goal is to decompose a time series
data X adaptively into several Intrinsic Mode Functions (IMFs) with finite bandwidth xk.
In order to calculate the spectral bandwidth of each component, this goal can be achieved
by the following three steps: (1) Obtain the one-sided spectrum by Hilbert transform.
(2) Transfer the spectrum of each quantitative data component to the baseband region
by mixing an index tuned to the respective estimated center frequency. (3) Estimate the
bandwidth of the decomposed signal by H1 Gaussian smoothing. For the input signal,
the constrained variational model signal is represented as follows.

min
{xk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ xk(t)

]
e−jωkt

∥∥∥∥2

2

}
s.t. ∑

k
xk = X

(1)

The center frequency of the corresponding component is represented by the letter {ωk} in
the equation above. The original input signal X should be represented by the superposition
of all components. Equation (1) can be changed into the following form by adding the
quadratic penalty term and the Lagrange multiplier λ to reconstruct the constraint:

L({xk}, {ωk}, {λ}) = α ∑
k

∥∥∥∥∂t
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j
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∗ xk(t)

]
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2
+∥∥∥∥∥X(t)− ∑

k
xk(t)
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2

2

+

〈
λ(t), X(t)− ∑

k
xk(t)

〉 (2)

where α is the penalty factor, which ensures the signal reconstruction’s accuracy even when
noise interference is present. The Lagrangian multiplier, λ, firmly guarantees that the
constraints are upheld. The components and their center frequencies can be obtained from
the saddle points of the above extended Lagrangian equation using the alternate direction
method of multipliers (ADMM).

ûn+1
k (ω) =

f̂ (ω)− ∑
i �=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω − ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

where ûn+1
k represents the residual of the current Wiener filter, and the frequency domain

mode ûk(ω) can be Fourier inverted to produce the time domain mode xk(t) before its real
part is taken [21].

The final number of modes the VMD algorithm produces is determined by the modal
number k, which has a non-negligible position in the algorithm. The center frequencies of
the decomposed components are typically compared to determine whether there is under-
or over-resolution, which has a relatively high degree of subjectivity. To a certain extent,
the double-threshold screening method can prevent this issue [22].

The VMD analysis’s components have narrow bandwidth properties, meaning that
most of the modes are centered around the center frequency and have high corresponding
amplitudes. Two thresholds—amplitude thresholds T2 and and frequency interval thresh-
olds T1 —are established based on the aforementioned characteristics. By examining the
spectral properties of the input timing signal and the threshold T1, it is possible to divide
the entire spectrum into several frequency bands, with each band being used as a potential
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component. The frequency bands above are measured for their corresponding amplitude
using the threshold T2, and those whose amplitude satisfies the criteria are kept, while
those with insufficient amplitude are ignored. The following four steps can be used to
divide the application of the double threshold screening method to ascertain the modal
number k: (1) Based on the spectral properties of the input data being examined, choose
the appropriate frequency interval threshold T1 and amplitude threshold T2. (2) Look
for local maxima in the spectrum, and using the frequency interval threshold T1, divide
the local maxima into corresponding frequency bands. (3) Examine the valid frequencies
divided into each band; the valid frequency bands are those whose amplitudes meet the T2
amplitude threshold. (4) The number of modes equals the number of legal frequency bands.

4. Dual Attention Model

Time series data of power systems are generated in chronological order. Considering
the need for data analysis and storage, the power system timing data are often composed
of discrete time series data. There is usually some connection between each power system
timing data and other power time series data [23]. For the missing power system timing
data, the reconstruction of power system data can be realized by analyzing the more
complete time series data on both sides of it and mining the inner correspondence law
between the complete power time series data and the missing power system timing data
on the basis of considering the temporal sequence characteristics [24].

Figure 2 presents a comprehensive schematic of the dual attention model imple-
mentation, which comprises three primary components: the CNN layer, the GRU layer,
and the attention layer. The components derived from the enhanced VMD algorithm are
normalized using MinMaxScaler to confine the overall value range between 0 and 1 and
subsequently fed into the CNN layer. During data input, the individual features of the
input are weighted using the feature attention mechanism, thereby reinforcing the features
that exert a significant impact on the outcome. On the output side, the temporal attention
mechanism is employed to enhance the model accuracy by capitalizing on the correlation
of the data on the time scale.

4.1. CNN-GRU Neural Network

Through a convolutional kernel, convolutional neural networks extract features from
the input data locally, and convolutional neural network units learn the patterns in the
input data window [25]. Convolutional neural networks gain two significant characteristics:
First, the patterns studied by a convolutional neural network are translation invariant.
A specific pattern learned by a convolutional neural network in a local data segment can
identify this pattern in an arbitrary place.

Due to the stability of electricity consumption habits, the power system data possesses
apparent repeatability. For example, the curve of regional load data in the same period
of two days has substantial similarity, and the photovoltaic generation curve also shows
strong similarity in two days with similar climate environments. This similarity provides
a reasonable basis for convolutional neural networks. Second, the convolutional neural
network can learn patterns’ spatial hierarchy; the first convolutional layer can learn smaller
local patterns, and the second convolutional layer further reconstructs the first convolu-
tional layer’s patterns to form larger patterns. This feature can make the convolutional
neural network can learn more and more complex and abstract data [26]. Regarding tempo-
ral data processing, one-dimension (1D) convolution is commonly utilized. The operational
principle of one-dimension convolution is depicted in Figure 3. The 1D convolutional layer
is adept at detecting local patterns in a sequence. As the same input transformation is
applied to each sequence segment, patterns discovered at one position in the temporal data
can be subsequently recognized at other positions, rendering the 1D convolutional neural
network translation invariant (concerning time translations).
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Figure 2. Dual attention CNN-GRU model.
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Figure 3. Working principle of one-dimensional convolution neural network.

By sampling the feature map through the maximum pooling layer, it can reduce the
number of input features in the upper convolutional layer by sampling the input signal,
which makes the model structure more streamlined, and the number of parameters to
be computed decreases significantly. The maximum pooling layer extracts the essential
information from the upper layer and transfers it to the lower convolutional layer, which
allows the convolutional layer to have a larger and larger observation window (the window
covers the proportion of the original input size), thus making the convolutional layer neural
network have a spatial hierarchy.

A variant of the long short-term memory (LSTM) neural network, the GRU is a
relatively new neural network structure primarily proposed by Junyoung Chung et al. at
the International Conference on Machine Learning in 2015 [27]. In the GRU, the cell state
and hidden state are combined with forgetting and input gates to create a single update
gate. When applied to large-scale data, the original three gate structures are combined into
just two gates, the parameters are decreased while maintaining the characteristics of LSTM,
and the computational speed is thus noticeably increased.

The structure of the GRU shows the two gates that the GRU has: the reset gate rt and
the update gate Zt [28]. The update gate is a linear transformation of the input signal xt
at time step t and the state ht−1 at the previous time step, respectively, which are added
together, and the information obtained is activated by a sigmoid function. An update
gate determines how much of the signal from the past is going to be passed to the future.
The reset gate is similar to the update gate in that the input signal xt at time step t and
the state ht−1 at the previous time step are linearly transformed and added together.
The resulting information is activated by a sigmoid function. However, the essence is
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to decide how much information needs to be forgotten. After obtaining the reset gate,
the linearly transformed reset gate and the linearly transformed input are added. The result
is put into the hyperbolic tangent activation function to obtain the current required memory
content ĥt. A unit of 1 is subtracted from the output of the update gate to obtain a difference.
Then, the product of this difference and the current memory content is multiplied by the
product of the state of the previous time step and the result of the update gate to obtain the
state of the present time step. The specific formula for GRU is shown below.

zt = σg(Wzxt + Uzht−1 + bz)
rt = σg(Wrxt + Urht−1 + br)

ĥt = φh(Whxt + Uh(rt 
 ht−1) + bh)
ht = (1 − zt)
 ht−1 + zt 
 ĥt

(5)

where xt denotes the input vector; ht denotes the output vector; ĥt denotes the current
desired memory content; zt denotes the update gate; rt denotes the reset gate; W, U and b
represent the parameter matrices and vectors; σg denotes the sigmoid function; φh denotes
the hyperbolic tangent function; and 
 denotes the Hadamard product.

4.2. Attentional Mechanisms

The processing of visual signals by attentional mechanisms is specific to human vision.
Human vision requires daily access to enormous amounts of image data as one of the most
crucial information acquisition channels. The brain typically concentrates on the image’s
critical components while ignoring the image’s comparatively minor components when
processing this information. This mechanism has the potential to speed up and improve
the processing of visual data significantly [29]. The attention mechanism in this paper is
similar to this in that the important parts of the signal are selected and given a relatively
large weight, resulting in a greater increase in the output accuracy of the whole system.

Let the input timing and the corresponding characteristics be:

x = [x1, x2, . . . , xT ] = [x(1), x(2), . . . , x(n)]T (6)

The expansion can be represented by the following matrix.

x =

⎡⎢⎢⎢⎢⎣
x(1)1 x(2)1 · · · x(n)1

x(1)2 x(2)2 · · · x(n)2
...

...
...

x(1)T x(2)T · · · x(n)T

⎤⎥⎥⎥⎥⎦ ∈ RT×n (7)

xt =
[

x(1)t , x(2)t , · · · , x(n)t

]
(1 ≤ t ≤ T) is the feature set of the above n features at

moment t. x(m) =
[

x(m)
1 , x(m)

2 , · · · , x(m)
T

]
(1 ≤ m ≤ n) is the value of the mth relevant

eigenvalue at moment t(1 ≤ t ≤ T).
In order to obtain the association of each feature variable with the current time series,

i.e., for the present time series, the importance of its corresponding feature quantity, the fea-
ture attention method is used for calculation. The attention weights corresponding to the
feature quantities at the current moment are calculated by associating the feature variables
at the moment t with the corresponding output variables at moment t − 1, ht−1 and the
state variables, st−1.

e(m)
t = VT

e tanh
(

We[ht−1; st−1] + Uex(m) + be

)
(8)

Ve, We, Ue are the weight matrices, respectively. be is the corresponding bias term.
After obtaining the weight values, they need to be normalized so that the sum of the

weight values corresponding to moment t is 1.
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α
(m)
t =

exp
(

e(m)
t

)
∑n

i=1 exp
(

e(i)t

) (9)

After obtaining the weighting coefficients, the input eigenvalues are multiplied by
them to obtain the weighted input:

x̃t =
[
α
(1)
t x(1)t , α

(2)
t x(2)t , · · · , α

(n)
t x(n)t

]
(10)

The obtained adaptive weighted input x̃t afterward is fed into the subsequent model
instead of the original input xt. This method can dynamically extract the correlation
between the feature values and the corresponding time series. The state ht of the hidden
layer at each moment needs to be updated at the next moment.

ht = f1(ht−1, x̃t) (11)

f1 is the GRU network unit.
After the adaptive feature attention results are computed, the output results obtained

by the feature attention mechanism are used as the input of the temporal attention mech-
anism in the next stage. The time series attention mechanism focuses attention on the
input series and obtains the adaptive time principal series output by weighted average
for the input time series [30]. Figure 4 illustrates the principle of the attention mechanism
implementation. The attentional mechanism is calculated as follows:

ci =
T

∑
s=1

αtshs (12)

αts =
exp

(
score

(
ht, hs

))
∑S

s′=1 exp
(

score
(

ht, hs′
)) (13)

where ht is the output of the decoder corresponding to time t and
h
h −s is the source hidden

state of the encoder. Here, score expression is specifically calculated as follows:

score
(

ht, hs

)
= h�t hs (14)

The core idea is to make the context vector ct, which is otherwise invariant in the
seq2seq structure, dynamic by reorganizing it several times. The traditional context vector
ct selects the output of the last time step as the final output because the data can be regarded
as the process of gradually extracting features after GRU processing. The output of the
last time step often contains important information about the state of the past time steps.
However, for data with long time steps and strong information correlation, this model
often leads to the vital information of a past time step being ignored or not highlighting
the information strongly associated with the prediction results [31]. Through the temporal
attention mechanism, the vector ct is dynamized, and ct is no longer just the output of the
last time step but also a dynamic combination of individual time steps. Different weight
coefficients are given for different predicted contents, thus giving different ct, which finally
achieves the role of extracting necessary information in the time series.

Fuse the real-time updated context vector ct with the output ht of time step t as the
input of the decoder:

h̃t = tanh(Wc[ct; ht] + bc) (15)

where Wc and bc are the weight and bias of the fused input, respectively; tanh is the
hyperbolic tangent function; h̃t is the encoder output.
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Figure 4. Schematic diagram of realization of attention mechanism.

5. Example Analysis

5.1. Data Pre-Processing and Error Indicators

In this paper, three datasets are used to validate the model proposed in this paper:
Singapore power load data, a public wind power dataset in the United States, and a public
photovoltaic (PV) output dataset in Australia. The first 80% of the data is used as the
training set, the first 80% to 95% is used as the validation set, and the last 5% is used as the
test set. The wind power generation data set has a total of 50,500 points, with a sampling
period of 10 min. Again, the first 80% of the data is used as the training set, the first 80%
to 95% of the data is used as the validation set, and the last 5% of the data set is used as
the test set. The photovoltaic output at night is always zero, so there is no meaningful
training for this period, and the photovoltaic data in the night part of the data have been
removed during the data processing. The photovoltaic output data set has 98,000 points
with a sampling period of 5 min. Here, 80% of the data is used as the training set, the first
80% to 95% is used as the validation set, and the last 5% is used as the test set. In order to
make the neural network training more efficient beforehand, the MinMaxScaler in sklearn
was used to normalize the data by min–max between (0, 1), which are calculated as:
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MAE =
1
m

i=1

∑
n
|(yi − ŷi)| (16)

MSE =
1
m

i=1

∑
m

(yi − ŷi)
2 (17)

where m denotes the total number of model output results; yi and ŷi mean the actual value
of the ith point in the output results and the model output value, respectively. Smaller
MAE and MSE indicate better model fit.

Adam is chosen as the optimizer (adaptive moment estimation), and the Adam op-
timization algorithm can achieve adaptive gradient selection, which can jump out some
local minima.

5.2. Model Configuration

The convolutional layers are stacked in two layers. The number of neurons in each
layer is 128, the convolutional window is 64, and the activation function is selected as
Relu. The pooling layer is selected as the maximum pooling. The encoder chooses two
layers of GRU stacking: 128 neurons for the first layer and 64 neurons for the second layer.
Tanh is selected for both activation functions, the discard rate is set to 0.1 for the first layer
and 0.24 for the second layer, and the decoder chooses single-step GRU decoding with
64 neurons. Each GRU step is output through a unit fully connected layer. The training
step size is 0.0075.

5.3. Data Set Comparison

In this paper, a total of five models are introduced for comparison, and the five models
are LSTM, multi-layer perceptron (MLP), Seq2Seq, CNN and the model of this paper using
one-sided reconstruction. All models use the same normalization procedure for data output,
and the input of the models is the corresponding historical sequence data to ensure the
scientific accuracy and validity of the comparison method. The data in the test set were
taken from 32 sampling points and 128 sampling points for data reconstruction, and the
evaluation results of each quantitative data index are shown in Tables 1 and 2. In order
to make the comparison results more intuitive and comparable, the comparison results
are directly normalized using the model output results, which can avoid the problem of
the inability to compare because of different units and large differences in the size of the
original data.

Table 1. MAE and MSE of each model with reconstructed length of 32 sampling points.

Load Data Set Wind Power Dataset Photovoltaic Power Dataset

Model of this paper MAE/(e-2) 1.96 5.38 4.48
MSE/(e-4) 5.97 37.29 31

One-sided modeling MAE/(e-2) 2.9 9.58 8.28
MSE/(e-4) 11.6 74.06 61.7

LSTM MAE/(e-2) 2.27 8.25 6.87
MSE/(e-4) 7.49 61.68 51.4

CNN MAE/(e-2) 2.48 8.54 7.12
MSE/(e-4) 8.57 65.04 54.2

Seq2seq MAE/(e-2) 2.14 7.12 5.84
MSE/(e-4) 6.57 44.09 36.7

MLP MAE/(e-2) 2.85 8.54 7.21
MSE/(e-4) 7.98 59.46 49.8
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Table 2. MAE and MSE of each model with reconstructed length of 128 sampling points.

Model of This Paper Load Data Set Wind Power Dataset Photovoltaic Power Dataset

MAE/(e-2) 2.74 9.95 6.97
One-sided modeling MSE/(e-4) 11.14 83.53 64.48

MAE/(e-2) 4.09 16.77 13.33
LSTM MSE/(e-4) 21.46 165.89 125.25

MAE/(e-2) 3.28 20.54 10.85
CNN CNN MSE/(e-4) 15.22 108.56 114.11

MAE/(e-2) 3.59 21.26 10.96
Seq2seq MSE/(e-4) 17.22 101.46 123.58

MAE/(e-2) 3.08 12.67 9.46
MLP MSE/(e-4) 13.25 106.7 81.11

MAE/(e-2) 4.29 15.79 11.82

5.3.1. Reconstructed Data Length of 32 Sampling Time Points Reconstruction
Effect Comparison

Table 1 presents a summary of the Mean Squared Error (MSE) and Mean Absolute
Error (MAE) for various models with a reconstructed data length of 32. The experimental
results from three data sets, namely, the load data set, wind power generation data set,
and photovoltaic power generation data set, are arranged from left to right. As the summary
table employs normalized data results, it does not include any units. Figures 5–7 depict
the schematic diagram of the load data reconstruction results, wind power generation
data reconstruction results, and photovoltaic power generation data reconstruction results,
respectively, with a reconstructed data length of 32 sampling time points. To facilitate
comparison and highlight the characteristics of model reconstruction, a period with more
salient features was selected from each of the three datasets.

Figure 5. Results of reconstructing 32 load time sampling points with different models.

Figure 6. Results of reconstructing 32 wind power time sampling points with different models.
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Figure 7. Results of reconstructing 32 photovoltaic power time sampling points with different models.

For the loaded data set, we can see that when the reconstructed data length is 32 sam-
pling time points, the average MAE of the proposed model in this paper decreases by
32.41%, 13.66%, 20.97%, 8.41%, and 31.23% relative to the unilateral reconstruction model,
LSTM, CNN, Seq2Seq, and MLP, respectively. The mean MSE of the proposed model
decreases by 48.53%, 20.29%, 30.34%, 9.13%, and 25.19% relative to the one-sided recon-
struction model, LSTM, CNN, Seq2Seq, and MLP, respectively.

For the wind power dataset, we can see that when the reconstructed data length is
32 samples, the mean MAE and mean MSE of the model proposed in this paper decreased
by 43.83%, 34.79%, 37.01%, 24.44%, 15.42%, 37.00%, and 49.65%, 39.54%, 42.67%, 15.42%,
and 37.29%, respectively.

For the photovoltaic generation dataset, we can see that when the reconstructed data
length is 32 samples, the MAE mean and MSE mean of the proposed model in this paper
decreased by 45.89%, 34.79%, 37.08%, 23.29%, 37.86%, and 49.76%, respectively, when
compared to the unilateral reconstruction model, LSTM, CNN, Seq2Seq, and MLP. 39.69%,
42.80%, 15.53%, and 37.75%.

The reconstructed data results graph demonstrates that the model proposed in this
paper is more closely aligned with the actual trend for data reconstruction. Specifically,
the proposed model better reconstructs the data mutation part. An extreme value point
near the fifteenth sampling point is observed for the load reconstruction results, and the
proposed model fits this extreme value point better. Furthermore, the rise and fall of the
load reconstruction results are also in close proximity to the actual data. The effect is more
pronounced for the photovoltaic power generation data and wind power generation data
with apparent changes. The wind power data reconstruction results show that the data
are more fluctuating, and the data are relatively very variable, with changes occurring
repeatedly within 32 sampling points. The proposed model can react quickly at the abrupt
change points, such as the 6th sampling point, 19th sampling point, 22nd sampling point,
and 28th sampling point, and keep up with the data change trend in time. The relative
change of photovoltaic data is located between the load and wind power generation.
However, photovoltaic data have an obvious characteristic that the data will occasionally
suddenly drop to very low or rise from very low to a higher position. This characteristic
is mainly due to the photovoltaic power generation’s dependence on weather, which has
a significant impact on light intensity. For all three data sets in this paper, the proposed
model’s reconstructive ability on relatively short missing data is significantly stronger than
the comparison model.

5.3.2. Reconstructed Data Length of 128 Sampling Time Points Reconstruction
Effect Comparison

Table 2 presents a summary of the MSE and MAE for each model with a reconstructed
data length of 128. It includes experimental results from three datasets. Appendix A Figure A1
displays a schematic diagram of the reconstructed load data with a reconstructed data length
of 128 sampling time points. Appendix A Figure A2 exhibits a schematic diagram of the
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reconstructed wind power generation data with a reconstructed data length of 128 sampling
time points. Appendix A Figure A3 illustrates a schematic diagram of the reconstructed
photovoltaic power generation data with a reconstructed data length of 128 sampling time
points. The three datasets were selected for their distinct performance characteristics over a
period to facilitate comparison and emphasize the features of model reconstruction.

For the loaded dataset, when the reconstructed data length is 128 samples, the mean
MAE of the model proposed in this paper decreases by 33.01%, 16.56%, 23.68%, 11.04%,
and 36.13% relative to the one-sided reconstruction model, LSTM, CNN, Seq2Seq, and MLP,
respectively. The mean MSE of the model proposed in this paper decreased by 48.09%,
26.81%, 35.31%, 15.92%, and 37.49% relative to the one-sided reconstruction model, LSTM,
CNN, Seq2Seq, and MLP, respectively.

For the wind power dataset, when the reconstructed data length is 128 samples,
the mean MAE and mean MSE of the model proposed in this paper decreased by 40.67%,
51.56%, 53.20%, 21.47%, 36.99%, and 49.65%, respectively, when compared to the unilateral
reconstruction model, LSTM, CNN, Seq2Seq, and MLP. 23.06%, 17.67%, 21.72%, and 44.69%.

For the photovoltaic generation data set, when the reconstructed data length is 128 sam-
ples, the mean MAE and mean MSE of the model proposed in this paper decreased by
47.71%, 35.76%, 36.41%, 26.31%, 41.03%, and 48.52%, respectively, when compared to the
unilateral reconstruction model, LSTM, CNN, Seq2Seq, and MLP, generating values of
43.49%, 47.82%, 20.50%, 47.79%.

We observe that the model proposed in this paper more closely approximates the
actual trend in data reconstruction. Specifically, in the case of data mutations, the model
presented here performs better. Similar to the analysis with 32 samples, in the load re-
construction graph, although the change structure of 128-sample data is more prominent
than that of 32-sample data, our model can track changes more effectively. Likewise, this
model outperforms other models in tracking wind and photovoltaic reconstructed graphs.
As with the analysis of 32-sample reconstructions, our model excels at handling large data
changes over short periods of time in wind reconstruction; for instance, it fits more closely
around the 40th and 60th sample points. The same conclusion applies to photovoltaic data
reconstruction. It is evident that our model also surpasses other models in reconstruct-
ing data at 128 sampling time points. For all three datasets examined in this paper, our
proposed model significantly outperforms comparison models in reconstructing relatively
long missing data.

5.3.3. Reconstructing Data Error Distribution Analysis

Figures 8–10 display error analysis plots for the reconstruction results of our model
and other comparison models at 32 sampling time points. Appendix A Figures A4–A6
present error analysis plots for the reconstruction results of our model and other comparison
models at 128 sampling time points. From the perspective of error for different lengths of
missing data, the range and median error of the error distribution for 128 sampling time
points in all three datasets are significantly higher than those for 32 sampling time points.
For instance, the median absolute values of load errors for our model, CNN, and MLP
increase from 0.07, 0.126, and 0.25 to 0.31, 0.49, and 0.55, respectively. In terms of absolute
error value distribution data, the reconstruction results of our proposed model are more
concentrated around the median compared to several other models.

Figure 8 and Appendix A Figure A4 display the error plots of load data reconstruc-
tion results for 32 and 128 sampling points, respectively. The analysis of the load data
reveals that the reconstruction error of 128 sampling points for all models is significantly
larger than the error of 32 sampling points. For the proposed model, most of the errors
increase from the 0–50 GW interval to the 0–115 GW interval. However, compared to
other models, the error distribution of the proposed model is still relatively concentrated,
which is consistent with the conclusion that the MAE and MSE are relatively smaller in
the previous analysis. The performance of the proposed model is more outstanding in the
error distribution interval 10–90%, error distribution interval 25–75%, and median error
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distribution, especially the 25–75% error distribution index, which is lower than other
models. This indicates that most of the errors of the proposed model are concentrated
around 0. Compared to other models, the main reason for the superior performance of the
CNN model in the 32 sampling case is related to its working principle. CNN itself does not
have the concept of time flow and uses the form of convolutional kernel to identify data
features. Even if the recognition window is increased, as long as the features identified by
the CNN convolutional kernel can still be applied, the error distribution of the CNN model
does not change much.

Figure 9 and Appendix A Figure A5 depict error plots of wind power generation
data reconstruction outcomes for 32 and 128 sampling points, respectively. Figure 10 and
Appendix A Figure A6 portray error plots of reconstruction outcomes for photovoltaic
generation data with 32 and 128 sampling points, respectively. In both cases, wind power
data and photovoltaic data, we observe a similar phenomenon to the load data, where the
error distribution of each model increases significantly. However, the model proposed in
this paper is more dispersed and concentrated in comparison to the other models both for
the 32-sample-point reconstruction and the 128-sample-point reconstruction. With regard
to the 25–75% error distribution metric, it is evident that the proposed model outperforms
other models.

Nonetheless, there are also some individual characteristics. For the wind power data,
the rise in error distribution from 32 to 128 sampling points is not as evident as that of the
load data set. This is primarily because the wind power data set is more intricate than the
load data set, and the changing trend is more challenging to capture. Therefore, even if it
is extended to 128 sampling points, the increase in error is limited, given that the error of
32 sampling points is already significant. As for the photovoltaic data, the error variation is
between the load data set and the wind power data set, owing to its inherent regularity.
However, there are some random variations in the data set.

The absolute value of Seq2Seq error in reconstructing the 128 data sampling points
of the model load data set in this paper appears to be more concentrated than the model
proposed in this paper. This is probably due to the load data set used being the load data
of Singapore, which is relatively stable, and the trend changes are relatively evident. In
addition, the data set has fewer dramatic fluctuations at certain points in time, making the
data itself very reconfigurable. For the Seq2Seq model, this can be more perfect in grasping
the data structure characteristics, and even without adding additional data processing
means, the data reconfiguration effect is already excellent. However, for wind power
generation data and photovoltaic power generation data with significant fluctuations and
non-obvious trend changes, it has been challenging for the Seq2Seq model to capture the
complete intrinsic pattern of the data, resulting in a significantly enlarged error distribution.

Figure 8. Error results of reconstructing 32 time sampling points of load with different models.
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Figure 9. Error results of reconstructing 32 wind power generation time sampling points with
different models.

Figure 10. Error results of reconstructing 32 photovoltaic power generation time sampling points
with different models.

5.3.4. 128 Sample Points Reconstruction Results Compared to 32 Sample Points
Reconstruction Results

It is more challenging to reconstruct 128 sampled time points of data than to reconstruct
32 sampled time points of data. Comparing Tables 1 and 2, we can observe a significant
increase in the MAE and MSE metrics for both models. This is because (1) the same data
set is evidently less rich for 128 sampling points than for 32 sampling points, resulting in a
model that is less comfortable with 128 sampling points. (2). Reconstructing 128 sampling
points using the same deep learning model may lead to model limitations, as the model
may not be able to handle more data points or capture more complex relationships in the
data set, resulting in higher MAE and MSE metrics.

Figure 11 illustrates the percentage of MAE increase for 128 sample points compared
to 32 sample points. Figure 12 illustrates the percentage increase of MSE for 128 samples
compared to 32 samples. From Figure 11, it is evident that the MAE of each model increased
significantly for 128 samples compared with 32 samples, and the most significant increase
was 150% for LSTM and CNN. Furthermore, by comparing the three data sets, the MAE of
this model is the smallest in most cases, indicating that this model makes the best use of
the data. Similarly, it can be observed from Figure 12 that the performance of this model is
superior in the other two datasets, except for the wind power dataset. The possible reasons
for the low MSE of CNN and LSTM models in wind power data are: (1) The MSE of these
two models is already relatively large in the province at 32 sampling points, which means
that the model itself does not utilize the data to a high degree. (2) The regularity of the
wind power data set itself is more difficult to find, which leads to the model itself not
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resolving the data set well, resulting in the reconstruction length. When the length of the
reconstruction increases, there is a more obvious decrease in the degree of utilization.

Figure 11. Percentage increase in MAE at 128 sampling points compared to 32 sampling points.

Figure 12. Percentage increase in MSE at 128 sampling points compared to 32 sampling points.

By comparing the load with 32 sampling time points and 128 sampling time points,
it is evident that the prediction model in this paper has a better fit to the true value,
and the accuracy decreases more slowly as the data length increases. Compared with
other models, the model proposed in this paper not only reconstructs the trend of the
missing data more accurately but also performs better for the part of the load with large
fluctuations and can analyze the law of sudden changes to a greater extent, which improves
the overall model accuracy. Comparing the wind power generation data and photovoltaic
power generation data, which are more random and fluctuating, it is clear that the model
proposed in this paper fits the sudden changes in the data significantly better than the
other models, and it not only fits the changes in the trend of the data but also captures the
drastic local changes more accurately, making the output of this model closer to the actual
situation. For example, in the case of photovoltaic power generation data, although the
overall trend can be captured more obviously, the overall data have the characteristic of
fluctuating sharply up and down around the trend, and the model in this paper can capture
the larger fluctuations more accurately, so that the details can be supplemented to make the
overall error smaller.
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6. Conclusions

This paper proposes a method to recover power system timing data based on im-
proved VMD and attention mechanism bi-directional CNN-GRU, which initially processes
the data by VMD so that the data can be better divided into multiple groups based on
frequency centroids, extracts the temporal characteristics of the time series data by using
a CNN model and then realizes the Seq2Seq structural model combined with multiple
attention mechanisms for the reconstruction of the data. This paper compares the unilateral
reconstruction model with LSTM, CNN, Seq2Seq, and MLP. It analyzes the characteristics
of the model proposed in this paper compared to other models in terms of three indicators:
MAE, MSE, and reconstruction result error. Although the result analysis is sensitive to the
data scenarios, the following conclusions can be drawn:

• The model in this paper has strong data reconstruction capability, especially for fitting
data mutations.

• This model has better performance in long time series data reconstruction compared
to other models.

• This model has a more outstanding effect on data reconstruction with drastic changes
compared to other models in this paper and has broader application potential.

In the future, we can study the characteristics of different models with a different focus
on data analysis and combine multiple models dynamically to achieve more accurate data
processing capability.

Author Contributions: Methodology, K.X.; Formal analysis, Y.L.; Resources, K.X.; Writing – original
draft, K.X.; Writing– review and editing, J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Results of reconstructing 128 load time sampling points with different models.
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Figure A2. Results of reconstructing 128 wind power time sampling points with different models.

Figure A3. Results of reconstructing 128 temporal sampling points of photovoltaic power generation
with different models.

Figure A4. Error results of reconstructing 128 time sampling points of load with different models.

81



Electronics 2023, 12, 1590

Table A1. Similar work summary table.

Literature Main Technical Means Advantage Disadvantages

[12] A new method for detecting bad data in
power systems using temporal correlation
and statistical consistency of measurements
is proposed. The method uses three innova-
tive matrices to capture measurement corre-
lation and statistical consistency, and it ap-
plies projection statistics to detect bad data.

The computational requirements are
not large, and the data categories
with high similarity in the power sys-
tem can be more effectively detected
and reconstructed for bad data.

The reconstruction is less effec-
tive for data with high dimen-
sionality and complexity, com-
plex change trends, and diffi-
culty in finding patterns.

[13] In the case of a small amount of synchronous
phase volume data missing and using a La-
grangian interpolation polynomial approach
to adaptively estimate incomplete and miss-
ing data.

Fast computation, practical, good
for reconstructing data with small
amount of 1D data.

The method has a small range
and cannot be used once the
missing data becomes long
or the data are not one-
dimensional.

[14–16] The core idea is to take advantage of the
similarity between the data column where
the missing data are located and the com-
plete data column and use this similarity
to reconstruct the data through further data
processing.

The performance is highly corre-
lated with the degree of data sim-
ilarity, and the deeper the similar-
ity between the data, the better the
method refactoring and vice versa.
Supported by explicit mathematical
principles.

Large differences between
data can seriously affect the
effectiveness of data recon-
struction, and the larger the
amount of data, the more
patterns in the data and
performance degradation.

[17] A shallow coder is used to learn the data
features and to complement the data by the
data structure after the weighting process.

It also has better adaptability for com-
plex data and has a more outstanding
reconfiguration effect.

Poor reconfiguration for com-
plex, variable data.

[18,19] Ref. [18] learns the features of temporal data
through a positive and negative GRU net-
work. Ref. [19] then learn the features of the
data using generative adversarial networks.

It also has better adaptability for com-
plex data and has a more outstanding
reconfiguration effect.

The mathematical mechanism
is not clear. The algorithms
take longer to compute and are
more demanding on computa-
tional resources.

Figure A5. Error results of reconstructing 128 wind power generation time sampling points with
different models.
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Figure A6. Error results of reconstructing 128 photovoltaic power generation time sampling points
with different models.
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Abstract: As a promising information theory, reinforcement learning has gained much attention.
This paper researches a wind-storage cooperative decision-making strategy based on dueling double
deep Q-network (D3QN). Firstly, a new wind-storage cooperative model is proposed. Besides
wind farms, energy storage systems, and external power grids, demand response loads are also
considered, including residential price response loads and thermostatically controlled loads (TCLs).
Then, a novel wind-storage cooperative decision-making mechanism is proposed, which combines
the direct control of TCLs with the indirect control of residential price response loads. In addition,
a kind of deep reinforcement learning algorithm called D3QN is utilized to solve the wind-storage
cooperative decision-making problem. Finally, the numerical results verify the effectiveness of D3QN
for optimizing the decision-making strategy of a wind-storage cooperation system.

Keywords: wind farm; energy storage system; reinforcement learning; deep neural networks

1. Introduction

Since the beginning of the 21st century, higher requirements for energy conservation,
emission reduction, and sustainable development have been put forward as a result of the
increasing pressure from the use of global resources. Thus, clean energy has gained much
attention, which further accelerates the global energy transformation [1–3]. At present, the
commonly used clean energy sources include wind energy, solar energy, and tidal energy.
Among these clean energy sources, wind energy outperforms with its rich resources, low
cost, and relatively mature technology [4,5].

However, because of the great correlation between wind energy and environmental
information, its power generation is characterized by randomness, uncontrollability, and
volatility, which seriously affects the power balance and threatens the stable and safe
operation [6]. Equipping the wind farm with an energy storage system can alleviate the
above problems to a certain extent [7–10]. Therefore, how to realize a high-efficient wind-
storage cooperative decision-making is a key issue for promoting the full absorption of
wind energy [11,12].

Reinforcement learning, also known as a promising information theory, is a machine
learning method based on environmental feedback information [13,14]. Its decision theory
is very suitable for issues containing complex environments and multiple variables. At
present, some studies have proven the feasibility and effectiveness of the energy allocation
strategy using reinforcement learning in the field of power system, such as load frequency
control on the generation side and market competition strategy [15–18].

Despite several works that have proposed reinforcement learning methods for wind-
storage cooperative decision-making, some issues still exist, as follows:

(1) The flexible loads embedded in the wind-storage cooperative framework have not
been developed sufficiently in the existing literature. In [11,19–21], the authors did not
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focus on the favorable effect of the flexible loads in the proposed wind-storage model. As
an example, flexible loads were considered in [22], where the benefits from the suitable
management of demand-side flexible loads were validated. However, the detailed formula
for when the load in the price response load model should be shifted was not given.

(2) The exploration of reinforcement learning methods for wind-storage cooperative
decision-making needs to be enhanced. In [19,20,23,24], a deep Q-learning strategy was
considered in wind-storage systems. However, the main mechanism of the deep Q-learning
strategy is to select the actions that can obtain the maximum benefits according to the Q
values, which are constructed by the state and action. It has been reported that using the
same networks to generate the Q values and its maximum estimated value will result in
the maximizing deviation issue, which tends to deteriorate the network accuracy.

Motivated by the above analysis, a novel wind-storage cooperative decision-making
model including demand-side flexible loads is developed in this paper, which compre-
hensively considers the direct or indirect control of various power components, improves
the reasonable allocation ability of the energy controller, and enhances the economy and
stability of the power grid. Moreover, in order to tackle the defects of the traditional deep Q-
learning method, the dueling double deep Q-network (D3QN), which is constructed by two
networks (the evaluation network and target network), is developed for the wind-storage
cooperative decision-making control mechanism in this study.

The remainder of this study is organized as follows: wind-storage cooperative model
and D3QN are presented in Section 2. In Section 3, the wind-storage cooperative decision-
making algorithm using D3QN is presented. The algorithm evaluation details and the
numerical results are presented in Sections 4 and 5. Section 6 presents the conclusions.

2. Wind-Storage Cooperative Model and D3QN

2.1. Wind-Storage Cooperative Decision-Making Model

This study mainly focusses on a wind-storage cooperative model, including wind
turbines and energy storage systems, which also is connected to the external power grid.

The architecture of the wind-storage cooperative model is shown in Figure 1. Three
layers exist: the electricity layer, information layer, and signal layer. The electricity layer
includes a distributed energy resources (DER) based on wind power, an energy storage
system (ESS) for the storage and release of wind power energy, a group of thermostatically
controlled loads (TCLs), and a group of price responsive loads. The information layer is
composed of a two-way communication system between the external power grid, each
power module, and the energy controller (EC). Information such as electricity price, as well
as the battery charge and discharge status are transmitted in the information layer. The
signal layer transmits the control signals sent by the energy controller to each controllable
module. The whole system model has three direct control points, namely, the switch control
of TCLs, the charging and discharging control of ESS, and the trading control of energy on
the external power grid.

At the same time, the whole wind-storage cooperative model can also be regarded as a
multi-agent system. Each module in the system is regarded as an autonomous agent, which
can interact with the environment and other agents. Moreover, the simple or complex
behavior of each agent is controlled by its internal model. The models used in each module
of the whole wind-storage cooperation model will be introduced in detail below.

2.1.1. External Power Grid

Because of the intermittent and uncontrollable characteristics of DER, the use of DER
alone may not be able to balance the relationship between supply and demand in the power
grid. Therefore, the external power grid is considered as the regulatory reserve in this
system model. The external power grid can provide electric energy immediately when
the wind-storage energy is insufficient, and the external power grid can also accept the
excess electricity when the wind energy is in surplus. The transaction price is defined by
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the real-time price in the power market. The market prices are expressed as (Pu
t , Pd

t ), where
Pu

t and Pd
t represent the increased and decreased price, respectively.

Energy
Controller

Flow of Information

Flow of Signal

Flow of Electricity

Signal Transition Point

Figure 1. Wind-storage cooperative model.

2.1.2. Distributed Energy Module

Wind turbines are considered as the distributed energy equipment in this study.
Specifically, actual wind data from a wind farm in Finland [25] are directly used to construct
the model of DER. DER shares the currently generated electric energy information Gt with
the energy controller.

2.1.3. Energy Storage System Module

In order to reasonably optimize the allocation of energy and reduce the cost of energy
consumption, this study uses the community energy storage system, rather than a separate
household storage battery. As a centralized independent energy storage power station
invested by a third party, the community energy storage system can integrate and optimize
the allocation of the dispersed energy storage resources from the power grid side, power
supply side, and user side.

For each time step t, the dynamic model of ESS is defined as follows [26]:

Bt = Bt−1 + ηcCt − Dt

ηd
(1)

where Bt ∈ [0, Bmax] is the electric energy stored by ESS at time t, and Bmax is the maximum
storage capacity of ESS. ηc and ηd are the charging and discharging efficiency coefficients of
energy storage equipment, respectively, and (ηc, ηd ) ∈ (0, 1]2. The variables Ct ∈ [0, Cmax]
and Dt ∈ [0, Dmax] represent charge and discharge power, respectively, which are limited
by the maximum charge and discharge rate Cmax and Dmax of ESS, respectively.

The state-of-charge variable of ESS is defined as BEC:

BECt =
Bt

Bmax
× 100% (2)

When the energy controller releases the charging signal, ESS obtains the current
electricity stored in the battery and verifies the feasibility of the charging operation by
referring to the maximum storage capacity Bmax and the maximum charging rate Cmax.
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Then, ESS stores the corresponding electricity according to the actual situation and the
remaining excessive electricity will be sold to the external power grid. When ESS receives
the discharge signal, it verifies the relevant conditions again to judge the operational
feasibility and provides the electricity accordingly. If ESS cannot fully provide the requested
electricity, the insufficient part will be automatically provided by the external power grid,
and the agent will need to pay the relevant costs.

2.1.4. Thermostatically Controllable Load

Thermostatically controllable loads (TCLs) are characterized by their large size, flexible
control, and energy conservation. In this study, it is assumed that the vast majority of
households are equipped with TCLs, such as air conditioners, water heaters, and refrig-
erators. These TCLs can be directly controlled in each time unit t and the control signal
comes from the TCL aggregator. As EC directly controls TCL equipment, this study defines
that TCL will only be charged for power generation costs Cgen in order to compensate TCL
users. To maintain the comfort of users, each TCL is equipped with a backup controller,
which can keep the temperature within an acceptable range. The backup controller receives
the on/off operation ui

t from the TCL aggregator and modifies its action by verifying the
temperature constraints. The specific definitions are as follows:

ui
b,t =

⎧⎨⎩
0 i f Ti

t > Ti
max

ui
t i f Ti

min < Ti
t < Ti

max
1 i f Ti

t < Ti
min

(3)

where ui
b,t is the on/off action of the ith TCL backup controller at t, Ti

t is the operating
temperature of the ith TCL at t, and Ti

max and Ti
min are the upper and lower temperature

boundaries set by the client, respectively. The differential equation of the temperature
change in the building is designed as follows [27]:

.
T

i
t =

1
Ci

a
(T0

t − Ti
t ) +

1
Ci

m
(Ti

m,t − Ti
t ) + Li

TCLui
b,t + qi (4)

.
T

i
m,t =

1
Ci

m
(Ti

t − Ti
m,t) (5)

where Ti
t , Ti

m,t, and T0
t are the indoor air temperature, indoor solid temperature, and

outdoor air temperature at t, respectively, Ci
a and Ci

m are expressed as the equivalent heat
capacity of indoor air and solid, respectively, qi is the thermal power provided by indoor
temperature control equipment, and Li

TCL is the rated power of TCL.
Finally, the state of charge (SoC) is used to represent the relative position of the current

temperature Ti
t within the expected temperature range. The SoC of each TCL at t is defined

as follows:

SoCi
t =

(Ti
t − Ti

min)

(Ti
max − Ti

min )
(6)

2.1.5. Resident Price Response Load

Some power demands exist from household that the energy controller cannot directly
control in the residential load [28]. This study assumes that the daily electricity consumption
of residents is composed of the daily basic electricity consumption and the flexible load
affected by the electricity price. The flexible load can operate in advance or later within the
acceptable time range and can be transferred according to the power generation situation of
DER, such that the resource utilization rate can be improved and the household electricity
expenditure can also be reduced. In this module, each household i has a sensitivity factor
βi ∈ (0, 1) and a patience parameter λi, in which the sensitivity factor β represents the
percentage of load that can be operated in advance or later when the price decreases or
increases, and the patience parameter λ represents the hours to repay the transferred load.
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For example, when the electricity price is high, this part of the load can be cut now and
operated after λi.

At t, the load Li
t of household i is modeled by the following formula:

Li
t = Lb,t − SLi

t + PBi
t (7)

SLi
t = Lb,t ∗ βi ∗ δt (8)

where Lb,t represents the daily basic load of residents, Lb,t > 0, and Lb,t follows the daily
consumption pattern, which can be inferred from the average daily consumption curve of
residential areas. SLi

t is the shift load (SL) defined by (8), where δt represents the electricity
price level at t. Therefore, SLi

t is positive when the price is high, i.e., δt > 0, then SLi
t > 0,

and when the price is low, i.e., δt < 0, then SLi
t < 0. The positive transfer load will be

repaid after a certain period of time λ. The negative transfer load is the electricity provided
in advance, so it will exist in the future. The loads to be compensated can be formulated
as follows:

PBi
t =

t−1

∑
j=0

ωi,j ∗ SLi
j (9)

where ωi,j ∈ {0, 1} represents the compensation degree for the transferred load at j. Gener-
ally, the closer t minus j is to λi, the higher ωi,j is. In addition, the compensation action also
should be related to the electricity price, i.e., ωi,j becomes smaller when δt > 0. Therefore,
ωi,j can be designed as follows:

ωi,j = clip

(−δt ∗ sign(SLi
j)

2
+

t − j
λi

, 0, 1

)
(10)

clip(X, a, b) =

⎧⎨⎩
a i f X < a
X i f a ≤ X ≤ b
b i f X > b

(11)

Given (10), when δt > 0, one can obtain SLi
t > 0 and sign(SLi

j) > 0, then
−δt∗sign(SLi

j)

2 < 0,
which means that ωi,j becomes smaller and the positive transfer load almost cannot be
compensated in the case of a high price [29,30].

2.1.6. Energy Controller

In this study, EC can extract the information provided by different modules and the
observable environment to determine the best supply and demand balance strategy. EC
mainly manages the power grid through four control mechanisms, as shown in Figure 2,
including TCL direct control, price level control, energy deficiency action, and energy
excess action.

(1) TCL direct control

At each time step t, EC will allocate a certain amount of electric energy for TCLs. Then,
they will be distributed to each TCL through a TCL aggregator. The TCL aggregator judges
the priority of energy distribution according to the power delivered by EC and the SoC of
each TCL, and then determines the on/off action of each TCL: TCL with a lower SoC has a
higher priority in energy allocation than TCL with a higher SoC. The TCL aggregator also
operates as an information aggregator transmitting the real-time average SoC information
of the TCL cluster to EC [31]. The specific transmission process is shown in Figure 3.
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Figure 2. The control mechanism of Energy controller.

Control
Agent

TCL
Aggregator

Figure 3. The intermediary role of the TCL aggregator.

(2) Price level control

In order to effectively utilize the elastic benefits of the residential price response load,
EC must determine the electricity price level δt at each time step t. In order to ensure
the competitiveness of the system model proposed in this paper, a pricing mechanism is
designed: The price can fluctuate around the median value, but the average price of the
daily electricity price Pavg cannot exceed 2.9% of the market electricity price provided by
power retailers [32]. From a practical point of view, the electricity price at the DR side is
discrete, and its fluctuation is affected by the electricity price level δt. So, the real-time
electricity price is selected from five values:

Pt ∈ (Pmarket + δt ∗ cst) (12)

where δt ∈ {−2,−1, 0, 1, 2}, cst is the constant to determine the specific increment or
reduction in electricity price.

In addition, the model also pays attention to the electricity price level δt at each
moment. When the sum of the previous electricity price levels is higher than the set
threshold, the market electricity price is adjusted to Pmarket instead of the price given by the
agent. The effective electricity price level δt,e f f is defined as follows:

δt,e f f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δt i f

t
∑

j=0
δt ≤ threshold

0 i f
t

∑
j=0

δt > threshold
(13)

(3) Energy deficiency action
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When the power generated from DER cannot meet the power demand, EC can dispatch
the energy stored in ESS or purchase energy from an external power grid. EC will determine
the energy priority between ESS and an external power grid. In addition, if the high priority
energy is ESS but the electricity stored in ESS cannot meet the power demand, the remaining
power will be automatically supplied by an external power grid.

(4) Energy excess action

When the electricity generated by local DER exceeds the electricity demand, the excess
electricity must be stored in ESS or be sold to an external power grid. In this case, EC also
will determine the priority between ESS and the external power grid. If ESS is the preferred
option and it has reached the max capacity, the remaining electricity will be automatically
transmitted to an external power grid.

2.2. D3QN

In this section, the basic principle of DQN (deep Q-network) and SARSA
(state−action−reward−state−action) is presented first.

The train mechanism of DQN can be formulated as follows:

Qk+1(s, a) = Qk(s, a) + αEk (14)

Ek = R + γargmaxa′Q(s′, a′)− Q(s, a) (15)

Using (14), one can find that the update iteration needs to achieve the approxi-
mation of the action-value function value (i.e., Qk+1(s, a) = Qk(s, a)), which means
R + γargmaxa′Q(s′, a′)− Q(s, a) → 0 . Thus, the DQN network parameters can be up-
dated by minimizing the mean square error loss function in the DQN algorithm.

The difference in the SARSA algorithm lies in how the Q value is updated. Specifically,
when the agent with the SARSA algorithm is in the state s, it selects the action a according
to the ε − greedy, and then observes the next state s′ from the environment, and selects the
action a′ again. The sequence {s, a, r, s′, a′} is stored in the empirical replay set, and the
calculation of the target Q value also depends on it. The core idea of the SARSA algorithm
can be simplified as follows:

Q(s, a) ← Q(s, a) + α[R + γargmaxa′Q(s′, a′)− Q(s, a)] (16)

In the existing study, DQN and SARSA have been developed for the wind-storage
cooperative decision-making algorithm. However, both DQN and SARSA use Q(s, a) and
maxQ(s′, a′) produced by the same network to update the Q network parameter ω, which
leads to the variation in the timing difference goal and a reduction in the convergence
performance. Therefore, in view of the above possible problems, this paper uses the
D3QN algorithm to optimize the model decision. The specific improvements are collected
as follows:

(1) Referring to the double DQN (DDQN) algorithm, two neural networks with
the same structure are constructed as the estimation network Q(s, a, ω) and the target
network Q′(s, a, ω′), respectively. The estimation network is used to select the action
corresponding to the maximum Q value, and its network parameters are constantly updated.
The target network is used to calculate the target value y, and its network parameters are
fixed, but they are updated by using the current estimated network parameters value at
regular intervals. The parameters in the target network are fixed for a period of time,
which makes the convergence target of the estimated network relatively fixed, which is
beneficial to the convergence of the algorithm model, and also avoids the agent selecting
the overestimated suboptimal action. The overestimation problem of the DQN algorithm
can also be effectively solved.

(2) In this paper, the structure of the deep neural network is adjusted. Referring to
dueling DQN based on competitive architecture, the main output is divided into two parts:
one part is the state-value function V(S, ω, α), which represents the current state; the other
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part is the advantage function A(S, A, ω, β), which judges the additional value level of each
action for the current state. The neural network structure of DQN is shown in Figure 4, and
the neural network structure of D3QN is shown in Figure 5.

Figure 4. The network structure of DQN.

Figure 5. The network structure of D3QN.

Finally, the output of the Q network is obtained by the linear combination of the
output of the state-value function network and the advantage function network:

Q(S, A, ω, α, β) = V(S, ω, α) + A(S, A, ω, β) (17)

However, (17) cannot identify the respective functions of V(S, ω, α) and A(S, A, ω, β)
in the final output. In order to reflect this identifiability, the advantage function is generally
set as the single action advantage function minus the average value of all of the action
advantage functions in a certain state, so it can be modified as follows:

Q(S, A, ω, α, β) = V(S, ω, α)+

A(S, A, ω, β)− 1
A ∑

a′∈A
A(S, a′, ω, β) (18)

The flow chart of D3QN is shown in Figure 6:
In Figure 6, the D3QN algorithm stores the experience gained from the interaction

in the experience pool one by one. After a certain amount is accumulated, the model
randomly extracts a certain batch of data from the experience pool in each step to train
the neural network. These randomly extracted experiences break the correlation between
data, improve the generalization performance, and benefit from the stability of network
training. Meanwhile, in Figure 6, the D3QN algorithm constructs two neural networks with
the same structure, namely, the estimated network QE(S, A, ω, α, β) and the target network
QT(S, A, ω′, α′, β′). The estimated network is used to select the action and parameter ω
is updated constantly. The target network is used to calculate the temporal difference of
the target value. Parameter ω′ is fixed and replaced with the latest estimated network
parameter ω at regular intervals. ω′ remains unchanged for a period of time, resulting
in a relatively fixed convergence goal of the estimated network QE, which is beneficial
for convergence. The actions of the maximum function generated by the estimated net-
work and the target network are not necessarily the same. Using QE to generate actions
and QT to calculate the target value can prevent the model from selecting the overesti-
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mated sub-optimal actions and can effectively solve the overestimation problem of the
DQN algorithm.

 

Figure 6. The flow chart of D3QN.

3. Wind-Storage Cooperative Decision-Making Based on D3QN

In this section, wind-storage cooperative model will be converted into a discrete
Markov decision-making process (MDP). According to the reinforcement learning mech-
anism, the one-day state of the model is discretized into 24 states. In addition, the MDP
in this paper takes the online environmental information as the state space, the set of
command actions executed by the energy controller as the action space, and the income
of electricity sellers as the reward function. The interaction process between the energy
controller and the system power environment is shown in Figure 7.

3.1. State Space

The state space is composed of the information that the agent needs to use when
making decisions at each time step t, including the controllable state component SC, the
external state component SX , and the time-dependent component ST . The controllable state
information includes all environmental variables that the agent can directly or indirectly
affect. In this study, the controllable state information is composed of TCL’s average SoC,
ESS’s charge and discharge state BSCt, and the pricing counter Cb

t [33]. The external state
information consists of all variables, such as the temperature information Tt, the wind
power generation Gt, and the electricity price Pu

t . When the algorithm is implemented,
the external state information directly uses the real data set, so it is assumed that the
controller can accurately predict the values of three variables in the next moment. The
time-dependent component information includes the information strongly related to time
in the model, where Lb,t represents the current load value based on the daily consumption
mode, and t represents the hours of the day.

The state space is expressed as follows:

st ∈ S = SC × SX × ST (19)

st = [SoCt, BSCt, Cb
t , Tt, Gt, Pu

t , Lb,t, t] (20)

In the implementation process, the electricity price is not given directly. Firstly, the
initial electricity price is set. When the price should be increased or decreased, the pricing
counter Cb

t will be added or subtracted by 1. Then, the electricity price becomes the initial
price plus the product between Cb

t and the unit electricity price.
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Figure 7. Interaction process between the energy controller and the system environment.

3.2. Action Space

The action space consists of four parts: TCL action space Atcl , price action space AP,
energy shortage action space AD, and energy excess action space AE. Among them, the
TCL action space consists of four possible actions. The price action space consists of five
possible actions. There are two possible actions in the energy shortage and excess action
space, that is, the priority between ESS and the external power grid. Therefore, the whole
action space contains 80 potential combinations of these actions, which can be expressed
as follows:

at = (atcl , aP, aD, aE)t (21)

at ∈ A = Atcl × AP × AD × AE (22)

3.3. Reward Function and Penalty Function

The main form of deep reinforcement learning (DRL) to solve problems is to maximize
the reward function. The purpose of using DRL in this paper is to maximize the economic
profits of the electricity sellers. Thus, the reward value can be selected as the operating
gross profit, i.e., the income from selling electricity to the demand-side and the external
power grid minus the cost of wind power generation and purchasing electricity from an
external power grid. Therefore, the reward function Rt and penalty function Costst are
defined as follows:

Rt = Revt − Costst (23)

Revt = Pt ∑
loads

Li
t + Cgen ∑

TCLs
Li

TCLui
b,t + Pd

t Es
t (24)

Costst = CgenGt + (Pu
t + Ctrimp)EP

t + Ctrexp ES
t (25)

where Cgen is the energy price charged to TCL, and it is also the cost of wind power
generation. Gt refers to the wind power generation amount. Pd

t and Pu
t are the decreased

price and increased price respectively, i.e., the energy price sold to or purchased from an
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external power grid [25]. ES
t and EP

t are the amount of energy sold to or purchased from an
external power grid, respectively. Ctrimp and Ctrexp are the power transmission costs from
the interaction with the external power grid.

4. Implementation Details

Before the algorithm evaluation, implementation details are given in this section.
The computer configuration and environment configuration are collected as Widows11,

python3.8, tensorflow1.14; CPU is AMD R7-5800H; GPU is RTX3060; and the memory is
16 GB.

The network structure of the DQN and SARSA algorithms consists of an input layer,
two fully connected hidden layers, and an output layer. The activation function of neurons
is the ReLU function. In addition, in order to prevent the phenomenon of over fitting after
model training, this paper applies the dropout section for neural network training. The
number of neurons in the network input layer is the same as the dimension of the system
state space, and the number of neurons in the output layer is the same as the dimension of
the system action space. The D3QN algorithm adds a competitive network to the structure
of the first two algorithms, diverting the abstract value obtained from the full connection
layer into two branches. The upper path is the state value function V(s), which represents
the value of the state environment itself, and the lower path is the state dependent action
advantage function A(s, a), which represents the additional value brought by selecting
an action in the current state. Finally, these two paths are aggregated to obtain the Q
value of each action. This competitive structure can theoretically learn the value of the
environmental state without the influence of action, making the practice effect better.

In the training process of the neural network, the discarding rate in dropout is 70%,
the sample storage capacity of experience playback set is 500, the scale batch used for each
small batch is 200, the reward attenuation coefficient is 0.9, and the target network update
interval N is 200. The detailed network structure diagrams of DQN, SARSA, and D3QN
are shown in Figures 8 and 9.

Figure 8. Network structure diagram of the DQN algorithm and SARSA algorithm.
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Figure 9. Network structure diagram of the D3QN algorithm.

The proposed decision-making algorithm will be deployed in the cloud server for
real-world applications. Generally, the cloud sever possesses enough computational power
to execute the DL-based methods.

5. Algorithm Evaluation

In this section, the simulation evaluation is presented to validate the proposed control
mechanism. This paper selects the wind power data of a wind farm in Finland. In the
wind-storage cooperative model, the control cycle of ESS is 1 day, i.e., 24 intervals. In
addition, the parameters involved in the whole system model are summarized in Table 1.

Table 1. Parameters in the system model.

Parameter Value

ESS

ηc 0.9
ηd 0.9

Cmax 250 kW
Dmax 250 kW
Bmax 500 kWh

DER

Gt 1% of the hourly wind power generation (kW)
Cgen 32 €/MW

Power grid

Pd
t Reduced electricity prices

Pu
t Increased electricity prices

Ctrimp 9.7 €/MW
Ctrexp 0.9 €/MW
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Table 1. Cont.

Parameter Value

TCL

Ntcls 100 (Number of TCL)
T0

t Outdoor temperature hourly
Ci

a N (0.004, 0.0008)
Ci

m N (0.3, 0.004)
qi N (0, 0.01)

Li
TCL N (1.5, 0.01) (kW)

Ti
min 19

Ti
max 35

Load

NL 150
NL Basic load of residents
λi N (10, 6) (kW)
βi N (0.4, 0.3)

Other parameters

D 24
δt {−2,−1,0,1,2}
cst 1.5

threshold 4
Pmarket 5.48 €/kW

Parameters involved in the algorithm

NA 80
Atcl {0,50,100,150}
AP {−2,−1,0,1,2}
AD {ESS,Grid}
AE {ESS,Grid}
γ 0.9
t 1 h

5.1. Comparisons of Training Results
5.1.1. Penalty Value Curve

The penalty value is composed of the cost of wind power generation, the purchas-
ing power from the external power grid, and power transaction. Figure 10 shows the
total cost paid by the wind power producers in each training cycle (episode) during the
learning process. The penalty value decreases with the increase in training times and it
gradually converges.

It can be seen that the convergence performance of D3QN is superior to its rivals.
Although the penalty value using DQN shows a downward and gradual convergence
trend, it still vibrates obviously, which is caused by the defects of DQN. D3QN uses two
Q networks to calculate the target Q value and the estimated Q value, respectively, which
directly reduces the correlation and greatly improves the convergence performance.

5.1.2. Reward Value Curve

Figure 11 shows the reward value curve during the training process, i.e., the income
obtained by the wind farm from the external environment in the operation. The specific
training time, final reward mean value, and performance improvement rate between the
three algorithms are summarized in Table 2. It can be seen that the final reward value of
D3QN is higher than that of the other two algorithms, so the overall performance of the
system model based on D3QN has been improved.
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Figure 10. Comparison analysis of the penalty value using DQN, SARSA, and D3QN.

Figure 11. Comparison analysis of reward value curves using DQN, SARSA, and D3QN.

Table 2. Training results between three algorithms.

Algorithm Training Time (s)
Average Value of

Final Reward
Performance

Improvement Rate

DQN 196.0111 1.2443 -
SARSA 415.5845 1.6239 30.5%
D3QN 244.1469 1.7909 43.93%

5.2. Comparison of Application Results
5.2.1. 10 Day Revenue Comparison

In order to give a more intuitive understanding of the performance difference for
DQN, SARSA, and D3QN, this section selects the data from 10 days in a year, and analyzes
the daily total profit obtained by the system model with the three algorithms, as shown in
Figure 12.
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Figure 12. Comparison analysis of the daily income with three DRL algorithms for 10 days in a year.

It can be seen that the daily income using SARSA and D3QN is higher than that of
DQN within 10 days. Moreover, the total profit of D3QN is better than that of SARSA in 9
out of 10 days, which also validates the superiority of D3QN.

5.2.2. Daily Electricity Trading Comparison

This section will compare the behavior of the three algorithms in the specific one-
day. The one-day data of the environment is shown in Figure 13, including the outdoor
temperature, wind power generation, electricity prices, and residential load.

(a) 

Figure 13. Cont.
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(b) 

(c) 

Figure 13. Cont.
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(d) 

Figure 13. Environmental data of one-day: (a) outdoor temperature, (b) energy generated,
(c) electricity prices, and (d) residential loads.

Using DQN, SARSA, and D3QN, one can obtain the energy allocation results of TCLs,
the purchased energy, and the sold energy, as shown in Figures 14–16.

(a) 

Figure 14. Cont.
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(b) 

Figure 14. TCLs status and power exchange using DQN: (a) TCLs and (b) power exchange.

(a) 

Figure 15. Cont.
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(b) 

Figure 15. TCLs status and power exchange using SARSA: (a) TCLs and (b) power exchange.

(a) 

Figure 16. Cont.
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(b) 
Figure 16. TCLs status and power exchange using D3QN: (a) TCLs and (b) power exchange.

In Figures 14–16, the SoC of TCLs reflects the change in indoor temperature for
residents. This paper sets the constant temperature range of TCLs as 19~25 ◦C. When
the charging state of TCLs is 0%, it means that the indoor temperature of residents is
less than or equal to 19 ◦C; when the charging state is 100%, it means that the indoor
temperature is greater than or equal to 25 ◦C. It can be seen that SARSA and D3QN can
allocate sufficient energy to TCLs when the wind power generation is sufficient, where
its state can reach saturation as soon as possible, such that the system can keep the room
temperature stable, and gives residents a warm and comfortable experience. In addition,
SARSA selects multiple transactions to ensure the income, and D3QN decisively sells a
large amount of power to obtain more income when wind energy is sufficient and the
electricity price is the highest.

5.2.3. Computational Efficiency Comparison

In order to demonstrate the computational efficiency of the proposed D3QN, the
training time, decision-making time, the number of trainable parameters, and performance
improvement rate are summarized in Table 3. It takes 196.0111 and 415.5845 s for DQN
and SARSA to reach convergence, respectively, while the proposed D3QN takes 244.1469 s.
Furthermore, although D3QN possesses the largest number of trainable parameters, the
decision-making time of D3QN is close to the other two algorithms, which demonstrates
that D3QN can be implemented in real-world applications. From Table 3, one can conclude
that the computational cost of D3QN is slightly larger than DQN and SARSA, which is
still in an acceptable range. However, it should be noted that it is mainly because of
many trainable parameters. Moreover, the performance improvement rate of D3QN is
the biggest, which is an important criterion to evaluate different algorithms. Generally,
it is worth increasing some computational complexity while the performance can gain
enough improvement.
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Table 3. Computational efficiency comparison between three algorithms.

Algorithm Training Time (s)
Decision-Making

Time (s)

The Number of
Trainable

Parameters

Performance
Improvement

Rate

DQN 196.0111 0.347 8980 -
SARSA 415.5845 0.354 19,080 30.5%
D3QN 244.1469 0.390 27,160 43.93%

6. Conclusions

Considering external conditions such as wind energy resources, demand response
load, and market electricity price, this paper puts forward a new research method of wind-
storage cooperative decision-making based on the DRL algorithm. The main work of this
paper is summarized as follows:

(1) This paper proposes a new wind-storage cooperative model. Based on the con-
ventional model including wind farms, energy storage systems, and external power grids,
this paper also takes into account a variety of flexible loads based on demand response,
including residential price response loads and thermostatically controllable loads (TCLs).
Meanwhile, this model also can be applied to other renewable energy sources, such as photo-
voltaic power generation, hydroelectric power generation, and thermal power generation.

(2) This paper proposes a new wind-storage cooperative decision-making mechanism
using D3QN, which takes the energy controller as the central allocation controller of the
system energy, realizing the direct control of TCLs and the indirect control of the residential
price response load, and the management of priority between ESS and the external power
grid in the case of sufficient or insufficient energy.

(3) It is worth mentioning that the application of the D3QN algorithm is a new attempt
in the research field of wind-storage cooperative decision-making. Based on the historical
data of wind farm and market electricity prices, the effectiveness of D3QN in dealing
with the wind-storage cooperative decision-making problem is verified, and the superior
performance of D3QN is also analyzed.
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Abstract: A comprehensive and accurate wind power forecast assists in reducing the operational risk
of wind power generation, improves the safety and stability of the power system, and maintains the
balance of wind power generation. Herein, a hybrid wind power probabilistic density forecasting
approach based on a transformer network combined with expectile regression and kernel density
estimation (Transformer-ER-KDE) is methodically established. The wind power prediction results of
various levels are exploited as the input of kernel density estimation, and the optimal bandwidth is
achieved by employing leave-one-out cross-validation to arrive at the complete probability density
prediction curve. In order to more methodically assess the predicted wind power results, two sets of
evaluation criteria are constructed, including evaluation metrics for point estimation and interval
prediction. The wind power generation dataset from the official website of the Belgian grid company
Elia is employed to validate the proposed approach. The experimental results reveal that the proposed
Transformer-ER-KDE method outperforms mainstream recurrent neural network models in terms
of point estimation error. Further, the suggested approach is capable of more accurately capturing
the uncertainty in the forecasting of wind power through the construction of accurate prediction
intervals and probability density curves.

Keywords: wind power forecasting; transformer network; expectile regression; kernel density
estimation; probability density forecasting

1. Introduction

In response to climate problems, environmental pollution, and the energy crisis, the
global focus of energy development and utilization has changed from traditional fossil fuels
to clean and renewable energy sources such as wind and solar power [1]. Among these,
wind energy is a non-polluting and sustainable energy source with huge storage capacity,
stable production, and widespread use, making it one of the most popular sustainable
renewable energy sources in the world [2]. According to forecasts, wind energy is estimated
to account for a significant share of global electricity generation by 2030 [1], with China, in
particular, proposing the development of a new power system based on renewable sources
such as wind and solar [3]. Wind power is anticipated to play a pivotal role in the future
energy mix with plans to integrate it into power systems around the world. This highlights
the enormous potential for future growth in the wind power industry.

However, wind power generation is chiefly influenced by natural wind fluctuations
and other meteorological conditions, and its intermittent, stochastic, and unstable nature
inevitably produces technical challenges for power system planning and scheduling, as
well as safe and stable operations [3]. Comprehensive and precise power network fore-
casting is necessary for the incorporation of wind farm technology into existing power
grids. Successful forecasting is necessary to manage risks and successfully maintain a
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balanced network with significant wind components as part of the overall electrical grid.
The challenges associated with accomplishing this require careful mathematical analysis
combined with data verification to merge wind networks into existing power grids. The
stochastic issues with wind power differ significantly from more traditional power sources,
so data analysis, statistical estimators, stochastic analysis, and predictive methodologies
require careful thought.

With the development of wind power generation in recent years, significant research
and progress have been made in the field of wind power forecasting (WPF). According
to various modeling schemes, WPF can be essentially classified into physical models, sta-
tistical models, and artificial intelligence models with machine learning [3–6]. In more
detail, physical methods commonly exploit long-term forecasts based on numerical weather
predictions (NWPs). Hence, many physical factors are required to achieve the best forecast
accuracy [5], and physical models usually exhibit advantages in long-term forecasting [6].
Statistical methods for time-series forecasting include methods such as the Kalman fil-
ter (KF), autoregressive integrated moving average (ARIMA), generalized autoregressive
conditional heteroskedasticity (GARCH), and its variations [5]. These methodologies are
utilized for predicting the future production of wind power based on a large amount of
historical data and are more effective than physical methods for short-term wind power
forecasting. However, the strict distribution assumptions and smoothness tests on the
data result in these statistical models not exhibiting universality and generality. With the
rapid development of artificial intelligence in recent years, many machine learning-based
prediction approaches such as support vector machine (SVM) [6], random forest (RF) [7],
and XGboost [8] have been developed to perform wind speed or wind power predic-
tion. Machine learning approaches usually have large-scale data processing capabilities,
more accurate prediction precision, and more remarkable universality and generalization
capabilities [3].

Due to the powerful ability of deep learning to learn features and handle complex
nonlinear problems, neural network algorithms such as long short-term memory neural
networks (LSTMs) [9–12], gated recurrent units (GRUs) [12,13], extreme learning machines
(ELMs) [14], and convolutional neural networks (CNNs) [15,16] have been recently exten-
sively employed for short-term wind power prediction. In constructing predictive models
for time-series data such as wind power data, recurrent neural network (RNN) frameworks,
including LSTMs and GRUs, are particularly effective for modeling sequential data in
time-series data prediction tasks such as wind power forecasting. Despite these RNN-based
frameworks generally performing well, they exhibit some limitations. The RNNs are often
employed to iteratively model sequential data, but these methodologies possess a high
training time cost and could result in performance reduction for sequential data with longer
time steps. This issue is essentially attributed to the fact that the RNNs can only consider
the hidden state of the last moment during processing sequential data [17].

In 2017, Google proposed the transformer network [18], which has already exhibited
a momentous impact on the field of natural language processing and the application area
of deep learning. The model exclusively relies on the self-attention mechanism to estab-
lish global dependencies on sequence data and is capable of mining complex and relevant
information from various scales of the sequence [19]. Transformer network-based method-
ologies have been used by various researchers for wind power prediction [19–21]. The
core self-attention mechanism has also been used in combination with recurrent neural
networks such as LSTM to construct hybrid models for more accurate wind power predic-
tion [1,3,13,22,23]. The transformer networks are capable of capturing the internal correlation
of longer sequences and comprehensively obtaining essential information about wind power
data [21].

Most explorations so far have focused on providing deterministic values for point
estimates, which are difficult to use in measuring the uncertain characteristics of wind
power [24]. On the other hand, interval and probabilistic forecasting of wind power recently
attracted considerable attention because it allows the construction of continuous probability
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density curves and the quantification of uncertainty in wind power output. Thereby, it
provides helpful information for power companies, system operators, and related decision-
makers and stakeholders [2]. In addition, several investigations have been devoted to
interval and probability density forecasting of wind power [25–27]. In [27], the quantile
regression neural network (QRNN) approach was implemented for wind power prediction.
For this purpose, the prediction results for various conditional quantiles were exploited
as input to a nonparametric method of kernel density estimation (KDE) that does not
presuppose the data distribution to derive the complete probability density profile of the
wind power. The QRNN represents a hybrid model that combines traditional statistics and
machine learning. It mainly merges the advantages of quantile regression (QR), such as the
ability to estimate the conditional distribution of explanatory variables without considering
the distribution type of random variables, with the strong nonlinear fitting capabilities of
neural networks.

A nonparametric nonlinear regression model, the so-called expectile regression neural
network (ERNN), was proposed in [28]; it builds upon the concept of QRNN by incorpo-
rating the expectile regression (ER) framework into the neural network structure. This
novel ERNN model is capable of easily predicting the model parameters by standard
gradient-based optimization algorithms and direction propagation due to the use of an
asymmetric squared loss function, a property that outperforms the QRNN model that uses
an asymmetric absolute loss function that is not differentiable at the origin. In addition, the
ERNN model can directly output conditional expectation functions that describe the com-
plete distribution of responses based on covariate information and provide more insightful
information for decision-making.

The prediction performance of neural networks is commonly influenced by the model
structure and hyperparameters [4], and numerous investigators have combined neural
network models (NNMs) with modal decomposition techniques [3,20,23,29–31] or opti-
mization algorithms [30–35] to achieve better prediction results. In the current investigation,
hence, the transformer (i.e., a model known for its superior performance in sequential
data tasks) is utilized as the base model for wind power prediction. Additionally, this
effective model is properly combined with the asymmetric loss function of expectile regres-
sion and then optimized via the cuckoo search (CS) algorithm [36]. The optimal model
structure is then exploited to make wind power predictions at various levels τ. To this
end, the KDE model with a Gaussian kernel function in conjunction with the leave-one-out
cross-validation (LOOCV) method is employed to obtain the probability density interval
estimates for wind power forecasting. The results obtained with the proposed transformer
expectile regression and kernel density estimation (Transformer-ER-KDE) model are com-
pared with those of other models and methods for various points and interval estimates by
utilizing the wind power data in the time interval of 2022.1–2022.2 provided by the Belgian
grid, and its superiority to other models is proved.

The present investigation presents three major contributions in comparison to the
preceding ones:

(1) The transformer network, which possesses the best performance in the NLP domain
for sequential data tasks, is migrated for wind power prediction. Then, the internal
correlations and remote dependencies of more extended sequential data could be
captured better than the RNN. The expectile regression in conjunction with a trans-
former network is utilized for wind power prediction via the ERNN structure. This
newly developed model is capable of estimating the NNM-based parameters more
easily than the QRNN. Further, it is more sensitive to sample points with larger errors
and can output conditional expectation functions that provide more information for
decision making. To the best of our knowledge, this is the first expectile regression
added to the ERNN structure of the transformer network.

(2) The nonparametric KDE-based approach is implemented to estimate the prediction
results of Transformer-ER at a variety of levels, thus allowing the complete wind
power probability density estimate to be derived. Since the bandwidth influences
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the density function of random variables [27], the leave-one-out cross-validation is
employed here for optimal bandwidth selection, fully exploiting the information from
the estimation results of various levels τ, while Gaussian kernel functions [3] are
commonly utilized to achieve improved probability density estimates.

(3) The probability density estimation results are appropriately derived based on two sets
of evaluation criteria for point estimation and interval prediction. The point estima-
tion results, which are attained using the probability density approach, exhibit strong
robustness and high accuracy compared with traditional prediction methods [27].
Usually, evaluation metrics, such as prediction interval coverage probability (PICP),
prediction interval normalized average width (PINAW), and coverage width-based
criterion (CWC), are employed to assess the interval prediction results. The prediction
interval estimation error (PIEE) evaluation metrics proposed in [25] are also imple-
mented here for the purpose of evaluating and comparing the probability density
interval estimation. Additionally, the PIEE index is incorporated into the CWC com-
posite index to make it more comprehensive and accurate in reflecting the evaluation
effect of interval prediction.

2. Related Theories

2.1. Transformer Network

A transformer network is a transduction model that relies entirely on a self-attention
mechanism to evaluate its input and output representations without employing RNNs or
CNNs [20].

2.1.1. Self-Attention Mechanism

The main advantage of the attention mechanism is its ability to extract relevant
information from a large amount of input data in the current task context. Specifically,
the self-attention mechanism calculates attention values within a sequence and uses this
information to identify structural relationships and connections within the sequence [21].

In self-attention, the input sequence X ∈ R
l×d is transformed by matrix operations into

Q(Query), K(Key), and V(Value), where l represents the sequence length and d denotes
the model dimension:

Q = XWQ, K = XWK, V = XWV, (1)

where WQ ∈ R
d×dqk , WK ∈ R

d×dqk , and Wv ∈ R
d×dv are the weight matrix parameters that

the neural network is trained to through iterations, Q ∈ R
l×dqk , K ∈ R

l×dqk , and V ∈ R
l×dv

are evaluated as follows to the output of the self-attentive mechanism:

A = So f tmax

⎛⎝QKT√
dqk

⎞⎠V. (2)

It is evident that QKT contains the information of various positions in the whole
sequence, and after normalization, it represents the attention weights for each position.
Furthermore, the matrix multiplication with V results in the output of attention A ∈ R

l×dv .
Finally, the output is transformed through the linear transformation as specified in the
following form:

O = AWO, (3)

where WO ∈ R
dv×dout represents the linear layer training weight matrix, and the final

output would be O ∈ R
l×dout .

2.1.2. Multi-Head Attention Mechanism

Within the transformer network, the self-attention mechanism is extended to a multi-
head attention mechanism, which is calculated in an identical way. The primary difference
is that the input sequence X is divided into n subspaces, n heads, and parallel operations
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of the self-attention mechanism are executed on each subspace. The attention outputs
obtained from each head (i.e., A1, A2, . . . , An) are then concatenated, and the final output O
can be obtained through the following linear transformation:

O = Concat
(

A1, A2, . . . . . . An
)

WO. (4)

The operating principle of multi-headed attention is illustrated in Figure 1. Despite the
presence of multiple heads, the number of parameters and time complexity are comparable
to those of self-attention [20]. The exploitation of multi-head attention allows it to attend to
various representation subspaces at various positions, thereby providing enhanced forecast-
ing capabilities. Each subspace makes its own prediction based on its own perspective or a
combination of factors, yielding better predictions than a single self-attentive mechanism.

Figure 1. Schematic diagram of the multi-head attention.

2.1.3. Position Encoding

While self-attention considers information from all positions of the sequence data, it
may not wholly capture the influence of positional differences. To make full use of the loca-
tion information of sequence data, this paper incorporates position-encoding information
into the sequence data. The position encoding is evaluated in the following form:

PE(pos, 2i) = sin
(

pos/10, 0002i/d
)

, (5)

PE(pos, 2i + 1) = cos
(

pos/10, 0002i/d
)

, (6)

where pos denotes the sequence length index, and i represents the dimensional index from
0 to d/2.

2.1.4. Transformer

The structure of the transformer network utilized in the present work is depicted in
Figure 2.

The traditional transformer architecture consists of an encoder and a decoder. In the
current exploration, only the transformer encoder structure is employed, which is appro-
priate for regression problems and serves as a general-purpose module for transforming
a sequence into a more informative feature representation. The transformer is originally
developed for exploitation in the NLP field; hence, minor modifications have been made
to its architecture. Instead of a word vector embedding layer, the input data are passed
through a linear layer before being encoded based on their position. Similarly, before
being output, the prediction results are passed through a linear layer without an activation
function rather than a Softmax layer for probabilistic prediction. The remaining elements
of the multi-headed attention, two normalization layers, one linear layer, and two residual
links, are identical to those in the original transformer.
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Figure 2. Schematic representation of the proposed transformer network.

2.2. Expectile Regression

Given a response variable Y and a covariate matrix X with observations (yi, xi), where
i is the sample number such that i = 1, 2, . . . , n and n denotes the total number of samples,
the values yi of the response variable at the τ level can be derived by the following classical
linear expectile regression model:

Êyi (τ|xi) = x’
i β̂(τ), i = 1, 2, . . . , n (7)

β̂(τ) = arg min
n

∑
i=1

ϕτ

(
yi − x’

iβ
)

. (8)

ϕτ(u) =
{

τu2, u ≥ 0
(τ − 1)u2, u < 0

(9)

where τ ∈ (0, 1) is the quantile of a given weight level and denotes the degree of asymmetry
of the loss function. Eyi (τ|xi) represents the τ-th level of the response variable yi, and β̂(τ)
denotes the regression’s coefficient at a given τ for which the estimation can be obtained by
solving the optimization problem, as displayed in Equation (8).

ϕτ(u) is an asymmetric loss function that depends on the level τ. When τ = 0.5, the
asymmetric squared loss function in Equation (9) above degenerates to the squared loss
function ϕ(u) = u2, and the overall expectile regression model degenerates to a simple
linear regression model. It has been widely acknowledged that the square loss function,
commonly utilized in the training of neural networks through back-propagation, is merely
a specific instance of the expectile regression asymmetric loss function.

A neural network can be conceptualized as a nonlinear function denoted by f (·) that
serves as a generalized nonlinear model. Given an input xi, the output of this model can be
displayed as follows:

Êyi (τ|xi) = f (xi, w(τ)), i = 1, 2, . . . , n (10)
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where w(τ) represents the model parameter to be estimated. In the ERNN model, the
estimator can be appropriately derived by iterating based on the following loss function:

ŵ(τ) = arg min
n

∑
i=1

ϕτ(yi − f (xi, w(τ))), (11)

where ϕτ(u) is the same as that given in Equation (9). Unlike the asymmetric absolute value
loss function of the QRNN, the empirical loss function of the ERNN model is differentiable
and smooth everywhere at various levels of τ. The empirical loss function is also convex,
so the standard back-propagation and gradient descent optimization algorithms of neural
networks are capable of estimating the ERNN model parameters easily and obtaining the
optimal solution ŵ(τ) at different values of τ. Furthermore, it is clear that the ERNN model
is derived by replacing the conventional squared loss function employed in general neural
networks with an asymmetric quadratic loss function [28].

2.3. Cuckoo Search Algorithm

The cuckoo search algorithm was proposed in 2009 [36] as a bionic intelligent algorithm
that would be applicable to optimization problems. Similar to genetic algorithms (GAs),
and particle swarm optimization (PSO) algorithms, the CS is also an algorithm for directly
searching for the extremum points of the objective function in the feasible domain of the
given parameters. The main strategy relies on the Lévy flight to update the position where
the nest is located. The Lévy flight step formula is given as follows [37]:

s =
u

|v|1/β
, (12)

The value of β is usually considered between 1 and 2. In this study, we set β = 1.5,
which is a commonly used value in the literature. Both u and v obey the following nor-
mal distribution:

u ∼ N
(

0, σ2
u

)
, v ∼ N(0, 1). (13)

σu =

⎛⎝ Γ(1 + β)sin πβ
2

β·Γ
(

1+β
2

)
·2 β−1

2

⎞⎠ 1
β

. (14)

The Lévy flight, which is commonly characterized by a combination of high-frequency
small-step movements and low-frequency large-step movements, mimics the random
wandering of a cuckoo. This behavior enables the CS algorithm to effectively search for
globally optimal solutions while also avoiding being trapped in local optima. Moreover,
the incorporation of small steps in the algorithm guarantees a certain level of accuracy in
the solution. The position of the nest is updated according to the following relation:

xk+1
i = xk

i + α × s ⊗ xk
i , (15)

where xk
i denotes the value of the k-th iteration, α represents the scaling factor of the step, s

stands for the step of the Lévy flight, and ⊗ denotes the dot product. The overall flow of
the cuckoo search algorithm is presented in Figure 3.

This exploration takes the hyperparameters of an NNM into account as the search
parameters, with the overall ERNN model employed as the adaptation function. The
performance of the model in predicting the test set data, as measured by its goodness-of-fit
value, is also utilized as the adaptive value. The objective of the current search is to find
the optimal set of hyperparameters by maximizing the adaptive value.
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Figure 3. The overall flowchart of the cuckoo search algorithm.

2.4. Kernel Density Estimation

In comparison to the parametric model, kernel density estimation, being a nonpara-
metric method, avoids imposing any prior assumptions on the data distribution, thereby
resulting in more accurate estimations. Based on the similarity theory, the obtained condi-
tional quantile is similar to conditional density [27].

2.4.1. KDE-Based Model

The KDE is established based on the sample data to estimate the probability density
function. Given the density function of a random variable represented by f (x) and the em-
pirical distribution function denoted by F(x), the basic estimation of f (x) can be provided
by the following:

f (x) =
F(x + h)− F(x − h)

2h
, (16)

where h represents a non-negative constant. As the value of h approaches zero, an approxi-
mate estimation of f (x) can be obtained in the following form:

f̂ (x) =
1

Nh

N

∑
i=1

k
(

x − xi
h

)
, (17)

where N denotes the number of samples, h is the bandwidth, and k(x) represents the
kernel function. It is worth mentioning that various kernel functions bring different
estimation effects. This investigation is aimed to utilize the Gaussian kernel function,
which is commonly exploited and known to produce effective results [3]. The function is
represented by the following equation:

k(x) =
1√
2π

exp
(
− x2

2

)
. (18)
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2.4.2. Leave-One-Out Cross-Validation

The bandwidth plays a crucial role in a KDE-based approach. Wide bandwidths are
capable of preventing the model from accurately estimating the density of critical features,
while a small bandwidth results in an estimation with a higher level of noise. Herein,
leave-one-out cross-validation is implemented for the optimal selection of the bandwidth,
and mean integrated squared error (MISE) is also utilized to evaluate the error of the kernel
density function. The MISE is defined per the following relation:

MISE
(

f̂ (x)
)
= E

∫ [(
f̂ (x)− f (x)

)2
]

dx. (19)

The global error of LOOCV is defined as follows:

LV =
1
N

N

∑
i=1

MISEi. (20)

The error resulting from the computation of various bandwidths (h) is specified by
LV(h). The optimal bandwidth (h0) is determined by identifying the point at which LV(h)
takes its minimum value:

h0 = argmin LV(h), h > 0 (21)

LOOCV effectively utilizes all the information of the data, resulting in the calculation
of optimal parameters for the sample data. However, the corresponding computational
time cost is high, and it is generally utilized in the case of small sample data due to the need
for N-training that fits the model and error metric calculations. In the current investigation,
the prediction results of the ERNN-based model for different levels of τ are chosen as
inputs for kernel density estimation, and then the LOOCV is exploited as the method for
bandwidth selection due to the limited number of values for τ ∈ (0, 1).

3. Methodology Framework and Evaluation Metrics

3.1. Methodology Framework

The framework of the overall WPF is demonstrated in Figure 4. The forecasting
process in the present work is divided into the following steps:

(1) Preprocessing of the wind power data, including the division of data into training
and test sets, normalization, and the utilization of the sliding window method for the
construction of feature and response variables.

(2) Nine distinct models (ER, QRNN, LSTM, GRU, MLP, RNN, Transformer, Transformer-
ER, and CS-Transformer-ER) are employed for wind power series prediction, and four
commonly used evaluation metrics (MAE, RMSE, MAPE, and R2) are considered as
appropriate measures to compare the performances of the models.

(3) The structure of the optimal Transformer-ER network, as identified by the CS algo-
rithm, is implemented for point prediction at various levels τ, and the error evaluation
metrics are calculated for it.

(4) The point prediction results for various levels of τ are utilized as inputs for kernel
density estimation, the optimal bandwidth (h) is then determined through LOOCV,
and finally, probability density predictions are achieved accordingly.

(5) The results of probability density estimation are appropriately exploited to construct
point and interval predictions, and the evaluation metrics of point and interval esti-
mation of various models are separately obtained for comparison.
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Figure 4. The framework of the overall WPF.

3.2. Point Estimation Evaluation Metrics

In regression problems, four of the most commonly used and reliable evaluation
metrics for assessing the point prediction accuracy of different models are mean absolute
error (MAE), root mean square error (RSME), mean absolute percentage error (MAPE),
and coefficient of determination (R2). Their calculation formulas are given in the following
Equations (22)–(25):

MAE =
1
n

n

∑
t=1

‖ yi − ŷi ‖, (22)

RMSE =

√
1
n

n

∑
t=1

(yi − ŷi)
2, (23)

MAPE =
1
n

n

∑
t=1

‖ yi − ŷi
yi

‖, (24)

R2 = 1 − ∑n
t=1(yi − ŷi)

2

∑n
t=1(yi − y)2 , (25)

where n represents the number of predicted samples, yi denotes the true value of the
response variable, ŷi is the predicted value, and y specifies the mean value of the real data.

3.3. Interval Prediction Evaluation Metrics

The quality of the prediction interval (PI) is a crucial feature in assessing the results of
probability density prediction. To evaluate the probability density estimation of the model,
herein, the following four metrics are employed for comparison: prediction interval cover-
age probability (PICP), prediction interval normalized average width (PINAW), prediction
interval estimation error (PIEE), and coverage width-based criterion (CWC).

The PICP is a crucial evaluation metric for PI; it represents the probability that future
wind power will be within the lower and upper limits of the forecast results, and it is
defined by the following equation:

PICP =
1
n

n

∑
i=1

Ci, (26)
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Ci =

{
1, yi ∈ [Li, Ui]
0, yi /∈ [Li, Ui]

(27)

where Li and Ui in order represent the minimum and maximum values of the prediction
interval for the i-th sample. The factor Ci denotes a Boolean variable, where Ci = 1 if the
real value falls within the prediction interval and Ci = 0 in other cases. It is evident that a
wide PI could result in a high PICP; nevertheless, it has minimal value for power planning
and decision making. With this in mind, the PINAW is introduced to evaluate PI; it is
defined by the following relation:

PINAW =
n

∑
i=1

Ui − Li
nR

, (28)

in which R denotes the difference between the maximum and minimum values of the
response variable y to be predicted, and it serves the purpose of standardizing the results
to objectively evaluate the width of PI. Lower values of the PINAW imply higher accuracy
of the interval prediction results.

The PICP only considers the probability of the real value falling within the prediction
interval, without dealing with the error magnitude between the prediction interval and
the real value. A relatively novel metric, PIEE [25], provides an understanding of the
estimation error of PI. This metric is implemented to more systematically evaluate the risk
outside the prediction interval; it is defined as follows:

PIEE =
n

∑
i=1

Ei
nR

, (29)

Ei =

⎧⎨⎩
yi − Ui, yi > Ui
0, Li < yi < Ui
Li − yi, yi < Li

(30)

The PIEE metric enables us to more precisely evaluate the estimation error of the true
value outside the model prediction interval. However, as with PICP, a too-wide PI could
result in a low PIEE, which is not significant. To ensure a more accurate and comprehensive
evaluation, the CWC metric is introduced. A combination of the three metrics PICP, PINAW,
and PIEE is employed to construct an improved CWC metric:

CWC = PINAW{1 + γPICP exp[−(1 + PIEE)(PICP − μ)] } (31)

γPICP =

{
0, PICP ≥ μ
1, PICP < μ

(32)

where the parameter μ represents the basic requirement for interval coverage probability,
and a PICP value less than μ leads to an exponential penalty. In the current investigation,
we set μ = 0.9. The penalty factor, denoted by 1 + PIEE, is exploited in the case of the
coverage probability requirement not being satisfied. Additionally, it can be observed that
the CWC metric takes into account the coverage probability, average width, and estimation
error of the prediction interval and serves as a comprehensive index. A smaller value of
the CWC implies a higher quality of the prediction interval.

3.4. Probability Density Prediction Is Constructed as a Point Estimation

In order to compare the estimation of the probability density prediction with that of
the point prediction, the mode, median, and mean of the wind power probability density
prediction are selected as the point estimation results. The mode corresponds to the peak
value of the probability density curve. The median is defined as the middle value of
the prediction interval, representing the weighted sum of all probability densities and
their predicted values. Hence, this factor takes full advantage of the information from
the probability density function [27]. The predicted values of the wind power for the i-th
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sample, ŷi,1 ≤ ŷi,2 ≤ . . . ≤ ŷi,N , are denoted by pi,1 ≤ pi,2 ≤ . . . ≤ pi,N , which are their
corresponding probability values. The mode, median, and mean values are calculated by
the following Equations (33)–(35):

Mode = ŷi,argmax(pi,j)
, j = 1, 2 . . . , N (33)

Median =

⎧⎪⎨⎪⎩
ŷi, N+1

2
, N is odd(

ŷ
i, N

2
+ŷ

i, N+2
2

)
2 , N is even

(34)

Mean =
N

∑
j=1

pi,j·ŷi,j. (35)

4. Empirical Results

4.1. Data Sources and Preprocessing

In the current investigation, we use wind power data from the Elia Belgian power
grid company website as empirical data to verify and test the validity of the proposed
model. For this purpose, the data from the aggregate Belgian wind farms are chosen for a
period from 1 January to 28 February 2022. Since the original data have a 15 min frequency,
they are resampled to a 1 h frequency to lessen the computational effort and for the ease
of recording. According to the demonstrated processed data in Figure 5, it is evident that
the wind power series data are highly variable and random. As a result, the probability
density prediction of wind power is necessary for quantifying the uncertainty of wind
power output and providing results that would be more informative to relevant decision-
makers and stakeholders. About 80% of the data, the purple solid line part (from 1 January
2022 00:00:00 to 17 February 2022 03:00:00), are chosen to be exploited as the training set,
whereas the remaining 20% of the data, the brown dashed line part (from 17 February
2022 04:00:00 to 28 February 2022 23:00:00), are utilized as the test set. A sliding window
of 168 periods (seven days) is employed to construct the feature variables, meaning that
yt−167, yt−166, . . . , yt is employed to predict the value of yt+1. After the above process
is completed, the 3D tensor data from both the training and test sets are normalized to
prepare for the NNM fitting. Table 1 provides information on the main parameters of the
NNMs used in the present work.

Figure 5. Wind power plot of aggregate Belgian wind farms from 1 January to 28 February 2022.
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Table 1. The main parameters of the NNMs.

Parameter Value

Number of hidden layers 2
Number of neurons in the hidden layer [64, 32]

Batch size 32
Maximum number of iterations 50

Embedding layer dimension 32
Number of multi-head attention heads 4

Level τ 0.5

4.2. Comparison of the Model Prediction Results

Nine models are utilized for comparison in order to evaluate the prediction results
of classical point estimation methods. These models are appropriately analyzed via four
metrics: MAE, RMSE, MAPE, and R2. A comparison of the point prediction results of some
of the models is presented in Figure 6. The depicted results indicate that the predicted and
actual values for the four models are relatively close. The models exhibit highly accurate
prediction performance for intervals where the wind power data are monotonic, while
more deviations for intervals are observed for the cases in which the wind power fluctuates
and varies. Notably, the QRNN model predicts more dramatic fluctuations between 24
February 2022 and 27 February 2022, which could be related to its training process that
utilizes an absolute value loss function. The four error metrics calculated for all models on
the test set are given in Table 2.

 
Figure 6. Plots of the point prediction results based on the partial models.

Table 2. Comparison of the point prediction results for all examined models.

Model MAE RMSE MAPE R2

ER 428.4206 565.2859 1.8311 0.7672
QRNN 354.1195 460.9649 1.8252 0.8452
LSTM 207.8788 278.8663 1.7486 0.9434
GRU 228.8504 308.0818 1.7363 0.9309
MLP 361.4761 478.3939 1.8812 0.8392
RNN 239.0550 321.7016 1.7537 0.9246

Transformer 190.5266 269.8500 1.8787 0.9470
Transformer-ER 194.9061 268.8835 1.7945 0.9473
CS-Transformer-

ER 183.9616 252.6901 1.8142 0.9535

From the results presented in Table 2, the following conclusions can be drawn:
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(1) Among all the models, the transformer model has the best performance in predicting
wind power data. The prediction results of the Transformer-ER model when τ = 0.5
should be theoretically similar to those of the transformer model, and any minor
differences between them can be attributed to the numerical calculation variations.
In this type of sequential data, compared to the RNN-based model, the transformer
model demonstrates superior performance in capturing the internal correlation of
longer sequential data. In addition, based on the common sense of deep learning, this
effect becomes more noticeable as the amount of training data rises.

(2) The CS algorithm is effective in searching for hyperparameters of NNMs. Addi-
tionally, the achieved results from the CS-Transformer-ER model, which exploits the
hyperparameters found through the CS algorithm, also exhibit superior performance
in all four evaluation metrics. It is crucial to mention that the low MAPE values for
the GRU model could be skewed. The MAPE may not be as reliable as the other three
indicators in assessing the prediction performance of the models on the test set due to
the presence of intervals in the test set data that contain zero values or close to them.
This may lead to the calculated MAPE values tending towards infinity, making the
metric unreliable. Furthermore, further optimization of the CS algorithm with more
iterations could possibly lead to even better predictions.

(3) The linear model (i.e., ER) exhibits the worst performance among the benchmark
models. Although the MLP and QRNN models are essentially nonlinear, they fail in
full consideration of the temporal relationship between data and thus exhibit lower
prediction performance than the RNNs. Among the three recurrent neural networks,
namely RNN, LSTM, and GRU, the best performance is achieved for the LSTM, which
is exploited by most researchers. However, the corresponding MAE error metric of
the prediction results is almost 9% higher than that of the transformer model.

4.3. The Predicted Results Based on the Various Levels of τ

The model has been trained and tested with different levels of τ. The effect of the pre-
diction curve is presented in Figure 7, and the corresponding evaluation metrics calculated
are presented in Figure 8.

Figure 7. The graphed prediction results for various levels of τ.

Figure 7 illustrates the plotted prediction results based on different τ values. It is
apparent that the prediction curves are highly similar in trend and degree of fluctuation and
are superimposed to configure a confidence interval covering the actual value. It is feasible
and reliable to use these predicted values to construct probability density estimation curves.

From Figure 8, it is obtainable that the prediction performance is better and more
consistent with less error in the case of τ in the range of 0.4 to 0.85. When the value of τ is
considered too large or too small, it leads to a strong asymmetry in the loss function, which
is appropriate for describing the corresponding conditional distribution, but the overall
prediction performance is poorer.
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Figure 8. Prediction metrics for different levels of τ.

4.4. Probability Density Prediction Results

Before performing the kernel density estimation, the optimal bandwidth size selected
is appropriately verified by a leave-one-out cross-validation for each group of bit data
in the test set. The box plots of all optimal bandwidths (h) are demonstrated in Figure 9.
Figure 9 clearly displays that the majority of the optimal bandwidths (h) are in the range of
40–90.

Figure 9. Optimal range of the bandwidth.

The first nine points of the test set (from 17 February 2022 04:00:00 to 17 February
2022 12:00:00) are chosen, and the actual values and probability density curves of the wind
power are demonstrated in Figure 10. The blue curve and the red dashed line represent the
kernel density estimation curve and the actual values of the test set, respectively. All the
actual values clearly fall within the predicted probability density curve, with the majority
of the values being concentrated around the peak of the estimated probability density. This
indicates that the estimated probability density effectively captures the inherent uncertainty
in wind power generation. The location of the estimated probability density curve peak
may be the true value of the wind power data. The probability density estimation offers
several advantages such as quantifying uncertainty and improving prediction accuracy,
providing decision-makers with more precise information about the WPF.
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Figure 10. Probability density curves of the wind power for the partial test set.

The results of the probability density estimation for the proposed model, QRNN, and
ER are compared in Table 3. The evaluation metrics for the point estimates (i.e., mode,
median, and mean) constructed from the probability density estimates of each model are
given in this table. Additionally, the corresponding histograms are presented in Figure 11,
providing a visual representation of the performance of each model.

Table 3. The evaluated metrics for point estimation based on several approaches.

Methods Point Estimates MAE RMSE MAPE R2

Transformer-ER
Mode 203.1176 282.0029 1.9020 0.9421

Median 191.4592 271.6375 1.8843 0.9463
Mean 187.0430 263.9477 1.8611 0.9493

QRNN
Mode 334.9645 428.0405 1.8301 0.8665

Median 310.3674 419.9150 1.7790 0.8716
Mean 303.6449 411.5041 1.7964 0.8767

ER
Mode 428.8808 564.8208 1.8274 0.7676

Median 430.2076 566.8995 1.8285 0.7659
Mean 430.0491 566.1494 1.8323 0.7665

The presented results in Table 3 and Figure 11 display that the point prediction errors
based on the probability density estimation of the proposed Transformer-ER model are
substantially lower in comparison to those of the QRNN and linear ER models, which do not
take into account temporal effects. Additionally, regardless of the model or method used,
the mode, median, and mean values of the probability density predictions are relatively
similar in terms of performance. The mean accuracy is slightly higher than mode and
median accuracies because it takes into account all the information of the predicted data.
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Among all the models and methods, the Transformer-ER model exhibits the lowest MAE
and RMSE and the highest R2 for the mean probability density, making it the best point
prediction result. Its error metric is smaller than the point prediction results of almost all
models in Table 2. It is worth mentioning that the exploitation of the MAPE may not be
reliable due to the presence of values close to or equal to zero in the test set.

Figure 11. Evaluation metrics for point estimates constructed by the probability density prediction.

The evaluation metrics for interval estimation are provided in Table 4. The PICP
values of the Transformer-ER, QRNN, and ER models are remarkably different. The QRNN
model presents a high PICP, accordingly presenting a low PIEE. The ER of the linear model
fails to satisfactorily fit the uncertainty of the wind power data, with a PICP value of
only 42.25%. However, the higher PICP of the QRNN is derived from a larger average
width of the prediction interval. This means that the QRNN gives an extensive prediction
interval, which is of little significance for practical decision making. On the contrary, the
Transformer-ER-based model exhibits a more moderate PICP and a smaller PINAW, and its
composite index CWC has the smallest value. Therefore, the probability density prediction
interval of the Transformer-ER model exhibits higher quality than that of other models.

Table 4. Evaluation metrics for the interval prediction of various approaches.

Methods PICP PIEE PINAW CWC

Transformer-ER 0.8697 0.0064 0.1728 0.3510
QRNN 0.9824 0.0008 0.5580 0.5580

ER 0.4225 0.0572 0.1781 0.4732

As can be observed from Figures 12 and 13, while the PIs obtained from the QRNN
model cover a majority of the actual values of the wind power, they also exhibit a broader
range compared to the PIs from the Transformer-ER model. This broader range of PIs from
the QRNN model could lead to a growth of uncertainty in the prediction of wind power
forecasting; thus, it could not be beneficial in power planning and decision making. The
PIs of the Transformer-ER model are more precise, as they are narrower in zones where the
wind power data exhibit a monotonic increase or decrease and broader in zones where the
wind power is volatile and variable. This issue would be effectively helpful in capturing
the uncertainty in wind power forecasting, providing decision-makers with more relevant
and useful information.
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Figure 12. Plot of the prediction intervals of the ERNN-based model.

 
Figure 13. Plot of the prediction intervals of the QRNN-based model.

5. Conclusions

In the current investigation, a combination of the transformer network that performed
best in the sequential data task and expectile regression is proposed for effective wind
power prediction via an ERNN structure. The model is optimized by employing the
cuckoo search algorithm. The methodology of kernel density estimation is then exploited
to achieve the complete probability density curve, which is then built into the point and
interval prediction. These predicted results are separately evaluated to provide compre-
hensive information on the uncertainty of the wind power. The proposed approach is then
validated and tested based on the wind power generation data from the Belgian power
grid company Elia. The major obtained conclusions are as follows: (1) The proposed model
effectively addresses the volatility and stochastic nature of wind power data, provides
comprehensive and accurate prediction, reduces the operational risks associated with
wind power generation, and enhances the stability of power systems. (2) The transformer
network, when compared to the commonly exploited recurrent neural networks, demon-
strates the superior capability to capture the internal correlations and dependencies in long
sequences and yields a higher level of prediction accuracy. (3) The proposed probability
density prediction approach in this paper is capable of providing more comprehensive
information for relevant stakeholders and decision-makers and has been proven to be more
robust and accurate than point predictions. (4) The proposed ERNN-based model produces
more accurate and narrow prediction intervals compared to QRNN models and thereby
leads to higher quality prediction intervals in general.
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Abstract: This article proposes a lightweight YOLO-ACG detection algorithm that balances accuracy
and speed, which improves on the classification errors and missed detections present in existing
steel plate defect detection algorithms. To highlight the key elements of the desired area of surface
flaws in steel plates, a void space convolutional pyramid pooling model is applied to the backbone
network. This model improves the fusion of high- and low-level semantic information by designing
feature pyramid networks with embedded spatial attention. According to the experimental findings,
the suggested detection algorithm enhances the mapped value by about 4% once compared to the
YOLOv4-Ghost detection algorithm on the homemade data set. Additionally, the real-time detection
speed reaches about 103FPS, which is about 7FPS faster than the YOLOv4-Ghost detection algorithm,
and the detection capability of steel surface defects is significantly enhanced to meet the needs of
real-time detection of realistic scenes in the mobile terminal.

Keywords: defect detection; lightweight; cavity spatial convolution; spatial attention

1. Introduction

With the rapid development of industrial automation technology, the study of au-
tomated [1,2] detection of defects in industrial production is receiving more and more
attention. Due to the influence of various uncertainties, the surface of the steel plate in the
production process will produce a variety of defects [3–7], such as scratches, deformation,
welds, holes, etc. These defects [8–12] not only affect the integrity of the steel plate but
also make a certain impact on the quality of the steel plate, so a more accurate detection of
defects [13–16] on the surface of the steel plate is of paramount importance.

Conventional inspection methods use manual observation to detect defects, which
is not only time-consuming and labor-intensive, but the results still do not meet the ex-
pected requirements. Based on the traditional industrial inspection methods proposed,
the automated defect detection technology has been driven to a new level. Experts and
scholars at home and abroad have conducted more profound research and practice on
traditional machine vision in the detection of defects in steel plates. The enhanced BP
detection algorithm was presented by Peng et al. [17] to detect flaws in steel plates. While
this technique has a decent detection performance for flaws that are clear targets, it has a
sluggish convergence rate and poor performance for small samples. Wang Yixin et al. [18]
suggested a comparative detection approach utilizing machine vision; however, despite its
high accuracy in recognizing faults in steel plates, it has a higher environmental impact
and is incapable of detecting flaws in harsh conditions due to its difficulty with extracting
feature images.

At this juncture, the accuracy of steel plate surface flaw detection [19] has increased due to
the rapid development of deep learning technology in industrial inspection. Tian Siyang et al.
investigated at timeframe instances of hot-rolled strip steel surface faults, identifying two faults,
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watermarks and water droplets. The one-stage identification YOLOv2 [20] algorithm was
developed and tested for a wide range of surface flaws on steel sheets, as well as against several
interference effects caused by false defects. Although the approach can detect surface flaws
in hot-tied steel sheets with an average mAP of 92.54%, the detection speed of just 14 FPS
prevents real-time detection. Xu Qian et al. used a modified YOLOv3 [21] network structure for
the detection of surface defects in steel plates, reducing the model size of YOLOv3 by using a
lighter MobileNet [22] network model, adding a cavity convolutional neural network [23] to the
network to improve the defect detection capability of steel plates, and adding the Inceptionv3
structure to the network to make the number of layers richer.

In this paper, a defect detection technique for YOLO-ACG is proposed. First, the
model’s detection accuracy and speed have significantly increased thanks to the use of
GhostNet as the replacement for the backbone network of CSPMakenet53 in the YOLOv4
network. Secondly, by replacing the spatial convolutional pooling pyramids at different
scales in the original YOLOv4-Ghost network with more accurate spatial convolutional
pooling pyramids in the null space, the focus of the model on the significant regions of the
feature map target is increased and the perceptual regions of the feature map are enhanced
by combining the semantic information of the context. Finally, the pyramid network
structure of feature fusion with spatial attention mechanism is embedded in the network
design, and the loss of information at the edges of the feature map is addressed by using the
FPN structure to connect the fusion of two channels from top to bottom, which facilitates
the fusion of information at different scales. The experimental results demonstrate that the
YOLO-ACG algorithm can detect surface flaws in steel sheets more quickly and accurately
than other lightweight methods, meeting the expectations of industrial inspection. The
article will be followed by a more detailed analysis of the YOLO-ACG algorithm in terms
of network structure and experimental data.

2. Methodology

2.1. The YOLOv4 Backbone Network

The YOLO (You Only Look Once) algorithm was put forth as a ONE-STAGE target
detection technique by Redmon et al. [24] in 2016. The fundamental idea behind the
YOLO algorithm is to approach the object recognition problem as a regression problem
and utilize a convolutional neural network [25] structure to directly forecast the bounding
box and category probabilities from the input image. The fourth iteration of the YOLO
algorithm, YOLOv4, employs a variety of algorithmic network architectures, including
feature pyramid networks and complete convolutional networks. The CSPDarknet53
backbone network, which is seen in Figure 1, replaces the YOLOv3 algorithm’s Darknet53
backbone network topology. Additionally, YOLOv4 use a Mish function for the activation
function, logistic regression for the categorization of images, and a feature pyramid network
for multi-scale target detection, all of which maintain a high accuracy rate and ensure real-
time monitoring.

The YOLOv4 algorithm’s backbone network is CSPDakrnet53, which is also one of
the best backbone networks. CSPDarknet53 generates three outputs, designated P3, P4,
and P5, after applying convolutional layers 1 × 1 and 3 × 3. In this process, P3 and P4
are convolved once for 1 × 1 and then input to the enhanced feature extraction network
for feature fusion. P5 is convolved three times and input to the void pyramid pooling
layer, with the pooling results being input to the enhanced feature extraction network for
feature fusion.

2.2. GhostNet

Yolov4-ghost will replace the current YOLOv4 backbone network with the GhostNet
module [26], making the network lighter and easier to deploy on mobile terminals. The head
network uses a PAN (path aggregation network) network structure, while the backbone
network consists of convolution, spatial pyramid pooling (SPP), and GhostBottleneck.
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Figure 1. CSPDarknet53 backbone network.

GhostBottleneck is replaced by GhostNet as the network’s hub. In place of other
network modules, a plug-and-play reusable module called GhostBottleneck dramatically
decreases the computational load and model volume of method models. Two Ghost
modules are stacked to create a GhostBottleneck. The primary goal of the first Ghost
module is to enable the addition of additional channels and dimensions to the feature
extraction, usually in the form of an extension layer. The second Ghost module checks to
see if the feature extraction dimension still matches its input after lowering the number of
channels. The input and output of the two Ghost modules are finally connected. When the
second Ghost module is utilized, the ReLU function is not. Because of the variation in the
input data distribution between the front layer and the back layer following the activation
function, constant matching is required, which reduces training efficiency.

2.3. Loss Function

Steel plates can have a wide variety of imperfections, so the algorithm used in the
detection process needs to be extremely precise to identify the types and locations of flaws.
The three components that make up the loss function are as follows: (1) confidence loss;
(2) classification loss; and (3) bounding box regression loss.
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where Wobj
ij represents whether the jth anchor box is in the predicted ith grid, Cj

i is rep-
resented by the confidence that the jth bounding box in the ith grid has produced, Pi,j

131



Sustainability 2023, 15, 3733

represents the objective function’s discriminant, Ĉj
i shows the measurement’s actual value;

P̂j
i (c) is represented as the expected likelihood that the jth bounding box in I grids belongs

to c; Pj
i (c) is defined as the actual likelihood that jth bounding box in ith grid belongs to c.;

dst, d as the intersection of the true and anticipated boxes, ρ is represented by the location of
the dst, d centroid. In Figure 2, where the square box represents the prediction box and the
rectangular box represents the real box, c is the diagonal distance between the minimum
closed loops of the two boxes.

 

Figure 2. Anchor box.

3. Our Approach

3.1. YOLO-ACG Algorithm

This study proposes the three-part YOLO-ACG network model, which is based on the
YOLOv4 algorithm and is visible in Figure 3. It includes a backbone network, a feature
fusion network, and a detection head network. RGB images with a three-channel output
are used as the input. The first step is to enlarge the feature scale of the image to 52 × 52,
26 × 26 and 13 × 13 for image information screening and extraction through the P3, P4, and
P5 levels of the backbone network. Second, the extracted results are sent to the CBM and CA
attention mechanisms, and the ASPP module is added to the output of the extracted features
to enhance the effective recognition of target defect differences by merging global and local
characteristics with various perceptual fields. The CA attention mechanism then reinforces
the output features to improve their location correlations and interactions across latitudes.
The problem of the higher-layer network losing the feature information of the lower-
layer network during the information extraction process is effectively resolved by fusing
the extracted three-feature layers with various semantic information, passing the feature
information, and allowing the feature information to enter the feature fusion network after
the CA attention mechanism is finished. Finally, the non-maximal suppression algorithm
(NMS), whose thresholds are used to further filter the redundant anchor frames during
the NMS processing, is combined with the center distance factor of the prediction frame to
create the final prediction frame.

3.2. Ghost Module

The redundancy of feature maps in neural convolutional networks is one of the most
important features. When the feature maps are output for visualization, there are many
outputs with very similar features, which can be obtained by simple linear transformations
without complicated operations. As shown in Figure 4, the working principle of the
standard convolution and Ghost modules are presented separately.

As shown in Figure 4a for standard convolution, although ordinary convolution
extracts features by using a large number of convolutions, and thus, generates a feature
map, the excessive number of convolution kernels with the number of channels generates
redundant information and leads to an increase in computation. Additionally, the Ghost
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module in Figure 4b separates the regular convolution into two parts, extracts the partial
convolution to create the feature map, and then efficiently creates the whole feature map
using straightforward linear operations.

 

Figure 3. YOLO-ACG network model.

Figure 4. Standard convolution and Ghost module.

To reflect the benefits of Ghost convolution in convolutional computing, the input
feature map’s width, height, and channel count are all assumed to be w, h, and c, re-
spectively. The output after one convolution is n ∗ h′ ∗ w′, where k and d are the sizes
of the linearly variable convolution kernel and standard convolution kernel, respectively.
Equation (4) illustrates that the amount of convolution computation performed in the
Ghost module serves as the denominator and the numerator of the equation, respectively.
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Comparing the two convolutional calculations reveals that for the same parameters, the
normal convolutional computation is s times larger than the convolutional computation in
the Ghost module.

rs =
n·h′ ·w′ ·c·k·k

n
s ·h′ ·w′ ·c·k·k+(s−1)· n

s ·h′ ·w′ ·d·d
= c·k·k

1
s ·c·k·k+ s−1

s ·d·d ≈ s·c
s+c−1 ≈ s

(4)

3.3. Improved ASPP Module

The SPP [27] structure serves as the pyramidal pooling module for the whole YOLOv4
network. Large numbers of picture features must be stored in the SPP structure, and
feature extraction from the feature map requires laborious multi-stage training that takes
too long. The ASPP structure addresses the drawbacks of SPP by substituting the pooling
process in the SPP structure with null convolution, which is typically utilized as the
global feature extraction of the feature image and can be employed in the feature map
with emphasis on the picture, preventing the loss of image data, although improving the
semantic segmentation ability of the feature map and enhancing the perceptual field also
results in the loss of information details on the edges of the feature map. The ASPP structure
is a good answer to the aforementioned issue since it increases the perceptual field of the
feature map without losing the finer details of the edge information.

The ASPP structure has two parts, the first part consists of an 1 × 1 convolutional
layer and three 3 × 3 null convolutional layers with sampling rates of [6,12,18], respectively,
whose convolutional kernels have a size of 256; the second part is a convolutional operation
of 1 × 1 by global level pooling, and the same convolutional kernels also have a size of
256. Figure 5 depicts the ASPP module’s structural layout. The method of null convolution
and upsampling and the multiscale structure are used to realize the feature extraction of
images in the environment of high resolution and perceptual field. This makes a significant
improvement in the perceptual field of the feature image and the processing of the details
of the edge of the feature image. The expansion rate is introduced in the convolution layer,
expressed as the number of zero values in the convolution kernel.

 
Figure 5. ASPP module.

3.4. CA Attention Mechanism Module

It was discovered throughout the target detection procedure that there was a lack
of effectiveness in the detection of subtle faults. To solve this issue, the network was
enhanced with the CA (coordinate attention) spatial attention mechanism [28], which
increases the significance of the location relationship and cross-latitude interaction on
the channel attention mechanism and improves the accuracy and sensitivity of the entire
network model to the information and location of the defective targets. To solve this
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issue, the CA (coordinate attention) spatial attention mechanism was incorporated into
the network to increase the significance of its location relationship and cross-latitude
interaction on the channel attention mechanism, making the entire network model more
accurate and sensitive to the information and location of the defective targets. Figure 6
depicts the structure of the added CA attention network, which involves pooling the feature
maps globally to obtain feature information in both directions. Sub-associative fusion and
1 × 1 convolutional transforms were then used to account for feature variation; finally,
the integrated feature maps were divided into two feature maps with an equal number of
channels by two 1 × 1 convolutions through transformation before being output by the
added CA attention network. The CA module encodes the feature map’s precise location
to produce the width and height, such as the output concatenate for feature fusion, which
is represented in Equation (5); Equation (6) represents the feature transformation of two
independent features to make the input’s dimensionality consistent; combining gn and gm

to create a weight matrix in Equation (7) represents the outcome.

f = β(F([zn, zm])) (5)

gn = δ(Fn( f n)), gm = δ(Fm( f m)) (6)

ya(i, j) = xa(i, j)× gn
c (i)× gm

c (j) (7)

where f denotes the mapped feature map, β denotes the nonlinear activation function,
zn and zm denote the horizontal and vertical position relationship, gn and gm denote the
feature map after the sigmoid output of two identical number of channels. Finally, xa
denotes the connected jump feature information.

Figure 6. CA attention network.

4. Experimental Preparation

4.1. Test Environment

The experimental platform is Win10 OS, CPU is 12th Gen Intel(R) Core(TM) i7-12700KF
3.60 GHz; memory is 64 GB; GUP is NVIDIA GeForce RTX3090Ti.Pytorch 1.10.2 is used;
the software runs in Anaconda 3.6; Cuda 10.0 and Cudnn 7.5 were installed to help speed
up the GUP process, and Tensorflow 1.13.1, Opencv4.1, and Numpy 1.14.2 were installed
in the environment. The auxiliary databases were installed to make the code run correctly.
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4.2. Production of Data Set

In terms of data set, it was discovered that the three types of flaws that have the most
impact on the quality of steel plate during the identification of defects in steel plate were
weld, hole, and scratch. The number of feature photos offered by these three categories
of steel plate defects was insufficient to meet the training needs, even though the existing
data collection of the surface defects of German DAGM steel plate has a total of 10 types of
steel plate defects. Therefore, the data set was expanded by combining the actual scene
shooting with the public data set. A total of 4500 defect feature images were obtained from
the entire self-made data set through on-site collection and selection of public data sets.
Because it was discovered that the format and size of the feature map would influence the
detection efficiency during the detection process, LabelImg labeling software was used to
label the area of each type of image in proportion to the area to be labeled, and the length
and width of the image were less than or equal to 3:1. This will help to better train the
neural convolution network model. XML files should be used to store critical data from
marked defect boxes in order to apply it to neural convolution network learning.

The target’s proportion in the image varies slightly as a result of variations in the
camera’s viewing distance, and the model’s capacity for adaptation is reduced by the
various target sizes. The method of random scaling, clipping, and distribution of the
logarithmic data set, which is more accurate for the training of the data set, was utilized to
carry out the random splicing of photos in the preprocessing stage to tackle this problem.
Figure 7 displays an illustration of data enhancement.

 

Figure 7. Example of data enhancement.

5. Results and Discussion

The self-made data set utilized in this experiment randomly separated the training
set and test set at a ratio of 6:4. Several ablation experiments were then set up to assess
the effects of each model improvement on the training effect and to choose the best model.
The usefulness of the proposed algorithm was further confirmed by several sets of com-
parison experiments with the better steel defect detection methods already in use, and the
superiority of the algorithm was assessed by the average detection accuracy (map) and the
detection speed (FPS).

5.1. Training Model

The experiments in this paper were carried out in accordance with the predetermined
parameters: the image input size was 416 × 416; the epoch was set to 300 rounds; the
batch size was 128 for the first 50 rounds and 64 for the last 250 rounds; the learning rate
was 1 × 10−2 for the first 50 rounds and 1× 10−3 for the last 250 rounds; momentum was
the amount of stochastic gradient descent in order to obtain a better convergence effect,
momentum was set at 0.937. Momentum is the expression of the reduction in the learning
efficiency of the initialization of the weights in terms of momentum. Figure 8 depicts the
loss curve during the training phase.
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Figure 8. Loss curve during training.

It can be observed from the figure that the loss value decreases continuously as the
epoch increases, and when the training proceeds to 50 rounds the loss curve is basically
in a stable state without generating an overfitting situation, and the loss value of the
YOLO-ACG algorithm converges to about 0.19 and 0.14 by increasing the accuracy of the
recognition model, so the overall parameter setting of the algorithm is reasonable.

5.2. Comparison Experiment

The YOLO-ACG method is compared with current popular detection techniques, such
as YOLOv4, YOLOv4-MobileNetv1, YOLOv4-MobileNetv2 [29], YOLOv4-MobileNetv3,
YOLOv3-tiny and YOLOv4-tiny, in a self-made data set, as shown in Table 1, to confirm
that the algorithm’s improvement is more genuine and reliable.

Table 1. Data set to compare the experimental results.

Model mAP Model Size/MB FPS

YOLOv4 96.35% 244.7 85.3
YOLOv4-MobileNetv1 88.39% 40.95 47.6
YOLOv4-MobileNetv2 89.52% 39.06 40.1
YOLOv4-MobileNetv3 89.75% 39.99 43.2

YOLO-ACG 92.49% 69.82 102.91

The chart shows that when employing a big network model, such as the YOLOv4 [30]
detection method, the algorithm has a very high detection accuracy of 96.35% but the
model’s size is relatively large at 244.7 MB, making it difficult to deploy on mobile devices.
Some lightweight models, Models 2 to 6 in Table 1, enhance the YOLO algorithm. The
comparison results reveal that the lightweight model’s size has been significantly decreased
in comparison to YOLOv4, which is more readily implemented in mobile devices, but
that the model’s detection accuracy has been significantly reduced in comparison to the
YOLOv4 algorithm.

In view of this, the YOLO-ACG network model proposed in this paper takes into
account the computational speed of the model, the detection accuracy, and the size of the
model. Its model size is about 1/4 times that of the YOLOv4 network model, although
slightly higher than that of Table 2–6 models, about 1/3 times that of 2–6 network models.
The suggested approach has unquestionable advantages in terms of operation speed,
reaching up to 103FPS. It surpasses roughly 18FPS, as compared to YOLOv4. It exceeds
by almost two times 2–6 models, realizing high-speed detection. The accuracy of the
YOLOv4-ACG model is around 2% greater than that of the models in Table 2–6, although
being about 4% lower than that of the YOLOv4 model. From the above three aspects, we
can see that YOLO-ACG is more efficient when deployed on mobile devices.
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5.3. Ablation Experiment

The ablation experiment is to improve different modules based on the YOLOv4 Ghost
algorithm and use self-made data sets to conduct training and performance evaluation.
Table 2 shows the comparison of evaluation results of all models.

Table 2. Training results of different algorithm models.

Experiment SPP ASPP SE ECA CBAM CA mAP FPS Size/MB Recall

1
√

89.17% 95.88 43.63 67.34%
2

√ √
88.49% 96.53 44.25 71.42%

3
√ √

88.37% 95.17 44.61 71.91%
4

√ √
87.84% 96.01 44.26 70.42%

5
√ √

88.61% 97.88 43.84 68.77%
6

√
91.64% 97.89 69.57 75.81%

7
√ √

91.09% 94.28 70.23 76.52%
8

√ √
90.49% 96.53 69.63 72.26%

9
√ √

89.76% 95.36 70.26 72.72%
10

√ √
92.49% 102.91 69.12 77.49%

As can be seen from the table, experiments conducted with the introduction of SPP and
ASPP modules in the model reveal that the model size of the algorithm is approximately
1.5 times larger when the ASPP module is introduced than when the SPP module is
introduced. In terms of accuracy, it is about 2% higher than the SPP module. In terms of
recall rate, there is a significant improvement of approximately 8% compared to the SPP
module. The detection speed is also improved compared with the introduction of the SPP
module, which can reach about 98FPS. The comparison of the total ablation experiment
reveals that, despite the model’s size being only slightly larger—by about a third—than
that of the method with the SPP module, it has far faster and more accurate detection. As
a result, the ASPP module is elected as the algorithm’s primary pooling layer. It can be
shown from comparative tests 6–9 that the accuracy and speed of the algorithm in the
detection algorithm with only the ASPP module are marginally improved, while the model
size is slightly decreased, when compared to the introduction of ASPP module and the
addition of SE [31], ECA, and CBAM. By comparing Experiments 6 to 10, it can be seen that
Experiment 10’s model size is only slightly smaller than Experiments 6 to 9’s. In terms of
recall, Experiment 10 exceeded Experiments 6 to 9 by about 2% to 5%, but experiment 10’s
precision is about 3% to 4% higher, and Experiment 10’s speed is about 103 FPS, which is
higher than Experiment 6 to 9’s speed by about 6 to 9 FPS.

The aforementioned studies demonstrate that the revised YOLO-ACG algorithm
approaches are efficient and increase the model’s accuracy in the detection of steel plate
surface flaws. In order to identify steel plate surface flaws more effectively, it possesses
the qualities of quick detection speed, lightweight models, and ease of deployment in
real-world situations.

6. Conclusions

This study suggests the YOLO-ACG method addresses the shortcoming of the YOLOv4
algorithm in handling flaw identification of steel plate data. From the three points below,
the algorithm has been improved. First, lower the model size and substitute the present
YOLOV4 method’s backbone network with the lightweight Ghost module to make the algo-
rithm simple to install on mobile devices. Then, to increase the maximum pooling efficiency
of the YOLOv4 algorithm, the ASPP module is introduced to replace the maximum pooling
layer. This considerably enhances the processing of the feature image’s edge details and
the feature image’s receptive field. Finally, employing the pyramid feature fusion network
CA module enables the enhancement of feature map fusion effectiveness in various scale
spaces and further enhances the analysis of feature maps’ edge information.

From the analysis of the experimental results, the proposed YOLO-ACG target detec-
tion algorithm applied to a homemade data set has a higher mAP of about 3% compared
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to the existing YOLOv4-MobileNet algorithm model. In comparison with the size of the
YOLOv4 algorithm model, the proposed algorithm is about 1/4 of the YOLOv4 algorithm
model. The detection speed of the YOLO-ACG algorithm can reach about 103 FPS, which is
twice as fast as the existing YOLOv4-MobileNet algorithm model. Therefore, YOLO-ACG
target detection has significantly improved the ability to detect defects on the surface of
steel plates and meet the mobile requirements for the real-time detection of realistic scenes.
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Abstract: Despite the growing capabilities of the short-term prediction of photovoltaic power, we still
face two challenges to longer time-range predictions: error accumulation and long-term time series
feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic
power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-
of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series
feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS
module employs correlation analysis and periodic analysis to separate the time series correlation
information, LSTFE extracts multiple time series features from time series data, and one-step TCN
decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean
squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in
contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and
furthermore, the effectiveness of each module has been verified through ablation experiments.

Keywords: transformer; SkipGRU; TCN; photovoltaic power prediction; time series data prediction

1. Introduction

At present, with the rapid development of perovskite solar cell technology [1,2], the
maximum efficiency [3] and stability [4] of photovoltaic power have been greatly improved.
Photovoltaic power is increasingly important in the field of new energy. According to
the data of the International Energy Agency (IEA), the growth rate of global photovoltaic
installed capacity has reached as much as 49%. It is estimated that global photovoltaic
power will reach 16% of the total power in 2050 [5]. At the same time, China is promoting
the construction of a new power system with new energy as the principal part. Photovoltaic
power using solar energy is an important branch of new energy and one of the important
means for China to achieve the goal of carbon neutrality. After the large-scale integration
of photovoltaic power stations into the energy network, the manner by which to accurately
predict photovoltaic power and then accordingly dispatch the power grid has become
an urgent problem to be addressed. Therefore, improving the prediction accuracy of
photovoltaic power is significant for improving the operation efficiency of power stations
themselves and for maintaining the stability of power grids.

Many scholars in China and abroad have carried out a lot of research on the prediction
of photovoltaic power. At present, the mainstream prediction methods focus on traditional
random learning and deep learning methods. In the field of traditional random learning,
literature [6] uses historical weather data and historical power data as inputs of a support
vector machine (SVM) to build a short-term photovoltaic power prediction model, which
has a higher level of accuracy than the traditional autoregressive model (AR) or the radial
basis function (RBF) models. One study [7] proposed a model based on Support Vector
Regression (SVR) and achieved better prediction performance. In the field of deep learning,
recurrent neural network (RNN) structures, such as long short-term memory (LSTM), gated
recurrent unit (GRU), and seq2seq structural models, are widely used to analyze and predict
time series data for such applications as stock price prediction [8], gold price prediction [9],
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traffic flow [10], voice classification [11], etc. The prediction of photovoltaic power can
also be regarded as a kind of time series data prediction, so the above algorithms have
been used to predict short-term global horizontal irradiance (GHI) or comprehensive solar
loads [12,13]. Furthermore, in order to ensure the accuracy as much as possible and reduce
the training time, the GRU network has been applied to short-term photovoltaic power
prediction [14], and the multivariable GRU model [15–17] has been used to predict solar
irradiance or power. Some hybrid models have been applied in the field of photovoltaic
power generation prediction, such as the combination of a deep learning model and a
heuristic algorithm [18,19], the combination of a deep learning model and a traditional
random learning method [20,21], the combination of multiple deep learning models [22,23],
etc. The seq2seq structural model represented by the Transformer series model takes the
photovoltaic power prediction problem as a experimental sample of its model, such as
Autoformer and Informer [24,25]. However, in these models, usually the photovoltaic
power prediction data are only used for prediction; that is, the corresponding weather data
is not fully used, and the time series features of the data are not fully extracted.

Compared with traditional LSTM, GRU, and other models, the Transformer series
seq2seq model can avoid the problem of error accumulation and read longer input data [26],
but it is still limited by the length of the input data. It is difficult for the seq2seq series
model to capture longer time series features. For this problem, [27] proposes long- and
short-time series network (LSTnet) models. The Skip recurrent neural network (Skip RNN)
structure is used to capture more long-term time series features.

Based on the above analysis, the current research mainly focuses on the prediction of
data within a few hours. When applied to predict a longer time range [28] for photovoltaic
power, these methods typically suffer from two major challenges: error accumulation and
long-term time series feature extraction in order to simultaneously extract multiple time
series features in the historical data of photovoltaic power and weather factors, and to
avoid error accumulation. Inspired by the application of LSTM, LSTnet, and Transformer
series models in the field of photovoltaic power prediction, this paper proposes a long and
short temporary correction network (TCNformer), and we verified the model by using the
real data of a photovoltaic station in Australia. According to the experimental results, the
TCNformer model greatly optimizes various indicators compared with LSTM, SkipGRU,
Transformer, and Informer, improving the accuracy of photovoltaic power prediction.

The contributions of this paper include the following:

(1) According to the different impacts of various weather factors on photovoltaic power
generation, a VS module was designed to screen and process data through correlation
analysis and periodic analysis of data.

(2) Aiming at the challenge to extract long-term time series features due to the limitation
of the traditional Transformer, a LSTFE module was designed to extract multiple time
series features through LSTM and a SkipGRU network.

(3) In order to improve the temporal feature extraction and avoid error accumulation,
one-step temporal convolutional network (TCN) decoding was used to realize the
generative prediction.

2. Preliminary

2.1. Time Series Features of Photovoltaic Power Data

According to the literature [29,30], the current photovoltaic power prediction problem
is usually defined as a time series data prediction problem. However, as the time granularity
increases, the degree of the photovoltaic power data affected by external factors increases,
and the self-similarity decreases. The basic photovoltaic power data studied in this paper
are collected at a 15-min granularity, and they are greatly affected by external factors that
have a certain regularity and contingency, so the statistical features of photovoltaic power
data show certain periodicity, abruptness, and contingency.

As shown in Figure 1, the 4-day power history data of a photovoltaic station were
randomly selected, showing obvious periodicity and volatility.
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Figure 1. Graph of 15-min data from 4 continuous days.

As shown in Figure 2, in order to explore the long-term time series features of photo-
voltaic power data, this study employed the classic skills of a seasonal prediction model
to select the historical data of a photovoltaic power station at 8:30 for 4 consecutive years.
Although they show greater volatility, a certain periodicity can still be seen.

Figure 2. Graph of 8:30 data for 4 continuous years.

2.2. LSTM and SkipGRU

LSTM is a classic model in the field of time series prediction. In the prediction process,
LSTM updates the internal state and the external state at the same time, mainly through
three gates: a forgetting gate, an input gate, and an output gate.

The GRU network [31] is a variant of the LSTM network, which combines the three
gates of the LSTM unit into two gates. The SkipGRU module skips the connection layer. By
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sampling at intervals, it can look back for a longer period of time when the length of the
sampling sequence remains unchanged so as to capture the long-term features.

2.3. Self-Attention Mechanism and ProbSparse Self-Attention Module

The calculation formula of a traditional self-attention mechanism is as follows:

Q, K, V = XWQ, XWK, XWV (1)

A(Q, K, V) = so f tmax
(

QKT
√

d

)
V (2)

In the formula, WQ, WK, and WV are the three weight matrices. After random initial-
ization, three vectors, Q, K, and V, are generated according to Equation (1), and then the
result A(Q, K, V) weighted ion mechanism is calculated according to Equation (2). The
result contains the information via the attention of all of the input data.

The ProbSparse Self-Attention proposes to calculate the sparsity measurement of each
query using KL divergence:

M(qi, K) = Ln ∑LK
j=1 exp

(
qikT

j√
d

)
− 1

LK
∑LK

j=1

qikT
j√
d

(3)

Based on the calculated sparsity metric, each key focuses on only u main queries to
achieve probsparse self-attention:

A(Q, K, V) = so f tmax

(
QKT
√

d

)
V (4)

In the formula, Q is a sparse matrix with the same size as q, and it only contains top-u
queries under sparse metric M(q, K).

2.4. Temporal Convolutional Network (TCN) Module

TCN is a variant of a convolutional neural network for processing sequence modeling
tasks. It combines RNN and CNN architectures. TCN performs better than standard
recursive networks on different tasks and data sets, and it demonstrates more long-term
and efficient memory. The main component of the TCN network is Dilate Causal Conv.
Other components are similar to the Feedforward module, which plays a role in deepening
the linear features.

2.5. Problem Definition

The present study abstracts the photovoltaic power prediction problem as a multistep
time series prediction problem, which can be defined as a data series with an input of I × n
and an output of O × 1, where I is the length of the input data, and O is the length of the
output data. For example, under a 15-min sampling frequency, if the historical data of
photovoltaic power in the past 30 days are used to predict the photovoltaic power data in
the future 24 h, the I length is 2880, and the O length is 96.

3. Methodology

3.1. Transformer Based TCNformer Solution

For the time series features of photovoltaic power data, this paper proposed a TCN-
former prediction model. The structure of the model is shown in Figure 3. Based on the
traditional Transformer architecture, the TCNformer model mainly includes four modules:
a variable selection (VS) module, an long- and short-time series feature extraction (LSTFE)
module, an Encoder, and a Decoder.
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Figure 3. The structure of TCNformer model.

The overall TCNformer network design follows the traditional Transformer structure, in
which the Encoder module and the Decoder module are designed with a multilayer structure.

3.2. Variable Selection (VS) Module

Combined with the information shown in Figures 1 and 2, the historical data of
photovoltaic power not only have timing features in the short term, but they also have
certain timing features over the long term. Considering the length of the long-term cycle (as
shown in Figure 2, the cycle is close to 365 days) and the subsequent optimization problems,
it is difficult for the traditional model to capture these timing features at the same time.
So, we designed a VS module to divide the input sequence into three dimensions through
preliminary analysis and selection of the historical data. Then, the results from the VS
module are transferred to the LSTFE module for feature fusion.

dl , ds, dt = VariableSelection(data, input) (5)

In the formula, data ∈ R
I×n, dl ∈ R

Il×nl , ds ∈ R
Is×ns , dt ∈ R

I×nt respectively represent
preprocessed raw data, month-level time series data, week-level time series data, and day-
level time series data. n, nl , ns and nt respectively represent the number of influencing
factors. VariableSelection(·) represents the VS module, and the specific calculation method
is as follows.

Photovoltaic power data often show strong time series features. Although the volatility
is strong, they still have a certain periodicity over a longer time range. In this paper, the
Fourier transform decomposition curve of photovoltaic power data and its influencing
factor data are selected for periodicity analysis [32] in order to obtain the fluctuation periods
of different periodic curves and to provide a certain degree of reference for the analysis of
photovoltaic power prediction. The formula of the Fourier transform is as follows:

X(k) = ∑N−1
n=0 x(n)WnK

N , k = 0, 1, . . . , N − 1 (6)

x(n) = (1/N)∑N−1
n=0 X(k)W−nK

N , k = 0, . . . , N − 1 (7)

WnK
N = e−j(2π/N)kn (8)

X(k) represents the Fourier series, x(n) represents the Fourier coefficient, WnK
N repre-

sents the complex function, k represents the x coordinate in the frequency domain, and N
represents the period.

Photovoltaic power is correlated with a large number of weather factors, especially the
strong correlation between solar radiation intensity and photovoltaic power. In this study,
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the Pearson correlation coefficient was selected for correlation analysis, and the calculation
formula is as follows:

Px,y =
cov(x, y)

σxσy
=

E[(xi − x)(yi − y)]
σxσy

(9)

The VS module processes the month-level time series data, week-level time series
data, and day-level time series data according to the analytical results of correlation
and periodicity.

3.3. Long- and Short-Time Series Feature Extraction (LSTFE) Module

In this study, we designed an LSTFE module, and we used it to extract time series
features from each time scale. The structure of the LSTFE module is shown in Figure 4. The
LSTFE mainly includes the LSTM unit, the SkipGRU unit, and the CycleEmbed unit.

 

Figure 4. The structure of LSTFE module.

We transferred the week-level time-series-related data and the month-level time-series-
related data to the LSTM network and the SkipGRU network in the LSTFE module for
prediction. The prediction results of the LSTM network made full use of the short-term
time series features, while the SkipGRU network made full use of the long-term time
series features:

fl = LSTM(dl) (10)

fs = SkipGRU(ds) (11)

X = Integration(dt, fl , fs) (12)

X0
en = CycleEmbed(X) (13)

In Formulas (10) and (11), fl ∈ R
I and fS ∈ R

I represent the month-level time series
feature extraction results and the week-level time series feature extraction results in the
LSTFE module, respectively. Using the excellent feature extraction capabilities of the LSTM
and the SkipGRU, the extracted feature results were transformed into the input length I of
the Encoder module.

Using the LSTM and the SkipGRU, the time series features at weekly and monthly
levels were extracted, but we were left wondering how to extract the time series features at
an annual level? To solve this problem, we designed the CycleEmbed module.
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The structure of the CycleEmbed unit is shown in Figure 5, including data projection,
position coding, cycle coding, and timing coding.

 

Figure 5. The structure of the CycleEmbed module.

Data projection is based on the results of correlation and periodic analysis, mapping
the output data to the vector of dimension, and aligning the dimensions. The alignment
tool is a one-dimensional convolution filter.

The position coding is calculated in the same way as in Transformer:

P(pos, 2j) = sin

⎛⎝ pos

(2Lx)
2j

dmodel

⎞⎠ (14)

P(pos, 2j + 1) = cos

⎛⎝ pos

(2Lx)
2j

dmodel

⎞⎠ . (15)

In Formulas (14) and (15), j ∈
{

1, . . . , | dmodel
2 |

}
, Lx is the input sequence length, and

dmodel is the Encoder input dimension.
Cycle coding is divided according to the results of periodic analysis and calculation. τ

is the number of cycle data steps, which is determined by the results of periodic analysis
T and the granularity of the data sampling time g; that is, τ = T/g. Then, the cycle
information of the input data is coded according to the results of τ; that is, there are τ
results in cycle coding, Ci = Ci%τ .

Timing coding is used to add the month and year to the coding to extract the longer
time series features. In this way, the annual time series features of the data are introduced
into the codec along with the embedding operation.

Combining the results of the four parts, the output result of the final period embedding
module is the input of the Encoder:

CycleEmbedt[i] = Ui + P(Lx(t − 1) + i) + Ci + Mi + Yi (16)
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3.4. Encoder

The input of the Encoder is the output of the LSTFE module. The structure of the
Encoder is a multilayer network structure. Each layer of the Encoder is mainly composed
of a sparse attention unit and a composition unit.

Sl,1
en = ProbSel f Attention

(
Xl−1

en

)
(17)

Sl,2
en = FeedForward

(
Sl,1

en

)
(18)

Xl
en = Sl,2

en (19)

In Formula (17), Sl,1
en ∈ R

I×dmodel is the calculation result of the sparse attention mech-
anism in the Layer l Encoder module, Sl,2

en ∈ R
I×dmodel is the calculation result of the

Feedforward layer in the Layer l Encoder module, and FeedForward(·) is an important
part of the traditional Transformer network structure which is used to deepen the linear
representation and better extract the features. The Feedforward structure used in this
paper is shown in Figure 6. ProbSelfAttention(·) is the sparse attention mechanism in the
Informer model [24].

 
Figure 6. The structure of the Feedforward layer.

3.5. Decoder

In the Transformer model, the Encoder can be calculated in parallel, but the Decoder
needs to decode step by step. As with the LSTM model, error accumulation will occur. This
study introduced a one-step TCN decoding operation:

X0 = Zeros[O, d] (20)

Xdes = concat(X, X0) (21)

X0
de = CycleEmbed(Xdes) (22)

In Formula (20), X0 is the result of the zero-filling operation. One-step decoding di-
vides the Decoder’s input into two parts through a zero-filling operation. The first I datum
is a known sequence, the last O datum is a sequence to be predicted, and X0

de ∈ R
(I+O)×dmodel

is the Decoder’s input data. At this time, part of the time information of the data to be
predicted is also transmitted to the Decoder through the period embedding module for
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prediction. The prediction process of the Decoder is similar to that of the Encoder, but it
has a more of a self-attention layer than does the Encoder.

Sl,1
de = ProbSel f Attention

(
Xl−1

de

)
(23)

Sl,2
de = Sel f Attention

(
Sl,1

de , XN
en

)
(24)

Sl,3
de = FeedForward

(
Sl,2

de

)
(25)

Xl
de = Sl,3

de (26)

In Formulas (23)–(25), Sl,1
de ∈ R

(I+O)×dmodel is the calculation result of the sparse at-
tention mechanism in the Layer l Decoder module, Sl,2

de ∈ R
(I+O)×dmodel is the result of

matching the sparse attention mechanism in the Layer l Decoder module with the feature
map obtained in the Encoder, and Sl,3

de ∈ R
(I+O)×dmodel is the calculation result of the Feedfor-

ward layer in the Layer l Decoder module. The calculation method of FeedForward(·) and
ProbSelfAttention(·) is the same as above. SelfAttention(·) is the self-attention mechanism.
(See Section 2.3 for the calculation method.)

Xpred = TCN
(

XM
de

)
(27)

Xpred ∈ R
O×dmodel is the final prediction result of TCNfomer, which uses TCN to make

generative predictions. The TCN structure used in this paper is shown in Figure 7.

 

Figure 7. The structure of the TCN.

4. Experiment

4.1. Experimental Design
4.1.1. Data Preparation

The data set included an open-source data set of photovoltaic power conducted on a
solar farm in Australia [33] from 2015 to 2016. The time interval is 15 min, there are 96 data
points every day, and there are 70,176 samples in total. Each sample contains 13 data,
including a time stamp, received active energy, average value at the current stage, active
power, performance ratio, wind speed, weather temperature in Celsius, weather relative
humidity, global horizontal radiation, diffuse horizontal radiation, wind direction, daily
rainfall, global tilt of radiation, and diffuse tilt of radiation. The test set used data from the
last 2 months of 2016.

All data for two years are shown in Figure 8. The x-axis is the number of days, the
y-axis is 96 time points per day (sampling granularity is 15 min, and 24-h data processing
includes 96 event points), and the z-axis is the photovoltaic power data.
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Figure 8. Historical data set of photovoltaic power.

4.1.2. Data Preprocessing

Since the dimensions between variables are not identical, linear normalization is
required for prediction, and the conversion function is:

xnorm =
xi − min(xi)

max(xi)− min(xi)
(28)

In the formula, xnorm is the preprocessing result of the data after linear normalization;
xi is the variable input value to be normalized; max(xi) is the maximum value of the
variable in the original dataset xi; and min(xi) is the minimum value of the variable in the
original data set xi.

4.1.3. Evaluation Index

In order to verify the prediction accuracy of the model, the root mean square error
(MSE), the average absolute error (MAE) and mean absolute percentage error (MAPE)
were used as the evaluation indicators of the model performance. The specific calculation
formula is:

MSE =
1
N

n

∑
i=1

(Xi − X̂i)
2 (29)

MAE =
1
N

N

∑
i=i

∣∣Xi − X̂i
∣∣ (30)

MAPE =
100%

N

N

∑
i=i

∣∣∣∣Xi − X̂i
Xi

∣∣∣∣ (31)

Xi is the actual output value of the i th data point of the test set; X̂i is the output
prediction value of the i th data point; and N is the total number of samples in the test set.

4.1.4. Experimental Environment and Parameter Setting

The experimental environment used an Intel i7-9700 K processor and an NVIDIA
GeForce RTX 3080Ti graphics card, and the algorithm model used Python 3.8 as the pro-
gramming language. The model-related network was built based on the open-source
machine learning framework PyTorch. The Python libraries directly used in the experiment
included: pandas, numpy, matplotlib, torch, math, and time. In this study, the random
search method was used to determine the final super parameter settings. The final super
parameter settings are shown in Table 1.
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Table 1. Model parameter setting.

Parameter Value

LSTM hidden layers 2
SkipGRU hidden layers 2

Encoder layers 2
LSTM hidden unit 64

SkipGRU hidden unit 64
Decoder layers 1

dmodel 512
batch-size 8
learn_rate 0.0001

epochs 2000

4.2. Variable Selection Results and Discussion

The VS module in the long- and short-sequence correction network includes correlation
analysis and periodicity analysis. The results of the correlation analysis on photovoltaic
power are shown in Table 2.

Table 2. Results of correlation analysis.

Variable p

Wind speed 0.2096
Temperature 0.4246

Humidity −0.4072
Direct radiation 0.9690

Scattered radiation 0.5183
Wind direction −0.0444

Rainfall −0.0244

It can be seen from Table 2 that photovoltaic power is positively correlated with direct
radiation intensity, scattered radiation intensity, temperature, and wind speed, while it
is negatively correlated with humidity, wind direction, and rainfall. According to their
numerical values, the data were filtered by 0.1. It can be seen that the correlation between
direct radiation intensity and photovoltaic power is the largest, while variables such
as scattered radiation intensity, temperature, humidity, and wind speed have a certain
correlation with photovoltaic power, which show that these influencing factors have a
certain degree of impact on the photovoltaic power, and the impact decreases in turn.
Although wind direction and rainfall are negatively related to the photovoltaic power, the
value is too small to impact the output.

It can be seen from Table 3 that the cycle of photovoltaic power, humidity, direct
radiation intensity, and scattered radiation intensity is 24.03 h, approximately 1 day, and
the cycle of the wind speed, wind direction, and rainfall is 0.17 h, which can be regarded as
a periodicity. The temperature cycle is 8760 h; that is, the temperature cycle conforms to the
changes in the four seasons, and the above results basically conform to the natural logic.

Table 3. Results of periodicity analysis.

Variable Cycle

Active power 24.03
Wind speed 0.17
Temperature 8760

Humidity 24.03
Direct radiation 24.03

Scattered radiation 24.03
Wind direction 0.17

Rainfall 0.17
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By correlation analysis, five influencing factors should be selected, including direct
radiation, scattered radiation, temperature, humidity, and wind speed. Three influenc-
ing factors, namely, direct radiation, scattered radiation, and humidity, were screened
through periodic analysis. Finally, the time series related variables of photovoltaic power
were screened through the VS module, those being direct radiation, scattered radiation,
and humidity.

4.3. Prediction Results of Different Prediction Steps

In order to explore the prediction performance of each model under different predic-
tion steps, this study selected LSTM, SkipGRU, Transformer, and Informer to compare
with TCNformer.

The results are shown in Table 4. It can be seen from the results that, when the number
of prediction steps is 1, the MSE errors of the five models have little difference. With the
increase in the number of the prediction steps, the LSTM model demonstrated the largest
error growth rate, and the error accumulation is obvious. Informer and TCNformer use the
generative prediction method, so the error was relatively stable, and the error accumulation
was low. The TCNformer model proposed in this paper not only had a low level of error
accumulation, but it also had the lowest MSE error. In order to more intuitively observe
the error accumulation in the models, the prediction results were visualized, as shown in
Figure 9.

Table 4. Prediction Accuracy (MSE) Results of periodicity analysis.

LSTM SkipGRU Transformer Informer TCNformer

1 0.1409 0.1272 0.2188 0.2273 0.0395
8 0.6859 0.3554 0.3135 0.3623 0.1080
16 0.9509 0.3852 0.3411 0.3644 0.1149
24 1.1062 0.4077 0.4562 0.5756 0.1322
32 1.3072 0.3501 0.6278 0.6356 0.1232
40 1.2668 0.4535 0.7122 0.5967 0.1300
48 1.4285 0.4546 0.6979 0.5571 0.1399
56 1.3687 0.5232 0.9031 0.6691 0.1234
64 1.4027 0.7204 0.8710 0.6438 0.1258
72 1.2783 0.7330 0.9645 0.7385 0.1377
80 1.3385 0.9499 0.8236 0.6510 0.1360
88 1.3601 1.1452 1.1139 0.7544 0.1382
96 1.4285 1.1624 1.1186 0.7455 0.1349

4.4. Prediction Performance of Different Models

In this experiment, each model was trained five times in a 24-h (96 prediction steps)
scenario, and the average value was taken. The final test set prediction results are shown in
Table 5.

Table 5. The 24-h scenario prediction results.

MSE MAE MAPE Train Time (s) Run Time (ms)

LSTM 1.4285 0.7536 131.6989 139.7855 0.5945
SkipGRU 1.1624 0.4303 64.8742 88.7615 0.4832

Transformer 1.1186 0.5385 3.7577 76.1636 2.2314
Informer 0.7455 0.3779 2.9381 16.9919 1.8821

TCNformer 0.1349 0.1888 2.4987 153.4314 1.2910

As shown in Table 5, the TCNformer performs best according to the three indicators
of the MSE, MAE, and MAPE. Compared with the time series prediction model Informer,
the MSE, MAE, and MAPE decreased by 81.90%, 50.03%, and 14.98%, respectively. The
training time (153.43 s) and running time (1.29 ms) of TCNformer are relatively long, but
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considering the 15-min sampling granularity and 24-h prediction scenario, the training
time and running time do not affect the practical application of TCNformer.

Figure 9. Prediction performance of the different numbers of prediction steps for each model.

As shown in Figure 10, this we visualized the prediction results of TCNformer using
the test data set. The prediction results shown in the figure are 30 sets of 24-h prediction re-
sults, with little deviation when compared with the real data. It can be seen that TCNformer
has a high level of accuracy and low number of errors.

Figure 10. Results of the TCNformer model.

4.5. Error Analysis

Because the prediction of TCNformer model is a time series, we did not calculate the
standard error for multiple series. Instead, error analysis was carried out through the MSE
of prediction and ground truth. Figure 11 shows the standard error diagram. The error
bar in the diagram represents the standard error. Table 6 shows the mean value, standard
deviation (SD), and standard error (SE) of the error under different sample numbers.
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Figure 11. The standard error diagram of the MSE.

Table 6. Results of error analysis.

Sample Numbers Mean SD SE

100 0.3482 0.1253 0.0125
600 0.1893 0.1977 0.0081

1100 0.1574 0.1798 0.0054
1600 0.1543 0.1584 0.0040
2100 0.1264 0.1507 0.0033
2600 0.1349 0.1394 0.0027

As shown in Table 6 and Figure 11, with the increase in the number of samples, the
standard deviation and standard error gradually decreased, and the average value was
closer to the average value of the overall sample. Therefore, the prediction result of the
TCNformer model has a relatively stable level of error and a high level of reliability.

4.6. Ablation Experiment

In order to verify the effectiveness of each optimization module of the TCNformer
model, we conducted ablation experiments, and we removed three innovative modules
from the TCNformer model for comparative experiments, that is, we set them separately:

Experiment 1: Removal of the VS module.
Experiment 2: Removal of the long- and short-time series feature extraction module.
Experiment 3: Removal of the seq2seq structure, and use of the VS module + long-

and short-time series feature extraction module + full connection network.
Experiment 4: Removal of one-step TCN decoding.
Experiment 5: Use of the complete TCNformer model.
As shown in Table 7, the three innovations proposed in this paper are a VS module,

an LSTFE module, and the seq2seq generative model structure combined with Informer
and Transformer. No matter which module was removed, the error of the model was
increased. When the seq2seq model structure was not used, the error was the largest, and
the VS module had the smallest impact on the overall model, but it still caused a decline in
accuracy. From these data, it can be concluded that the TCNformer model proposed in this
paper is effective, and its innovative modules are useful.
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Table 7. Results of ablation experiment.

MSE MAE MAPE

Experiment 1 0.4480 0.8385 3.5746
Experiment 2 0.6997 0.5339 3.4223
Experiment 3 0.8610 0.5288 4.2124
Experiment 4 0.3695 0.1949 2.7078
Experiment 5 0.1349 0.1888 2.4987

5. Conclusions

In this paper, a TCNformer model was proposed for photovoltaic power prediction,
and we can draw the following three conclusions based on the experiment results:

1. The TCNformer model adopts the Transformer structure and introduces the sparse
attention mechanism into the Informer model. The experimental results show that the
photovoltaic output prediction accuracy is improved effectively.

2. The VS module, LSTFE module, and one-step TCN decoding extract more efficiently
the impact of multiple time series features and other weather factors on photovoltaic
power by classifying the data based on the time series, periodicity, and correlation.

3. Compared with the LSTM model and the Transformer series model, the TCNformer
model has a higher level of accuracy in multistep prediction, but there is still room
for optimization when the prediction range is further enlarged. In the follow-up
study, we will focus on ways to solve the multistep prediction problem with a further
increase in the time dimension.
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Abstract: This study considers two-stage bilateral matching of teams and scientific and technological
talents in new R&D organizations and proposes a two-stage dual-objective bilateral matching method
based on prospect theory. The matching of teams and scientific and technological talent in new R&D
institutions is divided into two stages: elimination matching in the first stage and selection matching
in the second stage. In the first stage, the evaluation index of the team to talent and the cost index of
talent are constructed, the dual reference points of peer and expectation are set for evaluating talent,
and the bottom-line reference points are set for talent cost. The comprehensive prospect value in the
first stage is calculated based on prospect theory, and the matching in the first stage is completed
based on the dual-objective optimization model with the highest evaluation value and the lowest
cost value. In the second stage, using the matching results of the first stage, the team evaluates the
talent again, while the talent ranks the team to obtain the satisfaction value, and completes the second
stage of bilateral matching based on prospect theory and the dual-objective optimization model with
the highest evaluation value and the highest satisfaction value. Finally, a case study and method
comparison show that the proposed method is feasible and effective.

Keywords: prospect theory; new R&D institutions; scientific and technological talent; performance
assessment; bilateral matching

1. Introduction

In China, new R&D institutions, with their impressive innovation achievements and
rapid development momentum, have developed into the pioneering force for source science
and technology innovation and development of strategic emerging industries in various
regions, creating a new model of science and technology R&D that leaps and bounds to
enhance source innovation capacity and rapidly realize industrialization. The new R&D
institution is a “four different”, not exactly like a university, with different culture; not
exactly like a scientific research institute, with different content; not exactly like an enter-
prise, with different objectives; not exactly like an institution, with different mechanisms.
In particular, its essential characteristics of marketization, industrialization, diversification,
socialization and internationalization also foreshadow an important direction for the reform
and development of scientific research institutions in China.

The development of science and technology cannot be separated from talent, and
scientific and technological talent is the first resource for the development of new R&D
institutions. With the development of new R&D institutions, the requirements for scientific
and technological talents are becoming increasingly high-end and comprehensive. First,
they should be patriotic and dedicated, transforming their love for the country and the will
to strengthen the country into the act of serving the country. Second, they should be active
in innovative thinking and conduct research oriented by the scientific and technological
needs of the country and the market as well as “high precision and shortage” projects. At
the same time, new R&D institutions should also create various conditions for all kinds of
talent to settle down, feel at ease and work, respect talent and creativity, innovate talent
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assessment mechanisms, and improve the assessment system of scientific and technological
talent oriented toward innovation ability, quality, and contribution. There are many teams
within the new R&D institutions, and these institutions give the teams a lot of autonomy to
choose the direction of scientific research independently, issue performance and rewards
independently, and implement the science and technology management system indepen-
dently. Therefore, teams of new R&D institutions also have autonomy in selecting and
employing people. The two-way choice between a team of new R&D institutions and
scientific and technological talents is the issue of bilateral matching. On the one hand, the
team of the new R&D institution looks for scientific and technological talents according
to its own needs, and each team will propose its own personalized evaluation index that
classifies and selects scientific and technological talents through an evaluation based on a
personalized index, which will realistically consider the benefits and costs together. On the
other hand, the tech talent will also look for teams according to their own needs; there will
also be a ranking of the teams.

To study the bilateral matching of new R&D institutions and talents, the author
searched the SCI literature on the performance assessment of new R&D institutions, perfor-
mance assessment of scientific and technological talents, and bilateral matching. Moliterno
et al. [1] proposed that performance comparison is central to the behavioral theory of the
firm, that is, companies assess their performance based on their own prior performance
(“historical comparison”) and the performance of other organizations (“social comparison”)
and base subsequent organizational changes on this performance feedback. Bode and
Singh [2] argue that the provision of opportunities for employees to participate in social
activities helps attract, motivate, and retain employee talent. Abramo et al. [3] proposed
that the ultimate goal of research innovation activities is not publication, but scientific
and technological progress useful to science or practice, and that there is no incentive to
produce low-value papers if innovation performance is assessed and funds are allocated
based on the total impact of publications, rather than on the number of publications. Yin
et al. [4] proposed the use of a blend of subjective and objective methods to assess green
technology innovation capabilities which should consider indicators in four areas: input
elements, technological output, economic aggregates, and social effects. Sun and Cao [5]
point out that Chinese academic research on innovation has paid particular attention to
R&D expenditures, performance assessments, regional innovation ecosystems, the role of
state-owned enterprises in innovation, and the role of the Chinese Communist Party in
innovation. Mao et al. [6] show that organizational innovation climate, knowledge manage-
ment capabilities, and internal collaboration networks have a significant positive impact
on innovation performance, and that internal collaboration networks have a significant
mediating role between them. Chomać et al. [7] showed that consumer knowledge and
preferences in the field of renewable energy determine the diffusion of RES solutions in
personal use, thus stimulating the progress of energy transition. In general, to evaluate the
performance of new R&D institutions, first, the evaluation indicators should be as com-
prehensive as possible, taking into account both subjective and objective factors. Second,
in addition to assessing the established results, the innovation potential should also be
assessed. Third, more attention should be paid to the quality of publications rather than the
quantity. Fourth, the investment of funds and scientific and technological talents should be
increased; and fifth, the economic promotion benefits as well as the social effects generated
should be considered.

Chamorro et al. [8] discussed three methods for assessing talent: machine-learning
algorithms, social sensing technologies, and user experience. Pillai et al. [9] investigated
the application of AI technologies in talent acquisition, designed technology-organization-
environment (TOE) and task-technology-adaptation (TTF) frameworks and proposed a
model to explore the adoption of AI technologies for talent acquisition. Jiang et al. [10]
proposed the development of technological talent in line with the globalization context and
to integrate talent acquisition, research and development, technological innovation, and
enterprise development. Wiblen and Marler [11] propose the role of digitization in talent
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identification, showing how the same digital talent management techniques can produce
different ways to identify talent. Chaudhuri et al. [12] argued that company management
with PhDs in key roles outperforms similar company management. Agarwal et al. [13]
argue that stable shared leadership is at the root of firms becoming the center of gravity
of their industry, accounting for the largest share of output. In general, the performance
assessment of scientific and technical talents should be conducted by considering both
their results and their potential. Second, regular, immediate, and dynamic assessment of
scientific and technical talents should be conducted to form a digital database of assess-
ments. Third, the capabilities of scientific and technical talents should be integrated with
the development of the company and linked to economic and social benefits; and fourth,
an artificial intelligence-based approach should be provided, and input assessment data
can be quickly and accurately predicted and reasoned to draw assessment conclusions.

Eirinakis et al. [14] propose a time-optimal algorithm that identifies all stable worker-
firm pairs and allocations under pairwise stability, individual preferences, and max-min
criteria. Wang et al. [15] studied the bilateral matching decision problem using hetero-
geneous information and attribute associations. Kanoria and Saban [16] introduced a
dynamic bilateral search model in which strategic agents incur costs to discover their value
for each potential partner and can do so nonsimultaneously. Nguyen et al. [17] developed
a many-to-one matching market model in which agents with multiunit demand aim to
maximize the underlying linear objective subject to a multidimensional backpack constraint.
Johari et al. [18] proposed that, in a service platform, the job type is known, but the worker
type is unknown and must be learned by observing the matching results. Deng et al. [19]
find that buyer and supplier conformance levels, conformance types, and inconsistency
directions affect project performance. Chen et al. [20] found that matching the nature of
CEO human capital and the type of acquisitions they make is associated with stronger per-
formance. Chomać et al. [21] showed that global electricity price increases can be effectively
reduced by conducting feasibility and matching analyses of renewable energy sources
based on consumer investment and willingness to support them. In general, research on
bilateral matching should consider the characteristics of heterogeneity, uncertainty, and
incompleteness of input information. Second, improve the satisfaction and efficiency of
bilateral matching based on certain methods. Third, consider multistage decision models;
and fourth, match dynamically, conduct dynamic assessments, tap dynamic preferences,
and consider dynamic reference point values, among others.

New R&D institutions have the mission of “high precision and shortage” of science
and technology innovation, the mission of diversified and flexible reform of the science
and technology system and mechanism, the mission to respond to market demand and
generate economic and social benefits, and the mission of gathering high-end science and
technology talents. It is particularly important and meaningful to study the matching of
new R&D institutions with scientific and technological talents. Based on the fact that there
is particularly little literature on the bilateral matching of new R&D institution teams and
scientific and technological talents, this study applies the idea of bilateral matching. First,
the new R&D organization team and technology talent are divided into two phases: the
elimination matching phase and the selection matching phase. In the first stage of matching,
since the number of talents is greater than the number of teams and a team can only match
one talent, there are bound to be talents that are rounded off and cannot be matched, so we
call it elimination matching. In the second stage of matching, the number of talents is equal
to the number of teams, so we call it selection matching. Second, elimination matching
considers the team’s assessment of talent and the cost of talent introduction, and selection
matching considers the mutual assessment of team and talent. Third, elimination matching
considers the interval grey number to characterize the uncertain assessment and cost values,
and selection matching considers the mean value of expert assessment and the talent’s
preference order value. Fourth, consider the psychological factors of decision makers,
set a historical and desired double reference point for assessment value, set a bottom-
line reference point for cost value and preference order value, and calculate the prospect
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value based on the reference point. Fifth, consider double objective matching, eliminate
matching considering the double objective of maximum assessment value and minimum
cost value, select matching considering the double objective of maximum assessment value
and maximum satisfaction, reduce the double objective to a single objective, and construct
a 0–1 integer programming optimal matching model. In this paper, the dual objectives are
linear, and for simplicity of calculation, the dual objectives plus the weight information of
the objectives can be simplified to a single objective. In order to make the matching results
optimal, this paper uses 0–1 integer programming for solving the optimal solution.

2. Phase I Elimination Match between the Team of New R&D Institutions and
Scientific and Technological Talents

The matching of new R&D organization teams and technology talents is divided into
two stages. The first stage is the elimination of bilateral matching, that is, each team can
match technology talents, the number of talents is greater than the number of teams, so not
all technology talents can match the team, limited by the number of teams and the number
of matches, there are always technology talents are eliminated in this matching process.
In this study, there are n teams of new R&D institutions, and each team can only match
one technological talent, and there are m technological talents, m > n; thus, so there will be
m-n technological talents are eliminated. Therefore, this stage is referred to as elimination
matching. Elimination matching must consider many factors, because eventually the new
R&D organization has to explain the elimination reason for the eliminated tech talents, so
the method of matching is very demanding.

In the first stage of matching, the highest value of the team’s assessment of talent
is considered, and the lowest value of the introduction cost of scientific and technologi-
cal talent is also considered, historical reference points and desired reference points are
set for the assessment value, bottom-line reference points are set for the cost value, the
psychological factors of the team in the new R&D organization are fully considered, and
scientific and technological talent is better compared, and finally, using the “0–1” integer
planning model for bilateral matching. In the first phase of elimination matching, the total
number of talents was greater than the number of R&D teams. Red smiling faces represent
successfully matched tech talents, and green smiling faces represent unmatched tech talents
that will be eliminated, as shown in Figure 1.

 
Figure 1. Phase I elimination matching chart for teams and talents in new R&D institutions.

2.1. Constructing Indicators for the Assessment of Scientific and Technological Talents by the Teams
of New R&D Institutions

The assessment of scientific and technological talent has new requirements in this new
era. Since new R&D institutions focus on breaking through core technologies, solving “neck”
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problems and transforming results, the development process of new R&D institutions
requires scientific and technological talents to pay more attention to patriotism, technical
potential and transformation ability. In Chinese history, many noble men and women had
a strong sense of concern for the country and the people, and they took the affairs of the
country as their responsibility, and they defended the motherland and cared for people’s
livelihood. No matter what environment we are in, we should love our country and take
the affairs of our country as our responsibility. For example, in 2020, when we were fighting
against the new coronavirus, many outstanding scientific and technological talents emerged
in our country, creating Chinese speed in the field of nucleic acid detection, vaccines, saving
critically ill patients, building hospitals, etc. They are not only a demonstration of scientific
and technological ability, but more importantly, they have a patriotic heart and passion to
serve the country. The technical potential of scientific and technological talent depends on
their experience and personal drive. Graduating from a prestigious university can help
him take fewer detours, critical innovation can keep him challenging new heights, cross-
discipline can give him more inspiration for innovation, and so on. Transformation ability
should first have good communication and collaboration ability, because the projects of
new R&D institutions are usually completed by teams; second, there should be transformed
results that generate economic and social benefits, as well as talent benefits, etc.

The author visited 10 new R&D institutions, researched scientific and technological
talents, reviewed 50 papers on skills and literature on R&D institution development,
and summarized and refined 15 new R&D institutions’ benefit assessment indicators for
scientific and technological talents, as shown in Table 1. Ten new R&D institutions were
located in the Science and Technology Park of Yancheng City, Jiangsu Province. Yancheng
is a coastal city with the largest mudflat wetlands and the largest wind energy. Ten new
R&D institutions belong to different industries: two in the saline rice industry, two in
the cable industry, two in the machinery industry, two in the wind power industry, and
two in the energy industry. I visited the human resources departments of these new R&D
institutions and communicated with the person in charge of their talent introduction,
who generally reflected the high cost of talent introduction and insufficient satisfaction.
They also proposed modifications to our assessment index framework, such as serving
the motherland, graduating from prestigious universities, cross-discipline, and providing
scientific and technological insights.

During my visit, I also found that different teams of new R&D institutions have differ-
ent indicators for assessing scientific and technological talent because their requirements
are different. For example, new R&D organization A has a strict confidentiality sign posted
from the entrance, and there are confidentiality signs everywhere on the stairs and re-
strooms, indicating that the team has a particularly high requirement for confidentiality.
The high-end nature of the technology of the new R&D organization makes the technology
accessible to a certain extent. Any knowledge is public to a certain extent and confidential
to a certain extent. Intellectual property, for example, may have many public methods,
but there are still some details that are kept confidential. Secrecy sometimes represents
importance, sophistication, and high-end, so that a few talented people can still learn
and improve, but just not be known to the general public. Another example is new R&D
organization B. Their recruitment website shows that they are looking for PhD students
who have graduated from “985,” which means that they require graduates from presti-
gious universities. Therefore, in this study, we consider the assessment of individualized
indicators of scientific and technological talent by teams of new R&D institutions. The
first team selected its own personalized indicators from the 15 indicators, and the second
team selected its own personalized indicators, k1j from the 15 indicators. The second team
selected its own desired indicators k2j from the 15 indicators until all n teams selected their
desired indicators knj from the 15 indicators. The teams assign indicator weights as they
select the indicators ωij.
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Table 1. Indicators for assessing the benefits of new R&D organization teams for talents.

T-S Indicators Assessment Indicators Content of the Assessment

The team’s evaluation indicators for talent

1. Serving the motherland

Love the country and love the Party, personal
ideals into the great national development,

and take pride in this, strong country has my,
sincere enthusiasm to serve the

country only grows.

2. Professional ethics

The code of conduct to be followed in
professional activities, patriotism and respect
for work, honesty and friendliness, compliance

with laws and regulations, etc.

3. Critical innovation
It is important to think critically and creatively,

to break down old traditions, to build new
ideas, new methods, new processes, etc.

4. Innovative results
Scientific and technical papers, scientific and

technical projects, scientific and technical
patents and other achievements.

5. Entrepreneurial outcomes

The breadth and depth of application and
transformation of scientific and technological
achievements, generating economic benefits,

social benefits, talent benefits, etc.

6. Graduated from a prestigious school
Graduated from a prestigious school or

conducted research under the guidance of a
renowned teacher.

7. Communication and collaboration

Good communication skills, an academic
background in teamwork, and regular

participation in various academic networking
events where they actively contribute or share.

8. Cross-cutting disciplines
Cross-disciplines can break down limitations,

stand higher, plan farther, grasp more
accurately, and generate more energy.

9. Technology Insights Accurate judgment of the situation and clear
positioning for career development.

10. Design and programming
Must have some design skills, have some

programming skills and be able to maintain
data and other information.

11. Keeping secrets Keep the contents, methods and processes of
research and development strictly confidential.

12. Self-control and self-discipline

Aspire to be a person of value, value time,
pace yourself, spend your energy on things of
value, read a lot of literature, do a lot of science

experiments, and regular paper writing.

13. Self-reliance and self-improvement

Good at independent thinking and inquiry
questioning, adhere to independent

innovation, always on the road of struggle
and exploration.

14. Physical fitness Having a healthy body allows you to focus on
the big things.

15. Psychological quality Resilient to pressure and work under pressure
with the team’s goals and mission in mind.

Because there are differences in the process of assessment of scientific and technological
talents by the team of new R&D institutions due to the assessment experts’ own learning,
preferences, reference points, information asymmetry, etc., and the assessment results
have a certain degree of uncertainty, this study uses interval grey numbers to characterize
the uncertain assessment values. The interval grey number is an uncertain number that
takes values in a certain interval or in a general set of numbers, and only the range of
information values is known without knowing the exact information values, which is
usually denoted by the symbol

⊗
to denote it. A grey number that has both a lower and

an upper bound is called an interval grey number and is denoted as
⊗ ∈ [a, a] with a
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denotes the lower bound and a denotes the upper bound. Using the interval grey number
to characterize the team’s assessment value of talent, we obtain the n-decision matrix
Ak =

[
ak

ij

]
, i = 1, 2, · · ·m, j = 1, 2, · · ·p, k = 1, 2, · · · n, i denotes that there are m scientific

and technical talents, j denotes that there are p assessment metrics, and k denotes that there
are n teams.

Ak =
[
ak

ij

(⊗)]
=

⎡⎢⎢⎢⎣
ak

11, ak
11 ak

12, ak
12 · · · ak

1p, ak
1p

ak
21, ak

21 ak
22, ak

22 · · · ak
2p, ak

2p
· · · · · · · · · · · ·

ak
m1, ak

m1 ak
m2, ak

m2 · · · ak
mp, ak

mp

⎤⎥⎥⎥⎦ (1)

2.2. Constructing Cost Indicators for the Introduction of Scientific and Technological Talent

New R&D institutions must pay a certain price when introducing scientific and
technological talent. We take the introduction of three years as an example: the cost in
three years generally includes the settlement fee, science and technology start-up fee,
salary, insurance, provident fund, performance incentives, project dividends, and other
incentives. Some items under the difference are also relatively large, and we choose more
representative indicators as the matching indicators, as shown in Table 2.

Table 2. Cost assessment indicators of new R&D organization teams for scientific and technological talents.

S-T Indicators Assessment Indicators Content of the Assessment

Cost metrics for talent

1. Wage insurance The portion of institutional payments for salaries,
insurance, etc., paid on an annual or monthly basis.

2. Subsidy for house purchase
There is a lump sum settlement fee, annual or monthly
provident fund contributions for home purchase, plus

some allowance for home purchase, etc.

3. Performance incentives

Performance is generally divided into four grades,
excellent, good, pass, and fail, and the award is taken at
whichever grade is met after the performance appraisal,

which is estimated in this paper as the good grade.

4. Project dividends Estimated by dividing the total project amount by the
number of people in the team on average.

5. Other awards

There are some additional incentives when scientific and
technological achievements are transformed into economic,

social and talent benefits, and there are also institutions
that implement training and incentives for particularly

outstanding scientific and technological people, which are
all costed and calculated on an average basis.

Some scientific and technological talents can receive high rewards in teams of new
R&D institutions, while others receive very little reward. Since the mechanism of new
R&D institutions is very flexible and financially autonomous, there are many uncertain cost
factors, and sometimes the rewards can far exceed salary income. In general, the cost of
bringing in scientific and technological talent with higher performance evaluation values
is relatively high. It is a real problem to match the teams of new R&D institutions with
scientific and technical talents with high assessment values and low costs. In this study, the
team of the new R&D organization and the technology talent are communicated and based
on the cost assessment index in this study, both parties negotiate and finally determine
an acceptable cost range. Using the interval grey number to characterize the cost value of
talent introduction, we obtain a decision matrix of 1B =

[
bij
]
, i = 1, 2, · · ·m, j = 1, 2, · · · q,
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with i denotes the number of m a scientific and technical talent, and j denotes that there are
q evaluation index.

B =
[
bij

(⊗)]
=

⎡⎢⎢⎢⎣
b11, b11 b12, b12 · · · b1q, b1q

b21, b21 b22, b22 · · · b2q, b2q
· · · · · · · · · · · ·

bm1, bm1 bm2, bm2 · · · bmq, bmq

⎤⎥⎥⎥⎦ (2)

2.3. Phase I Elimination Matching Results Based on Prospect Theory and Bilateral Matching Models

According to prospect theory and grey target theory, this study sets a double reference
point for the appraisal value of the historical reference point and desired reference point.
This study sets a bottom-line reference point for the cost value, uses the reference point as
the bull’s eye, and applies prospect theory to the data set.

In the first stage of matching the team of a new R&D institution with scientific and
technological talents, although the assessment value of scientific and technological talents
is given, the assessment value does not reflect whether the scientific and technological
talents are good, how good they are, and whether the team is satisfied. Therefore, it is
necessary to find a reference point for comparison, and the data for the reference point
must be easily accessible.

2.3.1. Setting Reference Points for Assessment Values—Historical Reference Points and
Desired Reference Points

The historical reference point is the assessment of the scientific and technological
talents already introduced in the history of the new R&D institution team and the com-
parison with the assessment of the talents in the past, which can tell whether the batch of
scientific and technological talents is better than the past or not as good as the historical
scientific and technological talents. In general, the new R&D organization team hopes that
the technology talent brought in is improving. If the assessment value is higher than the
historical reference point, the new R&D institution team is satisfied. If the assessment value
is lower than the historical reference point, the new R&D institution team is not satisfied.

The expectation reference point is the goal that the new R&D organization team expects
the tech talent to achieve, and comparing it with the expectation in the decision maker’s mind
will determine whether the batch exceeds or falls short of expectations. In general, the new
R&D organization team expects the technological talent to meet expectations, but expectations
are usually not too low. If the assessment value is higher than the expected reference point
value, the new R&D organization team is satisfied. If the assessment value is lower than the
expected reference point value, the new R&D organization team is not satisfied.

There are many teams within the new R&D organization, and each team sends different
evaluation experts; therefore, the reference point values are different for each team. The
historical reference point values can be obtained by collating historical data, and the
expected reference point values can be given by the evaluation experts, so that the historical
reference point vector Ck

1 and the desired reference point vector Ck
2 The historical reference

point vector and the desired reference point vector can be obtained.

Ck
1 =

[
ck

1j

(⊗)]
=
{[

ck
11, ck

11

]
,
[
ck

12, ck
12

]
, · · ·

[
ck

1p, ck
1p

]}
(3)

Ck
2 =

[
ck

2j

(⊗)]
=
{[

dk
21, d

k
21

]
,
[
dk

22, d
k
22

]
, · · ·

[
dk

2p, d
k
2p

]}
(4)

2.3.2. Set the Reference Point for the Cost Value—Bottom Line Reference Point

New R&D institutions provide cost value for the introduction of individual scientific
and technical talent, but it is not known whether the institution is satisfied. Therefore, a
bottom-line reference point was set, and the cost value was compared with the bottom-line
reference point. The bottom-line reference point is the bottom-line cost value that the
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institution can afford, and if the cost value is lower than the bottom-line reference point
value, the new R&D institution feels a gain. If the cost value is higher than the bottom-line
reference point value, the new R&D institution feels a loss. The bottom-line reference point
data are jointly provided by the evaluation experts of the new R&D organization team,
and because the team pays about the same cost to the scientific and technological talents,
the bottom-line reference point represents the bottom-line cost of the entire new R&D
organization. After the evaluation experts’ determination, we obtained the bottom-line
reference point value vector C3.

C3 =
[
c3j

(⊗)]
=
{
[c31, c31], [c32, c32], · · ·

[
c3q, c3q

]}
(5)

2.3.3. Calculate the Distance from the Appraised Value and the Cost Value to the Reference
Point Separately

The reference point is the bullseye of the gray target decision. If the assembled data
is greater than zero, the target is hit. If the assembled data are less than 0, it is considered
off-target. The values of the new R&D organization team’s assessment of technological
talent and the cost of introducing technological talent are uncertain and are characterized
by interval grey numbers. Historical reference point values, desired reference point values,
and bottom-line reference point values also have uncertainty and are characterized by
interval grey numbers. To calculate the distance from the appraised value and cost value
to the reference point, the formula for calculating the distance between the interval grey
number and the interval grey number is used. In this study, we consider the kernel and half-
interval length of the interval grey number to calculate the distance between the interval
grey numbers.

Definition 1. Let two grey numbers
⊗

1 ∈ [a, a],
⊗

2 ∈ [c, c], and define the kernel of the two
interval grey numbers as ⊗̂

1
=

1
2
(a + a),

⊗̂
2
=

1
2
(c + c) (6)

If
⊗̂

1 >
⊗̂

2, then
⊗

1 >
⊗

2.

Definition 2. Let two grey numbers
⊗

1 ∈ [a, a],
⊗

2 ∈ [c, c], and define the length of the two
interval grey numbers as

l
(⊗

1

)
=

1
2
(
a − a

)
, l
(⊗

2

)
=

1
2
(
c − c

)
(7)

Definition 3. Let two grey numbers
⊗

1 ∈ [a, a],
⊗

2 ∈
[
b, b
]
, and define the distance between

the two interval grey numbers as

d
(⊗

1

,
⊗

2

)
=

∣∣∣∣⊗̂1
− ⊗̂

2

∣∣∣∣+ 1
2

∣∣l(⊗
1

)− l
(⊗

2

)∣∣ (8)

We calculated the assessed values separately according to the algorithm of interval grey
numbers Ak and the historical reference point value Ck

1 and the distance between the evaluated value
Ak from the desired reference point value Ck

2 and the distance of the cost value B and the bottom-line
reference point value C3 to obtain the distance matrix d

(
AkCk

1

)
, d
(

AkCk
2

)
, d(BC3).

2.3.4. Calculation of Prospective Values of Assessed and Cost Values Based on Distance

We compare the distances of the assessed and cost values calculated above to the
reference point values by kernels of interval grey numbers. We substitute them into the
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prospect theory equation to obtain k matrix of prospective values of assessed values based
on historical reference points, the k prospect value matrix of appraisal values based on
desired reference points, and 1 prospect value matrix of cost values based on bottom-line
reference points.

Vkc1
ij(1) =

⎧⎪⎨⎪⎩
(

d
(

AkCk
1

))α ⊗̂
ak

ij(
⊗
) >

⊗̂
ck

1j(
⊗
)

−θ ∗
(

d
(

AkCk
1

))β ⊗̂
ak

ij(
⊗
) <

⊗̂
ck

1j(
⊗
)

(9)

Vkc2
ij(1) =

⎧⎪⎨⎪⎩
(

d
(

AkCk
2

))α ⊗̂
ak

ij(
⊗
) >

⊗̂
ck

2j(
⊗
)

−θ ∗
(

d
(

AkCk
2

))β ⊗̂
ak

ij(
⊗
) <

⊗̂
ck

2j(
⊗
)

(10)

Vc3
ij(1) =

{
(d(BC3))

α ⊗̂
bij(

⊗
) <

⊗̂
c3j(

⊗
)

−θ ∗ (d(BC3))
β ⊗̂

bij(
⊗
) >

⊗̂
c3j(

⊗
)

(11)

As the assessed value is a benefit type of data, the larger the value, the better, with
gains above the reference point and losses below it. Cost values, on the other hand, are
cost-based data; the smaller the value, the better with gains below the reference point and
losses above the reference point.

Formula (9) in Vkc1
ij(1) denotes the prospective value of the first stage team’s assessment

of talent based on the historical reference point, as determined by the assessment value
ak

ij(
⊗
) and the reference point value ck

1j(
⊗
) calculated as a power function of the distance

between the assessment value and the reference point value. Equation (10) in Vkc2
ij(1) denotes

the prospect value of the assessment value based on the desired reference point, calculated
as a power function of the distance between the assessment value ak

ij(
⊗
) and the value

of the reference point ck
2j(
⊗
) is calculated as a power function of the distance between

the assessed value and the reference point value. Equation (11) in Vc3
ij(1) indicates that

the assessment value is based on the prospective value of the historical reference point,
obtained by a power function of the distance between the assessment value bij(

⊗
) and the

value of the reference point c3j(
⊗
) is calculated as a power function of the distance between

the assessment value and the reference point value. The prospect value is determined by
the subjective perception of the decision maker, and the gains and losses are relative to
the reference point.α and β denote the decision-maker’s risk attitude coefficients in the
gain and loss regions, respectively. α,β < 1 denote that the decision-maker’s sensitivity is
decreasing, and in this study, α = 0.88, β = 0.88. θ is the coefficient of the decision-maker’s
loss perception, and because decision-makers are risk-averse in the face of gains and risk-
averse in the face of losses. When θ > 1, decision-makers are steeper and more sensitive in
the loss region than in the gain region. In this study, θ = 2.25.

2.3.5. Normalization of Assessed Value Prospect and Cost Value Prospect and Aggregation

The foreground values we obtained according to foreground theory do not meet the
requirements of normalization and need to be normalized so that their values fall on [−1, 1].
We used the maximum value method for normalization, which is easy and convenient to
operate and retains the characteristics of the original data.

Mkc1
ij(1) =

Vkc1
ij(1)

max
i

max
j

Vkc1
ij(1)

. Mkc2
ij(1) =

Vkc2
ij(1)

max
i

max
j

Vkc2
ij(1)

. Mc3
ij(1) =

Vc3
ij(1)

max
i

max
j

Vc3
ij(1)

(12)

Let the kth team be given an assessed value indicator weight of ωk
j and the weight of

the cost value indicator is μj then, the matrix of prospective values of assessed values based

on historical reference points Nkc1
i , the assessed value prospect value matrix based on the
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desired reference point Nkc2
i , and the cost value prospect values based on the bottom-line

reference point Nc3
i are.

Nkc1
i(1) = ∑p

j=1 ω
k
j Mkc1

ij(1), Nkc2
i(1) = ∑p

j=1 ω
k
j Mkc2

ij(1), Nc3
i(1) = ∑q

j=1 μjM
c3
ij(1) (13)

For Nkc1
i(1), Nkc2

i(1), and Nc3
i(1) transpose processing.

TSc1
ts(1) =

[
Nkc1

i
T
]
, TSc2

ts(1) =
[
Nkc2

i
T
]
, TSc3

ts(1) =
[
Nc3

i
T
]

(14)

Let the historical reference point weights of this study be θ and the desired reference
point weight is 1 − θ. First, the assessment value prospect value based on the historical ref-
erence point and the desired reference point is set to obtain the assessment value composite
prospect value. Then, the assessment value composite prospect value is set with the cost
value prospect value, and the weight of the assessment value composite prospect value is δ
and the weight of the cost-value prospect value is 1 − δ. After agglomeration, we obtained
the first-stage matched composite prospect value, Sij(1).

TSts(1) = δ×
(
θ×

(
TSc1

ts(1)

)
+ (1 − θ)×

(
TSc2

ts(1)

))
+ (1 − δ)×

(
TSc3

ts(1)

)
(15)

2.3.6. Construction of a Bilateral Matching Model to Derive the Results of the First Phase of
Elimination Matching

Professor Gale of Brown University and the renowned economist Professor Sharply
pioneered the theory of bilateral matching decisions in 1962 with their article, “College
Admissions and Stable Marriages”. Let μ : P ∪ Q → Q ∪ P be a one-to-one mapping, if
∀Pi ∈ P. ∀Qj ∈ Q satisfies μPi = Qj ∈ Q, and μQj = Pi ∈ P, then we call μ is a two-way
matching. μ(Pi) = Qj denote Pi with Qj in μ in the match, and μQj = Qj indicates that Qj
in μ does not match.

For the bilateral matching decision problem between teams and scientific and techno-
logical talent in new R&D institutions, forming a reasonable and effective bilateral matching
scheme is the common demand of teams and talent, and constructing a bilateral match-
ing model and proposing a solution algorithm is the most crucial step. The traditional
Gale—Sharply algorithm performs research in preference order, and this paper proposes
bilateral matching based on uncertain interval grey numbers and prospect theory based on
reference points. In the first stage, the new R&D organization team and the scientific and
technological talents are many-to-many matching. The new R&D organization achieves
complete matching, the scientific and technological talents are incomplete matching, and
the scientific and technological talents without successful matching are eliminated. In this
study, we constructed the first-stage elimination matching model M-1.

MAX Z =
n

∑
t=1

m

∑
s=1

πtsTSts(1) (16)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πts ∈ [0 or 1]

n
∑

t=1
πts = 1

m
∑

s=1
πts ≤ 1

(17)

The objective of the M-1 model is to transform the dual objective of maximizing the
prospective value of the assessed value and prospective value of the cost value into a single
objective. The constraints are as follows: the weight vector πts can only be 0 or 1; each new
R&D organization team must be matched to a scientific and technological talent, and only
one talent can be matched; each scientific and technological talent may not be matched to a
new R&D organization team.
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Theorem 1. M-1 The model must have an optimal solution.

Note: According to the optimality existence theorem, any single-objective program-
ming with bounded feasible domain must be optimal over its feasible domain. M-1 The
model is a single-objective programming problem, and the feasible domain of the model
exists and is bounded. Therefore, the M-1 model must have an optimal solution. M-1 It
can be solved using LINGO software, and the solution of πts = 1 means that the tth new
R&D institution team and the sth technological talent are successfully matched. πts = 0
means that the tth new R&D institution team and the sth technological talent do not match
successfully, and the m-n technological talents are eliminated.

3. New R&D Organization Team and Science and Technology Talent Second Stage
selection Match

After the first phase of elimination matching, the number of teams and talents is
equal, and the matching is still many-to-many. After one year, when the trial period
expires, the team re-evaluates the talent and determines the team they will eventually
work for. In the second stage of matching, the highest evaluation value of the team to
the talent is considered, and the highest satisfaction of the feedback of the ranking value
of the team by the tech talent is also considered, setting historical reference points and
expectation reference points for the evaluation value and bottom-line reference points for
the satisfaction, fully considering the psychological factors of the new R&D organization
team and the tech talent in both directions to better realize the two-way selection, and
finally using the 0–1 The integer planning model is used for bilateral matching. In the
second stage of selection matching, because the number of scientific and technical talents
is the same as the number of R&D teams, the pressure on decision makers will be much
less, there will be no more unmatched situations, and teams and talents achieve complete
matching, as shown in Figure 2.

 

Figure 2. Matching diagram of the second stage of selection of teams and talents in new R&D institutions.

3.1. Collecting the Team’s Assessment Value of Scientific and Technical Talents and the Ranking
Value of Talents to the Team

The first phase of elimination matching is dominated by new R&D institutions and
does not consider the dominant weight of talents. Therefore, the second phase of selection
matching considers the assessment of scientific and technological talents by the team of
new R&D institutions and also considers the ranking of scientific and technological talents
to new R&D institutions.
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We collected the assessed values of the second stage of the new R&D organization
team for scientific and technological talents, characterized by the average value of the
expert assessment. The reference point remains unchanged, and the data of the historical
reference point and the desired reference point of the first stage are still used, since the
expert assessments in this study are all scored on a percentage scale. In order to achieve the
standardization requirements of the data, all the data are averaged and then divided by 100,
so that all the assessed values, the reference point values lie between 0 and 1. We obtain the
matrix of assessment values Ek =

[
ek

ij

]
, i = 1, 2, · · ·m, j = 1, 2, · · ·p, k = 1, 2, · · · n.

We consider the ranking of teams in new R&D institutions by scientific and technical
talents to obtain information on the preference order of scientific and technical talents for
teams F = [fts], t = 1, 2, · · · n, s = 1, 2, · · ·m. To facilitate the assembly of data, the prefer-
ence order was transformed into satisfaction according to certain rules. The transformation
rules are listed in Table 3. According to the transformation rules, it is transformed into
satisfaction information G =

[
gts
]
, t = 1, 2, · · · n, s = 1, 2, · · ·m.

Table 3. Rules for converting the preference order of talents to satisfaction with the teams.

Preference Order Satisfaction

1 1
2 1-1/n
3 1-2/n
4 1-3/n

3.2. Matching Integrated Prospect Values Based on Historical, Desired, and Bottom-Line Reference
Point Sets for the Second Stage

Based on the historical reference point value and the desired reference point value,
the distance from the team’s assessment of talent to the historical and desired reference
points is calculated. Because it is a real number, the distance is directly subtracted and
calculated by taking the absolute value. Let the bottom-line reference point of scientific
and technological talents’ satisfaction with the team be 0.5. Calculate the distance from the
satisfaction to the bottom-line reference point, and because it is a real number, the distance
is directly subtracted and calculated by taking the absolute value. The prospect value is
calculated according to prospect theory.

Vkc1
ij(2) =

⎧⎨⎩
∣∣∣ek

ij − ekc1
j

∣∣∣α ek
ij > ekc1

j

−θ ∗
∣∣∣ek

ij − ekc1
j

∣∣∣β ek
ij < ekc1

j

(18)

Vkc2
ij(2) =

⎧⎨⎩
∣∣∣ek

ij − ekc2
j

∣∣∣α ek
ij > ekc2

j

−θ ∗
∣∣∣ek

ij − ekc2
j

∣∣∣β ek
ij < ekc2

j

(19)

Vc3
ts(2) =

{ ∣∣gts − 0.5
∣∣α fts > 0.5

−θ ∗ ∣∣gts − 0.5
∣∣β fts < 0.5

(20)

Combining the prospect value of the team’s assessment of talent based on the historical
reference point Vkc1

ij and the prospect value of the assessed value based on the desired

reference point Vkc1
ij , combining the indicator weights of the assessed values given by the

team as ωk
j ,

Nkc1
i(2) = ∑p

j=1 ω
k
j Mkc1

ij(1).N
kc2
i(2) = ∑p

j=1 ω
k
j Mkc2

ij(1) (21)

For Nkc1
i(1), Nkc2

i(1) to transpose the treatment.

TSc1
ts(2) =

[
Nkc1

i
T
]

, TSc2
ts(2) =

[
Nkc2

i
T
]

(22)
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point weight be 1 − θ. The assessment value prospect values based on the historical
reference point and the desired reference point are first pooled to obtain the assessment
value composite prospect value, and then the assessment value composite prospect value
is pooled with the satisfaction prospect value, and the weight of the assessment value
composite prospect value is σ and the weight of the satisfaction prospect value is 1 − σ.
After agglomeration, we obtain the second-stage matched composite prospect value, Sij(2).

TSts(2) = σ×
(
θ×

(
TSc1

ts(2)

)
+ (1 − θ)×

(
TSc2

ts(2)

))
+ (1 − σ)×

(
Vc3

ts(2)

)
(23)

3.3. Construction of a Bilateral Matching Model to Derive the Second Stage Selection Matching Results

In the second stage, the new R&D organization team and the scientific and techno-
logical talents are many-to-many matched, the new R&D organization achieves complete
matching, the scientific and technological talents are incompletely matched, and the scien-
tific and technological talents without successful matching are eliminated. In this study, we
constructed the first-stage elimination matching model, M-2.

MAX Z =
n

∑
t=1

m

∑
s=1

ϕtsTSts (24)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕts ∈ [0 or 1]

n
∑

t=1
ϕts = 1

m
∑

s=1
ϕts = 1

(25)

The objective of the M-1 model is to transform the dual objective of maximizing
the prospect value of the team’s assessment of talent and the prospect value of talent’s
satisfaction with the team’s sorting transformation into a single objective. The constraints
are as follows: the weight vector ϕts can only be 0 or 1; each new R&D organization
team must be matched to a technology talent, and only one talent can be matched; each
technology talent must be matched to a new R&D organization team; and only one team
can be matched.

Theorem 2. M-2 The model must have an optimal solution.

Note: According to the optimality existence theorem, any single-objective program-
ming problem with a bounded feasible domain must be optimal over its feasible domain.
The M-2 model is a single-objective programming problem, and the feasible domain of the
model exists and is bounded. Thus, the M-2 model must have an optimal solution. The
M-2 model can be solved using LINGO software, and the solution of ϕts = 1 means that
the tth new R&D institution team and sth technological talent are successfully matched.
ϕts = 0 means that the tth new R&D institution team and the sth technological talent are
not successfully matched.

In the second stage, the number of teams of new R&D institutions and scientific
and technological talent are equal, and one team matches one scientific and technological
talent, which is a many-to-many exact match, and a two-way selection match due to the
consideration of two-way assessment.

3.4. Methodological Steps of This Paper

The steps of this study’s prospect theory-based two-stage bilateral matching method
for teams and scientific and technological talents in new R&D institutions are as follows.

In the first step, based on the first stage of elimination matching of new R&D institution
teams and scientific and technological talents, a general framework of assessment indicators
for new R&D institution teams, personalized assessment indicators, and indicators for the
cost of introducing scientific and technological talents are constructed.
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In the second step, the team-to-talent assessment data of new R&D institutions based
on personalized assessment indicators in the first stage, historical reference point data and
desired reference point data, cost of introducing technology talent data, and bottom-line
reference point data, all characterized by interval grey numbers, were collected to calculate
the benefit prospect value and cost prospect value of team-to-talent based on prospect
theory and the given indicator weights, respectively.

In the third step, based on the benefit-cost weights, the integrated prospect values of
the first stage are integrated, substituted into the M-1 model, and solved using LINGO
software to obtain the elimination matching results of the first stage.

In the fourth step, based on the second stage of selection matching between the team of
the new R&D institution and the scientific and technological talents, the assessment data of
the team of the new R&D institution to the scientific and technological talents are collected,
characterized by the mean value, following the historical reference point and desired
reference point data in the first stage. The data were divided by 100 for normalization.
While the ranking value of the scientific and technological talents to the team is collected,
the ranking value is converted into satisfaction and given the satisfaction bottom-line
reference point value. Based on the prospect theory and the given index weights, the
evaluation prospect values of both team and talent are calculated.

In the fifth step, the prospect values of the second stage are integrated based on the
team-talent weights, substituted into the M-2 model, and solved using LINGO software to
obtain the selection matching results of the second stage.

4. Case Studies

4.1. Background of the New R&D Agency Team

The new R&D institution T was established in 2019 by the talent team of the Uni-
versity of D, the government, and social capital, of which the talent team holds 70% of
the shares. The new R&D institution T aims at the frontier of science and technology
and market demand and implements the specific measures of General Secretary Xi Jin-
ping’s “three firsts,” reflecting the organic unity of superior disciplines, innovation clusters,
and high-quality development. Currently, institutions are mainly engaged in new energy
and intelligent distributed power generation, new high-efficiency refrigeration and heat
pumps and equipment, key technologies for building environment and air quality, and
new energy system optimization and monitoring research, actively building a national
research platform for building intelligent environmental energy. As a leading domestic
intelligent energy development and innovation enterprise, the institute adheres to the
business philosophy of integrity, professionalism, aggressiveness, and cooperation and has
accumulated rich experience in research and development, manufacturing, construction,
operation, and maintenance in the fields of building energy conservation, distributed pho-
tovoltaic power generation, and comprehensive energy utilization, which is dedicated to
providing customers with high-quality, fast, and efficient services. Few energy companies
do energy extraction independently, and generally they work in partnership with many
other companies. Now that many new energy companies are emerging, and they are eager
to find clean alternative energy sources, there is a greater need for collaboration among
scientific and technical talents in multiple fields. The need to recruit more scientific and
technical talents and make their research and development direction match the team.

The new R&D institution T currently has four teams: the production team of high-
efficiency building energy-saving equipment, the R&D team of intelligent environmental
energy, the team of power engineering design and construction, and the team of distributed
energy management. Since its establishment, the new R&D organization T has introduced
36 high-end talents from home and abroad, who have PhD degrees, achieved remarkable
results in the industry, won national awards, and earned considerable economic income.
The new R&D organization T has always attached importance to the introduction and
training of scientific and technological talent. Scientific and technological talent develop-
ment is good—constantly pioneering and innovative— and has won more than 20 national
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projects, the National Technical Invention Award, more than 20 national projects, one
national technical invention award, more than 160 invention patents authorized, and four
incubated enterprises.

The new R&D organization T is always looking for scientific and technical talents
in environmental engineering and electronic information, requiring solid knowledge of
environmental monitoring, theoretical knowledge of electronic information technology,
relevant papers published in foreign professional academic journals, familiarity with
laboratory-related technical experimental processes, a PhD degree, 1–3 years of relevant
work experience, strong work responsibility, excellent language skills, and communication
and coordination skills. Other requirements include the ability to handle complex problems
and critical incidents independently, a strong work motivation, a sense of proactive service,
etc. An annual salary of ¥100,000–¥1,000,000 is offered working in the Yangtze River Delta.

The new R&D institution T—in August this year, four teams put forward plans to
recruit talents, the personnel department after screening, preliminary tests, practice, and
other links. Finally, identified were six scientific and technical talents, the decision-making
power to the team, and the team sent experts to conduct the first stage of elimination
matching and the second stage of selection matching. Based on the results of the first-
stage matching, the scientific and technical talents will enter four teams for a one-year
probationary period and work in each team for three months. Science and technology
talents will finalize which team to work on based on the second stage of selection matching.
According to the two-way assessment index system proposed in this paper for teams and
tech talents in new R&D institutions, both teams and talents have completed the assessment,
and the data and bilateral matching are presented in detail next.

4.2. Phase I Phase-Out Matching of Teams and Scientific and Technological Talents in New R&D Institutions

We obtained the assessed values of the T1-T4 team for six scientific and technical talents
from the HR director of the new R&D organization T; the values are characterized by interval
gray numbers, as shown in Tables 4–7. There are 22 science and technology teams in the
new R&D organization T. Four of the teams had similar specialties, and each team sent three
experts to assess the science and technology talents under each indicator. Twelve experts
from each of the four teams filled in the assessment values under the percentage system.
In this study, the uncertainty of the team’s assessment value of talent is fully considered;
therefore, the interval grey number is used to characterize the assessment value.

Table 4. Assessed values of talents S by team T1 in new R&D institutions.

T1-S
Render Service

to One’s
Country

Critical
Innovation

Entrepreneurial
Achievements

Interdisciplinary
Subject

(in Science)

Self-Control and
Self-Discipline

S1 [78, 88] [68, 75] [80, 81] [69, 79] [70, 73]
S2 [77, 84] [70, 70] [55, 76] [74, 75] [82, 88]
S3 [70, 79] [75, 81] [50, 66] [68, 75] [77, 81]
S4 [82, 88] [65, 80] [68, 70] [68, 71] [65, 69]
S5 [80, 83] [76, 78] [73, 88] [72, 90] [68, 73]
S6 [76, 78] [66, 88] [74, 78] [70, 73] [68, 74]

Historical
reference point [70, 80] [60, 90] [50, 80] [60, 75] [70, 85]

Desired
reference point [75, 85] [70, 80] [70, 85] [70, 85] [70, 80]
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Table 5. The assessed values of the new R&D organization team T2 for the talents S.

T2-S
Professional

Ethics
Innovative

Results
Entrepreneurial
Achievements

Communication
and

Collaboration
Keep a Secret

S1 [70, 73] [68, 75] [76, 78] [75, 90] [83, 88]
S2 [75, 80] [67, 88] [85, 88] [73, 85] [65, 78]
S3 [77, 86] [62, 78] [75, 86] [65, 71] [72, 85]
S4 [73, 82] [65, 75] [67, 69] [72, 73] [66, 88]
S5 [68, 92] [68, 81] [62, 70] [72, 75] [65, 82]
S6 [66, 77] [68, 74] [65, 69] [70, 76] [72, 75]

Historical
reference points [70, 80] [60, 80] [60, 85] [55, 80] [60, 90]

Desired
reference point [70, 90] [70, 90] [70, 90] [60, 80] [70, 85]

Table 6. Assessed values of the new R&D organization team T3 for talents S.

T3-S
Render Service

to One’s
Country

Entrepreneurial
Achievements

Top Students
Technology
INSIGHTS

Physical Quality
(in Ideological

Education)

S1 [73, 77] [78, 88] [75, 87] [70, 76] [68, 78]
S2 [65, 74] [77, 84] [72, 76] [70, 84] [80, 90]
S3 [73, 78] [65, 79] [66, 88] [72, 90] [71, 83]
S4 [68, 85] [62, 88] [72, 74] [79, 88] [80, 91]
S5 [82, 83] [61, 83] [70, 82] [61, 77] [78, 85]
S6 [75, 78] [66, 71] [66, 85] [72, 78] [70, 84]

Historical
reference points [70, 90] [60, 85] [60, 80] [65, 85] [70, 90]

Desired
reference point [70, 90] [70, 90] [70, 85] [70, 90] [75, 90]

Table 7. Assessed values of the new R&D organization team T4 for the talents S.

T4-S
Professional

Ethics
Innovative

Results

Communication
and

Collaboration

Design and
Programming

Psychological
Quality (in
Ideological
Education)

S1 [70, 81] [56, 83] [67, 91] [68, 75] [67, 76]
S2 [65, 76] [75, 80] [72, 82] [73, 87] [73, 82]
S3 [65, 86] [68, 86] [70, 92] [68, 79] [67, 86]
S4 [76, 90] [74, 85] [50, 68] [68, 82] [61, 85]
S5 [77, 86] [50, 64] [80, 83] [88, 92] [77, 86]
S6 [80, 82] [70, 77] [66, 88] [77, 78] [68, 70]

Historical
reference points [60, 85] [60, 85] [70, 85] [50, 80] [60, 80]

Desired
reference point [70, 90] [70, 90] [70, 90] [70, 85] [70, 85]

As can be seen from the above table:
(1) Each of the four teams of new R&D institutions selected their own personalized as-

sessment indicators and assessed their talent based on personalized assessment indicators.
(2) Assessment data have a certain level of uncertainty, characterized by interval grey

numbers, which are different for each assessment.
(3) The four teams of new R&D institutions provide both historical and desired

reference point data, which are also uncertain and characterized by interval grey numbers.
The data in the above table do not show a bilateral match between the NRA team and

scientific and technological talent, and a suitable method of integration is needed to facilitate
comparison and analysis. Since the teams of the new R&D institutions rely on the new
R&D institutions to select and hire scientific and technological talents, but the mechanism is
very flexible, the new R&D institutions give the teams great hiring decisions and autonomy,
and the funds are also allocated in a lump sum way, so the team leaders were invited to use
the Delphi method to determine the indicator weights, and after several confirmations, it
was finally determined that the personalized indicator weights of the four teams of the new
R&D institutions were ω1j = (0.2, 0.1, 0.3, 0.2, 0.2), and ω2j = (0.1, 0.3, 0.3, 0.2, 0.1), and
ω3j = (0.1, 0.4, 0.2, 0.2, 0.1), and ω4j = (0.15, 0.3, 0.15, 0.25, 0.15). In this study, a historical
reference point and an expected reference point were set, and assuming that both reference
points are equally important, θ = 0.5.
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Based on the interval grey number distance formula and foreground theory formula,
indicator weights, and reference point weights, we integrate to obtain the matrix of fore-
ground values based on the dual reference points of historical reference points and desired
reference points, as shown in Table 8.

Table 8. Prospect values for the assessment of talents S by the new R&D organization teams T.

T-S S1 S2 S3 S4 S5 S6

T1 0.0632 −0.0103 −0.3488 −0.1857 0.2396 −0.1200
T2 0.0641 0.2749 −0.0912 −0.4754 −0.1589 −0.3928
T3 −0.1087 0.0490 −0.2983 0.0006 −0.1589 −0.6959
T4 −0.2245 0.0500 −0.0045 −0.0671 0.1089 −0.1271

As can be seen from the table above:
(1) The results of the assessment of scientific and technological talents by the four

teams of the new R&D institutions are different: some are satisfied, some are not, and the
degree of satisfaction and dissatisfaction are also different and ranked differently.

(2) Team T1 of the new R&D institution is satisfied with S1 and S5, and dissatisfied
with S2, S3, S4 and S6, with a satisfaction rate of 33.33%, and the ranking of scientific and
technological talents is S5 � S1 � S2 � S6 � S4 � S3.

(3) Team T2 of the new R&D organization is satisfied with S1 and S2, and is dissatisfied
with S3, S4, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S2 � S1 � S3 � S5 � S6 � S4.

(4) Team T3 of the new R&D organization is satisfied with S2 and S4, and is dissatisfied
with S1, S3, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S2 � S4 � S1 � S5 � S3 � S6.

(5) Team T4 of the new R&D organization is satisfied with S2 and S5, and is dissatisfied
with S1, S3, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S5 � S2 � S3 � S4 � S6 � S1.

If we let the new R&D organization team T and tech talent S match directly through
the satisfaction of prospect value representation, then it appears that teams T1 and T5
select technology talent S5, and teams T3 and T4 select tech talent S2 so that only two tech
talents are selected. The phenomenon of internal talent grabbing occurs, which does not
achieve the overall optimum of the new R&D organization. In the first stage, we select the
technology talent that can match the applicable stage and eliminate the two tech talents.
Some may also say that removing the least satisfactory ones is necessary. Our analysis
found that T1 team eliminated S3, T2 team eliminated S4, T3 team eliminated S6, and
T4 team eliminated S1. This eliminates too many again because we do not know how
dominant the team is in the process.

In the first stage of matching the team of the new R&D organization and the scientific and
technological talent belonging to the elimination stage, we must consider the high satisfaction
of the team of the new R&D organization with the assessed value of the scientific and
technological talent relative to the reference point, in addition to the low cost of introducing
scientific and technological talent. We collected data on the cost of introducing these six
scientific and technological talents into different teams, as shown in Table 9.

Table 9. Costs of bringing in scientific and technological talents S.

S-T Wage Insurance
Home Purchase

Subsidy
Performance

Incentives
Project

Dividends
Other Awards

S1 [25, 30] [45, 65] [20, 26] [10, 25] [5, 16]
S2 [24, 28] [50, 60] [18, 20] [10, 12] [4, 18]
S3 [30, 40] [20, 50] [15, 30] [8, 16] [5, 12]
S4 [23, 28] [40, 50] [16, 28] [6, 20] [3, 18]
S5 [30, 32] [55, 60] [25, 28] [12, 15] [6, 14]
S6 [28, 35] [38, 45] [14, 30] [7, 20] [5, 10]

Bottom line
reference point [32, 32] [50, 50] [25, 25] [15, 15] [15, 15]

174



Sustainability 2023, 15, 3494

As can be seen from the table above:
(1) The cost of introducing scientific and technical talent S is different and uncertain

and can only be estimated as an approximate range within which any value taken is
possible, which we characterize as an interval grey number.

(2) The cost of bringing in scientific and technological talent under different projects
varies, with the cost of housing subsidies generally being higher, and other incentives lower.

(3) The new R&D organization gives a bottom-line reference point, and feels a loss when
the cost of bringing in technology talent exceeds the bottom-line reference point, and a gain
when the cost of bringing in technology talent is less than the bottom-line reference point.

The introduction cost alone does not indicate the situation of scientific and technologi-
cal talents, and we need to use the bottom-line reference point to measure whether the new
R&D institutions pay the introduction cost as a gain or a loss. In this paper, we calculate the
introduction cost of scientific and technological talents based on the bottom-line reference
point, and set the index weight of the introduction cost of scientific and technological talents
as ω5j = (0.25, 0.25, 0.2, 0.2, 0.1) to get the prospective value of the introduction cost of six
scientific and technological talents.ST1j = (−0.2509, 0.0188, 0.2156, 0.3149,−0.0846, 0.2919).
From the prospective values of the introduction cost of scientific and technological talent, it
can be seen that:

(1) Scientific and technological talents S1 and S5 are beyond the bottom-line reference
point, and new R&D institutions would feel a loss if they brought them in.

(2) Scientific and technological talents S2, S3, S4, and S6 do not exceed the bottom-line
reference point, and new R&D institutions will feel the benefits of bringing them in.

(3) The highest prospective value of the introduction cost of S4 for scientific and
technological talents indicates that S4 is the least expensive, but this does not mean that
the introduction of S4 is appropriate and has to be considered in conjunction with the
assessment of S4 by the team of the new R&D institution.

We cannot consider the selection and recruitment of scientific and technological talent
from the perspective of cost alone, but should be combined with the possible benefits
of scientific and technological talent for comprehensive consideration. In this study, we
consider dual-objective bilateral matching between the maximum team satisfaction and
the minimum cost of introducing scientific and technological talents in the new R&D
organization, and simplify the dual objective into a single objective to construct a matching
model. To achieve the overall optimum of the new R&D organization, we apply the M-1
bilateral matching model in this paper for matching and set the weights of the benefit
assessment of the team and the scientific and technological talents as δ = 0.5, and the
weight of cost assessment is 1− δ = 0.5. This is because if technology talent can create more
value, the more promising technology talent cannot be missed because of the low cost of
the new R&D organization. The comprehensive prospect value is based on the combination
of historical reference points and desired reference points, and the introduction cost, which
fully considers the psychological and cost factors of decision makers. The higher the
comprehensive prospect value, the higher the satisfaction of decision-makers, and the
lower the comprehensive prospect value, the lower the satisfaction of decision-makers.
Based on the prospect value of the assessment value, the prospect value of the introduction
cost, and the weights of the two prospect values δ, we obtain the matrix of integrated
prospect values for the first-stage matching of new R&D organization team T and scientific
and technological talent S, as shown in Table 10.

Table 10. Combined Phase I outlook values for new R&D organization teams T and talents S.

T-S S1 S2 S3 S4 S5 S6

T1 −0.0939 0.0042 −0.0666 0.0646 0.0775 0.0859
T2 −0.0934 0.1468 0.0622 −0.0802 −0.1218 −0.0505
T3 −0.1798 0.0339 −0.0413 0.1578 −0.1218 −0.2020
T4 −0.2377 0.0344 0.1056 0.1239 0.0121 0.0824
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As can be seen from the table above:
(1) After incorporating the cost of introduction, the satisfaction rate and ranking of

scientific and technological talents by the team of new R&D institutions changed.
(2) Team T1 of the new R&D organization is satisfied with S2, S4, S5, and S6, and

is dissatisfied with S1 and S3, with a satisfaction rate of 66.67%, and ranks scientific and
technological talents as S6 � S5 � S4 � S2 � S3 � S1.

(3) Team T2 of the new R&D organization is satisfied with S2 and S3, and is dissatisfied
with S1, S4, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S2 � S3 � S6 � S4 � S1 � S5.

(4) Team T3 of the new R&D organization is satisfied with S2 and S4, and is dissatisfied
with S1, S3, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S4 � S2 � S3 � S5 � S1 � S6.

(5) Team T4 of the new R&D organization is satisfied with S2, S3, S4, S5 and S6,
and is dissatisfied with S1, with a satisfaction rate of 83.33%, and ranks the scientific and
technological talents as S4 � S3 � S6 � S2 � S5 � S1.

The combined prospect values of the first-stage matching of new R&D organization
team T and technology talent S were substituted into the M-1 bilateral matching model
and solved using LINGO software to obtain the first stage team-talent matching results, as
shown in Table 11.

Table 11. Results of the first stage matching of new R&D organization teams T and talents S.

Matching Teams
Phase I Matching
Technology Talent

Phase I Combined Prospect Value

T1 S6 0.0859
T2 S2 0.1468
T3 S4 0.1578
T4 S3 0.1056

From the above table we can see that:
(1) New R&D organization teams T1, T2, and T3 were matched with the highest overall

prospect value of science and technology talent, and T4 was more satisfied with S3.
(2) Tech talents S1 and S5 are eliminated during the first matching phase.
The match between the team of the new R&D institution and the scientific and tech-

nological talents in the first stage considers the team’s assessment of the talents and the
cost of introducing talent, which is more in line with the actual situation. In the process
of the team’s assessment of talent, the team’s personalized indicators, historical reference
points, and desired reference points are taken into account so that the team’s psychological
gain and loss can be obtained, and whether the team is satisfied, and the degree of satis-
faction can be seen from the assessment prospect value. In the process of negotiating the
introduction cost between the team and the talent, the bottom-line reference points of the
new R&D organization are taken into account so that the gain and loss of the new R&D
organization as a whole on the cost can be obtained, whether it is satisfied, and the degree
of satisfaction from the cost prospect value. The prospect values of the combined benefits
and costs of the team and talent were substituted into the M-1 model for bilateral matching
and the matching results obtained were more convincing.

4.3. Second-Stage Trial Matching of Teams and Scientific and Technical Talents in New R&D Institutions

After the first phase of elimination matching, S2, S3, S4, and S6 enter the second
phase of probationary matching. Each science and technology talent enters the new R&D
institution to work and learn for a one-year probationary period, which is applied in four
teams on a rotating basis for a three-month probationary period. After a year of probation
in team T of the new R&D organization, the new R&D organization team again evaluated
the scientific and technical talents to determine which team the scientific and technical
talents would eventually work inside. In this study, we collect the values of the second
stage of the assessment of scientific talent by the new R&D organization team, which is
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characterized by the mean value, with the historical and desired reference points also using
the data given in the first stage. All data are divided by 100 and normalized so that they fall
between [0,1], as shown in Tables 12–15. For ease of calculation, the scientific and technical
talents were still matched with their original numbers.

Table 12. Assessment values of talents S by the new R&D organization team T1 phase 2.

T1-S
Render Service

to One’s
Country

Critical
Innovation

Entrepreneurial
Achievements

Interdisciplinary
Subject

(in Science)

Self-Control and
Self-Discipline

S2 0.8475 0.7605 0.7325 0.7500 0.7775
S3 0.8025 0.7900 0.8025 0.7975 0.8475
S4 0.8475 0.8125 0.6975 0.7375 0.7150
S6 0.7850 0.7050 0.7325 0.8075 0.7800

Historical
reference points 0.7500 0.7500 0.6500 0.6750 0.7750

Desired
reference point 0.8000 0.7500 0.7750 0.7750 0.7500

Table 13. Assessment values of talents S by the new R&D organization team T2 phase 2.

T2-S
Professional

Ethics
Innovative

Results
Entrepreneurial
Achievements

Communication
and

Collaboration
Keep a Secret

S2 0.8575 0.8300 0.7200 0.8175 0.7850
S3 0.7900 0.7625 0.8000 0.7600 0.8150
S4 0.8650 0.8225 0.7750 0.8075 0.7275
S6 0.8025 0.8125 0.8125 0.7650 0.7775

Historical
reference points 0.7500 0.7000 0.7250 0.6750 0.7500

Desired
reference point 0.8000 0.8000 0.8000 0.7000 0.7750

Table 14. Assessment values of talents S by the new R&D organization team T3 phase 2.

T3-S
Render Service

to One’s
Country

Entrepreneurial
Achievements

Top Students
Technology
INSIGHTS

Physical Quality
(in Ideological

Education)

S2 0.8275 0.7300 0.7350 0.7700 0.8175
S3 0.7900 0.8500 0.8200 0.7450 0.7200
S4 0.8575 0.6975 0.8325 0.7500 0.7675
S6 0.8125 0.7950 0.7775 0.7950 0.8575

Historical
reference points 0.8000 0.7250 0.7000 0.7500 0.8000

Desired
reference point 0.8000 0.8000 0.7750 0.8000 0.8250

Table 15. Assessment values of talents S by the new R&D organization team T4 phase 2.

T4-S
Professional

Ethics
Innovative

Results

Communication
and

Collaboration

Design and
Programming

Psychological
Quality

(in Ideological
Education)

S2 0.8175 0.7825 0.7475 0.8200 0.7325
S3 0.7375 0.6800 0.7700 0.7725 0.7575
S4 0.8350 0.7700 0.8375 0.7400 0.7900
S6 0.7950 0.8725 0.8725 0.7750 0.8400

Historical
reference points 0.7250 0.7250 0.7750 0.6500 0.7000

Desired
reference point 0.8000 0.8000 0.8000 0.7750 0.7750

As can be seen from the above table:
(1) The assessed values of the four teams of the new R&D organization on the S of the

scientific and technological talents have changed compared to the assessed values in the
first stage. Because scientific and technological talents have been on trial for a period of
time, the new R&D organization teams are not familiar with the scientific and technological
talents to the same extent and have a new understanding of the scientific and technological
talents. The scientific and technological talents are also influenced by the team culture and
values in the new working environment. For example, if everyone in the team is determined
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to serve the motherland, and meetings are often held with ideological education, then
scientific and technical talents will also strengthen their love for the motherland in this
atmosphere, and these changes are reflected in the changes in assessment values.

(2) The reason for taking the average value in this assessment is that the match in the
second stage is a fit-for-post match and no more talent will be eliminated, so the matching
pressure will be much less. Eventually, the teams will all be matched with tech talent, and
the tech talent will all be matched with teams. For simpler and easier calculations, the
uncertainty is ignored in the second-stage match.

(3) Reference points were set and teams of new R&D institutions were asked to provide
the corresponding reference point data. The reference point data were not updated in the
second stage, also for the convenience of calculation, and because the time difference
between the first and second stages is only one year, the time of scientific and technological
talents in each team is only three months, and the change in the reference points will not be
very large, so the dynamics of the reference points were not considered in this study.

In the second stage, the reference point values are the average of the reference point
values in the first stage divided by 100 normalized data, and the indicator weights and
reference point weights are the same as those in the first stage. Based on the assessed values,
reference point values, indicator weights, and reference point weights of the second stage of
the new R&D organization team T to the scientific and technological talent S, we obtained
the prospect value matrix of the second-stage match between the new R&D organization
team T and the scientific and technological talent S, as shown in Table 16.

Table 16. Prospect values for the second stage assessment of talents S by the new R&D organization
teams T.

T-S S2 S3 S4 S6

T1 0.0235 0.0910 −0.0313 0.0080
T2 0.0398 0.0379 0.0578 0.0733
T3 −0.0524 0.0172 −0.0773 0.0391
T4 0.0218 −0.0772 0.0309 0.1056

As can be seen from the table above:
(1) After the trial of scientific and technical talents, both the satisfaction and satisfaction

rates of the new R&D organization team with scientific and technical talents have changed.
(2) Team T1 of the new R&D organization is satisfied with S2, S3, and S6, but is not

satisfied with S4, with a satisfaction rate of 75%, and ranks the scientific and technological
talents as S3 � S2 � S6 � S4.

(3) Team T2 of the new R&D organization is satisfied with all scientific and technologi-
cal talents, with a satisfaction rate of 100%, and the ranking of scientific and technological
talents is S6 � S4 � S2 � S3.

(4) Team T3 of the new R&D organization is satisfied with S3 and S6, and is dissatisfied
with S2 and S4, with a satisfaction rate of 50%, and ranks the scientific and technological
talents as S6 � S3 � S2 � S4.

(5) Team T4 of the new R&D organization is satisfied with S2, S4, S6, and is not satisfied
with S3, with a satisfaction rate of 75%, and ranks the scientific and technological talents as
S6 � S4 � S2 � S3.

After the probationary period, the tech talent will be called a full staff member in the
new R&D organization team; in the second stage of matching, the new R&D organization
team is 50% dominant, and we need to consider the choice of technology talent. In this
study, scientific and technical talents ranked the four teams, as shown in Table 17.
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Table 17. Ranking of talents S on the second stage of the new R&D institution teams T.

S-T S2 S3 S4 S6

T1 4 3 3 2
T2 3 1 2 1
T3 1 2 1 4
T4 2 4 4 3

Since the ordinal values cannot be matched, ordinal values are converted into satis-
faction values: ordinal number 1 indicates satisfaction of 1, ordinal number 2 indicates
satisfaction of 0.75, ordinal number 3 indicates satisfaction of 0.5, and ordinal number 4
indicates satisfaction of 0.25. Let satisfaction of 0.5 be the reference point of the scientific
and technical talents. According to prospect theory, we obtain the prospect value of the
scientific and technical talents’ satisfaction with the team, as shown in Table 18.

Table 18. Ranking prospect values of talents S for the second stage of the new R&D organization
team T.

S-T S2 S3 S4 S6

T1 −0.6643 0.0000 0.0000 0.2952
T2 0.0000 0.5434 0.2952 0.5434
T3 0.5434 0.2952 0.5434 −0.6643
T4 0.2952 −0.6643 −0.6643 0.0000

We weighted the prospect values of the team-to-talent assessment and the prospect
values of the talent-to-team assessment in the second stage to obtain the combined prospect
values of the second stage match, as shown in Table 19.

Table 19. New R&D organization teams T and talents S Phase II composite prospect values.

Combined
Prospect Value

S2 S3 S4 S6

T1 −0.3204 0.0455 −0.0157 0.1516
T2 0.0199 0.2907 0.1765 0.3083
T3 0.2455 0.1562 0.2330 −0.3126
T4 0.1585 −0.3707 −0.3167 0.0528

As can be seen from the table above:
(1) After combining the rankings of talent degree teams, the satisfaction rate, satisfac-

tion rate, and ranking of the bilateral match between teams of new R&D institutions and
scientific and technological talents changed.

(2) Team T1 of the new R&D organization is satisfied with S3 and S6, and is dissatisfied
with S2 and S4, with a satisfaction rate of 50%, and ranks the scientific and technological
talents as S6 � S4 � S4 � S2.

(3) Team T2 of the new R&D organization is satisfied with S2 and S3, and is dissatisfied
with S1, S4, S5, and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S6 � S4 � S4 � S2.

(4) Team T3 of the new R&D organization is satisfied with S2 and S4, and is dissatisfied
with S1, S3, S5 and S6, with a satisfaction rate of 33.33%, and ranks the scientific and
technological talents as S2 � S4 � S3 � S6.

(5) Team T4 of the new R&D organization is satisfied with S2, S3, S4, S5 and S6,
and is dissatisfied with S1, with a satisfaction rate of 83.33%, and ranks the scientific and
technological talents as S2 � S6 � S4 � S3.

The prospective values of the team’s second-stage assessment of talent were substi-
tuted into the M-2 model for bilateral matching, and the results of second-stage matching
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were obtained, as shown in Table 20. The overall assessment satisfaction for this match was
0.2478, and the match was stable.

Table 20. Results of the second stage matching of the new R&D organization teams T and the talents S.

Matching Teams Phase 2 Matches Tech Talent Phase II Composite Prospect Value

T1 S6 0.1516
T2 S3 0.2907
T3 S4 0.2330
T4 S2 0.1585

From the above table we can see that:
(1) The results of the matching between the new R&D organization team T and the

scientific and technological talent S have been completely different from the previous
matching results, and the indicators of each team’s assessment of the scientific and tech-
nological talent have not changed, indicating that after a period of understanding, the
team’s understanding of the scientific and technological talent has changed. Therefore,
bilateral matching should be based on dynamic ideas so that the matching results can be
more accurate.

(2) In terms of the composite prospect values, the data on the composite prospect
values for Phase 2 also validated the Phase 1 match, with all reaching satisfaction, but with
plenty of room for satisfaction improvement. The combined team and talent satisfaction is
more balanced, with the highest satisfaction rate for tech talent S3.

4.4. Comparison of Methods

The first stage of this paper is elimination matching, where different methods eliminate
talents with different results. The second stage of selection matching only evaluates and
ranks the scientific and technical talents matched in the first stage; therefore, other methods
cannot obtain all the data of the second stage. This paper conducts a method comparison
on the first stage of matching.

Method A: The approach in this study, considering a dual historical and aspirational
reference point, is based on prospect theory, considering the cost of bringing in scientific
and technical talent, and considering two stages.

Method B: Based on the approach presented in this paper, only historical reference
points were considered for one phase.

Method C: Based on the method presented in this paper, only the desired reference
point was considered for one stage.

Method D: on the data in this study, a phase was considered without considering the
cost of introducing scientific and technological talent.

Method E: on the data in this study, a stage was considered based on regret theory.
Method F: on the data in this study, a phase was considered based on the grey correlation.
After calculation, the results are shown in Table 21.

Table 21. Bilateral Matching Results of Teams and Talents in New R&D Institutions under Different Methods.

Approach
First Phase

Matching Results
Phase I Elimination of

Talent
Reference Point

Consider the Cost of
Introduction

Consider Psychological
Factors

A [T1,S6] [T2,S2]
[T3,S4] [T4,S3] S1, S5 Historical reference point

Desired reference point yes Yes

B [T1,S6] [T2,S1]
[T3,S4] [T4,S2] S3, S5 Historical reference point yes Yes

C [T1,S1] [T2,S2]
[T3,S4] [T4,S5] S3, S6 Desired reference point yes yes

D [T1,S5] [T2,S2]
[T3,S4] [T4,S3] S1, S6 Historical reference point

Desired reference point no yes

E [T1,S5] [T2,S2]
[T3,S1] [T4,S6] S3, S4 Historical reference point

Desired reference point yes yes

F [T1,S5] [T2,S2]
[T3,S4] [T4,S3] S1, S6 Historical reference point

Desired reference point yes no
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As can be seen from the table above:
(1) Under different approaches, some consider historical and desired dual reference

points, some consider historical or desired single reference points, some consider introduc-
tion costs, some do not, some consider psychological factors, and some do not; thus, the
results of bilateral matching are different.

(2) For the first stage of elimination matching, the scientific and technical talent
eliminated is different under different methods, so the program still has a greater impact
on the outcome of the elimination.

(3) Among the six different methods, the probability of being eliminated for scientific
and technological talents S1, S3, and S6 was 50%, the probability of being eliminated for
scientific and technological talents S5 was 33.33%, the probability of being eliminated for
scientific and technological talents S5 was 33.33%, and the probability of being eliminated
for scientific and technological talents S4 was 16.67%. Therefore, for scientific and techno-
logical talents, the higher the probability of being eliminated, the higher the risk, and it is
necessary to find the direction of improvement from the personalized assessment index of
the team of new R&D institutions, find the deficiency, and make efforts to improve so as to
enhance their scientific and technological capabilities.

5. Conclusions

In summary, the following conclusions can be drawn.
First, this study characterizes the uncertain new R&D organization team’s assessed

value of scientific and technological talents and the cost of introducing scientific and tech-
nological talents by interval grey numbers, which shows the characteristics of multi-expert
group decision-making of new R&D organization teams, inconsistent expert backgrounds
and preferences, and the existence of an adjustment interval of talent policy, which is closer
to reality.

Second, this study considers personalized assessment indicators for teams in new
R&D institutions, because there are different teams in new R&D institutions, and different
teams do not have exactly the same requirements for scientific and technological talents.
Although the teams belong to the same new R&D institution, the focus of work is not quite
the same, some focus more on market research, some focus more on R&D innovation, and
some focus more on communication and collaboration. Therefore, this study provides
a general framework of assessment metrics and allows teams to select individualized
assessment metrics under the general framework, that is, some metrics will be selected and
some will not, but the selected metrics must come from this metric framework. Different
teams may choose different assessment metrics that are both relevant and easy to use.

Third, this study sets a dual reference point of historical reference point and desired
reference point in the team assessment of talent, and a bottom-line reference point in the
agreed cost of introduction of the team and talent, applying prospect theory based on
the reference point to turn the assessed value and cost value into prospect value, fully
considering people’s psychology, and no longer comparing the absolute value of assessed
value or cost value but comparing the relative value based on the reference point.

Fourth, the bilateral matching of teams and scientific and technological talents in new
R&D institutions is divided into two stages, the first stage is elimination matching and
the second stage is selection matching, both stages are many-to-many matching, but in
the elimination matching of the first stage, all teams are matched and not all scientific
and technological talents are matched, more scientific and technological talents than the
number of teams will be eliminated. In the second stage of selection matching, there are
equal numbers of teams and talents. Considering these two stages shows the idea of a
dynamic assessment.

Fifth, in the first stage of elimination matching, both the team’s assessed value of
talent and the cost value of scientific and technological talent are considered. The larger the
assessed value, the better the lower the cost value, so that the scientific and technological
talent matched out by forming dual objectives is in line with the principle of maximizing
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benefits and will not be too costly, and the assessment factor and cost factor can be adjusted
by weighting.

Sixth, in the second stage of selection matching, both the team’s assessment value of
the talent and the talent’s ranking of the team are considered. The larger the assessment
value, the better, and the smaller the ranking, the better, so as to form a double target
matching out of the scientific and technological talent. The satisfaction of both sides is
not too low, fully considering the psychological factors of both the team and the talent
matching, and the assessment factor and the ranking factor are adjustable by weighting.

In summary, this study considers two stages of team and talent matching in new R&D
organizations. The first considers the team’s assessment of talent and the cost of talent
introduction; the assessment considers historical reference points and desired reference
points, the cost considers bottom-line reference points, and combines prospect theory
with high assessment value and low cost to optimize the solution. The second stage
considers the team’s evaluation of the talent and the talent’s satisfaction with the team.
The evaluation still considers the historical reference point and the desired reference point,
which considers the bottom-line reference point. This optimizes the solution based on
high evaluation value and high satisfaction in combination with prospect theory, fully
considering the psychological factors of decision makers. In real life, assessment values,
ranking values, reference point values, etc., are decided by multiple participants, so these
values mostly have uncertainty. The interval grey number possesses an independent
algorithm that characterizes uncertainty but is simple to calculate. The method in this
paper solves the problems of high cost and low satisfaction of talent introduction raised
by HR directors of new R&D organizations and greatly improves the efficiency of team
and talent matching. New R&D organization teams should comply with market changes,
update personalized assessment indicators, dynamically assess scientific and technical
talent, continuously build a reasonable talent ladder, identify talent deficiencies and train
them, and adjust talent policies to promote output. Scientific and technological talent
should strive to cope with the matching situation of the team of new R&D institutions,
adjust their efforts according to the team’s personalized assessment indicators in a timely
manner, conduct scientific and technological work with the team’s goals as the focus, create
more scientific and technological achievements, and realize their self-worth. Since there
is not much data acquisition, the author has selected only one new R&D institution for
method calculation. The sample size is still small; therefore, it has some limitations. The
current study only considers factors such as team’s evaluation of talent, talent’s cost, and
talent’s satisfaction with the team, which has some limitations. Later on, we can combine
government factors, leadership factors of teams, self-motivation factors of talents, and
project-based management factors with this study. The current study only considered
static reference points. In the future, the author will also conduct research on bilateral
matching of team and scientific and technological talents in new R&D institutions based
on government supervision, re-research on bilateral matching of team and scientific and
technological talents in new R&D institutions based on dynamic reference points, and
research on trilateral matching of team-project-talent in new R&D institutions based on
reference points.
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Abstract: Accurate modeling of photovoltaic (PV) modules under outdoor conditions is essential to
facilitate the optimal design and assessment of PV systems. As an alternative model to the translation
equations based on regression methods, various data-driven models have been adopted to estimate
the current–voltage (I–V) characteristics of a photovoltaic module under varying operation conditions.
In this paper, artificial neural network (ANN) models are compared with the regression models for
five parameters of a single diode solar cell. In the configuration of the proposed PV models, the five
parameters are predicted by regression and neural network models, and these parameters are put
into an explicit expression such as the Lambert W function. The multivariate regression parameters
are determined by using the least square method (LSM). The ANN model is constructed by using a
four-layer, feed-forward neural network, in which the inputs are temperature and solar irradiance,
and the outputs are the five parameters. By training an experimental dataset, the ANN model is
built and utilized to predict the five parameters by reading the temperature and solar irradiance.
The performance of the regression and ANN models is evaluated by using root mean squared error
(RMSE) and mean absolute percentage error (MAPE). A comparative study of the regression and
ANN models shows that the performance of the ANN models is better than the regression models.

Keywords: regression; artificial neural network; I–V characteristics; photovoltaic module

1. Introduction

The output power of photovoltaic (PV) systems is strongly affected under arbitrary op-
erating conditions such as temperature and solar irradiance of PV modules [1,2]. However,
highly predictive and efficient models across different temperatures and irradiances have
not been established [3–6]. In addition, their nonlinear characteristics make highly predic-
tive modeling even more difficult [7–13]. The single-diode model (SDM) with five parame-
ters is widely utilized to reproduce the current–voltage (I–V) characteristics [5–8]. Owing
to the inherent implicit expression for the electrical equivalent circuit of the SDM, analytical
and explicit I–V models have been proposed to calculate the I–V relationship [1,14–16].
The explicit I–V model based on the Lambert W function is simple and efficient, while the
implicit model requires more computational time [14–16]. Although optimization methods
have been proposed to obtain the five parameters at the standard test condition (STC), sig-
nificant extraction efforts are required to consider the dependence of unknown parameters
on temperature and solar irradiance [3–8,17–21]. For arbitrary operating conditions, the
performance of the parameter translation model is greatly limited by the chosen translation
equation and correction factors [13,17–21]. In order to construct a complete PV model for
climatic conditions, the translational formula should be further modified [17,19] and new
parameters may need to be taken into account [18,20,21]. Moreover, the accuracy of the
translational formula varies significantly at low irradiance levels [3–5]. However, artificial
neural network (ANN) models provide parameter identification, I–V prediction with higher
accuracy directly from the measured data [22,23], and fault detection and diagnosis for
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photovoltaic systems [24–26]. To accurately estimate the performance of PV modules under
varying operating conditions, it is necessary to establish a data-driven model for the five
parameters with change in irradiance and temperature [27–37]. In recent years, improved
ANN models have been proposed by adding more variables [38] and utilizing the efficient
training schemes and processing of neural networks [39–42]. This paper compares the
performance of regression and ANN models for the five parameters in predicting the I–V
relationship of a PV module based on an explicit expression. The results show that the
ANN model provides better performance than the regression model. The novelty of the
proposed approach lies primarily in the successful integration of comparative models
into an analytical and explicit Lambert W function, in contrast with the previous practice
for the electrical equivalent circuits. (1) In this new framework, temperature and solar
irradiance serve as inputs to establish the regression and ANN models for I–V prediction
under arbitrary operating conditions. (2) An advanced ANN model for the five parameters
is developed by determining an optimum ANN architecture to improve the estimation
of the model. The ANN model developed can provide an efficient method with higher
accuracy in predicting I–V characteristics, compared to the regression model.

In this work, the modeling process begins in Section 2 with the theoretical formulation
of an explicit I–V model and translation equations for the five parameters. Section 3 de-
scribes the regression and ANN models, followed in Section 4 by a comparative validation
of both the models against the experimental data for a PV module. In Section 5, the main
conclusions are drawn.

2. Theoretical Models

2.1. Explicit and Analytical I–V Model

The PV-equivalent circuit of a single diode with two resistors is shown in Figure 1.
The I–V relationship of a PV module can be expressed with a single diode as [1,2,5–8]:

Figure 1. PV-equivalent circuit of a single diode with series and parallel resistance at arbitrary
irradiance (G) and temperature (T).

I = Iph − I0

[
exp
(

V + IRs

nVt

)
− 1
]
− V + IRs

Rp
(1)

where Iph is the photogenerated current, I0 is the diode reverse saturation current, n is the
ideality factor, and Rs and Rp is the series and parallel resistance, respectively. The thermal
voltage is given by Vt = NskbT/q, where Ns is the number of series-connected cells, kb is
the Boltzmann constant, and T is the temperature. The explicit solution of the PV module
transcendent Equation (1) is given as a function of the Lambert W function [1,14–16]:

I =
Rp

(
Iph + I0

)
− V

Rs + Rp
− nVt

Rs
W(α(V)) (2)
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α(V) =
RsRp I0

nVt
(

Rs + Rp
) e

Rp(Rs Iph+Rs I0+V)

nVt(Rs+Rp) (3)

2.2. Five Parameters as a Function of Temperature and Solar Irradiance

Environmental conditions such as temperature (T) and solar irradiance (G) have strong
effects on the I–V characteristics of the PV module. In order to extract accurate estimates
of the model parameters under arbitrary T and G, mathematical expressions for the five
parameters are reformulated by using the advantage of the previous formula [1,2,5–8].
The I–V curve translation for desired solar irradiance and temperature (G, T) from STC
(G0,T0) is obtained by using the short circuit current (Isc) and the open circuit voltage (Voc).
Assuming the condition Isc ≈ Iph, Isc(G, T) and Voc(G, T) are determined as [1,2,5–8]:

Isc(G, T) ≈ Iph(G, T) =
(

G
G0

)[
Iph0 + αi(T − T0)

]
(4)

Voc(G, T) = Voc0

[
1 + αv(T − T0) + βvVt ln

(
G
G0

)]
(5)

where Iph0 and Voc0 are the photogenerated current and open circuit voltage at standard
test conditions, respectively; αi and αv are temperature coefficients and βv is an irradiance
coefficient. From the relationship n = n0(Voc/Voc0) and Rs,p = Rs0,p0(Voc/Voc0)(Isc0/Isc),
the values of the translated parameters n(G, T), Rs(G, T), and Rp(G, T) are calculated as
follows [1,2,7]:

n(G, T) = n0

[
1 + αn(T − T0) + βnVt ln

(
G
G0

)]
(6)

Rs(G, T) = Rs0

1 + αRs(T − T0) + βRs Vt ln
(

G
G0

)
(

G
G0

)[
1 + α∗Rs

(T − T0)
] (7)

Rp(G, T) = Rp0

1 + αRp(T − T0) + βRp Vt ln
(

G
G0

)
(

G
G0

)[
1 + α∗Rp

(T − T0)
] (8)

where n0, Rs0, and Rp0 are the ideality factor, series resistance, and parallel resistance at
standard test conditions, respectively; αn, αRs , α∗Rs

, αRp , and α∗Rp
are temperature coefficients

and βn, βRs , and βRp are irradiance coefficients. By setting I = 0 in (1), the translation
expression for the reverse saturation current I0(G, T) as a function of Iph(G, T), Voc(G, T),
n(G, T), and Rs,p(G, T) is obtained as [1,2,7]:

I0(G, T) =
Iph(G, T)− Voc(G,T)

Rp(G,T)

exp
(

Voc(G,T)
n(G,T) Vt

)
− 1

(9)

3. Parameter Identification Approaches

3.1. Multiple Regression

The multivariate regression analysis is employed to model the statistical relationship
between inputs (G, T) and outputs (Iph,n,Rs,Rp,I0). The parametric regression equation for
a linear or nonlinear function f is expressed as [43–45]:

y = f (X1, . . . , Xn; θ1, . . . , θm) + ε (10)
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where y is an n × 1 vector of dependent variable, X1, . . . , Xn are an n × m matrix of in-
dependent variables, θ1, . . . , θm are an m × 1 vector of regression parameters, and ε is an
n × 1 vector of random error. The regression parameters θ1, . . . , θm are usually determined

using the least square method (LSM) to minimize
k
∑

i=1
(yi − f (X1i, . . . , Xni; θ1, . . . , θm))

2 with

different sample points k. Based on the estimated regression parameters, the optimum
regression model is chosen for prediction.

3.2. Artificial Neural Network (ANN)

The artificial neural network is specified in modeling complex systems, especially
nonlinear or random variable systems. The multilayer perceptron (MLP), known as the
fully connected feed-forward network for supervised learning, is the most common and
successful for modeling nonlinear systems [22,23,31]. The MLP network configuration has
an input layer, two hidden layers, and an output layer. The input layer consists of two
neurons (G, T), and the output layer contains five neurons (Iph,n,Rs,Rp,I0). Every neuron
in one layer is fully connected to every neuron in the next layer. By using the activation
function of a hyperbolic tangent sigmoid function for N neurons, the output h(k)i of the ith
neuron in the kth hidden layer is computed as follows [22,23]:

h(1)i = tanh

(
2

∑
j=1

w(1)
ij xj + b(1)i

)
(11)

h(2)i = tanh

(
N

∑
j=1

w(2)
ij h(1)j + b(2)i

)
(12)

where xj is the jth input to the neuron, w(k)
ij is the weight for the ith neuron and jth input in

the kth hidden layer, and b(k)i is the bias for the ith neuron in the kth hidden layer. With the
use of a linear activation function for neurons in the output layer, the network’s output can
be written as

yi =
N

∑
j=1

w(3)
ij h(2)j + b(3)i (13)

In the vectorized form with a weight matrix W(k), an activation vector h(k), and a bias
vector b(k), the network’s computations are given by [22,23]:

h(1) = tanh
(

W(1)x + b(1)
)

(14)

h(2) = tanh
(

W(2)h(1) + b(2)
)

(15)

y = W(3)h(2) + b(3) (16)

where x = [G T]T is the transpose of the input vector x. The neural network is trained
by using the Levenberg–Marquardt algorithm, a method used extensively for learning
a feed-forward network, to realize the rapid correction of network weights and biases.
Since the initial value of weight and bias affects the training results, the neural network
can be retrained several times to obtain a neural network with excellent universality. The
configuration of the proposed model is summarized in Figure 2. The five parameters
are predicted by a MLP neural network, and these parameters are put into the Lambert
W function.
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Figure 2. Configuration of the proposed photovoltaic model.

4. Model Verification

The validation of the regression and ANN models for the five parameters (Iph,n,Rs,Rp,I0)
is assessed by using the experimental data of the monocrystalline SM55 PV panel (Ns = 36) [1].
The five parameters are extracted by using the quality factor variation method from the
manufacturer’s data sheet [1,17]. After determining the parameters at standard test con-
ditions (G0 = 1000 W/m2, T0 = 298 K), the procedure is applied to estimate variations in
the five parameters for different temperature levels (T = 298 ∼ 343 K) and solar irradi-
ance levels

(
G = 200 ∼ 1000 W/m2). The database obtained from the procedure is used

to develop the multiple regression models for Iph(G, T), n(G, T), Rs(G, T), Rs(G, T), and
I0(G, T).

Table 1 shows the regression models and coefficient of determination R2 estimated by
using Equations (4)–(9). As shown in Table 1, the regression models have a high coefficient
of determination ( R2 = 0.9692 ∼ 1.000), and I0(G, T) is obtained by other parameters with
a high coefficient of determination.

Table 1. Regression model and R2 for parameters estimated from experimental data.

Parameters Regression Models and R2

Iph(G, T) (A)
(

G
G0

)[
3.457 + 1.407 × 10−3(T − T0)

]
, R2 = 1.000

Voc(G, T) (V)
21.63

[
1 − 3.434 × 10−3(T − T0) + 1.752 × 10−4Vt ln

(
G
G0

)]
,

R2 = 0.9985

n(G, T)
1.084

[
1 − 8.455 × 10−4(T − T0) + 2.749 × 10−4Vt ln

(
G
G0

)]
,

R2 = 0.9692

Rs(G, T) (Ω) 0.4724
1+1.405×10−2+6.854×10−4Vt ln

(
G

G0

)
(

G
G0

)
[1+3.488×10−2(T−T0)]

, R2 = 0.9938

Rp(G, T) (Ω) 222
1+1.890×10−2+7.246×10−4Vt ln

(
G

G0

)
(

G
G0

)
[1+2.515×10−2(T−T0)]

, R2 = 0.9926

I0(G, T) (A)
[

Iph(G, T)− Voc(G,T)
Rp(G,T)

]
/
[
exp
(

Voc(G,T)
n(G,T)Vt

)
− 1
]

The best ANN model has an input layer with two variables, two hidden layers with five
neurons in each layer, and an output layer with five variables (2-5-5-5 topology). Logarithm
data preprocessing is used to improve the ANN model accuracy for the reverse saturation
current I0(G, T). For training the ANN model, the offline method is utilized to generate
the dataset for the five parameters of the PV panel, which is extracted from manufacturer’s
data sheet. Figure 3 shows the dependence of five parameters on temperature and solar
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irradiance for the regression model and ANN model. The correlation coefficients are
employed to evaluate the accuracy of the ANN model for the five parameters, including
the training, validation, and testing phases. As a result, the correlation coefficients with
values greater than 99.85% were observed between the predicted and measured data in all
network phases.

 
(a) Regression model for  (f) ANN model for  

 
(b) Regression model for  (g) ANN model for   

 
(c) Regression model for  (h) ANN model for   

 
(d) Regression model for  (i) ANN model for   

Figure 3. Cont.
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(e) Regression model for  (j) ANN model for   

Figure 3. Dependence of the five parameters on temperature and solar irradiance for the regression
model (a–e) and ANN model (f–j).

As plotted in Figure 4, two different statistical metrics based on the measured and
estimated five parameters are employed to compare the accuracy of the ANN model
with the regression model, including root mean squared error (RMSE) and mean absolute
percentage error (MAPE), as follows [14,15]:

RMSE =

√
1
n

n

∑
i=1

(ym,i − ye,i)
2 (17)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ym,i − ye,i

ym,i

∣∣∣∣× 100 (%) (18)

where ym,i and ye,i are the measured and estimated values, respectively. Both RMSE and
MAPE values of the ANN models are lower than those of the regression models. This is
attributed to the strong capability of MLP–ANN models to learn the nonlinear relationship
between the inputs and the outputs, whereas the regression models may be limited to a
specific condition. Figure 5a,b show I–V characteristics and the absolute error by simulated
and experimental data at different irradiances and temperatures, respectively. It is found
that the absolute error values of the ANN models are lower than the regression models,
resulting from the better performance of the ANN models for the five parameters shown
in Figure 3. Table 2 shows the comparison of maximum absolute errors of the I–V curves
estimated from the proposed ANN model and different models for the SM55 PV panel. As
can be seen, the maximum absolute errors of the proposed ANN model are much lower
than the other models for different irradiances and temperatures. These results justify the
higher accuracy of the ANN models, compared with other works [1,4,46].

 
(a) (b) 

Figure 4. Statistical metrics for the five parameters in evaluating the accuracy of the regression model
and ANN model: (a) RMSE and (b) MAPE.
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(a) 

(b) 

Figure 5. I–V curves and absolute error by simulated and experimental data (a) at different irradiances
and (b) at different temperatures.

Table 2. Comparison of maximum absolute errors estimated from different models.

Temperature
T (K)

Irradiance
G (W/m2)

Maximum Absolute Errors (A) of I–V Curves for SM55 Panel
Proposed

ANN Model
Model 1 [1] Model 2 [4] Model 3 [46]

298
200 0.02 0.03 0.03 0.08
600 0.01 0.04 0.06 0.05
1000 0.06 0.08 0.06 0.06

298
1000

0.04 0.07 0.06 (293 K) 0.10 (293 K)
313 0.09 0.16 0.15 0.09
333 0.09 0.12 0.10 0.20

5. Conclusions

The electrical characteristics of a PV module under arbitrary operating conditions have
been estimated by using the regression and ANN models. The models are utilized to predict
the five parameters of a single diode solar cell, and the parameters are combined with an
explicit equation for I–V characteristics. The inputs of the regression and ANN models are
temperature and solar irradiance, while the outputs are the five parameters. The dataset
needed for the five parameters was extracted from manufacturer’s data sheet and used
to construct the regression and ANN models. The best neural network architecture had
a 2-5-5-5 topology for the five parameters, leading to correlation coefficients with values
greater than 99.85%. Both the RMSE and MAPE values of the ANN models were found to
be lower than those of the regression models. With comparative results, the ANN models
show better performance than the regression models in predicting I–V characteristics under
varying temperature and solar irradiance. It is applicable to extend the higher capability
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of ANN models to the prediction of electrical characteristics for diverse solar cells under
actual weather conditions.
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Abstract: The direct reduction process has been developed and investigated in recent years due to less
pollution than other methods. In this work, the first direct reduction iron oxide (DRI) modeling has
been developed using artificial neural networks (ANN) algorithms such as the multilayer perceptron
(MLP) and radial basis function (RBF) models. A DRI operation takes place inside the shaft furnace.
A shaft furnace reactor is a gas-solid reactor that transforms iron oxide particles into sponge iron.
Because of its low environmental pollution, the MIDREX process, one of the DRI procedures, has
received much attention in recent years. The main purpose of the shaft furnace is to achieve the
desired percentage of solid conversion output from the furnace. The network parameters were
optimized, and an algorithm was developed to achieve an optimum NN model. The results showed
that the MLP network has a minimum squared error (MSE) of 8.95 × 10−6, which is the lowest error
compared to the RBF network model. The purpose of the study was to identify the shaft furnace
solid conversion using machine learning methods without solving nonlinear equations. Another
advantage of this research is that the running speed is 3.5 times the speed of mathematical modeling.

Keywords: direct reduction; MIDREX; neural network; optimization; algorithm; modeling

1. Introduction

Direct reduction of iron oxide (DRI) is one of the most important non-catalytic gas-
solid reactions in industry, and it continues to be an important field of study in chemical
engineering [1,2]. The MIDREX process, which is one of the direct-reduction technologies,
has received a lot of interest because it is a great technology for considerably reducing
carbon dioxide (CO2) emissions from steel plants [3,4]. This is primarily accomplished by
using natural gas instead of coke or coal [5]. Several approaches were used to develop
these solutions, whose overview is provided in Figure 1.

 

Figure 1. Direct reduction methods have been developed extensively [6].
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Despite the global COVID-19 pandemic, global DRI output in 2020 is 104.4 million tonnes
which has a 3.4% decrease compared with the previous year’s record of 108.1 million tonnes.
India and Iran produced about half of the world’s DRI [7].

The shaft furnace, reformer, and recuperator are the three main parts of the Midrex
process, of which the shaft furnace is the most important. Within the shaft furnace, re-
duction processes take place, and iron oxide turns into sponge iron. Researchers have
recently worked to regenerate hydrogen and develop the new MIDREX process design.
Pimm et al. improved the MIDREX process to use renewable energies to satisfy the energy
needs of the revised MIDREX process and the hydrogen-based MIDREX unit. According to
Rechberger et al.’s research, the carbon footprint of the power used to manufacture hydro-
gen has a significant impact on the amount of potential that the hydrogen-based pathway
offers for environmentally friendly steelmaking [8,9].

Figure 2 indicates direct reduction processes for the production of sponge iron which
uses natural gas as the major reducing agent. Today these processes provide for more
than 70% of the overall production of DRI and hot briquetted iron (HBI). Natural gas is
transformed into reducing agents, mostly carbon monoxide and hydrogen, which operate
as iron oxide reducers [6]. The shaft furnace is divided into three main parts: (i) reduction
zone, (ii) transition zone, and (iii) cooling zone. The most fundamental part of the shaft
furnace is the place where reduction occurs. Therefore, most of the modeling has been
conducted around this area. The unreacted shrinking core model (USCM) is an assumption
adopted by the majority of prior simulations at the pellet scale [10–12]. Furthermore, some
modeled direct reduction reactors in industrial units use this model and achieved desirable
results [13,14]. Nevertheless, the grain model can be better than the USCM at predicting
plant data [15].

Figure 2. World DRI Production report (2020) using different technologies [7].

Hamadeh et al. assumed that the shaft furnace had pellets made of grains and
crystals [4]. In some reactor models, only one reductant gas is used, such as pure H2
gas [12,16–18], pure CO gas [19,20], and H2 and CO mixtures [21,22]. In a real shaft furnace,
the reducing gas is a combination of H2, CO, H2O, CH4, and CO2 [4]. Modeling and
simulation of industrial direct reduction furnaces have been performed by numerical
solutions and computational fluid dynamics (CFD), which are summarized in Table 1.
Additionally, some notable non-industrial modeling is given in Table 2.

It is employed at research centers today to comprehend the uses of machine learning
(ML) in both the present and the future of energy systems. One of the most effective
techniques employed in a variety of industrial fields is the deployment of ML algorithms.
Because hybrid approaches take advantage of two or more ways to make an accurate
forecast, they sometimes yield greater results than a single method. In light of this, it is
advised to use hybrid ML strategies in the future [23–25].
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The reduction zone is a part of the top of the furnace. The followings are the main
chemical reactions that take place in the reduction zone [13,15]:

Fe2O3 + 3H2 → 2Fe + 3H2O (1)

Fe2O3 + 3CO → 2Fe + 3CO2 (2)

Before recirculation to another usage, a wet scrubber cleans and cools the gas dis-
charged from the top of the furnace shaft. A compressor pressurizes the top gas, which
contains CO2 and H2O, before mixing it with natural gas, preheating, and feeding it into
a reformer furnace. Hundreds of reformer tubes that are filled with a nickel catalyst are
installed in the reformer furnace. The mixture of the top gas and natural gas is reformed in
these tubes to produce reductant gas, which consists of carbon monoxide and hydrogen.
The following is the reaction that takes place in the reformer tubes [45]:

CH4 + H2O → CO + 3H2 (3)

CH4 + CO2 → 2CO + 2H2 (4)

After ongoing investigations on modeling, Parisi et al. developed a network for stable
solid-state heterogeneous reactors by using neural networks for steam reformers that were
able to respond 20 times faster than the numerical model [46]. In another research, a tubular
reactor with a fixed bed full of porous pellets was developed isothermally by using an
unsupervised grid with an accuracy of approximately 10−9 [47]. The use of ML approaches
in the simulation of the shaft furnace to estimate the conversion rate of pellets for making
sponge iron can overcome the challenges of using nonlinear modeling and is one of the
most important achievements of this research. Due to the complexity of pellet behavior, the
difficulty of modeling, and the precise prediction of pellet behavior, a new model has been
proposed in this study by using an artificial neural network (ANN). Consequently, Figure 3
presents four fundamental models for the DRI process. The low error value in the ANN
method, and the complexity of mathematical modeling caused by the ANN technique,
make it interesting.

Figure 3. Models developed for pellets in shaft furnaces [3,17–19,30–34,39].

The purpose of this research is to investigate industrial units. Since various industrial
data are either non-existent or limited, it has been tried to construct the network according
to the simulation results that were in high conformity with the industrial data. In this
investigation, modeling was conducted using the four industrial units’ real data, and
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MLP and RBF networks were built [13–15]. Based on the MLP network structure, Several
optimization techniques tuned it after determining the optimal number of neurons in the
hidden layers.

2. Numerical Modeling

As shown in Figures 3 and 4, to understand the DRI modeling process, a control
volume would be positioned in the shaft furnace’s cylindrical point for modeling the
reduction zone, heat transfer, and mass transfer equations.

Figure 4. Schema of control volume around the reduction zone.

Firstly, the extent of the reaction should be defined to derive the balances around the
element:

X1 = Co
H2

− CH2
(5)

X2 = Co
CO − CCO (6)

Xrs = X1 + X2 = 3(Co
Fe2O3

− CFe2O3
) = X3 (7)

This value for the solid and gas phases has been concluded based on the stochiometric
coefficients, mass, and energy balance as follows [13,15]:

ug
dX1

dz
+ Rr1(X1, X3) = 0 (8)

ug
dX2

dz
+ Rr2(X2, X3) = 0 (9)

us
dX3

dz
+ (Rr1(X1, X3) + Rr2(X2, X3)) = 0 (10)

dTg

dz
− np Aph(Ts − Tg)

GmgCpg(X1, X2, Tg)
= 0 (11)

dTs

dz
−

[
np Aph(Tg − Ts)−

2
∑

i=1
ΔHi(Ts)Rri(Xi, X3, Ts)

]
Gms(X1)Cps(X3, Ts)

= 0 (12)

where ug is gas velocity, us is solid velocity, Rr1 and Rr2 are first and second reaction rate,
np is the quantity of pellets per unit of bed volume, AP is pellet external area, Tg and Ts are
gas and solid temperature, Gmg is gas molar flow, Cpg is heat capacity gas, h is heat transfer
coefficient, and ΔH is reaction enthalpy.

202



Energies 2022, 15, 9276

The aforementioned mathematical modeling of the moving bed direct reduction reactor
yields a set of nonlinear ordinary differential equations that can be solved by numerical
methods such as Runge–Kutta and the shooting technique [13,15]. Several researchers have
made the assumption that, since the radius of the reactor is 200–250 times greater than the
pellet diameter, porosity fluctuations of the bed are disregarded [48–51].

Case Studies

Gilmore, Siderca, Mobarakeh, and Khorasan are industrial units with a comprehensive
dataset on network inputs, as shown in Table 3. Using these four industrial units, 200
samples were extracted. Due to insufficient parameters, the dataset of other shaft furnaces
could not be used. Developing a new general model using mentioned research dataset
from Figure 5 has been considered dimensionless. We employed simulation results from
previous research projects as a result of mathematical modeling for feed data. The data
in Table 3, in which the error value of mathematical modeling is provided from previous
research efforts (Relative Error).

Figure 5. Different parameters in shaft furnaces at different plants.

The following variables have been selected as network input parameters based on the
effective parameters such as dependent and independent in direct reduction simulation to
achieve the percentage of X3:

(i) dimensionless temperature of the gas and solid, (ii) percentage of gas entering the
furnace, (iii) length-to-diameter ratio of the furnace. The network output is also investigated
as a percentage of X3, which is practical for the calculation of the degree of metallization
(MD) shown in Equation (13) as a key output parameter [30].

MD(%) =
Fe

Total Fe(Fe + FeO)
× 100 (13)

203



En
er

gi
es

2
0

2
2
,1

5,
92

76

T
a

b
le

3
.

M
od

el
pa

ra
m

et
er

s
ra

ng
e

fo
r

th
e

cu
rr

en
ts

tu
dy

.

S
h

a
ft

F
u

rn
a

ce
N

a
m

e
(L

/D
to

ta
l)

(−
)

X
H

2
(−

)
X

C
O

(−
)

X
H

2O

(−
)

X
C

O
2

(−
)

T
* g

(−
)

T
* s

(−
)

Q
g
/Q

s

(−
)

X
3f

in
a

l

(−
)

R
e

la
ti

v
e

E
rr

o
r

X
3f

in
a

l

(%
)

R
e

f.

G
ilm

or
e

0–
2.

28
87

0.
52

68
–0

.3
7

0.
29

97
–0

.1
89

0.
04

65
–0

.2
12

0.
04

8–
0.

14
3

0.
71

–1
.0

8
0.

33
–1

.1
5

95
89

.2
4

93
0.

21
5

[1
3]

Si
de

rc
a

0–
2.

04
91

0.
52

9–
0.

49
0.

34
7–

0.
23

6
0.

05
17

–0
.1

24
0.

02
47

–0
.2

13
0.

8–
1.

01
0.

36
–1

.0
4

65
80

93
.7

0.
10

6
[1

3]
M

ob
ar

ak
eh

0–
1.

65
45

0.
53

57
–3

29
2

0.
34

25
–2

33
2

0.
05

83
–0

.2
63

8
0.

02
1–

0.
13

73
0.

7–
1.

04
0.

32
–1

.0
9

75
70

.4
1

94
.8

0.
94

9
[1

5]
K

ho
ra

sa
n

0–
1.

78
57

0.
53

–0
.4

0.
34

5–
0.

19
7

0.
04

8–
0.

18
0

0.
02

2–
0.

17
1

0.
52

–1
.0

8
0.

32
–1

.1
1

63
36

.3
6

95
.8

6
0.

46
9

[1
4]

204



Energies 2022, 15, 9276

3. Artificial Neural Network (ANN)

This work aims to examine government machine learning (ML) strategies for address-
ing existing difficulties in DRI performance. Additionally, the optimization of machine
learning (ML) is a promising method that quickly gains attraction in a variety of fields,
such as medicine [52] and engineering [53–56].

Supervised learning is generally the task of machine learning and learning a function
that maps input to output data from sample input–output pairs [57]. During the training
process, information is added to the network validation, and the result data performs the
network testing process. Training for the network is concluded when generalizations have
improved. A variety of active functions have been used to determine the best one. Logistics,
Relu, and identity were used to obtain the optimal function of the MLP network. During
network training, the predicted network error should be maintained to a minimum for
each step of the mean square error (MSE) in each iteration in order to determine the precise
network parameter values. The MSE, square of the correlation coefficient (R2), and root
mean square error (RMSE) are used as assessment metrics to relate the model outputs to
the validation dataset. MSE, RMSE, and R2 are calculated as follows [58–60]:

MSE =
1
n

n

∑
i=1

(
Ypredicted − Yactual

)2
(14)

RMSE =

√
1
n

n

∑
i=1

(
Ypredicted − Yactual

)2
(15)

R2 =

n
∑

i=1

(
Ypredicted − Yactual

)2

n
∑

i=1

(
Ypredicted − Ymean

)2 (16)

Three types of algorithms, stochastic gradient descent (SGD) Equation (17) [61], adap-
tive moment estimation (Adam) Equation (18) [62], and Broyden–Fletcher–Goldfarb–Shanno
(BFGS) Equation (19) [63], were applied to find the best ANN algorithm which has the
lowest MSE, RMSE, and highest R2. The basic concept of the mentioned algorithms is as
follows:

w(k + 1) = w(k) − η
∂E(k)
∂w(k)

+ m · (w(k) − w(k − 1)) (17)

where w represents the weight factor, k represents the position vector, η is the learning rate,
E represents the cost function, and m represents the first moment.

w(k + 1) = w(k) − η(
m√

V(k) + e
) (18)

where V is the second moment, and e is a small scalar that is used to prevent division
by zero.

He(k + 1) = He(k) +
ykyT

k
yT

k Δxk
− HekΔxkΔxT

k Hek

ΔxT
k HekΔxk

(19)

yk = ∇ f (xk+1)− ∇ f (x k ) (20)

Δxk = ψk pk (21)

where He is Hussein matrix, ψ is step size, and P is Direction of search. The flowchart, as
shown in Figure 6, is developed to select the best model.
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Figure 6. Flowchart of optimization for the ANN approach to finding the best network.

4. Results and Discussion

Firstly, the MLP network has been constructed by practicing all three optimization tech-
niques and the Relu activation function. The parameters of the algorithms are optimized to
achieve the optimal network. In the SGD algorithm, there are three parameters: batch size,
learning rate, and momentum. The batch size is the number of training samples used in
one iteration. The learning rate is the amount of each iteration’s step while approaching a
minimal loss function. The momentum considers the gradient of previous steps rather than
depending just on the current step gradient to control the process. The selected algorithm
changes the learning rate and batch size to 0.02 and 20, respectively. A high learning rate
enables the model to learn more rapidly but at the expense of a less-than-optimal final
weight set. A slower learning rate may enable the model to discover a more optimal or
even globally optimal combination of weights, but training will take significantly longer.
Concerning deep learning, most practitioners set the value of momentum to 0.9. The
optimized SGD algorithm parameters are shown in Figure 7.
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(c) 

Figure 7. Optimization Parameters SGD algorithm. (a) Study the effect of batch size on the MSE.
(b) Study the effect of momentum on the MSE (c) Study the effective learning rate on the MSE.

To examine the RBF network and compare it with the MLP network, RBF network
parameters should be optimized. Therefore, according to Figure 8, the spread parameter
should be optimized by network data.

Figure 8. Optimization Spread parameter in RBF network.
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4.1. Comparative Analysis of ANN Models

In order to design the structure of the MLP network, it should be optimized for the
effective components of the network. One of the most crucial components is the activation
function used in the network. According to Figure 9, different activation functions in
the MLP network were evaluated according to the number of hidden layer neurons and
were found to be the best activation functions. Although the Relu function provides an
unsatisfactory output when the number of neurons is smaller than 20, it makes fewer errors
when the number of neurons is greater than 20.

(a) 
(b) 

Figure 9. Comparison between different activation functions to find best function in MLP network
(a) comparison of four activation functions; (b) comparison of three activation function.

The MSE, RMSE, and R parameters for the MLP and RBF networks were determined
in Tables 4 and 5. The LBFGS approach is preferable based on the evaluator parame-
ters. In the MLP network, several activation functions and optimization algorithms were
also evaluated. As illustrated in Figure 9, the Relu activation function provided a more
accurate result.

Figure 10 presents the R of MLP network data with the Relu activation function
and different optimization methods in various hidden layer neurons for each network
optimization method, which means that the BFGS approach is desirable.

As shown in Table 4, the BFGS optimization algorithm method was selected as the
optimization method because it has the lowest error considering the number of hidden
layer neurons. According to network comparison, the MLP network with the 27 neurons
in the hidden layer has the best result and an MSE value of 8.95 × 10−6. The structures
of other networks can cause minor errors when they have more neurons. In Figure 11,
three types of different optimization algorithms that have been used for the mlp network
are compared with the RBF network. The comparison of different algorithms in Figure 11
shows that the lowest number of neurons concerning the mean squared of error has the
LBFG optimization method.
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MSE = 3.45 × 10−3 

R = 0.9970 

[8 10 10 1] 

MSE = 4.463 × 10−4 

R =  

[8 10 10 1] 

MSE = 3.42 × 10−5 

R = 

[8 10 10 1] 

MSE = 1.14 × 10−3 

R = 0.9984 

[8 29 14 1] 

MSE = 2.84 × 10−5 

[8 29 14 1] 

MSE = 2.34 × 10−5 

R = 0.9999 

[8 29 14 1] 

MSE = 5.01 × 10−3 

R = 0.9989 

[8 33 39 1] 

MSE = 2.36 × 10−5 

R = 

[8 33 39 1] 

MSE = 6.50 × 10−6 

R = 

[8 33 39 1] 

(a1) (c1) 

(a2) 

(a3) 

(b2) (c2) 

(b1) 

(b3) (c3) 

Figure 10. Comparison accuracy performance of MLP network using the Relu activation function.
(a1–a3) SGD method, (b1–b3) Adam method, and (c1–c3) BFGS methods (blue dotes are data and the
red line is the fit line).

Figure 11. Comparison of the MLP and RBF networks performance optimization.
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4.2. Optimum ANN Results for Prediction of Solid Conversion for DRI Process

The accuracy of network results and the comparison of real data with the prediction
amount are quite acceptable. The neural network has a low error rate, and it can calculate
the percentage of X3 from the shaft furnace based on input variables such as diameter,
length, and input flow to the shaft furnace. The best result was shown using the LBFGS
optimization method and the Relu activation function in Figure 12.

× 10

R = 

(a) 
(b) 

Figure 12. The best network-developed MLP with two hidden layers (a) Compare predicted using
real data (b) strong positive correlation.

As a result, the most functional network consists of two hidden layers, with 13 neurons
in the first layer and 14 neurons in the second layer. According to Figure 13, these neurons
are fully connected using weights. Furthermore, each neuron has a bias that is listed in
Appendix A, along with its weight. The matrix created using the MLP algorithm simulated
for the prediction of the MIDREX process is shown in Appendix A.

Figure 13. Schematic of final MLP structure.
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4.2.1. Effect of Dimensions on Pellet Conversion Rate

Heatmap and pair plot have been used to show the effects of different parameters on
the sponge iron produced, as shown in Figures 14 and 15. In the heatmap chart, Pearson’s
correlation coefficients show the relationship between various parameters [64]. In Figure 14,
the effect of different parameters of the network is shown as a linear and nonlinear spectrum,
with the interpretation that the farther from the unit value (1 and −1), the more nonlinear it
is, and the closer to the unit value, the effect of two parameters is proportional and are more
linear. The closer value is to one, the more linear relationship between the two parameters.
If this value is positive, it indicates a direct relationship between those the two parameters,
while if this value is negative, it means that those two parameters are opposite of each other
(they increase or decrease in opposite directions). According to Figure 14, the correlation
coefficients between the real data of the network and the prediction value of the network
are equal to one, which shows that it can completely predict the real data. The correlation
coefficient for the effect of dimensions on the conversion rate is 0.91, which shows that the
relationship between the two is linear and direct. Based on Figure 15, the direct relationship
between these parameters and the degree of linearity is clear. This direct relationship is
because of the longer reactor, the longer pellets in the regeneration zone, and the higher
conversion rate [15].

Figure 14. Heatmap of Pearson correlation coefficient matrix for network MLP.

4.2.2. The Effect of Gaseous Compounds on Pellet Conversion

According to Figure 14, the correlation coefficient between XCO2 and XH2O with pellet
conversion rate is −0.83 and −075, indicating that there is a nonlinear link between them
and the direction of their changes is the opposite of each other. These values for the
relationship between XCO and XH2 with pellet conversion are equal to 0.74 and 0.77, which
proves that the relationship between them is direct and nonlinear. The connection is formed
when H2 and CO gases enter the furnace from the bottom of the reduction zone. After
interaction with the iron oxide pellets, they turn into CO2 and H2O and exit from the top of
the reduction zone. Hence, changes in XCO2 and XH2O have an inverse relationship with
changes in pellet conversion rate. From the top of the regeneration zone to the bottom, the
amount of pellet conversion increases, and the amount of XCO2 and XH2O decreases. This
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relationship can be seen in the performance of all stimulations shown in Figure 15 for four
shaft furnaces.

 

Figure 15. Comparing the effects of different parameters on each other and on the amount of solid
conversion (based on dimensionless data).

4.2.3. The Effect of Flow Rate on Pellet Conversion Rate

According to Figure 14, the correlation coefficient between the ratio of gas to solid flow
rate is 0.22. This value proves several facts: firstly, the relationship between the solid flow
rate and the pellet conversion rate is opposite of each other because the solid flow rate is in
the denominator of the dimensionless flow parameter; secondly, the relationship between
the gas flow rate and the conversion rate is because the gas flow rate in the case of the
dimensionless flow parameter is direct. In addition, this relationship is nonlinear since the
correlation coefficient is near zero. By examination of other parameters in Figure 14, it can
be seen that the most nonlinear parameter is the ratio of flow rates. This sign of nonlinearity
demonstrates that the impact of this parameter on iron ore recovery is greater than other
parameters. This conclusion has been proved by solving the governing equations of the
problem [14].

The relationship between solid flow rate and conversion rate is very similar to the
relationship between dimensions and conversion rate (both are due to residence time).
Furthermore, because of the lower solid flow rate and lower speed of pellets, the pellets
and the regeneration gas are more in contact with each other. Consequently, the conversion
rate grows as the residence time of the pellets in the regeneration area increases. Contrary
to the relationship between solid flow rate and pellet conversion, the pellet conversion
rate increases with increasing gas flow rate. This increase is not due to the reduction
of external mass transfer resistance from gas to solid. However, simulations reveal that
even at the lowest flow rate, the Sherwood number is sufficiently large to render the mass
transfer resistance insignificant [15]. Consequently, as the flow rate increases, so does the
concentration of reducing gases in the top portion of the reactor.

4.2.4. The Effect of Temperature on the Pellet Conversion Rate

The lowest part of the reduction zone, where the reduction gas enters, has the highest
temperature [4]. Furthermore, in this area, the pellet conversion is maximum, proving
that increasing the gas and the solid temperature raises the pellet conversion rate. The
correlation coefficient between the gas and solid temperature with the solid conversion rate
shows the value of 0.71 and 0.72. These values show the direct and nonlinear relationship
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between the parameters. The smaller the particle, the higher the mass transfer coefficient,
which means the film resistance is lower. Thus, the film resistance is maximized if the larger
particle is chosen. To explain, if we can remove this film resistance at speed, all smaller
particles can be removed at the same speed as the film resistance [50].

Considering the environmental issues, air pollution has been one of the most challeng-
ing issues for humans in recent years. Since 7% of carbon dioxide production is derived
from the steel industry [9], it can be modeled in future research. The production of Midrex
with green hydrogen was aimed at its feasibility from thermal and economic points of
view. Another vital issue is the analysis of energy consumption in the MIDREX unit. Re-
cently Salimi et al. investigated the technical and economic study of energy harvesting
from the waste heat of the Midrex process by the Kalina cycle in the process of direct iron
reduction [65].

5. Conclusions

In this study, two networks were constructed for the percentage of X3 output parame-
ters from the shaft furnace. Two networks were investigated using different optimization
methods. The Adam and LBFGS optimization algorithm methods were faster and more
accurate, delivering results for MSEs in order 8.95 × 10−6. Furthermore, various activation
functions were practiced to improve the network by the Relu, which can cause the least
error due to the number of hidden layer neurons. After optimization of both networks,
RBF and MLP, they were compared with the same number of hidden layer neurons. The
MLP network was able to generate 8.95 × 10−6 errors and better predict the conversion
percentage of the pellet as an output parameter. This network could be used to improve the
performance of the shaft furnace and make modeling to predict the conversion percentage
of iron oxide output of the shaft furnace straightforward. The predictive advantage of the
shaft furnace can be determined using the network results, such as weights and biases,
in the shortest time and with the highest accuracy. Finally, for a better analysis of the
effect of different parameters, using a heat map, it was shown that the coefficient of each
of the network inputs can communicate with the output and other input parameters of
the network. This research could be the beginning of the utilization of ML in the direct
reduction process, which is due to the complex behavior of pellets in the shaft furnace and
its complex reactions (six heterogeneous reactions of iron oxide phases, methane reforming
reactions, water gas shift reactions, and other side reactions) can help the pellet behavior
with high speed and accuracy through ML. This modeling is superior to earlier approaches
because it is more precise and quick than earlier numerical methods. Another application
for ML is in unit control; for instance, it could be used to optimize the temperature of
the bustling gas in the shaft furnace. This alone could make for some very fascinating
research in the future. ML could be used in future studies for control purposes, such as the
MIDREX process.
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Nomenclature

Ap Pellet external area [cm2]
b Bias [−]
Cps,Cpg The heat capacity of solids and gases [J/Kg K]
D Reduction zone diameter [cm]
E Cost function
Fk Nonlinear functions of activation transmission
G Function of Gaussian
f Function
Gmg gas molar flow

[
mol/cm2s

]
h heat transfer coefficient [W /cm2 K]
H Reaction enthalpy [cal/mol]
He Approximate of the Hussein matrix
i Number of neurons in the hidden layer
k Position vector
L Reduction zone length [cm]
m first moment (the mean) [−]

N Number of data sets for training [−]

Np number of pellets per unit volume of the bed
[
1/cm3]

n Neurons
P Direction of search

Q Flow-rate
[
Nm3/h

]
Rr Reaction rate per pellet [mol/s]
R,R2 Correlation coefficient [%]
s Direction vector
T∗ Dimensionless temperature [−]
T∗

g Dimensionless gas temperature [−]
T∗

s Dimensionless solid temperature [−]
u Velocity [m/s]
V Second moment (the uncentered variance)
W Factor of weight [−]
Wij Weight-related to each hidden neuron [−]
xk Input variable [−]
X1 The extent of reaction/extent of reactant conversion for H2 [mol/cm3]

X2 The extent of reaction/extent of reactant conversion for CO [mol/cm3]

X3 Extent of reaction/extent of reactant conversion for Fe2O3 [mol/cm3]

Y Output vector [−]
yj Target output
Greek symbols

α Constants in turbulence models [−]
β jk Weight of bias for neuron j in layer k
γjk The output of neuron j from the layer of k
ψk Step size
θ Threshold limit [−]
σ Radial Basis Function (RBF) kernel width [−]
σi Gaussian function distribution [−]
Subscripts

c Characteristic
rs Reactive solid (Fe2O3)
g Gas
n Gaseous reactant
p Pellet
s Solid
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Acronyms

ANN Artificial Neural Networks
MSE Mean Square Error
Terminology
Neurons Neurons are the fundamental components of the vast neural network.

Bias
Bias is a constant that allows the model to be optimally fitted to the
available data.

Activation function
This function is a mathematical function between the input that feeds
the current neuron and its output that travels to the next layer.

Weight
demonstrates the significance and ability of the characteristic/input
to the neurons.

Epoch
In the training process, each training step’s inputs produce an output
that is compared to the goal in order to determine an error. Weights
and biases are calculated and adjusted in each epoch using this method.

Batch size
For stochastic optimizers, the size of mini-batches is important.
(The classifier will not use minibatch if the solver is lbfgs.)

Momentum Update on gradient descending momentum. Only when the solver is sgd.
Learning rate For weight updates, we have to learn a rate schedule (used for SGD).

Appendix A

Table A1. Characteristic weights and biases of the DRI−ANN−MLP model with the best algorithm.

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

First
hidden
layer

wi

−0.5261 0.3122 0.3003 −0.3842 −0.1168 −0.4217 −0.4679 0.5963 −0.5029 0.2167 0.1923 0.2747 −0.0355 - -
0.1414 −0.6600 0.3918 −0.4975 −0.1184 −0.0795 −0.2839 0.2968 −0.1454 −0.3495 0.1552 0.2744 −0.5067
−0.4716 0.1534 0.1572 0.0499 −0.1170 −0.5092 0.0669 0.3481 0.3992 −0.3800 −0.0519 0.2840 0.3226 - -
−0.4195 0.2306 0.4402 0.3055 −0.3375 −0.2342 0.4835 0.5569 −0.0585 −0.0243 0.3713 0.2479 −0.4035 - -
−0.3103 −0.4300 −0.4428 −0.3570 −0.1607 −0.3180 0.3841 0.3178 0.4336 0.2486 −0.0613 −0.1156 0.1871 - -
0.1264 0.2072 −0.1894 0.3279 −0.4434 −0.3503 0.2591 −0.1250 −0.0045 −0.2883 −0.1393 0.5487 0.1746 - -
−0.0399 0.4145 −0.1454 0.4606 0.4224 −0.4450 0.4078 0.1576 −0.2562 −0.3226 −0.4084 0.4207 −0.4346 - -
−0.2834 0.6741 −0.3418 0.3441 0.1340 0.1127 −0.0791 −0.1540 −0.3525 −0.2026 −0.2172 −0.3762 −0.0161 - -

b −0.1834 −0.1580 −0.0837 −0.2541 0.1330 0.4629 −0.1553 −0.2419 −0.4652 −0.1960 −0.3441 −0.1922 −0.1461 - -

Second
hidden
layer

wi

0.0312 0.0689 0.4262 0.2687 −0.0318 0.1865 −0.2655 −0.0196 0.1368 −0.3179 −0.3118 −0.0888 −0.2162 0.3304 -
0.0045 0.2990 −0.0313 0.3231 0.0983 0.2352 0.2577 0.3021 −0.5072 0.3468 −0.0712 −0.6618 0.0328 0.3322 -
−0.1573 0.1815 0.1161 −0.0604 0.0848 −0.4078 0.2779 0.1774 −0.1519 −0.2078 −0.4528 −0.3158 0.3392 −0.0341 -
0.5107 0.2276 −0.0847 0.3726 −0.4047 0.0170 0.2782 −0.3967 0.0856 0.2555 −0.0656 0.1127 −0.0742 −0.1451 -
−0.0711 −0.4243 0.4544 0.4096 0.1945 0.2685 −0.1691 0.2535 0.1275 −0.1207 0.0698 0.2671 −0.0571 0.3847 -
0.4588 −0.1143 0.1844 0.4392 0.0310 0.0494 0.2749 −0.2550 −0.3050 0.2182 −0.1881 −0.0108 −0.3532 0.3005 -
0.2885 0.2154 0.1225 0.0524 0.3704 −0.3282 0.3586 −0.4109 0.3636 −0.3674 −0.0109 −0.2198 0.3213 0.4504 -
−0.0564 0.2155 −0.1700 −0.1756 −0.0896 −0.1456 0.1221 −0.1117 −0.3548 −0.1415 0.1060 −0.0106 0.2727 −0.5645 -
0.0639 −0.1984 −0.1939 0.3111 −0.3191 −0.3805 0.2158 0.0610 −0.2565 0.2141 0.4456 −0.2957 −0.0531 −0.1954 -
−0.2476 0.0253 −0.0674 −0.0173 −0.4643 0.1050 0.1627 −0.4444 −0.3693 0.3759 −0.2169 0.2445 0.3126 0.1138 -
−0.2510 0.3462 −0.4332 0.3669 −0.4641 0.3092 0.4015 0.0386 0.0139 0.2427 −0.3794 −0.1944 −0.2762 −0.1957 -
0.34032 0.1627 −0.0866 0.4185 −0.2898 −0.3095 0.2176 0.1026 0.1285 0.4677 0.24473 0.0041 0.14404 0.0999 -
−0.4088 0.1685 −0.1742 0.4011 −0.0112 0.4490 0.1211 −0.1369 −0.0108 0.2971 −0.2613 0.4224 0.2733 −0.1892 -

b 0.0027 0.3390 −0.1864 −0.3606 −0.3528 −0.0716 0.2954 −0.3802 0.2887 0.0372 0.3559 0.3273 0.0601 0.2710 -

Output
layer

wl

0.1855
0.5334
−0.1828
0.1919
0.2326
−0.3029
−0.0028
−0.2619
−0.6629

b 0.0341 - - - - - - - - - - - - - -
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Abstract: Buildings are responsible for almost half of the world’s energy consumption, and approx-
imately 40% of total building energy is consumed by the heating ventilation and air conditioning
(HVAC) system. The inability of traditional HVAC controllers to respond to sudden changes in
occupancy and environmental conditions makes them energy inefficient. Despite the oversim-
plified building thermal response models and inexact occupancy sensors of traditional building
automation systems, investigations into a more efficient and effective sensor-free control mechanism
have remained entirely inadequate. This study aims to develop an artificial intelligence (AI)-based
occupant-centric HVAC control mechanism for cooling that continually improves its knowledge
to increase energy efficiency in a multi-zone commercial building. The study is carried out using
two-year occupancy and environmental conditions data of a shopping mall in Istanbul, Turkey. The
research model consists of three steps: prediction of hourly occupancy, development of a new HVAC
control mechanism, and comparison of the traditional and AI-based control systems via simulation.
After determining the attributions for occupancy in the mall, hourly occupancy prediction is made
using real data and an artificial neural network (ANN). A sensor-free HVAC control algorithm is
developed with the help of occupancy data obtained from the previous stage, building characteristics,
and real-time weather forecast information. Finally, a comparison of traditional and AI-based HVAC
control mechanisms is performed using IDA Indoor Climate and Energy (ICE) simulation software.
The results show that applying AI for HVAC operation achieves savings of a minimum of 10%
energy consumption while providing a better thermal comfort level to occupants. The findings of
this study demonstrate that the proposed approach can be a very advantageous tool for sustainable
development and also used as a standalone control mechanism as it improves.

Keywords: artificial intelligence (AI); automatic HVAC control; occupant behavior; model predictive
control; energy efficiency

1. Introduction

Due to high demand and the need for an increasing energy supply, energy efficiency
becomes crucial. Restricted energy markets have wide effects in areas ranging from house-
hold budgets to international relations. Thus, due to high energy consumption, buildings
are on the front line of energy efficiency research. Buildings compose approximately 40%
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of the total global energy consumption (International Energy Agency, 2019 [1]), and al-
most 40% of this goes towards heating, ventilation, and air conditioning (HVAC) systems
(Yang et al., 2014 [2]). Clearly, the development and implementation of efficient building
energy control systems is essential for economic and environmental sustainability. The
HVAC system is a commonly used tool to maintain thermal comfort in buildings. It also
serves as an essential demand-response source for peak load reduction and system-wide
activity stabilization through effective demand-side energy management strategies. Until
today, this energy demand in the buildings has been measured with sensors. Since heat-
ing and cooling in large masses do not occur rapidly, the inability to respond to sudden
changes in occupancy and environmental conditions makes traditional HVAC control
systems energy-inefficient, especially in large commercial buildings.

An HVAC is a dynamic mechanism that includes multiple input and output vari-
ables and is subject to various fluctuations and uncertainties, including occupant be-
havior, external air temperature, humidity, air volume, and regulated air temperature
(Alcalá et al., 2003 [3]; Mirinejad et al., 2008 [4]). These specific features and characteristics
all need to be taken into consideration to operate the HVAC system effectively. Thus, the
research question of this paper is “how HVAC systems can be made efficient in meeting
the sudden changes in demand responses in large commercial buildings by taking into
consideration the occupancy patterns and prediction?” The following section provides a
critical review of the literature with related studies in energy management with HVAC
control systems to establish the setting for the research.

2. Related Studies

2.1. Traditional and Advanced Control Strategies

HVAC control strategies can be examined in general terms under two headings:
traditional control strategies (TCSs) and advanced control strategies (ACSs). This section
presents a review of related studies focusing on ACSs. Different control mechanisms are
examined, and then a limited number of occupancy-based control approaches are discussed.

TCSs generally include sequencing, on-off, process, and proportional-integral-derivative
(PID) controls. Their simple structure, quick response, easy implementation, and low initial
costs are the main advantages of TCSs. They also have many disadvantages, such as low
accuracy, quality, and performance, and (thus) energy efficiency. Furthermore, they do
not interact with the external environment or regulate and adapt to the input variables
accurately, in terms of their setpoints, schedules, and working modes, among others
(Gholamzadehmir et al., 2020 [5]). Thus, the diversity and complexity of variables make it
impossible to create accurate and reliable mathematical HVAC models for TCSs.

ACTs effectively obtain superior results in HVAC applications. These can be divided
into four categories: (i) soft-computing, (ii) hard-computing, (iii) hybrid, and (iv) adaptive-
predictive control strategies.

2.1.1. Soft Computing Strategies

Reinforcement learning (RL), artificial neural network (ANN)-based deep learning,
fuzzy logic (FL), and agent-based controls together comprise the soft-computing control
strategies. As a control mechanism, this enables solutions to more complex problems by
generating more accurate and statistical responses for unclear and uncertain inputs. The
key benefit of fuzzy logic controllers is that no mathematical simulation is needed for
controller design (Mizumoto, 1995 [6]; Mirinejad et al., 2008 [4]; Soyguder et al., 2009 [7]).
The knowledge-based methodology is the fundamental aspect of a fuzzy controller. This
consists of if-then rules, membership functions, and scaling factors constructed based
on expert experience or learning and self-organization methods that do not involve the
system’s mathematical model forms.

Since the human sensation of thermal comfort is subjective, and self-reporting can
vary among occupants and over time, linguistic rules, on which fuzzy logic is based, are
well suited to characterize HVAC systems and thus ideal for increasing thermal comfort
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(Chiou and Lan, 2005 [8]; Mirinejad et al., 2008 [4]). There are two different approaches to
the automation of rule-based construction in fuzzy systems, which can be used for opti-
mizing the fuzzy system parameters (Mirinejad et al., 2012 [9]): one involves evolutionary
techniques and the other soft-computing methods and technologies, such as ANNs.

Soft-computing methods with ANNs can integrate the learning ability of neural
networks with the knowledge representation of fuzzy logic. They are frequently used
when the aim is to decrease the error between the fuzzy system output and the target
value, as characterized by the general term “neurofuzzy system” (Mirinejad et al., 2012 [9]).
ANNs can also be applied to optimize the fuzzy database, including membership functions
and scaling factors in a fuzzy system (Egilegor et al., 1997 [10]; Kruse et al., 1997 [11];
Wu et al., 2011 [12]). Some studies have utilized advanced fuzzy methods to optimize
the function of existing, traditional PID controllers (Malki et al., 1994 [13]; Ying, 1994 [14];
Wu et al., 1996 [15]; Patel and Mohan, 2002 [16]; Li et al., 2005 [17]), while others have
used them more directly in the development of new HVAC control mechanisms (Fanger,
1972 [18]; Alcalá et al., 2003 [3]; Liang and Ru, 2008 [19]; Gacto et al., 2011 [20]; Nowak and
Urbaniak, 2011 [21]).

Together with model predictive control (MPC) algorithms, fuzzy control algorithms
are implemented in the hierarchical framework for HVAC device control (Nowak and
Urbaniak, 2011 [21]). Wei et al. (2017) [22] presented a deep reinforced learning (RL)
method to develop an HVAC system that they found to be energy-efficient compared with
the traditional rule-based approach. Du et al. (2021) [23] presented a model-free deep
RL framework for an optimized control approach for a multi-zone residential building.
This proposed RL model was reported to provide substantial energy savings and 98% less
comfort violation than a rule-based HVAC control strategy

2.1.2. Hard Computing Strategies

Hard-computing control strategies, which include auto-tuning PID control, gain-
scheduling control, self-tuning control, supervisory/optimal control, MPC, and robust
control, benefit from a mathematical/analytical model that needs real input variables to
respond accurately and rapidly. Some important hard-computing control strategy examples
are summarized below, with a focus on MPC applications as these are more important here.

Pasgianos et al. (2003) [24] applied a non-linear feedback approach for climate control
in greenhouses, especially for ventilation, cooling, and moisturizing. A non-linear multi-
input and multi-output model has been used for an air-handling unit (AHU) control
(Moradi et al., 2010 [25]). Robust control was applied to control the temperature in a
multi-zone HVAC mechanism (Al-Assadi et al., 2004 [26]) and to supply air temperature
(Anderson et al., 2008 [27]). Optimal control strategies were used to manage both single
zone heating in buildings (Dong, 2010 [28]) and a multi-zone air conditioning system
(Mossolly et al., 2009 [29]). An adaptive optimal control approach was also employed to
optimize HVAC system control using a genetic algorithm (Yan et al., 2008 [30]).

MPC is an optimization technique that involves the construction of an objective func-
tion and an input sequence considering both specified and forced constraints. Serale et al.
(2018) [31] aimed to describe the problem formulation, applications, and advantages of
an MPC framework for improving building and HVAC energy efficiency. MPC has four
functions in buildings, related to weather, user behavior, grid, and thermal mass. Kusiak
et al. (2011) [32] created a predictive model with a data-mining approach to optimize HVAC
mechanisms using information gathered from an experiment performed at a research facil-
ity. Kusiak et al. (2014) [33] presented an HVAC optimization approach with data-driven
models and an interior-point method. The Poisson and uniform distributions modeled
the uncertainty of occupant behavior, and the internal heating gain was measured with
the stochastic mechanism of the building’s occupancy. The results showed that the future
performance of HVAC was estimated precisely.

Another data-driven approach for optimizing HVAC energy consumption was pro-
posed by Wei et al. (2015) [34]. For this, a quad-objective optimization problem was built
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to balance energy usage and occupancy comfort and solve a modified particle swarm
optimization algorithm. A substantial amount of energy savings was obtained. Biyik et al.
(2015) [35] and Kelman et al. (2013) [36] suggested an MPC solution in a standard commer-
cial building for two traditional HVAC setups to maximize energy efficiency and increase
occupant comfort by using weather forecasting data. The effect of occupants on internal
load prediction and learning from occupant activity is one of the key features of MPC,
which can have a major impact on energy efficiency (Serale et al., 2018 [31]).

2.1.3. Hybrid Strategies

Huang et al. (2015a) [37] carried out a study that proposed a hybrid MPC framework.
This integrated a classical MPC with a neural network feedback linearization method to
reduce the cost and energy of HVAC in commercial buildings. The results indicated that
a significant level of energy-saving could be achieved without compromising thermal
comfort. Garnier et al. (2015) [38] implemented predictive control for a multi-zone HVAC
mechanism in non-residential buildings using EnergyPLus software for the building model
and ANN-based models for the controller’s internal models. This took the predicted
mean vote index as a measure of thermal comfort. Basic scheduling techniques and the
proposed HVAC system using a genetic algorithm for optimization were compared, and
the importance of the predictive approach demonstrated. Barzin et al. (2016) [39] carried
out an experimental study using weather prediction and a price-based control system for
passive solar buildings, with up to 90% energy savings achieved.

Alibabaei et al. (2016) [40] explored a Matlab-TRNSYS co-simulator development
for control of the TRNSYS software, which was previously designed and balanced based
on a real case-study building and used an advanced predictive controller. This study is
important here in terms of the co-simulation application. For various other studies, Afram
and Sharifi (2013) [41] supplied a detailed literature review including control techniques that
focused on the theory, and implementation of MPC approaches for the HVAC mechanism;
Afram et al. (2017) [42] presented another comprehensive MPC review focusing on artificial
neural network applications with a case study involving ANN models built and calibrated
with the on-site data of a residential house. Trčka and Hensen (2010) [43] and Afroz et al.
(2017) [44] presented a critical review of the latest simulation and modeling techniques,
used in HVAC, focusing on their benefits, limitations, implementations, and efficiency.

2.1.4. Adaptive-Predictive Control Strategies

The APCS (adaptive-predicted control strategy) method can be adapted to a con-
trolled system with time-dependent variables through online variation of its control gains.
Huang et al. (2015b) [45] presented an ANN model-based system identification approach to
model multi-zone buildings. This showed the thermal interactions between the zones to be
well captured by the ANN model, incorporating the energy input from mechanical cooling,
ventilation, changes in the weather, and the convective heat transfer between adjacent
zones. Thus, more precise outcomes are obtained than a single-zone model. Javed et al.
(2017) [46] introduced a random neural network (RNN)-based controller on an Internet of
Things (IoT) platform combined with cloud computing to carry out RNN that estimated
the number of occupants inside the area and sent information to the central RNN-based
occupancy calculator placed in the sensor node.

Cardoso et al. (2018) [47] introduced a study of HVAC power-demand forecasting
based on occupant activity. This influences our study in terms of the use of real data
from a research building for estimation. Estimation of HVAC demand plays a vital role in
developing a more efficient HVAC system. Yang et al. (2019) [48] proposed an adaptive,
robust MPC and compared its performance with predictive model controllers. This study
showed that adaptive modeling and robust optimization minimize unsuitable indoor
conditions because of uncertainties. Zhou et al. (2019) [49] developed a non-linear MPC
by MATLAB using production control systems and weather forecasts and reported a
substantial decrease in energy consumption. Finally, Gholamzadehmir et al. (2020) [5]
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presented a review of the adaptive-predictive control strategy for HVAC systems in smart
buildings focusing on advanced control approaches and their effect on buildings according
to energy consumption and cost. This study indicated that although adaptive control
strategies eliminate the shortcomings of model predictive approaches, such as uncertainty
and unpredictable data, a high degree of inconsistency is observed in the literature.

2.2. Occupancy Related Studies

Since the primary focus of our study is the occupancy pattern and prediction, the
following paragraphs look at occupancy-related studies. Erickson et al. (2009) [50] indicate
that a 14% reduction in HVAC energy usage can be provided with occupancy prediction
and usage patterns. They created a wireless camera sensor network for occupancy data and
estimated occupancy with an accuracy of 80%. Erickson and Cerpa (2010) [51] proposed
a strategy for HVAC systems using real-time occupancy monitoring and estimation of
occupancy with a sensor network of cameras, indicating energy savings of up to 20%.
Oldewurtel et al. (2013) [52] developed an MPC framework using occupancy information
to investigate the effect of occupancy patterns to achieve a more energy-efficient HVAC
mechanism. Furthermore, an RFID-based occupancy detection was presented by Li et al.
(2012) [53] to decrease the consumption of the HVAC. The study shows how demand-driven
HVAC operation is efficient by integrating an occupancy detection system.

A clustering-based iterative evaluation algorithm for eliminating when and how
occupants occupy a building was introduced by Yang et al. (2016) [54], who evaluated
energy implications at the building level with building information modeling that provided
the building geometries, HVAC system configurations, and spatial information as inputs
for the computation of possible energy consequences. Capozzoli et al. (2017) [55] applied an
occupancy-related HVAC operation schedule that focused on shifting groups of occupants
with similar activity in the same thermal zone. As a result of the new schedule approach,
HVAC-related energy use decreased by almost 14%.

Another occupant-centric model, the predictive control approach, was developed
by Aftab et al. (2017) [56], who created and applied an occupancy-predictive HVAC
mechanism using real-time occupancy recognition, predicting user activity, and building
thermal simulation. Aftab et al. (2017) [56] focused on a single-zone mosque area whereas
the research in this paper focuses on multi-zone commercial buildings and adopts the use
of AI for the prediction of occupancy activity. With these advancements, the research in the
paper differs from the one by Aftab et al. (2017) [56].

Shi et al. (2017) [57] used a change-point logistic regression model for precise occu-
pancy estimation to create an occupant-centric model predictive algorithm. Their findings
indicated that an HVAC control strategy with real-time occupancy estimation provides
energy-saving and increases building occupant comfort. Peng et al. (2018) [58] found
that 52% energy saving is possible with occupancy prediction-based cooling control us-
ing machine learning in office buildings. A demand-responsive method was developed
based on energy-related occupant activity. Nikdel et al. (2018) [59] estimated the benefits
of occupancy centric HVAC controls in small office buildings based on programmable
thermostats; when compared with no thermostat control, their proposed HVAC control
approach reduced electricity and natural gas use by up to 50% and 87%.

Ahmadi-Karvigh et al. (2019) [60] presented an automation system that continually
learns occupant behavior to help service system control by determining the set of rules
according to the user’s preferences and behaviors. Adaptive automation gave better results
than inquisitive automation in terms of benefits and occupant satisfaction. Pang et al.
(2020) [61] determined the energy efficiency potential of the new HVAC system combined
with occupancy sensing methods. Their study involved an energy simulation with three
different occupancy scenarios, with occupancy presence sensor and occupant counting
sensor providing energy savings in office buildings.

Azuatalam et al. (2020) [62] developed a reinforced learning (RL) framework to opti-
mize and control the HVAC for a whole commercial building. Simulations showed that,
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compared to a handcrafted baseline controller, an energy saving of up to 22% could be
reached. Deng and Chen (2020) [63] developed a smart HVAC control mechanism for
multi-occupant offices using the physiological signals of occupants. They applied an ANN
model to predict indoor conditions and physiological signals, such as clothing level, (wrist)
skin temperature, relative skin humidity, and heart rate. The heating and cooling loads in
interior offices were reduced by 90% and 30%, respectively, following coupling with the
occupancy-based control through lighting sensors and wristband Bluetooth. This study
was vital for our research in terms of its development of occupancy-related HVAC and
direct measurement of occupant comfort level. Jung and Jazizadeh (2019) [64] presented
a structured literature review examining the user-centric operations and human dynam-
ics of HVAC systems. This study focused on occupancy, comfort, and energy savings
aspects. Finally, Jazaeri et al. (2019) [65] analyzed the complex relationships among lo-
cal climates, building characteristics, and occupancy patterns with the annual and peak
HVAC demand of residential buildings. These studies are important for us in terms of
occupancy, but as mentioned before there is no study that predicts occupancy without
real-time detection tools.

2.3. IDA Indoor Climate and Energy (ICE) Software Background

The IDA Indoor Climate and Energy (ICE) simulation software is one of the four
primary building-energy simulation tools used in research (Ryan and Sanquist, 2012 [66])
and one of the twenty main building-energy simulation software packages (Crawley et al.,
2008 [67]). As with many other simulation software packages, this uses building geom-
etry as the foundation for accurate measurements of solar radiation distribution in and
between spaces. The program dynamically measures energy balances while considering
climatic changes and a changing time-step. Heat balance equations are solved by the
program using building geometry, design, HVAC conditions, and internal heat loads. The
effectiveness and validness of the IDA-ICE software are proved in several studies over
recent years (Bring et al., 1999 [68]; Achermann and Zweifel, 2003 [69]; ISO, 2003 [70];
Karlsson et al., 2007 [71]; Loutzenhiser et al., 2009 [72]; Hilliaho et al., 2015 [73]; Salvalai,
2012 [74]; Mazzeo et al., 2015 [75]; Milić et al., 2018 [76]).

3. Aim of the Research

The advanced prediction ability of AI methods can be employed with sensors to deter-
mine occupant behavior, which offers an excellent opportunity to minimize the weakness
of the traditional HVAC systems. The aim of the paper is to develop an AI-based, occupant-
centric HVAC control mechanism that uses actual weather predictions and continually
improves its knowledge to increase energy efficiency in a commercial building. Since the
cooling problem has gained importance in recent years, the focus will be on the cooling
function of the HVAC systems.

The novelty of the work is twofold. Firstly, a new HVAC control algorithm is proposed,
based on forecasted weather and occupancy information to establish a sensor-free mech-
anism. Secondly, an artificial intelligence-based occupancy forecast system is presented,
which considers all parameters (weather information, time indicators, social situations) and
provides year-round usage with accurate prediction. Although there are limited examples
for real-time occupancy detection in multi-zone buildings, any research study involving
occupancy prediction without a camera or sensors has not been performed yet. There is also
no other study that constructs the relationship between occupancy prediction, real-time
weather, and indoor temperature to manage HVAC control via an algorithm. While a
sensor-free algorithm allows both low installation cost and high energy efficiency, AI-based
occupancy forecasting provides a system that improves itself as these data increase to use
control mechanism standalone and obtain better energy savings.
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4. Research Methodology

Paper adopts the design science research (DSR) methodology that facilitates the de-
velopment of innovative solutions for industry and organizations driven by information
(Vaishnavi, et al., 2019 [77]). Its characteristics involve iterative design processes leading
to development of innovative solutions in the problem domain (Wieringa, 2014 [78]). The
DSR methodology integrates both social context and knowledge base technical capability to
achieve the aim of the research (Markus et al., 2002 [79]). Wieringa (2014) [78] described that
there are two types of DSR: These include “problem-oriented research—evaluation research”,
and “solution-oriented—technical research”. The problem-oriented research looks at what
causes/effects a problem has, or how to solve a problem, whereas the solution-oriented
research design and validate a system, or a requirement (Peffers et al., 2006) [80].

With DSR, this paper promotes the adoption of AI-based and occupant-centric HVAC
control systems in commercial buildings to address the research problem around inefficient
energy management of the existing HVAC systems. The DSR features with social context
that are relevant to the paper are given in Table 1 and the overall research methodology is
illustrated in Figure 1.

Table 1. Design science research (DSR) features.

Design Science Research (DSR) Features

AI-based occupant-centric HVAC control
system in commercial buildings Design science research

Remove inefficiencies in energy management
via HVAC systems

Enhance the prediction ability with AI for the
determination of occupant behavior for

effective energy management in
commercial buildings

Design an artifact: Development of AI
algorithm for occupant-centric HVAC

control system
Research instruments-tools: Iterative design

and development process for knowledge
capture and development

Development of an innovative artifact to
achieve and enhance the social context.

Answering the knowledge questions: How
does the artifact adopt smart heritage

project principles?

Figure 1. The flowchart of the design science research (DSR) methodology.

The design science research (DSR) methodology enabled developing the HVAC control
system for accurate prediction of energy supply in commercial buildings that will serve
to meet human needs for energy demand. The system developed via DSR is innovative
with the key being the embedment of artificial intelligence that processes the occupancy
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and these weather data without the use of sensors. This paper with DSR implementation
brings not only the novelty but also provides important solution to the practice for energy
management in commercial buildings.

In the information systems (IS) science, the DSR methodology is highly preferred to
solve identified organizational problems by developing information technologies. The
paper is designed in accordance with the DSR methodology. The research problem domain
and opportunities are elaborated by means of literature review through the relevance
cycle. The design cycle is evaluated in Section 5 regarding the development of the artifact
(AI-based occupant-centric HVAC control system) that is extended with the test and demon-
stration of the proposed artifact in Section 6 through the rigor cycle. This then leads to the
accumulation of findings into the new knowledge base, articulated in Sections 6 and 7.

5. Design and Development of the AI-Based Occupant-Centric HVAC Control System

The artifact, which includes novelty about the research problem, is created. This
artifact in this paper is the AI-based occupant-centric HVAC control system. Since the
purpose of the study is to reveal energy efficiency potential of the proposed HVAC control
mechanism, energy analysis according to different scenarios constitute the central part of
this section. The research focuses on a specific site to obtain realistic results, using two-year
occupancy and environmental conditions data of a shopping mall in Istanbul. Figure 2
shows the architecture of the system, consisting of three steps: predicting hourly occupancy,
a new HVAC control mechanism, and comparison of the traditional and AI-based control
systems via simulation according to different scenarios.

In the first step, building properties and real occupancy information are collected.
In the second step, after determining the attributions for occupancy in the mall, hourly
occupancy predictions are made using real data and ANNs, and a sensor-free HVAC control
algorithm is developed with the help of occupancy data obtained from the previous stage,
building characteristics, and real-time weather forecast information.

ANN is considered one of the traditional and most used artificial intelligence methods,
and is still one of the most accurate and effective. This enables traditional and AI-based
sensor-free HVAC control mechanism comparison to be performed in the final step, using
IDA-ICE 4.8 software developed by EQUA Simulation AB based in Stockholm, Sweden.

5.1. Building Properties, Occupancy, and Environmental Information

According to the Association of Real Estate and Real Investment Companies of Turkey
(2019) [81], there are currently 454 shopping malls in Turkey; across Europe, there are
more than 9500 malls, with over 1000 in France and more than 1500 in the UK (STATISTA,
2021 [82]). Worldwide, there is a huge number of shopping malls, which makes them a
significant target for energy savings and important in the development of sustainable energy
policy. These buildings tend not to have good energy efficiency strategies because they are
mostly constructed for consumption and entertainment purposes. It is commonplace for
them to use varied and excessive lighting to attract people and make them feel good inside
the building.

Poor heating and cooling settings disrupt the comfort area for people as well as causing
energy inefficiencies. As a complicating factor and unlike office buildings, shopping malls
do not have certain daily occupancy distributions, thus accurately gauging correct heating
and cooling settings is not easy. It is for these reasons that this study takes a shopping
mall as its case study. For more accurate energy analysis, a realistic model of the building
is used that incorporates the real properties of the building elements. Furthermore, the
solar radiation and weather data for the building location are obtained automatically from
IDA-ICE software for energy simulations. Figure 3 shows the model of the building story;
Table 2 shows the properties of the building elements.
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Figure 2. AI-based occupant-centric HVAC control system design.
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Figure 3. Sample 2D drawings and 3D models of the building story.

Table 2. Building components.

Construction Material Layers (from Outside to Inside)

External wall
Press brick and supporters—0.088 m|Gypsum board—0.02 m|

Light steel wall and XPS Insulation—0.15 m|Gypsum board—0.02 m|
Plywood wall panel and supporters—0.07 m

Ground floor
Reinforced concrete—1.5 m|Concrete—0.05 m|

XPS Thermal Insulation—0.06 m Concrete—0.03 m |
Screed—0.005 m|Floor Covering—0.008 m

Roof Standing seam roof sheet metal|OSB sheet—0.015 m|
Corrugated steel sheet|Steel roof supporters and XPS insulation—0.12 m

Window Low-e glass double—4 mm + 12 mm argon + 4 mm

5.2. Occupancy Prediction with ANNs
5.2.1. ANN Parameters

Many factors affect the occupancy numbers and distribution of a shopping mall. They
can be divided into two categories: social and environmental. When the collected real
entrance data are examined, temperature, humidity, and weather conditions along with
type and time of a day come to the forefront as significant parameters. Determined as
attributes in the ANN calculation, these parameters are thus:

1. Temperature: This is one of the most critical factors affecting the number of people;
there are fewer visitors to the shopping mall in winter than in summer days;

2. Humidity: This affects the temperature feel; when the humidity in the air is high,
warm moisture stays on people’s skin longer and makes them feel hotter;

3. Weather condition: This also affects the occupant number significantly; on rainy or
snowy days, shopping malls attract fewer visitors;

4. Time indicators: Days are also significant for shopping mall occupancy; on non-
working days, the number of visitors is higher than on working days. In our study,
the days are not separated into working and non-working days, as in some studies,
but each day of the week is included in the calculation separately; furthermore, month
and year information are considered as separate parameters since they are essential
variables in the long-term use of the shopping mall;
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5. Special days: Public (state) and religious holidays significantly affect occupancy;
the number of visitors increases on national holidays and decreases considerably
on religious holidays; furthermore, the first day of religious holidays is separately
considered because there are far fewer visitors on these days than others;

6. Time of day: This is the most critical factor for sudden changes in the number of
people visiting; for example, the occupancy number increases rapidly at the start of
the lunch break and decreases rapidly when it finishes.

Table 3 illustrates the detailed categories, variables, and unit/index of attributes used
in the ANN model; Table 4 shows a sample of the actual data. Furthermore, the histograms
of the temperature, humidity, weather conditions, and occupancy variables are presented
in Figure 4 to show the distribution of the collected data.

Table 3. Detailed category, variable, and unit/index information of attributes.

Category Variables Unit/Index

Environmental Temperature ◦F
Humidity %

Weather Conditions 1: Fair|2: Partly cloudy|3: Mostly cloudy|4: Light rain
5: Rain|6: Heavy rain|7: Fog|8: Snow|9: Thunder

Social and Time Indicators Weekday
Month

1–7 (1: Monday ··· 7: Sunday)
1–12 (1: January ··· 12: December)

Day 1–31
Year 2017–2018–2019
Time 10–21 (10: 10:00 a.m. ··· 21: 09:00 p.m.)

Day Type
0: Normal day|1: Public holiday
2: First day of religious holidays

3: Other days of religious holidays

Table 4. Real data for ANN (sample).

Day
of Week

Month Day Year Time Day Type Temp. ◦F Hum. % Weather Conditions
Occupancy
(Number
of People)

Sunday 8 18 2019 1000–1100 Normal 70 83 Partly cloudy 661
Sunday 8 18 2019 1100–1200 Normal 68 88 Light rain 1346
Sunday 8 18 2019 1200–1300 Normal 73 78 Partly cloudy 1448
Sunday 8 18 2019 1300–1400 Normal 72 78 Mostly cloudy 2547
Sunday 8 18 2019 1400–1500 Normal 77 50 Partly cloudy 2921
Sunday 8 18 2019 1500–1600 Normal 79 47 Partly cloudy 3353
Sunday 8 18 2019 1600–1700 Normal 79 47 Partly cloudy 3181
Sunday 8 18 2019 1700–1800 Normal 77 47 Partly cloudy 2455
Sunday 8 18 2019 1800–1900 Normal 77 50 Partly cloudy 2339
Sunday 8 18 2019 1900–2000 Normal 75 50 Partly cloudy 2126
Sunday 8 18 2019 2000–2100 Normal 72 60 Partly cloudy 1644
Sunday 8 18 2019 2100–2200 Normal 70 68 Fair 777
Monday 8 19 2019 1000–1100 Normal 77 54 Mostly cloudy 463
Monday 8 19 2019 1100–1200 Normal 75 57 Mostly cloudy 906
Monday 8 19 2019 1200–1300 Normal 77 54 Mostly cloudy 1418
Monday 8 19 2019 1300–1400 Normal 81 48 Partly cloudy 1690
Monday 8 19 2019 1400–1500 Normal 81 45 Partly cloudy 1643
Monday 8 19 2019 1500–1600 Normal 79 51 Partly cloudy 1379
Monday 8 19 2019 1600–1700 Normal 77 50 Partly cloudy 1547
Monday 8 19 2019 1700–1800 Normal 79 51 Partly cloudy 1494
Monday 8 19 2019 1800–1900 Normal 77 54 Partly cloudy 1907
Monday 8 19 2019 1900–2000 Normal 75 61 Partly cloudy 1806
Monday 8 19 2019 2000–2100 Normal 72 73 Fair 1496
Monday 8 19 2019 2100–2200 Normal 70 78 Fair 727
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Table 4. Cont.

Day
of Week

Month Day Year Time Day Type Temp. ◦F Hum. % Weather Conditions
Occupancy
(Number
of People)

...
...

...
...

...
...

...
...

...
...

Friday 8 30 2019 1000–1100 Pub. Hol. 77 69 Partly cloudy 1269
Friday 8 30 2019 1100–1200 Pub. Hol. 81 54 Partly cloudy 1406
Friday 8 30 2019 1200–1300 Pub. Hol. 81 48 Partly cloudy 1738
Friday 8 30 2019 1300–1400 Pub. Hol. 82 48 Partly cloudy 2562
Friday 8 30 2019 1400–1500 Pub. Hol. 82 48 Partly cloudy 2601
Friday 8 30 2019 1500–1600 Pub. Hol. 81 54 Partly cloudy 2990
Friday 8 30 2019 1600–1700 Pub. Hol. 81 51 Partly cloudy 2518
Friday 8 30 2019 1700–1800 Pub. Hol. 79 54 Partly cloudy 2428
Friday 8 30 2019 1800–1900 Pub. Hol. 77 54 Partly cloudy 2701
Friday 8 30 2019 1900–2000 Pub. Hol. 75 65 Partly cloudy 2262
Friday 8 30 2019 2000–2100 Pub. Hol. 73 65 Fair 1805
Friday 8 30 2019 2100–2200 Pub. Hol. 72 69 Fair 818

Figure 4. Histograms of the temperature, humidity, weather conditions, and occupancy variables.

5.2.2. ANN Models

Due to their strong logic, error tolerance, versatility, and generalization capabilities, AI
methods are used in various applications. The ANN, a mathematical model that imitates
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the biological nervous system, is one of the most widely used types of AI and has been
implemented to solve a variety of practical challenges in many fields of study.

The fundamental biological unit of the nervous system is the neuron, a fundamental
processing factor that receives and integrates signals from other neurons through dendrite
input paths. The neuron generates an output signal along the axon that links to the dendrites
of several other neurons if the combined input signal is sufficiently high. An attempt to
model the behavior of biological neural systems was made that led to the development
of ANNs, in which artificial neurons model the components of a real neuron. An ANN is
thus a set of independently linked processing units that function as parallel-distributed
computing networks.

Unlike traditional computers, which are programmed to perform particular tasks,
ANNs may learn from examples and eliminate the need for complicated mathematical
formulas or costly physical models by acting as (human) brain-like mathematical models.
They are fault-tolerant and can work with noisy data, allowing for quick generalization
of unknown inputs (Wijayasekara et al., 2011 [83]). They also have specific adaptation
abilities that enable them to solve highly non-linear problems in which finding analyt-
ical formulations that relate the input data to the output data is especially challenging
(Hagan et al., 2014 [84]). Unlike other statistical or parametric approaches, ANNs can
extract non-explicit relationships from a massive volume of correlated data using the high
computational capabilities of current computers; thus, ANNs have become a prevalent
problem-solving strategy in a diverse range of study areas.

The architecture of ANN models is formed by layers with complete or random connec-
tions between them. There is a connection between each neuron, and information exchange
is performed. The network receives data from the input layer. The nodes in this layer do
not have any weights or activation functions, thus it is not a neural computing layer. The
hidden layer or intermediate layer includes data processing and computing steps and the
final response to a given input, which is called the output layer (see Figure 5). The ANN
model is developed using TensorFlow’s Keras API and the Adam algorithm is used to train
the model. Five-fold cross-validation was applied for splitting the data into two subsets,
namely, training and testing. Ninety percent of cases were used for training in each trivial,
and the remaining were utilized to test the model accuracy. All equations are adopted from
the book Artificial Neural Networks by Springer US (2021) [85].

 

Figure 5. ANN structure for the study.

233



Sustainability 2022, 14, 16107

Generally, the net input of a neuron—activation potential Ai—is equivalent to the
product wijxj , where wij is the weight of the corresponding connection on the i-th post-
synaptic neuron and xj is the input signal (Equation (1)). Connection weights can be
considered as storage of the knowledge that underlies the processing. Thus,

Ai = ∑
j

wijxj − ai (1)

where ai is the threshold activation constant of the neuron. An output can only be obtained
by propagating through a specific activation function. After the signal has been thus
propagated, an output can be found thus:

yi = ϕ(Ai) = ϕ

(
∑

j
wijxj − ai

)
(2)

where yi is the output of a layer and ϕ(•) is the transfer function.
The sigmoid activation function has been a common activation function for neural

networks for a long time. Its input is converted to a value of between 0.0 and 1.0, with
inputs that are significantly greater than 1.0 being converted to 1.0, and inputs that are
significantly smaller than 0.0 snapped to 0.0. However, due to the vanishing gradient
problem, usage of the sigmoid and hyperbolic tangent activation functions in networks
with many layers is not true. This problem can be overcome by using the rectified linear
activation function, allowing ANN structures to learn faster and increase performance. The
formula of the rectifier or rectified linear unit (ReLU) is as follows:

f (x) = x+ = max(x) (3)

where x is the input to a neuron. This is also known as a “ramp function” and is analogous
to half-wave rectification in electrical engineering. Connection weights are modified by the
ANN model using a suitable learning method during the training phase. The network uses
a learning mode to obtain the desired output by adjusting the weights. This is executed by
introducing input and desired output to the network. The difference between the expected
output and the network’s output is then used to determine the error value. In the training
phase, recalculations are carried out to decrease the error to an acceptable value. Due to
zero occupancy on some days, mean absolute error (MAE) is used to calculate the error
value, thus:

MAE = |yi − ŷi| (4)

where ŷi is the corresponding desired output value. An error of close to zero shows that
the ANN output values match the expected values very well and the network is well-
trained. Backpropagation training is accomplished by assigning random weights to all
nodes. Equation (5) is used to measure the variation quantity of the connection weights:

Δwij(t) = λδi − yi + αΔwij(t − 1) (5)

where the training rate is λ, the momentum coefficient is α, and the error of the i-th output
layer is δi, which is calculated thus:

δi = yi(1 − yi)MAEi (6)

MAE and mean absolute percentage error (MAPE) are also calculated as indices to
evaluate the performance of the ANN model, thus:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ = 1
N

N

∑
i=1

|Relative Errori| (7)
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where N is the total number of data sequences.

5.2.3. HVAC Control Scenarios for Energy Simulation

The primary goal of establishing HVAC control scenarios in terms of the level of
development here is to measure the amount of energy to be saved with the proposed
AI-based control approach. Although great progress has been made in air conditioning
systems, a large proportion of commercial buildings have the most traditional type of
control system, which is one that is operated manually by an attendant (janitor or similar)
responsible for turning the system on and off. The most common HVAC control is based
on the measurements of environmental conditions via sensors, generally temperature,
humidity, and pressure sensors. The most serious deficiency of sensors in terms of energy
consumption is the failure to facilitate a quickly responsive control system.

Many shopping malls serve as a lunch-places for people working near the building,
which causes short-term occupancy densities during the lunch-break period. The rise in
temperature due to sudden increase of people density is a slower process and, by the
time this reaches the sensor, the control system responds, and the appropriate ambient
temperature is provided, most people will already have left the building to return to work.
Moreover, traditional building automation systems depend on quite imperfect occupancy
sensors, which retards system responsiveness. Passive infrared and ultrasonic occupancy
sensors, for example, are low-functioning devices for this usage since they are unable to
accurately assess the occupancy condition, especially when people are stationary for an
extended period and have a limited range, which especially affects their effectiveness in
large areas.

AI prediction technology offers significantly more accurate occupancy information
and improved energy efficiency than traditional building automation systems. Accordingly,
our HVAC control mechanism takes predicted occupancy information and the maximum
number of people per day and adjusts its power according to occupancy rate over time.
Furthermore, new schedule algorithms are developed based on occupancy information,
and weather forecasts for the scenarios (S3 and S4) explained below. The on-off status of
the HVAC is determined according to these setpoint schedule algorithms. The maximum
setpoint value is determined as 24 ◦C for all scenarios since we focus on the summer period
in this study. Finally, four different scenarios—showing a level of development (from
traditional to advanced)—are determined, as follows:

1. S1: The S1 scenario represents the full-powered HVAC at all times.
2. S2: The S2 scenario represents the most common traditional HVAC control mechanism

based on temperature and occupancy sensors, where the HVAC control system is
automatically (de)activated according to the temperature setpoints and temperature
measurements from the sensors. In this scenario, occupancy is measured by CO2
sensors, which record the level of CO2 in the air. If the number of people in a space
exceeds the amount of CO2 allowed, the sensor triggers the HVAC mechanism to
turn on. This type of sensor is more accurate than a standard motion sensor for the
measurement of occupancy.

3. S3: The S3 scenario represents the proposed AI-based HVAC control system, which
uses predicted occupancy numbers as produced by the ANN model. In this scenario,
the HVAC system responds automatically to changes in the occupancy with no lag
time, contrary to sensor-based systems. The control algorithm provides an HVAC
setpoint schedule to control the system according to real weather conditions (as sup-
plied by weather prediction services) and predicted occupant numbers. The existing
sensors can still be used to monitor the real-time indoor temperature, humidity, and
amount of CO2. If the actual thermal comfort parameters exceed the desired values,
the control system adjusts itself according to the sensors until thermal comfort is
provided. In the energy simulations performed by IDA-ICE, the effect of the real-time
sensors is not used to examine the no-sensor control mechanism. For this reason, in
the illustrations and graphs for S3 and S4, dashed lines are used to show this potential.
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4. S4: The S4 scenario represents the HVAC control system in the S3 scenario with
a pre-cooling ability along with a quick response. The control algorithm provides
pre-cooling time to control the system according to predicted weather conditions and
occupant numbers. All other features are the same as for S3.

Figure 6 provides basic illustrations for the four energy simulation scenarios.

Figure 6. HVAC control scenarios for energy simulations.

Algorithm 1 and Algorithm 2, shown in below, explain the proposed HVAC control
schedule algorithms in terms of cooling for S3 and S4. The control algorithm takes occu-
pancy prediction results from the ANN analysis and real weather forecast information
from provider websites as inputs (see lines 1–3). In the time intervals when the occu-
pancy volume increases, the HVAC control activates according to the maximum setpoint
(lines 4–6); otherwise, the algorithm checks the forecasted temperature and compares it
with the maximum setpoint value.

Algorithm 1 HVAC Schedule Algorithm of S3 for Cooling

1 train ANN model
2 make day-ahead prediction for occupancy
3 take day-ahead local weather forecast information
4 if occupancyt < occupancyt+1
5 setpointmax ®Ttarget
6 set HVAC setpoint to Ttarget
7 end

8 else

9 if weather forecast temp.t > setpointmax
10 setpointmax ®Ttarget
11 set HVAC setpoint to Ttarget
12 else

13 deactivate the cooling • deactivation
14 end if

15 end if

If the weather forecast temperature for time t is greater than the maximum, the HVAC
control uses the maximum setpoint (lines 8–10); if not, while the HVAC deactivates cooling
automatically for S3 (lines 12 in Algorithm 1), the algorithm checks the occupancy trend of
one hour later for S4. If there is a sudden increase (determined at 250 visitors), it activates
the pre-cooling 30 min before the upward trend begins for S4 (line 15 in Algorithm 2).

Due to fluctuations in the occupancy numbers, sudden changes can cause comfort
limit values to be exceeded, especially in situations where the number of visitors will
increase too much one or two hours later, even if the occupancy trend is downward for
the current time. To prevent this, S4 presents a 30-min pre-cooling. If there is no such
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increase, the HVAC control deactivates cooling (see line 17 in Algorithm 2), just as for the
S3 algorithm.

Algorithm 2 HVAC Schedule Algorithm of S4 for Cooling

1 train ANN model
2 make day-ahead prediction for occupancy
3 take day-ahead local weather forecast information
4 if occupancyt < occupancyt+1
5 setpointmax ®Ttarget
6 set HVAC setpoint to Ttarget
7 end

8 else

9 if weather forecast temp.t > setpointmax
10 setpointmax ®Ttarget
11 set HVAC setpoint to Ttarget
12 else

13 if occupancyt+2 - occupanct+1 > 250
14 deactivate the cooling for first t/2 • deactivation
15 setpointmax ®Ttarget
16 set HVAC setpoint to Ttarget for last t/2 • start pre-cooling
17 else

18 deactivate the cooling • deactivation
19 end if

20 end if

21 end if

6. Demonstration and Evaluation of the AI-Based Occupant-Centric HVAC
Control System

In this stage, the designed and developed system is tested in relation to the scenarios
for energy analysis. According to design science research, research can exploit experimenta-
tion, simulation, case study, proof, or other activities to demonstrate the proposed solution
to the research problem. Hence, experimentation of the scenarios via simulation using
IDA-ICE 4.8 software is performed for the computational energy analysis. The model of the
shopping mall was created using Revit software and imported to IDA-ICE in IFC format.
Four different energy analyses are carried out according to the four scenarios. For each
scenario, the HVAC control system corresponding to the characteristics of the scenario
is created in the simulation software using macros. Figure 7 shows the MPC algorithm
framework. Simulations are carried out daily, with the results for two days explained in
detail in the results section.

 

Figure 7. Model predictive control (MPC) algorithm framework.
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The weather data of the software are used in the energy analysis. It is seen that
the day-ahead predictions give almost the same values as real values. Therefore, the
forecasted weather data for the algorithm are not used (to avoid repeating the results and
graphics). In scenarios S4 and S5, both the estimated occupancy numbers found as a result
of ANN calculation and the real occupancy numbers are used in different simulations
to show how the small difference between the real data and ANN prediction affects the
energy simulation.

The research artifact, the AI-based occupant-centric HVAC control system, is assessed,
and evaluated to conceive how well the developed and demonstrated artifact is considered
as a solution to the research problem. At this stage, research can benefit from surveys,
feedback, and simulations. If the solution rate, which corresponds to the research problem,
or functionality of the solution is not at an acceptable level, the iterative process is performed
by turning stage 2 and 3.

6.1. ANN Results

In addition to the initial network settings (attributes, layer design, training algo-
rithm, etc.), ANN parameters (hidden layer size, number of neurons in the hidden layer,
batch size, which refers to the number of training examples utilized in one iteration, number
of epochs, the number of complete passes through the training dataset, etc.) have a highly
significant influence on the network output during the training and prediction phases.
While a model with too few neurons has poor predictive performance because it cannot
handle a complex model structure, if too many are selected, weak prediction performance
follows as overfit too easily results from a minor fluctuation in the data.

Therefore, it is crucial to test the model’s output with different design parameters.
Different ANN models were trained for this study; as a result of the trials grid search
methodology using the number of neurons in each layer and the number of epochs as
variables by keeping the number of hidden layers constant at 8. Figure 8 shows the
MAPE and R-squared results of the ANN models created using a grid search. Since the
computational times are not too long and do not change much between them, they are not
considered as parameters. The ANN models with 8 neurons in each hidden layer and with
500 epochs (ANN-1), with 8 neurons in each hidden layer and with 750 epochs (ANN-2),
with 16 neurons in each hidden layer and with 250 epochs (ANN-3), and with 16 neurons
in each hidden layer and with 500 epochs (ANN-4) give the best results with overall MAPE
values of 0.1323, 0.1344, 0.1315, and 0.1335, respectively.

Figure 9 shows the learning curves of the different ANN models. It is clear from the loss
curves that training and validation loss values for ANN-1 and ANN-3 (Figures 9a and 10b,
respectively) are in the ideal range for model complexity. However, the distance between
the training loss line and validation loss line gradually increases after a certain point
because of overfitting in the ANN model with 64 neurons in each hidden layer and with
1000 epochs (Figure 9d).

The comparison between actual occupancy numbers and predicted occupancy values
as given by ANN-1 and ANN-2 is illustrated in Figure 10. Although the prediction values
are naturally far from the real values at some peak points, the prediction trend follows the
real numbers in a general fashion. Thus, as the quantity of data increases in the future,
more accurate results will be obtained.

Furthermore, to examine the results in more detail, four days (18, 19, 20, and
30 August 2019) were removed from the training data set and used as prediction values.
Prediction values for these days were obtained using the ANN-1 features because of the
model accuracy and processing time; a comparison with actual occupancy numbers is
shown as a list (Table 5) and graphically (Figure 11).

Additionally, 18 August was a Sunday, while 30 August is a national holiday. These
days are important in examining the ANN algorithm for weekdays, weekends, and special
days. More people are expected to visit the shopping center on weekends and national
holidays than on weekdays.
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Figure 8. Grid search results of the ANN models according to MAPE and R-squared values.

Figure 9. Learning curves of the different ANN models.
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Figure 10. Actual and ANN-predicted occupancy results (ANN-1 and ANN-2).

Table 5. Actual and ANN-predicted occupancy results (hourly).

Time

Sunday,
18 August 2019

Monday,
19 August 2019

Thursday,
29 August 2019

Friday,
30 August 2019

Real Pred. Real Pred. Real Pred. Real Pred.

10:00 a.m. 661 963 463 881 642 697 1269 769
11:00 a.m. 1346 1480 906 1322 1240 1345 1406 1602
12:00 p.m. 1448 1594 1418 2139 2194 2290 1738 1980
01:00 p.m. 2547 2412 1690 1751 1981 1657 2562 2445
02:00 p.m. 2921 3373 1643 1680 1489 1491 2601 3452
03:00 p.m. 3353 3384 1379 1648 1732 1557 2990 2870
04:00 p.m. 3181 3156 1547 1749 1722 1817 2518 2598
05:00 p.m. 2455 2833 1494 1787 1622 1565 2428 2498
06:00 p.m. 2339 2351 1907 2134 2034 1793 2701 2411
07:00 p.m. 2126 1892 1806 1833 2362 1821 2262 1930
08:00 p.m. 1644 1491 1496 1519 2102 1518 1805 1305
09:00 p.m. 777 704 727 635 887 903 818 553

From Table 5 and Figure 11, it is clear that the prediction values show a harmonious
performance against time parameters. Moreover, although 30 August was a Friday, this
analysis managed to approximate actual values with an accuracy of about 87% as an
important measure of the success of predictions.
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Figure 11. Actual and ANN-predicted occupancy results (hourly).

6.2. Energy Analysis Results

The energy analyses aim to demonstrate the effectiveness of the proposed HVAC
control algorithm and compare it with traditional control systems. For this purpose, indoor
temperature results and daily energy consumption values for the four scenarios were
obtained from the IDA-ICE software. Two days are selected for detailed energy analysis
and comparison of indoor temperatures according to energy simulation scenarios, Monday,
29 August 2019, and Saturday, 7 June 2019; these are illustrated in Figures 11 and 12,
respectively.

Since the S1 scenario represents the full-powered HVAC at all times, the indoor
temperature remains constant with small fluctuations at 24 ◦C for both 29 August and
7 June (Figures 12a and 13a, respectively), as expected. When the indoor temperature
results of the S2 scenario, which represents the sensor-based traditional control approach,
are examined for 29 August (Figure 12b), the temperature is found to vary between 23 and
25 ◦C across wide intervals. This is because basic thermostats allow the temperature to
fluctuate a few degrees from the fixed temperature to reduce the frequency with which
the cooling device is turned on and off. Consequently, it is seen that the HVAC control
mechanism fails to respond to the rapid increase in outdoor temperature and occupancy
numbers between 10 and 11 o’clock, and when the maximum occupancy number is reached,
the indoor temperature values stay outside the comfort limits. Additionally, although the
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fluctuations for 7 June (Figure 13b) show a similar pattern, low outdoor temperatures cause
the indoor temperatures to return to comfort limit values more quickly.

 

Figure 12. Comparison of indoor temperatures of scenarios for Monday, 29 August 2019.
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Figure 13. Comparison of indoor temperatures of scenarios for Saturday, 7 June 2019.

The S3 scenario represents the energy simulation according to our new control ap-
proach without pre-cooling, which is Algorithm 1, with the HVAC control adjusting accord-
ing to the occupancy rate. Although there was a decrease in occupancy between 01:00 p.m.
and 02:00 p.m. and between 04:00 p.m. and 05:00 p.m. on 29 August, the cooling status
remained on as the outdoor temperature was higher than the setpoint (Figure 12c). At
07:00 p.m., as occupancy started to decrease and the air temperature dropped, the cool-
ing went off, and the indoor temperature increased due to the occupancy. As a result of
the dramatic decrease in the number of people, this increase ended before exceeding the
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comfort level. Furthermore, since the HVAC became operational in response to the rise in
occupancy, the indoor air temperature remained mostly at the comfort level.

The scenario S4 for 29 August (Figure 12d) produces the same result as does S3 because
conditions that would activate the pre-cooling did not arise on this day. Similarly, there
is no difference in the application of the algorithm in the simulation with the estimated
occupancy values on 29 August (Figure 12e,f) because the increase and decrease trends are
captured correctly by ANN. Depending on the difference in occupancy values between real
and predicted, small changes are observed in temperature changes and fluctuations. For
instance, indoor temperatures do not rise as high for the simulations with predicted values
as for the simulation with real values after the cooling is off because the predicted values
are smaller than others for those time intervals.

In the S3 scenario for 7 June (Figure 13c), the cooling is switched off between 11:00 a.m.
and 01:00 p.m. because the outdoor temperature was below the setpoint with a decrease in
the number of people between these hours. An indoor temperature increase is observed to
occur naturally in this period, but the low outdoor temperature prevents this increase from
reaching significant levels.

Likewise, with the increase in the number of people, the cooling becomes active
again from 01:00 p.m. Similar to the scenario for 29 August, cooling is deactivated by
the algorithm in the hours close to the shopping mall closing time. While the actual
occupancy numbers increase, estimated occupancy values decrease between 03:00 p.m.
and 04:00 p.m. However, the S3 scenario simulation with estimated occupancy (Figure 13e)
follows the same cooling status as the simulation with actual occupancy (Figure 13c) since
air temperature is above the setpoint between these hours. This situation is critical to
minimize the failures due to inaccurate estimation by ANN.

The main difference between S3 (Figure 11c,e) and S4 (Figure 11d,f) is that cooling
status is active at 12:30 p.m. for S4. The reason for this is that the pre-cooling algorithm
is activated under suitable conditions at S4. While there is a decrease in both real and
predicted occupancy numbers between 12:00 p.m. and 01:00 p.m., there is an increase of
more than 250 people between 01:00 p.m. and 02:00 p.m.. The algorithm starts the cooling
30 min before this increase in occupancy to prevent comfort disturbances caused by the
rapid increase. As a result of pre-cooling, the indoor temperature falls to the setpoint level
at the beginning of the occupancy increase, contrary to the S3 scenarios. Similar to the
simulations performed for 29 August, the actual and predicted occupancy numbers lead to
slight differences in the simulations.

When the daily energy consumption results are examined for 29 August (Figure 14),
scenario S1 has the greatest consumption with 4090.61 kWh, as expected. Scenario 2 pro-
vides an energy saving of approximately 30% compared to S1; with a consumption value
of 2279.26 kWh; however, scenarios S3 and S4 consume 22% less energy than S2. When
the daily energy consumption results are analyzed for 7 June (Figure 14), the energy con-
sumption trends generally show a similar pattern to that of 29 August. The S2 scenario
uses almost 30% less energy than the S1, while S3 and S4 provide an energy saving of
approximately 10% over S2. The savings presented by the HVAC control scenario are lower
in June than August because delays resulting from the sensor-based approaches at low air
temperatures affect the energy efficiency less.

There are also some minor naturally based differences between the simulations per-
formed according to actual and estimated occupancy numbers because the simulation tool
adjusts the HVAC power depending on the occupancy. Regarding the ANN values, it
is natural to obtain a lower energy consumption because of simulations with predicted
values for 29 August, since the average of the predicted occupancy number, 1485.27, is
lower than the real occupancy average, 1613.57. Similarly, energy consumption values of
simulations with predicted occupancy are greater than simulations with real occupancy
because the average of the predicted occupancy, 1755.32, is greater than the real occupancy
average, 1679.64.
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Figure 14. Comparison of energy consumption values of scenarios.

7. Conclusions

This paper presented an analysis of different HVAC control approaches according to
their level of development using energy simulations in which ANN features as the focus of
the study due to the need for the sensor-free control mechanism. The ANN analysis was
performed using real occupancy and weather information collected for each day and hour,
with the energy simulations performed for four scenarios using IDA-ICE software.

The ANN results showed that the prediction of occupancy numbers according to
time intervals could be calculated with almost 87% accuracy. This accuracy rate was
achieved with a limited dataset, and estimation precision should be expected to increase
with stronger datasets developed over time. Further, the ANN prediction responded
to different parameters, such as special days. This allows the proposed HVAC control
algorithm to be used year-round, without exceptions.

According to Wong and Li (2010), “total energy use” is the top selection criterion,
followed by “system reliability and stability”, “operating and maintenance cost”, and
“control of indoor humidity and temperature”. Since our control strategy is based on
data, not real-time detection tools, while it reduces energy consumption, it also very
positively affects reliability and operating cost. Different scenarios varying according to
level of development were used to measure the effectiveness of our new HVAC control
mechanism. A detailed examination of energy simulation results has revealed that the
scenarios representing our AI-based occupant-centric control approach (S3 and S4) save
a minimum of 10% energy consumption as compared to the traditional sensor-based
approach (S2) and a minimum of 35% on those with full-powered HVAC at all times (S1).
In the months when the outside temperature is high, these rates reach approximately 20%
and 40%, respectively, because traditional approaches allow the indoor temperature to
fluctuate excessively, causing an increase in the power consumed for cooling.

Another significant result is that there were only very slight differences in indoor
temperature and energy consumption results between simulations performed with pre-
dicted and real occupancy numbers. This shows that using estimated values in the HVAC
control algorithm does not significantly change the energy consumption or comfort level.
Manifestly, the transformation of control approaches proposed has great potential for
energy savings.
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A few limitations should be noted. First, the proposed control algorithms (Algorithms 1 and 2)
were not designed with any complexity; the study design was selected with relatively
simple algorithms to show the savings to be made in a simple way. In cases where
occupancy tends to decrease slightly for long periods and the outdoor temperature is
low, for example, the cooling may remain off for a long time, a situation that was not
represented here. In such cases, the occupancy not being very low could cause the interior
temperature to rise (i.e., even though the air temperature is low). To avoid such a situation,
the algorithm can easily be made more complex with the addition of further parameters,
such as occupancy limit and cooling-off time limit.

Second, even though day-ahead weather forecasts mostly make perfect predictions
for the following day, some days might fall outside the acceptable margin of error. Such a
situation could cause a decrease in the comfort level or inefficiency in the energy consump-
tion, albeit only for very limited periods (or very few days). However, and similarly not
considered in this study, existing sensors might be used as an aid tool to measure the real
situation and included in the algorithm (as stated) to prevent both these shortcomings.

As a major condition of the experimental design and thus a third limitation, only the
cooling function of the HVAC was investigated. Regarding further research, therefore, a
control algorithm can also be developed for heating. Then, the method for HVAC control in-
troduced in this study may be applied to the shopping mall by real experimental setup and
the results observed in reality. Furthermore (as indicated), more complex control algorithms
can be developed according to the specific occupancy pattern of the building studied.

Finally, this study differs from others in considering prediction occupancy numbers
with ANN as the main focus in order that significant energy savings can be achieved with
a simple control algorithm. For this reason, the study can be a pioneer in terms of a new
HVAC system with low installation cost and high energy efficiency. This research can
play a major role in guiding the AI-based occupant-centric control tool for sustainable
development, which can be used as a standalone control mechanism as it improves.
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Abstract: Cloud covering is an important factor affecting solar radiation and causes fluctuations
in solar energy production. Therefore, real-time recognition and the prediction of cloud covering
and the adjustment of the angle of photovoltaic panels to improve power generation are important
research areas in the field of photovoltaic power generation. In this study, several methods, namely,
the principle of depth camera measurement distance, semantic segmentation algorithm, and long-
and short-term memory (LSTM) network were combined for cloud observation. The semantic
segmentation algorithm was applied to identify and extract the cloud contour lines, determine the
feature points, and calculate the cloud heights and geographic locations of the cloud shadows. The
LSTM algorithm was used to predict the trajectory and speed of the cloud movement, achieve accurate
and real-time detection, and track the clouds and the sun. Based on the results of these methods, the
shadow area of the cloud on the ground was calculated. The recursive neural LSTM network was
also used to predict the track and moving speed of the clouds according to the cloud centroid data
of the cloud images at different times. The findings of this study can provide insights to establish a
low-cost intelligent monitoring predicting system for cloud covering and power generation.

Keywords: solar energy; semantic segmentation algorithm; cloud moving prediction; cloud shadow;
cloud speed

1. Introduction

Solar energy is a widely distributed and sustainable source of energy worldwide.
Photovoltaic power generation technology can directly convert light energy into electrical
energy through the photovoltaic effect, and it has the advantages of no pollution, safe use,
and convenient maintenance. With continuous technical improvement and cost reduction,
photovoltaic power generation has increased rapidly. In 2005, the global cumulative
installed photovoltaic capacity exceeded 5 GW. According to “Snapshot of Global PV
Markets 2020” [1] issued by the International Energy Agency, by the end of 2019, the global
installed capacity exceeded 600 GW, and the average annual growth rate was 41%. In the
past three years (2019–2022), the annual installed capacity has exceeded 100 GW. Figure 1
shows the global installed photovoltaic capacity over the past 10 years (2011–2019).

Large-scale photovoltaic projects require real-time monitoring of power quality and
operating information while maintaining optimal scheduling. Therefore, it is essential to
ensure the accurate forecasting of generation capacity, especially short-term and real-time
forecasting [2]. Therefore, dynamically adjusting the solar panel according to weather type,
cloud occlusion, and the radiation angle of sunlight to maximize the power generated
by photovoltaic modules has always been an important research topic in the field of
photovoltaic power generation [3–5]. Changes in photovoltaic power generation are almost
proportional to the changes in radiation intensity, which are directly affected by cloud
occlusion. Different weather types and cloud cover lead to considerable changes in the
power generated by photovoltaic systems and power grid fluctuations [6–9].

However, in the field of photovoltaic power generation, it has always been challenging
to accurately predict the weather type and cloud movement [10,11].
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Cloud cover is usually analyzed based on the shape, size, distribution and evolution,
and height of the clouds. The cloud shape changes easily; therefore, clouds should be moni-
tored continuously and in real-time. Traditional artificial observation is based on subjective
judgment and observation experience, so it cannot accurately predict the cloud shade. With
research advances, observation technology has developed significantly. Contemporary ob-
servation technologies for different space environments include satellite- or space-based
equipment for atmospheric observations and ground-based equipment for near-Earth obser-
vations. In large-scale ground-based photovoltaic power stations, power prediction is mainly
based on short-term and real-time monitoring of the weather in the plant area. Considering
the area of the power station, the speed and economic cost of ground equipment required for
cloud monitoring as well as the monitoring method should be selected for cloud observation.
Table 1 lists the various cloud height observation methods.

Figure 1. Global photovoltaic installed capacity during 2011–2019.

Table 1. Comparison of different cloud height observation methods.

Manual Radiosonde Cloud Meter LiDAR Weather Radar

Observation range Whole sky Single point Single point Single point Single point
Monitoring range Maximum visibility 8–10 km 10–12 km 1–12 km 15 km

Frequency 0.5–6 h 6–12 h Continuous Continuous Continuous
Accuracy 20–30% 100–200 m 2% 2% 60 m

Sub attribute Cloud amount and type Cloud top height - Cloud microphysical
properties

Cloud top height and cloud
microphysical properties

Difficulty Low Medium Medium High High
Automation No No Yes Yes Yes

Among the methods mentioned in Table 1, cloud meter and radar measurement are
widely used; however, these methods have the disadvantages of high cost and inconsistent
measurement results; moreover, it is challenging to obtain the edge profiles of clouds and
predict the cloud shading range. Therefore, in this study, we developed and investigated a
new low-cost prediction method that combined sky images and machine learning methods to
obtain an accurate cloud height, extract the edge contours of clouds, measure the shade range
(i.e., cloud cover), and predict and analyze the moving direction and speed of the clouds.

In this study, the weather type was detected and identified in real-time by using
artificial intelligence algorithms and deep learning networks. In sky images, the existence of
cloud shielding, range of shielding, and moving speed and track of clouds are determined
to obtain insights for guiding the angle of photovoltaic panels and increasing power
generation, providing a basis for the real-time prediction of photovoltaic power generation.

2. Predicting Cloud Shadow Moving Trajectory and Speed

2.1. Method for Cloud Monitoring

For cloud monitoring, multiple cloud cameras are distributed across a photovoltaic
power station field to obtain aerial images that contain high-resolution spatiotemporal
information about solar radiation. Various software can be used to process the information
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in the control room. Thereafter, the predicted value of solar energy is obtained. Several
researchers have conducted related studies. In 2013, Tao et al. used a pair of CCD (charge
coupled device) digital cameras to set a baseline length of 60 m to form a cloud base-height
measurement system with binocular imaging [12–14]. The Harris corner detector was used
to extract the corner features of the images, and then the relative disparity was obtained
according to the matching feature points. The principle of photogrammetry was used to
calculate the height of the cloud base. In 2013, Zhang et al. used industrial cameras and
image processing technologies for cloud monitoring [15,16]. Cloud height was calculated
based on the dual-camera measuring distance principle. The same feature points were
obtained using CSIFT (color scale-invariant feature transform) and SIFT (scale-invariant
feature transform) methods for object matching to detect the cloud speed. In 2015, Peng et al.
used support vector machine classifiers to identify cloud clusters from multiple TSI images
and evaluated the essential height and movement of each cloud cluster [17–21]. In 2018, the
German DLR Solar Energy Research Institute developed the WobaS system [22–26]. This
system comprises 2–4 cloud cameras that are used to capture sky images. These images
are evaluated and the cloud speed and future distribution are calculated, enabling the
successful prediction of solar radiation values in the next 15 min.

Typical cloud detection and measurement methods based on dual imaging systems
use similar hardware; these methods often utilize two or more cameras (especially fisheye
cameras with large viewing angles and TSI devices) and apply a similar triangle principle to
calculate the distance between the cloud and the cameras (depth camera principle). These
methods can thus achieve high-resolution images at low equipment cost. However, the
software used in these methods are often different from those used in conventional machine
learning algorithms or early deep learning algorithms [27–31] However, the recognition
accuracy and feature matching of clouds and sun were insufficient. The results showed
significant calculation errors in cloud parameters such as cloud height, cloud area, cloud
shadow, and cloud speed.

Deep learning algorithms are mainly divided into three categories:
A convolutional neural network (CNN) is commonly used for image data analysis

and processing such as image classification, target detection, and semantic segmentation
(i.e., Mask R-CNN and YOLACT). A recurrent neural network (RNN) such as a long- and
short-term memory (LSTM) network is often used for text analysis or natural language
processing. A generative adricative network (GAN) is typically used for data generation
or unsupervised learning applications such as generating similar original data; 3D-GAN
is used to generate high-quality 3D objects [32–35]. In 2018, He et al. proposed the Mask
R-CNN method based on faster R-CNN, which is an extension of Mask [36–38].

In this study, first, the edge contours of clouds were obtained, and then, the feature
points on the edges were obtained using the PSPNet semantic segmentation algorithm [39]
based on the images obtained from the CMOS imaging system. Furthermore, the LSTM
algorithm was used to obtain the cloud parameters such as cloud height and moving track
and speed of cloud shadow, which were then combined with geographic information to
predict the cloud shadow occlusion on the ground.

2.2. Cloud Edge Contour Extraction and Feature Point Recognition

This study requires distinguishing the cloud and non-cloud parts of a picture, that is, to
classify each pixel to form the boundary of a cloud. The sky and clouds have different colors;
therefore, we considered using color features to classify each pixel to form a boundary.
The texture features of the sky and clouds are also different; thus, texture features can
also be used for classification. Texture features can be extracted using the gray-gradient
co-occurrence matrix (GGCM).

Several types of neural networks can realize semantic segmentation; herein, the PSPNet
network semantic segmentation algorithm (Figure 2) [11] was used for classification. In the
PSPNet network, the netscope space pyramid pool structure was adopted, as shown in Figure 3.
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Figure 2. PSPNet network.

Figure 3. Netscope space pyramid pool structure.

PSPNet is a modification of the basic RESNET architecture, and it uses hole convolu-
tion. First, it pools the features and then processes them at the same resolution in the whole
encoder network (one-fourth of the original image input) until a spatial pooling module
is obtained. Auxiliary loss is considered in the middle layer of RESNET to optimize the
overall learning, and the global context model is aggregated in the spatial pyramid pooling
layer at the top of the modified RESNET encoder.

In this study, 3800 cloud pictures were annotated using lableme software and given as
input to the network model for training. The training process is as follows:

Step 1: The weight and deviation of neurons in each layer is initialized.
Step 2: Forward propagation: the image is converted into a matrix input in RGB format,

the linear combination value is obtained through the weight and deviation of neurons in each
layer, and then the activation function is applied to the linear combination value.

Step 3: The loss function is used to calculate the error between the output value of
forward propagation and the annotated images, and the weight and deviation of neurons
in each layer are optimized using the back propagation algorithm according to the error.

Step 4: Steps 2 and 3 are repeated iteratively to reduce the error to a specified value, and
the weight and deviation of each layer of neurons are saved to obtain a well-trained model.

The cloud images are given as input into the model, and the training results are shown
in Figure 4.
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Figure 4. Example results of PSPNet.

2.3. Cloud Movement Trajectory and Velocity Recognition Based on LSTM Network

Cloud moving can be considered as a time series prediction problem. Contemporary
deep learning methods mainly use RNNs. In this study, a LSTM network model was used,
which comprises an input layer, a hidden layer, and an output layer. The internal structure
of the hidden layer is shown in Figure 5.

Figure 5. Internal structure of the hidden layer.

In Figure 5, t − 1, t, and t + 1 are continuous time series, X is the input sample, St is
the memory of the sample at time t, and St = f (W × St−1 + U × Xt), where W represents
the weight of the last time, U represents the weight of the input sample at the moment, and
V represents the weight of the output.

For general initialization, the start time is considered as t = 1, input is S0 = 0, and W, U,
and V are initialized randomly; then, Equation (1) is used for prediction.

h1 = Ux1 + Ws0

s1 = f (h1) (1)

o1 = g(Vs1)

where f and g are activation functions.
As time progresses, the state s1 is considered the memory state at start time t1, and

these parameters then participate in the next predicting activity, as shown in Equation (2).
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h2 = Ux2 + Ws1

s2 = f (h2) (2)

o2 = g(Vs2)

Finally, the final output value is obtained using Equations (2) and (3).

ht = Uxt + Wst−1

st = f (ht) (3)

ot = g(Vst)

LSTM updates the weight parameters W, U, and V using the loss function. For each
time sequence, LSTM produces an error value et. The total error value E is calculated using
Equation (4).

E = ∑t et

∇U =
∂E
∂U

= ∑t
∂et

∂U

∇V =
∂E
∂V

= ∑t
∂et

∂V
(4)

∇W =
∂E
∂W

= ∑t
∂et

∂W
E = ∑t et

2.4. Calculating the Cloud Height and Shadow
2.4.1. Method of Calculating the Cloud Height and Shadow

Two cameras with the same internal parameters were placed in parallel so that their
optical axes were parallel to each other and the cameras faced vertically upward. Another
pair of coordinate axes were collinear. The two imaging planes were coplanar. The optical
centers of the two cameras were at a fixed distance of d. Figure 6 shows a schematic of
binocular stereo vision.

Figure 6. Schematic of binocular stereo vision.

In the above camera arrangement method, we assumed that the coordinate system
of camera C1 was O1X1Y1Z1, the coordinate system of camera C2 was O2X2Y2Z2, the focal
length of the two cameras was f , and the distance of the camera was d. The coordinates
of any space point p photographed by two cameras at the same time are expressed as
(x1, y1, z1) in the C1 coordinate system and (x2, y2, z2) in the C2 coordinate system. The
image coordinates of space point p in camera C1 are (u1, v1). The coordinate of the image
point in camera C2 is (u2, v2). Therefore, the ratio of p to camera C1’s X wheelbase from
x1 and u1 is equal to the ratio of the Y wheelbase from y1 and u1 to camera C1, and this
ratio is equal to the ratio of the camera’s focal length f and p. to camera C1’s Z wheelbase
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from z1. The same is true for p and camera C2. From this, the 3D space depth camera uses
Equations (5) and (6). ⎧⎪⎪⎨⎪⎪⎩

f
z1

=
u1

x1
=

v1

y1
f

z2
=

u2

x2
=

v2

y2

(5)

⎧⎨⎩
X = x1 = x2 + d

Y = y1 = y2
Z = z1 = z2

(6)

These two equations are combined as follows.

x1 − x2 = d

x1 =
z1

f
u1 =

z
f

u1 (7)

x2 =
z2

f
u2 =

z
f

u2

The binocular 3D vision method is used to reconstruct the 3D space points using
Equations (8)–(12).

d =
z
f
(u1 − u2) (8)

X = x1 =
z
f

u1 =
u1

u1 − u2
d (9)

Y = y1 =
z
f

v1 =
v1

u1 − u2
d (10)

Z =
f

u1 − u2
d (11)

Sact = (
Z
f
)

2
Simg (12)

2.4.2. Calculation Method of Solar Irradiation Angle

To calculate the illumination angle of sunlight, first, the altitude and azimuth of the
Sun are calculated. The relationship between the altitude angle and the latitude angle and
the time angle is obtained from the geometric relationship of the Sun and the Earth using
Equation (13):

sin ϕ = sin∅ sin δ + cos∅ cos δ cos ω (13)

where ∅ is the local latitude; δ is the declination angle; and ω is the hour angle.
The solar declination angle (δ) is the angle between the Sun and the Earth center line

and the equatorial plane. As the Earth moves around the Sun, the declination angle changes
accordingly. The declination angle is representative of the season and fluctuates between
−23◦26′ and +23◦26′, and it repeats the cycle in years. The approximate declination angle
is calculated using Equation (14):

δ = 23.45 × sin
(

360 × 284 + n
365

)
(14)

where n represents the date serial number (based on 1 year), and it is in the range of 1–365.
For a leap year, the value of n will be 1–366, and the denominator 365 will be changed to 366.

Azimuth is represented by γ, and it can be considered the approximate angle between
the shadow and the meridian of a straight line erected on the ground under the Sun, that is,
the angle between the shadow cast by the light falling on the ground and the local meridian.
γ is set to 0 in the due north of the target, continues to expand clockwise, and changes in
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the range 0–360◦. The relevant measurement work was carried out in a clockwise direction,
the starting destination of the solar azimuth was set in the north of the reference object,
the ending destination was considered the incident direction of sunlight, and the required
angle was measured in a clockwise direction.

The relationship between the azimuth, altitude angle, declination angle, dimension,
and time angle is expressed using the following equations.

sin γ =
cos δ sin ω

cos ϕ
(15)

cos γ =
sin α sin∅− sin δ

cos ϕ cos∅
(16)

The solar time angle ω in Equations (13) and (15) can be obtained using the follow-
ing equations.

ω = 15(ST − 12) (17)

ST = LT + Z (18)

where ST is true solar time, LT is the local time, and Z is the time zone; the 24 h format is
used to calculate time.

The projection area of a cloud on the ground is predicted by calculating the cloud
height, the edge contour of cloud, and the illumination angle of sunlight.

3. Results and Discussion

3.1. Verification Experiment and Results of Object Shadow Casting

Real-time measurement of clouds and cloud shadows is challenging; therefore, we
used fixed objects such as a flagpole to replace clouds for the experiments. A local coordi-
nate system was established with the flagpole as the origin. First, the relative position of
the flagpole and the camera was estimated, and then the relative position of the flagpole
and the shadow was determined. The estimated results were compared with the actual
measurement to verify the effectiveness of the cloud shadow position calculation in the
local coordinate system. There was only a rotation and translation transformation relation-
ship between the local coordinate system and the world coordinate system; therefore, the
effectiveness in the local coordinate system is equal to that in the world coordinate system.
The experimental method is presented in Figure 7.

Figure 7. Relative position model of the flagpole and camera.

The experimental steps are as follows:
Step 1. Two adjustable level platforms are set up under the flagpole, the level ruler is

placed on the level platform, and adjusted to the level of the water platform.
Step 2. The cameras are placed on a horizontal platform in parallel, and they capture

images in a vertically upward position.
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Step 3. The distance between the two water platforms is measured and recorded.
Step 4. The length and azimuth of the shadow is measured and recorded.
Step 5. The azimuth and distance of the flagpole relative to the two cameras are

measured and recorded.
Step 6. The length and azimuth of the shadow and the azimuth and distance of the

flagpole relative to the two cameras are calculated.
Step 7. The local coordinate system is built with the flagpole as the origin, and the

calculation results and measurement results are expressed in the local coordinate system
for comparison.

The relative position between the flagpole and the camera can be determined by the
distance between the flagpole and the camera and the angle between the flagpole and the
camera and the two cameras. First, the angle between the flagpole and the camera line
and the two camera lines is calculated, that is, the angles α and β, respectively (Figure 8).
α and β are calculated using the images captured using cameras A and B. We carried out
camera correction; therefore, the connecting line between the two observation points can
be considered the transverse dividing line passing through the center point in the photos
taken by cameras A and B. O is considered the center point for taking photos, and P is the
imaging point of the flagpole vertex in the photo; it was assumed that the pixel coordinates
of points O and P were (x0, y0) and (x, y), respectively. Then,

sin α =
|y − y0|√

(x − x0)
2 + (y − y0)

2
(19)

α = arcsin(sin(α)) (20)

The α obtained using the above equation is in agreement with that obtained in Figure 7.
β was obtained in a similar manner.

Using the obtained values of α and β, the distance between the flagpole and the camera
was calculated, as shown in Figure 7, DE⊥AB, DE = AB/(cotα + cotβ). Then, AD = DE/tanα,
where AD is the horizontal distance between observation point A and flagpole vertex C.
Similarly, the distance BD between the flagpole and observation point B could be calculated.
Thus, we determined the relative positions of the flagpole and the camera.

Because the Sun is sufficiently far from the Earth, the sunlight reaching the Earth can be
considered parallel light. Therefore, for the same object, the length of its shadow is determined
by the solar altitude angle. A larger solar altitude angle implies a shorter shadow, smaller
solar altitude angle, and longer shadow. As shown in Figure 8, when the cloud height h and
the solar altitude angle α are known, then, the shadow length d = H/tanα.

The direction in which the shadow extends is opposite to the direction of the Sun; thus,
the direction of the shadow can be calculated by the Sun azimuth, as shown in Figure 9;
α is the azimuth of the Sun with 0◦ due north, and β is the shadow azimuth with 0◦ due
north. B = α − 180◦.

Figure 8. Demonstration of shadow length.
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Figure 9. Demonstration of the shadow orientation.

The experimental contents and steps are as follows.
Two platforms were placed under the flagpole and adjusted to horizontal using a

level ruler. The cameras were placed on a horizontal platform, and the lens was placed
facing vertically upward to capture the top of the flagpole. The distance between two
horizontal platforms as well as the length and extension direction of the flagpole in the
ground shadow were measured and recorded. Any distortion of the captured picture was
corrected, and then the height h of the flagpole was calculated. The solar altitude angle at
that time was calculated according to the longitude and latitude of the shooting location
and the shooting time α and azimuth β. Then, the shadow length and extension direction
were calculated. The local coordinate system was built with the flagpole as the origin, and
the calculation results and measurement results were expressed in the local coordinate
system for comparison.

The pictures taken by the left and right cameras are presented in Figure 10.

Figure 10. Pictures taken by the (left) and (right) cameras.

The pixel coordinates of the center point of the picture were (2144,1424); in the pictures
taken by the left and right cameras, the pixels at the top of the middle flagpole were
(2913,1849) and (1465,1797), respectively. Camera distance (baseline) was 7.35 m, the
measured shadow length was 31.2 m, and the measured shadow orientation was 94◦
(0◦ due north). The angle between the connecting line of flagpole and the left camera and
the connecting line of the two cameras was 28◦, and the distance from the flagpole to the
left camera was 3.9 m. The angle between the connecting line of the flagpole and the right
camera and the connecting line of the two cameras was 30◦, and the distance from the
flagpole to the right camera was 3.8 m.

According to the principle of calculating the relative position between the flagpole
and the cameras, the angle between the connecting line of the flagpole and the left camera
and the connecting line of the two cameras was 28.93◦, with an error rate of 3.32%. The
distance from the left camera to the flagpole was 3.66 m, with an error rate of 6.15%. The
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angle of the connecting line between the flagpole and the right camera and the connecting
line between the two cameras was 28.78◦, with an error rate of 4.07%. The distance from
the right camera to the flagpole was 3.69 m, with an error rate of 2.89%.

The calculated flagpole height was 16.3039 m. The longitude and latitude of the
flagpole were 122.082920◦ E and 37.530085◦ N. The shadow was measured at 16:40:00 on
23 July 2021. The calculated solar altitude angle and azimuth angle were 27.2826◦ and
275.2011◦, respectively.

According to the shadow length d = H/tanα, the calculated shadow length was
31.6117 m, and the error rate was ~1.32%.

Because the shadow azimuth equal to the sun azimuth minute 180◦ and the shadow
azimuth was 95.2012◦; therefore, three groups of experiments were carried out, and the
results are shown in Table 2.

Table 2. Experimental results.

Group P1 P2 BL LS SA CLS CSA ER

1 (2633,1825) (1465,1797) 5.73 31.2 94◦ 30.49 95.2012◦ 2.89%

2 (2733,1833) (1465,1797) 6.5 31.2 94◦ 30.59 95.2012◦ 1.94%

3 (2913,1849) (1465,1797) 7.35 31.2 94◦ 31.61 95.2012◦ 1.32%

P1 and P2—pixel coordinates of the top of the flag pole in the images taken by the left and right cameras,
respectively; BL—length of the baseline, that is, distance between the two cameras (m); LS—measured shadow
length of the flagpole (m); SA—azimuth angle of the flagpole shadow; CLS—flagpole shadow length predicted
using the proposed method; CSA—flagpole shadow azimuth predicted using the proposed method; ER—error
ratio of the predicted shadow length.

After many experiments, the experimental data of the solar altitude and solar azimuth
were compared with the reference data, and the average errors were 0.0568◦ and 0.0629◦.
Therefore, we believe that the experimental method for calculating the solar altitude and
solar azimuth is reliable.

3.2. Verification Experiment and Results of Cloud Shadow Moving Track and Speed

For continuously moving clouds, the LSTM network is used to predict the moving
direction and speed of clouds from a set of continuous cloud images. Considering the
influence of the change of solar orientation on the cloud shadow position, the cloud shadow
cannot be predicted directly. The proposed method first predicts the cloud position and then
calculates the cloud shadow position combined with the cloud height and solar orientation
information. Because the cloud height changes, it is necessary to train the data pertaining
to a change in cloud height. Using multiple groups of continuous cloud images, the cloud
centroid and cloud height were obtained as the training set for training the LSTM network.
The LSTM network brings an additional operation into the network through exquisite gate
control, solving the problem of gradient disappearance.

After training the neural network, some data are used for prediction. After using
the cloud centroid and cloud height calculated from continuous pictures as the input, the
network predicts the cloud position and cloud height for a certain time in the future; then,
the shadow position combined with the sun orientation information is calculated. This
predicted position of the cloud is the position of the cloud centroid. The changes in cloud
shape are irregular; therefore, the shape of the last input picture is used as the approximate
shape of the prediction result.

Next, the prediction results were verified. For example, when the predicted position
of the cloud was for 5 min later, then the cloud was photographed 5 min later to calculate
the actual position and compare it with the predicted position.

According to the taken photos, it was observed that the cloud contour changed with
time; thus, the contour information cannot adequately characterize a cloud (the cloud
contours in the pictures taken at different times are different). Therefore, this study used
the centroid of the cloud contour to identify the location characteristics of the cloud.
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To calculate the center of mass, n contour mass points are set on the x–O–y coordinate
plane as the mass points of m1, m2, . . . . . . mn, respectively. Their coordinates can be (x1, y2),
(x1, y2), . . . . . . (xn, yn), respectively; then, these n particles comprise a particle system.

Furthermore, x =
My
M = ∑n

i=1 mixi
∑n

i=1 mi
, y = Mx

M = ∑n
i=1 miyi

∑n
i=1 mi

, where M is the total mass
of the contour point, and Mx and My are the static moments of the particle on the x- and
y-axes, respectively; then point (x, y) is the required center of mass.

The centroid of the cloud was obtained by calling the API for computing the centroid
in Opencv library function in PYTHON and giving the coordinate data of the cloud contour
as the input to the proposed model.

The centroid data of the cloud was first obtained using the centroid acquisition method
to recognize the cloud edge contour of the cloud image through the UNET network, and
then the centroid position of the cloud was calculated according to the edge contour of the
cloud, as shown in Figure 11.

Figure 11. Method of calculating the centroid position.

From the images captured at 10 s intervals, we manually selected 11 images with
whole clouds. Continuous photos were obtained by using the centroid acquisition method
in succession; a data record contains 11 triples of information including cloud centroid
longitude, cloud centroid dimension, and time, as shown in Figure 12.

Figure 12. Cloud position data.

Figure 13 shows 1140 records of such data; the first 1040 pieces were used as the
training dataset and the remaining 100 pieces were used as the test dataset. The data were
divided into two parts. The centroid longitude and latitude from time 1 to time 10 were
used as the training input set, and the centroid longitude and latitude from time 2 to time
11 were used as the verification result set. Similarly, the centroid longitude and latitude
from time 1 to time 10 of each data in the test dataset were used as the input, and the
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output of the model was the centroid longitude and latitude prediction of the next time
corresponding to each time.

Figure 13. Comparison of the prediction of different cloud centroids at two times and corresponding
real longitude and latitude.

The locus diagram of centroid points is drawn to demonstrate the real and predicted
centroid longitude and latitude of the cloud, wherein the red dot is the real centroid
longitude and latitude, the blue dot is the predicted centroid longitude and latitude, t0 is
time 1, t1 is time 2, and so on. Figure 13 shows the comparison between the predicted results
and the real longitude and latitude by tracking and predicting the centroids of different
clouds at two different times. The red and blue dots in the figure are the true centroid
longitude and latitude and the predicted centroid longitude and latitude, respectively.

After randomly selecting 100 centroid points, these were normalized and the mean
square error was calculated, as shown in Figure 14. The blue points in the figure are the
root mean square error of the predicted value. The root mean square error is the square
root of the ratio of the sum of squares of prediction errors to the number of prediction times.
A smaller value of the root mean square error implies a more accurate prediction.

Figure 14. Mean square error of 100 centroids randomly selected; the blue points in the figure are the
root mean square error of the predicted value.
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Multiple groups of data were verified; then, the CNN-LSTM network model was used
to predict the moving trajectory of the cloud more accurately.

4. Conclusions

This study presents a new low-cost and easy-to-implement method for predicting the
influence of cloud on solar radiation.

This method can accurately predict the trajectory of a cloud and be used at solar
power stations to effectively predict the location of cloud shadows in tens of minutes, thus
enabling an adjustment of the solar panels to a suitable angle in advance. Compared with
other implementations, it can save product costs and increase the rate of generation of solar
panel energy. This research is conducive to the progress of related works of solar radiation
and energy generation.

The proposed method also had some limitations. The sky camera’s shooting field of
vision is limited; thus, the calculation and prediction of clouds in the sky are affected to
some extent and can only be predicted within a limited range. Considering this limitation,
during the actual implementation, the cloud prediction range can be increased by deploying
sky cameras at multiple points around the area of the photovoltaic power station.
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Abstract: Technological innovation constantly transforms and redefines the human element’s po-
sition inside complex socio-technical systems. Autonomous operations are in various phases of
development and practical deployment across several transport domains, with marine operations
still in their infancy. This article discusses current trends in developing autonomous vessels and some
of the most recent initiatives worldwide. It also investigates the individual and combined effects
of maritime autonomous surface ships (MASS) on regulations, technology, and sectors in reaction
to the new marine paradigm change. Other essential topics, such as safety, security, jobs, training,
and legal and ethical difficulties, are also considered to develop a solution for efficient, dependable,
safe, and sustainable shipping in the near future. Finally, it is advised that holistic approaches to
building the technology and regulatory framework be used and that communication and cooperation
among various stakeholders based on mutual understanding are essential for the MASS to arrive in
the maritime industry successfully.

Keywords: autonomous shipping; MASS; IMO; maritime law; Maritime Safety Committee; advanced
sensor module; shore control center; cyber security threats

1. Introduction

With fast-increasing technology, a new paradigm shift is occurring, considering alter-
native marine fuels that promise safer, greener, and more efficient ships than ever before
in response to stringent international legislative requirements. The first change occurred
during the First Industrial Revolution in the 1800s when mechanical power was introduced,
and vessels began to be driven by steam-powered coal engines. The Second Industrial
Revolution began in the early 1900s when the advent of diesel engines improved the effi-
ciency and reliability of ships by using oil as a new fuel. The internet–digital revolution,
representing the Third Industrial Revolution, introduced computerized ship control in the
1970s. With the introduction of gas as a fuel, such as liquefied natural gas (LNG) [1–5],
we are taking a step closer to the new paradigm linked with cyber-physical systems and
autonomy as part of “Shipping 4.0 [6–8]”.

Porathe et al. [9] present four reasons why autonomous shipping is seen as a feasible
choice: (1) the efforts to reduce transportation costs; (2) the need for a better onboard
working environment for crews and the prevention of future seafarer shortages; (3) the
need to reduce emissions on a worldwide scale; and (4) the desire to improve shipping safety.
According to a 2010 report submitted to the International Maritime Organization (IMO)
by the Baltic and International Maritime Council (BIMCO) and the International Shipping
Federation (ISF), the shipping industry is expected to face tightening labor markets, with
recurrent shortages of ship officers [10], due to hazardous working conditions and extended
periods away from land. Under the fiercely competitive economy of scale, the shipping
industry has seen downward pressure on freight rates and excess capacity. Reduced ship
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pollution and emissions and improved ship safety are more important than ever with the
emergence of low- or zero-carbon alternative fuels [11].

Under these conditions, the launch of maritime autonomous surface ships (MASS)
will be a watershed moment that will either disrupt or precipitate a paradigm shift in the
shipping sector and maritime transport system. Therefore, communication and coordina-
tion among stakeholders, particularly those involved in the maritime and port industries,
would be required for the safe, effective, and efficient adoption and operation of MASS.
As a result, critical concerns related to autonomous shipping and their impact on policy,
technology, and industry should be investigated together with their interaction for a suc-
cessful introduction and smooth settlement of MASS and associated infrastructures in the
marine industry.

On the regulatory side, the IMO agreed to conduct a regulatory scoping exercise (RSE)
to assess the safe, secure, and environmentally sound operation of MASS [12]. However,
the RSE would be a complicated issue because it would touch a few areas, including
safety, security, contacts with ports, pilotage in the event of an incident, and the marine
environment. In addition, international maritime conventions, such as the International
Convention for the Safety of Life at Sea (SOLAS), the International Regulations for the
Prevention of Collisions at Sea (COLREG), and the Standards for Training and Certification
of Watchkeepers (STCW), apply to MASS [13]. Therefore, IMO Member States will be asked
to review the scope of their domestic laws considering the RSE.

Technological development will improve ships’ control capabilities, communication,
and interfaces using the newest information and communications technology (ICT) sys-
tems. As a result, they will soon be operated by remote land-based or offshore services [14].
Unmanned watercraft have already been deployed for military, aeronautical, and research
purposes. Deep-sea exploration also uses submersible unmanned vehicles, such as au-
tonomous underwater vehicles (AUV) and remotely operated vehicles (ROV), which are
still being developed. However, regarding safety, efficiency, and environmental protection,
the technology that replaces manning must outperform the personnel [15].

On the industrial side, autonomous vehicles are already being developed in various
means of transportation, such as airplanes, trains, and automobiles. Therefore, MASS is
expected to significantly impact shipbuilding, equipment, and devices, as well as shipping
and port infrastructures in the maritime industry. Furthermore, autonomy, automation,
unmanned operation, big data, enterprise-grade connectivity, and analytics will steadily
grow in the maritime industry [16]. As a result, good communication and coordination
with essential stakeholders, particularly the shipping, shipbuilding, and port industries,
are required to implement MASS properly.

To the best of the authors’ knowledge, several review studies have discussed briefly
or deeply the regulatory challenges concerning MASS. The authors’ discussions and in-
terviews with maritime experts such as naval officers, senior marine engineers, and naval
architects inspired this essay. In this paper, the authors have chosen to focus on all the
effects that MASS may have on the maritime industry at the human level (such as train-
ing and education), legislative level (definition of transparent laws and regulations), and
technological level (such as security navigation). The paper presents some reflections on
the obstacles and issues that need to be clarified soon. It does not deal with data based on
experiments, calculations, or quantified scenarios. The primary motivation of the authors
is to present the magnitude of these challenges and the work that remains to be done to
achieve safe autonomous surface ship navigation worldwide.

The structure of the present paper is as follows. We first introduced the latest projects
on global trends for building autonomous vessels. Second, the impact of MASS on reg-
ulations, technology, and industries has been explored, as well as their relationships to
uncover both previous and future efforts to prepare for the new maritime paradigm change.
Finally, other essential problems, e.g., safety, security, jobs, training, ethics, liability, and
insurance, were explored to obtain greater insight regarding future shipping that is efficient,
reliable, safe, and sustainable.
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2. Global Autonomous Vessel Developments

The shipping industry has recently faced changes due to the Fourth Industrial Revolu-
tion. One such transition is the AI (artificial intelligence), robots, IoT (internet of things),
and autonomous vehicles paradigm shift in technological progress [17]. Big data and the
achievements of the Third Industrial Revolution have been integrated with AI and IoT
technology to enable smart shipping. Autonomous ships, e-Navigation, and smart ports
are further examples of marine transportation advancements.

Many companies, including Rolls Royce, DNV, the Norwegian University of Science
and Technology (NTNU), and Norway’s Kongsberg, have announced ambitious intentions
to create all-electric and autonomous container ships by 2020, as shown in Table 1. Other
groups worldwide are working on similar, if not competing, concepts and systems to
enable unmanned operations and infrastructure initiatives, such as autonomous ports and
high-speed communications.

Table 1. Maritime full-electric and autonomous vessels projects since 2012.

Project Name and Period Developers Characteristics

The e5 Project—Asahi tanker
(2019–2022)

Asahi Tanker Co., Ltd., Exeno
Yamamizu Corporation, Mitsui

O.S.K. Lines Ltd., and
Mitsubishi Corporation

Tonnage: 499
Propelled by electric motors driving two azimuth pods

(2 × 300 kW) and two tunnel thrusters (2 × 68 kW)
Batteries rated 3.5 MWh

Maximum speed: 10 knots

Yara Birkeland (2017–2021) Yara, Kongsberg, NTNU, and DNV

120TEU containership (length:80 m)
Fully autonomous

Propelled by electric motors driving two azimuth pods
and two tunnel thrusters
Batteries rated 7–9 MWh

Maximum speed: 13 knots

AAWA (2015–2018) Rolls Royce, DNV, Aalto University,
University of Turku, Inmarsat, etc.

Standard development of safety, policy, economy, and
collision avoidance module

Revolt (2014–2018) DNV and NTNU

100TEU containership (length: 60 m)
Autonomous

Fully battery-powered (300 kWh)
Maximum speed: 6 knots

MUNIN (2012–2015)

consists of eight partners with both
scientific and industrial backgrounds

located in Germany, Norway,
Sweden, Iceland and Ireland

Development of a concept for an autonomous dry bulk
carrier (length: 200 m)

Development of sensor, navigation, and
communication systems

In 2012, the European Commission-funded project Maritime Unmanned Navigation
through Intelligence in Networks (MUNIN) began looking into unmanned ships’ feasibil-
ity in various areas, including technical maturity, economic benefits, social impact, and
safety during deep-sea voyages [18,19]. Following the MUNIN project, DNV and NTNU
launched the Revolt as a specific research project to build an autonomous, zero-emission,
and short-sea vessel to help manage traffic congestion in urban regions on the EU’s road
network [20,21].

The Advanced Autonomous Waterborne Applications Initiative (AAWA), founded by
Rolls-Royce in 2015, is another notable initiative related to autonomous vessels. This project
brought together a diverse group of stakeholders, including universities, ship designers,
equipment manufacturers, and classification societies, to examine the economic, social,
legal, regulatory, and technological barriers that must be overcome for autonomous ships
to become a reality. Its goal is to provide preliminary designs for the future generation of
innovative ship solutions, complete with technical specifications [22].

The Yara Birkeland is one of the most recent autonomous ship initiatives. Yara
and Kongsberg built the world’s first totally electric container feeder vessel. Reduc-

269



Sustainability 2022, 14, 15630

ing up to 40 thousand truck travel in densely populated urban areas is estimated to
significantly cut NOX and CO2 emissions while enhancing road safety and alleviating
traffic congestion [23,24].

Last but not least, the e5 project is a Japanese consortium dedicated to developing
renewable energy-powered commercial ships. The name “e5” refers to the partnership’s
five “focus points”: electrification, environment, evolution, efficiency, and economics.
The e5 Tanker claims to be the world’s first entirely electric oil tanker, with a 3.5 MWh
battery that can “operate non-stop for 10 h on a half-capacity battery”, according to the
company [25]. In addition, the ship will have a high level of automation [26] and will be
charged using wind and solar energy to cut emissions further [27].

3. Problems and Challenges Facing the Regulatory Process

The fact that all technical shipping rules relating to the safety of navigation, environ-
mental protection, and training/watchkeeping standards were designed with the idea that
humans would do some functions must be reviewed in the context of autonomous vessels.
A few instances are sufficient to demonstrate the flaws in the current regulatory structure
if applied to the MASS operations without modification. Chapter V, regulation 24 of the
International Convention for the Safety of Life at Sea (SOLAS) 1974 requires that manual
control of the ship’s steering be established promptly in dangerous navigational situations,
or an autonomous ship without a crew will be unable to comply with this law [28]. Regu-
lations that need human judgment are a more complex matter. It is unclear how this law
would apply to vessels designed to make navigational decisions using algorithms based on
data collected from their sensors. Rule 2 of the International Regulations for Preventing
Collisions at Sea (COLREGs) 1972, for example, states that nothing shall exonerate any
vessel, or the owner, master, or crew thereof, from the consequences of any neglect or any
precaution which may be required by ordinary practice of seamen. Those developing the
new technology often remind us that deep learning based programs are flexible and react
to and from the new patterns which are programmed to identify, meaning that a program
could learn situational awareness and the subjective aspects of COLREGs. Even so, this
poses a significant challenge to those who seek to regulate the matter.

Additionally, there are severe risks in today’s fully automated ships, such as sensor
defects and software errors. For example, aviation incidents involving the Boeing 737 MAX
in 2018 and 2019 are examples where the airplane’s angle sensors gave the altitude control
system inaccurate information. As a result, the airplane crashed because it was challenging
to bypass the mechanism manually. As a result, under the current blame system, harm
brought on by improper algorithms may be categorized as a product defect (and hence a
technical failure) and negligence (based on the root issue).

Although there is no definitive answer at this time regarding how, if at all, regulations
like the COLREGs will be modified for MASS application, it is a crucial topic of discussion
in the maritime sector. The implementation of the COLREGs with MASS is facing numerous
obstacles, based on the information at the time this article was written. For most of the rules,
participants preferred the original COLREGs. However, some rules were preferred with
modest modifications. Most of these findings are consistent with the regulatory scoping
exercise conclusions from the IMO. Adding or refining meanings for terminology, e.g.,
“master and crew”, “the common practice of sailor”, “crew ashore”, and “lookout” were
among the most popular revisions.

Additionally, an all-around colored MASS-identifying light was selected to add differ-
ent traffic separation schemes that are required for MASS. Since almost 75% of participants
preferred more than one amendment over the original regulation, it was clear that partici-
pants were amenable to some adjustment. Additionally, those who have had more practice
using the COLREGs demonstrated a modest propensity toward selecting the revised rules
compared to participants who had had less practice. To better train seamen for the future
as the maritime sector adopts autonomy, it is crucial that MASS and its impact on the
COLREGs and other IMO instruments are further investigated immediately.
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3.1. Impact on Regulation

Despite the rapid advancement of science and technology in the marine industry,
autonomous vessels must unquestionably adhere to international standards in order to
operate securely between nations and even seabed areas outside of national authority.
Although some parts of manned vessel regulation, such as some clauses of the International
Safety Management (ISM) Code, may be compatible with unmanned vessels, there is a
need for unique international rules to consider the characteristics of unmanned vessels. A
request for RSE was recently submitted to the Maritime Safety Committee (MSC) and was
incorporated into the MSC work plan at MSC 98 [29] to ensure MASS safety, security, and
environmental soundness. The RSE for MASS aims to determine the degree of autonomy
that may affect existing regulatory frameworks to address MASS operations. The degrees of
autonomy at MSC 100 [30] were divided into four phases to help with the RSE process (see
Figure 1). One should emphasize that MASS can operate in multiple levels of autonomy
during a single voyage.

Figure 1. MASS’s level of automation, according to IMO.

All conventions seem obsolete, and new regulatory standards will be needed. It
is recommended that all IMO committees and subcommittees work together using the
goal-based approach. The MSC recently authorized a revision of generic principles for
producing IMO goal-based standards (GBS) to set safety goals and functional requirements
while considering the whole MASS lifetime [31]. Risk assessment and software quality
assurance (SQA) will be necessary, in addition to the GBS, for MASS’s safety in both the
real and virtual worlds.

Autonomous shipping is a new technology requiring an international regulatory or
harmonization between existing regulatory rules for all states’ territorial waters. The
matter is further complicated as rules and regulations are embodied in several international
agreements over the last century or so, in some cases after years of negotiations conducted
by the international community. Until an international consensus on regulating this new
technology is reached, it is doubtful that autonomous ships will operate in international
waters beyond any state’s territorial waters [32].

3.2. Impact on Technology

Demonstrating that autonomous systems are at least as safe as piloted ship systems
and providing the ship shore control center (SSCC) with enough situation awareness
represent one of the most challenging issues in building the technology for MASS. The
ship systems should be remotely monitored and managed by the operators of the SCC
to obtain essential information through satellite at short intervals in case of emergencies
such as rescue attempts or evasive maneuvers. If the autonomous system fails, the SSCC
should include a smart alarm system and the capacity to transition to manual control mode.
Figure 2 depicts the MASS and SSCC systems, their essential equipment and operations,
and the relationship formed by satellite data.
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Figure 2. The relationship between MASS and the ship-shore-control-center (SSCC).

The sensors’ dependability must be ensured through design approval, remote and on-
premises testing, and monthly inspections, particularly for sensors that support monitoring
and decisions from SCC. Sensor failures pose a significant risk to the system’s safety.
Therefore, the most significant safety sensors should consider redundancy, diagnostics,
prognosis, and homogeneous and heterogeneous redundancy. It’s worth noting that
heterogeneous redundancy is more dependable than others because it can eliminate sensor-
type dependency [33]. A more extensive elicitation of experts could also be advantageous
to overcome various concerns connected to threats affecting autonomous ships’ safe and
efficient operations due to a lack of failure data and easy access to the data.

The Relevance of Cyber Risks Management for Shipping Operations

Based on their complexity, transportation systems may have the following four levels
of cyber systems:

The first is the perceptual layer, which uses components, such as wireless sensors and
GPS, to connect the cyber and physical worlds. The second type is network systems, which
it’s used to convey data (e.g., satellite networks and the internet mobile communication
network). The third tier is the support layer, which includes cloud computing and intelli-
gent computing, and the fourth layer is the application layer, which connects people and
the physical world to cyber systems (e.g., intelligent transportation and environmental
monitoring), see Figure 3. All these four layers are present in the context of the modern
vessel. Such integration is achieved utilizing Ethernet Industrial Protocols that collect and
process data via wireless and fiber optic sensors, cameras, radars, satellite communications,
and cloud computing.
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Figure 3. Illustration of the main systems integrated into modern vessels and the four levels of
cyber systems.

While the integration of technology promises to make sea transportation safer, more
ecologically friendly, and entertaining while lowering costs, it also raises the risk of dis-
rupted vessel operations. The rising use of information technology (IT) systems during
marine transportation eliminates the need for the perpetrator to bypass physical security
measures, as happened in the 9/11 attacks. Taking control of a vessel or disrupting its
operation can now potentially be achieved electronically by remotely interfering with any
other of these four layers. Interference can be achieved in a variety of ways, the most
prominent of which are as follows:

• Injecting malicious software, such as malware, viruses, trojans, and worms, into
a vessel’s IT-controlled power management system or navigational system, which
could corrupt chart data stored in an electronic chart display and information system
(ECDIS); a failure occurring during ship software maintenance [34]. Such instances
may force the vessel to remain in port until the malicious software is removed, fresh
ECDIS computers are installed, and a classification surveyor is present [35].

• Spoofing or jamming a vessel’s positioning systems, such as the Global Positioning
System (GPS) or Global Navigation Satellite System (GNSS), or the tracking system
of containers.

• Infecting the ship’s primary server with ransomware, encrypting sensitive files and
apps relating to customs, passengers, and scheduling, and allowing only ransom
payment to unlock them [36].

• By-pass the firewalls between the vessel’s public and safety-critical network and gain
access to operationally critical data and processes.

The IMO was alarmed by two events in particular: the first occurred in 2017, when
at least 20 vessels in the Black Sea appeared in the automatic identification system (AIS)
20 miles inland, close to a Russian airport [37], and the second occurred between 2011 and
2013 when a criminal gang infiltrated the container tracking system at the Port of Antwerp
located in Flanders (Belgium) and stole containers in which illicit substances were hidden,
unbeknownst to their owners [38].

The IMO, alerted by such instances, emphasized the necessity for enterprise-wide
cyber risk management by all industry stakeholders, including public authorities and
commercial companies. Given that interconnectivity is the fundamental pillar of digitalized
and autonomous operations, it’s understandable that those recommendations would be ad-
dressed to such a large audience. However, perhaps the most critical recommendation of the
IMO is that a cyber risk management program is included in safety management systems.
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3.3. Impact on Industry

The shipping industry has relied on the knowledge and experience of ship crews
for hundreds of years. With unmanned vessels, autonomous technology is designed to
revolutionize the marine sector. Small autonomous boats have already entered operation,
while larger vessel technology is still developing. It is time for the marine industry to
embrace autonomy and comprehend how it will influence the industry’s future and how to
utilize it best. MASS will affect ship design, shipbuilding, and port infrastructure, including
services and interfaces. On-shore shipping ports will be transformed by automation, from
port infrastructure and cargo handling to land-based logistics and transportation. One of
the logistics industry’s goals is to provide fast service, which allows shippers and customers
to adjust dispatches and receive deliveries from this self-contained logistics transport chain
on the fly [39].

Communication and cooperation among MASS stakeholders based on mutual un-
derstanding will be critical to the MASS’s successful introduction to the marine industry.
Figure 4 depicts the main stakeholders and their relationships. Stakeholders in the maritime
sector would include seafarers onboard and ashore, insurance companies, cargo and bunker-
ing corporations, research institutions, universities, and training centers. Furthermore,
autonomous vessels will transform existing industries by introducing system integration
and control, system management and maintenance, SSCC operation and management, fleet
management, cybersecurity, big data analysis, smart sensors, and communication. Further-
more, to make autonomous ships effective and dependable, development, alteration, and
interpretation of maritime rules and regulations, as well as communication and cooperation
among stakeholders, are essential for the MASS to be successful.

Figure 4. The main stakeholders for ships.

3.4. Impact on Jobs and Training

While the marine business is rapidly expanding, finding suitably skilled sailors is
a constant challenge. Lloyds Register [40], in particular, forecasted severe shortages of
skilled officers and crews by 2025. Furthermore, the introduction of MASS has generated
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concerns about the seafarers and positions to be replaced by AI and autonomous systems.
However, this change will trigger new business and jobs for highly qualified crews and
operators, particularly those with knowledge of technology, IT systems, engineering, and
public relations and regulations [41].

Crewmembers’ training needs to focus on different skills and competencies, from
seafaring skills and automation and communication engineering knowledge, where the
engineering support team ensures the communication between the shore team and the
automated ship in an efficient, bidirectional way [42]. In addition, watchkeeping personnel
and companies have an essential role in ensuring safe faring. For practicing challenging
safety situations, a well-designed simulator is used, but the only problem with that simula-
tor is the inability to create real-time challenging safety situations, which require creativity
and deep knowledge of seagoing accidents. Thus, ship operators require a combination of
nautical and technological expertise, such as voyage planning, digital and port approaches
for communication duties, mooring, unmooring, ship monitoring, and docking [40–42].

The use of automation could mitigate the predicted worker shortage. Many maritime
jobs will be transferred to land-based SSCC due to remote and autonomous operations,
allowing the industry to recruit new people who find a marine career onshore more
appealing. It is also expected that autonomous ships will improve seafarers’ quality of life.
The difficulties of staying on board for extended periods and the risks of marine mishaps
will be reduced if ships are controlled from the shore.

MASS on-shore operators receive relevant training and education under the Interna-
tional Convention on Standards of Training, Certification, and Watchkeeping for Seafarers
(STCW). However, in light of the declining number of seafarers, it may also be essential
to explore developing new STCW Convention qualifying criteria or new knowledge, un-
derstanding, and proficiencies. Thus, while applying a reliable maritime education and
training (MET), qualified trainers must be considered along with their ability to teach and
assess their trainees. An effective training methodology must hold a cognitive, psychomo-
tor, and affective learning approach with clear objectives corresponding to the domain and
level of the required competencies. Moreover, the trainers must be creative and engage the
trainees in the learning process by promoting a leadership spirit in an appropriate way, i.e.,
seeing, thinking, and applying what is learned. Finally, continuous educational research
and training must be provided to face future challenges in shipping while applying MASS.

3.5. Issue of Laws and Ethics

The industry has embraced advanced and new technologies to boost productivity, cut
costs, and increase safety. As there is a mutual influence of regulations and technologies,
effective and timely regulatory procedures are essential for the industry to profit from
the benefits of the technology entirely. Traditionally, liability has been given to human
individuals or organizations that are considered legal entities, such as shipping companies.
An algorithm is not regarded as a moral or legal agent, and assigning blame for wrongdoing
is impossible. This issue was thoroughly analyzed in the automotive industry. The testing
of classic examples of moral problems is part of the argument about the safety of self-driving
cars [41]. The ISM Code (SOLAS Chapter IX) requirements to establish a legal organization
responsible for the safe operation of ships and pollution prevention, for example, will
continue to apply to the MASS [42].

The development and use of autonomous ships will raise a wide range of ethical
challenges. Human communication has dominated ship operations in the past, but the
implementation of MASS includes man–machine and machine–machine communication.
This implementation’s risk or change assessment should include analysis and protocols
of cases in which machine communication fails or is denied. The definition of legal
liability boundaries, particularly the establishment of reasonable criteria and scopes of
responsibility between shipowner and manufacturer, is required, as well as an appropriate
security structure for insurance coverage.
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As an example, consider the following inquiry on the ethical issue. It was thought
that a MASS would take the most cost-effective path. However, a manned passenger ship
capsized near the MASS, and communication systems between the MASS and the manned
ship were unavailable or misdirected, leaving the crews and passengers on the capsized
ship with little choice but to wait for assistance. Unfortunately, the MASS may be unable
to distinguish the passenger ship in dangerous circumstances. Who is liable for failing to
recognize the ship and perform rescue duties?

4. Discussion

IMO convention’s standards are structured into several categories. Many of those
standards will need revision as some may be obsolete.

One is detailed control requirements. The existing SOLAS method assumes a physical
navigation bridge with an officer of the watch stationed on it, from which the vessel may be
controlled immediately. This is the basis for several distinct criteria. For example, there are
standards for steering gear, propulsion controls, propeller pitch controls, and watertight
compartment controls to be supplied on the bridge, as well as voice communications provi-
sions. Another example of this regulation is the need for pilot transfers to be supervised by
a certified person with bridge communication. These will need to be updated primarily to
allow for shore-based control.

Second, the precise criteria for electronic communications systems presume that there
is a crew on board who is in regular contact with the shore and other vessels. Both radar
and onboard radio people, a VHF unit on the bridge, constant radio watch, and other
requirements are among them. Communications systems include the facilities for sending
distress calls by at least two separate and independent means, equipment capable of receiv-
ing shore-to-ship distress alerts and transmitting and receiving ship-to-ship distress alerts,
and search and rescue coordinating communications. It also requires on-scene communica-
tions, maritime safety information, general radio communications to and from shore-based
radio systems, and bridge-to-bridge communications. There are further needs for the
master to convey any navigational dangers he encounters, in addition to the hardware
requirements [43–45]. Considering all these obligations, most of these communications
must be preserved. No one wants the requirement for radio watch on distress frequencies,
the ability to send distress calls, or inter-ship communication to go away in the case of
autonomous shipping. Even the ability to receive maritime safety notices on board may be
helpful, if only because they will need to be relayed if the shore-based controller is outside
the transmitting station’s range. However, the standards will need to be changed to relate
to radio signals being relayed to and from the shore-based controller via the vessel rather
than to someone on the vessel.

Third, clarification is needed as to numerous references in the IMO conventions to
the master. The Comite Maritime International (CMI) has produced a spreadsheet in
its submission to the IMO identifying provisions in the IMO regulations that will need
clarification or amendment to deal with unmanned vessels. It also identifies numerous
provisions with the comment interpretation of the master.

Fourth, the International Maritime Organization must adopt new regulations to deal
with autonomous vessels that do not have a crew on board. Finally, training and certification
standards for remote onshore controllers will need to be added to the STCW. These should
only be found in countries that have signed the MARPOL convention.

SOLAS must also be addressed in terms of what it does not include. For example, the
features required of the communications and remote-control devices used to manage the
vessel while at sea are entirely dependent on autonomous shipping. Therefore, it will have
to deal with issues such as the following in-depth:

• The reliability of propulsion and other machinery, such as steering gear, will have to be
controlled for long periods, possibly weeks, from a distance with limited possibilities
of interim maintenance.
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• The reliability of ancillary mechanisms used to start, stop, control, and reverse the
propulsion machinery. This will be especially crucial while maneuvering, avoiding
collisions, and stopping the vessel when necessary. A failure in any of these areas
might be catastrophic.

• The method of notifying shore controllers of risks to the vessel or cargo, such as fire,
smoke, or water ingress.

• Similarly, pollution detection and avoidance devices. For example, there would be
sensitive devices to detect leaks of bunker oil, as well as fail-safe technology for
self-sealing tanks and transferring oil from a burst tank to another storage location.

• The communication arrays and other electronics to be carried, and their capabilities.
• The methods for transmitting signals to the vessel, their effectiveness, and any backup

or spare capacity that may be necessary.

5. Conclusions

Regarding safety, security, and environmental protection conventions and regulations
for autonomous surface ships, there are new and distinct concerns to be addressed. As a
result, before MASS is introduced into commercial shipping, more holistic, worldwide, and
unified approaches for new regulatory frameworks to the MASS must assure the prevention
of marine accidents and environmental protection. It is also crucial to comprehend the
MASS’s impact on legislation, technology, and industries and the interactions among
relevant players. While some preliminary studies have been completed, various projects are
underway or planned worldwide to develop pilot ships, competing concepts and systems
to support unmanned operations, and infrastructure initiatives such as autonomous ports
and high bandwidth communications. The MASS should be monitored and managed
remotely by the SSCC’s operators, with a smart alarm system receiving critical information
through satellite. The MASS and SSCC systems and sensors must be designed and built,
and their synergetic effects must be carefully examined. Onboard equipment and devices
will need to be interconnected to efficiently gather, manage, and analyze data from the
MASS. They will be heavily modularized to avoid failures and have a high degree of
redundancy and endurance. The MASS will affect ship design, shipbuilding, and port
infrastructure, including services and interfaces.

Communication and cooperation among numerous stakeholders based on mutual
understanding would be critical for a successful introduction of the MASS to the maritime
industries, including shipping, shipbuilding, equipment production, and classification
societies. MASS can modify pirate, terrorist, and criminal behavior patterns. By establishing
new inspection procedures, technical and institutional considerations should be made
to increase security. While the number of seafarers is expected to decline, developing
qualification criteria for MASS onshore operators and providing relevant training and
education will be critical. Regarding legal and ethical concerns, the time it takes for
technology to mature vs. the time it takes to implement relevant legislation and procedures
may negatively impact the timely adoption of innovations. A quantitative analysis of the
influence of the MASS on technologies and industries, including economic consequences,
will be addressed as part of future work.
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Abstract: Solar-power-generation forecasting tools are essential for microgrid stability, operation, and
planning. The prediction of solar irradiance (SI) usually relies on the time series of SI and other mete-
orological data. In this study, the considered microgrid was a combined cold- and power-generation
system, located in Tahiti. Point forecasts were obtained using a particle swarm optimization (PSO)
algorithm combined with three stand-alone models: XGboost (PSO-XGboost), the long short-term
memory neural network (PSO-LSTM), and the gradient boosting regression algorithm (PSO-GBRT).
The implemented daily SI forecasts relied on an hourly time-step. The input data were composed
of outputs from the numerical forecasting model AROME (Météo France) combined with historical
meteorological data. Our three hybrid models were compared with other stand-alone models, namely,
artificial neural network (ANN), convolutional neural network (CNN), random forest (RF), LSTM,
GBRT, and XGboost. The probabilistic forecasts were obtained by mapping the quantiles of the
hourly residuals, which enabled the computation of 38%, 68%, 95%, and 99% prediction intervals
(PIs). The experimental results showed that PSO-LSTM had the best accuracy for day-ahead solar
irradiance forecasting compared with the other benchmark models, through overall deterministic
and probabilistic metrics.

Keywords: solar irradiance; forecasting; numerical weather predictions; machine learning; deep
learning; metaheuristic models; optimization

1. Introduction

Global electricity demand is expected to rise by 2.4% in 2022, despite economic weak-
nesses and high prices [1]. This rise, driven by the growth of the world population, the
industrialization of developing countries, and the worldwide process of urbanization [2],
uses fossil fuels as the main power source. This has proven to be detrimental for the
environment and the climate. Therefore, renewable energies have gained a lot of attention,
especially photovoltaics (PVs), due to their accessibility, low cost, lifetime, and environ-
mental benefits. Solar PV installations are growing faster than any other renewable energy.
Indeed, PVs are forecast to account for 60% of the increase in global renewable capacity in
2022 [3]. In this context, PVs provide many environmental and economic benefits. However,
uncontrollable factors such as the weather, seasonality, and climate lead to intermittent,
random, and volatile PV power generation. These significant constraints still hinder the
large-scale integration of PVs into the power grid and interfere with the reliability and
stability of existing grid-connected power systems [4]. Thus, a reliable forecast of PV
power outputs is essential to ensure the stability, reliability, and cost-effectiveness of the
system [5]. Those forecasts are usually implemented through prediction of the global
horizontal irradiance (GHI). There are three main groups of solar irradiance forecasting
model [6]:
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- Statistical models, which are based on historical data and their ability to extract
information/patterns from the data to forecast time series.

- Physical models, which are based on sky images, satellite images, or numerical
weather predictions (NWPs) to infer the dynamics of solar radiation through
the atmosphere.

- Hybrid models, which exploit statistical and physical models to obtain forecasts with
higher precision.

Machine learning algorithms, classified under statistical models, have become very
popular for studies related to PV power-output forecasting, and play an important role
in contemporary solar-irradiance forecasting for conventional grid management and for
smaller and independent microgrids.

Ogliari et al. [7] compared two deterministic models with hybrid methods, a com-
bination of an artificial neural network (ANN) and a clear sky radiation model, for PV
power output forecasting. The models were trained on one year of measured data in a PV
plant located in Milan, Italy. The results show that the hybrid method is the most precise
for PV output forecasting, demonstrating advantages by combining physical models with
machine learning algorithms.

Crisosto et al. [8] used a feedforward neural network (FFNN) with Levenberg–Marquardt
backpropagation (LM–BP) to make predictions for one hour ahead with one-minute resolution
in the city of Hanover, Germany. The model was trained on a four-year dataset including
all-sky images, used for cloud cover computation, and measured global irradiance. For hourly
average predictions, the FFNN-LM-BP showed the best results with an RMSE (Wh/m2) = 65,
and R2 = 0.98, compared with the persistence model with an RMSE = 91 and R2 = 0.91.

Yu et al. [9] used a long short-term memory (LSTM) model to predict GHI in three cities
in the USA, namely, New York, Atlanta, and Hawaii. The time horizons of the model were
one hour ahead and one day ahead. The model’s performance was compared with other
models such as the autoregressive integrated moving average (ARIMA), convolutional
neural network (CNN), FFNN, and recurrent neural network (RNN). For hourly predictions,
the LSTM model was more precise in all three states, with R2 exceeding 0.9 on cloudy
and partially cloudy days, whereas R2 for the RNN was only 0.70 and 0.79 in Atlanta and
Hawaii. For daily forecasting, LSTM outperformed the other models except in clear-sky
days for New York, whereas for Hawaii and Atlanta, LSTM was better in every case.

However, it is difficult to improve the forecast from only one machine learning model,
which sometimes suffers from instability originating from poor parameter choice, or from a
reduced number of input variables. Ensemble learning is a popular development trend in
artificial intelligence (AI) algorithms [10]. It combines independent models with stronger
learners, which can achieve better stability and prediction effects compared with individual
models [11].

Huang et al. [12] used gradient boosting regression (GBRT), extreme gradient lifting
(XGboost), Gaussian process regression (GPR), and random forest (RF) models to carry
out GHI predictions. Those ensemble models performed better than other stand-alone
models such as decision tree (DT), backpropagation neural network (BPNN), and support
vector machine regression (SVR). It is concluded that the stacking models—including GBRT,
XGboost, GPR, and RF—are the best models to predict solar radiation.

Li et al. [13] used XGboost to implement point forecasts for solar irradiance and kernel
density estimation (KDE) to generate probabilistic forecasts from the above prediction
results. This method enabled the computation of confidence levels and demonstrated better
results than other benchmark algorithms such as SVR and random forest.

To improve the efficiency of machine learning (ML) models, an increasing number
of studies have used metaheuristic models in order to optimize the parameters of the
considered GHI forecasting model.

Jia et al. [14] utilized particle swarm optimization (PSO) coupled with a Gaussian
exponential model (GEM) to predict daily and monthly solar radiation (Rs). The hybrid
PSO-GEM model showed the best results for Rs prediction.
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Duan et al. [15] used NWP, together with the kernel-based nonlinear extension of
Arps decline (KNEA) to predict solar irradiance. The KNEA algorithm is optimized by
a metaheuristic algorithm called the Bat algorithm (BA). The proposed method for GHI
forecasting is called the BA-KNEA. Duan et al. also implemented other hybrid models
such as PSO-XGboost, BA-XGboost, and PSO-KNEA. The results showed that BA-KNEA is
better at performing solar radiation forecasts.

In summary, ensemble learning models are an emerging trend in ML, proving to
be appropriate tools for regression, and therefore, GHI forecasting. They have shown
good results compared with deep learning models for day-ahead GHI point forecasts [12].
Moreover, ensemble methods can be further improved with metaheuristic models for
parameter optimization, as well as the prevention of potential numerical instability from
which various ML models suffer. However, one of the drawbacks of point forecasts is that
they contain limited information about the volatility and randomness of solar irradiance.
Point forecasts cannot satisfy the needs of a power system’s optimized operation [13].
For this reason, considerable attention has been drawn to probabilistic forecasting, which
enables the computation of prediction intervals to provide to grid dispatchers in order to
facilitate grid operation.

This study focused on the implementation of daily probabilistic forecasts with hybrid
models such as PSO-XGboost, PSO-LSTM, PSO-GBRT, and quantile mapping for the com-
putation of prediction intervals. The hybrid models were compared with other reference
models, namely, ANN, CNN, LSTM, RF, and GBRT.

The novelty of this work lies in the residual modeling implemented with an innovative
hybrid model (PSO-LSTM), enabling us to compute prediction intervals with different
confidence levels, and thus obtain probabilistic forecasts. To the best of our knowledge, no
day-ahead probabilistic GHI predictions have been implemented with this method. Sec-
ondly, we demonstrate that using a deep learning approach combined with metaheuristic
models can achieve higher accuracy than ensemble models, or their optimized versions.

In order to produce those forecasts, historical data measured on-site coupled with
NWP were used in the training of GHI forecasting models. These forecasting tools are
intended to control a combined cold- and power-generation system, comprising several
energy production and storage sub-systems, the whole being powered by solar energy. This
prototype is called RECIF (the French abbreviation for a microgrid for electricity and cold
cogeneration), and has been developed within the framework of a project funded by the
French National Agency for Research (ANR) and is being implemented at the University of
French Polynesia (UPF).

The rest of the paper is organized as follows: the historical data and the implemented
data processes are presented in Section 2, followed in Section 3 by a theoretical background
of machine learning and metaheuristic models. The results, analysis, suggestions for future
research, and perspectives are presented in Section 4. The conclusions and the principal
results are presented in Section 5.

2. Materials and Methods

2.1. Input Variables

This study utilized historical data measured from the weather station set-up in the
University of French Polynesia. Two years of measurements are at our disposal, from 2019
to 2020. Those measurements are crucial in the design and implementation of a reliable
forecasting system based on machine learning algorithms. The meteorological variables are
measured with a time step of 1 min. The GHI is measured with a BF5 pyranometer supplied
by Delta Devices, which uses an array of photodiodes with a unique computer-generated
shading pattern to measure the diffuse horizontal irradiance (DHI) and GHI [16]. This
enables the computation of the direct normal irradiance (DNI) for a given solar zenith
angle. The set of inputs chosen from the weather station, for the GHI day-ahead forecasting
models, was as follows:
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- Ambient temperature T (◦C);
- Dew point temperature (◦C);
- Relative humidity H (%);
- Atmospheric pressure (hPa);
- Wind velocity WV (m/s) and the wind direction WD (◦);
- Amount of rain (mm);
- Solar irradiance variables such as GHI, DHI, and DNI;
- The clear-sky model, GHICLS, as the theoretical value of GHI in clear-sky conditions.

An overview of the data is presented in Table 1. The processing of the historical data
is detailed in Section 2.2.

Table 1. Descriptive statistics including the mean, standard deviation (std), minimum/maximum
values, and the quantiles for each meteorological variable.

GHI DHI DNI Temperature Rel Hu-
midity

Pressure
Dew
Point

Wind
Speed

Wind
Direction

Rain CLS

Count 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460 898,460
Mean 219.1 80.0 139.2 26.1 76.8 1005.5 21.6 1.8 133.1 0.0 297.9

Std 320.5 125.2 265.1 2.3 9.2 2.4 1.8 1.2 93.2 0.0 381.0
Min 0.2 0.2 0.0 18.4 35.0 996.0 12.1 0.0 0.0 0.0 0.0
25% 0.2 0.2 0.0 24.3 70.0 1004.0 20.5 1.1 68.8 0.0 0.0
50% 1.9 1.6 0.0 25.9 77.6 1006.0 21.8 1.7 110.3 0.0 0.0
75% 370.1 110.0 120.6 27.8 83.7 1007.0 22.9 2.3 214.2 0.0 649.0
Max 1253 814.1 1156.4 33.5 99.2 1013.0 26.8 13.4 360.0 2.8 1145.8

In addition to these in situ measurements, numerical weather predictions (NWPs)
were used to train our day-ahead forecasting models. The numerical weather prediction
model AROME was implemented by Météo-France with a resolution of 0.025 × 0.025◦
(2.5 × 2.5 km) in French Polynesia. These predictions have a maximum time horizon of
42 h and are updated every 12 h in French Polynesia. In Figure 1, each node (or grid point)
of the AROME model for the north-eastern part of Tahiti is depicted, numbered from 1 to
34. Two years of NWP outputs are available, spanning from January 2019 to December 2020
with an hourly time-step. The GHI values predicted by AROME are only available from
9 am to 4 pm.

 

Figure 1. Points from the AROME grid (red dot represents the University).

2.2. Data Processing

This section explains the steps involved in processing the historical data and the
AROME output. A vital step in data processing is to remove anomalous data that are
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caused by technical glitches from the sensors, such as negative and Not a Number (or
NaN) values, or outliers. After the removal of NaN values, the outliers are detected
through the interquartile range method (IQR). A sliding mean is applied to the 1 min
time-step meteorological data, in order to obtain hourly values, and making correla-
tion with the AROME output possible. The mean value at time t is computed from the
60 previous measurements.

In order to quantify the errors between the in situ measurements and the AROME
model, and then determine which points of the AROME grid to use for the training of
the machine learning algorithms, the following metrics were used: the mean square error
(MSE), the root-mean-square error (RMSE), and the determination coefficient (R2).

MSE =
1
N ∑N

i=0(ymeasured,i − ypredicted,i)
2, (1)

RMSE =

√
1
N ∑N

i=0(ymeasured,i − ypredicted,i)
2, (2)

R2 = 1 − ∑N
i=0(ymeasured,i − ypredicted,i)

2

∑N
i=0(ymeasured,i − y measured)

2 , (3)

where N is the number of observations, ymeasured,i is the measurements, y measured is the
mean value of the measurements, and ypredicted,i is the predicted values. The results are
presented in Figure 2.

Figure 2. Errors between the measured GHI at the UPF and the AROME predictions for each
grid point.

Points 31 to 34 were not used because they contained a great number of outliers in
the first semester. The selected points were, arbitrarily, the points with some of the lowest
correlation (R2 < −0.45), i.e., n◦3, 12, 20, 25, and points that exhibited positive correlation
with the measured data, i.e., n◦7, 13, 14, 15, 16, 17, 21, and 26.

The missing data were not replaced (through linear interpolation for example), but the
consecutiveness of the dates of the data was ensured in the construction of the input data (or
input vector); thus, no missing values were processed in the machine
learning algorithms.
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The night hours were removed from the measured data; consequently, the GHI fore-
casts implemented in this study were only performed for the hours between 6 am and
8 pm. After correlating the measurements and the AROME output, the merged data were
normalized according to Equation (4):

Xnormalized =
X − Xmin

Xmax − Xmin
, (4)

The data were then split into 70% as training data, 20% as validation data, and 10% as
testing data.

3. Theoretical Background

3.1. Long Short-Term Memory (LSTM)

In recent years, LSTM has been widely applied to implement GHI forecasting [17,18].
One of the main advantages, compared with a classical RNN, is that LSTM models can deal
with long-term dependencies found in the data without having problems such as vanishing
gradients [19] using forget gates.

As shown in Figure 3, a typical LSTM network consists of one cell and three gates (an
input gate, forget gate, and output gate). The input gate adjusts the amount of new data
stored in the unit. The output gate determines which information to obtain from the cell,
while the forget gate determines which information can be discarded [15]. Each gate uses
either tanh or sigmoid as activation functions.

Figure 3. Basic structure of an LSTM model [15].

The input gate can be calculated with Equation (5) [15]:

gate( fi) = σs(wixt + uiht−1 + bi), (5)

where σs is the sigmoid activation function, ht−1 is the cell output at the previous time-step,
Wi and Ui are weight factors, and bi is the bias.

The forget gate can be computed with Equation (6) [15]:

gate( ft) = σs(wtxt + utht−1 + bt), (6)

where Wt and Ut are weight factors and bt is the bias.
The output is finally computed with Equation (7) [15]:

gate( fo) = σs(woxt + uoht−1 + bo), (7)

where Wo and Uo are weight factors and bo is the bias.
In this study, an LSTM model and an optimized LSTM (PSO-LSTM) model were

used to implement daily GHI forecasting. They were compared with other models for
probabilistic predictions. The parameters used for optimization are listed in Section 3.4.

The implemented LSTM model was composed of two LSTM models for day-ahead
forecasting. One model was to process historical data; the second model was used to
process AROME outputs. The outputs of the two LSTM models were concatenated, before
being processed by a classical ANN.
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3.2. Particle Swarm Optimization (PSO)

Particle swarm optimization was first proposed by Kennedy and Eberhart [20]. This
algorithm simulates the predatory actions of a swarm of animals to find the best solution.
A massless swarm of particles is created, with only two parameters: their position and
speed. Each particle searches for the optimal solution separately in the search space and
records it as the current individual extremum. The position of the extremum is shared with
other particles in the whole swarm. If one individual extreme value is the best out of all
other extremes, it is recorded as the global optimal solution. The global optimal solution is
updated every time a particle finds a better extremum.

All the particles in the swarm adjust their velocity and position according to the
current extremum already seen by the individual and the current global optimal solution
shared by the whole swarm. The formulas for updating the position and speed of the PSO
algorithm are shown in Equations (8) and (9) [20]:

Xi,t = Xi,t−1 + Vi,t, (8)

Vi,t = IW × Vi,t−1 × c1 × θ1 × (pbesti − Xi,t−1) + c2 × θ2 × (gbesti − Xi,t−1), (9)

where Xi,t is the position of the i-th particle during the t-th iteration, and Vi,t is the speed
of the i-th particle during the t-th iteration. c1 and c2 are called the cognitive (personal)
and social (global) coefficients, respectively. The coefficients control the exploitation of the
individual extremum found by each particle and the levels of exploration made by the
swarm in the entire search space. θ1 and θ2 are random data, in the range [0, 1]. pbesti is
the best location of the i-th particles among all iterations. pbesti is the best global location
of all particles. IW is random data initialized in the range [0, 1]

3.3. XGboost

XGboost is a machine learning algorithm realized by gradient lifting technology,
and is the first parallel gradient enhanced tree (GBDT) algorithm. XGboost is based on
classification and regression tree (CART) theory [21]. It provides parallel tree boosting and
is one of the leading machine learning algorithms for regression, classification, and ranking
problems. The XGboost model is built by adding trees iteratively. The predicted values of
the i-th sample in the t-th iteration can be expressed as follows [21]:

ŷi,t = ŷi,t−1 + ft(Xi), (10)

where ft(Xi) represents the addition needed to improve the model. The tree is added
iteratively to minimize the objective function, which can be expressed as [21]:

obj(t) = ∑n
i=1 L(yi, ŷi,t−1 + ft(Xi)) + Ω( ft), (11)

where obj(t) is the loss function [21].

Ω( ft) = γT +
1
2

λ ∑T
j=1 w2

j , (12)

γ and λ are parameters that represent the model complexity. T is the number of leaves, and
wj is a weight parameter.

3.4. Hybrid Models

In this study, a hybrid model, PSO-XGboost, was implemented in order to obtain
point forecasts of the GHI. The PSO algorithm is used to choose the best parameters for the
XGboost algorithm. Seven important parameters for the XGboost model were chosen, as
listed in Table 2. Those parameters were also used by Yu et al. [10] in order to estimate daily
reference evapotranspiration values. The parameter “number of trees” has been added,
because it is also an important parameter for XGboost.
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Table 2. Parameters used in the optimization of XGboost.

Parameters. Range Meaning

Learning rate [0.0001, 0.1] Step size at each iteration while moving
toward the minimization of a loss function.

Number of trees [1, 500] Number of trees in XGboost.

Maximum depth [1, 500] Maximum depth of a tree. The higher this
value, the more likely the model is to overfit.

Subsample [0.2, 1] Subsample ratio of the training instances.

Colsample_by_tree [0.2, 1] Subsample ratio of columns when
constructing each tree.

Min_child_weight [0, 1] Minimum instance weight needed in a child.

Gamma [0.0001, 0.01] Minimum loss reduction required to make
further partitions on a leaf node of the tree.

The ML models were used, in this case, to solve a regression problem; therefore,
we set R2 to be the main metric of the PSO algorithm. R2 is a positive-oriented metric;
thus, the practical objective function used here was 1−R2. Indeed, the more the precision
of the results increases, the closer R2 is to 1, which also represents a minimum in the
objective function 1−R2. Twenty particles are used for the PSO algorithm in order to limit
computation time, and to explore the entire research space. The flow chart of the hybrid
model is presented in Figure 4.

Figure 4. Flow chart of the hybrid models.
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A PSO-Gradient boosting model was also implemented, but with fewer parameters
than the PSO-XGboost. Only the maximum depth, the learning rate, number of trees, and
subsample were used in this instance. The other parameters seen for PSO-XGboost were
not available for the gradient boosting algorithm. As stated above, a hybrid PSO-LSTM
model was also implemented for daily GHI forecasting. The parameters chosen for the
optimization are presented in Table 3.

Table 3. Parameters of the LSTM model for particle swarm optimization.

Parameters Range Meaning

LSTM cells in the first
LSTM model [1, 1000] Number of cells in the first

LSTM model.
LSTM cells in the second

LSTM model [1, 1000] Number of cells in the second
LSTM model.

Dropout rate in the first
LSTM model [0.0001, 0.5]

Rate for dropout
regularization in the first

LSTM model.

Dropout rate in the second
LSTM model [0.0001, 0.5]

Rate for dropout
regularization in the second

LSTM model.
Dense in the first layer

of the ANN [1, 1000] Number of neurons in the first
layer of the ANN.

Dense in the second layer
of the ANN [1, 1000] Number of neurons in the

second layer of the ANN.

Dropout rate in the ANN [0.0001, 0.5] Rate for dropout
regularization in the ANN.

Learning rate [10 × 10−10, 10 × 10−2]
Step size at each iteration
while moving toward a

minimum of a loss function.

Epochs [1, 100]
Number of times the

algorithm is trained on the
training data.

Validation split [0.1, 0.5] Split between training and
validation data.

3.5. Residual Modeling

Probabilistic forecasting was implemented in this study through residual modeling.
For each individual hour, the residuals were computed and assumed to have either a
Gaussian or a Laplacian distribution. This method was inspired by He et al. [22]. The
quantiles of the residuals were computed and taken as prediction intervals (PIs). To
compute the different quantiles for all the considered distributions, we first needed to
consider their cumulative distribution function (cdf) FResidus(x) in Equation (13).

∀x ∈ R, FResidus(x) = P(Residus ≤ x), (13)

The inverse of the cdf is called the percent point function or quantile function Q(q),
and is provided in Equation (14):

∀q ∈ [0, 1], Q(q) = F−1
Residus(x) = in f {x ∈ R, FResidus(x) ≥ q }, (14)

where Q(0.25), Q(0.5), and Q(0.75) are the first quantile, the median, and the third quantile,
respectively. The specific quantile function corresponded to a specific distribution (Gaussian
or Laplacian). The PIs were calculated at different confidence levels or CLs. In this study,
the 38%, 68%, 95%, and 99% PIs were derived from this inverse cdf for the Gaussian
distribution in Equation (15). For the Laplacian distribution, the PIs could be derived using
Equation (16), defined in [22]:

Pcl+ 1−cl
2

= σtQ(cl), (15)
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Pcl+ 1−cl
2

= −σtln(2(1 − cl)), (16)

where σt is the standard deviation of the distribution (Laplacian or Gaussian). Given the
symmetry of those distributions, the upper bounds, Ut, and lower bounds, Lt, were derived
using Equations (17)–(19) [22]:

Ut = Pcl+ 1−cl
2

, (17)

Lt = P 1−cl
2

, (18)

Lt = Ut, (19)

3.6. Metrics for Probabilistic Forecasting

The quality of probabilistic forecasts was quantified using three different metrics,
namely, the prediction interval coverage percentage (PICP), the prediction interval normal-
ized average width (PINAW), and the coverage width-based criterion (CWC), as defined
in [13].

The PICP, detailed in Equations (20) and (21), indicates how many real values lie
within the bounds of the prediction interval:

PICP =
1
N ∑N

i=1 δi, (20)

δi =

{
1 i f yi ∈ [Li, Ui]
0 i f yi /∈ [Li, Ui]

, (21)

The PINAW, shown in Equation (22), quantitatively measures the width of the
different PIs:

PINAW =
1

NR

N

∑
i=1

(Ui − Li) (22)

where R is a normalizing factor. The PINAW represents the quantitative width of the PIs;
thus, a lower value of PINAW represents better performance for the prediction intervals.

The CWC, shown in Equations (23) and (24), combines the PICP and PINAW to
optimally balance the probability and coverage.

CWC = PINAW
(

1 + γ(PICP)e−ρ(PICP−μ)
)

, (23)

γ(PICP) =
{

0 i f PICP ≥ μ
1 i f PICP < μ

, (24)

where μ is the preassigned PICP which is to be satisfied, and ρ is a penalizing term. When
the preassigned PICP is not satisfied, the CWC increases exponentially. The CWC is a
negatively oriented metric, meaning the lower the value, the better.

4. Results

4.1. Preliminary Results

Firstly, before implementing any hybrid model, it is necessary to quantify whether
the AROME predictions are effective in increasing the accuracy of our forecasting models.
Secondly, a study was also performed to determine how many days should be input into
the models, so that we have optimal precision in daily forecasts. These two preliminary
results are shown in Table 4 and were only performed for the XGboost model and for
lagged terms, from 1 day prior to 5 days prior. The employed metrics were MAE, RMSE,
and R2.
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Table 4. Results for lagged days and NWP with the XGboost model.

XGboost Model
Number of
Days Prior

MAE
(W/m2)

RMSE (W/m2) R2

Without
AROME

1 day 135.19 206.02 0.73
2 days 136.34 212.47 0.67
5 days 115.22 182.97 0.74

With AROME
1 day 121.21 194.50 0.76
2 days 126.29 198.2 0.72
5 days 110.24 176.47 0.76

The results show that the use of AROME does increase the prediction accuracy for
daily GHI forecasts. Indeed, for the same number of lagged days, the results with AROME
are always better than without AROME, in terms of MAE, R2, and RMSE.

With the AROME data, the best values in terms of MAE and RMSE are 110.24 W/m2

and 176.47 W/m2 and R2 = 0.76, respectively, for 5 days prior. For this reason, 5 days prior
was taken as a standard way to implement our GHI forecasting tools.

However, it would be interesting to carry out the same study with more lagged days
at inputs of the machine learning algorithms. In order to carry out such studies, more
historical data and AROME outputs are needed.

The results show a decrease in accuracy for 2 days prior. One possible explanation for
this decrease is that the default parameters of the XGboost algorithm might be not ideal for
daily GHI predictions for 2 days prior.

4.2. Hybrid Models Results

Tables 5 and 6 present the parameters found by PSO for the XGboost and LSTM
algorithms, respectively. Once the optimal parameters are found, the optimized models are
tested on the testing data.

Table 5. Optimal parameters for XGboost.

Parameters Value

Learning rate 0.1
Number of trees 400
Maximum depth 400

Subsample 0.71
Colsample_by_tree 0.99
Min_child_weight 0.96

Gamma 0.01

Table 6. Optimal parameters for LSTM.

Parameters Value

LSTM cells in the first LSTM model 208
LSTM cells in the second LSTM model 5
Dropout rate in the first LSTM model 0.4

Dropout rate in the second LSTM model 0.15
Density in the first layer of the ANN 712

Density in the second layer of the ANN 786
Dropout rate in the ANN 0.72

Learning rate 0.09
Epochs 50

Validation split 0.5

The results for all the models used for daily GHI predictions are summarized in Table 7
with deterministic metrics, and in Table 8 with probabilistic metrics.

291



Sustainability 2022, 14, 15260

Table 7. Deterministic metrics for all implemented models used for daily GHI predictions.

Models MAE (W/m2) RMSE (W/m2) R2

ANN 120.50 179.40 0.75
CNN 125.66 188.77 0.73
LSTM 115.69 184.74 0.74

Random Forest 106.19 166.42 0.79
Gradient Boosting 111.20 174.54 0.77

XGboost 110.24 176.47 0.76
PSO-Gradient Boosting 105.06 167.24 0.79

PSO-LSTM 99.37 154.84 0.82
PSO-XGboost 105.02 153.69 0.82

Table 8. Probabilistic metrics for the implemented models.

Models
Predicted
Intervals

Gaussian Distribution Laplacian Distribution

PICP (%) PINAW (%) CWC (%) PICP (%) PINAW (%) CWC (%)

ANN

38% 39.81 9.50 9.50 30.95 6.78 13.57

68% 71.03 18.79 18.79 64.48 16.45 32.90

95% 94.05 32.77 65.54 94.83 35.30 70.60

99% 99.60 42.62 42.62 99.80 44.57 44.57

CNN

38% 42.06 10.03 10.03 39.88 7.62 7.62

68% 71.63 19.37 19.37 67.4 17.30 34.60

95% 94.64 33.89 67.79 94.24 37.06 74.12

99% 98.81 45.35 90.71 98.21 46.50 93.00

LSTM

38% 47.81 9.48 9.48 39.88 6.93 6.93

68% 75.40 18.00 18.00 70.04 15.67 15.67

95% 93.45 31.37 62.74 94.24 33.85 67.69

99% 98.21 41.97 83.94 98.02 44.03 88.06

Random
Forest

38% 48.61 9.68 9.68 43.85 7.06 7.06

68% 77.58 18.78 18.78 69.44 15.96 15.96

95% 94.25 32.35 64.70 93.85 33.47 66.95

99% 98.61 42.28 84.57 98.02 43.41 86.82

Gradient
boosting

38% 48.81 9.99 9.99 43.06 7.28 7.28

68% 74.80 19.0 19.0 70.63 16.62 16.62

95% 93.85 32.55 65.11 93.45 34.68 69.37

99% 98.61 42.31 84.62 97.42 43.97 87.95

XGboost

38% 53.17 9.96 9.96 42.86 7.18 7.18

68% 75.79 18.94 18.94 69.84 16.3 16.30

95% 92.46 32.13 64.27 93.85 33.98 67.96

99% 98.61 41.84 83.69 98.41 43.38 86.76
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Table 8. Cont.

Models
Predicted
Intervals

Gaussian Distribution Laplacian Distribution

PICP (%) PINAW (%) CWC (%) PICP (%) PINAW (%) CWC (%)

PSO-LSTM

38% 43.06 8.6 8.6 39.28 6.3 6.3
68% 73.61 16.86 16.86 69.05 14.68 14.68
95% 94.63 29.57 59.13 94.44 31.74 63.48
99% 99.00 40.1 40.1 98.61 42.44 84.87

PSO-
Gradient
Boosting

38% 52.38 9.63 9.63 43.84 6.93 6.92

68% 75.20 18.41 18.41 72.42 15.81 15.81

95% 93.25 31.50 63.01 93.05 33.10 66.20

99% 98.61 41.40 82.81 97.81 43.19 86.38

PSO-
XGboost

38% 45.63 8.84 8.84 39.48 6.6 6.6

68% 74.01 17.13 17.13 69.84 15.31 15.31

95% 94.44 30.39 60.78 94.84 33.15 66.30

99% 98.81 40.61 81.22 98.21 43.23 86.47

For the deterministic metrics, we first note that the use of PSO increases the accuracy
of standalone models such as LSTM, GBDT, and XGboost. Indeed, there were decreases
in MAE and RMSE and an increase in R2 when considering standalone models with their
optimized versions.

The deterministic metrics also show that the hybrid PSO-XGboost method is the
best for implementing daily forecasting, in terms of RMSE = 153.69 W/m2 and R2 = 0.82.
However, the PSO-LSTM model is also strong, but in terms of MAE = 99.37 W/m2, as well
as R2 = 0.82. Neither of the two models has any significant advantage over the other.

In order to choose the best model, a Taylor diagram was drawn (Figure 5) for all imple-
mented machine learning models. It can be seen that PSO-LSTM was slightly better than
all the other models for deterministic predictions, because it was closer to the observation
than the other models. The standard deviation was also the same for the observation and
PSO-LSTM (red dotted line), meaning that it appropriately represented the variability in
solar irradiance.

Figure 5. Taylor diagram for deterministic comparison between models.

For all models, we can see that the RMSE is greater than the MAE, which is the
manifestation of high variance in individual errors. Indeed, because the RMSE is a quadratic
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scoring rule, it tends to assign high weight to large errors, whereas the MAE gives the same
weight to all errors, independently of their magnitude. This variance has been studied
thanks to residual modelling and the generation of prediction intervals.

For the probabilistic forecasts the PICP, PINAW, and CWC values were computed for
all forecasting models. Highlighted in black in Table 8 are the best CWC values, for 38%,
68%, 95%, and 99% PIs. PSO-LSTM is the best algorithm for all prediction intervals. For 38%,
68%, 95%, and 99% PIs, the CWC values are 6.3, 14.68, 59.13, and 40.1, respectively. Notably,
for 38% and 68%, the best fit was the Laplacian distribution, whereas for the 95% and 99%
PIs, the best fit was the Gaussian distribution. The proposed methods were implemented
in Python 3.7, with the machine learning package Tensorflow 2.2.0. Duan et al. [15] also
used PSO-XGboost for predicting solar radiation in four different locations in China. After
training with four different datasets, the four R2 values for 1-day-ahead forecasting were
0.816, 0.84, 0.787, and 0.755. Those values are not far from our own PSO-XGboost algorithm,
with an R2 = 0.82. In our case, the PSO-LSTM model was even better than the PSO-XGboost,
demonstrating that deep learning models can still outperform ensemble learning models for
day-ahead forecasting and, to the best of our knowledge, no PSO-LSTM has ever been used
with quantile mapping to obtain day-ahead GHI probabilistic forecasting. The accuracy
of point forecasts depends, however, on the global structure of the LSTM, meaning that a
simpler structure from an LSTM model might not have the same results.

Figure 6 shows the PSO-LSTM predictions with the corresponding prediction intervals.
We can see that the GHI measurements do stay within the prediction intervals; however, we
can see that the prediction intervals are quite large. For this problem, it would be interesting
to use another method for computing the confidence levels (CLs), which are smaller than
the prediction intervals computed in this paper. Li et al. [13] used kernel density estimation
(KDE) for confidence level computation, which gave PINAW values of 15.45, 17.03, and
19.55 for 80%, 85%, and 90% CIs, respectively. This is considerably smaller than the PIs in
this article, which are approximately equal to 30 for 95% PIs.

 

Figure 6. PSO-LSTM probabilistic forecasting.

4.3. Perspectives and Future Research

For the PSO algorithm, the higher the number of particles, the better the exploration
of the entire search space; however, the computation time increases accordingly. In order to
reduce computation time, we limited ourselves to 20 particles in the swarm. According
to Eberhart et al. [23], population sizes ranging from 20 to 50 are optimal in terms of
minimalizing the number of evaluations (population size multiplied by the number of
iterations) needed to obtain a sufficient solution. Nevertheless, it would be interesting to
see the result for GHI day-ahead predictions with the number of particles in a range from
20 to 500 particles for maximum exploration ability of the search space.

As presented in Section 4.1, the maximum precision was obtained for five days of
measurements at the input of the models. It is assumed that the more information (lagged
days), the better the precision of the forecasting models. For this reason, it would be
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interesting to carry out a study with more lagged days fed into the models. However,
a constraint arises when more lagged days are used as input vectors. Indeed, with the
available data, using more lagged days would greatly reduce the number of training
samples. To retain a sufficient number of days for the training of our forecasting models,
while simultaneously increasing the number of lagged days, more meteorological data and
AROME outputs are needed.

Testing another meta-heuristic model also seems a promising way to improve GHI
forecasts. Duan et al. [15] used the Bat algorithm for parameter optimization. Other bio-
inspired optimization processes could be implemented, such as the grey wolf optimizer
(GWO), whale optimization algorithm (WOA), or salp swarm algorithm (SSA). Duan et al.
also showed that the KNEA algorithm is appropriate for providing accurate point forecasts.
Therefore, a hybrid model with the metaheuristic models listed above, coupled with the
KNEA algorithm, seems to be a very good way to implement daily GHI forecasts. As
mentioned in the last section, combining the computation of confidence levels with the
KDE method represents a very efficient way of obtaining better probabilistic forecasting
from the aforementioned hybrid models.

5. Conclusions

The accurate forecasting of solar irradiance is paramount for photovoltaic power gen-
eration. In this study, the solar irradiance forecasts from the operational weather prediction
model (AROME), implemented by Météo-France, were compared with in situ measure-
ments for error quantification. In order to drastically improve the forecasting accuracy
on-site, to control an isolated solar-powered microgrid called RECIF, implemented in Tahiti,
ML algorithms were coupled with a metaheuristic particle swarm optimization (PSO)
model for parameter optimization. The novelty of this paper resides in the implementation
of probabilistic forecasting by combining an innovative hybrid model (PSO-LSTM) with
quantile mapping. Mapping of the residuals allowed us to generate 38%, 68%, 95%, and
99% prediction intervals (PIs) with two different distributions, for probabilistic forecast-
ing. Nine machine learning models were used for comparison purposes, namely, artificial
neural network (ANN), convolutional neural network (CNN), long short-term memory
(LSTM), random forest (RF), gradient boosting (GBRT), XGboost, PSO-LSTM, PSO-GBRT,
and PSO-XGboost. PSO-LSTM was superior to all other models with MAE = 99.37 W/m2,
RMSE = 154.84 W/m2, and R2 = 0.82, coupled with a Taylor diagram. The PSO-LSTM
model was also the best for all probabilistic metrics, exhibiting a Laplacian distribution
for 38% and 68% prediction intervals, with CWC values equal to 6.33 and 14.68, respec-
tively. Furthermore, the PSO-LSTM model showed the best results, exhibiting a Gaussian
distribution for 95% and 99% prediction intervals, with CWC values equal to 59.13 and
40.1, respectively. This demonstrates that deep learning models coupled with metaheuristic
models can outperform the ensemble learning method for day-ahead GHI forecasting.
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Abstract: The intermittence and fluctuation of renewable energy aggravate the power fluctuation of
the power grid and pose a severe challenge to the frequency stability of the power system. Thermo-
statically controlled loads can participate in the frequency regulation of the power grid due to their
flexibility. Aiming to solve the problem of the traditional control methods, which have limited adjust-
ment ability, and to have a positive influence on customers, a deep reinforcement learning control
strategy based on the framework of soft actor–critic is proposed, considering customer satisfaction.
Firstly, the energy storage index and the discomfort index of different users are defined. Secondly,
the fuzzy comprehensive evaluation method is applied to evaluate customer satisfaction. Then, the
multi-agent models of thermostatically controlled loads are established based on the soft actor–critic
algorithm. The models are trained by using the local information of thermostatically controlled loads,
and the comprehensive evaluation index fed back by users and the frequency deviation. After train-
ing, each agent can realize the cooperative response of thermostatically controlled loads to the system
frequency only by relying on the local information. The simulation results show that the proposed
strategy can not only reduce the frequency fluctuation, but also improve customer satisfaction.

Keywords: thermostatically controlled load; frequency regulation; customer satisfaction; soft actor–critic;
energy storage index; discomfort index

1. Introduction

With the increasing proportion of renewable energy in the power grid, the charac-
teristics of intermittence and fluctuation will bring considerable challenges to the active
power balance and frequency stability of the power grid [1]. The traditional power system
maintains the balance of the system by adjusting the output of the generating side units.
The regulation method is relatively simple and will generate additional economic and
environmental costs [2]. In addition, with the increase in power load and the extensive
access to renewable energy, the regulation capacity of the power generation side gradually
decreases [3]. The power system with renewable energy as the main body can utilize
advanced information technology to integrate and dispatch demand-side resources to
provide a variety of auxiliary services [4,5]. Therefore, reasonable control of demand-side
resources can supplement the traditional system frequency regulation, and thus enhance
the stability of the power system [6].

In the demand-side resources, the thermostatically controlled load (TCL) is a kind of
electric equipment controlled by a thermostat, which can realize electric heating conver-
sion and adjustable temperature, including in heat pumps, electric storage water heaters
(ESWHs), refrigerators, and heating, ventilation and air conditioning (HVAC) systems [7].
TCL can be used to provide frequency regulation services, and is mainly based on the
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following three points. Firstly, it is widely distributed in residential, commercial and indus-
trial buildings, with adjustable potential. Secondly, it has sufficient thermal storage capacity
and can be regarded as distributed energy storage equipment. Thirdly, the control method
is flexible and can respond to the power demand of the system in time [8]. Therefore,
in order to fully excavate the frequency regulation potential of flexible resources on the
demand side and maintain the grid frequency within a certain offset range, it is necessary to
conduct in-depth research on the control strategy of large-scale TCLs on the demand side.

In the current research, there are mainly three control methods for TCLs to participate
in ancillary services: centralized control, decentralized control and hybrid control [9–11].
In centralized control, the control center sends control signals to all controlled loads, but it
needs to build a large number of communication channels, leading to high control costs.
Hu et al. [9] established a hierarchical centralized load tracking control framework that
coordinates demand-side heterogeneous TCL aggregators and uses a state–space model
for modeling. The decentralized control decentralizes the judgment mechanism of load
control to the local control terminal, and pre-sets the procedures or thresholds at the local
control terminal. When the demand-side device detects important parameter changes, the
load acts according to the pre-set strategy. Because the judgment of decentralized control is
performed at the local port, the demand for communication is low and the response speed
is fast. However, the control effect is largely influenced by the user behavior and the error
of the detection device. Delavari and Kamwa [10] applied a multi-objective optimization
approach for optimizing each load setting to reduce the amount of load response required
and trigger the load based on the frequency response index of decentralized control. The hy-
brid control combines the features of centralized and decentralized control, and establishes
a control framework of “centralized parameter setting–decentralized decision making”,
and coordinates large-scale users and grid control centers through load aggregators (LAs).
Song et al. [11] built a two-stage control model based on hybrid control to participate in
energy market trading. Based on hybrid control, Wang et al. [12] used TCLs to mitigate
PV and load variations in microgrid communities. The above methods require a commu-
nication network between the control center and all aggregates, increasing the cost and
difficulty of demand-side load control.

In the research on the participation of TCLs in auxiliary service, Ref. [13] built a dy-
namic model and verified the performance of a variable-frequency heat pump in providing
frequency modulation services by using direct load control. This paper mainly studied the
dynamic response performance of a single air-conditioning system, but focused less on
the coordinated control of large-scale air-conditioning loads. Ref. [14] established a virtual
energy storage model of variable-frequency air conditioning, shielded part of the model
information through a hierarchical control framework and simplified the downlink control
by using a unified broadcast signal. However, in this paper, the adjustable capacity of the
air conditioning cluster will be sacrificed in order to simplify the downlink control. There
are two main control modes of TCL, namely direct switch and temperature setting [15].
Ref. [16] realized frequency adjustment based on load direct switch. The advantage of this
method is that the tracking accuracy of the system is high and the influence on the user’s
comfort is low within the range of load regulation ability. The disadvantage is that when
the indoor temperature of the load is concentrated near the temperature boundary, the
equipment will be frequently switched on and off, which will not only fail to complete the
adjustment task, but also reduce the service life of the equipment [17]. Temperature setting
can avoid the above disadvantages, but its limitation is that the tracking effect of power
depends on the designed controller including a minimum variance controller [18], a sliding
mode controller [19] and an internal model controller [20]. In addition, its limitations
are also shown in the large range of temperature changes, which will have an impact on
the comfort of users [21]. Pallonetto et al. [22] established a residential building energy
management system (EMS) based on a combination of optimization techniques and ma-
chine learning models. This EMS reduces energy consumption while maintaining thermal
comfort. Therefore, it is important to consider the influence of consumer satisfaction in
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the process of load response control to dispatch the motivation of user participation in
demand response.

The above-mentioned documents all adopt a single control method to schedule and
control TCL, but they often fail to meet the application requirements. This is not only
because of their inherent defects, but also because of the different requirements of users.
Direct switching is suitable for loads with high temperature requirements. At this time,
the user expects the start and stop frequency of the equipment to be kept at a low level to
extend the service life of the equipment. The load with a low temperature requirement is
suitable for temperature setting. At this time, the user expects the temperature change to
be maintained within a certain range to improve the comfort. Therefore, it is of practical
significance to combine the two control modes. Ref. [23] proposed a hybrid control strategy
based on a parallel structure. This strategy can improve the tracking accuracy of the system
and reduce the number of switches in the equipment. However, the temperature changes
widely, which will reduce the user’s comfort. In recent years, the deep reinforcement
learning algorithm has provided a new solution to the frequency control problem of
power system.

With its strong search and learning ability, the deep reinforcement learning algorithm
has the potential of online optimization of decision making in the face of complex nonlinear
frequency control problems. The Q-learning algorithm of deep reinforcement learning is
used to realize the cooperative control of distributed generation units, thus eliminating
the frequency deviation of the system in [24,25]. Ref. [26] combined electric water heater
buffer models with domain randomization to reduce the initialization time of Q-learning in
demand response control. Ruelens et al. [27] applied batch reinforcement learning to coordi-
nate the power consumption of users with thermostatically controlled loads. However, the
Q-learning algorithm can only discretely select control actions from low-dimensional action
domains, so it cannot deal with problems with continuous variables [28]. Ref. [29] proposed
a deep reinforcement learning algorithm that acts on the continuous action domain, thus
realizing the adaptive control of load frequency. An energy management scheme for AC
control based on the deep deterministic policy gradient (DDPG) algorithm is proposed
in [30]. However, this algorithm is only suitable for the optimal control of a single gener-
ator set, and is not suitable for the control of large-scale thermostatically controlled load.
In [31], a distributed soft actor–critic (DSAC)-based data-driven frequency control method
is proposed; the DSAC model estimates the distribution of value function over returns
instead of only estimating the mean. The DSAC method based on entropy regularization
has a faster learning speed compared to the traditional expectation-based reinforcement
learning methods.

In view of the above problems, we take the thermostatically controlled load as the
frequency control object, and based on the deep reinforcement learning algorithm, propose
a frequency stability control method with the participation of thermostatically controlled
load, considering customer satisfaction. Firstly, considering the operation characteristics
of thermostatically controlled load with different control types, the energy storage index
and the discomfort index are established, and the fuzzy comprehensive discrimination
method is used to evaluate the customer satisfaction. Then, in order to realize the frequency
cooperative control of large-scale thermostatically controlled load, a multi-agent control
model is established based on the soft actor–critic algorithm to realize the continuous
action control of thermostatically controlled load. Through the multi-agent reinforcement
learning model considering customer satisfaction, the frequency response control of each
thermostatically controlled load cluster can be coordinated online. The main contributions
of this paper are as follows:

1. The influence of consumer satisfaction on the frequency response of TCLs is con-
sidered, and indicators reflecting satisfaction for TCLs with different control modes
are established.

2. For the control problem of frequency response control for large-scale TCLs, this paper
proposes a deep reinforcement learning control method based on the SAC algorithm.
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This method can rely only on local load and frequency data to achieve real-time
cooperative control of large-scale TCLs, which reduces the communication pressure
in the scheduling process.

The remainder of this paper is organized as follows. In Section 2, the TCL dynamic
model and control methods are formulated. Section 3 is concerned with the comprehensive
control index of TCLs considering customer satisfaction. In Section 4, the frequency
response control of TCLs based on SAC deep reinforcement learning is modeled. Case
studies are provided in Section 5. Finally, conclusions are summarized in Section 6.

2. TCL Dynamic Model and Control Methods

2.1. TCL Dynamic Model

The first-order ordinary differential equation model considering indoor environment,
outdoor environment and building characteristics has high accuracy and simple calcula-
tion, and is widely used in practice [32,33]. State variables Ti and virtual variables si are
introduced into the model. The operating characteristics of the i-th TCL in the cooling
mode can be expressed as:

dTi(k)
dk

=
1

CiRi
(T∞(k)− Ti(k)− si(k)RiPi) (1)

Among them, the change rule of si(k) is as follows:

si(k + Δk) =

⎧⎪⎨⎪⎩
0 si(k) = 1 and Ti(k) ≤ Tmin

i
1 si(k) = 0 and Ti(k) ≥ Tmax

i
si(k) others

(2)

{
Tmin

i
= Tset

i − δ
2

Tmax
i = Tset

i + δ
2

(3)

where T∞(k) and Ti(k) are outdoor temperature and indoor temperature, respectively; Ci,
Pi and Pi are the equivalent heat capacity, equivalent heat resistance and energy transfer
rate of the i-th TCL, respectively; si(k) indicates the load switch state, on state si(k) = 1 and
off state si(k) = 0. Tmax

i and Tmin
i

are the upper and lower limits of the temperature during
load operation, respectively. Tset

i is the temperature setting value, δ is the temperature dead
zone interval and is a constant. k and Δk are operation time and control period, respectively.
By solving Equation (1):

Ti(k) = T∞(k)− si(k)RiPi − (T∞(k)− si(k)RiPi − Ti(0))e
− k

Ci Ri (4)

where Ti(0) represents the initial indoor temperature. For a load cluster composed of N
TCLs, the aggregate power consumption is the sum of the rated power of all loads.

Ptotal(k) =
N

∑
i=1

Pn
i si(k) (5)

Pn
i =

Pi
ηi

(6)

where Pn
i is the rated power of the i-th TCL and ηi is the energy conversion efficiency

coefficient of the i-th TCL.
Figure 1 shows the frequency response model of the power system with TCL load

participating in frequency modulation, where TGa and TGb are the time constants of the
governor and the turbine, respectively. The governor and the turbine are the instantaneous
characteristic compensation links, which are expressed by the lead lag transfer function
between the time constants T1 and T2. TR is the TCL response delay time constant, Tc is the
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communication delay time constant and Req is the unit adjustment rate. ΔPG, ΔPL, H and
D represent the total output power, the disturbance power, inertia time constant and load
damping coefficient of the system, respectively. Δ f is the frequency offset.

Figure 1. Frequency modulation model of power system with TCL participation.

2.2. TCL Control Methods

The control methods of TCL are mainly divided into direct switch control and tem-
perature setting control. The TCL operation characteristics of the direct switch are shown
in Figure 2a. The temperature setting value of the load remains unchanged, and the
dispatching command directly acts on the equipment switch during the operation time
k = k0. The advantage of this method is that it can accurately track the power within the
adjustable temperature range and has little impact on the user’s comfort. However, when
the indoor temperature approaches the temperature boundary, it will cause frequent switch-
ing, thus reducing the service life of the equipment. The TCL operating characteristics of
the temperature setting are shown in Figure 2b. The dispatching command increases the
temperature setting value at time k = k0. Since the temperature dead zone of the load is
unchanged, its operating range will change, thus indirectly changing the switching state of
the equipment. Since the indoor temperature of the load is always uniformly distributed
in the temperature dead zone, the indoor temperature will not approach the temperature
boundary, but it has a notable impact on the user’s comfort, and its tracking effect depends
on the designed controller.

In practical application, the reasonable distribution of power regulation can make
load clusters with different control modes cooperate with each other, which can not only
realize accurate tracking of power, but also avoid their limitations and meet the different
needs of users. Many factors need to be considered when allocating the power regulation
amount. On the one hand, it is necessary to meet the requirements of the power system for
frequency regulation and ensure the tracking accuracy within a certain range. On the other
hand, for the load with direct switch, the number of switches should be reduced as much as
possible to prolong the service life of the equipment. For the load with temperature setting,
the temperature change should be reduced as much as possible to improve the user’s
comfort. There is often a highly nonlinear relationship between these factors and power
distribution, and the frequency regulation requires high real-time performance. Therefore,
the conventional optimization method cannot obtain the optimal power allocation.
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(a) 

(b) 

Figure 2. Operation characteristics of TCL in different control modes. (a) Direct switch control;
(b) temperature setting control.

3. Comprehensive Control of TCL Considering Customer Satisfaction

3.1. Calculation of TCL Load Regulation Index

The temperature setting value of the direct switch load is almost constant, and the
influence on the user’s comfort is negligible. Its control mode directly acts on the equipment
switch. When the indoor temperature is close to the temperature boundary, the load
regulation capacity will decrease, and the start and stop frequency of the equipment will
be higher and the service life will be shortened. When the indoor temperature is close to
the temperature setting value, the load regulation capacity will rise. At this time, the start
and stop frequency of the equipment is low and the service life is extended. In order to
characterize the regulation ability of TCL and provide a basis for evaluating the service life
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of equipment, we use the definition of battery state of charge for reference, and define the
energy storage index Cs for TCL cluster with a direct switch under refrigeration mode:

Cs =
2
δ

∣∣∣∣∣∣∣∣∣
N
∑

i=1
Tmax − Ti

N
− δ

2

∣∣∣∣∣∣∣∣∣ Ti ∈ (Tmin
i , Tmax

i ) (7)

According to the definition of Cs, the closer Cs is to 0, the closer the indoor temperature
is to the temperature set value. At this time, the temperature distribution of TCL is relatively
uniform, its adjustable potential is large and the switch switching is not frequent. The
closer Cs is to 1, the closer the indoor temperature is to the upper and lower temperature
limits. At this time, the temperature distribution of TCL is more concentrated, its adjustable
potential is small and the switch switching is more frequent. Therefore, when the agent
outputs the control command, it should make Cs close to 0 as much as possible, so as to
reduce the start and stop frequency of the equipment.

The tracking effect of the load depends on the designed controller, and because the set
value changes, the temperature changes in a large range, which will reduce the comfort
level of the user. To characterize the user’s comfort, the discomfort index Cu is defined as
follows for TCL cluster with temperature setting:

Cu =
∣∣Tset

i − Tset
i (0)

∣∣ (8)

where Tset
i (0) indicates the initial temperature setting value. According to the definition of

Cu, the more the temperature setting value deviates from the initial temperature setting
value, the higher the user’s discomfort level. Therefore, when the agent outputs the control
command, it should make Cu as close to 0 as possible to reduce the user’s discomfort.

3.2. Customer Satisfaction Assessment Method Based on Regulation Index

According to the above analysis, users’ needs are different under different control
methods. In order to comprehensively evaluate customer satisfaction, the fuzzy compre-
hensive evaluation (FCE) method is adopted for evaluation. The specific operations are as
follows.

(1) Construct the factor set of customer satisfaction U = {Cs, Cu}.
(2) Build a customer satisfaction evaluation set V = {satisfied, more satisfied, general, less

satisfied, dissatisfied}.
(3) Determine the weight of each factor. Since the factor set in this paper is composed

of two factors, Cs and Cu, which have the same importance to users, the weight is
A = [a1, a2] = [0.5, 0.5].

(4) The fuzzy evaluation matrix is established. Firstly, the degree to which each factor
belongs to each comment is evaluated. Since most things follow a normal distribution,
the membership function is selected as a Gaussian function.

rsp(ys) = e
−(

ys−usp
σsp )

2

(9)

where ys is the input of the s-th factor, Cs and Cu. usp and σsp are the mean and
standard deviation of the s-th factor and the p-th comment, respectively. Then, the
fuzzy evaluation matrix R is:

R =

[
r11 r12 r13 r14 r15
r21 r22 r23 r24 r25

]
(10)

(5) Fuzzy comprehensive evaluation is carried out. The fuzzy evaluation set is:

B = A ◦ R = [b1 b2 b3 b4 b5] (11)
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where ◦ represents the operation of the fuzzy matrix. Since the weighted average
fuzzy synthesis operator has an obvious weight effect and strong comprehensive
degree, and can make full use of the information of R, the element bp is:

bp = min

(
1,

2

∑
s=1

asrsp

)
(12)

(6) Evaluate customer satisfaction. In order to make the level continuous and quantitative,
the level rank corresponding to the matrix B element is set as 1, 2, 3, 4 and 5, and the
customer satisfaction m is defined as:

m =
b1 + 2b2 + 3b3 + 4b4 + 5b5

b1 + b2 + b3 + b4 + b5
(13)

According to the definition of m, the smaller m is, the higher the user’s satisfaction.
In practical application, the agent should not only consider customer satisfaction, but

also meet the requirements of the power system for frequency regulation, that is, to ensure
the tracking accuracy within a certain range. In order to evaluate the tracking performance
of the system, the root mean square error index ERMS is defined as:

ERMS =

√√√√√√
Ns
∑

Δk=1
(e(Δk))2

Ns(Pmax
target − Pmin

target)
2 × 100% (14)

where Ns is the number of control cycle Δk, e(Δk) is an error signal in a control period, and
Pmax

target and Pmin
target are the minimum value and the maximum value of the tracking power

signal, respectively.
According to the definition of ERMS, the smaller ERMS is, the higher the tracking

accuracy of the system. In order to comprehensively evaluate the regulation effect and
provide the basis for the optimization of the power distribution signal, the comprehensive
evaluation index J is defined as:

J = (1 − λ)ERMS + λm (15)

where λ is the proportion of satisfaction.
In fact, priority should be given to ensuring the frequency stability of the power

grid: when the tracking accuracy is within a certain range, customer satisfaction can be
considered; otherwise, it will not be considered. The relationship between λ and ERMS is
as follows:

λ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G1 0 < ERMS ≤ F1

G2 F1 < ERMS ≤ F2

G3 F2 < ERMS ≤ F3

0 ERMS > F3

(16)

where F1, F2, F3, G1, G2 and G3 are constants, which can be set according to actual opera-
tion conditions.

4. Frequency Response Control of TCL Based on SAC Deep Reinforcement Learning

4.1. A Deep Reinforcement Learning Model of Soft Actor–Critic

Reinforcement learning is adaptive learning in the way of trial and error of agents.
The agent interacts with the environment continuously, and takes actions to change the
environmental state by acquiring the environmental state. The agent obtains corresponding
rewards or punishments as the update guidance of the model parameters, so as to obtain
the maximum cumulative rewards in continuous learning. Through this perception action
evaluation learning method, the agent continuously obtains knowledge in the interaction
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process, and constantly adjusts and improves its action strategy to adapt to the environment,
and finally gives a better task execution strategy. The environment interaction mode is
generally described by the Markov decision process (MDP) and is composed of five tuples
(S, A, P, r, γ), namely state space S, action space A, state transition probability P, return
function r and discount factor γ.

In this paper, the deep reinforcement learning based on the flexible actor evaluator
framework is used to control the frequency response of TCL. The framework of the pro-
posed control model is shown in Figure 3. In the iterative calculation at time t, the actor first
generates the action at through the policy network according to the operating state st of
the TCL cluster observed at this time. After that, the TCL cluster performs state transition
according to the control strategy at this time, and reaches the state st+1 at the next time. At
the same time, the system environment calculates the reward r(st, at) at time t and feeds
it back to the agent, who records (st, at, r(st, at), st+1) in the experience pool. Then, the
action strategy sampling of the actor and the system state are input to the critical at the
same time, and the action value function Q(st, at) is output to evaluate the strategy. This
process is carried out circularly, and the actor and the judge update their neural network
parameters through the gradient descent method, so as to realize the adaptive learning of
the model. During the training process, the accumulated return of the agent in the response
period will gradually increase and eventually become stable. By introducing the maximum
entropy encouragement strategy, the SAC reinforcement learning algorithm can improve
the robustness of the algorithm and speed up the training speed. It can make accurate and
effective control decisions for large-scale temperature control loads in the complex power
supply and demand environment.

Figure 3. Frequency response control framework of large-scale TCLs based on deep reinforce-
ment learning.
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4.2. SAC Deep Reinforcement Learning Method
4.2.1. SAC Objective Function

The objective function of SAC requires the strategy to maximize the policy entropy
while maximizing the cumulative return, so as to avoid greedy sampling in the learning
process and falling into local optimization. According to this, the objective function π∗

max is
constructed as shown in the equation.

π∗
max = arg max

π

T

∑
t=1

E(sq ,aq)∼pπ
(r(sq, aq) + αH(π(·|sq))) (17)

where E(·) is the expected function, π is a policy, sq is the state space of the q-th agent, aq
is the action space of the TCL and r(sq, aq) is the reward function of the q-th agent. The
state action trajectory (sq, aq) ∼ pπ formed by the strategy π. α is the temperature term,
which determines the influence of entropy on reward. H(π(·|sq)) is the entropy term of
the strategy in the state, and its calculation method is shown in Equation (18).

H(π(aq|sq)) = −
∫

aq π(aq|sq) log(π(aq|sq))daq = Eaq∼pπ (− log(π(aq|sq))) (18)

4.2.2. SAC Iteration Strategy

The value function in the reinforcement learning process is shown in Equation (19),
which is used for strategic value evaluation Q(sq, aq). The bellman backup operator is
shown in Equation (20) and is used for policy updating.

Q(sq, aq) = r(sq, aq) + γEst+1∼p(Q(sq+1, aq+1)) (19)

TπQ(sq, aq) � r(sq, aq) + γEst+1∼p(V(sq+1)) (20)

where Est+1∼p is the expected function of the state space, Tπ is the bellman backup operator
under the policy π and γ is the discount factor of the reward. V(sq+1) is a new value
function of the state, and its calculation method is shown in the following equation.

V(sq) = Eaq∼π(Q(sq, aq)− log π(aq|sq+1)) (21)

Meanwhile, there are
Qk+1 = TπQk (22)

where Qk is the value function of the kth calculation.
Equation (23) can be realized by iterating Equations (20) and (22) continuously.

lim
k→∞

Qk = Q̂ (23)

where Q̂ is the soft Q-value.

4.2.3. SAC Policy Update

The strategy updating method in the calculation process is shown in Equation (24).

πnew = arg min
π∈Π

DKL

⎛⎝π(·|sq)||
exp
(

1
α Qπold(sq, ·)

)
Zπold(sq)

⎞⎠ (24)

where KL is divergence, Π is a policy set and Qπold(·) is the value function under the old
strategy πold. Zπold(sq) is the partition function under the old strategy π, which is used to
normalize the distribution.
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4.2.4. Construction of SAC Algorithm

The SAC algorithm needs to construct neural networks, including Q-value network
and strategy network. The Q-value network outputs a single value through several layers of
neural networks, and the strategy network outputs a Gaussian distribution. In this process,
the neural network will be updated. The Q-value network parameter has an update strategy
as shown in Equation (25), and the policy network parameter has an update strategy as
shown in Equation (26).

JQ(θ) = E(sq ,aq ,sq+1)∼D

(
1
2
(
Q(sq, aq)− (r(sq, aq) + γVθ(sq+1))

)2
)

(25)

Jπ(φ) = DKL

(
π(·|sq)|| exp

(
1
α

Qθ(sq, ·)− log Z(sq)

))
(26)

where θ is the network parameter of Q-value, φ is the policy network parameter and Vθ
and Qθ are the new value function and the value function after substituting the Q-value
network parameters. Z(sq) is the partition function of the state.

The temperature parameter is an important parameter to assist in maximizing entropy,
which can maximize the exploration of action space. A reasonable temperature parameter
setting is helpful to realize iterative testing of all feasible actions. Therefore, the update of
the temperature parameter is as shown in Equation (27).

J(α) = Eaq∼πq(−α log πq(aq|πq)− αH0) (27)

where πq is the control strategy of the q-th agent. H0 is the entropy term.
The expressions (25)–(27) are all obtained by calculation. Throughout the whole

process, the Q-value network parameters, strategy network parameters and temperature
parameters are continuously updated through deep neural network learning, which can
make the model converge continuously and solve the optimal strategy.

4.3. Design of SAC Deep Reinforcement Learning Model for TCL Frequency Response

In this paper, the SAC algorithm is used to solve the control strategy problem of
large-scale temperature control load participating in system frequency regulation. The
structural model of the proposed control method is shown in Figure 3. The agent in the
figure is an agent based on a deep neural network. The environment of the controller is
the frequency Δ f deviation of the power system, the differentiation and integration of Δ f ,
the baseline power signal Pbase of the aggregated TCL, the aggregated power consumption
Ptotal and the automatic generation control signal PAGC. The automatic generation control
signal is a series of positive and negative power signals, which represents the active power
deviation between the supply and demand of the power system. The baseline power
signal of aggregated TCL is the sum of the rated power Pn

i.set of TCL cluster under a certain
temperature setting value.

Pbase =
N

∑
i=1

Pn
i.set (28)

Pn
i.set =

T∞ − Tset
i

ηiRi
(29)

A tracking power signal Ptarget can be generated by superimposing the PAGC and Pbase.
The tracking error signal e can be generated by subtracting the Ptarget and Ptotal, that is

Ptarget = PAGC + Pbase (30)

e = Ptarget − Ptotal (31)

The agent obtains the response power of TCL cluster after optimization according to
the environmental information. Then, the direct switch control cluster and the temperature
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setting control cluster complete the adjustment task according to the obtained control
signals. The method includes two stages: offline pre-learning and online application. In the
offline pre-learning stage, the pre-learning process will iteratively update all parameters of
the agent. During each self-learning iteration, the agent will conduct action exploration
(i.e., generate different commands) to interact with the environment. After exploration,
the parameters of the agent will be updated according to the system frequency deviation
and the reward function of the TCL controller. With an appropriate reward function R and
considering environmental constraints, the gradient of the actor (i.e., the gradient of the
control target relative to the parameters of the agent) will be calculated and used to update
all the parameters of the agent. In the online application stage, the intelligent personnel
will calculate the operation value (i.e., generate command) according to the observation
value and parameters obtained by themselves for each control cluster.

For the frequency response model of large-scale temperature control load, the negative
value of the comprehensive evaluation index J is taken as the reward function of the agent,
that is

R = J = (1 − λ)ERMS + λm (32)

By introducing the system frequency deviation and customer satisfaction into the
reward function, the obtained control strategy can improve the tracking accuracy of the
system, reduce the switching frequency of the equipment, reduce the temperature change
and improve the customer satisfaction.

5. Result Analysis

5.1. Example Introduction and Scenario Setting

In order to verify the effectiveness of the method proposed in this paper for large-scale
thermostatically controlled loads to participate in power grid frequency control, we take
the distribution network with large-scale thermostatically controlled loads as an example,
and set the disturbance power of the regional power grid as the net load power, that is, the
difference between the original load power and the power generated by new energy, such
as photovoltaic and wind power. The disturbance power in the simulation time is shown
in Figure 4. As an important thermostatically controlled load, HVAC accounts for a large
proportion and is easy to control and manage. Therefore, we selected 2000 HVAC units
for simulation experiments. The load parameter settings are shown in Table 1. The initial
indoor temperature of the load is evenly distributed in the temperature dead zone, and the
temperature dead zone is set to 1.2 ◦C. PAGC is the actual frequency regulation signal from
the PJM power market in the United States, which changes every four seconds.

 
Figure 4. Variation of disturbance power within 2 h.

308



Energies 2022, 15, 7866

Table 1. Setting of load parameters.

Parameters Meaning Value

Ci Equivalent heat capacity N (2, 0.01)
Ri Equivalent thermal resistance N (2, 0.01)
Pi Energy transfer rate N (14, 0.01)
T∞ Outdoor temperature 32

Tset
i (0) Initial temperature setting 20

δ Temperature dead zone 1.2
ηi Energy conversion efficiency coefficient 2.5

Note: N (2, 0.01) represents the normal distribution with the mean value of 2 and the variance of 0.01, and the
others are the same.

The parameter settings in the customer satisfaction evaluation and comprehensive
evaluation indicators are shown in Table 2. When the value of ERMS is (0, 2%], the
frequency regulation effect of the power system is better. At this time, customer satisfaction
is mainly considered. When the value of ERMS is (2, 3%], λ is 0.5, indicating that the root
mean square error index and the customer satisfaction have the same impact on the system
regulation. When the value of ERMS is (3%, 5%], the frequency regulation effect of the power
system is poor, and the root mean square error index is mainly considered at this time.
When ERMS is greater than 5%, λ is 0, indicating that the system regulation will no longer
consider the customer satisfaction, and will focus on improving the tracking accuracy.

Table 2. Setting of customer satisfaction evaluation and comprehensive evaluation parameters.

Parameters Value Parameters Value

us1 0 F1 2%
us2 0.25 F2 3%
us3 0.5 F3 5%
us4 0.75 G1 0.8
us5 1 G2 0.5
σsp 0.2 G3 0.3

5.2. Frequency Control Effect Analysis Considering Customer Satisfaction

Figure 5 compares the changes in customer satisfaction before and after customer
satisfaction is included in the agent optimization process. As can be seen from Figure 5, on
the one hand, the peak value of customer satisfaction increased from 3.5 before optimization
to 4.7 after optimization. On the other hand, within the simulation time range, customer
satisfaction after optimization is higher than that before optimization. Figure 6 compares the
frequency control effect of the method proposed in this paper before and after considering
customer satisfaction. As can be seen from Figure 6, since the customer satisfaction index
is added to the control target, the algorithm’s penalty weight for frequency deviation is
relatively reduced, resulting in an increase in the maximum frequency deviation of the
system compared with that before considering customer satisfaction. Considering customer
satisfaction will limit the number of TCLs participating in frequency response, resulting
in a poor system frequency control effect, but the impact is not significant. Therefore, the
method proposed in this paper can better balance the frequency deviation control and
customer satisfaction.
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Figure 5. Comparison of customer satisfaction before and after optimization.

 

Figure 6. Frequency deviation before and after considering customer satisfaction.

5.3. Frequency Control EFFECT Analysis Based on SAC Deep Reinforcement Learning

In order to verify the effectiveness of the proposed SAC deep reinforcement learn-
ing algorithm in the collaborative control of large-scale thermostatically controlled load
compared with the traditional PID method, we used the traditional PID controller, the PID
controller optimized by particle swarm optimization (PSO) algorithm parameters, and the
algorithm proposed in this paper to conduct simulation experiments on the thermostatically
controlled load controlled by the direct switch control and the temperature setting control.
The number of HVAC experiments is 2000. The comparison of the three control methods in
the system frequency control effect is shown in Figure 7.

It can be seen from Figure 7 that under the regulation control of the conventional
PID controller, there is a system frequency deviation of about 0.047 Hz in the period
when the disturbance power fluctuates violently. Compared with the traditional PID
controller, the frequency effect of the PID controller is improved after PSO algorithm
parameter optimization, but the effect is still not ideal. The frequency deviation of the
system fluctuates within the range of (−0.037 Hz, 0.038 Hz). The algorithm proposed in
this paper can keep the system frequency deviation within (−0.02 Hz, 0.023 Hz), and can
significantly improve the frequency stability of the power grid.
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Figure 7. Comparison of frequency control effect between the proposed algorithm and PID controller.

5.4. Comparative Analysis of the Algorithm and Traditional Deep Reinforcement Learning

This section shows the advantages of the algorithm in this paper compared with
the data-driven deep Q network (DQN) algorithm and the DDPG algorithm from the
aspects of system frequency control effect and algorithm convergence speed. The proposed
algorithm and DDPG are both deep reinforcement learning algorithms based on continuous
action space. As shown in Figure 8, the frequency control effect of the two algorithms
is significantly better than that of the DQN algorithm designed based on the discrete
action space. After integrating the advantages of model driven and data driven, the
algorithm proposed in this paper further improves the real-time frequency control effect in
the continuous action domain compared with the fully trained DDPG algorithm.

Figure 9 compares the iterative convergence process of the cumulative reward value
of the DQN algorithm, the DDPG algorithm and the algorithm proposed in this paper.
Among them, after about 250 and 300 iteration cycles, the cumulative reward value of DQN
algorithm and DDPG algorithm tends to be stable and will not continue to increase. It is
worth noting that each iteration cycle in this paper is an empirical trajectory containing
200 iterations. That is, the two algorithms need 50,000 and 60,000 iterations, respectively,
to converge. However, the proposed algorithm only needs about 150 iteration cycles
(30,000 iterations) to complete the parameter training of the deep neural network, and the
oscillation amplitude of the convergence curve of the algorithm is the smallest.

−
−

−

 

Figure 8. Comparison of frequency control effect between different algorithms.
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(a) Iterations of DQN 
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(b) Iterations of DDPG 
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(c) Iterations of SAC 

Figure 9. Iterative convergence process of cumulative reward value: (a) DQN algorithm; (b) DDPG
algorithm; (c) SAC algorithm in this paper.

6. Conclusions

In this paper, considering the support of large-scale thermostatically controlled load on
the demand side to the frequency of power grid, based on the deep reinforcement learning
of soft actor–critic, a frequency cooperative control method of thermostatically controlled
load considering customer satisfaction is proposed to solve the frequency control problem
of a power system with large-scale thermostatically controlled load on the demand side
participating in frequency regulation. In the example analysis, a distribution network is
taken as the research object, and the performance of different algorithms is compared and
verified based on time domain simulation. The simulation results show that compared with
the existing deep reinforcement learning methods, this algorithm has obvious advantages
in system frequency control, customer satisfaction and algorithm training time.

The algorithm proposed in this paper is mainly used to solve the frequency cooperative
control problem under the participation of large-scale thermostatically controlled load in
the distribution network, and does not consider the application of other flexible resources
on the demand side in the system frequency modulation. The next step is to explore
the application and practice of multi-agent deep reinforcement learning method in the
frequency response of demand-side flexible resources based on the operation mechanism
and mathematical modeling of demand-side flexible resources.
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Abbreviation

TCL thermostatically controlled load
ESWH heat pump, electric storage water heater
HVAC heating, ventilation and air conditioning
LA load aggregator
EMS energy management system
DDPG deep deterministic policy gradient
SAC soft actor–critic
DQN Deep Q network
DSAC distributed soft actor–critic
FCE fuzzy comprehensive evaluation
MDP Markov decision process
PSO particle swarm optimization
Ti The indoor temperature of the i-th TCL
T∞ The outdoor temperature
Ci The equivalent heat capacity of the i-th TCL
Ri The equivalent heat resistance of the i-th TCL
Pi The energy transfer rate of the i-th TCL
si(k) The load switch state of TCL
Tmax

i The upper limits of the temperature during load operation
Tmin

i
The lower limits of the temperature during load operation

Tset
i the temperature setting value

δ the temperature dead zone interval
Pn

i the rated power of the i-th TCL
ηi the energy conversion efficiency coefficient
Cs the energy storage index for TCL cluster with direct switch control
Cu the discomfort index for TCL cluster with temperature setting control
rsp the membership function of the s-th factor and the p-th comment
ys the input of the s-th factor
usp the mean of the s-th factor and the p-th comment
σsp the standard deviation of the s-th factor and the p-th comment
bp the element of fuzzy evaluation set B
m the customer satisfaction index
ERMS the root mean square error index of frequency
e(Δk) the error signal in a control period
Pmax

target the maximum value of the tracking power signal
Pmin

target the minimum value of the tracking power signal
J the comprehensive evaluation index
λ the proportion of satisfaction
Δ f the frequency deviation of the power system
Pbase the baseline power signal of the aggregated TCLs
Ptotal the aggregated power consumption of TCLs
PAGC the automatic generation control signal
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Abstract: The increasing consumption of energy and the numerous obstacles in the way of its ex-
traction, including diminishing fossil fuels and the turn towards renewable energies, environmental
changes, a tendency towards systems of information networks, rising costs of energy and advance-
ment of technology have made the need for new technologies aimed at efficient management of
energy more imminent. The Internet of Energy (IoE) technology has been recognized as a novel and
efficient strategy that provides the necessary tools for optimal energy management. The present
study was carried out with the purpose of identifying key components in implementation of IoE in
Iran. This study is practical in its goal and descriptive-explorative in its methodology. First, the data
were categorized using the qualitative method of meta-synthesis and using the Sandelowski and
Barroso method. The statistical population of the study was the scholarly finding of 2010–2021 and
55 papers were sampled from the published works. The kappa coefficient was used to determine
reliability and quality control. The kappa coefficient calculated with SPSS equals 0.87, which falls in
the “excellent” category. Second, the frequency and importance of each component was determined
using the Shannon entropy technique. The purpose of this method is to measure the weight or
importance of each component based on frequency and to identify the key components. Third, the
MICMAC structural analysis method was used to evaluate the influence/dependence of components
by eight experts in the field of energy and determine strategic components. The purpose of this step
is to compare the results with the results of the second step of the research. The results show that
82 indicators play a role in implementation of the concept of IoE; these indicators can be divided
into ten axial categories of rules and regulations, individual and human factors, funding, techno-
logical infrastructure, cultural and social factors, security factors, technological factors, knowledge
factors, learning style, and management factors. In the Shannon entropy method, technological
infrastructure, management factors, and rules and regulations are the most significant, respectively.
In MICMAC structural analysis, the components of managerial factors, technological infrastructure,
and financing have the largest share in influence and dependence, respectively. Conclusion: The two
components of management factors and technological infrastructure can be considered as key and
strategic components in implementation of IoE in Iran.

Keywords: IoE; optimal energy management; sustainable development; meta-synthesis; MICMAC
analysis

1. Introduction

In the 21st century, the growing demand for energy and the widespread use of fossil
fuels and traditional energy sources have been challenged by factors like the energy crisis,
environmental pollution, and global warming [1]. In 2011, 82% of energy was generated
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from fossil fuels [2]. On the one hand, global energy demand in 2018 increased by 2.3 per-
cent compared to 2017, which is the largest increase since 2010. As a result, CO2 emissions
from the energy sector set a new record in 2018. According to figures released by the
International Energy Agency (IEA), global energy demand will increase by more than
two-thirds by 2035 [3]. Compared to the pre-industrial temperature levels, global warming
has reached 1.5 degrees Celsius, and, if this trend continues, will exceed 2 degrees Celsius
and have a negative impact on the planet and human life [2]. Undoubtedly, such an increase
in energy demand will put an additional burden on the old energy infrastructure, which
will lead to serious problems of grid congestion and reduced energy quality. The usual
grid structure faces reliability problems due to the lack of real-time monitoring, automation
techniques, error detection, transparency, and flexibility [3,4]. The demand for renewable
energy sources, such as solar and wind energy, is increasing significantly as a solution for
the problem of traditional energy sources. In addition to protecting the environment, such
an approach will also meet future energy demands [5].

Although renewable energy sources have advantages, such as sustainable develop-
ment and environmental conservation, they have disadvantages too. It is difficult to
accurately predict the amount of energy generation from renewable energy sources and it
mainly depends on environmental conditions [6,7]. Moreover, with the existing electricity
infrastructure, energy from renewable sources cannot be fully efficient. China, for example,
generates most of its energy in a green way but still faces an energy crisis because it cannot
deliver the energy it needs to its large population. The gradual shift to decentralized
renewable sources also shows that electricity generation depends on the seasons, and this
unpredictable nature of electricity generation requires new demand-supply management
techniques [8,9]. In addition, a key question for peer-to-peer energy trading is making it
possible to share and connect the existing energy infrastructure with decentralized renew-
able energy sources. This matter requires systematic management and intelligent control,
in addition to renewable energy sources, Distributed Generation (DG), flexibility, and
transparency to achieve a smart, sustainable, and coordinated energy market. Distributed
Generation (DG) of electricity provides several advantages, such as high efficiency and
environmental protection, reduction of transmission and distribution losses, supporting
the local power grid, and improving system stability. A better way to understand the po-
tential benefits of DG is to take a system approach that considers generation and associated
loads as a subsystem or “micro-grid” [10]. Micro-Grid (MG) ecosystems are increasingly
being utilized to integrate smart grids with renewable energy sources such as wind power,
photovoltaics, hydro turbines, biogas, etc. A micro-grid is a set of micro-resources such as
micro-turbines, fuel cells, photovoltaic systems, storage systems, and wind turbines that
provides distributed energy generation [2,11,12]. It can be connected to the utility grid
(grid mode) or used independently and separated from the utility grid (island mode) [10].
The micro-grid also allows local energy exchange in the smart grid and reduces the waste
due to energy transmission. In short, micro-grids are considered a solution to meet the
challenges facing traditional power systems [2,11,12].

Smart grid technology is created in the context of micro-grids. The smart grid provides
a platform for the production, distribution, storage, and transmission of energy and creates
a reliable, transparent, flexible, and automated power system. A smart grid system with
balanced generation and consumption of energy ensures energy sustainability [2,11,13].
Since decentralized renewable energy sources are widely used in micro-grids, achieving
a stable power balance is difficult [4]. Therefore, there is a more imminent need to find
a solution for the demand–supply balance, optimal management of energy, sustainable
development, and all the problems mentioned before. IoE is of great importance as a
future solution for the optimal management of energy production and consumption. IoE
provides access to large amounts of decentralized energy sources by considering micro-
grids as infrastructure in future energy systems. The purpose of this study is to identify the
infrastructure components to implement the new concept of IoE in Iran.
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The existing studies have presented concepts related to the IoE in a scattered manner.
Therefore, a comprehensive classification of the factors affecting this concept helps to
understand it correctly. On the other hand, rapid global and technological developments
in all areas such as IoE are inevitable. That is why future study approaches, including
scenario analysis, become more important. In order to use this approach, it is necessary to
identify the key drivers of that area so that future scenarios can be designed based on them,
as well as appropriate policies for each scenario. In addition to identifying and classifying
the components affecting IoE, the present study ranks them and determines the strategic
components that can be used as an input for future research.

The present study answers two basic questions: What are the fundamental components
in implementation of the concept of IoE? What are the key drivers of the implementation of
IoE concept? In response to these questions, in response to these questions, two approaches
of meta-synthesis and MICMAC analysis were used. In the first approach, after going
through the screening process of papers based on the Critical Appraisal Skills Program
(CASP), the number of relevant papers for review was determined. Then, based on the
review of research literature and library studies, a set of key parameters for the implemen-
tation of IoE were extracted in the form of main and sub-categories. At this stage, using
the MAXQDA software, the research parameters were coded and the frequency of each of
them was determined. In the next step, the validity of extracted parameters was measured
based on the opinions of ten experts. Having expertise and related education in the area
of IoE have been the two main factors in the selection of research experts. Finally, strate-
gic components were determined based on the Shannon entropy method and MICMAC
structural analysis.

2. Theoretical Foundations of Research

The term IoE was first coined in 2011 by renowned American researcher Jeremy Rifkin.
In his book, The Third Industrial Revolution, he points to the role of IoE in reducing fossil
fuel consumption, increasing the use of decentralized energy sources, and decreasing
environmental pollutions [14].

IoE combines the two concepts of the smart grid and Internet of Things (IoT). IoT is a
concept in which every object can be identified, accessed, and even remotely controlled
through the Internet and via the Internet Protocol (IP). This concept, based on smart grids,
has been developed and introduced to the scientific community as IoE [3,15]. IoE refers to
a robust understanding of IoT, big data, artificial intelligence technologies, and computing
capabilities in centralized and decentralized energy management systems with the aim of
optimizing the efficiency of existing energy infrastructure. It also facilitates coordination
between renewable energy sources, smart grids, micro-grids, electric vehicles, and control
centers, with the primary goal of improving efficiency, flexibility, and energy support [4,16].
In other words, IoE provides a real-time interface between the smart grid and a large set of
equipment, and by processing data and information, creates the capacity for optimal energy
production and storage while balancing energy production and consumption in the smart
grid [17]. IoE is a paradigm that transforms current grid systems from centralized and one-
way energy production to sustainable, flexible, efficient, reliable, and highly secure energy
girds [1]. Using IoE paradigm provides a complete set of benefits. First, with the balanced
effect of IP-based networking, it is possible to coordinate interactions with a large number
of ICT technologies. In addition, Machine-to-Machine (M2M) interactions decentralize
the control process, which in turn destroys the central communication network. Finally,
interactive communication is the key to success in the global free energy market [18].

The development of renewable energies, along with the growth of information and
communication technology, are the two driving and key elements in the field of IoE.
Therefore, IoE can be seen as an energy efficiency system that enables the distribution
of clean energy through systems of information and communication technology and can
be studied as a smart grid [7,19]. Smart energy control, energy security, demand-side
management of energy, increasing the use of renewable energies and their integration,
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reducing energy loss, reducing blackouts due to reduced energy production, the possibility
of real-time monitoring, reducing operating and maintenance costs, increasing energy
efficiency, system flattening, resource management, and self-organization are the main
benefits of IoE [2,4,5].

3. Empirical Foundations of Research

The concept of IoE has gained the attention of various sectors, including universities,
industries, and government departments [4]. For example, in the ARTEMIS IoE project
in Europe, 38 companies from 10 European countries are developing IoE technology by
focusing on Electric Mobility Infrastructure and smart grids [20]. In the United States,
the Center for Future Renewable Electric Energy Delivery and Management (FREEDM),
established by the National Science Foundation (NSF), has created new energy distribution
infrastructure with the ability to plug and play decentralized renewable energy sources. In
their view, IoE is considered a tool for flexible and automatic distribution of electricity [21].
In 2015, the President of China introduced IoE as a green solution to the global electricity
demands [22]. In the same year, China launched a project called the Global Energy Internet
(GEI), which works by developing smart grids to connect decentralized renewable energy
sources by exchanging their information over the Internet [8]. In 2016, as well, the Global
Energy Interconnection Development and Cooperation Organization (GEIDCO) in China
introduced IoE as a sustainable new source of energy [23].

Numerous studies have been conducted on the new concept of IoE and its application
in optimal energy management. Miglani et al. (2020) [4] introduced IoE as an essential
technology required in the energy sector to not only manage demand response and peer-
to-peer energy trading, but also provide smart grid security. In this study, the use of
blockchain technology in the context of IoE is considered an important tool in creating a
decentralized structure, countering cyber-attacks, and maintaining smart grid security.

Hossein Motlagh et al. (2020) [2] examined the widespread uses of IoT technology
in the energy sector (production, transmission, distribution, and consumption of energy).
They also offer blockchain technology as a solution to the challenges of IoE, such as privacy
and security.

Taghavi et al. (2021) [17], expressing the need for optimal energy management in
the country due to the increased likelihood of facing an energy crisis in the near future,
considered the new paradigm of IoE as a suitable solution and presented an IoE model for
optimal energy management.

Sani et al. (2019) [23] considered the structure of the existing smart grids in the
field of energy to be insufficient, and therefore proposed a cybersecurity structure for IoE.
This structure introduces an identity-security mechanism called “I-ICAAAN” (Integrity,
Confidentiality, Availability, Authorization, Authenticity, and Nonrepudiation), a secure
communication protocol and a smart security system for energy management. Such a
structure provides sufficient privacy and security for data and components of the network.
It defines IoE as a software platform for controlling, monitoring, and managing the entire
smart network through two-way interaction between all sources of energy production and
consumption.

Nguyen et al. (2018) [24] propose a building energy management system (BEMS)
based on IoE to manage issues such as large volumes of building energy data and energy
overload problems in the future. Based on the studies, the most important key components
for the implementation of IoE were identified as follows (Table 1).
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Table 1. Key components in implementation of IoE.

Axial Category Primary (Open) Code Sources

Rules and
regulations

Defining institutional rules and regulations related to the IoE, defining crimes and penalties
related to their violation [11,13,25–27]

Monitoring the proper implementation and enforcement of these laws [4,5,28]

Protecting intellectual property rights in the production and dissemination of information [8,9,12]

creating protection laws [29–33]

Creating the appropriate legal and political environment [34–36]

Having laws and policies related to information security on confidential data [11,12,21,23,33,36]

Having a regulatory system and defining its role [4,9,29,37]

Creating encouraging laws and documents to raise awareness [9,27,32]

Developing a national vision of the IoE [7–9,33,38,39]

Setting standards and the appropriate frameworks [9,20,35]

Facilitating insurance laws related to IoE entrepreneurs [30,32]

Facilitating cooperation rules of domestic and foreign companies in the field of IoE [7,13,21,23,38,40,41]

Individual and
human factors

Acceptance of changes and comprehensive participation in implementation and application [30,41,42]

Recognizing the technological capability and the capacity to benefit from new technologies [3,43,44]

Comprehending the technology’s usefulness [36,45]

Understanding the technology’s ease of application [36,45]

Recognizing the social consequences (social role) of technology [38,41,46]

Training and benefiting from experts in the field of the new technology [8,9,31,43]

Training and raising users’ awareness about security threats and vulnerabilities [11,12,47]

Financing

Gathering the required funds to invest in transformative energy and digital technologies [9,12,20,21,25,36,39,48]

Gathering the required funds for research and training of human resources [9,12,20,21,25,36,39]

Gathering the required funds for monitoring and maintenance [8,9,20,21,25,49]

Having a network economy [21,25,39,45,49]

Technological
infrastructure

Existence of powerful microprocessors and Internet servers in the country [8,23,30,32,38,43,50–53]

Bandwidth [4,8,29,32,36,38,42,49]

Free access of the final consumers to the Internet [5,8,17,23,33,54]

Online monitoring of energy consumption [3,5,17,24,33,54]

Optimization of energy production infrastructure [9,11,17,24,54]

Optimization of energy conversion mechanisms [12,17,37,51]

Systematic processes for energy distribution [5,9,17,25,38,48,55]

Communication between the energy supply and consumption chains [4,8,17,29,38,48]

Connection of various tools to the Internet [9,17,29,34,56]

Access to modern hardware equipment [5,12,17,23,25,38,40,42,52,54]

Existence of appropriate software infrastructure [5,12,17,23,25,38,40,42,52,54,57]

Possibility of storing data related to energy production and consumption [17,22,23,25,38,40,52]

Sharing information on units covered by energy consumption [11,17,25,42,58]

Standardization of required technologies (Localization) [2,4,25,27,30,34,46,58]

Technological integration [2,4,25,27,30,34,41,46,58]

Technical support and system monitoring [9,12,25,26,31,57]

Network control in a wide range [9,11–13,27,28,53]
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Table 1. Cont.

Axial Category Primary (Open) Code Sources

Cultural and
social factor

Awareness of the Internet culture and optimal energy management [6,8,21,40]

Exchanging information in society and raising public awareness [29,37,56]

Building trust in society and transparency in sharing data and information on
energy consumption [1,39,43,48]

Identifying new sources of awareness [4,29]

Paying attention to indigenous and social cultures [30,41,58]

Organizational interactions for integration of data and information [7,23,24,33,45]

Safety Factors

Existence of information security technologies to prevent cyber-attacks and hacker intrusions [7,23,33,36,40,48]

Data security, content protection, and prevention of forgery and misuse of
information sources [6,8,23,25,32,33]

Access to information and data based on roles and responsibilities [9,11,28,38]

Prevention of identity forgery or improper authentication, protection of the network against
the intrusion of unauthorized agents [9,11,23,28]

Continuous auditing and monitoring of security events [23,25,45]

Securing hardware and software equipment [4,9,11,23,33]

Technological
resources

Blockchain technology and decentralized governance [2–4,6,43,51,57]

Essential technologies for energy replacement [23,25,27,32,34,41,58]

Technology for storing energy (energy storage batteries) [4,9,26,33,57]

Smart technology of multi-energy (integration of various energy sectors) [1,28,38,41]

Multiple renewable energy sources alternatives [9,25–27,32,34,41,58]

Renewable energy production technologies [9,22,25–27,32,34,41,58]

Large-scale supply of renewable energies [6,37,52]

Smart technology of traffic and transportation networks [5,9]

Knowledge
resources

Knowledge and expertise in planning a wide range of Internet of Energy networks [11,45]

Domestic research and development [45]

Knowledge and expertise in the field of artificial intelligence [45]

Knowledge and expertise in information and communication technology [45]

International knowledge and expertise in sustainable development [45]

International knowledge and expertise in renewable energy [4,9]

International knowledge and expertise of IoT [29,31]

International energy management knowledge [4]

Maintenance knowledge and expertise [4]

Learning style

Learning by doing [5]

Learning by Interacting [5,9]

Learning by using [5,9]

Organizational science and technology system [20]

Management
factors

Required determination and commitment for implementation of the Internet of Energy on a
macro level

[6,11,12,15,17,21,22,25,33,35,42,
50]

The existence of a flat organizational structure [6,9,11,20,21,25,26,30]

Management of uncertainty [1,2,8,9,20,25,26,32,59]

Demand response management of consumers [9,20,24,25,35,49,53,60]

Consideration of risks associated with the implementation of new technologies [8,9,11,12,25,30,37,43,51–53]

Application of a whole system approach [1,4,11,21,24,27,28,30,37]

Strategic infrastructure planning (Strategic investments) [2,5,6,32,39,41,44,45,55,58]

Planning for energy management of smart homes [3,22,24,39,44,45,61]

Planning for energy management of smart cities [3,24,36,38,39,60,61]
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4. Research Method

The present study is practical in its purpose and descriptive-explorative in its method-
ology. In the first step of the research, the Sandelowski and Barroso method (2007) [62]
was used to identify the components of the implementation of the concept of IoE. Meta-
synthesis is a qualitative method based on a systematic review of literature to gain in-depth
knowledge of the phenomenon under study. With the expansion of research in various
fields of science and the confrontation of the scientific community with an explosion of in-
formation, researchers have, in practice, come to the conclusion that it is mostly not possible
to be aware, up-to-date, and a master in all aspects of a field. Therefore, synthesis methods
that offer the essence of research on a particular subject in a systematic and scientific way to
researchers have become increasingly popular (Tables S1 and S2). Meta-synthesis evaluates
other research; hence, it is called an evaluation of evaluations. Meta-synthesis is not merely
an integrated review of the literature, but an analysis of the findings of these studies [63].

In the second step of the research, a futuristic approach called structural analysis was
used. The potential of this method in using qualitative data along with quantitative data
has made it one of the most widely used methods in research about the future. In this
step, the matrix of analysis of the interaction of variables is completed by forming a panel
consisting of eight experts in the field of energy. Then, in the framework of MIKMAK
forecasting software, the influence and dependence (direct and indirect) of each variable
on others are measured and strategic or key driving variables are obtained. MIKMAK
software is one of the best software designed to implement structural analysis. The output
of the software, in the form of tables and graphs, can help in understanding the system
relationships and how they will work in future [64].

5. Research Findings

5.1. Meta-Synthesis

In this step, papers and studies conducted from 2010 to 2021 in the field of IoE were
studied and analyzed. The Web of Science, Science Direct, Google Scholar, Springer,
Emerald, ResearchGate, and Scopus databases were used to collect and categorize papers
based on content, using two keywords of “Internet of Energy” and “Energy Internet” in
the title; a total of 417 studies were found. Then, the process of reviewing papers, including
the title, abstract, content, and research methodology began, the purpose of which was
to exclude studies that were not relevant to the research questions. The review process is
summarized in Figure 1.

The next step was to evaluate the methodological quality of the research, which
aimed to eliminate studies in which the researcher did not trust the findings. The most
commonly used tool for assessing the quality of primary studies in qualitative research is
the Critical Appraisal Skills Program (CASP), which helps identify the accuracy, validity,
and importance of qualitative studies by asking ten questions. These questions focus on the
following: 1. Research objectives, 2. Methodological logic, 3. Research design, 4. Sampling
method, 5. Data collection, 6. Reflectivity, 7. Ethical considerations, 8. Accuracy of data
analysis, 9. Clarity of results and findings, and 10. Value of research [63].

In using this tool, studies were assigned a score of 1 to 5 on the above criteria after
being studied. Based on the 50-point scale of CASP, the researcher proposed a scoring
system according to Table 2 and categorized the studies based on their methodological
quality. Studies that scored below the “good” category (score 31) were excluded from
the project [65].

Table 2. Scoring system of the Critical Appraisal Skills Program (CASP).

Very Weak Weak Medium Good Very Good

0–11 11–20 21–30 31–40 41–50
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Figure 1. Screening process of papers.

In this study, the 55 studies that had survived the first round of filtering based on
title, abstract, content, and research methodology were then evaluated using the CASP
system (Table 3). After assigning scores to each study based on the given criteria and
eliminating studies with a score of less than 31, 55 studies were finally accepted to enter
the evaluation process, of which 11 studies were assigned to the “very good” category and
44 studies to the “good” category. Therefore, after a few rounds of filtering, 362 papers
were eliminated from the initial 417 and 55 found their way to analysis (Figure S1, Table 4).
After evaluating the papers, the data were categorized as primary codes (open code) with
reference to the source and frequency. Each of the codes was then classified according to
their meaning in terms of similar concepts, which helped identify the main components of
the research Table 1.

Table 3. The result of the Critical Appraisal Skills Program (CASP).
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C01 4 4 3 4 4 4 5 3 3 4 38

C02 3 4 4 3 3 2 5 3 2 2 31

C03 3 3 4 2 4 3 5 4 5 4 37

C04 3 4 5 4 3 4 5 4 4 4 40

C05 5 4 4 3 4 4 5 3 4 3 39

C06 5 4 5 4 4 5 5 4 4 4 44

C07 2 3 2 4 4 3 5 3 3 3 32

C08 3 3 4 3 3 3 5 3 2 3 32
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Table 3. Cont.
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C09 3 4 3 3 2 3 5 4 3 2 32

C10 4 4 3 4 3 3 5 4 3 4 37

C11 2 4 3 2 3 3 5 4 2 3 31

C12 2 3 2 4 3 4 5 3 4 3 33

C13 2 3 4 4 3 2 5 4 3 2 32

C14 3 3 2 2 2 3 5 3 2 2 27

C15 3 4 4 3 4 4 5 4 4 3 38

C16 3 4 4 4 4 4 5 3 4 4 39

C17 4 3 3 3 3 4 5 4 4 4 37

C18 4 4 4 4 4 4 5 4 4 4 41

C19 4 4 4 4 3 4 5 4 4 4 40

C20 2 3 2 3 4 3 5 2 3 2 29

C21 3 4 3 4 4 3 5 4 4 3 37

C22 2 3 4 4 3 4 5 3 4 3 35

C23 5 5 4 5 4 4 5 5 4 4 45

C24 4 3 2 3 2 3 5 3 3 2 30

C25 4 4 4 3 4 4 5 4 3 4 39

C26 2 3 3 4 4 3 5 4 3 3 34

C27 3 3 4 2 3 3 5 2 3 2 30

C28 5 4 3 4 4 4 5 4 4 4 41

C29 5 4 4 4 4 4 5 4 4 4 42

C30 3 3 4 3 4 4 5 4 3 3 36

C31 5 5 4 4 4 4 5 4 4 4 43

C32 4 4 4 5 4 4 5 4 4 4 42

C33 4 4 3 4 4 3 5 4 4 4 39

C34 3 4 4 3 4 3 5 4 3 3 36

C35 4 4 4 4 3 4 5 4 3 3 38

C36 3 3 3 4 4 4 5 3 3 3 35

C37 4 4 3 3 3 4 5 4 3 4 37

C38 5 4 4 4 3 4 5 4 4 3 40

C39 4 4 4 4 4 4 5 4 4 4 41

C40 4 4 4 4 3 4 5 4 4 4 40

C41 2 3 2 3 4 3 5 2 3 2 29

C42 3 4 3 4 4 3 5 4 4 3 37

C43 2 3 4 4 3 4 5 3 4 3 35

C44 5 5 4 5 4 4 5 5 4 4 45

C45 4 3 2 3 2 3 5 3 3 2 30
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C46 4 4 4 3 4 4 5 4 3 4 39

C47 2 3 3 4 4 3 5 4 3 3 34

C48 3 3 4 2 3 3 5 2 3 2 30

C49 5 4 3 4 4 4 5 4 4 4 41

C50 4 4 3 4 4 4 5 3 3 4 38

C51 3 4 4 3 3 2 5 3 2 2 31

C52 3 3 4 2 4 3 5 4 5 4 37

C53 3 4 5 4 3 4 5 4 4 4 40

C54 5 4 4 3 4 4 5 3 4 3 39

C55 5 4 5 4 4 5 5 4 4 4 44

Table 4. List of papers evaluated using the Critical Assessment Skills Program (CASP).

Paper Code Title

C01 Delivering future-proof energy infrastructure

C02 Internet of Energy (IoE) and High-Renewables Electricity System Market Design

C03 Distributed network security framework of energy Internet based on Internet of Things

C04 Optimal energy management strategies for Energy Internet via deep reinforcement learning approach

C05 Design and optimization of integrated energy management network system based on Internet of
Things technology

C06 Blockchain for Internet of Energy management: Review, solutions, and challenges

C07 Does Internet development improve green total factor energy efficiency? Evidence from China

C08 Using the Internet of Things in smart energy systems and networks

C09 Research on the Medium and Long Term Development Framework of Smart Grid under the Background
of Energy Internet

C10 An Internet of Energy framework with distributed energy resources, prosumers and small-scale virtual power
plants: An overview

C11 Energy Internet—A New Driving Force for Sustainable Urban Development

C12 Energy aware smart city management system using data analytics and Internet of Things

C13 Energy management solutions in the Internet of Things applications: Technical analysis and
new research directions

C14 Entropy theory of distributed energy for Internet of Things

C15 Centralized, decentralized, and distributed control for Energy Internet

C16 Application and assessment of Internet of Things toward the sustainability of energy systems: Challenges
and issues

C17 Energy Internet in China

C18 Energy Internet—Towards Smart Grid 2.0

C19 An Internet of Things based energy efficiency monitoring and management system for machining workshop
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Table 4. Cont.

Paper Code Title

C20 Energy management based on Internet of Things: practices and framework for adoption in
production management

C21 Energy Internet blockchain technology

C22 Energy Management Strategies for RES-enabled Smart-grids empowered by an Internet of Things
(IOT) Architecture

C23 The Internet of Energy: Smart Sensor Networks and Big Data Management for Smart Grid

C24 Internet of Things Role in Renewable Energy Resources

C25 Optimal sharing energy of a complex of houses through energy trading in the Internet of Energy

C26 Does the Internet development affect energy and carbon emission performance?

C27 Digitalization and energy: How does Internet development affect China’s energy consumption?

C28 Dynamic assessment of Energy Internet’s emission reduction effect—a case study of Yanqing, Beijing

C29 An overview of “Energy + Internet” in China

C30 Energy Internet: The business perspective

C31 Modeling of the Internet of Energy (IoE) for Optimal Energy Management with an Interpretive Structural
Modeling (ISM) Approach

C32 Internet of Things (IOT) and the Energy Sector

C33 The Internet of Energy: A Web-Enabled Smart Grid System

C34 A Review of Internet of Energy Based Building Energy Management Systems: Issues and Recommendations

C35 Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

C36 Towards an Internet of Energy

C37 Discussion on Energy Internet and Its Key Technology

C38 An integrated approach for multi-objective optimization and MCDM of Energy Internet under uncertainty

C39 A comprehensive review of Energy Internet: basic concept, operation and planning methods, and
research prospects

C40 Energy Harvesting for the Internet-of-Things: Measurements and Probability Models

C41 Cyber security framework for Internet of Things-based Energy Internet

C42 The Energy and Emergy of the Internet

C43 Optimal Charging Control of Energy Storage and Electric Vehicle of an Individual in the Internet of Energy
with Energy Trading

C44 Information and resource management systems for Internet of Things: Energy management, communication
protocols, and future applications

C45 Research on operation and management muti-node model of mega city Energy Internet

C46 Energy Internet forums as acceleration phase transition intermediaries

C47 Energy-Efficient Device Architecture and Technologies for the Internet of Everything

C48 Internet of Things for Modern Energy Systems: State-of-the-Art, Challenges, and Open Issues

C49 An Overview of Internet of Energy (IoE) Based Building Energy Management System

C50 Integration of electric vehicles and management in the Internet of Energy

C51 Green Energy Management of the Energy Internet Based on Service Composition Quality

C52 IoT Technologies for Augmented Human: a Survey

C53 The Development of the Energy Internet of Things in Energy Infrastructure

C54 Energy Internet and We-Energy

C55 Architecture of the Internet of Energy Network: An Application to Smart Grid Communications
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5.1.1. Analytical Quality Control

In qualitative research, the concept of trustworthiness is used instead of the concepts
of reliability and validity. In this regard, to control the extracted concepts, the coding of the
two researchers was compared. To evaluate the degree of agreement between two coders
(by two people or using two tools or at two different times) and, therefore, to evaluate
internal reliability, the Kappa interclass correlation was used in SPSS. The kappa index
value is calculated to be 0.87, which is in the range of excellent agreement (0.81–1) [66].

5.1.2. Shannon Entropy

The steps for data analysis based on the Shannon entropy method are as follows:

• First, the frequency of each of the identified indicators should be determined based on
content analysis:

• The desired frequency matrix should be normalized. For this purpose, the linear
normalization method is used (Equation (1)):

nij =
xij

∑ xij
(1)

• The entropy value of each indicator (Ej) is calculated based on Equation (3):

k =
1

Ln(a)
; a = Number of indicators (2)

Ej = −k ∑
[
nijLN

(
nij
)]

(3)

• The significance coefficient of each indicator must be calculated. Whatever Wj has a
higher value is more significant (Equation (4)):

Wj =
Ej

∑ Ej
(4)

To calculate the weight of each of the components, the total weight of its codes was
calculated, and the ranking took place based on the weights obtained in Table 5.

Table 5. Determining significance and emphasis of the studied research on the effective factors.
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Rules and
regulations

Defining institutional rules and regulations
related to the IoE, defining crimes and penalties
related to their violation

5 −0.0536 0.0122 0.0126 8

3

Monitoring the proper implementation and
enforcement of these laws 3 −0.0359 0.0081 0.0085 10

Protecting intellectual property rights in the
production and dissemination of information 3 −0.0359 0.0081 0.0085 10

Creating protection laws 5 −0.0536 0.0122 0.0126 8

Creating the appropriate legal and
political environment 4 −0.0451 0.0102 0.0106 9

Having laws and policies related to information
security on confidential data 6 −0.0617 0.0140 0.0145 7
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Table 5. Cont.
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Having a regulatory system and defining its role 4 −0.0451 0.0102 0.0106 9

Creating encouraging laws and documents to
raise awareness 3 −0.0359 0.0081 0.0085 10

Developing a national vision of the IoE 6 −0.0617 0.0140 0.0145 7

Setting standards and the appropriate
frameworks 3 −0.0359 0.0081 0.0085 10

Facilitating insurance laws related to IoE
entrepreneurs 2 −0.0259 0.0059 0.0061 11

Facilitating cooperation rules of domestic and
foreign companies in the field of IoE 7 −0.0694 0.0157 0.0163 6

Individual
and human
factors

Acceptance of changes and comprehensive
participation in implementation and application 3 −0.0359 0.0081 0.0085 10

7

Recognizing the technological capability and the
capacity to benefit from new technologies 3 −0.0359 0.0081 0.0085 10

Comprehending the technology’s usefulness 2 −0.0259 0.0059 0.0061 11

Understanding the technology’s ease
of application 2 −0.0259 0.0059 0.0061 11

Recognizing the social consequences (social role)
of technology 3 −0.0359 0.0081 0.0085 10

Training and benefiting from experts in the field
of the new technology 4 −0.0451 0.0102 0.0106 9

Training and raising users’ awareness about
security threats and vulnerabilities 3 −0.0359 0.0081 0.0085 10

Financing

Gathering the required funds to invest in
transformative energy and digital technologies 8 −0.0767 0.0174 0.0181 5

6
Gathering the required funds for research and
training of human resources 7 −0.0694 0.0157 0.0163 6

Gathering the required funds for monitoring
and maintenance 6 −0.0617 0.0140 0.0145 7

Having a network economy 5 −0.0536 0.0122 0.0126 8

Technological
infrastructure

Existence of powerful microprocessors and
Internet servers in the country 10 −0.0904 0.0205 0.0213 3

1

Bandwidth 8 −0.0767 0.0174 0.0181 5

Free access of the final consumers to the Internet 6 −0.0617 0.0140 0.0145 7

Online monitoring of energy consumption 6 −0.0617 0.0140 0.0145 7

Optimization of energy production infrastructure 5 −0.0536 0.0122 0.0126 8

Optimization of energy conversion mechanisms 4 −0.0451 0.0102 0.0106 9

Systematic processes for energy distribution 7 −0.0694 0.0157 0.0163 6

Communication between the energy supply and
consumption chains 6 −0.0617 0.0140 0.0145 7

Connection of various tools to the Internet 7 −0.0694 0.0157 0.0163 6
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Access to modern hardware equipment 10 −0.0904 0.0205 0.0213 3

Existence of appropriate software infrastructure 11 −0.0969 0.0220 0.0228 2

Possibility of storing data related to energy
production and consumption 7 −0.0694 0.0157 0.0163 6

Sharing information on units covered by
energy consumption 5 −0.0536 0.0122 0.0126 8

Standardization of required
technologies (Localization) 8 −0.0767 0.0174 0.0181 5

Technological integration 9 −0.0837 0.0190 0.0197 4

Technical support and system monitoring 6 −0.0617 0.0140 0.0145 7

Network control in a wide range 7 −0.0694 0.0157 0.0163 6

Cultural and
social factors

Awareness of the Internet culture and optimal
energy management 4 −0.0451 0.0102 0.0106 9

7

Exchanging information in society and raising
public awareness 3 −0.0359 0.0081 0.0085 10

Building trust in society and transparency
in sharing data and information on
energy consumption

4 −0.0451 0.0102 0.0106 9

Identifying new sources of awareness 2 −0.0259 0.0059 0.0061 11

Paying attention to indigenous and social cultures 3 −0.0359 0.0081 0.0085 10

Organizational interactions for integration of data
and information 5 −0.0536 0.0122 0.0126 8

Safety factors

Existence of information security technologies to
prevent cyber-attacks and hacker intrusions 6 −0.0617 0.0140 0.0145 7

5

Data security, content protection, and prevention
of forgery and misuse of information sources 6 −0.0617 0.0140 0.0145 7

Access to information and data based on roles
and responsibilities 4 −0.0451 0.0102 0.0106 9

Prevention of identity forgery or improper
authentication, protection of the network against
the intrusion of unauthorized agents

4 −0.0451 0.0102 0.0106 9

Continuous auditing and monitoring of
security events 3 −0.0359 0.0081 0.0085 10

Securing hardware and software equipment 5 −0.0536 0.0122 0.0126 8

Technological
resources

Blockchain technology and decentralized
governance 7 −0.0694 0.0157 0.0163 6

4

Essential technologies for energy replacement 6 −0.0617 0.0140 0.0145 7

Technology for storing energy (energy storage
batteries) 5 −0.0536 0.0122 0.0126 8

Smart technology of multi-energy (integration of
various energy sectors) 4 −0.0451 0.0102 0.0106 9

Multiple renewable energy sources alternatives 8 −0.0767 0.0174 0.0181 5
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Renewable energy production technologies 9 −0.0837 0.0190 0.0197 4

Large-scale supply of renewable energies 3 −0.0359 0.0081 0.0085 10

Smart technology of traffic and
transportation networks 2 −0.0259 0.0059 0.0061 11

Knowledge
resources

Knowledge and expertise in planning a wide
range of Internet of Energy networks 2 −0.0259 0.0059 0.0061 11

8

Domestic research and development 1 −0.0146 0.0033 0.0034 12

Knowledge and expertise in the field of
artificial intelligence 1 −0.0146 0.0033 0.0034 12

Knowledge and expertise in information and
communication technology 1 −0.0146 0.0033 0.0034 12

International knowledge and expertise in
sustainable development 1 −0.0146 0.0033 0.0034 12

International knowledge and expertise in
renewable energy 2 −0.0259 0.0059 0.0061 11

International knowledge and expertise of IoT 2 −0.0259 0.0059 0.0061 11

International energy management knowledge 1 −0.0146 0.0033 0.0034 12

Maintenance knowledge and expertise 1 −0.0146 0.0033 0.0034 12

Learning style

Learning by doing 1 −0.0146 0.0033 0.0034 12

9
Learning by Interacting 2 −0.0259 0.0059 0.0061 11

Learning by using 2 −0.0259 0.0059 0.0061 11

Organizational science and technology system 1 −0.0146 0.0033 0.0034 12

Management
factors

Required determination and commitment for
implementation of the Internet of Energy on a
macro level

12 −0.1032 0.0234 0.0243 1

2

The existence of a flat organizational structure 8 −0.0767 0.0174 0.0181 8

Management of uncertainty 9 −0.0837 0.0190 0.0197 5

Demand response management of consumers 8 −0.0767 0.0174 0.0181 5

Consideration of risks associated with the
implementation of new technologies 11 −0.0969 0.0220 0.0228 2

Application of a whole system approach 9 −0.0837 0.0190 0.0197 4

Strategic infrastructure planning
(Strategic investments) 10 −0.0904 0.0205 0.0213 3

Planning for energy management of smart homes 7 −0.0694 0.0157 0.0163 6

Planning for energy management of smart cities 7 −0.0694 0.0157 0.0163 6

5.2. Structural Analysis Using MICMAK Software

In this step, the ten components extracted in the previous step are placed in a 10 by
10 matrix and evaluated, based on the opinion of experts, by being assigned numbers
between 0–3 in accordance with Table 6. The final availability matrix after expert scores
is shown in Figure 2. Based on the findings obtained from Table 7, it can be said that the
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matrix filling index is 88%, which indicates the high degree of connectivity and influence
of the identified variables with and on each other.

Table 6. Evaluation table of relationships between variables.

Effectless Low Effect Medium Effect High Effect

Zero One Two Three

 

Figure 2. Final availability matrix of research variables.

Table 7. Preliminary analysis of interaction matrix.

Indicators
Matrix

Size
Number of
Iterations

Number of
Zeros

Number of
Ones

Number of
Twos

Number of
Threes

Total Fillrate

Values 10 2 12 39 40 9 88 88%

5.2.1. Determining the Degree of Direct Influence and Dependence of Components

Based on the matrix of direct effects, the sum of rows and columns of the matrix
indicates the degree of influence and dependence of the components, respectively. As can
be seen in Table 8, the component of management factors has the greatest influence on
other factors, and the components of laws and regulations and technological infrastructure
come in second and third places. Based on the software results on the level of dependence,
the component of technological infrastructure has been dependent on other components
the most; management factors and security factors come in second and third in terms
of dependence.

Table 8. The degree of direct influence and dependence of components.

Rank Components Influence Components Dependence

1 Management Factors 19 Technological Infrastructure 18

2 Rules 18 Management Factors 18

3 Technological Infrastructure 17 Security Factors 17

4 Individual and Human Factors 15 Knowledge Resources 16

5 Financing 15 Financing 15

6 Security Factors 13 Cultural and Social Factors 14

7 Technological Resources 13 Technological Resources 14

8 Knowledge Resources 13 Learning Style 14

9 Cultural and Social Factors 12 Individual and Human Factors 11

10 Learning Style 11 Rules 9

Totals 146 Totals 146
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5.2.2. Location of Components in the Zones of the Influence and Dependence Map

Variables are divided into four types based on their location in one of the four areas of
the influence-dependence map Figure 3:

(1) Zone (1) components (linkage or strategic variables): These components have two com-
mon characteristics of high degrees of influence and dependence, and any small
change in these components will cause fundamental changes in the system. Based
on the output of MICMAK software, components of technological infrastructure and
management factors are located in this area.

(2) Zone (2) components (influential variables): Zone 2 components influence the system
more than they are dependent on it. The rules and regulations component is located
in this area.

(3) Zone (3) components (Independent variables): The components of this zone have, on
average, lower degrees of influence and dependence. A change in these variables does
not cause a serious change in the system. Individual and human factors fall within
this zone.

(4) Zone (4) components (dependent variables): The components of this zone have little
influence on the system and are themselves subject to changes in other variables.
The components in this zone include financing, technological resources, knowledge
resources, security factors, cultural and social factors, and learning style.

Figure 3. Diagram of system stability/instability.

5.2.3. Analyzing the Graph of Influence

The graph of influence shows the relationships between the components and how
they influence each other. This graph is shown in the form of red and blue lines, the end of
which is shown by an arrow and indicates the direction of the component’s influence. Red
lines indicate strong influence of factors on each other and blue lines, with differences in
thickness, showing moderate to weak relationships (Figure 4).

The status of relationships in the graph of influence indicates that the variables of
management factors, laws and regulations, and technological infrastructure have been the
source of the most severe influences and increased their role in the system. Management
factors, technological infrastructure, and security factors are also strongly influenced by
other components of the system. Table 9 shows the share of each component in influence
and dependence and Figure 5 shows the movement of each component.
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Figure 4. The influence cycle graph.

Figure 5. Movement of components in direct and indirect influence and dependence.
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Table 9. Arrangement of components with the largest contribution to direct influence and dependence.

Rank Label
Direct

Influence
Label

Direct
Dependence

Label
Indirect

Influence
Label

Indirect
Dependence

1 MF 1301 TI 1232 MF 1268 TI 1224

2 Ru 1232 MF 1232 Ru 1239 MF 1181

3 TI 1164 SF 1164 TI 1128 SF 1139

4 IHF 1027 KR 1095 FI 1031 KR 1082

5 FI 1027 FI 1027 IHF 1004 FI 1005

6 SF 890 CSF 958 SF 921 TR 1000

7 TR 890 TR 958 TR 894 LS 965

8 KR 890 LS 958 KR 883 CSF 964

9 CSF 821 IHF 753 CSF 857 IHF 782

10 LS 753 Ru 616 LS 769 Ru 653

6. Discussion and Conclusions

The Internet of Energy (IoE) technology as a novel solution has changed the meth-
ods of production, transmission, and consumption of energy and has affected human
life. IoE plays an essential role as an efficient tool to increase energy efficiency, recover
the economy of energy and sustainable development. In order to answer the research
questions, two approaches of meta-synthesis and MICMAC analysis were used. First,
after the screening process of papers based on Critical Appraisal Skills Program (CASP),
relevant papers were identified and carefully reviewed. Then, the research parameters were
coded using MAXQDA software to determine their frequency and classification. The kappa
coefficient is a statistic in qualitative research that shows the robustness of the methodology
by measuring the agreement of experts on the extracted codes. In this research, the Kappa
coefficient value is 0.87, which is in the excellent range and indicates the reliability of the
method. There is also a consensus among experts in the field of IoE about the research
parameters. In the next step, the importance of each component was determined using
the Shannon entropy and MICMAC structural analysis methods. In the Shannon entropy
method, based on the frequency of components and calculating the significance coefficient
for each of them, the components can be ranked. In the MICMAK structural analysis
method, the influence and dependence levels of the components were obtained, which
resulted in determining the strategic components that have the largest share in influence
and dependence. In other words, the accuracy of the results can be ensured by comparing
the results obtained from the Shannon entropy and MICMAK structural analysis methods.
The results show that 82 indicators under the umbrella of ten axial components are involved
in the implementation of IoE: rules and regulations, individual and human factors, financ-
ing, technological infrastructure, cultural and social factors, security factors, technological
resources, knowledge resources, learning style, and managerial factors. In the Shannon
entropy method, technological infrastructure (1), management factors (2), rules and regula-
tions (3), technological resources (4), security factors (5), financing (6), cultural and social
factors and individual and human factors (7), knowledge resources (8), and learning style
(9) are the most significant, respectively. In MICMAK structural analysis, the components
of management factors (1), technological infrastructure (2), security factors and financing
(3), knowledge resources (4), rules and regulations and technological resources (5), cultural
and social factors and individual and human factors (6), and learning style (7) have the
largest share in influence and dependence, respectively. Conclusion: The two components
of management factors and technological infrastructure are the most important in both
methods and can be considered as key and strategic components, which is consistent
with the findings of researchers, such as Taghavi et al., 2021 [17]; Miglani et al., 2020 [4];
Hua et al., 2019 [5]; Qiu et al., 2019 [19]; Sun, 2019 [45]; Lombardi et al., 2018 [47]; and
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Town et al., 2018 [38]. On the other hand, individual and human factors and cultural and
social factors together are of equal importance, which is in accordance with the findings
of Umer et al., 2019 [46]; Pirmagomedov and Koucheryavy, 2019 [36]; and Mahapatra,
2018 [41]. In both methods, the learning style has less priority.

One of the important points in qualitative research is that the basis of such research
is the opinions of experts. Undoubtedly, the emergence of new studies in the area of IoE
introduce new parameters that keep the way open for future research.

Today, Scenario-Based Strategic Planning (SBSP) is one of the most important and key
tools in the field of future studies that has attracted the attention of many researchers. SBSP
outlines a more realistic future for individuals and helps them make future decisions. The
use of this tool requires the identification of key drivers in the subject under study. The
output of this research can be a good criterion for future works of researchers. Therefore, it
is suggested that researchers use the results of this study on the subject of future studies
regarding the IoE. Blockchain technology is another emerging technology that is influential
in various fields such as energy. In their study, Azizi et al. (2021) [67] mentioned the use of
Internet of Things (IoT) and blockchain in the smart supply chain. In addition, as another
suggestion to researchers, studying the application of blockchain technology in the field of
IoE is another interesting topic that can pave the way for future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142013180/s1, Figure S1: PRISMA 2020 flow diagram for
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Abstract: Making forecasts for the development of a given process over time, which depends on many
factors, is in some cases a difficult task. The choice of appropriate methods—mathematical, statistical,
or artificial intelligence methods—is also not obvious, given their great variety. This paper presented
a model of a forecasting system by comparing the errors in the use of time series on the one hand, and
artificial neural networks on the other. The model aims at multifactor predictions based on forecast
data on significant factors, which were obtained by automated testing of different methods and
selection of the methods with the highest accuracy. Successful experiments were conducted to forecast
energy consumption in Bulgaria, including for household consumption; industry consumption, the
public sector and services; and total final energy consumption.

Keywords: electricity consumption; forecast energy consumption; forecasting system

1. Introduction

The forecasting of the future is extremely important for the effective management of
a process or system. Forecasting is about predicting the future as accurately as possible,
given all of the information available, including historical data and knowledge of any
future events that might impact the forecasts [1]. From a scientific point of view, forecasting
is a scientifically based assumption about the future state and development of processes,
events, indicators, etc. [2]. Considering the possibility of the existence of many different
forecasts for the development of a given process in the future, forecasting can be defined
as a reasonable assumption of possible options for development in a given area and the
probability that they will be realized.

The synergy between mathematics and computer science has led to the development
of a wide variety of algorithms, approaches, methods, and tools for forecasting. Widely
used, with application in various fields are mathematical and statistical methods including
regression and clustering [1,3], time series [4,5], polynomial approximations [6], fuzzy
collaborative methods [7], as well as many methods for artificial intelligence predicting,
such as machine learning [8,9], etc. On the one hand, this diversity provides an opportunity
to choose a specific approach to solving a given task, but, on the other hand, it makes it
difficult to find the most effective solution.

In the process of our work on multifactor and multi-step forecasting of energy con-
sumption in the Republic of Bulgaria, we came to the need to forecast many socio-economic
factors through which to make the final forecast. The functions, by which the individual
factors change, as well as the energy consumption, can have a variety of linear and nonlin-
ear forms, where the appropriate forecasting methods for each of them may be different.
Determining the most accurate forecast values for the factors would have a positive effect
on the accuracy of forecasting the target value, which in our case is energy consumption.

The automation of the process of choosing the most effective method for any individual
factor or target value contributes to the acceleration of the process and the improvement of
the forecast accuracy. Finding the most effective forecasting method requires experimenting
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with several different approaches that are combined and compared. Making more effort to
solve the prognostic task could save future effort, time, and money. Fast, but essentially
inaccurate forecasts often lead to unreasonable investments or unrealized opportunities.

2. Predicting Electricity Consumption—State of the Art

Whether the forecast is long-term, medium-term, or short-term, predicting electricity
consumption has a key role to play in investment planning, the introduction of new
capacities or the decommissioning of unnecessary ones, and the assessment of the behavior
of the entire economic system. Effective modeling of electricity consumption is becoming
a vital task aimed at avoiding costly mistakes in unreasonable investments, shutting
down important facilities, improperly scheduled repairs or short-sightedness in exports or
imports. Therefore, we should not be surprised that in the literature on the subject there
are many proposed options for dealing with forecasting problems.

Official studies focused on the development of the energy sector in Bulgaria, factors
influencing electricity consumption and approaches for forecasting the consumption and
factors have been conducted by teams from the Bulgarian Academy of Sciences (BAS) and
Risk Management Lab. Traditional methods such as correlation and regression analyses
have been used in both studies.

In the research, conducted in BAS, a basic and in-depth analysis has been made of the
impact of individual factors influencing electricity consumption. Taken into consideration
are the country’s gross domestic product, gross value added by economy sectors, population
size, number of employees, income, prices, changes in temperature until 2040 according to
the Bulgarian National Institute of Meteorology and Hydrology, etc. Forecasts have been
made based on three different scenarios according to different expectation for changes in
factors [10].

The team of Risk Management Lab creates mathematical and statistical models for
forecasting the electricity balance (including as an element of itself and forecasting electricity
consumption). The study examines specific factors in terms of electricity consumptions by
households and the industry [11].

Due to the great social and economic importance of forecasting electricity consumption,
many scientists have proposed different types of forecasting models to solve the problem
in the last few decades. The methods for forecasting electricity consumption can be defined
in several categories:

• Statistical models for analysis—correlation methods and regression models—BAS
strategy [10], Risk Management Lab [11], Mohamed and Bodger [12];

• Time series—Lee, Gaik and Yee [13], Sun, Zhang et al. [14], Chou and Tran [15];
• Granger gray forecasting systems—Ding, Hipel and Dang [16], Lee and Tong [17],

Huang, Wang, et al. [18];
• Neural networks—Chung [19], Chernykh, Chechushkov and Panikovskaya [20], Khos-

ravani, Castilla, et al. [21], Yoo and Myriam [22], Hu and Yi-Chung [19], Jahn [23];
• Advanced machine learning methods—Bouktif, Fiaz, Ouni and Serhani [24], Alamani-

otis, Bargiotas and Tsoukalas [25], Alamaniotis [26], Chou, Truong [27], Kong, Dong,
Jia, Hill, Xu and Zhang [28], Moradzadeh, Moayyed, Zakeri, Mohammadi-Ivatloo and
Aguiar [29];

• Bagging and boosting methods—Khwaja, Anpalagan, Naeem and Venkatesh [30],
Khwaja, Zhang, Anpalagan and Venkatesh [31], Cao, Wan, Zhang, Li and Song [32];

• Hybrid methods—Karatasou, Santamouris and Geros [33], Cervená and Schneider [34],
Farsi, Amayri, Bouguila and Eicker [35], Chung, Gu and Yoo [36], Sajjad, Khan, Ullah,
Hussain et al. [37], Alamo, Medina, Ruano et al. [38] etc.

Each of the considered approaches has its advantages and disadvantages in different
specific tasks and situations. This shows that the creation of an automated forecasting
system in which multiple forecasting models can be implemented and compared could
bring many benefits in forecasting not only electricity consumption but also other quantities.
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3. Materials and Methods

3.1. Forecasting Process

In the general case, the solution of forecasting tasks is performed in a similar way and
the process can be reduced to several stages—data collection and processing, a study of
solution methods, solution, and analysis of the results [1]. The algorithm is iterative and
individual stages can be performed and overlap repeatedly over time.

Data collection is often associated with preliminary research in the subject area, which
provides additional information related to the set task. At this stage, an idea of the possible
factors influencing the predicted values is formed. In the best case, the data on the selected
factors are provided by the stakeholder or can be collected from one or more sources. In
other cases, new technical equipment and software applications must be built in order to
collect them.

The merging and synchronization of data by time, location, seasons, or other criteria
is an integral activity when using multiple data sources providing data for various factors.

Data analysis and processing include activities to check and clear incorrect input data;
conversion of data into structures suitable for modeling; and graphical representation of
the data through which trends, periodicity, seasonality, etc., can be detected. In some cases,
data behavior may be affected by various methodological and technological differences in
data collection, as well as social, societal, climatic, or other changes. This implies the use of
various methods for analysis and subsequent forecasting of the formed segments.

In the stage of research of methods for solving the problem of forecasting, various
existing methods and algorithms are considered or specific ones are created. Both standard
statistical and artificial intelligence methods and models can be used as forecasting methods.
The number of methods and their use may depend on the requirements of the specific task,
on factors related to the environment, performers, etc. An important part of this stage is
the definition of indicators for evaluating the effectiveness of forecasting methods. The
evaluation of efficiency may include various parameters depending on the volume of data,
technical capabilities of computer systems, cost, speed, etc.

In the last stages, one or several of the perspective models for forecasting are selected
and applied for the solution of the problem. After evaluating the results, individual steps
can be repeated many times in order to achieve better results.

This whole process requires a lot of time and resources. This raises the question—is it
possible to fully or partially automate the forecasting process, including the conducting
of experiments with various mathematical and artificial intelligence methods, comparing
errors, and choosing the best solution? This is the purpose of our work that is presented in
this article.

3.2. Multifactor Forecasting System through Automated Selection of the Best Methods

The successful solution of the set task for forecasting energy consumption in the na-
tional power system is directly related to the correct assessment of the factors influencing
energy consumption. These are macroeconomic and demographic indicators, social param-
eters, weather conditions, and others. This work investigated several factors influencing
electricity consumption: gross domestic product; energy intensity; population size; popula-
tion income; price of electricity; expected temperatures for the respective period; energy
efficiency; and electricity consumption in a preceding period.

The automation of various stages and activities of the forecasting process requires
careful planning. Such a system must support the following basic capabilities:

• mechanisms for integrating different forecasting methods into the system;
• potential to work with a different number of factors;
• automated search and selection of effective forecasting methods when solving a

specific task.

In our proposed model for an automated search of effective forecasting methods, two
main approaches are used:
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• Complex forecasting, which is multivariate time series forecasting. It is applicable
to multifactor forecasting, in which preliminary forecasting of individual factors
is performed;

• Simple forecasting, which is univariate time series forecasting.

The long-term goal of our research is to develop a neurocybernetic system for energy
consumption forecasting that supports various mathematical and artificial intelligence
methods. In the first version, we used a neural network in its basic version. Further work
on the system involves adding other forecasting methods.

3.3. Mathematical Model of the Forecasting Task

The main approach to work in the forecasting system through artificial neural networks
can be formally presented as follows:

Let us assume we have the following event:

S = S
(→

X1,
→
X2, . . .

→
Xk

)
,

whose outcome is determined by k influencing factors
→
X1,

→
X2, . . .

→
Xk. Let a sample of

values be provided for each of the factors
→
Xi

→
Xi :

(
xi,1, xi,2, . . . xi,ji

)
, i = 1, 2, . . . k, i, ji ∈ N.

The main steps performed by the system when using complex forecasting are
the following:

(1) Automatically searches for and constructs a neural network NN with input vectors
→
Xi, approximating S with minimal error ENN ;

(2) Based on the samples
(
xi,1, xi,2, . . . xi,ji

)
forecasts the future behavior of the factors

→
Xi

using p in a number of different factors {mt}t=1...p;

(3) For each of the factors
→
Xi the efficiency of the used forecasting methods is compared

separately;

(4) For the final forecast value of
→
Xi, the forecast of the respective most effective method

is selected;

(5) Through the forecasted values of the factors
→
Xi and the method M, the outcome of the

event is predicted.

Various criteria can be used to evaluate the effectiveness of forecasting methods, such
as decision error, cost, speed, computer resources used, etc. In our study, we chose to call
the method M1 more effective than M2 if it has a lesser prediction error, i.e.,

EM1 ≤ EM2 . (1)

Condition (1) allows us to introduce a formula for the efficiency of a forecasting
method as the inversely proportional values of the error that occurs when forecasting
with it:

e f f iciency =
1

error
. (2)

Absolute error (AE) or root mean square error, obtained when forecasting on an n-
tuple data array, can be used. For single point forecasts created on (n − 1) the sample
element, the absolute forecasting error for the last element is:

AE = |Realn − Forecast(n)|, (3)

where
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• Realn is the actual value of the measured value,
• Forecast(n) is the predicted value proposed by the method used.

For multi-step forecasts for the last k elements of the data array, one of the most
popular error metrics were used—the mean absolute error (MAE), mean square error
(MSE), and symmetric mean absolute percentage error (SMAPE) [39]. They are calculated
by the formulas:

MAE =
1
k ∑n

i=n−k+1|reali − f orecast(i)|, (4)

MSE =
1
k ∑n

i=n−k+1[reali − f orecast(i) ]2. (5)

SMAPE =
100%

n

n

∑
i=1

|Forecast − Real|
|Forecast|+ |Real| (6)

3.4. System Architecture

The modules in a forecasting software system automate the main activities (Figure 1).
The user of the system accesses the individual modules through a common interface
provided by the Manager module. In addition to the connection with the user, it provides
management and control over the other modules.

 

Figure 1. Main modules and the connections between them in an automated forecasting system.

The data entry module assists the user in entering data and their initial classification.
Merging and synchronization tools are useful in cases where data from different

sources are used. At the user’s choice, through functions or parameters, the data are
converted into a format suitable for making forecasts. The data analysis is supported by
graphical tools integrated in the module and standard statistical methods, providing the
user with opportunities for additional classification and clearing of incorrect data, as well
as preparation of various data models.

The forecasting module presents an opportunity to choose one or more forecasting
methods, as well as an opportunity to evaluate the most effective method. An important
feature that the system must support is easy integration of new forecasting and evaluation
methods in the module.

The presentation module contains graphical tools for visualization of the results
obtained from the most effective method, as well as from all other methods used.

The data storage and management module provide access to various types of data that
can be used in the configuration, training of forecasting methods and their subsequent use:

• primary input–output data and initial parameters;
• data models used by forecasting methods;
• maximum permissible error criteria set by the users;
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• number and type of methods used;
• errors obtained in each of the methods;
• identifier of the most effective method;
• results from forecasting tasks, etc.

3.5. Multifactorial Multi-Step Forecasts

The forecasting module (Figure 2) provides us with two different forecasting approaches:

• simple forecasting—direct forecasting with known behavior of the factors, or if we
consider the values of the target variable as a time series;

• complex forecasting—the forecasting of the target value is based on additionally
created forecast data for the individual factors.

 

Figure 2. Forecasting module.

During the process of factor forecasting, for each of the factors the most effective
method was sought, which could be used repeatedly (Figure 3). It is appropriate to forecast
the individual factors in parallel and to use cloud computing to save time and resources.

The factor forecasting module receives a two-dimensional array of input data{
xi, j
}j=1...ni

i=1...k , containing the sample for k in number factors, each with nk values. Other
input parameters are the number of desired forecast values c ∈ N and the lower limit of
the desired e f f iciency. For each of the factors, independent forecasts were made using the
library of “prediction methods”.

The set of forecasting methods {mt}t=1...p, p ∈ N was pre-set in the software system
and could be extended. The methods include a variety of time series forecast models, mod-
els based on artificial neural networks in which parameters such as the number of neurons,
activation functions, learning algorithms and other artificial intelligence algorithms can
be changed. Models with time series and artificial neural networks are integrated in the
system so far.

Applying the forecasting methods, for each of the factors there are approximating
functions with the desired efficiency

{
ft(xi, j)

}t=1...p
j=(ni−c+1)...ni

, i = 1, 2, . . . k.
In the process of evaluating the effectiveness, using the AE, MAE, and MSE errors,

the efficiencies of the tested methods or variants of methods were compared. The most
appropriate forecasting model was selected, including the method mt1 ∈ {mt}t=1...p and its
corresponding parameters.
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Figure 3. Choice of forecasting method for each factor.

The end result of the process is a set of ordered triples <factor, factor data, se-
lected forecasting method and its corresponding parameters>, i.e.,

{(
i, xi, j, mti

)}j=1...n
i=1...k ,

mti ∈ {mt}t=1...p. When the data change, the same selected method can be used, or the
process can be restarted to search for a new method.

3.6. Algorithm for Searching for an Optimal Artificial Neural Network

To solve a task, many different neural networks can be built, with different numbers
of neurons in the hidden layer, with greater or lesser error and different result functions,
which have similar behavior in the input–output samples used. An error is not always an
indicator of the complexity of the neural network. The lesser number of neurons implies
faster and easier learning of the neural network and, subsequently, faster work. The optimal
neural network for solving a certain task has characteristics such as a minimum number of
neurons and compliance with the user-specified allowable error in training, testing, and
validation with the available input-output samples. Its effectiveness in newcomer input
data can be evaluated at a later stage. An algorithm providing capabilities for automated
construction of multiple neural networks would help choose the optimal solution.

One of our experimented approaches for creating an optimal neural network is iter-
ation over various parameters (Figure 4) needed to create neural networks: number of
neurons in the hidden layer, activation functions (Table 1), training algorithms (Table 2),
and number of training epochs. It successively changes the parameters for creating neu-
ral networks and examines the efficiency of the current neural network. The first neural
network that meets the requirements set by the user is considered optimal. Therefore, an
important part of the algorithm is how to change the iterative parameters. Since the creation
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and training of each neural network requires a certain amount of computer resources and
time, the iterative approach is appropriate to use on single-processor machines only for
tasks where finding the appropriate neural network is expected to have a relatively small
number of iterations.

 

Figure 4. A variant of a parallel algorithm for constructing an optimal neural network for forecasting.

Table 1. Used activation functions.

Function

Hyperbolic tangent sigmoid transfer function
Log-sigmoid transfer function
Hard-limit transfer function

Symmetric hard-limit transfer function
Competitive transfer function

Elliot symmetric sigmoid transfer function
Elliot 2 symmetric sigmoid transfer function

Inverse transfer function
Positive linear transfer function

Radial basis transfer function
Normalized radial basis transfer function

Saturating linear transfer function
Symmetric saturating linear transfer function

Soft max transfer function
Triangular basis transfer function

Table 2. Used training methods.

Method

Levenberg–Marquardt
Bayesian Regularization

Scaled Conjugate Gradient
BFGS Quasi-Newton

Resilient Backpropagation
Conjugate Gradient with Powell/Beale Restarts

Fletcher-Powell Conjugate Gradient
Polak–Ribiére Conjugate Gradient

One Step Secant
Variable Learning Rate Backpropagation

Levenberg–Marquardt
Bayesian Regularization
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Finding the optimal solution faster is associated with:

• Indication of parameters for changing the number of neurons. Reducing the limits
of variation in the number of neurons will reduce the total number of iterations in
the algorithm and therefore will accelerate the achievement of the final result—the
creation of an optimal neural network. In some cases, the expected number of neurons
can be justified mathematically [40,41].

• Arrangement of the used training methods and activation functions. Different ac-
tivation functions are suitable for different tasks. To solve problems requiring the
application of mathematical logic, we included the hard-limit transfer function and
its variant—the Symmetric hard-limit transfer function. These functions provide an
interrupted binary signal along the axon of neurons and are suitable in case there is
a need to solve problems requiring binary logical thinking. On the other hand, to
forecast the future development of continuous processes, we used a large number of
efficient and convenient transfer functions. Priority in the order of use is given to those
with a sigmoid character such as hyperbolic tangent sigmoid transfer function and
log-sigmoid transfer function, useful in a very wide range of problems [42].

• Necessity to change the number of learning epochs. Sometimes, to reach the optimal
neural network it is only necessary to change the number of training epochs. Increasing
the iterations slows down the neural network learning process, but often even a slight
change in this parameter leads to a surprising overcoming of a small plateau of neural
network errors and leads to a sharp improvement in the final approximation.

The iterative algorithm for automated construction of artificial neural networks (Figure 5)
has the following main steps:

(1) Preparation of input data:

• Tensor data—input data for the factors, which are usually in the form of a one-

dimensional—{xi}i=1...k—or two-dimensional array—
{

xi, j
}j=1...ni

i=1...k .
• Number of forecasted results—c—which is 1 for single-point forecasts or a larger

integer for multi-step forecasts.
• Desired efficiency—e f f iciency—of the trained neural network.

(2) Preparation of the parameters on which iteration is performed:

• List of training methods lms = {mi}, where i varies from 1 to the number of
methods (Table 2). Depending on the task, to achieve the desired result faster, it
is possible to arrange the methods in the list according to the expected efficiency,
and some of them may even be excluded if they are considered inappropriate.

• List of activation functions a f s =
{

a fj
}

, where j varies from 1 to the number of
functions (Table 1). Here, too, the functions can be arranged at the discretion of
the appropriateness of their use in the specific task.

• Minimal and maximal number of neurons—min_n u max_n, as well as a step by
which neurons change—step_n. The current number of neurons we denote by n.
For more elementary tasks, the number of neurons may start from 1 (min_n = 1)
and the step by which their number increases is also 1. The maximum number
limits the possible iterations related to the number of neurons.

• The epochs epochs change from min_ep to max_ep with a step step_ep. Values
we have experimented with are minep = 1000, maxep = 5000, step_ep = 1000,
where usually 3–4 iterations are enough to assess whether the change of epochs
affects the efficiency of the trained neural network.

• By iterating over the number of neurons, training methods and activation func-
tions, a neural network with their current values is created—the ordered triple
(n, lm, a f ) and the input data. The nesting of the loops for the specific task is a
matter of judgment, which determines the sequence of the parameters change.
In the experiments, we chose to increase the number of neurons in the outermost
loop, as we wanted to find a neural network with the lowest number of neurons.
Training methods and activation functions change in inner loops.
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(3) After the creation of the current neural network, it is trained, tested, and validated.
(4) The desired efficiency is compared to the efficiency of the current neural network,

and then:

• If the neural network meets the condition, its data is saved and the task
is completed;

• Otherwise, attempts are made to increase the efficiency of the neural network
by increasing the number of learning epochs. The information about the most
efficient neural network found (with the smallest error) is saved, and it can be
current or obtained in a previous iteration.

(5) The end result of the algorithm is a trained neural network having the closest possible to
the specified efficiency, as well as parameters for its architecture and training—efficiency,
number of neurons n, training method lm, activation function af, and epochs ep.

The use of the “brute force” method, by traversing all possible values of the iterative
parameters and finding the neural network with the optimal ratio “number of neurons—
efficiency” is not the most rational approach. Tracking changes in the specified ratio can
lead to the creation of heuristic variants of the algorithm by automated changing of the
order of change of the iterative parameters.

The availability of sufficient computing power predisposes to the use of different
parallel algorithms for such automated search for an optimal neural network (Figure 5)
in which, for example, all combinations of training methods and activation functions
can be started in parallel processes—(lmi, a fj), where i and j are changed from 1 to the
corresponding number of training methods and activation functions. After the completion
of the individual processes, the efficiencies of all neural networks created during their
implementation are compared and the most appropriate one is selected.

Figure 5. General scheme of forecasting processes.
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4. Results and Discussion

A prototype was developed for approbation of the presented model. The program
MatLab was used, with which the described basic modules and functionalities were imple-
mented. The prototype was tested to solve prognostic tasks in the field of energy.

4.1. Setup of the Experiment

The problem of forecasting the demand and respectively—the consumption of electric-
ity is extremely important for the planning and management of the national energy system
of every country. Accurate forecasting of probable electrical loads is an important prerequi-
site for effective planning of production capacity, proper maintenance of the transmission
and distribution network, planning of future exports or imports of electricity, the behavior
and direction of energy flows both in the country and in related international networks.

The developed prototype was used to solve three tasks for forecasting electricity con-
sumption in the National Power System of Bulgaria. The targets subject to forecasting were:

(1) Total final consumption in the national power system;
(2) Electricity consumption in the industry, the public sector, and services;
(3) Electricity consumption in households.

The forecasts were made by taking into account their dependencies on the following
socio-economic factors:

(1) Gross domestic product (GDP);
(2) Energy intensity (EI);
(3) Population;
(4) Income of the population;
(5) Energy efficiency;
(6) Price of electricity.

These factors have been identified as significant in studies carried out by the Bulgarian
Academy of Sciences (BAS) and Risk Management Lab [10,11]. A subsequent step would
be to build a module for the automated study of correlations between the factors with the
aim of minimizing their number and optimizing post-processing.

In order to forecast the target values for a specific year, we first made forecasts for the
factors for the respective year.

In the process of work, data from official sources such as the National Statistical
Institute [42], Information System INFOSTAT [43], Electricity System Operator [44], The
World Bank Group [45], and Eurostat [46] were used. All available data on factors and
target values for 17 years were used for the study.

The factor forecasting module uses different models of the time series trend. A
substructure involving the use of neural networks to predict these factors provides for
the possibility of further processing of the input data. Some of the data are submitted to
the neural networks normalized, which is implemented by multiplying them by a specific
coefficient. This reduces the radius vector of the input data and facilitates the training of
this type of artificial intelligence. The general scheme showing the joint operation of the
modules is shown in Figure 6:

(1) Modules for factor forecasting, respectively through time series and neural networks;
(2) Error estimation module (mediator module) for the various methods and parameters;
(3) Consumption forecasting module.

4.2. Single-Point Forecasts for the Factors

The use of the prototype for forecasting electricity consumption in single-point (annual)
factor forecasting showed different results for the effectiveness of different types of trends
in time series (Figure 6).

When forecasting GDP, population, and average annual income, maximum efficiency
was achieved with a linear trend of the time series. The forecasting of the energy intensity,
the price of the electricity for the household, and the price of the electricity for the industry
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achieved good results respectively in logarithmic, quadratic, and hyperbolic trends of the
time series. Models for the most efficient neural networks, forecasting the same factors, are
presented in Figure 7.

  

  

  

Figure 6. Comparison of efficiency in different types of time series trend.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Forecasting the behavior of the factors influencing the electricity consumption in NEES
through separate artificial neural networks. (a) Gross domestic product, (b) energy intensity of the
economy (Net_Int), (c) population, (d) average annual income, (e) price of electricity for households,
(f) price of electricity for the industry.
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During neural network training, all factors were considered as functions of time in
order to enable the comparison of the results of forecasting in time series. The type of
training that proved to be most effective for current tasks is the Lavenberg–Marquardt
algorithm. The most appropriate activation function of neurons in the hidden layers for
Energy intensity of the economy neural network is the logarithmic sigmoid function:

g(x) = σ(x) =
1

1 − e−x ,

and for every other it is the hyperbolic tangent:

g(x) =
ex − e−x

ex + e−x .

The activation function of the output neuron in all neural networks is linear:

g(x) = x.

The comparative analysis between the efficiency of the found neural networks in a
one-year forecast and the type of trend in time series, leading to minimal error, is presented
in Figure 8.

 

Figure 8. Comparison of efficiency between the most effective time series trend and the results of the
forecasts of artificial neural networks.

The use of the presented prototype with time series and artificial neural networks
showed a significant advantage in favor of neural networks in the case of forecasting GDP,
population, and average annual income. In the other three cases, single-point forecast of
energy intensity, price of electricity for households and its price for the economy sector, the
module for comparison of errors showed some advantage in the efficiency of time series.
In these cases, the type of trend was logarithmic, quadratic, and hyperbolic, respectively.
Based on them, forecasts were made for the development of the values of the factors
presented in Table 3.
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Table 3. Single-point forecasts for the factors for the last year of the available dataset.

Factor Predicted Value The Most Effective Method SMAPE (%)

GDP 102,954.73 Neural network 0.15
Energy intensity of the economy 0.42 Time series with logarithmic trend 3.65

Population 7,006,425.85 Neural network 0.65
Average annual income 6196.5 Neural network 1.57

Price of electricity for households 22.56 Time series with quadratic trend 4.98
Price of electricity for the industry 21.77 Time series with hyperbolic trend 4.8

4.3. Multifactor Single-Point Forecasts of Target Values

In the second part of the conducted experiments, the influence of the considered factors
on the target values in the National Power System of Bulgaria was studied. Appropriate
optimal neural structures were created for their forecast (Figure 9):

(1) Total final consumption in the National Power System—the neural network named
Net_Nees, with 54 neurons in the hidden layer;

(2) Electricity consumption in industry, public sector and services—Net_Industry neural
network with 35 neurons in the hidden layer;

(3) Electricity consumption on households—Net_Household neural network with 47 neu-
rons in the hidden layer.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Neural networks for consumption forecasting. (a) Total final consumption in the NES
(Net_Nees), (b) electricity consumption in industry, public sector, and services (Net_Industry), and
(c) electricity consumption in households (Net_Households).

Activation functions of all neural networks found by the software system were hyper-
bolic tangent, and of the output neuron, linear.

The deviations of the forecast results from the actual data for single-point forecasts
(for one-year consumption) were relatively small (Table 4) as the largest deviations in
forecasting consumption in the industry are about 41 thousand tons of oil (toe) equivalent,
i.e., about 1.525%. The deviation in forecasting consumption in the entire energy system
was 0.0739%, and household consumption was 0.0302%.
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Table 4. Forecasting of consumption with artificial neural networks, in thousand toe.

Neural Network Actual Value Predicted Value Absolute Error SMAPE (%)

Net_Nees 9737.9 9745.1 7.2 0.04
Net_Industry 2721.3 2679.8 41.48 0.77

Net_Households 2318.7 2318.0 0.7 0.02

Considering complex values as time series did not provide good results. The errors
obtained with the best approximations of time series were many times worse than the
corresponding neural networks (Table 5).

Table 5. The comparative table of errors in the use of these neural networks and time series.

Consumption Method Type Method
Absolute Error
(Thousand Toe)

SMAPE (%)

Total final consumption in the National
Power System

Time series Cubic trend 199.33 1.01
Neural network Net_Nees 7.2 0.04

Electricity consumption in industry, public
sector and services

Time series Combined trend 111.16 2
Neural network Net_Industry 41.48 0.77

Electricity consumption in households Time series Linear trend 24.47 0.52
Neural network Net_House holds 0.7 0.02

The analysis of the weights of the neural networks can show us the influence of the
individual factors on the predicted value of the target variable.

Let us denote by wi,p the weights by which the i-th factor is transmitted to the neuron
p from the hidden layer of the already trained neural network, as i, p ∈ N. We choose the
value as a criterion for the significance of factor i:

INPFi =

∣∣∣∣∣ r

∑
p=1

wi,p

∣∣∣∣∣,
where r is the number of neurons in the hidden layer of the neural network.

The study showed that the largest impact on the total electricity consumption in the
national network belongs to the gross domestic product of the country with INPF1 = 11.6,
and the least to the average annual income per capita with INPF4 = 1.06. For consump-
tion in the industry sector, things are similar. The most significant factor was GDP with
INPF1 = 5.01, and the one with the least importance was the price of electricity for the
household—INPF6 = 2.3. The most important factors in the energy consumption of
households are population (INPF3 = 13.82) and average annual income—INPF4 = 6.16.

4.4. Multi-Step Forecasts

Using the created neural structures for factor forecasting, we created forecasts for a
period of 7 years. Their accuracy can be determined over time (Table 6). Similarly, we
created 7-year forecasts for the studied multifactorial values (Table 7). The forecast results
showed that household electricity consumption, as well as total final consumption, will
gradually increase, while electricity consumption in industry, the public sector, and services
will decrease.
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Table 6. Seven-year forecasting of factors.

Factor 2021 2022 2023 2024 2025 2026 2027

GDP (Million levs) 102,932 106,693 110,455 114,217 117,978 121,740 125,501

Energy intensity of the economy 0.400 0.395 0.390 0.385 0.380 0.376 0.371

Population 6,804,441 6,746,144 6,687,847 6,629,550 6,571,253 6,512,956 6,454,659

Average annual income 6671 6798 6942 7013 7105 7241 7339

Price of electricity for industry (in
stotinki per kWh and without VAT) 26.79 27.62 28.46 29.29 30.12 30.96 31.79

Price of electricity for households (in
stotinki per kWh and without VAT) 19.22 19.35 19.47 19.58 19.69 19.79 19.89

Table 7. Seven-year forecast for electricity consumption in the National Energy System, made through
artificial neural networks.

Consumption 2021 2022 2023 2024 2025 2026 2027

Total final consumption in the National
Power System 13,832 13,856 13,858 13,858 13,858 13,858 13,858

Electricity consumption in industry,
public sector and services 3103 3101 3100 3099 3099 3098 3098

Electricity consumption in households 2800 2800 2800 2800 2800 2800 2800

5. Conclusions

Forecasting is a complex task. The availability of a wide variety of mathematical and
statistical methods, and artificial intelligence methods, combined with the pursuit of the
most accurate forecasting, usually requires a lot of time and effort. The use of software
tools to automate some of the activities greatly simplifies the work.

The article proposed a model for multifactor forecasting which automatically selects
the best method for forecasting significant factors and then uses the data predicted by
them to create a complex multifactor forecast. The developed model was successfully
experimented with to make multiple forecasts for the energy consumption of households,
industry, and total consumption—for a one-year and a seven-year period. By automating
the forecasting process in an indicative way, we made it easier to make predictions with
fewer errors than previously.

The presented model has wide applications in various subject areas. It can be used for
air quality forecasting, demographic forecasting, forecasting in industry, etc.

In the future, the system can be expanded in several directions. An important part of
its development is the integration of additional forecasting methods. The development of a
module to evaluate the correlation between the individual factors and the target variable
would also help to optimize the forecasting process. Automated generation of graphics
and documentation for each step in the overall forecasting process would be beneficial to
the end user of the system.
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Abstract: The advancement in technology to manage energy generation using solar panels has proved
vital for increased reliability and reduced cost. Solar panels emit no pollution while producing
electricity as a renewable energy source. However, the solar panel is adversely affected by dirt, a
major environmental factor affecting energy production. The intensity of light falling on the solar
panel is reduced when dirt accumulates on the surface. This, in turn, lowers the output of electrical
energy generated by the solar panel. Since cleansing the solar panel is essential, constant monitoring
and evaluation of these processes are necessary to optimize them. This emphasizes the importance of
using smart systems to monitor dirt and clean solar panels to improve their performance. The paper
tries to verify the existence and the degree of research interest in this topic and seeks to evaluate the
impact of smart systems to detect dirt conditions and clean solar panels compared to autonomous
and manual technology. Research on smart systems for addressing dirt accumulation on solar panels
was conducted taking into account efficiency, accuracy, complexity, and reliability, initial and running
cost. Overall, real-time monitoring and cleaning of the solar panel improved its output power
with integrated smart systems. It helps users get real-time updates of the solar panel’s condition
and control actions from distant locations. A critical limitation of this research is the insufficient
empirical analysis of existing smart systems, which should be thoroughly examined to allow further
generalization of theoretical findings.

Keywords: photovoltaic panel; remote solar plant; automated cleaning; condition monitoring; inter-
net of things; solar panels dirt; dirt detection; dirt accumulation and removal; device management;
real-time monitoring and cleaning

1. Introduction

In many industrialized nations, electricity generation is still dependent on fossil fuels.
Although these fuels are very effective in energy quality, they are not suited for long-term
use because the fossil fuel source will eventually run out someday. Furthermore, fossil fuels
are a considerable threat to environmental balance and create numerous ecological problems
such as global warming [1,2]. Therefore, the utilization of renewable sources must be
accepted as soon as possible. A significant feature of renewable electricity generation is the
infinite supply [3]. Compared to conventional fossil fuel technologies, renewable electrical
energy sources have a more negligible effect on the environment, considering cleanliness.

Solar panel technology is becoming more popular as a renewable electricity generation
due to the growing renewable energy request [4,5]. By the end of this decade, China’s
solar capacity is foreseen to reach 400 GW [6]. The cumulative installed solar capacity in
megawatts between 2012 and 2021 is shown in Figure 1, based on the information provided
by IRENA, International Renewable Energy Agency [7].
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Figure 1. Cumulative installed solar capacity from 2012 to 2021 [7].

It is critical to appropriately manage solar power plants, aiming to optimize their
performance and reliability for their continued use. The efficiency and stability of solar
panels can be increased, while costs can be reduced [8]. Irradiation and temperature are
the key environmental factors that determine the power output of a solar panel module. A
decrease in the amount of irradiance and an increase in temperature decrease solar panel
module efficiency [9]. Solar panels convert solar radiation into direct current electrical
energy; it must constantly be exposed to the maximum amount of sunlight to maximize
electricity productivity [10]. Nonetheless, irradiation decrease on the solar panel surface
caused by shading due to dirt accumulation can be well controlled. This happens repeatedly
and decreases the amount of sunlight reaching the panels [11]. Dirt accumulated on solar
panels can include dust, snow, ice, and other organic waste [12]. Fine dust particles settle
more deeply on the surface of solar panel modules, affecting their output performance more
than coarse dust particles [13]. A controlled experiment conducted in [14], using spotlights
to simulate solar radiation, found that the external irradiance resistance can reduce the
photovoltaic performance by up to 85%. Rain can naturally wash away dust and sand, but
moss requires proper cleaning [15,16]. Solar panel cleaning is one of the major challenges for
solar power developers because cleaning the solar panel surface requires careful planning
and resources (time, materials, and labor) and results in higher production costs. However,
cleaning solar panels is an important task to ensure the long-term operational and financial
success of a solar power plant [17]. Cleaning solar panels is necessary because it ensures
that the solar panel surfaces are properly maintained to ensure efficient energy generation.
It also prevents damage from accelerated aging or corrosion caused by weather conditions
such as heavy rains, snow, hail, or high humidity [18,19].

The performance of a solar panel is mainly measured by its efficiency, which indicates
how much electricity the panel produces compared to its maximum theoretical efficiency.
For example, a solar panel with an efficiency of 20% means that it generates 20% more
electricity than it could if left uncoated. An experiment on the cleanliness and tracking
mechanism for the various conditions of a solar panel was carried out by [20]. The con-
ditions examined are the fixed and clean panel, the dirty and fixed panel, the dirty and
tracking panel, and the clean and tracking panel. Dust buildup on the solar panels’ surfaces
causes the efficiencies to decline even with installed sun-tracking. The high transmission
rate of light on the cleaned solar panel causes an increase in efficiency [19]. Tracking a solar
panel without cleaning is less efficient than keeping the solar panel fixed and cleaned, hav-
ing an efficiency decrease of up to 50%. Dust deposition on solar panels reflects more loss in
large-scale power plants in megawatts [21]. A 1% decrease in proficiency may meaningfully
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influence the Internal Rate of Return (IRR). In comparison, low-level dust accumulation
might not significantly affect the production output of small-scale solar plants [22].

Solar panels are monitored with data acquisition systems, where the performance
of the system is evaluated under real-world conditions [23]. Real-time monitoring and
evaluation of dirt accumulated on solar panels are required to optimize the cleaning
operation. Generally, monitoring dirt accumulation on solar panels can either be done
online or offline [24]. Smart systems enhanced by internet connection are integrated
into solar panel cleaning to improve the performance of autonomous cleaning methods.
This will make the system intelligent to monitor the remote solar panel. It can detect
dirty conditions and activate its removal from the solar panel surface without human
control. Solar panel surface maintenance can be done at a fraction of the installation
cost, and electricity generation improvements are possible [25]. There are several reviews
on cleaning methods for the solar system, both manual and autonomous systems, but
to the author’s knowledge, none has considered a review of the different smart system
approaches applied to solar panel monitoring or cleaning system approaches used in this
study. Published research papers have been reviewed and analyzed. The study aims to
conduct a literature review concerning the theoretical framework for smart systems as it
relates to solar panel cleaning and remote monitoring to promote the concept of smart solar
systems. Literature searches were conducted using specific keywords related to the paper’s
subject. Although there are many review papers in the literature concerning the concept of
smart solar systems, there is a limited number of papers concentrating on the technology
adoption aspect of smart solar systems.

1.1. Review of Solar Panels Automated Cleaning Techniques

The continuous cleaning and monitoring of solar panels after installation on a roof or at
a remote solar farm is difficult [26]. Solar panels can currently be cleaned using a variety of
techniques, including the traditional method of brushing away dust, coating processes, and
robotic cleaning devices. This process has been automatized since cleaning with manual
brushes and water is incredibly time- and labor-consuming and costly for industrial solar
installations [27]. An automated cleaning system for solar panels is composed of an
autonomous unit using sensors and controllers and a cleaning mechanism unit that can
be watered or waterless. Solar panels can be cleaned using several methods of removing
dirt [28,29]; they are robotic, heliotex, electrostatic, coating cleaning, vibrating cleaning,
and forced-air cleaning. The review of the cleaning methods, listed in Table 1, compares
each method’s pros and cons.

1.1.1. Brush Cleaning

The brush cleaning method combines mechanical and electronic components to control
the brush’s movement as shown in Figure 2, for cleaning the solar panel either with or
without water [38]. The turn-on and turn-off process is automated by sensing the current
dust accumulation on the solar panels and comparing it with the set reference by the
program. The electronic component supplies a signal to the motor for the cleaning system
movement [39]. The system has to be robust with many types of complex procedures
to be performed with greater precision, flexibility, and control than with conventional
techniques [40]. Furthermore, the developed system improves the efficiency and output
power of the solar panels as a result of improved performance [41].
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Table 1. Comparison of various cleaning techniques.

Reference Cleaning Technique Merits Demerits
Power Output Efficiency

Compared to Clean
Panels

[30] Natural cleaning No investment cost is
involved.

Depends on the location’s
weather condition. 4%

[31] Manual cleaning Involves simple design.
Requires expensive
materials and the use of
human labor.

90.67%

[32] Robotic cleaning Effective and sustainable in
all climates.

Requires complex
construction. 99.5%

[33] Heliotex cleaning Effective for non-sticky dirt. Requires a lot of water. 12.5%

[34] Electrostatic cleaning Effective for dry dust and
requires no moving parts.

High voltage is required
and design is costly. 3.35–11.5%

[35] Hydrophobic and
hydrophilic coating

Does not require water and
labor.

Coating presence reduces
screen efficiency. 6.62%

[36] Vibrating cleaning system Applicable for dry dirt in
dry weather.

An external source is
required to power the
vibrating motor.

95%

[37] Forced-air cleaning system Applicable for dry dirt in
dry weather.

An external source is
required to power the air
pump. Only removes
small dust larger than 20
μm.

86.4%

 

Figure 2. Robotic brush cleaning of solar panels [42].

1.1.2. Heliotex Cleaning

Heliotex cleaning involves spraying water onto the solar surfaces [43]. It is possible
to program the cleaning system based on the environment whenever necessary. Further
maintenance is not required, other than a periodic replacement of the water filter if it is
blocked by sand and the top-ups of the cleanser. Pumps are connected via piping to a
water reservoir, fixed to nozzles on the solar surface. The system is very effective and
recommended for locations with no water deficiency due to the high amount of water
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consumed for cleaning [44]. Figure 3 demonstrates the heliotex method of cleaning. This
system is not suitable for all situations [19].

 

Figure 3. Demonstration of the heliotex method of cleaning solar panels [45].

1.1.3. Electrostatic Cleaning

Another dust removal method is electrostatics cleaning, used on dry and dusty solar
panels, as shown in Figure 4. In electrostatic precipitation (ESP), fine dust particles on
the surface of the solar panel can be removed by induced electrostatic charges [46]. The
solar panels are covered with transparent plastic or glass sheets of electrostatic charge
material; when a high AC voltage is applied to the electrostatic material, the force acts on
the dust close to it and causes the repository motion of the dust particles to shake off from
the solar panel surface. The system can clean 90 percent of accumulated dust in less than
two minutes [47]. A significant concern that limits the application of this method is safety.
It would be unsafe since the solar panel would always remain charged even in showery
weather. However, the dynamic motion of all the particles cannot be conveyed by fixed
wire electrodes as experimented in [48].

 

Figure 4. The electrostatic cleaning procedure Some dust particles pass through the hole in the upper
screen electrode due to their inertia force and the alternating electrostatic field near the electrodes
stirs up the dust particles, and a high-speed microscope camera was used to capture the results as
shown in (a) and (b) respectively [49].
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1.1.4. Coating Cleaning

The coating method is also a technique for cleaning solar panels using anti-soiling
coating [50]. This method can be used with either a solid, liquid, or gas-based substrate.
This method relies on the self-repellent action of the coating material to prevent dust
particles from adhering to solar modules. Hydrophilic film and hydrophobic film are the
two methods of coating cleaning [51]. The superhydrophobic coating surface method allows
for self-cleaning PV panels. This has benefits, like preventing water damage and graffiti [44].
Water gets absorbed into the film in the hydrophilic and rinses the dirt away. On the other
hand, the hydrophobic film repels water as it falls; due to its hydrophobic properties, water
drops that reach the surface are pushed off quickly, picking up particles alongside. A
specific cure time and evaporation of the solvent and drying of the nanoparticle base were
required for the coatings to dry once applied as liquids with low viscosity [19]. Each of the
coating samples had high transmission, low reflection, and low absorption properties in
the ultraviolet (UV), visible (Vis), and near-infrared (NIR) regions.

The fundamental raw material for the coating cleaning is nano metal oxide particles
and resin. The product is made by mixing chemicals [19]. Figure 5 compares a layer of
hydrophilic coating causing a sliding motion to a rolling motion made by a hydrophobic
coating. Despite their differences, both methods of self-cleaning serve the same end [52].

 

Figure 5. Droplets slide and roll during the self-cleaning process [53].

1.1.5. Vibrating Cleaning System

The vibrating cleaning method prevents solar panels from getting dirty and does not
require water or manual labor [46]. To remove the adhesive force between dust particles
and the solar panel surface, a mechanical vibrator attached to a panel produced harmonic
excitation force. In [54], the wind energy is converted into mechanical vibration for dust
removal from solar panel surfaces without consuming any energy from the solar system,
thereby improving its efficiency. As vibration intensifies, the inertial force of vibration
increases, which turns the dust particles’ adhesion force into kinetic energy. External
sources of power are usually needed to operate the vibrating motor in vibrating cleaning
systems [36]. The panel’s self-cleaning system is driven by a DC motor that is fastened to
the rear sheet. Based on [55], a solar module was supported on four edges to simulate a
system being excited by an unbalanced mass to induce vibrations (see Figure 6). As the DC
motor’s rotor reached the first natural frequency, a large amount of vibration was induced
on the panel.
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Figure 6. DC motor attached to solar panel rear for vibration cleaning [55].

1.1.6. Forced-Air Cleaning System

A forced-air cleaning system for solar panels can help to keep them clean and free
of debris. This type of system uses a blower to force air through the panels, which can
help to remove dirt, dust, and other debris, in addition to improving the efficiency and
performance of residential and commercial solar panels. However, this method is only
effective for removing dust blown by the air from solar panels [56]. Water is neither
consumed nor directly contacted by the turbulent airflow generated by compressed air [37].
These results were used to construct a pilot cleaning and cooling system [37] that utilized a
compressed-air unit composed of a compressor, air tank, airflow management valve, and
nozzles with a thickness of 5 mm, see Figure 7. The compressor is powered by PV panels,
and a valve controls the flow of compressed air from the tank to meet the needs of cleaning
and cooling. A pipe assembly that can be moved around an installation as needed can
transport air between the panels [19].

1.2. Evaluation of the Performance and Cost of Solar Panel Cleaning Techniques

Several studies may be done regarding cost–performance considerations after the
cleaning technique is developed, implemented into use, and a cleaning frequency is de-
fined. It is important to point out that various cleaning methods are dependent on market
demands, with some common procedures employing natural, manual, mechanical, electro-
static, vibration, and coating processes. Different environmental variables and setups may
be evaluated using the performance and cost. To assess the necessity for a self-cleaning
system, a relationship analysis between soiling and its impacts on performance efficiency is
required [57]. The amount of sunshine, dust concentration, and rain effects are a few exam-
ples of environmental variables. The effectiveness of each cleaning method and its costs
may very well be forecasted for each circumstance using optimization models and machine
learning. A configuration strategy and an investment plan will result from comparing the
different circumstances.
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Figure 7. Regulatory mechanism for solar PV panel arrays using compressed air [37].

The configuration plan identifies the hardware and software modifications required
to be made for the current platforms as well as the system architectural modifications
that should be implemented. Some experts believe that the cost of restoring solar panels’
capacity to capture energy should be determined exclusively using a satisfactory rate of
return (ROI) [37]. The effectiveness of an integrated smart system for solar panel cleaning
may be determined by this analysis [22]. The limitation of the ROI analysis is that they only
evaluate the economic side of the problem. Reliability should be taken into account when
determining how much to spend on solar panel cleaning methods because it is a major
obstacle to effective monitoring and cleaning.

Based on the cleaning method analysis of various cleaning systems by [58], the electro-
static cleaning method is the most effective. Dust particles are removed from the surface
without using water; however, spraying water on the photovoltaic cells during cleaning
increases their efficiency. The economic viability of automatic self-cleaning mechanisms
of solar panels is evaluated in [59] to determine their contribution to the total system cost.
When comparing the power generation of PV modules with and without automated self-
cleaning mechanisms, the findings reveal a difference of 35%. A domestic installation has a
payback period of about five years while making an installation in a commercial setting
will typically pay off after 2.25 years. Similarly, ref. [60] reported an efficiency increase of
30–33% in a solar panel array when a robotic cleaning system was used. A robot can also
be programmed to fix panels of different sizes. Cleaning a complete array is extremely
beneficial since the accumulation of dust on one panel can hinder the performance of the
entire array. The fact that solar panel cells are usually connected in series makes it extremely
important that they operate at maximum efficiency.
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1.3. Review of Solar Panel Remote Monitoring
1.3.1. Condition Monitoring

It has been an important research topic to continuously check the condition of solar
panels in remote areas and detect faults to provide stable power [61]. The status application
captures and reports the operation, performance, and usage of the solar panel being
monitored. With diagnostics applications, monitoring, troubleshooting, repairing, and
maintaining networked devices are possible. IoT-enabled smart solar monitoring systems
provide remote monitoring and recording. This platform monitors the solar system in
real-time via the internet. Monitoring of parameters such as voltage, current, temperature,
and humidity is performed by a smart solar panel cleaning system built with IoT. Solar
panel performance is typically characterized by measuring the I–V curve under standard
conditions (1000 W/m2 solar irradiance and 25 ◦C temperature) [62].

In general, remote monitoring systems consist of three components: a sensing unit, a
processing unit, and a display unit [63]. The sensing unit is located near the solar system to
gather all relevant data to monitor system performance. The data from the sensing unit is
carried to a processing unit using a wired or wireless (wireless sensor network—WSN) network,
then to the display unit. These services are made possible by wireless sensor networks, which
are cost-efficient to install, consume low power, and require little maintenance. Long-range
features enable their deployment at remote sites [64]. Smart sensors are often used in a sensing
unit so that the signals generated by a solar monitoring system can be handled efficiently
before they are sent to a central processing unit. A plant health monitoring system utilizing IoT
was proposed by [65], in which the sensors were embedded in the solar system and connected
to the internet via wireless networks.

According to [66], the sensor values are crucial for determining a panel’s output. A
solar power plant’s dirt condition can play a crucial role in monitoring the need for main-
tenance [22]. Despite the unpredictable nature of solar energy and the initial installation
costs, research has been undertaken to discover the execution of solar energy optimiza-
tion. To improve electrical systems reliability, the optimization method aims to minimize
investment, operating, and maintenance costs and emissions [67,68]. Ref. [69] examined
how the internet of things can be used to monitor solar panels and found its usage is
crucial to the proper management of the solar system. Sensing hardware, data acquisition
software, and block management modules measure data. This allows all the real-time data
collection on the solar plant’s electrical output variables to be viewed and stored within the
block management. When the panel is not operating correctly, the smart system will offer
suggestions, display errors, and send alerts when maintenance is needed.

1.3.2. Dirt Detection

Monitoring and cleaning solar systems have been studied extensively. Before the
performance of the cleaning system, it can be challenging to predict the deposition rate
of the organic and inorganic particles on the solar module surfaces. Therefore, to ensure
that the cleaning system is as effective and efficient as possible and to make the best use of
the energy yield, it is required to inspect the solar panels for dust. Besides analyzing dust
effects and deposition rates, identifying the crucial information from the previous research
is the purpose of this section.

A dirt detection mechanism on a solar panel was made by [39]. A weight sensor in the
system continuously measures the dust. Upon receiving defined feedback from the sensors,
the Arduino controller commands the dust cleaning. Solar panels are fitted with weight
sensors that measure dust thickness according to changes in weight. The feedback for
cleaning is that the panel weight goes more than the predefined value due to dust. A dusty
solar panel will weigh more than one that is clean. The Arduino controller can reference
the actual weight of the solar panel. In their findings, the continuous monitoring of the
weight by the microcontroller through the load cell aids the dirt detection and cleaning of
the solar panels. A mounting plate holds the load cell below the panel.
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In 2019, ref. [70] developed an innovative system for monitoring solar panels’ con-
dition. Radiometric sensors are used in a condition monitoring system that links to an
Arduino platform, and it works by analyzing the emissivity of a surface and recognizing a
low value when the dust is present. A thermographic camera is employed for the radiomet-
ric sensor to provide reliable results. Unmanned aerial vehicles are designed to carry the
system. With the Internet of Things, radiometric data can be sent to the cloud for analysis,
and thermograms can be stored to be further processed. An actual solar panel measures
sensor output and surface conditions from various angles and distances. Results from
the radiometric sensor analysis show a high degree of accuracy, and dust is recognized in
all set-ups. As part of a thermography analysis, it is found that there is consistency and
regularity in the quantities. The average variation of each experiment determines accuracy.
When the luminous emittance of the solar panel increases, the radiometer measures a higher
temperature. The thermal images verify the results of this measurement using a radiometer
sensor, the surface being measured is characterized by its temperature. Obtaining reliable
measurements for thermal image processing requires knowing the surface characteristics
and the ambient conditions, such as humidity, the temperature of the air, distance to an
object, reflected temperature, and incident radiation [9].

A design and fabrication demonstration shows a prototype that cleans the panel’s
surface in [22]. The sensing unit was programmed with the regression model developed
using a month’s worth of data from spotless and dirty panels. By the regression model and
the integrated sensing unit, the autonomous unit determines the optimal time for cleaning.
The prototype autonomous unit monitors input and influencing parameters with direct or
indirect impact on the solar farm’s output power. They also investigated automatic cleaning
in their study. Therefore, this system can determine if dust particles impact solar panels’
power generation. In the prototype, the light intensity is measured with the TSL 2561 illu-
minance sensor, and sensors measure voltage and current to determine output power. The
other manipulating parameters for solar panel output, such as temperature and humidity,
are measured by DHT11 temperature and humidity sensors, whereas GP2Y1014AU0F dust
sensors determine the dust density. The measured illuminance value and output power
are stored in the cloud interface. Regression analysis of the processed data is carried out to
determine the connection between input variables and power output.

Another study by [71] investigated robotic technology for removing solar dust from
solar boards. The strategy proposes screening power generation on a mobile app and
cleaning the solar surfaces in response. The input mechanism includes an Android switch
unit, IP camera, voltage sensor, and current sensor in the experiment. IP cameras monitor
solar panel cleaning and conditioning; it is internet-connected and displayed on a PC
Windows system or an Android device. Images might be rather costly to transfer over
the internet. A related study in [72] used smart cameras with “RGB” and “infrared” for
night vision to continuously take pictures of solar panels. A real-time algorithm determines
whether or not a panel needs to be cleaned based on the picture. An Advanced Reduced
Instruction Set Computer Machines (ARM) processor, which will also be on the board,
will process the incoming data and execute the algorithm. The intelligent system detects
a dirty panel automatically and triggers a mechanism to clean the panel. As the panels
become dusty or exposed to bird feces, but do not accumulate enough deposits to exceed
the threshold, the energy drop is within the average fluctuation energy of clean panels. The
dustier the panels become, the more the energy drop occurs, and the energy output can
be increased by cleaning the panels. A typical cleaning interval can range from several
months to less than a day, depending on weather conditions.

In the work described in [73], they used machine vision for solar power plants. A
self-inspection cleaning device, fault detection systems, and combined power units using
drone platforms for multi-image fusion contaminant recognition were researched. The
autonomous detection and recognition function is achieved through an image recognition
analysis. To collect images, an “infrared thermal imaging camera, a color visible light
camera, and a black and white visible-light camera” are used; once the acquired image has
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been fused, it is processed. An infrared thermal imaging camera is combined with an image
camera to create a visual image for inspection purposes. A recognition algorithm analyzes
the image to identify hot spots and surface impurities generating fault inside the panel and
pollution notification in the control system. According to [74], four generations of outdoor
soiling loss monitoring systems were developed by the authors. In the fourth-generation
soiling monitoring stations, a glass shutter is opened for 2 min (or less as necessary)
approximately at solar noon to take Isc measurements on the clean cell. As the glass was
open, the shunt voltage of this panel was also recorded. As a result of these measurements,
it is possible to determine any soil accumulation on the glass surface. Positive gains occur
due to thick soil layers at around 1%/mm, whereas positive gains are typically much lower
than 0.2%/mm at thin soil layers. The design allows data to be sent via mobile networks
from anywhere around the globe, enabling the monitoring of multiple sites.

An approach based on computer vision was presented for detecting soil and dust
on solar surfaces in [75]. To sense dirt on the solar panel, physical features are extracted
through the use of the Gray Level Co-occurrence Matrix (GLCM) method. Solar panel
detection is the first step of the proposed solar panel classification method. A solar surface
is discovered in an image. Its background is removed at this step, and the input image
is stripped of extra information. By pre-processing the image, the effects of lighting can
be minimized, while at the same time, fine details that represent dust and soil can be
emphasized. The red, green, blue (RGB) image is converted to hue saturation value (HSV)
during this process. This is followed by feature extraction, which converts the input image
into a limited number of parameters. The final step in the proposed method is classification.
A flexible camera orientation was used in this study to collect two hundred images under
controlled conditions with variable lighting types. One-half of the collected images show
clean and dry panels, while the other half shows dirty panels. Histogram equalization
and a high pass filter are used to improve image contrast. The histogram equalization
technique improves a picture’s disparity. Based on the results of the tested images, the
proposed method has a high recognition rate. It would be helpful to consider incorporating
the shadow areas, broken panels, and wet panels into the pattern recognition stage in
the future.

1.4. Device Management and Performance Analysis

As a device management system [76], a smart system for cleaning and monitoring
can improve or enhance the solar panel’s performance. In a system failure, the analyzed
data are transferred to the cloud for predictive maintenance and cause assessment via
the internet. In addition to using real-time monitoring data, historical data and trends
can also be used to make comparisons [77]. Analytics applications such as predictive
analytics, pattern recognition, and machine learning analyze data and trigger sequenced
patterns of behavior based on data filtering, normalization, and transformation [78]. The
site engineers can make future decisions based on historical data stored in this way. This
prevents equipment failure. It also eliminates the need to keep track of upgrades and saves
time and money.

The main aim of the monitoring system for the PV power plant is to transmit the
data in a reliable, secure, and efficient manner. However, several issues significantly affect
the performance of various monitoring technologies in terms of efficiency, range, data
processing capability, sampling rate, and signal interference. There remains a clear link
between dirt monitoring and dirt cleaning, especially under varying environmental test
conditions [79,80]. The performance ratio of a photovoltaic system is the proportional
rate between the instantaneous power generation and its rated power generation [9]. In
existence are dirt accumulation monitoring and diagnostic systems, which do not take into
account the instantaneous rate of dirt accumulation. It was not possible to quantify the
cost of dirt contamination as there was no specific data available. The qualitative analysis
revealed in this study is vital to evaluate smart system performance in monitoring and
cleaning dirt from solar panels.
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In an attempt to offer a systematization of the literature about optimizing the perfor-
mance of smart systems monitoring solar panel cleaning, we investigated the variables and
factors effective at producing the best outcomes in such systems. Parameters for the perfor-
mance evaluation of solar panel monitoring and cleaning systems include the complexity
of the system (hardware and software structure), the number of sensors required to provide
reliable sensory feedback, the detection time for the system after an abnormal solar panel
condition, and steps involved in the monitoring and cleaning action. The most important
challenge in the dirt detection process is to counter the unique operating characteristics
that result due to changing environmental conditions. Using environmental sensors such
as weight and irradiance sensors to measure dirt accumulation rates is more susceptible to
environmental effects. The complexity of these methods is lower, and they require high
computational accuracy as well. In contrast, image detection is more reliable, requires
less detection time, and is reported to be more robust in detecting dirt and shading on
solar panels [81].

The remaining sections of the study give the methodology associated with the system-
atic literature review, and the results and conclusions. In conclusion, the study summarizes
the results, implications, and limitations.

2. Methods

Scopus and Google Scholar were used as the fundamental database to retrieve the data
for this study. Although additional sources were cited for this article, they were not included
in the review, since they were only used to clarify the background of the topic. The Scopus
database provides free access to STM (Scientific, technical and medical) journal articles
and the references cited in those articles, research, and collection development can both be
performed with the database [82]. Search topics included “solar panel”, “monitoring”, and
“cleaning”. The terms appeared in the titles, abstracts, and keywords of the publications.
The period covered spanned from 2008 to 2022. Various types of publications were indexed,
and the number of publications associated with smart solar panel monitoring, and cleaning
was 45. According to the document types, the majority are journal articles (n = 25, 55.6%)
and conference papers (n = 17, 37.8%). Similarly, conference reviews are few (n = 3, 6.7%).
The Scopus database contains details about every publication, such as the publication
year, the authors, their addresses, the title, abstract, the journal, subject categories, and
references. This set of data from Scopus was exported for the analysis of publication
output and growing trends, as well as geographical and institutional distribution and
collaboration. The Scopus analysis feature was used to visualize the geographical and
institutional distribution and collaboration, while VOSviewer was used to analyze and
visualize author relationships, co-citations, and terms. VOS represents the similarity or
relatedness between items according to their distance as accurately as possible [83]. This
method of clustering topics into groups was used to classify them into different groups,
where each group is denoted by a different color. The results section describes in detail
how the visualizations were interpreted.

2.1. Search

The research scope was formulated at the intersection of the broad terms “solar panel
performance improvement” and “remote monitoring and cleaning”. The search string is
composed of two main parts: (i) the smart solar system; (ii) the exclusions and limitations
of the search scope. The structure of the search string used in the Scopus search comprises
solar AND panel AND monitoring AND cleaning.

2.2. Eligibility Criteria

An overview of the hypotheses of the current study can be found in the preregistration
on Open Science Framework (osf.io/rk8yj). The screening step in the evaluation process
involves a deeper analysis of the publication’s full-text analysis for potential research items,
which is discussed accordingly. Scientific publications in the English language, including
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reviews, research articles, and open access documents, were considered. Moreover, the
publication duplicate was checked by the EPPI-Reviewer.

After full-text analysis, two articles were excluded because they failed to meet the
inclusion criteria, or did not meet the quality requirements since this review is focused
more on the smart systems for solar cleaning and its implications. A total of 55 scientific
publications entered the data collection phase. This is illustrated in Figure 8.

Figure 8. Process flow chart of the search.

3. Results

3.1. Overview of Selected Articles

Compared to other reviews on the monitoring and cleaning of the solar panel (e.g., [46,84]),
the current review provides a relatively short bibliometric analysis. The bibliometric analysis
was conducted following a systematic literature review (with PRISMA) that allowed the
elimination of articles outside of the pre-defined scope (see Section 3) and work only with those
within. Due to the lack of studies regarding the implementation of the Internet of Things in
improving solar panel performance, the number of articles was significantly reduced during
the filtering process (see Figure 8), resulting in only 41 papers for the bibliometric analysis.

3.1.1. Publication Output and Growth Trend

It is important to measure the number of publications of a scientific research discipline
or subject to gauge its development trend. The number of smart systems for solar panel
monitoring and cleaning publications has grown since 2008, as seen in Figure 9. In the
year 2008, there was just one publication on smart systems for solar panel monitoring and
cleaning. Until 2016, there were few publications on the subject (less than four publications
each year). Every year since 2016 has had more than four in the number of publications,
except for 2017, and 2019, when there has been a decrease. In 2020, there was a peak of
publications (n = 11), followed by a downward trend (n = 4) in the first quarter of 2022.
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Figure 9. Publication trends related to smart systems for solar panels (between 2008 and 2022).

3.1.2. Authors and Their Collaboration

A total of 159 writers contributed to the 41 articles. Only a small set of prolific
authors contributes to a considerable percentage of publications on a certain issue, which
is consistent with observations in other subject areas. As shown in Figure 10, the subject
areas of engineering and energy received the highest percentage of credit (22.0 percent each;
approximately n = 9/41), while the computer science topic area accounts for 15.0 percent
(n = 6/41). As a result of the multi-subject area publications, it can be stated that there is a
lot of collaborative research in smart system technology.

Figure 10. Analysis of subject area on smart systems for the solar panel.

One significant cluster of writers may be identified in the collaboration network in
Figure 11. The average published for each of the principal researchers is in the year 2020. In
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terms of authorship, it is worth noting a potential bias: writers with the same name could
not be separated from one another.

Figure 11. Author and co-citation visualization in the VOS viewer.

3.1.3. Geographical Distribution

One hundred and fifty-nine writers from various nations or territories contributed
to the smart systems for solar panel publications. Elven are in India, six are in China,
two are in Egypt, and one publication each came from Senegal, Morocco, and Algeria.
Figure 12 depicts the global distribution of contributing countries and territories for the
most productive solar panel research on smart systems technology. It is an economic
investment to clean the module surfaces, but the investment must be offset by a sufficient
increase in energy production [85]. Economic growth appears to encourage scientific
and academic investment since the most prolific papers on smart systems for solar panel
research are found in all of the world’s major industrialized countries. A publication might
be written by various writers from different nations or territories, or a single author can be
affiliated with multiple countries or territories. When looking at the continents in Figure 12,
a geographical discrepancy can be detected in the extension of the information on countries
and territories. The depth of the color on the map represents the number of authors from
each country.

3.2. Integration of Smart System for Solar Panel Monitoring and Cleaning

To keep solar panels clean, automatic connections and continuous monitoring are
necessary. Smart solar monitoring and cleaning applications can overcome all of these
challenges with robust and efficient cloud-based tracking systems that provide consistent
and real-time monitoring from remote locations. As part of smart systems applications for
solar panel cleaning, a key characteristic will be the combination of their essential functions
in providing timely monitoring and device management as a solution for improving
the efficiency of solar plants. Sensors and actuators would be integrated with different
configurations to provide autonomous applications with a smart system that supports
solar panel cleaning. Table 2 summarizes the focus of various journal papers on smart
solar systems.
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Figure 12. Geographical distribution of authors.

Table 2. Study characteristics.

S/No. Author(s) Year Aim Methodology

1. Nalamwar H.S., et al. [64] 2017

The goal is to create and
implement an IoT-based
solar panel monitoring
and control system.

The sensors and block
management data
acquisition system are
placed in solar plants to
collect as much data
regarding the parameters
of the plant as possible.

2. Ravi K.K., and Jeswin J. [69] 2020

To explore how IoT would
be implemented to
monitor the various
metrics related to solar
panel efficiency.

A solar monitoring system
that utilizes information
stored in AWS to deliver
actionable insights directly
to clients in real-time is
discussed.

3. Abhishek P., et al. [61] 2015

To define the hardware
and software required to
effectively monitor solar
panels continuously.

Wireless sensor nodes are
used to gather and
continuously store data
while sending it to a
central station. This
collected data is then sent
to the server via Ethernet.

4. Papageorgas P., et al. [62] 2013

The purpose of this
research is to provide an
overview of the design
process for a solar panel
monitoring system.

Wired networking
technologies are used to
build the platform along
with low-power wireless
sensor nodes that have a
short range. Solar panels
are monitored remotely,
and their performance
parameters are sent to a
coordinator.
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Table 2. Cont.

S/No. Author(s) Year Aim Methodology

5. Nur A., et al. [62] 2020

To build a solar panel dust
monitoring system that
accurately detects the
presence and density of
dust particles in real-time.

An IoT sensor was
developed that could
monitor dust
accumulation, and the
data was accessible online
through smartphones and
computers.

6. Prutha M.B., et al. [65] 2018

The aim is to propose a
remote wireless
monitoring system to
ensure the stability and
efficiency of solar plants.

Sensors are used in the
application for the Internet
of Things (IoT), which is
controlled by a CC3200
microcontroller with an
ARMCortex-M4 processor
and a Wi-Fi card.

7. V. Kavitha and V. Malathi [66] 2019

To present an IoT-based
solar energy monitoring
system that collects and
analyzes performance
data to predict generation
and handle unstable
power generation due to
environmental factors.

Blynk, as a software
platform, was used
together with a
Wi-Fi-enabled CC3200
microcontroller featuring
an embedded ARM
processor. Based on this
setup, the Blynk app
enables real-time
communication and
upload of data to the
cloud.

8. Omar A., et al. [84] 2021

To analyze how solar
energy systems are
affected by regular
operational factors and to
optimize each factor’s
effect on the system.

A review of the main
generic objectives of
renewable energy system
optimization was
presented concerning
technical, economic, social,
and environmental
sustainability factors.

9. Mallikarjun G., et al. [46] 2017

To conduct a comparative
study of several solar
panel cleaning
technologies, specifically
to engineer a
revolutionary new
technology for dust
separation using an
electrostatic precipitator
(ESP).

Weight-sensitive
thresholds under the
panel build up dust over
time, and the algorithm
detects the accumulation
to determine whether the
panel needs cleaning.

10. Paredes-Parra, et al. [86] 2019

The goal is to provide
solar power plants with a
low-cost wireless system
for communicating with
remote areas using
long-range (LoRa)
technology.

The wireless
communication solution is
made up of the sensor
layer and low power
wireless area network
(LPWAN) to bring a
comprehensive
monitoring system to the
data exchange in an IoT
environment.

11. Nurhasliza H., et al. [87] 2019

To determine the most
effective technology to
clean solar panels, while
remaining affordable and
environmentally friendly.

The proposed technique
uses a smartphone app to
monitor power generation
and clean the solar surface
as needed using a robot.
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Table 2. Cont.

S/No. Author(s) Year Aim Methodology

12. Prasad A.A., et al. [88] 2022

To investigate a decrease
in energy production by
solar panels for the arid
region of outer space in
Australia.

Analysis of dust
characteristics was
performed using two
reanalysis products, the
Modern-Era Retrospective
Analysis for Research and
Applications, and the
Copernicus Atmosphere
Monitoring Service (CAMS),
with satellite data were
acquired by Himawari-8.
The analysis was conducted
over seasonal periods
following natural
sedimentation. It revealed
significant reductions in the
energy of up to 3%.

13. Barker A.J., et al. [19] 2022

To apply a chemical
coating to solar panels to
protect the devices from
sustaining damage, when
the environment requires
regular cleaning and
disinfection.

Coatings technology was
tested for glass cleaning and
the incoming solar radiation
was continuously monitored
and logged to estimate
power production
capabilities and surface
accumulation for each panel.

14. Chen Y., et al. [89] 2021

To create a dust
monitoring system for the
increase in efficiency of
solar panel generation.

The monitored real-time
data include the weather,
solar panel power
generation, and surface
images for automated
aggregation by a
microcontroller with
transmission capabilities.
Algorithms were used to
process the imagery.

15. Gupta V., et al. [90] 2022

To examine the
self-cleaning of solar
panels through a wireless
system.

A wireless data collecting
and monitoring system was
used to create and test a PV
system’s performance. A
fixed PV system with daily
manual cleaning was
compared to a suggested
cleaning PV system for a
month, and the efficiency of
the proposed cleaning PV
system was just 1.13 percent
lower.

16. Nattharith P., et al. [33] 2022
To create a mobile robot
system for inspecting and
maintaining solar panels.

An Arduino is used to
control the robot while a
Raspberry Pi provides an
internet connection for
remote users to control their
cleaning system through the
developed website. A
webcam also gives a live
stream during robot
operation.

17. Şevik S., et al. [91] 2022

To research ways on
effective cleaning and
maintenance of solar
panels.

Thermal monitoring and
snow load removal were
experimented with on a
connected solar panel to
monitor power reduction
due to dirt.
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Table 2. Cont.

S/No. Author(s) Year Aim Methodology

18. Sánchez-Barroso G., et al. [85] 2021

To determine the optimal
period in which to clean
photovoltaic panels
installed at Dehesa subject
to its specific environment.

Three cleaning schedules for
monthly, quarterly, and
semi-annual intervals were
evaluated in comparison to
comparable uncleaned
controls.

19. Narvios W., et al. [92] 2021

To create an Internet of
Things (IoT)-based system
to track, spot dust buildup,
and remove dust from PV
solar panel surfaces.

The dust sensor measures
and detects dust on the
panel. The cleaning system
automatically activates
when the amount of dust
builds up to a certain point.
The temperature and
humidity sensor was used to
keep track of the outside
temperature.

20. Shah M.d., et al. [93] 2021

To create a smart, Internet
of Things (IoT)-based
system that can spin the
panel to track attributes
and enable cleaning and
output monitoring.

The IoT system used an
Arduino Uno, a Wi-Fi
module, and a smartphone
to gather the data it needed
for the application.

21. Zeedan A., et al. [94] 2021
To compare output power
and ambient dust density
for solar panels.

Experimental data from
long-term observations of
various meteorological
conditions and the output
power of PV panels placed
in Qatar University’s Solar
facility in Doha are used to
quantify losses on solar
panels.

22. Priyadharshini N., et al. [95] 2021

To use a cooling
mechanism to deal with
the solar panel’s
temperature rising above
the set point and the
accumulation of dust on
the panel.

Three sensors; temperature,
LDR, and current are used to
monitor the temperature rise
and dirt on a solar panel.

23. Pagani V.H., et al. [96] 2021

To suggest a soiling index
modeling based on solar
radiation and generated
current for solar panel
systems to establish the
cleaning parameters.

The study was based on the
modification of an existing
mathematical model.

24. Anilkumar G., et al. [21] 2020

To discuss potential
strategies to reduce the
impact of dust on the
surface of solar panels.

An automated robot
cleaning system was
implemented using a low
power wide area network
(LPWAN) built on a network
of ESP 8266 Node MCUs
linked to a set of sensors.

25. Jin L.C., et al. [97] 2020

To create a self-cleaning
solar panel system that
will increase power
generation by eliminating
accumulated dust from
the glass surface of the
panels.

The voltage, current, LDR,
and IR sensors were used in
the construction of the dust
detecting system. The
Arduino microcontroller
then collected and analyzed
the sensor data to launch an
autonomous cleaning. For
monitoring purposes, the
data were also uploaded to
the ThingSpeak and Blynk
servers utilizing Internet of
Things (IoT) technology.
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Table 2. Cont.

S/No. Author(s) Year Aim Methodology

26. Mohamed M., et al. [98] 2020

To achieve the optimized
cleaning rate of solar
panels with the least
amount of energy losses
and cost.

Investigated were the acquired
soiling rate and cleaning PV
scenarios to determine the
impact of soiling density on
the angle of incidence (AOI).

27. Jaszczur M., et al. [99] 2020

To research the important
factors that affect dust
formation and how they
interact.

Investigated were wind and
rainfall as the main natural
factors that affect dust buildup
on solar panel surfaces and
how they relate to one another.

28. Azouzoute A., et al. [100] 2019

To research a novel
method for measuring the
reduction in glass
transmittance on a solar
panel.

The Brewster angle was
utilized in the technique to
assess the intensity of the
reflected ray from the glass
surface in the presence of
various levels of dust
deposition density.

29. Arabatzis I., et al. [101] 2018

To determine how a
self-cleaning solar panel
with a photocatalytic and
antireflective glass layer
affects its effectiveness.

Utilizing UV spectroscopy and
Methylene Blue’s degradation
as organic pollutants,
respectively, the coating’s
optical and photocatalytic
characteristics were assessed.

30. Kama A., et al. [102] 2017

The aim is to propose a
method for monitoring the
performance of solar
streetlights using a
connected system.

A transmission mechanism
and sensors are included in
the proposed solar streetlight
to enable real-time data
collection on a distant server.
The data are distributed to a
Web server, where it can be
viewed for monitoring
reasons.

31. Joglekar A.V., et al. [103] 2018
To propose online I-V
traces for series-connected
solar panels on-demand.

The I-V trace’s shape analytics
are utilized to identify the
fault’s nature and its location
on a solar panel array.

32. Nasib K., et al. [22] 2018
To demonstrate the design
and construction of a solar
panel cleaning prototype.

The system’s prototype
includes a cleaning robot and
a cloud interface.

33. Archana R., et al. [104] 2018

To develop a Smart Solar
Panel Cleaning system
with a primary focus on
utilizing Internet of
Things (IoT) technology.

The Internet of Things
analyzes the solar panel’s
environmental factors and
gives the user the ability to
take appropriate action.

34. Yousif A.A., et al. [105] 2020
To improve the efficiency
of the system for cleaning
and cooling solar panels.

An IoT device and a mobile
application are used to
remotely monitor and control
the system through the
internet.

35. Mohammad A.J., et al. [106] 2015
To study and discuss the
approaches and issues on
solar panel dust removal.

The robot’s control system is
implemented using an
Arduino microcontroller.

36. Alireza G., et al. [28] 2015

To create an inexpensive
automation system that
can perform on-demand
cleaning to maintain the
effectiveness of solar
panels connected in an
array.

Data from individual panels
were collected using wireless
sensor networks. The
monitored data and
information are utilized to
instruct a robotic device to
clean the surface of dirty
panels.
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37. Dhanalakshmi K.S., et al. [25] 2021

To eliminate the tedious
process of cleaning a solar
panel using the manual
method.

The autonomous robot,
which is built on an
Arduino platform,
communicates with
mobile devices through
Bluetooth to remotely
control the cleaning of
solar panels.

38. Neha S., et al. [107] 2018
To fully automate the
maintenance of solar
energy production.

Solar power generation is
tracked, cleaned, and
managed via an Internet
of Things platform. The
Raspberry Pi module
serves as the processor,
while the built-in Wi-Fi
module facilitates data
transmission to the cloud.

39. Cova P., et al. [108] 2018

To create a model that
takes into consideration
the energy production
losses caused by dust and
other types of dirt.

Solar panels with proper
measurements of current
and voltage and a clean
reference panel were set
up to identify shading
effects caused by different
kinds of soiling.

40. Mudang N., et al. [109] 2020

The goal of self-cleaning is
to increase the
effectiveness of solar
electricity generation.

An LDR sensor detects
obstructions on the solar
panel, and a
microcontroller
determines whether to
clean with Wiper and
Spray water or continue
charging the battery.

41. Jaswanth Y., et al. [110] 2021

To create a technique for
consistently and
effectively cleaning solar
panels.

The design of the cleaning
robot comprises driving
gear motors, a motor
driver, and a second motor
that powers the robot and
is fitted with a cleaning
membrane so that it may
be washed with water. For
damage and cleaning
references, the camera
records footage of the
solar panels and sends it
to the cloud.

4. Discussion and Future Prospects

The current status of smart system integration in solar panel monitoring and cleaning
is summarized in this review. Through the proposed harmonized data structures, future
assessments can be more efficiently planned and integrated by showing what data have
already been used and what data can be used in the future. It can be especially beneficial
when certain optimizations are implemented based on real-time data from a solar panel
site. From this review, we have identified the following gaps and recommendations:

• Though the purpose of communication technologies and cloud platform implemen-
tation was justified in the past studies for monitoring real-time data for decision
making, most do not relate to assessments of the analytical soundness, measurability,
and platform deployment, as well as their linkages to one another. Furthermore,
more theoretically based research is required to create reliable evidence for selecting
communication technologies and implementing cloud platforms.
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• The influencing score of the theoretical framework used and the impacts on the
methodology are underrepresented in the smart systems for the solar panel. Research
on theoretically based smart systems remains a bottleneck to future progress on smart
systems for solar panel monitoring and cleaning.

• The majority of smart solar panel case studies are located in Asia, and large regions of
the world possess no published assessments. Indian and Chinese institutions are the
most prolific in this area.

The main gaps in the smart system for solar panel monitoring and cleaning are the
optimal cleaning frequency and costs, which are yet to be proven with the monitored
data. The modeling of energy output degradation is an important tool for increasing the
bankability of solar plants since dirt does not accumulate uniformly over time, but rather is
affected by variations in weather conditions from day to day.

5. Conclusions

In the systematic review, well-conducted studies have been shown to improve solar
panel cleaning and monitoring through the inclusion of smart system integration. The find-
ings of other reviews of smart systems for solar panels are consistent with the observation
that smart systems for solar panel monitoring and maintenance are effective. The ability
to visualize the solar panel dirt conditions can be instrumental in optimizing the cleaning
time and operation. There were four areas of interventions our research identified: dirt
detection, cleaning methods, wireless communication technologies for data gathering, and
cloud platforms for IoT implementation. Currently, there is enough evidence, but more
studies are needed to fill the identified knowledge gaps. Smart systems for solar panels
have the potential to improve lifetime performance, reduce maintenance costs, reduce
human intervention, as well as increase energy output. Ultimately, the optimal frequency
and cost of cleaning must be determined with monitored data, but the evidence reviewed
here can be helpful to practice, policy, and future research.
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Abstract: The development of hybrid renewable energy systems (HRESs) can be the most feasible
solution for a stable, environment-friendly, and cost-effective power generation, especially in rural
and island territories. In this studied HRES, solar and wind energy are used as the major resources.
Moreover, the electrolyzed hydrogen is utilized to store energy for the operation of a fuel cell. In
case of insufficiency, battery and fuel cell are storage systems that supply energy, while a diesel
generator adds a backup system to meet the load demand under bad weather conditions. An
isolated HRES energy management system (EMS) based on a Deep Q Network (DQN) is introduced
to ensure the reliable and efficient operation of the system. A DQN can deal with the problem
of continuous state spaces and manage the dynamic behavior of hybrid systems without exact
mathematical models. Following the power consumption data from Basco island of the Philippines,
HOMER software is used to calculate the capacity of each component in the proposed power plant.
In MATLAB/Simulink, the plant and its DQN-based EMS are simulated. Under different load profile
scenarios, the proposed method is compared to the convectional dispatch (CD) control for a validation.
Based on the outstanding performances with fewer fuel consumption, DQN is a very powerful and
potential method for energy management.

Keywords: hybrid renewable energy system (HRES); isolated microgrid; energy management system
(EMS); Deep Q Network (DQN); HOMER software

1. Introduction

The worldwide increase in energy demand leads to the consideration of using renew-
able energy types such as solar, wind, tidal, and geothermal. Currently, fossil fuels are
still the major reliable power sources especially for rural and island electrification. On the
other hand, fossil fuel price is constantly increasing, and fossil fuels are responsible for
global environmental pollution. Consequently, many countries have recently opted for the
long-term sustainable development of renewable energy. By 2025, the Ministry of Economic
Affairs (Taiwan) aims at increasing the share of renewable energy to 20% within the total
power generation, as well as phasing out nuclear energy. Several developing countries such
as Philippines, Thailand, and Vietnam have changed their power development plan based
on green energy. We consider them some of the most typical countries for the deployment
of renewable energy power plants [1].

The recent development of solar and wind energy has recently been considered
because of the available amount of solar radiation and wind distribution. These energy
types are environment-friendly and cost effective, but unpredictable and uncontrollable
as well due to the significant dependence on weather conditions. In order to improve the
operational ability and efficiency of these power systems, the concept of a hybrid renewable
energy system (HRES) was created [2]. In terms of power generation for rural and island
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areas, HRES is more cost effective than a grid extension. Depending on the distance from a
power station, a grid extension can range from 10,000 to 50,000 USD per kilometer [3].

In a HRES, the combination for sustainable and reliable power supply of renewable
energy resources, energy storage systems (ESSs), and diesel generators (DGs) can create
economic, technical, environmental, and social benefits to investors. The role of ESSs is to
store the excess energy from renewable energy sources. DGs can be operated when both
renewable energy resources and ESSs are out of power. The configuration and topology of
a hybrid HRES system can vary in several ways. The most generic classification includes
on-grid and off-grid systems. According to the bus interconnection or the physical link
between all components, the system can be classified as DC, AC, or hybrid DC/AC [4]. To
ensure a high level of system reliability and operational efficiency, energy management
algorithms are needed to manage the power flow inside the system. In particular, this
algorithm has to allow for the variation of load demand and the system complexity.

Energy management system (EMS) is one of the most important components of the
HRES. The main function of EMS is to balance power between the system components
reducing the amount of fossil fuel used for power generation. The EMS control can be
classical and intelligent [4,5]. Classical EMS is based on linear, nonlinear, or dynamic
programming [6]. We can also find rule-based and flowchart methods [7]. More latest
classical EMS controllers are based on proportional-integral controller [8], sliding mode
controller [9], and H-infinity controller [10]. Classical EMS, which may require complicated
mathematical models with various system variables, has low computational complexity.
Compared to classic EMS, the intelligent one seems to be more robust and more efficient.
Examples include the fuzzy logic (FL) [11], the artificial neural network controller (ANN),
the Neural-Fuzzy controller (ANFIS) [12], and a model predictive controller (MPC). In
addition, evolutionary algorithms-based EMS methods have been also developed, such
as the Particle Swarm Optimization (PSO), the Genetic Algorithm [13], and the Modified
Bat Algorithm (MBA) [14]. Recently, machine learning has been applied for EMS such as
support vector machine (SVM) [15]. Among these intelligent EMS methods fuzzy logic,
neural network, and ANFIS are definitely popular.

Different from classical EMS, based on the intelligent EMS, simple mathematical
models are required to manage hybrid system dynamic behaviors. However, the current
forms of these methods are still not able to guarantee better performance of optimal
control [15]. Over time, a lot of hybrid studies have been conducted to enhance the global
optimal solutions and the convergence speed. The major purpose is to find the action
that optimizes the value of an objective function. In [16], a method, named as PF3SACO,
was developed to improve the optimization ability and convergence speed, in which PSO
and fuzzy are used to adjust system parameters. In [17], to adapt to complex scenes, the
author proposed a robust tracking method based on a feature weight pool that has multiple
weights for different features. In [18], a variable neighborhood search and non-dominated
sorting genetic algorithm II (VNS-NSGA-II) were applied to optimally solve the routing
problem with multiple time windows. In [19], a principal component analysis (PCA), a
local binary pattern (LBP), and a gray wolf algorithm were combined to optimize the
parameters of kernel extreme learning machine (KELM) for image classification. It can be
confirmed that these hybrid methods are powerful in solving a complex optimal problem,
especially since they can be used to optimize the parameters of machine-learning-based
approaches. However, they would heavily depend on complex mathematical models and
computational complexity.

More studies on agent-based machine learning methods for hybrid EMS have been con-
ducted recently, such as deep learning (DL) and deep reinforcement learning (DRL) [20,21].
Instead of using a complex mathematical control model, these agent-based approaches
can manage the system by learning the control policy from the environmental-interacting
historical data, leading to a potential solution to energy management problems. Following
the concepts of RL and DRL, the control purpose is to obtain the maximum rewards by
continuously interacting with the system environment. Based on exploration-exploitation
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strategies, such as -greedy or softmax, the action with highest reward is taken [22]. Q-
learning is a popular model-free RL algorithm. However, RL-based methods can only
handle discrete control problems which may be hard to implement in practical applications.
DRL-based methods combine RL with deep learning to handle continuous control problems
with large state-action pair. DRL has successfully been implemented to play Go games
and Atari [23]. It should be a powerful method to handle the problems of complex optimal
control with large state spaces by using a deep neural network. It can also be applied in
robotics [23], control of building HVAC [24], and hybrid electric cars [25].

Up to now, studies about the application of RL and DRL for energy management
of a stand-alone microgrid are not common. A self-learning single neural network was
proposed by Huang and Liu (2013) for EMS residential applications [26]. A two-step ahead
Q-learning method was defined by Kuznetsova (2013) for scheduling the operation of
the battery in a wind system. In [27], a three-step ahead Q-learning method was used
to schedule battery operation a solar energy system. A Q-learning-based multi-agent
for a solar system was developed in [28] to reduce the amount of energy consumption.
Based on an autonomous multi-agent system in [29], it can manage RE buying and selling
optically. In [30], authors proposed a multi-agent system to monitor energy generation
and consumption. A Q-learning single agent system was applied to manage a solar
energy system by Kofinas (2016) [31]. In [32], a Q-learning algorithm and a fuzzy reward
function were introduced to improve system performance. It intends to learn about the
power flow between the components of the solar system more efficiently, which includes a
photovoltaic (PV), a battery, load demand, and a desalination unit (for water supply). Later,
Kofinas (2018) [33] proposed a cooperative fuzzy Q-learning-based multi-agent system for
the energy management of a stand-alone microgrid. The latter system included a PV, a
fuel cell, a diesel generator, an electrolyzer, a hydrogen tank, battery, and a desalination
plant. Each component was represented by an agent. Each agent acted as an individual
learner and interacted with other agents. The simulation results from MATLAB/Simulink
indicated that the controller could continuously maintain state and action space. The
learning of each agent took place through exploration/exploitation with fast convergence
towards a policy and with good performance. In [33], the author used fuzzy logic as the
function approximation for determining the Q-values. Similar to the above approach,
deep Q-learning (DQN) applies a neural network to calculate the Q-values in order to
increase the learning capacity of agents. In [25], deep Q-learning was applied for the energy
management of a hybrid electric vehicle. The DRL-based controller acted autonomously to
learn an optimal policy without using any prediction or predefined rule.

The main goal of this study is to propose a DQN algorithm for the energy management
of an isolated HRES and to present a case study about an HRES conducted at Basco island
of the Philippines. It is the extended study of our previous work, which developed a
DRL-based controller to track the maximum power point for PV systems under various
weather and partial shading conditions [34]. DL and DRL are widely used in robotics
and autonomous; however, only a few studies are about DRL application in an HRES for
energy management. Thus, the advantage and novelty of this study is the application of
DQN-based EMS for rural and island areas, in which the system includes battery, DG, and
hydrogen system, as well as a case study with practical load demand data. The adopted
power system in this study consists of a PV system, a wind turbine (WT), a battery, a DG, a
fuel cell, an electrolyzer, and a hydrogen tank. Based on weather data and load demand at
the applied site, we used HOMER software for determining the structure of the HRES.

The major contributions of this paper are described below:

• The implementation and simulation of a DQN-based EMS conducted based on Rein-
forcement Learning Toolbox of MATLAB/Simulink R2021a developed by MathWorks®.

• Defining a suitable design of the reward functions and neural networks to ensure the
convergence during training process, and the trained EMS is able to respond precisely
under all different weather conditions and load demand.
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• Verifying the efficiency and stability of the proposed EMS system on an isolated HRES,
which is designed based on HOMER software with practical data from Basco island.

• Conducting a performance comparison between the proposed method and the pre-
determined-rule conventional dispatch (CD) control for validation.

The rest of the paper is organized as follows. The mathematical models of the system
components are introduced in Section 2. The DQN algorithm and the CD control are
introduced in Section 3. The performance of EMS controller based on DQN is simulated in
Section 4. The final section describes the conclusion and future work directions.

2. Mathematical Models of the System Components

This section describes the mathematical models of the system components, which are
used to calculate their power generation and consumption. In this HRES, solar and wind
energy are the primary energy resources. Short-term energy storage technologies have the
ability to store and discharge energy for minutes or hours after being charged. In contrast,
long-term energy storage can extend the storage time between charging and discharging to
weeks or seasons [35]. In HRES, FCs can be used as a long-term energy storage option [4].
However, the slow dynamics of fuel cells and their degradation due to frequent start up
and shut down cycles are a major disadvantage. Hence, batteries are also needed to create
a hybrid system in which they take care of the power deficit and act as a short-term energy
storage medium [36]. Batteries can provide or absorb large power gradients in short time.
However, due to their short lifetime, high self-discharge rate, sensitivity to environment
conditions, and limited storage capacity, batteries are not suitable for long-term solution.

2.1. PV System

A PV system is composed of one or more solar panels integrated with inverter or other
electrical and mechanical hardware, using energy from the Sun to generate electricity. The
output power of the PV system is strongly affected by the amount of solar radiation and
the ambient temperature. The expression for the PV-generated power is as follows [22]:

PPV = Vpv Ipv = Ipv

{
q

AkT
ln
( Iph − Ipv + Ipvo

Ipvo

)
− IpvRs

}
(1)

where k is the Boltzmann constant, A is the non-ideality factor, q is the electron charge, T is
temperature, q is the light-generated current, Ipvo is the dark saturation current, and Rs is
the series resistance.

2.2. Wind Turbine System

During wind power generation, the blow of the wind generates kinetic energy, which
drives the blades allowing the turbine to rotate. The mechanical energy then gets converted
into electricity by the generator. The wind turbine system is significantly influenced by the
wind speed. The generated power of the WT system is obtained from the manufacturers as
follows [3]:

PWT =

⎧⎪⎨⎪⎩
0 i f V< Vin or V >Vout

Pr

(
V−Vin
Vr−Vin

)3
i f Vin ≤ V < Vr

Pr i f Vr ≤ V ≤ Vout

(2)

where PWT denotes the output power at a particular value of wind speed. Pr represents the
rated capacity. Vin, Vr, Vout stand for the cut-in, rated, and cut-out speeds, respectively.

2.3. Battery Storage System

Among various kinds of battery storage systems such as lithium-ion battery or nickel-
zinc battery, we chose lead-acid batteries for their low cost (300–600 USD per kWh). Lead-
acid batteries have a good cycle efficiency of up to 90% and a low self-discharge rate of less
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than 0.3% [37]. They are designed to withstand more deep discharge cycles, which make
them suitable for an HRES.

One of the most important parameters of the battery system is the SOC, which ex-
presses the level of charge relative to its capacity. The excess power is used to charge the
battery, while a power deficiency towards the load demand discharges the battery. The
battery SOC can be defined as follows [38]:

SOCt+1 = SOCt ± PBatηBat
Pn,Bat

× 100 (3)

where SOCt+1 and SOCt contain the battery SOC at the next time step and the current step,
respectively. PBat stands for the battery power charging or discharging (kWh), while Pn,Bat
denotes the battery rated capacity, and ηBat denotes the round-trip efficiency.

When the battery is turned on during the operation, the charging and discharging
rates of the battery are defined based on the amount of power required at the current time
step, always satisfying:

PBat,discharge ≤ PBat ≤ PBat, charge (4)

where PBat,discharge with negative sign indicates the discharge rate of battery, and PBat, charge
with positive sign shows the charge rate of battery.

At any time-step, the value of SOC must satisfy:

SOCmin ≤ SOC ≤ SOCmax (5)

2.4. Diesel Generator

In the HRES system, a diesel generator is used as the back-up system when the load
demand cannot be met by other components. The diesel generator ensures the availability,
reliability, and quality of the power system all the time. We chose the model of the DG
system according to its fuel consumption. In [39], an approximate linear model is presented
where the hourly fuel consumption is calculated from the rated capacity of the DG and its
operating power.

Fuelt = αDGPDG,t + βDGPr,t (6)

where Fuelt expresses the fuel consumption (l). PDG,t denotes the operating power, while
Pr,t denotes the rated power of the DG system (kW). The coefficients of the fuel con-
sumption are αDG = 0.246 and βDG = 0.08145. They were used similarly in several
studies [40,41].

2.5. Fuel Cell

A fuel cell (FC) uses the chemical energy of hydrogen or another fuel to produce
electricity. There are various types of FCs available in the market. The so-called proton
exchange membrane fuel cell (PEMFC) is the most frequently used. The advantages of
PEMFC include high-power density, low operating temperature, small size, and good
performance at start up and shut down. For this reason, PEMFC was chosen for this project.
The hourly hydrogen consumption can be expressed as follows [9]:

qH2,con =
PFC

Elow,H2 ηthermUf ηFC
(7)

where PFC denotes the output power supplied by the FC, Elow,H2 = 33.35 kWh/kg assumes
the lower heating value of the hydrogen, ηtherm = 0.98 is the thermodynamic efficiency
at 289 K, while Uf is the fuel utilization coefficient, namely, the ratio between the mass
of fuel entering the FC and the mass of fuel reacting in the FC. Finally, ηFC denotes the
FC efficiency.
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2.6. Electrolyzer

To supply the hydrogen fuel for the operation of the FC, an electrolyzer is used. It
generates hydrogen from water via electrolysis. The chemical reaction in an electrolyzer
is the reverse of that in an FC. The power absorbed by the electrolyzer and the generated
hydrogen mass are related by the expression below [9]:

PEL = BqH2, nom + AqH2, gen (8)

where PEL denotes the power consumed by the electrolyzer system, qH2, nom denotes the
nominal hydrogen mass flow generated by the electrolyzer, while qH2, gen symbolizes the
actual generated hydrogen mass flow (kg/h). A and B are the consumption coefficients
of the electrolyzer power curve where A = 10 kW/kg and B = 40 kW/kg were used in
this paper.

2.7. Hydrogen Tank

In the HRES, a hydrogen tank is used as the container of hydrogen that is generated
by the electrolyzer and is consumed by the FC system. Hydrogen can be stored as either
liquid or pressurized gas. There are three methods to store the hydrogen: compressed
high-pressure gas, hydrogen-absorbing materials, and liquid storage, among which, the
first one is the most common. The hydrogen level in a hydrogen tank can be determined by
the following expression [9]:

LH2(t + 1) = LH2(t) +
qH2, gen − qH2,con

CAPH2

(9)

where LH2(t + 1) and LH2(t) stand for the level of the hydrogen at the next and the current
time-steps, respectively, and CAPH2 denotes the capacity of the hydrogen tank (kg).

2.8. Power Balance

Power balance is the state of equality between the produced energy and the load
demand. More exactly, at each time step, the total possible power generation should never
fall short of the power consumption. The weather data collection for feasibility extended
over one year to facilitate system analysis and to allow for scheduling the operation of the
whole system. The power balance equation is expressed as follows:

PPV + PWT + PBat + PDG + PFC + PEL = PLoad (10)

3. Energy Management of an HRES Based on Deep Q-Network

3.1. Introduction of the Proposed HRES

EMS is one of the most important parts to ensure the system is in reliable and efficient
operation. The main function of the EMS is to balance the power flow between the system
components, and simultaneously reduce the amount of fossil fuel and cost of energy
production. A proposed DC/AC-bus system for power generation is presented in Figure 1.
Excess energy from PV and WT will be stored in the battery and hydrogen system by
controlling the K_Battery and K_Electrolyzer switches. In case PV and WT cannot fulfill
the load demand, based on the available energy levels of system components, EMS will
discharge battery or turn on FC and DG by K_Fuel-Cell and K_Diesel switches, respectively.

The proposed EMS control schema is presented in Figure 2. It is a learning-based
approach, so no explicit mathematical model of the system is needed. A Markov Decision
Process (MDP) of the EMS is needed for the implementation of the DQN algorithm. Based
on the MDP model, the objective is to find the optimal policy for dispatch control of the
system components to ensure a stable operation of the power system with the lowest cost
of energy. An MDP model of the EMS is firstly defined in Section 3.2, including states (S),
actions (A), transition probabilities (P), and rewards (R). It is considered as a tuple S, A, P,
R. In which, “S” is a finite set of states which describes the all the operating point of the
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system. “A” is the control action. “P” is the probability of moving from one state to another
one. “R” is an immediate return given to an agent when he or she performs specific action
or task. Good action will receive positive reward while bad action will get punished.

A description of the DQN algorithm for EMS control is shown in the following part.
In the DQN approach, a deep neural network is designed to approximate the action-value
function and the DQN algorithm is adopted to train the neural network. It takes the state
of the HRES as inputs, and outputs are the signals for dispatch control of the system
components. The combination of the states of K_Battery, K_Electrolyzer, K_Fuel-Cell, and
K_Diesel basically determines the system modes of operations. Finally, in Section 3.4, a
conventional-based EMS is also applied for the validation of the proposed method.

Figure 1. The diagram of the proposed HRES.

Figure 2. The proposed Deep-Q-Network-based EMS.

3.2. Markov Decision Process Model for the EMS
3.2.1. States and State Variables

During the operation of the HRES, the EMS controller receives a current state, it
takes action, and moves to the next state based on its knowledge. The state information
provides the basis for power flow control among all system components. The elements of
our proposed HRES include PV, WT, DG, battery, and hydrogen system. The state variables
are defined as combinations of the powers of load, PV, WT, DG, battery, fuel cell, and
electrolyzer, as well as the state of charge, and the percentage of hydrogen in the tank (LH2 ):

S =
{

PLoad, PPV , PWT , PDG, PBat, PFC, PEL, SOC, LH2

}
(11)
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3.2.2. Actions and Action Variables

Given the state at the current time step st, the EMS controller chooses an action and
moves to next state by opening or dispatching the operation of following elements: DG,
fuel cell, electrolyzer, and battery system. The action set A is formed by 4-component
control signals:

A =
{

σBattery × σDG × σFC × σEL
}

(12)

The control actions of the battery system are discharging (−1), stopping (0), and
charging (1), that is:

σBattery = {−1, 0, 1} (13)

The control action variable of the diesel generator is in Equation (14), including stop,
operating 25%, 50%, 75%, and full capacity, that is:

σDG = {0, 0.25, 0.5, 0.75, 1} (14)

The control action variables of FC and electrolyzer are defined as σFC and σEL, respec-
tively, including ON (0) and OFF (1), that is:

σFC = {0, 1} (15)

σEL = {0, 1} (16)

3.2.3. Transition Probability

Transition probability defines the probability that the agent moves from one state to
another state. Given an action at, where t denotes the current time step, the transition
probability from a current state st to the next state st+1 = s′ is denoted by Pa

ss′ , that is [42]:

Pa
ss′ = P

[
St+1 = s′|St = s, At = a

]
(17)

In model-based energy management approaches, the transition probabilities Pa
ss′ are

estimated by Monte Carlo simulation based on the prior probability distribution, or they
are predicted by a short-term prediction model. However, in a model-free approach such
as the DQN algorithm, they are estimated through learning from data.

3.2.4. Rewards

Reward function is used to calculate the reward from environment in response to a
given state and action. It describes how the agent ought to behave. A good reward function
can accelerate convergence during the training process. It can also affect the controller
performance. For a simple approach, our designed reward function is the consumption of
the reward from each system component as follows:

rt(st, at) = rt,Bat + rt,FC + rt,EL + rt,DG (18)

where rt,Bat, rt,FC, rt,EL, and rt,DG are the rewards from the subsystems: battery, fuel cell,
electrolyzer, and diesel generator.

The component rewards are essentially defined as follows:

rt,Bat =

⎧⎨⎩
PBat

Pdischarge,max
i f
(

PPV + PWT + PDG − PLoad
ηinverter

)
≥ 0

− PBat
Pdischarge,max

otherwise
(19)

rt,FC =

⎧⎪⎪⎨⎪⎪⎩
2∗PFC

PFC,max
i f
(

PPV + PWT − PBat − PLoad
ηinverter

)
≤ 0 and SOC ≤ 0.5

PFC
PFC,max

i f
(

PPV + PWT − PBat − PLoad
ηinverter

)
≤ 0

− PFC
PFC,max

otherwise

(20)
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rt,EL =

⎧⎪⎪⎨⎪⎪⎩
2∗PEL

PEL,max
i f
(

PPV + PWT + PDG − PBat − PLoad
ηinverter

)
≥ 0 and SOC ≥ 0.9

PEL
PEL,max

i f
(

PPV + PWT + PDG − PBat − PLoad
ηinverter

)
≥ 0

− PEL
PEL,max

otherwise

(21)

rt,DG = − Fuelt
Fuelmax

(22)

where ηinverter is the inverter efficiency, Fuelt is the fuel consumption of the diesel generator
based on the actual operating power at time step t, and Fuelmax is the fuel consumption at
the maximum capacity.

As shown in Equations (19)–(22), the component reward functions are defined based
on the result of the power balance function. For example, the battery will get negative
reward when the sum of PV, WT, and DG powers is smaller than 0. Thus, the agent will
learn to avoid choosing the negative-reward actions. The reward functions of FC and EL
are similar to that of battery. For DG reward function, more fuel consumption means more
negative rewards. Thus, it helps the agent to stop the operation time of the DG as much
as possible.

In addition, the agent receives a big penalty if these parameters are out of their
boundaries as shown below:

SOCmin ≤ SOC ≤ SOCmax (23)

PBat,discharge ≤ PBat ≤ PBat,charge (24)

LH2,min ≤ LH2 ≤ LH2,max (25)

0 ≤ PFC ≤ PFC,max (26)

0 ≤ PEL ≤ PEL,max (27)

3.3. Methodology of the DQN-Based EMS

In this part, the DQN algorithm is described. Its objective is to find an optimal policy
that maximizes the expected total rewards from a starting state. Figure 3 shows a graph of
DQN-based EMS. The optimal policy is formulated as [42]:

Vπ∗
(s) = maxEπ

[
T

∑
t=0

γtrt+1|s0 = s

]
(28)

where π∗ ∈ Π is the optimal policy in response to a given state and action. It is a strategy
which is applied by the agent to decide the next action based on the current state. 0 < γ < 1
is the discount factor used to define the importance of future reward. Eπ denotes the
expected value of reward according to the policy the agent follows.

In the DQN formulation, the optimal policy is represented by the optimal action-
value function:

Vπ∗
(s) = maxQπ∗

(s, a) (29)

where Vπ∗
(s) is the optimal state-value function of an MDP. It is the expected return

starting from state “s” following optimal π∗; Qπ∗
(s, a) is the optimal action-value function.

It is the expected return starting from state “s”, following optimal policy π∗, taking action
“a”. It focuses on the particular action at the particular state.

It is expressed as follows [42]:

Qπ∗
(s, a) = Eπ∗

[
∞

∑
k=1

γk−1rt+k|st = s, at = a

]
= Eπ∗

[
rt + γmaxQπ∗

(st+1, at+1)|st = s, at = a
]

(30)
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Following the optimal action-value function, the optimal policy can be determined
by [42]:

π∗(s) = argmaxQπ∗
(s, a) (31)

In the DQN algorithm as shown in Figure 4, a deep neural network is used to cal-
culate Qπ∗

(s, a). It is expressed as Q(s, a|θ) network, where θ is the weight vector of the
neural networks. As shown in the pseudo code in Figure 4, two separate Q-networks are
used. Q(s, a|θ) represents the prediction network, while Q(s, a|θ′) represents the target
network [42]. To train the Q-network, a gradient descent is applied to minimize the loss
function of the target and prediction networks. In every time step of the training process,
the prediction Q network is updated by back-propagation method. In contrast, the target
network is frozen. After a period of C time steps (C steps in the algorithm), its weights are
updated by simply copying the weights from the current prediction Q network. Freezing
the target Q network for a period of time helps stabilize the training process. In general,
the Deep Q Network must be trained through the process in Figure 4 to ensure that EMS
controller always chooses the best action. Then, EMS uses its trained Deep Q Network to
calculate the Q value based on the current state information, and the next action is chosen
following that Q value.

 

Figure 3. A graph of DQN-based EMS.

Figure 4. DQN algorithm.
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3.4. Methodology of the Conventional Dispatch-Based EMS

The EMS controller chooses the operational mode of an HRES according to the power
difference between generation and consumption and the available power in the energy
storage system. It aims to satisfy the power demand all the time with the lowest fuel
consumption. Following the work in [14], an convectional dispatch EMS method is ap-
plied in this study. It is used to compare with DQN-based method in term of system
performance efficiency. The control actions of CD method are the same as DQN, includ-
ing switching on/off the diesel generator, the fuel cell, and the electrolyzer, as well as
charging/stopping/discharging the battery. The flow chart of the considered method is
shown in Figures 5 and 6. This controller chooses the operational mode according to the
power difference between generation and consumption and the available power in the
energy storage system. It aims to satisfy the power demand all the time with the lowest
fuel consumption.

 
Figure 5. Flow chart of the EMS controller of our HRES based on the CD method (branch 1).

 

Figure 6. Flow chart of the EMS controller of our HRES based on the CD method (branch 2).

397



Appl. Sci. 2022, 12, 8721

4. Results and Discussion

4.1. Site Description

Based on the weather and load data collected from this area, an optimal configuration
of HRES is calculated by HOMER software [43]. Then, its simulation model is defined
in MATLAB/Simulink for the implementation of our DQN-based EMS. In this part, the
introduction of Basco Island is presented. This island is about 190 km away from Taiwan
and is located in the northern region of the Philippines, where the major economic sectors
are farming and fishing. On the island, the current source for power generation are diesel
generators and fossil fuels, which require high operational costs due to the constantly
increasing fuel prices and logistic costs. The location of Basco Island is excellent for marine
resource management and tourism. As the government supports developing a sustainable
economy, the local governors took the opportunity to invest in a more environment-friendly
power system for the local community. Thus, research plays an important role in the
economic development plan in this area. It ensures the continuous power supply with low
cost of energy and environmental friendliness.

Figure 7 shows the diagram of our presented HRES in HOMER software (left), as well
as the load profile through the year at Basco station (right) presented in HOMER software.
A daily power consumption with an average demand of 700 kW every hour is shown in
Figure 8. The weather data used for system simulation were taken from the database of the
National Renewable Energy Lab (NREL), which can be generated by HOMER software.
The average year around solar radiation is 4.44 kWh/m2/day, while that of the wind speed
is 7.22 m/s. Following the data, the energy system should supply 18 MWh a day with a
peak power of 1.4 MW.

 

Figure 7. The proposed HRES (left) and the load demand at Basco station (right) presented in
HOMER software.

Following the analysis in HOMER software, the optimal configuration of HRES in
this case study is obtained [43]. It is reliable, environmentally friendly, and cost-effective.
The proposed design includes a 5483 kW PV system, 236 pieces of 10 kW wind turbines, a
20,948 kWh battery system (48 V DC, 4 modules, 5237 strings), a 750 kW diesel generator, a
500 kW Fuel Cell system, a 3000 kW electrolyzer, a 500 kg hydrogen tank, and a 1575 kW
converter. The Net Present Cost (NPC) of the system means the present value of the
costs of investment and operation of a system over its lifetime. In this study, it was
about 72.5 million USD. The Cost of Energy (COE), as the average cost per kWh of useful
electrical energy produced by the system, was about 0.696 USD/kW. Furthermore, it can
be concluded that the combination of the FC and the battery as the storage system is the
best option for the design of HRES with lowest cost of energy. In this kind of system, FC is
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for a long term, while the battery is for short-term usage. Following the load demand at
the applied area, the system is practical and cost-effective.

Figure 8. The structure of the critic network for the DQN-based EMS.

4.2. Implementation of DQN-Based EMS in MATLAB/Simulink

We carried out the simulation of the designed HRES in the Reinforcement Learning
Toolbox of the MATLAB/Simulink environment. The time interval between two time-steps
was one hour. There was a total of 5000 episodes during the training process where each
episode ran for a randomly selected 48-h period. At the beginning of each episode, random
initial conditions were generated including the initial state of charge and the initial amount
of hydrogen in the tank.

Based on the experiences from previous publication [34] as well as trial-and-error
during the training process, the structure of the network and its training parameters were
determined. This is a usable reference in this area because there are not many publications
that discuss details of the implementation of DRL for an HRES. In this study, the structure
of the critic network applied for the DQN method is depicted in Figure 8, while the initial
setting parameters for the simulation are displayed in Table 1. The amount that the network
weights are updated during training is referred to as the step size or the learning rate (α).
A large learning rate helps the agent to learn faster, and it could obtain the local optimal
solution. On the other hand, a smaller learning rate may allow the agent to learn a global
solution but may take significantly longer to train. In this study, the learning rate of the
critic network is set to 0.001. It would mean that weights in the Q network are updated
0.1% of the estimated weight error each updating time. The action space of DQN comprises
the combination of the actions of the four system components: battery, fuel cell, electrolyzer,
and diesel generator.

Table 1. Parameters for the simulation of the DQN-based EMS.

Specifications Value

Memory capacity
Batch size 64

Discount factor (γ) 0.9
Exploration rate (ε) 1

Decay of exploration rate 0.001
Minimum exploration rate (εmin) 0.01
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The discount factor (γ) affects how much weight it gives to future rewards in the value
function. γ = 0 means that the agent will be completely myopic and only studies actions
that produce an immediate reward. γ = 1 means that the agent will assess each of its actions
based on the sum total of all of its future rewards. Exploration rate (ε) is the probability that
our agent will explore the environment rather than exploit it. It is set to 1 at the beginning
and reduced gradually over the training time. This ensures that the agent has enough time
to explore and learn all about the environment.

4.3. Training Result

The training progress of the EMS controller based on the DQN algorithm is shown in
Figure 9. The blue line represents the total reward in each episode, while average reward
of total episodes at every time step is indicated by the red line. The estimation of the
discounted long-term reward of critics when each episode starts, episode Q0, is marked
as the yellow line in the graph. The average reward of total episodes at every time step
flattens after 500 episodes. During the training process, we save the trained agents for
online use when the average reward passes the design average value.

 

Figure 9. The training process of the DQN-based EMS.

4.4. Performance under Various Conditions

We used two scenarios for validating the performance of the proposed method. Each
test also included a comparison with a conventional dispatch-based control. In the first
scenarios, the operation of the diesel generator is totally turned off by the controller, because
the battery and hydrogen system can fulfill the load the demand in case of not enough
from solar PV and wind turbine. The second scenario is used to test for the operation of
a diesel generator when all other energy resources run out of energy. It starts with less
energy from PV and WT, so the operation of battery and hydrogen are required. Finally,
diesel generation must be turned on to ensure the operation of the power system.

The simulation period was two days long using one-hour intervals between consec-
utive steps. WT, PV, and load demand were randomly generated from the year-round
data. SOC and hydrogen levels were initialized with random values. Training based on
random inputs shows the proposed DQN method can make effective schedules for the
EMS in a deterministic environment from any initial conditions. The SOC minimum level
was set to 30% in order to avoid running into deep discharging, thereby increasing battery
lifetime. The minimum hydrogen level was set to 0. The simulation was implemented in
the Reinforcement Learning Toolbox of MATLAB/Simulink software.
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4.4.1. Scenario 1

The first scenario aimed at demonstrating the performance of the proposed DQN
approach without the operation of the diesel generator. Figure 10 indicates the available
power from the PV (green) and WT (blue) systems. The load demand is depicted by the
red line. The simulation result is displayed in Figure 11. The three subfigures on the left
apply for the DQN-based (red) EMS method, while on the right, apply for the CD-based
(blue) EMS method. The first row displays the SOC of the battery. The second row displays
the level of hydrogen in the tank. The third row displays the fuel consumption of the
diesel generator.

Figure 10. Load demand, PV, and WT power in Scenario 1.

Figure 11. Comparison between the DQN and CD methods in Scenario 1.

Figure 11 shows that the diesel generators remained shut down under both methods.
The SOCs on the left and right are almost identical. Between steps 0 and 5, the battery
was charged by the power production of the WT system. Between steps 5 and 11, the
battery switched to discharging due to no power from PV and WT. Between steps 11 and
24, more renewable power was available, so the battery was charged, and the excess power
was used to run the electrolyzer. The amount of hydrogen increased between 17 and
20 h and between 38 and 43 h. Under the DQN method, the battery itself handled the
problem of insufficient renewable input. Since the fuel cell remained shut down, there was
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no reduction of the hydrogen level in the tank over the simulation time. Under the CD
approach, the fuel cell operated during steps 21–25 and 45–46, reducing the hydrogen level.

4.4.2. Scenario 2

The second scenario aimed at demonstrating the performance of the proposed DQN
approach with the operation of the diesel generator. Similar to the previous case, Figure 12
shows the PV and WT productions and the load demand, while Figure 13 demonstrates
the performance of the DQN- and CD-based methods. No renewable energy was available
at the beginning. The level of SOC was 45%, and the amount of hydrogen in the tank was
10%. Thus, the diesel generator was forced to operate when power deficit occurred.

Figure 12. Load demand, PV, and WT power in Scenario 2.

Figure 13. Comparison between the DQN and CD methods in Scenario 2.

From 0 to 4 time-steps, since no power was available from PV and WT, the battery
discharged to its lower limit of 30%. The fuel cell supplied the power demand from 5
to 7 time-steps, resulting in the reduction of the hydrogen level. Since the power deficit
persisted, the diesel generator turned on from 6 to 8 time-steps. The battery was charged
fully from 9 to 15 time-steps when more power was produced by PV and WT. Similarly,
extra power was used by the electrolyzer to generate hydrogen. After that, the battery
discharged from 23 to 34 time-steps, and charged to its upper limit by step 38. The diesel
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generator and the fuel cell remained off due to no consumption. The operating time of the
diesel generator under both methods was 2 h. However, the proposed DQN method only
consumed 353 L, while the CD-based method consumed 492 L.

5. Conclusions

This study presents a DQN-based control to solve the complex problem of energy
management in an HRES, where the energy flow between the HRES units is managed.
The power system for case study on Basco Island, Philippines, includes a PV system,
a WT system, a battery system, a diesel generator, and a hydrogen system. Due to its
advantages of non-polluting power generation, the hydrogen system is considered for use
in the proposed HRES. In the hydrogen system, an electrolyzer uses the excess energy from
PV and WT to generate hydrogen for the operation of the fuel cell when an occasion of
power shortage occurs. In the field of HRES, most of the current studies applied Q-leaning
method, which has the limitation of a finite state and action space. In order to confront
with continuous state space and large discrete action space, we introduced a deep neural
network, allowing the agent to use function approximation to generalize across states,
instead of using a Q look-up table. For any given state, the agent will choose the action
with the highest value of reward and move to the next state. An MDP model of the HRES
and the reward functions are formulated for the implementation of the proposed method
in MATLAB/Simulink environment.

A basic rule-based EMS method named CD is considered to compare with the pro-
posed DQN following the power efficiency. Based on this comparison, we know that the
proposed method is always equal to or at least is better than the CD method. Despite only
two scenarios considered for the result analysis, it can be concluded that the proposed
method has good performance and outperforms the CD method under any uncertain
environment. This is because the agent is trained based on the random initial conditions
with random weather data and load demand, generated from the whole-year data.

The future work is to perform comparative real-time experiments with different
advanced EMS methods such as Fuzzy, ANFIS, and PSO. Furthermore, to overcome the
disadvantage of our proposed method, which is using a simple network structure and a
basic reward function, a better study on the design of deep neural networks and gradient
reward functions should be considered for fast convergence and less fluctuation of the
average reward during the training process. These two factors ensure that the optimal
policy for optimal EMS control of HRES is always obtained. Moreover, computational
complexity should be an important metric for testing and validation. In addition, lithium-
ion batteries are just as cheap as lead-acid batteries. They have lower self-discharge rates
and higher lifetimes and efficiencies. Moreover, in the size category of multi-MW-storages,
high temperature batteries such as sodium-sulfur batteries may be worth looking into for
the future development. Instead of using two-day data, multiple-year data will be applied
for the simulation.

In conclusion, we believe that deep reinforcement learning is the new potential trend
in the field of energy conversion and management due to the following features: (1) the
ability to learn from experience, (2) the ability to solve complex optimal control problems
without prior environment knowledge, (3) the requirement of a simple mathematical model,
and (4) the ability to handle problems for continuous state and action spaces.
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Abstract: This paper presents a proposal for the development of a new intelligent solution for
the optimization of hybrid energy systems. This solution is of great importance for installers of
hybrid energy systems, as it helps them obtain the best configuration of the hybrid energy system
(efficient and less expensive). In this solution, it is sufficient to enter the name of the location of the
hybrid energy system that we want to install; after that, the solution will show the name of the best
technology from which the optimal configuration of this system can be obtained. To accomplish
this goal, the study relied on the ontology approach for two reasons, one of which is related to the
nature of hybrid systems, because it is characterized by a large amount of information that requires
good structuring, and the second reason is the interaction of hybrid energy systems with the external
environment (climate, site characteristics). Afterward, to develop the knowledge base of the ontology,
many steps were followed, the first of which is related to a detailed study of the existing one and the
extraction of the basic elements, such as the concepts and the relations between them, followed by the
development of the rules of intelligent reasoning, which is an interaction between the elements of the
ontology through which all possible cases are treated. The “Protégé” software was used to edit these
elements and perform the simulation process to show the results of the developed solution. Finally,
the paper includes a case study, and the results show the importance of the developed solution, and
it is open to future developments.

Keywords: decision-making tool; intelligent reasoning rules; energy saving; energy domain ontology;
hybrid energy system

1. Introduction

Air pollution, climate change, and limited fossil resources have raised awareness
that sustainable development that takes care of the environment in which we live is
necessary [1]. With the difficulty of connecting electricity grids to remote areas, RE presents
a good alternative to fossil fuels, it does not emit greenhouse gases, and it allows the
decentralized production of resources [2]. However, the random specificity of energy
sources imposes special rules for the optimization and operation of energy systems. In
addition, the hybridization between some of the RE sources forms a complementarity of
energy production and an alternative to conventional generators generally used to produce
electricity. An HES design is an important step because of its relationship to completion
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costs and reliability [3]. Therefore, it is necessary to provide new solutions and focus in
particular on meeting consumer demands for energy while ensuring the minimum cost [4].

To meet the rapidly increasing demand for energy, all energy sources must be exploited.
Renewable energies are unlimited and clean, but the biggest problem with them lies in their
intermittent aspect. To overcome this problem, a combination of several energy sources
is made to obtain the so-called hybrid renewable energy system [5,6]. Many works have
been carried out on HES optimization methodologies. A study by Ammari et al. aimed
at presenting and analyzing a literature review of recently published works in the field of
hybrid renewable energy [7]. The study focuses on four basic categories of hybrid renew-
able energy systems, which are scaling (using software or using conventional methods),
optimization (classical, synthetic, and hybrid methods), control (centralized, distributed,
and hybrid control), and energy management (technical and economic objective). Further-
more, the review compares the different methods used in each category. A research work
by Nourollahi et al. presents a hybrid approach to process improvement and addresses
uncertainties in a residential energy system consisting of photovoltaics, fuel cells, boilers,
and storage units [8]. In this regard, uncertain parameters are divided into two categories,
including poorly behaved and well-behaved parameters, and then robust optimization and
stochastic programming are used for modeling. Additionally, the conditional value at risk
is implemented to assess the risks of well-behaved parameters. According to simulations, it
has been shown that uncertainties with bad behavior have greater effects on the operation
of the system. Moreover, changing the control parameters for robust optimization and
conditional value at risk from 0 to 24 and from 0 to 1 increases the total cost by 5.2% and
0.47%, respectively. Comparative results also show that the proposed hybrid method makes
less conservative decisions for cost optimization. The application of hybrid energy storage
to distributed energy systems can greatly improve energy efficiency and reduce operating
costs. However, insufficient efforts focused on investigating the integration of the two
systems, configuration optimization, and systems operation strategy were found. Therefore,
a new distributed energy system that combines hybrid energy storage was proposed, and
the configuration of the system optimization and the operation strategy of the new system
were considered simultaneously [9]. The studied hybrid system contained thermal storage
and two forms of energy storage, that is, supercapacitors and a lithium battery. The impact
of hybrid energy storage on distributed energy systems was fully considered. Then, a
two-layer cooperative optimization method for the new system was introduced, taking
into account energy efficiency, economy, and environmental protection. The new system
was applied to an almost energy-free society. The results indicate that the energy-saving
and equivalent pollutant-equivalent primary emission reduction rates for the new system
were evaluated to be 54.8% and 63.6%, respectively, under the low-pass filter operating
strategy combined with secondary feedback modulation of the supercapacitor charge state.
System configuration and operating strategy can be optimized simultaneously by the two-
layer collaborative optimization method. Renewable energy resources often suffer from
challenges, such as erratic energy generation, as a consequence of weather and seasonal
changes. Hybrid renewable energy systems are a solution for efficient energy densification
of renewable resources as several of them are combined to overcome challenges arising
from operating them in a stand-alone mode. A study by Sharma et al. proposed multitar-
get dynamic optimization of candidate hybrid renewable energy systems using a genetic
algorithm in which the operating cost of hybrid renewable energy systems, nonrenewable
energy use, and fuel emissions were simultaneously reduced over a limited period [10].
In optimization, three strategies are evaluated by considering the profiles of wind, solar,
and 24 h load (Strategy 1), past and 1 h ahead (Strategy 2), and 1 h ahead (Strategy 3). A
comparison of the results shows that the energy to be purchased from the network for
Strategy 1 is 8.7% and 10.7% lower compared with Strategies 2 and 3, and also the energy
sold to the network is 19% and 22% higher than for Strategies 2 and 3, respectively, while
meeting the specified load profile of 100 households.
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One of the most important applications of the renewable energy system is installing
a well-designed HES in remote areas where grid extension is complicated and expensive.
However, the proper design of such a system is a difficult task, such as coordination between
different energy sources. Energy storage and load are very complex. Hybrid renewable
energy system optimization is selecting appropriate components, scaling, and control
strategies to provide efficient, reliable, and cost-effective alternative energy to society. A
work by Fulzele and Daigavane presents a design of a hybrid renewable energy system
consisting of photovoltaic cells and a wind generator with a battery and an inverter [11].
The system was optimally simulated using the HOGA (Hybrid Optimization by Genetic
Algorithms) tool developed by the Department of Electrical Engineering of the University
of Zaragoza, Spain. In the same context, a work by Mahmoud et al. is concerned with the
application of modern optimization methods to devote the optimal configuration of hybrid
renewable energy sources, which include photovoltaic panels, wind turbines with battery
storage systems, and diesel generators [12]. The cost function of the optimization problem
was chosen to be the energy cost and energy supply potential loss for the hybrid renewable
energy system, where the main function of the optimization algorithms is to reduce this cost
function. However, the optimal configuration cannot be achieved without meeting system
reliability and operational limitations. A comparison of their results was made in order
to determine the most effective method. Furthermore, a statistical study was conducted
to determine the stability of the performance of each optimization strategy. The results
revealed optimal variables, including the number of photovoltaic panels, wind turbines,
batteries, and diesel generator capacity. Over the course of a year, the optimal configuration
was tested against the study of capital and fuel expenditures. The statistical results also
proved the robustness of the developed algorithm. Cano et al. presented a comparative
study between four optimization methods for autonomous HES, which include two energy
sources (PV, wind), storage batteries, and fuel cells [13]. The first method is based on
mathematical equations, the second uses the SDO program, the third uses the Homer
optimization software, and the last uses genetic algorithms based on the HOGA software.
The results show that the HES designed by each method guarantees reliability in the
energy supply, and SDO is the best HES optimization method. Other contributions use
AI approaches. Maleki and Askarzadeh propose four heuristic algorithms, PSO, TS, SA,
and HS, on an autonomous HES (PV, wind turbine, fuel cell) [14]. This study showed that
HES with energy storage batteries is the best choice economically, and PSO is the most
reliable optimization technique. In the same context, Aydin et al. were interested in the
development of a methodology based on the information of a GIS to identify the preferred
sites for an HES based on wind and PV [15]. This study used the principle of fuzzy logic
and the MCDM approach to determine the economic feasibility of wind and solar energy.
Finally, the associated maps were superimposed to obtain the most feasible places for HES.
The proposed methodology can help policymakers and investors easily adapt to other types
of energy resources. Luna-Rubio et al. provided an overview of optimization methods. The
study presented the different architectures of stand-alone or network-connected HES [16].
This study concluded with the following submissions:

• HES that includes solar and wind energy sources requires the addition of storage
batteries or integration into the grid.

• Among the methods proposed (probabilistic, analytical, iterative, and hybrid), the
hybrid methods are the most powerful for HES optimizing.

Djamel Saba et al. provided an optimization solution for HES based on the intelligent
reasoning rules [17,18]. Then, this solution was improved to be generic. After implementing
it, the results showed its effectiveness in choosing the optimization technique. In addition, it
is characterized by various advantages, such as flexibility in its operation and updating [19].
Coelho et al. proposed a MAS solution to optimize the HES [20]. Amicarelli et al. proposed
to minimize the costs, maximize the use of RE, and simplify the integration into the grid [21].
Elamine et al. present an intelligent method of HES energy management [22]. The solution
is based on the MAS. This concept allows the different units of the MAS to work together
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to achieve the objectives. Morstyn et al. studied the performance of the control strategy
by verification on a microgrid that includes storage batteries and a PV generator [23].
This study allows us to know the advantages that characterize distributed management
compared with centralized management. L. Raju et al. developed a MAS for managing the
energy of a microgrid containing two PV systems, two wind turbines, a battery unit, and a
diesel plant [24]. This solution offers the consumer the possibility of choosing the actions
to increase energy efficiency. A study adapted to the west African climate was conducted
by Mbodji et al. It is based on the MAS for the control, where it was applied on an HES (PV,
wind, batteries) [25]. In this study, three load profiles were considered in the simulations.
Then, the control made it possible to reduce battery use by 3%, 5%, and 6%, for profiles 1,
2, and 3, respectively. It was made in 1 day to obtain 35 kWh for profile 1 and 20 kWh for
profile 3. From an economic aspect, the strategy applied to profile 1 was allowed a gain of
EUR 6 per day and EUR 2322 per year or more than EUR 46,442 for 20 years (lifetime of
the project).

The present study is intended to face the problem of the absence of a generic opti-
mization solution for hybrid energy systems. The main objective of this work is to set
up a reliable and easy solution to optimize hybrid energy systems suitable for most sites
(generic). For these reasons, this study proposes a generic optimization solution. With this
solution, the user is not required to know much data about optimization techniques, energy
sources, and climatic data. The user only chooses the installation site, and it is up to the
adopted solution that provides the appropriate sources as well as the most reliable tech-
nique to calculate the optimal configuration of the system to be installed. This contribution
is based on the ontology of the field of energies. The choice of ontology is mainly due to the
nature of the studied system and its environment (energy system), which is dynamic over
time. In addition, this technique makes it possible to precisely present a set of knowledge
in a form that can be permitted for use by a machine, which allows users to introduce the
necessary updates without occurrence of any damage to the rest of the data.

2. Materials and Methods

2.1. Proposed Approach for Ontology Construction

In this work, the problem revolves around the absence of a generic optimization solu-
tion for hybrid energy systems. The main objective is to set up a reliable and easy solution
to optimize hybrid energy systems suitable for most sites (generic). In the same context,
and to solve any research problem, two subproblems must be initially separated and finally
integrated, which are: the conceptual subproblem and the operational subproblem. For
this research, the following hypothesis is employed:

• “The development of an optimization generic solution for hybrid energy systems
improves the choice of better technique and simplifies the task for setup of this type of
systems”. According to this hypothesis, two variables can be noted, which are “the
developed solution” and “the hybrid energy systems”.

• “The more energy sources there are at a site, the more efficient the hybrid energy
system”. It is characterized by the variables: “more energy sources” and “more
efficient the hybrid energy system”.

• “The importance of the solution increases with the increase in the number of cases
treated”. Two variables can be extracted from this hypothesis: “importance of the
solution increases” and “increase in the number of cases treated”.

In addition, the following main questions can be asked according to this hypothesis:
what is the impact of the developed solution on the optimization of hybrid energy systems?
It is also possible to extract from this question some subquestions, such as:

• During bibliographic research, to what extent (year) can it be conducted?
• What are the advantages and disadvantages of these previous solutions?
• What is the best way forward to develop a solution?
• What are the techniques that can be used to test the solution?
• How to ensure the degree of relevance of the solution under development?

410



Appl. Sci. 2022, 12, 8397

• Is there a relationship between the characteristics of the site and the hybrid energy
system that will be installed?

• What are the reasons for using a hybrid energy system instead of a nonhybrid
energy system?

2.2. Proposed Approach

The goal of this solution is to find the optimal configuration of the HES. It is based on
a knowledge base (KB) and includes some steps, as shown in Figure 1:

i. Site choice: the user chooses the site of HES installation and inserts the electrical
requirement energy value.

ii. Display of parameters of the chosen site: in this step, all the parameters that will be
used in the next steps are displayed, mainly those related to the characteristics of the
energy sources.

iii. The development of intelligent reasoning rules: in this step, we develop intelligent
reasoning rules based on ontology. These rules permit to select the appropriate energy
sources and the best energy optimization technique.

iv. List of energy sources: the results of the previous step are displayed (the best and
available energy sources).

v. Chosen optimization technique: the most appropriate technique is selected.

Figure 1. Proposed solution flowchart.

In addition, each optimization technique in the literature has been developed for
a specific situation (types of energy sources, type of load, duration of application, etc.).
The proposed solution at the start chooses the most appropriate optimization technique
according to the data previously presented (concept, attribute, relation, etc.) and recorded
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in the knowledge base of the solution ontology. The second step concerns the import and
execution of its algorithm to finally obtain the best optimal configuration.

2.3. Construction of Ontology

The modeling process consists of several steps, as itemized below [19,26]:

2.3.1. Define the Ontology Domain

This step is reserved for defining the ontology subject or domain. It includes a full
understanding of the ontology subject. The ontology in this work would focus on the
management of the energy required to model and optimize the HES.

2.3.2. Reuse of Existing Ontologies

After consulting previous works, many contributions concern the optimization of
HES [27]. These works have achieved very encouraging results, but they still require some
development through the introduction (or removal) of concepts and the development of
intelligent reasoning [28–30]. For this work, the creation of the ontology was performed
from the beginning, and we did not use previous ontologies.

2.3.3. Interesting Concepts for the Ontology

The main concepts of this ontology are sources (photovoltaic, wind energy, etc.), load,
and climatic data (temperature, wind speed, etc.).

2.3.4. Explain Classes and Their Hierarchy

The ontology concepts form a hierarchy [30]. There are some methods to developing a
class hierarchy [31]:

• Development of the ontology hierarchy from top to bottom
• A bottom–up development process
• A combination of the two approaches, top–down and bottom–up

In this work, the first method (top–down) was chosen (Table 1).

Table 1. An extract from the classes of the system.

Class Description

Source Energy source
OptimizationTechnique Optimization technique
Load Load
ClimateData Climate data
Site HES installation site
PhotovoltaicSource Photovoltaic energy source

2.3.5. The Properties of Classes and the Facets of Attributes

After the presentation of the concepts, it is essential to describe their interior struc-
ture [28,29]. Then, the attribute facet describes the types of values that can be assigned to
the attribute [32] (Table 2).

Table 2. An extract of the attributes.

Attribute Description Type Class

SiteName Installation site name Alphabetical Site

HasRadiation Irradiation that characterizes the site Digital Radiation

SocBat Battery charge level Digital Battery

SocBatMin Minimum battery charge level Digital Battery

EfficiencyCharg Battery charging efficiency Digital Battery
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2.3.6. Design Instances and Relationships

The last step concerns the creation of instances and relationships for the proposed
solution (Tables 3 and 4). These two elements are necessary for the development of the
ontology [30].

Table 3. An extract from the ontology relations.

Relationship Classes Description

FeedSourceLoad Source, Load Energy supply to the load by energy source

FeedStorageLoad Storage, Load Supply of the load by stored energy

LoadSourceStorage Source, Storage Energy source charges the batteries

Table 4. Examples of instances.

Classes Instances

Site Alger, Adrar, Annaba, Oran, Ouargla, Tamanrasset

Month January, February, March, April,..., December

Radiation 3378 Watt/m2, 3350 Watt/m2, 2650 Watt/m2

WindSpeed 4, 4.5, 6 km/h

SoilTemperature 15, 38, 45 ◦C

2.3.7. Intelligent Reasoning of the Solution

All intelligent reasoning rules are constructed through a detailed study of the internal
and external environments of the hybrid energy systems (the main elements of a hybrid
energy system, environmental data, geographic data, etc.). We mainly focused our attention
on related aspects that influence the HES operation. In addition, through this study, we
extracted a series of information, namely, optimization techniques, installation site, climate
data, load, and so on. Finally, depending on the predicate logic, the programming language
Python, and the essential elements of ontology (concepts, attributes, relationships, and
instances), we can formulate the intelligent reasoning rules associated with choosing the
optimization technique (Figure 2, Table 5).

Figure 2. Examples of the solution rules.

Table 5. Description of R1, R2, and R3.

Rule Description

R1
If a site (s) is characterized by radiation greater than or equal to r Wh/m2, the wind speed is greater
than or equal to w m/s and the load is of the daily type, then the reasoning proposes the
optimization technique (t) [33].

R2
If a site (x), characterized by radiation greater than or equal to r W/m2 and a wind speed greater
than or equal to w m/s, and the load is of the monthly type, then the rule proposes the
optimization technique (t) [34].

R3
If a site (s) is characterized by radiation greater than or equal to r W/m2, a wind speed greater than
or equal to w m/s, and the load is of annual type, then the reasoning proposes the optimization
technique (t) [34].

413



Appl. Sci. 2022, 12, 8397

2.4. Ontology Editing and Presentation of a Scenario
2.4.1. Choice of Editor

For the editing of ontology, the “Protégé OWL 3.4.4” software was used because of the
following advantages [19,35]:

• It is compatible with standard languages.
• It has a modular interface, which allows it to be enriched with additional modules (plugins).
• It provides a comfortable expression editor.
• It provides an API (or GUI) that allows the manipulation of the ontology created by

the “Protégé” editor in Java code. It also provides a Java API, allowing developers
to integrate with their Protégé OWL applications, import or export the ontology in
different languages, and implement the ontology.

2.4.2. Choice of Reasoning Tools

Most inference engines can process rules added to the ontology. Rules-specific engines
can be used, such as the Jess engine [36]. Most inference engines can process rules added to
the ontology. Rules-specific engines can be used, such as the Jess engine [34]. The latter
has a language for the expression of knowledge in the form of rules. It can be used from
“Protégé-OWL API,” thanks to the existence of a bridge that allows for the translation
and execution of an ontology model in the language of Jess to retrieve the result in the
“Protégé” software.

2.4.3. SWRL

This is a rules language for the semantic web combining OWL-DL and RuleML [37].
It makes it possible to enrich the semantics of an ontology presented in OWL and to
manipulate instances by variables (? X, ? Y, ? Z). It simply allows you to add relations
according to the values of the variables and the satisfaction of the rule. However, SWRL
does not allow the generation of concepts or relationships.

2.4.4. Editing the Ontology

The ontology elements edited in Protégé are the concepts, attributes, relationships,
and instances (Figure 3).

Figure 3. Elements of ontology in Protégé-OWL 3.4.4.
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2.4.5. Implementation of Intelligent Reasoning Rules

The SWRL rules editor operates in Protégé OWL and provides a very interactive
interface for editing rules (supporting all the features of the SWRL language). Rule engines,
such as Jess, can be integrated with this editor, which helps provide richer rule-based
reasoning (Figure 4).

Figure 4. Rules of inference in Protégé-OWL.

2.4.6. Presentation of a Scenario

In this scenario, three Algerian cities were taken—Adrar, Annaba, and Illizi—which
have different climatic characteristics. The three cities are presented with the average
and annual radiation, the average and annual wind speed, the average and annual soil
temperature, and the type of energy load (Tables 6 and 7).

Table 6. Example of KB data.

Site
Average Annual
Radiation (Wh/m2)

Average Annual
Wind Speed (m/s)

Average Annual Soil
Temperature (◦C)

Load Type

Adrar 3378 6 65 LoadDaily

Annaba 2550 4 65 LoadAnnual

Illizi 3350 4.5 45 LoadMonthly

Table 7. Criteria for selecting energy sources.

Criteria Energy Source

Average and annual radiation => 2550 Wh/m2 Photovoltaic

Average and annual wind speed => 5 m/s Wind

Average and annual soil temperature => 110 ◦C Geothermal

The criteria for selecting renewable energy sources are defined (Table 7):
Regarding the values of 2550 Wh/m2 for solar radiation, 5 m/s for wind speed,

and 110 ◦C for soil temperature, they are considered the minimum acceptable values for
electrical energy production for solar energy source, wind energy source, and geothermal
energy source, respectively. For this reason, they were selected for the case study.
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In this case study, we tested three techniques: LPSP, MUMT, and YMOST. In addition,
the first technique is applied to loads of the “Load Daily” type. The second technique is
applied to loads of the “Load Monthly” type. The third technique is applied to loads of the
“Load Annual” type.

The execution of the solution includes a set of steps:
Step 1:
This step is reserved for the choice of the site based on the rule form presented in

Figure 5.

Figure 5. Rule form.

In this example, the choice is Adrar City.
Step 2:
The objective in this step is to choose the energy sources. This operation is realized

based on the intelligent reasoning rules (Figure 6).

Figure 6. Examples of intelligent reasoning rules.

• In rule (R5), by replacing the variables “x” and “y” with “3378” and “Adrar” sequen-
tially, it can be seen that “y” is greater than 2550, which means that the Adrar site is
characterized by a very high solar potential. The reasoning of the solution proposes
the first source of energy, which is the solar photovoltaic.

• By replacing the variables (x = Adrar, y = 6) in rule (R6), we notice that “y” is greater
than 5, which means that Adrar is characterized by an interesting wind potential.
The reasoning of the solution proposes the second source of energy, which is the
wind turbine.

• By replacing the variables x = Adrar and y = 65 in the rule (R7), we notice that “y”
is less than 110, which means that the geothermal source is not interesting for the
production of electricity on the site of Adrar.

• Based on the previous results and rule (R8), the reasoning of the solution proposes
energy storage batteries as an essential element to ensure the good reliability of HES.

Step 3:
In this step, the objective is to choose the optimization technique by using the R1, R2,

and R3 reasoning rules, then by replacing the variable “y = DailyLoad” in the three rules,
(R1), (R2), and (R3). The “LPSP” technique is proposed by the reasoning of the solution.
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Due to the complexity of using and mastering the software and optimization tools for
HES, this solution was proposed. It allows the selection of the appropriate tool to calculate
the optimal configuration. This selection is made in a simple, easy way. It also makes it
possible to relieve the user of any knowledge of energy sources or optimization techniques.

The use of other methods requires knowledge of several aspects (sites, techniques,
energy sources). On the other hand, with this solution, the user only chooses the site con-
cerned with the installation, and the rest of the steps are ensured by the developed solution.

3. Results and Discussion

Evaluation of the Proposed Solution

To have an alignment of a proposed solution of a research question, which presents the
key to evaluating solutions from a research point of view, requires the good formulation and
use of hypotheses and conceptual subproblems. Research is only feasible if we can establish
the validity of the hypotheses and conceptual subproblems proposed through a good
review of the literature. Additionally, the correct answers to the conceptual subproblems
allow a good alignment.

Through the results obtained in this work, we can see that all responses to the elements
mentioned in subsection “2.1. Proposed Approach for Ontology Construction”, respond to the
sub-questions stated in the same sub-section (Table 8).

Table 8. Samples of evaluation of the proposed solution.

Hypothesis/Question Response

The development of an optimization generic solution for HES
facilitates the choice of an appropriate technique and simplifies

the task for the setup of this type of systems. (Hypothesis)

The proposed solution allows choosing the best technology to
improve HES and is easy to use.

The more energy sources there are at a site, the more effective
the hybrid energy system is. (Hypothesis)

Through this work, it was confirmed that there is a direct
relationship between the number of energy sources available at

the site and the efficiency of the hybrid energy system.

The importance of the solution increases with the increase in the
number of cases treated. (Hypothesis)

The proposed solution can be applied to the majority of cases
(despite changing locations) and is, therefore, a generic solution.

What is the impact of the solution developed on the
optimization of hybrid energy systems? (Main question)

According to the obtained results, the optimization of hybrid
energy systems using the developed solution makes it possible
to gain a system that is more efficient, reliable, and economical.

To what extent can research be performed in previous
works? (Subquestion)

Bibliographic research focused on recent works concerning the
optimization of hybrid energy systems. Consequently, this

research was very positive and allowed us to elaborate on the
problematic with precision.

What is the appropriate approach (technique) that can be used
to develop a solution in this work? (Subquestion)

Through the use of the ontological approach, we discovered that
it is a very suitable tool for representing all knowledge as well
as in the processes of developing rules of intelligent reasoning.
Then, ontology-based solutions make it possible to perform all

the necessary updates on the knowledge base without
damaging the overall structure, unlike classic databases.

Is there a relationship between the characteristics of the site and
the hybrid energy system that will be installed? (Subquestion)

Through the work carried out, it is confirmed that there is a
strong relationship between the characteristics of the site

(available energy sources, climatic data, geographical location,
etc.) and the characteristics of the hybrid energy system that

will be installed.

What are the reasons for using a hybrid energy system instead
of a nonhybrid energy system? (Subquestion)

The use of a hybrid energy system has several benefits,
including ensuring the continuity of supply and energy needs.
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To assess the hypotheses proposed in this work, the following steps are realized:

(1) Proposing the null hypothesis (the set of hypotheses and questions that have been
proposed);

(2) Suggesting methodologies and choosing the necessary means to develop the solution
(programs, algorithms, etc.);

(3) Testing the solution using data for real sites located in Algerian cities, where the results
for this test were very positive, and all the questions that were set were answered.

4. Conclusions

This work focused on the problem of optimizing HES. In this context, it was proposed
to develop an optimal solution based on ontology.

The HES are systems that combine multiple energy sources to meet electricity needs.
They allow improvements in terms of energy efficiency and increasing integration of RE
sources. However, the process of optimizing these systems is complex, especially with its
distributed and interactive nature with the external environment.

In an HES, energy sources and storage tools are combined to meet consumer demand
for electricity while ensuring the lowest cost. These tasks are the main goals for HES
optimization. However, because of the intermittent nature of RE, the optimization of the
HES is difficult, which depends principally on the data of energy sources and climate.
Responding to the optimization problem is precisely the objective of this work.

There is a set of tools for HES optimization, such as algorithms and software, where
each is based on one or hybridization between several approaches (probability, linear
programming, fuzzy logic, neural networks, etc.). There is also some software for HES
optimization, the most popular being Hybrid, TRNSYS [38], Hybrid2, Homer [39], and
HOGA [40]. However, the choice between these tools is considered a real problem. First, a
generic optimization solution for HES was developed. This contribution shows its reliability
following an explanatory scenario and based on real data from Algerian sites. The results
indicate the importance of the proposed solution for real uses, where the user can benefit
from many advantages, such as saving time, accuracy, and ease of use.

For future works, this solution needs collaborative work with experts in many fields,
which will allow the development of the existing solution in many points, as well as the
introduction of some other technologies, such as multiagent systems, especially the mobile
agent, which can navigate to the source of information to take it instead of staying in a
fixed address and communicate with the rest of the agents based on network protocols,
which makes the solution more effective. Finally, extensive testing must be performed for
other case studies to find the limits of the use of this solution.
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Abbreviation

AI artificial intelligence
API application programming interface
GIS geographic information system
GUI graphical user interface
HES hybrid energy system
HOGA Hybrid Optimization by Genetic Algorithms
HS harmony search
KB knowledge base
kWh kilowatt hour
LPSP loss of power supply probability
MCDM multicriteria decision making
MUMT most unfavorable month technique
OWL-DL Web Ontology Language–Language Description
PSO particle swarm optimization
PV photovoltaic
RE renewable energy
RuleML Rule Markup Language
SA simulated annealing
SDO Simulink Design Optimization
SWRL Semantic Web Rule Language
TS tabu search
YMOST yearly monthly overage sizing
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Abstract: To improve the accuracy of ultra-short-term wind speed prediction, a hybrid generative
adversarial network model (HGANN) is proposed in this paper. Firstly, to reduce the noise of
the wind sequence, the raw wind data are decomposed using complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN). Then the decomposed modalities are entered
into the HGANN network for prediction. HGANN is a continuous game between the generator
and the discriminator, which in turn allows the generator to learn the distribution of the wind
data and make predictions about it. Notably, we developed the optimized broad learning system
(OBLS) as a generator for the HGANN network, which can improve the generalization ability and
error convergence of HGANN. In addition, improved particle swarm optimization (IPSO) was used
to optimize the hyperparameters of OBLS. To validate the performance of the HGANN model,
experiments were conducted using wind sequences from different regions and at different times.
The experimental results show that our model outperforms other cutting-edge benchmark models
in single-step and multi-step forecasts. This demonstrates not only the accuracy and robustness of
the proposed model but also the applicability of our model to more general environments for wind
speed prediction.

Keywords: wind speed forecast; OBLS; data preprocessing; optimized hyper-parameters

1. Introduction

Energy demand has always been one of the main problems of human development
since the increasing consumption of energy with the improvement of living standards. In
recent years, renewable energy has gradually become a research hotspot. Wind energy is
valued for its clean, pollution-free, renewable, and abundant availability. However, wind is
highly random and volatile, which may affect the stability of the power system and hinder
the efficient use of wind energy [1]. Accurate ultra-short-term wind speed prediction
models are therefore crucial in power dispatch planning and power market operations [2].
Thus, reliable wind speed prediction has drawn a lot of interest.

The three common wind speed prediction models are physical models, statistical
models, and hybrid models. Physical models take into account the physical conditions and
locations of wind farms, which require abundant meteorological data. Numerical weather
prediction is a typical physical model, as it takes into account temperature pressure and
obstacles for wind speed prediction, so it has a long calculation period [3]. Physical models
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are efficient and accurate for long-term forecasting, but they are computationally intensive
and expensive for small-scale forecasting.

Statistical models make better use of historical wind speed data to predict future
wind speeds than physical models. Statistical models include both traditional statistical
models and neural network-based models. Traditional statistical models include the
autoregressive moving average model [4], the autoregressive integrated moving average
model [5], the Bayesian model [6], etc. However, the non-linear nature of wind makes it
difficult for traditional statistical models to extract the deeper features of wind speed data.
Neural networks are introduced into the field of wind speed prediction for their ability to
fit the non-linear part of the data well. Neural network-based models can extract deeper
features from wind speed data than traditional statistical models—for example, BP [7],
RBF [8], artificial neural network [9], SVR [10], etc. To improve the learning ability and
predictive ability of predictive models, deep neural networks are introduced into wind
speed prediction, such as the deep belief network [11], RNN [12], GNN [13], and LSTM [14].

In recent years, hybrid models have gradually become the mainstream wind speed
prediction models. Hybrid models typically use one or more auxiliary strategies to assist the
main forecasting network in wind speed prediction. Therefore, hybrid models can achieve
better prediction performance than physical models and statistical models. The auxiliary
strategies involved in hybrid models include data preprocessing techniques, optimization
algorithms, error correction, and weighting strategies.

(1) Data preprocessing techniques. Zhang et al. [15] used EMD for data pre-processing
of wind speed, which effectively reduced the volatility of the wind speed series. How-
ever, EMD suffers from the problem of modal confusion, which leads to unsatisfactory
decomposition results. Santhosh et al. [16] used EEMD to process the raw wind speed
series, which effectively mitigated the EMD problem. However, EEMD has a noise resid-
ual problem affected by noise residuals. Wang et al. [17] used CEEMD for wind speed
prediction. CEEMD cancels out the residual noise with a pair of white noises, effectively
improving the efficiency of the calculation. Ren et al. [18] experimentally demonstrated that
the CEEMDAN-based model always performs best compared to the EMD-based model.

(2) Optimization algorithms. Optimization algorithms can be used to optimize the hyper-
parameters, weights, network structure, and thresholds of predictive models. Li et al. [19]
used PSO to optimize two hyper-parameters of LSTM, which solved the problem of wide
intervals caused by interval superposition and thus improved the wind speed prediction
accuracy. Tian [20] used PSO to optimize the weight coefficients of each prediction model,
and the experimental results demonstrate the necessity of introducing the weight coefficient
optimization strategy. Liu et al. [21] used GA to optimize the internal parameters of LSTM,
which improved the efficiency and accuracy of the prediction model. Cui et al. [22] used
the Bat algorithm to optimize the thresholds of BP networks, effectively improving the
generalization ability and nonlinear mapping ability of BP networks.

(3) Error correction. Error correction is a post-processing technique for wind forecast-
ing. It predicts the residuals and superimposes the predictions on the original predictions to
obtain the final predictions. Duan et al. [23] used improved CEEMDAN to decompose the
errors, and the experimental results showed that the error decomposition correction method
can significantly enhance the prediction accuracy. Liu et al. [24] proposed an adaptive
multiple error correction method, which makes full use of the deeper predictable compo-
nents and effectively improves the reliability and accuracy of the model. Zhang et al. [25]
demonstrated experimentally that the final predicted values after Markov chain correction
are closer to the original wind field data, which proves that the use of the Markov chain
is effective.

(4) Weighting strategies. To scientifically determine the weights of different prediction
networks in a hybrid model, many scholars have proposed different weighting strategies.
To alleviate the adverse effects of multi-collinearity in combinatorial prediction models,
Jiang et al. [26] used a GMDH neural network to automatically identify the weights of
three nonlinear models. The application of GMDH can significantly improve the predictive
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capability compared to the widely used equal-weighting scheme. Wang et al. [27] used
MTO to minimize the error sum of squares of the IOWA operator, which obtains the optimal
weight vector for the combined prediction model and ensures the stability of the prediction
results. Altan et al. [28] optimized the weighting coefficients for each IMF using the gray
wolf optimizer algorithm.

Although the above models achieve good predictive performance, they still have some
problems. Methods involving deep neural networks [27] cause huge computational costs.
Hybrid methods based on weighting strategy [28] may have the problem of multicollinear-
ity, which reduces the prediction accuracy. The performance of hybrid methods based on
parameter optimization [26] is largely influenced by the understanding of the researcher of
the optimization algorithm.

Considering the above issues, we propose a hybrid model combining data preprocess-
ing techniques and optimization algorithms for ultra-short-term wind speed prediction.
We design the hybrid generative adversarial network (HGANN) as the prediction master
network for the proposed hybrid model. The contributions and innovations of this research
are concluded as follows:

(1) A hybrid generative adversarial network model (HGANN) is proposed for ultra-short-
term wind speed prediction, which learns the distribution of wind data and predicts
it through a continuous game between generators and discriminators.

(2) To improve the error convergence of the model, the OBLS was developed as a genera-
tor for HGANN. The IPSO was used to optimize the hyperparameters of the OBLS. To
maintain the stability of the generated samples, we used the discriminator of WGAN
as the discriminator of HGANN.

(3) A wind data decomposition and denoising process was carried out using CEEMDAN
to reduce the randomness and instability in the original wind series.

The rest of this article is organized as follows. Section 2 introduces the model frame-
work and methods involved in this article in detail. In Section 3, the experimental cases and
prediction results are elaborated in detail, which verifies the validity of the framework we
propose. Section 4 contains a discussion of the results of the experiment. The conclusions
are presented in Section 5.

2. Proposed Predictive Framework

2.1. Overall Framework of HGANN

Generative adversarial networks (GANs) [29] are deep learning networks, which are
composed of a generator and discriminator that confront each other. The role of the generator
is to generate false samples that are close to the real ones. The role of the discriminator is
to distinguish between true and false samples as correctly as possible. However, GANs
often suffer from the problem of target confusion. Our proposed HGANN alleviates this
problem to a great extent.

We developed a hybrid generative adversarial network model (HGANN) for ultra-
short-term wind speed prediction, which uses the two networks to compete with each
other to achieve highly accurate wind speed predictions. The proposed model is shown in
Figure 1. First, CEEMDAN decomposes the raw wind speed data into multiple modalities.
These modalities are separately fed into the generator of HGANN, the OBLS. The generator
is used to obtain virtual samples that are similar to real samples. The virtual samples and
real samples are then fed into the discriminator, which consists of convolutional layers
and fully connected layers. The discriminator extracts the high-dimensional features of
the input samples through the convolutional layer, and then further extracts the effective
features by the fully connected layer. The outputs scalars “1” or “0” of the discriminator are
passed to the generator and the discriminator to perform the iterative update of HGANN.
Via the continuous iterative update, OBLS obtains the best parameters and performs wind
speed prediction. Finally, the final wind speed forecast can be obtained by stacking all
forecast values.
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Figure 1. The proposed short-term wind speed forecasting framework. In the data processing step,
CEEMDAN turns the wind data into multiple modalities. The HGANN network consisting of a
generator and discriminator predicts these modalities. The final wind speed prediction result can
then be obtained by stacking the prediction results of all modalities.

2.2. CEEMDAN Model

Due to the high volatility of the wind speed series, CEEMDAN [30] is introduced to
smooth the wind speed data. CEEMDAN decomposes a signal into some modalities.

The original wind speed series is defined as X(n). CEEMDAN decomposes X(n)
into IMFj(n), j = 1, 2, 3, . . . J and residue rj(n). Figure 2 shows the flow chart of the
CEEMDAN algorithm. The specific steps of the algorithm are as follows.

Randomly generate white noise with (0, 1), which is defined as wi(n), i = 1, 2, . . . I.
Define an operator E{∗}, which generates the IMFs by EMD. We set the noise standard
deviation to ε = 0.2 and the ensemble size to I = 500.

Add wi(n) to the X(n) and generate a new series with noisy signals X(n) + ε0wi(n).
For j= 1, the first-order IMF1(n) that is decomposed by EMD is expressed as:

IMF1(n) =
1
I

I

∑
i=1

E
{

X(n) + ε0wi(n)
}

(1)

The first-order residue is computed as follows:

r1(n) = X(n)− IMF1(n) (2)
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For j = 2, 3, . . . J, calculate the IMFj(n) and the jth residue as follows:

IMFj(n) =
1
I

I

∑
i=1

E
{

rj−1(n) + ε j−1wi(n)
}

(3)

rj(n) = rj−1(n)− IMFj(n) (4)

Decompose E
{

rj−1(n) + ε j−1wi(n)
}

until the residue rj(n) cannot be decomposed and
has only one extreme value. Then we can get IMFj(n) = 1

I ∑I
i=1 E

{
rj−1(n) + ε j−1wi(n)

}
and the final residue rj(n) = X(n)− ∑J

j=1 IMFj(n).

Figure 2. Flowchart of the CEEMDAN algorithm procedure.

The original wind speed time series X(n) can be decomposed as X(n) = ∑J
j=1 IMFj(n)

+rj(n), where IMFj(n) or rj(n) can represent different features of the wind speed.

2.3. Generator OBLS for HGANN

BLS [31] can provide incremental structural learning. It achieves better forecasting
results in time-series forecasting. Furthermore, because of its shallow network structure,
BLS has higher error convergence performance than CNN. Compared with BLS, OBLS can
provide both higher convergence performance and predictive accuracy. This is because
OBLS uses IPSO to improve the network hyper-parameter of optimization. Therefore, OBLS
has faster convergence and higher error convergence than CNN. Therefore, instead of using
CNN as the generator of GAN, we use OBLS as the generator of HGANN to solve the
problem of target confusion during HGANN training, which can improve the generalization
ability and error convergence of HGANN, and thus make HGANN more suitable for wind
speed prediction. The following is the detailed process of the OBLS algorithm.

Randomly generate n particles so that the dimensions of the particles are a three-
dimensional vector {NF, NW, NE} corresponding to the three parameters of BLS, respec-
tively. Initialize the particle position xid ∈ (1, 100), and speed vid ∈ (−1, 1). Determine the
learning factors c1 = 1.5 and c2 = 1.5, inertia weights wmax = 1.0 and wmin = 0.4, and the
maximum number of iterations itermax = 100.

427



Sustainability 2022, 14, 9021

Assume the input wind speed series data X(n) and project the data using ∅i(X(n)Wei+
βei) to represent ith mapped feature Zi, where Wei represents random weight with the
proper dimensions. The jth group of enhancement nodes ∅j

(
ZiWhj + βhj

)
is denoted as

Hi. ∅i and ∅j can be different functions. The ith mappings can be denoted as:

Zi = ∅i(X(n)Wei + βei), i = 1, 2, . . . n (5)

The feature nodes are denoted as Zn � [Z1, Z2 . . . Zn], where Whj and βhj are random
weights. The enhanced nodes are denoted as:

Hj = ∅j

(
ZiWhj + βhj

)
, j = 1, 2, . . . m (6)

Let Hm � [H1, H2 . . . Hm] where the symbol � means “noted as”; then the output of
the BLS can be denoted as:

Y = {Zn|Hm}Wn (7)

where the Wn is the final target weight needed by OBLS and is obtained through the ridge
regression algorithm, that is, Wn � {Zn|Hm}+Y.

Let {M} = {Zn|Hm}; then {Zn|Hm}+ can be expressed as follows:

{Zn|Hm}+ = lim
˘→0

{
˘I + {M}{M}T

}−1{M}T (8)

where λ is l2 regularization.
The IPSO [32] is introduced to iterate to optimize the parameters of BLS: {NF, NW, NE}.

When the iteration of IPSO is consistently performed, the position and speed of the particles
are continually updated through the following equation:

vid = wvid + c1r1(pid − xid) + c2r2

(
pgd − xgd

)
(9)

xid = xid + γvid (10)

Here, γ is the velocity coefficient; the value of the inertia weight w is w = wmax −
(wmax − wmin) ∗ 1/iter. When reaching the maximum iterative number itermax, the iteration
is stopped and the optimal value of {NF, NW, NE} can be obtained.

The generator takes the wind speed subsequence {x1, x2, . . . xn} as input, which is
generated by CEEMDAN. Then the generator generates a new wind speed sequence{

y′1, y′2, . . . y′n
}

, which is statistically similar to the wind speed sequence {y1, y2, . . . yn}.
From Equations (8)–(10), OBLS does not require layer-to-layer coupling. Since there

are no multi-layer connections, OBLS does not need to use gradient descent to update the
weights, so the computational cost of OBLS is significantly lower than that of deep learning.
When the accuracy of OBLS does not meet the requirements, its accuracy can be improved
by increasing the “width” of the network nodes. Compared with the increase in the amount
of calculation by increasing the number of layers in the deep network, the increase in that
by increasing the “width” of the network nodes in OBLS is negligible.

2.4. Discriminators for HGANN

To maintain the stability of the generated samples, we used the discriminator of
WGAN [33] as the discriminator of HGANN. In HGANN, the discriminator takes

{
xi, y′i

}
or {xi, yi} as input. The training goal of discriminator is to discriminate

{
xi, y′i

}
as false

and {xi, yi} as true. The discriminator is trained by minimizing the distance function (LD)
(loss function), which is defined as follows:

LD = L(D({xi, yi}), 1) + L(D({xi, y′i
})

, 0
)
+ GP (11)
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P =
˘

m

m

∑
i

[
∇xi ,y′i

D
(

xi, y′i
)i
]2

(12)

here, D(∗) represents the output of the D; L is the binary cross entropy, defined as:

L = −[klog(s) + (1 − k)log(1 − s)] (13)

Based on this loss function, the discriminator can achieve an output of 1 when the
input is {xi, yi} and an output of 0 when the input is

{
xi, y′i

}
, and then discriminates the

wind speed sequence {y1, y2, . . . yn}.
The discriminator outputs a scalar of “0” or “1.” The scalar of “0” or “1” has two

purposes: (1) It can influence and then adjust the weights of the neural network in the
discriminator and maximize Equation (14) through a backpropagation algorithm. (2) It
can be passed to the generator to assist the PSO algorithm to find the optimal hyper-
parameters of the OBLS and then calculate the value of the fitness function Fc, which is
defined as follows:

Fc =
1
n

n

∑
i=1

D(G(x(n))) (14)

where G(∗) represents the output of the generator.

2.5. Prediction Steps of the Proposed HGANN Model

We propose the HGANN model for ultra-short-term wind speed prediction. The flow
chart of the prediction process of the proposed model is shown in Figure 3. CEEMDAN is
used to decompose the raw wind speed data {x1, x2, . . . xn} into multiple modes IMFj(n).
These IMFj(n) are separately sent into the generator (OBLS) of HGANN to obtain virtual
samples

{
y′1, y′2, . . . y′n

}
. The discriminator (WGAN) takes

{
xi, y′i

}
or {xi, yi} as input and

then outputs scalars “1” or “0.” The scalars “1” or “0” are passed to the generator (OBLS)
and the discriminator (WGAN) to participate in iterative model updates. Through the con-
tinuous iterative update, OBLS obtains the optimal value of {NF, NW, NE}. The final wind
speed forecasting values {y1, y2, . . . yn} can be obtained by stacking all forecast values.

Figure 3. Flowchart of the proposed HGANN model prediction procedure.
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3. Case Analysis

3.1. Data Description

To demonstrate the applicability of the proposed model in different locations, we
used datasets from the 50Hertz wind farm in Germany and the Mahuangshan wind farm
in China [26]: HER and MHS, respectively. The HER datasets are freely available at
http://www.netztransparenz.de/ (accessed on 5 October 2021). Both data sets are recorded
for one year and wind speeds are measured in 15 min intervals. We selected wind speed
series from both HER and MHS datasets for March, June, September, and December,
representing spring, summer, autumn, and winter, respectively. Experiments using the four
wind speed series of spring, summer, autumn, and winter can verify the applicability of our
model at different periods. Each series contains 2880 samples. Table 1 shows information
on the selected wind speed data for spring, summer, autumn, and winter.

Table 1. Seasonal statistics of the wind speed data.

Season Mean (m/s)
Median

(m/s)
Max (m/s) Min (m/s)

Standard
Deviation (m/s)

HER data
Spring 1.89 1.53 7.25 0.03 1.47

Summer 0.82 0.63 4.27 0 0.75
Autumn 1.23 0.83 6.65 0 1.19
Winter 1.90 1.60 5.68 0.07 1.35

MHS data
Spring 5.78 5.70 16.50 0.40 2.25

Summer 5.46 5.45 12.50 0.40 2.21
Autumn 5.18 5.20 16.50 0.40 2.33
Winter 4.50 4.27 14.07 0 2.28

In our experiments, the first 80% of the wind speed sequence was used as the training
set, and the rest was used as the test set for ultra-short-term wind prediction. Table 1 dis-
plays the information of the four datasets. The experiments were implemented in MATLAB
R2021b on a 64-bit personal computer with Intel(R) core i5-9300 CPU/16.00 GB RAM.

3.2. Evaluation Index

To comprehensively evaluate the prediction performance of HGANN, four evaluate
indicators were given. MAE can accurately reflect the average value of the absolute error.
MAPE divides the absolute error by the corresponding actual value. RMSE represents the
sample standard deviation between the predicted value and the actual observation value,
which has a very sensitive reflection and can reflect the accuracy of the prediction well. SSE
represents the total error of the model. Their definitions are as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (15)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (16)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (17)

SSE =
n

∑
j=1

(yi − ŷi)
2 (18)

where ŷi is the predicted value and yi is the actual value.
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3.3. Comparable Methods

To verify the prediction performance of the proposed HGANN, it was compared with
10 advanced predictive models, involving PSO-ANFIS [34], VMD-GA-BP [35], EEMD-GPR-
LSTM [36], EMD-ISSA-LSTM [37], MWS-CE-ENN [20], CNN [38], WGAN [39], BLS [31],
OBLS, and WGAN-OBLS. Table 2 lists the parameter settings of six comparison methods.
BLS, WGAN, PSO-BLS, and PSO-WGAN-OBLS are the same as those of HAGNN to
perform the ablation experiment for HAGNN.

Table 2. Parameter settings of the models.

Model Parameter Setting

PSO-ANFIS itermax = 300, np = 40, c1= 1.0, c2= 2.0, nr = 4, nv = 52
VMD-GA-BP k = 11, itermax = 150, ep = 100, np = 40, lr = 0.1, nb1 = 9

EEMD-GPR-LSTM k = 11, ep = 200, nb1 = 100, nb2= 100, s1 = 50, σ = 20
MWS-CE-ENN ep = 1000, lr = 0.1, pr = 0.000001, np= 40, ni = 5, nb1 = 6, no = 1, itermax = 100, nstd = 0.2

EMD-ISSA-LSTM ep = 100, lr = 0.005, np= 10, itermax = 20, ve= 0.6, pd= 0.7, pe= 0.2

Proposed Model nstd = 0.01, np = 40, itermax = 100, c1 = 1.5, c2= 1.5, ep = 50, lr = 0.002, λ = 10−30,
nb1 = 48, nb2 = 96, nb3 = 384

In Table 2, itermax is the iterative number; ep is the number of network iterations; np is
population size; c1 and c2 are personal and global learning coefficients, respectively; nr, nv,
ni, and no are the number of rules, variables, input nodes, and output nodes, respectively; k
is the decomposition number of VMD/EEMD; nbi is the number of the ith hidden nodes; lr
is the learning rate of the network; pr is the training requirement accuracy; nstd is the noise
standard deviation in ICEEMDAN/CEEMDAN; ve is the early warning value; pd and ps
are the proportion of discoverers and sparrows aware of danger, respectively; and ˘ is the
regularization parameter for ridge regression.

3.4. Experimental Results

(1) Experiment I: Comparison Between Different Forecasting Methods

We experimentally verified the effectiveness and advancement of the proposed HGANN
by comparing it with PSO-ANFIS, VMD-GA-BP, EEMD-GPR-LSTM, MWS-CE-ENN, and
EMD-ISSA-LSTM. Considering that wind data characteristics show strong seasonality,
experiments were conducted using wind series from multiple seasons to further validate
the predictive performance of the model. We chose the HER and MHS datasets for March,
June, September, and December for this experiment. The training and testing processes
of each of the compared models were repeated 10 times. The experimental results of the
different datasets are presented in Tables 3 and 4, where the first-best predictions are high-
lighted. Figure 4 depicts the wind speed prediction results of the proposed model for the
HER dataset.

Table 3. Forecast results of different models for the HER data.

Season Metrics
Proposed

Model
PSO-ANFIS VMD-GA-BP

EEMD-GPR-
LSTM

MWS-CE-
ENN

EMD-ISSA-
LSTM

Spring

RMSE 0.0065 0.0092 0.0128 0.0105 0.0093 0.0131
SSE 0.0180 0.0365 0.0817 0.0471 0.0370 0.0737

MAPE 0.0300 0.0402 0.0732 0.0493 0.0632 0.0536
MAE 0.0048 0.0068 0.0108 0.0083 0.0071 0.0096

Summer

RMSE 0.0112 0.0172 0.0134 0.0126 0.0152 0.0117
SSE 0.0537 0.1279 0.0768 0.0679 0.0989 0.0586

MAPE 0.0420 0.0641 0.0632 0.0596 0.0730 0.0500
MAE 0.0081 0.0123 0.0099 0.0114 0.0119 0.0093
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Table 3. Cont.

Season Metrics
Proposed

Model
PSO-ANFIS VMD-GA-BP

EEMD-GPR-
LSTM

MWS-CE-
ENN

EMD-ISSA-
LSTM

Autumn

RMSE 0.0088 0.0120 0.0137 0.0126 0.0132 0.0204
SSE 0.0331 0.0615 0.0806 0.0676 0.0746 0.1779

MAPE 0.0422 0.0514 0.0524 0.1177 0.0619 0.0851
MAE 0.0059 0.0077 0.0092 0.0089 0.0082 0.0129

Winter

RMSE 0.0063 0.0090 0.0067 0.0093 0.0104 0.0086
SSE 0.0172 0.0354 0.0190 0.0370 0.0463 0.0317

MAPE 0.0575 0.0880 0.0683 0.0722 0.0923 0.0620
MAE 0.0043 0.0064 0.0047 0.0069 0.0073 0.0056

Table 4. Forecast results of different models for the MHS data.

Season Metrics
Proposed

Model
PSO-ANFIS VMD-GA-BP

EEMD-GPR-
LSTM

MWS-CE-
ENN

EMD-ISSA-
LSTM

Spring

RMSE 0.0237 0.0344 0.0264 0.0276 0.0339 0.0291
SSE 0.2404 0.5054 0.2977 0.3250 0.4918 0.3624

MAPE 0.0724 0.0830 0.1007 0.1055 0.0990 0.0866
MAE 0.0146 0.0244 0.0187 0.0198 0.0229 0.0203

Summer

RMSE 0.0156 0.0267 0.0179 0.0205 0.0189 0.0236
SSE 0.0104 0.3045 0.1375 0.1799 0.1529 0.2384

MAPE 0.0433 0.0857 0.0588 0.0697 0.0680 0.0765
MAE 0.0110 0.0200 0.0136 0.0171 0.0149 0.0192

Autumn

RMSE 0.0166 0.0245 0.0190 0.0183 0.0214 0.0262
SSE 0.1179 0.2570 0.1543 0.1433 0.1960 0.2937

MAPE 0.0410 0.0641 0.0505 0.0439 0.0762 0.0658
MAE 0.0131 0.0185 0.0149 0.0137 0.0170 0.0211

Winter

RMSE 0.0266 0.0394 0.0309 0.0325 0.0286 0.0312
SSE 0.3034 0.6645 0.4075 0.4521 0.3501 0.4166

MAPE 0.0828 0.1698 0.1540 0.1215 0.0937 0.1200
MAE 0.0190 0.0284 0.0228 0.0276 0.0193 0.0257

Figure 4. Forecasting results of HER wind speed data sets: (a) experiment results of spring wind
speed sequences; (b) experiment results of summer wind speed sequences; (c) experiment results of
autumn wind speed sequences; (d) experiment results of winter wind speed sequences.
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Interestingly, it can be seen from Tables 3 and 4 that the proposed HGANN had the
best prediction performance for each of the RMSE, SSE, MAPE, and MAE indicators on
four datasets among all models. Wind speed forecasts at different times or at different
locations may yield different results. Notably, our model achieved promising predictive
results on both the geographically distinct German dataset HER and the Chinese dataset
MHS. Furthermore, our model showed competitive prediction performance for wind
series in different seasons. This indicates that our model can be extended to more general
environments for wind speed prediction.

The abscissa and ordinate in Figure 4 represent the actual wind speed and the predicted
wind speed, respectively; the blue line indicates that the predicted value is equal to the
actual value. The ordinate of the green point is the predicted value, so the fit of the green
point to the straight line reflects the accuracy of the prediction. As can be seen from Figure 4,
the green points are very close to the blue line, which indicates that our model can predict
wind speed effectively.

(2) Experiment II: Multi-Step Prediction Experiment

Multi-step forecasting can be built based on single-step forecasting. Compared to single-
step forecasting, multi-step forecasting is more practical for power systems. Therefore, in
wind speed prediction, multi-step prediction is of high practical value. The experiment
aimed to demonstrate the predictive performance of the HGANN model in multi-step fore-
casting. We selected 2880 samples from 23 August to 22 September from the HER dataset for
the one-step, two-step, and three-step experiments. Performance metrics involved RMSE,
SSE, MAPE, and MAE. Benchmark models covered PSO-ANFIS, VMD-GA-BP, EEMD-GPR-
LSTM, MWS-CE-ENN, and EMD-ISSA-LSTM. The training and testing processes of each
model were repeated 10 times. The experimental results of the proposed model and the
benchmark models are shown in Table 5.

Table 5. Multi-step prediction results for 15 min wind speed.

Model
RMSE SSE MAPE MAE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

Proposed 0.0091 0.0136 0.0178 0.0356 0.0679 0.1361 0.0463 0.0712 0.1087 0.0061 0.0098 0.0134
PSO-ANFIS 0.0120 0.0174 0.0238 0.0615 0.1299 0.2428 0.0514 0.0885 0.1270 0.0077 0.0119 0.0161

VMD-GA-BP 0.0137 0.0151 0.0203 0.0806 0.0976 0.1764 0.0524 0.0721 0.1123 0.0092 0.0101 0.0213
EEMD-GPR-LSTM 0.0126 0.0164 0.0192 0.0676 0.1151 0.1578 0.1177 0.1353 0.1536 0.0089 0.0129 0.0157

MWS-CE-ENN 0.0132 0.0176 0.0213 0.0746 0.1326 0.1942 0.0619 0.0826 0.1121 0.0082 0.0172 0.0224
EMD-ISSA-LSTM 0.0109 0.0139 0.0183 0.0508 0.0827 0.1433 0.0503 0.0919 0.1325 0.0086 0.0134 0.0192

From Table 5, it can be seen that the one-step, two-step, and three-step prediction
results of the proposed HGANN model provided lower RMSE, SSE, MAPE, and MAE
values than those of the benchmark models. For instance, the proposed HGANN provided
0.0091 (one-step), 0.0136 (two-step), and 0.0178 (three-step) on RMSE, compared with EMD-
ISSA-LSTM, which provided the predictive results of 0.0109 (one-step), 0.0139 (two-step),
and 0.0183 (three-step). Furthermore, we also provide clear visual results of multi-step
predictions for the six models in Figure 5. The results from Table 5 and Figure 5 indicate
that the proposed HGANN model had the best robustness and the highest wind speed
prediction accuracy among all compared models.
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Figure 5. Multi-step forecasting experiments under RMSE, SSE, MAPE, and MAE indicators: (a) ex-
periment results on the RMSE indicator; (b) experiment results on the SSE indicator; (c) experiment
results on the MAPE indicator; (d) experiment results on the MAE indicator.

(3) Experiment III: Ablation Experiment Between Single Models and Hybrid Models.

To verify the rationality of the proposed HGANN model, it was compared with WGAN-
OBLS, OBLS, WGAN, BLS, and CNN on the HER dataset. The generator of HGANN is
OBLS and its discriminator is the discriminator of WGAN. To emphasize the effectiveness of
OBLS, it was compared with the generator of WGAN, namely, CNN. Similarly, all compared
models were repeatedly trained and tested 10 times. In the HER dataset, 2880 data from
23 August to 22 September were selected for this experiment. The experimental results
are shown in Table 6, where the first-best predictions are highlighted with dark gray
backgrounds. The forecast results for 22 September 2019 are plotted in Figure 6, which also
shows the forecast errors in superimposed shades.

Table 6. Forecasting performances of the proposed model and reference models.

Indicators Proposed Model WGAN-OBLS OBLS WGAN CNN BLS

RMSE 0.0088 0.0119 0.0122 0.0138 0.0221 0.0308
SSE 0.0331 0.0603 0.0642 0.0819 0.2090 0.4058

MAPE 0.0422 0.0506 0.0546 0.0571 0.0601 0.0648
MAE 0.0059 0.0076 0.0080 0.0086 0.0161 0.0164

Figure 6 shows that among all the compared models, our proposed model had the best
curve fitting and the smallest predicted error. The suggested model consistently outper-
formed WGAN-OBLS, PSO-BLS, WGAN, OBLS, CNN, and BLS, as shown in Table 6. This
further demonstrates the advantages of our proposed model, as it combines CEEMDAN,
OBLS, and WGAN.
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Figure 6. Forecasting results in HER dataset (22 September 2019).

Furthermore, first, compared with WGAN-OBLS without CEEMDAN, the proposed
model had better predictive performance due to its covering CEEMADN and WGAN-OBLS,
thus showing the effectiveness of CEEMDAN. Second, compared with WGAN or OBLS,
WGAN-OBLS provided better predictive performance due to combing OBLS and WGAN,
thus showing the effectiveness of OBLS and WGAN in WGAN-OBLS. Third, compared
with BLS, OBLS provided better predictive performance due to using the improved PSO,
thus showing the effectiveness of PSO in OBLS. Fourth, OBLS had better predictive results
compared to the generator of WGAN, namely, CNN. This demonstrates the advantage of
OBLS over CNN as a generator. This may be due to the flexible structure and better error
convergence of OBLS.

4. Discussion

Our model was compared with five advanced models to evaluate its performance and
advantages in various wind sequence experiments. Experimental results show that the
proposed model had better predictive performance. The reasons behind this fact are given
as follows.

First, the wind speed data were one-year data from wind farms in Germany and
China, which cover complex fluctuation characteristics. Therefore, our HGANN model uses
CEEMDAN to smoothen the volatility of the data and improve the predictive performance.

Second, HGANN uses OBLS as the generator to provide a special shallow broad
incremental learning network structure, which can not only be beneficial for improving
prediction accuracy for one-dimensional wind speed prediction compared to CNN but
also greatly decrease computational cost using pseudo-inverse operations to determine the
network weights instead of using convolution operations.

Third, in our HGANN model, the proposed OBLS uses an improved PSO to optimize
the hyper-parameters of its network, which can search in a wider range and obtain the
optimal parameters over BLS. Therefore, OBLS has better generalization ability than BLS.

Finally, HGANN can better extract the deeper features of wind speed data by playing a
minimum–maximum game between the generator and discriminator for wind speed predic-
tion.

5. Conclusions

Although existing various hybrid predictive models have provided competitive per-
formance in ultra-short-term wind speed prediction, they still need to be further improved—
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for instance, how to effectively reduce the computational cost of hybrid predictive models,
and how to effectively deal with the multicollinearity problem of the hybrid forecasting
model based on weighted strategy, which leads to the problem of reduced forecasting
accuracy. To enhance the predictive power and decrease the computational cost, this paper
proposes the HGANN model for ultra-short-term wind speed forecasting. HGANN is a
generative adversarial network in which the generator and discriminator play against each
other to obtain wind speed predictions with high accuracy. In HGANN, we developed
OBLS and the convolutional structures as the generator and the discriminator, respec-
tively, which enables them to obtain effective synergies to improve predictive performance.
Particularly, OBLS involves a special shallow broad incremental learning network struc-
ture, which can effectively deal with one-dimensional wind speed data. Furthermore,
the shallow network structure of OBLS can also significantly decrease computational cost
via using pseudo-inverse operations rather than convolution operations. In addition, the
proposed OBLS applies an improved PSO to obtain the optimal network hyper-parameters.
CEEMDAN performs noise reduction and decomposition of the wind data. Via the above
rational combination, the proposed HGANN provides high predictive accuracy and gener-
alization ability with low computational cost in ultra-short-term wind speed prediction.
The experimental results indicate the above fact. For instance, the RMSE predictive errors
of the proposed model were 29.35%, 49.22%, 38.09%, and 30.10% compared to the four
state-of-art predictive models PSO-ANFIS, VMD-GA-BP, EEMD-GPR-LSTM, and MWS-
CE-ENN on the spring wind data of the HER dataset, respectively. In the future, we plan to
use parallel computing to speed up the process of PSO optimization of BLS during training.
Furthermore, the proposed HGANN will be extended to a wider range of applications,
such as financial time-series forecasting, electricity-load forecasting, traffic forecasting, etc.
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Nomenclature

ANFIS Adaptive-network-based fuzzy inference system
BLS Broad learning system
BP Back propagation
CEEMD Complementary ensemble empirical mode decomposition
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CNN Convolutional neural network
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
GA Genetic algorithm
GMDH Group method of data handling neural network
GNN Graph neural network
GAN Generative adversarial network
GPR Gaussian process regression
ICEEMDAN Improved CEEMDAN
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IMF Intrinsic mode function
IOWA Induced ordered weighted averaging
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MTO Multi-tracker optimizer
PSO Particle swarm optimization
OBLS Optimized broad learning system
RBF Radial basis function
RMSE Root mean square error
SSE Sum of squared error
SVR Support vector regression
VMD Variational mode decomposition
WGAN Wasserstein generative adversarial network
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